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Preface

In past years, dynamic consensus has attracted intensive research attentions and led
to successful solutions of a large variety of distributed computation problems,
including distributed formation control, distributed Kalman filter, decentralized
control of swarm statistics, and synchronization of networked oscillators. Despite
its great success, consensus algorithm, which updates the state by dynamically
mitigating differences among agents, is mostly limited to the modeling of dynamic
cooperation. It essentially lacks a mechanism to model dynamic competition in a
distributed network, which desires the increase of peer differences and the
enhancement of contrasts.

Research in many fields confirms the same importance of competition as that of
cooperation in the emergence of complex behaviors. For example, it is revealed that
competition and cooperation plays significant roles in the decision making in
market economy and that the strategy chosen by the rational politicians consists of
cooperation over competition in dealing with international relationships. Recent
research in neuroscience found finds that control actions depend on transitory
change in patterns of cooperation and competition between brain systems during
cognitive control. Due to the fundamental significance of competition in the
interaction of multi-agent systems, various models have been presented to capture
this competitive nature. Among them, the winner-take-all (WTA) model, which
refers to the competition of a group of agents that the one with the largest input
finally remains activated, while all the other agents are deactivated, has been widely
investigated and usually employed to model competition behaviors. Maass proves
that a two-layered network composed of weighted averaging in the first layer and
WTA in the second layer is able to approximate any nonlinear mapping in any
desired accuracy. Following this results, the dynamic consensus with the capability
for the computation of weighted averaging in a distributed way, and a distributed
algorithm for the computation of WTA, will be able to constitute any nonlinear
mapping in a distributed network.

In the past two decades, recurrent neural networks have received considerable
studies in many scientific and engineering fields. Particularly, after the invention
of the well-known Hopfield neural network, which was originally designed for



real-time optimization, the recurrent neural network, as a powerful online
optimization tool with potential parallel implementations, is becoming an inde-
pendent research direction in online optimization field. Remarkable advances have
been made in the area of recurrent neural networks for online optimization. To a
constrained optimization problem, early works often remove the explicit constraints
by introducing a penalty term into the cost function and then design a recurrent
neural network evolving along the gradient descent direction. This type of neural
networks only converges to an approximation of the optimal solution. In order to
obtain a recurrent neural network with guaranteed convergence to the optimal
solution, later works introduce dynamic Lagrange multipliers to regulate the con-
straints. There exist various mathematical models for the description of the WTA
competition. By following optimization-based formulation, WTA problem can be
modeled as a constrained convex quadratic programming (QP) problem, and then,
traditionally, gradient descent or projected gradient descent is employed to get the
corresponding dynamic equations for online solution of the problem.

In this book, focusing on solving competition-based problems, we design,
propose, develop, analyze, model, and simulate various neural network models
depicted in centralized and distributed manners. Specifically, we define four dif-
ferent classes of centralized models for investigating the resultant competition in a
group of multiple agents. For distributed competition with limited communication
among agents, we present the first distributed WTA protocol and then extend it to
the distributed coordination control of multiple robots. As for these models, the
related theoretical analyses are given, and the corresponding modeling is illustrated.
Computer simulations with various illustrative examples are performed to sub-
stantiate the efficacy of the proposed recurrent neural network models for solving
WTA problems. Based on these successful researches, we further apply such a
distributed WTA approach to distributed coordination control of multiple redundant
robot manipulators. The corresponding results show the application prospect of the
presented competition-based neural network approach to robot applications.

The idea for this book on solving competition-based problems was conceived
during the classroom teaching as well as the research discussion in the laboratory
and at international scientific meetings. All of the materials of this book are derived
from the authors’ papers published in journals, such as IEEE Transactions on
Automatic Control, IEEE Transactions on Neural Networks and Learning Systems,
IEEE Transactions on Systems, Man, and Cybernetics: Systems, Neural Networks.
In fact, since the early 1980s, the field of neural networks has undergone the phases
of exponential growth, generating many new theoretical concepts and tools
(including the authors’ ones). At the same time, these theoretical results have been
applied successfully to the solution of many practical problems. Our first priority is
thus to cover each central topic in enough details to make the material clear and
coherent; in other words, each part (and even each chapter) is written in a relatively
self-contained manner.

This book is classified into the following 6 chapters.
Chapter 1—In this chapter, we investigates a simple discrete-time model, which

produces the winner-take-all competition. The local stability and global stability



of the model are both proven theoretically. Simulations are conducted for both the
static competition and the dynamic competition scenarios. The numerical results
validate the theoretical results and demonstrate the effectiveness of the model in
generating winner-take-all competition.

Chapter 2—In this chapter, different from the model presented in Chap. 1, we
present a continuous-time dynamic model, which is described by an ordinary dif-
ferential equation and is able to produce the winner-take-all competition by taking
advantage of selective positive–negative feedback. The global convergence is
proven analytically, and the convergence rate is also discussed. Simulations are
conducted in the static competition and the dynamic competition scenarios. Both
theoretical and numerical results validate the effectiveness of the dynamic equation
in describing the nonlinear phenomena of winner-take-all competition.

Chapter 3—In this chapter, a class of recurrent neural networks to solve quad-
ratic programming problems are presented and further extended to competition
generation. Different from most existing recurrent neural networks for solving
quadratic programming problems, the proposed neural network model converges in
finite time and the activation function is not required to be a hard-limiting function
for finite convergence time. The stability, finite-time convergence property, and the
optimality of the proposed neural network for solving the original quadratic pro-
gramming problem are proven in theory. Extensive simulations are performed to
evaluate the performance of the neural network with different parameters. In
addition, the proposed neural network is applied to solving the k-winner-take-all
(k-WTA) problem. Both theoretical analysis and numerical simulations validate the
effectiveness of our method for solving the k-WTA problem.

Chapter 4—In this chapter, we make steps in that direction and present a simple
model, which produces the winner-take-all competition by taking advantage of
selective positive–negative feedback through the interaction of neurons via p-norm.
Compared to models presented in Chaps. 1–3, this model has an explicit expla-
nation of the competition mechanism. The ultimate convergence behavior of this
model is proven analytically. The convergence rate is also discussed. Simulations
are conducted in the static competition and the dynamic competition scenarios.
Both theoretical and numerical results validate the effectiveness of the dynamic
equation in describing the nonlinear phenomena of winner-take-all competition.

Chapter 5—When it comes to distributed networks, Maass’s theorem poses great
appeal for distributed WTA algorithms provided that the distributed weighted
averaging could be addressed using consensus. Unfortunately, as presented in
Chap. 1 through Chap. 4, there is no existing distributed WTA algorithm available,
which significantly blocks the exhibition of the computational power of WTA over
dynamic networks. In this chapter, we make progress along this direction and
present the first distributed WTA protocol with guaranteed global convergence. The
convergence to the WTA solution is proved rigourously using Lyapunov theory.
The theoretical conclusions are supported by numerical validation.

Chapter 6—In this chapter, as an application of the competition-based models
investigated in previous chapters, the problem of dynamic task allocation in a
distributed network of redundant robot manipulators for path-tracking with limited



communications is investigated, where k fittest ones in a group of n redundant robot
manipulators with n[ k are allocated to execute an object tracking task. The
problem is essentially challenging in view of the interplay of manipulator kine-
matics and the dynamic competition for activation among manipulators. To handle
such an intricate problem, a distributed coordination control law is developed for
the dynamic task allocation among multiple redundant robot manipulators with
limited communications and with the aid of a consensus filter. In addition, a the-
orem and its proof are presented for guaranteeing the convergence and stability
of the proposed distributed control law. Finally, an illustrative example is provided
and analyzed to substantiate the efficacy of the proposed control law.

In summary, this book presents models producing the WTA competition in
centralized and distributed manners and further applies these models to distributed
coordination control of multiple robot manipulators (showing its application pro-
spect). This book is written for graduate students as well as academic and industrial
researchers studying in the developing fields of neural dynamics, computer math-
ematics, time-varying computation, simulation and modeling, analog hardware, and
robotics. It provides a comprehensive view of the combined research of these fields,
in addition to its accomplishments, potentials, and perspectives. We do hope that
this book will generate curiosity and also happiness to its readers for learning more
in the fields and the research and that it will provide new challenges to seek new
theoretical tools and practical applications.

At the end of this preface, it is worth pointing out that, in this book, a new and
inspiring direction on the competition-based neural network as well as its appli-
cations is provided. This opens an avenue to study distributed competition over a
connected network with any possible topology. It may promise to become a major
inspiration for studies and researches in neural dynamics, robotics, and dynamic
decision making. Without doubt, this book can be extended. Any comments or
suggestions are welcome. The authors can be contacted via e-mails: shuaili@polyu.
edu.hk and jinlong@lzu.edu.cn.

Hong Kong, China Shuai Li
Lanzhou, China Long Jin
March 2017



Contents

1 Competition Aided with Discrete-Time Dynamic Feedback . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Discrete-Time Static Competition . . . . . . . . . . . . . . . . . . . . 6
1.5.2 Discrete-Time Dynamic Competition . . . . . . . . . . . . . . . . . 9

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Competition Aided with Continuous-Time Nonlinear Model . . . . . . . 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Theoretical Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Static Competition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Dynamic Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Competition Aided with Finite-Time Neural Network . . . . . . . . . . . . 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Convergence Speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Comparisons on Computational Efficiency

in Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 40



3.4.4 Sensitivity to Additive Noise . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.5 Robustness Against Time Delay . . . . . . . . . . . . . . . . . . . . . 41
3.4.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Solving k-WTA with the Proposed Neural Network. . . . . . . . . . . . 47
3.5.1 Quadratic Programming Formulation for k-TWA . . . . . . . . 47
3.5.2 Theoretical Results for Solving k-WTA

with the Proposed Neural Network . . . . . . . . . . . . . . . . . . . 50
3.5.3 k-WTA Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Competition Based on Selective Positive-Negative Feedback . . . . . . . 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 The Winner-Take-All Neural Network . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 The Neural Network Based Winner-Take-All Problem . . . . 60
4.3.2 Neuro-Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Discussion on One-Sided Competition Versus

Closely-Matched Competition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.1 Static Competition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.2 Dynamic Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Distributed Competition in Dynamic Networks. . . . . . . . . . . . . . . . . . 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Problem Definition: Distributed WTA on Graphs . . . . . . . . . . . . . . 83
5.3 Distributed WTA Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Global Convergence to the Equilibrium Point Set . . . . . . . . 86
5.4.2 Instability of Non-WTA Solutions . . . . . . . . . . . . . . . . . . . 91
5.4.3 Global Stability of the WTA Solution. . . . . . . . . . . . . . . . . 93

5.5 Numerical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Competition-Based Distributed Coordination Control
of Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Preliminary and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Redundant Robot Manipulator . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Problem Definitions and Assumptions. . . . . . . . . . . . . . . . . 107



6.3 Dynamic Task Allocation with Limited Communications . . . . . . . . 108
6.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



Chapter 1
Competition Aided with Discrete-Time
Dynamic Feedback

Abstract In this chapter, we investigates a simple discrete-time model, which
produces the winner-take-all competition. The local and global stability of the model
are both proven theoretically. Simulations are conducted for both the static compe-
tition and the dynamic competition scenarios. The numerical results validate the
theoretical results and demonstrate the effectiveness of the model in generating
winner-take-all competition.

Keywords Winner-take-all competition · Dynamic feedback · Discrete-time sys-
tem · Global stability · Discrete-time competition-based neural networks.

1.1 Introduction

Winner-take-all refers to the phenomena that agents in a group compete with each
others for activation and only the one with the highest input stays active while all
the others deactivated. The winner-take-all models many competition phenomena
existing in nature [1, 2] and finds applications in many engineering fields [3]. It is
remarkably that the winner-take-all competition is computationally powerful and can
generate some useful functions required in computational intelligence applications
[3].Due to the importance ofwinner-take-all competition in engineering applications,
there have been many attempts to design circuits for its implementation [4, 5].

There have been various models presented by researchers to explain or generate
the winner-take-all behavior. In [6], the N species Lotka–Volterra model is used for
the explanation. Inspired by the great success of recurrent neural networks [7–22],
recurrent neural networks are utilized to investigate the winner-take-all competition
[23, 24]. In [25, 26], the FitzHugh–Nagumo Model, which is able to demonstrate
the interactive spiking, is used to study the winner-take-all behavior. In [27, 28], the
winner-take-all problem is regarded as the solution of an optimization problem and
the result is generated by solving such a problem.Althoughmanymathematicmodels
have been presented to explain or generate the winner-take-all competition, it is still
an open problem to find a simple model describing such a nonlinear phenomena with
rigorous analysis on its performance. Neural networks, which possess the abilities
of high-speed parallel distributed processing, and can be implemented by hardware,
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have been recognized as a powerful tool for real-time processing and successfully
applied widely in various control systems [29–34]. In this chapter, we present a
simple model described by nonlinear difference equations to generate the winner-
take-all competition. The solution of the equilibrium points, the local stability and
the global stability are resolved in theory. Due to the simplicity of this model, it
has strong potentials to be implemented in hardware with less hardware complexity
compared with some existing models.

1.2 Problem Definition

In this section, we define the winner-take-all competition in the following way: the
agent with the largest input finally wins the competition and keeps activated while
all the other agents withe smaller inputs are deactivated to zero eventually.

This definition is a mathematical abstraction of many competition phenomena
found in nature and society, such as the growth competition in plants [1], competitive
decision making in the cortex [35], foraging and mating in animal societies [2].

1.3 Model Formulation

The presented model has the following dynamic for the i th agent in a group of totally
n agents,

x1i (t + 1) = ui x2i (t),

x2i (t + 1) = x1i (t + 1)

‖x1(t + 1)‖ ,

yi (t + 1) = x2i (t + 1), (1.1)

where t represent time instant, ui ∈ R is the input and ui ≥ 0, ui �= u j for i �= j ,
x1(t) = [x11(t), x12(t), . . . , x1n(t)]T ∈ R

n , x1i (t) ∈ R and x2i (t) ∈ R for i =
1, 2, . . . , n denote the first and the second state value of the i th agent at time t

respectively, ‖x1(t)‖ =
√
x211(t) + x212(t) + · · · + x21n(t) denotes theEuclidean norm

of x1(t), yi (t) ∈ R represents the output of the i th agent at time t .
The dynamic equation (1.1) can be written into the following compact form by

stacking up the state for all agents,

x1(t + 1) = u ◦ x2(t),

x2(t + 1) = x1(t + 1)

‖x1(t + 1)‖ ,

y(t + 1) = x2(t + 1), (1.2)
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where u = [u1, u2, . . . , un]T ∈ R
n , x1(t) = [x11(t), x12(t), . . . , x1n(t)]T ∈ R

n ,
x2(t) = [x21(t), x22(t), . . . , x2n(t)]T ∈ R

n , y(t) = [y1(t), y2(t), . . . , yn(t)]T ∈
R

n , the operator ‘◦’ represents the multiplication in component-wise, i.e., u ◦ x =
[u1x1, u2x1, . . . , unxn]T.

1.4 Theoretical Results

In this section, theoretical results on the dynamic system (1.1) are presented. We first
examine the equilibrium point of the dynamic system and then investigate its local
stability around the equilibria. After that, we turn to the proof of the global stability
of the system.

On the equilibrium points of the dynamic system (1.1), we have the following
theorem,

Theorem 1.1 The discrete-time dynamic system (1.1) has equilibrium points at
(x∗

1 , x
∗
2 , y

∗) = ±(uiei , ei , ei ) for i = 1, 2, . . . , n, where ui ≥ 0 is the i th input,
ei ∈ R

n is a n dimensional vector with the i th element equal 1 and all the others
equal zero.

Proof In Eq. (1.2), letting x1(t + 1) = x∗
1 , x2(t + 1) = x2(t) = x∗

2 , y(t + 1) = y∗,
we get the following equations for the equilibrium points,

x∗
1 = u ◦ x∗

2 , (1.3a)

x∗
2 = x∗

1

‖x∗
1‖

, (1.3b)

y∗ = x∗
2 . (1.3c)

According to the definition of the operator ‘◦’. Equation (1.3a) can be written as

x∗
1 = diag(u)x∗

2 , (1.4)

where diag(u) is defined as the matrix with u as the diagonal elements and all the
other elements zero. Together with Eq. (1.3b), we have,

x∗
1 = diag(u)

x∗
1

‖x∗
1‖

, (1.5)

i.e.,
‖x∗

1‖x∗
1 = diag(u)x∗

1 . (1.6)

Clearly, this is an eigen-equation for thematrix diag(u). The existence of the solution
requires x∗

1 being the eigenvector of diag(u) and ‖x∗
1‖ being the corresponding eigen-

value. As the matrix diag(u) is diagonal, its eigenvalue and normalized eigenvector
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pairs can be easily got as u1 with e1, or u2 with e2, or, u3 with e3, …, or un with en ,
respectively. Comparing the eigenvalue and eigenvector pairs of diag(u) with (1.6),
we get the solution of x∗

1 as: x∗
1 = ±u1e1, x∗

1 = ±u2e2, …, or x∗
1 = ±unen . From

(1.3b) and (1.3c), it can be observed that both x∗
2 and y∗ equal the normalized vector

of x1, i.e., the corresponding solutions of x∗
2 are e1, e2,…, or en and y∗ takes the same

solution. To summarize, the equilibrium points are (x∗
1 , x

∗
2 , y

∗) = ±(uiei , ei , ei ) for
i = 1, 2, . . . , n. This completes the proof.

We have the following results on the local stability of the system (1.1),

Theorem 1.2 Point (x∗
1 , x

∗
2 , y

∗) = ±(u j e j , e j , e j ) is an unstable equilibrium point
of the discrete-time dynamic system (1.1) for j = 1, 2, . . . , n, j �= k∗, where k∗ =
argmaxi=1,2,...,n(ui ), u j ≥ 0 is the j th input, e j ∈ R

n is a n dimensional vector with
the j th element equal 1 and all the others equal zero.

