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Preface

One of the major contemporary challenges in both physical and social sciences is
modeling, analyzing, and understanding the self-organization, evolution, behavior,
and eventual decay of complex dynamical systems ranging from cell assemblies
to the human brain to animal societies. The multi-faceted problems in this domain
require a wide range of methods from various scientific disciplines. There is no
question that the inclusion of time delays in complex system models considerably
enriches the challenges presented by the problems. Although this inclusion often
becomes inevitable as real-world applications demand more and more realistic mod-
els, the role of time delays in the context of complex systems so far has not attracted
the interest it deserves. The present volume is an attempt toward filling this gap.

There exist various useful tools for the study of complex time-delay systems. At
the forefront is the mathematical theory of delay equations, a relatively mature field
in many aspects, which provides some powerful techniques for analytical inquiries,
along with some other tools from statistical physics, graph theory, computer science,
dynamical systems theory, probability theory, simulation and optimization software,
and so on. Nevertheless, the use of these methods requires a certain synergy to
address complex systems problems, especially in the presence of time delays.

The following series of chapters combine expertise from mathematics, physics,
engineering, and biology to address several current issues from the forefront of
research in the field. To unify the various problems and approaches presented, the
language of dynamical systems is heavily used throughout the book. Dynamical
systems, be it in isolation or in interaction with other systems, can display a rich
spectrum of behavior. At one end of the spectrum is the simplest point attractor,
namely a stable equilibrium. Despite its dynamical simplicity, it commands consid-
erable interest from a control perspective, since it represents the desired behavior
in many applications. However, stable equilibria can also spontaneously arise as a
result of coupling, particularly in delayed networks. The so-called amplitude death
refers to the emergence of such stability in an otherwise oscillatory or even chaotic
network. In some fields like chaos control, the aim may be to stabilize a periodic
solution instead of a fixed point. Further along the ranks is synchronization phe-
nomena in its many forms, where the attractor is typically a subset of the diagonal
of the system’s state space. Nearby such orderly behavior are regimes of cluster
formation and incoherence, as well as the co-existence of several attractors. Order
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and disorder can even exist in the same system at different spatial locations, as in
the case of chimera solutions. Though sequences of bifurcations as the parameter
values or inputs are varied, the system can visit the whole plethora of dynamical
regimes, only a fraction of which may be known or amenable to existing techniques
of analysis. This is certainly a challenging field both from theoretical and applied
perspectives.

The present volume starts with a chapter on the collective dynamics of coupled
oscillators, authored by Sen, Dodla, Johnston, and Sethia, which already exhibits
the range of dynamics from equilibrium to chimera solutions. Chapter 2 by Atay
focuses on the suppression of oscillations by time delays in feedback systems and
complex networks, in particular making the connection between stability and net-
work topology. Chapter 3 by Niculescu, Michiels, Gu, and Abdallah examines sta-
bility of equilibria by delayed output feedback from a control-theoretical point. In
Chap. 4, authored by Schöll, Hövel, Flunkert, and Dahlem, the emphasis is shifted
to the stabilization of periodic solutions, studying a range of applications from lasers
to coupled neurons. The investigation of neural systems is continued in Chap. 5 by
Hutt, this time with a different network model, namely a continuum field description
of collective neural activity. Chapter 6 by Longtin addresses stochastic dynamics of
neurons, after a discussion of stochastic delay differential equations. Chapter 7 by
Lu and Chen gives a comprehensive coverage of the stability of neural networks.
Chapter 8 by Crauste looks at stability in systems with distributed delays, with
an application to oscillations in stem cell populations. Finally, Chap. 9 by Sipahi
and Niculescu gives a survey and latest results on a novel application to complex
systems, namely time-delayed traffic flow.

This book is aimed at researchers and students from all disciplines who are
interested in time-delay systems. The chapters contain the state-of-the-art in their
respective fields, in addition to the current research of the contributors. However, the
emphasis has been to make the book a self-contained volume by providing sufficient
introductory material in every chapter, as well as ample references to the relevant
literature. In this way, the reader will be exposed to the recent results and at the same
time be provided with directions for further research.

Leipzig, Fatihcan M. Atay
January 2010
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Chapter 1
Amplitude Death, Synchrony, and Chimera
States in Delay Coupled Limit Cycle Oscillators

Abhijit Sen, Ramana Dodla, George L. Johnston, and Gautam C. Sethia

1.1 Introduction

In this chapter we will discuss the effects of time delay on the collective states of a
model mathematical system composed of a collection of coupled limit cycle oscilla-
tors. Such an assembly of coupled nonlinear oscillators serves as a useful paradigm
for the study of collective phenomena in many physical, chemical, and biological
systems and has therefore led to a great deal of theoretical and experimental work in
the past [1–6]. Examples of practical applications of such models include simulating
the interactions of arrays of Josephson junctions [7, 8], semiconductor lasers [9, 10],
charge density waves [11], phase-locking of relativistic magnetrons [12], Belousov–
Zhabotinskii reactions in coupled Brusselator models [2, 13–15], and neural oscil-
lator networks for circadian pacemakers [16]. One of the most commonly studied
phenomena is that of synchronization of the diverse frequencies of an oscillator
assembly to a single common frequency. Synchrony was highlighted by Winfree [1]
in a simple model of weakly coupled limit cycle oscillators and further developed by
Kuramoto and others in the context of phase transition models [17, 18]. Research on
synchrony in a variety of coupled and complex systems has seen an explosive growth
in the past few years and has also captured the popular imagination [19] due to its
application to such natural phenomena as the synchronous flashing of a swarm of
fire flies, the chirping of crickets in unison, and the electrical synchrony in cardiac
cells. Apart from synchrony, coupled limit cycle oscillator models are capable of
exhibiting other interesting behavior. For example, if the strength of the interaction
between the oscillators is comparable to the attraction to their own individual limit
cycles, then the original phase-only model of Winfree or Kuramoto is no longer
valid and the amplitudes of the individual oscillators begin to play a role [20–23].
For sufficiently strong coupling and a broad spread in the natural frequencies of the
oscillators, the assembly can suffer an amplitude quenching or death [5, 24, 25]
in which all the oscillators cease to oscillate and have zero amplitudes. Such

A. Sen (B)
Institute for Plasma Research, Bhat, Gandhinagar 382428, India
e-mail: abhijit@ipr.res.in

F.M. Atay (ed.), Complex Time-Delay Systems, Understanding Complex Systems,
DOI 10.1007/978-3-642-02329-3_1, c© Springer-Verlag Berlin Heidelberg 2010

1



2 A. Sen et al.

behavior has been observed in experiments of coupled chemical oscillator systems,
e.g., coupled Belousov–Zhabotinskii reactions carried out in coupled tank reac-
tors [26]. Other collective phenomena that these coupled oscillator models display
include partial synchronization, phase trapping, large amplitude Hopf oscillations,
and even chaotic behavior [25, 27]—all of which have been discussed widely in the
literature.

The question we wish to address now is what happens to the collective properties
of the coupled oscillator system when one introduces time delay in the coupling. The
physical motivation for such a modification of the coupling is to simulate the situ-
ation in real-life systems where the interaction between individual oscillators may
not be instantaneous but may be delayed due to finite propagation time of signals.
Time delays can similarly occur in chemical systems due to finite reaction times, and
in biological systems like neuron assemblies, the synaptic integration mechanisms
may provide a natural delay. From a mathematical point of view, one can expect
time delays to have a profound effect on the dynamical characteristics of a single
oscillator. This is well known from the study of single delay differential equations
which show fundamental changes in the nature of solutions and novel effects that are
absent in a non-delayed system. What happens to the collective modes of a coupled
system in the presence of time delay? Surprisingly, there has not been a great deal
of work in this area despite the vast literature on single delay differential equations
and the considerable recent developments in the field of coupled oscillator research.
Some notable exceptions are the works of Schuster and Wagner [28], Niebur et al.
[29], Nakamura et al. [30], and Kim et al. [31], who in the past have looked at
time delay effects in the context of the simple phase-only coupled oscillator mod-
els and found interesting effects like the existence of higher frequency states and
changes in the onset conditions and nature of synchronization. More recently we
have investigated a variety of model systems starting from a simple case of just two
oscillators with a discrete time-delayed coupling to a large number of oscillators
with time-delayed global, local, and non-local couplings [32–37]. Time delay is
found to introduce significant changes in the character and onset properties of the
various collective regimes such as amplitude death and phase-locked states. Some of
the results are novel and somewhat surprising—such as time delay-induced death in
an assembly of identical oscillators or the existence of clustered chimera states—and
may have important applications. With a growing recognition of the significance and
prevalence of time delay in various systems, there is now a considerable increase in
the number of investigations on this topic. The aim of this chapter is to provide
some appreciation of this interesting area of nonlinear dynamical systems through
an exposition of the basic concepts of the field followed by a discussion of some
research results. It is not meant to be a review of the field and the choices of topics
and research results are heavily influenced by our own work.

The chapter is organized as follows. In Sect. 1.2 we develop the basics of the
subject by introducing a minimal collective model consisting of two coupled limit
cycle oscillators that are close to a supercritical Hopf bifurcation. After identifying
the fundamental collective states of this system in the undelayed case we discuss
the effects of a finite time delay on the existence and stability of phase-locked states
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and amplitude death. In Sect. 1.3 we introduce a more complex model consisting of
N-coupled oscillators (N > 2). The oscillators in such a system can be coupled in
various ways: all-to-all (global), nearest neighbor (local), or spatially varying cou-
pling (non-local). We discuss time-delayed collective states in all three systems and
discuss their essential characteristics. Our primary emphasis is on the exploration
of the amplitude death state in all three coupling scenarios. We also investigate
the effect of time delay on a novel state of the non-local system—the so-called
chimera state—consisting of co-existing regions of coherent and incoherent states.
Time delay is seen to impose a spatial modulation of such a state leading to a clus-
tered chimera state. Section 1.4 provides a summary of the main results and some
perspective on the future directions and potential developments of the field.

1.2 A Minimal Collective Model

We begin our exploration of time delay effects on the collective states of coupled
oscillator systems by investigating the dynamics of a minimal model system consist-
ing of just two coupled limit cycle oscillators that are close to a supercritical Hopf
bifurcation. The individual oscillator of this model is chosen to have the nonlinear
normal form of a van der Pol-type equation. The van der Pol equation has a param-
eter that can be varied to take the solution state from a fixed point (a steady state) to
an oscillatory state via a supercritical Hopf bifurcation. To illustrate this, consider
the van der Pol equation in the following form:

ẍ− (a− x2)ẋ+ ω2x = 0. (1.1)

In this and other equations below, the variables x, y, z, ξ , φ, ρ, and θ are functions of
time, though, for simplicity, such a dependence is not explicitly written down, and
a and ω are real parameters. For a < 0, x = 0 is a stable steady state of (1.1), and
a periodic solution emerges as a is increased past 0. For large a these oscillations
acquire the character of relaxation oscillations. Thus, a = 0 is a bifurcation point.
The eigenvalues of the system for a linear perturbation around the origin (λ1,2 = a

2±
i
√
ω2 − a2/4) acquire pure imaginary values (±iω) with dRe(λ1,2)

da = 1
2 > 0 at a = 0.

A normal form of the equation that preserves these properties can be obtained by
doing an appropriate averaging over the fast periodic behavior near the critical point
a = 0. The resulting nonlinear equation has a simpler structure (that is easier to work
with analytically and numerically) and yet maintains the bifurcation characteristics
of the original oscillator equation. To carry out such a reduction we rewrite (1.1) as
a set of two first-order differential equations, ẋ = ωy and ẏ = −ωx + (a − x2)y.
Defining a complex variable z = x + iy, these equations may be written as a single
equation in terms of z:

ż = −iωz+ 1

2

[
a− 1

4
(z+ z̄)2

]
(z− z̄).
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Let z = ξe−iφ . (The negative sign introduced in the phase is of no physical sig-
nificance. The phase flow of the van der Pol is clockwise, but in the biological
phase oscillators where equations of the type θ̇ = ω are common, the phase flow is
anti-clockwise and is in the direction of increasing angle.) Then the following two
equations emerge for the amplitude and the phase:

ξ̇ = (a− ξ2 cos2 φ)ξ sin2 φ,

φ̇ = ω + 1

2
(a− ξ2 cos2 φ) sin (2φ).

We now average these two equations over the phase φ. The right-hand side of the
ξ̇ equation is an even function of φ, and the average over φ from 0 to π results in
(a − ξ2/4)ξ/2. The second term on the right-hand side of the φ̇ equation is an odd
function of φ, and an average over a period of φ makes it zero. We call the averaged
amplitude and the phase ρ and θ . Hence,

ρ̇ =
(

a− 1

4
ρ2

)
ρ

2
, (1.2)

θ̇ = ω. (1.3)

The behavior of the two eigenvalues of this reduced set of equations at a = 0 is
the same as that of (1.1) mentioned before. We can also see this by noting from
(1.2) and (1.3) that the growth of amplitude for very small perturbations around
ρ = 0 is proportional to a/2 and the frequency of such a growth is ω, identical to
the eigenvalue behavior of (1.1). For a positive but near 0, the phase plane orbits
of (1.1) are circular just as those for (1.2) and (1.3), but will become distorted for
large a. Using ρ and θ , a second-order approximation for the amplitude and phase
can be derived that reveals the dependence of the amplitude on the phase and the
phase evolution on the amplitude. But we confine our description to the first-order
approximation. By redefining Z(t) = ρ

2 eiθ , (1.2) and (1.3) can be written as a single
equation in the complex variable Z(t), namely,

Ż(t) = (a+ iω− | Z(t) |2 )Z(t) (1.4)

and which is the final normal form of the equation that we will work with. Equa-
tion (1.4) is also widely known as the Stuart–Landau oscillator. Note that this equa-
tion shows stable oscillations (Z(t) = √aeiωt) for a > 0 with amplitude

√
a and

a stable rest state (Z(t) = 0) for a < 0. The value a = 0 is the supercritical
Hopf bifurcation point. Our minimal model consists of two such oscillators that are
linearly (diffusively) coupled to each other and where the coupling is time delayed.
The model equations are

Ż1(t) = (1+ iω1− | Z1(t) |2 )Z1(t)+ K[Z2(t − τ )− Z1(t)], (1.5)

Ż2(t) = (1+ iω2− | Z2(t) |2 )Z2(t)+ K[Z1(t − τ )− Z2(t)], (1.6)
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where we have chosen a = 1 (so that each oscillator in the uncoupled state is in
the stable limit cycle state), K is the strength of coupling, and τ is a discrete and
constant delay time. As an approximation to a physical system, (1.5) and (1.6) can
be viewed as two nonlinear electronic circuits that are resistively coupled to each
other. We will study the dynamics of the above system in terms of the frequency
difference (Δ =| ω1 − ω2 |), the average frequency (ω̄ = (ω1 + ω2)/2), and the
coupling strength (K) as a function of the time delay parameter τ . In the absence of
time delay, the above set of equations (and its generalizations) have been studied in
detail by Aronson et al. [24] to delineate the bifurcation structures and the existence
of various collective states. In Fig. 1.1 we have redrawn their bifurcation diagram to
illustrate the main features of their analyses. Broadly, the bifurcation diagram may
be divided into three regimes: (1) frequencies are identical, ω1 = ω2 = ω, that is
Δ = 0, (2) frequencies are weakly dissimilar (i.e., 0 < Δ < 2), and (3) frequen-
cies are very dissimilar (i.e., Δ > 2). For identical intrinsic frequencies (Δ = 0),
the coupled oscillators are always synchronized (with no phase delay between the
oscillations). This is the only stable solution for any positive and finite coupling
strength. The level of K determines how fast the synchronized state is attained from
any given set of initial conditions. For weakly dissimilar frequencies (0 < Δ < 2),
the oscillators can be found in two different states: phase drift or phase-locked states.
A critical value of coupling (K > Δ/2) is required to phase-lock the oscillators. In
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Aronson et al.’s bifurcation diagram, τ=0

Fig. 1.1 Aronson et al.’s [24] bifurcation diagram of (1.5) and (1.6) for τ = 0. The boundaries
of the death state are determined from the eigenvalues of the linearized equations at Z1,2 = 0:
For Δ > 2, K = 1 and κ ≡ K = 1

2 (1 + Δ2/4) define the boundaries. The stable phase-locked
state is the node of symmetric solutions that form a saddle-node pair that emerges on Δ = 2K
and K < 1. The saddle merges with the origin on the thin line, κ . The node has the amplitude

ρ+ =
√

1− K +√
K2 −Δ2/4, Ω = ω̄, and α+ = sin−1 (Δ/2K)
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such phase-locked state, the phase difference between the oscillators is a constant
of time and is determined by the coupling strength and the frequency difference.
For weak coupling in this regime, a phase drift occurs (i.e., θ1 − θ2 is a function of
time and runs from 0 to 2π). In these two regimes, the amplitude of the oscillators
does not offer any particularly interesting feature. In the third regime (Δ > 2),
however, when the frequency disparity is strong, a third solution, a stable amplitude
death state, can exist in addition to phase drift and phase-locked states. The level
of coupling strength determines the stability of each of these states. For K < 1,
phase drift occurs. For K > (1 + Δ2/4)/2, phase-locking occurs. For intermediate
K, the amplitude of the oscillators becomes zero. This state is nothing but the stable
fixed point state (Z1, 2(t) = 0) and does not exist for phase-only coupled oscillators
(i.e., when the amplitudes of the two oscillators are forced to assume a value of
unity while letting the phases to evolve). This state is a reflection of the effect of
amplitude on the collective oscillations of the coupled oscillators. The boundaries
of various regions can be determined by a stability analysis of these states [24]. We
will now study the effect of finite time delay (τ �= 0) on the characteristics of this
phase diagram.

1.2.1 Time delay effects

We rewrite the model Equations (1.5) and (1.6) in polar coordinates by letting
Z1,2(t) = r1,2eiθ1,2 to get

ṙ1(t) = (1− K − r1(t)2)r1(t)+ Kr2(t − τ ) cos [θ2(t − τ )− θ1(t)], (1.7)

θ̇1(t) = ω1 + K
r2(t − τ )

r1(t)
sin [θ2(t − τ )− θ1(t)], (1.8)

ṙ2(t) = (1− K − r2(t)2)r2(t)+ Kr1(t − τ ) cos [θ1(t − τ )− θ2(t)], (1.9)

θ̇2(t) = ω2 + K
r1(t − τ )

r2(t)
sin [θ1(t − τ )− θ2(t)]. (1.10)

This form is more useful for analysis of periodic states whereas the Cartesian form
is convenient for linear stability studies, and we will utilize either form as per our
needs.

1.2.1.1 Phase-Locked States

Let us consider identical oscillators, that is, Δ = 0, and hence ω1 = ω2 ≡ ω0.
This is also trivially the average frequency ω̄. Without time delay (τ = 0), the
in-phase-locked state is a stable solution. The interactions are instantaneous and do
not depend on time history. Hence, any phase mismatch introduced by way of pertur-
bation is transmitted to both the oscillators instantly. Once the perturbation ceases,
the oscillators resume their oscillations with their natural frequencies. The coupling
coefficient K determines the recovery time window before their natural oscillations
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Fig. 1.2 Numerical solutions of coupled identical (Δ = 0) oscillators ((1.5) and (1.6)) at K = 2,
ω0 = 10. The initial conditions are x1 = 0.3, x2 = 0.5, y1 = 0, y2 = 0. The delay vectors
Z1,2(t) = 0, τ < t < 0. Stable in-phase-locked state is reached quickly for very small or no time
delay. Amplitude death is encountered as τ is increased, and the system emerges into an anti-phase-
locked state for further increments. Our analysis will reveal multiple regions of amplitude death at
larger values of τ

are synchronized. This stable state is also seen in the bifurcation diagram (Fig. 1.1).
The evolution of the real components of the two oscillators in this in-phase-locked
state are illustrated in Fig. 1.2(a).

For finite τ the interactions are non-instantaneous. Earlier studies on phase cou-
pled oscillators that included time delays predicted multiple frequency states where
the oscillators could possess any of several stable frequency states allowed for the
given parameter set. The possibility of such multiple states arising due to time delay
may be seen directly from (1.7), (1.8), (1.9), (1.10), where the dependence of the
derivatives on phases involves sinusoidal functions of τ . We will show that this
dependence will lead to transcendental equations for oscillation frequency and thus
result in multiple frequency states. For identical oscillators, such multiple frequency
states are either in-phase or anti-phase. Multi-stability can occur between in-phase
states, anti-phase states, or between in-phase and anti-phase states. For any given
state, the frequency of oscillation decreases with increasing τ (Fig. 1.3(b)) as also
predicted earlier by other studies [29]. In our example simulating the parameters
allow both in-phase and anti-phase states and they exist in different parameter
regions for τ < 0.3 (Fig. 1.2(c) and Fig. 1.3(b) and (c)).

The fact that we have amplitude evolutions along with the phase evolutions (see
(1.7), (1.8), (1.9), (1.10)) has significance for the existence of these states. The
in-phase state at τ = 0 continues to exist for slightly higher levels of τ , but the
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Fig. 1.3 Numerical simulation results of coupled identical (Δ = 0) oscillators ((1.5) and (1.6))
at K = 2, ω̄ = 10. After initial transients, the amplitudes and frequencies of both the oscillators
become constants in time. The solutions are sinusoidal, but the plotted frequencies are the peaks
of the Fourier spectrum of the time course of x1. The phases of the oscillators are computed using
θ1 = tan−1 (y1/x1) and θ2 = tan−1 (y2/x2). The shaded region is the parameter region of amplitude
death along τ

amplitude of the oscillations decreases until it completely becomes zero (Figs. 1.2(b)
and 1.3(a)). In this state any damped oscillations might still show an in-phase rela-
tionship, but they are transient in nature, and the long-time steady state is the zero
amplitude steady state. In fact as τ is increased, these damped oscillations become
anti-phase, and above a critical τ , the amplitude of these oscillations becomes non-
zero, and a stable anti-phase state emerges (Fig. 1.3). The zero-amplitude state is
the region of stability of Z1, 2 = 0 and is the death state. The boundaries of the death
state seen in Fig. 1.3 (shaded regions) are the boundaries of the ‘death island’ which
will be discussed later.

We will later on derive the boundaries of the death state by using the eigenvalue
analysis. But the emergence of the death and anti-phase solutions and their stability
may be derived simply from an empirical observation of the numerical results of
Fig. 1.3. Numerical simulations reveal the symmetry of the system. In the in-phase
and anti-phase states the amplitudes of both the oscillators are identical and inde-
pendent of time (r1(t) = r2(t) = r∗). Their phase evolutions (not shown) are linear
growths (θ1(t) = Ωt + c1, θ2(t) = Ωt + c2) of time with a frequency (Ω) that may
differ from their intrinsic frequency (ω0). The quantities c1 and c2 are constants in
time and depend on the initial conditions. The phase difference of the oscillators is
measured by | c1 − c2 |. In the in-phase state the phase difference is zero and in the
anti-phase state it is π . For ease of analysis, we will assume that c1 = −α/2 and
c2 = α/2, so that in the in-phase state α = 0 and in the anti-phase state α = π . Let
us first substitute in (1.8) and (1.10) the above observations on the amplitudes:

θ̇1(t) = ω0 + K sin [θ2(t − τ )− θ1(t)], (1.11)

θ̇2(t) = ω0 + K sin [θ1(t − τ )− θ2(t)]. (1.12)

Define φ(t) = θ2(t)− θ1(t) and take the difference of the above two equations to get

φ̇(t) = −2K cos (Ωτ ) sinφ, (1.13)
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0
2ππ

dφ/dt = –2K cos(Ωτ) sin(φ) dφ/dt = –2K cos(Ωτ) sin(φ)

φ
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0
π

φ

cos(Ωτ) < 0 
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2π

Fig. 1.4 Stability of in-phase and anti-phase solutions is decided by the sign of cos (Ωτ ). The
filled phase point is the stable solution in each case. For cos (Ωτ ) > 0 the in-phase solution is
stable, and for cos (Ωτ ) < 0 the anti-phase solution is stable

where we have used the relations θ1(t − τ ) − θ1(t) = θ2(t − τ ) − θ2(t) = −Ωτ
and θ2(t − τ ) − θ1(t − τ ) = θ2 − θ1. These relations are again derived from the
observations that we made above on the phase evolutions in the phase-locked states.
We have not yet specified the phase difference α between the oscillators. So this
phase difference evolution equation applies for both in-phase and anti-phase states
alike. This equation also helps us in understanding the stability of both in-phase and
anti-phase states. For cos (Ωτ ) > 0 (Fig. 1.4(a)), the slope of φ̇ (i.e., the rate of
change of the phase difference) is negative, signifying that any brief perturbation
from this state will decay to that state in time, as also indicated by the directional
flow. Hence, the in-phase state is stable, and the anti-phase state is unstable. But for
cos (Ωτ ) < 0 (Fig. 1.4(b)), the anti-phase state acquires stability and the in-phase
state loses its stability.

Does the in-phase state have to become unstable for the anti-phase state to
become stable, and vice versa? No. In fact both states can co-exist. This is pos-
sible because the frequencies of these two states can be different while still obeying
the stability relations shown in Fig. 1.4. The frequencies are in fact determined by
solving different transcendental equations involving Ω and τ for the two states. To
see this, substitute the in-phase states θ1,2(t) = Ωt (i.e., α = 0) in (1.11) to obtain a
transcendental equation for the in-phase frequencies:

fin(Ω) = Ω − ω0 + K sin (Ωτ ) = 0. (1.14)

Similarly, for the anti-phase states, substituting θ1,2(t) = Ωt∓π/2 in (1.11), another
transcendental equation for Ω is obtained for anti-phase frequencies:

fanti(Ω) = Ω − ω0 − K sin (Ωτ ) = 0. (1.15)

fin and fanti are plotted as a function of Ω in Fig. 1.5 for sample parameter values.
The zeros of these curves are the allowed in-phase or anti-phase frequencies. For
small τ only one solution for each state (marked by dots) could be found, but at
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Fig. 1.5 The allowed values of frequencies for in-phase and anti-phase states are determined by
solving for the zeros of the functions fin(Ω) and fanti(Ω). These two curves plotted as a function of
Ω at τ = 0.1, K = 2, show single solutions for in-phase and anti-phase states (marked by filled
bullets). At large K, the curves show bigger amplitude oscillations and at longer τ they show more
wiggles in any given Ω-window. Both these features help establish multiple frequency states for
both in- and anti-phase states as seen, for example, by the multiple zeros of fin at τ = 1 and K = 5:

larger τ and/or K, multiple zeros could result, correspondingly yielding multiple
frequencies.

The stability of any one state with frequency Ω , as stated above, depends on
the sign of cos (Ωτ ). This stability analysis is illustrated pictorially for an in-phase
and an anti-phase branch in Fig. 1.6. The frequencies of the in-phase and anti-phase
states are obtained by solving f in=0 and f anti=0 and are plotted as a function of τ .
The stable in-phase branch corresponding to cos (Ωτ ) > 0 (Fig. 1.6(a)) and the sta-
ble anti-phase branch corresponding to cos (Ωτ ) < 0 (Fig. 1.6(b)) are marked with
filled dots. The unfilled dots indicate unstable portions of the frequency branches.
We might already have here a bistable region between in-phase and anti-phase states.
However, the amplitudes of each of these states must also be considered and verified
whether these states assume physically acceptable (i.e., real and positive) values.

The amplitude of the in-phase state is obtained by substituting r1(t) = r2(t) = rin
and θ1, 2(t) = Ωt in (1.7):

r2
in = 1− K + K cos (Ωτ ). (1.16)

The right-hand side of this equation is real and positive only when cos (Ωτ ) > 1−
1/K. Since cos (Ωτ ) is a smooth function of its argument, in fact, as τ is increased
the amplitude gradually decreases to 0 on the curve

cos (Ωτ ) = 1− 1

K
(1.17)

and r2
in remains unphysically negative for 0 < cos (Ωτ ) < 1/K − 1 (shown

by the guiding lines in Fig. 1.6(a)). This boundary where the amplitude becomes
0, however, marks the transition of the in-phase state with finite amplitude to a
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Fig. 1.6 Frequency branches of in-phase-locked (a) and anti-phase (b)-locked states obtained by
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exactly with those (c) (τ1(0, K) and τ2(0, K)) obtained from eigenvalue analysis. Here the match
must be at K = 2. The shaded region is the death island region and extends beyond the ordinate
boundary
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zero-amplitude state or the death state. We will in fact see from eigenvalue analysis
that this is one of the death region (death island) boundaries. We plot the death
boundary τ1(0, K) corresponding to ω0 = 10 (to be derived later) and find an exact
match between a death island boundary and that predicted by the above equation
(Fig. 1.6(c)). Similarly, we examine the amplitude of the anti-phase state by substi-
tuting r1(t) = r2(t) = ranti and θ1, 2(t) = Ωt ∓ π/2 in one of the phase evolution
equations, say (1.8), and obtain

r2
anti = 1− K − K cos (Ωτ ). (1.18)

The right-hand side of this equation is real and positive only when cos (Ωτ ) <
1− 1/K. Again, this function varies smoothly with its argument and becomes zero
on the curve

cos (Ωτ ) = 1

K
− 1 (1.19)

and remains unphysically negative for 1/K − 1 < cos (Ωτ ) < 0 (shown by the
guiding lines in Fig. 1.6(b)). This boundary where the amplitude of the anti-phase
oscillations becomes 0 matches exactly with the boundary τ2(0, K) derived from the
eigenvalue analysis (Fig. 1.6(c)).

1.2.1.2 Amplitude Death

We will now study the amplitude death region and show how to derive these bound-
aries systematically from the characteristic equation. The amplitude death region
is the region of stability of the trivial solution: Z1,2 = 0, and the eigenvalues of
this state determine the boundaries of the amplitude death both for identical and for
non-identical oscillators. The characteristic equation we obtain will be transcenden-
tal in nature and can possess an infinite number of eigenvalues. The amplitude death
region is determined from the parameters in the characteristic equation by insist-
ing that all the eigenvalues have negative real parts. For example, if λ = α + iβ
(where α and β are real) represents all the eigenvalues of the system, the stable
death region is determined by the condition α < 0 and the boundary of the death
region is determined by α = 0. Owing to the fact that we will have a transcendental
characteristic equation (and hence multiple solutions; see, for example, Fig. 1.5),
this death boundary condition results in multiple curves in the parameter space,
leading to the possibility of multiple regions of death state.

The characteristic equation of (1.5) and (1.6) is obtained by linearizing these
equations around Z1, 2 = 0 and substituting Z1, 2(t) = Z1, 2(0)eλt. The resultant
matrix on the right-hand side of the equations is

A =
[

1− K + iω1 Ke−λτ
Ke−λτ 1− K + iω2

]
. (1.20)
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The characteristic equation is nothing but det (A−λI) = 0, where I is the 2× 2 unit
matrix. By expanding this equation, we can write it as the following transcendental
equation:

(a− λ+ iω1)(a− λ+ iω2)− K2e−2λτ = 0, (1.21)

where a = 1 − K. Complete analytical solutions of such transcendental equations
are not generally available, but we can use the equations to obtain critical curves
bounding the stable (death) region. We first show the stable regions between non-
identical oscillators and then derive boundaries for identical oscillators. As outlined
above, we obtain critical curves by seeking that the real parts of the eigenvalues are
zero. On these curves, a pair of eigenvalues cross into right half of the eigenvalue
plane (i.e., a stability switch could take place). Since we already know the region of
stability in the absence of time delay, we increase τ slightly and look for the critical
curves that are nearest to this region. Across these curves, stability of the rest state
is lost, and thus they provide the boundaries of the death region. On the critical
curves, let λ = iβ. Substituting this in the above equation and separating the real
and imaginary components, we obtain (β − ω̄)2 − Δ2/4 − a2 + K2 cos (2βτ ) = 0
and 2a(β − ω̄) − K2 sin (2βτ ) = 0. These two equations may be used to compute
critical curves in (K,Δ) plane by eliminating β. For convenience we write them as
follows:

F = (β − ω̄)/ sin (2βτ ), (1.22)

K ≡ K± = −F ±
√

F2 + 2F, (1.23)

Δ2 = −4a2 + 4(β − ω̄)2 + 4K2 cos (2βτ ). (1.24)

By choosing β from intervals In = (nπ/2τ , (n + 1)π/2τ ), portions of curves are
obtained in (K,Δ) plane. We term these curves as S± depending on the sign being
used to compute K in (1.23). For ω̄ = 10 we show in Fig. 1.7 these critical curves
in the (K,Δ) plane using the interval I0. S+ curves are drawn in dashes and S− in
continuous lines. The shaded region is the amplitude death region. For τ very small,
the region is closer to that of Aronson et al.’s (Fig. 1.1). But as τ is increased, the
region expands toward smaller values of Δ, and for a range of τ values, it displays
amplitude death state along Δ = 0 axis. That is, identical oscillators can exhibit
amplitude death state if appropriate time delay is introduced in their interactions.

We will now be interested in this phenomenon of amplitude death for Δ = 0
and wish to quantify the region of death for various τ by finding the critical curves
that define the boundaries of the death region in (K, τ ) plane. To do this, it is best to
consider (1.21) and substitute ω1 = ω2 = ω0 there. This gives a set of two simpler
characteristic equations

λ = 1− K + iω0 ± Ke−λτ , (1.25)
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Fig. 1.7 Amplitude death region (shaded) shown for three values of τ at ω̄ = 10. The boundaries
are the curves S− (solid lines) and S+ (dashed lines) drawn by eliminating β from (1.22), (1.23)
and (1.24)

which can now be analyzed for critical curves. Again for criticality, substitute
λ = iβ. We obtain, by separating the real and imaginary parts, the following two
equations which can be used to eliminate β and obtain curves, or death island bound-
aries, in (τ , K) plane. Using + sign,

cos (βτ ) = 1− 1

K
, (1.26)

β − ω0 + K sin (βτ ) = 0. (1.27)

These are exactly the same equations we obtained earlier for in-phase-locked states
(1.14), and the condition for amplitude of that state to be zero (1.17), confirming
that the in-phase state indeed emerges from the death state on this critical curve.
Using − sign, we obtain

cos (βτ ) = 1

K
− 1, (1.28)

β − ω0 − K sin (βτ ) = 0. (1.29)
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These are exactly the same equations we obtained earlier for anti-phase-locked
states (1.15), and the condition for amplitude of that state to be zero (1.19), con-
firming that an anti-phase state emerges from the death state on this critical curve.
The value of β can be expressed independently of the sinusoidal function in both
the above cases. Inverting the cosine functions results in multiple values for τ as a
function of K. Each of these curves is a critical curve across which pairs of eigenval-
ues cross into the right half eigenvalue plane. A numerical ordering of these curves
reveals [32, 33] that the death island boundaries are given by

τ1 ≡ τ1(n, K) = nπ + cos−1 (1− 1/K)

ω0 −
√

2K − 1
, (1.30)

τ2 ≡ τ2(n, K) = (n+ 1)π − cos−1 (1− 1/K)

ω0 +
√

2K − 1
. (1.31)

We plot these curves in Fig. 1.8 for ω0 = 30 and shade the regions of amplitude
death. The death regions are multiple in number at this value of ω0. A more detailed
analysis [32, 33] also reveals that the eigenvalues indeed cross these boundaries
from inside to outside as we expect.

1.3 N-Oscillator Models

With the insights gained from the analysis of the minimal model of just two cou-
pled oscillators, we will now try to study the collective states of a more complex
system where we have a large number N of coupled oscillators. When the number
of oscillators is large (N > 2), the mutual coupling can occur in a variety of ways.
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Fig. 1.8 Two of the three death islands are shown for ω0 = 30
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One simple way is to connect each oscillator to every other oscillator with a con-
stant coupling strength. Such a system is called a globally coupled system or more
commonly as a mean field model. Another widely used coupling scheme is that of
nearest neighbor coupling which is often referred to as diffusive coupling. A more
generalized form of coupling that reduces to the above two in limiting cases is that of
non-local coupling in which the coupling extends over a wider spatial extent but with
a varying strength. In this section we will introduce time delay coupled versions of
all these three models and discuss the effect of time delay on their collective states.
We will restrict ourselves to one-dimensional configurations (for the locally and
non-locally coupled systems) which are simpler to analyze. Our present discussion
will be primarily based on the work carried out in [33, 35–37].

1.3.1 Global Coupling

Making a straightforward generalization of (1.5) and (1.6), one can describe a sys-
tem of N globally coupled Stuart–Landau oscillators (with a linear time-delayed
coupling) by the following set of model equations:

Żj(t) = (1+ iωj− | Zj(t) |2 )Zj(t) + K′

N

N∑

k=1

[Zk(t − τ )− Zj(t)]

− K′

N
[Zj(t − τ )− Zj(t)], (1.32)

where j = 1, . . . , N, K′ = 2K, is the coupling strength and τ is the delay time.
The coupling term on the right-hand side now has a summation up to N, ensuring
coupling of an individual oscillator to every other one in the system, whereas the last
term has been introduced to subtract the self-coupling term from the summation. In
the absence of time delay, such a mean field model has been studied extensively
in the past in [5, 20, 25, 27] in order to delineate the various stationary and non-
stationary states of the system including phase-locked states, amplitude death, phase
drift states, Hopf oscillations, and even chaotic states. We will examine the effect
of time delay on some of these states. For this it is convenient to define an order
parameter, defined as,

Z̄ = Reiφ = 1

N

N∑

j=1

Zj(t), (1.33)

where R and φ denote the amplitude and phase of the centroid. In a large N model
the order parameter provides a time-asymptotic measure of the coherence (collective
aspects) of the system in both a qualitative and a quantitative fashion. When R = 0
(in the large time limit) the system can be considered to be in an incoherent state
whereas R = 1 marks a totally synchronized or ‘phase-locked’ state. Any value
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in between indicates that the system is in a partially synchronized state. The order
parameter is also capable of displaying signatures of non-stationary states like chaos
and large amplitude Hopf oscillations through its temporal behavior [25, 27]. Using
the order parameter, the model equations can be rewritten more compactly as

Żj(t) = (1− K′d + iωj− | Zj(t) |2 )Zj(t)+ K′Z̄(t − τ )− K′

N
Zj(t − τ ), (1.34)

where d = 1− 1/N. We will now study the stability of the origin of these equations
(for examining the amplitude death state) and also discuss the phase-locked states
of the system.

1.3.1.1 Amplitude Death

The stability of the origin can be determined as before by doing a linear perturbation
analysis around Zj = 0 in (1.32). Assuming the perturbations to vary in time as eλt,
the characteristic matrix of (1.32) is given by

B =

⎡

⎢⎢⎢
⎣

l1 f · · · f
f l2 · · · f
...

...
. . .

...
f f · · · lN

⎤

⎥⎥⎥
⎦

, (1.35)

where ln = 1 − K′d + iωn and f = K′
N e−λτ . The eigenvalue problem can also

be cast in terms of another matrix C = B + (K′d − 1)I (with I being the identity
matrix), such that if μ is the eigenvalue of C then it is related to λ by the relation
μ = λ + (K′d − 1). The eigenvalue equation det (C − μI) = 0 can be compactly
expressed as a product of two factors:

[
N∏

k=1

(iωk − μ− f )

]⎡

⎣1+ f
N∑

j=1

1

iωj − μ− f

⎤

⎦ = 0. (1.36)

As discussed by Matthews and Strogatz [38, 27], for the no-delay case, solutions of
the first factor represent the continuous spectrum of the system whereas the second
factor provides the discrete spectrum. The characteristic Equation (1.36) is difficult
to solve analytically or even numerically when N is large. We will confine ourselves
to the case of N identical oscillators where a simple analysis is possible and which
will also allow us to seek a generalization of the N = 2 result discussed in the
previous section. For N identical oscillators the frequency distribution of the system
can be expressed as a delta function

g(ω) = δ(ω − ω0), (1.37)
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where ω0 is the natural frequency of each oscillator. With such a distribution the
eigenvalue equation can be simplified to the form

λ =
{

1− K′d + iω0 + K′de−λτ , 1− K′d + iω0 − K′

N
e−λτ

}
, (1.38)

in which the second eigenvalue has a degeneracy of N − 1. Using both the eigen-
value equations and the procedure described for the N = 2 case, one can obtain the
following set of critical curves:

τa(n, K) =
2nπ + cos−1

[
1− 1

K′d

]

ω0 −
√

2K′d − 1
, (1.39)

τb(n, K) =
2(n+ 1)π − cos−1

[
1− 1

K′d

]

ω0 +
√

2K′d − 1
, (1.40)

τc(n, K) =
2(n+ 1)π − cos−1

[
1−K′d

K′(1−d)

]

ω0 −
√

[K′(1− d)]2 − (K′d − 1)2
, (1.41)

τd(n, K) =
2nπ + cos−1

[
1−K′d

K′(1−d)

]

ω0 +
√

[K′(1− d)]2 − (K′d − 1)2
. (1.42)

In contrast to the N = 2 case, the family of curves is now four instead of two, and
they are functions of the parameter N. It is easy to check that for N = 2, the curves
τa(n, K) and τc(n, K) combine to give τ1(n, K) and τb(n, K) and τd(n, K) combine
to give τ2(n, K) which were obtained in the earlier section. We show some typical
death island regions in Fig. 1.9(a) for various values of N as obtained from the
critical curves (1.39), (1.40), (1.41) and (1.42) with n = 0. The sizes of the islands
are seen to vary as a function of N and to approach a saturated size as N →∞. The
existence of these regions has also been independently confirmed by direct numeri-
cal solution of the coupled oscillator equations [33]. Thus, the phenomenon of time
delay-induced death for identical oscillators happens even for an arbitrarily large
number of oscillators and is a generic property of our coupled oscillator system. As
in the N = 2 case these death islands can also show multiple connectedness for
higher values of ω0 which is a characteristic feature of delay equations.

1.3.2 Nearest Neighbor Coupling

We now look at a local coupling model in which each oscillator is coupled only to
its next nearest neighbor. The summation term on the right-hand side of (1.32) then
collapses to just two terms and the model equations have the form
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Fig. 1.9 Death islands for global and nearest neighbor couplings. (ω0 = 10) (a) Death island
regions for oscillators with global coupling [32, 33]. (b) Death island regions for oscillators with
nearest neighbor coupling. All even number of oscillators have a single death island region that
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∂Zj

∂t
= (1+ iωj− | Zj |2 )Zj + K[Zj+1(t − τ )− Zj(t)]

+K[Zj−1(t − τ )− Zj(t)], (1.43)

where the notation is as before. We will simplify this model further by considering
only identical oscillators (setting all ωj = ω0) and assuming the oscillators to be
arranged in a closed ring. We choose identical oscillators in order to continue our
exploration of the death state for the case where there is no frequency dispersion
and the ring configuration allows application of periodic boundary conditions when
considering phase-locked states. The model equation then has the form

∂Zj

∂t
= (1+ iω0− | Zj |2 )Zj + K[Zj+1(t − τ )− Zj(t)]

+K[Zj−1(t − τ )− Zj(t)]. (1.44)

Note that unlike the global coupling case there is now a spatial dependence in the
coupling and therefore the geometrical arrangement of the oscillators matters. This
additional dimension introduces new equilibrium states in the system such as trav-
eling waves and in higher dimensions spiral patterns or scroll waves. For τ = 0
one can also make an interesting connection to a well-known nonlinear dynamical
equation, namely the complex Ginzburg–Landau equation (CGLE). To see this one
can take the limit where the spacing between two oscillators, a, goes to zero, so that
Zj = Z(ja)→ Z(x) where x is a continuum variable. Then (1.44) reduces to

∂Z(x, t)

∂t
= (1+ iω0 − |Z(x, t)|2 )Z(x, t)+ K

∂2Z(x, t)

∂x2
, (1.45)
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where K has been rescaled as K/a2. This equation has been widely studied and
has a rich variety of nonlinear solutions that have found a number of interesting
applications.1 We will return to a more generalized form of this equation later in the
chapter. We continue now with the exploration of the amplitude death and phase-
locked solutions of (1.44).

1.3.2.1 Amplitude Death

To obtain the conditions for the existence of the death region and to determine its
location in parameter space, we resort as usual to a linear perturbation analysis about
the origin. Applying periodic boundary conditions (because of the assumed closed
chain configuration) we can get the following eigenvalue equation:

N∏

j=1

(
λ+ 2K − 1− iω0 − Ke−λτUj − Ke−λτUN−1

j

)
= 0,

where Uj = ei2π (j−1)/N are the Nth roots of unity. Since Uj +UN−1
j = Uj +U−1

j =
2 cos [(j− 1)2π/N], the above equation can be further simplified to

N∏

j=1

(
λ+ 2K − 1− iω0 − 2K cos [(j− 1)2π/N]e−λτ

) = 0. (1.46)

The above equation has to be complemented by its conjugate equation in order to
obtain a complete set of eigenvalue equations. We notice that for τ = 0, (1.46)
always admits at least one unstable eigenvalue, namely λ = 1 + iω0. This means
that identical oscillators that are locally coupled cannot have an amplitude death
state in the absence of time delay, an echo of our earlier results for N = 2 and
N globally coupled oscillators. In the presence of finite delay, we adopt the same
standard procedure that we used earlier for the global coupling case, namely that of
determining the marginal stability condition to identify the critical curves. Before
we do that, it is worthwhile pointing out another essential and interesting difference
from the global coupling case, namely, if N is a multiple of 4 then some of the factors
of (1.46) have no explicit τ dependence since for them Rj = 2 cos [(j−1)2π/N] = 0.
Consider the case of N = 4 and j = 2, 4, for which the eigenvalue equation becomes
λ = 1−2K± iω0, and the only criticality condition is then given by K = 1/2. Thus,
the stable region lies on the side of the parameter space that obeys K > 1/2. For
other values of Rj, the death island boundaries can be determined by a marginal

1 In its most general form, the CGL equation is of the form ∂Z(x,t)
∂t = (1 + iω0 − (1 + ib)

|Z(x, t)|2 )Z(x, t)+ K(1+ ia) ∂
2Z(x,t)
∂x2 , where a and b are real quantities.
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stability analysis, and the expressions for the critical curves in the (τ , K) plane are
given by

τa(n, K) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2nπ − cos−1 [(2K − 1)/KRj]

ω0 +
√

K2R2
j − (2K − 1)2

, Rj > 0,

(2n+ 1)π − cos−1 [(2K − 1)/K
∣∣Rj

∣∣ ]

ω0 +
√

K2R2
j − (2K − 1)2

, Rj < 0,
(1.47)

τb(m, K) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2mπ + cos−1 [(2K − 1)/KRj]

ω0 −
√

K2R2
j − (2K − 1)2

, Rj > 0,

(2m+ 1)π + cos−1 [(2K − 1)/K
∣∣Rj

∣∣ ]

ω0 −
√

K2R2
j − (2K − 1)2

, Rj < 0,
(1.48)

where n and m are integers. For a detailed analysis of these curves, which includes
determination of useful bounds on K for ordering and finding the degeneracies of the
critical curves, we refer the reader to [35]. The essential features of the death islands
in this system can be gathered from Fig. 1.9(b), where they have been plotted for
different values of N. One striking difference is that the size and shape of the death
island is now determined by the odd or even property of the number of oscillators
N. For an even number of oscillators there is a single death region, whereas for an
odd number of oscillators the boundary of the death region depends on the value
of N. We illustrate the death states for a sample number of even (N = 4) and
odd (N = 5) nearest neighbor coupled oscillators in Fig. 1.10. The death state for
N = 4 is surrounded by an in-phase state on the left and an anti-phase state that has
neighboring oscillators π out of phase on the right. The death state for N = 5 on
the other hand has an in-phase state on either side. These differences in the death
island widths for even- and odd-numbered oscillators can be traced primarily to the
behavior of the eigenvalues of the lowest permitted perturbation wave numbers. As
N becomes large, the smallest perturbation mode for the N odd case gets closer to π
and the death island boundaries of the two cases become indistinguishable. The size
of the death island, for the odd case, decreases as N increases and finally asymptotes
to the single (N = even) island as N →∞. This asymmetry is intimately related to
the nature of the coupling and as we will see later it disappears when we change the
coupling to a non-local one.

1.3.2.2 Phase-Locked States

As mentioned briefly before, the spatial dependence of the coupling provides for a
larger class of equilibrium states in a dispersively coupled system as compared to
the globally coupled system. In particular plane wave states, which are characterized
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Fig. 1.10 (a) A nearest neighbor coupled network of four identical oscillators showing in-phase,
death, and then anti-phase patterns as τ is increased, K = 2 and ω0 = 10. The initial conditions
are x1 = 0.3, y1 = 0, x2 = 1, y2 = 0, x3 = −0.5, y3 = 0, x4 = −0.9, and y4 = 0. The time
history vectors Z1,2,3,4 = 0. (b) A globally coupled network of five identical oscillators showing
in-phase, death, and in-phase transitions as τ is increased. Time courses of the real parts of Z1,2,3,4,5
are plotted for different τ at K = 5 (different than that in (a)) and ω0 = 10. Initial conditions are
x1 = 1, y1 = 0, x2 = 0.45, y2 = 0, x3 = −0.2, y3 = 0, x4 = −0.61, y4 = 0, x5 = −0.97, and
y5 = 0. The time history vectors Z1,2,3,4,5 = 0

by a frequency as well as a wave number, are one such possibility. Equation (1.44)
admits plane wave solutions of the form

Zj = Rei(jka+ωt), (1.49)

where a is the distance between any two adjacent oscillators and k is the wave
number such that −π ≤ ka ≤ π . The values of ka are discrete due to the con-
straint imposed by the periodic boundary conditions, namely that ZN+1 = Z1 and
Z0 = ZN . This condition requires that we satisfy eiNka = 1 which gives Nka = 2mπ ,
m = 0, 1, . . . , N − 1, that is,

ka = m
2π

N
, m = 0, 1, . . . , N − 1. (1.50)

Thus, the various phase-locked states are now labeled by their characteristic wave
number values. The wave numbers are further related to the frequencies of the states
through a dispersion relation which can be obtained by substituting (1.49) in (1.44):

iω = 1+ iω0 − R2 + 2K
[
cos (ka)e−iωτ − 1

]
. (1.51)

Separating the real and imaginary parts of the above relation we get

ω = ω0 − 2K sin (ωτ ) cos (ka), (1.52)

R2 = 1− 2K + 2K cos (ωτ ) cos (ka). (1.53)
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It is interesting at this point to compare the above dispersion relation to the plane
wave dispersion relation of the CGLE. We can obtain such a dispersion relation by
substituting Z(x, t) = RCGL exp (ikx− iωCGLt) in (1.45) to get

ωCGL = ω0, (1.54)

R2
CGL = 1− K(ka)2, (1.55)

where we have replaced K by its scaled value. Equations (1.54) and (1.55) can also
be obtained from (1.52) and (1.53) by putting τ = 0 and expanding the cos (ka) term
in (1.53) by taking the long wavelength limit of ka 1. The two sets of dispersion
relations show interesting differences. First of all their domains of validity are dif-
ferent: (1.52) and (1.53) are valid for any arbitrary value of N whereas (1.54) and
(1.55) are strictly valid only in the continuum limit (i.e., N →∞). The ka spectrum
is therefore a continuous one for the CGLE whereas in our model they are discrete
and also depend on the value of N. For τ = 0, (1.52) and (1.54) become identical,
but (1.53) reduces to

R2 = 1− 2K + 2K cos (ka) = 1− 4K sin2 (ka/2). (1.56)

Since R2 > 0 is a necessary condition for a plane wave state to exist, we see that for
a given value of K the domain of existence is considerably reduced in the case of the
CGLE as compared to the discrete model equations. As an example, at K = 1/4, the
discrete model allows all modes from 0 to π to exist, whereas the continuum model
has an upper cutoff at ka = 2.0. For K > 1/4 one has cutoff regions in the discrete
model as well that are defined by the expression

f1 = cos−1 (1− 1/2K) < ka < f2 = 2π − cos−1 (1− 1/2K). (1.57)

From (1.57) it is clear that for K > 1/4 the anti-phase-locked state (ka = π ) is
now no longer a permitted state. In the presence of time delay the existence region
is defined by a more complex relation since it is now not only a function of ka
(for a given value of K) but also depends on ω which is a solution of the transcen-
dental equation (1.52). Thus, time delay can bring about interesting modifications
such as enabling certain forbidden states (of the non-delayed system) to exist and
in general reshaping the existence domain significantly. In addition, as we saw in
the two oscillator model, the transcendental character of the dispersion relation can
introduce additional branches of collective oscillations. A detailed analysis of some
of these features are available in [35]. In Fig. 1.11(a) we have illustrated some of
the salient findings of [35] by showing the existence regions of plane wave states
for some special cases. To delineate the general existence regions which are now
complicated functions of ka, K, and τ , one needs to have a simultaneous solution of
(1.52) and (1.53). To appreciate the constraints imposed by (1.52) in Fig. 1.11(b)
we have plotted the solution (ω vs. ka) for various values of τ and for a fixed
value of ω0 and K. For τ = 0, the values of ka are constrained to be in the range
(|ka|)< cos−1 (1 − 1/2K). At K = 1, the phase-locked patterns that have wave
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Fig. 1.11 (a) Allowed (unshaded) and forbidden (shaded) wave modes in the presence of time
delay for two values of cos (ωτ ). (b) Dispersion relation between allowed wave numbers and the
corresponding frequency shown as τ is gradually increased, K = 1 and ω0 = 10. A range of τ
values is forbidden. (c) A numerical example of out-of-phase state shown for N = 50 oscillators
by plotting the level of the real component of Zj as a function of the oscillator number j [35]

numbers less than π/3 are allowed, and all of them have an identical frequency.
As τ is increased the frequency of oscillation decreases for small τ , and the dis-
persion relation acquires a nonlinear parabolic character. As τ is further increased,
depending on the actual value of K, there are bands in τ values where no modes
exist. The shrinking and disappearance of the dispersion curve at ka = 0 beyond
τ = 0.125 up to τ = 0.2 in the top panel of Fig. 1.11(b) illustrate this phenomenon.
One also notices from the bottom panel of Fig. 1.11(b) that at higher values of τ the
dispersion curves become discontinuous and have bands of forbidden ka regions.

1.3.2.3 Stability of Phase-Locked States

So far we have only discussed the existence conditions for plane wave states of
(1.44) in the parameter domain of the wave number, coupling strength, frequency,
and time delay. We also need to know the stability of such states in order for them
to be excited and sustained in the system. In this section we will carry out a linear
stability analysis of the equilibrium phase-locked solutions discussed in the previous
section. We let

Zj (t) =
[
Rkeiωkt + uj (t)

]
ei(jka), (1.58)

where k = 0, 1, · · · , N − 1, substiute it in (1.44), and carry out an order by order
analysis in the perturbation amplitude uj. In the lowest order we recover the disper-
sion relation (1.51). In the next order, where we retain terms that are linear in the
perturbation amplitude, we get

∂uj (t)

∂t
= (

1+ iω0 − 2R2
k − 2K

)
uj (t)− R2

ke2iωktūj (t)

+K
[
uj+1 (t − τ) eika + uj−1 (t − τ) e−ika

]
(1.59)
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and, taking its complex conjugate,

∂ ūj (t)

∂t
= (

1− iω0 − 2R2
k − 2K

)
ūj (t)− R2

ke−2iωktuj (t)

+K
[
ūj+1 (t − τ) e−ika + ūj−1 (t − τ) eika

]
.

(1.60)

We next multiply (1.59) and (1.60) term by term by ei(jqa) and make use of the
identities

uj±1 (t − τ) e±ikaei(jqa) = uj±1 (t − τ) ei(j±1)qae±i(k−q)a (1.61)

and

ūj±1 (t − τ) e±ikaei(jqa) = ūj±1 (t − τ) ei(j±1)qae±i(k+q)a, (1.62)

and finally sum over j = 0, 1, 2, · · · , N − 1. Introducing adjoint amplitudes wq (t)
and w̃q (t) by the definitions

[
wq (t) , w̃q (t)

] =
N−1∑

j=0

[
uj (t) , ūj (t)

]
ei(jqa), (1.63)

we can arrive at the following set of coupled equations:

dwq (t)

dt
= (

1+ iω0 − 2R2
k − 2K

)
wq (t)− R2

ke2iωktw̃q (t)

+2K cos
[
(k − q) a

]
wq (t − τ)

(1.64)

and

dw̃q (t)

dt
= (

1− iω0 − 2R2
k − 2K

)
w̃q (t)− R2

ke−2iωktwq (t)

+2K cos
[
(k + q) a

]
w̃q (t − τ) .

(1.65)

Now assuming the solutions to be of the form

[
wq (t) , w̃q (t)

] = [
ceiωkt, c̃e−iωkt] eλt, (1.66)

one can, after some straightforward algebra, obtain the following eigenvalue
equation:

λ2 + (a1 + a2)λ+ (a1a2 − R4) = 0, (1.67)
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where

a1 = 2R2 − 1+ 2K − i(ω0 − ω)− 2K cos [(k − q)a]e−(λ+iω)τ , (1.68)

a2 = 2R2 − 1+ 2K + i(ω0 − ω)− 2K cos [(k + q)a]e−(λ−iω)τ . (1.69)

The perturbation wave numbers q are a discrete set that obey the relation

qa = m
2π

N
, m = 0, 1, . . . , N − 1.

Thus, for any given plane wave pattern characterized by a given value of ka, one
needs to examine the eigenvalues of (1.67) at each of the above permitted values of
qa, which is a formidable task for any reasonably large value of N and one needs
to carry out extensive numerical investigations. Some specific examples have been
worked out in [35]. In general, time delay appears to expand the stability domain
of plane wave states allowing for a richer spectrum of states to be sustained in the
system as compared to the no-delay case. For example, the out of phase state (where
each oscillator is π out of phase with its neighbor) which is always unstable in
the absence of time delay can get stabilized for certain values of τ . A numerical
simulation of such an out-of-phase state is shown in Fig. 1.11(c) where the level
of the real part of Zj is plotted as a function of the oscillator number j for N = 50
oscillators.

1.3.3 Non-Local Coupling

While global and local (nearest neighbor) coupling models have received much
attention in the past, [1, 2, 39–41] there is now a growing interest in the collec-
tive dynamics of models with non-local couplings [42–48]. Non-local coupling
implies a form of coupling in which the coupling extends over a wider domain
than the local (nearest neighbor coupling) but with varying (usually diminishing)
coupling strength. The coupling strength can fall off exponentially or in some cases
even change sign with distance (for example, in a Mexican hat fashion). Non-local
coupling can be relevant to a variety of applications such as in the modeling of
Josephson junction arrays [49], chemical oscillators [47, 48, 50], neural networks
for producing snail shell patterns, and ocular dominance stripes [51–53]. They
can also arise in a large class of reaction diffusion systems under certain limiting
assumptions for the diffusion strength and local kinetics such that the dynamics is
governed by an equation which is a non-local generalization of the CGLE [50, 54].
Another interesting and unique feature of a non-locally coupled system is that it
can sustain some unusual collective states in which the oscillators separate into two
groups—one that is synchronized and phase-locked and the other desynchronized
and incoherent [47]. Such a state of co-existence of coherence and incoherence does
not occur in either globally or locally coupled systems and has been named as a
‘chimera’ state by Strogatz [55]. The nature and properties of this exotic collective
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state as well as its potential applications are still not fully explored or understood
and therefore continue to offer exciting future possibilities. In this section we will
explore the effect of time delay on the collective states of a non-locally coupled
system, where in addition to looking at the amplitude death and phase-locked states
we will also discuss the novel ‘chimera’ state.

1.3.3.1 Non-Local Model Equations

We begin by first extending our set of model equations from the previous section
to include non-local time-delayed coupling. Considering again a closed chain of N
identical limit cycle oscillators, we can generalize (1.44) to the following form:

∂Zj

∂t
= (1+ iω0)Zj (t)− |Zj (t) |2Zj (t)+ KQj (t) , (1.70)

where K is the coupling constant, Zj (t) are the complex amplitudes of the oscilla-
tors, j = 0, 1, 2, . . . , (N − 1), and

Zj+nN (t) = Zj (t) , n = 0,±1,±2, . . . (1.71)

The total coupling function acting on the jth oscillator, Qj (t), is given by

Qj(t) = Se,o

∑

{e,o}
e−mκa {[

Zj+m (t − mτ)− Zj (t)
]+ [

Zj−m (t − mτ)− Zj (t)
]}

,

(1.72)
where a is the distance and τ is the time delay between two adjacent oscillators,
respectively. The labels e and o indicate cases in which, respectively, N is even and N
is odd. The two cases must be treated separately. The total coupling function is a sum
over m for pairwise couplings of oscillators and excludes self-coupling. If we com-
pare (1.70) (keeping in mind (1.72)) with the model set of equations for the locally
coupled system (1.44), we notice the following essential differences. The coupling
strength K is now weighted by a factor exp (− mκa) which is distance dependent
and therefore makes the coupling from distant oscillators progressively weaker. The
time delay dependence in the argument of each Zj is likewise a function of mτ
which implies that the amount of time a signal takes to arrive at a given oscillator
location increases linearly as the distance it has to travel from another oscillator.
Physically this amounts to assuming a constant signal velocity v in the system such
that τ = a/v. The exponentially decaying weight factor that we have chosen for this
model can be replaced by other functions to change the nature of coupling, but we
will restrict ourselves to this function as it has been used in some past calculations
[45, 47, 48] that were done in the absence of delay and hence provides a convenient
benchmark for assessing delay effects. The exponential damping coefficient κ pro-
vides a measure of the amount of non-locality in the coupling with κ = 0 being the
global coupling limit. In order that the coupling amplitude be an exponential func-
tion of the distance between coupled oscillators, rather than a truncated exponential
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function of that distance, it is necessary that the effective coupling range be less
than half the length of the ring. If we denote the length of the ring by 2L, then the
minimum value of κ for which truncation does not occur is the value that yields the
largest value of exp (−κL) that can be considered negligible. It is convenient for this
purpose to adopt the condition κL ≥ 2π , because exp (−2π) = 0.00187. The choice
L = π is particularly convenient for the Fourier analysis of the discrete system
because it yields the primitive basis set ek(m) = exp (imka), where a = (2π/N) and
m, k = 0, 1, 2, . . . , (N − 1). For other choices of L, k and a have different values,
but ka is invariant with respect to the choice of L.

The quantity S{e,o} is a normalization factor. By assigning the value 1 to each cou-
pling term,

[
Zj±m (t − mτ)− Zj (t)

]
, and requiring that the value of the associated

total coupling function is 1, we obtain

S{e,o} =
⎛

⎝2
∑

{e,o}
e−mκa

⎞

⎠

−1

. (1.73)

The correctness of this choice is demonstrated in the case that N = 2 and κ = 0,
where one obtains (1.44) as intended. The form of the normalization factor makes it
possible to express the total coupling function in the simplified form

Qj (t) = S{e,o}
∑

{e,o}
e−mκa [

Zj+m (t − mτ)+ Zj−m (t − mτ)
]− Zj (t). (1.74)

In the case in which N is even, the summation is

∑

e

=
1
2 N∑

m=1

(
1− 1

2
δm, 1

2 N

)
. (1.75)

The quantity in parentheses is introduced to account for the fact that the subscripts
j+ 1

2 N and j− 1
2 N denote the same oscillator.

In the case in which N is odd, the summation is

∑

o

=
1
2 (N−1)∑

m=1

. (1.76)

One obtains for Se the result

Se = 1

2

⎡

⎢
⎣

1− e−κa

e−κa − 1
2 e− 1

2 Nκa − 1
2 e
−
(

1
2 N+1

)
κa

⎤

⎥
⎦ . (1.77)
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In the limit κ → 0, one obtains Se = (N − 1)−1. In that limit and for the case
N = 2, one obtains the correct result, Se = 1. One obtains for So the result

So = 1

2

[
1− e−κa

e−κa − e− 1
2 (N+1)κa

]

. (1.78)

In the limit κ → 0, one obtains So = (N − 1)−1.
It is interesting to also consider the continuum limit of (1.70), (1.71), and (1.72)

in the spirit of what we did for the locally coupled system. This limit can be
achieved by adopting the following procedure: We let the number of oscillators N
increase without limit, i.e., N →∞, but keep the system length 2L unchanged. This
implies that a → 0 but Na = 2L. As before, the discrete variable that denotes the
position of an oscillator, j, is replaced by the continuous variable x (−L ≤ x < L),
so that the discrete oscillator amplitude, Zj (t), becomes the continuous oscillator
amplitude, Z (x, t). The discrete variable that denotes the distance between coupled
oscillators, m, is replaced by the continuous variable 0 ≤ y ≤ L, so that the dis-
crete total coupling function Qj(t) becomes the continuous total coupling function
Q(x, t). Consider first the normalization factors S{e,o}. As the continuous limit is
approached, it is necessary that the range of the non-local coupling be much greater
than the distance between adjacent oscillators, i.e., that κa 1, which ensures that
exp (−κa) ≈ 1 − κa. The condition κL ≥ 2π , which is necessary to guarantee
that the form of the damping function is an exponential function, rather than a
truncated exponential function, ensures that 1

2 Nκa ≥ 2π , which in turn ensures

that exp
(
− 1

2 Nκa
)
 1. Accordingly, we conclude that in the continuous limit

S{e,o} = 1
2κa. Assuming that the delay time between adjacent oscillators is pro-

portional to the distance between them, we obtain the following relation between
these quantities and σ , the reciprocal of the speed of propagation of delay coupling
in the continuous case: σ = τ/a. In the continuous limit, td, the earlier time at
which a coupling signal originates from position x ± y to reach position x at time
t is td = t − σy. The correspondence between summation in the discrete case and
integration in the continuous case is

∑

{e,o}
a→

∫ L

0
dy.

The condition κL ≥ 2π permits to replace the upper limit of integration, L, by
∞. Thus, we obtain as the continuous limit of (1.70), (1.71) and (1.72)] the set of
equations

∂

∂t
Z (x, t) = (1+ iω0) Z − |Z|2Z + KQ (t) , (1.79)

Z (x+ 2Ln, t) = Z (x, t) n = 0, ±1, ±2, . . . , (1.80)
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and

Q (x, t) =
∫ ∞

0
dy

1

2
κe−κy [

Z (x+ y, t − σy)+ Z (x− y, t − σy)
]

dy. (1.81)

Equation (1.79) is the non-local time-delayed generalization of the complex
Ginzburg–Landau equation. One can also obtain a phase-reduced version of the
above equation in the limit when the coupling between the oscillators is weak. We
then let Z = A exp (iφ(x, t)) and treat the amplitude A to be a constant. In general the
coupling constant K may be complex and can be written as K(1+ ia) = K′ exp (iα)
where a and α are real constants. Substituting for Z in (1.79) and separating the real
and imaginary parts, we get from the imaginary part,

∂φ(x, t)

∂t
= ω0 + K′

∫ L

−L
dy G(x− x′) sin

[
φ(x′, t − σ | x− x′ | )− φ(x, t)+ α] ,

(1.82)
where α = tan−1 (a) and we have chosen the system length to be 2L. In the absence
of time delay (setting σ = 0) equations (1.79) and (1.82) have recently been studied
by a number of authors [47, 48, 50] in the context of chimera states. We will return
to these equation later in this section after we have discussed some aspects of the
death state and phase-locked states in the discrete non-local system.

1.3.3.2 Amplitude Death in the Non-Local System

A linear perturbation analysis about the origin Zj = 0, carried out for (1.70) in the
manner described in the previous section, yields the following eigenvalue equation
for N odd

λj = 1+ iω0 − K + 2KSo

1
2 (N−1)∑

m=1

cos [
2π

N
(j− 1)m]e−m(κa+λjτ ), (1.83)

and likewise for even N one can get

λj = 1+ iω0 − K
[
1+ See−N(κa+λjτ )/2cos (π (j− 1))

]

+2KSe

N/2∑

m=1

cos(
2π

N
(j− 1)m)e−m(κa+λjτ ). (1.84)

Notice the similarities and some essential differences between (1.83) (or (1.84)) and
the individual factors of the eigenvalue equation (1.46) that we derived earlier for
the locally coupled system. In addition to the weight factor exp ( − κa) we also
see that there is a summation over all perturbation wave numbers 2π (j − 1)/N.
One can therefore expect a more complex shape for the island structure compared
to the two or at most four curves for the locally coupled system. The parameter κa
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provides a measure of the degree of non-locality—a large κa corresponds to a highly
localized interaction region and a small value of κa implies stronger non-locality.
One can also expect therefore a dependence of the island complexity on the value of
κa. These expectations are indeed borne out [36] when one constructs the stability
islands in the K− τ parameter space by using the marginal stability curves of (1.83)
or (1.84). For the odd N case the marginal curves are defined by the following two
relations:

1− K + 2KSo

(N−1)/2∑

m=1

e−mκa cos (mτβ) cos (
2π

N
(j− 1)m) = 0, (1.85)

ω0 + 2KSo

(N−1)/2∑

m=1

e−mκa sin (mτβ) cos (
2π

N
(j− 1)m) = β, (1.86)

where β = Im(λj). To construct the marginal curves, i.e., to derive a relation
between K and τ one needs to eliminate β from the above two equations. This
is difficult to do analytically but can be accomplished numerically by rewriting the
above equations in the following parametric form:

K = 1

1− 2So
∑(N−1)/2

m=1 e−mκa cos (mx) cos (my)
, (1.87)

τ = x

ω0 + 2K(x)So
∑(N−1)/2

m=1 e−mκa sin (mx) cos (my)
, (1.88)

where x = βτ and y = 2π
N (j − 1). For a given value of κa and N, the idea is to

evaluate K and τ numerically over a range of x values, e.g. (−2π , 0), for a particular
value of y and thereby eliminate β. The evaluation is repeated for each value of
y. The stable region bounded by these curves then constitutes the death island. In
Fig. 1.12(a) we have plotted the lower portions of the islands for two cases, namely
κa = 1, for which the non-locality is strong, and κa = 3, which is close to being a
locally coupled system. As can be seen the lower boundary of the strongly coupled
case is quite complex and is made up of portions of several marginal stability curves
arising from different mode number perturbations. By contrast, for the weakly non-
local case the island region lies between just two curves as shown in Fig. 1.12(b).
Another important difference from the local coupling case is that the island size is
no longer invariant for even N but changes as a function of N.

1.3.3.3 Plane Wave States and their Stability

As in the case of the nearest neighbor coupled system, a non-locally coupled sys-
tem can also sustain plane wave solutions. The plane wave form of the complex
amplitude of the jth oscillator, including a perturbation of order ε, is

Zj (t) =
[
1+ εaj (t)

]
Z0

j (t) , (1.89)
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(a) (b)

Fig. 1.12 (a) The lower portion of a death island for strong non-locality κa = 1, N = 10, for small
K. All the perturbation modes participate in defining the boundary where the curves are labeled by
j = 1, 2, 3... (b) A similar plot for weak non-locality, κa = 3, N = 10 where only two perturbation
modes j = 1 and j = 6 are seen to define the boundary

where

Z0
j (t) = Rkei(jka+ωkt), (1.90)

k = 0, 1, 2, . . . , (N − 1), R2
k is required to be positive, and aj (t) are the complex

amplitudes of the perturbation, which satisfy the periodicity conditions aj+nN (t) =
aj (t) , n = 0,±1,±2, . . . . In general, ωk is complex, but for plane wave equilibria
ωk is required to be real. The quantities R2

k and ωk are determined simultaneously
by solution of a complex dispersion relation obtained at O

(
ε0

)
of a perturbation

expansion in ε. A system of evolution equations for the set of functions aj (t), from
which the linear stability of the equilibria is determined, is obtained at O (ε) of the
perturbation expansion. The dispersion relation for plane wave solutions of (1.70)
is given by the pair of equations

ωk = ω0 + K�
{

Q̃
}

(1.91)

and

R2
k = 1+ K�

{
Q̃
}

, (1.92)

where

Q̃ = S{e,o}
∑

{e,o}
e−m(κa+iωkτ)

(
eimka + e−imka

)
− 1 (1.93)

and the symbols �{}, �{} stand for the real and imaginary parts of the quantity
within the braces. For a given value of k, one determines numerically the values
of ωk that satisfy (1.91). For each set of values of k and ωk, one then determines
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from (1.92) the value of R2
k , which, for an acceptable set of values of k and ωk,

is required to be positive. In the case of vanishing time delay, the quantities Q̃
are independent of ωk, a given value of k determines a single value of ωk, and
the solution of (1.92) and (1.91) for ωk and R2

k is considerably simplified. Having
determined a set of equilibrium states (ωk,Rk), one needs to next determine their
stability from an eigenvalue analysis. The derivation of such an eigenvalue equation
is quite straightforward, if somewhat tedious, and is along the lines of the method
followed for the nearest neighbor case. The analysis of such an equation for large N
is however quite challenging even numerically and remains an open problem at the
present time.

1.3.3.4 Time-Delayed Chimera States

Non-locally coupled oscillator systems can exhibit a remarkable class of patterns
called chimeras, in which identical limit cycle oscillators separate sharply into two
domains, one synchronized and phase-locked and the other desynchronized and
drifting [47]. This peculiar mode, in which coherence and incoherence co-exist
at the same time in a system of oscillators, was first noticed by Kuramoto and
his coworkers [47, 48, 50] in their simulations of the complex Ginzburg–Landau
equation (CGLE) with non-local coupling and was later named a chimera state by
Abrams and Strogatz [55]. In Fig. 1.13(a) we show a typical plot of the chimera
state in the absence of delay obtained from a numerical solution of (1.82) with
σ = 0. One clearly sees two distinct regions—a central region where the phases
of the oscillators are locked to each other and an outer region where they are ran-
domly distributed. The central portion drifts with a certain fixed velocity while the
incoherent part has no fixed velocity. A chimera is a stationary stable pattern that
co-exists with a fully phase-locked coherent state and occurs in a limited parameter

Fig. 1.13 Phase pattern for a typical chimera state. Here K′ = 1, κ = 4.0, α = 1.45, ω = 0, and
N = 257
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regime defined by the coupling strength K′ and the tuning parameter α. Access to
such a state is also dependent on initial conditions and Kuramoto et al. [47] took
special precautions to obtain such solutions numerically. Chimera solutions exist
for both the CGLE and for the reduced phase-only version of the equation. For
convenience we rewrite the phase-reduced NDCGL equation (1.82) once again here
and set K′ = 1 and drop the subscript on ω.

∂

∂t
φ(x, t) = ω −

∫ L

−L
G(x− x′) sin [φ(x, t)− φ(x′, t − τx,x′)+ α] dx′. (1.94)

The kernel G(x − x′) provides a non-local coupling among the oscillators over a
finite spatial range of the order of κ−1, which is chosen to be less than the system
size. The coupling is time delayed through the argument of the sinusoidal interaction
function, namely, the phase difference between two oscillators located at x and x′ is
calculated by taking into account the temporal delay for the interaction signal to
travel the intervening geodesic (i.e., shortest) distance determined as dx,x′ = min
{|x − x′|, 2L − |x − x′|}. The time delay term is therefore taken to be of the form
τx,x′ = dx,x′/v where v is the signal propagation speed.

The question we now ask is whether (1.94) has a chimera solution in the presence
of finite time delay and what it looks like. This problem was addressed in [37]
exploring both numerical solutions of (1.94) and some analytical insights obtained
from the behavior of the order parameter. We first discuss the numerical results
obtained by using the discretized version of (1.94) and employing a large num-
ber of oscillators (typically 257) for the simulation. The set of system parameters
chosen for the simulations were 2L = 1.0, α = 0.9, k−1 = 0.25, ω = 1.1, and
v = 0.09765625 corresponding to a maximum delay time (τmax) in the system
of 5.12. Initially all the oscillators were given uniformly random phases (mirror
symmetric) between 0 and 2π , and the equations were evolved long enough to get
a time-stationary solution. Figure 1.14 provides a comprehensive summary of the
evolution and final state of the time-delayed chimera. Panels (a) and (b) show a
space–time plot of the simulation in the early stages of evolution (starting from
random initial phases) and in the final stages of the formation of a clustered chimera
state, respectively. Panel (c) shows a snapshot of the spatial distribution of the phases
in the final stationary state. We see four coherent regions interspersed by incoher-
ence and also find that the adjacent coherent regions are π out of phase with each
other. Panel (d) is a blowup of the region between x = −0.5 and x = −0.25 giv-
ing an enlarged view of an incoherent region and portions of the adjacent coherent
regions.

To gain a better understanding of the nature of this pattern and of the dynamics
of its formation, it is instructive to adopt a generalized mean field approach and try
to examine the behavior of an averaged quantity like an order parameter of the sys-
tem. Such an approach and formalism was developed by Kuramoto and Battogtokh
[47] to understand the formation of the non-delayed chimera state. For this, we first
rewrite (1.94) in terms of a relative phase θ given by
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Fig. 1.14 (a) The space–time plot of the oscillator phases φ for the parameters 2L = 1.0, κ = 4.0,
1/v = 10.24, ω = 1.1, and α = 0.9 in the early stages of evolution from a random set of initial
phases. Panel (b) shows a later time evolution and panel (c) gives a snapshot of the final stationary
state. Panel (d) is a blowup of the region between x = −0.5 and x = −0.25 giving an enlarged
view of an incoherent region and portions of the adjacent coherent regions

θ (x, t) = φ(x, t)−Ωt, (1.95)

where Ω represents a rotating frame in which the dynamics simplifies as much as
possible and is the constant drift frequency of the phase-locked portions. In terms
of θ (1.94) becomes

∂

∂t
θ (x, t) = ω−Ω−

∫ L

−L
G(x−x′) sin [θ (x, t)−θ (x′, t−τx,x′)+α+Ωτx,x′ ]dx′. (1.96)

Following Kuramoto’s approach [47], we now define a complex order parameter
ReiΘ , in a manner analogous to what we had done for a globally coupled system in
Sect. 1.3.1, as,

R(x, t)eiΘ(x,t) =
∫ L

−L
G(x− x′)ei[θ (x′,t−τx,x′ )−Ωτx,x′ ] dx′. (1.97)

The above order parameter differs from the usual definition for globally coupled
systems in a number of significant ways: The spatial average of eiθ is now weighted
by the coupling kernel G(x− x′), the phase θ is evaluated in a time-delayed fashion,
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and the factor e−iΩτx,x′ adds a complex phase to the kernel G(x− x′). The latter two
features provide a further generalization of Kuramoto’s analysis carried out for a
non-delayed system [47, 48, 55, 56].