Proof Without losing generality, we only consider the equilibrium points
(x∗

1 , x
∗
2 , y

∗) = (u j e j , e j , e j ) in this proof. For the rest equilibrium points
(x∗

1 , x
∗
2 , y

∗) = −(u j e j , e j , e j ), the local stability can be analyzed in the same way.
The system (1.2) is a nonlinear difference equation due to the presence of the

normalization operation. We use the liberalization technique to analyze the local
stability. According to Theorem 1.2, there are totally n equilibrium points for the
dynamic system (1.1) and the j th one is (x∗

1 , x
∗
2 , y

∗) = (u j e j , e j , e j ). From (1.2),
we get the dynamics of x2 as follows,

x2(t + 1) = diag(u)x2(t)

‖diag(u)x2(t)‖ . (1.7)

At the equilibrium point (x∗
1 , x

∗
2 , y

∗) = (u je j , e j , e j ), we have the fact that
‖diag(u)x∗

2‖ = ‖diag(u)e j‖ = ‖u j e j‖ = |u j | = u j . Accordingly, we have the
following approximate dynamics around this equilibrium point,

x2(t + 1) = diag(u)x2(t)

u j
. (1.8)

This is a linear system with 1
u j
diag(u) as the system matrix. 1

u j
diag(u) is a diagonal

matrix and thus its eigenvalues are u1
u j
, u2
u j
, …, un

u j
. For j �= k∗, we have, u j < uk∗

according to the definition of k∗. The k∗th eigenvalue of (1.8), which is uk∗
u j

> 1. The
linear system (1.8) is unstable since its system matrix has an eigenvalue outside the
unit circle. Therefore the nonlinear system with (1.8) as its linear approximation is
also unstable. Thus, we conclude that the system (1.1) is unstable at (x∗

1 , x
∗
2 , y

∗) =
(u j e j , e j , e j ) for j = 1, 2, . . . , n, j �= k∗. Following the same procedure, we can
also conclude that the system (1.1) is unstable at (x∗

1 , x
∗
2 , y

∗) = −(u j e j , e j , e j ) for
j = 1, 2, . . . , n, j �= k∗. This completes the proof.
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The global stability results on the system (1.1) are stated as follows,

Theorem 1.3 For any random initializations, the output yi for i = 1, 2, . . . , n of
the discrete-time dynamic system (1.1) converges to 1 for i = k∗ when x2i (0) > 0,
converges to −1 for i = k∗ when x2i (0) < 0 and converges to 0 for other is with
x2i (0) < x2k∗ , where k∗ defines the label of the winner, i.e., k∗ = argmaxi=1,2,...,n(ui ).

Proof From (1.2), we get the dynamics of x2 as follows,

x2(t + 1) = diag(u)x2(t)

‖diag(u)x2(t)‖ (1.9)

By iteration, we have,

x2(t + 1) = diag(u)x2(t)

‖diag(u)x2(t)‖ ,

= diag2(u)x2(t − 1)

‖diag2(u)x2(t − 1)‖ ,

. . .

= diagt+1(u)x2(0)

‖diagt+1(u)x2(0)‖ ,

=
(

1
uk∗

diag(u)
)t+1

x2(0)

‖( 1
uk∗

diag(u)
)t+1

x2(0)‖
,

= diag( u
uk∗

)t+1x2(0)

‖diag( u
uk∗

)t+1x2(0)‖ . (1.10)

Note that diag
(

u
uk∗

)
is a diagonal matrix with the i th diagonal element being ui

uk∗

with | ui
uk∗

| < 1 for i �= k∗ and | ui
uk∗

| = 1 for i = k∗. Accordingly, we can compute that

diag
(

u
uk∗

)t+1
is a diagonal matrix with the i th diagonal element equal to

(
ui
uk∗

)t+1

and we obtain that limt→∞
(

ui
uk∗

)t+1 = 0 for i �= k∗ and limt→∞
(

ui
uk∗

)t+1 = 1 for

i = k∗. Therefore, we get limt→∞ diag
(

u
uk∗

)t+1 = diag(ek∗) with ei ∈ R
n defined

as a n dimensional vector with the i th element equal 1 and all the others equal zero.
Together with (1.10), we further get,

lim
t→∞ x2(t + 1) = lim

t→∞

diag
(

u
uk∗

)t+1
x2(0)

‖diag
(

u
uk∗

)t+1
x2(0)‖

=
limt→∞ diag

(
u
uk∗

)t+1
x2(0)

‖ limt→∞ diag
(

u
uk∗

)t+1
x2(0)‖
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= diag(ek∗)x2(0)

‖diag(ek∗)x2(0)‖
= x2k∗(0)ek∗

‖x2k∗(0)ek∗‖
= x2k∗(0)

|x2k∗(0)|ek∗

=
{

ek∗ when x2k∗(0) > 0
−ek∗ when x2k∗(0) < 0

(1.11)

whichmeans that x2i (t) converges to 0 for the loserswith x2i (0) < x2k∗ and converges
to 1 for the winner i = k∗. Recalling that y(t) = x2(t), the proof is completed.

1.5 Illustrative Examples

In this section, numerical examples are used to further explore the winner-take-all
competition phenomena generated by the discrete-time dynamic (1.1). We consider
two sceneries: one is static competition, where the input u is constant and one is
dynamic competition, where the input u is time-varying.

1.5.1 Discrete-Time Static Competition

For the static competition problem, we consider a problem with n = 10 agents
under time invariant input. The input u is randomly generated between 0 and 1,
which is u = [0.1982, 0.1951, 0.3268, 0.8803, 0.4711, 0.4040, 0.1792, 0.9689,
0.4075, 0.8445], and the state is randomly initialized between −1 and 1, Fig. 1.1
shows the evolution of output values of all agents with time (in the figure, the value
of outputs is marked as ‘+’ in each time step). From the figure, it can be observed
that only a single output (corresponds to the 7th agent, which has the largest value
in u) reaches 1 eventually and all the other output values are suppressed to zero.
Figure1.2 shows the evolution of output values of all agents with time with the same
u but different initialization of states from that used in Fig. 1.1. In Fig. 1.2, all output
values converges to zero except the output of the 7th agent, which has the largest value
in u. It is noteworthy that the ultimate output value of the winner is 1 in Fig. 1.1 but is
−1 in Fig. 1.2. This observation is consistent with the theoretical conclusion drawn
in Theorem 1.3 since the 7th agent, which is the winner in this set of simulations,
is initialized in x2 with a positive value in Fig. 1.1 but a negative value in Fig. 1.2 as
can be observed in the two figures.

We next consider a three-agent competition problem for the convenience of visu-
alization. A three-agent system with u = [0.5598, 0.3008, 0.9394] is simulated (in
this case, the third agent has the largest input and thus is the winner). Figure1.3
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Fig. 1.1 The output of y(t) in all dimensions in the static competition scenario under a random
initialization with 10 agents

0 10 20 30 40 50 60

−1

−0.5

0

0.5

1

iteration

y(
t)

Fig. 1.2 The output of y(t) in all dimensions in the static competition scenario with 10 agents
under a different random initialization from Fig. 1.1
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Fig. 1.3 Phase plot of the three-agent system starting from {−1,−0.5, 0, 0.5, 1}3

shows the phase plot of the output in three-dimensional space and its projections in
two-dimensional space. In the figure, the red spots highlight the ultimate value of the
output. Clearly, we can see that y1, y2 and y3 converge to 0, 0 and 1 for the cases with
y3(0) > 0 (note that y(0) = x2(0) according to Eq. (1.2)) and they converges to 0, 0
and −1 for the cases with y3(0) < 0. This observation also validates the conclusion
drawn in Theorem 1.3. It is noteworthy that for the cases with y3(0) = 0, y converge
neither to [0, 0, 1] nor to [0, 0,−1]. Actually, this is due to the fact concluded from
Theorem 1.2 that the equilibrium points [±1, 0, 0], [0,±1, 0] (which appear as the
ultimate values highlighted in red in Fig. 1.3) are locally unstable. To further show
that these points are indeed unstable, we perturb the initial value of the system to
one very close to these equilibriums, and check whether the ultimate value is still
attracted to the equilibrium points. Figure1.4 shows the time history of the outputs
for the three agents with the initial values of the third agent perturbed by a zero mean
magnitude 0.01 random variable from the equilibrium points [±1, 0, 0], [0,±1, 0].
From this figure, we can see that no matter how close of y3(0) to zero, y3(0) either
goes to 1 or −1 instead of 0 under the initialization of [y1(0), y2(0)] = [±1, 0] or
[y1(0), y2(0)] = [0,±1] only if y3(0) �= 0.
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Fig. 1.4 Time history of the three-agent systemwith small perturbations on y3(0) around [±1, 0, 0]
or [0,±1, 0]

1.5.2 Discrete-Time Dynamic Competition

In this part, we consider the scenario with time-varying inputs. Note that the winner-
take-all system should run in a greater sampling rate in order to successfully track
time-varying signals. In the simulation, we consider n = 5 agents with input ui (t) =
2.5+ sin

(
2π
1000 t + 2π

5 i
)
for i = 1, 2, 3, 4, 5 and for t = 0, 1, 2, . . .. The initial value

of y in all dimensions are randomly generated as a positive number between 0 and
1 to guarantee the winner converges to 1 instead of −1. To avoid the output is stuck
at the unstable equilibrium points due the computation error, we add an extra zero
mean 0.005 magnitude random disturbance in the update of x2 (the second equation
in (1.1)). The five input signals and output y(t) are plotted in Fig. 1.5. The figure
implies the system can successfully find the winner in real time.

1.6 Summary

In this chapter, a simple dynamic system described by a difference equation are
presented to reach the winner-take-all competition among agents. This model is
described by a differential equation with continuous time dynamics instead of a dif-
ference equation with completely different discrete-time dynamics. The equilibrium
points are solved analytically and their local stability is investigated theoretically. In
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Fig. 1.5 Inputs and outputs of the dynamic system in the dynamic competition scenario

addition, global stability of the model is also rigorously studied in theory. Numerical
simulations are performed and the results validate the effectiveness of the dynamic
equation in describing the winner-take-all competition.
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Chapter 2
Competition Aided with Continuous-Time
Nonlinear Model

Abstract In this chapter, different from the model presented in Chap. 1, we present a
continuous-time dynamic model, which is described by an ordinary differential equa-
tion and is able to produce the winner-take-all competition by taking advantage of
selective positive-negative feedback. The global convergence is proven analytically
and the convergence rate is also discussed. Simulations are conducted in the static
competition and the dynamic competition scenarios. Both theoretical and numerical
results validate the effectiveness of the dynamic equation in describing the nonlinear
phenomena of winner-take-all competition.

Keywords Winner-take-all competition · Recurrent neural networks · Continuous-
time system · Global stability · Selective positive-negative feedback

2.1 Introduction

Competition widely exists in nature and the society. Among different kinds of com-
petitions, winner-take-all competition refers to the phenomena that individuals in a
group compete with each others for activation and only the one with the highest input
stays activated while all the others deactivated. Examples of this type of competition
include the dominant growth of the central stem over others [1], the contrast gain in
the visual systems through a winner-take-all competition among neurons [2], com-
petitive decision making in the cortex [3], competition-based coordination control
of robots [4], etc.

Although many phenomena, as exemplified above, demonstrate the same winner-
take-all competition, they may have different underlying principles in charge of the
dynamic evolution. Apart from the natures of distributed-storage and high-speed
parallel-processing, neural networks can be readily implemented by hardware and
thus have been widely applied in various fields, including the competition phenomena
[5–25]. For example, the N species Lotka-Volterra model [26], interactively spiking
FitzHugh-Nagumo Model [27], discrete-time different equation model presented in
Chap. 1. However, these models are often very complicated due to the compromise
with experimental realities in the particular fields. Consequently, the essence of the
winner-take-all competition may be embedded in the interaction dynamics of those

http://dx.doi.org/10.1007/978-981-10-4947-7_1
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models, but difficult to tell from the sophisticated dynamic equations. Motivated
by this, a simple ordinary differential equation model with a direct and intuitive
explanation is presented in this chapter and it is expected to cast lights to researchers
on the principle of competition phenomena in different fields.

2.2 The Model

The presented model has the following dynamic for the i th agent in a group of totally
n agents,

ẋi = c0(ui − ‖x‖2)xi (2.1)

where xi ∈ R denotes the state of the i agent, ui ∈ R is the input and ui ≥ 0,

ui �= u j for i �= j , ‖x‖ =
√
x2

1 + x2
2 + . . . + x2

n denotes the Euclidean norm of the

state vector x = [x1, x2, ..., xn]T , c0 ∈ R c0 ≥ 0 is a scaling factor.
The dynamic equation (2.1) can be written into the following compact form by

stacking up the state for all agents,

ẋ = c0(u ◦ x − ‖x‖2x) (2.2)

where x = [x1, x2, ..., xn]T , u = [u1, u2, ..., un]T , the operator ‘◦’ represents the
multiplication in component-wise, i.e., u ◦ x = [u1x1, u2x1, ..., unxn]T .

Remark 2.1 In the dynamic equation (2.1), all quantities on the right hand side can
be obtained locally from the i th agent itself (ui and xi ) except the quantity ‖x‖2,
which reflects the effort from other agents over the i th one (as sketched in Fig. 2.1).

Fig. 2.1 Information flow
for the agent dynamics

Statistic

Agent 1

Agent 2

Agent 3

Agent nAgent i
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Actually, ‖x‖2 = x2
1 + x2

2 + ... + x2
n is the second moment about the origin of the

group of agents and it is a statistic of the whole group. In this regard, the dynamic
model (2.1) implies that the winner-take-all competition between agents may emerge
in a multi-agent system if each agent accesses the global statistic ‖x‖2 (instead of
exactly knowing states of all the other agents) besides its own information.

As will be stringently demonstrated later, the agent with the largest input will
finally win the competition and keep active while all the other agents will be deacti-
vated to zero eventually. Before proving this result rigorously, we present a intuitive
explanation of the result in a sense of positive feedback versus negative feedback.
Note that the term c0ui xi in Eq. (2.1) provides a positive feedback to the state vari-
able xi as ui ≥ 0 while the term −c0‖x‖2xi supplies a negative feedback. For the i th
agent, if ui = ‖x‖2, xi will keep the value. If ui < ‖x‖2, the positive feedback is less
than the negative feedback in value and the state value attenuates to zero. In contrast,
if ui > ‖x‖2, the positive feedback is greater than the negative feedback and the
state value tends to increase as large as possible until the resulting increase of ‖xi‖
surpasses ui . Particularly for the winner, say the k∗th agent, uk∗ > ui holds for all
i �= k∗. In this case, all agents have negative feedbacks and keep reducing in values
until ‖x‖2 reduces to the value of uk when uk < ‖x‖2. Otherwise when uk is slightly
greater than ‖x‖2 (by slightly greater we mean uk > ‖x‖2 > ul with l denoting the
agent with the second largest state value), only the winner has a positive feedback
and has an increase in its state value while all the other agents have negative feed-
backs and keep reducing until ‖x‖2 equals uk . Under this selective positive-negative
feedback mechanism, the winner finally stays active at the value uk∗ = ‖x‖2 while
the losers are deactivated to zero.

2.3 Theoretical Analysis and Results

In this section, theoretical results on the dynamic system (2.1) are presented. The
rigorous proof of the main results needs the uses of LaSalle’s invariant set principle
[28, 29], local stability analysis and the ultimate boundedness theory [30].

Lemma 2.1 ([28]) Let D ⊂ R
n be a domain that contains the origin and V :

[0,∞) × D → R be a continuous differentiable function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (2.3)

V̇ = ∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −W (x), ∀‖x‖ ≥ μ > 0 (2.4)

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class K functions and W (x) is a
continuous positive definite function. Take r > 0 such that Br ⊂ D and suppose that
μ < α−1

2 (α1(r)). Then, there exists a class K L function β and for every initial
state x(t0), satisfying ‖x(t0)‖ ≤ α−1

2 (α1(r)), there is T ≥ 0 (dependent on x(t0) and
μ) such that the solution of ẋ = f (t, x) satisfies,
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‖x(t)‖ ≤ α−1
1 (α2(μ)) ∀t ≥ t0 + T (2.5)

Moreover, ifD = R
n and α1 belongs to classK∞, then the result holds for any initial

state x(t0), with no restriction on how large μ is.

With Lemma 2.1, we are able to prove the following lemma for our main result,

Lemma 2.2 There exists T ≥ 0 (dependent on x(t0) and μ) such that the solution
of the agent dynamic equation (2.2) satisfies,

‖x(t)‖ ≤ μ ∀t ≥ t0 + T (2.6)

where μ = √
max{u1, u2, ..., un} + δ with δ > 0 being any positive constant.

Proof We prove the result by following the framework of Lemma 2.1. Let D = R
n ,

V = 1
2 x

T x and α1(‖x‖) = α2(‖x‖) = 1
2‖x‖2 = V . For V , we have,

V̇ = xT ẋ

= c0x
T (u ◦ x − ‖x‖2x)

= c0x
T
(
diag(u)x − ‖x‖2x

)

= c0x
T
(
diag(u) − ‖x‖2

)
x

≤ c0(u0 − ‖x‖2)xT x (2.7)

The equation u◦x = diag(u)x is used in the second step of the above derivation. Note
that

(
diag(u) − ‖x‖2

)
is a diagonal matrix and its largest eigenvalue is u0 − ‖x‖2.

Therefore, xT
(
diag(u)−‖x‖2

)
x ≤ (u0 −‖x‖2)xT x , from which the last inequality

in (2.7) is obtained. As ui ≥ 0 for all i and ui �= u j for i �= j , we get u0 > 0. Recall
μ = √

max{u1, u2, ..., un} + δ, i.e., μ = √
u0 + δ for any small positive δ > 0. For

‖x‖ ≥ μ, u0 − ‖x‖2 ≤ −δ2. Together with (2.7), we get,

V̇ ≤ −c0δ
2xT x (2.8)

for ‖x‖ ≥ μ. Choosing a positive definite function W (x) = c0δ
2xT x yields V̇ ≤

−W (x) for ∀‖x‖ ≥ μ. Therefore, according to Lemma 2.1, there exists T ≥ 0 such
that the solution satisfies ‖x(t)‖ ≤ α−1

1 (α2(μ)) = μ, ∀t ≥ t0 + T . This completes
the proof.

Remark 2.2 Lemma 2.2 means the state of the dynamic model (2.2) is ultimately
bounded inside a compact super ball in R

n with radius μ = √
max{u1, u2, ..., un}

+δ. In other words, this super ball is positively invariant with respect the system
dynamic (2.2). This result allows us to apply LaSalle’s invariant set principle for
further investigation of the system behaviors.

Lemma 2.3 ([28]) Let Ω ⊂ D be a compact set that is positively invariant with
respect to ẋ = f (x). Let V : D → R be a C1-function such that V̇ (x) ≤ 0 on Ω .
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Let E be the set of all points in Ω such that V̇ (x) = 0. LetM be the largest invariant
set in E. Then, every solution starting in Ω approaches M as t → ∞.

Remark 2.3 It is worth noting that the mapping V in Lemma 2.3 is not necessary
to be positive definite, which is a major difference from the Lyapunov function in
conventional stability analysis of dynamic systems [28]. Instead, V is required to be
be a continuous differentiable function in Lemma 2.3, which is much looser than the
positive definite requirement and simplifies the analysis.