In terms of R and Θ , (1.94) can be rewritten as

∂

∂t
θ (x, t) = Δ− R(x, t) sin [θ (x, t)−Θ(x, t)+ α], (1.98)

where Δ = ω − Ω . Equation (1.98) is in the form of a single-phase oscillator
equation driven by a force term which in this case is the mean field force. To obtain
a stationary pattern (in a statistical sense) we require that R and Θ depend only on
space and be independent of time. Under such a circumstance the oscillator popula-
tion can be divided into two classes: those which are located such that R(x) > |Δ|
can approach a fixed point solution (∂θ (x, t)/∂t = 0) and the other oscillators that
have R(x) < |Δ| would not be able to attain such an equilibrium solution. The oscil-
lators approaching a fixed point in the rotating frame would have phase coherent
oscillations at frequencyΩ in the original frame whereas the other set of oscillators
would drift around the phase circle and form the incoherent part.

One can easily solve (1.98) for the motion of the oscillator at each x, subject to the
assumed time-independent values of R(x) andΘ(x). The oscillators with R(x) ≥ |Δ|
asymptotically approach a stable fixed point θ∗, defined implicitly by

Δ = R(x) sin [θ∗ −Θ(x)+ α]. (1.99)

The fact that they approach a fixed point in the rotating frame implies that they are
phase-locked at frequencyΩ in the original frame. On the other hand, the oscillators
with R(x) < |Δ| drift around the phase circle monotonically. To be consistent with
the assumed stationarity of the solution, these oscillators must distribute themselves
according to an invariant probability density ρ(θ ). And for the density to be invari-
ant, the probability of finding an oscillator near a given value of θ must be inversely
proportional to the velocity there. From (1.98), this condition becomes

ρ(θ ) =
√
Δ2 − R2

2π |Δ− R sin (θ −Θ + α)| , (1.100)

where the normalization constant has been chosen such that
∫ π
−π ρ(θ ) dθ = 1 and

R, Θ , and θ are functions of x.
The resulting motions of both the locked and the drifting oscillators must be

consistent with the assumed time-independent values of R(x) andΘ(x). To calculate
the contribution that the locked oscillators make to the order parameter (1.97), we
note that
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sin (θ∗ −Θ + α) = Δ
R

, (1.101)

cos (θ∗ −Θ + α) = ±
√

R2 −Δ2

R
(1.102)

for any fixed point of (1.98). Taking plus sign for the stable fixed point, one can
write

ei(θ∗−Θ+α) =
√

R2 −Δ2 + iΔ

R
(1.103)

which implies that the locked oscillators contribute

∫
dx′G(x− x′)eiθ∗(x′) = e−iα

∫
dx′G(x− x′)ei[Θ(x′)−Ωτx,x′ ]

(√
R2 −Δ2 + iΔ

R

)

(1.104)
to the order parameter (1.97). Here the integral is taken over the portion of the
domain where R(x′) ≥ Δ.

Next, to calculate the contribution from the drifting oscillators, following the
prescription provided by Kuramoto [47, 48] for the undelayed case, we replace
eiθ (x′) in (1.97) with its statistical average

∫ π
−π eiθρ(θ ) dθ . Using (1.100) and contour

integration, one obtains

∫ π

−π
eiθρ(θ )dθ = i

R

(
Δ−

√
Δ2 − R2

)
. (1.105)

The contribution of the drifting oscillators to the order parameter can therefore
be written as

∫
dx′G(x− x′)e−iΩτx,x′

∫ π

−π
eiθρ(θ ) dθ = ie−iα

∫
dx′G(x− x′)

ei[Θ(x′)−Ωτx,x′ ]
(
Δ−√

Δ2 − R2(x′)
R(x′)

)

, (1.106)

where now the integral is over the complementary portion of the domain where
R(x′) < |Δ|. We substitute these solutions of (1.98) for the two classes of oscil-
lators into the integrand on the right-hand side of (1.97) and obtain the following
functional self-consistency condition:

R(x)eiΘ(x) = eiβ
∫ L

−L
G(x− x′)ei[Θ(x′)−Ωτx,x′ ]

(
Δ−√

Δ2 − R2(x′)
R(x′)

)

dx′, (1.107)

where β = π/2 − α. For a chimera state to exist, R, Θ , and Δ must satisfy the
above self-consistency condition. Note that we have three unknowns, and condition
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Fig. 1.15 Variation of Δ with
the iteration number showing
a rapid convergence in the
numerical solution of the
self-consistency
equation (1.107). The system
parameters are identical to
those used in the direct
solution of (1.94)

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

Δ

Iteration number

(1.107) provides only two equations when we separate its real and imaginary parts.
A third condition can be obtained by exploiting the fact that the equation is invariant
under any rigid rotation Θ(x) → Θ(x) + Θ0. We can therefore specify the value
of Θ(x) at any arbitrary chosen point, e.g., Θ(L) = 0. In [37] (1.107) was solved
numerically by following a three-step iterative procedure consisting of the following
steps: Arbitrary but well-behaved initial guess functions were chosen for R(x) and
Θ(x) and the condition Θ(L) = 0 was used in one of the equations of (1.107) to
obtain a value for Δ. The initial profiles and the Δ value so obtained were then
used to evaluate the right-hand side of (1.107) to generate new profiles for R andΘ .
These were next used to generate a new value of Δ and the procedure was repeated
until a convergence in the value of Δ and the functions R and Θ was obtained.

Figure 1.15 shows the rapid and excellent convergence in Δ to a unique value of
Δ = 0.189 for the solution of (1.107) with system parameters chosen identical to
the ones that were used to obtain a clustered chimera state by a direct solution of
(1.94). The converged spatial profiles of the order parameter (R and Θ) are shown
in Fig. 1.16 and the converged value of Δ is marked in the upper panel by the
horizontal line. The amplitude of the order parameter (R) shows a periodic spa-
tial modulation—peaking at four symmetrically placed spatial locations. The cor-
responding phases of the order parameter are seen to be in anti-phase for adjacent
peaks in R. In between the peaks R is seen to dip to very small values at certain
locations such that R(x) < |Δ| which should correspond to the incoherent drifting
parts of the chimera. To better appreciate the agreement between the direct solutions
of (1.94) and the mean field solutions of (1.107) the results are plotted together
in Fig. 1.17. As is clearly seen the measured order parameter (R and Θ) and Δ
from the direct simulations of (1.94) match well with the results of solving (1.107).
The spatial profile of the phases (φ) of the oscillators as obtained from the direct
simulation of (1.94) is shown in the top panel of Fig. 1.17. One finds four coherent
regions interspersed by incoherence as expected from the results of solving (1.107).
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Fig. 1.16 Spatial profiles of
the amplitude R and the phase
Θ of the order parameter
obtained by solving the
self-consistency equation
(1.107) by an iterative
scheme. The horizontal line
in the upper panel marks the
converged value Δ = 0.189
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Also note that for the no-delay case there is only one peak of the order parameter as
shown in Fig. 1.13(b).

It is appropriate at this juncture to point out some other general features of the
clustered chimera states. Figures 1.16 and 1.17 show that both R and Θ are mirror
symmetric (i.e., R(x) = R( − x),Θ(x) = Θ( − x)), a property that the original
phase equation (1.94) also possesses. Equation (1.94) is also invariant under the
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Fig. 1.17 (a) The phase pattern for a clustered chimera state as obtained by direct simulation of
(1.94). The measured spatial profiles of the order parameter (R and Θ) from these simulations
are shown in panels (b) and (c) as dashed curves and compared with the solutions from the self-
consistency Equation (1.107) shown as solid curves. (d) ω − φ̇ for the oscillators from a direct
simulation of (1.94). The horizontal lines in (b) and (d) mark the converged value of Δ = 0.189
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transformation (φ(x, t) → −φ(x, t), ω → −ω, α → −α) and can have solutions
with such a symmetry as well, namely, traveling wave solutions given by φ(x, t) =
Ωt + πqx/L. In the numerical simulations with a change of the initial conditions
keeping the same system parameters, one can get traveling wave solutions. For the
non-delayed chimera case the co-existent stable state is that of a uniformly coherent
state. The corresponding co-existent state in the time-delayed case is a traveling
wave. In fact, there seems to be a clear correspondence between the number of
clusters of the observed chimera state and the wave number q of the co-existent
traveling wave solution. For the four-cluster chimera of Fig. 1.16 the co-existent
traveling wave has q = 2 and similar results were observed in [37] for six-cluster
(q = 3) and eight-cluster (q = 4) chimera solutions.

To summarize, we see that chimera type solutions do exist in a time-delayed
system of non-locally coupled identical phase oscillators and that time delay leads to
novel clustered states with a number of spatially disconnected regions of coherence
with intervening regions of incoherence. The adjacent coherent regions of this clus-
tered chimera state are found to be in anti-phase relation with respect to each other.
These results are also well understood in terms of the behavior of a generalized
order parameter for the system.

1.4 Summary and Perspectives

In the preceding sections we have shown how time delay can have subtle and
sometimes profound effects on the collective dynamics of a coupled oscillator sys-
tem. Various scenarios have been considered—starting from a simple two-oscillator
model to a system of a large number of oscillators coupled in various ways. Time
delay is introduced in the coupling mechanism and is seen to affect the existence,
stability, and nature of the various collective states. Most of the basic effects asso-
ciated with time delay are well demonstrated by the simple two-oscillator model.
These include the phenomenon of time delay-induced amplitude death of identi-
cal oscillators, the existence of higher frequency oscillatory states, multistability
and the co-existence of in-phase and anti-phase states, and multi-connectedness of
death islands. For large N systems and in the presence of spatial dependence of the
coupling mechanism, one has a wider variety of collective states such as traveling
waves and the peculiar chimera state. Time delay affects the domain of existence
of traveling waves as well as significantly altering their stability properties. The
chimera state acquires a spatial modulation in the presence of time delay whose
periodicity is closely linked to the co-existent stable traveling wave that the system
can support. While the principal features of time-delayed dynamics, as displayed by
the minimal model, are seen to be present in the N-oscillator models, their detailed
analysis gets progressively difficult with increasing complexities of the coupling
mechanisms and coupling topologies. Thus, as we found for the case of traveling
wave states in nearest neighbor coupled as well as in non-locally coupled systems,
the dispersion relations for their equilibrium states are extremely complicated and
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demand extensive numerical analysis. The eigenvalue equations for linear stability
are even more complex and do not permit an easy determination of the stability
domains in parameter space. Due to the transcendental nature of these equations,
there is some debate about the practical feasibility of applying some of the standard
stability analysis techniques and this is very much an open area of research for
future investigations. We would also like to remark here that in our analysis we
have restricted ourselves to a very simple model of time delay—either a single fixed
discrete delay or a discrete set of delays for the non-local case. Alternative represen-
tations of time delay are possible, such as the one used by Atay [57] who showed that
the parameter space of amplitude death for the coupled oscillator is enhanced when
the oscillators are connected with time delays distributed over an interval rather
than concentrated at a point. Distributed delays provide for a more realistic model
for the description of larger physical systems where the delay parameter can be
space- or time-dependent or in biological systems where memory effects are impor-
tant. Another limitation of our treatment has been the adherence to a single and
simple kind of a collective model—namely an array of Stuart–Landau oscillators.
Networks of pulse coupled oscillators (also known as integrate and fire models) have
been widely explored in the context of neuronal studies and provide a more realistic
description of such systems. Such systems are also found to be quite sensitive to the
presence of time-delayed coupling, e.g., in enhancing the onset of neural synchrony
[58]. Another area that we have not discussed in this chapter is the response of
the oscillator system to an external time-delayed stimulus. This is an active area of
research today with important applications in neuroscience and control of neural
disorders. The basic idea here is again the influence of a time-delayed feedback
in enhancing or suppressing self-synchronization in an assembly of oscillators. We
have also restricted ourselves to the study of time delay effects on stationary (equi-
librium) states of the system. Their influence can extend to time-dependent states
as well as chaotic dynamics, Hopf oscillations, etc. In fact, the nature of transition
between chaotic and unsynchronized states is to date a poorly understood and open
problem in the study of coupled oscillator systems. Time delay effects, which pro-
vide a sensitive probe by its subtle influence on the behavior of the order parameter,
can prove useful in the further exploration of this problem [33].
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Chapter 2
Delay-Induced Stability: From Oscillators
to Networks

Fatihcan M. Atay

2.1 Introduction

To those who have ever dealt with delay equations, the instabilities and oscillatory
behavior caused by delays are all too well known. What perhaps not so familiar
is that the delays could also have the opposite effect, namely that they could sup-
press oscillations and stabilize equilibria which would be unstable in the absence of
delays. Research in this area is relatively sparse, as stabilization is not a typical or
generic effect of time delays and one usually has to hit small regions in parameter
spaces to observe it, which of course differ from system to system. The source of
delays can also vary; ranging from feedback delays in control systems to commu-
nication delays in networks. It is therefore an interesting question to determine the
general characteristics of delay-induced stability without reference to a particular
system. One way to go about this is to focus on categories of dynamics rather than
categories of systems. For instance, oscillatory behavior can often be connected to
a Hopf bifurcation of an equilibrium solution under the variation of some param-
eter, and such local bifurcations share common qualities expressed in terms of the
behavior on a low-dimensional center manifold. Hence, an analysis of stabilization
near a generic Hopf bifurcation would yield general results applicable to any system
near a Hopf instability and serve as a useful guide for understanding the behavior of
oscillatory systems under time delays.

In this chapter, we present a systematic analysis of delay-induced stability for
oscillatory systems whose oscillations result from a supercritical Hopf bifurcation
of an equilibrium point. The main mathematical tool we use is averaging theory for
delay differential equations, which is briefly introduced in Sect. 2.2 together with
the main notation. Section 2.3 considers systems under delayed-feedback control,
also considered in Chaps. 3 and 4. The goal here, however, is to obtain generic
results near the bifurcation point. Section 2.4 extends the analysis to networks of
systems with coupling delays. In this case, the suppression of the oscillations in
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the network corresponds to the phenomenon often referred to as amplitude death
or oscillator death, as described in Chap. 1. The goal in our case is to character-
ize stability in general delay equations and under general coupling conditions, and
in particular to determine the role of the network topology, i.e., of the connection
structure, on stability. Moreover, the results can be used to discover additional novel
phenomena, for instance, the partial amplitude death of the network when the cou-
pled oscillators are not identical. Section 2.5 studies diffusively coupled networks
and uses tools of spectral graph theory to study delay-induced stability, where the
largest eigenvalue of the graph Laplacian plays a prominent role. Finally Sect. 2.6
treats discrete-time networks. Here, we actually drop the assumption of being near a
bifurcation, although several results turn out to be analogous to the continuous-time
case.

2.2 A Brief Synopsis of Averaging Theory

We briefly describe the averaging theory for delay differential equations and intro-
duce some notation in the process. The essential development here is based on Hale
[1, 2]. Averaging theory yields rigorous results that are particularly useful for study-
ing weakly nonlinear oscillatory systems, which is the case near a Hopf bifurcation.
In fact, averaging can be used to obtain normal forms for Hopf bifurcation [3],
setting an appropriate background for the problem of this chapter.

Consider the differential equation

ẋ(t) = F(xt;α), (2.1)

where x(t) ∈ R
n, and α ∈ R is a parameter. The usual notation xt denotes the values

of the system state over a time window of finite length τ , that is, xt(θ ) = x(t + θ ) ∈
R

n, θ ∈ [−τ , 0], and xt ∈ C, where C:=C([−τ , 0], Rn) denotes the Banach space of
continuous functions over the interval [−τ , 0] equipped with the supremum norm. It
is assumed that F :C×R→ R

n is twice continuously differentiable in its arguments
and F(0;α) = 0 for all α. Assume further that the origin undergoes a supercritical
Hopf bifurcation at α = 0. Hence, for small positive α the origin is unstable and
there exists a small amplitude limit cycle. To study the behavior near the origin, it is
convenient to scale the variables x �→ εx and α �→ εα, where ε is a small positive
parameter. This transforms (2.1) into a weakly nonlinear system of the form

ẋ(t) = Lxt + εf (xt;ε), (2.2)

where L:C → R
n is a linear operator and f is a C2 function with f (0;ε) = 0 for

all ε.
Equation (2.2) is a perturbation of the linear equation

ẋ(t) = Lxt, (2.3)
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which can also be expressed as a Riemann–Stieltjes integral

ẋ(t) =
∫ 0

−τ
dη(θ )x(t + θ ) (2.4)

for some n × n matrix η whose components are functions of bounded variation on
[− τ , 0]. By the assumption of Hopf bifurcation, the linear equation (2.4) has a pair
of complex conjugate eigenvalues ±iω, ω > 0. We assume all other eigenvalues
have negative real parts. Hence (2.4) has a two-dimensional center subspace. The
adjoint equation corresponding to (2.4) is

ż(t) = −
∫ 0

−τ
dη�(θ )z(t − θ ), (2.5)

where zt(θ ) = z(t+ θ ) for θ ∈ [0, τ ]. Thus zt ∈ C∗: = C([0, τ ], Rn). Equations (2.4)
and (2.5) have the same eigenvalues. The spaces C and C∗ are related by the bilinear
form

(ψ ,ϕ) = ψ�(0)ϕ(0)−
∫ 0

−τ

∫ θ

0
ψ�(ζ − θ )dη(θ )ϕ(ζ ) dζ

defined for ψ ∈ C∗ and ϕ ∈ C. If Φ is an n × 2 matrix whose columns span the
eigenspace of (2.4) corresponding to the eigenvalue ±iω, then

Φ(θ ) = Φ(0)eωJθ , θ ∈ [− τ , 0],

where

J =
[

0 −1
1 0

]
.

A analogous statement holds for the n × 2 matrix Ψ whose columns span the
eigenspace corresponding to ±iω for the adjoint equation. Moreover, it is possible
to choose Φ and Ψ such that (Ψ ,Φ) = I.

The above ideas form the basis of the analysis of the perturbed equation (2.2).
Hence, if x̄t ∈ C and y(t) ∈ R

2 are defined by

xt = Φy(t)+ x̄, y(t) = (Ψ , xt),

then y satisfies

ẏ(t) = ωJy(t)+ εΨ�(0)h(Φy(t)+ x̄;ε). (2.6)
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By a change of variables y = exp (ωJt)u, one arrives at the slowly varying system

u̇(t) = εe−ωJtΨ�(0)f (ΦeωJtu(t)+ x̄;ε).

The corresponding averaged equation is defined as

u̇(t) = εf̄ (u), (2.7)

where

f̄ (u) = lim
T→∞

1

T

∫ T

0
e−ωJtΨ�(0)f (ΦeωJtu;0) dt.

The qualitative behavior of the infinite-dimensional system (2.1) that is relevant
for the present problem can be studied on the two-dimensional ODE (2.7). More
precisely, under the assumptions of the above paragraphs, one has the following
result.

Theorem 2.1 (Averaging Theorem, [2]) Suppose that equation (2.7) has a fixed
point u0 and the Jacobian Df̄ (u0) has no eigenvalues with zero real part. Then
there exists ε0 > 0 such that for each ε ∈ [0, ε0] there exists an almost periodic
solution x∗(ε) of (2.2) which has the same stability type as the fixed point u0 of
(2.7). Furthermore, x∗(0) = 0, and x∗is unique in a neighborhood of ΦeωJtu0 and
ε = 0.

2.3 Stability by Delayed Feedback

Suppose now that a feedback function g acts on system (2.2),

ẋ(t) = Lxt + εf (xt;ε)+ εκg(xt;ε) (2.8)

with κ ∈ R denoting the feedback gain. The feedback is taken to be of the same
order of magnitude as the perturbation f , so it is also scaled by ε. By assumption the
zero solution of the uncontrolled system (κ = 0) is unstable for small ε > 0. We
wish to study the effect of the feedback control for nonzero κ .

Equation (2.8) is a perturbation of a linear system; hence, the tools of the previ-
ous section can be applied. Since we are interested only in the stability of the zero
solution, it suffices to work with the linearizations of the functions f and g. To this
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end, we introduce n × n matrices F and G with elements of bounded variation on
[− τ , 0], such that

[D1 f (0;0)]φ =
∫ 0

−τ
dF(θ )φ(θ ),

[D1g(0;0)]φ =
∫ 0

−τ
dG(θ )φ(θ )

for all φ ∈ C. (D1 denotes the partial derivative with respect to the first variable.)
The averaged equation is a two-dimensional linear ODE, which, in the present case,
can be written as a complex scalar equation

ż = ε(q+ κp)z, (2.9)

where p, q ∈ C are defined by

p = tr

[

Ψ�(0)
∫ 0

−τ
dG(θ )Φ(θ )

]

+ itr

[

JΨ�(0)
∫ 0

−τ
dG(θ )Φ(θ )

]

,

q = tr

[

Ψ�(0)
∫ 0

−τ
dF(θ )Φ(θ )

]

+ itr

[

JΨ�(0)
∫ 0

−τ
dF(θ )Φ(θ )

]

.

where tr denotes the matrix trace. We refer the interested reader to [4] for the details
of the calculations, and state the stability result based on the averaged equation (2.9).

Theorem 2.2 Let κ ∈ R. There exists ε0 > 0 such that for ε ∈ (0, ε0) the zero
solution of (2.8) is asymptotically stable (resp., unstable) if

Re(q+ κp) < 0 (resp., > 0).

The proof is based on the averaging theory of the previous section: For the aver-
aged equation, the eigenvalues of the Jacobian at the origin have real parts equal to
Re(q + κp), whose sign determines stability. On the other hand, by Theorem 2.1,
there exists a solution x∗(t) = 0 + O(ε) of the original equation (2.8) having the
same stability type as the averaged equation. By uniqueness of x∗, one has x∗(t) ≡ 0
since 0 is always a solution of (2.8). Hence, the stability of the zero solution of (2.8)
is determined by the sign of q+ κp.

Note that, in the statement of Theorem 2.2, q depends only on the controlled
system and p depends only on the feedback. Hence, κRe(p) is the quantity that
characterizes the effect of feedback for a given oscillator. In particular, the feedback
has no effect on stability if Re(p) = 0. We can equivalently characterize this case as

cos ζ = 0, (2.10)
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where ζ = arg (p) can be viewed as a projection angle. While at first (2.10) appears
to describe a singular case, it does indeed arise often when the feedback depends on
incomplete state information, as we shall see below. More generally, Theorem 2.2
shows that the feedback can be stabilizing or destabilizing depending on whether
κRe(p) is negative or positive, respectively.

To study the effect of delays on Re(p), we fix κ = 1 and consider a linear feed-
back of the form

g(xt;ε) =
∫ 0

−τ
Cx(t + θ ) dh(θ ), (2.11)

where C ∈ R
n×n is a structure matrix and h:[ − τ , 0] → R is a scalar delay distri-

bution. In this case, it can be calculated that [4]

Re(p) = αtr(Ĉ)+ βtr(ĈJ), (2.12)

where Ĉ = Ψ�(0)CΦ(0) and

α =
∫ 0

−τ
cos θ dh(θ ), β =

∫ 0

−τ
sin θ dh(θ ). (2.13)

For undelayed feedback, h is a Dirac delta at 0; so α = 1 and β = 0, yielding
p = tr(Ĉ). Hence if tr(Ĉ) = 0 the undelayed feedback cannot stabilize the origin;
however, if βtr(ĈJ) < 0 then applying the same feedback signal with some time
delay can achieve stabilization. In fact, from (2.12) it follows that delayed feedback
is more stabilizing than undelayed feedback if

(1− α)tr(Ĉ) > βtr(ĈJ). (2.14)

A particular application area is when only partial system state is available for feed-
back. We illustrate with an example.

Example Consider the classical van der Pol oscillator with linear feedback

ÿ+ ε(y2 − 1)ẏ+ y = ε [κ1y(t − τ )+ κ2ẏ(t − τ )
]

, 0 < ε  1. (2.15)

With x = (y,−ẏ), the linear equation around the origin is

ẋ(t) = Jx(t)+ ε
(

0 0
0 1

)
x(t)+ ε

(
0 0
−κ1 κ2

)
x(t − τ ),

which has the same form as (2.6). Carrying out averaging as above, we obtain q = 1
and

Ĉ = C =
(

0 0
−κ1 κ2

)
,
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giving Re(p) = ακ2 + βκ1. From (2.13) we have α = cos τ and β = − sin τ . If
the feedback is instantaneous (i.e., without delays), then β = 0 and Re(p) depend
only on the velocity feedback κ2. In this case, the origin cannot be stabilized if
κ2 = 0, that is, if velocity information is not used in the feedback. By contrast, if
the feedback is delayed, then using only position information can yield stability. In
this latter case, Theorem 2.2 gives the condition for stability as κ1 sin τ > 1. Hence,
for instance, the choices τ = π/2 and κ1 = 1.5 will stabilize the origin, whereas
stability is not possible for any feedback gain if τ = 0.

Remark. The form of the feedback function g in (2.8) or (2.11) is of course more
general than the example above and allows, e.g., multiple delays or a combination
of delayed and instantaneous feedback. For instance, the “non-invasive” form of
delayed feedback used in some applications (notably in chaos control, see Chap. 4
in this volume) falls in this category, where, instead of (2.15), one would have, for
instance,

ÿ+ ε(y2 − 1)ẏ+ y = εκ1
[
y(t − τ )− y(t)

]
.

It is immediate by the above arguments that in this example the presence of the
term y(t) in the feedback has no effect on stability for small ε. Indeed, one can
calculate Re(p) = −κ1 sin τ as before. Hence, as far as stability is concerned, direct
and difference feedback schemes are equivalent on the order O(ε). The distinction
becomes important, however, when several oscillators are coupled, as we will see in
Sect. 2.4.

The suppression of limit-cycle oscillations in the van der Pol system was studied
in [5]. The rigorous analysis presented here points to the essence of some novel
uses of delayed feedback control in engineering, for instance, in vibration control
of mechanical systems [6]. Examples of earlier work on the engineering use of
deliberate delays in controllers can be found in [7–10]. A further example is the
classical control problem of balancing an inverted pendulum, which is treated in
[11] using delayed position feedback. Although here we have focused on stability
of equilibria, and hence essentially on linear systems, the delayed feedback actually
offers finer control on the behavior of oscillations. For instance, the amplitude [12]
and period [13] of limit-cycle oscillations can be changed by nonlinear delayed
feedback schemes.

We finally comment on the role of distributed delays. While most mathematical
models and analytical results concern discrete delays, distributed delays also arise in
applications. The foregoing theory applies to arbitrary delays, which makes it pos-
sible to make a comparison regarding the stabilizing effect near a Hopf bifurcation.
Such an analysis is given in [4], where it is shown that discrete delays constitute a
local extremum among all delay distributions having the same mean value. More
precisely, if the delayed feedback is stabilizing (resp, destabilizing), then the dis-
crete delay is locally the most stabilizing (resp., destabilizing) distribution, and the
stabilizing or destabilizing effect of the feedback decreases as the variance of the
delay distribution increases.
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2.4 Amplitude Death in Networks of Oscillators

The spontaneous cessation of oscillations in coupled systems is a dynamical phe-
nomenon of both theoretical and practical interest. The terms amplitude death and
oscillator death have been used to describe this quenching effect, early observa-
tions of which can be traced to Lord Rayleigh’s experiments on acoustics [14],
or to the more recent results from chemical oscillators [15]. There are various
causes of amplitude death; for example, the differences in the intrinsic oscillation
frequencies of the units can suppress oscillations in the coupled system [16, 17].
Indeed, it is known that death is not possible in identical limit-cycle oscillations
[18], provided that the information transmission is instantaneous (see Fig. 1.1 in
Chap. 1). However, in the presence of time delays even identical oscillators can
exhibit amplitude death [19]. In this section, we extend our analysis to networked
systems to give a general treatment of amplitude death and its causes for oscilla-
tors near Hopf bifurcation. The new parameters here will be descriptors of con-
nection structure of the oscillators, that is, the network topology. We shall in par-
ticular identify the relevant network parameters responsible for the suppression of
oscillations.

Consider N oscillators of the form (2.2), indexed by k = 1, . . . , N, and coupled
in a general manner:

ẋk(t) = Lkxk
t + εfk(xk

t ;ε)+ εκgk(x1
t , . . . , xN

t ;ε), k = 1, . . . , N, (2.16)

with the function fk denoting the individual dynamics of the kth oscillator, and gk

describing the effect of all other oscillators on the kth one. The parameter κ ∈
R denotes the coupling strength, xk

t ∈ C = C([ − τ , 0], Rn), and fk and gk are
assumed to have continuous second derivatives and vanish at the origin for all ε.
Consequently, the trivial solution is an equilibrium of (2.16) for all ε. As before,
we study oscillators arising from Hopf bifurcations. Thus, for each k, the isolated
system

ẋk(t) = Lkxk
t + εfk(xk

t ;ε) (2.17)

obtained from (2.16) by setting κ = 0, is assumed to undergo a supercritical Hopf
bifurcation. That is, the unperturbed problem

ẋk(t) = Lkxk
t ,

has a pair of eigenvalues ±iωk �= 0 and all others eigenvalues have negative real
parts, the origin is unstable for the perturbed system (2.17), and there exists a small
amplitude limit cycle for 0 < ε  1. Amplitude death refers to the possibility
that for some nonzero coupling strength κ the trivial solution becomes stable in the
coupled system (2.16), although it is unstable in the isolated oscillator (2.17).

We again use averaging theory to study the problem for small ε and obtain a
similar result, given in Theorem 2.3. To introduce some notation, let Fk and Gkl be



2 Delay-Induced Stability: From Oscillators to Networks 53

N×N matrices corresponding to the linear parts of fk and gk, that is, matrices whose
elements are of bounded variation on [− τ , 0], such that

[D1fk(0;0)]φ =
∫ 0

−τ
dFk(θ )φ(θ ),

[Dlgk(0, . . . , 0;0)]φ =
∫ 0

−τ
dGkl(θ )φ(θ )

for all φ ∈ C. Define P = [pkl] ∈ C
N×N by

pkl = tr

[

Ψ�k (0)
∫ 0

−τ
dGkl(θ )Φl(θ )

]

+ itr

[

JΨ�k (0)
∫ 0

−τ
dGkl(θ )Φl(θ )

]

ifωk = ωl, otherwise set pkl = 0. Define the diagonal matrix Q = diag{q1, . . . , qN} ∈
C

N×N by

qk = tr

[

Ψ�k (0)
∫ 0

−τ
dFk(θ )Φk(θ )

]

+ itr

[

JΨ�k (0)
∫ 0

−τ
dFk(θ )Φk(θ )

]

.

Similar to (2.9) we end up with a linear ODE

ż = (Q+ κP)z, z ∈ C
N ,

and deduce the following counterpart of Theorem 2.2.

Theorem 2.3 Let κ ∈ R. There exists ε0 > 0 such that for ε ∈ (0, ε0) the origin
is asymptotically stable if all eigenvalues of Q + κP have negative real parts, and
unstable if there is an eigenvalue with positive real part.

Proof Similar to the proof of Theorem 2.2. We now work on an N-fold Cartesian
product of the space C. Since the unperturbed system (ε = 0) is decoupled, block
diagonal matrices ofΦi andΨi, defined as in Sect. 2.2, form basis for the appropriate
eigenspaces.

Remark The stability of the uncoupled system is determined by the sign of Re(qi)
since Q is a diagonal matrix. Hence, Re(qi) > 0 ∀i by our assumption that the origin
is unstable for the isolated oscillators.

As P is an N × N matrix, one cannot in general expect to move all eigenvalues
of Q+ κP to the left-hand complex plane by varying only the scalar quantity κ . The
particular cases when such a κ exists constitute amplitude death phenomena. As
corollaries of Theorem 2.3, we can now recover several characteristics of amplitude
death in the present general setting of coupled delay differential equations.
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Death by frequency mismatch. Suppose that the individual oscillator frequen-
cies ω1, . . . ,ωN are all distinct. Then by definition P is a diagonal matrix.1 Now
if Re(pii) are nonzero and have the same sign for all i (e.g., when coupling con-
ditions are identical or similar), then stability is possible for sufficiently strong
coupling. In fact, since Q + κP is in this case diagonal, it suffices to choose
|κ| > maxi |Re(qi)/Re(pii)|with the correct sign to ensure that qi+κpii has negative
real part for all i. This behavior corresponds to the oscillation suppression by fre-
quency mismatch studied in [16, 17]. Nevertheless, it can be observed only under the
correct coupling conditions, since all Re(pii) need to be nonzero and have the same
sign.

Partial amplitude death. If the frequencies ω1, . . . ,ωN are distinct and the pii are
not identical, then there may exist values of κ for which Re(qi+κpii) is negative only
for some i. Since the averaged equations are decoupled in this case, one sees that
only some of the oscillators are suppressed while the others continue to exhibit their
limit-cycle behavior. This phenomenon has been termed partial amplitude death
[20]. We illustrate with an example.

Consider the pair of coupled van der Pol oscillators

ÿ1 + ε(y2
1 − α1)ẏ1 + ω2

1y1 = εκ(ẏ2(t − τ )− ẏ1(t)),

ÿ2 + ε(y2
2 − α2)ẏ2 + ω2

2y2 = εκ(ẏ1(t − τ )− ẏ2(t))
(2.18)

with non-identical frequencies and amplitudes. That is, α1,α2 > 0, α1 �= α2, and
ω1 �= ω2. In the absence of coupling, the ith oscillator can be shown to have an
attracting limit-cycle solution given by yi = 2

√
αi cosωit+O(ε). Figure 2.1 shows

the behavior of (2.18) the coupled system as the coupling strength κ is varied. It is
seen that amplitude death occurs for κ > 1, where both oscillators are quenched.
Furthermore, en route to amplitude death, a partial death occurs for 0.5 < κ < 1,
where only the second oscillator is damped while the first one continues to exhibit
high-amplitude oscillations. In the partial death range the amplitude of the second
oscillator is almost (but not exactly) zero, whereas in the full amplitude death range
both amplitudes are exactly zero as the origin of the full system (2.18) becomes
asymptotically stable.

Direct coupling. This case refers to the instance when the coupling function
gi has no explicit dependence on xi

t, or more generally pii = 0, for all i. It is a
corollary of Theorem 2.3 that amplitude death is not possible under direct coupling.
To see this, note that Re(tr(Q+ κP)) =∑N

i=1 Re(qi) > 0. Since trace equals sum of
eigenvalues, Q+ κP has an eigenvalue with positive real part.

As opposed to direct coupling, the oscillators can also interact via the so-called
diffusive coupling, where the function gi depends on xi

t as well as some of the other
oscillators xj

t in the network in a way that aims to reduce the differences |xi
t − xj

t|,
much like a diffusion process. This type of coupling is of particular importance in

1 The underlying reason is that in this case the system essentially decouples on the order O(ε); see
[20].
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Fig. 2.1 Amplitude of oscillations in the coupled van der Pol system (2.18) with non-identical
amplitudes and frequencies. Partial amplitude death occurs for coupling strength in the range 0.5 <
κ < 1, where one of the oscillators is suppressed and the other one continues to exhibit high-
amplitude oscillations. The region κ > 1 corresponds to the full amplitude death of the whole
system. Note that the vertical scale is logarithmic. The parameter values are α1 = 1, α2 = 0.5,
ω1 = 0.1, ω2 = 1, and ε = 0.1

network studies because of its nature to facilitate synchronization. The dependence
of gi on its arguments defines a graph, where there is a link from vertex j to i if and
only if gi depends on xj

t. One can then study the relation of dynamics to the coupling
topology in terms of the properties of the underlying graph. This will be the topic of
next section, which treats delay-induced stability in identical oscillators.

2.5 Diffusively Coupled Networks

In this section, we consider the coupled system

ẋk(t) = Lxk
t + εf (xk

t ;ε)+ ε κ
dk

N∑

j=1

akjg(xk
t , xj

t−τ0 ), k = 1, . . . , N, (2.19)

which is a special case of (2.16) where the units are identical and the coupling
function is

gk(xt
1, . . . , xt

N ;ε) = 1

dk

N∑

j=1

akjg(xk
t , xj

t−τ0 ).

The assumptions on L and f are analogous to Sect. 2.4; in particular, there exists
a pair of purely imaginary and nonzero eigenvalues ±iω for the linear problem
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ẋ = Lxt, all other eigenvalues having negative real parts. Without loss of generality,
ω = 1 by a rescaling of time. The numbers akj are such that akj = ajk = 1 if
the kth and jth units have direct influence on each other; otherwise akj = 0. The
symmetric array A = [akj] forms the adjacency matrix of the underlying graph
structure. The degree of the kth vertex in this graph is dk = ∑N

j=1 akj, that is, the
number of neighbors of the kth unit. Disregarding the trivial case of isolated vertices,
dk > 0 for all k. The function g:C × C → R

n is twice continuously differentiable
and satisfies a generalized diffusion condition

g(φ,φ) = 0 ∀φ ∈ C. (2.20)

Finally, τ0 ≥ 0 denotes the signal transmission delay along the links of the network.
By Theorem 2.3, the eigenvalues of the matrix Q + κP determine the stability

of the zero solution of (2.19) for small ε. Since the oscillators are now identical,
Q = qI is a scalar matrix, with Re(q) > 0, as the origin is assumed to be unstable
for the isolated oscillator. Therefore, the stability condition is that

κRe(ρi) < −Re(q)

for all eigenvalues ρi of the matrix P. It turns out [21] that P has identical diagonal
elements and can be written as

P = p11(I − eiτ0 D−1A), (2.21)

where D = diag{d1, . . . , dN} is the diagonal matrix of vertex degrees. The expres-
sion in parenthesis above is reminiscent of the graph Laplacian Δ, defined by

Δ = I − D−1A, (2.22)

(in fact, the two expressions coincide for τ0 = 0), and one can rightly guess that
the stability properties of the network would be related to the eigenvalues of Δ. The
latter are a topic of spectral graph theory (see e.g., [22]), from which we briefly
recall the relevant notions.

Let G be a simple and nontrivial graph (i.e., G contains at least one edge and
no self-connections) on N vertices with Laplacian matrix Δ defined by (2.22).
Although Δ is in general not symmetric, it can be shown to be a self-adjoint and
positive semidefinite operator with respect to a certain inner product on R

N . Con-
sequently, the eigenvalues λk of Δ are real and nonnegative, and its eigenvectors
{vN , . . . , vN} form a complete orthonormal basis for R

N . The smallest eigenvalue is
zero and corresponds to the eigenvector (1, 1, . . . , 1). For a graph without isolated
vertices, the largest eigenvalue λmax of Δ satisfies

N

N − 1
≤ λmax ≤ 2. (2.23)
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Furthermore, λmax = N/(N − 1) if and only if G is a complete graph of N vertices,
and λmax = 2 if and only if G has a nontrivial bipartite component. Here, a complete
graph refers to one where every vertex is connected to every other vertex, and a
bipartite graph is one whose vertex set can be divided into two parts V1 and V2
such that every edge has one end in V1 and one in V2. Common examples of bipartite
graphs include open chains, grids, cycles with an even number of vertices, and all
trees.

With this background, the stability result can be stated as follows.

Theorem 2.4 ([21]) Suppose p11 �= 0, let ζ = arg (p11), and define H ∈ R by

H = (cos ζ − cos (ζ + τ0)) (cos ζ + (λmax − 1) cos (ζ + τ0)) . (2.24)

If H > 0, then there exist κ ∈ R and ε0 > 0 such that the zero solution of (2.19)
is asymptotically stable for all ε ∈ (0, ε0). If H < 0 and κ ∈ R, then there exists
ε0 > 0 such that the zero solution of (2.19) is unstable for all ε ∈ (0, ε0).

Note that if τ0 = 0, then H cannot be positive and the stability condition of the
theorem is not satisfied. This is related to the fact observed in [18] that amplitude
death does not occur for identical oscillators in the absence of time delays.

The quantity ζ = arg (p11) appearing in (2.24) is analogous to the one defined
in (2.10): If cos ζ = 0, then H = −(λmax − 1) sin2 (τ0) ≤ 0, because λmax > 1 by
(2.23). In this case, the network stability condition of the theorem is not satisfied,
similar to the condition (2.10) for the failure of feedback stabilization for a single
oscillator.

Note that ζ does not depend on the connection structure of the network or on the
delay τ0. Indeed, the only contribution of the network structure comes through the
largest eigenvalue λmax of the Laplacian. In other words, λmax completely charac-
terizes the effect of network topology on stability. Thus, networks having the same
value of λmax have the same stability characteristics. These include, in particular,
all bipartite network configurations, for which λmax is always equal to 2. In fact, for
small ε one can prove a monotone dependence of stability on λmax in the following
sense.

Corollary 2.5 ([21]) Consider two graphs Ga and Gb, with the corresponding Lapla-
cians Δa,Δb having largest eigenvalues λa

max ≥ λb
max, respectively. If, for a fixed

pair of values of ζ and τ0, asymptotic stability is possible in Ga, then it is also
possible in Gb.

As a direct implication that follows by (2.23), we have that bipartite graphs have
the worst stability characteristics and complete graphs the best.

Directed networks and multiple delays. In a more general setting, one can con-
sider the system

ẋk(t) = Lxk
t + εf (xk

t ;ε)+ ε κ
dk

N∑

j=1

akjg(xk
t , xj

t−τkj
), k = 1, . . . , N, (2.25)
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which allows different values of the delay τkj between different pairs of nodes k
and j. Furthermore, the requirement of interaction symmetry may be relaxed, so that
akj �= ajk and τkj �= τjk in general. The number dk refers then to the in-degree of
vertex k. Carrying out a similar analysis, it turns out that the matrix P now takes the
form

P = p11(I − D−1Aτ ),

where Aτ = [âkj] is a delay-adjacency matrix with components

âkj = akj exp (iτkj),

which generalizes the expression (2.21) to the multiple-delay case. One can then
express a stability condition in terms of the eigenvalues of the delay-LaplacianΔτ =
I − D−1Aτ . For details, the reader is referred to [21].

2.6 Discrete-Time Systems

A discrete-time analogue of (2.19) is the coupled map network

xk(t) = f (xk(t))+ κ

dk

N∑

j=1

akjg(xk(t), xj(t − τ )), k = 1, . . . , N, (2.26)

with akj = ajk, t ∈ Z and the delay τ a nonnegative integer. The interaction function
g satisfies the diffusion condition (2.20), so that any fixed point x∗ of f yields a
spatially uniform equilibrium solution X∗ = (x∗, . . . , x∗) of (2.26). Our aim is to
relate the stability of x∗ as a fixed point of f to the stability of X∗ as an equilib-
rium solution of the network (2.26). As in the previous sections, we are particularly
interested in the case when x∗ is unstable but X∗ is stable. In the present section,
however, it is possible to relax the assumption of being near a bifurcation and obtain
sharp conditions without reference to a small parameter ε.

We note that, in the framework of condition (2.20), the interaction function g can
have the form of, e.g., linear diffusion,

g(x, y) = y− x, (2.27)

or can assume some other form such as

g(x, y) = f (y)− f (x), (2.28)

which arises in the paradigm of coupled map lattices [23]. The constant κ can be
viewed as a diffusion coefficient or a global coupling strength.
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For simplicity, we restrict ourselves to scalar maps f : R→ R and g: R×R→ R,
which are assumed to be differentiable at x∗and (x∗, x∗), respectively. Upon lineariz-
ing about X∗, we obtain

uk(t + 1) = buk(t)+ c

di

n∑

j=1

akj[u
j(t − τ )− uk(t)], i = 1, . . . n, (2.29)

where

b = f ′(x∗) and c = κD2g(x∗, x∗) = −κD1g(x∗, x∗).

The asymptotic stability of the zero solution of the linear equation (2.29) yields the
exponential stability of X∗ in (2.26). If (2.29) is written in vector form,

U(t + 1) = (b− c)U(t)+ cD−1AU(t − τ ), (2.30)

with U = (u1, . . . , un), then the matrix D−1A = I − Δ displays how the Laplacian
Δ comes to the forefront in the analysis.

The exact conditions for the stability of the fixed point of (2.26) are derived in
[24]. Rather than going into details here, we summarize some of the highlights. To
begin with, if x∗ is an unstable fixed point of f , then stability of the network can
be achieved only for odd delays. In particular, if the delay is zero, stabilization of
identical maps is not possible, which is the analog of the continuous-time result on
amplitude death mentioned in Sect. 2.5. In a similar fashion, the largest eigenvalue
λmax of the Laplacian turns out to completely characterize the role of the network
topology on stability. Furthermore, the stability has a monotone dependence on
λmax, and we can cite a similar result to Corollary 2.5. Consequently, complete
graphs yield the largest stability regions and bipartite graphs the smallest, as in
Sect. 2.5.

Corollary 2.6 ([24]) Consider two graphs Ga and Gb, with the corresponding Lapla-
cians Δa,Δb having largest eigenvalues λa

max ≥ λb
max, respectively. Let τ ∈ Z

+. If
the zero solution of (2.29) is asymptotically stable under the connection topology of
Ga, then it is also asymptotically stable for Gb.

Furthermore, discrete-time systems have the following monotonicity property
with respect to delays.

Proposition 2.7 ([24]) Let τ1 and τ2 be positive integers, τ1 < τ2, which are both
odd or both even. If the zero solution of (2.29) is asymptotically stable for τ = τ2,
then it is also asymptotically stable for τ = τ1.

Stabilization of chaotic networks. The stability criteria given in [24] reveal that
stabilization of an unstable fixed point x∗ may be achieved for some range of the
parameters when b = f ′(x∗) < −1, but not when b > 1. For the nonlinear system,
the implication is that only flip-bifurcations can be stabilized in the network. In a
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Fig. 2.2 Time evolution of a randomly selected unit (solid line) in a diffusively coupled network
of 30 logistic maps forming a complete graph. The coupling is turned on at t = 50, after which the
chaotic dynamics is replaced by a transient to a stable equilibrium solution. The dotted line below
is the standard deviation over the vertices of the network, showing that each vertex asymptotically
approaches the same equilibrium value

sense this is comparable to the stabilization of Hopf bifurcation discussed in the
previous sections for continuous systems, since both bifurcations give rise to peri-
odic solutions from an equilibrium point. The flip bifurcation is also the underlying
mechanism for the well-known period-doubling route to chaos. Hence, the presence
of delays may suppress chaos in the network in this case.

As an example, we consider a network of coupled logistic maps, with the individ-
ual dynamics given by f (x) = ρx(1−x) and the interaction function given by (2.28).
For ρ = 3.8, f is chaotic. Starting from random initial conditions, we simulate the
system (2.26) without coupling (κ = 0) for 50 time steps, and afterward turn on the
delayed coupling with parameters κ = 0.5 and τ = 1. Figure 2.2 shows that chaos
is rapidly suppressed in the coupled network and the system tends to the positive
fixed point of the logistic map.

2.7 Concluding Remarks

The role of the largest eigenvalue of the Laplacian matrix in the stability of undi-
rected networks has been first formulated in [21] for continuous-time systems and in
[24] for discrete time. The generalization to directed networks with multiple delays
is also indicated in [21], but remains mostly open for the discrete-time case. In
another direction, the extension to weighted networks is straightforward when the
edges carry nonnegative weights, but is more challenging to characterize in the pres-
ence of both positive and negative weights. Further complications ensue when the
network structure itself is dynamic, that is, the edges or their weights vary in time
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according to some rule, or change randomly due to failure or disease, or in response
to the dynamics on the nodes.

Although stability is interesting in its own right, it is certainly not the only effect
of delays on the collective behavior of coupled systems. For instance, one can also
observe different types of synchronization in coupled oscillators. In addition to the
usual in-phase synchronization in the undelayed case, anti-phase synchronization
can be induced by time delays, and in fact both types of synchronized solutions can
stably co-exist at certain parameter regions for positive delay values [25]. Beyond
synchronization there are many other dynamical regimes, such as cluster formation,
and even more waiting to be discovered and studied. Examples abound in applica-
tions from diverse fields and form a rich source of problems.
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Chapter 3
Delay Effects on Output Feedback Control
of Dynamical Systems

Silviu-Iulian Niculescu, Wim Michiels, Keqin Gu, and Chaouki T. Abdallah

3.1 Introduction

The existence of time delays at the actuating input in a feedback control system
is usually known to cause instability or poor performance for the corresponding
closed-loop schemes (see, for instance [10, 18, 20, 23] and the references therein).

Consider the following class of linear, time-invariant dynamical systems:

{
ẋ(t) = Ax(t)+ bu(t)

y(t) = cTx(t),
(3.1)

where x ∈ R
n denotes the state, u and y are real scalar-valued functions denoting the

input and the output, respectively, and A ∈ R
n×n, b, c ∈ R

n×1. The transfer function
associated with (3.1) is given by

Hyu(s): = cT (sIn − A)−1b, (3.2)

which is a strictly proper ratio of two coprime polynomials:

Hyu(s) = P(s)

Q(s)
, where deg(P) < deg(Q).

In the language of control feedback theory, the system above is called a SISO
(single-input single-output) system.

Consider now the following control law:

u(t) = −ky(t − τ ), (3.3)

S.-I. Niculescu (B)
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where the quantity k defines the corresponding gain, and τ denotes the delay
in the output feedback. The presence of a delay in a system may have several
causes, mainly due to transport and propagation (control over networks, teleop-
eration, and telemanipulation, to cite a few examples). For further discussions and
related classifications of the delays present in engineering and other fields, see, for
instance, [10, 18, 20, 23].

The control problem can be simply formulated as finding a controller gain k
such that the system (3.1) under the control law (3.3) becomes exponentially stable
in closed loop. In other words, the problem is reduced to find a gain k such that
the roots of the characteristic equation (see, for instance, [10] and the references
therein),

Q(s)+ P(s)ke−sτ = 0, (3.4)

are located in C−. Indeed, a system is exponentially stable if all the roots of its char-
acteristic equation are located in C− (roots with negative real part). It is important to
point out that, in our case, the characteristic equation (3.4) is transcendental, that is,
it has an infinite number of roots, a fact leading to further complications in closed-
loop stability analysis. It is quite clear that the complication is essentially due to the
presence of delay. Indeed, the characteristic equation of the closed-loop system free
of delays (τ = 0) reduces to a polynomial P(s)+kQ(s) with a finite number of roots.
Further discussions on the behavior of the characteristic roots and related continuity
properties for small delay values can be found in [7] (see also, [2, 23]).

3.1.1 Existing Methodologies

There exists several methods and techniques in handling such a control problem, and
most existing approaches consider the control problem for the case free of delay as
a starting point due to the simplicity of the characteristic equation in such a case
(polynomial type).

Thus, a classical (2 steps) procedure to handle such a control problem can be
summarized as follows:

• first, derive a stabilizing control law u(t) = −ky(t) for the system free of delays
(setting the delay to zero) and

• next, under the assumption that a stabilizing gain k exists, find an upper bound
for the delay value τm such that the corresponding closed-loop system is asymp-
totically stable for all delays in the interval [0, τm).

If the “real” input delay τ �∈ [0, τm), it is necessary to go back to the previous
step in order to find a “better” gain k. In the case when τm = +∞ (or τm < +∞),
we will have delay-independent (delay-dependent) closed-loop stability.
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However, such a method does not give any answer concerning the case when
the system cannot be stabilized by a static output feedback (see, for instance, the
case of an oscillator) or it does not give any information on the behavior for large
delay values, that is, the existence of delay intervals achieving closed-loop stabil-
ity. In conclusion, the method above simply helps to put in evidence the degree
of robustness of the closed-loop system with respect to the delay (bounds on the
delay margin such that closed-loop stability is guaranteed for any delay smaller
than the corresponding bound). In other words, the destabilizing effect of the delay
was considered.

The method mentioned above can be illustrated by the following simple system:
Hyu(s) = 1/s (an integrator) subject to the control law u(t) = −ky(t−τ ). The stabil-
ity of the closed-loop system is given by the roots location of the quasipolynomial:
s + ke−sτ . Since for τ = 0, all positive gains k stabilize the system, the problem is
to see how the delay affects the location of the roots.

As seen in Fig. 3.1, if the delay is increased from 0, the closed-loop stability
is guaranteed for all delays τ ≥ 0, satisfying kτ < π/2. The closed-loop system
has two complex conjugate roots on the imaginary axis when τ = π/2 (oscillatory
behavior), and the closed-loop system becomes unstable for larger delays.

Several procedures and algorithms for computing the optimal delay margin τm
are available in the existing literature as discussed in [10, 23]. Most of the existing
approaches make use of tools and methods of robust control theory such as matrix
pencils and 2D methods, μ-analysis and frequency-sweeping tests, pseudo-delay
technique and parameter-dependent polynomials tests, etc. For the sake of brevity,
we do not discuss such methods here.
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Fig. 3.1 Rightmost characteristic roots of the closed-loop quasipolynomial s+ ke−sτ for various
values of τ ∈ [0, 0.4) with k = √2e3π/4



66 S.-I. Niculescu et al.

3.1.2 Problem Formulation and Related Remarks

This chapter addresses the opposite problem, namely characterizing the situations
where a delay has a stabilizing effect. In other words, we consider the situation
where the delay-free feedback system is unstable, but becomes asymptotically stable
due to the presence of an appropriate delay and gain in the actuating input.

The stabilizing delay effect problem is defined as follows:

Problem 3.1 (Delay stabilizing effect) Find explicit conditions on the pair (k, τ ),
such that the controller (3.3) stabilizes the system (3.2), but the closed-loop system
would be unstable if the delay τ is set to zero.

As we will see below, the conditions derived lead to an explicit construction
of the controller. Furthermore, for each stabilizing delay–gain pair, we may define
a stabilizing delay interval, which can be treated as a robustness measure of the
corresponding control law if the delay is uncertain.

The interest in solving Problem 3.1 is twofold:

• first, the resulting design procedure is rather simple and the controller is easy to
implement;

• second, it allows us to explore the potential of using such a controller (that is,
using delay as a design parameter, defining thus a “wait-and-act” strategy) in
situations where it is not easy to design or implement a controller without delay
(see, for instance, the congestion controllers in high-speed networks [15, 16, 24],
etc.).

Some discussions on the stabilizing effect of delays in control systems have been
considered in [1, 4, 25], but without any attempt to treat the problem in its most
general setting. Nyquist criterion was used in [1] to prove that a pair (gain, delay)
may stabilize second-order oscillatory systems. A different approach was proposed
in [4], where upper and lower bounds on the delay are given such that the closed-
loop system is stable, under the assumption that the system is stable for some
known nominal delay values. Next, the paper [25] addressed the general static
delayed output feedback problem, and some existence results (delay-independent,
delay-dependent, instability persistence) were derived, but without any explicit con-
struction of the controllers. More specifically, [25] compares the stability of the
closed-loop schemes with and without delays in the corresponding control laws.
Finally in [22] the stabilizing effect of a variation of time delays was investigated,
motivated by machine tool vibration applications.

It is important to note that the approach proposed in this chapter may also be
used for a different control problem: the characterization of all stabilizing pro-
portional controllers for a dead-time SISO plant, and we believe that our method
gives a simpler answer to that problem than existing results in the literature (see,
for instance [26, 29] and the references therein, for a different frequency-domain
approach).

Although only strictly proper SISO systems are considered above, most of the
ideas still work for more general SISO systems, such as a restricted class of (not
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necessarily strictly) proper systems, or systems with internal delays in addition to
the feedback input delay.

3.1.3 Methodology and Approach

The problem discussed here will be handled using frequency-domain methods. First,
we shall analyze the location of roots in the complex plane of two appropriately
defined polynomials that depend on the gain parameter.

Next, we analyze the sensitivity of the roots in terms of delays and derive nec-
essary and sufficient conditions on the delay values for the asymptotic stability of
the closed-loop system. Furthermore, an explicit construction of the controller will
be given in the following form: for any gain satisfying some assumptions, a delay
interval guaranteeing stability will be computed.

Several cases will be treated, and a complete characterization of the stabilizability
using a gain–delay pair will be given. Illustrative examples complete the presenta-
tion.

The chapter is organized as follows: the main (existence) results as well as the
resulting controller design procedure are presented in Sect. 2. Illustrative examples
are given in Sect. 3. Some concluding remarks complete the chapter.

3.2 Main Results

In this section, we consider Problem 3.1. In order to prove our main results (stabi-
lizability using a gain–delay pair), some notation is needed.

3.2.1 Notation

The characteristic equation of the closed-loop system is given by

H(s; k, τ ) = Q(s)+ kP(s)e−sτ .

Two quantities will play a major role in the stabilizability study:

• card(U+), where U+ is the set of roots of H(s; k, 0) = Q(s)+ kP(s), located in the
closed right half plane, and card( · ) denotes the cardinality (number of elements).

• card(S+), where S+ the set of real strictly positive roots of the polynomial

F(ω; k) =| Q(jω) |2 −k2 | P(jω) |2 . (3.5)

Both quantities depend on the gain and independent of the delay τ . We now clarify
this dependence.
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The quantity card(U+) Its characterization as a function of the gain corresponds to
the static (un-delayed) output feedback stabilizability problem. The difficulty of this
problem is well known (see, for instance [28] and the references therein). However,
in the SISO system case, the problem is reduced to a one-parameter problem, which
is relatively easy. Indeed, there exist several methods to solve it. They include (stan-
dard) graphical tests (root-locus, Nyquist) and computation of the real roots of an
appropriate set of polynomials. In addition to these standard methods, we may cite
two interesting approaches [3, 14] based on generalized eigenvalues computation of
some appropriate matrix pencils defined by the corresponding Hurwitz [3] and Her-
mite [14] matrices. The approach below is inspired by Chen’s characterization [3]
for systems without delay.

Introduce the following Hurwitz matrix associated with the denominator polyno-
mial Q(s) =∑n

i=0 qisn−i of the transfer function:

H(Q) =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

q1 q3 q5 . . . q2n−1
q0 q2 q4 . . . q2n−2
0 q1 q3 . . . q2n−3
0 q0 q2 . . . q2n−4
...

. . .
...

0 0 0 . . . qn

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

∈ Rn×n, (3.6)

where the coefficients ql = 0, for all l > n. Next, corresponding to the numerator
polynomial P(s) of the transfer function, we construct H(P) as a n× n matrix using
the same procedure as (3.6) with the understanding that pl = 0 for all l > m. The
following result is a slight generalization of Theorem 2.1 by Chen [3]:

Lemma 3.2 Let λ1 < λ2 < . . . λh, with h ≤ n be the real eigenvalues of the matrix
pencilΣ(λ) = det(λH(P)+H(Q)). Then the system (3.2) cannot be stabilized by the
controller u(t) = −ky(t) for any k = λi, i = 1, 2, . . . , h. Furthermore, if there are r
unstable closed-loop roots (0 ≤ r ≤ n) for k = k∗, k∗ ∈ (λi, λi+1), then there are
r unstable closed-loop roots for any gain k ∈ (λi, λi+1). In other words, card(U+)
remains constant as k varies within each interval (λi, λi+1). The same holds for the
intervals (−∞, λ1) and (λh,∞).

Proof First, we need to show that as k varies, there are closed-loop roots on the
imaginary axis if and only if k = λi, i = 1, 2, ..., h. The proof follows the same steps
as those proposed by Chen in [3], and, therefore, will be omitted.

The above implies that for any gain k ∈ (λi, λi+1), the corresponding closed-loop
system has no roots crossing the imaginary axis. Based on the continuous depen-
dence of the roots of the polynomial Q(s)+ kP(s) on the parameter k, if there exists
a k∗ in the interval (λi, λi+1) such that Q(s) + k∗P(s) has exactly r unstable roots,
then the property is valid for any k ∈ (λi, λi+1) since the roots cannot jump from
C− to C+ or from C+ to C−, without crossing the imaginary axis. ��
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Thus by computing the generalized eigenvalues of the matrix pencilΣ(λ), yield-
ing the critical gain values, and computing U+ for intermediate gain values, the
function k �→ card(U+)(k) is completely determined.

The quantity card(S+) Without any loss of generality assume that P(0) �= 0.1 Its
dependence on k is expressed in the following proposition:

Proposition 3.3 Assume that card(S+) changes at a gain value k∗. Then there exists
a frequency ω∗ ≥ 0, such that for ω = ω∗:

|Q(jω)|2 − k∗2|P(jω)|2 = 0 (3.7)

and

|P(jω)|2 d

dω
|Q(jω)|2 − |Q(jω)|2 d

dω
|P(jω)|2 = 0. (3.8)

Proof For any k, F cannot have any real root ω satisfying P(jω) = 0. Otherwise,
Q(jω) = 0, and P and Q are not coprime. The roots of F therefore coincide with the
roots of

G(ω; k): = |Q(jω)|2
|P(jω)|2 − k2. (3.9)

A change of card(S+) at k = k∗ implies that G(ω; k∗) has a root with multiplicity
larger than one at some frequency ω∗, i.e.,

G(ω∗; k∗) = G′(ω∗; k∗) = 0.

This leads to (3.7) and (3.8). ��
Proposition 3.3 allows one to compute systematically the behavior of card(S+)

as a function of the gain. First, one has to determine the real roots of the polynomial
(3.8). Then the critical values of the gain k follow from (3.7). The characterization
is complete when computing S+ for intermediate gain values, which again corre-
sponds to finding the roots of a polynomial.

Remark 3.4 From the symmetry of the function (3.9), it follows that the pairs
(ω, k) = (0,±Q(0)

P(0) ) always satisfy (3.7) and (3.8) and furthermore, at these k-values,
card(S+) always changes by 1. It also follows from (3.9) that at other k-values,
card(S+) can only change by 2.

1 If not, then Q(0) �= 0, and the results below still holds by defining the dependence in terms
of 1

k , etc.
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3.2.2 Stabilizability in the Delay Parameter

Using the preliminary results presented above (dependence of card(S+) and card(U+)
on the gain k), we can give a constructive solution to the problem considered in this
chapter. Thus, for a given value of the gain k we derive conditions for the existence
of stabilizing delay values.

We make the following assumptions:

Assumption 1 Let the gain k ∈ R be such that

1. all the roots of F are simple,
2. 0 �∈ U+,
3. card(U+) �= 0.

Notice that the first condition is satisfied for almost all k. The second condition
is necessary for stabilization because it excludes a characteristic root at zero, the
latter being invariant with respect to delay changes. The third assumption excludes
the trivial case where the system is asymptotically stable for τ = 0.

Following [6], a crucial result is the following:

Theorem 3.5 The characteristic equation has a root jω for some delay value τ0 if
and only if

ω ∈ S+. (3.10)

Furthermore, for any ω satisfying (3.10), the set of corresponding delay values is
given by2

Tω =
{

1

ω

[
−jLog

(
−kP(jω)

Q(jω)

)
+ 2π l

]
≥ 0, l ∈ Z

}
. (3.11)

When increasing the delay, the corresponding crossing direction of characteristic
roots is toward instability (stability) when F′(ω) > 0 ( < 0).

Proof Substituting s = jω in the characteristic equation yields H(jω; τ ) = 0, or
equivalently

Q(jω) = −kP(jω)e−jωτ . (3.12)

By equating the modulus and argument of the left- and right-hand sides, (3.10) and
(3.11) follow.

For an ω0 ∈ S0 and τ0 ∈ Tω0 the continuity of the characteristic roots with
respect to the delay implies the existence of a root function r(τ ) satisfying r(τ0) =
jω0 and

2 Here, “Log” denotes the principal value of the logarithm. Consequently for |z| = 1, Log(z) =
j arg (z) with arg (z) ∈ (− π ,π ).
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H(r(τ );τ ) = 0.

Inspired by [5, 6], taking the derivative of this expression with respect to τ at τ = τ0
yields

r′(τ0)−1 = − Q′(jω0)

jω0Q(jω0)
+ kP′(jω0)

jω0kP(jω0)
− τ0

jω0
. (3.13)

Since ω0 ∈ S+, we have | Q(jω0) |2= k2 | P(jω0) |2 and, therefore,

r′(0)−1 = − 1

jω0 | Q(jω0) |2
[
Q′(jω0)Q(− jω0)− k2P′(jω0)P(− jω0)

]
− τ0

jω0
.

(3.14)

The roots will cross the imaginary axis toward stability (instability) if �(r′(0)) < 0
(> 0). Then, (3.14) leads to (same steps as in [6]):

�(r′(0)−1) = − 1

ω0 | Q(jω0) |2 �
[
Q′(jω0)Q(− jω0)− k2P′(jω0)P(− jω0)

]

= 1

2ω0 | Q(jω0) |2 F′(ω0),

which confirms that the sign of F′ will give the crossing direction. ��
Remark 3.6 Theorem 3.5 is based on the observation that with the delay as param-
eter, H(jω; k, τ ) = 0 can be seen as an equation in two independent variables,
jω ∈ jR and z: = exp ( − jωτ ) on the unit circle of the complex plane. Taking
the modulus in (3.12) allows us to eliminate the second variable. As seen in [23],
the first variable may also be eliminated via matrix pencil techniques, leading to an
alternative characterization of the stability regions.

Theorem 3.5, combined with the continuous dependence of the characteristic
roots with respect to the delay, allows us to completely characterize the stabil-
ity/instability regions in the delay parameter. Indeed, the set

T =
⋃

ω∈S+
Tω

partitions the delay space (R+) into intervals in which the number of roots in the
open right half plane is constant. Moreover, we have the following result:

Remark 3.7 (Crossing direction) Assume that S+ is not empty and denote its ele-
ments in descending order by ω1 > ω2 > . . . . Since limω→∞ F(ω) = +∞ and
the roots {ω1,ω2, . . .} of F are simple, the sign of F′ at these roots alternates, with
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F′(ω1) > 0. As a consequence, as the delay monotonically increases, all root cross-
ings for delay values Tω1 are toward instability, while all root crossings for delay
values Tω2 are toward stability, etc.

Taking into account the number of unstable roots for τ = 0 and the crossing
direction in the points of T , the number of unstable roots for each delay value may
be determined.

Based on Theorem 3.5 and its underlying ideas, we now focus on the delay sta-
bilization problem. First, we analyze various cases for which the delay stabilization
problem has no solution, then present the simplest case (in terms of card(S+) and
card(U+)) for which the delay stabilization problem has a positive answer. Finally,
as a consequence of all the cases treated, we give the necessary and sufficient con-
ditions such that a pair (k, τ ) can stabilize the SISO system (3.2). We have the
following results:

Proposition 3.8 Assume that card(U+) is an odd number. Then the delay stabiliza-
tion problem has no solution.

Proof By contradiction. Assume that the closed-loop system is asymptotically sta-
ble for some delay value τs. Because the number of roots in the closed right half
plane changes from odd to even when increasing the delay from zero (number of
closed right half plane roots equal to card(U+)) to τs (number of closed half plane
roots equal to zero), a characteristic root at zero must occur for some τ0 ∈ [0, τs].
But H(0; k, τ0) = 0 implies H(0; k, τ ) = 0,∀τ ≥ 0, which contradicts the asymp-
totic stability at τ = τs. ��
Remark 3.9 The above result is relatively simple and proves the existence of a
strictly positive root of the characteristic equation for all delay values if, for the
delay-free system, such a root exists, and if the number of roots in the open right
half plane is odd. Similar results, with slightly different formulations, and sim-
ilar (or different) proofs have already been proposed in the literature (see, for
instance [9, 19, 27] to cite only a few).

Proposition 3.10 If either card(S+) = 0 or card(S+) = 1, then the delay stabilizing
problem has no solution.

Proof When card(S+) = 0, characteristic roots cannot cross the imaginary axis
as the delay is varied, and the instability for τ = 0 persists for all delay val-
ues. On the other hand, when card(S+) = 1, there is one crossing frequency and
from Remark 3.7 the crossing direction is always toward instability as the delay is
increased. Combining this fact with the instability for τ = 0 yields the statement of
the proposition. ��

Notice that the condition card(S+) = 0 corresponds to the delay-independent
hyperbolicity property (fixed number of unstable roots for all positive delay val-
ues), as defined in [11] (see also [12]). For the remaining cases, one needs to count
the roots crossing the imaginary axis toward stability/instability and to define the
corresponding delay intervals (see also [23], Chaps. 4 and 7).
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Thus, it follows that the first case when the delay has a stabilizing effect may
appear if card(U+) = 2, and card(S+) ≥ 2, and if the first crossing is toward stabil-
ity. Furthermore, as proved in the sequel, such a condition becomes also necessary
if card(S+) ≤ 3. As we shall see in the next section devoted to illustrative examples,
such a case may appear with a second-order system.

Proposition 3.11 Assume that card(S+) = 2 or card(S+) = 3. Then the delay sta-
bilizing problem has a solution if and only if

1. card (U+) = 2,
2. τ− < τ+,

where

τ− = min
⋃
ω∈S+,F′(ω)<0 Tω,

τ+ = min
⋃
ω∈S+,F′(ω)>0 Tω \ {0}.

If stabilizable, all delay values τ ∈ (τ−, τ+) are stabilizing.

Proof “⇒” Consider first the case where card(S+) = 2. Let S+ = {ω1,ω2}, with
ω1 > ω2. Then from Remark 3.7 we have F′(ω1) > 0 (associated with crossings for
Tω1 toward instability when increasing the delay) and F′(ω2) < 0 (associated with
crossings for Tω2 toward stability). The set Tω1 consists of delay values, equally
spaced with 2π/ω1, whereas the elements of Tω2 are equally spaced with 2π/ω2 >

2π/ω1. As a consequence, between two stability crossings, an instability crossing
must occur, i.e., the number of unstable roots in the closed right half plane cannot
be reduced by more than two while increasing the delay. Thus, the occurrence of
a stabilizing delay value necessarily implies that the number of roots in the closed
right half plane is two for τ = 0 (i.e., card(U+) = 2) and that the first3 crossing is
toward stability, mathematically expressed by τ− < τ+.

If card(S+) = 3 then S+ = {ω1,ω2,ω3} with ω1 > ω2 > ω3 and F′(ω1) >
0, F′(ω2) < 0, F′(ω3) > 0. Compared to the previous case, there is one additional
crossing frequency ω3 where additional crossings toward instability occur, and the
argument remains the same.

“⇐” The condition τ− < τ+ implies that the first crossing is toward stability
when the delay in increased from zero. Since card(U+) = 2, the closed-loop system
is asymptotically stable for any τ ∈ (τ−, τ+). ��
Remark 3.12 The importance of this result lies in the fact that, in order to check sta-
bilizability in the delay parameter, one only has to investigate the first root crossing
of the imaginary axis as the delay increases from zero. This is particularly useful
when one determines stabilizability by numerically computing the rightmost char-
acteristic roots as a function of the delay. After the first root crossing, one can then
stop the computations.

In the case when card(S+) = 2, the set of all stabilizing delay values can be
expressed analytically:

3 When 0 ∈ Tω1 the crossing at τ = 0 is not counted since card(U+) does not change.
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Corollary 3.13 Assume that the conditions of Proposition 3.11 are satisfied, and
in addition card(S+) = 2. Then all the stabilizing delay values are defined by
τ ∈ (τl, τl), l = 0, 1, 2, . . . , lm, where

τl = τ− + 2π l

ω−
, τl = τ+ + 2π l

ω+
,

S+ = {ω+,ω−} with ω+ > ω−, and lm is the largest integer for which τl < τl,
which can be expressed as

lm = max
l∈Z

{
l <

ω+ω−
2π

· τ+ − τ−
ω+ − ω−

}
. (3.15)

Proposition 3.14 Assume that card(S+) = 2n or card(S+) = 2n + 1, with n ≥ 1.
Assume further that card(U+) > 2n. Then the delay stabilizing problem has no
solution.

Proof Let S+ = {ω1,ω2, . . .} with ω1 > ω2 > . . . . From Remark 3.7 we have the
alternating sequence: F′(ω1) > 0, F′(ω2) < 0, F′(ω3) > 0, . . . . Consider the pair
(ω1,ω2). By the same arguments used in the proof of Proposition 3.11, there must be
an element of Tω1 between two elements of Tω2 . When the delay is increased from
zero, the root crossings at jω1 and jω2 can therefore not contribute to reduction
of closed half plane roots with more than two. When n > 1 the same argument
can be used for the pairs (ω3,ω4), . . . , (ω2n−1,ω2n). Thus taking into account the
root crossings at jω1, jω2, . . . , jω2n no more than 2n unstable roots can be shifted
to the left half plane and the proof is complete for card(S+) = 2n. In the case
card(S+) = 2n+ 1 the argument remains the same since F′(ω2n+1) > 0. ��

Define now the following quantities:

n+(τ ) =
∑

ω∈S+, F′(ω)>0

card {Tω ∩ (0, τ ]} , (3.16)

n−(τ ) =
∑

ω∈S+, F′(ω)<0

card {Tω ∩ [0, τ ]} , (3.17)

for some positive τ > 0. Furthermore, introduce the sets T + and T −, which par-
tition T according to the sign of the derivative F′ evaluated at the corresponding
crossing frequency, that is,

T + =
⋃

ω∈S+, F′(ω)>0

Tω \ {0} ,

T − =
⋃

ω∈S+, F′(ω)<0

Tω.

Based on the conditions and notations above, we conclude with the following result:
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Proposition 3.15 For a given gain k, the stabilizing control problem has a solution
of the form u(t) = −ky(t− τ ) if and only if the following conditions hold simultane-
ously:

(i) card(U+(k)) is a strictly positive even integer, which satisfies the inequality
card(U+(k)) ≤ card(S+(k)) and

(ii) there exists at least one delay value τ̂ ∈ T such that the following equality is
verified:

2n−(τ̂ ) = 2n+(τ̂ )+ card(U+(k)). (3.18)

Then all delay values τ ∈ (τ̂ , τ̂+), with

τ̂+ = min
{
T + ∩ (τ̂ ,+∞)

}
, (3.19)

guarantee the closed-loop asymptotic stability.

Proof While condition (i) is clear, condition (3.18) in (ii) simply characterizes the
existence of crossings such that there are no more unstable rightmost roots for delays
τ = τ̂ + ε, for sufficiently small ε > 0, and the definition of the delay interval
follows straightforwardly. ��

3.2.3 Controller Design

The main results of the previous section are displayed in Table 3.1. Recall that
card(U+) and card(S+) depend only on the gain k. The first quantity can be effi-
ciently determined as a function of k by computing the generalized eigenvalues of
a matrix pencil (Proposition 3.2), the second quantity by computing the roots of a
polynomial (Proposition 3.3).

Table 3.1 Output feedback stabilizability conditions when using the delay as controller parameter.
Necessary and sufficient conditions are given by Proposition 3.15. In case of card(U+) = 2 and
card(S+) ∈ {2, 3}, Proposition 3.11 can be applied

0 1 2 3 4 5 6 7 8 9 card(S+)

1 / / / / / / / / / /
2 / / τ− < τ+
3 / / / / / / / / / /
4 / / / /
5 / / / / / / / / / /
6 / / / / / /
7 / / / / / / / / / /
8 / / / / / / / /
card(U+)
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The procedure to derive a stabilizing pair (k, τ ) (if any) can be summarized as
follows:

• first, compute card(S+) and card(U+) as functions of the gain parameter k, then
select possible gain intervals (k, k) such that condition (i) of Proposition 3.15
holds;

• second, for a given k, search for stabilizing delay values. In the special case where
card(S+) = 2 or card(S+) = 3 and card(U+) = 2, Proposition 3.11 can be
applied, i.e., it is sufficient to investigate only whether the first root crossing of
the imaginary axis is toward stability as the delay increases from zero. In general,
a more complete characterization of stability/instability regions becomes neces-
sary, as we shall illustrate in the next section. However, according to condition
(ii) of Proposition 3.15, this is a systematic task. Indeed, one has to compute
the set T and next the partition T + and T −, which give the root crossings
(function of the delay values) toward instability and stability, respectively. Con-
dition (3.18) together with (3.19) will define the corresponding stabilizing delay
intervals.

Remark 3.16 (SISO dead-time systems stabilization) As mentioned in the Introduc-
tion, our method may also be used for solving a different control problem, namely
finding all the stabilizing (proportional) controllers for a SISO dead-time plant.

Such a problem was considered by [26, 29] using a Pontryagin approach. More
precisely, [26] addresses the control of first-order system with a time delay in both
cases (stable and unstable delay-free systems), and [29] deals with some robustness
issues in terms of delays for the closed-loop system under the assumption that the
delay-free system can be stabilized by a proportional controller.

Solving such problems is outside the scope of the chapter. However, our method
and the design procedure may still be applied. More precisely, we can easily com-
pute the gain, and the corresponding delay values for which the number of roots
in the open right half plane changes, then find, by “duality,” all the cases when
for a given delay value τ0, there exists at least one gain interval (k0, k0) such that
the closed-loop dead-time system becomes asymptotically stable. Furthermore, our
method allows us to explicitly compute a delay interval (τ , τ ) including τ0 for any
given gain value k ∈ (k0, k0).