Theorem 2.1 The solution of the system involving n dynamic agents with the i th
agent described by (2.1) globally approaches 0 for i �= k∗ and approaches

√
uk∗

or −√
uk∗ for i = k∗ as t → ∞, where k∗ denotes the label of the winner, i.e.,

k∗ = argmax{u1, u2, ..., un}.
Proof There are two steps for the proof. The first step is to prove that the state variable
ultimately converges to a set consisting of a limit number of points and the second
step proves there is only a single point among the candidates is stable.

Step 1: According to previously presented Lemma 2.2, the state variable x in the
system dynamic (2.2) is ultimately bounded by a compact super ball inRn with radius
μ = √

max{u1, u2, ..., un} + δ, which implies this super ball is positively invariant
with respect the system dynamic (2.2) and the super ball {x ∈ R

n|‖x‖ ≤ μ} is
qualified to be the set Ω in Lemma 2.3.

Let V = − 1
2 x

T diag(u)x + 1
4‖x‖4. Apparently, V is a C1-function. For V , we

have,

V̇ = −xT diag(u)ẋ + ‖x‖2xT ẋ

= ( − xT diag(u) + ‖x‖2xT
)
ẋ (2.9)

With xT diag(u) = (x ◦ u)T , we get xT diag(u) − ‖x‖2xT = (x ◦ u − ‖x‖2x)T .
Together with (2.9), we have,

V̇ = −c0(x ◦ u − ‖x‖2x)T (x ◦ u − ‖x‖2x)

= −c0

∥∥x ◦ u − ‖x‖2x
∥∥2

≤ 0 (2.10)

We find diag(u)x = ‖x‖2x by letting V̇ = 0. Note that diag(u)x = ‖x‖2x is actually
a eigenvector equation relative to the matrix diag(u). The solution can be solved as
the set M = {0,±√

uiei for i = 1, 2, ..., n}, where ei is a n-dimensional vector with
the i th component 1 and all the other component 0. According to Lemma 2.3, every
solution starting in Ω = {x ∈ R

n|‖x‖ ≤ μ} approaches M as t → ∞. Together with
the fact proven in Lemma 2.2 that every solution stays in Ω ultimately, we conclude
that every solution with the initialization x(t0) ∈ R

n approaches M as t → ∞.
Step 2: We have shown that there are several candidate fixed points to stay for

the dynamic system. In this step, we show that all those fixed points in M are unsta-
ble except x = ±√

ukek , where k∗ = argmax{u1, u2, ..., un}. Lyapunov’s indirect
method suffices the analysis of the un-stability.
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For the fixed point xe = 0, the system dynamic (2.2) is linearized as ẋ =
c0diag(u)x about x = 0 and is unstable as the eigenvalues of the system matrix
c0diag(u) have positive real parts.

For the fixed points xe = ±√
uiei , the linearized system around the fixed point is

as follows,
ẋ = c0

(
diag(u) − 2xex

T
e − ‖xe‖2

)
x (2.11)

The system matrix of the above system is a diagonal matrix and its j th diagonal
component, which is also its j th eigenvalue, is c0(u j − ui ) for j �= i and −2c0 for
j = i . Clearly, all the eigenvalues have negative real part only when u j − ui < 0
holds for all j �= i , i.e., when i = k∗, which excludes all fixed points except for
xe = ±√

uk∗ek∗ from the stable ones.
In summary, we conclude that every solution approaches x = ±√

uk∗ek∗ ulti-
mately with k∗ = argmax{u1, u2, ..., un} and ek∗ being a n-dimensional vector
with the k∗th component 1 and all the other component 0. Entrywisely, the solu-
tion approaches xi = 0 for i �= k∗ and xk∗ = ±√

uk∗ , which completes the proof.

Remark 2.4 According to Theorem 2.1, the steady-state value of the winner is either√
uk∗ or −√

uk∗ . Actually, we can conclude that it is
√
uk∗ if the initial state of the

winner is positive while it is −√
uk∗ if the initial value is negative by noting that

ẋk∗ = 0 when xk∗ = 0 in (2.1) for i = k∗, which means the state value xk∗ will never
cross the critical value x∗ = 0.

2.4 Illustrative Examples

In this section, simulations are provided to illustrate the the winner-take-all compe-
tition phenomena generated by the agent dynamic (2.1). We consider two sceneries:
one is static competition, i.e., the input u is constant and one is dynamic competition,
i.e., the input u is time-varying.

2.4.1 Static Competition

For the static competition problem, we consider time invariant signals as the input.
In the simulation, we consider a problem with n = 15 agents. The input u is
randomly generated between 0 and 1, which is u = [0.0924, 0.0078, 0.4231,
0.6556, 0.7229, 0.5312, 0.1088, 0.6318, 0.1265, 0.1343, 0.0986, 0.1420, 0.1683,
0.1962, 0.3175], and the state is randomly initialized between −1 and 1, which
is x(0) = [0.7556, 0.1649, −0.8586, 0.8455, 0.6007, −0.4281, 0.0873, 0.9696,
0.4314, 0.6779, −0.1335, −0.0588, 0.1214, −0.4618, 0.4980]. In the simulation,
we choose the scaling factor c0 = 1. Figure 2.2 shows the evolution of state values
of all agents with time, from which it can be observed that only a single state (cor-
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Fig. 2.2 Agent state trajectories in the static competition scenario with 15 agents

responds to the 5th agent, which has the largest value in u) has a non-zero value
eventually and all the other state values are suppressed to zero. Also, the value of x5

approaches
√
u5 (see Fig. 2.2), which is consistent with the claim made in Remark 2.4

since the initial value x5(0) = 0.6007 > 0.
To fully visualize the interaction between agents, we consider a three agent case

with u = [0.7368, 0.2530, 0.4117]. Figure 2.3 shows the phase plot of the state in
three-dimensional space and its projections in two-dimensional space. Clearly, we
can see that the states with the initial state value of the winner being negative (i.e.,
x1(0) < 0) is attracted to [−√

u1, 0, 0] while is attracted to [√u1, 0, 0] for the cases
with positive initial state values of the winner (i.e., x1(0) > 0). It is worth noting that
x1(t) appears staying at 0 in the situation with x1(0) = 0 in Fig. 2.3, which seems
in contradiction with the statement that the winner x1(t) converges to either

√
u1 or

−√
u1 eventually. Actually, as mentioned in the proof of the Theorem 2.1, all fixed

points are unstable except ±√
uk∗ek∗ (k∗ denotes the label of the winner and ek∗ is a

n dimensional vector with the k∗th element being 1 and all the other elements being
zeros). Therefore, in this case, the state with x1 = 0 is unstable and must be very
subjective to disturbances. To show this, we plug a small random Gaussian white
noise with zero mean and 0.0001 variance into the agent dynamic (2.1). In equation,
the resulting dynamic for the i th agent is ẋi = c0(ui − ‖x‖2)xi + 0.0001vi , where
vi is a Gaussian white noise with zero mean unit variance and it is independent with
v j for j �= i . Even with such a small perturbation with a magnitude of 0.0001,
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the states with x1(0) = 0 either converge to [√u1, 0, 0] or [−√
u1, 0, 0] instead

of staying at x1 = 0 as shown in Figs. 2.4 and 2.5, where the state is initialized at
x(t0) = 0 × [−1,−0.5, 0, 0.5, 1]2.

2.4.2 Dynamic Competition

In this part, we consider the scenario with time-varying inputs. For the dynamic
system (2.1), the convergence can be accelerated by choosing a large scaling factor
c0, and the resulting fast response allows the computation of x in real time with
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Fig. 2.6 Inputs and outputs of the dynamic system in the dynamic competition scenario

time-varying input u(t). In this simulation, we choose c0 = 104 and consider n = 4
agents with input ui (t) = 1 + sin(2π t + 0.25i) for i = 1, 2, 3, 4, respectively. The
initial state valued are randomly generated between −1 and 1. The four input signals
and the absolute value of the state variables are plotted in Fig. 2.6. From this figure,
we can see the system can successfully find the winner in real time.
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2.5 Summary

In this chapter, the winner-take-all competition among agents in a group is consid-
ered and an ordinary differential equation describing the dynamics of each agent
is presented. In contrast to existing models, this dynamic equation features a sim-
ple expression and an explicit explanation of the competition mechanism, which is
expected to help researchers gain some insights into the winner-take-all phenomena
in their specialized fields. The fact that the state value of the winner converges to be
active while the others deactivated is proven theoretically. The convergence rate is
discussed based on a local approximation. Simulations with both static inputs and
dynamic inputs are performed. The results validate the effectiveness of the dynamic
equation in describing the nonlinear phenomena of winner-take-all competition.
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Chapter 3
Competition Aided with Finite-Time Neural
Network

Abstract In this chapter, a class of recurrent neural networks to solve quadratic
programming problems are presented and further extended to competition genera-
tion. Different from most existing recurrent neural networks for solving quadratic
programming problems, the proposed neural network model converges in finite time
and the activation function is not required to be a hard-limiting function for finite
convergence time. The stability, finite-time convergence property and the optimal-
ity of the proposed neural network for solving the original quadratic programming
problem are proven in theory. Extensive simulations are performed to evaluate the
performance of the neural network with different parameters. In addition, the pro-
posed neural network is applied to solving the k-winner-take-all (k-WTA) problem.
Both theoretical analysis and numerical simulations validate the effectiveness of our
method for solving the k-WTA problem.

Keywords Winner-take-all competition · Recurrent neural networks · Quadratic
programming · Global stability · Finite-time convergence · Numerical simulations

3.1 Introduction

In the past two decades, recurrent neural networks have received considerable studies
in many scientific and engineering fields, such as motion planning of redundant
robot manipulators [1], nonlinear optimization [2, 3], tracking control of chaotic
systems [4], kinematic control of redundant manipulators [5, 6], etc. Particularly,
after the invention of the well-known Hopfield neural network, which was originally
designed for real-time optimization, the recurrent neural network, as a powerful
online optimization tool with potential parallel implementations, is becoming an
independent research direction in online optimization field [7–12].

Remarkable advances have been made in the area of recurrent neural networks for
online optimization [13–18]. To a constrained optimization problem, early works,
such as [19], often remove the explicit constraints by introducing a penalty term
into the cost function and then design a recurrent neural network evolving along
the gradient descent direction. This type of neural networks only converges to an
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approximation of the optimal solution. In order to obtain a recurrent neural network
with guaranteed convergence to the optimal solution, later works, such as [20, 21],
introduce dynamic Lagrange multipliers to regulate the constraints. Compared to
early works using penalty strategies, both [20, 21] are able to converge to the optimal
solution of the constrained optimization problem, but the number of neurons in the
neural network is increased since extra neurons are required for the dynamics of
the Lagrange multipliers. Because the number of neurons in the neural network is
directly relevant to the complexity and cost of its hardware implementation, some
researchers turned their attention to the reduction of neuron number in the design.
Typical works include [22–25], which consider the problem in the dual space and
use a projection function to represent inequality constraints. This type of method
significantly simplifies the architecture without losing efficiency or accuracy and is
successfully used in various applications, such as kinematic control of redundant
manipulators [26], k-winner-take-all (k-WTA) problem solving [23], etc. Although
most of the above mentioned neural networks are stable or even with an exponential
convergence rate, they never converge in finite time. Realizing this point, some neural
networks with finite-time convergence properties are explored, for example, [27, 28],
namely. To obtain the finite-time convergence, both [27, 28] use a discontinuous
hard-limiting function as the activation function. Differently, inspired by the study
on finite-time stability of autonomous systems [29], in this chapter we propose a
class of recurrent neural networks, which uses a continuous activation function, but
still has finite-time convergence to the optimal solution of the problem.

3.2 Model Description

In this chapter, we study the following quadratic programming problem:

minimize 1
2x

TWx + cTx (3.1a)

subject to Ax = b (3.1b)

l ≤ Ex ≤ h (3.1c)

where x ∈ R
n, W ∈ R

n×n is a positive definite matrix, c ∈ R
n, A ∈ R

m×n, b ∈ R
m,

E ∈ R
q×n, h ∈ R

q, l ∈ R
q,m < n and h ≥ l. Following the tradition [23], we assume

that the equality constraint is irredundant, i.e., rank(A) = m.
According to Karash-Kuhn-Tucker (KKT) conditions [30], the solution to prob-

lem (3.1) satisfies,

Wx + c + ATλ + ETμ = 0 (3.2a)

Ax = b (3.2b)
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⎧
⎪⎨

⎪⎩

Ex = h if μ > 0

l ≤ Ex ≤ h if μ = 0

Ex = l if μ < 0

(3.2c)

where λ ∈ R
m and μ ∈ R

q are dual variables to the equality constraint (3.1b) and
the inequality constraint (3.1c), respectively. By introducing a saturation function,
(3.2c) can be simplified to

ρEx = g(ρEx + μ) (3.3)

where ρ ∈ R, ρ > 0 is a scaling factor, and the saturation function g(x) = [g1(x1),
g2(x2), . . ., gq(xq)]T is defined as

gi(xi) =

⎧
⎪⎨

⎪⎩

ρhi if xi > ρhi
xi if ρli ≤ xi ≤ ρhi
ρli if xi < ρli

(3.4)

Recalling that W is positive definite and rank(A) = m, we can get the expression of
x and λ explicitly in terms of μ by solving (3.2a) and (3.2b):

x = − (
W−1ET − W−1AT (AW−1AT )−1AW−1ET

)
μ

−W−1c + W−1AT (AW−1AT )−1(b + AW−1c) (3.5a)

λ = − (AW−1AT )−1AW−1ETμ − (AW−1AT )−1(b + AW−1c) (3.5b)

Note thatAW−1AT is invertable asAW−1AT has full rank (rank(AW−1AT ) = rank(A)

= m). We define the following constant vector and matrix to simplify the expression
of (3.5a),

s = W−1AT (AW−1AT )−1(b + AW−1c) − W−1c

M = W−1 − W−1AT (AW−1AT )−1AW−1 (3.6)

With this definition, x can be re-written as

x = −METμ + s (3.7)

Plugging (3.7) into (3.3), we have,

− ρEMETμ + ρEs = g
(
(I − ρEMET )μ + ρEs

)
(3.8)

We use a layer of dynamic neurons to solve μ in (3.8) as follows

εμ̇ = − sigr
(
g
(
(I − ρEMET )μ + ρEs

) + ρEMETμ − ρEs
)

(3.9)
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where ε ∈ R, ε > 0 is a scaling parameter, r ∈ R, 0 < r < 1. For z ∈ R
q, z = [z1,

z2, . . ., zq]T , y ∈ R
q, and y = [y1, y2, . . ., yq]T , the function y = sigr(z) is defined as

follows,

yi =

⎧
⎪⎨

⎪⎩

|zi|r if zi > 0

0 if zi = 0

− |zi|r if zi < 0

(3.10)

where | · | is the absolute value of real numbers.
The proposed finite-time dual neural network to solve the problem (3.1) is sum-

marized as follows:

state equation: εμ̇ = − sigr
(
g
(
(I − ρEMET )μ + ρEs

)

+ ρEMETμ − ρEs
)

(3.11a)

output equation: x = − METμ + s (3.11b)

where I is an identity matrix of a proper size, ε ∈ R, ε > 0, ρ ∈ R, ρ > 0, r ∈ R,
0 < r < 1, M and s are defined in (3.6), the function g(·) and sigr(·) are defined in
(3.4) and (3.10), respectively.

Remark 3.1 The function family y = sigr(x) at different rwith 0 < r < 1 is between
the function y = x and y = sign(x) in values (y = sign(x) is the sign function, with
y = 1 for x > 0, y = −1 for x < 0 and y = 0 for x = 0), as depicted in Fig. 3.1.
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Fig. 3.1 Comparisons of y = x, y = sign(x) and y = sigrx at r = 0.3, r = 0.5, r = 0.7
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When r = 1, the neural network (3.11) reduces to the improved neural network
studied in [23]. However, a big difference between our model and the model studied
in [23] is that our neural network, for all 0 < r < 1 (no matter how close to 1 r is),
always converges in finite time while the improved neural network never converge
in finite time.

Remark 3.2 y = sigr(x) is a continuous and smooth function for 0 < r < 1. It
approaches the discontinuous sign function y = sign(x) when r approaches 0 and
it reduces to the sign function when r = 0. Due to the discontinuous nature of the
sign function, chatter phenomena may happen for the dynamic system with a sign
functionmodule in the presence of time delay. To avoid this, the designermay replace
the sign function with a piecewise linear saturation function, such as y = sat(x) with
y = x when −1 < x < 1, y = 1 when x ≥ 1 and y = −1 when x ≤ −1. However,
this replacement sacrifices the fast convergence and accuracy. In [27, 28], a hard-
limiting function is used in the recurrent neural network design in order to obtain
finite time convergence. The hard-limiting function is in nature similar to the sign
function, and therefore is sensitive to possible time delay, and the problem is crucial
especially when the neural network is implemented in hardware, in which case time
delay is unavoidable. In contrast, by choosing a relative large r with 0 < r < 1,
the proposed neural network has a relative high robustness against time delay and
can reach convergence in finite time as well. This point can also be observed in the
simulation example in Sect. 3.4.5.

Remark 3.3 Several existing neural network models are available to solve the con-
strained quadratic programming problem (3.1) [19, 20, 22, 23, 26]. We evaluate
them from three different aspects: theoretical error, i.e., whether there exists a steady
state error from the output of the neural network to the theoretical solution of the
problem, convergence time, i.e., whether it takes finite time or infinite time for con-
vergence, and spatial complexity in terms of the number of neurons included in the
neural network. The comparisons of the gradient based neural network [19], lagrange
neural network [20], dual neural network [23], simplified dual neural network [26],
improved dual neural network [22] (it is noteworthy that the improved dual neural
network is only applicable to the case with W being an identity matrix in (3.1)) and
the proposed neural network in this chapter are summarized in Table3.1.

Table 3.1 Comparisons of the proposed model with some existing neural network models for
solving Problem (3.1)

Neural network models Theoretical
error

Convergence
time

Spatial
complexity

Gradient based neural network [19] Non-zero Infinite n

Lagrange neural network [20] Zero Infinite n+m+4q

Dual neural network [23] Zero Infinite m+q

Simplified dual neural network [26] Zero Infinite q

Improved dual neural network [22] Zero Infinite m+q

The proposed neural network Zero Finite q
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3.3 Convergence Analysis

In this section, we study the stability of the proposed dynamic neural network, its
finite-time convergence property, and the optimality of the result obtained by using
this neural network to the original quadratic programming problem. To prove the
main results, some equations and inequalities are used. The first one is about the
gradient of a general vector norm:

∇(‖x‖aa
) = asiga−1(x) (3.12)

where ∇ is the vector differential operator, a ∈ R and a > 1, x ∈ R
n, ‖x‖a is the

a-norm of x, which is defined as ‖x‖a = (∑n
i=1 |xi|a

) 1
a for x = [x1, x2, . . . , xn]T .

Equation (3.12) can be simply verified by expanding both side of (3.12) in entrywise.
The second useful inequality is as follows:

‖x‖a ≤ ‖x‖b (3.13)

for x ∈ R
n, a ∈ R, b ∈ R and 0 < b < a. This inequality reveals that ‖x‖a is a

non-increasing function with respect to a for a > 0 and can be simply proven by
showing the derivative of ‖x‖a relative to a is always non-positive. Inequality (3.13)
establishes the relation between two different norms for a same vector and it can be
used to estimate the bound of certain norm of a vector according to knowledge on
its other norms.

The following lemma, which is well known as Cauchy interlace theorem, is also
useful in the proof.

Lemma 3.1 Let A be a Hermitian matrix of order n, and let B be a principal sub-
matrix of A of order n − 1. If λn ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ1, lists the eigenvalues of
A and μn ≤ μn−1 ≤ · · · ≤ μ3 ≤ μ2 the eigenvalues of B, then λn ≤ μn ≤ λn−1 ≤
μn−1 ≤ · · · ≤ λ2 ≤ μ2 ≤ λ1.

Asa special kind ofHermitianmatrices, symmetricmatrices also have the property
stated in Lemma 3.1. By recursively using Lemma 3.1, we can conclude that the
eigenvalues of a symmetricmatrix’s principal sub-matrix (one ormore order less than
the symmetric matrix) are greater than or equal to the symmetric matrix’s smallest
eigenvalue and less than or equal to its greatest eigenvalue.

Another useful lemma is stated as follows:

Lemma 3.2 ([23]) Let W ∈ R
n×n, W � 0, A ∈ R

m×n (m < n), rank(A) = m,
E ∈ R

q×n, then

E(W−1 − W−1AT (AW−1AT )−1AW−1)ET � 0 (3.14)

To our problem, Lemma 3.2 means EMET � 0 with E, and M defined in (3.1) and
(3.6), respectively.

The following lemma plays an important role in the proof of the main theorem.
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Lemma 3.3 Let ε1, εq be the smallest and the largest eigenvalues of EMET , with
E, and M defined in (3.1) and (3.6) as E ∈ R

q×n, M ∈ R
n×n, M = MT and let

A1 = D(I −ρEMET )+ρEMET , where I is an identity matrix of proper dimensions,
D ∈ R

q×q, D = diag(d1, d2, . . . , dq), with di ∈ R, 0 ≤ di ≤ 1 for i = 1, 2, . . . , q,
ρ ∈ R, 0 < ρ ≤ 2

εq
, Then, A1+AT

1 � ρε1I and xT (A1+AT
1 )x ≥ ρε1xTx for ∀x ∈ R

n.

In addition, METx = 0 when xT (A1 + AT
1 )x = 0.

Proof To show A1 + AT
1 � ρε1I , we can equivalently prove xTA1x ≥ ρε1xT x

2 for
x ∈ R

q. Since xTA1x is affine to di for all i = 1, 2, . . . , q, and 0 ≤ di ≤ 1, the
extremum of xTA1x − ρε1xT x

2 is reached when di = 0 or di = 1 for i = 1, 2, . . . , q.

Accordingly, we only need to prove xTA1x ≥ ρε1xT x
2 under the condition that di = 0

or di = 1 for i = 1, 2, . . . , q. In this situation, D is a diagonal matrix with the
diagonal elements to be 0 or 1. To facilitate the analysis, we introduce a permutation
transformationmatrix,P ∈ R

q×qwithPPT = PTP = I , which re-orders the non-zero
elements of D to the left upper part of the diagonal. That is,

PDPT =
[
In0×n0 0
0 0

]

(3.15)

where n0 is the number of 1s on the diagonal of D. For the trivial case n0 = 0, which
means D = 0, the conclusion can be drawn directly by noting that A1 = ρEMET

in this case. For the trivial case n0 = q, which means D = I , the conclusion is also
straightforward since A1 = I in this case. In the following part, we study the case
when 0 < n0 < q. In this case,

xTA1x

= xTD(I − ρEMET )x + ρxTEMETx

= xTPTPDPTP(I − ρEMET )PTPx + ρxTPTPEMETPTPx

= (Px)T (PDPT )P(I − ρEMET )PT (Px) + ρ(Px)T (PEMETPT )(Px)

(3.16)

Define a new variable y = Px and denote y1 ∈ R
n0 the first n0 elements of y and

y2 ∈ R
q−n0 the rest q − n0 elements of y, i.e., y = [yT1 , yT2 ]T . Substituting (3.15) and

y1, y2, y into (3.16), we get,

xTA1x

= yT
[
In0×n0 0
0 0

]

P(I − ρEMET )PTy + ρyT (PEMETPT )y

= [
yT1 0

]
(I − ρPEMETPT )

[
y1
y2

]

+ ρyT (PEMETPT )y

= yT1 y1 − ρ
[
yT1 0

]
(PEMETPT )

[
y1
y2

]

+ ρyT (PEMETPT )y (3.17)
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Define a symmetric matrix A2 ∈ R
q×q and A2 = PEMETPT . A2 has the same

eigenvalues as EMET since A2 and EMET are similar matrices by noting PT = P−1.

Partitioning A2 into blocks A2 =
[
B1 B2

BT
2 B3

]

with B1 ∈ R
n0×n0 , B1 = BT

1 , B3 ∈
R

(q−n0)×(q−n0), B3 = BT
3 , B2 ∈ R

n0×(q−n0), we get,

xTA1x

= yT1 y1 − ρ
[
yT1 0

]
[
B1 B2

BT
2 B3

] [
y1
y2

]

+ ρ
[
yT1 yT2

]
[
B1 B2

BT
2 B3

] [
y1
y2

]

= yT1 y1 + ρyT1B2y2 + ρyT2B3y2

= yT1 y1 + ρyT1B2y2 + ρyT2B3y2 − ρyTA2y

2
+ ρyTA2y

2

= yT1 y1 + ρyT1B2y2 + ρyT2B3y2 − ρ

2
(yT1B1y1 + yT2B3y2 + 2yT1B2y2) + ρ

2
yTA2y

= yT1 (I − ρB1

2
)y1 + ρyT2B3y2

2
+ ρyTA2y

2
(3.18)

Since ε1, εq are the smallest and the largest eigenvalues of EMET , respectively, ε1, εq
are also the smallest and the largest eigenvalues of A2, respectively (As stated above,
EMET has the same eigenvalues as A2). Therefore, ε1I 
 A2 
 εqI . According to
Lemma 3.1, B1, B3, which are principal sub-matrices of A2, have all eigenvalues
less than or equal to εq and greater than or equal to ε1, i.e., ε1I 
 B1 
 εqI and
ε1I 
 B3 
 εqI . Based on this analysis, we get,

xTA1x

≥ (1 − ρεq

2
)yT1 y1 + ρε1yT2 y2

2
+ ρε1yTy

2

≥ ρε1yTy

2

= ρε1(PTx)T (PTx)

2

= ρε1xTx

2
(3.19)

Note that PT = P−1 is used in the derivation of (3.19).
As to the fact that ETx = 0 when the equality in xT (A1 + AT

1 )x = 0 holds, it can
be proved by noticing the following result for xT (A1 + AT

1 )x = 0 from (3.18),

yT1 (I − ρB1

2
)y1 + ρyT2B3y2

2
+ ρyTA2y

2
= 0 (3.20)
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Since I − ρB1

2 � 0, B3 + BT
3 � 0 and A2 � 0, we obtain the following,

yT1 (I − ρB1

2
)y1 = 0 (3.21a)

ρyT2B3y2
2

= 0 (3.21b)

ρyTA2y

2
= 0 (3.21c)

Clearly, (3.21c) implies A2y = 0 since A2 is symmetric and semi-positive definite.
Recalling that A2y = PEMETPTPx = PEMETx and P has a full rank, we thus
conclude that A2y = 0 results in EMETx = 0. Also, EMETx = 0 is equivalent to
xTEMETx = 0 since EMET � 0. Noticing that xTEMETx = (ETx)TM(ETx) and
M � 0, we conclude that METx = 0. This completes the proof.

Now we are on the stage to present the main theorem:

Theorem 3.1 Let ε1 and εq be the smallest and the largest eigenvalues of EMET ,
respectively (according to Lemma 3.2, εq > ε1 ≥ 0), the neural network (3.11) with
ε > 0, 0 < r < 1 and 0 < ρ ≤ 2

εq
is stable in the sense of Lyapunov. Moreover,

the neural network converges if μ0, which is the solution of g
(
(I − ρEMET )μ0 +

ρEs
) + ρEMETμ0 − ρEs = 0, is inside the largest invariant set constructed by the

system dynamics (3.11) and the constraint METsigr
(
g
(
(I − ρEMET )μ′ + ρEs

) +
ρEMETμ′ −ρEs

)
= 0 in terms of μ′. In addition, if EMET has full rank, the neural

network converges to an equilibrium pointμ∗ in finite time and the convergence time

is not longer than
2ε

∥
∥g

(
(I−ρEMET )μ0+ρEs

)
+ρEMETμ0−ρEs

∥
∥1−r

r+1

ρε1(1−r) .

Proof To prove the conclusion, we construct the following Lyapunov function,

V = ‖g((I − ρEMET )μ + ρEs
) + ρEMETμ − ρEs‖r+1

r+1

r + 1
(3.22)

where ‖x‖r+1 denotes the r + 1 norm of a vector x. That is, we have ‖x‖r+1 =
(∑n

i=1 |xi|r+1
) 1

r+1 for x = [x1, x2, . . . , xn]T . Recalling Eq. (3.12), the time derivative
of V along the neural network trajectory (3.11a) can be obtained as follows:

V̇ = μ̇T
(
J(I − ρEMET ) + ρEMET

)T

·sigr
(
g
(
(I − ρEMET )μ + ρEs

) + ρEMETμ − ρEs
)

= −1

ε

(

sigr
(
g
(
(I − ρEMET )μ + ρEs

)

+ ρEMETμ − ρEs
))T (

J(I − ρEMET )
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+ ρEMET
)T
sigr

(
g
(
(I − ρEMET )μ

+ ρEs
) + ρEMETμ − ρEs

)
(3.23)

where J = D+g is the upper-right dini-derivative of g
(
(I − ρEMET )μ + ρEs

)
.

According to the definition of g(·) in (3.4), we know J is a diagonal matrix J =
diag(J1, J2, . . . , Jn) and the ith diagonal element Ji is as follows,

Ji =

⎧
⎪⎨

⎪⎩

1 if ρli ≤ (
(I − ρEMET )μ + ρEs

)

i < ρhi

0 if
(
(I − ρEMET )μ + ρEs

)

i < ρli or
(
(I − ρEMET )μ + ρEs

)

i ≥ ρhi

(3.24)

where li, hi are as defined in (3.4),
(
(I − ρEMET )μ + ρEs

)

i is the ith element of
the vector (I − ρEMET )μ + ρEs. According to Lemma 3.3,

(
J(I − ρEMET ) +

ρEMET
)T + (

J(I − ρEMET ) + ρEMET
) � ρε1I with ε1 denoting the smallest

eigenvalue of EMET . Bringing this inequality into (3.23) yields,

V̇ ≤ −ρε1

2ε

∥
∥
∥sigr

(
g
(
(I − ρEMET )μ + ρEs

) + ρEMETμ − ρEs
)∥
∥
∥
2

= −ρε1

2ε

∥
∥
∥g

(
(I − ρEMET )μ + ρEs

) + ρEMETμ − ρEs
∥
∥
∥
2r

2r
(3.25)

where ‖ ·‖, ‖ ·‖2r represent 2-norm and 2r-norm, respectively. The equality in (3.25)
can be verified by expanding the vector in ‖ · ‖ into elements in every dimensions.
Noting that r + 1 > 2r > 0 for 0 < r < 1, according to the norm inequality (3.13),
we further get,

V̇ ≤ −ρε1

2ε

∥
∥
∥g

(
(I − ρEMET )μ + ρEs

) + ρEMETμ − ρEs
∥
∥
∥
2r

r+1

= −ρε1

2ε

((
(r + 1)V

) 1
r+1

)2r

= −ρε1

2ε
(r + 1)

2r
r+1 V

2r
r+1 (3.26)

According to Lemma 3.2, EMET � 0 and therefore ε1 ≥ 0. Accordingly, V̇ ≤ 0,
which proves the stability of the neural network (3.11).

Particularly if EMET has full rank, there will be no zero eigenvalue for EMET . In
this case, EMET � 0 and ε1 > 0. To prove the finite-time convergence under ε1 > 0,
we first construct an auxiliary scalar dynamic system K̇ = − ρε1

2ε (r + 1)
2r
r+1K

2r
r+1 with

the following initial value of K ,

K0 = V0 = V (t0) =
∥
∥g

(
(I − ρEMET )μ0 + ρEs

) + ρEMETμ0 − ρEs
∥
∥r+1
r+1

r + 1
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with μ0 = μ(t0). The solution of the auxiliary system can be solved by separation
of variables. The solution is,

K(t) =
{

(
V

1−r
r+1
0 − Δ(t − t0)

) r+1
1−r when t0 ≤ t < t1

0 when t ≥ t1
(3.27)

whereΔ ∈ R,Δ = ρε1
2ε (1−r)(r+1)

r−1
r+1 , is a constant. t1 ∈ R, t1 ≥ 0, t1 = t0+ V

1−r
r+1
0
Δ

.
According to theComparisonLemma,weknowV (t) ≤ K(t) for all t ≥ t0. Therefore,
we get,

{

V (t) ≤ (
V

1−r
r+1
0 − Δ(t − t0)

) r+1
1−r when t0 ≤ t < t1

V (t) = 0 when t ≥ t1
(3.28)

With the definition of V in (3.22), we know that V (t) = 0 when t ≥ t1 suggests
g
(
(I −ρEMET )μ+ρEs

)+ρEMETμ−ρEs = 0, which means μ = μ∗ since μ∗ is
an equilibrium point satisfying g

(
(I −ρEMET )μ∗ +ρEs

)+ρEMETμ∗ −ρEs = 0.
Accordingly, we conclude that the proposed neural network converges to an equi-

librium point μ∗ in finite time, which is not greater than t1 − t0 = 2εV
1−r
r+1
0

ρε1(1−r)(r+1)
r−1
r+1

=
2ε

∥
∥g

(
(I−ρEMET )μ0+ρEs

)
+ρEMETμ0−ρEs

∥
∥1−r

r+1

ρε1(1−r) .
This completes the proof.

The following Theorem reveals the relation between the equilibrium point of the
neural network and the optimal solution to the quadratic programming problem (3.1).

Theorem 3.2 Let μ∗ be an equilibrium point of (3.11a), the output of the finite-time
dual neural network at μ∗, which is x∗ = −ρMETμ∗ + s, is the optimal solution to
the quadratic programming problem (3.1).

Proof Note that the equilibrium point μ∗ satisfies sigr
(
g
(
(I −ρEMET )μ∗+ ρEs

)+
ρEMETμ∗ − ρEs

)
= 0, i.e., g

(
(I − ρEMET )μ∗ + ρEs

) + ρEMETμ∗ − ρEs = 0,

which means μ∗ is also a solution to Eq. (3.8). Thus, (λ∗, μ∗, x∗) is a solu-
tion to the equation set composed of Eqs. (3.7), (3.5b), and (3.8), where λ∗ =
− ρ(AW−1AT )−1AW−1ETμ∗ − (AW−1AT )−1(b+ AW−1c). Due to the equivalence
of Eq. (3.2) and the equation set composed of (3.7), (3.5b), and (3.8), we know
(λ∗, μ∗, x∗) is also a solution to Eq. (3.2). Since the solution to Eq. (3.2), according
to KKT conditions, is the optimal solution to the quadratic programming problem
(3.1) in dual space, we conclude that x∗ is the optimal solution of (3.1), which com-
pletes the proof.



36 3 Competition Aided with Finite-Time Neural Network

3.4 An Illustrative Example

In this section, we solve a simulation example to illustrate the performance of the
proposed neural network (3.11). We consider the following quadratic programming
problem:

minimize 3x21 + 3x22 + 4x23 + 5x24 + 3x1x2 + 5x1x3 + x2x4 − 11x1 − 5x4
subject to 3x1 − 3x2 − 2x3 + x4 = 0

4x1 + x2 − x3 − 2x4 = 0
− 73 ≤ −50x1 + 50x2 ≤ −50
− 20 ≤ 32x1 + 10x3 ≤ 41

(3.29)

In this problem, parameters are as follows:

W =

⎡

⎢
⎢
⎣

6 3 5 0
3 6 0 1
5 0 8 0
0 1 0 10

⎤

⎥
⎥
⎦ , c =

⎡

⎢
⎢
⎣

−11
0
0

−5

⎤

⎥
⎥
⎦ , A =

[
3 −3 −2 1
4 1 −1 −2

]

, b =
[
0
0

]

E =
[−50 50 0 0

32 0 10 0

]

, l =
[−73

−20

]

, h =
[−50

41

]

(3.30)

For this problem, the largest eigenvalue of the matrix EMET is εq = 138.43. We
choose ρ = 0.01, which satisfies 0 < ρ ≤ 2

εq
. In addition, the matrix EMET has full

rank, so the neural network converges to the optimal solution in finite time according
to Theorem 3.1. The scaling factor ε is chosen to be 10−8 in the simulation. In this
section,we use this illustrative example to systematically evaluate the performance of
the proposed neural network in four aspects: accuracy, convergence speed, sensitivity
to additive noise and robustness against time delay.

3.4.1 Accuracy

We use r = 0.6 as a particular example to demonstrate the accuracy of our method
(simulations with other values of r and the comparison between different r are per-
formed in the following sections). Simulation is run for 7×10−8 s and the simulation
results in Figs. 3.2 and 3.3 show the evolution of μ and x in this period. At the end of
the simulation, the neural network output is x = [0.4999999992, −0.4999999986,
1.4999999970, 0.0000000007], which is very close to the theoretical optimal solu-
tion x = [0.5,−0.5, 1.5, 0]. Note that there is a tiny error between the output of
the neural network and the theoretical optimal solution. This error results from trun-
cation, approximation, limited step size, etc. in numerical simulations. Figures3.4
and 3.5 show the trajectory of x1 and x2 and that of x3 and x4 from different initial
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Fig. 3.2 Transient behavior of μ in the illustrative example in Sect. 3.4
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Fig. 3.4 Trajectory of x1 and x2 from different initial states in the illustrative example in Sect. 3.4
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Fig. 3.5 Trajectory of x3 and x4 from different initial states in the illustrative example in Sect. 3.4
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states, which verifies the convergence property of the neural network under different
initializations.