3.3 Illustrative Examples

In the sequel, we shall consider several examples to illustrate the theoretical results
derived above. Thus, we present first a second-order system that represents the sim-
plest transfer function for which a delay stabilizing effect could appear. Next, we
focus on some general stabilization conditions for a chain of oscillators, and finally
we present a sixth-order system with more than one stabilizing delay interval.
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3.3.1 Second-Order System

Consider the following second-order system:

P(s)

Q(s)
= 1

s2 − αs+ 2
, (3.20)

where α > 0 is a real parameter. The polynomial Q(s) = s2−αs+2 is unstable and
for all k ∈ R, the polynomial Q(s)+kP(s) has at least one unstable root. Furthermore,
if α = 0, then (3.20) corresponds to an oscillator (the characteristic equation has two
roots on the imaginary axis).

With the controller (3.3), the characteristic equation of the closed-loop system is
given by

s2 − αs+ 2+ ke−sτ = 0 (3.21)

and the polynomial F(ω; k) by

F(ω) =| Q(jω) |2 − | P(jω) |2= (2− ω2)2 + α2ω2 − k2

= ω4 − (4− α2)ω2 + (4− k2). (3.22)

For α > 2 the quantities card(S+) and card(U+) are functions of the gain k as
displayed in the following table:

k < −2 ∈ (− 2, 2) > 2

card(S+) 1 0 1
card(U+) 1 2 2

while for α < 2 we have

k < −2 ∈ (− 2,−k∗) ∈ (− k∗, k∗) ∈ (k∗, 2) > 2

card(S+) 1 2 0 2 1
card(U+) 1 2 2 2 2

where
k∗ = 2

√

1−
(

1− α
2

4

)2

.

According to the results of the previous section, summarized in Table 3.1, a neces-
sary condition for asymptotic stability of the closed-loop system is therefore given
by

α < 2, |k| ∈ (k∗, 2). (3.23)



78 S.-I. Niculescu et al.

Furthermore, for a gain satisfying (3.23) the existence of a stability region in the
delay parameter is determined by the condition τ− < τ+. Summarizing, we have

Proposition 3.17 The system (3.20) can be stabilized with a controller of the form
u(t) = −ky(t − τ ) if and only if the pair (α, k) satisfies

α ∈ [0, 2), |k| ∈
⎛

⎝2

√

1−
(

1− α
2

4

)2

, 2

⎞

⎠ , (3.24)

and in addition τ− < τ+, where

τ± = 1
ω±

[
Log

(
ω2±−2

k − jαω±k

)
+ (1+ sign k)π

]
, α �= 0

{
τ+ = (3+ sign k) π

2ω+
τ− = (1+ sign k) π

2ω−
, α = 0

(3.25)

and

ω± =
√

1− α
2

4
·

√√√√√√2

⎛

⎜
⎝1±

√√√√√1− 1− k2

4(
1− α2

4

)2

⎞

⎟
⎠. (3.26)

A stabilizing controller is then defined by the gain k and τ ∈ (τ−, τ+).

Remark 3.18 (Stabilizing oscillations) If α = 0 and k ∈ ( − 2, 0), we recover the
results proposed in [1, 4, 25]:

τ− = 0, τ+ = π√
2+ |k| .

Furthermore, the number of delay intervals is given by

max
l∈Z

⎧
⎨

⎩
l ≤ 1

2
· 1
√

2+|k|
2−|k| − 1

⎫
⎬

⎭
.

Roughly speaking, the smaller the gain is, the fewer the stabilizing delay intervals
there are, as displayed in the graphical representation in [1], etc.

3.3.2 Stabilizing a Chain of Oscillators

Consider now a chain of n oscillators characterized by the frequencies: 0 < ω1 <

. . . < ωn with the following input–output transfer function:

Hyu(s) = 1
n∏

i=1

(s2 + ω2
i )

. (3.27)
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A state space representation for such a transfer function is
⎧
⎪⎨

⎪⎩

n∏

i=1

(
d2

dt2
+ ω2

i

)
:x(t) = u(t)

y(t) = x(t),

where, the operator (d2/dθ2 + ω2):x(θ ), for some real variable θ is defined by

(d2/dθ2 + ω2):x(θ ) = ẍ(θ )+ ω2x(θ ).

The use of the control feedback u(t) = −ky(t − τ ) will lead to the following char-
acteristic equation associated with the closed-loop system:

n∏

i=1

(s2 + ω2
i )+ ke−sτ = 0. (3.28)

Simple computations lead to

card(U+) = 2n and card(S+) = 2n (3.29)

for sufficiently small k, and according to the results of the previous section, summa-
rized in Table 3.1, there is no “objection” in stabilizing such a system using small
gain values.

The main idea of the way to control such a chain of oscillators by using a delayed
output feedback can be easily understood from the single oscillator case. Indeed,
assume that we have only one oscillator subject to a delayed output feedback. Then
(3.28) becomes

h(s;k): = s2 + ω2 + ke−sτ = 0. (3.30)

Consider now the dependence of the roots with respect to the gain parameter, and
let us define such dependence as r = r(k) (see, for example, [21]). Motivated by
the validity of the conditions (3.29) for small gain values, we look for the behavior
of the roots around k = 0. It is easy to see that, for k = 0, (3.30) has one pair of
imaginary roots r = ±jω. To investigate the effect of roots moving away from the
imaginary axis for small gain values, we need to differentiate h(r(k);k) = 0 with
respect to k at the point k = 0. Simple computations lead to the following equality:

d

dk
r(0) = sin (ωτ )+ j cos (ωτ )

2ω
.

When choosing τ such that sin (ωτ ) �= 0, it follows that

�
(

d

dk
r(0)

)
�= 0,
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that is, the roots on the imaginary axis can be shifted in C− with a suitable change
of k. Such an idea was exploited by [17], and their result can be summarized as
follows.

Proposition 3.19 Given a set of frequencies 0 < ω1 < ω2 < . . . < ωn, if there
exists τ > 0 such that

(− 1)ν sin (ωντ ) > 0, for all ν = 1, 2, . . . , n, (3.31)

then for sufficiently small k > 0, the delayed output feedback control law u(t) =
−ky(t − τ ) stabilizes the chain of oscillators (3.27).

As a consequence, we have

Corollary 3.20 If the frequencies {ωi}i=1,n are rationally independent, then there
always exists a pair (k, τ ) such that the delayed output feedback control law u(t) =
−ky(t − τ ) stabilizes the chain of oscillators (3.27).

Proof The result follows straightforwardly from (3.31) and Kronecker’s theorem
[13]. ��
Remark 3.21 If n > 1, then for any fixed gain k the controlled chain of oscillators
(3.27) is unstable for sufficiently small values of τ . This follows from a sensitivity
analysis of the roots of (3.28) with respect to the delay τ at τ = 0+. An indication
of this property is given by the fact that condition (3.31) is always violated for small
delay values.

3.3.3 Multiple Crossing Frequencies Toward (in)Stability

We study the stabilization of the system

P(s)

Q(s)
= 1

s6 + p1s5 + p2s4 + p3s3 + p4s2 + p5s+ p6
, (3.32)

where

p1 = −6.0000000e− 04, p2 = 1.4081634e+ 00, p3 = −5.6326533e− 04,
p4 = 4.3481891e− 01, p5 = −8.6963771e− 05, p6 = 2.6655565e− 02

using a controller of the form (3.3). The uncontrolled system has six strictly unstable
poles,

s1,2 = 9.99999988e− 05± 2.85714287e− 01j
s3,4 = 1.00000009e− 04± 5.71428578e− 01j
s5.6 = 9.99999921e− 04± 9.99999988e− 01j

(3.33)
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Fig. 3.2 card(S+) (solid line) and card(U+) (dashed line) as a function of the gain k

and, hence, it cannot be stabilized with static and delay-free output feedback. Note
from (3.33) that (3.32) corresponds to a perturbed chain of three oscillators.

As a first step in the controller design, we compute card(U+) and card(S+) as a
function of the gain, resulting in Fig. 3.2. The information given in Table 3.1 then
helps to choose possible values of the gain. We take k = 0.0025, where card(S+) =
card(U+) = 6.

Second, we characterize stability regions in the delay parameter. The set S+ is
given by

ω1 = 1.0019959e+ 00, ω2 = 9.9795792e− 01, ω3 = 5.8408171e− 01,
ω4 = 5.5740265e− 01, ω5 = 3.0572050e− 01, ω6 = 2.6663916e− 01.

By computing the set T , using (3.11), and taking into account the crossing direction,
we arrive at a complete characterization of stability regions in the delay, displayed
in Table 3.2. This is in accordance with Fig. 3.3, where we show the rightmost
characteristic roots of the closed-loop system as a function of the delay, computed
with the software package DDE-BIFTOOL [8].

To summarize, the system (3.32) and (3.3) is asymptotically stable for

⎧
⎨

⎩

k = 0.0025,
τ ∈ (11.802168, 12.490817) ∪ (15.788569, 16.121915)

∪ (35.366543, 37.573495).
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Table 3.2 Characterization of stability regions in the delay parameter for the system (3.32) and
(3.3) with k = 0.0025

Elements of T =⋃6
i=1 Tωi Crossing frequency Number of unstable roots changes to

6
1.2048745e-02 ω4 4
3.1964843e+00 ω2 2
5.3645410e+00 ω3 4
6.2201470e+00 ω1 6
9.4925266e+00 ω2 4
1.1284305e+01 ω4 2
1.1802168e+01 ω6 0
1.2490817e+01 ω1 2
1.5788569e+01 ω2 0
1.6121915e+01 ω3 2
1.8761486e+01 ω1 4
2.0536234e+01 ω5 6
2.2084611e+01 ω2 4
2.2556560e+01 ω4 2
2.5032156e+01 ω1 4
2.6879289e+01 ω3 6
2.8380653e+01 ω2 4
3.1302825e+01 ω1 6
3.3828816e+01 ω4 4
3.4676696e+01 ω2 2
3.5366543e+01 ω6 0
3.7573495e+01 ω1 2
3.7636663e+01 ω3 4
...

...
...

Notice that stability can be achieved by increasing the delay after having three pairs
of unstable roots. Notice also that it is generally not sufficient to investigate only the
first root crossing of the imaginary axis.

3.4 Concluding Remarks

This chapter was devoted to the stabilization problem of a class of dynamical sys-
tems with a single input, a single output subject to output (or input) delayed feed-
back. More precisely we considered the problem where the delay in the control
law may have a stabilizing effect, that is, the closed-loop stability is guaranteed
precisely due to the existence of delay. Various conditions have been derived using
a frequency-domain approach. Some illustrative examples were also proposed.
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Chapter 4
Time-Delayed Feedback Control: From Simple
Models to Lasers and Neural Systems

Eckehard Schöll, Philipp Hövel, Valentin Flunkert, and Markus A. Dahlem

4.1 Introduction

Over the past decade control of unstable states has evolved into a central issue
in applied nonlinear science [1]. This field has various aspects comprising stabi-
lization of unstable periodic orbits embedded in a deterministic chaotic attractor,
which is generally referred to as chaos control, stabilization of unstable fixed points
(steady states), or control of the coherence and timescales of stochastic motion.
Various methods of control, going well beyond the classical control theory [2–4],
have been developed since the ground-breaking work of Ott, Grebogi, and Yorke
[5] in which they demonstrated that small time dependent changes in the control
parameters of a nonlinear system can turn a previously chaotic trajectory into a
stable periodic motion. One scheme where the control force is constructed from
time-delayed signals [6] has turned out to be very robust and universal to apply and
easy to implement experimentally. It has been used in a large variety of systems
in physics, chemistry, biology, medicine, and engineering [1, 7, 8], in purely tem-
poral dynamics as well as in spatially extended systems [9–25]. Moreover, it has
recently been shown to be applicable also to noise-induced oscillations and patterns
[26–29]. This is an interesting observation in the context of ongoing research on the
constructive influence of noise in nonlinear systems [30–35].

In time-delayed feedback control (time-delay autosynchronization or TDAS) the
control signal is built from the difference s(t) − s(t − τ ) between the present and
an earlier value of an appropriate system variable s. It is non-invasive since the
control forces vanish if the target state (a periodic state of period τ or a steady state)
is reached. Thus the unstable states themselves of the uncontrolled system are not
changed, but only their neighborhood is adjusted such that neighboring trajectories
converge to it, i.e., the control forces act only if the system deviates from the state
to be stabilized. Involving no numerically expensive computations, time-delayed
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feedback control is capable of controlling systems with very fast dynamics still in
real-time mode [36–38]. Moreover, detailed knowledge of the target state is not
required.

An extension to multiple time delays has been proposed by Socolar et al. [39],
who considered multiple delays in form of an infinite series (ETDAS) or an aver-
age of N past iterates (N time-delay autosynchronization or NTDAS) [40] or cou-
pling matrices (generalized ETDAS or GETDAS) [41]. Analytical insight into those
schemes has been obtained by several theoretical studies, e.g., [42–54] as well as
by numerical bifurcation analysis, e.g., [55, 56]. Time-delayed feedback can also
stabilize fixed points using single [48, 49, 57] or multiple delay times [50, 58, 59].
The efficiency of these schemes can be improved by deterministic or stochastic
modulation of the time delay [60].

Recent work has focused, on the one hand, on basic aspects like developing novel
control schemes and gaining analytical insights, and on the other hand, on applica-
tions to optical and electronic systems, including laser diodes, electronic circuits,
and semiconductor nanostructures [18, 61, 62], to chemical and electrochemical
reaction systems [15, 16, 63–70], and to biological and medical systems, includ-
ing the suppression of synchronization as therapeutic tools for neural diseases like
Parkinson and epilepsy [71, 72], and control of cardiac dynamics [73]. In particu-
lar, networks of oscillatory or excitable elements, e.g., neural networks or coupled
laser arrays, have been considered, where time delays naturally arise through signal
propagation and processing times [74–82]. Systems composed of a small number
of coupled oscillatory or excitable elements (lasers or neurons) can be conceived
as network motifs of larger networks. Time-delayed feedback control schemes with
different couplings of the control force have been applied to various models of non-
linear semiconductor oscillators, e.g., impact ionization-driven Hall instability [83],
and semiconductor nanostructures described by an N-shaped [14, 84, 85], S-shaped
[9, 11, 12, 24, 86], or Z-shaped [13] current-field characteristics. In semiconductor
nanostructures complex chaotic spatio-temporal field and current patterns arise in
the form of traveling field domains (for the N type) and breathing or spiking current
filaments (for the S and Z types), which can be stabilized by time-delayed feedback
control.

Time-delayed feedback control has also been applied to purely noise-induced
oscillations and patterns in a regime where the deterministic system rests in a steady
state, and in this way both the coherence and the mean frequency of the oscillations
have been controlled in various nonlinear systems [26–28, 87–91], including chem-
ical systems [92], neural systems [93, 94], laser diodes [95], and semiconductor
nanostructures of N type [96–99] and Z type [100–102]. The control of deterministic
and stochastic spatio-temporal patterns in semiconductor nanostructures by time-
delayed feedback is reviewed elsewhere [62].

In this review we focus on simple models, for which some analytical results
can be obtained in addition to computer simulations, and apply them to a selection
of systems ranging from semiconductor lasers to neurosystems. We will show that
time-delayed feedback control methods have a wider range of applicability than
previously assumed, when applied to unstable steady states and to unstable periodic
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orbits, using generic normal forms. In the case of unstable periodic orbits the often
invoked odd number limitation, which had been believed to impose serious restric-
tions for a long time, has recently been refuted [52]. Further, we will discuss applica-
tions to lasers and coupled neural systems in the framework of the Lang–Kobayashi
laser model and the FitzHugh–Nagumo neuron model. We will demonstrate the sup-
pression and enhancement of synchronization by time-delayed feedback, and point
out some complex scenarios of synchronized in-phase or antiphase oscillations,
bursting patterns, or amplitude death, induced by delayed coupling in combination
with delayed feedback in simple network motifs.

4.2 Time-Delayed Feedback Control of Generic Systems

In this section we review basic properties of time-delayed feedback control, using
simple normal form models which are representative of a large class of nonlinear
dynamic systems [48–50, 52, 54].

4.2.1 Stabilization of Unstable Steady States

Time-delayed feedback methods, which have originally been used to control unsta-
ble periodic orbits [6], provide also a tool to stabilize unstable steady states [57,
103, 58, 59, 48–50, 60]. We present a numerical and analytical investigations of the
feedback scheme using the Lambert function and discuss the extension to multiple
time feedback control (ETDAS).

Other methods to control unstable steady states use the derivative of the current
state as source of a control force [104]. It can be shown, however, that this derivative
control is sensitive to high-frequency oscillations [105] and thus not robust in the
presence of noise. Another control scheme calculates the difference of the current
state to a low-pass filtered version [106].

Here we consider a general dynamic system given by a vector field f [48]:

ẋ = f(x) (4.1)

with an unstable fixed point x∗ ∈ R
n given by f(x∗) = 0. The stability of this fixed

point is obtained by linearizing the vector field around x∗. Without loss of generality,
let us assume x∗ = 0. In the following we will consider the generic case of an
unstable focus for which the linearized equations in center manifold coordinates x, y
can be written as

ẋ = λ x+ ω y (4.2)

ẏ = −ω x+ λ y,

where λ and ω are positive real numbers. They may be viewed as parameters gov-
erning the distance from the instability threshold, e.g., a Hopf bifurcation of system
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(4.1), and the intrinsic eigenfrequency, respectively. For notational convenience,
(4.2) can be rewritten as

ẋ(t) = Ax(t). (4.3)

Alternatively, the components of x(t) can be understood as real and imaginary parts
of a complex variable z(t) = x(t)+ iy(t) so that (4.2) reads ż(t) = (λ+ iω)z(t). The
eigenvalues Λ0 of the matrix A are given by Λ0 = λ ± iω, so that for λ > 0 and
ω �= 0 the fixed point is indeed an unstable focus.

We shall now apply time-delayed feedback control [6] in order to stabilize this
fixed point:

ẋ(t) = Ax(t)− F(t), (4.4)

where F denotes the control force given by

F(t) = K[x(t)− x(t − τ )], (4.5)

with the feedback gain K ∈ R and the time delay τ > 0. In components this yields

ẋ(t) = λ x(t)+ ω y(t)− K[x(t)− x(t − τ )] (4.6)

ẏ(t) = −ω x(t)+ λ y(t)− K[y(t)− y(t − τ )].

The goal of the control method is to change the sign of the real part of the eigen-
value. Figure 4.1 depicts a schematic diagram of the time-delayed feedback loop.
The red color shows the extension of the original Pyragas control including multiple
delays (ETDAS) which will be discussed later on.

h(t) s(t) = g(x(t))

s(t)RF(t − τ)
F(t)

R

K
s(t − τ)

F(t − τ)

d
dtx(t) = f (x(t)) − h(t)

−
+

+
−

Fig. 4.1 Diagram of the time-delay autosynchronization method. x(t) denotes the state of the sys-
tem at time t, s(t) is the control signal, i.e., some component of x(t) measured by g(x(t)), and F(t) is
the control force. The real constants τ , K, and R denote the time delay, the feedback gain, and the
memory parameter, respectively. The function h(t) describes the coupling of F to the dynamical
system x. The extension of the original time-delayed feedback [6] as introduced by Socolar et al.
(see [39], ETDAS) is shown in red color
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Since the control force applied to the ith component of the system involves only
the same component, this control scheme is called diagonal coupling [11], which
is suitable for an analytical treatment. Note that the feedback term vanishes if the
unstable steady state is stabilized since x∗(t − τ ) = x∗(t) and y∗(t − τ ) = y∗(t) for
all t, indicating the non-invasiveness of the TDAS method.

Figure 4.2 depicts the dynamics of the controlled unstable focus (λ = 0.5 and
ω = π ) in the (x, y) plane for different values of the feedback gain K. Panels (a)
through (d) correspond to increasing K. The time delay of the TDAS control scheme
is chosen as τ = 1 in all panels. Panel (a) displays the case of the absence of control,
i.e., K = 0, and shows that the system is an unstable focus exhibiting undamped
oscillations on a timescale T0 ≡ 2π/ω = 2. It can be seen from panel (b) that
increasing K reduces the instability. The system diverges more slowly to infinity
indicated by the tighter spiral. Further increase of K stops the unstable behavior
completely and produces periodic motion, i.e., a center [see panel (c)]. The ampli-
tude of the orbit depends on the initial conditions, which are chosen as x = 0.01 and
y = 0.01. For even larger feedback gains, the trajectory becomes an inward spiral
and thus approaches the fixed point, i.e., the focus. Hence the TDAS control scheme
is successful.

An exponential ansatz for x(t) and y(t) in (4.6), i.e., x(t) ∼ exp (Λt) and y(t) ∼
exp (Λt), reveals how the control force modifies the eigenvalues of the system. The
characteristic equation becomes

[Λ+ K
(
1− e−Λτ

)− λ]2 + ω2 = 0, (4.7)
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Fig. 4.2 Control of an unstable focus with λ = 0.5 and ω = π in the configuration space for
different values of the feedback gain K. Panels (a), (b), (c), and (d) correspond to K = 0, 0.2, 0.25,
and 0.3, respectively. The time delay τ of the TDAS control scheme is chosen as 1 corresponding
to τ = T0/2 = π/ω [48]
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so that the complex eigenvalues Λ are given in the presence of a control force by
the implicit equation

λ± iω = Λ+ K
(
1− e−Λτ

)
. (4.8)

Using the Lambert function W, which is defined as the inverse function of g(z) = zez

for complex z [51, 107–111], (4.8) can be solved analytically

Λτ = W
(

Kτe−(λ±iω)τ+Kτ
)
+ (λ± iω)τ − Kτ . (4.9)

Panel (a) of Fig. 4.3 shows the dependence of the largest real part of the complex
eigenvalues Λ upon the time delay τ according to (4.8) and (4.9) for λ = 0.5 and
ω = π . The solid curve corresponds to a feedback gain of K = 0.3, the dashed
curve to K = 0.25, and the dotted curve to K = 0.2. All curves start at Re(Λ) = λ
for τ = 0, i.e., when no control is applied to system. For increasing time delay, the
real part Re(Λ) decreases. It can be seen in the case of K = 0.3 that there exist
values of the time delay for which Re(Λ) becomes negative, and thus the control is
successful. The curve for K = 0.25 shows the threshold case where Re(Λ) becomes
zero for τ = 1, but does not change sign. The TDAS control scheme generates
an infinite number of additional eigenmodes. The corresponding eigenvalues are
the solutions of the transcendental equation (4.8). The real parts of the eigenvalues
all originate from −∞ for τ = 0. Some of these lower eigenvalues are displayed
for K = 0.3. The different branches of the eigenvalue spectrum originate from the
multiple-leaf structure of the complex Lambert function. The real part of each eigen-
value branch exhibits a typical nonmonotonic dependence upon τ which leads to
crossover of different branches resulting in an oscillatory modulation of the largest
real part as a function of τ . Such behavior of the eigenvalue spectrum appears to be
quite general and has been found for various delayed feedback coupling schemes,
including the Floquet spectrum of unstable periodic orbits [11, 86] and applications
to noise-induced motion where the fixed point is stable [26].

The notch at τ = 1 corresponds to Fig. 4.2, so that at this value of τ the solid,
dashed, and dotted curves correspond to panels (d), (c), and (b) of Fig. 4.2, respec-
tively. The notches at larger τ become less pronounced leading to less effective
realization of the TDAS control scheme, i.e., a smaller or no τ interval with negative
Re(Λ).

In the case of an unstable periodic orbit, the optimal time delay is equal to the
period of the orbit to be stabilized. Note that in the case of an unstable steady state,
however, the time delay is not so obviously related to a parameter of the system. We
will see later which combinations of the feedback gain K and the time delay τ lead
to successful control.

Panel (b) of Fig. 4.3 displays the time evolution of x(t) and its time-delayed
counterpart x(t− τ ) in the case of a combination of K = 0.3 and τ = 1 that leads to
successful control as in panel (d) of Fig. 4.2. The x component of the control force
can be calculated from the difference of the two curves and subsequent multiplica-
tion by K. Since x(t) tends to zero in the limit of large t (the system reaches the focus
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Fig. 4.3 (a) Largest real part of the complex eigenvalues Λ vs. τ for λ = 0.5 and ω = π for
different K. Some lower eigenvalues are also displayed for K = 0.3 (green). (b) Time series of
the x component of the unstable focus: the solid line (red) corresponds to x(t) and the dashed line
(green) to the delayed x component x(t− τ ) with τ = 1. The parameters of the unstable focus and
the control scheme are as in panel (d) of Fig. 4.2 [48]

located at the origin), the control force vanishes if the system is stabilized. Thus the
control scheme is non-invasive. Note that the current signal (red) and its delayed
counterpart (green) are in antiphase.

In the following discussion, it is helpful to consider the real and imaginary part
of (4.8) separately in order to gain some analytic information about the domain of
control:

p+ K
[
1− e−pτ cos (qτ )

] = λ (4.10)

q+ Ke−pτ sin (qτ ) = ω

with Λ = p+ iq.
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The calculation can be done analytically for special points by using, for instance,
that p = 0 at the threshold of control. Furthermore, we will present an expansion
around the minimum value of K that reveals further details of the shape of the
domain of control.

At the threshold of control the sign of the real part p of the exponent Λ changes.
Therefore, setting p equal to zero in the real and imaginary parts, respectively, of
(4.10) yields

λ = K
[
1− cos (qτ )

]
(4.11)

and

ω = q+ K sin (qτ ). (4.12)

Since the cosine is bounded between −1 and 1, the following inequality follows
from (4.11):

λ

2
≤ K. (4.13)

Thus a minimum value of K, Kmin = λ/2, for which the control starts, can be
inferred. It corresponds to qτ = (2n + 1)π for n = 0, 1, 2, . . . . It should be noted
that a similar characteristic equation as (4.8) holds for the Floquet exponents of a
unstable periodic orbit, where the lower bound, Kmin = λ/2, of the feedback gain
has been shown to correspond to the flip threshold of control [43, 112].

In order to express the values of the time delay τ that correspond to the minimum
K in terms of the parameters of the uncontrolled system, it is useful to consider
even and odd multiples of π for qτ , i.e., qτ = 2nπ and qτ = (2n + 1)π for
n = 0, 1, 2, . . . . In both cases, the imaginary part of (4.8) leads to q = ω. Hence, in
the latter case, the time delay τ for Kmin = λ/2 becomes

τ = π
ω

(2n+ 1). (4.14)

The last expression can be rewritten using the uncontrolled eigenperiod T0

τ = T0
2n+ 1

2
, (4.15)

where T0 is defined by

T0 = 2π

ω
. (4.16)

This discussion has shown that K = λ/2 and τ = T0(2n+ 1)/2 with n = 0, 1, 2, . . .
correspond to points of successful control in the (K, τ ) plane with minimum feed-
back gain.
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For even multiples, i.e., qτ = 2nπ for n = 0, 1, 2, . . . , no control is possible for
finite values of K, since

K − λ
K

= cos (qτ )|qτ=2nπ (4.17)

⇔ 1− λ
K
= 1, (4.18)

which cannot be satisfied for λ �= 0 and finite K. Furthermore, (4.12) yields that for
time delays which are integer multiples of the eigenperiod, i.e., τ = T0n = 2πn/ω
with n = 0, 1, 2, . . . , the control scheme fails for any feedback gain.

Another result that can be derived from (4.8) is a shift of q for increasing K. For
this, taking the square of the real and imaginary part of (4.8) and using trigonomet-
rical identities yields

q = ω ∓√
(2K − λ)λ. (4.19)

Inserting (4.19) into the real part of (4.8) leads to an explicit expression for the
dependence of time delay τ on the feedback gain K at the threshold of stability, i.e.,
the boundary of the control domain p = 0,

K − λ
K

= cos (qτ ) (4.20)

⇔ τ (K) = arccos
(K−λ

K

)

ω ∓√(2K − λ)λ
. (4.21)

In order to visualize the shape of the domain of control we will investigate how
small deviations ε > 0 from Kmin, i.e, K = λ/2 + ε, influence the corresponding
values of the time delay τ . For this, let η > 0 be small and τ = π

ω
(2n + 1) ± η

a small deviation from τ at Kmin. Inserting the expression for K and τ into (4.20)
yields after some Taylor’s expansions:

− 1+ 4

λ
ε = −1+ 1

2

[
ωη ∓ π

ω
(2n+ 1)

√
2λ
√
ε
]2

(4.22)

⇔ η =
[

± 2
√

2

ω
√
λ
+
√

2π

ω2
(2n+ 1)

√
λ

]
√
ε. (4.23)

This equation describes the shape of the domain of control at the threshold of stabi-
lization, i.e., p = 0, near the minimum K value at τ = T0(2n + 1)/2 in the (K, τ )
control plane. Small deviations from τ at Kmin are influenced by the square root of
small deviations from the minimum feedback gain.

Figure 4.4 displays the largest real part of the eigenvalues Λ in dependence on
both the feedback gain K and the time delay τ for ω = π and two different values
of λ and summarizes the results of this section. The values ofΛ are calculated using
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Fig. 4.4 Domain of control in the (K, τ ) plane and largest real part of the complex eigenvalues Λ
as a function of K and τ according to (4.9). The two-dimensional projection at the bottom shows
combinations of τ and K, for which Re(Λ) is negative and thus the control successful [panel (a):
λ = 0.5 and ω = π ; panel (b): λ = 0.1 and ω = π ] [48]

the analytic solution (4.9) of (4.8). The two-dimensional projections at the bottom
of each plot extract combinations of K and τ with negative p, i.e., successful control
of the system. In the absence of a control force, i.e., K = 0, the real part of Λ starts
at λ. Increasing the feedback gain decreases Re(Λ). For K = Kmin = λ/2, the real
part of the eigenvalue reaches 0 for certain time delays, i.e., τ = T0(2n+ 1)/2 with
n = 0, 1, 2, . . . , and then changes sign. Thus, the system is stabilized. For values
of the feedback gain slightly above the minimum value Kmin, the domain of control
shows a square root shape. It can be seen that for time delays of τ = T0n, the largest
real part of the eigenvalues remains positive for any feedback gain. For a smaller
value of λ (Fig. 4.4b), i.e., closer to the instability threshold of the fixed point, the
domains of control become larger.

An example of the combination of minimum feedback gain Kmin = λ/2 and
corresponding time delay τ = T0(2n+1)/2, n = 0, 1, 2, . . . is shown in panel (c) of
Fig. 4.2, where K = λ/2 = 0.25 and τ = T0/2 = π/ω = 1. It describes the control
threshold case between stable and unstable fixed point.
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Socolar et al. introduced an extension of the Pyragas method by taking states into
account which are delayed by integer multiples of τ [39]. This method is known
as extended time-delay autosynchronization or ETDAS. Calculating the difference
between two states which are one time unit τ apart yields the following control
force, which can be written in three equivalent forms:

F(t) = K
∞∑

n=0

Rn [x(t − nτ )− x(t − (n+ 1)τ )] (4.24)

= K

[

x(t)− (1− R)
∞∑

n=1

Rn−1x(t − nτ )

]

(4.25)

= K [x(t)− x(t − τ )]+ RF(t − τ ), (4.26)

where K and τ denote the (real) feedback gain and the time delay, respectively.
R ∈ ( − 1, 1) is a memory parameter that takes into account those states that are
delayed by more than one time interval τ . Note that R = 0 yields the TDAS control
scheme introduced by Pyragas [6].

The first form of the control force, (4.24), indicates the non-invasiveness of the
ETDAS method because x∗(t − τ ) = x∗(t) if the fixed point is stabilized. The third
form, (4.26), is suited best for an experimental implementation since it involves
states further than τ in the past only recursively.

While the stability of the fixed point in the absence of control is given by the
eigenvalues of matrix A, i.e., λ ± iω, one has to solve the following characteristic
equation in the case of an ETDAS control force [50]:

Λ+ K
1− e−Λτ

1− Re−Λτ
= λ± iω. (4.27)

Due to the presence of the time delay τ , this characteristic equation becomes tran-
scendental and possesses an infinite but countable set of complex solutions Λ. For
nonzero memory parameter R, (4.27) must be solved numerically.

Figure 4.5 depicts the dependence of the largest real parts of the eigenvalue Λ
upon the time delay τ according to (4.27) for different memory parameters R and
fixed feedback gain K = 0.3. The dashed, dotted, solid, dash-dotted, and dash-
double-dotted curves (red, green, black, blue, and magenta) of Re(Λ) correspond
to R = −0.7,−0.35, 0, 0.35, and 0.7, respectively. The parameters of the unstable
focus are chosen as λ = 0.1 and ω = π . Note that the time delay τ is given in units
of the intrinsic period T0 = 2π/ω. When no control is applied to the system, i.e.,
τ = 0, all curves start at λ which corresponds to the real part of the uncontrolled
eigenvalue. For increasing time delay, the real part of Λ decreases and eventually
changes sign. Thus, the fixed point becomes stable. Note that there is a minimum of
Re(Λ) indicating strongest stability if the time delay τ is equal to half the intrinsic
period. For larger values of τ , the real part increases and becomes positive again.
Hence, the system loses its stability. Above τ = T0, the cycle is repeated but the
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Fig. 4.5 Largest real part of the complex eigenvalues Λ as a function of τ for different values of
R. The dashed, dotted, solid, dash-dotted, and dash-double-dotted curves (red, green, black, blue,
and magenta) correspond to R = −0.7,−0.35, 0, 0.35, and 0.7, respectively. The parameters of the
unstable focus are chosen as λ = 0.1 and ω = π which yields an intrinsic period T0 = 2π/ω = 2.
The feedback gain K is fixed at KT0 = 0.6 [50]

minimum of Re(Λ) is not so deep. The control method is less effective because the
system has already evolved further away from the fixed point. For vanishing memory
parameter R = 0 (TDAS), the minimum is deepest, however, the control interval,
i.e., values of τ with negative real parts of Λ, increases for larger R. Therefore the
ETDAS control method is superior in comparison to the Pyragas scheme.

Figure 4.6 shows the domain of control in the plane parametrized by the feedback
gain K and time delay τ for different values of R:0, 0.35, 0.7, and −0.35 in panels
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Fig. 4.6 Domain of control in the (K, τ ) plane for different values of R:0, 0.35, 0.7, and −0.35 in
panels (a), (b), (c), and (d), respectively. The grayscale (color code) shows only negative values
of the largest real part of the complex eigenvalues Λ according to (4.27). The parameters of the
system are as in Fig. 4.5 [50]
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(a), (b), (c), and (d), respectively. The grayscale (color code) indicates only negative
values of the largest real parts of the complex eigenvalue Λ. Therefore, Fig. 4.5 can
be understood as a vertical cut through Fig. 4.6 for a fixed value of KT0 = 0.6.
Each panel displays several islands of stability which shrink for larger time delays
τ . Note that no stabilization is possible if τ is equal to an integer multiple of the
intrinsic period T0. The domains of control become larger if the memory parameter
R is closer to 1.

In order to obtain some analytic information of the domain of control, it is helpful
to separate the characteristic equation (4.27) into real and imaginary parts. This
yields using Λ = p+ iq:

K(1− e−pτ cos qτ ) = λ− p− Re−pτ [(λ− p) cos qτ ± (ω − q) sin qτ ] (4.28)

and

Ke−pτ sin qτ = ±(ω − q)+ Re−pτ [(λ− p) sin qτ ± (ω − q) cos qτ ]. (4.29)

The boundary of the domain of controls is determined by a vanishing real part ofΛ,
i.e., p = 0. With this constraint, (4.28) and (4.29) can be rewritten as

K(1− cos qτ ) = λ− R[λ cos qτ ± (ω − q) sin qτ ], (4.30)

K sin qτ = ±(ω − q)+ R[λ sin qτ ± (ω − q) cos qτ ].

At the threshold of control (p = 0, q = ω), there is a certain value of the time
delay, which will serve as a reference in the following, given by

τ = (2n+ 1) π

ω
=

(
n+ 1

2

)
T0, (4.31)

where n is any nonnegative integer. For this special choice of the time delay, the
range of possible feedback gains K in the domain of control becomes largest as can
be seen in Fig. 4.6. Hence, we will refer to this τ value as optimal time delay in the
following. The minimum feedback gain at this τ can be obtained:

Kmin(R) = λ (1+ R)

2
. (4.32)

Extracting an expression for sin (qτ ) from (4.30) and inserting it into the equa-
tion for the imaginary part leads after some algebraic manipulation to a general
dependence of K on the imaginary part q of Λ:

K(q) = (1+ R)
[
λ2 + (ω − q)2

]

2λ
. (4.33)
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Taking into account the multivalued properties of the arcsine function, this yields in
turn analytical expressions of the time delay in dependence on q:

τ1(q) =
arcsin

(
2λ(1− R2)(ω − q)

λ2(1− R2)2 + (ω − q)2(1+ R)2

)
+ 2nπ

q
, (4.34)

τ2(q) =
− arcsin

(
2λ(1− R2)(ω − q)

λ2(1− R2)2 + (ω − q)2(1+ R)2

)
+ (2n+ 1)π

q
,

where n is a nonnegative integer. Together with (4.33), these formulas describe the
boundary of the domain of control in Fig. 4.6. Note that two expressions τ1 and τ2
are necessary to capture the complete boundary.

For a better understanding of effects due to the memory parameter R, it is instruc-
tive to consider the domain of control in the plane parametrized by R and the feed-
back gain K. The results can be seen in Fig. 4.7, where the black, medium gray, dark
gray, and light gray areas (blue, green, red, and yellow) correspond to the domain
of control for λT0 = 0.2, 1, 5, and 10, respectively. The other system parameter is
chosen as ω = π . We keep the time delay constant at τ = T0/2. Note that the
K interval for successful control increases for larger values of R. In fact, while the
original Pyragas scheme, i.e., R = 0, fails for λT0 = 10, the ETDAS method is still
able to stabilize the fixed point. The upper left boundary corresponds to (4.32). The
lower right boundary can be described by a parametric representation which can be
derived from the characteristic equation (4.27):

Fig. 4.7 Domain of control in the (K, R) plane for different values of λ. The black, medium gray,
dark gray, and light gray domains (blue, green, red, and yellow) correspond to λT0 = 0.2, 1, 5, and
10, respectively, as indicated. The time delay is chosen as τ = T0/2 and ω = π [50]
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R = λτ − ϑ tan (ϑ/2)

λτ + ϑ tan (ϑ/2)
, (4.35)

Kτ = ϑ2 + (λτ)2
λτ + ϑ tan (ϑ/2)

, (4.36)

where we used the abbreviation ϑ = (q− ω) τ for notational convenience. The
range of ϑ is given by ϑ ∈ [0,π). A linear approximation leads to an analytic
dependence of R and the feedback gain K given by a function R(K) instead of the
parametric equations (4.35) and (4.36). A Taylor expansion around ϑ = π yields

Kmax(R) = λ
2 + π2

2λ
(R+ 1)+ 2 (R− 1) . (4.37)

Another representation of the superior control ability of ETDAS is depicted in
Fig. 4.8. The domain of control is given in the (K, λ) plan for different values of
R. The light gray, dark gray, medium gray, and black areas (yellow, red, green, and
blue) refer to R = −0.35, 0 (TDAS), 0.35, and 0.7, respectively. The time delay
is chosen as τ = T0/2. One can see that for increasing R, the ETDAS method
can stabilize systems in a larger λ range. However, the corresponding K interval
for successful control can become small. See, for instance, the black (blue) area
(R = 0.7) for large λ. A similar behavior was found in the case of stabilization of an
unstable periodic orbit by ETDAS [112]. We stress that, as in the case of periodic
orbits, the boundaries of the shaded areas can be calculated analytically from the
following expression:

Fig. 4.8 Domain of control in the (K, λ) plane for different memory parameters R. The light gray,
dark gray, medium gray, and black domains (yellow, red, green, and blue) areas correspond to
R = −0.35, 0 (TDAS), 0.35, and 0.7, respectively. The time delay is fixed at τ = T0/2 [50]
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Kτ = (1− R)ϑ

tan (ϑ/2)

[(
1+ R

1− R

)2

+ tan2 (ϑ/2)

]

, (4.38)

λτ = ϑ

tan (ϑ/2)

(
1+ R

1− R

)
, (4.39)

where we used ϑ = (q− ω) τ with ϑ ∈ [0,π ) as in (4.35) and (4.36). The maximum
value for λ, which can be stabilized, is given by the special case ϑ = 0:

λmaxτ = 2
1+ R

1− R
. (4.40)

Extensions to include latency effects associated with the generation and injec-
tion of the feedback signal, low-pass and bandpass filtering in the control loop, and
non-diagonal control schemes incorporating a feedback phase, have been discussed
elsewhere [48, 50].

4.2.2 Asymptotic Properties

It is the purpose of this section to obtain deeper analytical insight into the time-
delayed feedback control of steady states for large delay by relating asymptotic
properties of the eigenvalue spectrum with the exact solutions and by discussing the
shape of the control domain in the space of the control parameters [49].

Three different timescales are of importance in such a control problem: (i) the
inverse divergence rate of trajectories around the unstable fixed point 1/λ, (ii) the
period of undamped oscillations around the fixed point T0 = 2π/ω, where ω is the
oscillation frequency, and (iii) the delay time τ used in the feedback control loop.
Here we consider the case τ  1/λ and study again a generic model equation which
describes an unstable focus above a Hopf bifurcation and is given by (4.6).

Note that, due to the presence of the delay, (4.8) possesses infinitely many solu-
tions. Nevertheless, the stability of the fixed point is determined by a finite number
of critical roots with largest real parts [110]. As a result, the stabilization problem
consists in determining these critical eigenvalues and describing their behavior. In
particular, successful control is achieved by providing conditions in terms of the
control parameters K and τ for which all critical eigenvalues have negative real
parts.

Figure 4.9 shows the real parts of the critical eigenvalues Λ as a function of τ
for different values of K. The insets show the same eigenvalues as curves in the
complex plane parametrized by τ . Note that the eigenvalue originating from the
uncontrolled system (red) is the most unstable one for sufficiently small K and does
not couple to the eigenvalues generated by the delay (see Fig. 4.9 a,b). The count-
able set of eigenvalues generated by the delay originates from ReΛ = −∞ for
τ → 0 and shows the typical nonmonotonic behavior that leads to stability islands
for appropriate τ and K [48]. For larger values of K, the eigenvalue originating from
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Fig. 4.9 Real parts of the complex eigenvalues Λ as a function of τ calculated from the charac-
teristic equation (4.8) for 10 modes with the largest real parts. (a) K = 0.25, (b) K = 0.5, (c)
K = 0.75, and (d) K = 1.0. Inset: eigenmodes Λ in the complex plane for τ ∈ [0, 20]. Red
curves: eigenvalue originating from the uncontrolled system; black curves: eigenmodes created by
the delay control. Parameters: ω = π and λ = 1 [49]

the uncontrolled system is no longer separated from those which are generated by
the delay (see Fig. 4.9 c,d). Moreover, one can observe a scaling behavior of the
real parts of the eigenvalues for large τ in Fig. 4.9(a-c), there is a single eigenvalue
retaining a positive real part, whereas all the other real parts tend to zero for large τ .
The insets show that the eigenvalues in fact accumulate along the imaginary axis.
This observation will be studied in detail in the following.

The scaling behavior of eigenvalues of general linear delay-differential equations
for large delay τ has been analyzed in [113]. In particular, it turns out that one can
distinguish the following.

(a) Strongly unstable eigenvalues Λs which have positive real parts that do not tend
to zero with increasing τ , i.e., Λs → const and ReΛs ≥ δ for some δ > 0 as
τ →∞.

(b) Pseudocontinuous spectrum of eigenvalues Λp with real parts that scale as 1/τ ,

i.e.,Λp = 1
τ
γ + i

(
Ω + 1

τ
ϕ
)
+O

(
1
τ 2

)
with some γ ,Ω , and ϕ. A spectrum with

this scaling behavior and positive real part leads to so-called weak instabilities
(for more details, see [114, 113]).
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In order to obtain the strongly unstable eigenvalues, we insert Λs = const into
(4.8) and assume τ → ∞. Since ReΛs > δ, the exponential term vanishes and we
arrive at the expression for Λs:

Λs = λ− K ± iω,

which holds for λ− K > 0. Thus we obtain the following statement:

(i) For K < λ, there exist two eigenvalues of the controlled stationary state, Λs1
and its complex conjugate Λs2, such that Λs1 → λ − K + iω as τ → ∞. The
real parts of these eigenvalues are positive and, hence, the stationary state is
strongly unstable (cf. Fig. 4.9(a-c)).

In order to obtain the asymptotic expression for the remaining pseudo-
continuous part of the spectrum, we have to insert the scaling Λp = 1

τ
γ +

i
(
Ω + 1

τ
ϕ
)

into (4.8). Up to the leading order we obtain the equation

iΩ + K
(
1− e−γ e−iϕ) = λ± iω, (4.41)

and the additional condition Ω = Ω (m) = 2πm/τ , m = ±1,±2,±3, ..., (4.41)
can be solved with respect to γ (Ω):

γ (Ω) = −1

2
ln

[(
1− λ

K

)2

+
(
Ω ± ω

K

)2
]

. (4.42)

The fact that ReΛp ≈ γ (Ω)/τ and ImΛp ≈ Ω up to the leading order
means that the eigenvalues Λp accumulate in the complex plane along curves
(γ (Ω),Ω), provided that the real axis is scaled as τReΛ. The actual positions
of the eigenvalues on the curves can be obtained by evaluating Ω at points
Ω (m) = 2πm/τ . With increasing τ , the eigenvalues cover the curves densely
[113]. Hence, we obtain the second statement:

(ii) The fixed point of system (4.6) has a set of eigenvalues which behave asymp-

totically as Λp(Ω (k)) = 1
τ
γ (Ω (k)) + i

(
Ω (k) + 1

τ
ϕ(Ω (k))

)
with γ (Ω) given by

(4.42). We have weak instability if the maximum of γ (Ω) is positive, i.e.,

γmax = max
Ω
γ (Ω) = − ln

∣∣∣∣1−
λ

K

∣∣∣∣ > 0,

which is the case for K > λ/2.
Figure 4.10 illustrates the spectrum of the fixed point of system (4.6) for τ = 20.

One can clearly distinguish the two types of eigenvalues. For K < λ/2 (Fig. 4.10a),
the fixed point has a pair of strongly unstable eigenvalues, whereas the pseudocon-
tinuous spectrum is stable. Note that the symbols (red) show the spectrum computed
numerically from the full eigenvalue equation, whereas the dashed lines are the
curves (γ (Ω),Ω) from the asymptotic approximation where the pseudocontinuous
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Fig. 4.10 Numerically computed spectrum of eigenvalues for τ = 20 (asterisks, red). The dashed
lines depict the asymptotic pseudocontinuous spectrum. (a) Strong instability for K = 0.25 (K <
λ/2); (b) K = 0.5 = λ/2, critical case at which the weak instability occurs in addition to the strong
one; (c) K = 0.75 (λ/2 < K < λ), strong and weak instability; (d) K = 1.0 = λ, critical case at
which a strong instability disappears via the singularity of the pseudocontinuous spectrum; and (e)
K = 1.25 (K > λ), weak instability. Parameters: ω = π and λ = 1 [49]

spectrum accumulates for large τ . At K = λ/2 (cf. Fig. 4.10b), the pseudocontinu-
ous spectrum touches the imaginary axis resulting in the appearance of a weak insta-
bility for K > λ/2. This leads to the coexistence of strong and weak instabilities for
λ/2 < K < λ (Fig. 4.10c). At K = λ, the strongly unstable eigenvalues disappear,
being absorbed by the pseudocontinuous spectrum, which develops a singularity at
this moment, cf. Fig. 4.10(d). Finally, for K > λ (Fig. 4.10e), there occurs only a
weak instability induced by the pseudocontinuous spectrum.

After inspecting all possibilities given in Fig. 4.10, we conclude that stabilization
by the feedback control scheme (4.6) always has an upper limit τc such that for
τ > τc it fails. Additionally, we note that for K < λ and large delay, the stationary
state is strongly unstable with the complex conjugate eigenvaluesΛ1.2 = λ−K±iω,
and for K > λ weakly unstable with a large number of unstable eigenvalues given
by (4.41), the real parts of which scale as 1/τ .

Next, we show that strongly delayed feedback can stabilize a fixed point in the
case when the fixed point is sufficiently close to the Hopf bifurcation. In our case
this means that λ is small. In particular, we are going to prove that the delayed
feedback control scheme will be successful even for large delay within the range of
order 1/λ2. We will also provide conditions for successful control.
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For the fixed point, which is close to the Hopf bifurcation, we assume K > λ,
and hence it has an unstable pseudocontinuous spectrum as shown in Fig. 4.10(e).
As λ stays fixed, with increasing τ the curve of the pseudocontinuous spectrum will
be densely filled with the eigenvalues (Ω (m) = 2πm/τ ). The only possibility for
the fixed point to become stable is to assume that λ is also scaled with increasing
τ . Particularly, we will show that in order to achieve control we have to scale it as
λ = λ0ε

2 with fixed λ0 (here for convenience we introduce the small parameter
ε = 1/τ ).

Figure 4.11 illustrates the part of the curve γ (Ω) which may induce an instability
in the system. More precisely, the interval of unstable frequencies isΩ1 < Ω < Ω2,
where Ω1 and Ω2 are given by the zeros of γ (Ω):

Ω1,2 = ω ± K

√

1−
(

1− λ
K

)2

.

For small λ we can approximate this as

Ω1,2 = ω ±
√

2λK. (4.43)

The length of the interval of unstable frequencies is  Ω = Ω2 −Ω1 = 2
√

2λK.
We note that the actual position of the eigenvalues on the curve corresponds to

the values of Ω (m) = 2πmε with any integer m. It is easy to see that the distance
between the frequencies of neighboring eigenvalues Ω (m+1) −Ω (m) = 2πε scales
as ε. Therefore, the control can be successful if λ = λ0ε

2. In this case the length of
the unstable interval is  Ω = 2ε

√
2λ0K and scales also as ε. The control can be

achieved if the length is smaller than the distance between neighboring eigenvalues,

Ω 2

Ω 1

0
(m  +1)

0
(m  )

0
(m  )

0
(m  +1)

γ(Ω)

Ω

0

ω

Ω
Λ

Ω
Λ

Fig. 4.11 Curve of the pseudocontinuous spectrum. The actual position of the complex eigenvalues

Λ = 1
τ
γ + i

(
Ω +O( 1

τ
)
)

on the curve corresponds to Ω (m) = 2πmε, m = ±1,±2,±3, ..., and

ε = 1/τ . The fixed point is stable if the imaginary parts of the eigenvalues are outside of the
interval Ω1 < Ω < Ω2. Such a case with Ω (m0) < Ω1 < Ω2 < Ω

(m0+1) is illustrated, in which
the leading eigenvalues Λ(m0) and Λ(m0+1) have negative real parts [49]
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i.e.,  Ω = 2ε
√

2λ0K < 2πε, leading to

K <
π2

2λ0
. (4.44)

Equation (4.44) gives a necessary condition for successful control.
The relative phase of the delay plays an additional important role. Depending on

this phase, control occurs periodically with τ . In order to quantify this effect, let us
introduce ωτ = 2π/τ to be the frequency associated with the delay. Then the ratio
of the internal frequency ω and ωτ is given by ω/ωτ = γτ mod 1. Here 0 < γτ < 1
measures the detuning from the resonance between the internal frequency and the
delay-induced one. Using this notation and (4.43), we can rewrite

Ω1,2 = m0ωτ + γτωτ ± ε
√

2λ0K = Ω (m0) + ε
(

2πγτ ±
√

2λ0K
)

.

Here m0 is some integer number. The necessary and sufficient condition for the
stability is (cf. Fig. 4.11) Ω (m0) < Ω1 < Ω2 < Ω

(m0+1), which leads to

√
2λ0K < 2π min {γτ , 1− γτ }

or

K <
2π2

λ0
(min {γτ , 1− γτ })2 = 2π2

λ0

(
min

{[ωτ
2π

]

f
, 1−

[ωτ
2π

]

f

})2

, (4.45)

where
[
ωτ
2π

]
f is the fractional part of ωτ2π . Practically, one has also to satisfy K > λ,

but our scaling assumes the smallness of λ. Figure 4.12 shows the domain of control
given by (4.45) for λ = λ0/τ

2.

2 4 6 8 10
τ

0

1

2

3

4

5

K

Fig. 4.12 Shaded region: domain of control in the (τ , K) plane for the fixed point close to the Hopf
bifurcation, given by the asymptotic formula (4.45) for λ = λ0/τ

2. Parameters: ω = π and λ0 = 1
[49]
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In order to return to unscaled parameters, we have to substitute λ0 = λ/ε2 =
λτ 2. Figure 4.13(a) shows the obtained domain of control for fixed small λ = 0.01.
The maximum allowed values of K decrease as 1/τ 2. More precisely, we have

Kmax(τ ) = π2

2λτ 2
. (4.46)

The application of the asymptotic analysis allows to reveal many essential fea-
tures and mechanisms of the stabilization control scheme (4.6) for large delay τ . On
the other hand, the obtained approximations are valid as soon as K is much larger
than λ. Figure 4.13 shows a comparison of the boundaries of the control domain,
which are given by the asymptotic methods and exact analytical formulas derived in
the previous section. Very close to the Hopf bifurcation (λ = 0.01) the agreement
is excellent even at small values of τ (Fig. 4.13a), while for larger λ (Fig. 4.13b)
the deviations become more visible. In addition, the approximate solution does not
give the lower boundary of the control domain for small K which only shows up
in Fig. 4.14. The analytical approach also allows us to identify the “peaks” of the
control domains, which occur at τmax = (2n + 1)π/ω, n = 0, 1, 2, ..., as double
Hopf bifurcation points. The critical time delay, above which control fails, is given
by τc = 2/λ.
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Fig. 4.13 Domain of control in the (τ , K) plane, and largest negative real part of the complex
eigenvalues Λ(K, τ ) (in color code) calculated from the characteristic equation using the Lambert
function [(4.9)]. Dashed lines (blue): asymptotic approximation (4.45) of stability boundary; dotted
lines (blue): approximate maxima (4.46); and solid lines: exact stability boundaries. Parameters:
(a) ω = π , λ = 0.01 and (b) ω = π , λ = 0.1 [49]
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Fig. 4.14 Enlargement of Fig. 4.13: deviation of the asymptotic results (dashed) from the exact
stability boundary (solid) for small K or large λ [49]

An inspection of the islands of stabilization in Figs. 4.13 and 4.14 reveals that the
absolute value of the real part of the critical eigenvalue, i.e., the eigenvalue which
has the largest real part (but remains negative within those islands), decreases with
increasing τ . Hence, the fixed point becomes less stable, and it is expected that
the system becomes more sensitive to noise and it will be more difficult to realize
stabilization experimentally, if the delay time is chosen several times the system’s
characteristic time T0.

4.2.3 Beyond the Odd Number Limitation of Unstable
Periodic Orbits

In this section we consider the stabilization of periodic orbits by time-delayed
feedback control [52]. Although time-delayed feedback control has been widely
used with great success in real-world problems in physics, chemistry, biology, and
medicine, e.g., [38, 64, 71–73, 115–122], severe limitations are imposed by the
common belief that certain orbits cannot be stabilized for any strength of the con-
trol force. In fact, it has been contended that periodic orbits with an odd number
of real Floquet multipliers greater than unity cannot be stabilized by the Pyragas
method [43, 44, 123–126], even if the simple scheme is extended by multiple delays
in form of an infinite series [39]. To circumvent this restriction more complicated
control schemes, like an oscillating feedback [127], half-period delays for special,
symmetric orbits [128], or the introduction of an additional, unstable degree of
freedom [126, 129], have been proposed. Here, we show that the general limi-
tation for orbits with an odd number of real unstable Floquet multipliers greater
than unity does not hold: stabilization may be possible for suitable choices of the
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feedback matrix [52, 53]. Our example consists of an unstable periodic orbit gen-
erated by a subcritical Hopf bifurcation. In particular, this refutes the theorem in
[44].

Consider the normal form of a subcritical Hopf bifurcation extended by a time-
delayed feedback term:

ż(t) =
[
λ+ i+ (1+ iγ )|z(t)|2

]
z(t)+ b[z(t − τ )− z(t)], (4.47)

with z ∈ C and real parameters λ and γ . Here the Hopf frequency is normalized to
unity. The feedback matrix is represented by multiplication with a complex number
b = bR + ibI = b0eiβ with real bR, bI ,β and positive b0. Note that the nonlinearity
f (λ, z(t)) = [

λ+ i+ (1+ iγ )|z(t)|2] z(t) commutes with complex rotations. There-
fore exp (iϑ)z(t) solves (4.47), for any fixed ϑ , whenever z(t) does. In particular,
nonresonant Hopf bifurcations from the trivial solution z ≡ 0 at simple imaginary

eigenvalues η = iω �= 0 produce rotating wave solutions z(t) = z(0) exp
(

i 2π
T t

)

with period T = 2π/ω even in the nonlinear case and with delay terms. This follows
from uniqueness of the emanating Hopf branches.

Transforming Eq. (4.47) to amplitude and phase variables r, θ using z(t) =
r(t)eiθ (t), we obtain at b = 0

ṙ(t) =
(
λ+ r2

)
r (4.48)

θ̇ (t) = 1+ γ r2. (4.49)

An unstable periodic orbit with r = √−λ and period T = 2π/(1 − γ λ) exists
for λ < 0. This is the orbit we will stabilize. We will call it the Pyragas orbit. At
λ = 0 a subcritical Hopf bifurcation occurs. The Pyragas control method chooses
the delay time τ as τP = nT . This eliminates the feedback term on the orbit, and
thus recovers the original T-periodic solution z(t). In this sense the control method
is non-invasive.

The choice τP = nT defines the local Pyragas curve in the (λ, τ ) plane for any
n ∈ N

τP(λ) = 2πn

1− γ λ = 2πn(1+ γ λ+ . . . ), (4.50)

which emanates from the Hopf bifurcation points λ = 0, τ = 2πn.
Under further nondegeneracy conditions, the Hopf point λ = 0, τ = nT (n ∈

N0) continues to a Hopf bifurcation curve τH(λ) for λ < 0. We determine this
Hopf curve next. It is characterized by purely imaginary eigenvalues η = iω of the
transcendental characteristic equation:

η = λ+ i+ b
(
e−ητ − 1

)
, (4.51)
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which results from the linearization at the steady state z = 0 of the delayed system
(4.47). Separating (4.51) into real and imaginary parts

0 = λ+ b0[ cos (β − ωτ )− cosβ] (4.52)

ω − 1 = b0[ sin (β − ωτ )− sinβ] (4.53)

and using trigonometric identities to eliminate ω(λ) yields an explicit expression for
the multivalued Hopf curve τH(λ) for given control amplitude b0 and phase β:

τH =
± arccos

(
b0 cosβ−λ

b0

)
+ β + 2πn

1− b0 sinβ ±
√
λ(2b0 cosβ − λ)+ b2

0 sin2 β

. (4.54)

Note that τH is not defined in the case of β = 0 and λ < 0. Thus complex b is
a necessary condition for the existence of the Hopf curve in the subcritical regime
λ < 0. Figure 4.15 displays the family of Hopf curves (4.54), and the Pyragas curve
(4.50) n = 1, in the (λ, τ ) plane. In Fig. 4.15(b) the domains of instability of the
trivial steady state z = 0, bounded by the Hopf curves, are marked by light gray
shading (yellow). The dimensions of the unstable manifold of z = 0 are given in
parentheses along the τ -axis in Fig. 4.15(b). By construction, the delay τ becomes
a multiple of the minimum period T of the bifurcating periodic orbits along the
Pyragas curve τ = τp(λ) = nT and the time-delayed feedback term vanishes if the
periodic orbit is stabilized. The inset of Fig. 4.16 displays the Hopf and Pyragas
curves for different values of the feedback b0. These choices of b0 are displayed as
full circles in the main figure. For b0 > bcrit

0 (a) the Pyragas curve runs partly inside
the Hopf curve. With decreasing magnitude of b0 the Hopf curves pull back until the
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T
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Fig. 4.15 Pyragas (dashed) and Hopf (solid) curves in the (λ, τ ) plane: (a) Hopf bifurcation curves
n = 0, ..., 10 and (b) Hopf bifurcation curves n = 0, 1 in an enlarged scale. Light gray shading
marks the domains of unstable z = 0 and numbers in parentheses denote the dimension of the
unstable manifold of z = 0 (γ = −10, b0 = 0.3, and β = π/4). The time delay is given in units
of the intrinsic timescale T0 of the trivial fixed point, i.e., T0 = 2π [52]
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Fig. 4.16 Change of Hopf curves with varying control amplitude b0. The main figures shows the
complex plane of control gain b. The three values marked by full circles correspond to the insets
(a), (b), and (c), where the Hopf (solid) and Pyragas (dashed) curves are displayed for β = π

4 and
three different choices of b0: (a) b0 = 0.04 > bcrit

0 , (b)b0 = 0.025 ≈ bcrit
0 , and (c) b0 = 0.01 < bcrit

0
(λ = −0.005, γ = −10) [130]

Pyragas curves lie outside (c). At the critical feedback value (b) Pyragas and Hopf
curves are tangent at (λ = 0, τ = 2π ).

Standard exchange of stability results [131], which hold verbatim for delay equa-
tions, then assert that the bifurcating branch of periodic solutions locally inherits
linear asymptotic (in)stability from the trivial steady state, i.e., it consists of stable
periodic orbits on the Pyragas curve τP(λ) inside the shaded domains for small |λ|.
We stress that an unstable trivial steady state is not a sufficient condition for stabi-
lization of the Pyragas orbit. In fact, the stabilized Pyragas orbit can become unsta-
ble again if λ < 0 is further decreased, for instance, in a torus bifurcation. However,
there exists an interval for values of λ in our example for which the exchange of
stability holds. More precisely, for small |λ| unstable periodic orbits possess a single
Floquet multiplier μ = exp (Λτ ) (with 1 < μ < ∞), near unity, which is simple.
All other nontrivial Floquet multipliers lie strictly inside the complex unit circle. In
particular, the (strong) unstable dimension of these periodic orbits is odd, here 1,
and their unstable manifold is two-dimensional. This is shown in Fig. 4.17 panel (a)
top, which depicts solutionsΛ of the characteristic equation of the periodic solution
on the Pyragas curve.

The Floquet exponents of the Pyragas orbit can be calculated explicitly by rewrit-
ing (4.47) in polar coordinates z = r eiθ

ṙ = (λ+ r2) r + b0[ cos (β + θ (t − τ )− θ ) r(t − τ )− cos (β) r] (4.55)

θ̇ = 1+ γ r2 + b0[ sin (β + θ (t − τ )− θ )
r(t − τ )

r
− sin (β)] (4.56)

and linearizing around the periodic orbit according to r(t) = r0 + δr(t) and θ (t) =
Ωt + δθ (t), with r0 =

√−λ and Ω = 1− γ λ (see (4.48)). This yields
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Fig. 4.17 (a) Top: real part of Floquet exponents Λ of the periodic orbit vs. feedback amplitude
b0. Bottom: real part of eigenvalue η of steady state vs. feedback amplitude b0; (b) blowup of (a);
(c) periods; and (d) radii of the periodic orbits vs. b0. The solid and dashed curves correspond to
stable and unstable periodic orbits, respectively. Parameters in all panels: λ = −0.005, γ = −10,
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1−γ λ , and β = π/4 [130]

( ˙δr(t)
˙δθ (t)

)
=

[ −2λ− b0 cosβ b0r0 sinβ
2γ r0 − b0 sinβ r−1

0 −b0 cosβ

](
δr(t)
δθ (t)

)
(4.57)

+
[

b0 cosβ −b0r0 sinβ
b0 sinβr−1

0 b0 cosβ

](
δr(t − τ )
δθ (t − τ )

)
. (4.58)

With the ansatz

(
δr(t)
δθ (t)

)
= u exp (Λt), (4.59)

where u is a two-dimensional vector, one obtains the autonomous linear equation

[−2λ+ b0 cosβ (e−Λτ − 1)−Λ −b0r0 sinβ (e−Λτ − 1)
2γ r0 + b0r−1

0 sinβ (e−Λτ − 1) b0 cosβ (e−Λτ − 1)−Λ
]

u = 0. (4.60)

The condition of vanishing determinant then gives the transcendental characteristic
equation:
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0 = (−2λ+ b0 cosβ (e−Λτ − 1)−Λ) (
b0 cosβ (e−Λτ − 1)−Λ)

(4.61)

−b0r0 sinβ (e−Λτ − 1)
(

2γ r0 + b0r−1
0 sinβ (e−Λτ − 1)

)
(4.62)

for the Floquet exponents Λ which can be solved numerically.
The largest real part is positive for b0 = 0. Thus the periodic orbit is unstable. As

the amplitude of the feedback gain increases, the largest real part of the eigenvalue
becomes smaller and eventually changes sign at the point TC (transcritical bifurca-
tion) in Fig. 4.17. Hence the periodic orbit is stabilized. Note that an infinite number
of Floquet exponents are created by the control scheme; their real parts tend to −∞
in the limit b0→0, and some of them may cross over to positive real parts for larger
b0 (dashed line in Fig. 4.17(a)), terminating the stability of the periodic orbit.

Panel (a) bottom illustrates the stability of the steady state by displaying the
largest real part of the eigenvalues η. The interesting region of the top and bottom
panels where the periodic orbit becomes stable and the fixed point loses stability is
magnified in panel (b).

Figure 4.18 shows the behavior of the Floquet multipliers μ = exp (Λτ ) of the
Pyragas orbit in the complex plane with the increasing amplitude of the feedback
gain b0 as a parameter (marked by arrows). There is an isolated real multiplier cross-
ing the unit circle at μ = 1. This is caused by a transcritical bifurcation in which the
Pyragas orbit collides with a delay-induced stable periodic orbit. In panels (c) and
(d) of Fig. 4.17 the periods and radii of all circular periodic orbits (r = const) are
plotted vs. the feedback strength b0. For small b0 only the initial (unstable) Pyragas
orbit (T and r independent of b0) and the steady state r = 0 (stable) exist. With
increasing b0 a pair of unstable/stable periodic orbits is created in a saddle-node
(SN) bifurcation. The stable one of the two orbits (solid) then exchanges stabil-
ity with the Pyragas orbit in a transcritical bifurcation (TC), and finally ends in a
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Fig. 4.18 Floquet multipliers μ = exp (Λτ ) in the complex plane with the feedback amplitude
b0 ∈ [0, 0.3]. Arrows indicate the direction of increasing b0. Same parameters as in Fig. 4.17 [130]
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subcritical Hopf bifurcation (subH), where the steady state r = 0 becomes unstable.
The Pyragas orbit continues as a stable periodic orbit for larger b0. Except at TC,
the delay-induced orbit has a period T �= τ (see Fig. 4.17c). Note that the respective
exchanges of stability of the Pyragas orbit (TC) and the steady state (subH) occur at
slightly different values of b0. This is also corroborated by Fig. 4.17(b). The mech-
anism of stabilization of the Pyragas orbit by a transcritical bifurcation relies upon
the possible existence of such delay-induced periodic orbits with T �= τ , which was
overlooked in previous works. Technically, the proof of the odd number limitation
theorem in [44] fails because the trivial Floquet multiplier μ = 1 (Goldstone mode
of periodic orbit) was neglected there; F(1) in (14) in [44] is thus zero and not less
than zero, as assumed. At TC, where a second Floquet multiplier crosses the unit
circle, this results in a Floquet multiplier μ = 1 of algebraic multiplicity two.

Next we analyze the conditions under which stabilization of the subcritical peri-
odic orbit is possible. From Fig. 4.15(b) it is evident that the Pyragas curve must
lie inside the yellow region, i.e., the Pyragas and Hopf curves emanating from the
point (λ, τ ) = (0, 2π) must locally satisfy the inequality τH(λ) < τP(λ) for λ < 0.
More generally, let us investigate the eigenvalue crossings of the Hopf eigenvalues
η = iω along the τ -axis of Fig. 4.15. In particular, we derive conditions for the
unstable dimensions of the trivial steady state near the Hopf bifurcation point λ = 0
in our model (4.47). On the τ -axis (λ = 0), the characteristic equation (4.51) for
η = iω is reduced to

η = i+ b
(
e−ητ − 1

)
, (4.63)

and we obtain two series of Hopf points given by

0 ≤ τA
n = 2π , n (4.64)

0 < τB
n =

2β + 2πn

1− 2b0 sinβ
(n = 0, 1, 2, . . . ). (4.65)

The corresponding Hopf frequencies are ωA = 1 and ωB = 1 − 2b0 sinβ, respec-
tively. Note that series A consists of all Pyragas points, since τA

n = nT = 2πn/ωA.
In the series B the integers n have to be chosen such that the delay τB

n ≥ 0. The case
b0 sinβ = 1/2, only, corresponds to ωB = 0 and does not occur for finite delays τ .

We evaluate the crossing directions of the critical Hopf eigenvalues next, along
the positive τ -axis and for both series. Abbreviating ∂

∂τ
η by ητ the crossing direction

is given by sign(Re ητ ). Implicit differentiation of (4.63) with respect to τ at η = iω
implies

sign(Re ητ ) = −sign(ω) sign( sin (ωτ − β)). (4.66)

We are interested specifically in the Pyragas–Hopf points of series A (marked by
dots in Fig. 4.15), where τ = τA

n = 2πn and ω = ωA = 1. Indeed sign(Re ητ ) =
sign( sinβ) > 0 holds, provided we assume 0 < β < π , i.e., bI > 0 for the
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feedback gain. This condition alone, however, is not sufficient to guarantee stability
of the steady state for τ < 2nπ . We also have to consider the crossing direction
sign(Re ητ ) along series B, ωB = 1 − 2b0 sinβ, ωBτB

n = 2β + 2πn, for 0 <
β < π . Equation (4.66) now implies sign(Re ητ ) = sign((2b0 sinβ − 1) sinβ) =
sign(2b0 sinβ − 1).

To compensate for the destabilization of z = 0 upon each crossing of any point
τA

n = 2πn, we must require stabilization (sign(Re ητ ) < 0) at each point τB
n of series

B. If b0 ≥ 1/2, this requires 0 < β < arcsin (1/(2b0)) or π − arcsin (1/(2b0)) <
β < π . The distance between two successive points τB

n and τB
n+1 is 2π/ωB > 2π .

Therefore, there is at most one τB
n between any two successive Hopf points of series

A. Stabilization requires exactly one such τB
n , specifically: τA

k−1 < τ
B
k−1 < τ

A
k for

all k = 1, 2, . . . , n. This condition is satisfied if, and only if,

0 < β < β∗n , (4.67)

where 0 < β∗n < π is the unique solution of the transcendental equation:

1

π
β∗n + 2nb0 sinβ∗n = 1. (4.68)

This holds because the condition τA
k−1 < τB

k−1 < τA
k first fails when τB

k−1 = τA
k .

Equation (4.67) represents a necessary but not yet sufficient condition that the
Pyragas choice τP = nT for the delay time will stabilize the periodic orbit.

To evaluate the remaining condition, τH < τP near (λ, τ ) = (0, 2π), we expand
the exponential in the characteristic equation (4.51) for ωτ ≈ 2πn, and obtain the
approximate Hopf curve for small |λ|:

τH(λ) ≈ 2πn− 1

bI
(2πnbR + 1)λ. (4.69)

Recalling (4.50), the Pyragas stabilization condition τH(λ) < τP(λ) is therefore
satisfied for λ < 0 if, and only if,

1

bI

(
bR + 1

2πn

)
< −γ . (4.70)

Equation (4.70) defines a domain in the plane of the complex feedback gain b =
bR + ibI = b0eiβ bounded from below (for γ < 0 < bI) by the straight line

bI = 1

−γ
(

bR + 1

2πn

)
. (4.71)

Equation (4.68) represents a curve b0(β), i.e.,
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b0 = 1

2n sinβ

(
1− β

π

)
, (4.72)

which forms the upper boundary of a domain given by the inequality (4.67). Thus
(4.71) and (4.72) describe the boundaries of the domain of control in the complex
plane of the feedback gain b in the limit of small λ. Figure 4.19 depicts this domain
of control for n = 1, i.e., a time delay τ = 2π

1−γ λ . The lower and upper solid curves
correspond to (4.71) and (4.72), respectively. The grayscale displays the numerical
result of the largest real part, wherever negative, of the Floquet exponent, calculated
from linearization of the amplitude and phase equations around the periodic orbit.
Outside the shaded areas the periodic orbit is not stabilized. With increasing |λ|
the domain of stabilization shrinks, as the deviations from the linear approximation
(4.69) become larger. For sufficiently large |λ| stabilization is no longer possible in
agreement with Fig. 4.15(b). Note that for real values of b, i.e., β = 0, no stabiliza-
tion occurs at all. Hence, stabilization fails if the feedback matrix B is a multiple of
the identity matrix. Figure 4.20 compares the control domain for the same value of
|λ| for the representation in the planes of complex feedback b (left) and amplitude
b0 and phase β (right).
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Fig. 4.19 Domain of control in the plane of the complex feedback gain b = b0eiβ for three different
values of the bifurcation parameter λ. The solid curves indicate the boundary of stability in the limit
λ ↗ 0, see (4.71) and (4.72). The shading shows the magnitude of the largest (negative) real part
of the Floquet exponents of the periodic orbit (γ = −10 and τ = 2π

1−γ λ ) [52]

Fig. 4.20 Domain of control in the complex b plane (left) and the (β, b0) plane (right) (λ =
−0.005, γ = −10, and τ = 2π

1−γ λ ) [130]
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4.2.4 Stabilizing Periodic Orbits Near a Fold Bifurcation

Another important example for an unstable periodic orbit which has an odd number
of real Floquet multipliers greater than unity is provided by an orbit generated by a
fold bifurcation of limit cycles. As a paradigm for fold bifurcation of rotating waves
we consider planar systems of the form

ż = g(λ, |z|2)z+ ih(λ, |z|2)z. (4.73)

Here z(t) is a scalar complex variable, g and h are real valued functions, and λ is a
real parameter. Systems of the form (4.73) are S1 equivariant, i.e., eiθ z(t) is a solution
whenever z(t) is for any fixed eiθ in the unit circle S1. In polar coordinates z = reiϕ ,
this manifests itself by the absence of ϕ from the right-hand sides of the resulting
differential equations:

ṙ = g(λ, r2)r,
ϕ̇ = h(λ, r2).

(4.74)

In particular, all periodic solutions of (4.73) are indeed rotating waves, alias har-
monic, of the form

z(t) = reiωt

for suitable nonzero real constants r,ω. Specifically, this requires ṙ = 0 and ϕ̇ = ω:

0 = g(λ, r2),
ω = h(λ, r2).

(4.75)

Fold bifurcations of rotating waves are generated by the nonlinearities

g(λ, r2) = (
r2 − 1

)2 − λ,
h(λ, r2) = γ (r2 − 1)+ ω0.

(4.76)

Our choice of nonlinearities is generic in the sense that g(λ, r2) is the normal form
for a nondegenerate fold bifurcation [132] at r2 = 1 and λ = 0. See Fig. 4.21 for
the resulting bifurcation diagram. We fix coefficients γ ,ω0 > 0.

Using (4.75) and (4.76), the amplitude r and frequency ω of the rotating waves
then satisfy

r2 = 1±√λ, ω = ω0 + γ (r2 − 1) = ω0 ± γ
√
λ. (4.77)

The signs ± correspond to different branches in Fig. 4.21, + unstable and − stable.
Our goal is to investigate delay stabilization of the fold system (4.73) by the

delayed feedback term



4 Time-Delayed Feedback Control 117

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

r

λ

Fig. 4.21 Bifurcation diagram of rotating waves (solid line: stable; dashed line: unstable) of (4.73)
and (4.76) [54]

ż = f (λ, |z|2)z+ b0eiβ [z(t − τ )− z(t)] , (4.78)

with real positive control amplitude b0, delay τ , and real control phase β. Here we
have used the abbreviation f = g + ih. The Pyragas choice requires the delay τ
to be an integer multiple k of the minimum period T of the periodic solution to be
stabilized:

τ = kT . (4.79)

This choice guarantees that periodic orbits of the original system (4.73) with period
T are reproduced exactly and non-invasively by the control system (4.78). The min-
imum period T of a rotating wave z = reiωt is given explicitly by T = 2π/ω. Using
(4.77), (4.79) becomes

τ = 2πk

ω0 ± γ
√
λ

, (4.80)

or, equivalently,

λ = λ(τ ) =
(

2πk − ω0τ

γ τ

)2

. (4.81)

In the following we select only the branch of λ(τ ) corresponding to the τ value
with the + sign, which is associated with the unstable orbit. Condition (4.81) then
determines the kth Pyragas curve in parameter space (τ , λ) where the delayed feed-
back is indeed non-invasive. The fold parameter λ = 0 corresponds to τ = 2πk/ω0
along the kth Pyragas curve. See Fig. 4.22 for the Pyragas curves in the parameter
plane (τ , λ).

For the delay stabilization system (4.78) we now consider τ as the relevant bifur-
cation parameter. We restrict our study of (4.78) to λ = λ(τ ) given by the Pyragas
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Fig. 4.22 The Pyragas curves λ = λ(τ ), corresponding to the unstable branch in Fig. 4.21, in the
parameter plane (τ , λ); see (4.81). Parameters: γ = ω0 = 1 [54]

curve (4.81), because τ = kT is the primary condition for non-invasive delayed
feedback control.

We begin with the trivial case b0 = 0 of vanishing control. For each λ = λ(τ ),
we encounter two rotating waves given by

r2 = 1± 2πk − ω0τ

γ τ
, ω = ω0 ±

(
2πk − ω0τ

τ

)
. (4.82)

The two resulting branches form a transcritical bifurcation at τ = 2πk/ω0. At
this stage, the transcriticality looks like an artifact, spuriously caused by our choice
of the Pyragas curve λ = λ(τ ). Note, however, that only one of the two crossing
branches features minimum period T such that the Pyragas condition τ = kT holds.
This happens along the branch

r2 = 1+ 2πk − ω0τ

γ τ
, ω = 2πk/τ ,

see Fig. 4.23. We call this branch, which corresponds to ‘+’ in (4.82) the Pyragas
branch. The other branch has minimum period T with

kT = πk

ω0τ − πk
τ �= τ ,

except at the crossing point ω0τ = 2πk. The minus branch therefore violates the
Pyragas condition for non-invasive control, even though it has been generated from
the same fold bifurcation.