3.4.2 Convergence Speed

In this section, we compare the convergence speed of the proposed neural network
at different values of r. As shown in Theorem 3.1, the convergence time has depen-
dence on the initializationμ0. To eliminate the effect of random initialization, results
are averaged over 100 Monte Carlo runs with independently generated initializa-
tion of Gaussian distribution with zero means and unit variance. To evaluate the
performance, the evolution of errors measured in 2-norm under a set of r are plot-
ted in Fig. 3.6. From this figure, we can see that the neural network with a larger
r has a faster convergence at the beginning of the simulation (see the small win-
dow). With the elapse of time, the neural network with a smaller r gradually sur-
passes others in convergence. At the end of the simulation, the errors reach zero for
r = 0, r = 0.2, r = 0.4, r = 0.6, r = 0.8, which verifies the finite-time conver-
gence property of the proposed neural networkmodel. In contrast, the neural network
with r = 1 still has a gap from the zero error at the end.
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Fig. 3.6 Comparisons of errors under r = 0, r = 0.2, r = 0.4, r = 0.6, r = 0.8, r = 1 in the
illustrative example in Sect. 3.4
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3.4.3 Comparisons on Computational Efficiency
in Numerical Simulations

The proposed neural network is described in continuous-time ordinary differential
equations and is implementable on parallel computing devices, such as analog cir-
cuits, with the ideal convergence speed. However, when it comes to the simulation
on a digital computer, the neural network dynamics must be firstly discretized into
an iteration scheme. We use the first-order Euler method to discretize the dynamic
neural network model (3.11) with a fixed time-step length. Then, the discrete-time
version of the proposed model is simulated and compared with the neural network
models proposed in recent years to solve the constrained quadratic programming
problem, namely, the dual neural network [23], the simplified dual neural network
(it is noteworthy that the improved dual neural network [22] only solve the quadratic
programming problem with W being an identity matrix and does not apply to the
problem (3.29)). For both the dual neural network and the simplified dual neural
network, Euler method is employed to discretize the neuro-dynamics. For the three
compared neural network models, the scaling factor is chosen as ε = 10−8. For
the proposed neural network model, we simply choose r = 0.6 and ρ = 1 for the
simulation. For the simplified dual neural network and the proposed neural network,
the time-step length is chosen as 10−10 s. The dual neural network diverges with this
step length and a smaller time step 10−12 s, which compromises the convergence and
computational efficiency, is employed in the comparison. The stopping criteria for
the neural networks is that the error ‖x − x∗‖ (x∗ is the theoretical optimal solution)
is lower than a predefined threshold (10−2, 10−3 and 10−4 are respectively used as
the threshold in the comparisons). The simulation is performed with the program-
ming language Matlab 7.8 on a laptop with the Intel (R) Core(TM) 2 Duo CPU at
1.80GHz and 2GB of RAM. Table3.2 shows the comparison results averaged by
running Monte Carlo simulations for 50 times. As shown in the table, the proposed

Table 3.2 Comparisons on Computational Efficiency in Numerical Simulations of the proposed
model with some existing neural network models

Neural network models Stopping criteria CPU time
(seconds)

Number of
iterations

Dual neural network [22] 10−2 0.2571 3205

10−3 0.4235 4512

10−4 0.6304 6226

Simplified dual neural network [26] 10−2 0.0552 403

10−3 0.0611 627

10−4 0.0856 911

The proposed neural network 10−2 0.0442 121

10−3 0.0507 188

10−4 0.0536 221
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neural network outperforms its counterparts in the sense of both the CPU time and
the number of iterations.

3.4.4 Sensitivity to Additive Noise

In practice, noise may pollute the dynamics of the neural network. Especially when
the neural network is implemented in analog circuits, additive noise is often unavoid-
able. In this part, we compare the sensitivity of the neural network to additive noise
under different r. For simplicity, we only consider the presence of noise in the state
equation. That is, we consider the following neural dynamics:

εμ̇ = − sigr
(
g
(
(I − ρEMET )μ + ρEs

) + ρEMETμ − ρEs
)

+ v (3.31a)

x = −METμ + s (3.31b)

where v is zero mean Gaussian white noise with covariance σ I . As did before, results
are averaged over 100 Monte Carlo runs with independently generated initialization
of Gaussian distribution with zero means and unit variance to eliminate the effect of
random initialization. Figures3.7 and 3.8 show the 2-norm of the difference between
the output of the neural network x and the theoretical optimal point x∗ under different
r and at different noise level of σ . From these figures, we can see that the output of the
neural network cannot reach the ideal optimal solution of the original optimization
problemand the output demonstrates a certain of randomness both due to the presence
of noise. However, the neural network is still able to output an approximation of the
optimal solution and the accuracy of this approximation depends on the noise level
σ . It can be observed in Figs. 3.7 and 3.8 that the error increases, in statistical sense,
with the increase of σ , which is the noise level and on the other hand, the neural
network with a smaller r is less sensitive to the additive noise under a given σ .

3.4.5 Robustness Against Time Delay

In the ideal model of the proposed neural network, time delay is not taken into
account. However, in implementation of the neural network, such as the implemen-
tation with analog circuits, time delay is inevitable due to limited response rate and
sometimes it is crucial to the stability of the system. With this consideration, in this
part, we evaluate the influence of time delay on the neural computing with the pro-
posed neural network under different values of r. We consider the time delay in the
feedback channel of the state equation as follows:
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Fig. 3.7 Comparisons of errors under r = 0, r = 0.2, r = 0.4, r = 0.6, r = 0.8, r = 1 with noise
level σ = 1, σ = 4 in the illustrative example in Sect. 3.4
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εμ̇(t) = − sigr
(
g
(
(I − ρEMET )μ(t − φ) + ρEs

) + ρEMETμ(t − φ) − ρEs
)

(3.32a)

x(t) = −METμ(t) + s (3.32b)

where φ is the time delay, μ(t), μ(t − φ), and x(t) are the state at time t, the state at
time t−φ and the output at time t of the neural network, respectively. For−τ ≤ t ≤ 0,
x is initialized to be a same value, i.e., x(t) = x(0) for −τ ≤ t ≤ 0. Since ε is a
convergence rate scaling factor,we use 1

ε
as the time unit. The simulation is performed

with a zero mean and unit variance initialization, and the results are averaged over
100 Monte Carlo runs. From Figs. 3.9 and 3.10, we can see that the neural network
converges smoothly when the time delay is small (see Fig. 3.9a). With the increase
of the time delay, the neural network with a relative small r starts to oscillate (see
Figs. 3.9b and 3.10a for r = 0, r = 0.2, r = 0.4.). Further increase of the time delay
makes the neural network to oscillate under r = 0, r = 0.2, r = 0.4, r = 0.6, r =
0.8 (see Fig. 3.10b). Among all of them, the neural network with r = 1 is most robust
to time delay and it demonstrates an oscillation with decaying amplitude when the
time delay is τ , while neural networks under r = 0, r = 0.2, r = 0.4, r = 0.6, r =
0.8 demonstrate oscillations without attenuation. The neural network with a smaller
r is more subjective to oscillate when delay appears.

3.4.6 Discussion

This illustrative example on one hand verifies the accuracy and the finite-time con-
vergence property of the proposed neural network under 0 < r < 1 and it also
provides a statistical comparison on the convergence speed, sensitivity to noise and
robustness against time delay with different choices of r. In practice, a proper r
should be selected by trading-off the above mentioned factors in order to obtain a
compressively satisfactory performance. Theoretical and quantitative exploration on
the resistance of the proposed model to additive noise or time delay would be helpful
for real applications. On the issue of the robustness of the proposed model against
additive noise, it is noteworthy that Theorem 3.1 implies the proposed neural network
model is exponentially stable under the condition that EMET has full rank as in this
case μ is finite-time convergent and we can always find an enough large a0 > 0 and
an enough small a1 > 0 such that ‖μ(t) − μ∗‖ < a0e−a1t (this inequality only take
effects before the time point when μ = μ∗ and it holds unconditionally after this
critical time). The exponential stability of system (3.11), with some additional mild
conditions, results in the L2 stability of the system (3.31) with v as input and x−x∗ (x∗
is the ideal output with v = 0) as output. This result reveals the fact that the additive
noise v in (3.31) with finite energy will generate an output x with bounded deviation
from x∗. On the issue of time delay robustness, sufficient conditions expressed as
a set of linear matrix inequalities (LMIs) can be obtained to guarantee the stability
of a cellular neural network with delay. Inspired by this result, it is expectable to
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obtain a set of LMIs for system (3.32) to guarantee its the stability and convergence
under time delay. However, the strong nonlinearity in the proposed neural network
poses great challenges to the quantitive analysis of the above mentioned two aspects,
and makes it nontrivial to conduct such an analysis. The two problems are still open
questions and will be investigated in our future work.

3.5 Solving k-WTA with the Proposed Neural Network

In this section, we apply the proposed finite-time dual neural network to solve the
k-WTA problem and tailor the neural network to that with only a single neuron
by exploiting the specialty of the k-WTA problem [22, 31]. In contrast to exist-
ing works on k-WTA problem solving by using infinite-time convergence recurrent
neural networks, and those using hard-limiting activation function to gain finite-time
convergence, our method has finite convergence time, the activation function is con-
tinuous and the neural network has a free choosing parameter r (0 < r < 1) to
trade-off convergence speed, sensitivity to additive noise and robustness to possible
time delay. In this section, we first formulate the k-WTA problem as a quadratic
programming problem and then give theoretical analysis on the stability, finite-time
convergence and optimality of the proposed neural network for solving k-WTA. At
the end this section, we give simulations to show the effectiveness of our method.

3.5.1 Quadratic Programming Formulation for k-TWA

The k-WTA problem is defined to be the following mapping:

xi = f (ui) =
{
1 ui ∈ {k largest elements of u}
0 otherwise

(3.33)

k-WTAproblem can be equivalently translated into a linear programming problem
or a quadratic programming problem. As to the quadratic programming formulation,
it has the following form [23]:

minimize αxTx − uTx (3.34a)

subject to
∑n

i=1 xi = k (3.34b)

0 ≤ xi ≤ 1 for i ∈ S (3.34c)

where S = {1, 2, . . . , n}, α ∈ R and α > 0. It has been proven that the optimal
solution to the quadratic programming problem (3.34) is also the solution to the
k-WTA problem under the condition that the kth largest element (denoted by ūk) in
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u is strictly larger than the (k + 1)th largest one (denoted by ūk+1) and the constant
parameter α satisfies α ≤ ūk−ūk+1

2 [23].
Conventionally, researchers use either discrete time iterative methods or contin-

uous time recurrent neural network methods to solve the equivalent linear program-
ming or the quadratic programming to get the solution of the k-WTA problem. To
a large-scale problem, in which the dimension of u is very large or even huge, it
takes a long computational time for iterative methods to converge due to the time
complexity of the algorithms. Recurrent neural networkmethods, thank to its parallel
nature, has a much faster convergence. However, even this, most early works using
recurrent neural networks for k-WTA problem solving, in theory, take infinite time
to output the ideal optimal solution. Noticing this drawback, neural networks with a
hard-limiting activation function are developed to gain finite-time convergence [22].
In the following part, we will show that the finite-time convergence property can
still be reached with a different type of activation function in the neural network for
solving k-WTA.

Problem (3.34) is a special case of the quadratic programming problem (3.1) by
choosingW = 2αI , c = −u, A = 1T , b = k, E = I , l = 0, h = 1with I to be a n×n
identity matrix, 0 and 1 to be a n-dimensional vector with all elements equal to zero
and a n-dimensional vector with all elements equal to one. According to Theorems
3.1 and 3.2, we can solve the problem (3.34) by using the following neural network,

εμ̇ = − sigr
(
g
(
(I − ρM)μ + ρs

) + ρMμ − ρs
)

(3.35a)

x = −Mμ + s (3.35b)

where I is an identity matrix of a proper size, ε ∈ R, ε > 0, ρ ∈ R, ρ > 0,
r ∈ R, 0 < r < 1, M = 1

2α (I − 11T

n ), s = 1(2αk−1T u)
2αn + u

2α with 1 denoting a

vector with all entries identical to 1, the function g(·) and sigr(·) are defined in (3.4)
and (3.10), respectively. This neural network for solving the k-WTA problem needs
in total n neurons. Actually, by exploiting the specialty of the problem (3.34), whose
inequalities are all box constraints and every quadratic term in the cost function has
an equal weight, problem (3.34) can be solved using a single dynamic neuron in
finite time. To see this, we equivalently write (3.34) into the following form,

minimize ρ

2 x
Tx − ρ

2αu
Tx (3.36a)

subject to
∑n

i=1 xi = k (3.36b)

0 ≤ xi ≤ 1 for i ∈ S (3.36c)

where ρ ∈ R, ρ > 0. According to the KKT condition, we get,

ρx − ρu
2α + 1λ + μ = 0 (3.37a)

1Tx = k (3.37b)
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⎧
⎪⎨

⎪⎩

x = h if μ > 0

l < x < h if μ = 0

x = l if μ < 0

(3.37c)

where λ ∈ R and μ ∈ R
n are dual variables to the equality constraint (3.36b) and

the box constraint (3.36c), respectively. Introducing the saturation function g(·) as
defined in (3.4), (3.37c) can be simplified to

ρx = g(ρx + μ) (3.38)

Note that ρx + μ = ρu
2α − 1λ according to (3.37a), so we can get the expression of x

in terms of λ from (3.38), which writes,

x = 1

ρ
g

(ρu

2α
− 1λ

)
(3.39)

Similarly, with (3.37a) and (3.39), we can express μ in terms of λ as follows:

μ = − λ1 + ρu

2α
− g

(ρu

2α
− λ1

)
(3.40)

With (3.37b) and (3.39), we get,

k = 1

ρ
1T g

(ρu

2α
− λ1

)
(3.41)

We use the following dynamic neuron to solve (3.41) in finite time:

ελ̇ = sigr
(
1T g(

ρu

2α
− λ1) − ρk

)
(3.42)

where ε ∈ R, ε > 0 is a scaling factor.
To summarize, we use the following neural network with a single dynamic neu-

ron to solve the k-WTA problem (3.33) (equivalent to the quadratic programming
problem (3.34)) in finite time:

state equation: ελ̇ = sigr
(
1T g(

ρu

2α
− λ1) − ρk

)
(3.43a)

output equation: x = 1

ρ
g

(ρu

2α
− 1λ

)
(3.43b)

where I is an n× n identity matrix, 1 is a n dimensional vector with all entries equal
to 1, ε ∈ R, ε > 0, ρ ∈ R, ρ > 0, r ∈ R, 0 < r < 1, α ∈ R, α > 0 and α ≤ ūk−ūk+1

2
with ūk and ūk+1 denoting the kth largest and the (k + 1)th largest element in u the
function g(·) and sigr(·) are defined in (3.4) and (3.10), respectively. In this neural
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network, the lower and upper bound are li = 0 and hi = 1 for all i in (3.4) and sigr(·)
reduces to a scalar function with mapping R → R.

3.5.2 Theoretical Results for Solving k-WTA
with the Proposed Neural Network

On the stability, finite-time convergence and solution optimality of the neural network
(3.43), we have conclusions stated in the following theorems.

Theorem 3.3 The recurrent neural network (3.43) with 0 < r < 1, ρ > 0 and
ε > 0 is stable in the sense of Lyapunov and converges to an equilibrium point λ∗ in
finite time.

Proof To prove the conclusion, we construct the following Lyapunov function,

V = |1T g( ρu
2α − λ1) − ρk|r+1

r + 1
(3.44)

where |x| denotes the absolute value of a scalar x. The time derivative of V along the
neural network trajectory (3.43) can be obtained as follows:

V̇ = − λ̇1TD+g1sigr
(
1T g(

ρu

2α
− λ1) − ρk

)
(3.45)

where D+g denotes the upper right dini-derivative of the function g( ρμ

2α − λ1).
According to the definition of g(·) in (3.4), we knowD+g is a diagonal matrix of the
form D+g = diag(J1, J2, . . . , Jn) and the ith diagonal element Ji is as follows,

Ji =

⎧
⎪⎨

⎪⎩

1 if 0 ≤ ρui
2α

− λ < ρ

0 if
ρui
2α

− λ < 0 or
ρui
2α

− λ ≥ ρ
(3.46)

Further, we get

V̇ = −
∑n

i=1 Ji
ε

(

sigr
(
1T g(

ρu

2α
− λ1) − ρk

))2r

= −
∑n

i=1 Ji
ε

(
1T g(

ρu

2α
− λ1) − ρk

)2r

(3.47)

Since Ji ≥ 0 for all i = 1, 2, . . . , n,
∑n

i=1 Ji ≥ 0 and V̇ ≤ 0, which means the neural
network (3.43) is stable in the sense of Lyapunov.
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To study the finite time convergence property, we first define a set U = {λ ∈
R |V̇ = 0}. Obviously, both the solution of 1T g( ρu

2α − λ1) − ρk = 0 and the solution
of Ji = 0 for all i = 1, 2, . . . , n are elements in U. However, only the former one
is invariant with the neural network trajectory (3.43). The latter one cannot stay on
the neural network trajectory forever. According to LaSalle’s invariance principle,
we conclude that the neural network (3.43) asymptotically converges to the solution
of 1T g( ρu

2α − λ1) − ρk = 0, which means for any small ball centered at the solution

of 1T g( ρu
2α − λ1) − ρk = 0, we can always find a finite time t1, after which λ stays

in that ball forever. Moreover, since the solution of Ji = 0 for all i = 1, 2, . . . , n
has no intersection with the solution of 1T g( ρu

2α − λ1) − ρk = 0, we can always

find a small enough ball centered at the solution of 1T g( ρu
2α − λ1) − ρk = 0 but has

no intersection with the solution of Ji = 0 for all i = 1, 2, . . . , n and also find the
corresponding finite time t1, after which λ stays inside the small enough ball forever.
For λ in the above defined ball,

∑n
i=1 Ji > 0 (otherwise, the ball has intersection

with the solution of Ji = 0 for all i = 1, 2, . . . , n). The least value for
∑n

i=1 Ji with∑n
i=1 Ji �= 0 is 1 according to (3.46). Therefore, we have for t ≥ t1:

V̇ ≤ −1

ε

(
1T g(

ρu

2α
− λ1) − ρk

)2r

= −1

ε

(
(r + 1)V

) 2r
r+1 (3.48)

As the auxiliary system K̇ = − 1
ε

(
(r + 1)K

) 2r
r+1 with 0 < r < 1 and K(t1) = V (t1)

converges to zero in finite time, say Δt, we know 0 ≤ V ≤ K for t ≥ t1 according
to the Comparison Lemma and thus the neural network also converges before the
time t1 + Δt. Since both Δt and t1 are finite, we conclude that the neural network
converges in finite time. This completes the proof.

The following Theorem reveals the relation between the equilibrium point of the
neural network and the optimal solution to the k-WTA problem (3.33) (equivalent to
the quadratic programming problem (3.34)).

Theorem 3.4 Let λ∗ be an equilibrium point of the neural network (3.43), the output
of this neural network at λ∗, which is x∗ = 1

ρ
g( ρu

2α − λ∗1), is the optimal solution to
the k-WTA problem (3.33).

Proof The proof is similar to the proof of Theorem 3.2 and therefore omitted.

Remark 3.4 Theorem 3.4 reveals that the proposed neural network converges to the
unique optimal solution of the k-WTA problem. Note that the equilibrium point λ∗
is not necessary to be unique but all feasible λ∗ lead to a unique x∗ guaranteeing the
optimality. The non-uniqueness of λ∗ can be observed in Sect. 3.5.3.1.
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3.5.3 k-WTA Simulations

In this section, we use two simulation examples to demonstrate the effectiveness of
the proposed method for solving the k-WTA problem.

3.5.3.1 Static k-WTA Problem

For the static k-WTA problem, we consider time invariant signals as the input. In
the simulation, we consider a k-WTA problem with k = 5 and n = 15 randomly
generated values as the input, which is u = [1.2852, −1.3708, −3.2431, 4.4145,
−9.7269, −2.5188, 8.4537, 0.9296, −0.5223, −0.0693, −3.8206, 9.0168, 9.6399,
0.2713, 9.8518]. The neural network parameters are chosen to be α = 0.1, ε = 10−6,
r = 0.5 and ρ = 1, respectively. Figure3.11 illustrates the state trajectory under
different initializations. From this figure, we can see that the state λ converges to
different values under different initialization, which verifies the statement that the
equilibrium point λ∗ is not unique as pointed out in Remark 3.4. For all these values
of λ∗, the outputs of the neural network are all equal to [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
1, 1, 0, 1], which means that u4, u7, u12, u13 and u15 are the 5 largest ones in u.
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Fig. 3.11 State trajectory of the k-WTA problem in the simulation example in Sect. 3.5.3.1
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3.5.3.2 Dynamic k-WTA Problem

For the dynamic k-WTA problem, the input signals are time varying and we use this
example to test the real-time performance of our method. In the simulation, there are
four input signals, which are ui = 10sin(200π t + 0.4π(i − 1)) for i = 1, 2, 3, 4,
respectively. The four input signals compete for twowinners,whichmeanswe choose
k = 2. In addition, we choose α = 0.1, ρ = 1, ε = 10−6, r = 0.5 for the neural
network. The four input signals and the output of the neural network are plotted in
Fig. 3.12. From this figure, we can see the proposed neural network can successfully
find the two largest signals in real time.
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Fig. 3.12 Inputs and outputs of the proposed neural network for solving the dynamic k-WTA
problem in Sect. 3.5.3.2
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3.6 Summary

In this chapter, a finite-time dual neural network is presented to solve quadratic
programming problems. Compared with existing recurrent neural networks, such as
the dual neural network, the improved dual neural network, the simplified dual neural
network, etc., which never converge in finite time, the proposed neural network has
a finite-time converge property. Conditions for the stability, finite-time convergence
and solution optimality to the quadratic programming problem are established in
theory and simulations are performed to validate the finite-time convergence property
and compare the convergence speed, sensitivity to additive noise and robustness
against time delay under different choices of parameters. The finite-time dual neural
network is applied to solving the k-WTAproblem.Theoretical analysis and numerical
simulations validate the effectiveness of our method in the k-WTA application.
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Chapter 4
Competition Based on Selective
Positive-Negative Feedback

Abstract In this chapter, wemake steps in that direction and present a simplemodel,
which produces the winner-take-all competition by taking advantage of selective
positive-negative feedback through the interaction of neurons via p-norm. Compared
to models presented in Chaps. 1, 2 and 3, this model has an explicit explanation of the
competition mechanism. The ultimate convergence behavior of this model is proven
analytically. The convergence rate is also discussed. Simulations are conducted in
the static competition and the dynamic competition scenarios. Both theoretical and
numerical results validate the effectiveness of the dynamic equation in describing
the nonlinear phenomena of winner-take-all competition.

Keywords Winner-take-all competition · Recurrent neural networks · Selective
positive-negative feedback · Global stability · Numerical simulations

4.1 Introduction

Winner-take-all refers to the phenomena that agents in a group compete with each
others for activation and only the one with the highest input stays active while all the
others deactivated. It widely exists in nature and the society: for most plants, themain
central stem, which only appears slightly stronger than other side stems at the very
beginning of the plant development, grows more and more strongly and eventually
is dominant over others [1]. It has been observed in the society that once a firm
gets ahead, it is more likely to become better and better over time while the others
will fall further behind [2]. Neuroscientists find that the contrast gain in the visual
systems comes from a winner-take-all competition among overlapping neurons [3].
Other examples of the winner-take-all competition include decision making in the
cortex [4], animal behaviors [5], competition-based motion generation of multiple
redundant manipulators [6], etc.

Apart from the natures of distributed-storage and high-speed parallel-processing,
neural networks can be readily implemented by hardware and thus have been widely
applied in various fields, including the competition phenomena, [7–24]. The N
species Lotka–Volterra model is often used to model the competitive interaction
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between species. Under elaborately selected parameters, the N species Lotka–
Volterra model is able to demonstrate the winner-take-all competition. This model
is applied in [25] to generate the winner-take-all competition. In the field of com-
putational neuroscience, the FitzHugh–Nagumo model is often used to describe the
dynamic interaction of neurons. In some situations, the neurons interact with each
other in a winner-take-all manner and the winner spikes. Inspired by this fact, this
describing model is in turn applied to generate the winner-take-all behavior [26, 27].
In [26], the authors show that the model outputs oscillations under a set of para-
meter setups and the oscillatory amplitude of the winner is greater than the spiking
threshold while the amplitude of the losers are much less than threshold. In [27],
theoretical analysis on the stability and convergence of a large scale winner-take-all
networks is conducted by using nonlinear contraction theory. In addition, the authors
show that the presented network is stable for a range of parameters. In [28–31], the
winner-take-all problem is solved by modeling the problem as an optimization prob-
lem. In [28], a combinatorial optimization solver is presented to solved the problem.
In [29], the problem is model as a convex quadratic programming problem and a
recurrent neural network developed for solving constrained quadratic programming
is applied to solve it. Following the same problem formulation, the neural network
presented in [29] is simplified in [30] by tailoring the structure and taking advantage
of the nonlinearity provided by a saturation function used in the model. In [31], an
one-layer recurrent neural network is developed to solve the winner-take-all com-
petition by modeling the problem as a constrained linear programming. Although
the optimization based approach solves the problem accurately, operations such as
saturation function, matrix multiplication of the state vector, etc., are often necessary
in the iterations to approach the desired solution and thus are often computationally
intensive. In addition, the resulting dynamics are often complicated and are often
difficult to explain the winner-take-all mechanism from its dynamic equations.

Although many models have been presented to explain and generate the winner-
take-all behavior [25–31], these models are often very complicated due to the com-
promisewith experimental realities in the particular fields. Consequently, the essence
of the winner-take-all competition may be embedded in the interaction dynamics of
those models, but difficult to tell from the sophisticated dynamic equations. Moti-
vated by this, we develop a simple neural network model to solve the problem. The
presented model has a star communication topology between neurons and is scal-
able to situation with a large number of competitors. The model is described by an
ordinary equation with the space dimension equal to the number of competitors. In
addition, compared with the model using the Euclidean norm for global information
exchange, the presented model extend the results to the more general p-norm cases.
Moreover, the presented model demonstrates different robustness and convergence
speed for different choice of parameters and thus allow the user to choose a set of
parameters for better performance in applications.
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4.2 Preliminaries

In this section, we present some useful preliminaries for p-norm and system stability.
We first present preliminaries on p-norm.

For a n-dimensional vector x = [x1, x2, . . . , xn]T with xi ∈ R for i = 1, 2, . . . , n,
its p-norm, denoted as ‖x‖p, is defined as follows,

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p) 1
p , (4.1)

where p > 0.
For ‖x‖p, the following partial derivative results hold,

∂‖x‖p
p

∂xi
= ∂(|x1|p + |x2|p + · · · + |xn|p)

∂xi

= ∂|xi |p
∂xi

= ∂|xi |p
∂xi

= p|xi |p−1sgn(xi ), (4.2)

where sgn(·) is the sign function defined as,

sgn(u) =

⎧
⎪⎨

⎪⎩

1 if u > 0

0 if u = 0

−1 if u < 0,

(4.3)

with u ∈ R.
Based on the partial derivative of ‖x‖p shown in (4.2), the gradient of 1

p‖x‖p
p can

be obtained as,

∇ 1

p
‖x‖p

p = sigp−1(x), (4.4)

for p > 0 with the operator ‘sigk(·)’ defined as,

sigk(x) = [|x1|ksgn(x1), |x2|ksgn(x2), . . . , |xn|ksgn(xn)]T , (4.5)

where x = [x1, x2, . . . , xn]T . According to this definition, we can directly obtain the
following equation,

xT sigk(x) = ‖x‖k+1
k+1. (4.6)

For following inequalities hold for the estimation of p-norms in different p values.

‖x‖p ≤ ‖x‖r ≤ n
1
r − 1

p ‖x‖p, (4.7)

where p > r > 0, n represents the dimension of the vector x .
The following results will be used later as tools for convergence analysis.
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Definition 4.1 ([32]) A continuous function α : [0, a) → [0,∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞
if a = ∞ and α(r) → ∞ as r → ∞.

Lemma 4.1 ([32]) Let D ⊂ R
n be a domain that contains the origin and

V : [0,∞) × D → R be a continuous differentiable function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖), (4.8)

V̇ = ∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −W (x), ∀‖x‖ ≥ μ > 0, (4.9)

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class K functions and W (x) is a
continuous positive definite function. Take r > 0 such that Br ⊂ D and suppose that
μ < α−1

2 (α1(r)). Then, for every initial state x(t0), satisfying ‖x(t0)‖ ≤ α−1
2 (α1(r)),

there is T ≥ 0 (dependent on x(t0) and μ) such that the solution of ẋ = f (t, x)
satisfies,

‖x(t)‖ ≤ α−1
1 (α2(μ)) ∀t ≥ t0 + T . (4.10)

Moreover, if D = R
n and α1 belongs to class K∞, then the result (4.15) holds for

any initial state x(t0), with no restriction on how large μ is.

The following Lemma is also useful for the analysis of the ultimate behavior of a
dynamic system,

Lemma 4.2 ([33]) Let Ω ⊂ D be a compact set that is positively invariant with
respect to ẋ = f (x). Let V : D → R be a C1-function such that V̇ (x) ≤ 0 on Ω .
Let E be the set of all points in Ω such that V̇ (x) = 0. LetM be the largest invariant
set in E. Then, every solution starting in Ω approaches M as t → ∞.

The mapping V in Lemma 4.2 is not necessary to be positive definite, which is
a major difference from the Lyapunov function in conventional stability analysis of
dynamic systems [33]. Instead, V is required to be be a continuous differentiable
function in Lemma 4.2, which is much looser than the positive definite requirement.

4.3 The Winner-Take-All Neural Network

4.3.1 The Neural Network Based Winner-Take-All Problem

In this chapter, similar to the previous chapters, we are concerned with a neural
network based approach to find the winner in a group of competitors. Concretely,
we want to find i∗ = argmax{u1, u2, . . . , un} for the input vector u = [u1, u2, . . . ,
un]T ∈ R

n with ui ∈ R by using neural networks, i.e., to find the winner among u1,
u2, …, un by neural networks.
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4.3.2 Neuro-Dynamics

Inspired by the normalized recurrent neural network [34] and the use of the general
norm on modeling the power of signals [35], we presente a recurrent neural network
with a general p-norm as the regulation term for winner-take-all competition. The
presented model has the following dynamic for the i th neuron in a group of totally
n neurons,

ẋi = c0(ui − c1‖x‖p+1
p+1)|xi |psgn(xi ), (4.11)

where xi ∈ R denotes the state of the i neuron, ui ∈ R is the input and ui ≥ 0,
ui �= u j for i �= j , p ∈ R, p ≥ 0, ‖x‖p+1 is the (p + 1)-norm of the state vector
x = [x1, x2, . . . , xn]T , c0 ∈ R, c0 > 0 and c1 ∈ R, c1 > 0 are both constant.

ThedynamicEq. (4.11) canbewritten into the following compact formby stacking
up the state for all neurons,

ẋ = c0
(
u ◦ sigp(x) − c1‖x‖p+1

p+1sig
p(x)

)
, (4.12)

where x = [x1, x2, . . . , xn]T , u = [u1, u2, . . . , un]T , the operator ‘◦’ represents the
multiplication in component-wise, i.e., u ◦ x = [u1x1, u2x2, . . . , unxn]T .
Remark 4.1 The presented neural network can be regarded as a black box. The
i th neuron in the network receives input ui and outputs xi through the dynamic
interactions with other neurons. As will be proved in Sect. 4.4, with the presented
model (4.11), the winner neuron i∗ = argmax{u1, u2, . . . , un} can be identified by
checking whether limt→∞ xi (t) = 0 (if limt→∞ xi (t) �= 0, i = i∗ and otherwise,
i �= i∗).

Remark 4.2 The neuro-dynamics described by (4.11) is connected in a star topology.
As can be observed from (4.11), the i th neuron is only connected to the central node,
which computes the p-norm of the whole network state values. The information
exchange between neurons comes indirectly from their direct interaction with the
central node.

Remark 4.3 Choosing the Euclidean norm, which corresponds to the special case of
(4.11) by choosing p = 1, the presented model reduces to the following in vector
form,

ẋ = c0(u ◦ x − c1‖x‖2x), (4.13)

where ‖ · ‖ represents the Euclidean norm. In other words, the presented model is
a generalization from (4.13), which uses the Euclidean norm to the general p-norm
scheme. Note that this generalization is not trivial as the p-norm function y = ‖x‖p

corresponds to different level sets (see Fig. 4.1) and thus lead to completely different
dynamic evolution of x in (4.11).
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Fig. 4.1 The level set for ‖x‖p = 1 in two-dimensional space with different value of p

Remark 4.4 Particularly for p = 0, the presented model (4.11) reduces to the fol-
lowing in vector form,

ẋ = c0
(
u ◦ sgn(x) − c1‖x‖1sgn(x)

)
, (4.14)

where sgn(x) = [sgn(x1), sgn(x1), . . . , sgn(xn)]T for x = [x1, x2, . . . , xn]T with
sgn(·) being the sign for scalar entries. Note that this is a typical recurrent neural
network with hard-limiting activation function and is often able to demonstrate a
finite-time convergence as shown in [36]. In addition, it is noteworthy that the global
information term ‖x‖p

p reduces to ‖x‖1 in (4.14), which is the norm widely used in
machine learning for data sparsification due to its ability to approximate the cardinal-
ity ‖x‖0. It will be an interesting topic to investigate the protocol from the perspective
of sparse optimization.

4.4 Convergence Results

In this section, theoretical results on the dynamic system (4.11) are presented. The
rigorous proof of the main results needs the uses of LaSalle’s invariant set principle
[33], local stability analysis and the ultimate boundedness theory [32].
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With Lemma 4.1, we are able to prove the following lemma for our main result,

Lemma 4.3 There exists T ≥ 0 (dependent on x(t0) and μ) such that the solution
of the neuron dynamic Eq. (4.12) satisfies,

‖x(t)‖ ≤ μ ∀t ≥ t0 + T, (4.15)

where μ = μ0(
umax+μ1

c1
)

1
p+1 with μ1 > 0 being any positive constant, μ0 =

max{n( 1
2 − 1

p+1 )
, 1} and umax = max{u1, u2, . . . , un}.

Proof We prove the result by following the framework of Lemma 4.1. Let D = R
n ,

V = 1
2 x

T x and α1(‖x‖) = α2(‖x‖) = 1
2‖x‖2 = V . For V , we have

V̇ = xT ẋ,

= c0x
T
(
u ◦ sigp(x) − c1‖x‖p+1

p+1sig
p(x)

)
,

= c0x
T
(
diag(u)sigp(x) − c1‖x‖p+1

p+1sig
p(x)

)
,

≤ c0(umax − c1‖x‖p+1
p+1)x

T sigp(x),

= c0(umax − c1‖x‖p+1
p+1)‖x‖p+1

p+1. (4.16)

Note that diag(u) is a diagonal matrix and its largest eigenvalue is umax, from which
the last inequality in (4.16) is obtained. According to the inequalities given in (4.7),
we have

‖x‖ ≤
{
n( 1

2 − 1
p+1 )‖x‖p+1 for p > 1,

‖x‖p+1 for p ≤ 1,

wheren represents the dimensionof x . Inequality (4.17) is equivalent to the following,

‖x‖ ≤ μ0‖x‖p+1, (4.17)

where μ0 = max{n( 1
2 − 1

p+1 )
, 1}. Together with (4.16), we have,

V̇ ≤ c0

(

umax − c1

(‖x‖
μ0

)p+1
)

‖x‖p+1
p+1, (4.18)

With this result, it is sufficient for

(

umax − c1
(

‖x‖
μ0

)p+1
)

≤ −μ1 ≤ 0, i.e., ‖x‖ ≥

μ0

(
umax+μ1

c1

) 1
p+1

, to guarantee the following inequality,

V̇ ≤ −c0μ1‖x‖p+1
p+1, (4.19)
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with μ1 > 0. This results fall into the framework of Lemma 4.1 by choosing

μ = μ0

(
umax+μ1

c1

) 1
p+1

and W (x) = c0μ1‖x‖p+1
p+1 in (4.9). Therefore, we conclude,

according to Lemma 4.1, that

‖x‖ ≤ α−1
1 (α2(μ)) = μ = μ0

(
umax + μ1

c1

) 1
p+1

∀t > t0 + T, (4.20)

for any initialization of x . This completes the proof.

This lemma reveals the state of the dynamic model (4.12) is ultimately bounded
inside a compact super ball in R

n with radius μ. In other words, this super ball is
positively invariant with respect the system dynamic (4.12). With this result on hand,
we can confine our analysis in this super ball for further investigation of the system
behaviors by applying LaSalle’s invariant set principle.

Theorem 4.1 The solution of the system involving n dynamic neurons with the
i th neuron described by (4.11) globally approaches 0 for i �= i∗ and approaches
(
ui∗
c1

) 1
p+1

ei∗ (or −
(
ui∗
c1

) 1
p+1

ei∗ ) for i = i∗ as t → ∞, provided any initialization

with the initial value of the i∗ neuron positive (or negative), where i∗ denotes the
label of the winner, i.e., i∗ = argmax{u1, u2, . . . , un}.
Proof There are three steps for the proof. The first step is to prove that the state
variable ultimately converges to a set consisting of a limit number of points, the
second step proves there are only two single point among the candidates is stable
and the third step gives the condition on initial conditions to decide which stable
equilibrium point the system will converge to.