Our strategy for Pyragas control of the unstable part of the Pyragas branch is
now simple. For a nonzero control amplitude b0, the Pyragas branch persists without
change, due to the non-invasive property τ = kT along the Pyragas curve λ = λ(τ ).
The minus branch, however, will be perturbed slightly for small b0 �= 0. If the
resulting perturbed transcritical bifurcation
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Fig. 4.23 Bifurcation diagram of rotating waves of (4.78) at vanishing control amplitude b0 = 0.
Parameters: T0 = 2π/ω0, ω0 = 1, and γ = 10 [54]

τ = τc (4.83)

moves to the left, i.e., below 2πk/ω0, then the stability region of the Pyragas branch
has invaded the unstable region of the fold bifurcation. Again this refutes the notori-
ous odd number limitation of Pyragas control, see Fiedler et al. [52] and references
therein.

Let τ = τc denote the transcritical bifurcation point on the Pyragas curve λ =
λ(τ ), see (4.81). Let z(t) = rceiωct denote the corresponding rotating wave and
abbreviate ε ≡ r2

c − 1. Conditions for the transcritical bifurcation in (4.78) can
be obtained [54], which yield the following relations between the control amplitude
bc at the bifurcation and ε, τc:

bc = −ε ω0 + γ ε
kπ (γ sinβ + 2ε cosβ)

(4.84)

and

bc = − 2πk − ω0τc

τc

(
1
2γ

2τc sinβ + (2πk − ω0τc) cosβ
) . (4.85)

As follows from (4.84) and (4.85), for small ε, alias for τc near 2kπ/ω0, the
optimal control angle is β = −π/2 in the limit ε → 0, and for fixed k,ω0, γ , ε
this control phase β allows for stabilization with the smallest amplitude |bc|. For
β = −π/2 the relations (4.84) and (4.85) simplify to

bc = ε

kπ

(
ω0

γ
+ ε

)
(4.86)

and

bc = 2

(γ τc)
2 (2kπ − ω0τc) , (4.87)
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respectively. For small b0 > 0 we also have the expansions

ε = −
(

kπ
γ

ω0
sinβ

)
b0 + · · · (4.88)

and

τc = 2πk

ω0
+

(
1

2ω0

(
2kπγ

ω0

)2

sinβ

)

b0 + · · · . (4.89)

for the location of the transcritical bifurcation. In particular, we see that odd number
delay stabilization can be achieved by arbitrary small control amplitudes b0 near the
fold for γ > 0 and sinβ < 0. Note that the stability region of the Pyragas curve
increases if ε = r2

c − 1 > 0, see Fig. 4.21. For vanishing phase angle of the control,
β = 0, in contrast, delay stabilization cannot be achieved by arbitrarily small control
amplitudes b0 near the fold in our system (4.78).

Even far from the fold at λ = 0 and τ = 2kπ/ω0 the above formulas (4.84),
(4.86), and (4.87) hold and indicate a transcritical bifurcation from the (global)
Pyragas branch of rotating waves of (4.78) along the Pyragas curve λ = λ(τ ). This
follows by analytic continuation. Delay stabilization, however, may fail long before
τ = τc is reached. In fact, nonzero purely imaginary Floquet exponents may arise,
which destabilize the Pyragas branch long before τ = τc is reached. This interesting
point remains open.

A more global picture of the orbits involved in the transcritical bifurcation may
be obtained by numerical analysis. Rewriting (4.78) in polar coordinates z = reiϕ

yields

ṙ = [(r2 − 1)2 − λ]r + b0[ cos (β + ϕ(t − τ )− ϕ) r(t − τ )− r cosβ] (4.90)

ϕ̇ = γ (r2 − 1)+ ω0 + b0[ sin (β + ϕ(t − τ )− ϕ) r(t − τ )/r − sinβ]. (4.91)

To find all rotating wave solutions we make the ansatz r = const and ϕ̇ = ω = const
and obtain

0 = (r2 − 1)2 − λ+ b0[ cos (β − ωτ )− cosβ] (4.92)

ω = γ (r2 − 1)+ ω0 + b0[ sin (β − ωτ )− sinβ]. (4.93)

Eliminating r we find a transcendental equation for ω

0 = −γ 2λ+ γ 2b0[ cos (β − ωτ )− cosβ] (4.94)

+ (ω − ω0 − b0[ sin (β − ωτ )− sinβ])2 . (4.95)

One can now solve this equation numerically for ω and insert the result into
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r =
(
ω − ω0

γ
− b0

γ
[ sin (β − ωτ )− sinβ]+ 1

) 1
2

(4.96)

to obtain the allowed radii (discarding imaginary radii).
The orbit which stabilizes the Pyragas branch in the transcritical bifurcation may

be the minus branch or another delay-induced orbit which is born in a fold bifurca-
tion, depending on the parameters. Figure 4.24 displays the different scenarios and
the crossover in dependence on the control amplitude b0. The value of γ is chosen as
γ = 9, 10.5, 10.6, and 13 in panels (a), (b), (c), and (d), respectively. It can be seen
that the Pyragas orbit is stabilized by a transcritical bifurcation T1. As the value of
γ increases, a pair of a stable and an unstable orbit generated by a fold bifurcation
F1 approaches the minus branch (see Fig. 4.24a). On this branch, fold bifurcations
(F2 and F3) occur as shown in Fig. 4.24(b). At γ = 10.6, the fold points of F1 and
F2 touch in a transcritical bifurcation T2 and annihilate (see Fig. 4.24(c, d). Thus,
for further increase of γ , one is left with the stable minus branch and the unstable
orbit, which was generated at the fold bifurcation F3. In all panels the radius of
the Pyragas orbit is not changed by the control. The radius of the minus branch,
however, is altered because the delay time does not match orbit period.

Figure 4.25 shows the region in the (β, b0) plane where the Pyragas orbit is
stable, for a set of parameters. The grayscale (color code) shows only negative val-
ues of the largest real part of the Floquet exponents. One can see that the orbit is
most stable for feedback phases β ≈ −π/2 which agrees with the previous analytic

Fig. 4.24 Radii of stable (solid) and unstable (dashed) rotating wave solutions in dependence on
b0 for different γ . Parameters: ω0 = 1, λ = 0.001, and β = −π/2 [54]
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Fig. 4.25 Domain of stability of the Pyragas orbit. The grayscale (color code) shows only negative
values of the largest real part of the Floquet exponents. Parameters: ω0 = 1, λ = 0.0001, and
γ = 0.1. [54]

Fig. 4.26 Scheme of an integrated tandem laser with optical feedback from an external Fabry–
Perot etalon. Two distributed feedback (DFB) lasers are connected via a passive waveguide section
P. Amplitude K and phase ϕ of the feedback from the FP resonator are controlled by a variable
neutral density filter and a piezo positioning, respectively. ESA: electrical spectrum analyzer. IR
Diode: power measurement [38]

results for small λ. The picture was obtained by linear stability analysis of (4.90)
and (4.91) and numerical solution of the transcendental eigenvalue problem for the
Floquet exponents. It clearly shows that the periodic orbit can be stabilized even
though it has an odd number of real Floquet multipliers greater than unity.

These results of the simple normal form model can be transferred to a more
realistic model of an integrated tandem laser [54], such as the one considered in the
next section, see Fig. 4.26, where time-delayed feedback control is realized by a
Michelson interferometer.

4.3 Time-Delayed Control of Optical Systems

In this section we will consider semiconductor lasers, where time-delayed feedback
control can be readily realized by optical feedback from a mirror or a Fabry–Perot
(FP) resonator, and this allows for controlling systems with very fast dynamics still
in real-time mode.
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4.3.1 Stabilizing Continuous-Wave Laser Emission
by Phase-Dependent Coupling

From a practical point of view, it is often desirable to suppress self-sustained oscil-
lations, i.e., intensity pulsations, in order to stabilize continuous-wave (cw) opera-
tion of lasers [133, 134]. This amounts to stabilizing an unstable fixed point of the
dynamic laser equations.

Here we consider a semiconductor laser device for which control of unstable
steady states by time-delayed feedback control has been demonstrated in theory
and experiment [38]. Recently, multi-section lasers with their complex dynamical
phenomena have opened up new ways in high-speed optical information processing
[135, 136]. Their picosecond response times are too short even for a fast electronic
realization of time-delayed feedback control. All-optical control is thus the only
applicable method so far. The scheme of the setup is shown in Fig. 4.26. An inte-
grated tandem laser [135, 136] is deliberately driven through a Hopf bifurcation
into a self-pulsating regime of operation. Suppression of the pulsations and non-
invasive stabilization of the steady state is achieved by direct optical feedback from
a properly designed external FP etalon. Although proposed one and a half decades
ago [39, 137] and despite of some numerical studies [137–139], such non-invasive
all-optical control approach has not been implemented experimentally until recently
[38]. A novel aspect of our analysis is that it addresses the role of the optical phase
as a specific feature of the FP control configuration.

Optical fields emitted by lasers vary generally as Re{E(t)e−iω0t} where the expo-
nential factor oscillates by orders of magnitude faster than the slow amplitude E(t).
The field fed back from the FP resonator has the same shape and, for feedback
gain K, its amplitude reads as

Eb(t) = Keiϕ
∞∑

n=0

Rneinφ[E(tn)− eiφE(tn+1)], (4.97)

with tn = t − τl − nτ . The delay originates from a single roundtrip between laser
and FP resonator, characterized by the latency time τl, and n round-trips of time τ
within the FP resonator of mirror reflectivity R. Two optical phase shifts ϕ = ω0τl
and φ = ω0τ are associated with these delay times. Non-invasive control requires
optical target states with E(t) = eiφE(t − τ ). Feedback from a FP resonator has
been studied previously, see, e.g., [140–143] and references therein. However, those
configurations rely on maximum feedback are thus strongly invasive.

For steady states E(t) = E0 non-invasiveness means eiφ = 1, i.e., the FP res-
onator must be tuned into resonance. While the FP phase is thus fixed, the latency
is still arbitrary and makes the feedback phase-sensitive. Conventional time-delayed
feedback control corresponds to ϕ = 0. However, in the FP geometry, ϕ is tun-
able by sub-wavelength changes of the laser-FP separation and thus represents an
additional free parameter which all-optical time-delayed feedback control can profit
from. In what follows, this is theoretically demonstrated within the simple generic
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two-variable center-manifold model introduced in Sect. 4.2 [48]. Stabilization of the
cw emission has also been shown within a more specific semiconductor laser model
of Lang–Kobayashi type, including latency, bandpass filtering in the control loop,
and a feedback phase [144].

We consider a nonlinear system closely above a Hopf bifurcation, where it has an
unstable fixed point (focus) whose stability is governed by the complex eigenvalues
λ ± iω (with λ > 0). For simplicity, we restrict ourself to a single FP roundtrip
(n=1) and ignore τl in the slow amplitude dynamics. An extension to multiple time
feedback (ETDAS) is found elsewhere [50]. Linearizing around the fixed point pro-
vides a generic equation for the center-manifold coordinates x, y, corresponding to
the complex field through E = E0 + x+ iy,

(
ẋ
ẏ

)
=

(
λ ω

−ω λ
)(

x
y

)

−K

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x(t)− x(t − τ )
y(t)− y(t − τ )

)
. (4.98)

This equation generalizes the model of (4.6) to phase-sensitive feedback and
shows that such feedback creates non-diagonal coupling terms [145]. The charac-
teristic equation for the complex eigenvalues Λ reads as

Λ+ Ke±iϕ (
1− e−Λτ

) = λ± iω. (4.99)

Note that this characteristic equation can be solved analytically using the Lambert
function, which is defined as the inverse function of g(z) = zez for complex z.

Figure 4.27 shows the domain of control, i.e., Re(Λ) < 0, in dependence on
the parameters ϕ, K, and τ . Unit of time is the intrinsic period T0 = 2π/ω of the
unstable focus and λT0 = 0.2 is chosen in all plots. Panels (a) and (b) represent the
(ϕ, K) plane for fixed values of the time delay τ/T0 = 0.5 and 0.9, respectively. Note
that τ = T0/2 yields a symmetric domain of control with respect to ϕ = 0, which
is the case of diagonal coupling [48]. For values other than this optimal time delay,
the domain of control is distorted and shrinks. In the situation shown in Fig. 4.27
(b), control can no longer be achieved for ϕ = 0, but only for positive phase ϕ > 0.
Panels (c) and (d) show the domain of control in the (ϕ, τ ) plane for fixed feedback
gain KT0 = 1 and 2, respectively. It consists of isolated islands with a horizontal
extension that becomes maximum and symmetric with respect to ϕ = 0 at delays
of τ = (n + 1/2)T0 (n = 0, 1, 2, . . . ). No control is possible for integer τ/T0.
For a range of τ values in between, stabilization can be achieved by appropriately
chosen ϕ. When crossing the islands at fixed ϕ, resonance-type behavior of the
damping rate −Re(Λ) occurs. With increasing n, the size of the islands decreases
so that they eventually disappear at some critical value determined by the feedback
strength K.

These results from the simple generic model have been confirmed by experimen-
tal realization of all-optical non-invasive control by means of time-delayed feed-
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Fig. 4.27 Domain of control in dependence on ϕ, K, and τ with normalization in units of T0 =
2π/ω. The largest real part of the complex eigenvalues Λ is shown in colorcode. (a), (b): Domain
of control in the (ϕ, K) plane for fixed delay τ = T0/2 and 0.9T0, respectively. (c), (d): Domain
of control in the (ϕ, τ ) plane for fixed feedback gain K = 1/T0 and 2/T0, respectively. Fixed
parameter: λ = 0.2/T0 [38]

back from an external Fabry–Perot cavity [38]. They are also in qualitative agree-
ment with simulations of more realistic laser models of Lang–Kobayashi [144] and
traveling-wave type [38, 146].

In conclusion, using phase-dependent feedback, stabilization of the continuous-
wave laser output and non-invasive suppression of intensity pulsations has been
shown. This study demonstrates the crucial importance of the proper choice of
phase of the feedback signal, i.e., of the coupling matrix, which represents a generic
feature of all-optical time-delayed feedback control.

4.3.2 Noise Suppression by Time-Delayed Feedback

In this section we investigate the effects of feedback under the influence of noise
in a semiconductor laser [95]. A laser with feedback from a conventional mirror
can be described by the Lang–Kobayashi equations [147]. Other types of feedback
have also been investigated [143, 148]. One particular feedback realizes the delayed
feedback control by a Fabry–Perot resonator [38, 139, 144]. A schematic view of
this all-optical setup is shown in Fig. 4.28. A fraction of the emitted laser light
is coupled into a resonator. The resonator then feeds an interference signal of the
actual electric field E(t) and the delayed electric field E(t − τ ) (neglecting multiple
reflections) back into the laser.
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Laser

K τ

Resonator

Fig. 4.28 Setup of a laser coupled to a Fabry–Perot resonator realizing the time-delayed feedback
control [95]

Scaling (i) time by the photon lifetime τp ≈ 10−12s, (ii) carrier density (in excess
of the threshold carrier density) by the inverse of the differential gain GN times
τp, and (iii) electric field by (τcGN)−1/2, where τc ≈ 10−9s is the carrier lifetime
(for details see [149]), one obtains a modified set of non-dimensionalized Lang–
Kobayashi equations [139] describing this setup

d

dt
E = 1

2
(1+ iα) n E (4.100)

−eiϕK [E(t)− eiψE(t − τ )]+ FE(t),

T
d

dt
n = p− n− (1+ n) |E|2,

where E is the complex electric field amplitude, n is the carrier density in excess
of the laser threshold, α is the linewidth enhancement factor, K is the feedback
strength, τ is the roundtrip time in the Fabry–Perot resonator, p is the excess pump
injection current, T = τc/τp is the timescale parameter, FE is a noise term describing
the spontaneous emission, and ϕ and φ are optical phases.

The phases ϕ andψ depend on the sub-wavelength positioning of the mirrors. By
precise tuning ϕ = 2πn and ψ = 2πm one can realize the usual Pyragas feedback
control

− K [E(t)− E(t − τ )]. (4.101)

We consider small feedback strength K, so that the laser is not destabilized and no
delay-induced bifurcations occur. A sufficient condition [139] is that

K < Kc = 1

τ
√

1+ α2
. (4.102)

The noise term FE in (4.100) arises from spontaneous emission, and we assume
the noise to be white and Gaussian

〈FE〉 = 0, 〈FE(t) FE(t′)〉 = Rspδ(t − t′), (4.103)

with the spontaneous emission rate

Rsp = β(n+ n0), (4.104)
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where β is the spontaneous emission factor and n0 is the threshold carrier density.
Without noise the laser operates in a steady state (cw emission). To find these steady
state values, we transform (4.100) into equations for intensity I and phase φ by
E = √I eiφ :

d

dt
I = n I − 2K [I −√I

√
Iτ cos (φτ − φ)]+ Rsp + FI(t),

d

dt
φ = 1

2
α n+ K

√
Iτ√
I

sin (φτ − φ)+ Fφ(t), (4.105)

T
d

dt
n = p− n− (1+ n) I,

where Iτ = I(t − τ ), φτ = φ(t − τ ), and

〈FI〉 = 0, 〈Fφ〉 = 0, (4.106)

〈FI(t) Fφ(t′)〉 = 0, (4.107)

〈FI(t) FI(t
′)〉 = 2Rsp I δ(t − t′) (4.108)

〈Fφ(t) Fφ(t′)〉 = Rsp

2I
δ(t − t′). (4.109)

Setting d
dt I = 0, d

dt n = 0, d
dtφ = const, and K = 0 and replacing the noise terms

by their mean values give a set of equations for the mean steady state solutions
I∗, n∗, and φ = ω∗t without feedback (the solitary laser mode). Our aim is now
to analyze the stability (damping rate) of the steady state. A high stability of the
steady state, corresponding to a large damping rate, will give rise to small-amplitude
noise-induced relaxation oscillations whereas a less stable steady state gives rise to
stronger relaxation oscillations. Linearizing (4.105) around the steady state X(t) =
X∗ + δX(t), with X(t) = (I, φ, n), gives

d

dt
X(t) = U X(t)− V [X(t)− X(t − τ )]+ F(t), (4.110)

with

U =
⎡

⎣
n∗ 0 I∗ + β
0 0 1

2α− 1
T (1+ n∗) 0 − 1

T (1+ I∗)

⎤

⎦ , (4.111)

(4.112)

V = diag(K, K, 0), (4.113)

where diag(...) denotes a 3× 3 diagonal matrix, and

F = (FI , Fφ , 0). (4.114)
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The Fourier transform of (4.110) gives

X̂(ω) = [iω − U + V (1− e−iωτ )]−1
︸ ︷︷ ︸

≡M

F̂(ω). (4.115)

The Fourier-transformed covariance matrix of the noise is

〈F̂(ω) F̂(ω′)†〉 = 1

2π
diag(2RspI∗,

Rsp

2I∗
, 0) δ(ω − ω′), (4.116)

with the adjoint †. The matrix-valued power spectral density S(ω) can then be
defined through

S(ω) δ(ω − ω′) = 〈X̂(ω) X̂(ω)†〉 (4.117)

and is thus given by

S(ω) = 1

2π
M diag(2RspI∗,

Rsp

2I∗
, 0) M†. (4.118)

The diagonal elements of the matrix S are the power spectrum of the intensity SδI ,
the phase Sδφ , and the carrier density Sδn. The frequency power spectrum is related
to the phase power spectrum Sδφ(ω) by [150]:

Sδφ̇(ω) = ω2 Sδφ(ω). (4.119)

The laser parameters we consider in the following are typical values for a single
mode distributed feedback (DFB) laser operating close to threshold [139, 150].

Figures 4.29 and 4.30 display the intensity and the frequency power spectra,
respectively, for different values of the delay time τ , obtained analytically from
the linearized equations (left) and from simulations of the full nonlinear equa-
tions (right). All spectra have a main peak at the relaxation oscillation frequency
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Fig. 4.29 Analytical (left) and numerical (right) results for the power spectral density SδI(ω) of the
intensity for different values of the delay time τ . Parameters: p = 1, T = 1000, α = 2, β = 10−5,
n0 = 10, and K = 0.002. (A typical unit of time is the photon lifetime τp = 10−11s, corresponding
to a frequency of 100 GHz) [95]
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Fig. 4.30 Analytical (left) and numerical (right) results for the power spectral density Sδφ(ω) of
the frequency for different values of the delay time τ . Parameters: p = 1, T = 1000, α = 2,
β = 10−5, n0 = 10, and K = 0.002 [95]

ΩRO ≈ 0.03. The higher harmonics can also be seen in the spectra obtained from
the nonlinear simulations. The main peak decreases with increasing τ and reaches a
minimum at

τopt ≈ TRO

2
= 2π

2ΩRO
≈ 100. (4.120)

With further increases of τ , the peak height increases again until it reaches approxi-
mately its original maximum at τ≈TRO. A small peak in the power spectra indicates
that the relaxation oscillations are strongly damped. This means that the fluctuations
around the steady state values I∗ and n∗ are small. Figure 4.31 displays exemplary
time series of the intensity with and without feedback. The time series with feedback
shows much less pronounced stochastic fluctuations.

Next, we study the variance of the intensity distribution as a measure for the
oscillation amplitude:
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Fig. 4.31 Intensity time series without (top panel) and with (bottom panel) control. Parameters:
p = 1, T = 1000, α = 2, β = 10−5, n0 = 10, and τ = 100 ≈ T0/2 [95]
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Fig. 4.32 Variance of the intensity I vs. the delay time. Parameters: p = 1, T = 1000, α = 2,
β = 10−5, n0 = 10, and K = 0.002 [95]
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Fig. 4.33 Probability distribution of the intensity I with and without the resonator (simulations).
Parameters: p = 1, T = 1000, α = 2, β = 10−5, n0 = 10, and K = 0.002 [95]

 I2 ≡
〈
(I − 〈I〉)2

〉
. (4.121)

Figure 4.32 displays the variance as a function of the delay time. The variance is
minimum at τ ≈ TRO/2, thus for this value of τ the intensity is most steady and
relaxation oscillations excited by noise have a small amplitude.

Figure 4.33 displays the intensity distribution of the laser without (dashed) and
with (solid) optimal control. The time-delayed feedback control leads to a narrower
distribution and less fluctuations.

In conclusion, by tuning the cavity roundtrip time of the feedback loop to half
the relaxation oscillation period, τopt ≈ TRO/2, noise-induced oscillations in a semi-
conductor laser can be suppressed to a remarkable degree.

4.4 Time-Delayed Control of Neuronal Dynamics

In this section we study the effect of time-delayed feedback in neural systems [94].
Time delays can occur in the coupling between different neurons due to signal
propagation or in a self-feedback loop, e.g., due to neurovascular coupling in the
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brain. Moreover, time-delayed feedback loops might be deliberately implemented
to control neural disturbances, e.g., to suppress undesired synchrony of firing neu-
rons in Parkinson’s disease or epilepsy [71, 72]. Here we model the neurons in the
framework of the FitzHugh–Nagumo model [151, 152], which is a simple paradigm
of excitable dynamics. Time-delayed feedback control of noise-induced oscillations
was demonstrated in a single excitable FitzHugh–Nagumo system [26, 27, 89, 91].
The simplest network configuration displaying features of neural interaction con-
sists of two coupled excitable systems. In two coupled FitzHugh–Nagumo systems
two situations are studied: (i) stochastic synchronization of instantaneously coupled
neurons under the influence of white noise and controlled by local time-delayed
feedback [93, 153] and (ii) the emergence of antiphase oscillations in delay-coupled
neurons and complex scenarios induced by the additional application of time-
delayed self-feedback such as transitions from synchronized in-phase to antiphase
oscillations, bursting patterns, or amplitude death [94, 154]. In spatially extended
neuronal media time-delayed feedback as well as nonlocal spatial coupling has also
been studied, and it has been shown that pulse propagation in a reaction–diffusion
system can be suppressed by appropriate choice of the space or timescales of the
feedback [22, 23], which suggests failure of feedback as a common mechanism for
spreading depolarization waves in migraine aura and stroke. However, in the present
section we restrict ourselves to spatially homogeneous coupled FitzHugh–Nagumo
systems.

4.4.1 Model of Two Coupled Neurons

In order to grasp the complicated interaction between billions of neurons in large
neural networks, those are often lumped into groups of neural populations each of
which can be represented as an effective excitable element that is mutually coupled
to the other elements [145, 72]. In this sense the simplest model which may reveal
features of interacting neurons consists of two coupled neural oscillators. Each of
these will be represented by a simplified FitzHugh–Nagumo system, which is often
used as a paradigmatic generic model for neurons, or more generally, excitable sys-
tems [34].

Neurons are excitable units that can emit spikes or bursts of electrical signals,
i.e., the system rests in a stable steady state, but after it is excited beyond a thresh-
old, it emits a pulse. In the following, we consider electrically coupled neurons
(Fig. 4.34 a) modeled by the FitzHugh–Nagumo system in the excitable regime:

ε1u̇1 = u1 − u3
1

3
− v1 + C[u2(t − τ )− u1(t)]

v̇1 = u1 + a+ D1ξ1(t)

ε2u̇2 = u2 − u3
2

3
− v2 + C[u1(t − τ )− u2(t)]

v̇2 = u2 + a+ D2ξ2(t), (4.122)
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Fig. 4.34 (a) Scheme of two axo-axonally coupled neurons (pyramidal cells coupled by an elec-
trical synapse) [155]. (b) Two mutually coupled neural populations (delay τ , coupling constant C)
with feedback control loop (delay τK , coupling constant K) and noise input D1, D2 [94]

where the subsystems u1, v1 and u2, v2 correspond to single neurons (or neuron
populations), which are linearly coupled with coupling strength C. The variables
u1 and u2 are related to the transmembrane voltage and v1 and v2 refer to various
quantities connected to the electrical conductance of the relevant ion currents. Here
a is an excitability parameter whose value defines whether the system is excitable
(a > 1) or exhibits self-sustained periodic firing (a < 1), ε1 and ε2 are the timescale
parameters that are usually chosen to be much smaller than unity, corresponding to
fast activator variables u1, u2 and slow inhibitor variables v1, v2.

The synaptic coupling between two neurons is modeled as a diffusive coupling
considered for simplicity to be symmetric [156–158]. More general delayed cou-
plings are considered in [159]. The coupling strength C summarizes how informa-
tion is distributed between neurons. The mutual delay τ in the coupling is motivated
by the propagation delay of action potentials between the two neurons u1 and u2.
Time delays in the coupling must be considered particularly in the case of high-
frequency oscillations.

Each neuron is driven by Gaussian white noise ξi(t) (i = 1, 2) with zero mean
and unity variance. The noise intensities are denoted by parameters D1 and D2.

Besides the delayed coupling we will also consider delayed self-feedback in the
form suggested by Pyragas [6], where the difference s(t)−s(t−τK) of a system vari-
able s (e.g., activator or inhibitor) at time t and at a delayed time t−τK , multiplied by
some control amplitude K, is coupled back into the same system (Fig. 4.34b). Such
feedback loops might arise naturally in neural systems, e.g., due to neurovascular
coupling that has a characteristic latency or due to finite propagation speed along
cyclic connections within a neuron sub-population or they could be realized by
external feedback loops as part of a therapeutical measure, as proposed in [72]. This
feedback scheme is simple to implement, quite robust, and has already been applied
successfully in a real experiment with time-delayed neurofeedback from real-time
magnetoencephalography (MEG) signals to humans via visual stimulation in order
to suppress the alpha rhythm, which is observed due to strongly synchronized neural
populations in the visual cortex in the brain [160]. One distinct advantage of this
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method is its non-invasiveness, i.e., in the ideal deterministic limit the control force
vanishes on the target orbit, which may be a steady state or a periodic oscillation
of period τ . In the case of noisy dynamics the control force, of course, does not
vanish but still remains small, compared to other common control techniques using
external periodic signals, for instance, in deep brain stimulation to suppress neural
synchrony in Parkinson’s disease [161].

The phase portrait and the nullclines of a single FitzHugh–Nagumo system with-
out noise and feedback are shown in Fig. 4.35(a). The fixed point A is a stable focus
or node for a > 1 (excitable regime). If the system is perturbed well beyond point
A′ (see inset), it performs a large excursion A→ B→ C→ D→ A in phase space
corresponding to the emission of a spike (Fig. 4.35b). At a = 1 the system exhibits
a Hopf bifurcation of a limit cycle, and the fixed point A becomes an unstable focus
for a < 1 (oscillatory regime).

In the following we choose the excitability parameter a = 1.05 in the excitable
regime close to threshold. If noise is present, it will occasionally kick the system
beyond A′ resulting in noise-induced oscillations (spiking).
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Fig. 4.35 Excitable dynamics of a single FitzHugh–Nagumo system: (a) phase portrait (u1, v1)
(trajectory: solid blue and nullclines: dashed black), (b) time series of activator u1(t) (red) and
inhibitor v1(t) (green). The colored dots A, B, C, and D mark corresponding points on panels (a)
and (b). The inset in (b) shows a blowup of the phase portrait near A. Parameters: ε1 = 0.01,
a = 1.05, and D1 = 0 [94]

4.4.2 Control of Stochastic Synchronization

We shall first consider two coupled FitzHugh–Nagumo systems as in (4.122) albeit
without delay in the coupling (τ = 0). Noise can induce oscillations even though the
fixed point is stable. The noise sources then play the role of stimulating the excitable
subsystems. Even if only one subsystem is driven by noise, it induces oscillations
of the whole system through the coupling. In this subsection, we consider two non-
identical neurons, described by different timescales ε1 = 0.005 and ε2 = 0.1, and
set the noise intensity D2 in the second subsystem equal to a small value, D2 = 0.09,
in order to model some background noise level. Depending on the coupling strength
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C and the noise intensity D1 in the first subsystem, the two neurons show weak,
moderate, or strong stochastic synchronization [93].

If feedback is applied to one of the two interacting subsystems [93, 153], i.e.,
locally, the dynamical equations are given by:

ε1 u̇1 = u1 − u3
1

3
− v1 + C (u2 − u1) ,

v̇1 = u1 + a+ K [v1(t − τ )− v1(t)]+ D1 ξ (t), (4.123)

ε2 u̇2 = u2 − u3
2

3
− v2 + C (u1 − u2) ,

v̇2 = u2 + a+ D2 ξ2(t), (4.124)

where subsystems (4.123) and (4.124) represent two different neurons, and local
feedback with strength K and delay time τ is applied to the first subsystem.

There are various measures of the synchronization of coupled systems [162].
For instance, one can consider the average interspike intervals (ISI) of each subsys-
tem, i.e., 〈T1〉 and 〈T2〉, calculated from the u variable of the respective subsystem.
Their ratio 〈T1〉/〈T2〉 is a measure of frequency synchronization. Other measures for
stochastic synchronization are given by the phase synchronization index [93] or the
mean phase synchronization intervals [153].

First, we consider subsystems (4.123) and (4.124) with D1 = 0.6 and C = 0.2,
which corresponds to a moderately synchronized uncontrolled system. We aim to
find out if the feedback can make the subsystems more, or less, synchronous, and
their global dynamics more or less coherent. In particular, we are interested if per-
fect 1:1 synchronization can be induced by the local feedback or if the existing
synchronization can be destroyed. The ratio of ISIs and the synchronization index
γ1,1 are shown by color code in Fig. 4.36 for a large range of the values of the
feedback delay τ and strength K. The lighter areas are associated with the stronger
1:1 synchronization, and the values at K = 0 and at τ = 0 characterize the original
state of the system without feedback. As seen from Fig. 4.36, the locally applied
delayed feedback is able to move the system’s state closer to the 1:1 synchronization
with suitable feedback parameters. On the other hand, for τ ≈ 2.5 (black area), 1:1
synchronization is suppressed.

Next, we consider weakly synchronized subsystems (4.123) and (4.124) that are
further from the 1:1 synchronization region under the influence of the controlling
feedback. For D1 = 0.6 and C = 0.1, the ratio of ISIs and the synchronization index
γ1,1 are shown by color code in Fig. 4.37. Again, the stochastic synchronization can
be strongly modulated by changing the delay time, i.e., one can either enhance or
suppress synchronization by appropriate choice of the local feedback delay.

Finally, for the system that is very well synchronized from the beginning at
D1 = 0.15 and C = 0.2 again delayed feedback can either enhance or suppress
synchronization (Fig. 4.38). In view of applications, where neural synchronization
is often pathological, e.g., in Parkinson’s disease or epilepsy, it is interesting to note
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Fig. 4.36 Effect of delayed feedback on frequency and phase synchronizations between the two
subsystems at D1 = 0.6 and C = 0.2 (moderate synchronization). (a) Ratio of average interspike
intervals 〈T1〉/〈T2〉 from the two systems and (b) synchronization index γ1,1 vs. the control strength
K and the time delay τ [93]

Fig. 4.37 Same as Fig. 4.36 for D1 = 0.6 and C = 0.1 (weak synchronization) [93]



136 E. Schöll et al.

Fig. 4.38 Same as Fig. 4.36 for D1 = 0.15 and C = 0.2 (strong synchronization) [93]

that there are cases where a proper choice of the local feedback control parameters
leads to desynchronization of the coupled system (dark regions in all three figures).

4.4.3 Dynamics of Delay-Coupled Neurons

In this section we study the influence of a delay in the coupling of two neurons
[94, 154], rather than a delayed self-feedback (K = 0). We set the noise terms in
(4.122) equal to zero, D1 = D2 = 0, but consider a time delay τ in the coupling.
In the deterministic system the delayed coupling plays the role of a stimulus which
can induce self-sustained oscillations in the coupled system even if the fixed point
is stable. In this sense the delayed coupling has a similar effect as the noise term in
the previous section. Here the bifurcation parameters for delay-induced bifurcations
are the coupling parameters C and τ .

In the following we shall choose symmetric timescales ε1 = ε2 = ε = 0.01 and
fix a = 1.05, where each of the two subsystems has a stable fixed point and exhibits
excitability.

The unique fixed point of the system is symmetric and is given by u∗ ≡
(u∗1, v∗1, u∗2, v∗2), where u∗i = −a and v∗i = a3/3 − a. Linearizing (4.122) around
the fixed point u∗ by setting u(t) = u∗ + δu(t), one obtains:

δu̇ = 1

ε

⎛

⎜⎜
⎝

ξ −1 0 0
ε 0 0 0
0 0 ξ −1
0 0 ε 0

⎞

⎟⎟
⎠ δu(t)+ 1

ε

⎛

⎜⎜
⎝

0 0 C 0
0 0 0 0
C 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ δu(t − τ ), (4.125)
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where ξ = 1− a2 − C. The ansatz

δu(t) = eλtu, (4.126)

where u is an eigenvector of the Jacobian matrix, leads to the characteristic equation
for the eigenvalues λ:

(1− ξλ+ ελ2)2 − (λCe−λτ )2 = 0, (4.127)

which can be factorized giving

1− ξλ+ ελ2 ± λCe−λτ = 0. (4.128)

This transcendental equation has infinitely many complex solutions λ. The real
parts of all eigenvalues are negative throughout, i.e., the fixed point of the cou-
pled system remains stable for all C. This can be shown analytically for a > 1 by
demonstrating that no delay-induced Hopf bifurcation can occur. Substituting the
ansatz λ = iω into (4.128) and separating into real and imaginary parts yields for
the imaginary part

ξ = ±C cos (ωτ ). (4.129)

This equation has no solution for a > 1 since |ξ | = a2 − 1+ C > C, which proves
that a Hopf bifurcation cannot occur.

Delay-induced oscillations in excitable systems are inherently different from
noise-induced oscillations. The noise term continuously kicks the subsystems out
of their respective rest states and thus induces sustained oscillations. Instantaneous
coupling without delay then produces synchronization effects between the individ-
ual oscillators [93, 153]. For delayed coupling the case is entirely different. Here the
impulse of one neuron triggers the other neuron to emit a spike, which in turn, after
some delay, triggers the first neuron to emit a spike. Hence self-sustained periodic
oscillations can be induced without the presence of noise (Fig. 4.39). It is evident
that the oscillations of the two neurons have a phase lag of π . The period of the
oscillations is given by T = 2(τ + δ) with a small quantity δ > 0.

In order to understand this additional phase shift δ, we shall now consider in
detail the different stages of the oscillation as marked in Fig. 4.35. Due to the small
value of ε  1 there is a distinct timescale separation between the fast activators
and the slow inhibitors, and a single FitzHugh–Nagumo system performs a fast hor-
izontal transition A → B, then travels slowly approximately along the right stable
branch of the u1 nullcline B→C (firing), then jumps back fast to D, and returns
slowly to the rest state A approximately along the left stable branch of the u1 null-
cline (refractory phase). If a is close to unity, these four points are approximately

given by A = (− a,−a+ a3
1

3 ), B = (2,− 2
3 ), C = (1, 2

3 ), and D = (− 2, 2
3 ). A rough

estimate for A′ is (a− 2,−a+ a3
1

3 ). The two slow phases B→ C and D→ A can be

approximated by v1 ≈ u1 − u3
1

3 and hence v̇1 ≈ u̇1(1− u2
1) = u1 + a which gives
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Fig. 4.39 Delay-induced oscillations. (a), (b): Time series of both subsystems (red solid lines:
activator ui, green solid lines: inhibitor vi, and black dashed lines: fixed point values of activator
and inhibitor). (c), (d): Phase portraits of activators (c) and inhibitors (d). Parameters: a = 1.05,
ε = 0.01, C = 0.5, and τ = 3 [94]

u̇1 = u1 + a

1− u2
1

, (4.130)

which can be solved analytically, describing the firing phase (+) and the refractory
phase (−):

∫ u

±2
dx1

1− u2
1

u1 + a
= (a2 − 1) ln

a± 2

a+ u
− a(± 2− u)+ 2− u2

2
= t. (4.131)

Integrating from B to C gives the firing time

Tf =
∫ 1

2
dx1

1− u2
1

u1 + a
= (a2 − 1) ln

a+ 2

a+ 1
− a+ 3

2
. (4.132)

For ε = 0.01, a = 1.05 the analytical solution is in good agreement with the
numerical solution in Fig. 4.35(b), including the firing time Tf = 0.482 (analytical
approximation: 0.491).

For a rough estimate, in the following we shall approximate the spike by a rect-
angular pulse

u1(t) ≈
{

2 if t < Tf ,
−a if t ≥ Tf .

(4.133)
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If the first subsystem is in the rest state, and a spike of the second subsystem
arrives at t = 0 (after the propagation delay τ ), we can approximate the initial
dynamic response by linearizing u1, v1 around the fixed point (u∗1, v∗1) and approx-
imating the feedback by a constant impulse during the firing time Tf . The fast
dynamic response along the u1 direction is then given by

εδu̇1 = ξδu1 + 2C (4.134)

with ξ < 0. This inhomogeneous linear differential equation can be solved with the
initial condition u1(0) = −a:

u1(t) = −a+ 2C

|ξ | (1− e−
|ξ |
ε

t). (4.135)

Note that this equation is not valid for large t since (i) the linearization breaks down,
and (ii) the pulse duration Tf is exceeded. For small t (4.135) can be expanded as

u1(t) = −a+ 2C

ε
t, (4.136)

which is equivalent to neglecting the upstream flow field −|ξ |δu1 in (4.134) near
the stable fixed point A compared to the pulling force 2C of the remote spike which
tries to excite the system toward B. Once the system has crossed the middle branch
of the u1 nullcline at A′, the intrinsic flow field accelerates the trajectory fast toward
B, initiating the firing state. Therefore there is a turn-on delay δ, given by the time
the trajectory takes from A to A′, i.e., u1(δ) ≈ a− 2, according to (4.136):

δ = (a− 1)
ε

C
. (4.137)

Since the finite rise time of the impulse has been neglected in our estimate, the exact
solution δ is slightly larger and does not vanish at a = 1.

With increasing a the distance A−A′ increases and so does δ. The small additional
phase shift δ between the spike u1(t) and the delayed pulse u2(t − τ ) results in a
non-vanishing coupling term at the beginning and at the end of the spike u1(t). It is
the reason (i) that the spike is initiated and (ii) that it is terminated slightly before
the turning point of the u1 nullcline. The latter effect becomes more pronounced if
a is increased or τ is decreased (Fig. 4.40). Both lead to a shift of the initial starting
point of the spike emission on the left branch of the nullcline toward D, and hence to
a longer distance up to the middle branch of the nullcline which has to be overcome
by the impulse u2, hence to a larger turn-on delay δ, and therefore to an earlier
termination of the spike u1. This explains that the firing phase is shortened, and the
limit cycle loop is narrowed from both sides with increasing a or decreasing τ , see
Fig. 4.40. In the case of a = 1.05 and τ = 3 (Fig. 4.40 a), the delay time is large
enough for the two subsystems to nearly approach the fixed point A before being
perturbed again by the remote signal. If the delay time becomes much smaller, e. g.,
for τ = 0.8 (Fig. 4.40 b), the excitatory spike of the other subsystem arrives while
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Fig. 4.40 Phase portraits of delay-coupled excitable system (u1, v1) for different delay times τ
(trajectories: solid blue and nullclines: dashed black). (a) τ = 3 (δ = 0.009) and (b) τ = 0.8
(δ = 0.015). Other parameters: a=1.05, ε=0.01, and C=0.5 [94]

the first system is still in the refractory phase, so that it cannot complete the return
D→ A to the fixed point. In this case, a in (4.137) has to be substituted by a larger
value ã with a < ã < 1.7 in order to get a better estimate of δ. Note that without the
phase shift δ the coupling term C[u2(t − τ )− u1(t)] would always vanish in the 2τ
periodic state.

Next, we shall investigate conditions upon the coupling parameters C and τ
allowing for limit cycle oscillations. On one hand, if τ becomes smaller than some
τmin, the impulse from the excitatory neuron arrives too early to trigger a spike, since
the system is still early in its refractory phase. On the other hand, if C becomes too
small, the coupling force of the excitatory neuron is too weak to excite the system
above its threshold and pull it far enough toward B.

In Fig. 4.41 the regime of oscillations is shown in the parameter plane of the
coupling strength C and coupling delay τ . The oscillation period is color coded.
The boundary of this colored region is given by the minimum coupling delay τmin
as a function of C. For large coupling strength, τmin is almost independent of C,
with decreasing C it sharply increases, and at some small minimum C no oscilla-
tions exist at all. At the boundary, the oscillation sets in with finite frequency and
amplitude as can be seen in the insets of Fig. 4.41 which show a cut of the parameter
plane at C = 0.8. The oscillation period increases linearly with τ . The mechanism
that generates the oscillation is a saddle-node bifurcation of limit cycles (see inset
(b) of Fig. 4.41), creating a pair of a stable and an unstable limit cycle. The unstable
limit cycle separates the two attractor basins of the stable limit cycle and the stable
fixed point.

4.4.4 Delayed Self-Feedback and Delayed Coupling

In this section we consider the simultaneous action of delayed coupling and delayed
self-feedback [94]. Here we choose to apply the self-feedback term symmetrically
to both activator equations, but other feedback schemes are also possible:
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Fig. 4.41 Regime of oscillations in the (τ , C) parameter plane for initial conditions corresponding
to single-pulse excitation in one system. The oscillation period T is color coded. The transition
between black and color marks the bifurcation line. Inset (a) shows the oscillation period vs. τ in a
cut at C = 0.8. Inset (b): Schematic plot of the saddle-node bifurcation of a stable (red solid line)
and unstable (blue dashed) limit cycle. The maximum oscillation amplitude is plotted vs. the delay
time τ and the stable fixed point is plotted as a solid black line. The gray background marks the
bistable region. Parameters: a = 1.05, and ε = 0.01 [94]

ε1u̇1 = u1 − u3
1

3
− v1 + C[u2(t − τ )− u1(t)]+ K[u1(t − τK)− u1(t)]

v̇1 = u1 + a

ε2u̇2 = u2 − u3
2

3
− v2 + C[u1(t − τ )− u2(t)]+ K[u2(t − τK)− u2(t)]

v̇2 = u2 + a. (4.138)

By a linear stability analysis similar to Sect. 4.4.3 it can be shown that the fixed
point remains stable for all values of K and τK in the case of a > 1, as without self-
feedback. Redefining ξ = 1− a2 −C−K, one obtains the factorized characteristic
equation

1− ξλ+ ελ2 = λKe−λτK ± λCe−λτ (4.139)

Substituting the Hopf condition λ = iω and separating into real and imaginary parts
yields for the imaginary part

− ξ = K cos (ωτK)± C cos (ωτ ) (4.140)

This equation has no solution for a > 1 since |ξ | = a2 − 1+ C + K > C + K.
The adopted form of control allows for the synchronization of the two cells

not only for identical values of τ and τK but also generates an intricate pattern
of synchronization islands or stripes in the control parameter plane (Fig. 4.42)
corresponding to single-spike in-phase and antiphase oscillations with constant
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Fig. 4.42 Influence of delayed self-feedback upon coupled oscillations. The mean interspike inter-
val (ISI) is color coded in the control parameter plane of the self-feedback gain K and delay τK .
White areas mark regimes of irregular oscillations where the ISI variance becomes large (> 0.01).
Time series corresponding to points (a)–(f) are shown in Fig. 4.43. Other parameters: a = 1.3,
ε = 0.01, C = 0.5, and τ = 3 [94]

interspike intervals, see also Fig. 4.43(a–d). Further, for adequately chosen param-
eter sets of coupling and self-feedback control, we observe effects such as bursting
patterns (Fig. 4.43f) and oscillator death (Fig. 4.43e). In addition to these effects,
there exists a control parameter regime in which the self-feedback has no effect on
the oscillation periods (shaded yellow).

Figure 4.42 shows the control parameter plane for coupling parameters of the
uncontrolled system in the oscillatory regime (C = 0.5 and τ = 3). We observe
three principal regimes: (i) control has no effect on the oscillation period (yellow),
although the form of the stable limit cycle is slightly altered (Fig. 4.43a); (ii) islands
of in-phase and antiphase synchronization (color coded, see Fig. 4.43 (b–d)); and
(iii) oscillator death (black) Fig. 4.43 e).

Figure 4.44 shows the average phase synchronization time as a function of the
coupling delay τ and self-feedback delay τK for fixed K = 0.5. The bright straight
rays at rational τK/τ indicate long intervals during which both subsystems remain
synchronized. A particularly long average synchronization time is found if the two
delay times are equal.

In conclusion, we have shown that delayed feedback from other neurons or
self-feedback from the same neuron can crucially affect the dynamics of coupled
neurons. In the case of noise-induced oscillations in instantaneously coupled neural
systems, time-delayed self-feedback can enhance or suppress stochastic synchro-
nization, depending upon the delay time. In the case of delay-coupled neurons
without driving noise sources, the propagation delay of the spikes fed back from
other neurons can induce periodic antiphase oscillations for sufficiently large cou-
pling strength and delay times. If self-feedback is applied additionally, synchronous
zero-lag oscillations can be induced in some ranges of the control parameters, while
in other regimes antiphase oscillations or oscillator death as well as more complex
bursting patterns can be generated.
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Fig. 4.44 Average phase
synchronization time (color
coded) in the control
parameter plane of coupling
delay τ and self-feedback
delay τK . Other parameters:
a = 1.3, ε = 0.01, C = 0.5,
and K = 0.5 [94]
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Chapter 5
Finite Propagation Speeds in Spatially
Extended Systems

Axel Hutt

5.1 Introduction

In recent decades finite propagation speeds have been observed experimentally in
spatially extended systems. For instance, in neural and biological systems they have
been found to evoke novel spatio-temporal phenomena [4, 8–10, 12, 15, 21, 22, 24,
26, 28, 29, 37, 39]. This effect may be understood by the similarity of the delay
caused by the finite propagation speed and other intrinsic timescales. For instance,
axonal propagation speeds in intracortical neural connections are found in the range
of 0.1–1 m/s, while intracortical distances vary in a range of 10−4–10−3 m [38].
Hence the intrinsic propagation delay of cortical areas may vary in the range
10−4–10−2 s. In comparison, chemical synapses in neural systems respond to incom-
ing activity at similar timescales between 10−4 and 10−1 s [31] and thus interact
with the activity on the timescale of propagation delays [24, 21].

In spatially extended physical systems, the effect of a finite or maximum propa-
gation speed on the system’s spatio-temporal dynamics is not much studied. In this
context diffusion processes are very interesting. Normal and anomalous diffusive
activity [36, 30] is known to spread infinitely fast over space. Although this infinite
propagation speed is unphysical, most diffusion processes studied have been mod-
eled successfully by diffusion equations, as diffusion processes in spatial systems
evolve at a much lower speed than the maximum propagation speed of the system.
In recent years, however, experiments have detected ultra-fast activity pulse propa-
gation in solids and plasma [33, 35, 42]. To describe these effects mathematically,
models have been extended successfully by introducing an additional timescale cor-
responding to the finite propagation speed [7, 33, 42]. The present chapter extends
this approach and studies finite propagation speed effects in some detail for general
spatially extended systems.

Our work is inspired by achievements on the effect of propagation delays in neu-
ral systems. According to the intrinsic spatial structure in biological neural systems,
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most corresponding mathematical studies examine an integral–differential equation
which involves spatial nonlocal interactions and finite propagation speed. Interest-
ingly, this model type generalizes several well-known pattern formation systems in
one spatial dimension such as standard partial differential equation systems [21, 37].
This can be understood easily by the equation

∫ ∞

−∞
dyK(x− y)S(V(y)) =

∞∑

n=0

(− 1)nKn
∂nS(V(x))

∂xn
, (5.1)

with Kn =
∫

dηK(η)ηn/n! ∀n ∈ N. The integral on the left-hand side of (5.1)
represents the nonlocal spatial interaction and the spatial kernel K(x − y) may be
interpreted as the probability density of the spatial interaction between two spatial
locations x and y. On the right-hand side of (5.1), the infinite sum of partial spatial
derivatives sums up spatial interactions of all orders. For instance, truncating this
series after the second order yields locally interacting processes, i.e., diffusion pro-
cesses [21]. Subsequently, the integral–differential equations studied below gener-
alizes a broad class of pattern forming systems involving finite propagation speeds.

The next section studies spatial systems subject to an external input constant in
space and time. Stability criteria are derived and studied with respect to the finite
propagation speed. Further, the characteristic temporal scale of the system is intro-
duced and we shall learn how it defines the stability of the system. In addition, the
phase speed of traveling waves is derived and compared to the intrinsic propagation
speed. Then the subsequent section takes into account external random fluctuations
and we discuss the stability of equilibria. The application to a specific model extracts
additional effects of the propagation delay on the stationary distribution of the ran-
dom fluctuations.

5.2 Dynamics in the Absence of Noise

In the following we study spatial systems involving a propagation delay while
neglecting external random fluctuations. At first, the study of a specific neural
model serves to illustrate the mathematical problem and discusses the analysis steps
applied in some detail. Then the subsequent section generalizes these analysis steps
by the application to a generic model. The application to a non-standard spatial
interaction type elicits the power of this generalization and reveals a non-standard
pattern forming mechanism.

5.2.1 A Neural Field Model

Let us start with a well-studied model, which allows for the mathematical descrip-
tion of the spatio-temporal activity evolution in intracortical neural populations [24].
The neural activity V(x, t) obeys the integral–differential equation
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[
∂2

∂t2
+ 2

∂

∂t
+ 1

]
V(x, t) =

∫ ∞

−∞
dx′K(|x− x′|)S

[
V

(
x′, t − |x− x′|

v

)]
+ I(x, t)

(5.2)

K(|x− x′|) = ae

2
e−|x−x′| − air

2
e−|x−x′|r

with the sigmoid function S[V] = 1/(1 + exp ( − 1.8(V − 3.0))) [14, 40] and the
external input I(x, t). We remark that this equation type is different from integro-
differential equations, which exhibits the derivative and the integral in the same
variable. In contrast, (5.2) shows a temporal derivative and a spatial integral. The
temporal operator on the left-hand side of (5.2) reflects the linear response of chem-
ical synapses and specifies the temporal scale to 1. The integral on the right-hand
side takes into account the nonlocal spatial interactions along axonal fibers between
neurons, which are defined by the spatial interaction kernel K(x) (Fig. 5.1). The
parameter r represents the relation of the spatial range of excitation to the spatial
range of inhibition. For r < 1 (r > 1), the excitation spread is shorter (longer) than
the spatial spread of inhibition. Thus r represents the characteristic spatial scale of
the system [2]. Further, the interaction is delayed by the finite propagation speed v.

First insights into the spatio-temporal dynamics of the system are gained by the
analysis of the linear stability of the system. We assume that the system rests at an
equilibrium and shows no spatial structure. In other words, the system is constant
in space and time with V(x, t) = V0 = constant and I(x, t) = I0 = constant. Now
the question arises how the system evolves if small perturbations are applied to the
system. It is well known that these deviations may cause various spatio-temporal
phenomena [1, 11, 19] if the system parameters fulfill certain conditions. Recall
that an equilibrium is called stable if small perturbations applied to this state yields
a new system state which evolves in a small neighborhood of the equilibrium for all
time. Further, an equilibrium is said to be asymptotically stable if the small perturba-
tions applied to the state are damped out and the perturbed system converges to the
equilibrium after infinite time [16]. To study the dynamics of these deviations, we

|x-x’|

 k
er

ne
l  

K
(|

x-
x’

|) |x-x’|

r < 1 r >1

Fig. 5.1 Two cases of spatial interactions with K(|x−x′|) = ae exp [−|x−x′|]−air exp [|x−x′|r].
For r < 1, the system exhibits local excitation and lateral inhibition, while r ≥ 1 represents local
inhibition and lateral excitation
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apply a linear stability analysis to examine the model with respect to the emergence
of spatio-temporal pattern.

5.2.1.1 The Stationary Solution

From (5.2), the constant solution V0 obeys the implicit equation

(ae − ai)S(V0)− V0 + I0 = 0, (5.3)

which can be solved numerically. We point out that ae and ai represent the total
excitation and total inhibition in the system, respectively. Thus the constant equi-
librium state is independent of the choice of the spatial interaction, i.e., indepen-
dent of r. Figure 5.2 shows a graphical construction of (5.3) for ae > ai. For
−0.32 < I0 < 1.32, there are three solutions, while outside that interval there is
a single solution. We observe that the external input I0 determines the solutions
of (5.3) and thus represents the new control parameter of the system.

5.2.1.2 The Stability Threshold

To gain some information on the stability of each of the equilibria, we examine
small deviations from the equilibria which may vary in space and time

V(x, t) = V0 +
∫ ∞

−∞
dk u(k)eikx+λ(k)t, (5.4)

stationary field V0

0

2

4

I0 = 1.32

I0 = –0.32

0 1 2 3 4 5 6 7

Fig. 5.2 Construction of the constant stationary equilibria of (5.3). Filled and void circles represent
stable and unstable equilibria. At the critical values I = −0.32 and I = 1.32, there is a saddle node
solution (hatched circle) synchronous to a stable equilibrium. Parameters are ae = 10, ai = 5
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with constants in time u(k). Here the spatial deviations are formulated by their
Fourier transform which may exponentially increase (decrease) in time for positive
(negative) real parts of the Lyapunov exponent λ(k). This formulation represents a
decomposition of the spatial deviations into spatial modes with the corresponding
wave number k. Hence the sign of the Lyapunov exponent λ(k) defines the stability
of spatial modes with wave number k. By inserting (5.4) into (5.2) and utilizing
(5.3), we obtain

0 =
∫ ∞

−∞
dk u(k)eλ(k)t ×

[(
λ2(k)+ 2λ(k)+ 1

)
eikx − S′

∫ ∞

−∞
dx′K(x− x′)eikx′−λ(k)|x−x′|/v

]

=
∫ ∞

−∞
dk u(k)eikx+λ(k)t

[
λ2(k)+ 2λ(k)+ 1− S′

∫ ∞

−∞
dzK(z)e−λ(k)|z|/v−ikz

]

with the functional derivative S′ = δS/δV computed at V = V0, which can be
modified by changing the control parameter I0. In the neuroscience literature, S′ is
called the nonlinear gain.

Thus, it turns out that the different spatial modes u(k) decouple, leading to a
characteristic polynomial of sixth order for λ [24]

λ2 + 2λ+ 1− S′
[

1+ λ/v
k2 + (1+ λ/v)2

ae − r + λ/v
k2 + (r + λ/v)2

rai

]
= 0. (5.5)

Focusing on the spatially constant mode with k = 0, we observe that the center
equilibrium in Fig. 5.2 is unstable while all other equilibria are stable. Figure 5.3
illustrates this finding and shows the equilibria, their corresponding stability, and
the nonlinear gain S′ with respect to V0.
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Fig. 5.3 Bifurcation diagram and nonlinear gain for constant bifurcations for ae > ai. Left panel:
Stability of the stationary state V0 with respect to external input I0. For ae − ai >= 2.22, stable
(solid line) and unstable branches (dashed line) exist, while for ae−ai ≤ 2.22 there is only a single
stable solution. Right panel: The nonlinear gain S′ with respect to the constant state V0
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5.2.1.3 The Stationary Instability

According to the classification of spatio-temporal instabilities in extended systems
(see e.g. [11]), we may distinguish several important cases. The stability threshold
is given by the vanishing real part of λ(k). For real Lyapunov exponents λ ∈ R,
stationary instabilities may occur if λ = 0, yielding the condition

1

S′c
=

[
ae

k2
c + 1

− air2

k2
c + r2

]
.

For S′ = 0, the system is stable according to (5.5). Hence, increasing the control
parameter S′ from low values at which the equilibrium is stable, the equilibrium
becomes unstable if S′ ≥ S′c. This threshold defines the critical wave number kc.
In other words, below the threshold all spatial modes are stable, while the spatial
modes with wave number ±kc become marginally stable if S′ = S′c. In the case of
kc �= 0, this instability is called Turing instability [41, 6]. The resulting state of
the system for t → ∞ is stationary, i.e., time independent and space dependent.
Moreover, the threshold condition (5.5) implies r < 1 if ae > ai. This means that
Turing instabilities may emerge only if the system’s total excitation is stronger than
its total inhibition while the spatial range of excitation is shorter than the range
of inhibition. In other words, Turing instabilities may emerge in case of locally
excitatory and laterally inhibitory interaction. Figure 5.1 illustrates this interaction
type. Moreover, the critical control parameter S′c is independent of the propagation
speed v.

5.2.1.4 The Non-Stationary Instability

Let us now discuss the oscillatory instability of the equilibrium state, where the
system dynamics is expected to be space- and time dependent. Inserting λ = iω,
i.e., Re (λ) = 0, into (5.5) gives the two threshold conditions [24]

ω6 + b4ω
4 + b2ω

2 + b0 = 0, b5ω
4 + b3ω

2 + b1 = 0. (5.6)

The coefficients bi = bi(k2, r, S′, v, ae, ai), i = 1, . . . , 6, are algebraic expressions
of the wave number and the parameters of (5.5). Now we keep constant ae, ai, the
values of S′ by a specific external stimulus and vary r and the propagation velocity
v. Then the threshold condition reads r = r(v,ω2

c , k2
c ) in the v–r plane. Here kc and

ωc denote the wave number and the angular frequency, respectively, which belong to
the spatial mode first becoming unstable. Figure 5.4 shows the threshold values r =
r(v) for various parameter sets ae, ai. We observe that there is a critical propagation
speed v for each value of r below which two spatial modes with wave numbers
±kc and angular frequencies ±ωc become unstable. Thus, according to (5.4) the
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Fig. 5.4 Phase diagram of instabilities. An oscillatory instability may emerge for propagation
speeds below a certain threshold. This threshold depends on the parameter r, i.e., the relation
of excitatory and inhibitory spatial range. In contrast the Turing instability does not depend on the
propagation speed v. Reprinted from [24] by permission

spatio-temporal activity of the neural population is a linear superposition of plane
waves

V(x, t) = V0 + u1ei(kcx+ωct) + u2ei(kcx−ωct) + c.c. , (5.7)

where c.c. denotes the complex conjugate and the constants ui are given by the initial
conditions. In the case when kc = 0, such instabilities show global oscillations
constant in space and are called Hopf instabilities, while instabilities with kc �= 0
show a spatial periodicity and are called wave instabilities. The wave number kc

and the angular frequency ωc represent the spatial and temporal scale of the waves,
respectively, which are different from the intrinsic spatial and temporal scales of the
system.

In addition, the phase speed of the traveling waves are computed by vph =
ω(kc)/kc. Figure 5.5(a) shows the dependence of the phase speed from the propaga-
tion speed. It turns out that the wave speed is smaller than the propagation speed in
the system, which is expected due to the causality principle in nature. Interestingly
vph grows less for larger propagation speeds v, which indicates a maximum value
for v →∞. Similar behavior has been found in several previous studies [2, 9, 21].
Figure 5.5(b) shows the spatio-temporal activity slightly beyond the stability thresh-
old. We observe the onset of traveling waves that persist for large times, i.e., the
traveling wave pattern is stable. At a first glance this stability appears contradictory
to the linear instability discussed above. However, Fig. 5.5(b) shows the nonlinear
behavior of the full system (5.2), which is different from the linear behavior. Closer
examinations of the dynamics reveal that the nonlinear term S[V] in (5.2) confines
the activity and thus yields the nonlinear stability. Subsequently the linear stability
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Fig. 5.5 (a) The phase speed vph of traveling waves subject to the propagation speed v. The line
types encode the different values r = 5.0 (dashed), r = 10.2 (dotted), and r = 20.2 (solid) .
(b) The space–time plot of traveling waves close to the stability threshold. The parameters are
ae = 60, ae = 55, r = 3, and v = 1

analysis applied above just extracts the conditions for the onset of instabilities but
does not give any information on whether the emerging pattern exists for large
times. This existence condition can be extracted by a corresponding nonlinear anal-
ysis [16, 19].

5.2.1.5 Summary

In the previous paragraphs we have observed that small spatio-temporal deviations
from a constant equilibrium of the neural population may be decomposed into spa-
tial Fourier modes yielding an implicit characteristic equation. If the root of the
characteristic equation, i.e., the Lyapunov exponent, crosses the imaginary axis at
certain wave numbers of spatial modes, the equilibrium becomes unstable. It turns
out that the onset of stationary instabilities, such as the Turing instability, is inde-
pendent of the propagation delay, while the threshold of non-stationary instabilities
depend heavily on the propagation delay. In the case of an infinite propagation
speed, no non-stationary instability is possible, while propagation speeds below
a critical value yield oscillatory instabilities. The following section studies these
results in some more detail for a more general model and aims to explain the under-
lying effects of the propagation delay.

5.2.2 The Generic Model

Let us now examine the more general model equation [2]

L̂(∂/∂t)V(x, t) =
∫

Ω

K(x− y)S(V(y, t − |x− y|/v)) dy+ I(x, t) (5.8)

with the spatial domain Ω = R. Here L̂(∂/∂t) denotes the temporal operator with
constant coefficients and eigenvalue L(λ), i.e., L̂ exp (λt) = L(λ) exp (λt). Further, it
is assumed that L(λ) is a stable polynomial, i.e., all its roots have negative real parts.
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In addition, the intrinsic timescale is set to unity by choosing L(0) = 1 without loss
of generality [2]. A typical choice is a temporal operator of second order with the
eigenvalue

L(λ) = ηλ2 + γ λ+ 1, η = 0 or 1, γ > 0 . (5.9)

The kernel K : R → R represents the nonlocal spatial interaction. It is continuous,
integrable, and symmetric with K( − z) = K(z) for all z ∈ Ω . The transfer func-
tion S : R → R is assumed to be differentiable and monotone increasing. Further
the spatial interaction is delayed by the finite propagation speed v and I(x, t) ∈ R

denotes the external input.
Similar to the previous section, we aim to gain some insight into the spatio-

temporal dynamics by the study of the linear stability of (5.8). For a constant input
I(x, t) = I0, a constant equilibrium solution V(x, t) = V0 satisfies

V0 =
∫

Ω

K(x− y)S(V0) dy+ I0 = κS(V0)+ I0 (5.10)

with

κ =
∫

Ω

K(z) dz = 2
∫ ∞

0
K(z) dz. (5.11)

If S is bounded, then (5.10) has a solution V0 for any I0 ∈ R. In addition the
uniqueness of V0 depends on the sign of κ and the shape of S [2]. For instance,
if S is positive and increasing on R, such as the sigmoid function in Sect. 5.2.1, and
if κ ≤ 0, then the solution V0 is unique. On the other hand if κ > 0 then there
may be multiple equilibria, cf. Fig. 5.2. Since the external input determines the
constant equilibrium solutions, I0 represents the control parameter. In the following
we assume κ > 0, S[V] > 0, and δS[V]/δV > 0.

5.2.2.1 Equilibria and Linearization

Expanding the nonlinear functional about the equilibrium V0,

S[V(x, t)] = S[V0]+ δS[V(x, t)]

δV(x, t)
|V(x,t)=V0 (V(x, t)− V0)

+1

2

δ2S[V(x, t)]

δV(x, t)2
|V(x,t)=V0 (V(x, t)− V0)

2 + · · · ,

and considering small deviations u(x, t) = V(x, t) − V0, the linear stability of the
equilibrium solution V0 is determined by the linear variational equation

L̂(∂/∂t)u(x, t) = S′
∫

Ω

K(x− y)u(y, t − |x− y|/v) dy (5.12)
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with S′ = δS/δV computed at V0. Since V0 depends on the external input I0 and S′
is unique with respect to choice of V0, we shall use S′ as the control parameter in
the following discussion.

Due to the difference kernel K(x− y) the eigenfunctions of the integral operator
in (5.12) represent a continuous Fourier basis {ũ(k, t)} with

ũ(k, t) = 1√
2π

∫

Ω

u(x, t)e−ikxdx. (5.13)

Then we find the affine delay-differential equation for each spatial mode with wave
number k,

L̂ũ(k, t) = 2vS′
∫ ∞

0
K(vτ ) cos (kvτ )ũ(k, t − τ ) dτ . (5.14)

Thus in the linear regime the spatio-temporal dynamics of the system decouples
into single modes in Fourier space, while the space-dependent propagation delay
transforms to a distribution of constant delays [25].

The subsequent application of the ansatz ũ(k, t) ∼ exp (λ(k)t) to (5.14) yields

L(λ) = 2S′
∫ ∞

0
K(z) cos (kz) exp (− λz/v) dz. (5.15)

This relation is the characteristic equation of the linear problem (5.14).

5.2.2.2 Stability Conditions

We have learned in Sect. 5.2.1 that the characteristic equation (5.15) is in general
difficult to solve explicitly. The solutions (λ, k) of (5.15) correspond to the perturba-
tions u(x, t) = eλteikx about the equilibrium solution, which grow or decay in time
depending on whether Re (λ) is positive or negative, respectively. Hence in order to
determine the stability of V0, first we give the sufficient conditions for asymptotic
stability.

Theorem 5.1 (Asymptotic stability [2]) .
Let c = S′

∫∞
−∞ |K(z)| dz. If

c < min
ω
|L (iω)| (5.16)

then the stationary state V0 is asymptotically stable. In particular, if L(λ) = λ + 1
then the condition c < 1 is sufficient for the asymptotic stability of V0. If L(γ ) =
λ2+γ λ+1 with γ > 0, then the stationary state V0 is asymptotically stable provided

that the condition γ 2

2 > 1−√1− c2 holds in addition to c < 1.

The condition (5.16) is valid for all kernels, all temporal operators of up to sec-
ond order and it is independent of the propagation speed. If it does not hold, then
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spatio-temporal instabilities may emerge. To be more detailed, let us assume the
typical kernel K(x) = aeKe(x) − aiKi(x), which takes into account excitation and
inhibition weighted by ae and ai, respectively. The kernels Ke(x) and Ki(x) are nor-
malized to unity, i.e.,

∫
Ω

Ke,i(x)dx = 1, and represent the excitatory and inhibitory
spatial interaction, respectively. Then Theorem 5.1 states that the equilibria V0 are
asymptotically stable if

S′ ≥ γ
√

1− γ 2/4

ae + ai
for all 0 < γ < 2,

S′ ≥ 1

ae + ai
for all γ ≥ 2. (5.17)

To gain additional stability conditions, we follow the classification scheme dis-
cussed in the previous section. First let us discuss non-stationary instabilities.

Theorem 5.2 (Sufficient condition for non-oscillatory instabilities [21]) . Let the
kernel K(x) = aeKe(x)− aiK(x), with ae, ai, Ke(x), Ki(x) positive definite. Define the
mean spatial interaction ranges of excitation and inhibition, respectively, as

ξe =
∫

Ω

|z|Ke(z) dz and ξi =
∫

Ω

|z|Ki(z) dz,

and the corresponding mean propagation delays τe = ξe/v, τi = ξi/v. Let L(γ ) =
λ2 + γ λ+ 1 with γ > 0 and

S′c =
γ

aeτe + aiτi
. (5.18)

Then non-oscillatory instabilities are possible only if S′ ≥ S′c.

Here we have introduced the mean propagation delays τe and τi of excitatory and
inhibitory spatial interactions, respectively. Since all quantities are positive in (5.18),
it is clear that at least one of the propagation delays τe or τi must be non-vanishing
for the occurrence of non-stationary bifurcations. This means that non-stationary
instabilities are possible only if the propagation delay is finite. Thus Theorem 5.2
generalizes the specific findings in the previous section. This result is valid for tem-
poral operators up to second order. Figure 5.6 summarizes the previous results and
elicits the importance of the propagation delays.

5.2.2.3 The Stability Threshold

Now let us investigate the specific threshold conditions of stationary and non-
stationary instabilities. For S′ = 0, the Lyapunov exponents λ are simply given
by the roots of L and we find Re (λ) < 0 by the assumption that L is a stable
polynomial. In this case the equilibrium point is asymptotically stable. As S′ is
increased, the stability may be lost if a Lyapunov exponent λ(k) for some k crosses
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Fig. 5.6 Parameter regimes for non-stationary instabilities for two different excitatory mean propa-
gation delays τe. Valid parameters (hatched area) are constrained by the threshold of (5.18) plotted
as solid line, the threshold of the constant instability S′ < 1/(ae−ai) taken from Sect. 5.2.1 (dotted
line) and the threshold of the asymptotic stability (5.17) (dashed line). Here, it is γ = 2, τi = 0.1

the imaginary axis, and a dynamically different behavior may result in the original
nonlinear equation (5.8). At the stability threshold, Re (λ) = 0 and thus λ = iω,
ω ∈ R. Then the characteristic equation (5.15) becomes

L(iω) = S′
∫

Ω

K(z) cos (kz)e−iω|z|/v dz. (5.19)

The possibilities for the resulting behavior when S′ is near such a critical value can
then be qualitatively classified as follows:

1. For ω = 0, stationary instabilities may emerge, e.g., a Turing instability. Then
the stability condition reads

1/S′ >
∫

Ω

K(z) cos (kz) dz.

Hence, stationary instabilities are independent of the propagation delay for gen-
eral kernels and temporal operators up to second order.

2. For ω �= 0, the non-stationary instability to periodic oscillations from a spatially
uniform solution (k = 0) or spatially periodic solution (k �= 0) may emerge. The
former case is called Hopf instability and the latter is known as wave instabil-
ity. The corresponding threshold conditions are derived in the subsequent para-
graphs.

In order to study the type of bifurcations that may arise in a given situation, the
characteristic equation (5.19) needs to be solved for ω and k. However, explicit solu-
tions are difficult to obtain for general kernel functions. The results of the previous
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paragraphs imply that for infinite propagation speeds one has a simpler case, where
non-stationary instabilities do not exist for temporal operators up to second order.
It follows that the role of the propagation delay can be systematically examined
by following the changes of the Lyapunov exponent as the value of the transmis-
sion speed is decreased from infinity. Hence we consider the change in dynam-
ics as 1/v is increased from zero. This yields an approximation scheme that pro-
vides valuable insight into the effects of propagation delays in the dynamics of the
system [2].

Let us consider the power series estimate

exp (− λ|z|/v) =
m=N∑

m=0

(− λ|z|/v)m

m! +O(v−(N+1)).

The substitution in the characteristic equation (5.15) at the stability threshold λ = iω
gives a finite series in powers of 1/v,

L(iω) = α
∫

Ω

K(z) cos (kz)

[
m=N∑

m=0

(− iω|z|)m

m!
(

1

v

)m

+O(εN+1)

]

dz

= α
m=N∑

m=0

(− iω)m

m!
(

1

v

)m

K̂m(k)+O(εN+1) (5.20)

where the terms K̂m denote the Fourier kernel moments

K̂m(k) =
∫

Ω

|z|mK(z) cos (kz) dz (5.21)

and the integrals are assumed to exist. Then the separation of the real and imaginary
parts of (5.20) leads to

1

S′
Re L(iω) = K̂0(k)− 1

2

(ω
v

)
K̂2(k)+ . . . (5.22)

1

S′
Im L(iω) = −

(ω
v

)
K̂1(k)+ 1

6

(ω
v

)3
K̂3(k)− . . . . (5.23)

The number of terms needed for the above series to be useful depends on the value
of 1/v as well as on the shape of the kernel K. If K is highly concentrated near the
origin or if 1/v is small, i.e., the spatial interaction is short ranged or the propagation
speed is large, then a few terms are sufficient [2]. We assume that at least one of
these conditions is satisfied so that a small number of terms suffice to determine the
general behavior.
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In order to observe the qualitative effects of a finite transmission speed, we thus
neglect third and higher order terms in 1/v in the series (5.20). Then, for L given by
(5.9), (5.22) and (5.23) become

1

S′
(1− ηω2) = K̂(k)− 1

2ε
2ω2K̂2(k) (5.24)

1

S′
γω = −εωK̂1(k) (5.25)

where we have substituted the more conventional notation K̂ for the Fourier trans-
form K̂0 of the kernel. For stationary instabilities (ω = 0) one obtains from the first
equation [2]

1/S′c = K̂(k∗). (5.26)

For a non-stationary bifurcation ω �= 0, (5.25) implies

1/S′ = −K̂1(k∗)/vγ . (5.27)

Since −K̂1/vγ is continuous and K̂1(k)→ 0 as k→±∞, it has a global maximum
at some values of k which corresponds to the first mode that loses stability. This loss
of stability may happen as v is decreased, K̂1 is decreased, or as S′ is increased, see
Fig. 5.7 for illustration of the latter case. Thus let

k–k

1/Sc

k

1/S>

1/S<

–K1(k)/vγ^

’

* *

’

’

Fig. 5.7 Illustration of the onset of non-stationary instabilities. Below the stability threshold, the
control parameters S′ = S′< are smaller than the critical S′c from (5.27), 1/S′< is larger than
−K̂1(k∗)/vγ , and the system is stable. For S′ = S′c the condition (5.27) is fulfilled and the cross-
ing points of the horizontal 1/S′c and the curve −K̂1(k∗)/vγ determine the critical wave number
±k∗. In the case of S′ = S′>, a band of spatial modes becomes unstable for which S′ > S′>, i.e.,
1/S′ < −K̂1(k∗)/vγ
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k∗ = min
k

K̂1(k) = min
k

∫

Ω

|z|K(z) cos (kz) dz, (5.28)

and provided that K̂1(k∗) < 0, k∗ will be the sought solution of (5.27). Substituting
k∗ into (5.24) gives the critical angular frequency of the non-stationary instability,

ω2 = αK̂(k∗)− 1
1
2αK̂2(k∗)/v2 − η . (5.29)

These last analysis steps represent a simple procedure to calculate the pairs (ω, k)
satisfying the characteristic equation.

Essentially it remains to determine what type of instability actually occurs. This
depends on the mode by which the equilibrium solution loses its stability as the
control parameter S′ is increased. The procedure described above gives a simple
graphical method. Thus, if one plots the curves K̂(k) and −K̂1(k)/vγ in the same
graph and adds in mind a horizontal line at 1/S′ being lowered from infinity (S′ ≈ 0),
then the first intersection point specifies the instability type. If the horizontal line
touches the graph of K̂(k) first, i.e., the global maximum of K̂(k) is larger than the
global maximum of −K̂1(k)/vγ , then (5.26) is satisfied and a stationary instability
occurs. If, on the other hand, the horizontal line touches−K̂1(k)/vγ first, then (5.27)
is satisfied and a non-stationary instability occurs. Furthermore, the value of k at
the intersection point being zero or nonzero specifies whether the new solution is
spatially constant or not, respectively. It is worthwhile to note that the type of insta-
bility that can occur depends only on the extremal values of K̂(k) and K̂1 and not
on the exact shapes of their graphs. This observation has the important consequence
that the instability type depends only on some general properties of the kernel and
not on its precise shape. Figure 5.8 shows different types of spatial kernels and
the corresponding functions K̂(k) and −K̂1/vγ . We observe that excitatory systems
may yield wave instabilities and stationary instabilities with k = 0 (Fig. 5.8a), while
Hopf instabilities may occur in inhibitory systems (Fig. 5.8b). Moreover, systems
with local inhibition and lateral excitation may show stationary bifurcations with
k = 0 or wave instabilities (Fig. 5.8c) and local excitatory-lateral inhibitory systems
may show Turing instabilities, wave instabilities, or Hopf instabilities.