Step 1: According to Lemma 4.3, the state variable x in the system dynamic (4.12)
is ultimately bounded by a compact super ball inRn with radiusμ implying this super
ball is positively invariant with respect the system dynamic (4.12) and the super ball
{x ∈ R

n|‖x‖ ≤ μ} is qualified to be the set Ω in Lemma 4.2.
Let V = V1 + V2, with

V1 = − 1

p + 1

n∑

i=1

ui |xi |p+1, (4.21)

V2 = c1
2(p + 1)

‖x‖2p+2
p+1 . (4.22)

Apparently, V is a C1-function. For V1, we have,

V̇1 = −
n∑

i=1

ui |xi |psgn(xi )ẋi = − (
sigp(x)

)T
diag(u)ẋ . (4.23)
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For V2, we have,

V̇2 = c1
2(p + 1)

d(‖x‖p+1
p+1)

2

dt
= c1

(p + 1)
‖x‖p+1

p+1

d(‖x‖p+1
p+1)

dt

= c1
(p + 1)

‖x‖p+1
p+1(∇‖x‖p+1

p+1)
T ẋ = c1

(p + 1)
‖x‖p+1

p+1(p + 1)
(
sigp(x)

)T
ẋ

= c1‖x‖p+1
p+1

(
sigp(x)

)T
ẋ . (4.24)

Accordingly,

V̇ = V̇1 + V̇2

= −
(

(
sigp(x)

)T
diag(u) − c1‖x‖p+1

p+1

(
sigp(x)

)T
)

ẋ

= − c0
∥
∥u ◦ sigp(x) − c1‖x‖p+1

p+1sig
p(x)

∥
∥2

≤ 0. (4.25)

According to the expression of V̇ obtained in (4.25), we find diag(u)sigp(x) =
c1‖x‖p+1

p+1sig
p(x) by letting V̇ = 0. Note that diag(u)sigp(x) = c1‖x‖p+1

p+1sig
p(x)

is an eigenvector equation relative to the matrix diag(u) and the vector sigp(x).
Note that the eigenvalue and eigenvector pairs of the diagonal matrix diag(u) are
ui and kei for i = 1, 2, . . . n, with k ∈ R is a scaling constant and ei denoting
a n-dimensional vector with the i th component 1 and all the other component 0.
Therefore, the solution for diag(u)sigp(x) = c1‖x‖p+1

p+1sig
p(x) is the solution of

the two equations c1‖x‖p+1
p+1 = ui and sigp(x) = kei for i = 1, 2, . . . , n (i.e.,

xe = ±( uic1
)

1
p+1 ei by solving the two equations) and the trivial solution xe = 0.

Define the set M = {0,±( uic1
)

1
p+1 ei for i = 1, 2, . . . , n}. According to

Lemma 4.2, every solution starting in Ω = {x ∈ R
n|‖x‖ ≤ μ} approaches M

as t → ∞. Together with the fact proven in Lemma 4.3 that every solution stays in
Ω ultimately, we conclude that every solution with any initialization approaches M
as t → ∞.

Step 2: The first step in this proof shows there are several candidate fixed points to
stay for the dynamic system. In this step, we show that all those fixed points inM are

unstable except for the one corresponding to thewinner, i.e., x = ±(
uk∗
c1

)
1

p+1 ek∗ ,where
k∗ = argmax{u1, u2, . . . , un}. To show the instability of some equilibrium points,
we only need to show that there exists a streamline starting from that equilibrium
point to elsewhere, which is equivalent to the fact that there exists a streamline from
a non-equilibrium point to the equilibrium point for the new dynamic system with
time t replaced by −t (note that for an autonomous system, replacing t with −t
meaning that the initial state of the original system is identical to the ultimate state
of the new system). Following this idea, we consider the following auxiliary system
with reversed time direction,
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ẋi = − c0(ui − c1‖x‖p+1
p+1)|xi |psgn(xi ), (4.26)

and we need to show that there exists a state x0, the streamline of (4.26) starting from
which ends up at the equilibrium point xe.

For xe = 0, we choose x0 = ke1, where k > 0 is a small positive constant
and e1 denotes a n-dimensional vector with the first component 1 and all the other
component 0. Clearly, x j for j = 2, 3, . . . , n starting from x0 = ke1 for the auxiliary
system (4.26) stays at x j = 0 in values since ẋ j = 0 for them while ẋ1 = −c0(u1 −
c1‖x‖p+1

p+1)|x1|psgn(x1) < 0 for x1 > 0 and small enough k, which means x1 keeps
reducing to zero. Therefore, we conclude that xe = 0 is unstable.

For xe = ( uic1
)

1
p+1 ei with i �= i∗ (i∗ denotes the winner neuron), we choose

x0 = xe + kei∗ with k > 0 being a constant to test the convergence. For j �= i∗, the
value of x j of the auxiliary system (4.26) starting from x0 = xe+kei∗ stays at x j = xej
in values since u j |x j |psgn(x j ) = ‖x‖p+1

p+1|x j |psgn(x j ) (i.e., ẋ j = 0). For j = i∗,
ẋi∗ = −c0(ui∗ − c1‖xe + kei∗‖p+1

p+1)|k|psgn(k) at x j = k. Note that xe = ( uic1
)

1
p+1 ei

implies c1‖xe + kei∗‖p+1
p+1 = ui < ui∗ . In addition, ‖xe + kei∗‖p+1

p+1 ≈ ‖xe‖p+1
p+1 for

small enough k > 0. Accordingly, ẋi∗ < 0 for small enough k > 0. Therefore, we
conclude that xe = ( uic1

)
1

p+1 ei is unstable.

It isworth noting that for i = i∗, x0 = xe+kei . Note that xe+kei = (
( uic1

)
1

p+1 +1
)
ei

and‖xe+kei‖p+1
p+1 = (

( uic1
)

1
p+1 +1

)p+1
>

(
( uic1

)
1

p+1
)p+1 = ‖xe‖p+1

p+1 for any k > 0.Also

computing p + 1 norm on both sides of xe = ( uic1
)

1
p+1 ei generates ui = c1‖xe‖p+1

p+1.

Together with ‖xe +kei‖p+1
p+1 > ‖xe‖p+1

p+1, we get ui −c1‖xe +kei‖p+1
p+1 < 0 for k > 0.

Also note that xei dominates over k for small enough k > 0 in sgn(xei+k) and |xei+k|,
we thus conclude ẋi = −c0(ui − c1‖xe + kei‖p+1

p+1)|xei + k|psgn(xei + k) > 0 for
small enough positive constant k (recall xei > 0), which is different from the cases
with i �= i∗.

The instability of xe = −( uic1
)

1
p+1 ei with i �= i∗ (i∗ denotes the winner neuron)

can be similarly proved and thus omitted.

Step 3: Actually, we can conclude that the steady state value is (
ui∗
c1

)
1

p+1 ei∗ if the

initial state of the winner is positive while it is −( ui
∗

c1
)

1
p+1 ei∗ if the initial value is

negative by noting that ẋi∗ = 0 when xi∗ = 0 in (4.11) for i = i∗, which means the
state value xi∗ will never cross the critical value x∗

i = 0.

In summary, we conclude that every solution approaches xe = (
ui∗
c1

)
1

p+1 ei∗ (or

xe = −(
ui∗
c1

)
1

p+1 ei∗ ) ultimately, provided any initialization with the initial value of
the i∗ neuron positive (or negative), where i∗ = argmax{u1, u2, . . . , un} and ei∗
being a n-dimensional vector with the i∗th component 1 and all the other component
0. Entrywisely, the solution approaches xi = 0 for i �= i∗ and xi∗ = ±( ui

∗
c1

)
1

p+1 ,
which completes the proof.
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4.5 Discussion on One-Sided Competition Versus
Closely-Matched Competition

In this section, we provide an comparison of an one-sided competition and a closely-
matched competition using the presented model.

Imagine a football game. There are only two neurons and the competition happens
between the two teams. If one team has an overwhelming strength, it may demon-
strate an obvious advantage over its opponent in a very early stage while it often
takes a relatively long time for a fierce competition between two closely-matched
teams to demonstrate a clear win and loss. Analogously, we may expect to observe a
fast convergence in the winner-take-all competition, where a distinct advantage for
one neuron over others exists while a slow convergence for closely-matched com-
petitions. Theoretically speaking, this expectation corresponds to the statement that
the convergence rate of the winner-take-all competition has a strong dependence on
the comparisons of the input value of the winner and the input values of the others.
This phenomena can be explained by the model (4.11). For simplicity, we consider
the case with parameter c0 = c1 = p = 1 in (4.11), i.e., the following dynamic
equations,

ẋ = u ◦ x − ‖x‖2x, (4.27)

where ‖x‖ represents the Euclidean normof the vector x . As there exists a strong non-
linearity in (4.27), it is difficult to analyze the convergence rate directly. Nevertheless,
we can approximately analyze the convergence rate by considering its linearization
about the equilibrium point. According to Theorem 4.1, the stable equilibrium point

is xe = ±(
ui∗
c1

)
1

p+1 ei∗ = ±√
ui∗ei∗ , where i∗ denotes the label of the winner and

ei∗ denotes a n-dimensional vector with the i∗th element being 1 and all the other
elements being zeros. The linearized system around this fixed point is as follows,

ẋ = (
diag(u) − 2xex

T
e − ‖xe‖2 In

)
x, (4.28)

where In is an×n identitymatrix. The systemmatrix of the above system is a diagonal
matrix and its j th diagonal component, which is also its j th eigenvalue, is (u j −ui∗)
for j �= i∗ and−2ui∗ for j = i∗. The linear system (4.28) has all eigenvalues negative
and its convergence rate is determined by the largest eigenvalue 2ui∗ . In other words,
the model (4.27) has an approximate convergence rate 2ui∗ .

4.6 Simulation Examples

In this section, simulations are provided to illustrate the the winner-take-all competi-
tion phenomena generated by the neural dynamic (4.11). We consider two sceneries:
one is static competition, i.e., the input u is constant and one is dynamic competition,
i.e., the input u is time-varying.
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4.6.1 Static Competition

4.6.1.1 Simulation Setup

For the static competition problem, we consider time invariant signals as the input. In
the simulation, we consider a problemwith n = 15 neurons. The input u is randomly
generated between 0 and 1, which is u = [0.9619, 0.0046, 0.7749, 0.8173, 0.8687,
0.0844, 0.3998, 0.2599, 0.8001, 0.4314, 0.9106, 0.1818, 0.2638, 0.1455, 0.1361],
and the state is randomly initialized between −1 and 1, which is x(0) = [0.7386,
0.1594, 0.0997, −0.7101, 0.7061, 0.2441, −0.2981, 0.0265, −0.1964, −0.8481,
−0.5202, −0.7534, −0.6322, −0.5201, −0.1655]. In the simulation, we choose
c0 = c1 = 1.

4.6.1.2 Convergence

Figures4.2, 4.3 and 4.4 show the evolution of state values of all neurons with time
under different choice of the parameter p. From these figures, it can be observed that
only a single state (corresponds to the 1st neuron, which has the largest value in u)
has a non-zero value eventually and all the other state values are suppressed to zero.
Also, the value of x1 approaches u5

1
p+1 (note that we choose c1 = 1 in this simulation

example), which is consistent with the claim made in Theorem 4.1 since the initial
value x1(0) > 0.

4.6.1.3 Convergence Speed

As can be observed in Figs. 4.2, 4.3 and 4.4, it takes about 14 s for the model to
converge for p = 0, 30 s for p = 0.5, 80 s for p = 1, 350 s for p = 1.5 and more
than 1000 s for p = 2, respectively, which implies that a faster convergence can be
obtained by choosing a smaller p in the presented model for p ≥ 0.

4.6.1.4 Robustness Against Additive Noise

In the real implementation of the presented model, additive noise, resulting from the
computation error, quantization error, system noise etc., may enter the input channel.
In this situation, the steady state value of 0 for the losers and±( ui

∗
c1

)
1

p+1 for the winner
cannot be reached accurately. However, it can be expected that the neural states still
converge to the vicinity of the desired values when the additive noise is within certain
level. In this part, we explore such a property of the presented model by simulation
and compare the robustness of the presented model under different choices of the
parameter p (Fig. 4.5).



4.6 Simulation Examples 69

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2
−1

−0.5

0

0.5

1

u
1

p+1

1

− u
1

p+1

1

t (s)

x (
t)

x(
t)

Profile of the state variable x(t) for p= 0

(a)

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

u
1

p+1

1

− u
1

p+1

1

t (s)

x (
t)

x(
t)

Profile of the state variable x(t) for p= 0.5

(b)

Fig. 4.2 Comparisons of the neural state trajectories in the static competition scenario with 15
neurons under p = 0, p = 0.5
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Fig. 4.3 Comparisons of the neural state trajectories in the static competition scenario with 15
neurons under p = 1, p = 1.5
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Fig. 4.4 Comparisons of the neural state trajectories in the static competition scenario with 15
neurons under p = 2

The noise polluted neural network model considered in this part writes as follows
for the i th neuron (Figs. 4.6 and 4.7),

ẋi = c0(ui − c1‖x‖p+1
p+1)|xi |psgn(xi ) + vi , (4.29)

where vi is aGuassianwhite noisewith zeromeanσ 2 variance and is independentwith
v j for i �= j . In the simulation, we choose three different noise levels, i.e., σ = 0.1,
σ = 0.5 and σ = 1 to evaluate the performance of the presented model. Figure4.5
through Fig. 4.9 plot the evolution of the neural state trajectories in presence of
additive noise under the norm parameter p = 0, p = 1, p = 1.5 and noise level
σ = 0.1, σ = 0.5, σ = 1. From these figures, we can observe that the neural states
are still able to converge to the vicinity of the desired value in the presence of additive
noise with a small value of σ , which reveal the robustness of the presented model to
noisy inputs. With the increase of σ , the neural state value becomes more and more
noisy. For the same level of noise (i.e., the same σ ), it can be observed from Fig. 4.5
through Fig. 4.9 that the presented model with a smaller p is less sensitive to the
influence of the additive noise. Particularly for σ = 1 as shown in Fig. 4.5 through
Fig. 4.9, the winner can still demonstrate a clear difference from the losers in state
value for the cases with p = 0 and p = 1 while the state values almost mix together
for the case with p = 1.5 (Fig. 4.8).
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Fig. 4.5 Comparisons of the neural state trajectories of the static competition scenario in presence
of additive noise under the norm parameter p = 0 and noise level σ = 0.1, σ = 0.5
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Fig. 4.6 Comparisons of the neural state trajectories of the static competition scenario in presence
of additive noise under the norm parameter p = 0, p = 1 and noise level σ = 0.1, σ = 1
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Fig. 4.7 Comparisons of the neural state trajectories of the static competition scenario in presence
of additive noise under the norm parameter p = 1 and noise level σ = 0.5, σ = 1
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Fig. 4.8 Comparisons of the neural state trajectories of the static competition scenario in presence
of additive noise under the norm parameter p = 1.5 and noise level σ = 0.1, σ = 0.5
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Fig. 4.9 Comparisons of the neural state trajectories of the static competition scenario in presence
of additive noise under the norm parameter p = 1.5 and noise level σ = 1

4.6.2 Dynamic Competition

In this part, we consider the scenario with time-varying inputs. For the dynamic
system (4.11), the convergence can be accelerated by choosing a large scaling factor
c0 and a small value p for p ≥ 0. The resulting fast response allows the computation
of the winner in real time with time-varying input u(t). In the simulation, we choose
c0 = 104, c1 = 1, p = 0 and consider n = 3 neurons with input ui (t) = 1 +
sin(2π t + 2π i

3 ) for i = 1, 2, 3, respectively. The initial state values are randomly
generated between 0 and 1. The four input signals and the absolute value of the
state variables are plotted in Fig. 4.10. From this figure, we can see the system can
successfully find the winner in real time. Note that according to the Theorem 4.1, the
output value of the winner is ui∗ for p = 0 (recall that the state values are initialized
greater than zero in this simulation), which equals the value of the input.

4.7 Summary

In this chapter, a recurrent neural network is presented to explain and generate the
winner-take-all competition. In contrast to existing models, this dynamic equation
features a simple expression and extends the case with Euclidean norm term for
neural interaction to themore general p-normcases. The fact that the state value of the
winner converges to be activewhile the others deactivated is proven theoretically. The
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Fig. 4.10 Simulation results for the dynamic winner-take-all competition

convergence rate is discussed based on a local approximation. Simulations with both
static inputs and dynamic inputs are performed. Convergence speed and robustness
of the presented model against additive noise are also explored by simulation. The
results validate the effectiveness of the presented model.
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Chapter 5
Distributed Competition in Dynamic
Networks

Abstract Consensus has been widely explored in the past years and successfully
applied to the design of cooperative control laws and distributed computation para-
digms. However, in the light of the great success of consensus in control, the coun-
terpart of consensus, which, instead of mitigating the disagreement, increases the
contrasts between dynamic agents in a distributed network, is still missing. The sem-
inalwork byMaass [1] (Maass,NeuralComput 12(11), 2519–2535, 2000) proves that
weighted averaging, together with the operation of winner-take-all (WTA) organized
in a two-layered structure is able to approximate anynonlinearmapping in anydesired
accuracy.When it comes to distributed networks,Maass’s theoremposes great appeal
for distributed WTA algorithms provided that the distributed weighted averaging
could be addressed using consensus. Unfortunately, as presented in Chaps. 1, 2, 3
and 4, there is no existing distributed WTA algorithm available, which significantly
blocks the exhibition of the computational power of WTA over dynamic networks.
In this chapter, we make progress along this direction and present the first distributed
WTA protocol with guaranteed global convergence. The convergence to the WTA
solution is proved rigorously using Lyapunov theory. The theoretical conclusions are
supported by numerical validation.