5.2.2.4 Application to a Specific Model

The previous analysis discussed the linear stability of the constant equilibria for gen-
eral spatial interactions. This allows us to investigate the stability of non-standard
spatial interactions. Motivated by experimental findings in the brain of mice [38],
the kernel studied represents a family of excitatory interactions and a fast-decaying
exponential inhibitory interaction:

K(x) = 1

2Γ (p)
|x|p−1e−|x| − 1

2
re−r|x|, (5.30)
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Fig. 5.8 Typical interaction kernels and the corresponding kernel Fourier moments. The first col-
umn shows the kernels, with the corresponding Fourier transforms in the second column. In the last
subfigure, two distinct possibilities for−K̂1/γ v are shown with dashed and dotted lines. Reprinted
from [2] by permission

with the gamma-function Γ (p), the parameter p > 0, and the relation of excitatory
and inhibitory spatial range r. To be more specific, p = 1 leads to an exponen-
tially decaying excitatory kernel, p > 1 represents gamma-distributed excitation,
and p < 1 yields divergent local excitation. In the latter case the additional choice
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Fig. 5.9 The kernel functions K(x) from (5.30), the scaled negative first kernel Fourier moment
−K̂1(k)/vγ (solid line) and the Fourier transform of the kernel K̂(k) (dashed line) for different
parameter sets. The parameters are ae = 10, ai = 8, p = 0.5, v = 0.6, γ = 0.2 and (a) r = 0.8 and
(b) r = 0.7. The critical wave numbers are (a) k∗ = 0.0 and (b) k∗ = 0.4

r > 1 represents local excitation and lateral inhibition. Corresponding to Sect. 5.2.1
and the knowledge from partial differential equation models [19], this interaction
type is known to yield Turing instabilities. From a more physical point of view
this is reasonable, as the local excitation enhances local activity and the lateral
inhibition diminishes lateral activity and thus enhances local structures. In terms of
the previous classification procedure, we would expect a global maximum of K̂(k),
which exceeds the global maximum of −K̂1(k)/vγ . However, Fig. 5.9 shows that
there exist parameter sets, which yield a higher global maximum of −K̂1(k)/vγ .
This is possible due to the low values of vγ . In other words, if the propagation
speed is small enough, oscillatory instabilities emerge. This finding is confirmed
numerically for the parameters in Fig. 5.9(b) by integrating the full model (5.8), see
Fig. 5.10.

5.2.2.5 Summary

The analysis in this section is useful to gain insights into the effects of the propaga-
tion on the dynamical behavior at the stability threshold. At first we have learned that
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Fig. 5.10 Wave instability for local excitation–lateral inhibition interaction for parameters taken
from Fig. 5.9(B)
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the propagation delay, which is dependent on space, recasts to a distributed constant
delay in Fourier space. Further, we have found the quantity of a mean propagation
delay, which defines a sufficient condition for non-oscillatory instabilities. Finally,
the Fourier transform and the first Fourier kernel moment are observed to be crucial
for stability: the former is instrumental for stationary instabilities while the latter
for the non-stationary ones. This finding is valid for fast-decaying kernels or large
but finite propagation speeds. Outside of this validity range, the higher moments of
the kernel are expected to make contributions to the results, which, however, are not
discussed here.

5.3 Dynamics In The Presence of Noise

In this section we aim to investigate how external random fluctuations affect the
dynamics of spatial systems involving propagation delay. The final application to a
specific model elicits the interaction of random fluctuations and propagation delays.

5.3.1 General Stability Study

The model studied is similar to the one discussed in the previous section and reads

L̂(∂/∂t)V(x, t) =
∫

Ω

K(x− y)S(V(y, t − |x− y|/v)) dy+ I(x, t), (5.31)

where L̂ represents the temporal operator with eigenvalue L(λ), K(x) denotes the spa-
tial interaction kernel, and S[V] is a monotonic increasing functional of the activity
variable V(x, t). The system exhibits a finite propagation speed v and is assumed
infinite in space, i.e., Ω = R. In contrast to the previous section, now the external
input I(x, t) = I0 + ξ (x, t) is the sum of a constant input I0 and random fluctuations
ξ (x, t) with

〈ξ (x, t)〉 = 0, 〈ξ (x, t)ξ (x′, t′)〉 = Qδ(x− x′)δ(t − t′), (5.32)

where 〈·〉 denotes the ensemble average. The random fluctuations obey a Gaussian
distribution with variance Q and are uncorrelated in space and time.

In the previous section, we have shown how to extract stability conditions while
considering the propagation delay. Recall that we have determined the constant
equilibria and studied the Lyapunov exponent of the linearized problem about the
equilibria. At a first glance this approach is not applicable here due to the external
random fluctuations. The question arises how we can obtain constant equilibria if
a random process disturbs the system for all times. Let us first recall the definition
of stability: A system state is said to be stable if the system evolves in a small
neighborhood of this state for all time. Hence we argue that the stable system
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state might be equivalent to the deterministic stable equilibrium state V0 and the
system evolves in a small neighborhood about this stable equilibrium due to the
external random fluctuations. Thus the stable equilibrium constant in space and time
fulfills

V0 = κS(V0)+ I0,

with κ = 2
∫∞

0 K(z) dz. Up to this point the stability of V0 still has to be confirmed.
The subsequent paragraphs study the dependence of the system dynamics on the
random fluctuations and at last shall answer this question of stability.

Further, presuming the fluctuation variance Q being small may yield small devi-
ations from the equilibria, u(x, t) = V(x, t) − V0 and we obtain the linear delayed
stochastic integral–differential equation

L̂(∂/∂t)u(x, t) = α
∫

Ω

K(x− y)u(y, t − |x− y|/v) dy+ ξ (x, t), (5.33)

with S′ = δS/δV computed at V = V0. In the following sections we shall use S′
as the control parameter. Now let us study (5.33) in the Fourier space similar to the
deterministic case. With the Fourier transformation

ũ(x, t) = 1√
2π

∫

Ω

ũ(k, t)eikxdk,

we find the stochastic delay-differential equation for each spatial mode [25],

L̂ũ(k, t) = 2vS′
∫ ∞

0
K(vt′) cos (kvt′)ũ(k, t − t′) dt′ + ξ̃ (k, t). (5.34)

The new random fluctuations ξ̃ (k, t) of the spatial mode with wave number k obey a
Gaussian distribution and are uncorrelated in k-space and in time with

〈ξ̃ (k, t)〉 = 0, 〈ξ̃ (k, t)ξ̃ (k′, t′)〉 = Qδ(k − k′)δ(t − t′). (5.35)

Thus, our model corresponds to an infinite set of affine delay-differential equations
(see, e.g. [20, 25]) with distributed delays subject to the external force ξ̃ (k, t). Think-
ing of ξ̃ (k, t) as an external perturbation, linear response theory gives the general
solution of (5.34) by

ũ(k, t) = ũh(k, t)+
∫ ∞

−∞
dt′ G(k, t − t′)s(k, t′) . (5.36)

Here ũh(k, t) represents the homogeneous solution of (5.34), i.e., for ξ̃ (k, t) = 0,
and G(k, t − t′) is the Green’s function of the spatial mode with wave number k.
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Applying standard techniques in linear response theory [27], the Green’s function is
given by [23]

G(k, t) = 1

2π

∫ ∞

−∞
dω

e−iωt

L(− iω)− K̄(k, iω)
, (5.37)

with

K̄(k, iω) = 2vS′
∫ ∞

0
dτ K(vτ ) cos (kvτ )eiωτ . (5.38)

It turns out that the denominator in (5.37) is equivalent to the characteristic equation
(5.15). Extending the real domain of ω to the complex plane P and applying the
residue theorem, we have

G(k, t) = Θ(t)

[

i
m∑

l=1

Resl(e
−iΩlt)

]

= Θ(t)
m∑

l=1

rl(k)eλl(k)t. (5.39)

The Heaviside function Θ( · ) guarantees the causality and m denotes the number of
complex roots Ωl(k) ∈ C of the denominator in (5.37). That is, m is the (in general
infinite) number of complex roots of the characteristic polynomial. Further, Resl

denotes the residue of the numerator in (5.37) at root Ωl(k), λl(k) = −iΩl(k), and
the constants rl ∈ C are defined by the corresponding residues.

It turns out that the Green’s function G(k, t) decays for large times if all vari-
ables λl(k) show negative real parts, while a single root with Re (λl) > 0 causes
the Green’s function to diverge. Since the Green’s function defines all dynamical
properties of the system under study [27], the set {λl(k)}, l = 1, . . . , m, defines the
stability of the spatial mode k and thus represent the Lyapunov exponents. Subse-
quently stable spatial modes exhibit roots Ωl(k) below the real axis in the complex
plane P, see Fig. 5.11.

Ω2Ω1

Ω2Ω1

Ω3 Ω3

P P

(a) (b)

Fig. 5.11 Illustration of the complex plane P and three roots Ωl(k) in the case of stability (a) and
at the onset of an oscillatory instability (b)
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Eventually inserting (5.39) into (5.36) we obtain

ũ(k, t) = ũh(k, t)+
m∑

l=1

rl(k)
∫ t

0
dt′ eλl(k)(t−t′)s̃(k, t′)

and

u(x, t) = ũh(x, t)

+ 1√
2π

m∑

l=1

∫ t

0

∫ ∞

−∞
eλl(k)(t−t′)s̃(k, t′)rl(k)eikxdk dt′, (5.40)

assuming the initial time at t = 0. If all roots are located in the lower complex plane,
i.e., Im (Ωl(k)) = Re (λl(k))< 0, (5.40) has stable solutions for random fluctuations
described by a Lévy process [18]. This means that the stability of the equilibria V0
in the presence of external additive fluctuations for a stochastic path is given by the
Lyapunov exponents obtained from the deterministic case.

5.3.2 Application to a Specific Model

The previous paragraphs showed that the stability conditions of the system are
independent of the additive fluctuations. Now the question arises how the exter-
nal random fluctuations affect the dynamics of spatial systems that involve finite
propagation speeds. To study these effects, let us assume excitation and inhibition
with the specific kernels

Ke(x) = 1

2
√

D
e−|x|/

√
D and Ki(x) = 1

2
δ(x− |R|),

respectively, and the kernel function is given by K(x) = aeKe(x) − aiKi(x) with
weights ae, ai. Here

√
D and R denote the excitatory and inhibitory interaction

range, respectively. Then the linear evolution equation of the spatial mode k (5.34)
reads [25]

∂

∂t
ũ(k, t) = S′

∫ ∞

0

[
ae√

D
e−|x|/

√
D − aiδ(x− |R|)

]
cos (kx)ũ(k, t − x/v) dx

+ξ (k, t)

≈ −a(k)ũ(k, t)− b(k)ũ(k, t − τ )+ ξ (k, t) (5.41)

with the constant delay τ = R/v and the parameters

a(k) = 1− S′ae(1− Dk2), b(k) = S′ai cos (kR)
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Here the finite propagation speed v becomes a constant delay τ > 0. In addition,
(5.41) presumes a very short excitation range

√
D with

√
Dω  v and

√
D  k

at a typical frequency ω and a typical wave number k. This approximation reflects
excitatory spatial diffusion [25].

Equation (5.41) is a linear stochastic delay-differential equation for the Fourier
amplitudes ũ(k, t). In recent years several studies have examined the stochastic
dynamics of such systems [3, 5, 13, 17, 32, 34]. Küchler and Mensch [32] proved
that the deterministic stability of (5.41) guarantees a stationary probability distri-
bution of ũ(k, t) (Proposition 2.8 in [32]). Moreover, the stationary distribution is
Gaussian with zero mean and variance σ 2. This important result allows us to study
the properties of ũ(k, t). After extracting the stability conditions, which coincide
with the deterministic conditions, we shall examine the variance and its dependence
on the delay time, i.e., the propagation speed.

5.3.2.1 Stationary Instability

The deterministic characteristic equation reads λ = −a− b exp (− λτ ). First let us
discuss (5.41) in the context of stationary instabilities. Then the stability threshold
is given by a = −b or

1

S′c
= ae(1− Dk2)− ai cos (kR), (5.42)

see Fig. 5.12. The graphical illustration is similar to the previous section: For
S′ < S′c, the thought horizontal line 1/S′ exceeds the global maximum of the
graph of ae(1 − Dk2) − ai cos (kR) and all spatial modes are stable with respect
to stationary bifurcations. If 1/S′ = 1/S′c, the crossing points of the horizontal 1/S′
and the graph of ae(1 − Dk2) − ai cos (kR) define the critical wave numbers ±k∗,
i.e., a Turing instability emerges with wave number k∗.

In addition, the stability condition (5.42) is independent of the delay in accor-
dance to the general results obtained in the previous section. According to [32], the
variance of the resulting stationary distribution of ũ(k, t) is

–10

10

wave number k

1/S’c

k*k*–1 1

Fig. 5.12 Graphical illustration of the threshold of stationary instabilities (5.42) with critical wave
number k∗. The solid line denotes the right-hand side of (5.42). Parameters are ae = 10, ai =
8, D = 1, R = 5
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1–1
wave number k

variance σ2(k)

k*–k*

Fig. 5.13 The variance of the Turing instability constructed in Fig. 5.12 with critical wave number
k∗ and τ = 0.5 (solid line), τ = 1.5 (dashed line). Other parameters are taken from Fig. 5.12

σ 2 = 1+ τS′ai cos (kR)

4S′ai cos (kR)+ 1− S′ae(1− Dk2)
, (5.43)

which depends on the delay time τ . Hence the delay, i.e., the finite propagation
speed, does not affect the threshold condition of stationary instabilities but the
stationary distribution of the system. Figure 5.13 shows the variance (5.43) with
respect to the wave number k and it diverges at the critical wave numbers ±k∗. This
divergence of variance is well known from the study of phase transitions, and the
system shows the so-called critical fluctuations.

5.3.2.2 Non-Stationary Instability

Now let us focus on oscillatory instabilities. To this end, we find the stability thresh-
old for the spatial mode with wave number k,

τc(k) = 1

Ω(k)
arctan

(
−a(k)

b(k)

)
, Ω(k) =

√
b2(k)− a2(k), (5.44)

whereΩ(k) denotes the angular frequency of the oscillations and the τc is the corre-
sponding critical delay. Then the fluctuations ũ(k, t) are stationary if the conditions

0 < τ < τc and ai cos (kR) > 1/α − ae(1− Dk2) > −ai cos (kR)

hold [32]. Figure 5.14 illustrates the stationary regime for a band of wave num-
bers. At the borders of that band the critical delay τc diverges. This happens as the
corresponding wave numbers represent the critical wave numbers of the stationary
instability (cf. (5.42)) which is independent of the delay. Moreover, Fig. 5.14 reveals
a minimum critical delay τc(0) beyond which there is a band of unstable spatial
modes. In other words, for delays τ > τc(0) the system is unstable.
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wave number k

delay τ

0.25–0.25 0

Fig. 5.14 The stationarity regime for various delays in a specific band of wave numbers. The bold
line denotes the threshold function τc(k) and the shaded area below that line denotes the regime of
stationarity. The parameter values are ae = 10, ai = 8,α = 0.1, D = 1.0, R = 5

Finally let us study the fluctuations. They are Gaussian with zero mean and have
the variance [25]

σ 2(k) = Ω(k)+ b(k) sin (Ωτ )

2Ω(k)(a(k)+ b(k) cos (Ω(k)τ ))
.

Figure 5.15 shows σ 2 with respect to the wave numbers for the delay τ just below
the critical delay τc. The variance of the spatial modes with k �= 0 is finite, while
the constant spatial mode exhibits the diverging variance reflecting the critical fluc-
tuations of the marginal stable mode.

5.3.2.3 Summary

In this section we studied spatial systems subject to external random fluctuations by
applying linear response theory. It turned out that the Lyapunov exponents deter-
mined from the deterministic model define the stability of the stochastic system
near the equilibrium. The subsequent study of specific spatial interactions extracted
the conditions for stationary and non-stationary instabilities. Near the onset of sta-
tionary instabilities, the stability threshold is independent of the propagation delay,
while the variance of the corresponding stationary probability depends on the prop-
agation delay. In the case of oscillatory instabilities, both the stability threshold and
the variance depend on the propagation delay.

Fig. 5.15 The variance of
the stationary distribution just
below the onset of the Hopf
instability with τ ≈ τc(0).
Further parameters are taken
from Fig. 5.14 wave number k

variance σ2

–0.2 –0.1 0 0.1 0.2
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Chapter 6
Stochastic Delay-Differential Equations

André Longtin

6.1 Introduction

This chapter concerns the effect of noise on linear and nonlinear delay-differential
equations. Currently there exists no formalism to exactly compute the effects of
noise in nonlinear systems with delays. The standard Fokker–Planck approach is
not justified because it is meant for Markovian systems. Delay-differential systems
are non-Markovian, although various approximations to them might be Markovian.
For example, if the delay is small in comparison with all other timescales of the
system, one can approximate the SDDE by a system of ordinary stochastic differen-
tial equations [12] (see Sect. 4). A notable exception is the class of linear stochastic
differential equations with additive noise (see Sect. 3 below). In this case, while
there is no Fokker–Planck formalism, the statistics of the system are Gaussian and
one needs only compute the first two moments of the probability density of the
variable.

Delay-differential equations (DDEs) occur in a wide variety of natural and man-
made systems. They often arise from an approximation to a partial differential equa-
tion that describes, e.g., diffusion of some reacting substance or a traveling wave in
some medium. For simplicity we confine our discussion to DDEs in one variable,
referred heretofore as scalar DDEs. This nomenclature is somewhat misleading
because delay-differential equations are infinite-dimensional dynamical systems: an
infinite number of initial conditions—a function on the initial delay interval—is
needed to uniquely specify their time evolution. The general class of dynamical
systems that we focus on in this chapter is

dx(t) = f (x(t), x(t − τ )) dt + σg (x(t)) dW(t) (6.1)

where x ∈ R, W(t) is the standard Wiener process (i.e., with zero mean and variance
equal to t) and σ is the noise strength.
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One key question in this area is the following: Does there exist a Fokker–Planck
type of description that can be solved for the time-dependent probability density
ρ(x, t)? The problem of obtaining a complete description of the time evolution of
the probability density for even a scalar delay-differential equation (i.e., a delay-
differential equation in one variable) is currently beyond reach. We review a number
of approximations to this density that are available for nonlinear systems. These
usually involve converting the DDE to a deterministic system that approximates
it—and that reduces its dimension by making it finite. In the following we will thus
refer to these approximations as reduction methods.

Not surprisingly, since DDEs occur in a variety of applications, the influence
of noise on such DDEs is increasingly a focus of investigation. This is true espe-
cially in the world of laser physics, where delays arise from finite propagation times
inside optical cavities and around optical circuits external to the laser, as well as
in optical fiber networks. There have also been very recent studies of the enhance-
ment by noise of the oscillations in a network of delayed-coupled oscillators [20]
and in a bistable discrete-time stochastic map [35], of stochastic resonance in a
non-Markovian system [38], and of control of noise-induced motion in relaxation
oscillators using delayed feedback [17].

In the biological world, delays arise from finite maturation or division time of
various cellular species, such as blood cell lines, or the synthesis of various molec-
ular species, as in the immunological system or genetic control systems [15]. In
neuroscience, delays arise from the propagation time of nerve impulses down axons
and across synapses. In such systems one is often faced with the problem of dis-
tributions of delays [1]. Noise has particularly permeated the fields of research of
genetics and neuroscience over the last decades, efforts that point to the potential
useful synergy between these fields and the development of a common language for
the experimental and modeling approaches [41].

The influence of noise in neural systems will be summarized in the last part of
our review. We first begin by stating the fundamental problem with the analysis of
SDDEs, then describe the linear case, followed by the pros and cons of small delay
Taylor expansions of the SDDE. This chapter then discusses other recent approxi-
mations that may be useful in different contexts and which may point the reader into
new directions of investigation.

6.2 The Fundamental Issue

Recent mathematical treatments of SDDEs have revealed interesting properties on,
e.g., the existence of smooth probability densities [2] and exponential stability [29].
Here we focus on the issue of formulating a Fokker–Planck-type equation from
an SDDE. Let x ∈ (a, b). Define xτ ≡ x(t − τ ) and x ≡ x(t). Let the bivariate
density P(xo, to;xτ , tτ |φ) dxodxτ describe the probability that x(to) ∈ (xo, xo + dxo)
and x(tτ ) ∈ (xτ , xτ + dxτ ), conditional on the initial function x(t) = φ(t) for all
t ∈ (− τ , 0). We can then show that [12]
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∂

∂t
p(xo, t|φ) = − ∂

∂xo

(

p(xo, t|φ)
∫ b

a
dxτ f (xo, xτ )p(xτ , t − τ |xo, t;φ)

)

(6.2)

+σ
2

2

∂2

∂x2
o

(
p(xo, t|φ)g2(xo)

)
, (6.3)

(6.4)

where

p(xo, to|φ) ≡
∫ b

a
dxτ p(xo, to;xτ , tτ |φ) (6.5)

and

p(xτ , tτ |xo, to;φ) ≡ p(xo, to;xτ , tτ )|φ)

p(xo, to|φ)
. (6.6)

This PDE looks very much like the usual Fokker–Planck equation associated with
the Ito Langevin equation

dx

dt
= f (x)+ σg(x)ξ (t) (6.7)

for a Markovian system, where ξ (t) = dW/dt is Gaussian white noise:

∂p(x, t)

∂t
= −∂f (x)p(x, t)

∂x
+ σ

2

2

∂2g2(x)p(x, t)

∂x2
(6.8)

where we have dropped the conditioning on the initial state of the system for clarity.
There is, however, one important difference: the drift term involves an integral over
the conditional probability density

p(xτ , t − τ |xo, t;φ) . (6.9)

The problem is that this conditional density must be known in order to solve for the
density of interest, p(xo, t|φ), so one is faced with a circular problem. Nevertheless
this form is useful as a starting point for approximation schemes or when used in
conjunction with them. Let us define a “conditional average drift” or CAD as

f (xo, to|φ) ≡
∫ b

a
dxτ f (xo, xτ )p(xτ , to − τ |xo, to;φ) , (6.10)
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which is also the average of (d/dt)x(t) at time to given that x(to) = xo. Using this
CAD, (6.4) becomes

∂

∂t
p(xo, t|φ) = − ∂

∂xo

{
f (xo, t|φ)p(xo, t|φ)

}
(6.11)

+σ
2

2

∂2

∂x2
o

{
g2(xo)p(xo, t|φ)

}
(6.12)

which is the usual Fokker–Planck equation corresponding to the SDE

dx(t) = f (x(t), t|φ)dt + σg(x(t))dW(t) . (6.13)

As the system approaches a steady state for t → ∞, the functions f (xo, t|φ) and
p(xo, t|φ) approach their steady-state equivalents f

s
(xo|φ) and p(xo, t|φ), respec-

tively. For reflecting boundary conditions, these two functions are related by the
potential solution

ps(xo|φ) = N

g2(xo)
exp

(
2

σ 2

∫ xo

c
dx′ f

s
(x′|φ)

g2(x′)

)

(6.14)

where c ∈ (a, b) and N is the normalization constant over (a, b). We will return
to these results when we investigate the delayed Langevin equation, perhaps bet-
ter referred to as the stochastic Wright equation, in the section on the small delay
expansion.

6.3 Linear SDDEs

It is possible to obtain a description of the stochastic delayed dynamics in terms of
a stationary probability density for the delayed Langevin problem [8, 12, 19]:

dx(t) = αx(t − τ )dt + dW(t). (6.15)

Since the zero-mean Gaussian process acts additively on a linear ordinary differ-
ential equation, x(t) will also be a zero-mean Gaussian process. This means that
one needs only to calculate the second moment. The solution can be obtained in
different ways. Here is one way involving the computation of the autocorrelation
function. Since x(t) and η(t) are jointly weak-sense-stationary (WSS), their auto-
and cross-correlation functions will not depend on absolute time. Hence,

d

dt
Rxη(t) = −αRxη(t − τ )+ Rηη(t) (6.16)

and
d

dt
Rxx(t) = αRxx(t + τ )− Rxη(t) , (6.17)
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where t ≡ t1 − t2, i.e., it is the difference of the times at which the two-point
correlation functions are evaluated. The power spectral density S(ω) of the process
is given by the Fourier transform of R(t) via the Wiener–Khintchine theorem. One
readily obtains

Sxx(ω) = Sηη(ω)

α2 + ω2 − 2αω sin (ωτ )
. (6.18)

Hence the variance of the process is

σ 2
xx = Rxx(0) = 1

2π

∫ ∞

∞
dω

Sηη(ω)

α2 + ω2 − 2αω sin (ωτ )
. (6.19)

This integral is numerically equivalent to the closed-form expression obtained in
[19]

σ 2
x =

σ 2

2α
(1+ ατ ) . (6.20)

Nechaeva and Mackey also considered linear SDDEs [28]. They looked at additive
and multiplicative noise and studied the stability and boundedness of these processes
by analytically computing the time evolution of the first two moments of the state
variable.

6.4 Small Delay Expansion

An expansion of f (x(t), x(t−τ )) in powers of τ using a Taylor expansion around x(t)
is valid to quadratic order in τ . In performing such expansions, one must take care
to gather all terms at each order of

√
dt and dt [12]. First, we expand in a Taylor

series

f (x, xτ ) ≈ f (x, x)+ (xτ − x)
∂

∂xτ
f (x, x) . (6.21)

We further expand

xτ ≈ x(t)− τ dx(t)

dt
. (6.22)

Substituting the delayed Langevin equation (6.1) for dx/dt in this last expression,
and reinserting the expansion (6.21) (which comes from (6.1)), one obtains

dx = fa(x)dt + σga(x)dW , (6.23)
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where the approximate drift and diffusion terms of the resulting approximating non-
delayed Langevin equation are

fa(xo) ≡ f (xo, xo)

(
1− τ ∂

∂xτ
f (xo, xo)

)
, (6.24)

ga(xo) ≡ g(xo)

(
1− τ ∂

∂xτ
f (xo, xo)

)
(6.25)

and

∂

∂xτ
f (xo, xo) ≡ ∂

∂xτ
f (xo, xτ )

∣∣∣∣
xτ=xo

. (6.26)

This approximate Langevin SDE is readily seen to yield the usual Langevin equation
when the delay vanishes. This approximate SDE has been shown to provide accurate
values of the variance of the stochastic process. The accuracy deteriorates when the
delay is large or when the deterministic DDE associated with the SDDE has complex
eigenvalues. This is not surprising, since these Taylor expansions can only yield a
first-order ODE, which cannot have complex eigenvalues—and thus cannot exhibit
oscillations.

The importance of carefully keeping terms at each order can be illustrated in the
following example. Consider the deterministic DDE

dx

dt
= −αx(t − τ ) (6.27)

where α is a positive coefficient. This DDE was studied by Wright [45]. We wish
to gain an intuitive understanding of the dependence on the delay of the variance of
the Gaussian process that results from adding Gaussian white noise to the right-hand
side of Eq. 6.27. Its (deterministic) characteristic equation is

λ = −α exp (−λτ) . (6.28)

It has only one root λ = −α for τ = 0. As τ increases from zero, this root r1
becomes more negative. Further, an infinite number of roots come into existence,
whose real parts decrease off to −∞. One of these roots, r2, is real, with r2 < r1;
all other roots are born as complex conjugate pairs. At τ = 1/(αe), r1 and r2 merge.
As the delay increases further, this merged root acquires an imaginary part, i.e.,
they become a complex conjugate pair. The real part of these roots subsequently
increases with delay. At τ = π/2α, this pair crosses the imaginary axis, and the
linear system diverges in an oscillatory manner.

Now imagine what happens when Gaussian white noise also drives this process.
Intuitively, the variance will be proportional to how positive the dominant or right-
most root of the system is. In particular, as τ begins increasing from zero, the right-
most root actually moves to the left. This suggests that the system becomes more
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stable, and thus that the variance decreases—this is similar to what we expect from
the Ornstein–Uhlenbeck process dx/dt = −αx(t) + ξ (t) as α increases. In fact, if
one non-dimensionalizes (6.27), one obtains dX/dt = −ατX(t − 1), in which one
readily sees that increasing the delay is akin to increasing α, i.e., increasing the
restoring spring constant of a (delayed) quadratic potential.

Thus, if we base our intuition on the behavior of the rightmost root, we would
expect the variance to first decrease, then increase when the two real roots are
close together, merge, and then see their real part increase with delay after having
become a complex conjugate pair. However, what a careful analysis shows is that
the first part of this story is wrong, and that in fact the variance of this Gaussian
process increases monotonically and eventually diverges. This can be readily seen
by expanding the integrand in (6.19) and taking the first terms, yielding

σ 2
x =

σ 2

2α
(1+ ατ ) . (6.29)

The result indicates that the variance is indeed a monotonically increasing func-
tion of the delay. The paradox can be resolved by looking at the expression for the
approximate diffusion (6.25) in the small delay expansion. One sees that the drift
actually contributes to the diffusion by an amount proportional to the delay. Thus,
even though the delay does not explicitly appear in the diffusion term in the original
SDDE, it enhances the influence of the noise on this system.

We complete our illustration with the calculation of the approximate SDE fol-
lowing a small delay expansion and the associated conditional average drift (CAD)
and probability densities. The approximate SDE reads

dx = −α(1+ ατ )x dt + (1+ ατ )σ dW , (6.30)

and the corresponding approximate steady-state probability density is

ps
a(x0|φ0) = Na exp

[
−αx2

0

σ 2(1+ ατ )

]

(6.31)

from which one can extract the same approximate variance as in (6.29). It is clear
from the approximate SDE that, as the delay increases, the eigenvalue −α(1+ ατ )
becomes more negative but the noise intensity increases—and this latter effect dom-
inates the behavior of the variance. One may also consider the CAD f

s
(x0|φ) = − α

(1− ατ )x0, with the corresponding SDE

dx = −α(1− ατ )x dt + σ dW . (6.32)

In contrast to the SDE obtained from the small delay expansion, the eigenvalue (the
coefficient of the drift term) of this SDE actually increases with the delay in line
with the behavior of the variance (note that the diffusion is now constant in this
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SDE). The CAD thus accounts for the behavior of both the approximate drift and
diffusion of the small delay expansion.

We close this section with an important caveat regarding the type of calculus to
apply to SDDEs. Both Ito and Stratonovich interpretations are valid, but as usual,
one must take care in making sure that the interpretations match for the analytics
and numerics—and to apply proper conversions when they do not [4, 12].

6.5 Reduction Techniques

6.5.1 Reducing the Dimensionality

Here we briefly discuss approximations which, when used systematically, may lead
to insights into a Fokker–Planck type analysis for SDDEs. First we consider ways
to approximate the DDE with a finite set of ODEs. For example, one can use the
so-called chain trick to convert a delay-differential equation into a finite number of
coupled ordinary differential equations. Consider the integro-differential system

dx

dt
= f (x(t), z(t)) (6.33)

z(t) =
∫ t

−∞
K(t − s)x(s) ds , (6.34)

where K(t) is a memory kernel. For certain families of kernels, this system can be
rewritten as a set of ODEs using a recurrence relationship. For example, let

Km
a (t) ≡ am+1

m! tm exp−at . (6.35)

For m = 0, this kernel is simply the usual exponentially decaying memory kernel.
For higher m values, this kernel becomes more and more localized near a mean delay
of τ ≡ (m + 1)/a. In the limit m → ∞, the memory kernel converges to a Dirac
delta function K∞a (t) = δ(t− τ ). For a given value of m, one can convert (6.34) into
a finite set of (m+ 2) ordinary differential equations:

dyo

dt
= f (yo, ym+1) (6.36)

dyi

dt
= a(yi−1 − yi) i = 1, 2, ..., m+ 1 . (6.37)

(6.38)

In the limit m → ∞, the IDE becomes equivalent to a DDE, and likewise to an
infinite set of ODEs. This analysis can then in principle be carried out for the IDE
(6.34) with additive Gaussian white noise
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dx

dt
= f (x(t), z(t))+ ξ (t), (6.39)

z(t) =
∫ t

−∞
K(t − s)x(s)ds . (6.40)

For example, for the stochastic version of the Wright equation (6.27)

dx

dt
= −αx(t − τ )+ ξ (t) , (6.41)

the chain trick with m = 1 yields the following three-dimensional system of ODEs:

dyo

dt
= −αy2(t)+ ξ (t) (6.42)

dy1

dt
= −2

τ
(y1(t)− yo(t)) (6.43)

dy2

dt
= −2

τ
(y2(t)− y1(t)) . (6.44)

This is a simple three-dimensional system of linear SDEs with additive white noise.
The full time-dependent solution of the Fokker–Planck equation associated with this
system can in principle be obtained [16]. However, in practice this involves solv-
ing an increasingly complex matrix equation, and further, since we are ultimately
interested in the density of the original variable x(t), i.e., ρ(x, t), we must integrate
over all the degrees of freedom except yo to obtain the desired marginal density
(Longtin, unpublished results). And the method breaks down if the original SDDE
is not linear. Nevertheless, the approach may yield interesting insights into a proper
formulation of a Fokker–Planck-type equation for SDDEs; one can see in particular
how the known analytical expression for the variance seen above in (6.20) develops
from approximate stochastic integro-differential formulations of the noisy delayed
problem.

Another reduction method that has been used in the literature is to invert a time
evolution operator. To our knowledge there is no rigorous justification for the fol-
lowing operation, so one should really proceed at one’s own (potentially high!) risk.
Rewrite

dx

dt
= h(x(t − τ ))+ ξ (t) . (6.45)

This can be rewritten in terms of a time-shift operator

dx

dt
= exp

[
−τ d

dt

]
h (x(t))+ ξ (t) . (6.46)
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Inverting the operator yields

exp

[
τ

d

dt

]
dx

dt
= h (x(t))+ ξ̃ (t) (6.47)

where ξ̃ (t) ≡ ξ (t + τ ), i.e., the forward shifted white noise will yield a dynamical
system with the same statistical properties, since it is an external input. This pro-
cedure would already be more justified if a small parameter can be found such that
terms in the expansion decay quickly (the expansion referring here to the Taylor
expansion of the exponential operator). In this case as in the linear chain trick sys-
tem above, one obtains a system of ODEs of higher order if one wants a better
approximation.

Ohira and Milton [33] have also investigated an original approximation to SDDEs
via a random walk process in which the step sizes are function of the current position
of the walker, i.e., a random walk in a state-dependent potential. Another approach
consists of looking at the large delay limit, in which the SDDE can be approximated
by a map [26]. Analytical techniques exist for studying the effect of noise on maps;
further there is, in this limit, a correspondence between the effects of additive and
multiplicative noise, i.e., we can deduce the one by knowing the effect of the other.
This is in contrast to what is expected in ODEs, where additive and multiplicative
noise can have qualitatively different effects on dynamics and bifurcations.

Frank and his colleagues [8–10] have recently done a large amount of work on
SDDEs using a variety of techniques, including some that revolve around nonlinear
Fokker–Planck equations.

There have been recent developments in the theoretical analysis of noise in delay
systems near a bifurcation point, where a clear separation of timescales exists. One
such study has proposed a perturbation theoretical analysis where the system is
described by a differential equation on an O(1) timescale and another on a slow O(ε)
timescale, where ε  1. The resulting coupled Langevin equation approximation
produces good quantitative agreement with the numerical solutions, at least in the
vicinity of the bifurcation point [21].

Not surprisingly, SDDEs have also appeared in the context of coupled oscillators.
Yeung and Strogatz [46] have studied how the Kuramoto transition is altered by the
presence of noise and delayed coupling in a collection of coupled phase oscillators.
Their heuristic approach is based on an analysis of a Fokker–Planck equation, which
allows a good approximation to the equilibrium density for the phase distribution.

Finally there is a class of stochastic dynamical systems that are closely related to
SDDEs, and which are framed in terms of Langevin equations with a memory kernel
(see [42, 47] and references therein). This kernel often accounts for a memory in the
friction of the system, i.e., the dissipation is proportional to an integral of the veloc-
ity over some past history of the system. Mathematically these systems are stochas-
tic integro-differential equations, and in the limit where the memory is completely
localized at a discrete time in the past, they converge to SDDEs. Consequently,



6 Stochastic Delay-Differential Equations 187

one expects a fruitful interaction between the investigations on these two classes of
systems.

6.5.2 Crossing Time Problems

In crossing time problems, the goal is to characterize the properties of the evolu-
tion time of a dynamical system toward a specific boundary. This time is a random
variable if the system is a stochastic dynamical system. One usually focuses on the
mean time to cross a threshold, i.e., the so-called mean first passage time. There have
been some attempts to characterize the effect of memory on crossing time (see [13]
and references therein). The small delay formalism described above provides means
for calculating transition rates between two stable states in the small delay limit.
The analysis [13] relies on simplifying the system using a two-state filter, i.e., on
discarding the detailed knowledge of the precise state in favor of a binary left–right
description of the state. For example, consider the evolution in the delayed quartic
(bistable) potential

dx

dt
= x(t − τ )− x3(t − τ )+ σξ (t) . (6.48)

This is a quartic potential in the over-damped limit, i.e., x − x3 is the negative of
the gradient of a potential V(x) = −x2/2+ x4/4. One can obtain a density function
using the small delay expansion, and further write down a rate equation for the
population inside each well using phenomenological rate constants derived from
that approximate density.

There has also been a study of the effect of noise on the switching probabil-
ity between the two wells of a symmetric double-well system with linear delayed
feedback [36]:

dx

dt
= x(t)− x3(t)+ αx(t − τ )+ ξ (t) , (6.49)

where α is a parameter that controls the strength of the delayed feedback. The
deterministic part of this equation finds applications in a variety of areas such as
the modeling of the El Nino phenomenon (see [39] and references therein) and of
the dynamics of genetic networks [15]. The idea is again to simplify the dynamics
by considering a two-state filter of the system, i.e., by coarse-graining the phase
space into two boxes: left and right of the origin. Since the feedback can only take
on one of two values, it tilts the quartic (bistable) potential one way or the other. One
can then write a master equation for the transitions between the two states, which
includes terms that depend on where the system was a delay earlier—in other words,
one has a system of two delayed kinetic equations governing the probability to the
right and left of the origin.
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This approach can then include a simple Kramers’ type of activation over the
barrier; given that there are two possible tilts, there are two possible barriers. One
can then describe the steady-state probability densities of the particle being in each
well. The authors further extended their analysis to periodic forcing, and in partic-
ular to subthreshold forcing where multiple stochastic resonance effects are seen.
Their two-state analysis successfully approximates the behavior of the full system
in a regime where the system is bistable. However, there are other regimes nearby
in the parameter space of the deterministic delayed bistable system, all of which are
organized around a Taken–Bogdanov bifurcation known to occur in the determin-
istic dynamics of (6.49) [39]. Thus one expects that more elaborate analyses will
be required to account for noise-induced switching when the system is not strongly
bistable.

6.6 Stochastic Delayed Neurodynamics

6.6.1 Neural Noise and Delays

A neuron is characterized by a current balance equation and a set of gating equa-
tions for the various ionic species that flow across its membrane. The goal of this
description is to properly account for the transmembrane potential, and how it varies
in time with or without external currents to the neuron. These inputs come from
other neurons via synaptic connections where current flows across specialized ionic
channels. Single neurons or collections of neurons (“neural systems”) are part of
the more general class of excitable systems. Strictly speaking, excitability refers
to the nonlinear property of a system that responds mildly to small input signals,
but exhibits a large excursion in phase space followed by a brief return back to the
vicinity of some fixed point when the input exceeds some threshold. These systems
further exhibit autonomous oscillations, in the form of periodic sequences of such
brief pulses, when the input signal is maintained above threshold—strictly speaking,
they are no longer “excitable,” but are nevertheless referred to as such because the
individual spikes are large excursions that return to the vicinity of the fixed point.

There are many sources of noise in neurons. The dominant one is synaptic input
from a large number of other neurons. The mathematical treatment of the effect
of noise on the evolution of the transmembrane potential, and consequently on the
firing activity of the neuron, has a long and distinguished history [14, 43]. Novel
phenomena that arise from the interaction of noise and nonlinearity in excitable
systems has also received much attention in recent times. An excellent recent review
can be found in [24]. These efforts have clarified how noise can induce firings or
modify otherwise periodic firing. Much of this work focuses on first passage time
problems from some resting voltage, and the role of noise in shaping spatio-temporal
patterns of firing activity.

Because neurons are highly nonlinear systems, as a consequence (especially) of
their threshold, and because there are finite delays in activity propagation between
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neurons, they are somewhat canonical biological SDDEs. But these descriptions
are not restricted to spiking neurons; they also apply to so-called rate descriptions,
where the quantity of interest is the rate of firing of neurons in various subpopula-
tions, averaged over a short time interval. This description is particularly relevant
when considering large-scale neural systems, such as those involved in reflexes and
motor control [6].

6.6.2 Neural Control

Longtin, Milton, and colleagues in the early 1990s studied how simple bifurcations
could occur in a neural control system. This work was carried out in the context of
the emerging fields of nonlinear dynamics and chaos in biology and medicine, one
that scrutinized every variable biological time series for signs of low-dimensional
chaotic behavior. The human pupil light reflex is mainly designed to control the
light flux on the retina by modifying the area of the iris muscle. This reflex was
a tempting puzzle in this context because of the ongoing fluctuations it exhibited,
even in constant lighting conditions. A satisfactory explanation for these fluctu-
ations came from experiments that allowed the feedback loop to be opened and
then closed electronically using infrared videopupillometry. The gain of this control
system was varied systematically and non-invasively, and the fluctuations recorded
and analyzed. What they found were fluctuations that were consistent with sweeping
across a Hopf bifurcation in the presence of delayed feedback and of neural noise
inside the brain [27].

Other investigators applied these ideas in the context of visual control of limb
movements (such as a finger) [44]. The motivation is to learn how the dynamics
may change in various pathologies. In this context, there are two delays: one for the
proprioceptive feedback (which informs the brain on the position of a limb) and one
for the visual processing feedback. Ohira and Milton have looked very closely at
the problem of posture control with random perturbations [33–35]. A more recent
study of “pencil balancing on the finger” by Cabrera an Milton [5] has revealed that
the experimental data can be well modeled by a DDE with parametric noise; further,
the system has to operate in the vicinity of a bifurcation, which surprisingly allows
control on many timescales, including on times shorter than the delay.

6.6.3 Neural Population Dynamics

There is currently no general theory for the dynamics of populations of noisy neu-
rons with delayed interactions. There are, however, a number of techniques that have
been developed to approximate and characterize some of their properties. Rather
than simulate a large population of firing neurons coupled to one another, Nykamp
and Tranchina [32] have proposed a set of self-consistent differential equations that
describe the evolution of the probability of firing in the network. While there is
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no theoretical solution to these equations, their numerical solution provides a close
match to full network simulations—at a fraction of the computational cost. Propa-
gation delays can easily be added to this formalism.

Knight and co-workers [18] have developed an approximate theory for the behav-
ior of uncoupled stochastic neurons, and feedback can be included under cer-
tain conditions. Delays are particularly well accommodated in the so-called spike
response model formalism by Gerstner and colleagues [11]. This formalism focuses
on the voltage waveforms due to spikes, synaptic input, and external input and
allows for the calculation of single cell or network activity. In the presence of noise,
this formalism does not explicitly calculate mean first passage times to threshold, but
rather mimics noise-induced or noise-perturbed firing by the use of a phenomeno-
logical escape rate function. The latter is a probability of firing that is parametrized
by the level of input to the neuron and a “temperature” which sets the steepness of
this activation function (a higher temperature, i.e., a noisier neuron, has a shallower
activation function). The approximation leads to a satisfactory description of many
properties of neural networks with noise and delays.

Brunel and Hakim [3] have developed an analytic theory for oscillations in a neu-
ral network of stochastic neurons with delays (see also [30]). This theory is based on
a second-order mean field theory, where one writes an equation for a typical neuron
that is driven by the mean level of current from the network, and the “network firing
rate dependent” noise associated with this mean level:

dV

dt
= −V(t)+ μ+ σ√ν(t − τ )ξ (t) , (6.50)

where V is the membrane voltage and μ is the sum of a bias current and a mean
current from the network. Here ν(t − τ ) is the firing rate of the network at a time τ
in the past. In other words, connections between neurons occur with a fixed delay
τ , and when their firing rate increases, the mean input to the cells they are coupled
to increases, as does the noise (mean and variance being correlated for stochas-
tic point processes). This is a special brand of SDDE, since the delayed variable
is not the usual state variable, but rather a quantity that depends on the proba-
bility flux of the stochastic process through a threshold. The connectivity matrix
is sparse, i.e., each neuron connects on average to only a small fraction of the
neurons in the network. The firing rate is calculated as the probability flux of the
population through the (fixed) threshold. This analysis revealed the existence of a
sharp transition between stationary and oscillatory (weakly synchronized) global
activity as the strength of the inhibitory feedback between the cells becomes large
enough (for an infinite network), and how global oscillations with a finite coher-
ence time can be found both below and above this critical threshold in a finite
network.

Lindner et al. [25] have successfully applied linear response theory to networks
of noisy delayed-coupled neurons. It enables computations of single cell proper-
ties, such as spike train power spectra which are directly available experimentally.
The motivation is to understand network oscillations in response to spatio-temporal
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noise. The idea is to consider the basic firing activity of an isolated leaky integrate-
and-fire neuron driven by a bias current μ and zero-mean Gaussian white noise ξ (t):

dV

dt
= −V + μ+ ξ (t) . (6.51)

As above, this system evolves from a “reset” voltage; whenever a fixed firing thresh-
old is reached, a spike is “fired” and the voltage put back to its reset value. The
mean firing rate, i.e., mean first passage time to threshold, is known for this process.
Likewise, the spectral properties of this spike train are known [23]. In the spirit of
linear response theory, one can write the Fourier transform of the resulting spike
train as

X̃(ω) = X̃o(ω)+ A(ω)Y(ω) (6.52)

where A(ω) is the frequency response (i.e., susceptibility) of the noisy neuron, and
Y is the Fourier transform of the input to the neuron, which comes from the external
input as well as the internal input from delayed feedback. One also uses a self-
consistency relationship for the mean rate in the presence of feedback [25, 18].

There has also been renewed interest in SDDEs in the context of the control
of tremor using deep brain stimulation in Parkinson’s patients [37]. The idea is to
record from the abnormally firing neurons and feed back the activity to those neu-
rons, with the goal of desynchronizing their activity. Theoretical analyses predict
parameter values for the delay and feedback gain which lead to this destabilization.

6.6.4 Simplified Stochastic Spiking Model with Delay

Morse and Longtin [31] have recently proposed a simple model that may offer some
insights into theoretical approaches to stochastic neural networks with delays. The
neuron itself is a simple threshold crossing device (TCD), which emits a pulse when-
ever a set threshold is crossed in a positive-going direction. The firing statistics of
such TCDs are well known and depend on various moments of the power spectral
density of the noise that drives the system. The goal of that study was to understand
the interplay of excitability, noise-induced firing, delayed feedback, and harmonic
driving in the form of sinusoidal forcing.

In the absence of harmonic forcing, the system exhibits reverberating activity
due to the positive feedback. In other words, any spikes that occur are fed back to
the system after a (fixed) delay and cause more spikes to occur—this leads to oscil-
lations with a period on the timescale of the delay. These oscillations can actually
be initiated by positive fluctuations of the noise, and later extinguished by nega-
tive fluctuations. If feedback spikes are smaller than the threshold, the reverberating
oscillation is strongest for a moderate amount of noise—a phenomenon known as
coherence resonance.
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One can then apply a sinusoidal drive that is subthreshold. In open loop (i.e., with-
out feedback), this system exhibits stochastic resonance, i.e., the sinusoid is opti-
mally expressed in the output spike train by a moderate amount of noise. With
positive feedback, the system also exhibits stochastic resonance. Furthermore, if the
delay is close to the value of the forcing period, the resonance is much stronger. In
other words, a simple neuron (or neural population) fed back onto itself with a delay
can resonate on its own as a stochastic oscillator, and it will react (“resonate”) very
strongly to a forcing signal that has a period close to that of this intrinsic stochastic
oscillation. This resonant behavior was analyzed using a DDE built from the known
mean firing rate of a TCD and from shot noise theory that approximates the effect of
such input by its mean [31]. This analysis pointed to novel regimes where the mean
behavior of the system could behave chaotically, with stochastic fluctuations on top
of that. This leaves open a array of interesting avenues to explore.

6.7 Conclusion

We have given a review of recent theoretical work on the stochastic dynamics of
delay-differential equations. We have provided motivations for their study from dif-
ferent areas of application, with special focus on neural systems where delays are
known to play major computational roles.

It is clear from the foregoing discussion that there is still much need for more
formal results on the effect of noise on DDEs, and in particular, on the dynamics
of networks of excitable systems. One ongoing issue with neural dynamics is the
necessity to eventually add more biophysical realism. For example, neural dynamics
are complicated by the fact that the delay may in fact be state dependent. A strong
input to a population of nerves may activate larger axons on which activity propa-
gates faster, and thus the propagation delay is shorter. If the amplitude of the input
is a function of the state of the system, as in the case of feedback systems, then one
has all the ingredients for a SDDE with state-dependent delays, about which almost
nothing is known, formally or numerically.

Also, in neural systems, the variance of the neural activity is going to be a func-
tion of its mean—this is true, for example, for a Poisson (shot noise) process [3].
There are also many challenges ahead in incorporating the effect of correlations
between input noises [25], their interaction with intrinsic neuron dynamics which
impose their own correlations on the spike trains, the effect of plasticity and stochas-
tic release probability in neurons, and the discrete nature of synaptic input [40].
Delays will lead in certain cases to multistability of neural activity along reverber-
atory loops [7], and there is a great need to understand how noise influences firing
patterns under these conditions.

Finally one can think of situations where the delay time itself is a stochastic
quantity. This is the case in neuroscience when activity propagates along feedback
pathways with variable amounts of refractoriness depending on the recent history of
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firing. There are other areas where delays have gone unnoticed in neuroscience:
back-propagation of a spike back to the neuron’s dendrites and second messen-
ger/genetic signaling. A recent review of how noise affects the dynamics of neural
and genetic networks can be found in [41]. And in complex delayed systems where
chaos can occur, one has the possibility of approximating, at least for modeling
purposes, the feedback terms that generate the chaotic instability as noise sources.
This would be an extension of the ideas developed two decades ago for the study of
the Ikeda DDE [22].

We hope that, by bringing under one roof this diverse set of results on SDDEs in
different areas, this chapter will provide the impetus to pursue original and daring
new directions that will lead to a fuller comprehension of the effect of noise on
systems with memory.
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Chapter 7
Global Convergent Dynamics of Delayed Neural
Networks

Wenlian Lu and Tianping Chen

7.1 Introduction

Artificial neural networks arise from the research of the configuration and function
of the brain. As pointed out in [79], the brain can be regarded as a complex non-
linear parallel information processing system with a concept of neuron as a basic
functional unit. Compared with modern computer, the processing speed of a single
neuron is 5–6 times slower than that of a single silicic logic gate but the brain has
a processing speed 109 times faster than any computer due to a huge quantity of
synapses that interconnect neurons. Based on this viewpoint, scientists proposed a
network model to describe the function and state of the brain called neural networks.
In short, a neural network is a computing network that accomplishes given tasks by
connecting a large number of simple computing units. The most important charac-
teristic of neural networks is the ability to learn. Reference [75] defined learning as
the process through which the neural network adjusts its parameters using informa-
tion of its circumstances via a simulating process. Many learning algorithms have
been proposed in the past decades, for example, error-correction learning, Hebbian
learning [52], competitive learning [47], and Boltzmann learning [1].

In particular, [2] proposes a definition of artificial neural network. Neural net-
work is a large-scale parallel distributed processing system, which can learn and
employ knowledge and satisfies that (1) knowledge is obtained by learning (learn-
ing algorithm); (2) knowledge is stored in the interconnection weights of the net-
work. Since neural networks have many advantages, for instance, the ability to solve
nonlinear problems, adaptability, fault tolerance, and mass computability, they have
been one of the focal research topics for the last 50–60 years.

References [53, 36, 37] proposed multi-layered neuronal perceptron model which
can approximate any continuous function. This model can be formulated as
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f (x1, x2, . . . , xn) ≈
n∑

i=1

Cig

⎛

⎝
m∑

j=1

ξijxj + θi

⎞

⎠ , (7.1)

where xi denotes the state variable of neuron i and g( · ) is a certain nonlinear acti-
vation function. Furthermore, [22, 23] proved that this model can approximate any
nonlinear function and operator. This is the theoretical basis of neural networks.

References [35, 47] proposed a competitive and cooperative model to generate
self-organized and self-adaptive neural networks, which can be modeled as an ODE
system:

dxi

dt
= ai(xi)

[
− di(xi)+

n∑

j=1

tijgj(xj)+ Ii

]
, i = 1, . . . , n,

which is named Cohen–Grossberg neural network and widely used in pattern recog-
nition, signal processing, and associative memory. Here, xi(t) denotes the state vari-
able of the i-th neuron, di( · ) represents the self-inhibition function with which the
i-th neuron will reset its potential to the resting state in isolation when disconnected
from the network, tij denotes the strength of j-th neuron on the i-th neuron, gi( · )
denotes the activation function of i-th neuron, Ii denotes the external input to the i-th
neuron, and ai( · ) denotes the amplification function of the i-th neuron.

References [54, 57] developed a computing method using recurrent networks
based on energy functions, which is called Hopfield neural network:

dxi

dt
= −dixi +

n∑

j=1

tijgj(xj)+ Ii, i = 1, . . . , n,

which has been applied to solve some combinatorial optimization problems such as
the traveling salesman problem.

As pointed out by [51], the common characteristic is that each neural network
model can be regarded as a class of nonlinear signal-flow graphs. As indicated in
Fig. 7.1, xi denotes the state of neuron i, yi = φi(xi) denotes the output of neuron i by
a nonlinear activation function φi( · ), tij denotes the weight of interconnection from
neuron j to i, and Ii is the external input. Hence, neural networks are in fact a class of
nonlinear dynamical systems due to the nonlinearity of the activations. The compu-
tation developed from neural networks is a self-adaptive distributed method based
on a learning algorithm. The key point of success of an algorithm lies on whether
the dynamical flow converges to a given equilibrium or manifold. So, dynamical
analysis of neural networks is the first step for the expected applications.

In practice, time delays inevitably occur due to the finite switching speed of
the amplifiers and communication time. Moreover, to process moving images, one
must introduce time delays in the signals transmitted among the cells [25]. Neu-
ral networks with time delays have much more complicated dynamics due to the
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i

Ii

yj
tij xi

φ(.)
yi

Fig. 7.1 Signal-flow graph

incorporation of delays. These neural networks can be modeled by the following
delayed differential equations:

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijfj
(
xj(t − τij)

)+ Ii,

i = 1, . . . , n, (7.2)

where bij denotes the delayed feedback of the j-th neuron on the i-th neuron and
τij denotes the transmission delay from neuron j to i. If the activation functions
concerned with delayed or without delayed terms are the same, i.e., fj = gj, j =
1, . . . , n, then this model can be formulated as

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τij))+ Ii,

i = 1, . . . , n.

One can see that this model contains cellular neural networks [32, 33] as a special
case. If τij = τ is uniform, it has the following form:

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τ ))+ Ii,

i = 1, . . . , n.

Also, the delayed Cohen–Grossberg neural networks can be written as

dxi(t)

dt
= ai(xi)

[
− dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τ ))+ Ii

]
,

i = 1, . . . , n, (7.3)

a special form.
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Research of delayed neural networks with varying self-inhibitions, interconnec-
tion weights, and inputs is an important issue, because in many real-world appli-
cations, self-inhibitions, interconnection weights, and inputs vary with time. Thus,
we also study the delayed neural networks with a more general form, which is first
introduced in [26]:

dxi(t)

dt
= −di(t)xi(t)+

n∑

j=1

aij(t)gj(xj(t)) +
n∑

j=1

∫ ∞

0
fj(xj(t − s))dsKij(s)

+Ii(t), i = 1, . . . , n,

where dsKij(t, s), i, j = 1, . . . , n, are Lebesgue–Stieltjes measures with respect to s,
which denotes the delayed terms. For example, if dsKij(t, s) has the form bijδτij (t −
s)ds, one obtains (7.2). More details about the descriptions of the models will be
discussed in the following sections.

In this chapter, we study the global convergent dynamics of a class of delayed
neural networks. The models are rather general, including Hopfield neural networks,
Cohen–Grossberg networks, cellular neural networks, as well as the case of discon-
tinuous activation functions. The purpose of this chapter is not only to present the
existing results but also to illustrate the methodologies used in obtaining and prov-
ing these results. These methodologies could be utilized or extended in analysis of
global convergent dynamics of other models or general delayed differential systems.

Two mathematical problems must be solved. One is the existence of a static orbit:
an equilibrium, a periodic orbit, or an almost periodic orbit. Ordinarily, this can
be investigated by the fixed point theory. In addition, in this chapter we use novel
methods. We study the system of the derivative of the delayed Hopfield neural net-
works instead and conclude that the global exponential stability of the derivative
can lead the global exponential stability of the intrinsic neural networks. Moreover,
the existence of periodic or almost periodic orbits can be handled by regarding it
as a clustering orbit of any trajectory. The second problem is the stability of such
a static orbit. This is investigated by designing a suitable Lyapunov functional. We
should point out that it is not the theorems but the ideas of Lyapunov and Lyapunov–
Krasovskii stability theory that is used to prove global stability. The main results and
proofs in this chapter come from our recent literature [19–21, 30, 63, 65–68].

We organize this chapter as follows. In Sect. 7.2, we discuss the stability of
delayed neural networks. We study the periodicity and almost periodicity in Sect. 7.3.
In Sect. 7.4, we investigate the convergence analysis of delayed neural networks
with discontinuous activation functions. We present reviews of literature on this
topic and compare them with the results in Sect. 7.5.

We first present the notation used in this chapter. ‖·‖ denotes the norm of a vector
in some sense. In particular, ‖v‖2 for a vector v = (v1, . . . , vn)� denotes the 2-norm,

i.e., ‖v‖2 =
√∑n

i=1 |vi|2 and ‖v‖1 = ∑n
i=1 |vi|. For some positive vector ξ =

(ξ1, . . . , ξn)�, we denote ‖v‖{ξ ,∞} = maxi ξ
−1
i |vi| and ‖v‖{ξ ,1} = ∑n

i=1 ξi|vi|. The
norm of a matrix is induced by the definition of the norm of vectors. C([a, b], Rn)
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denotes the class of continuous functions from [a, b] to R
n. The norm of x( · ) ∈

C([a, b], Rn) is denoted by ‖x( · )‖ = maxa≤t≤b ‖x(t)‖ for some vector norm ‖ · ‖.
We write a+ = max{a, 0} for a real number a. The spectral set of a square matrix
A is denoted by λ(A). Among them, λmin(A) and λmax(A) denote the minimum and
maximum one, respectively, if all eigenvalues of A are real. For a matrix A, A�
denotes its transpose and As denotes its symmetric part, i.e., As = (A+ A�)/2. For
a matrix A ∈ R

n,n, A > 0 denotes that A is positive definite, with similar definitions
for the notations A ≥ 0, A < 0, and A ≤ 0. For two matrices A, B ∈ R

n,n, A > B
denotes A − B > 0; similarly with A ≥ B, A < B, and A ≤ B. R

n+ denotes the
first orthant, R

n+ = {x = (x1. . . . , xn)�: xi > 0, ∀ i = 1, . . . , n}. For a matrix
A = (aij)n

i,j=1 ∈ R
n,n, |A| denotes the matrix (|aij|)n

i,j=1. Finally, sign( · ) denotes the
signature function.

7.2 Stability of Delayed Neural Networks

In this section we will study the global stability of delayed neural networks. The
basic mathematical method is the theory of functional differential equations. For
more details, we refer interested readers to [49]. The study of stability of these
differential systems contains two main contents: (1) existence of an equilibrium
and (2) global attractivity of this equilibrium as done in previous literature. We
study the delayed Hopfield neural network (7.2) and the delayed Cohen–Grossberg
neural network (7.3) and prove that under several assumptions, diagonal dominant
conditions can lead the global stability.

7.2.1 Preliminaries

Before presenting the main results, we provide a brief review of necessary theoreti-
cal preliminaries.

7.2.1.1 Functional Differential Equations (FDE)

Delayed neural networks can be modeled as a class of functional differential equa-
tions, which have the following general forms:

dx

dt
= f (xt). (7.4)

Here, x(t) ∈ R
n, xt(θ ) = x(t+ θ ), θ ∈ [− τ , 0], where τ > 0 can even be infinite,

f ( · ) is a function in C([ − τ , 0], Rn). A solution of the system (7.4) with initial
condition φ ∈ C([ − τ , 0], Rn) is a smooth x(t) satisfying (1) x(θ ) = φ(θ ) for all
θ ∈ [− τ , 0] and (2) (7.4) holds for all t ≥ 0. As pointed out in [49], local Lipschitz
continuity of f ( · ) can guarantee the existence and uniqueness of the solution of the
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system (7.4). In addition, if the solution is bounded, then the solution exists for the
whole time interval.

Stability of (7.4) is with respect to an equilibrium. An equilibrium x∗ ∈ R
n is a

solution of the equation

f (x∗) = 0, (7.5)

i.e., xt( · ) is picked as a constant function. Stability is then defined as follows.

Definition 7.1 Equation (7.4) is said to be globally stable if for any initial condition
φ ∈ C([ − τ , 0], Rn), the corresponding solution x(t) satisfies limt→∞ x(t) = x∗.
Moreover, if there exist some M > 0 and ε > 0 such that ‖x(t)−x∗‖ ≤ M exp (−εt)
for all t ≥ 0, (7.4) is said to be globally exponentially stable. If there exist some
M > 0 and γ > 0 such that ‖x(t) − x∗‖ ≤ Mt−γ for all t ≥ 0, (7.4) is said to be
globally stable in power rate.

In this chapter, we use Lyapunov functional methods to study the global stability
of the equilibrium. Actually, we do not directly cite Lyapunov stability theorem for
FDEs but use the underlying idea. We design a suitable functional which is zero
if and only if xt = x∗, give conditions to guarantee that it decreases through the
system, and directly prove that the Lyapunov functional converges to zero. Also, we
use the idea of Lyapunov–Krasovskii theory instead of the theorem, which can be
cited as the following simple lemma:

Lemma 7.2 Let x(t) be a solution of the system (7.4) with the initial time t0 > 0 and
φ(t) = ‖xt( · )‖. If at each t∗ with φ(t∗) = ‖x(t∗)‖, we have

d‖x(t)‖
dt

|t=t∗≤ −ηφ(t∗)+M(t∗) (7.6)

for some positive continuous function M(t∗), then φ(t) ≤ max{M(t)/η,φ(t0)} for all
t ≥ t0.

Proof We prove it by discussing the following two cases.
Case 1: φ(t0) ≤ M(t0)/η. We can prove φ(t) ≤ M(t)/η for all t ≥ t0. In fact, if

there exists some t1 > t0 such that φ(t1) = M(t1) for the first time, then φ(t) is non-
increasing at t1. Otherwise, if φ(t) is strictly increasing at t1, then φ(t1) = ‖x(t1)‖
and ‖x(t)‖ is strictly increasing at t1, which by (7.6) is impossible. Hence, φ(t) will
never increase beyond M(t).

Case 2: φ(t0) > M(t0)/η. Then, φ(t) is decreasing in a small right neighborhood
of t0. If at some t1 > T0, φ(t1) ≤ M(t1)/η, then it reduces to Case 1. Otherwise, φ(t)
keeps decreasing.

In both cases, it can be concluded that φ(t) ≤ max{M(t)/η,φ(t0)}. �

7.2.1.2 Matrix Theory

A matrix T ∈ R
n,n is said to be Lyapunov diagonally stable (LDS) if there exists a

positive definite diagonal matrix D ∈ R
n,n such that DT + T�D is positive definite.
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Lemma 7.3 (See Lemma 2 in [41]) Let D and G be positive definite diagonal matri-
ces and T ∈ R

n,n. If DG−1 − T is LDS, then for any positive definite diagonal
matrix D̄ ≥ D and nonnegative definite diagonal matrix 0 ≤ K ≤ G, we have
det(D̄− TK) �= 0.

A nonsingular matrix C ∈ R
n,n with cij ≤ 0, i, j = 1, . . . , m, i �= j, is said to be

an M-matrix if all elements of C−1 are nonnegative.

Lemma 7.4 ([11]) Let C = (cij) ∈ R
n,n be a nonsingular matrix with cij ≤ 0,

i, j = 1, . . . , n, i �= j. Then the following statements are equivalent.

1. C is an M-matrix;
2. All the successive principal minors of C are positive;
3. C� is an M-matrix;
4. The real parts of all eigenvalues are positive;
5. There exists a vector ξ = (ξ1, ξ2, . . . , ξn)� with ξi > 0, i = 1, . . . , n, such that

every component of ξ�C is positive, or every component of Cξ is positive;
6. C is LDS;
7. For any two diagonal matrices P = diag{p1, p2, . . . , pn},

Q = diag{q1, q2, . . . , qn}, where pi > 0, qi > 0, i = 1, . . . , n, PCQ is an
M-matrix.

The following lemma states the Schur Complement.

Lemma 7.5 (Schur Complement [13]) The following Linear Matrix Inequality (LMI)

[
Q(x) S(x)
S�(x) R(x)

]
> 0,

where Q(x) = Q�(x), R(x) = R�(x), and S(x) depend affinely on x, is equivalent to

R(x) > 0 and Q(x)− S(x)R−1(x)S�(x) > 0.

7.2.1.3 Nonlinear Complimentary Problems

To discuss the existence and uniqueness of the equilibrium, we give a brief review
on Nonlinear Complementarity Problem (NCP).

Definition 7.6 For a continuous function f (x) = (f1(x), . . . , fn(x))�:Rn+ → R
n, an

NCP is to find xi, i = 1, . . . , n, satisfying

xi ≥ 0, fi(x)− Ii ≥ 0, xi(fi(x)− Ii) = 0 for all i = 1, . . . , n. (7.7)

Define a function F(x):Rn → R
n

F(x) = f (x+)+ x−,
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where

x+i =
{

xi, xi ≥ 0
0, otherwise,

x−i =
{

xi, xi ≤ 0
0, otherwise

for i = 1, . . . , n.

The following lemma gives a sufficient and necessary condition for the solvabil-
ity of a NCP.

Lemma 7.7 (Theorem 2.3 in [76]) The NCP (7.7) has a unique solution for every
I ∈ R

n if and only if F(x) is norm-coercive, i.e.,

lim‖x‖→∞‖F(x)‖ = ∞,

and F(x) is locally one-to-one.

7.2.1.4 Descriptions of Activations

The activation functions in these models are assumed to be Lipschitz continuous.

Definition 7.8 A continuous function g(x) = (g1(x1), . . . , gn(xn))�:Rn → R
n is

said to belong to the function class H1{G1, . . . , Gn} for some positive numbers
G1, . . . , Gn if |gi(ξ ) − gi(ζ )| ≤ Gi|ξ − ζ | for all ξ , ζ ∈ R and i = 1, . . . , n. If,
in addition, each gi( · ) is monotonously increasing, then g is said to belong to the
function class H2{G1, . . . , Gn}.

7.2.2 Delayed Hopfield Neural Networks

In this section we study the following delayed differential system:

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijfj(xj(t − τij))+ Ii,

i = 1, . . . , n. (7.8)

Different from the ordinary way to handle this topic, we do not first prove the
existence of the equilibrium but derive it with global stability. Instead of directly
studying the system (7.8), we consider its derivative system with respect to ẋ and
prove that under several diagonal dominant conditions, ẋ converges to zero exponen-
tially. This in fact implies that x(t) converges to some equilibrium globally expo-
nentially. This idea comes from [18–20] and can be summarized in the following
theorems.

Theorem 7.9 Suppose that g(x) = (g1(x), . . . , gn(x))� ∈ H2{G1, . . . , Gn} and
f (x) = (f1(x), . . . , fn(x))� ∈ H1{F1, . . . , Fn}. If there are positive constants ξ1, . . . , ξn
such that
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− ξjdj + [ξjajj +
∑

i�=j

ξi|aij|]+Gj +
n∑

i=1

ξi|bij|Fj < 0, j = 1, . . . , n, (7.9)

then the system (7.8) is globally exponentially stable.

Proof According to the condition, there exists some α > 0 such that

ξj(− dj + α)+ [ξjajj +
∑

i�=j

ξi|aij|]+Gj +
n∑

i=1

ξi|bij|eατij Fj ≤ 0

for all j = 1, . . . , n. Let vi(t) = ẋi(t) and y(t) = eαtv(t). Then, for almost every t ≥ 0,
we have

dyi(t)

dt
= (− di + α)yi(t)+

n∑

j=1

aijg
′
j(xj(t))yj(t) (7.10)

+
n∑

j=1

bijf
′
j (xj(t − τij))eατij yj(t − τij), i = 1, . . . , n.

Define the following candidate Lyapunov functional

L(t) =
n∑

i=1

ξi|yi(t)| +
n∑

i,j=1

ξi|bij|
∫ t

t−τij
eα(s+τij)|f ′j (xj(s))||vj(s)|ds. (7.11)

Differentiating L(t) gives

L̇(t) =
n∑

i=1

ξisign{yi(t)}
{

(− di + α)yi(t)+
n∑

j=1

aijg
′
j(xj(t))yj(t)

+
n∑

j=1

bijf
′
j (xj(t − τij))eατij yj(t − τij)

}
+

n∑

i,j=1

ξi|bij|eα(t+τij)

| f ′j (xj(t))||vj(t)| −
n∑

i,j=1

ξi|bij||f ′j (xj(t − τij))|eαt|vj(t − τij)|

≤
n∑

j=1

{
ξj(− dj + α)+

⎡

⎣ξjajj +
∑

i�=j

ξi|aij|
⎤

⎦

+
Gj +

n∑

i=1

ξi|bij|eατijFj

}
|yj(t)|

≤ 0.

Therefore, L(t) is bounded and
∑n

i=1 ξi|ẋi(t)| = O(e−αt). By Cauchy convergence
principle, there exists an equilibrium point x∗ = (x∗1, . . . , x∗1)�, such that
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n∑

i=1

ξi|xi(t)− x∗i | = O(e−αt). (7.12)

Uniqueness of the equilibrium point can be proved by defining another candidate
Lyapunov functional

L(t) =
n∑

i=1

ξi|xi(t)− x∗i | +
n∑

i,j=1

|bij|ξi
∫ t

t−τij
eα(s+τij)|fj(xj(s))− fj(x

∗
j )|ds

and differentiating it similarly as done above. This completes the proof. �

Another result comes from another Lyapunov functional for y(t).

Theorem 7.10 Suppose that g(x) = (g1(x), . . . , gn(x))� ∈ H2{G1, . . . , Gn} and
f (x) = (f1(x), . . . , fn(x))� ∈ H1{F1, . . . , Fn}. If there are positive constants ξ1, . . . , ξn
such that

− ξidi + ξia+ii Gi +
N∑

j=1,j�=i

ξj|aij|Gj +
n∑

j=1

ξj|bij|Fj < 0, j = 1, . . . , n, (7.13)

then the system (7.8) is globally exponentially stable.

Proof Let vi(t) and y(t) be defined in the same way as in the proof of Theorem 7.9.
Define

‖y(t)‖{ξ ,∞} = max
i=1,...,n

ξ−1
i ‖yi(t)‖, ϕ(t) = sup

0≤s<τ
‖y(t − s)‖{ξ ,∞}.

Denoting i0 = i0(t) by ξ−1
i0
|yi0 (t)| = ‖y(t)‖{ξ ,∞}, we have

ξi0
d‖y(t)‖{ξ ,∞}

dt
= sign(xi0 (t))

dyi0

dt

= sign(xi0 (t))

{
− (di0 − α)yi0 + ai0i0 g

′
i0 (xi0 (t))yi0 (t)

+
n∑

j=1,j�=i0

g
′
j(yj)(t)yj(t)+

n∑

j=1

bijf
′
j (xj(t − τij))yj(t − τij)eατij

}

≤ [− (di0 − α)ξi0 + a+i0i0
Gi0ξi0 ]ξ−1

i0
|yi0 (t)| +

N∑

j=1,j�=i0

|ai0j|Gjξjξ
−1
j |yj(t)|

+
N∑

j=1

Fjξj|bi0j|ξ−1
j |yj(t − τi0j)|eατij .
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If ϕ(t) is strictly monotone increasing at t = t∗, then ϕ(t∗) = ‖x(t∗)‖{ξ ,∞} and we
have

ξi0
d‖y(t)‖{ξ ,∞}

dt
≤

{
− (di0 − α)ξi0 + a+i0i0

Gi0ξi0 +
n∑

j=1,j�=i0

|ai0j|Gjξj

+
n∑

j=1

Fjξj|bi0j|eατi0 j

}
‖y(t)‖{ξ ,∞} ≤ 0,

which implies that ‖y(t)‖{ξ ,∞} is bounded according to Lemma 7.2, i.e., maxi ξ
−1
i|ẋi(t)| = O(e−αt). By the Cauchy convergence principle, there exists an equilibrium

point x∗ = (x∗1, . . . , x∗n)� such that maxi ξ
−1
i |xi(t)− x∗i | = O(e−αt). The uniqueness

of the equilibrium point can be proved by arguments similar to those used in the
proof of the previous theorem. �

A direct corollary can be obtained in the M-matrix term.

Corollary 7.11 Suppose that g(x) = (g1(x), . . . , gn(x))� ∈ H1{G1, . . . , Gn} and
f (x) = (f1(x), . . . , fn(x))� ∈ H1{F1, . . . , Fn}. Let G = diag{G1, . . . , Gn} and
F = diag{F1, . . . , Fn}. If −D+ |A|G+ |B|F is a M-matrix, then the system (7.8) is
globally exponentially stable.

So far we have studied the exponential stability of delayed Hopfield neural net-
works with constant delays. However, in many cases the time delays are temporally
variant. Then the delayed system can be formulated as

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))

+
n∑

j=1

bijfj(xj(t − τij(t)))+ Ii, i = 1, . . . , n. (7.14)

For the case of bounded delays, i.e., τij(t) ≤ τ for all i, j = 1, . . . , n and t ≥ 0,
the method in the proof of Theorem 7.10 can be used and the same results can
be obtained. However, the case of unbounded delays needs further investigation.
It should be pointed out that most of the literature is concerned with stability of
delayed neural networks with unbounded delays, which always assumes τ̇ij(t) < 1.
Reference [30] presented a novel analysis with a weaker assumption τij(t) < t,
which includes τ̇ij < 1 as a special case. The result can be summarized as follows.

Theorem 7.12 Suppose τij(t) ≤ μt for some 0 < μ < 1 and all t ≥ 0, g( · ) ∈
H1{G1, . . . , Gn}, and f (·) ∈ H1{F1, . . . , Fn}. If there are positive constants ξ1, . . . , ξn
such that

− ξidi +
n∑

j=1

ξj|aij|Gj +
n∑

j=1

ξj|bij|Fj < 0, i = 1, . . . , n, (7.15)
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then the system (7.14) has a unique equilibrium x∗ which is globally stable in power
rate, i.e., there exists some γ > 0 such that

‖x(t)− x∗‖ = O(t−γ )

Proof Under the condition (7.15), according to the results in Theorem 7.10, there
exists an equilibrium point x∗ = (x∗1, . . . , x∗n)� for the system (7.14). Moreover,
there exists a scalar γ > 0 and a sufficiently large T , such that for all t > T ,

(
−di + γ

t

)
ξi +

n∑

j=1

ξj|aij|Gj + (1− μ)−γ
n∑

j=1

ξj|bij|Fj < 0,

i = 1, . . . , n. (7.16)

We always assume t > T afterward.
Let x(t) be a solution of the system (7.8). Define z(t) = tγ (x(t)− x∗) and

M2(t) = sup
s≤t
‖z(s)‖{ξ ,∞}. (7.17)

We will prove that M2(t) is bounded. For any t0 with ‖z(t0)‖{ξ ,∞} = M2(t0), letting
it0 = it0 (t0) be such an index that |ξ−1

it0
zit0

(t0)| = ‖z(t0)‖{ξ ,∞}, we have

{d|zit0
(t)|

dt

}

t=t0

= sign{zit0
(t0)}ξit0

(
−dit0

+ γ
t0

)
ξ−1

it0
zit0

(t0)

+sign{zit0
(t0)}tγ0

{ n∑

j=1

ait0 j

[
gj(uj(t0))− gj(v

∗
j )

]

+
n∑

j=1

bit0 j

[
fj
(

uj(t0 − τit0 j(t0))
)
− fj(v

∗
j )

]}

≤
{
ξit0

(
−dit0

+ γ
t0

)
+

n∑

j=1

ξj|ait0 j|Gj

}
‖z(t0)‖{ξ ,∞}

+
n∑

j=1

ξj|bit0 j|Fj

[
t0

t0 − τit0 j(t0)

]γ
ξ−1

j |zj

(
t0 − τit0 j(t0)

)
|

≤
{
ξit0

(
−dit0

+ γ
t0

)
+

n∑

j=1

ξj|ait0 j|Gj

+
n∑

j=1

ξj|bit0 j|Fj

{
t0

t0 − τit0 j(t0)

}γ}
M2(t0)
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≤
{
ξit0

(
−dit0

+ γ
t0

)

+
n∑

j=1

ξj|ait0 j|Gj + (1− μ)−γ
n∑

j=1

ξj|bit0 j|Fj

}
M2(t0)

< 0.

By Lemma 7.2, we can conclude that M2(t) is bounded, which implies that ‖u(t)−
v∗‖{ξ ,∞} = O(t−γ ), which completes the proof. �

We give a numerical example to verify the theoretical results. We consider the
following system

ẋ(t) = −5x(t)+ x(t − τ (t)), (7.18)

where τ (t) ≤ μt, with μ = 0.5. The power convergence is shown in Fig. 7.2.
The slope of the straight line is approximately −2.3221, which means that x(t) ≈
O(t−2.3217). The theoretical result is x(t) ≈ O(t−γ ), where γ ≈ − log 5

log (1−μ) =
− log 5

log (0.5) ≈ 2.3219, which agrees well with the numerical result.

−5 0 5 10
−25

−20

−15

−10

−5

0

log(t)

lo
g(

x(
t)

)

Fig. 7.2 Illustration of power stability. Slope of the straight line is −2.3221

7.2.3 Delayed Cohen–Grossberg Competitive and Cooperative
Networks

We consider delayed Cohen–Grossberg neural networks with a uniform delay,
which can be formalized as follows:
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dxi(t)

dt
= ai(xi(t))

[
− di(xi)+

n∑

j=1

aijgj(x(t)) +
n∑

j=1

bijgj(xj(t − τ ))+ Ii

]
,

i = 1, . . . , n. (7.19)

This model is very general, and includes a large class of existing neural field and
evolution models. For instance, assuming that ai(ρ) = 1 for all ρ ∈ R and i =
1, . . . , n, then it is the famous Hopfield neural network, which can be written as

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τ ))+ Ii, i = 1, . . . , n

with di(ρ) = diρ for given di > 0, i = 1, . . . , n. It also includes the famous Volterra–
Lotka competitive-cooperation equations:

dxi

dt
= Aixi

(
Ii −

n∑

j=1

aijxj

)
, i = 1, . . . , n

with ai(ρ) = Aiρ, for all ρ > 0 and given Ai > 0, and gi(ρ) = ρ, i = 1, . . . , n.
Most existing results in the literature are based on the assumption that the amplifier
function ai( · ) is always positive (see [29, 71, 82]). But in the original papers [35,
46, 47] this model was proposed as a kind of competitive-cooperation dynamical
system for decision rules, pattern formation, and parallel memory storage. Here, the
state of the neuron xi might be the population size, activity, or concentration, etc., of
the i-th species in the system, which is always nonnegative for all time. To guarantee
the positivity of the states, one should assume ai(ρ) > 0 for all ρ > 0 and ai(0) = 0
for all i = 1, . . . , n.

The purpose of this section is to study the convergent dynamics of the delayed
Cohen–Grossberg neural networks without assuming the strict positivity of ai( · ),
symmetry of the connection matrix, or boundedness of the activation functions, but
with considering a time delay. Hereby, we focus our study of the dynamical behav-
ior on the first orthant: R

n+ = {(x1, . . . , xn)� ∈ R
n: xi ≥ 0, i = 1, . . . , n} and

introduce the concept of R
n+-global stability, which means that all trajectories are

initiated in the first orthant R
n+ instead of the whole space R

n. We point out that an
asymptotically stable nonnegative equilibrium is closely related to the solution of a
Nonlinear Complementary Problem (NCP). Based on the Linear Matrix Inequality
(LMI) technique (for more details on LMI, see [13]) and NCP theory (for more
details on NCP, we refer to [76]), we give a sufficient condition for existence and
uniqueness of nonnegative equilibrium. Moreover, the R

n+-global asymptotic stabil-
ity and exponential stability of the equilibrium are investigated. The main results of
this section comes from [67].

Let x(t) = (xi(t), x2(t), . . . , xn(t))�, d(x) = (di(xi), d2(x2), . . . , dn(xn))�, g(x) =
(g1(x1), g2(x2), . . . , gn(xn))�, a(x) = diag{a1(x1), a2(x2), . . . , an(xn)}, A = (aij)n

i,j=1,
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B = (bij)n
i,j=1 ∈ R

n,n, and I = (I1, I2, . . . , In)�. Then, the system (7.19) can be
rewritten in the matrix form:

dx(t)

dt
= a(x)

[
− d(x)+ Ag(x(t))+ Bg(x(t − τ ))+ I

]
. (7.20)

For the amplifier and activation functions, we give the following assumptions:

(i) a( · ) ∈ A1; that is, every ai(ρ) is continuous with ai(0) = 0, and ai(ρ) > 0,
whenever ρ > 0;

(ii) a( · ) ∈ A2; that is, a( · ) ∈ A1, and for any ε > 0,
∫ ε

0 dρ/ai(ρ) = +∞ for all
i = 1, . . . , n;

(iii) a( · ) ∈ A3; that is, a( · ) ∈ A1, and for any ε > 0,
∫∞
ε
ρ dρ/ai(ρ) = +∞ for

all i = 1, . . . , n;
(iv) a( · ) ∈ A4; that is, a( · ) ∈ A1, and for any ε > 0,

∫ ε
0 ρ dρ/ai(ρ) < +∞ for all

i = 1, . . . , n;
(v) d( · ) ∈ D; that is, di( · ) is continuous and satisfies [di(ξ )−di(ζ )]/(ξ−ζ ) ≥ Di,

for all ξ �= ζ , where Di are positive constants, i = 1, . . . , n, and g( · ) belongs
to H2{G1, . . . , Gn} for some Gi > 0, i = 1, . . . , n.

First, we define positive solutions componentwise.

Definition 7.13 A solution x(t) of the system (7.20) is said to be a positive solution
if for every positive initial condition φ(t) > 0, t ∈ [ − τ , 0], the trajectory x(t) =
(x1(t), . . . , xn(t))� satisfies xi(t) > 0 for all t ≥ 0 and i = 1, . . . , n.

Lemma 7.14 (Positive Solution) If a( · ) ∈ A2, then the solution of the system (7.20)
is a positive solution.

Proof Assume that the initial value φ(t) = (φ1(t), . . . ,φn(t))� satisfies φi(t) > 0
for i = 1, . . . , n and t ∈ [ − τ , 0]. Suppose for some t0 > 0 and some index i0,
xi0 (t0) = 0. Then, the assumption a( · ) ∈ A2 leads

∫ t0

0

[
− di(xi(t))+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τ ))+ Ii

]
dt

=
∫ t0

0

ẋi(t)dt

ai(xi(t))
= −

∫ φi(0)

0

dρ

ai(ρ)
= −∞,

which is impossible due to the continuity of xi( · ) on [0, t0]. Hence, xi(t) �= 0 for all
t ≥ 0 and i = 1, . . . , n. This implies that xi(t) > 0 for all t ≥ 0 and i = 1, . . . , n. �

By this lemma we can actually concentrate on the first orthant R
n+. If a( · ) ∈ A1,

then any equilibrium in R
n+ of the system (7.19) is a solution of the equations

xi[fi(x)− Ii] = 0, i = 1, . . . , n, (7.21)
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where fi(x) = di(xi)−∑n
j=1 (aij+ bij)gj(xj), i = 1, . . . , n. Even though (7.21) might

possess multiple solutions, we can show that an asymptotically stable nonnegative
equilibrium is just a solution of a nonlinear complementary problem (NCP).

Proposition 7.15 Suppose a( · ) ∈ A1. If x∗ = (x∗i , . . . , x∗n)� ∈ R
n+ is an asymp-

totically stable equilibrium of the system (7.20), then it must be a solution of the
following nonlinear complementary problem (NCP):

x∗i ≥ 0, fi(x
∗)− Ii ≥ 0, x∗i (fi(x

∗)− Ii) = 0, i = 1, . . . , n, (7.22)

where fi(x) = di(xi)−
n∑

j=1
(aij + bij)gj(xj), i = 1, . . . , n.

Proof Suppose that x∗ ∈ R
n+ is an asymptotically stable equilibrium of the system

(7.20). Then x∗i > 0 or x∗i = 0. In case x∗i > 0, we have fi(x∗i ) − Ii = 0. If x∗i = 0,
we claim that fi(x∗i )− Ii ≥ 0. Otherwise, if fi0 (x∗)− Ii0 < 0 for some index i0, then
ẋi0 (t) = ai(xi0 (t))[ − fi0 (xi0 (t)) + Ii0 ] > (1/2)ai(xi0 (t))[ − fi0 (x∗) + Ii0 ] > 0 when
xi0 (t) is sufficiently close to x∗, which implies that xi0 (t) will never converge to 0.
Therefore, x∗ is unstable. �

Thus, we can propose a definition of a nonnegative equilibrium of the system
(7.20).

Definition 7.16 x∗ is said to be a nonnegative equilibrium of the system (7.20) in the
NCP sense, if x∗ is the solution of the Nonlinear Complementarity Problem (NCP)
(7.22); moreover, if x∗i > 0, for all i = 1, . . . , n, then x∗ is said to be a positive
equilibrium of system (7.20). In this case, x∗ must satisfy

d(x∗)− (A+ B)g(x∗)+ I = 0, x∗i > 0, i = 1, . . . , n,

where 0 = (0, . . . , 0)� ∈ R
n.

Definition 7.17 A nonnegative equilibrium x∗ of the system (7.20) in the NCP sense
is said to be R

n+-globally asymptotically stable if for any positive initial condition
φi(t) > 0, t ∈ [ − τ , 0] and i = 1, . . . , n, the trajectory x(t) of the system (7.20)
satisfies lim

t→∞ x(t) = x∗. Moreover, if there exist constants M > 0 and ε > 0 such

that

‖x(t)− x∗‖ ≤ Me−εt, t ≥ 0,

then x∗ is said to be R
n+-exponentially stable.

So, we discuss the existence and uniqueness of the nonnegative equilibrium in
the NCP sense.

Theorem 7.18 (Existence and Uniqueness of Nonnegative Equilibrium) Suppose
a( · ) ∈ A2, d( · ) ∈ D, and g( · ) ∈ H2{G1, . . . , Gn} for Gi > 0, i = 1, . . . , n.
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Let D = diag{D1, . . . , Dn} and G = diag{G1, . . . , Gn}. If there exists a positive
definite diagonal matrix P = diag{P1, P2, . . . , Pn} such that

{
P[DG−1 − (A+ B)]

}s

> 0, (7.23)

then for each I ∈ R
n, there exists a unique nonnegative equilibrium of the system

(7.20) in the NCP sense.

The proof is given in the Appendix.
The following corollary is a direct consequence of Theorem 7.18.

Corollary 7.19 Suppose a( · ) ∈ A2, d( · ) ∈ D, and g( · ) ∈ H2{G1, . . . , Gn} for
Gi > 0, i = 1, . . . , n . Let D = diag{D1, . . . , Dn} and G = diag{G1, . . . , Gn}. If
there exist a positive definite diagonal matrix P and a positive definite symmetric
matrix Q such that

[
2PDG−1 − PA− A�P− Q −PB

−B�P Q

]
> 0, (7.24)

then for each I ∈ R
n, there exists a unique nonnegative equilibrium for the system

(7.20) in the NCP sense.

Let x∗ be the nonnegative equilibrium of the system (7.20) in the NCP sense and
y(t) = x(t)− x∗. Thus, the system (7.19) can be rewritten as

dyi(t)

dt
= a∗i (yi(t))

[
− d∗i (yi(t))+

n∑

j=1

aijg
∗
j (yj(t))+

n∑

j=1

bijg
∗
j (yj(t − τ ))+ Ji

]

or in matrix form

dy(t)

dt
= a∗(y(t))

[
− d∗(y(t))+ Ag∗(y(t))+ Bg∗(y(t − τ ))+ J

]
, (7.25)

where for i = 1, . . . , n, a∗i (s) = ai(s+x∗i ), a∗(y) = diag{a∗1(y1), . . . , a∗n(yn)}, d∗i (s) =
d∗i (s + x∗i ) − d∗i (x∗i ), d∗(y) = [d∗1(y1), . . . , d∗n(yn)]�, g∗i (s) = g∗i (s + x∗i ) − g∗i (x∗i ),
g∗(y) = [g∗1(y1), . . . , g∗n(yn)]�, and

Ji =
⎧
⎨

⎩
−di(x∗i )+

n∑

j=1
(aij + bij)gj(x∗j )+ Ii x∗i = 0

0 x∗i > 0
J = (J1, . . . , Jn)�.

Since x∗ is the nonnegative equilibrium of (7.20) in the NCP sense, i.e., the solu-
tion of NCP (7.7), Ji ≤ 0 holds for all i = 1, . . . , n which implies that g∗i (yi(t))Ji ≤ 0
for all i = 1, . . . , n and t ≥ 0.
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Theorem 7.20 (Rn+-Global Asymptotic Stability of the Nonnegative Equilibrium)
Suppose a( · ) ∈ A2

⋂
A3

⋂
A4, d( · ) ∈ D, and g( · ) ∈ H2{G1, . . . , Gn} for Gi > 0,

i = 1, . . . , n. Let D = diag{D1, . . . , Dn} and G = diag{G1, . . . , Gn}. If there exist
a positive definite diagonal matrix P = diag{P1, . . . , Pn} and a positive definite
symmetric matrix Q such that

[
2PDG−1 − PA− A�P− Q −PB

−B�P Q

]
> 0, (7.26)

then the unique nonnegative equilibrium x∗ for the system (7.20) in the NCP sense
is R

n+-globally asymptotically stable.

Proof Without loss of generality, we assume x∗i = 0, i = 1, 2, . . . , p and x∗i > 0,
i = p + 1, . . . , n for some integer p. By the assumptions A3 and A4, it can be seen
that

∫ yi(t)

0

ρdρ

a∗i (ρ)
< +∞,

∫ +∞

0

ρdρ

a∗i (ρ)
= +∞,

∫ yi(t)

0

g∗i (ρ)dρ

a∗i (ρ)
< +∞

for i = 1, . . . , n and t ≥ 0. By inequality (7.26), there exists β > 0 such that

Z =
⎡

⎣
2βD −βA −βB
−βA� 2PDG−1 − PA− A�P− Q −PB
−βB� −B�P Q

⎤

⎦ > 0.

Let

V(t) = 2β
n∑

i=1

∫ yi(t)

0

ρdρ

a∗i (ρ)
+ 2

n∑

i=1

Pi

∫ yi(t)

0

g∗i (ρ)dρ

a∗i (ρ)
+

∫ t

t−τ
g∗�(y(s))Qg∗(y(s))ds.

It is easy to see that V(t) is positive definite and radially unbounded. Noting
g∗i (yi(t))Ji ≤ 0, we have

dV(t)

dt
= 2β

n∑

i=1

yi(t)

[
− d∗i (yi(t))+

n∑

j=1

aijg
∗
j (yj(t))+

n∑

j=1

bijg
∗
j (yj(t − τ ))+ Jj

]

+2
n∑

i=1

Pig
∗
i (yi(t))

[
− d∗i (yi(t))+

n∑

j=1

aijg
∗
j (yj(t))+

n∑

j=1

g∗j (yj(t − τ ))+ Jj

]

+g∗�(y(t))Qg∗(y(t))− g∗�(y(t − τ ))Qg∗(y(t − τ ))

≤ −2β

[
y�(t)Dy(t)− y�(t)Ag∗(y(t))− y�(t)Bg∗(y(t − τ ))

]

−2
[
g∗�(y(t))PDG−1g∗(y(t))− g∗�(y(t))PBg∗(y(t))



7 Global Convergent Dynamics of Delayed Neural Networks 215

−g∗�(y(t))PBg∗(y(t − τ ))
]

+g∗�(y(t))Qg∗(y(t))− g∗�(y(t − τ ))Qg∗(y(t − τ ))

= −[y�(t), g∗�(y(t)), g∗�(y(t − τ ))]Z

⎡

⎣
y(t)

g∗(y(t))
g∗(y(t − τ ))

⎤

⎦ ≤ −δy�(t)y(t),

where δ = λmin(Z) > 0. Therefore, limt→∞ ‖y(t)‖2 = 0. This completes the
proof. �

In the following, we present a numerical example to verify the theoretical results
obtained above and compare the convergent dynamics of the Cohen–Grossberg
neural systems with an amplification function which is always positive versus an
amplification function which is only positive in the first orthant. A result for positive
amplification function was provided in [28, 69].

Theorem 7.21 Suppose that g ∈ H2{G1, G2, ..., Gn} and there exists α > 0 such that
ai(ρ) > α for any ρ ∈ R and i = 1, . . . , n. If there exist a positive definite diagonal
matrix P and a positive definite matrix Q such that inequality (7.26) holds, then
for each I ∈ R

n, the system (7.20) has a unique equilibrium point that is globally
exponentially stable.

Consider the dynamical behavior of the following two systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt = x1(t)

[
− 6x1(t)+ 2g(x1(t))− g(x2(t))

+3g(x1(t − 2))+ g(x2(t − 2))+ I1

]

dx2(t)
dt = x2(t)

[
− 6x2(t)− 2g(x1(t))

+3g(x2(t))+ 1
2 g(x1(t − 2))+ 2g(x2(t − 2))+ I2

]
,

(7.27)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1(t)
dt = 1

|u1(t)|+1

[
− 6u1(t)+ 2g(u1(t))

−g(u2(t))+ 3g(u1(t − 2))+ g(u2(t − 2))+ I1

]

du2(t)
dt = 1

|u2(t)|+1

[
− 6u2(t)− 2g(u1(t))

+3g(u2(t))+ 1
2 g(u1(t − 2))+ 2g(u2(t − 2))+ I2

]
,

(7.28)

where g(ρ) = (1/2)(ρ + arctan (ρ)) and I = (I1, I2)� is the constant input that will
be determined below. Furthermore,

D = 6×
[

1 0
0 1

]
, G =

[
1 0
0 1

]
, A =

[
2 −1
−2 3

]
, B =

[
3 1
1
2 2

]
.
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By the Matlab LMI and Control Toolbox, we obtain

P =
[

0.2995 0
0 0.3298

]
, Q =

[
1.0507 0.3258
0.3258 0.9430

]
.

The eigenvalues of

Z =
[

2PDG−1 − PA− A�P− Q −PB
−B�P Q

]

are 2.6490, 1.1343, 0.5302, and 0.0559, which implies that Z is positive definite.
By Theorem 7.20, for any I ∈ R

2, the system (7.27) has a unique nonnegative
equilibrium x∗ in the NCP sense which is R

2+-globally asymptotically stable. By
Theorem 7.21, for any I ∈ R

2, system (7.28) has a unique equilibrium x0, which is
globally asymptotically stable in R

2.
In case I = (1, 0.1)�, the equilibria of the system (7.27) are (0, 0)�, (0.7414, 0)�,

(0, 0.0992)�, and (0.7414,−0.7062)�. Among them, x∗ = (0.7414, 0)� is the non-
negative equilibrium of the system (7.27) in the NCP sense and x0 = (0.7414,
−0.7062) is the unique equilibrium of the system (7.28). Pick initial condition
φ1(t) = (7/2)( cos (t) + 1) and φ2(t) = e−t, for t ∈ [ − 2, 0]. Figure 7.3 shows
that the solution of the system (7.27) converges to x∗ = (0.7414, 0)�, while the
solution of the system (7.28) converges to x0 = (0.7414,−0.7062)

0 5 10 15 20 25 30 35 40 45 50
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Fig. 7.3 Dynamical behavior of systems (7.27) and (7.28) with I = (1, 0.1)�
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7.3 Periodicity and Almost Periodicity of Delayed Neural
Networks

In this section, we discuss a large class of delayed neural networks with time-
varying inhibitions, interconnection weights, and inputs which can be periodic or
almost periodic. We will prove that under several diagonal dominant conditions,
the periodic or almost periodic system has at least one periodic or almost periodic
solution, respectively, which is globally stable. Moreover, the equilibrium of the
delayed neural networks with constant coefficients can be regarded as a periodic
orbit with arbitrary period.

We consider a rather general delayed system,

dui

dt
= −di(t)ui(t)+

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

∫ ∞

0
fj(uj(t − τij − s))dsKij(t, s)+ Ii(t), i = 1, . . . , n (7.29)

or

dui

dt
= −di(t)ui(t)+

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

∫ ∞

0
fj(uj(t − τij(t)− s))dsKij(t, s)+ Ii(t), i = 1, . . . , n, (7.30)

where for any fixed t, dsKij(t, s) are Lebesgue–Stieltjes measures with respect to s.
This model contains many delayed recurrent neural network models as special

cases. For example, if dsKij(t, tk) = bk
ij(t) for 0 < t1 < · · · tm <∞ and dsKij(t, s) =

0 for s �= tk, we obtain the following system with multi-discrete delays,

dui

dt
= −di(t)ui(t)+

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

bk
ij(t)fj(uj(t − τij(t)− tk))+ Ii(t), i = 1, 2, . . . , n. (7.31)

Instead, if dsKij(t, s) = bij(t)kij(s)ds, then we have the following system with dis-
tributed delays,
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dui(t)

dt
= −di(t)ui(t)+

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

bij(t)
∫ ∞

0
kij(s)fj(uj(t − τij(t)− s))ds+ Ii(t), i = 1, 2, . . . , n.

(7.32)

From [49], one can see that if the activation functions gi( ·) and fi( ·) are Lipschitz
continuous, then the system has a unique solution for any bounded continuous initial
condition.

Periodicity and almost periodicity are defined as follows.

Definition 7.22 A vector-valued function x(t): R→ R
n is said to be periodic if there

exists ω > 0 such that x(t + ω) = x(t) for all t ∈ R. In this case, ω is called the
period of x(t). The function x(t) is said to be almost periodic on R if for any ε > 0, it
is possible to find a real number l = l(ε) > 0, such that for any interval with length
l(ε), there exists a number ω = ω(ε) in this interval such that ‖x(t+ ω)− x(t)‖ < ε
for all t ∈ R.

The key problem of this section is to prove the existence of a periodic or almost
periodic solution. Different from the existing literature, which uses Mawhin coin-
cidence degree theory (see [44]), we use two methods to prove existence. The first
method is to regard the periodic solution as a fixed point of a Poincaré–Andronov
map [63]. A basic result is the famous Brouwer fixed point theorem [60].

Lemma 7.23 A continuous map T over a compact subsetΩ of a Banach space such
that T(Ω) ⊂ Ω has at least one fixed point, namely, there exists ω∗ ∈ Ω such that
T(ω∗) = ω∗.

The second method is to regard the periodic or almost periodic solution as a limit
of a solution of (7.29). See [27].

The global stability of such periodic or almost periodic solutions is studied by
Lyapunov and Lyapunov–Krasovskii methods.

7.3.1 Delayed Periodic Hopfield Neural Networks

Considering the system (7.30), we give the following hypotheses.

B1:

(1) di(t), aij(t), bij(t), Ii(t), τij(t):R+ → R are continuous functions, and dsKij(t, s)
is continuous in the sense that limh→∞

∫∞
0 |dsKij(t + h, s) − dsKij(t, s)| = 0

for all i, j = 1, . . . , n; they are all periodic functions with period ω > 0, i.e.,
di(t + ω) = di(t), aij(t) = aij(t + ω), bij(t) = bij(t + ω), Ii(t) = Ii(t + ω),
τij(t+ω) = τij(t), and dKij(t+ω, s) = dsKij(t, s) for all t > 0 and i, j = 1, . . . , n.

(2) g( · ) ∈ H2{G1, . . . , Gn} and f ( · ) ∈ H1{F1, . . . , Fn} for some positive constants
Gi and Fi, i = 1, . . . , n;
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(3) the initial condition x(θ ) = φ(θ ), θ ∈ (−∞, 0] satisfies thatφ∈C((−∞, 0], Rn)
is bounded.

The following result is concerned with the Poincaré–Andronov map.

Theorem 7.24 Suppose that the hypotheses B1 above are satisfied. If there exist
positive constants ξ1, ξ2, . . . , ξn such that for all ω ≥ t > 0,

− ξidi(t)+
n∑

j=1

ξjGj|aij(t)| +
n∑

j=1

ξjFj

∫ ∞

0
|dsKij(t, s)| < 0,

i = 1, 2, . . . , n, (7.33)

then the system (7.30) has at least one ω-periodic solution v(t). In addition, if there
exists a constant α such that for all ω ≥ t > 0,

−ξi(di(t)− α)+
n∑

j=1

ξjGj|aij(t)|

+
n∑

j=1

ξjFje
ατij

∫ ∞

0
eαs|dsKij(t, s)| ≤ 0, i = 1, 2, . . . , n, (7.34)

then for any solution x(t) = (x1(t), . . . , xn(t)) of (7.30),

‖x(t)− v(t)‖ = O(e−αt) t→∞. (7.35)

Proof Pick a constant M satisfying M > J/η, where

J = max
i

max
t

{ n∑

j=1

|aij(t)|Cj +
n∑

j=1

Dj

∫ ∞

0
|dsKij(t, s)| + |Ii(t)|

}

and let C = C((−∞, 0], Rn) be the Banach space with norm

‖φ‖ = sup
{−∞<θ≤ω}

‖φ(θ )‖{ξ ,∞}.

Denote

Ω = {x(θ ) ∈ C:‖x(θ )‖ ≤ M, ‖ẋ(θ )‖ ≤ N},

where N = (α+β+γ )M+c, α = maxi supt |di(t)|ξ−1
i , β = maxi,j supt |aij(t)|ξ−1

i Gj,
γ = maxi,j supt

∫∞
0 |dsKij(t, s)|Fjξ

−1
i , and c = maxi sup0≤t<ω |Ii(t)|ξ−1

i . It is easy
to check that Ω is a convex compact set.
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Now, define a map T from Ω to C by

T:φ(θ )→ x(θ + ω,φ),

where x(t) = x(t,φ) is the solution of the system (7.29) with the initial condition
xi(θ ) = φi(θ ), for θ ∈ (−∞, 0] and i = 1, . . . , n.

In the following, we will prove that TΩ ⊂ Ω , i.e., if φ ∈ Ω , then x ∈ Ω . To do
that, we define the following function

M(t) = sup
s∈(−∞,0]

‖x(t + s)‖{ξ ,∞}.

It is easy to see that ‖x(t)‖{ξ ,∞} ≤ M(t). Therefore, what we need to do is to prove
M(t) ≤ M for all t > 0.

Assume that t0 ≥ 0 is the smallest value such that ‖x(t0)‖{ξ ,∞} = M(t0) = M, and
‖x(t)‖{ξ ,∞} ≤ M if t < t0. Let i0 be an index such that ξ−1

i0
|xi0 (t)| = ‖x(t0)‖{ξ ,∞}.

Then, direct calculations give

{
d|xi0 (t)|

dt

}

t=t0

≤ sign(xi0 (t0))

{
− di0 (t0)xi0 (t0)+

n∑

j=1

ai0j(t0)gj(xj)

+
n∑

j=1

∫ ∞

0
fj(xj(t0 − τi0j(t0)− s))dsKi0j(t0, s)+ Ii0 (t0)

}

≤
[
− di0ξit0

+
n∑

j=1

|ai0j(t0)|Gjξj

]
‖x(t0)‖{ξ ,∞}

+
n∑

j=1

Fjξj

∫ ∞

0
‖x(t0 − τi0j(t0)− s)‖{ξ ,∞}|dsKi0j(t0, s)| + J

≤
[
− di0ξi0 +

n∑

j=1

|ai0j(t0)|Gjξj

+
n∑

j=1

Fjξj

∫ ∞

0
|dsKi0j(t0, s)|

]
M(t0)+ J

≤ −ηM(t0)+ J = −ηM + J < 0,

which implies that ‖x(t)‖{ξ ,∞} can never exceed M. Thus, ‖x(t)‖{ξ ,∞} ≤ M(t) ≤
M for all t > t0. Moreover, it is easy to see that ‖ẋ(θ + ω)‖ ≤ N. Therefore,
TΩ ⊂ Ω . By Lemma 7.23, there exists φ∗ ∈ Ω such that Tφ∗ = φ∗. Hence
x(t,φ∗) = x(t, Tφ∗), i.e., x(t,φ∗) = x(t + ω,φ∗), which is an ω-periodic solution of
the system (7.30).

Now, we prove that inequality (7.34) leads to the global attractivity of the peri-
odic solution. Let x̄(t) = [x(t)− v(t)] and z(t) = eαtx̄(t). We have
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dzi(t)

dt
= −(di(t)− α)zi(t)+ eαt

{ n∑

j=1

aij(t)

[
gj(xj(t))− gj(vj(t))

]

+
n∑

j=1

∫ ∞

0

[
fj(xj(t − τij(t)− s))− fj(vj(t − τij(t)− s))

]
dsKij(t, s)

}
.

Therefore,

d|zi(t)|
dt

≤ −(di(t)− α)|zi(t)| +
n∑

j=1

|aij(t)|Gj|zj(t)|

+
n∑

j=1

Fje
ατij(t)

∫ ∞

0
eαs|zj(t − τij(t)− s)||dsKij(t, s)|

≤
[
− ξi(di(t)− α)+

n∑

j=1

ξj|aij(t)|Gj

]
‖z(t)‖{ξ ,∞}

+
n∑

j=1

ξjFje
ατij(t)

∫ ∞

0
eαs|zj(t − τij(t)− s)||dsKij(t, s)|.

By the same approach used before, we can prove that z(t) is bounded. That is, x̄(t) =
O(e−αt). This completes the proof of the theorem. �

7.3.2 Delayed Periodic Cohen–Grossberg Competitive
and Cooperative Neural Networks

In this section, we investigate the following delayed Cohen–Grossberg neural
network:

dxi(t)

dt
= −ai(xi(t))

⎡

⎣di(xi(t))−
n∑

j=1

cij(t)gj(xj(t))

−
n∑

j=1

∫ ∞

0
fj(xj(t − s))dsKij(t, s)+ Ii(t)

⎤

⎦ , i = 1, . . . , n, (7.36)

where xi(t) denotes the state variable of neuron i, all coefficients satisfy the condition
B1, d(x) = (d1(x1), . . . , dn(xn))� ∈ D as defined in Sect. 7.2.3, and the amplification
functions ai( · ), i = 1, . . . , n, might satisfy some of the assumptions A1−4 defined in
Sect. 7.2.3. The initial condition is xi(θ ) = φi(θ ), θ ∈ (−∞, 0] for some continuous
bounded positive functions φi( · ) ∈ C(−∞, 0]. The main results come from [21].
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By Lemma 7.14, the assumption A2 implies that for positive, bounded, and
continuous initial conditions, the trajectory of the system (7.36) is always positive.
Moreover, we can obtain its boundedness.

Lemma 7.25 Assume the hypotheses B1, and suppose further that a( · ) ∈ A2 and
d(·) ∈ D. If there exist constants ξi > 0, i = 1, . . . , n, such that for all i = 1, 2, . . . , n
and 0 ≤ t < ω,

− γiξi +
n∑

j=1

|cij(t)|Gjξj +
n∑

j=1

Fjξj

∫ ∞

0
|dsKij(t, s)| < 0, (7.37)

then any solution x(t) of the system (7.36) is bounded.

Proof First, by Lemma 7.14, any solution of (7.36) under positive initial conditions
is globally positive. Since cij(t) are continuous and periodic with period ω, dsKij(t, s)
are ω-periodic with respect to t, and there exists a constant η > 0 with

η = min
i

min
0≤t<ω

⎧
⎨

⎩
γiξi −

n∑

j=1

|cij(t)|Gjξj −
n∑

j=1

Fjξj

∫ ∞

0
|dsKij(t, s)|

⎫
⎬

⎭
.

So, we have

−γiξi +
n∑

j=1

|cij(t)|Gjξj +
n∑

j=1

Fjξj

∫ ∞

0
|dsKij(t, s)| ≤ −η < 0.

Let M(t) = maxs≤t ‖x(s)‖{ξ ,∞}. Clearly, M(t) is nondecreasing and ‖x(t)‖{ξ ,∞} ≤
M(t). Denote

H = sup
0<t≤ω

max
i

⎧
⎨

⎩
|di(0)| + |I∗i | +

n∑

j=1

c∗ij|gj(0)| +
n∑

j=1

|fj(0)|
∫ ∞

0
|dsKij(t, s)|

⎫
⎬

⎭
.

Now, we can prove that M(t) ≤ max{M(0), H/η}. For any t0 ≥ 0 with M(t0) =
‖x(t0)‖{ξ ,∞}, let i0 be the index with ‖x(t0)‖{ξ ,∞} = |xi0 (t0)|ξ−1

i0
. Note that the

assumptions imply that, for i = 1, . . . , n,

|gi(s)| ≤ Gi|s| + |gi(0)|, |fi(s)| ≤ Fi|s| + |fi(0)|, s ∈ R,

and

sign(s)di(s) ≥ γi|s| + sign(s)di(0), s ∈ R.

Hence, we have
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{
d

dt
|xi0 (t)|

}

t=t0

= ai0 (xi0 (t0))sign(xi0 (t0))[− bi0 (xi0 (t0))

+
n∑

j=1

ci0j(t0)gj(xj(t0))

+
n∑

j=1

∫ ∞

0
fj(xj(t0 − s))dsKi0j(t0, s)+ Ii0 (t0)]

≤ ai0 (xi0 (t0))
[
−γi0ξi0 |xi0 (t0)|ξ−1

i0
+

n∑

j=1

|ci0j(t0)|Gjξj|xj(t0)|ξ−1
j

+|bi0 (0)| + |Ii0 (t0)| +
n∑

j=1

Fjξj

∫ ∞

0
|xj(t0 − s)|ξ−1

j |dsKi0j(t0, s)|

+
n∑

j=1

|ci0j(t)||gj(0)| +
n∑

j=1

|fj(0)|
∫ ∞

0
|dsKi0j(t0, s)|

⎤

⎦

≤ ai0 (xi0 (t0))

⎧
⎨

⎩

⎡

⎣−γi0ξi0 +
n∑

j=1

|ci0j(t0)|Gjξj

+
n∑

j=1

Fjξj

∫ ∞

0
|dsKi0j(t0, s)|

⎤

⎦ ‖x(t0)‖{ξ ,∞} + H

⎫
⎬

⎭

≤ ai0 (xi0 (t0))(− η‖x(t0)‖{ξ ,∞} + H) = ai0 (xi0 (t0))(− ηM(t0)+ H).

This implies M(t) ≤ max{M(t0), H/η} according to Lemma 7.2. So, x(t) is bounded.
This completes the proof. �

Thus, we can give the main result of this section.

Theorem 7.26 Assume the hypotheses B1, and suppose further that a( · ) ∈ A2
and d( · ) ∈ D. If there exist constants ζi > 0, i = 1, 2, . . . , n, such that for all
i = 1, 2, . . . , n and 0 ≤ t < ω,

− ζiγi +
n∑

j=1

|cji(t)|ζjGi +
n∑

j=1

ζjFi

∫ ∞

0
|dKji(s)| < 0, (7.38)

then the system (7.36) has a nonnegative periodic solution with period ω which is
globally asymptotically stable.

Proof First, inequality (7.38) implies that inequality (7.37) holds owing to the
M-matrix theory (see Lemma 7.4). By Lemma 7.14, any solution of the sys-
tem (7.36) with a positive, bounded, and continuous initial condition is globally
positive. Let
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−λ = max
i

sup
0≤t<ω

⎧
⎨

⎩
−ζiγi +

n∑

j=1

|cji(t)|ζjGi +
n∑

j=1

ζjFi

∫ ∞

0
|dKji(s)|

⎫
⎬

⎭
.

The conditions stated in the theorem implies that λ > 0.
For a specific positive solution x(t) of system (7.36), let ui(t) = xi(t + ω) −

xi(t), and vi(t) =
∫ xi(t+ω)

xi(t)
1/ai(ρ) dρ, i = 1, 2, . . . , n. Note that ai( · ) is continuous,

ai(ρ) > 0 when ρ > 0, and xi is positive and bounded, thus
∫ xi(t+ω)

xi(t)
1/ai(ρ) dρ

exists. By the mean-value theorem for integrals, vi(t) = 1/ai(ξ )(xi(t+ω)− xi(t)) =
(1/ai(ξ ))ui(t), where ξ ∈ [ min{xi(t), xi(t+ω)}, max{xi(t), xi(t+ω)}]. Since ai(x) > 0
when x > 0, we have sign(vi(t)) = sign(ui(t)).

Direct calculations give

dvi(t)

dt
= 1

ai(xi(t + ω))

{
dxi(s)

ds

}

s=t+ω
− 1

ai(xi(t))

{
dxi(s)

ds

}

s=t

= −di(xi(t + ω))+
n∑

j=1

cij(t + ω)gj(xj(t + ω))

+
n∑

j=1

∫ ∞

0
fj(xj(t + ω − s))dsKij(t + ω, s)− Ii(t + ω)

−
⎡

⎣−di(xi(t))+
n∑

j=1

cij(t)gj(xj(t))+
n∑

j=1

∫ ∞

0
fj(xj(t − s))dsKij(t, s)− Ii(t)

⎤

⎦

= −
⎛

⎝di(xi(t + ω))− di(xi(t))+
n∑

j=1

cij(t)(gj(xj(t + ω))− gj(xj(t))

⎞

⎠

+
n∑

j=1

∫ ∞

0
(fj(xj(t + ω))− fj(xj(t)))dsKij(t, s),

and

d

dt
|vi(t)| = sign(vi(t))

{
− (di(xi(t + ω))− di(t))

+
n∑

j=1

cij(t)(gj(xj(t + ω))− gj(xj(t)))

+
n∑

j=1

∫ ∞

0
(fj(xj(t + ω))− fj(xj(t)))dsKij(t, s)

}

≤ −γi|ui(t)| +
n∑

j=1

|cij(t)|Gj|uj(t)| +
n∑

j=1

∫ ∞

0
Fj|uj(t − s)||dKij(t, s)|.
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Define

L(t) =
n∑

i=1

ζi|vi(t)| +
n∑

i,j=1

ζiFj

∫ ∞

0

∫ t

t−s
|uj(ρ)|dρ|dKij(s)|.

Differentiating L(t) along the trajectory x(t) of system (7.36) gives

dL(t)

dt
≤

n∑

i=1

ζi

⎡

⎣−γi|ui(t)| +
n∑

j=1

|cij(t)|Gj|uj(t)| +
n∑

j=1

∫ ∞

0
Fj|uj(t − s)||dKij(s)|

⎤

⎦

+
n∑

i,j=1

ζiFj

[∫ ∞

0
|uj(t)||dKij(s)| −

∫ ∞

0
|uj(t − s)||dKij(s)|

]

=
n∑

i=1

⎡

⎣−ζiγi +
n∑

j=1

|cji(t)|ζjGi

⎤

⎦ |ui(t)| +
n∑

i,j=1

ζjFi

∫ ∞

0
|ui(t − s)||dKji(s)|

+
n∑

i,j=1

ζjFi

∫ ∞

0
|ui(t)||dKji(s)| −

n∑

i,j=1

ζjFi

∫ ∞

0
|ui(t − s)||dKji(s)|

=
n∑

i=1

⎡

⎣−ζiγi +
n∑

j=1

|cji(t)|ζjGi +
n∑

j=1

ζjFi

∫ ∞

0
|dKji(s)|

⎤

⎦ |ui(t)| ≤ −λ‖u(t)‖1.

Since L(t) ≥ 0, integrating both sides of (7.39) from 0 to∞ gives

∫ ∞

0

n∑

i=1

|ui(t)|dt ≤ 1

λ
L(0) < +∞, (7.39)

which implies

∞∑

n=1

∫ ω

0
‖x(t + nω)− x(t + (n− 1)ω)‖1dt < +∞.

By the Cauchy convergence principle, we have that x(t + nω) converges in L1[0,ω]
as n→∞. Since x(t) is bounded, ai(xi(t)), i = 1, 2, . . . , n, are also bounded and x(t)
is uniformly continuous. Then, the sequence {x(t + nω)} is uniformly bounded and
equicontinuous. Thus, by the Arzéla–Ascoli theorem, there exists a subsequence
{x(t+ nkω)} converging on any compact set of R. Denote its limit by x∗(t). We have
that x∗(t) is also the limit of {x(t + nω)} in L1[0,ω], i.e.,

lim
n→∞

∫ ∞

0
‖x(t + nω)− x∗(t)‖dt = 0.
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Then, we have that ‖x(t + nω)− x∗(t)‖ → 0 uniformly on [0,ω]. Similarly, ‖x(t +
nω)− x∗(t)‖ → 0 uniformly on any compact set of R.

We next prove that x∗(t) is a nonnegative periodic solution with period ω. Since

x∗(t + ω) = lim
n→∞ x(t + (n+ 1)ω) = lim

n→∞ x(t + nω) = x∗(t),

we have that x∗(t) is periodic with period ω. Then, replacing x(t) with x(t + nkω) in
system (7.36) and letting k→∞ give

dx∗i (t)

dt
= −ai(x

∗
i (t))

⎡

⎣di(x
∗
i (t))−

n∑

j=1

cij(t)gj(x
∗
j (t))

−
n∑

j=1

∫ ∞

0
fj(x
∗
j (t − s))dsKij(t, s)+ Ii(t)

⎤

⎦ , i = 1, . . . , n.

Hence, x∗(t) is a solution of the system (7.36). Let t = t1 + nω, where 0 ≤ t1 < ω.
Then, ‖x(t)−x∗(t)‖ = ‖x(t1+nω)−x∗(t1)‖. The uniform convergence of {x(t+nω)}
on [0,ω] implies that

lim
t→∞‖x(t)− x∗(t)‖ = 0. (7.40)

Finally, we prove that any positive solution of the system (7.36) converges
to x∗(t). Suppose that y(t) is another positive solution of system (7.36) and let
ui(t) = yi(t) − xi(t), vi(t) =

∫ yi(t)
xi(t)

1/ai(ρ)dρ, i = 1, . . . , n. The same arguments
above yield limt→∞ ‖y(t)− x(t)‖ = 0. In conjunction with (7.40), we conclude that
limt→∞ ‖x(t)− x∗(t)‖ = 0, completing the proof. �

7.3.3 Delayed Almost Periodic Hopfield Neural Networks

In this section, we investigate the dynamical system (7.30) with almost periodic
coefficients. The main results come from [65]. At this stage, we give the following
set of hypotheses.

B2:

(1) The activation functions g, f satisfy g( · ) ∈ H2{G1, G2, . . . , Gn} and f ( · ) ∈
H1{F1, F2, . . . , Fn} for some positive constants;

(2) di(t), aij(t), τij(t), and Ii(t) are continuous, di(t) ≥ di > 0 and τij ≥ 0 for
i, j = 1, 2, . . . , n;

(3) For any s ∈ R, Kij(t, s): t �→ Kij(t, s) is continuous in the same sense as in B1,
and for any t ∈ R, dKij(t, s): s �→ dKij(t, s) is a Lebesgue–Stieltjes measure, for
all i, j = 1, 2, . . . , n;
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(4) For any ε > 0, there exists l = l(ε) > 0, such that every interval [α,α + l]
contains at least one number ω for which |di(t + ω) − di(t)| < ε, |aij(t + ω) −
aij(t)| < ε, |Ii(t + ω) − Ii(t)| < ε, |τij(t + ω) − τij(t)| < ε, and

∫∞
0 |dKij(t +

ω, s)− dKij(t, s)| < ε for all i, j = 1.2. . . . , n and t ∈ R.
(5) |dKij(t, s)| ≤ |dKij(s)|, and for some ε > 0,

∫∞
0 eεs|dKij(s)| <∞ .

It can be seen that under Item 4 in this assumption, di(t), aij(t), Ii(t), and τij(t) are
almost periodic functions. Therefore, they are all bounded. We also denote |a∗ij| =
sup{t∈R} |aij(t)|, |b∗ij| = sup{t∈R} |bij(t)|, |I∗i | = sup{t∈R} |Ii(t)|, τ ∗ij = sup{t∈R} τij(t),
i, j = 1, . . . , n, which are surely finite due their almost periodicity.

Before stating the main result, we need several lemmas for the proof of the main
theorem.

Lemma 7.27 Suppose that the hypotheses B2 are satisfied. If there exist ξi > 0,
i = 1, . . . , n, and η > 0 such that

− di(t)ξi +
n∑

j=1

|aij(t)|Gjξj +
n∑

j=1

Fjξj

∫ ∞

0
|dKij(t, s)| < −η < 0 (7.41)

for all t > 0 and i = 1, . . . , n, then any solution x(t) of the system (7.29) is bounded.

Proof Define M(t) = maxs≤t ‖x(s)‖{ξ ,∞}. It is obvious that ‖x(t)‖{ξ ,∞} ≤ M(t), and
M(t) is nondecreasing. We will prove that M(t) ≤ max{M(0), (2/η)Î}, where

Î = max
i

{
|I∗i | +

n∑

j=1

[
|a∗ij||gj(0)| + |b∗ij||fj(0)|

]}
.

Fix t0 such that ‖x(t0)‖{ξ ,∞} = M(t0) = maxs≤t0 ‖x(s)‖{ξ ,∞}. In this case, let it0 be
such an index that ξ−1

it0
|xit0

(t0)| = ‖x(t0)‖{ξ ,∞}. Then, noting that |gj(s)| ≤ Gj|s| +
|gj(0)| and |fj(s)| ≤ Fj|s| + |fj(0)| for j = 1, . . . , n and s ∈ R, we have

{
d

dt
|xit0

(t)|
}

t=t0

= sign(xit0
(t0))

[
− dit0

(t0)xit0
(t0)+

n∑

j=1

ait0 j(t0)gj(xj(t0))

+
n∑

j=1

∫ ∞

0
fj(xj(t0 − τit0 j(t0)− s))dKit0 j(t0, s)+ Iit0

(t0)

]

≤ −dit0
(t0)|xit0

(t0)|ξ−1
it0
ξit0
+

n∑

j=1

|ait0 j(t0)|Gj|xj(t0)|ξ−1
j ξj

+
n∑

j=1

Fjξj

∫ ∞

0
|xj(t0 − τit0 j(t0)− s)|ξ−1

j |dKit0 j(t0, s)| + |Iit0
(t0)|
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+
n∑

j=1

|ai0j(t)||gj(0)| + |bi0j(t)||fj(0)|

≤ −dit0
(t0)ξit0 +

n∑

j=1

[
|ait0 j(t0)|Gjξj + Fjξj

∫ ∞

0
|dKit0 j(t0, s)|‖x(t0)‖{ξ ,∞}

]
+ Î

≤ −η‖x(t0)‖{ξ ,∞} + Î = −ηM(t0)+ Î, (7.42)

which implies M(t) ≤ max{M(0), (2/η)Î} for all t > 0 according to Lemma 7.2.
This proves that x(t) is bounded. The lemma is proved. �

Lemma 7.28 Suppose that the hypotheses B2 are satisfied. If there exist ξi > 0,
i = 1, 2, . . . , n, β > 0, and η > 0 such that for all t > 0,

− di(t)ξi +
n∑

j=1i

|aij(t)|Gjξj +
n∑

j=1

Fjξje
βτ∗ij

∫ ∞

0
eβs|dKij(t, s)| < −η, (7.43)

then for any ε > 0, there exist T > 0 and l = l(ε) > 0, such that every interval
[α,α+ l ] contains at least one number ω for which the solution x(t) of system (7.30)
satisfies

‖x(t + ω)− x(t)‖{ξ ,∞} ≤ ε for all t > T . (7.44)

Proof Let

εi(ω, t) = −[di(t + ω)− di(t)]xi(t + ω)+
n∑

j=1

[aij(t + ω)− aij(t)]gj(xj(t + ω))

+
n∑

j=1

∫ ∞

0
[fj(xj(t − τij(t + ω)+ ω − s))− fj(xj(t − τij(t)+ ω − s))]dKij(t + ω, s)

+
n∑

j=1

∫ ∞

0
fj(xj(t − τij(t)+ ω − s))d[Kij(t + ω, s)− Kij(t, s)]+ [Ii(t + ω)− Ii(t)].

Lemma 7.27 tells that x(t) is bounded. Thus, the right side of (7.30) is also bounded,
which implies that x(t) is uniformly continuous. Therefore, by the fourth item in
assumption B2, for any ε > 0, there exists l = l(ε) > 0 such that every interval
[α,α + l], α ∈ R, contains an ω for which |εi(ω, t)| ≤ (1/2)ηε, for all t ∈ R and
i = 1, 2, . . . , n.
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Denote zi(t) = xi(t + ω)− xi(t). We have

dzi(t)

dt
= −di(t)zi(t)+

n∑

j=1

aij(t)[gj(xj(t + ω))− gj(xj(t))]

+
n∑

j=1

∫ ∞

0

[
fj(xj(t + ω − τij(t)− s))− fj(xj(t − τij(t)− s))

]
dKij(t, s)

+εi(ω, t).

Let it be such an index that ξ−1
it
|zit (t)| = ‖z(t)‖{ξ ,∞}. Differentiating eβs|zit (s)| gives

d

ds

{
eβs|zit (s)|

}∣∣∣∣
s=t
= βeβt|zit (t)| + eβtsign(zit (t))

{
− dit (t)zit (t)

+
n∑

j=1

aitj(t)

[
gj(xj(t + ω))− gj(xj(t))

]

+
n∑

j=1

∫ ∞

0

[
fj(xj(t + ω − τit j(t)− s))− fj(xj(t − τit j(t)− s))

]
dKitj(t, s)

+εit (ω, t)

}

≤ eβt
{
− [dit (t)− β]|zit (t)|ξ−1

it
ξit +

n∑

j=1

|aitj(t)|Gj|zj(t)|ξ−1
j ξj

+
n∑

j=1

Fjξj

∫ ∞

0
|zj(t − τit j(t)− s)|ξ−1

j e−β(τit j(t)+s)eβ(s+τ∗ij )|dKitj(t, s)|
}

+1

2
ηεeβt.

Using arguments similar to those in the proof of Lemma 7.27, let

Ψ (t) = max
s≤t

{
eβs‖z(s)‖{ξ ,∞}

}
. (7.45)

For any t0 > 0 with Ψ (t0) = eβt0‖z(t0)‖{ξ ,∞}, we have d{eβt|zit (t)|}/dt|t=t0 ≤
−ηΨ (t0)+ 1

2ηεe
βt. From Lemma 7.2, this implies that there must exist T > 0 such

that ‖z(t)‖{ξ ,∞} ≤ ε for all t > T . �

Thus, we obtain the main theorem.

Theorem 7.29 Suppose that the hypotheses B2 are satisfied. If there exist ξi > 0,
i = 1, 2, . . . , n, β > 0, and η > 0 such that the inequality
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− [di(t)− β]ξi +
n∑

j=1

|aij(t)|Gjξj+
n∑

j=1

Fjξje
βτ∗ij

∫ ∞

0
eβs|dKij(t, s)| < −η,

i = 1, . . . , n (7.46)

holds for all t > 0, then the system (7.30) has a unique almost periodic solution
v(t) = (v1(t), . . . , vn(t))�, and for any solution x(t) = (x1(t), . . . , xn(t))� of (7.30),
one has

‖x(t)− v(t)‖ = O(e−βt). (7.47)

Proof εi,k(t) is defined as in the proof of Lemma 7.28. From the hypotheses B2 and
the boundedness of u(t), we can select a sequence {tk} → ∞ such that |εi,k(t)| ≤ 1/k
for all i,t. Since {x(t + tk)}∞k=1 are uniformly bounded and equicontinuous, by the
Arzela–Ascoli lemma and the diagonal selection principle, we can select a subse-
quence tkj of tk, such that x(t + tkj) (for convenience, we still denote by x(t + tk))
uniformly converges to a continuous function v(t) = [v1(t), v2(t), . . . , vn(t)]� on any
compact subset of R.

Now, we prove v(t) is a solution of system (7.30). In fact, by Lebesgue dominated
convergence theorem, for any t > 0 and δt ∈ R, we have

vi(t + δt)− vi(t) = lim
k→∞

[
ui(t + δt + tk)− ui(t + tk)

]

= lim
k→∞

∫ t+δt

t

{
− di(σ + tk)ui(σ + tk)+

n∑

j=1

aij(σ + tk)gj(uj(σ + tk))

+
n∑

j=1

∫ ∞

0
fj(uj(σ + tk − τij(σ + tk)− s))dKij(σ + tk, s)+ Ii(σ + tk)

}
dσ

=
∫ t+δt

t

{
− di(σ )vi(σ )+

n∑

j=1

aij(σ )gj(vj(σ ))

+
n∑

j=1

∫ ∞

0
fj(vj(σ − τij(σ )− s))dKij(σ , s)+ Ii(σ )

}
dσ + lim

k→∞

∫ t+δt

t
εi,k(s)dσ

=
∫ t+δt

t

{
− di(σ )vi(σ )+

n∑

j=1

aij(σ )gj(vj(σ ))

+
n∑

j=1

∫ ∞

0
fj(vj(σ − τij(σ )− s))dKij(σ , s)+ Ii(σ )

}
dσ ,

which implies
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dvi

dt
= −di(t)vi(t)+

n∑

j=1

aij(t)gj(uj(t))

+
∫ ∞

0
fj(uj(t − τij(t)− s))dKij(t, s)+ Ii(t),

i.e., v(t) is a solution of the system (7.30).
Second, we prove that v(t) is an almost periodic function. By Lemma 7.28, for

any ε > 0, there exist T > 0 and l = l(ε) > 0, such that every interval [α,α + l]
contains at least one number ω for which |xi(t+ω)− xi(t)| ≤ ε, for all t > T . Then
we can find a sufficient large K ∈ N such that for any k > K and all t > 0, we have
|xi(t+ tk + ω)− xi(t+ tk)| ≤ ε. Let k→∞, we have |vi(t+ ω)− vi(t)| ≤ ε, for all
t > 0. In other words, v(t) is an almost periodic function.

Finally, we prove that every solution x(t) of the system (7.30) converges to v(t)
exponentially with rate β.

Denote y(t) = x(t)− v(t). We have

dyi(t)

dt
= −di(t)yi(t)+

n∑

j=1

aij(t)
[
gj(xj(t))− gj(vj(t))

]

+
n∑

j=1

∫ ∞

0

[
fj(xj(t − τij(t)− s))− fj(vj(t − τij(t)− s))

]
dKij(t, s).

Let it be an index such that |yit (t)| = ξit‖y(t)‖{ξ ,∞}. Differentiating eβs|yit (s)|, we
have

d

ds

{
eβs|yit (s)|

}∣∣∣∣
s=t
= βeβt|yit (t)| + eβtsign(yit (t))

{
− dit (t)yit (t)

+
n∑

j=1

aitj(t)[gj(xj(t))− gj(vj(t))]

+
n∑

j=1

[fj(xj(t − τit j(t)− s))− fj(vj(t − τit j(t)− s))]dKitj(t, s)

}

≤ eβt
{
− [dit − β]|yit (t)|ξ−1

it
ξit +

n∑

j=1

|aitj(t)|Gj|yj(t)|ξ−1
j ξj

+
n∑

j=1

Fjξj

∫ ∞

0
|yj(t − τit j(t)− s)|ξ−1

j e−β(s+τit j(t))eβ(s+τ∗it j)|dKitj(t, s)|
}

(7.48)

Define Δ(t) = maxs≤t{eβs‖y(s)‖{ξ ,∞}}. Fix t0 such that Δ(t0) = eβt0‖y(t0)‖{ξ ,∞}.
Inequality (7.48) becomes d{eβt|yi0 (t)|}/dtt=t0 ≤ −ηΔ(t0) ≤ 0. By Lemma 7.2, this
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implies that Δ(t) ≤ Δ(0) for all t ≥ 0 and ‖y(t)‖{ξ ,∞} ≤ Δ(0)e−βt. In other words,
‖x(t)− v(t)‖{ξ ,∞} ≤ Δ(0)e−βt. The theorem is proved. �

Since periodic functions are a special case of almost periodic functions, the
results in this section can easily be used to obtain the criterion guaranteeing the
existence of a periodic trajectory and its global stability for the case when coef-
ficients are all periodic with a uniform period. Hence, the following theorem is a
direct consequence of Theorem 7.29.

Theorem 7.30 Suppose that the hypotheses B1 are satisfied. If there exist positive
constants ξ1, . . . , ξn and β > 0 such that

− ξi[di − β]+
n∑

j=1

|aij(t)|ξjGj+
n∑

j=1

ξiFje
βτ∗ij

∫ ∞

0
eβs|dK̄ij(s)| < 0,

i = 1, . . . , n, (7.49)

then the system (7.29) has a unique periodic solution v(t) = (v1(t), . . . , vn(t))�, and
for any solution x(t) = (x1(t), . . . , xn(t))� of (7.29), one has |x(t)− v(t)| = O(e−βt)
as t→∞.

Moreover, consider the following system with constant coefficients:

dui

dt
= −diui(t)+

n∑

j=1

aijgj(uj(t))+
n∑

j=1

∫ ∞

0
fj(uj(t − τij − s))dsKij(s)

+Ii, i = 1, . . . , n, (7.50)

where dsKij(s) denotes the Lebesgue–Stieltjes measures, i, j = 1, . . . , n. Since a
constant can be regarded as a function with arbitrary period, we have the following
result.

Theorem 7.31 Suppose g( · ) ∈ H1{G1, . . . , Gn} and f ( · ) ∈ H1{F1, . . . , Fn}. If there
are positive constants ξ1, . . . , ξn and β > 0 such that

− ξi[di − β]+
n∑

j=1

|aij|ξjGj +
n∑

j=1

ξjFje
βτij

∫ ∞

0
eβs|dKij(s)|Fj < 0, i = 1, . . . , n,

(7.51)
then the system (7.50) is globally exponentially stable.

7.4 Delayed Neural Network with Discontinuous Activations

So far, all discussions and results have been based on the assumption that the activa-
tion functions are Lipschitz continuous. As pointed in [40], a brief review on some
common neural network models reveals that neural networks with discontinuous
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activation functions are of importance and arise frequently in practice. For example,
consider the classical Hopfield neural networks with graded response neurons (see
[54]). The standard assumption is that the activations are used in the high-gain limit
where they closely approach discontinuous and comparator functions. As shown in
[54, 57], the high-gain hypothesis is crucial to make negligible the connection to the
neural network energy function of the term depending on neuron self-inhibitions,
and to favor binary output formation, as in a hard comparator function like sign(s).

A conceptually analogous model based on hard comparators are discrete-time
neural networks discussed in [50]. Another important example concerns the class
of neural networks introduced in [59] to solve linear and nonlinear programming
problems. Those networks exploit constraint neurons with diode-like input–output
activations. Again, in order to guarantee satisfaction of the constraints, the diodes
are required to possess a very high slope in the conducting region, i.e., they should
approximate the discontinuous characteristic of an ideal diode (see [31]). When
dealing with dynamical systems possessing high-slope nonlinear elements, it is
often advantageous to model them with a system of differential equations with dis-
continuous right-hand side, rather than studying the case where the slope is high but
of finite value (see [85]).

In this section, we consider the following delayed dynamical system:

dxi(t)

dt
= −di(t)xi(t)+

n∑

j=1

aij(t)gj(xj(t))

+
n∑

j=1

∫ ∞

0
gj(xj(t − s))dsKij(t, s)+ Ii(t), i = 1, . . . , n, (7.52)

with discontinuous activations gj for both delayed and undelayed terms. A special
form with a uniform discrete delay is

dx(t)

dt
= −Dx(t)+ Ag(x(t))+ Bg(x(t − τ ))+ I, (7.53)

when rewritten in matrix form. We introduce the concept of a solution in the Filippov
sense for the system (7.52) and prove its existence by the idea introduced in [48].
We construct a sequence of delayed systems in which the activations have high
slope and converge to the discontinuous activations. First, we prove that under diag-
onal dominance conditions, the sequence of solutions has at least a subsequence
converging to a solution of the system (7.52) with discontinuous activations by a
well-known diagonal selection argument. Second, we consider the system (7.53).
Without assuming the boundedness and the continuity of the neuron activations, we
present sufficient conditions for the global stability of neural networks with time
delay based on linear matrix inequalities and discuss their convergence. Third, we
discuss the system (7.52) with almost periodic coefficients. We use the Lyapunov
functional method to obtain an asymptotically almost periodic solution which leads
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to the existence of an almost periodic solution [84]. We also use the Lyapunov
functional to obtain the global exponential stability of this almost periodic solution.
Furthermore, from the proof of the existence and uniqueness of the solution, we
can conclude that each solution sequence of the system with high-slope activations
which converge to the discontinuous activations will actually converge to the unique
solution of the system (7.52) with discontinuous activations in the Filippov sense.
The main results come from [64, 66].

7.4.1 Preliminaries

In this section, we introduce the definitions and lemmas on nonsmooth and varia-
tional analysis, report some definitions and existing results on differential
inclusions, and based on those results, give the mathematical description for the
generalized neural network model to be studied.

7.4.1.1 Nonsmooth Analysis of Single-Valued Functions

Here, we introduce some necessary definitions and lemma on nonsmooth and vari-
ational analysis. We refer interested readers to [34, 80] for more details on these
topics.

A single-valued function f : R
n → R is said to be strictly continuous at x̄ ∈ R

n if
the value lipf (x̄) := lim supx,x′→x̄, x �=x′ |f (x)− f (x′)|/‖x− x′‖ is finite. If f is strictly
continuous at each x̄ ∈ R

n, then f is said to be strictly continuous in R
n. A strictly

continuous function f :Rn → R is said to be (Clarke) regular at x ∈ R
n if there exists

the usual one-sided directional derivative f ′(x, v) = limρ↘0 [f (x + ρv) − f (x)]/ρ
for all v ∈ R

n and it equals to the generalized directional derivative f o(x, v) =
lim supy→x,t↘0 [f (y + tv) − f (y)]/t. f is said to be regular in R

n if f is regular on
each x ∈ R

n. For a strictly continuous function f :Rn → R, the Clarke’s generalized
gradient of f at x ∈ R

n, which can be used to handle gradient flow on nonsmooth
functions, can be written as

∂f = {p ∈ R
n: f o(x, v) ≥ 〈p, v〉, ∀ v ∈ R

n}.

A point x0 ∈ R
n is said to be a critical point of f if 0 ∈ ∂f (x0), and crit(f ) denotes

the set of critical points of f .
The following chain rule for nonsmooth functions is very important for later

arguments.

Lemma 7.32 (Chain Rule, Theorem 2.3.9 in [34]) If x(t):R+ → R
n is locally abso-

lutely continuous and a single-valued function f :Rn → R is strictly continuous and
regular in R

n, then the derivative d
dt f (x(t)) exists for almost all t ≥ 0 and

d

dt
f (x(t)) = 〈p, ẋ(t)〉, for all p ∈ ∂f (x(t)),

for almost all t ≥ 0.
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7.4.1.2 Set-Valued Map

We introduce some definitions and lemmas for set-valued and variational analysis.
We refer the interested readers to [5, 80] for more details.

Suppose E ⊂ R
n. Then x �→ F(x) is called a set-valued map from E ↪→ R

n, if to
each point x of a set E ⊂ R

n, there corresponds a non-empty set F(x) ⊂ R
n. A set-

valued map F with non-empty values is said to be upper semicontinuous (u.s.c. for
short) at x0 ∈ E, if for any open set N containing F(x0), there exists a neighborhood
M of x0 such that F(M) ⊂ N. F(x) is said to have closed (convex, compact) image,
if for each x ∈ E, F(x) is closed (convex, compact).

7.4.1.3 Description of the Solution of the Model

Consider the following system:

dx

dt
= f (x), (7.54)

where f ( · ) is not continuous. Reference [39] proposed the following definition of
the solution for the system (7.54).

Definition 7.33 Let φ be a set-valued map given by

φ(x) =
⋂

δ>0

⋂

μ(N)=0

co

[
f (O(x, δ)− N)

]
, (7.55)

where co(E) is the closure of the convex hull of some set E, O(x, δ) = {y ∈ R
n:‖y−

x‖ ≤ δ}, and μ(N) is the Lebesgue measure of the set N. A solution of the Cauchy
problem for (7.54) with initial condition x(0) = x0 is an absolutely continuous
function x(t), t ∈ [0, T), which satisfies x(0) = x0, and the differential inclusion

dx

dt
∈ φ(x), a.e. t ∈ [0, T). (7.56)

Furthermore, [4, 6, 48] have proposed the following functional differential inclu-
sion with memory:

dx

dt
(t) ∈ F(t, A(t)x), (7.57)

where F :R× C([− τ , 0], Rn) �→ R
n is a given set-valued map, and

[A(t)x](θ ) = xt(θ ) = x(t + θ ). (7.58)

Inspired by these works, we denote co[gi(s)] = [g−i (s), g+i (s)] and co[g(x)] =
co[g1(x1)]× co[g2(x2)]× · · · × co[gn(xn)], where × denotes the Cartesian product.
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The set-valued map co[g(x)] is always u.s.c., convex, and compact. Thus, we can
define solution of the system (7.52) in the Filippov sense as follows.

Definition 7.34 For a continuous function φ(θ ) = (φ1(θ ), . . . ,φn(θ ))� and a
measurable function λ(θ ) = (λ1(θ ), . . . , λn(θ ))� ∈ co[g(φ(θ ))] for almost all
θ ∈ (−∞, 0], an absolute continuous function x(t) = x(t,φ, λ) = (x1(t), . . . , xn(t))�
associated with a measurable function γ (t) = (γ1(t), . . . , γn(t))� is said to be a
solution of the Cauchy problem for the system (7.52) on [0, T) (T might be∞) with
initial value (φ(θ ), λ(θ )), θ ∈ (−∞, 0], if

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t)

dt
= −di(t)xi(t)+

n∑

j=1

aij(t)γj(t)

+ ∫∞
0 γj(t − s)dsKij(t, s)+ Ii(t) a.e. t ∈ [0, T),

γi(t) ∈ co[gi(xi(t))] a.e. t ∈ [0, T),
xi(θ ) = φi(θ ) θ ∈ (−∞, 0],
γi(θ ) = λi(θ ) a.e. θ ∈ (−∞, 0],

(7.59)

for all i = 1, . . . , n.

The solution of the system (7.53) can be defined in the same way.

7.4.1.4 Set-up of Discontinuous Activations

We summarize the set-up of the model with the following assumptions.
C1: Every gi( · ) is nondecreasing and local Lipschizian, except on a set of iso-

lated points {ρi
k}. More precisely, for each i = 1, . . . , n, gi( · ) is nondecreasing and

continuous except on a set of isolated points {ρi
k}, where the right and left limits

g+i (ρi
k) and g−i (ρi

k) satisfy g+i (ρi
k) > g−i (ρi

k). In each compact set of R, gi( · ) has
only finite number of discontinuities. Moreover, ordering the set of discontinuities
as {ρi

k: ρi
k+1 > ρ

i
k, k ∈ Z}, there exist positive constants Gi,k > 0, i = 1, . . . , n,

k ∈ Z, such that |gi(ξ )− gi(ζ )| ≤ Gi,k|ξ − ζ | for all ξ , ζ ∈ (ρi
k, ρi

k+1).
C2: The initial condition φ(θ ) ∈ C(( −∞, 0], Rn) is bounded, and λ(θ ) is mea-

surable and essentially bounded.

7.4.1.5 Viability

Here, we give the conditions guaranteeing the existence of Filippov solution in the
sense (7.59) for the system (7.52). Similar to the idea proposed in [48], the solution
of the system (7.52) in the sense (7.59) can be regarded as an approximation of the
solutions of delayed neural networks with high-slope activations. This is the main
idea of proving the existence and almost periodicity of the solution. More precisely,
define a family of functions Ξ containing f (x) = [f1(x1), f2(x2), . . . , fn(xn)]� ∈
C(Rn, Rn) and satisfying the following properties: (1) every fi( · ) is monotonically
nondecreasing, for i = 1, 2, . . . , n; (2) every fi( · ) is uniformly locally bounded,
i.e., for any compact set Z ⊂ R

n, there exists a constant M > 0 independent of
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f such that |fi(x)| ≤ M for all x ∈ Z and i = 1, . . . , n; (3) every fi( · ) is locally
Lipschitz continuous, i.e., for any compact set Z ⊂ R

n, there exists λ > 0 such that
|fi(ξ )− fi(ζ )| ≤ λ|ξ − ζ | for all ξ , ζ ∈ Z, and i = 1, 2, . . . , n. For any f ∈ Ξ , by the
theory given in [49], the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

duf
i

dt (t) = −di(t)u
f
i (t)+

n∑

j=1
aij(t)σ

f
j (t)+

n∑

j=1

∫∞
0 σ

f
j (t − s)dsKij(t, s)+ Ii(t)

uf
i (θ ) = φi(θ ), θ ∈ (−∞, 0]

σ
f
i (θ ) =

{
λi(θ ), θ ≤ 0

fi(u
f
i (θ )), θ ≥ 0

i = 1, . . . , n

(7.60)
admits a unique solution uf (t) = (u1(t), u2(t), . . . , un(t))� on [0, T), where T might
be∞.

First, we prove that the solutions uf (t) are uniformly bounded with respect to
f ∈ Ξ .

Lemma 7.35 Suppose that the assumptions C1,2 and B2 hold. If there exist constants
ξi > 0, i = 1, . . . , n, and δ > 0 such that di(t) ≥ δ and

ξiaii(t)+
n∑

j=1,j�=i

ξj|aji(t)| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)| < 0 (7.61)

for all t ≥ 0 and i = 1, . . . , n, then the solutions uf (t) are uniformly bounded with
respect to f ∈ Ξ . That is, there exists M = M(φ, λ) > 0, which is independent
of f ∈ Ξ , such that ‖uf (t)‖{ξ ,1} ≤ M for all f ∈ Ξ and t ≥ 0. Consequently, the
existence interval of uf (t) can be extended to [0,∞).

Proof Let

Vf (t) =
n∑

i=1

ξi

∣∣∣uf
i (t)

∣∣∣ eδt +
n∑

i,j=1

ξi

∫ ∞

0

∫ t

t−s

∣∣∣σ f
j (θ )

∣∣∣ eδ(s+θ)dθ |dK̄ij(s)|.

Differentiating yields

d

dt
Vf (t) =

n∑

i=1

δeδtξi
∣∣∣uf

i (t)
∣∣∣+

n∑

i=1

ξie
δtsign

(
uf

i (t)
){
− di(t)u

f
i (t)

+aii(t)fi
(

uf
i (t)

)
+

n∑

j=1,j�=1

aij(t)fj
(

uf
j (t)

)
+

n∑

j=1

∫ ∞

0
σ

f
j (t − s)dsKij(t, s)

}

+
n∑

i=1

ξie
δtsign

(
uf

i (t)
)

Ii(t)+
n∑

i,j=1

ξi

∣∣∣fj
(

uf
j (t)

)∣∣∣ eδt
∫ ∞

0
eδs|dK̄ij(s)|
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−
n∑

i,j=1

ξje
δt

∫ ∞

0

∣∣∣σ f
j (t − s)

∣∣∣ |K̄ij(s)|

≤
n∑

i=1

ξi

∣∣∣uf
i (t)

∣∣∣ eδt(− di(t)+ δ)+
n∑

i=1

eδt
∣∣∣fi

(
uf

i (t)
)∣∣∣

{
aii(t)ξi

+
n∑

j=1,j�=i

|aji(t)|ξj +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)|

}
+ eδt Î ≤ eδt Î,

where Î = sup
t≥0
‖I(t)‖{ξ ,1} < +∞. It follows that

‖uf (t)‖{ξ ,1} ≤ e−δtVf (t) = e−δt
[∫ t

0
V̇f (s)ds+ Vf (0)

]

≤ e−δt
∫ t

0
eδsÎds+ e−δtVf (0)

≤ Î

δ
(1− e−δt)+ e−δtVf (0) <

Î

δ
+ Vf (0).

Noting that Vf (0) is independent of f ∈ Ξ , we obtain the uniform boundedness of
the solutions uf (t) by letting M = Î/δ + Vf (0). Moreover, f ( · ) is locally Lipschitz
continuous, and we conclude that the existence interval of the solution u f (t) can be
extended to the infinite interval [0,+∞) according to the results given in [49]. This
lemma is proved. �

Now, for any sequence {gm(x) = (gm
1 (x1), . . . , gm

n (xn))�}m∈N ∈ Ξ satisfying

lim
m→∞ dH(Graph(gm(K)), co[g(K)]) = 0, for all K ⊂ R

n, (7.62)

where dH(·, ·) denotes the Hausdorff metric on R
n; we construct a sequence of

delayed systems with high-slope continuous activations as follows:

dum
i (t)

dt
= −di(t)u

m
i (t)+

n∑

j=1

aij(t)σ
m
j (t)

+
n∑

j=1

∫ ∞

0
σm

j (t − s)dsKij(t, s)+ Ii(t), i = 1, . . . , n, (7.63)

where um
i (θ ) = φi(θ ), θ ∈ (−∞, 0], and

σm
j (θ ) =

{
λj(θ ), θ ≤ 0

gm
j (uj(θ )), θ > 0

.
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For instance, let {ρk,i} be the set of discontinuous points of gi( · ). Pick a strictly
decreasing sequence {δk,i,m} with limm→∞ δk,i,m = 0 and define Ik,i,m = [ρk,i −
δk.i.m, ρk,i + δk,i,m] such that Ik1,i,m

⋂
Ik2,i,m = ∅ for every k1 �= k2. Then, define

functions gm
i ( · ) as follows:

gm
i (s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi(s) s /∈ ⋃

k∈Z
Ik,i,m,

gi(ρk,i + δk,i,m)− gi(ρk,i − δk,i,m)

2δk,i,m
[s− ρk,i − δk,i,m]

+gi(ρk,i + δk,i,m) s ∈ Ik,i,m.

It can be seen that the sequence {gm( · )}m∈N ⊂ Ξ satisfies condition (7.62).
We point out that the solution sequence of the system sequence (7.63) converges

to a solution of the system (7.52) in the sense (7.59).

Lemma 7.36 Suppose the assumptions C1,2 and B2 are satisfied. If the condition
(7.61) holds, then for each initial value pair (φ, λ), the system (7.52) has a solution
in the sense of (7.59) on the whole time interval [0,∞).

Proof Lemma 7.35 states that all solutions {um(t)}m∈N are uniformly bounded,
which implies that {u̇m(t)}m∈N is uniformly essentially bounded. By the Arzela–
Ascoli lemma and the diagonal selection principle, we can select a subsequence of
{um(t)}m∈N (still denoted by um(t)) such that um(t) converges uniformly to a con-
tinuous function u(t) on any compact interval of R. Since {u̇m(t)}m∈N is uniformly
essentially bounded, u(t) is Lipschitz continuous on [0, T] for any T > 0. This
implies that u̇(t) exists for almost all t ∈ [0, T] and is bounded almost everywhere
in [0, T].

We claim that {u̇m(t)}m∈N weakly converges to u̇(t) on the space L∞([0, T], Rn).
In fact, since C∞0 ([0, T], Rn is dense in the Banach space L1([0, T], Rn) and is the

conjugate space L∞([0, T], Rn), for each p(t) ∈ C∞0 ([0, T], Rn), we have

∫ �

0
〈u̇m(t)− u̇(t), p(t)〉dt = −

∫ �

0
〈ṗ(t), um(t)− u(t)〉dt.

By the uniform essential boundedness of {u̇m(t)}m∈N and the Lebesgue dominated
convergence theorem, we conclude that {u̇m(t)}m∈N weakly converges to u̇(t) on the
space L∞([0, T], Rn).

By Mazur’s convexity theorem (see p. 120–123 in [83]), for any m, we can
find a finite number of constants αm

l ≥ 0 satisfying
∑∞

l=m α
m
l = 1, such that

limm→∞ ym(t) = u(t), uniformly on [0, T], limm→∞ ẏm(t) = u̇(t), a.e. t ∈ [0, T],
where ym(t) =∑∞

l=m α
m
l ul(t). Let ηm

j (t) =∑∞
l=m α

m
l σ

l
j (uj(t)). Then,

ẏm
i (t) = −di(t)y

m
i (t)+

n∑

j=1

aij(t)η
m
j (t)+

n∑

j=1

∫ ∞

0
ηm

j (t − s)dsKij(t, s)+ Ii(t)

for i = 1, . . . , n.
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Let ϕm(t) = ∫ t
0 η

m(s) ds, which is absolutely continuous and has uniformly
essentially bounded derivative. By the same arguments, we can find γm(t) =∑∞

l=m β
m
l η

l(t) such that limm→∞ γm(t) = γ (t) for almost every t ∈ ( − ∞, T]
and γ (t) is measurable.

Now, denoting zm(t) =
∞∑

l=m
βm

l ym(t), we have

żm
i (t) = −di(t)z

m
i (t)+

n∑

j=1

aij(t)γ
m
j (t)

+
n∑

j=1

∫ ∞

0
γm

j (t − s)dsKij(t, s)+ Ii(t), i = 1, . . . , n. (7.64)

Letting m→∞, by the Lebesgue dominated convergence theorem, we obtain

u̇i(t) = −di(t)ui(t)+
n∑

j=1

aij(t)γj(t)

+
n∑

j=1

∫ ∞

0
γj(t − s)dsKij(t, s)+ Ii(t), i = 1, . . . , n,

for a.e. t ∈ [0, T]. It remains to prove γ (t) ∈ co[g(u(t))] on t ∈ [0, T]. Since um(t)
converges to u(t) uniformly with respect to t ∈ [0, T] and co[g( · )] is an upper-semi-
continuous set-valued map, for any ε > 0, there exists N > 0 such that gm(um(t)) ∈
O(co[g(u(t))], ε) for all m > N and t ∈ [0, T]. Noting that co[g(u(t))] is convex
and compact, we conclude that γm(t) ∈ O(co[g(u(t))], ε), which implies γ (t) ∈
O(co[g(u(t))], ε) for any t ∈ [0, T]. Because of the arbitrariness of ε, we conclude
that γ (t) ∈ co[g(u(t))], t ∈ [0, T]. Since T is also arbitrary, the solution can be
extended to [0,∞). This completes the proof. �

Similar arguments yield existence of solutions for the system (7.53). The Fil-
ippov solution of the system (7.53) with discontinuous activation functions can be
described as

dx

dt
(t) = −Dx(t)+ Aα(t)+ Bα(t − τ )+ I, for almost all t, (7.65)

where the output α(t) is measurable and satisfies α(t) ∈ co[g(x(t))] for almost all t.

Lemma 7.37 Suppose the assumptions C1,2 satisfied. If there exist P = diag{P1,
P2, . . . , Pn} with Pi > 0, and a positive definite symmetric matrix Q such that

Z =
[−PA− A�P− Q −PB

−B�P Q

]
> 0, (7.66)
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then the system (7.53) has a solution x(t) = (x1(t) . . . , xn(t))� for t ∈ [0,∞).

The details of the proof can be found in [64].

7.4.2 Stability of Equilibrium

In this section, we study the global stability of the system (7.53) in the sense (7.65).
The main results come from [64]. Here, the equilibrium of such system is defined
as follows:

Definition 7.38 (Equilibrium) x∗ is said to be an equilibrium of the system (7.53) if
there exists α∗ ∈ co[g(x∗)] such that

0 = −Dx∗ + Aα∗ + Bα∗ + I.

Definition 7.39 An equilibrium x∗ of the system (7.53) is said to be globally asymp-
totically stable if for any solution x(t) of (7.65), whose existence interval is [0,+∞),
we have

lim
t→∞ x(t) = x∗.

Moreover, x(t) is said to be globally exponentially asymptotically stable, if there
exist constants ε > 0 and M > 0, such that

‖x(t)− x∗‖ ≤ Me−εt.

We first investigate the existence of an equilibrium point. For this purpose, con-
sider the differential inclusion

dy

dt
∈ −Dy(t)+ Tco[g(y(t))]+ I, (7.67)

where y(t) = (y1(t), y2(t), . . . , yn(t))�, D, co[g( · )], and I are the same as those in
the system (7.53). We have the following result.

Lemma 7.40 (Theorem 2 in [64]) Suppose that g( · ) satisfies the assumption C1. If
there exists a positive definite diagonal matrix P such that −PT − T�P is positive
definite, then there exists an equilibrium point of system (7.67), i.e., there exist y∗ ∈
R

n and α∗ ∈ co[g(y∗)], such that

0 = −Dy∗ + Tα∗ + I.

See Appendix B for the proof.
By Lemma 7.40, we can prove the following theorem.
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Theorem 7.41 If there exist a positive definite diagonal matrix P = diag{P1,
P2, . . . , Pn} and a positive definite symmetric matrix Q such that

[−PA− A�P− Q −PB
−B�P Q

]
> 0, (7.68)

then there exists an equilibrium point of system (7.65).

Proof By the Schur Complement Theorem (Lemma 7.5), inequality (7.68) is equiv-

alent to−(PA+A�P) > PBQ−1B�P+Q. By the inequality [Q− 1
2 B�P−Q

1
2 ]�[Q− 1

2

B�P−Q
1
2 ] ≥ 0, one has PBQ−1B�P+Q ≥ PB+B�P. Then, the inequality (7.68)

becomes −P(A+ B)− (A+ B)�P > 0. By Lemma 7.40, there exist an equilibrium
point x∗ ∈ R

n and α∗ ∈ co[g(x∗)] such that

0 = −Dx∗ + (A+ B)α∗ + I, (7.69)

which implies that α∗ is an equilibrium point of system (7.65). �

Suppose that x∗ = (x∗1, x∗2, . . . , x∗n)� is an equilibrium point of the system (7.65),
i.e., there exists α∗ = (α∗1 ,α∗2 , . . . ,α∗n )� ∈ co[g(x)] such that (7.69) is satisfied. Let
u(t) = x(t)− x∗ be a translation of x(t) and γ (t) = α(t)−α∗ be a translation of α(t).
Then u(t) = (u1(t), u2(t), . . . , un(t))� satisfies

du(t)

dt
= −Du(t)+ Aγ (t)+ Bγ (t − τ ), a.e. t ∈ R,

where γ (t) ∈ co[g∗(u(t))], g∗i (s) = gi(s + x∗i ) − γ ∗i , i = 1, 2, . . . , n. To simplify,
we still use gi(s) to denote g∗i (s). Therefore, in the following, instead of the system
(7.65), we will investigate

du(t)

dt
= −Du(t)+ Aγ (t)+ Bγ (t − τ ), a.e. t ∈ R, (7.70)

where γ (t) ∈ co[g(u(t))], g( · ) ∈ Ḡ, and 0 ∈ co[gi(0)], for all i = 1, 2, . . . , n. It
can be seen that the dynamical behavior of (7.65) is equivalent to that of (7.70).
Namely, if there exists a solution u(t) for (7.70), then x(t) = u(t) + x∗ must be a
solution for (7.65); moreover, if all trajectories of (7.70) converge to the origin, then
the equilibrium x∗ must be globally stable for system (7.65) as defined in Definition
7.39.

Theorem 7.42 (Global Exponential Asymptotic Stability) If the matrix inequality
(7.68) and the assumptions C1,2 hold, then the system (7.53) is globally exponentially
stable.
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Proof From the condition (7.68), we can find a sufficiently small ε > 0 such that
the matrix

Z1 =
⎡

⎣
−2D+ εI εA εB
εA� PA+ A�P+ Qeετ PB
εB� B�P −Q

⎤

⎦

is negative definite. Let

V3(t) = eεtu�(t)u(t)+ 2
n∑

i=1

eεtPi

∫ ui(t)

0
gi(ρ) dρ +

∫ t

t−τ
γ (s)�Qγ (s)eε(s+τ ) ds,

with γ (t) = α(t) − α∗. Notice that for pi(s) = ∫ s
0 gi(ρ) dρ, we have ∂cpi(s) = {v ∈

R:g−i (s) ≤ v ≤ g+i (s)}. Differentiating V3(t) by the chain rule (Lemma 7.32) gives

dV3(t)

dt
= εeεtu(t)�u(t)+ 2eεtu�

[
− Du+ Aγ (t)+ Bγ (t − τ )

]

+2eεtγ (t)P

[
− Du(t)+ Aγ (t)+ Bγ (t − τ )

]

+εeεt
n∑

i=1

Pi

∫ ui

0
gi(ρ) dρ − eεtγ�(t − τ )Qγ (t − τ )

+eε(t+τ )γ�(t)Qγ (t). (7.71)

Since ε < mini di, we have ε
∫ ui

0 gi(ρ) dρ ≤ εui(t)γi(t) ≤ diui(t)γi(t) and

dV3(t)

dt
≤ eεt[u�(t), γ�(t), γ�(t − τ )]Z1

⎡

⎣
u(t)
γ (t)

γ (t − τ )

⎤

⎦ ≤ 0.

Then, u(t)�u(t) ≤ V3(0)e−εt and ‖u(t)‖2 ≤ √V3(0)e− ε2 t. That is, ‖x(t) − x∗‖2 ≤√
V3(0)e− ε2 t. This proves the theorem. �

In case g( · ) is continuous, we have the following consequence.

Corollary 7.43 If the condition (7.68) holds and gi( · ) is locally Lipschitz continu-
ous, then there exist ε > 0 and x∗ ∈ R

n such that for any solution x(t) on [0,∞) of
the system (7.53), there exist M = M(φ) > 0 and ε > 0 such that

‖x(t)− x∗‖ ≤ Me−
ε
2 t for all t > 0.

If every x∗i is a continuous point of the activation functions gi( · ), i = 1, . . . , n,
for the outputs we have limt→∞ gi(xi(t)) = gi(x∗i ). Instead, if for some i, x∗i is a
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discontinuous point of the activation function gi( · ), we can prove that the outputs
converge in measure.

Theorem 7.44 (Convergence in measure of output) If the condition (7.68) holds and
g( · ) ∈ Ḡ, then the output α(t) of the system (7.65) converges to α∗ in measure, i.e.,
for all ε > 0 we have limt→∞ μ{t: |α(t)− α∗| ≥ ε} = 0

Proof The condition (7.68) implies that there exists ε > 0 such that the matrix

Z2 =
⎡

⎣
−2D εA εB
εA� PA+ A�P+ εI PB
εB� B�P −Q

⎤

⎦ (7.72)

is negative definite. Let

V5(t) = u�(t)u(t)+ 2
n∑

i=1

Pi

∫ ui

0
gi(ρ) dρ +

∫ t

t−τ
γ (s)�Qγ (s) ds,

with γ (t) = α(t) − α∗, and P, Q, and ε are those in the matrix inequality (7.72).
Differentiate V5(t):

dV5(t)

dt
= 2u�(t)

[
− Du(t)+ Aγ (t)+ Bγ (t − τ )

]
+ 2γ�(t)P

[
− Du(t)+ Aγ (t)

+Bγ (t − τ )

]
+ γ�(t)Qγ (t)− γ�(t − τ )Qγ (t − τ )+ εγ (t)�γ (t)

−εγ (t)�γ (t)

= [u�(t), γ�(t), γ�(t − τ )]Z2

⎡

⎣
u(t)
γ (t)

γ (t − τ )

⎤

⎦− εγ�(t)γ (t)

≤ −εγ�(t)γ (t) (7.73)

Then, V5(t) − V5(0) ≤ −ε ∫ t
0 γ
�(s)γ (s) ds. Since limt→∞ V5(t) = 0, we have∫∞

0 γ�(s)γ (s) ds ≤ −(1/ε)V5(0). For any ε1 > 0, let Eε1 = {t ∈ [0,∞):‖γ (t)‖ >
ε1}. Then,

V5(0)

ε
≥

∫ ∞

0
γ�(s)γ (s)ds ≥

∫

Eε1

γ�(s)γ (s) ≥ ε2
1μ(Eε)

Hence,μ(Eε1 ) <∞. From Proposition 2 in [40], one can see that γ (t), i.e., α(t)−α∗,
converges to zero in measure. �
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7.4.3 Convergence of Periodic and Almost Periodic Orbits

Consider the system (7.52)

dxi(t)

dt
= −di(t)xi(t)+

n∑

j=1

aij(t)gj(xj(t))

+
n∑

j=1

∫ ∞

0
gj(xj(t − s))dsKij(t, s)+ Ii(t), i = 1, . . . , n, (7.74)

with the almost periodic assumption B2. We study the almost periodicity of delayed
neural networks. The main result stated below comes from [68].

Theorem 7.45 Suppose the assumptions C1,2 and B2 are satisfied. Suppose further
that there exist constants ξi > 0, i = 1, . . . , n, and δ > 0 such that di(t) ≥ δ and

ξiaii(t)+
n∑

j=1,j�=i

ξj|aji(t)| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)| < 0 (7.75)

for all t ≥ 0 and i = 1, . . . , n. Then, (1) for every initial value (φ, λ), the system
(7.74) has a unique solution in the sense of (7.59); (2) there exists a unique almost
periodic solution x∗(t) for the system (7.74), which is globally exponentially stable,
that is, for any other solution x(t) with initial condition (φ, λ), there exists a constant
M = M(φ, λ) > 0 such that

‖x(t)− x∗(t)‖{ξ ,1} ≤ Me−δt

for all t ≥ 0.

Besides the viability proved in Lemma 7.36, we prove this theorem step by step.
Step 1. We show that any solution of the system (7.74) in the sense (7.59) is asymp-
totically stable.

Lemma 7.46 Suppose that the assumptions of Theorem 7.45 are satisfied. For any
two solutions x(t) = x(t,φ, λ) and v(t) = v(t,ψ ,χ ) of the system (7.74) in the
sense of (7.59) associated with the outputs γ (t) and μ(t) and initial value pairs
(φ, λ) and (ψ ,χ ), respectively, there exists a constant M = M(φ,ψ , λ,χ ) satisfying
M(φ,φ, λ, λ) = 0 for all (φ, λ) such that

‖x(t)− v(t)‖{ξ ,1} ≤ Me−δt, t ≥ 0.

Moreover, the solution of the system (7.74) in the sense (7.59) is unique.

Proof Let x(t) = (x1(t), . . . , xn(t))� be a solution of
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d

dt
xi(t) = −di(t)xi(t)+

n∑

j=1

aij(t)γj(t)+
n∑

j=1

∫ ∞

0
γj(t − s)dsKij(t, s)+ Ii(t),

and v(t) = (v1(t), . . . , vn(t))� be a solution of

d

dt
vi(t) = −di(t)vi(t)+

n∑

j=1

aij(t)μj(t)+
n∑

j=1

∫ ∞

0
μj(t − s)dsKij(t, s)+ Ii(t).

Then,

d

dt

[
xi(t)− vi(t)

]
= −di(t)

[
xi(t)− vi(t)

]
+

n∑

j=1

aij(t)

[
γj(t)− μj(t)

]

+
n∑

j=1

∫ ∞

0

[
γj(t − s)− μj(t − s)

]
dsKij(t, s), i = 1, . . . , n.

Let

L1(t) =
n∑

i=1

ξi|xi(t)− vi(t)|eδt

+
n∑

i,j=1

ξj

∫ ∞

0

∫ t

t−s
|γj(θ )− μj(θ )|eδ(s+θ)dθ |dK̄ij(s)|

and M = M(φ,ψ , λ,χ ) = L1(0). By the chain rule (Lemma 7.32), differentiating
the above expression gives

d

dt
L1(t) =

n∑

i=1

δeδtξi|xi(t)− vi(t)| +
n∑

i=1

ξie
δtsign(xi(t)− vi(t))

{
− di(t)[xi(t)− vi(t)]+ aii(t)[γi(t)− μi(t)]

+
n∑

j=1,j�=i

aij(t)[γj(t)− μj(t)]

+
n∑

j=1

∫ ∞

0
[γj(t − s)− μj(t − s)]dsKij(t, s)

}
+

n∑

i,j=1

ξi|γj(t)− μj(t)|

eδt
∫ ∞

0
eδs|dK̄ij(s)| −

n∑

i,j=1

ξje
δt

∫ ∞

0
|γj(t − s)− μj(t − s)||K̄ij(s)|
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≤
n∑

i=1

ξi|xj(t)− vj(t)|eδt(− di(t)+ δ)+
n∑

i=1

eδt|γj(t)− μj(t)|
{

aii(t)ξi

+
n∑

j=1,j�=i

|aji(t)|ξj +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)|

}
≤ 0,

which implies ‖x(t) − v(t)‖{ξ ,1} ≤ L1(0)e−δt = M(φ,ψ , λ,χ )e−δt. It is clear that
M(φ,φ, λ, λ) = 0. Therefore, the solution in unique. �

In Lemma 7.36, we have proved that some subsequence of um(t) converges to the
solution u(t). In fact, we can prove that um(t) itself converges to the solution u(t).

Proposition 7.47 Suppose that the assumptions of the Main Theorem 7.45 are satis-
fied. For any function sequence {g̃m(x) = (g̃m

1 (x1), . . . , g̃m
n (xn))�:m = 1, 2, . . . } ⊂ Ξ

satisfying the condition (7.62) on any compact set in Rn, let ũm(t) = [ũm
1 (t), . . . ,

ũm
n (t)]� be the solution of the following system:

dũm
i

dt
= −di(t)ũ

m
i (t)+

n∑

j=1

aij(t)g̃j(ũ
m
j (t))

+
n∑

j=1

∫ ∞

0
σ̃m

j (t − s)dsKij(t, s)+ Ii(t),

ũm
i (θ ) = φi(θ ), θ ∈ [−∞, 0], σ̃m

i (θ ) =
{
λi(θ ), θ ≤ 0
g̃m

i (ũm
i (θ )), θ ≥ 0

, (7.76)

for i = 1, . . . , n, and u(t) = u(t,φ, λ) be the solution of the delayed system (7.74)
in the sense (7.59) with initial value (φ, λ). Then, ũm(t) uniformly converges to u(t)
on any finite time interval [0, T].

Proof First, we prove that um(t) converges to the solution of the delayed system
(7.74) in the sense (7.59) by reduction to absurdity. Assume that there exist T > 0,
ε0 ≥ 0, and a subsequence of integers {mk}k∈N such that

max
t∈[0,T]

‖umk (t)− u(t)‖ ≥ ε0. (7.77)

By the same arguments used in the proof of Lemma 7.36, we can select a subse-
quence {umkl }l≥0 of {umk}k≥0, which converges to a solution v(t) = v(t,φ, λ) of the
delayed system (7.74) in the sense (7.59) uniformly in any finite interval [0, T] with
the initial value (φ, λ). By Lemma 7.46, u(t) = v(t), which leads a contradiction
with inequality (7.77). This completes the proof. �

Remark 7.48 Proposition 7.47 indicates that the solution v(t) = v(t,φ, λ) of the
delayed system (7.74) in the sense (7.59) does not depend on the choice of the
sequence {gm(x)}m∈N ⊂ Ξ satisfying the condition (7.62).
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The following lemma points out that any solution is asymptotically almost
periodic [84].

Lemma 7.49 Suppose that the assumptions of Theorem 7.45 are satisfied. Let
u(t,φ, λ) be a solution of the system (7.74) in the sense of (7.59). For any ε > 0,
there exist T > 0 and l = l(ε) such that any interval [α,α + l] contains an ω such
that

‖x(t + ω)− x(t)‖ξ ≤ ε for all t ≥ T .

Proof We introduce the following auxiliary functions

εi(t,ω) = xi(t + ω)[di(t + ω)− di(t)]+
n∑

j=1

γj(t + ω)[aij(t + ω)− aij(t)]

+
∫ ∞

0

n∑

j=1

γj(t + ω − s)d[Kij(t + ω, s)− Kij(t, s)]

+Ii(t + ω)− Ii(t) (7.78)

for i = 1, . . . , n. From the assumption C2 and the boundedness of x(t) and γ (t), one
can see that for any ε > 0, there exists l = l(ε) > 0 such that every interval [α,α+l]
contains at least one number ω with

∑n
i=1 ξi|εi(t,ω)| < δε/2 for all t ≥ 0. Denote

z(t) = x(t + ω)− x(t). Then,

dzi(t)

dt
= −di(t)zi(t)+

n∑

j=1

aij(t)[γj(t + ω)− γj(t)]

+
n∑

j=1

∫ ∞

0
[γj(t + ω − s)− γj(t − s)]dsKij(t, s)+ εi(t,ω).

Let

L2(t) =
n∑

i=1

ξi|zi(t)|eδt +
n∑

i,j=1

ξi

∫ ∞

0

∫ t

t−s
|γj(θ + ω)− γj(θ )|eδ(θ+s)dθ |dK̄ij(s)|.

Pick a sufficiently large T such that e−δtL2(0) < ε/2 for all t ≥ T . Differentiating
L2(t) gives

dL2(t)

dt
=

n∑

i=1

ξiδe
δt|zi(t)| +

n∑

i=1

ξie
δtsign(zi(t))

{
− di(t)zi(t)

+aii(t)[γi(t + ω)− γi(t)]+
∑

j=1,j�=i

aij(t)[γj(t + ω)− γj(t)]
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+
n∑

j=1

∫ ∞

0
[γj(t + ω − s)− γj(t − s)]dsKij(t, s)+ εi(t,ω)

}

+
n∑

i,j=1

ξie
δt|γj(t + ω)− γj(t)|

∫ ∞

0
eδs|dK̄ij(s)|

−
n∑

i,j=1

ξie
δt

∫ ∞

0
|γj(t + ω − s)− γj(t − s)||dK̄ij(s)|

≤
n∑

i

ξie
δt|zi(t)|(− di(t)+ δ)+

n∑

i=1

|γj(t + ω)− γj(t)|eδt
{
ξiaii(t)

+
∑

j=1,j�=i

ξj|aji(t)| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)|

}
+

n∑

i=1

ξie
δt|εi(t,ω)|

≤ eδt
δ

2
ε, a.e. t ≥ T .

Therefore,

n∑

i=1

ξi|zi(t)| ≤ e−δL2(t) = e−δ
[

L2(0)+
∫ t

0
L̇2(s)ds

]

≤ e−δtL2(0)+ e−δt
∫ t

0
eδsds

δ

2
ε <

ε

2
+ ε

2
= ε

for all t ≥ T , which completes the proof. �

Step 2. Now, we are to prove that the system (7.74) has at least one almost periodic
solution in the sense of (7.59).

Lemma 7.50 Under the assumptions of Theorem 7.45, the system (7.74) has at least
one almost periodic solution in the sense of (7.59).

Proof Let x(t) = x(t,φ, λ) be a solution of system (7.59). Pick a sequence {tk}k∈N
satisfying limk→∞ tk = ∞ and supt≥0

∑n
i=1 ξi|εi(t, tk)| ≤ 1/k, where εi(t, tk), i =

1, . . . , n, are the auxiliary functions (7.78) defined in the proof of Lemma 7.49.
Let xk(t) = x(t+tk) and γ k(t) = γ (t+tk). It is clear that the sequence {x(t+tk)}k∈N

is uniformly continuous and bounded. By the Arzela–Ascoli lemma and the diagonal
selection principle, we can select a subsequence of x(t+tk) (still denoted by x(t+tk)),
which converges to some absolutely continuous function x∗(t) uniformly on any
compact interval [0, T].

In the following, we will prove that x∗(t) is an almost periodic solution of the
system (7.74) in the sense of (7.59). First, we prove that x∗(t) is a solution of the
system (7.74) in the sense of (7.59). With the notations above, we have



250 W. Lu and T. Chen

dxi(t + tk)

dt
= −di(t)xi(t + tk)+

n∑

j=1

aij(t)γj(t + tk)

+
n∑

j=1

∫ ∞

0
γj(t + tk − s)dsKij(t, s)+ Ii(t)+ εi(t, tk), i = 1, . . . , n.

With the method used in the proof of Lemma 7.36, we can select a subsequence
from x(t + tk) (still denoted by x(t + tk)) and constants νk

l ≥ 0 with finite νk
l >

0 satisfying
∑∞

l=k ν
k
l = 1 such that (i) vk(t) = ∑∞

l=k ν
k
l x(t + tl) converges to a

Lipschitz continuous function x∗(t) uniformly on [0, T], and {v̇k(t)} converges to
v̇∗(t) for almost all t ∈ [0, T] and (ii) ζ k(t) = ∑∞

l=k ν
k
l γ (t + tl) converges to a

measurable function ζ (t) for almost all t ∈ [0, T].
Moreover, for each k, we have

dvk
i (t)

dt
= −di(t)v

k
i (t)+

n∑

j=1

aij(t)ζ
k
j (t)

+
n∑

j=1

∫ ∞

0
ζ k

j (t − s)dsKij(t, s)+ Ii(t)+ ε̄i(t, k), i = 1, . . . , n,

where ε̄i(t, k) =∑∞
l=k ν

k
l εi(t, tk). Letting k→∞, we obtain

dx∗i (t)

dt
= −di(t)x

∗
i (t)+

n∑

j=1

aij(t)ζj(t)

+
n∑

j=1

∫ ∞

0
ζj(t − s)dsKij(t, s)+ Ii(t), i = 1, . . . , n.

Repeating the proof of Lemma 7.36, we can prove ζ (t) ∈ co[g(x∗(t))], which
means that x∗(t) is a solution of the system (7.74) in the sense of (7.59).

Second, we prove that x∗(t) is almost periodic. By Lemma 7.49, for any ε > 0,
there exist K > 0 and l = l(ε) such that each interval [α,α + l] contains an ω such
that

‖x(t + tk + ω)− x(t + tk)‖{ξ ,1} < ε

for all k ≥ K and t ≥ 0. As k →∞, we conclude that ‖x∗(t + ω)− x∗(t)‖{ξ ,1} < ε
for all t ≥ 0. This implies that x∗(t) is an almost periodic function. The proof is
completed. �
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Now, we can prove the main Theorem 7.45.

Proof By Lemma 7.50, we know that there exists an almost periodic solution for the
system (7.74) in the sense of (7.59). By Lemma 7.46, we have ‖x(t)− x∗(t)‖{ξ ,1} =
O(e−δt).

Finally, we prove that the almost periodic solution of the system (7.74) is unique.
In fact, suppose that x∗(t) and v∗(t) are two almost periodic solutions of the system
(7.74). Applying Lemma 7.46 again, we have ‖v∗(t) − x∗(t)‖{ξ ,1} = O(e−δt). From
[61], one can conclude that v∗(t) = x∗(t). Therefore, the almost periodic solution of
the system (7.74) is unique. This completes the proof. �

Since any periodic function can be regarded as an almost periodic function, all
the results apply to periodic case. Now, replacing assumption B2 with B1, we have
the following result.

Corollary 7.51 Suppose that the discontinuous activations satisfy assumptions C1,2,
and that the hypotheses B1 hold. Suppose further that there exist positive constants
ξi, i = 1, . . . , n, and δ > 0 such that di(t) ≥ δ and

ξiaii(t)+
n∑

j=1,j�=i

ξj|aji(t)| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)| < 0

for all t ≥ 0 and i = 1, . . . , n. Then, (1) for each initial data with assumption A3,
the system (7.74) has a unique solution in the sense of (7.59) and (2) there exists
a unique periodic solution x∗(t) for system (7.74), which is globally exponentially
stable.

Furthermore, a constant can be regarded as a periodic function with any period.
Therefore, for the delayed system

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))

+
n∑

j=1

∫ ∞

0
gj(xj(t − s))dsKij(s)+ Ii, i = 1, . . . , n (7.79)

we have the following result.

Corollary 7.52 Suppose that the discontinuous activations satisfy the assumptions
C1,2, and suppose that there exist positive constants ξi, i = 1, . . . , n, and δ > 0 such
that di ≥ δ and

ξiaii +
n∑

j=1,j�=i

ξj|aji| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)| ≤ 0

for all t ≥ 0 and i = 1, . . . , n. Then, (1) for each initial data satisfying the stated
assumptions, the system (7.79) has a unique solution in sense of (7.59) and (2) the
system (7.79) has a unique equilibrium x∗, which is globally exponentially stable.
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7.5 Review and Comparison of Literature

In the past decades, global stability analysis has been a focal topic in neural network
theory and dynamical systems, with a large literature devoted to it. In this section,
we give a brief review of selected papers and compare them with the results in this
chapter.

The stability of equilibrium of delayed neural networks has been studied in many
papers. For example, [9, 10, 14, 17, 18, 62, 74, 86] and many others. For more
general functional differential equations, see the early works [49, 73] and others.
The approach used in these papers consists of two steps: (1) prove the existence of
the equilibrium and (2) prove its stability. In theorems in Sect. 7.2.2, we unify two
types of delayed dynamical systems and investigate their dynamical behavior and
global convergence. We consider the derivative of the state variable and prove that
it converges to zero exponentially. This implies that the state trajectory converges to
a certain equilibrium exponentially according to the Cauchy convergence principle.

Moreover, in most papers dealing with time-varying delays, the assumption of
bounded delays is necessary, i.e., τij(t) ≤ τ for all i, j = 1, . . . , n and t ∈ R, or
τ̇ij(t) ≤ μ for some 0 ≤ μ < 1, which can guarantee exponential stability under
some additional conditions. However, in this chapter, we have studied stability in
the power rate, which is weaker than exponential rate, but under a milder condition
for the unbounded delays, namely, τij(t) ≤ μt for some 0 ≤ μ < 1.

As for the delayed Cohen–Grossberg neural network (7.19), there is also a large
literature concerned with global stability. However, all the results obtained in these
papers were based on the assumption that amplifier function ai( · ) is always positive
(see [28, 29]; or even greater than some positive number ai( · ) ≥ ai > 0 (see
[16, 71, 82]). In their original papers [35, 46, 47], the authors proposed this model
as a kind of competitive-cooperation dynamical system for decision rules, pattern
formation, and parallel memory storage. Hereby, each state of neuron xi might be
the population size, activity, or concentration, etc., of the i-th species in the sys-
tem, which is nonnegative for all time. Theorem 7.20 gives a sufficient condition
guaranteeing stability in the first orthant.

Periodicity and almost periodicity of delayed neural networks with time-varying
coefficients have attracted much research attention [15, 24, 45, 72, 87, 88]. It should
be pointed out that [87] studied the periodicity of delayed neural network via a
L p-norm-like Lyapunov functional and proved that among the sufficient conditions
according to parameter p ∈ [1,∞], the condition vith L1-norm-like Lyapunov func-
tional would be the best one, i.e., the mildest condition. Most of these papers con-
cerned with periodic delayed neural networks use the Mawhin coincidence degree
theory [44]. We use two different methods to prove existence, as mentioned in Sect.
7.3.3. In [24, 55], the authors presented some results on almost periodic trajectories
and their attractivity of shunting inhibitory cellular neural networks (CNNs) with
delays. In [24], authors proved existence and attractivity of almost periodic solutions
for CNNs with distributed delays and variable coefficients.

In the last few years, several papers have appeared studying neural networks
with discontinuous activations. Reference [40] discussed the absolute stability of
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Hopfield neural networks with bounded and discontinuous activations. Reference
[64] proved the global convergence for Cohen–Grossberg neural networks with
unbounded and discontinuous activations. Also, [42] studied the dynamics of
delayed neural networks and [78] discussed periodic solutions of periodic delayed
neural networks with discontinuous activations and periodic parameters. In all these
papers, the authors use the solution in the Filippov sense to handle differential equa-
tions with discontinuous right-hand side. The concept of the solution in the sense
of Filippov is useful in engineering applications. Since a Filippov solution is a limit
of the solutions of a sequence of ordinary differential equations with continuous
right-hand side, we can model a system which is near a discontinuous system and
expect that the Filippov trajectories of the discontinuous system will be close to the
real trajectories. This approach is of significance in many applications, for instance,
variable structure control, nonsmooth analysis [4, 77, 85]. In fact, the solution in
the Filippov sense satisfies the corresponding differential inclusion induced by the
convex extension of discontinuity.

The generalized viability of differential inclusions was investigated in the text-
books [4, 6]. Periodicity and almost periodicity for differential inclusions or Filip-
pov systems have been studied in the recent decades. Methodologically, the exis-
tence of a periodic solution of a differential inclusion or differential system with
discontinuous right-hand side (despite that some researchers did not study the
Filippov solution) can be proved by fixed point theory, i.e., the periodic bound-
ary condition can be regarded as a fixed point of a certain evolution operator
[12, 38, 56, 70, 72, 89]. Several authors constructed a sequence of differential sys-
tems with continuous right-hand sides having periodic solutions and proved that
the solution sequence converges to a periodic solution of the original differential
inclusion [43, 48]. As for stability, the first approximation was used to deal with
the local asymptotical stability for periodic differential inclusions [81], and Lya-
punov method was extended to handle the global stability [7, 8]. Furthermore, sim-
ilar methods were utilized to study the almost periodic solution of almost periodic
differential inclusions, especially with delays. See [3] and [58] for references.

Appendix

Proof of Theorem 7.18

Proof Let

fi(x) = di(xi)−
n∑

j=1

(aij + bij)gj(xj), i = 1, . . . , n,

f (x) = (f1(x), . . . , fn(x))�,

F(x) = f (x+)+ x−,

where x+ and x− are defined in Definition 7.6.
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According to Lemma 7.7, we only need to prove that F(x) is norm-coercive and
locally univalent (one-to-one). First, we prove F(x) is locally univalent. Let x =
(x1, . . . , xn) ∈ R

n. Without loss of generality, by some rearrangement of the xi, we
can assume xi > 0 if i = 1, . . . , p, xi < 0 if i = p + 1, . . . , m, and xi = 0 if
i = m + 1, . . . , n, for some integers p ≤ m ≤ n. Moreover, if y ∈ R

n is sufficiently
close to x ∈ R

n, without loss of generality, we can assume

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi > 0, i = 1, . . . , p
yi < 0, i = p+ 1, . . . , m
yi > 0, i = m+ 1, . . . , m1
yi < 0, i = m1, . . . , m2
yi = 0, i = m2 + 1, . . . , n,

for some integers m ≤ m1 ≤ m2 ≤ n. It can be seen that

(x+i − y+i )(x−i − y−i ) = 0, i = 1, . . . , n, (7.80)

and

F(x)− F(y) = d(x+)− d(y+)− (A+ B)[g(x+)− g(y+)]+ (x− − y−)

= [D̄− (A+ B)K](x+ − y+)+ (x− − y−),

where D̄ = diag{d̄i, . . . , d̄n} and K = diag{K1, . . . , Kn} with

d̄i =
⎧
⎨

⎩

di(x
+
i )− di(y

+
i )

x+i − y+i
, x+i �= y+i

Di, otherwise
, Ki =

⎧
⎨

⎩

gi(x
+
i )− gi(y

+
i )

x+i − y+i
, x+i �= y+i

Gi otherwise
.

Then, d̄i ≥ Di and Ki ≤ Gi because d( · ) ∈ D and g( · ) ∈ H2{G1, . . . , Gn}.
If F(x)− F(y) = 0, then we have

x− − y− = −[D̄− (A+ B)K](x+ − y+). (7.81)

By (7.80), without loss of generality, we can assume

x+ − y+ =
[

z1
0

]
, x− − y− =

[
0
z2

]
,

where z1 ∈ R
k and z2 ∈ R

n−k, for some integer k. Write

D̄− (A+ B)K =
[

R11 R12
R21 R22

]
,
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where R11 ∈ R
k,k, R12 ∈ R

k,n−k, R21 ∈ R
n−k,k, and R22 ∈ R

n−k,n−k. The equation
(7.81) can be rewritten as

[
0
z2

]
= −

[
R11 R12
R21 R22

] [
z1
0

]
,

which implies R11z1 = 0. From Lemma 7.3, we can conclude that R11 is nonsin-
gular, which implies z1 = 0 and x+ = y+. Similarly, we can prove x− = y−.
Therefore, x = y, which means that F(x) is locally univalent.

Second, we will prove that F(x) is norm-coercive. Suppose that there exists a
sequence {xm = (xm,1, . . . , xm,n)�}∞m=1 such that limm→∞ ‖xm‖2 = ∞. Then, there
exists some index i such that limm→∞ |di(x

+
m,i) + x−m,i| = ∞, which implies that

limm→∞ ‖g(x+m)‖2 = ∞.
Some simple algebraic manipulations lead to

g(x+)�PF(x) =
n∑

i=1

gi(x
+
i )Pidi(x

+
i )− g(x+)�P(A+ B)g(x+)+

n∑

i=1

gi(x
+
i )Pix

−
i

≥ g(x+)�{P[DG−1 − (A+ B)]}sg(x+) ≥ αg(x+)�g(x+),

where α = λmin({P[DG−1 − (A+ B)]}s) > 0. Therefore,

‖F(xm)‖2 ≥ α‖P‖−1
2 ‖g(x+m)‖2 →∞,

which implies that F(x) is norm-coercive. Combining with Lemma 7.7 proves the
theorem. �

Proof of Lemma 7.40

We will prove the existence of equilibrium of the system (7.53) under the assump-
tion C1. We will prove existence of equilibrium for the system (7.53) by the Equi-
librium Theorem [5]. First, we give some necessary definitions concerned with the
equilibrium of a set-valued map.

Definition 7.53 For a convex subset K of R
n, the tangent cone TK(x) to K at x ∈ K

is defined as

TK(x) =
⋃

h>0

K − x

h
, (7.82)

where
⋃

is the closure of the union set.

Proposition 7.54 The necessary and sufficient condition for v ∈ TK(x) is that there
exist hn → 0+ and vn → v as n→+∞, such that x+hnvn ∈ K for all n. Moreover,
if x ∈ int(K), where int(K) is the set of the interior points of K, then Tk(x) = R

n.
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Definition 7.55 (Viability Domain) Let F:X → X be a non-trivial set-valued map.
We say that a subset K ⊂ Dom(F) is a viability domain of F, if for all x ∈ K, we
have F(x)

⋂
TK(x) �= ∅ where Dom(F) is the domain of F.

Definition 7.56 (Equilibrium) x∗ is said to be an equilibrium of a set-valued map
F(x) if 0 ∈ F(x∗).

The following theorem is used below.

Lemma 7.57 (Equilibrium Theorem) (See p. 84 in [5]) Assume that X is a Banach
space and F:X → X is an upper semicontinuous set-valued map with closed convex
image. If K ⊂ X is a convex compact viability domain of F(x), then K contains an
equilibrium x∗ of F(x), i.e., 0 ∈ F(x∗).

Now, we use the Equilibrium Theorem to prove the existence of the equilibrium
of the system (7.53).

Lemma 7.58 Suppose C1 satisfied, and each gi( · ) is non-trivial, Pi > 0, for i =
1, 2, . . . , n. Define

V̄(x) =
∑

i=1

Pi

∫ xi

0
gi(ρ) dρ. (7.83)

For any M > 0, define ΩM = {x:V̄(x) ≤ M}, ∂ΩM = {x:V̄(x) = M}, and

K1 =
{

v = (v1, v2, . . . , vn)� ∈ R
n:

n∑

i=1

viPiγi ≤ 0, for all γi ∈ co[gi(xi)]

}
. (7.84)

Then K1 ⊂ TΩM (x) whenever x ∈ ∂ΩM.

Proof For each x ∈ ∂ΩM , i.e., V̄(x) = M, and v ∈ int(K1) satisfying
∑n

i=1 viPiγi <

0 for all γi ∈ co[gi(xi)]. Let yn = x + hnv, where 0 < hn → 0, as n → +∞. We
will prove that V̄(yn) ≤ M, namely, yn ∈ ΩM .

Denote

γ e
i =

⎧
⎨

⎩

gi(x
+
i ), if vi > 0

gi(x
−
i ), if vi < 0

any value, if vi = 0.
(7.85)

Then we have
∑n

i=1 viPiγi ≤
n∑

i=1
viPiγ

e
i for all γi ∈ co[gi(xi)]. Thus, let ε =

−
n∑

i=1
viPiγ

e
i , which is positive. We have
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V̄(yn)− V̄(x) =
n∑

i=1

Pi

∫ yni

xi

gi(ρ) dρ =
n∑

i=1

Pi

∫ xi+hnvi

xi

gi(ρ) dρ

=
(

n∑

i=1

viPiγ
e
i

)

hn + o(hn) = −εhn + o(hn). (7.86)

If n is large enough, we obtain V̄(yn) < V̄(x) = M, which implies v ∈ TΩM (x), i.e.,
int(K1) ⊂ TΩM (x). Since TΩM (x) is closed, K1 ⊂ TΩM (x). �

Lemma 7.59 (Ky Fan Inequality [5]) Let K be a compact convex subset in a Banach
space X and ϕ:X × X → R be a function satisfying the following
conditions:

(1) For all y ∈ K, x �→ ϕ(x, y) is lower semicontinuous;
(2) For all x ∈ K, y �→ ϕ(x, y) is concave, i.e., for all λi > 0 satisfying

∑n
i λi = 1

and yi ∈ K,

ϕ

(

x,
n∑

i=1

λiyi

)

≥
n∑

i=1

λiϕ(x, yi); (7.87)

(3) For all y ∈ K, ϕ(y, y) ≤ 0.

Then, there exists x̄ ∈ K such that, for all y ∈ K, ϕ(x̄, y) ≤ 0.

Theorem 7.60 Assume C1 and let −T be a Lyapunov diagonally stable (LDS)
matrix. Then there exists an equilibrium x∗ of system (7.53), i.e.,

0 ∈ F(x∗), (7.88)

where F(x∗) = [− d(x∗)+ T co [g(x∗)]+ J].

Proof Because−T is LDS, there exists a diagonal matrix P = diag{P1, P2, . . . , Pn},
with Pi > 0, i = 1, 2, . . . , n, such that (PT)s < 0. Let

V̄(x) =
∑

i=1

Pi

∫ xi

0
gi(ρ) dρ. (7.89)

Case 1: All gi( · ), i = 1, 2, . . . , n, are non-trivial.
It is easy to see that ΩM is a convex compact subset of R

n. Let α = min λ
({−PT}s) > 0, I = ∑n

i=1 [1/(2α)]P2
i J2

i , l = mini Di, and M0 = I/l. In the follow-
ing, we will prove that if M > M0, then ΩM is a viability domain of F(x).

In fact, if x ∈ int(ΩM), then TΩM (x) = R
n and it is easy to see that F(x)

⋂

TΩM (x) = ∅.
Now, we will prove that if x ∈ ∂ΩM , then F(x)

⋂
TΩM (x) = ∅. For this purpose,

we define ϕ(g1, g2):co[g(x)]× co[g(x)] �→ R, as follows:
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ϕ(g1, g2) =
n∑

i=1

g1,iPi

[
− di(xi)+

n∑

j=1

tijg2,j + Ji

]
, (7.90)

where g1 = (g1,1, g1,2, . . . , g1,n)� and g2 = (g2,1, g2,2, . . . , g2,n)�. If we can find
g2 ∈ co[g(x)], such that ϕ(g1, g2) ≤ 0 for all g1 ∈ co[g(x)], then by Lemma 7.57,
we have F(x)

⋂
TΩM (x) �= ∅.

It can be seen that for each g1 ∈ co[g(x)], g2 �→ ϕ(g1, g2) is continuous; for each
g2 ∈ co[g(x)], g1 �→ ϕ(g1, g2) is concave. Moreover, let f = (f1, f2, . . . , fn)�, where
fi ∈ co[gi(x)]. Then it is easy to see that fixi ≥

∫ xi
0 gi(ρ) dρ, which implies

ϕ(f , f ) = −
n∑

i=1

fiPi
di(xi)

xi
xi + f�PTf + f�PJ

≤ −lf�Px− αf�f + f�PJ ≤ −lf�Px− α
2

f�f + I

≤ −lM + I ≤ 0. (7.91)

By Lemma 7.59, we can find ḡ ∈ co[g(x)] such that ϕ(g, ḡ) ≤ 0 for all g ∈ co[g(x)].
Therefore, for each x ∈ ΩM , we have F(x)

⋂
TΩM (x) �= ∅. According to Lemma

7.57, in this case, ΩM contains an equilibrium of F(x).
Case 2: There exist some indices i such that gi(s) = 0 for all s ∈ R.
Without loss of generalization, we can assume that gn(s) = 0 for all s ∈ R

and g1, . . . , gn−1 are non-trivial. Considering x̃ = (x1, x2, . . . , xn−1)�, by the dis-
cussion in Case 1, there exists an equilibrium x̃∗ = (x∗1, x∗2, . . . , x∗n−1)�, such that

0 ∈ −di(x∗i ) + ∑n−1
j=1 tijco[gj(xj)] + Ji for i = 1, . . . , n − 1. That is, there exist

γi ∈ co[gi(x∗i )], for i = 1, 2, . . . , n − 1, such that 0 = −di(x∗i ) +∑n−1
j=1 tijγj + Ji,

i = 1, 2, . . . , n− 1.
It can also be seen that there exists x∗n such that −dn(x∗n)+∑n−1

j=1 tnjγj + Jn = 0.

Therefore, x∗ = (x̃∗, x∗n)� is an equilibrium of F(x). The theorem is proved. �
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Chapter 8
Stability and Hopf Bifurcation for a First-Order
Delay Differential Equation with Distributed
Delay

Fabien Crauste

8.1 Introduction

The present chapter is devoted to the stability analysis of linear differential equations
with continuous distributed delay

dx

dt
(t) = −Ax(t)− B

∫ ∞

0
F(θ )x(t − θ ) dθ , t > 0, (8.1)

where A and B are real coefficients and F is an integrable function on (0,+∞), that
can possibly have a compact support. Note that, except when it is mentioned, F will
not be supposed to be a density function.

This class of equations is widely used in many research fields—it can be obtained
through the linearization of different nonlinear problems (see, for example,
Sect. 8.5)—such as automatic, economic, and, for our purpose, in biological mod-
eling because it can be associated with problems in which it is important to take
into account some history of the state variable (e.g., gestation period, cell cycle
durations, or incubation time [23, 34]). When few data are available, this history is
usually assumed to be discrete. Yet, in most cases very little is known about it, and
how it is distributed; so, very abstract assumptions lead to equations in the form of
(8.1).

We are interested in stability properties of (8.1), that is, under which conditions,
on the parameters A and B or the function F, do all solutions of (8.1) converge
toward zero? And, as a consequence, how can (8.1) be destabilized? Can oscillating
or periodic solutions appear? All these questions arise from a need to understand
how systems destabilize, or how can they stay stable for a long time. Partial answers
are brought up in Sect. 8.4.
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Many studies, as mentioned hereafter, tried to bring clear answers to these ques-
tions, yet only partial results have been proved up to now. Mainly, only sufficient
conditions for stability—which are sometimes all one needs—have been obtained,
or particular functions F have been used so as to simplify in some way the study of
the stability of (8.1).

To make this latter argument clearer, let us recall that the stability of (8.1) is
related to the sign of the real parts of its eigenvalues (see Sect. 8.2, Proposition 8.3).
Indeed, it is sufficient to determine the sign of real parts of all eigenvalues to deduce
the stability or instability of (8.1). With well-chosen functions F, the integral term
in (8.1), or in its characteristic equation, can be explicitly calculated and stability
can be determined. For instance, when F is the Dirac measure δτ defined by

δτ (θ ) =
{

1, if θ = τ ,
0, otherwise.

Equation (8.1) reduces to the classical linear discrete delay differential equation

dx

dt
(t) = −Ax(t)− Bx(t − τ ), t > 0. (8.2)

This equation has been widely studied (see, for example, [18]) and its stability has
been fully determined. This will be recalled in Sect. 8.3 where the importance of
(8.2) is stressed. In particular, necessary and sufficient conditions for the existence
of a Hopf bifurcation have been obtained.

When F is a sum of Dirac measures, (8.1) is a differential equation with several
discrete distributed delays. Such equations may display very interesting behavior,
and their analysis is much more difficult than for (8.2). It is not the aim of this work
to deal with such equations, but the interested reader is referred to the works in
[3, 12, 35, 36, 39] and the numerous references therein.

Other types of density functions F that have been often used, applied to different
situations but mainly in biological modeling (e.g., to describe the distribution of cell
cycle transit times [25]), are Gamma distributions. They consist in taking F as

F(θ ) = σ k+1

Γ (k + 1)
θke−σθ , (8.3)

the parameters σ and k being related to experimental data. One can also consider
that σ and k are defined by the following relations:

E = k + 1

σ
and V = k + 1

σ 2
,

with E and V defining, respectively, the expectation and variance of F. In the sta-
bility analysis of (8.1), Gamma distributions have a technical advantage: they allow
to ‘transform’ a transcendental characteristic equation into a polynomial equation,
thus facilitating the analysis.
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Studies for more general functions F have been done during the last 20 years
and different achieved results may be mentioned. These results will be explained in
more details in Sect. 8.3. Anderson [4, 5], between 1991 and 1992, considered a dif-
ferent form for (8.1), where F is a density function, and he obtained stability results
related to the different moments (especially the expectation and the variance) of the
distribution. These results stress the importance of the shape of the function F in
the stability of (8.1). Kuang [24], in 1994, also obtained general stability results for
systems of delay differential equations. More recently, sufficient conditions for the
stability of delay differential equations with distributed delay have been obtained by
Bernard et al. [8], when F is a probability density. The authors used some properties
of the distribution to prove these results. However, it is noticeable to mention that in
all the cited works the authors only focused on sufficient conditions for the stability,
and no necessary condition has yet been proved.

In the next section we present some useful and important definitions for the
stability of differential equations that will make the reading of this chapter eas-
ier. Then, in Sect. 8.3, we briefly summarize the state of the art in the stability of
differential equations with distributed delay, starting with the case of the stability
of (8.2) which, without falling in the framework of this chapter, is very useful in
determining strategies to analyze the stability of (8.1). In Sect. 8.4, we present the
main result of this chapter which consists in finding a critical value of the parameters
that would destabilize (8.1). We show that this destabilization occurs through a Hopf
bifurcation. We conclude with an application of the results of Sect. 8.4 to a model of
hematopoietic stem cells dynamics, pointing out how the mathematical study allows
to determine the existence of oscillating solutions in this model that can be related
to chronic myelogenous leukemia, a severe blood disease.

8.2 Definitions and Hopf Bifurcation Theorem

Let’s consider the delay differential equation

y′(t) = f (yt), t > 0, (8.4)

where f :ϕ ∈ C(( − ∞, 0], IRn) �→ f (ϕ) ∈ IRn has continuous first and second
derivatives for all ϕ ∈ C((−∞, 0], IRn), the space of continuous functions mapping
(−∞, 0] into IRn, f (0) = 0, and yt is a continuous function defined, for θ ≤ 0, by

yt(θ ) = y(t + θ ).

Define L : C((−∞, 0], IRn)→ IRn by

Lϕ = df

dφ
(0)ϕ,

and consider the linear differential equation with delay
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y′(t) = Lyt, t > 0. (8.5)

Equation (8.5) is the linearized equation of (8.4) at ϕ = 0.

Example 8.1 If, for continuous functions ϕ : (−∞, 0] �→ IR,

Lϕ = −Aϕ(0)− B
∫ ∞

0
F(θ )ϕ(− θ ) dθ ,

then (8.5) is (8.1).

Definition 8.2 The trivial solution y ≡ 0 of (8.5) is said to be asymptotically stable
if all solutions of (8.5) converge toward zero when t tends to infinity.

Instead of “The trivial solution of (8.5) is stable or unstable,” one may find the
expression “Eq. (8.5) is stable or unstable.” One must note that asymptotic stability
of (8.5) implies local asymptotic stability of (8.4), and instability of (8.5) implies
instability of (8.4).

Different techniques may be used to determine the asymptotic stability of (8.5),
although two approaches are usually privileged. The first technique, which is usually
applied to nonlinear delay differential equations, aims to determine global asymp-
totic stability (the distinction vanishes for linear equations) and is based on the
use of Lyapunov functions (see Hale [18]). Without giving too much details (we
invite the interested reader to look through the book of Hale [18] for the application
of Lyapunov functions to delay differential equations), the main difficulty lies in
finding a good function, which is not an easy task. The second way of finding the
stability properties of (8.5) is to study its eigenvalues.

Consider the equation

det
(
λ− Leλ·

) = 0, λ ∈ C. (8.6)

This equation is called the characteristic equation of (8.5). When the linear function
L is known, (8.6) is obtained by searching for solutions of (8.5) in the form y(t) =
Ceλt, C ∈ IRn. The solutions λ of (8.6) are called the characteristic roots, and they
are the eigenvalues of (8.5).

Proposition 8.3 The trivial solution of (8.5) is asymptotically stable if all charac-
teristic roots of (8.6) have negative real parts, and unstable if (8.6) has a charac-
teristic root with positive real part.

Note that when λ = 0 is an eigenvalue of (8.5) and all other eigenvalues have
negative real parts, then one cannot immediately conclude the stability or instability
of (8.5). A more detailed analysis is then necessary. It is also important to note that
the stability of (8.5) can only be lost if eigenvalues cross the imaginary axis from left
to right. That is, if purely imaginary eigenvalues appear (see Cooke and Grossman
[14] and the numerous generalizations of their result based on Rouché’s Theorem
[16, p. 248]).



8 DDE with Distributed Delay 267

Stated in the next theorem, the Hopf bifurcation theorem describes the instability
of (8.4) through the appearance of periodic solutions, related to the existence of
purely imaginary eigenvalues of (8.5). As mentioned in Hale [18], the Hopf bifurca-
tion is one of the simplest way for (nonconstant) periodic solutions to arise in delay
differential equations.

Let us suppose that the function f in (8.4) depends on a real parameter, say
α ∈ IR, and f has continuous first and second derivatives in α and ϕ for all α ∈ IR
and ϕ ∈ C((−∞, 0], IRn). Then the linear function L in (8.5) also depends on α and
(8.5) can be written as

y′(t) = L(α)yt, t > 0. (8.7)

If λ is an eigenvalue of (8.7), we denote by Re(λ) and Im(λ) the real and imaginary
parts of λ, respectively.

Theorem 8.4 (Hopf Bifurcation Theorem for DDEs, Hale [18]) . Suppose that (8.7)
has a simple nonzero purely imaginary eigenvalue λ0 for α = 0, and that all other
eigenvalues are not integer multiples of λ0. In addition, suppose that the branch of
eigenvalues λ(α) which satisfies λ(0) = λ0 is such that Re(λ′(0)) �= 0. Then, for α
close to zero, (8.4) has nontrivial periodic solutions, with period close to 2π/Im(λ0).

The assumption Re(λ′(0)) �= 0 in the above theorem is called the transversality
condition, and α is called the bifurcation parameter. When all assumptions of The-
orem 8.4 are fulfilled, one says that (8.4) undergoes a Hopf bifurcation for α = 0.

Example 8.5 Through this example, we illustrate the results stated in Proposition 8.3
as well as in Theorem 8.4 on a differential equation with discrete delay. Consider
the DDE

y′(t) = −α y(t − 1)

1+ y(t − 1)
, α > 0, t > 0. (8.8)

The linearization of (8.8) around y ≡ 0 gives the linear DDE

y′(t) = −αy(t − 1), α > 0. (8.9)

This equation can be written as (8.7) with L(α) given by L(α)ϕ = −αϕ( − 1).
Looking for solutions of (8.9) in the form y(t) = Ceλt, we deduce the characteristic
equation

λ+ αe−λ = 0. (8.10)

For the sake of simplicity, we write λ = μ+ iω, and we separate real and imaginary
parts in the above equation to obtain

μ+ αe−μ cos (ω) = 0 and ω − αe−μ sin (ω) = 0. (8.11)
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One can notice that if (μ,ω) is a solution, then so is (μ,−ω). Consequently, we will
only consider ω > 0.

Let us suppose that there exists a positive value of α, say α∗, for which μ = 0.
Then, from (8.11),

α∗ cos (ω) = 0 and ω = α∗ sin (ω).

Since α∗ > 0, it follows that cos (ω) = 0, and so ω = π/2+ kπ . Using the second
equation, we deduce that for α∗ = π/2, (8.9) has purely imaginary eigenvalues;
these eigenvalues are ±π/2.

Let us check first that (8.8) is locally asymptotically stable for 0 < α < π/2,
and, second, that (8.8) undergoes a Hopf bifurcation when α = π/2.

Suppose that 0 < α < π/2 and that λ = μ + iω is an eigenvalue of (8.9).
By contradiction, assume μ > 0. Then e−μ < 1 and we deduce, from (8.11), that
ω = αe−μ sin (ω) < π/2. Consequently, with ω > 0, we obtain that cos (ω) > 0
and, still from (8.11), thatμ < 0. There is a contradiction, soμ ≤ 0. Since α < π/2,
μ cannot be zero, soμ < 0 and all characteristic roots have negative real parts. From
Proposition 8.3, we conclude that (8.9) is asymptotically stable when 0 < α < π/2,
and consequently (8.8) is locally asymptotically stable for 0 < α < π/2.

Now let α = π/2. We are going to check that all assumptions of Theorem 8.4
are satisfied, in particular that (8.9) has a periodic solution, so that (8.8) undergoes
a Hopf bifurcation when α = π/2.

First, we already checked that, when α = π/2, (8.9) has a pair of purely imag-
inary eigenvalues, and that they are the only imaginary eigenvalues. Let us con-
sider the branch of eigenvalues λ(α) = μ(α)+ iω(α), solutions of (8.10), such that
λ(π/2) = iπ/2. Differentiating (8.10) with respect to α, we obtain

(
αe−λ(α) − 1

)
λ′(α) = e−λ(α).

It is straightforward to check that ±iπ/2 are simple eigenvalues. Indeed, if
λ′(π/2) = 0 then e−λ(π/2) = 0, which is impossible. Thus the first assumption
in Theorem 8.4 is satisfied. Moreover, using the fact that e−λ(α) = −λ(α)/α, we
deduce that

λ′(α) = e−λ(α)

αe−λ(α) − 1
= λ(α)

α(λ(α)+ 1)
.

Consequently,

λ′
(π

2

)
=

i
π

2
π

2
(i
π

2
+ 1)

=
π

2
+ i

π2

4
+ 1

,
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and Re(λ′(π/2)) �= 0. The second assumption of Theorem 8.4 is then satisfied.
It follows that (8.8) undergoes a Hopf bifurcation when α = π/2, and periodic
solutions with periods close to 4 exist.

8.3 State of the Art and Objectives

Differential equations with continuous distributed delay such as (8.1), or in a modi-
fied form, have not been the object of much attention, at least when one is interested
in necessary and sufficient conditions for asymptotic stability. Mainly, particular
cases have been investigated (when F is a Gamma distribution (8.3)), and sufficient
stability conditions have been obtained.

Yet, to understand the lack of results concerning the asymptotic stability of (8.1),
one has to have in mind the known results about the stability of the classical discrete
delay differential equation (8.2)—which can logically be considered as the simplest
delay differential equation—and the techniques used to obtain these results. In the
next section, we recall stability results for (8.2). Then, we will focus on actual known
results of stability for (8.1) and their limitations.

8.3.1 The Classical Linear Discrete Delay Differential Equation

Let us focus, for a while, on stability properties of (8.2), which is a particular case
of (8.1), known as the discrete delay differential equation. Asymptotic properties of
this equation, in terms of the coefficients A and B, and of the time delay τ have been
established in [14, 18] using a well-known result by Hayes [20]. We state and prove
these results, using an alternative proof, based on the one given in [14], which will
be useful later in this chapter.

Stability of differential equations is related to the sign of the real parts of their
eigenvalues (Proposition 8.3). The equation is asymptotically stable if all eigen-
values have negative real parts and unstable if eigenvalues with positive real parts
exist. The stability can be lost only if purely imaginary eigenvalues appear. In the
case of ordinary differential equations, the characteristic equation is a polynomial
function; so, easy-to-find criteria can be used to locate the eigenvalues. In the case
of delay differential equations, the characteristic equation is transcendental, making
it difficult to locate the characteristic roots. In particular, the characteristic equation
associated with (8.2), obtained by searching for solutions x(t) = Ceλt, C ∈ IR, is

λ+ A+ Be−λτ = 0. (8.12)

Let us set

Δ(λ, τ ) = λ+ A+ Be−λτ .
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In the next theorem, we state and prove stability conditions for (8.2). We make a
difference between delay-independent stability conditions (in (a) and (b)) and delay-
dependent ones (in (c)). The latter are related to the existence of a Hopf bifurcation.

Theorem 8.6 The stability properties of (8.2) are as follows:
(a) If B ≤ 0, (8.2) is asymptotically stable for all τ ≥ 0 when A + B > 0 and

unstable for all τ ≥ 0 when A+ B < 0;
(b) If B > 0, (8.2) is asymptotically stable for all τ ≥ 0 when A > B and unstable

for all τ ≥ 0 when A+ B < 0;
(c) If B > 0 and B > |A|, then (8.2) is asymptotically stable for τ ∈ [0, τ ∗) and

unstable for τ ≥ τ ∗, where

τ ∗=
arccos

(
−A

B

)

√
B2 − A2

.

When τ = τ ∗, a Hopf bifurcation occurs.

Proof Assertions in (a) and (b) follow immediately from Theorem 8.12, with
F = δτ , the Dirac measure in τ . We refer to the proof of Theorem 8.12.

Let us focus on the case B > |A| (that is, A + B > 0 and A < B). The stability
in this case will depend on the delay. Indeed, we are going to prove the existence
of a unique Hopf bifurcation that can destabilize the equation for some value of the
delay.

First, notice thatΔ(λ, 0) = λ+A+B, so, when τ = 0, λ = −(A+B) is the only
eigenvalue of (8.2). Since A+B > 0, λ < 0 and the equation is then asymptotically
stable when τ = 0.

Suppose τ > 0, and search for purely imaginary eigenvalues λ = iω. Separating
real and imaginary parts of Δ(iω, τ ), one finds that ω and τ must satisfy

{
A+ B cos (ωτ ) = 0,
ω − B sin (ωτ ) = 0.

(8.13)

One can easily check that ω = 0 cannot be a solution, since A+B > 0, and if (ω, τ )
is a solution of (8.13), then so is (− ω, τ ). Hence, we only focus on positive values
of ω.

Since B > 0, we rewrite (8.13) as

cos (ωτ ) = −A

B
and sin (ωτ ) = ω

B
.

Then one easily checks that the only ω that can satisfy these conditions is given by

ω2 = B2 − A2.

Of course, this definition of ω is valid only if B > |A|, which is the case here.
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We then deduce that

τ
√

B2 − A2 = arccos

(
−A

B

)
,

and the value of τ for which iω is a root of Δ must be

τ = τ ∗ :=
arccos

(
−A

B

)

√
B2 − A2

.

The converse is straightforward: If τ = τ∗, then ±i
√

B2 − A2 are purely imaginary
eigenvalues of (8.2). And indeed they are the only ones. So there is only one change
of stability and it occurs for τ = τ ∗. Let us check that this change of stability occurs
through a Hopf bifurcation.

Let us set ω∗ = √B2 − A2. In order to show that a Hopf bifurcation occurs when
τ = τ ∗, we must verify that ±iω∗ are simple eigenvalues and

d

dτ
Re(λ(τ ))

∣∣∣∣
τ=τ∗

> 0.

Consider a branch of eigenvalues λ(τ ) = μ(τ )+ iω(τ ) such that

μ(τ∗) = 0 and ω(τ ∗) = ω∗.

Then, for all τ ≥ 0, Δ(λ(τ ), τ ) = 0. Hence,

dΔ

dτ
(λ(τ ), τ ) := dλ

dτ
(τ )
∂Δ

∂λ
(λ(τ ), τ )+ ∂Δ

∂τ
(λ(τ ), τ ) = 0. (8.14)

First, notice that

∂Δ

∂λ
(λ(τ ), τ ) = 1− Bτe−λ(τ )τ .

Therefore, using (8.13), we obtain

∂Δ

∂λ
(λ(τ ∗), τ ∗) = 1− Bτ∗ cos (ω∗τ ∗)+ iBτ ∗ sin (ω∗τ ∗) = 1+ Aτ∗ + iω∗τ ∗.

Since ω∗ and τ ∗ are strictly positive, it follows that ∂Δ(λ(τ ∗), τ ∗)/∂λ �= 0, and
±iω∗ are simple eigenvalues of (8.2).
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Now, from (8.14), we deduce that

dλ

dτ
(τ ∗) =

∂Δ

∂τ
(iω∗, τ ∗)

∂Δ

∂λ
(iω∗, τ ∗)

= iBω∗e−iω∗τ∗

1+ Aτ ∗ + iω∗τ ∗
.

This yields

d

dτ
Re(λ(τ ))

∣∣∣∣
τ=τ∗

= Re

(
dλ

dτ
(τ ∗)

)
= Bω∗ sin (ω∗τ ∗)

(1+ Aτ ∗)2 + (ω∗τ ∗)2
.

Using the fact that (ω∗, τ ∗) satisfies (8.13), we deduce

d

dτ
Re(λ(τ ))

∣∣∣∣
τ=τ∗

= (ω∗)2

(1+ Aτ ∗)2 + (ω∗τ ∗)2
> 0.

Hence the branch of eigenvalues crosses the imaginary axis from left to right,
and the transversality condition (see Theorem 8.4) is satisfied: a Hopf bifurcation
occurs when τ = τ ∗. This completes the proof of (c) and ends the proof of the
theorem. �
Remark 8.7 In statement (c) of Theorem 8.6, and more particularly in the proof of
(c), the critical value τ ∗ of the time delay appears to be unique, implying that a
unique bifurcation can change the stability of (8.2). It is, however, important to
notice that in practical cases the linear delay differential Equation (8.2) is obtained
through the linearization of a nonlinear delay differential equation about one of its
steady states, and coefficients A and B may depend, explicitly or not, on the time
delay. Then the critical values of τ (here τ∗) for which a stability switch may occur
may not be unique, but can be the solutions of a fixed point problem,

τ =
arccos

(
−A(τ )

B(τ )

)

√
B(τ )2 − A(τ )2

.

Consequently, stability switches may occur (see Beretta and Kuang [7]).

Remark 8.8 Hayes [20] proved the following result (whose proof can be found in
[14] or [18]), which enables to locate the roots of (8.12), and thus allows to draw
the stability diagram for (8.2). Yet, in contrast to Theorem 8.6, this result does not
explain how the equation becomes unstable (e.g., whether through a Hopf bifurca-
tion).

Theorem 8.9 All roots of (8.12) have negative real parts if and only if Aτ > −1,
A + B > 0, and Bτ < ζ sin (ζ ) − Aτ cos (ζ ), where ζ ∈ [0,π ] is the root of
ζ = −Aτ tan (ζ ) if A �= 0 and ζ = π/2 if A = 0.

When comparing results about distributed delay differential equations with the
ones obtained in Theorem 8.6 for the discrete delay differential equations (see
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Sect. 8.4), it will be important to notice that the main difficulty lies in the existence
of purely imaginary eigenvalues. Most of other properties, such as the transversal-
ity condition, will be obtained without too much difficulty, in a similar manner to
Theorem 8.6.

In the case of discrete delay, it is possible to obtain necessary and sufficient con-
ditions for the stability (see Theorem 8.6) because, in the proof of the theorem, usual
properties of cosine and sine functions (precisely, that cos2+ sin2 = 1) have been
used to determine the exact values of the purely imaginary eigenvalues. This will be
impossible for the case with distributed delay due to the presence of weighed inte-
grals of cosine and sine functions. One can see that the so-called delay-independent
stability results in Theorem 8.6 will hold for the distributed delay case, but as soon
as stability results depend on the delay difficulties appear and we are obliged to
develop new techniques to obtain stability or bifurcation conditions. A brief but
wide summary of known results dealing with the stability of some distributed delay
differential equations is presented in the following section.

8.3.2 Known Results About Stability of Distributed Delay
Differential Equations

As mentioned in the Introduction, the stability analysis of DDEs with distributed
delay has not received so much attention in the literature, except for some partic-
ular cases, when F, in (8.1), is a Gamma distribution for instance. In 1989, Boese
[11] analyzed the stability of (8.1) when F is a Gamma distribution given by (8.3).
The characteristic function of (8.1) is then a (k + 1)th degree polynomial function.
The author determines sufficient conditions for the asymptotic stability of the trivial
solution of (8.1), which are rather technical.

Kuang [24], in 1994, considered a system of two differential equations with con-
tinuous distributed delay, possibly infinite. He concentrates on purely imaginary
eigenvalues and determines conditions for their nonexistence, obtaining sufficient
conditions for the asymptotic stability of his system.

One particularly interesting result has been published in 2001 by Bernard
et al. [8], where the authors considered (8.1) and determined sufficient conditions
for its stability. Their main result is stated hereafter.

Theorem 8.10 (Bernard et al., 2001 [8]) Suppose B > |A|, F is a density function,
so that F is nonnegative and

∫∞
0 F(θ ) dθ = 1, and let E be the expectation of F

defined by
∫∞

0 θF(θ ) dθ = E. The following assertions hold:

(a) Eq. (8.1) is asymptotically stable if

E <
π

(
1+ A

B

)

c
√

B2 − A2
,

where c := sup{c̄ | cos (x) = 1− c̄x/π , x > 0} ≈ 2.2704.
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(b) If F is symmetric, that is, F(E + θ ) = F(E − θ ), then (8.1) is asymptotically
stable if

E <
arccos

(
−A

B

)

√
B2 − A2

. (8.15)

The more interesting result in Theorem 8.10 is cited in (b). One can note that
(8.15) corresponds to the necessary and sufficient condition that gives the stability
in Theorem 8.6, in the case when F is a Dirac measure δτ . It is noticeable to mention
that Bernard et al. [8] suggest, as a conjecture, that the single Dirac measure δτ
would be the most destabilizing distribution of delays for (8.1). This conjecture is
still unproved, yet a recent result (Atay [6]) gave arguments in its favor.

In [6], Atay focuses on the stability of delay differential equations near a Hopf
bifurcation and particularly on the respective influence of discrete and distributed
delays on the stability of such equations. For linear delay differential equations, he
shows that if the delay has a destabilizing effect, then the discrete delay is locally
the most destabilizing delay distribution (one may note that when the delay has a
stabilizing effect, then the discrete delay is locally the most stabilizing delay distri-
bution). When the distribution is symmetric, as in Theorem 8.10 (b), he shows that
the result is global: the discrete delay is the most destabilizing delay distribution.

When one deals with a nonsymmetric distribution F, the sufficient condition for
the stability of (8.1) provided by Theorem 8.10 reveals bad results: the limit given
for the stability is far from the exact stability boundary that can be obtained through
numerical simulations on some easy-to-handle examples. Up to now, however, these
results are probably the best obtained for the stability of a large class of differential
equations with distributed delay.

More recently, Huang and Vandewalle [21] and Tang [38] analyzed the stability
of equations similar to (8.1). The first authors were interested in the numerical stabil-
ity of differential equations with distributed delay, but they proposed an interesting
geometrical approach to determine conditions for the stability of (8.1) when F is
defined by

F(θ ) =
{

1, if 0 < θ < τ ,
0, otherwise.

Unfortunately, the way they proceed to obtain their stability conditions cannot be
extended to general functions F.

In [38], Tang determines sufficient stability conditions for very general differ-
ential equations with distributed delay, but his results, that can be seen as a gener-
alization of the works of Boese [11], are very technical and not easy to handle in
particular nontrivial examples.

In [31], Ozbay et al. investigate the stability of linear systems of equations with
distributed delays and apply their results to a model of hematopoietic stem cell
dynamics. Considering an exponential distribution of delays, they obtain necessary
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and sufficient conditions for the stability using the small gain theorem and Nyquist
stability criterion.

In the above-mentioned works, either particular functions F have been used to
obtain stability conditions (usually Gamma distributions) or only sufficient stability
conditions have been obtained. In the next section, we are going to present a way
to obtain stability conditions and, more particularly, conditions for the loss of the
stability. These conditions will not be, however, necessary and sufficient ones. But
they will allow to describe, through a Hopf bifurcation, the appearance of periodic
solutions for (8.1) and may lead to interesting results in practical cases. This will be
detailed in Sect. 8.5.

Before turning to the main point of this chapter, let us mention a last contribution
to the study of the stability for differential equations with distributed delay. In 1991
and 1992, Anderson [4, 5] focused on the stability of delay differential equations,
called regulator models, in the form

dx

dt
(t) = −h

∫ ∞

0
x(t − u)μ(du), (8.16)

where h is a parameter known as the amplitude of the regulation and μ(du) is a
probability measure supported on [0,∞). By taking

h = A+ B
∫ ∞

0
F(θ ) dθ and μ(du) = Aδ0 + BF(u) du,

it is easy to check that (8.16) becomes (8.1). The theory developed by Anderson
[4, 5] focuses on the properties of the probability measure μ(du), related to its
expectation Eμ and its relative variance Rμ, defined by Rμ = Vμ/E2

μ, Vμ being
the variance of μ(du).

Results established by Anderson in [4] and [5] are stated in the next theorem.
Suppose that h0 is the largest number such that for 0 ≤ h < h0 the trivial solution
of (8.16) is asymptotically stable. This number is called the threshold amplitude of
the probability delay measure μ(du). Note that h0 may be infinite, and in this case
(8.16) is always stable.

Theorem 8.11 Suppose μ(du) is a probability measure of finite expectation Eμ.
Denote by Rμ its relative variance.

If Rμ satisfies

Rμ <
2

π2
,

then h0 is finite, and there is a change of stability for (8.16).
If μ(du) = k(u) du where k is continuous, convex, and not everywhere piecewise

linear on [0,+∞), then h0 = +∞ and the stability of (8.16) never changes.

Although the results of Anderson are only valid for some class of probabil-
ity measures (in particular, the second result in Theorem 8.11), they stress the
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importance of the shape of the delay distribution. This is an idea that can be found
in [8], as stated in Theorem 8.10. Moreover, Anderson mentions that “the more
concentrated the probability measure, the worse the stability property of the model”
[5]. This goes in the sense of Bernard et al.’s conjecture [6, 8].

However, despite the interest of Theorem 8.11, in order to apply the theory of
Anderson, one needs to know a lot about the probability measure properties, what is
rarely the case, for example, in biological modeling. I would quote MacDonald [25]
writing that, in the case of maturation times for some cells, too little is known to fix
a form for their distribution. This was true in 1989, and it is unfortunately usually
still true.

8.4 Stability Analysis and Hopf Bifurcation for a Delay
Differential Equation with Distributed Delay

We now focus on the main objective of this chapter: the stability analysis of (8.1)
and the existence of a Hopf bifurcation that would destabilize (8.1). Let us recall
that (8.1) is

dx

dt
(t) = −Ax(t)− B

∫ ∞

0
F(θ )x(t − θ ) dθ , t > 0,

where A and B are real coefficients, with A �= 0 and B �= 0, and F is a nonnegative
integrable function on (0,+∞). We do not suppose that F is a density function.
Without loss of generality one could assume F is a density function, yet to avoid
introduction of more notations in the following section and to stay close to applica-
tions (where kernel functions are not necessarily density functions, see Sect. 8.5),
this assumption will not be made.

Looking for solutions of (8.1) in the form Ceλt, C ∈ IR and λ a complex number,
we find the characteristic equation associated with (8.1),

λ+ A+ B
∫ ∞

0
F(θ )e−λθ dθ = 0. (8.17)

In the following, we denote by Δ(λ) the complex function

Δ(λ) := λ+ A+ B
∫ ∞

0
F(θ )e−λθ dθ . (8.18)

If λ = μ+ iω is an eigenvalue of (8.1), then separating real and imaginary parts in
(8.17) leads to

⎧
⎪⎨

⎪⎩

μ+ A+ B
∫ ∞

0
F(θ )e−μθ cos (ωθ ) dθ = 0,

ω − B
∫ ∞

0
F(θ )e−μθ sin (ωθ ) dθ = 0.

(8.19)

We can state and prove the following theorem on the stability of (8.1).
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Theorem 8.12 Equation (8.1) is unstable if

A+ B
∫ ∞

0
F(θ ) dθ < 0, (8.20)

and asymptotically stable if

B ≤ 0 and A+ B
∫ ∞

0
F(θ ) dθ > 0 (8.21)

or

B > 0 and A > B
∫ ∞

0
F(θ ) dθ . (8.22)

Proof Consider Δ, given by (8.18), as a function of real λ. Then Δ is differentiable
and

dΔ

dλ
(λ) = 1− B

∫ ∞

0
θF(θ )e−λθ dθ . (8.23)

Moreover,

lim
λ→+∞Δ(λ) = +∞.

First assume (8.20) holds. Then

Δ(0) = A+ B
∫ ∞

0
F(θ ) dθ < 0.

Since Δ is a continuous function which tends to infinity when λ tends to infinity,
there exists at least one λ0 ∈ IR, λ0 > 0, such that Δ(λ0) = 0. Consequently, (8.1)
has at least one eigenvalue with positive real part and is unstable.

Suppose now that (8.21) holds. Since B ≤ 0, it follows from (8.23) that Δ is
increasing. Moreover, since

lim
λ→−∞Δ(λ) = −∞ and lim

λ→+∞Δ(λ) = +∞,

we deduce that there exists a unique λ0 ∈ IR, such that Δ(λ0) = 0. In addition,

Δ(0) = A+ B
∫ ∞

0
F(θ ) dθ > 0,

so λ0 < 0.
Moreover, if λ = μ+ iω is a root of Δ, λ �= λ0, then from (8.19) we obtain

μ+ A+ B
∫ ∞

0
F(θ )e−μθ cos (ωθ ) dθ = 0.
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Hence,

λ0 − μ = −B
∫ ∞

0
F(θ )

[
e−λ0θ − e−μθ cos (ωθ )

]
dθ ,

≥ −B
∫ ∞

0
F(θ )

[
e−λ0θ − e−μθ

]
dθ .

If one supposes that λ0 < μ, then one obtains a contradiction. Consequently,
μ ≤ λ0.

Since λ0 < 0, we deduce that all roots of Δ have negative real parts. Hence, all
eigenvalues of (8.1) have negative real parts and (8.1) is asymptotically stable.

Eventually, assume condition (8.22) is fulfilled. By contradiction, let us suppose
that Δ has a root λ = μ+ iω with μ > 0. Then, from (8.19),

μ = −A− B
∫ ∞

0
F(θ )e−μθ cos (ωθ ) dθ .

Since

−B
∫ ∞

0
F(θ )e−μθ cos (ωθ ) dθ ≤

∣∣∣∣−B
∫ ∞

0
F(θ )e−μθ cos (ωθ ) dθ

∣∣∣∣ ,

≤ B
∫ ∞

0
F(θ )e−μθ | cos (ωθ )| dθ ,

≤ B
∫ ∞

0
F(θ ) dθ ,

then, with (8.22), one finds that

μ ≤ −A+ B
∫ ∞

0
F(θ ) dθ < 0.

This gives a contradiction. Therefore, we deduce that μ ≤ 0. Let us show that
μ �= 0.

Assume μ = 0. Then, from (8.19), ω must satisfy

⎧
⎪⎨

⎪⎩

A+ B
∫ ∞

0
F(θ ) cos (ωθ ) dθ = 0,

ω − B
∫ ∞

0
F(θ ) sin (ωθ ) dθ = 0.

(8.24)

Note that for all ω ∈ IR

−
∫ ∞

0
F(θ ) dθ ≤

∫ ∞

0
F(θ ) cos (ωθ ) dθ ≤

∫ ∞

0
F(θ ) dθ ,

so a necessary condition for the existence of purely imaginary roots of Δ is

−
∫ ∞

0
F(θ ) dθ ≤ −A

B
≤

∫ ∞

0
F(θ ) dθ .
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Note that (8.22) implies that

−A

B
< −

∫ ∞

0
F(θ ) dθ .

Consequently, system (8.24) cannot have solutions, and μ �= 0. This yields that μ <
0. Hence all eigenvalues of (8.1) have negative real parts and (8.1) is asymptotically
stable. This ends the proof. �

Remark 8.13 If F is a density function, then
∫∞

0 F(θ ) dθ = 1, and all conditions
for the stability or instability of (8.1) in Theorem 8.12 are expressed in terms of A
and B. Moreover, if F is the Dirac measure in τ denoted by δτ , with τ > 0, then
Theorem 8.12 reduces to Theorem 8.6. (a) and (b).

From the results established in Theorem 8.12, one can notice that the only param-
eter region for which the behavior of (8.1) is unknown is

B
∫ ∞

0
F(θ ) dθ > |A|. (8.25)

In this case, different behavior can be observed depending on the properties of the
function F. Yet, no necessary and sufficient condition has been proved for the sta-
bility of (8.1). Most results only give sufficient conditions for the stability of (8.1)
by finding conditions for the nonexistence of purely imaginary eigenvalues (see, for
instance, Bernard et al. [8] or Theorem 8.10 in Sect. 8.3.2).

We investigate, in the following, the existence of purely imaginary eigenvalues
of (8.1). We follow the idea developed in [1].

Assume (8.25) holds. Let λ = iω, with ω ∈ IR, be a purely imaginary eigenvalue
of (8.1). Then iω is a root of Δ, and separating real and imaginary parts of Δ(iω)
one obtains system (8.24), which we rewrite as

{
A+ BC(ω) = 0,
ω − BS(ω) = 0,

(8.26)

where

C(ω) =
∫ ∞

0
F(θ ) cos (ωθ ) dθ and S(ω) =

∫ ∞

0
F(θ ) sin (ωθ ) dθ . (8.27)

First, one can notice that ω = 0 is not a solution of (8.26) under assumption (8.25),
since

A+ BC(0) = A+ B
∫ ∞

0
F(θ )dθ > 0.

Moreover, if ω satisfies (8.26), then so does −ω. Hence we only focus, in the
following, on positive solutions of (8.26).
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The main issue here is to prove the existence of purely imaginary eigenvalues.
We will prove in Lemma 8.16 that a pair of purely imaginary eigenvalues is simple,
and it is easy to determine conditions for the transversality condition to hold, in
order to verify the Hopf Theorem (see Theorem 8.4).

To obtain the existence of purely imaginary eigenvalues, one must be able to
solve system (8.26). To do that, and to determine a stability region, we have to
choose a parameter that will be used as the bifurcation parameter. One can choose
a quantity related to the function F (its expectation or its relative variance, as used
by Anderson [4, 5]) or one of the parameters A or B. We study the loss of stability of
(8.1) with respect to the parameter B. Hence, we look for (ω, B) solution of (8.26),
with ω > 0 and B

∫∞
0 F(θ )dθ > |A|.

In order to solve (8.26), we want to eliminate the parameter B to obtain an
equation on ω. Thus we would find successively critical values of ω and B that
would destabilize (8.1). The parameter B could be expressed from (8.26) as ω/S(ω),
provided that the division by S(ω) is allowed. We prove the next lemma.

Lemma 8.14 Suppose that F is decreasing. Then, for ω > 0,

S(ω) ≥ χ (ω) > 0, (8.28)

where

χ (ω) :=
∫ 2π

ω

0
F(θ ) sin (ωθ ) dθ , ω > 0. (8.29)

Proof Let N > 0 be fixed. Define the truncated functions FN by

FN(θ ) =
{

F(θ ), if θ < N,
0, if θ ≥ N,

(8.30)

and the functions SN and χN , for ω > 0, by

SN(ω) =
∫ N

0
FN(θ ) sin (ωθ ) dθ and χN(ω) =

∫ 2π
ω

0
FN(θ ) sin (ωθ ) dθ . (8.31)

Note that

χN(ω) =
{

SN(ω), if ωN ≤ 2π ,
χ (ω), if ωN > 2π .

(8.32)

Indeed, if ωN < 2π , then from (8.30) one obtains

FN(θ ) = 0 for N < θ <
2π

ω
,

so

χN(ω) =
∫ N

0
FN(θ ) sin (ωθ ) dθ = SN(ω).

If ωN = 2π , then obviously χN(ω) = SN(ω).
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If ωN > 2π , then, for all θ < 2π/ω, θ < N and FN(θ ) = F(θ ), so

χN(ω) =
∫ 2π

ω

0
F(θ ) sin (ωθ ) dθ = χ (ω).

Let us check that χN(ω) is positive for all ω > 0. Let ω > 0 and N > 0 be fixed.
Then, using a simple change of variables,

χN(ω) =
∫ 2π

ω

0
FN(θ ) sin (ωθ ) dθ ,

= 1

ω

∫ 2π

0
FN

(σ
ω

)
sin (σ )dσ ,

= 1

ω

∫ π

0
FN

(σ
ω

)
sin (σ )dσ + 1

ω

∫ 2π

π

FN

(σ
ω

)
sin (σ )dσ ,

= 1

ω

∫ π

0

[
FN

(σ
ω

)
− FN

(
σ + π
ω

)]
sin (σ )dσ .

Since F is supposed to be decreasing, then so is FN . Consequently, for σ ∈ (0,π ),

FN

(σ
ω

)
− FN

(
σ + π
ω

)
> 0,

and

χN(ω) > 0.

It follows, from (8.32), that SN(ω) > 0 for 0 < ωN < 2π .
Let us show that SN(ω) > χN(ω) for ωN > 2π .
Assume 2π < ωN ≤ 3π . From (8.31),

SN(ω)− χN(ω) =
∫ N

2π
ω

FN(θ ) sin (ωθ ) dθ .

Using a simple change of variables (σ = ωθ ), we obtain

SN(ω)− χN(ω) = 1

ω

∫ ωN

2π
FN

(σ
ω

)
sin (σ )dσ .

Since 2π < ωN ≤ 3π and 2π < σ < ωN, then sin (σ ) > 0 and SN(ω) −
χN(ω) > 0.
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Assume now 3π < ωN ≤ 4π . Then, similarly,

SN(ω)− χN(ω) =
∫ N

2π
ω

FN(θ ) sin (ωθ ) dθ ,

= 1

ω

∫ ωN

2π
FN

(σ
ω

)
sin (σ )dσ ,

= 1

ω

∫ 3π

2π
FN

(σ
ω

)
sin (σ )dσ + 1

ω

∫ ωN

3π
FN

(σ
ω

)
sin (σ )dσ .

Noting that, from (8.30), FN(θ ) = 0 for θ ≥ N, then

∫ ωN

3π
FN

(σ
ω

)
sin (σ )dσ =

∫ 4π

3π
FN

(σ
ω

)
sin (σ )dσ .

Thus,

SN(ω)− χN(ω) = 1

ω

∫ 3π

2π
FN

(σ
ω

)
sin (σ )dσ + 1

ω

∫ 4π

3π
FN

(σ
ω

)
sin (σ )dσ ,

= 1

ω

∫ 3π

2π

[
FN

(σ
ω

)
− FN

(
σ + π
ω

)]
sin (σ )dσ .

Since F is supposed to be decreasing, we deduce that

SN(ω)− χN(ω) > 0.

By induction, we can prove that, for ωN ∈ (kπ , (k+1)π ], k ≥ 2, SN(ω) > χN(ω).
Therefore, SN(ω) > χN(ω) for ωN > 2π .

Now let ω > 0 be fixed. There exists N > 0 large enough such that ωN > 2π .
Consequently, from the above result, SN(ω) > χN(ω) > 0.

Since ωN > 2π , then (8.32) implies that χN(ω) = χ (ω), where χ (ω) is given by
(8.29) and χN(ω) is then independent of N. Thus,

SN(ω) > χ (ω) > 0.

Taking the limit when N tends to infinity in the above inequality, one obtains

S(ω) ≥ χ (ω) > 0.

This concludes the proof. �
Under the assumption of Lemma 8.14, S(ω) > 0 for ω > 0. Thus, we can rewrite

the second equation of (8.26) as

B = ω

S(ω)
.
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Then this expression of B can be used in the first equation of (8.26) to obtain an
equation satisfied only by ω. This equation would be

ω
C(ω)

S(ω)
= −A. (8.33)

However, it is not easy to solve (8.33) and neither it is to determine properties of the
function ωC(ω)/S(ω). That is why we introduce a new variable, A, defined by

A = A+ B
∫ ∞

0
F(θ ) dθ . (8.34)

For the sake of simplicity, we denote, in the following, by F the integral of the
function F, so that

A = A+ BF.

Assumption (8.25) is then equivalent to 2BF > A > 0.
Writing A = A− BF in (8.26), we obtain

B = ω

S(ω)
and ω

F − C(ω)

S(ω)
= A. (8.35)

By solving (8.35), we will obtain a solution (ω∗, B∗) for which ±iω∗ is a pair of
purely imaginary eigenvalues of (8.1) when B = B∗.
Lemma 8.15 Suppose S(ω) > 0 for ω > 0. Then there exists B∗ > 0 satisfying
(8.25) such that, when B = B∗, (8.1) has a pair of purely imaginary eigenvalues
±iω∗, where B∗ = A/(F − C(ω∗)) and ω∗ satisfies (8.35).

Proof Define the function ξ : (0,+∞)→ IR by

ξ (ω) = ωF − C(ω)

S(ω)
, ω > 0,

where C and S are given by (8.27).
Since

lim
ω→0

S(ω)

ω
= lim
ω→0

∫ ∞

0
θF(θ )

sin (ωθ )

ωθ
dθ =

∫ ∞

0
θF(θ ) dθ ,

and C(0) = F, we deduce

lim
ω→0

ξ (ω) = 0.

In addition, from Riemann–Lebesgue’s Lemma,

lim
ω→+∞ S(ω) = lim

ω→+∞C(ω) = 0,
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so

lim
ω→+∞ ξ (ω) = +∞.

Since ξ is a continuous function on (0,+∞), we obtain the existence of at least
one ω > 0, denoted by ω∗, such that

ξ (ω∗) = A, (8.36)

where we recall that A > 0.
Note that C(ω∗) �= F, otherwise ξ (ω∗) = 0 < A. Then, we set

B∗ = ω∗

S(ω∗)
= A

F − C(ω∗)
> 0.

Since |C(ω)| ≤ F, then

B∗ > A

2F
,

and 2B∗F > A. Therefore B∗ satisfies (8.25). Moreover, (ω∗, B∗) satisfies (8.35),
which is equivalent to (8.26), so ±iω∗ is a pair of purely imaginary eigenvalues of
(8.1) when B = B∗. This ends the proof. �

Lemma 8.15 gives a condition for the existence of purely imaginary eigenvalues of
(8.1). In the next lemma, we show that purely imaginary eigenvalues of (8.1) are
always simple and we determine a condition for the transversality condition to hold.

Lemma 8.16 Suppose±iω∗, with ω∗ > 0, is a pair of purely imaginary eigenvalues
of (8.1) that appears when B = B∗. Then ±iω∗ is a simple pair of characteristic
roots such that

Re

(
dλ

dB
(B∗)

)
> 0 if and only if

ω∗S′(ω∗)
C(ω∗)S(ω∗)

>
d

dω

(
ω

C(ω)

) ∣∣∣∣
ω=ω∗

. (8.37)

Proof Consider a branch λ(B) of eigenvalues of (8.1), given by λ(B) = μ(B)+iω(B),
such that

μ(B∗) = 0 and ω(B∗) = ω∗, ω∗ > 0.

From now on, we explicitly write the dependence of the characteristic equation
(8.17) on the bifurcation parameter B, so we write Δ(λ, B) instead of Δ(λ), as
defined in (8.18). SinceΔ(λ(B), B) = 0, then differentiatingΔ(λ(B), B) with respect
to B gives

dλ

dB
(B)
∂Δ

∂λ
(λ(B), B)+ ∂Δ

∂B
(λ(B), B) = 0. (8.38)
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One can check that

∂Δ

∂λ
(λ(B), B) = 1− B

∫ ∞

0
θF(θ )e−λ(B)θ dθ , (8.39)

and

∂Δ

∂B
(λ(B), B) =

∫ ∞

0
F(θ )e−λ(B)θ dθ .

Since λ(B) is an eigenvalue of (8.1), it satisfies (8.17) and so

∫ ∞

0
F(θ )e−λ(B)θ dθ = −λ(B)+ A

B
.

Hence,

∂Δ

∂B
(λ(B), B) = −λ(B)+ A

B
. (8.40)

Suppose, by contradiction, that ±iω∗ are not simple eigenvalues of (8.1). Then

∂Δ

∂λ
(λ(B∗), B∗) = 0.

From (8.38), we deduce that

∂Δ

∂B
(λ(B∗), B∗) = 0,

that is, from (8.40),

λ(B∗)+ A

B∗
= 0.

Separating real and imaginary parts and taking into account that B∗ > 0, this yields

ω∗ = 0 and A = 0.

This is impossible since ω∗ > 0 and we assumed, at the beginning of this section,
that A �= 0, so a contradiction holds. We conclude that ±iω∗ are simple eigenvalues
of (8.1).

From (8.38), (8.39), and (8.40), we obtain

(
dλ

dB
(B)

)−1

= −
∂Δ

∂λ
(λ(B), B)

∂Δ

∂B
(λ(B), B)

= B
1− B

∫ ∞

0
θF(θ )e−λ(B)θ dθ

λ(B)+ A
.
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Therefore,

(
dλ

dB
(B∗)

)−1

= B∗ 1− B∗S′(ω∗)+ iB∗C′(ω∗)
A+ iω∗

,

where C and S are defined by (8.27). Hence,

Re

(
dλ

dB
(B∗)

)−1

= B∗

A2 + (ω∗)2

[
A(1− B∗S′(ω∗))+ ω∗B∗C′(ω∗)] .

Remembering that ω∗ and B∗ satisfy (8.26), we have

B∗ = ω∗

S(ω∗)
and A = −B∗C(ω∗).

Using these expressions, we obtain

Re

(
dλ

dB
(B∗)

)−1

= (B∗)2

A2 + (ω∗)2

[
−C(ω∗)+ ω

∗C(ω∗)S′(ω∗)
S(ω∗)

+ ω∗C′(ω∗)
]

,

that we rewrite

Re

(
dλ

dB
(B∗)

)−1

= (B∗)2C2(ω∗)
A2 + (ω∗)2

[
ω∗S′(ω∗)

C(ω∗)S(ω∗)
− C(ω∗)− ω∗C′(ω∗)

C2(ω∗)

]
,

= A2

A2 + (ω∗)2

[
ω∗S′(ω∗)

C(ω∗)S(ω∗)
− d

dω

(
ω

C(ω)

) ∣∣∣∣
ω=ω∗

]
.

Since

sign

{
dRe(λ)

dB
(B∗)

}
= sign

{

Re

(
dλ

dB
(B∗)

)−1
}

,

we conclude to (8.37). This concludes the proof. �
From the results established in Lemmas 8.14, 8.15, and 8.16, we are able to prove

the existence of a Hopf bifurcation that would destabilize (8.1) for a certain value
of the parameter B. This is proved in the next theorem.

Theorem 8.17 Assume

B
∫ ∞

0
F(θ ) dθ > |A|,

and F is a decreasing function. Then there exists B∗ > 0 satisfying (8.25) such that
(8.1) is asymptotically stable for

|A|
∫∞

0 F(θ ) dθ
< B < B∗, (8.41)
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and (8.1) becomes unstable for B ≥ B∗, with a Hopf bifurcation occurring when
B = B∗, provided that

ω∗S′(ω∗)
C(ω∗)S(ω∗)

�= d

dω

(
ω

C(ω)

) ∣∣∣∣
ω=ω∗

, (8.42)

where ±iω∗ are purely imaginary eigenvalues of (8.1) when B = B∗.

Proof Since F is supposed to be decreasing, S(ω) > 0 for all ω > 0 from Lemma
8.14. Thus, Lemma 8.15 gives the existence of (ω∗, B∗), with ω∗ > 0 and B∗ satisfy-
ing (8.25), such that a pair of simple (see Lemma 8.16) purely imaginary eigenvalues
±iω∗ of (8.1) exists when B = B∗. As a consequence of the proof of Lemma 8.15,
(8.1) does not have purely imaginary eigenvalues when B < B∗.

From Rouché’s Theorem [16, p. 248], it follows that (8.1) is asymptotically stable
when B satisfies (8.41).

Assume (8.42) holds. Then, from Lemma 8.16, either

Re

(
dλ

dB
(B∗)

)
> 0 or Re

(
dλ

dB
(B∗)

)
< 0.

Suppose, by contradiction, that

Re

(
dλ

dB

)
< 0

for B < B∗, B close to B∗. Then there exists an eigenvalue λ(B) of (8.1) such that
Re(λ(B)) > 0 and B < B∗. This contradicts the stability of (8.1) for B < B∗. Thus,

Re

(
dλ

dB
(B∗)

)
> 0.

This implies the existence of a Hopf bifurcation when B = B∗ (see Theorem 8.4).
�

Theorem 8.17 gives a condition for the existence of a Hopf bifurcation, which
leads to the appearance of periodic solutions. This condition that the function F is
decreasing can be relaxed to the condition that F is such that S(ω) > 0 for ω > 0,
where S is defined by (8.27). However, up to now, no better condition has been
found.

If F is a density function, it can be decreasing if it is piecewise constant, or if F
is an exponential law, for example. If F is a Gamma distribution with parameters k
and σ , given by (8.3), then it is a decreasing function if and only if k = 0, that is,
if F is a weak kernel, which is an exponential distribution. However, given the fact
that Gamma distributions are the more used density functions in the literature, it is
not so worrying that Theorem 8.17 only works for the weak kernel, because if F has
a Gamma distribution the characteristic equation can be reduced to a polynomial



288 F. Crauste

function and so other methods that are more interesting can be used to determine
the stability of (8.1).

Eventually, the interest of Theorem 8.17 relies on the fact that it can be applied
to functions F that are not necessarily density functions, but rather the product of a
density function and a more general term (see the next section).

Another important point that deserves to be stressed is that Theorem 8.17 does
not give information on an eventual bifurcation that could occur for larger values
of the parameter B and lead to a stability switch. This can be observed for equa-
tions with delay-dependent coefficients (see [7]), and it can be assumed that, maybe
under particular assumptions, the same behavior could be observed in differential
equations with distributed delay.

In the next section, we consider a problem from population dynamics, the evo-
lution of a stem cell population, modeled by a nonlinear delay differential equation
with distributed delay, and we show that the existence of a Hopf bifurcation, given
by Theorem 8.17, leads to interesting results related to some blood diseases, in par-
ticular to leukemias.

8.5 Application: Periodic Oscillations in a Stem Cell Population

Let’s consider a population of hematopoietic stem cells (HSC) denoted by S(t).
These cells are at the root of the blood production process. They are located in
the bone marrow, where they mature and differentiate through successive divisions
to produce more and more differentiated cells, which will eventually give birth to
blood cells. HSC can be divided into actively proliferating cells (which are in cell
cycle where they synthesize DNA and divide at mitosis) and quiescent cells. The
cell population S(t) denotes the quiescent HSC population. It satisfies the nonlinear
delay differential equation (see Adimy et al. [1, 2])

S′(t) = − [α + β(S(t))] S(t)+ 2
∫ ∞

0
e−γ af (a)β(S(t − a))S(t − a) da. (8.43)

In this model, HSC are assumed to differentiate with a constant rate α > 0.
Moreover, they can be introduced in the cell cycle whenever during their life with
a rate β, depending on the HSC population itself. Typically, and from now on, β is
chosen to be a Hill function,

β(S) = β0
θn

θn + Sn
, β0, θ , n > 0. (8.44)

It is a decreasing and bounded function of the HSC population, which tends to zero
at infinity. The coefficient β0 represents the maximum introduction rate, θ is the
HSC population for which the introduction rate reaches half of its maximum, and n
is the sensitivity of the introduction rate.
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A proportion of cells that have been introduced in the cell cycle returns in the
HSC population after division. The division occurs a certain time a after the intro-
duction of cells in cycle. The time of division is distributed according to a density
function f , which can usually be considered to have a compact support [0, τ ], where
τ > 0 is the maximum age of division. Moreover, while in cycle, cells can die by
apoptosis (a programmed cell death) with a rate γ > 0. The term e−γ a must then
be understood as a survival rate of cells that have spent a time a in the cell cycle.
Hence, the integral term in the right-hand side of (8.43) describes the amount of
cells corresponding to cells introduced a time a earlier in cycle, that have survived,
and divide according to the density f . Finally, the coefficient 2 in the last term of
the right-hand side of (8.43) takes into account the division of each cell in two
daughter cells. The reader interested in the mathematical modeling of hematopoiesis
and stem cells dynamics is invited to study the works of Mackey [26, 27], Mackey
and Rudnicki [29, 30], Mackey et al. [29], Bernard et al [9, 10], Pujo et al. [32, 33],
Adimy et al [1, 2], Crauste [15], and the references therein.

Equation (8.43) is a nonlinear differential equation with distributed delay. From
Hale and Verduyn Lunel [19], for every nonnegative and continuous initial condition
ϕ defined on ( −∞, 0] (or [ − τ , 0] if f is supported on [0, τ ]), (8.43) has a unique
nonnegative and continuous solution S = Sϕ defined for t > 0. In addition, if α > 0,
all solutions of (8.43) are bounded, and, if α = 0 (8.43) may admit unbounded
solutions. We refer to [1] for a detailed proof of these boundedness results.

We are going to apply the results obtained in Sect. 8.4, Theorems 8.12 and 8.17,
to the linearized equation of (8.43) in order to determine the stability of the unique
positive steady state of (8.43). We recall that a steady state of (8.43) is said to be
locally asymptotically stable, or LAS, if the linearized equation of (8.43) about this
steady state is asymptotically stable. The steady state is unstable if the linearized
equation is unstable.

A steady state of (8.43) is a solution S satisfying S
′
(t) = 0 for all t > 0. That is

[
α + β(S)

]
S = 2

(∫ ∞

0
e−γ af (a) da

)
β(S)S. (8.45)

One easily checks that S = 0 is always a steady state of (8.43). It describes the cell
population extinction and, therefore, its study is not really biologically relevant.

Searching for nontrivial steady states of (8.43), one can see that (8.45) has a
unique positive solution, denoted by S∗, satisfying

(
2
∫ ∞

0
e−γ af (a) da− 1

)
β(S∗) = α, (8.46)

provided that

(
2
∫ ∞

0
e−γ af (a) da− 1

)
β0 > α > 0. (8.47)
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From (8.46), using (8.44), we obtain

S∗ = θ
(
κβ0 − α
α

) 1
n

, (8.48)

where we have set, for the sake of simplicity,

κ = 2
∫ ∞

0
e−γ af (a) da− 1.

Under assumption (8.47), κ > 0.
To analyze the behavior of the nontrivial steady state S∗, let us linearize (8.43)

about S∗ and study the eigenvalues of (8.43). We set

β∗ := d

dS
(Sβ(S))S=S∗ =

α

κ2β0
[κβ0 − (κβ0 − α)n] . (8.49)

Let x(t) = S(t)− S∗. The linearized equation of (8.43) about S∗ is then given by

x′(t) = −(α + β∗)x(t)+ 2β∗
∫ ∞

0
e−γ af (a)x(t − a) da. (8.50)

Setting

A = α + β∗, B = −β∗, F(θ ) = 2e−γ θ f (θ ),

Equation (8.50) can be written in the form of (8.1). Moreover, the variable A, defined
by (8.34), is given here by

A = α − κβ∗ = α κβ0 − α
κβ0

n,

which is positive, thanks to (8.47). Note that B > 0 if and only if β∗ < 0. Hence,
we can state and prove the next proposition, using Theorems 8.12 and 8.17.

Proposition 8.18 The nontrivial steady state S∗ of (8.43) is locally asymptotically
stable when

0 < n ≤
[

1+ κ

κ + 2

]
κβ0

κβ0 − α . (8.51)

In addition, assuming the function a �→ e−γ af (a) is decreasing, there exists n∗
satisfying

[
1+ κ

κ + 2

]
κβ0

κβ0 − α < n∗, (8.52)
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such that S∗ is locally asymptotically stable for 0 < n < n∗ and unstable for n ≥ n∗,
with a Hopf bifurcation occurring when n = n∗ provided that (8.42) holds.

Proof As recalled above, S∗ is locally asymptotically stable if (8.50) is asymptoti-
cally stable. Then we use Theorem 8.12.

We already noticed that A = A+ B
∫∞

0 F(θ ) dθ > 0, so S∗ is LAS if B ≤ 0 (see
Theorem 8.12), that is, if β∗ ≥ 0. Using (8.44), this corresponds to

0 < n ≤ κβ0

κβ0 − α .

In addition, Theorem 8.12 says that S∗ is LAS if B > 0 and A > B
∫∞

0 F(θ ) dθ .
After easy computations, it comes that these conditions are equivalent to

κβ0

κβ0 − α < n ≤
[

1+ κ

κ + 2

]
κβ0

κβ0 − α .

This proves (8.51) and the first point of this proposition.
Since finding a critical value of B is equivalent to finding a critical value of n, the

second point of Proposition 8.18 is a trivial application of Theorem 8.17. �
The following corollaries are straightforward.

Corollary 8.19 Suppose f has a uniform distribution on the interval [0, τ ], τ > 0.
Then there exists n∗ satisfying (8.52) such that S∗ is locally asymptotically stable
for 0 < n < n∗ and unstable for n ≥ n∗.
Corollary 8.20 Suppose f has an exponential distribution, as in (8.3) with k = 0
and σ ∈ IR. Then, if γ + σ ≥ 0, there exists n∗ satisfying (8.52) such that S∗ is
locally asymptotically stable for 0 < n < n∗ and unstable for n ≥ n∗.

In order to numerically compute the solutions of (8.43), let us fix the values of
the parameters β0, θ , α, and γ , as given by Mackey [26],

β0 = 1.77 d−1, θ = 1.68× 108 cells/kg, α = 0.05 d−1, γ = 0.2 d−1. (8.53)

Using the MATLAB solver dde23 [37], we can compute the solutions of (8.43).
We use the values of the parameters given by (8.53) and we consider two different
types of density functions f , a first case when f has a uniform law on the interval
[0, τ ], with τ = 7 days, and a second case when f is a weak kernel, that is, an
exponential distribution (as in (8.3) with k = 0). The value of σ , in this latter case,
is chosen as σ = 2/7 so that the expectation of f equals 3.5 days, similar to the
uniform law case. Both distributions are depicted in Fig. 8.1.

When f has a uniform law on the interval [0, 7], the Hopf bifurcation determined
in Corollary 8.19 occurs when n∗ = 2.53, whereas when f has an exponential dis-
tribution with σ = 2/7, the Hopf bifurcation occurs for n∗ = 3.44 (see Fig. 8.2).

A bifurcation diagram showing values of the steady state S∗, explicitly given by
(8.48), for both types of distributions is presented in Fig. 8.3. One can observe that
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Fig. 8.1 Left: Density functions used in the simulations displayed in Figs. 8.2, 8.3, 8.4, and 8.5, a
uniform distribution on the interval [0, 7] and an exponential distribution, as defined in (8.3), with
σ = 2/7 and k = 0. Right: One can observe shapes of the density functions multiplied by the
survival rate e−γ a, with γ = 0.2 days−1

values of the steady state are different depending on the choice of the density func-
tion, especially for small values of n (that is, when the steady state is asymptotically
stable). For large values of n, this phenomenon disappears.

When n increases away from the critical value n∗, oscillating solutions can be
observed, with increasing periods. This is displayed in Figs. 8.4 and 8.5. However, it
is noticeable that amplitudes and periods of the oscillations are different depending
on the choice of the density function f . With a uniform distribution of cell cycle
durations, long-period oscillations, in the order of 40–70 days, can be observed for
values of n between 3 and 5 (see Fig. 8.4). In the case of exponential distribution,
periods and amplitudes of the oscillations are shorter, in the order of 26–40 days,
for larger values of the parameter n (see Fig. 8.5).
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Fig. 8.2 Solutions S(t) of (8.43) are drawn for parameters given by (8.53). For a critical value n∗
of the parameter n, the steady state S∗ undergoes a Hopf bifurcation and periodic solutions appear,
with different periods and amplitudes depending on the density function. When division times
are distributed uniformly on the interval [0, 7] (left), the Hopf bifurcation occurs for n∗ = 2.53.
Oscillating solutions have periods about 33 days. When the density function is an exponential
distribution (right), the Hopf bifurcation occurs for n∗ = 3.44 and periods of the oscillations are
in the order of 24 days
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Fig. 8.3 Bifurcation diagram for the steady state S∗ given by (8.48). All parameters are given by
(8.53). The upper curve corresponds to an exponential distribution (8.3) with σ = 2/7. The steady
state is asymptotically stable for n < 3.44 and unstable for n ≥ 3.44. The lower curve corresponds
to a uniform distribution of cell cycle times on [0, 7]. The steady state is asymptotically stable for
n < 2.53 and unstable for n ≥ 2.53
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Fig. 8.4 Solutions of (8.43) are drawn for n larger than the critical value n∗ given by Corollary
8.19, when the density function has a uniform distribution on the interval [0, 7]. From left to right
and top to bottom n successively equals 3, 4, 5, and 10. Periods of the oscillations range from 40
to 110 days, with periods about 60–70 days when n = 4 or 5. Amplitudes increase as n increases,
with very low values reached by the population when n is large enough
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Fig. 8.5 Solutions of (8.43) are drawn for n larger than the critical value n∗ given by Corollary
8.20, when the density function has an exponential distribution with parameter σ = 2/7. From
left to right and top to bottom n successively equals 4, 6, 8, and 10. Periods of the oscillations
range from 26 to 40 days. Amplitudes increase as n increases, with very low values reached by the
population when n is large enough, yet the increase is less drastic than in the case of the uniform
distribution

Periods of the oscillations for the uniform distribution increase rapidly with n
to reach very long periods, whereas the exponential distribution slows down the
increase of the periods, which quickly reach some limit value. The same effect is
observed for amplitudes of the oscillations. Thus the shape of the density function—
more particularly in this case the shape of the density function multiplied by the
exponential survival rate—plays an important role not only in the appearance of
oscillating solutions but also in the length of the periods and the range of the ampli-
tudes (see Fig. 8.1).

Oscillating solutions in blood cell populations have been observed in some
patients with blood diseases [22]. For example, experimental studies report cases
of oscillations of all blood cell counts with average periods of 70–80 days in some
patients with chronic myelogenous leukemia (see [17]), a widespread form of blood
cancer. Cyclical neutropenia [22], another blood disease, characterized by a fall of
blood cell counts every 3 weeks in human, may also exhibit stressed oscillations,
with periods in the range of 20–30 days. Oscillations obtained in Figs. 8.4 and 8.5
by simulating the differential equation with distributed delay (8.43) for different
density functions may contribute to the study of blood diseases characterized by
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oscillations of blood cell counts (such diseases are known as periodic hematolog-
ical diseases). This can be found, for example, in [9] or [1, 2], where the results
obtained by the authors stress the localization of these diseases in the pluripotent
HSC compartment. This explains why oscillations are observed in all cell types (red
blood cells, white cells, and platelets) though these diseases are associated with only
one blood cell type (white cells for leukemia, for example).
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Chapter 9
Deterministic Time-Delayed Traffic Flow
Models: A Survey

Rifat Sipahi and Silviu-Iulian Niculescu

Abstract Research in understanding traffic flow is conducted since 1930s in math-
ematics, physics, and engineering fields. The main interest is to reveal the charac-
teristics of traffic dynamics and consequently propose ways to reduce undesirable
impacts of traffic flow to social and economical life. This can be achieved only if rig-
orous and reliable mathematical models are constructed. The first part of this work
covers the classification of such models as well as empirical and software tools used
to study and predict traffic flow. The second part is devoted to a critical parameter in
the traffic dynamics: time delay, which is recognized in this particular area as early
as 1958. Delay originates from the time needed by human drivers to become con-
scious, make decision, and perform control actions in traffic. Such a definition states
that human beings actively control the time evolution of traffic by their time-delayed
behaviors (human as a controller/plant), and thus traffic dynamics becomes inher-
ently time delayed. This dynamical structure, in a global sense, can also be seen as
an interconnection of dynamics that transfer information/energy/momentum among
each other, but under the presence of communication/transportation delays. For the
specific problem considered, we first discuss the source of time delay, its physical
interpretations, and mathematical nature, and next present a survey on mathematical
models that explicitly account for delays. We conclude with interesting research
topics at the intersection of control theory and time-delay systems. In this context,
an example traffic flow scenario is covered to both demonstrate this intersection and
show the consequences of delay presence in traffic flow dynamics, especially from
the stability point-of-view.
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9.1 Introduction to Traffic Flow Problem

Traffic flow problem has been a focus for researchers since 1930s. The main reason
is that a mismanaged traffic flow results in undesirable effects in social and econom-
ical life. Starting from 1990s, the highways of rapidly developing cities especially in
the USA, Germany, the UK, France, and Japan start to be a source of problems due
to the irregular flow of traffic. This irregular traffic, mainly as congestion, in many
cities causes high emissions and undesirable amounts of dust and smog. Moreover,
for instance in Germany, the estimated financial costs of the time consumed due
to traffic congestion and the impacts on the environment are about $100 billion
each year (BMW study, 1997). Traffic congestion brings many disadvantages where
human life is threatened, environment is irrecoverably damaged, and economical
losses become substantial so that they cannot be ignored. These undesirable effects
can be eliminated, when an efficiently functioning traffic flow is achieved in the
vehicular network. For this, the ultimate goal is to understand first the underlying
mechanisms of traffic dynamics, i.e., to create realistic mathematical models. Fol-
lowing this objective, in early 1990s, many researchers primarily from physics have
initiated the development of mathematical models [55, 56, 76], which was followed
by many publications in mathematics and engineering.

There are many parameters that play an important role in traffic models; for
example, the physical conditions of highways, the mechanical properties of the
vehicles, the psychological states of the drivers, traffic laws, on- and off-ramps,
multiple lanes, and traffic lights. For a guided tour, see, for instance, [22] and
the references therein. The first part of this work (Sect. 9.2) focuses on a brief
classification of these traffic models in order to guide the reader on the prob-
lem. In general, this classification can be performed in two groups, stochastic
and deterministic models. Here, for the sake of brevity, we only include deter-
ministic models, which can be continuous or discrete in nature. Furthermore, we
cover in Sect. 9.3 empirical studies and software developments that were con-
ducted to predict the dynamical behavior of traffic flow. We stress that similar
surveys in the above sense also exist in the literature, but we only aim the com-
pleteness of the work and wish to prepare the readers for the second part of
the text.

Among the parameters that play major role in the behavior of traffic, there exists
a critical one which is recognized in the traffic studies as early as 1958s [7]: it is
the time delay. It mainly originates due to the time needed by human operators
in sensing velocity and position variations of the vehicles in the traffic. Conse-
quently, traffic dynamics and ultimately its mathematical models inherently carry
time delays. In this sense, see, for instance, [5, 50, 71] for some models, related
discussions, and interpretations.

Time delays may drastically deteriorate the interpreted characterizations of the
delay-free dynamics. In traffic dynamics, for instance, a prediction of homoge-
neously flowing traffic of a mathematical model may become congested or may
predict accidents when time delay is taken into account. For this reason, when
time delay is present in the dynamics, a stability analysis with respect to time delay
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parameter becomes necessary in order to understand (a) if the flow dynamics may
operate stably for a given time delay or (b) in order to find the maximum allowable
time delay for maintaining the stability of the traffic dynamics. However, before
going into the stability analysis, one first needs to answer the following question:
How does time delay appear in mathematical models? In Sect. 9.4, we first answer
this question by covering the origin of time delay and time-delay modeling. In gen-
eral, time delay may be of stochastic and/or deterministic nature with constant and
time-varying components which originate due to various factors. We discuss these
factors and give an overview of how these factors may generate the components of
time delay. Next, we present our survey on time-delayed mathematical models of
traffic dynamics in a chronological order. As to our knowledge, a survey along this
perspective has not been presented in the literature.

Based on our survey of time-delayed traffic models, we see that the stability
analysis of these models and their controller design did not fully benefit from the
systems and control engineering perspective, except in a few studies, [49, 50, 52,
53, 59] which are the first attempts along this direction to our best knowledge. This
is an interesting observation especially because these two research areas have been
developed in almost the same time frames. In Sect. 9.5, we outline some specific
assumptions and approaches taken in the existing literature for studying traffic flow
dynamics.

In Sect. 9.6, we merge systems and control approach to time-delayed traffic prob-
lems. This integration may produce new and beneficial results, as we demonstrate.
We conclude in Sect. 9.7 with observations on the existing time-delayed models
along with open problems for future work in this research field.

9.2 Classification of Traffic Models

A wide range of traffic models we find in the literature can be classified into two
main sub-groups depending on the nature of their mathematical approaches. These
two sub-groups are deterministic models and stochastic ones. In this text, for the
sake of brevity we only focus on deterministic models leaving the discussions on
stochastic models [30, 75] to another study.

Among many publications on deterministic mathematical models, we cite [9,
56, 77]. The major distinction between the models is on the type of traffic flow
parameters that are used in their framework. While one stream of models considers
flow density and flow rate (flux) as dependent variables, the other stream considers
dynamics of individual vehicles in traffic as dependent variables.

An interesting observation is that many modeling techniques depart from heat
transfer, fluid dynamics, thermodynamics, and granular media which, under certain
physical interpretations and assumptions, serve very usefully in capturing a variety
of phenomena of traffic flow dynamics. Many mathematical models are based on
this philosophy, i.e., physical interpretations lead to models that evolve mathemati-
cally from simplicity to complexity.



300 R. Sipahi and S.-I. Niculescu

In the following, we briefly explain the existing models by following a classifi-
cation path usually preferred in the literature.

9.2.1 Macroscopic Models

With the analogy of hydrodynamic theory of fluids, macroscopic models are gath-
ered from the fundamental equations of fluid dynamics and thus they are named as
‘fluid dynamical theories’ [8, 22]. In this approach, traffic is treated as a compress-
ible fluid, and mathematical modeling becomes possible by writing the continuity
and momentum equations of the flow. These models are usually in the form of partial
differential equations whose two dependent variables are traffic density and traffic
flow rate (flux). Two review papers [8, 22] on macroscopic traffic models are sug-
gested for further details.

9.2.2 Microscopic Models

This type of models takes into account the dynamics of every vehicle in a traffic
flow scenario. Thus, the interaction between the vehicles becomes the focus of the
models. As a consequence, the traffic flow is a set of particle dynamics that interact
with each other. According to this definition, some of the model parameters can be
listed as velocity of vehicles, headway between vehicles, response characteristics
of human operators, safe following distance (desired headway), and the effects of
single-/multi-lanes.

In the following, a further classification of microscopic models is given. First,
the car following models are presented. Next, we introduce cellular automaton (CA
or particle hopping) models that are based on discrete time and discrete space. We
include CA models here for completeness, although they are usually in stochastic
nature. The third sub-category establishes an interesting link between gas-kinetic
theories and the behavior of traffic flow.

9.2.2.1 Car Following Models

These types of models consider different driving strategies of the humans. The fun-
damental idea is that the drivers follow their neighboring vehicles to maintain safe
driving conditions. In brief, drivers receive a certain stimulus, which can be in the
form of headway error between two consecutive cars, and according to this ‘stim-
ulus’, a certain ‘response’ is produced, which eventually leads to accelerations or
decelerations of the vehicle. This type of modeling is also called ‘follow-the-leader’
model. While the model is able to represent individual vehicles and drivers in the
form of continuous-time differential equations, the model may fall short in explain-
ing multi-lane traffic dynamics, since drivers do not wish to change lanes because
they are satisfied so long they maintain a safe velocity and headway in their lanes.
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9.2.2.2 Cellular Automaton (CA) Models/Particle Hopping Models

CA models vary fundamentally from the follow-the-leader models in the sense that
they are defined by discrete equations. These models are both spatially and tempo-
rally discrete; the space where the traffic flows is discretized into fixed-size cells
and the model is simulated by discrete increments of time. For the behavior of the
vehicles, certain ‘if’ conditions are set in order to represent a real traffic flow where
these rules update the individual vehicles at every time step during the simulations.
The advantage of CA models is that they lead to rapid computations of large-scale
simulations, and it is convenient to incorporate stochastic effects into these mod-
els. A thorough discussion on various CA models can be found in the surveys
[8, 22, 58].

9.2.2.3 Kinetic Theories

In this sub-class, the modeling of traffic is based on the assumption that the vehi-
cles act as interacting particles in a gas flow, see [22]. For the analysis of traffic
dynamics, the pertaining gas-kinetic equations should be adjusted so that the model
is physically realistic. For example, in gas-kinetic theory, gas particles share their
momentum by colliding with each other, however, this has to be completely avoided
when modeling traffic dynamics via this approach.

9.2.3 Mesoscopic Models

These types of models, in essence, are obtained by departing from microscopic gas-
kinetic models to arrive at macroscopic fluid dynamic traffic models. There are sev-
eral studies along this line [8, 22], where Navier–Stokes-like continuity equations
are derived by manipulating the Boltzmann-like equations. One example is given
here to guide the reader. A thermodynamic approach by Nagatani is proposed in
[42] by deriving macroscopic-governing dynamics departing from a car following
model. The study analyzes the phase transitions of traffic dynamics based on the
derivation of the macroscopic equations, and it shows that these results are in well
agreement with the simulations. Finally, jamming phenomenon is proven via this
thermodynamic approach, which is based on phase transitions.

9.3 Empirical and Simulation Studies

9.3.1 Experimental Studies

In parallel to the analytical studies, experimental work is also developed and
reported in the literature. The main objective in the experimental studies is either
to show their agreement with analytical results or to develop empirical–analytical
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models using measured experimental data. In 1961, Edie [14] investigated the exper-
imental results taken from Lincoln Tunnel and realized that density-flow graphs are
formed by two separate branches, one for free flow and the other for congested flow.
Edie also reports that these two branches are separated by a discontinuity, indicating
a capacity drop in the flowing traffic. Another capacity drop study is done by Koshi
et al. in 1983 [32] by analyzing the data taken from Tokyo Expressway. Koshi et al.
claim that density-flow graphs resemble a mirror image of a reversed λ symbol. In
1998, Kerner [26] using data collected from German Highways shows that flow rates
out of a traffic jam are much smaller than the maximum flow rates possible in a free
flow.

In 1995, Bando published a comparison study [3] between non-delayed optimal
velocity model (OVM; see (9.4) below for delayed OVM) and experimental results
that are taken from Japan Highway Public Corporation; compare also Figs. 9.1 and
9.2. It is claimed that OVM predicts satisfactorily the free flow, congested flow, and
the discontinuity occurring between these two flows on density-flow graphs.

flow Q velocity v

density k density k

Fig. 9.1 (a) Flow vs. density and (b) velocity vs. density plots. Figure is borrowed from [3] with
the permission of the publisher

Fig. 9.2 Empirical (a) flow vs. occupancy and (b) velocity vs. occupancy plots obtained from
Japan Highway Public Corporation. Figure is borrowed from [3] with the permission of the
publisher
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In [71] a memory effect is coupled to the governing traffic dynamics. This effect
represents a measure of adaptation of drivers to their environment during a certain
period of time. The authors implement this memory effect to intelligent driver model
(IDM, see (9.10)) and simulate the traffic. It is shown that the simulation results
are in good agreement with the empirical data obtained from German Freeway
A5-South.

An in-depth study comparing experimental results taken from German Highways
A5-South, A5-North, A9-South, and A8-East with numerical simulations is given
by Treiber et al. [72]. For simulations, authors deploy the IDM along with empir-
ical boundary conditions and physical obstacles (inhomogeneities). As the authors
claim, the simulations show acceptable agreement with empirical results, and more-
over they demonstrate that an on-ramp merging to traffic causes similar effects seen
in the capacity drop of traffic. We note that the references [3, 26, 71, 72] depart
fundamentally from microscopic models of OVM or IDM, and they reach to con-
clusions pertaining to macroscopic features of the traffic flow. A similar approach is
also the basis of Kerner’s work in [28].

Before we close this section, some of the work on the experimental results in
macroscopic modeling is cited. For an analysis of experimental results obtained
on German Highways and their consequences on the macroscopic properties, see
[24]. Furthermore, the work in [25] investigates the experimental results to iden-
tify and characterize the phase transitions (various behavioral characters of traf-
fic, such as congestion, free flow) occurring in traffic. Another work of interest
is found in [27], which analyzes the bottleneck (on/off ramp) effects in traffic
dynamics from macroscopic features. The author in this study investigates the
synchronized flow, distinguishes weak and strong congestion properties of traffic
dynamics, and establishes the link between wide moving jams and synchronized
flow phenomenon.

We direct the readers to Helbing’s thorough survey ([22] p. 1074) for further
discussions and references in this research direction.

9.3.2 Software Development

Computer simulations are primarily needed for understanding the behavior of traf-
fic dynamics through mathematical models. The simulation software, in essence, is
designed to simulate a large-scale traffic dynamics which can arise from a particular
mathematical model or a combination of various models.

Two open sources based on microscopic models can be mentioned, MITSIM
and SUMO. The Microscopic Traffic Simulator (MITSIM) is developed at Mas-
sachusetts Institute of Technology (MIT) and it deploys the non-integer car follow-
ing model [22] (see also (9.3)). Simulation of Urban Mobility (SUMO) utilizes the
Krauss model, [33, 34], which is the extended version of the Gipps model, [17].

Another package we wish to mention is SIMONE, which is based on a discretized
macroscopic model of Payne [54] who derived this model from a microscopic car
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following model [43]. After further modifications, Payne’s model is also adapted in
a freeway simulation package called FREFLO.

In 1999, Helbing and Treiber published an article [21] where they suggested the
MASTER simulation package, which deploys nonlocal, gas-kinetic-based traffic
flow model. For optimization of traffic lights and to perform simulations of city
traffic, TRANSYT, SCOOT, CRONOS packages are mentioned. Further references
about these packages can be found in [22].

For commercially available packages, we cite OLSIM and TRANSIMS (based
on cellular automaton models), VISSIM (based on microscopic models), AIMSUN
(advanced interactive microscopic simulator for urban and non-urban networks),
and PARAMICS (parallel microscopic traffic simulator).

A list of micro-simulators is also available at the following internet link
http://www.its.leeds.ac.uk/projects/smartest/links.html.
On Martin Treiber’s website, 3D simulations of traffic behavior are also presented:
http://www.mtreiber.de/movie3d/index.html,
http://vwisb7.vkw.tu-dresden.de/ treiber/MicroApplet/index.html.
Multi-lane traffic can also be simulated via a Java Applet designed and written

by Martin Treiber. This simulator merges two algorithms: intelligent driver model
(IDM) (see also (9.10)), [70] and lane-changing algorithm MOBIL to demonstrate
various behaviors of traffic flow with roundabouts, lane closings, traffic lights, lane
changes, and on-ramp effects.

For further interpretations of human behavior in traffic and in different social
environments, we direct the readers to Dirk Helbing’s web site at www.helbing.org.

9.4 Time-Delay Effects in Traffic Flow Models

In this section, we first present how time delays originate and interfere the traffic
dynamics, and what their quantitative measures are. Next, we go over the historical
development of time-delayed traffic models.

9.4.1 What is the Origin of Time Delay?

We classify time delay in traffic dynamics according to its origin. This effort carries
importance since it sheds light on how time delays should appear in mathematical
models. The major reason for time delay influencing the traffic flow dynamics is
due to the reaction time of drivers in response to certain stimuli they receive while
driving (see ‘stimulus’ discussion in the previous section), [1, 5, 10, 18].

Since we consider only deterministic traffic flow models, we do not discuss the
stochastic component and/or character of the delay. Without any loss of generality,
the time delay τ represents, in general, a time-varying physical entity τ = τ (t).
Although it is quantitatively different for every driver, for an individual driver it
consists of two components: (a) time-invariant part, constant τinv, (b) time-varying
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part, τv(t), which leads to τ (t) = τinv + τv(t). Inspired by the work of Bando et al.
[4, 5] and Green [18], the time delay in traffic dynamics can be classified into three
main components:

• Physiological lag, τ̄ (t): This part of the time delay originates directly from human
operators driving the vehicles, hence the attribute physiological. When a driver
receives a stimulus, he performs an action in his vehicle in the way of acceleration
or deceleration. However, for any human driver receiving a stimulus, process-
ing it, and creating a decision are not instantaneous, but they require a finite
period of time τ̄ called the physiological lag. Notice that this delay may also be
decomposed into two parts: time-invariant τ̄inv and time-varying part τ̄v(t). Hence,
τ̄ (t) = τ̄inv + τ̄v(t). τ̄ (t) is represented with pure time delay in the mathematical
models. Its quantitative level is measurable and is very well established within a
certain range, as we discuss in the next section.

• Mechanical time lag, τ̃ : This delay component is independent of human opera-
tors, and it is completely determined by the mechanical capabilities of the vehi-
cles in the traffic. Mechanical delay is defined as the period of time between
the action of the driver on the gas/brake pedal and the time the vehicle starts
to accelerate/decelerate. Clearly this delay exists in all the vehicles. It can be
seen that this time delay is following the physiological delay in an accelera-
tion/deceleration action and it also appears as a pure time delay in mathematical
models. We state that τ̃ can be assumed to be time invariant, in general, for a
particular vehicle.

• Delay time of vehicle motion, T̄: This entity is not physically a pure time delay.
It is defined as the period of time that a vehicle changes its velocity to the veloc-
ity of the preceding vehicle. In linear systems, this is the period of time T̄ that
corresponds to a certain phase difference between a sinusoidal excitation input
to the vehicle M sin (ωt) and its sinusoidal response M̄ sin (ωt − φ). In other
words, T̄ = φ/ω. As very well known, M̄ and φ are determined directly from
the mechanical properties, which in turn determine T̄ as a function of excitation
frequency ω. For these reasons, we state that T̄ does not appear as a pure time
delay in mathematical models.

In some of his works, Bando calls the combination of physiological and mechan-
ical time lags τ̄ (t) + τ̃ as the delay time of response [4, 5]. We do not get into the
details about the link between τ and T̄; we just comment that there exists a direct
link on the bandwidth of a dynamics, which is linked to T̄ , and the quantitative level
of τ (t).

One can further categorize physiological lag by following the work in [18] and
the references therein:

1. Sensing. It is the time it takes to detect an object in the roadway (e.g., ‘There is a
shape in the road’). Under equal conditions, reaction time decreases with greater
signal intensity (brightness, contrast, size, loudness, etc.), foveal viewing, and
better visibility conditions. Reaction times are also faster for auditory signals
than for visual ones.
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2. Perception. It is the time needed to recognize the meaning of the sensation (e.g.,
‘The shape is a person’). Reaction time increases with low signal probability,
uncertainty (signal location, time, or form), and surprise. Reaction time, when
there are multiple possible signals and responses, is generally much slower than
simple reaction time, which occurs when there is only one possible signal or
response pair, or both.

3. Response selection and programming. It is the time necessary to decide which,
if any, response to make and to mentally program the movement (e.g., ‘I should
steer left instead of braking’). Response selection slows when there are multiple
possible responses. Conversely, practice decreases the required time.

4. Movement time. It is the time it takes the responder’s muscles to perform the pro-
grammed movement. For example, it is the time required to lift the foot from the
accelerator and then to touch the brake pedal. In general, the more complex the
movement, the longer the movement time. Increased arousal level and practice
decreases movement time.

Investigating the above categorization, it is clear to conclude that physiological
delays are formed in a very complicated way. There exist many factors which deter-
mine the reaction delays of the drivers, and every factor has a different effect to
alarm the driver for a required action (acceleration, deceleration, or steering). The
reaction time changes according to visual or auditory signals, brightness and visibil-
ity of the environment, size of the objects moving in the path of vehicles, multiple
reaction choices of drivers (‘which choice to select?’), experience of drivers, age,
and gender.

9.4.2 What is the Measure of Time Delay?

To give a measure of time delay, we cite [1, 5, 10, 18]. According to [10], the drivers
act (to accelerate or decelerate) with a delay 0.75–1.0 s (which is in the same levels
as in [5]) after they receive an instantaneous stimulus.

In [18], the braking response time (time delay) is defined at the level of 1.2–1.35 s
with a standard deviation of 0.6 s depending on the drivers. Moreover, the author
gives a measure of the reaction delays of the drivers by a classification of certain
events occurring in traffic. For example, if the drivers are fully aware of the time and
location they should act to accelerate/decelerate, the reaction delays are in the range
of 0.70–0.75 s. The delays become larger if the drivers should act to an expected but
common signals (such as when the brake lights of the preceding vehicle turns on). In
this case, the reaction delays are in the order of 1.25 s, while sudden and uncommon
signals (such as an object suddenly moving in front of the vehicle’s path) require
1.5 s of period of time for the drivers to act for acceleration/deceleration.

In Green’s work, a table listing the reaction times of the drivers under various
conditions can be found (pp. 197–199 in [18]). Inspecting the table, the reaction
times can be seen to be in the range of 0.6–1.9 s depending on the factors mentioned
in the previous section. As discussed in the cited work, American Association of
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Table 9.1 Some examples of
delay measurement: Delayed
reaction of human drivers in
response to various stimuli

Measure of time delay [s] Reference

0.496 [19]
0.73 [47]
0.7 [12]
1.16 [74]
1.13 [2]
0.75–1.0 [5, 10]
1.2–1.35 [18]
1.1 [29, 73]
0.70–0.75 [18]

State Highway and Transportation Officials suggest a 2.5 s braking response time
of drivers under normal road conditions and visibility (p. 208). See also Table 9.1
for a list of measures of time delays obtained from road experiments or simulators.
These measures vary from one reference to another mainly because they represent
different reaction delays of drivers in response to various stimuli.

In [1], a comparison between longitudinal speed control (remaining in lane) and
steering control (changing lanes) of a human operator is given. It is mentioned that
steering control offers an order of magnitude higher bandwidth when compared to
longitudinal speed control. Furthermore, a human operator is under influence of a
0.2–0.3 s time delay in steering control while the delay rises to 2 s in longitudinal
control. Although steering control seems to be advantageous, it may not always be
a safe preference in crowded traffic and at higher cruising speeds. On page 4 of this
reference, a 1.5 s time delay is mentioned to be required by the human operators for
responding to velocity changes. An interesting comparison is also given: a sensing
time of 1.9 s is needed if a leading vehicle accelerates at 0.76 m/s2, while sensing
time increases to 2.5 s for sensing 0.5 m/s2 acceleration of a lead vehicle. As a
general remark, it is stated that response time of a human operator decreases by
0.8s for each increase in acceleration by 0.3 m/s2.

Remark 1 (Non-identical time delays) The claims above are interesting as they point
out that human operators create their driving decisions depending on many physical
factors that may be sensed by different quantitative measures of time delays. To our
best knowledge, this fact is disregarded when analysis of mathematical models are
carried out in the literature. This may be mainly due to the complicated nature of
modeling the delays.

Remark 2 (Measure of time delay versus stability) Looking at the time-delayed traf-
fic problem from systems and control perspective, it is important to note that time
delays occurring from drivers’ responses are substantial and the presence of delays
may drastically affect the dynamic progression of traffic flow.
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9.4.3 Development of Time-Delayed Traffic Models

In the following, a survey of time-delayed traffic models is presented in chronolog-
ical order.

9.4.3.1 Chandler’s Model (1958)

The first model with time delay has been proposed in [7] to the best of our knowl-
edge. This model is a very simple linear delay differential equation with a single
time delay:

ẍn(t) = κ[ẋn−1(t − τ )− ẋn(t − τ )], (9.1)

where xn(t), ẋn(t), and ẍn(t) are the displacement, velocity, and acceleration of the
nth vehicle, respectively. κ > 0 is a constant representing the sensitivity of the driver
against velocity-error readings and τ is the time delay, which physically corresponds
to the time needed by the drivers to sense and act (in the way of accelerating or
decelerating his vehicle) to the velocity differences.

It is interesting to note that this model is still used for traffic modeling in the
literature. A recent paper [6] has shown that this model very well predicts the exper-
imental measurements from human driving, and we see that a 2004 report from
University of Southern California [78] deploys this model to simulate the behavior
of trucks among the cars in a traffic flow scenario.

Remark 3 (Memory of human drivers) The model in (9.1) is the basis for further
analysis. It is clear that right-hand side of this equation, the control action, is
restricted to cases where stimuli received depend only on some information from
a point of time in the past. With the fact that human drivers continuously observe the
traffic flow, some particular functions distributed over the history may represent the
received stimuli. Physically, such a mathematical model will correspond to taking
into account the memory of human drivers [59].

9.4.3.2 Gazis’ Models (1959, 1961)

The work in [15] offers a new model in a nonlinear form as follows:

ẍn(t) = κ

xn−1(t − τ )− xn(t − τ )
[ẋn−1(t − τ )− ẋn(t − τ )], (9.2)

where the denominator on the right-hand side takes into account the sensitivity of
the driver as a function of headway sensed τ s earlier. This approach is physically
sound: the smaller the headway, the more sensitive the driver becomes for his/her
reactions.

Gazis et al. improved the above model by defining a new sensitivity factor κ in
(9.1) in a complicated nonlinear form [16]. This formula is suggested in order to
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offer free parameters that need to be carefully selected by fitting data to the experi-
mental measurements. It reads

κn = λ[ẋn(t)]m

[xn−1(t − τ )− xn(t − τ )]%
, (9.3)

where λ, m, and % are the constant fitting parameters. The traffic model with (9.1)
and (9.3) together is attributed as non-integer car following model [22], and it is
deployed in the simulation package MITSIM. The model in (9.2) alone is a simpler
version of the non-integer car following model in which the special case λ = κ ,
m = 0, and % = 1 hold. See [38] for m1 ≈ 0.8, m2 ≈ 2.8, and [35, 36] for
m1 ≈ 0.953, m2 ≈ 3.05.

9.4.3.3 Optimal Velocity Function (OVF)-Based Models

Optimal velocity model (OVM) originated from Bando’s work in 1995 which was
then followed in [5] by incorporating the time-delay effect in this OVM by adding
a single time delay τ

ẍn(t + τ ) = κ[V(xn−1(t)− xn(t))− ẋn(t)], (9.4)

where V(xn−1(t)− xn(t)) is called the optimal velocity function (OVF), which is, in
general, a nonlinear hyperbolic function defining the desired velocity of the drivers
in terms of headway Δx(t) = xn−1(t)− xn(t).

The choice of OVF is ad hoc. In [69], it is taken as

V(Δx(t)) = ϑmax&(Δx(t)− d), (9.5)

where d > 0 is a constant and & is the Heaviside step function. The above OVF
requires that the vehicle stops when headway is less than d, otherwise the vehicle
accelerates until the maximum allowed speed ϑmax is reached.

In [53], OVF is taken as

V(h) =
{

0, if 0 ≤ h ≤ 1,

υ0 (h−1)3

1+(h−1)3 , if h > 1,
(9.6)

where υ0 is the desired speed and h is the normalized headway.
There also exist optimal velocity functions that are obtained by fitting of experi-

mental measurements [5],

V(Δx(t)) = 16.8[ tanh (0.086(Δx(t))− 25)+ 0.913]. (9.7)

Bando [5] includes time-domain simulations of nonlinear dynamics (9.4) as well
as a linear stability analysis around an equilibrium point. The author arrives at the
conclusion that small delays (in the range of 0–0.2 s) do not affect the homogeneous
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flow of the dynamics with or without delays, however, larger delays (in the range of
0.2–0.4 s) cause congestion in the traffic flow. Notice that these quantitative levels
of delay are about five times less than the claimed values for human beings, see
Table 9.1.

9.4.3.4 Traffic Control over Optimal Velocity Models (2000)

With the work in [31], a continuous traffic dynamics model departing from (9.4) is
developed. The linear stability analysis is pursued on this model first. Next, time
delay is taken into account and a feedback controller that is based on the delayed
headway information is added

ẋn(t + τ ) = κ[V(xn−1(t)− xn(t))− ẋn(t)]+ un(t),
un(t) = k(xn−1(t)− xn(t)+ xn−1(t − τ )− xn−1(t − τ )),

(9.8)

where the controller is constructed via the error between the instantaneous and τ s
earlier headway. Expanding on this dynamics, the linear stability analysis is pursued
and the selection of the controller gain k versus the single delay τ is performed. For
this, the stability and frequency response analyses are performed and simulation
results are presented for specific selections of (k, τ ) pairs.

9.4.3.5 Models Based on Davis’ Work (2002, 2003)

The work of [9] takes a chain of 100 vehicles and tests Bando’s delayed OVM, (9.4).
Interestingly, even with delay levels of 0.3 s, only the first 14 vehicles avoid a col-
lision under some small disturbances on the linearized model. This is an indication
that the time-delayed OVM may not be completely realistic since accidents do not
happen in reality even if the drivers are under larger time-delay influences (see the
previous section for the quantitative measure of time delay in traffic dynamics).

Extending on the previous work, the study in [10] offers two modified OVMs in
order to create reasonable traffic models that better match the reality. We present
one of these modifications here. In this model, instead of V(xn−1(t)− xn(t)) in (9.4),
the following nonlinear function is used:

VOV = V(Δxn(t − τ )+ τΔẋn(t − τ )). (9.9)

Even though this modification can predict stable traffic dynamics with a time delay
up to 1 s, it results in very high accelerations and decelerations that are located at
the end of the platoon of vehicles. The author of the work removes this deficiency
with another modification with which more realistic velocity profiles are produced.
Moreover, the modifications can detect the formation of traffic jams; however, they
still fall short in detecting the sequence of jam and free-flow phenomena that sur-
faced in [40], as [10] states. We should note that most of the results obtained in these
work are based on numerical simulations. In 2004, Davis improved the models in
order to cover multi-lane interactions of multi-lane traffic with on/off ramps [11].
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9.4.3.6 Intelligent Driver Model (IDM, 2000, 2004) and Human Driver
Model (HDM, 2006)

In [70] the intelligent driver model (IDM) is proposed in response to the need of a
mathematical model that is robust, accident-free, numerically efficient, and easy to
calibrate. It is shown that IDM also reproduces empirically obtained data and yields
realistic acceleration/deceleration behavior. The model is given as

ẍn(t) = κn

⎡

⎣1−
(

ẋn(t)

ẋ(n)
o

)δ
−

(
s∗(ẋn(t),Δẋn(t))

sn(t)

)⎤

⎦ , (9.10)

where δ is the acceleration exponent which is often taken as δ = 4, ẋ(n)
o is the desired

velocity, Δẋn(t) = d(Δxn(t))/dt is the time derivative of headway, sn(t) is the actual
headway, and s∗ is the desired headway that is dynamically calculated by

s∗(ẋn(t),Δẋn(t)) = s(n)
0 + s(n)

1

√
ẋn(t)

ẋ(n)
o

+ T (n)ẋn(t)+ ẋn(t)Δẋn(t)

2
√

a(n)b(n)
, (9.11)

where s(n)
0 and s(n)

1 are jam distances, T (n) is the safe time headway, a(n) is the max-
imum acceleration capability of the vehicle, and b(n) is the desired (comfortable)
deceleration of the vehicle.

The IDM is later adapted for human drivers in the work of Treiber [73], giving
rise to human driver model (HDM). This model incorporates the finite reaction time
of drivers to the right-hand side of the IDM in (9.10). The reaction time of drivers,
τ , is considered by taking the right-hand side of (9.10) at t − τ rather than at t. In
[73], this reaction time is considered to be between 0 and 2 s.

9.4.3.7 Multiple Vehicle Following Models

The models presented so far consider that a driver only follows the preceding vehi-
cle. One can extend this idea in the way that a driver observes not only the vehicle in
front but also other vehicles further ahead. In [57], the model is proposed in a way
that all drivers follow the two vehicles ahead of them with the influence of a single
delay τ

ẍn(t) = κ1[ẋn−1(t − τ )− ẋn(t − τ )]+ κ2[ẋn−2(t − τ )− ẋn(t − τ )]. (9.12)

Departing from (9.12), one can express a more generalized delay differential equa-
tion set depending on how many vehicles the drivers follow in front of them.
This basic idea can be used to extend the mathematical models discussed here, for
instance, see [37, 73].
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9.5 Assumptions and Analysis on Mathematical Models

The limitations of time-delayed microscopic models can be listed as follows.
(a) Large-scale traffic simulation using microscopic models may be cumbersome,
nevertheless, a traffic scenario with 1,000 vehicles [73] is within the computational
capabilities. (b) Some microscopic models may fall short in explaining some phe-
nomena of traffic flow, such as high-density flows. (c) A direct link may not always
be possible to establish between the features of macroscopic and microscopic mod-
els; for example, What does “viscosity” represent in a microscopic model? (d) Fit-
ting empirical data to a time-delayed model becomes more complicated since delay
is an additional parameter that needs to be considered. (e) The time-varying nature
of the time delay is not considered and data fitting in this case can be tremendously
difficult. (f) Measurements of time delay and its varying component may be difficult
or impractical, especially when time delay is modeled with stochastic components.

The commonly preferred simplifications appearing in mathematical modeling
and ultimately in the stability analysis include linearization around an equilibrium
and homogeneity in the sense that all vehicles, drivers, and driver delays are taken
to be identical: κn = κ and τn = τ . Although linearization is a simplification for
the analysis, it offers insight about the behavior of the dynamics at an equilibrium
point. In many studies in the literature, one observes that the linearized dynamics
is studied for its stability via analytical tools [4, 5, 31] and/or simulations [9–11],
whereas nonlinear stability analysis appears in [71–73, 78] by way of simulations
and in [49, 50, 52] via analytical tools that analyze the bifurcation features of the
nonlinear dynamics. Ref. [49] is one of the very few and earliest analytical works
on the stability analysis of nonlinear time-delayed traffic flow dynamics. This study
is based on the investigation of Hopf bifurcations of time-delayed systems with
translational symmetry. These works and the existing limitations give rise to the
motivational discussions in Sect. 9.6.

Identical vehicle dynamics is another simplification that is preferred in most of
the models studied. Nevertheless, approaching the problem from systems and con-
trol perspective can eliminate this restriction [62, 65–67]; see also the next section.

Another critical simplification is made by taking only a single delay τ , in the
differential equations, which assumes all drivers have identical reaction delays. This
offers a very simplified stability analysis that has been addressed by a variety of sys-
tematic methods; see [44, 48, 61, 68] and the references therein. The main challenge
lies in considering multiple (heterogeneous) delays due to the presence of different
drivers and each driver’s different sensing capabilities.

9.6 Interesting Research Topics

In this section, we present how systems and control approach [20, 39, 41, 44, 60,
61, 68] may shed light on the stability analysis of various linear/nonlinear time-
delayed mathematical models representing traffic flow scenarios. See also [44, 68]
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on the links between the representation of traffic dynamics and many other real-life
applications treated in the literature.

9.6.1 Linear Analysis with a Single Delay

9.6.1.1 Generalization to N Vehicles Around a Ring

In [52], a new optimal velocity function is suggested for (9.4) and a single delay is
considered in the headway only:

ẍn(t) = κ[V(xn−1(t − τ )− xn(t − τ ))− ẋn(t)], (9.13)

with n = 1, . . . , N, where N is the number of vehicles and x0 = xN formulates the
traffic flow around a ring. To linearize (9.13), the equilibrium is considered, which
is in the form of xeq

n (t) = V(L/N)t + x0
n, where x0

n−1 − x0
n = L/N, L is the length of

the ring. Dynamics of the perturbations yn(t) around this equilibrium is

ÿ(t) = −κ ẏn(t)+ b1(yn−1(t − τ )− yn(t − τ )), (9.14)

where b1 = κV ′(L/N) and κ = 1/T . The characteristic equation corresponding to
(9.14) is

f (s, τ , N) = (s2 + κs+ b1e−τ s)N − (b1e−τ s)N = 0, (9.15)

where b1 and κ are constants. In [50, 53], (9.15) is studied for any selection of N.
Specifically, in [50, 52], bifurcations are investigated by numerical continuation
(using DDE-BIFTOOL [13]) and stopping and collision curves are obtained. In
[49, 53], bifurcations are studied analytically via Hopf bifurcations and bifurcation
branches for oscillatory solutions are detected. Also collision and stopping charac-
teristics are identified on the bifurcation diagrams.

When N>2, stability analysis on (9.15) becomes more challenging, but this does
not constitute a major problem mathematically, since there exist well-established
methods for handling the stability problem of this type of single-delayed character-
istic equations; see [44, 48, 61, 68] and the references therein.

9.6.1.2 The case N = 2

Simplified forms of (9.15) are also considered in the literature, as it becomes easier
to derive some analytical results and interpretations on traffic flow dynamics. Cases
with N = 2 and N = 3 can be found in [49] and [52], respectively. The model in this
section is borrowed from [49] (see Fig. 9.3), where a single delay τ is considered
for the reaction time of the drivers. The dynamical model includes a time delay only
in the headway readings, with which a nonlinear braking function is used to penalize
the headway. The linearized dynamics around the equilibrium point is given by
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Fig. 9.3 A conceptual traffic
scenario: Two vehicles
traveling around a circular
path

1

2

Fig. 9.4 Stability regions
(shaded) of the traffic flow
dynamics (9.16) in the
parameter space of τ and T

ÿ1(t) = − 1
T ẏ1(t)+ b1(y2(t − τ )− y1(t − τ )),

ÿ2(t) = − 1
T ẏ2(t)+ b1(y1(t − τ )− y2(t − τ )),

(9.16)

where τ is the time delay in headway readings, b1 > 0 is the local deceleration
sensitivity with respect to the headway, and T > 0 defines the time constant. Using
the methods presented in [44, 48, 68], one can obtain the so-called stability map of
the equilibrium dynamics in the parameter space of τ and T , as shown in Fig. 9.4.

9.6.2 Multiple Delays

Note that the mathematical models with a single delay τ can be further improved
by suggesting independent time delays for the reaction of the drivers in sensing the
headway and velocity. This can be demonstrated by taking the same mathematical
model in (9.16) with the consideration of another time delay which is independent
of the first one

ÿ1(t) = − 1
T ẏ1(t − τ2)+ b1(y2(t − τ1)− y1(t − τ1)),

ÿ2(t) = − 1
T ẏ2(t − τ2)+ b1(y1(t − τ1)− y2(t − τ1)).

(9.17)
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Fig. 9.5 Stability region
(shaded) of the traffic flow
dynamics in (9.17) for
T = 0.5 and b1 = 0.145

The stability question can be posed as follows: For which values of the time delays
(τ1 vs. τ2) does the above dynamics preserve its stability? For asymptotic stability,
the roots of the characteristic equation

f (s, τ1, τ2) = (s2 + s/T e−τ2s + b1e−τ1s)2 − b2
1

= (s2 + s/T e−τ2s + b1e−τ1s − b1) (s2 + s/T e−τ2s + b1e−τ1s + b1) = 0,
(9.18)

corresponding to the dynamics in (9.17) should all lie on the left half of the complex
plane for a given pair of (τ1, τ2). Once this question is answered, it is also possible
to find the maximum allowable τ2 (delay margin), above which instability initiates.
If this margin along τ2 is less than the realistic values corresponding to human oper-
ators, then the dynamics may not be robustly stable, or the model may not be fully
capturing the physics of the problem.

The stability analysis of the characteristic Equation (9.18) can be performed by
the techniques proposed in [20, 60, 61]. In [60, 61], the method Cluster Treatment
of Characteristic Roots (CTCR) is based on an idea of one to infinity mapping, and
in [20], an interesting geometric technique forms the basis of the stability analysis
approach. We take b1 = 0.145 which is an acceptable entity as can be seen from
Fig. 9.3 of [49]. When choosing T , one can use another reference [5], where 1/T =
a = 2. In order not to disrupt the flow of discussions, we omit the stability analysis
and depict in Fig. 9.5 the stability region of the dynamics in the delay parameter
space.

General remark 1 (Stability analysis results) We wish to stress once again
that the available tools in systems and control perspective may shed further light
on studying and analyzing the dynamics of traffic flow. The example case study
is a good proof-of-concept of this effort. Notice that one of the main interests is
stability robustness of the dynamics in (9.17) along the parameter τ2. It is found that
the maximum allowable τ2 delay is less than 0.8 s, which is a comparable measure
to time delays seen in the reactions of human drivers. Furthermore, there exists an
order of magnitude larger stability robustness along the τ1-axis. In the worst case
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when the reaction of human operators is time delayed for 2.5 s, this would not
endanger the stability robustness along the τ1-axis.

9.6.3 Time-Varying Delays

It is more realistic to consider time delay as time varying, τ (t) = τ0 + δ(t) where
0 ≤ δ(t) ≤ ε and τ0 is constant. In [23], it is shown empirically that variations of
time delay of humans in time is very slow. In other words, 0 ≤ |δ̇(t)| ≤ ρ, where
ρ is sufficiently small. With this information, one can use the approach developed
in [46] to obtain some robust stability criteria of the traffic flow with time-varying
delays; see also [63].

9.6.4 Improved Traffic Stability with Multiple Vehicle Following

Intelligent driver model (IDM) in (9.10) incorporates four components (other than
reaction times of the drivers) into the right-hand side of the model; (a) finite reac-
tion time of drivers, (b) imperfect estimation capabilities, (c) temporal anticipation,
(d) spatial anticipation for several vehicles. Item (a) is the focus here due to the scope
of this survey. Reaction time of drivers, τ is considered by taking the right-hand side
of (9.10) at t − τ rather than at t. In [29, 73], reaction time is considered between
0 and 2 s. Items (b) and (c) take into account drivers’ imperfections (anticipation
with some error) as well as drivers’ corrective actions by anticipating the flow of
the traffic. The last item (d) assumes that the drivers follow more than one vehicle
ahead (similar to the idea in (9.12)) in order to compensate for their slow decision
making due to their delayed reactions.

In [29, 73], the authors perform the stability analysis for a platoon of 100 vehi-
cles and show that the stability region of the entire traffic dynamics is considerably
enhanced when human drivers follow more cars ahead of them rather than following
only one car. This is interpreted by saying that the destabilizing effects of time-
delayed reactions of human drivers are compensated by multiple vehicle following
strategy. Also, the authors determine the phase diagrams (stable, oscillatory, and
unstable platoon) of the traffic flow as a function of the number of vehicles followed
ahead vs. reaction delay of the drivers.

9.6.5 Multiple Vehicle Following Under Multiple Delays

A recent study [64] starts with a different assumption: A driver senses the motion of
a nearer vehicle in front faster than sensing a vehicle further ahead. In other words,
time-delayed information obtained from different vehicles ahead of a vehicle are
non-identical, i.e., independent of each other. This assumption originates from the
fact that drivers update their information more frequently from a nearer vehicle than
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from a further one. The main objective in this work is to understand how different
control laws under the influence of single and heterogeneous time delays may reveal
various stability features of the dynamics, and whether or not the stability would be
improved when multiple car following strategy is chosen. On some fundamental
models, it is shown in this work that, compared to only velocity feedback in the
decision making of drivers, combination of velocity and position feedback is not
suggesting an improvement over the stability of the traffic flow.

9.6.6 Nonlinear Time-Delayed Traffic Dynamics

This recent work [53] follows from [49]. To our best knowledge, this work presents
one of the few analytical studies on the stability analysis of nonlinear car following
dynamics in which time-delayed reactions of drivers is considered. Studies sim-
ilar to this one form one of the reasons in motivating this survey. The study in
[49, 53] analytically considers weak nonlinearities close to bifurcation point using
Hopf normal form calculations which characterize different phases of traffic flow,
such as bistability, uniform flow, and the stop-and-go traveling waves. In [50, 52],
full nonlinearities are taken into account via a numerical continuation technique
called DDE-BIFTOOL [13]. The main conclusion in this work is that regions in the
parameter space may be found where the equilibrium and traffic jams may coexist
and that (most importantly) delay makes this to be a robust feature of the system.

9.6.7 Optimal Velocity Model with Time
Delay and Stochastic Process

An optimal velocity model with time delays is considered in [51], where the char-
acteristics of the drivers change according to some stochastic process. Cases with
and without such stochastic components are simulated in order to obtain features of
flow motions into and out of traffic jams.

9.6.8 Effects of Drivers’ Memory

The work in [59] focuses on understanding how human drivers utilizing their mem-
ory affect the stability of the traffic flow dynamics. A single-lane microscopic car
following model is studied for this purpose in which human drivers perform control
actions based on information distributed over an interval of time in history. This
memory effect is characterized by standard distribution functions which define the
memory size, particular memory distribution considered, and the memory horizon.
Stability analysis is presented, via analytical tools, in the domain defining various
distribution functions. Physical interpretations follow the analysis. See [65, 66] for
large number of vehicles and the effects on the formation of stability regions.



318 R. Sipahi and S.-I. Niculescu

9.7 Conclusion and Discussion

The literature offers a broad range of studies on the behavior of traffic flow dynam-
ics. Many in-depth surveys also exist on the topic; however, none of these surveys
approach the research topic with a focus of time-delay effects. A survey with this
perspective is presented in this chapter, covering the widely studied time-delayed
mathematical models of traffic flow dynamics.

It is seen that existing mathematical models did not fully benefit from systems
and control engineering perspective. Being aware of the tools developed in the sys-
tems and control engineering, a new section aimed to link these developments for
resolving some open problems in traffic flow studies is also presented. It is believed
that this section will shed light on this application field from a different perspective.

Some observations on the studies of time-delayed mathematical models can be
listed as follows:

• Results from the systems and control engineering field are not effectively inte-
grated into the analysis of traffic dynamics.

• Most of the time-delayed models are in the form of coupled nonlinear differen-
tial equations which are simulated in time domain in order to understand their
behavior.

• Linear analysis of traffic behavior is often pursued. The stability of linear dynam-
ics is studied, mostly without delays, and stability criteria are given with respect
to system parameters.

• Linearized differential equations are also used to assure string stability of a pla-
toon of cars. Often, numerical frequency domain analysis are pursued for the
purpose, especially when delay is present in the transfer function.

• The studies investigated concentrate on models with only a single delay. Some
exceptions to this are coming from systems and control theory.

• Bifurcation analysis is not followed by many of the studies, except by a few
publications.

We believe that there exists a variety of opportunities for further research on time-
delayed traffic dynamics. We hope that this survey will serve as a good reference for
many researchers from mathematics, physics, and engineering disciplines.
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