Keywords Winner-take-all competition · Distributed network · Distributed WTA
protocol · Global stability · Numerical validation

5.1 Introduction

In past years, dynamic consensus has attracted intensive research attentions, and led
to successful solutions of a large variety of distributed computation problems, includ-
ing distributed coordination of multiple mobile robots [2], decentralized control of
redundant manipulators [3]. Despite its great success, consensus algorithm, which
updates the state by dynamically mitigating differences among agents, is mostly
limited to the modeling of dynamic cooperation. It essentially lacks a mechanism to
model dynamic competition in a distributed network, which desires the increase of
peer differences and the enhancement of contrasts.
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Research in many fields confirms the same importance of competition as that of
cooperation in the emergence of complex behaviors. For example, it is revealed in
[4] that competition and cooperation plays significant roles in the decision making
in market economy. It is demonstrated in [5] that the strategy chosen by the rational
politicians consists of cooperation over competition in dealingwith international rela-
tionships. Recent research in neuroscience found finds that control actions depends
on transitory change in patterns of cooperation and competition between brain sys-
tems during cognitive control [6]. Due to the fundamental significance of competition
in the interaction of multi-agent systems, various models have been presented to cap-
ture this competitive nature. Among them, the winner-take-all (WTA) model, which
refers to the competition of a group of agents that the one with the largest input
finally remains activated while all the other agents are deactivated, has been widely
investigated and usually employed to model competition behaviors. Maass proves in
[1] that a two-layered network composed of weighted averaging in the first layer and
WTA in the second layer is able to approximate any nonlinear mapping in any desired
accuracy. Following this results, the dynamic consensus with the capability for the
computation of weighted averaging in a distributed way, and a distributed algorithm
for the computation of WTA, will be able to constitute any nonlinear mapping in
a distributed network. However, to the best of our knowledge, there is no existing
algorithmwith proved convergence that addressesWTA in a distributed manner. The
non-replacement role of distributed WTA in modeling competition behaviors and its
potential in complementing consensus to build distributed universal approximators
motivate us to design such a dynamic protocol with guaranteed convergence.

Apart from the natures of distributed-storage and high-speed parallel-processing,
neural networks can be readily implemented by hardware and thus have been widely
applied in various fields, including the description of the WTA competition [7–24].
In previous Chap.3, it is formulated as a quadratic programming under both linear
inequality and equality constraints and solved efficiently in the dual space. Although
various models have been presented in Chaps. 1, 2, 3 and 4 as well as references
therein to generate WTA, existing work does not take topological constraint into
consideration and cannot be directly apply to any connected topology.

In this chapter, we explicitly take the interaction topology of agents into account
and present the first fully distributed WTA model to address dynamic competition
problems in a network. It extends our previouswork in Chaps. 1, 2, 3 and 4 on central-
ized WTA with a star topology to the general situation with any possible connected
topology. To capture the topological property of a graph, algebraic properties on the
spectrum of a graph are incorporated into the Lyapunov analysis to prove the global
convergence. Different from distributed consensus problem, where a simple Lya-
punov function in quadratic form exists, a deliberately designed nonlinear Lyapunov
function is employed to prove the asymptotical convergence to WTA.
Notations and Symbols: R and R

+ denote the field of real numbers and the field of
non-negative real numbers, respectively, diag(x) denotes a diagonal matrix with its
diagonal elements from vector x and non-diagonal elements zero, AT represents the
transpose of a matrix A, I represents an identity matrix, 1 denotes the vector with all
entries equal to 1, ei denotes a vector with all entries zero except the i th one equal
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to 1, ‖x‖ denotes the Euclidean norm of a vector x , the point-wise multiplication
of two vectors x = [x1, x2, . . . , xn]T and y = [y1, y2, . . . , yn]T ∈ R

n is defined as
x ◦ y = y ◦ x = [xi yi ], and the point-wisem-th power of x is defined as xm = [xmi ].

5.2 Problem Definition: Distributed WTA on Graphs

Let G(V, E,W ) be a weighted undirected graph with n vertices, where V =
{V1, . . . , Vn}, E ⊆ V × V , andW = [Wi j ] ∈ R

n×n withWi j = Wji ≥ 0 for all pos-
sible i and j represent the set of nodes, the set of edges and the weighted adjacency
matrix, respectively. The element Wi j , which lies on the i th row and the j th column
in the matrixW , denotes the weight of the edge Ei j ∈ E connecting node Vi and Vj .
For Ei j /∈ E , i.e., the case without an edge between node Vi and Vj , Wi j = 0. The
neighbor set of node Vi is defined as N (i) = { j ∈ V, Ei j ∈ E}.

Let ui be the input to node Vi for all i . The node with the largest input among all
nodes in the graph, i.e., node Vi=argmaxk {uk }, is called the winner on the graph. Across
this chapter, we consider the non-trivial case with maxk{uk} > maxi �=argmaxk {uk }{ui },
which amounts to exactly a single winner. Let xi ∈ R be a state value associated
with node Vi . We say the nodes of the graph G have reached a WTA if and only if
xi = 0 for i = argmaxk{uk} (the winner), and xi = 0 for i �= argmaxk{uk} (losers).
In words, WTA is a status where the winner is active while the losers are deactivated.

In this chapter, we consider using distributed algorithms, particularly dynamic
evolutions, to solve WTA on a connected graph. Suppose each node is a dynamic
agent with local information exchanging described by the following dynamics,

ẋi = f (xi , x j∈N (i), ui ) i ∈ V, (5.1)

where x j∈N (i) represents the state variables of those nodes in the neighbor set of node
i . Notice that for the class of protocol (5.1), the dynamic evolution of node i’s state
variable xi only depends on the state variables of its neighbors x j∈N (i), the state of
itself xi , and its input ui , all of which are accessible locally. A prominent advantage
of protocol (5.1) is that the information exchanging is limited to direct neighbors,
which significantly reduces communication burdens in real applications. A graph
G(V, E,W ) together with the dynamics (5.1) running on it defines a distributed
dynamic network. Now, we are ready to define the distributed WTA problem as
follows,

Definition 5.1 Protocol (5.1) asymptotically solves the distributed WTA problem
on a graph G(V, E,W ) if and only if there exists an asymptotically stable equilib-
rium x∗ = [x∗

1 , x
∗
2 , . . . , x

∗
n ]T , satisfying x∗

i = constant �= 0 for i = argmaxk{uk} and
x∗
i = 0 for i �= argmaxk{uk}.
The distributed WTA problem abstracts dynamics of the global competition via

local interactions. This is an essentially challenging problem due to the contrast
between the objective to reach global maximum over the network and the accessible
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information limited to the local neighborhood of a node. It bears similarity to another
challenging problem: the search of the global maximum of a multi-peak function
using local information (see Sect. 5.5 for a detailed explanation). In comparison with
dynamic consensus protocol [25], which has been widely studied over the past years
as a powerful tool for distributed computation, WTA goes to the other extreme than
consensus by increasing the disagreement. For consensus problem, including average
consensus [25], weighted average consensus [26] or even maximum consensus [27],
the disagreement between different nodes decreases to zero with time. In contrast,
for the WTA problem, the winner node remains active ultimately while the loser
nodes are depressed to zero, which amounts to the increase of the disagreement
between the winner and the losers. This unique property poses inherent connections
with natural phenomena, such as the contrast gain among overlapping neurons in
visual systems [28], the apical dominance among branches in the development of
stems [29]. It makes it suitable to model and design distributed competition of multi-
agent systems. Although there have been various WTA models, all of them rely
information from other nodes than its direct neighbors for the state update of each
agent. To the best of our knowledge, the presented protocol in this chapter is the first
fully distributed dynamic WTA algorithm.

For the derivation of the main results in this chapter, we present some useful
preliminaries on graph theory in the following part of this section.
Preliminaries on Graph Theory: The degree of node Vi in a graph G(V, E,W )

is defined as deg(Vi ) = ∑
j∈N (i) Wi j . The degree matrix Δ = [Δi j ] is a diagonal

matrix with Δi j = 0 for all i �= j and Δi i = deg(Vi ) for all i . The Laplacian matrix
L of a graph G is defined as L = Δ − W . A path between node Vi and node Vj

for i �= j in a graph is a sequence of consecutive edges which connect Vi and Vj

via a sequence of neighboring nodes. A graph G is called connected if there always
exists a path between any pair of nodes. The Laplacian matrix L of a connected
graph is positive semi-definite. Its eigenvalues are all real and satisfy λn ≥ λn−1 ≥
· · · ≥ λ2 > λ1 = 0. The n-dimensional vector 1, which has all entries equal to 1, is
an eigenvector of L associated with its zero eigenvalue for connected graphs, i.e.,
1T L = 0 and L1 = 0.

5.3 Distributed WTA Protocol

In this chapter, we present the following dynamic protocol to address the WTA
problem on a connected graph G(V, E,W ),

ẋi = ui xi − 2c1xi yi − 2c21x
3
i , (5.2a)

ẏi =
∑

j∈N (i)

wi j (y j − yi + c1x
2
j − c1x

2
i ), (5.2b)

where xi ∈ R, ui ∈ R
+ and yi ∈ R are the state variable of node i with a random

initial value, the non-negative input to node i , and a co-state of it initialized with
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yi (0) = 0 for all possible i , respectively, c1 ∈ R
+ is a constant, N (i) denotes the

neighbor set of node i , wi j = wji is the weight of the edge Ei j and wi j > 0 for
j ∈ N (i) and wi j = 0 for j /∈ N (i). For the consideration of the convergence of
protocol (5.2), we make the assumption that ui ≥ 0 for all i . In real practice with
negative inputs, it is possible to convert the input range into non-negative values
without changing the input order of different nodes. One possible way is to first pass
the input through a monotone function with the lower bound greater than zero, e.g.,
the sigmoid function ui = 1

1+e−ri , and then proceed with protocol (5.2) for further
processing to screen out the winner.Without the loss of generality, we assume ui ≥ 0
for all i across this chapter.

Notice that protocol (5.2) follows the expression of (5.1) by only requiring infor-
mation exchanging between direct neighbors and thus falls into the distributed pro-
tocol class. The dynamics of the network G following protocol (5.2) are written in a
compact form as,

ẋ = u ◦ x − 2c1x ◦ y − 2c21x
3, (5.3a)

ẏ = −Ly − c1Lx
2, (5.3b)

where x = [x1, x2, . . . , xn]T , u = [u1, u2, . . . , un]T , and y = [y1, y2, . . . , yn]T are
the state vector, the input vector and the co-state vector, respectively, ‘◦’ is the
point-wise multiplication operator, with x ◦ y = [xi yi ], xm denotes the point-wise
mth order power, with x3 = x ◦ x ◦ x = [x3i ] for m = 3 and x2 = x ◦ x = [x2i ] for
m = 2, L = [Li j ] ∈ R

n×n is the Laplacian matrix of the graph G, and writes as
follows in term of the edge weight wi j ,

Li j =
{

−wi j i �= j
∑

j∈N (i)wi j i = j.
(5.4)

Note the definition of x ◦ y and xm for x and y being vectors implies that they are not
exchangeable in order with the matrix multiplication, and thus A(x ◦ y) �= (Ax) ◦ y
in general for a matrix A of an appropriate size. For this consideration, we set the
operation of xm is treated with a highest operational priority when it is composited
with other operations, and thus Lx2 = L(x2) in (5.3).

5.3.1 Basic Properties

About the protocol (5.2), we observe the following basic properties, which play
important role in the derivation of the convergence results.

Lemma 5.1 For the protocol (5.2) running on a connected graph, the quantity∑n
i=1 yi is invariant with time and it equals zero if yi is initialized with 0, i.e.,

yi (0) = 0 for all i = 1, 2, . . . , n.
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This is a direct result exploiting the algebraic property of the Laplacian matrix. The
quantity

∑n
i=1 yi = 1T y in vector form. Left multiplying 1T on both sides of (5.3b)

yields 1T ẏ = d(1T y)
dt = 0 recalling that 1T L = 0, which implies that 1T y is invariant

with time and therefore 1T y = 1T y(0) = 0 for the case with zero initialization of y.
We also have the following result on the structural symmetry of the presented

protocol.

Lemma 5.2 For protocol (5.2), if (x∗, y∗) for x∗, y∗ ∈ R
n is an (un)stable equilib-

rium, then (−x∗, y∗) is an (un)stable equilibrium.

This result comes from the fact that the system dynamics (5.3) does not change after
replacing x with−x in it. In details, conduct the transformation x ′ = −x, y′ = y for
system (5.3) and it results in the following new dynamics,

ẋ ′ = u ◦ x ′ − 2c1x
′ ◦ y′ − 2c21x

′3, (5.5a)

ẏ′ = −Ly′ − c1Lx
′2. (5.5b)

For an (un)stable equilibrium point (x, y) = (x∗, y∗) in the original metric, it is still
(un)stable in the new coordinate, i.e., (x ′, y′) = (−x∗, y∗) is (un)stable for (5.5). It
is noteworthy that the new system (5.5) is identical to the original one (5.3), meaning
that the point (x ′, y′) = (−x∗, y∗) is (un)stable for (5.5) implies (x, y) = (−x∗, y∗)
is (un)stable for (5.3). This concludes the claim in Lemma 5.2.

5.4 Convergence Analysis

We conduct convergence analysis in this section to show the global stability of the
WTA solution. To this goal, we will first define a nonlinear Lyapunov function and
use Lyapunov’s direct method to show the global convergence of the system to its
equilibrium point set S. To eliminate the other non-WTA solutions, we will further
conduct local stability analysis to show that all the other points in set S than theWTA
solution are locally unstable. The two parts will constitute the main theory for the
global convergence of protocol (5.2) to the WTA solution.

5.4.1 Global Convergence to the Equilibrium Point Set

About the convergence of the presented protocol (5.2), we have the following lemma.

Lemma 5.3 The dynamic protocol (5.2) on a connected graph with an initialization
y(0) = 0 asymptotically converges to the equilibrium point set S defined in (5.6)
globally.
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S = {(x∗, y∗) ∈ R
n × R

n, x∗ = 0, y∗ = 0;
x∗ = ±

√
nui√
2c1

ei , y∗ = ui (1−nei )
2c1

for i = 1, 2, . . . , n}. (5.6)

Proof The proof of this Lemma includes three steps: 1. The global convergence to
an invariant set S. 2. The resolution of the analytical expression of the set S. 3. The
correspondence of set S to the equilibrium points of this nonlinear protocol.

Step 1. Global convergence to an invariant set S.
For analysis convenience, we first define the following two auxiliary variables,

z = y + c1x
2, (5.7a)

η1 = u ◦ x − 2c21
‖x‖2x
n

, (5.7b)

η2 = z − ‖x‖21
n

, (5.7c)

with which the dynamics of z write,

ż = ẏ + c1
dx2

dt
= −Ly − c1Lx

2 + 2c1x ◦ ẋ

= −Lz + c1Lx
2 − c1Lx

2 + 2c1x ◦ ẋ

= −Lz + 2c1x ◦ ẋ, (5.8)

where the relation dx2

dt = x ◦ ẋ is used. Substituting the expressions of η1 and η2 in
(5.7) to (5.3a), ẋ then become

ẋ = u ◦ x − 2c1x ◦ (y + c1x
2)

= u ◦ x − 2c1x ◦ z − 2c21
‖x‖2x
n

+ 2c21
‖x‖21
n

◦ x

=
(

u ◦ x − 2c21
‖x‖2x
n

)

− 2c1

(

z − c1
‖x‖21
n

)

◦ x

= η1 − 2c1η2 ◦ x = η1 − 2c1diag(x)η2. (5.9)

The equalities 1 ◦ x = x and diag(x)η2 = η2 ◦ x are employed in the derivation of
the second line and the last line of (5.9), respectively. According to the definition
of the operators ‘diag(·)’ and ‘◦’, xT ẋ = 1T diag(x)ẋ = 1T

(
diag(x)ẋ

) = 1T (x ◦ ẋ)

and further 1 d‖x‖2
dt = 21xT ẋ = 211T (x ◦ ẋ). Therefore, the dynamics of η2 are

obtained as,
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η̇2 = ż − c11
n

d‖x‖2
dt

= −Lz + 2c1x ◦ ẋ − 2c1
n

11T (x ◦ ẋ)

= −Lη2 + 2c1(I − 11T

n
)x ◦ (η1 − 2c1diag(x)η2)

= −
(

L + 4c21

(

I − 11T

n

)

diag2(x)

)

η2 + 2c1

(

I − 11T

n

)

x ◦ η1

= −(
L + 4c21L0diag

2(x)
)
η2 + 2c1L0diag(x)η1, (5.10)

where L0 = I − 11T

n . According to Lemma 5.1, we have 1T η2 = 1T z − c1‖x‖2 =
1T y + c11T x2 − c1‖x‖2 = 1T y = 1T y(0) = 0 (note 1T x2 = ∑n

i=1 x
2
i = ‖x‖2) and

L0η2 = (I − 11T

n )η2 = η2. Thus, Eqs. (5.9) and (5.10) further re-write,

ẋ = η1 − 2c1diag(x)L0η2 (5.11)

η̇2 = −
(

L + 4c21L0diag
2(x)L0 + c2

11T

n

)

η2 + 2c1L0diag(x)η1, (5.12)

where c2 > 0 is a constant.
With the abovederivation,we are ready to present the nonlinearLyapunov function

for the convergence analysis. The Lyapunov function V is composed of two parts,

i.e., V = V1 + V2. Define V1 = − 1
2 x

T diag(u)x + c21‖x‖4
2n . Clearly V ≥ 0 as ui ≥ 0

for all i . Computing the time derivative along the system dynamics yields,

V̇1 = −xT diag(u)ẋ + c21
2n

d(xT x)2

dt

= −(x ◦ u)T ẋ + 2c21
n

‖x‖2xT ẋ
= −ηT

1 ẋ = −‖η1‖2 + 2c1η
T
2 L0diag(x)η1. (5.13)

Additionally, we define V2 = ηT
2 η2
2 ≥ 0 and compute its time derivative along the

system dynamics as follows,

V̇2 = −ηT
2

(

L + 4c21L0diag
2(x) + c2

11T

n

)

η2 + 2c1η
T
2 L0diag(x)η1. (5.14)

For the overall Lyapunov function V = V1 + V2 ≥ 0, according to (5.13) and (5.14),
it is time derivative is obtained as,
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V̇ = −‖η1‖2 − 4c21η
T
2 L0diag

2(x)L0η2

+4c1η
T
2 L0diag(x)η1 − ηT

2

(

L + c2
11T

n

)

η2

≤ −‖η1‖2 − 4c21‖diag(x)L0η2‖2

+4c1‖diag(x)L0η2‖ · ‖η1‖ − ηT
2

(

L + c2
11T

n

)

η2

≤ −(‖η1‖ − 2c1‖diag(x)L0η2‖
)2

−ηT
2

(

L + c2
11T

n

)

η2. (5.15)

According to the spectral theorem [30], the symmetricmatrix L can be represented as
L = λ1

11T

n + λ2α2α
T
2 + · · · + λnαnα

T
n where λi is the i th eigenvalue of L and αi is

the corresponding eigenvector. Recall that the least eigenvalue of a Laplacian matrix
is 0 and the second least eigenvalue is great than 0 for connect graphs, so we have
λ1 = 0 and λi > 0 for i ≥ 2. The matrix L + c2

11T

n can therefore be represented as

(λ1 + c2)
11T

n + λ2α2α
T
2 + · · · + λnαnα

T
n , from which it is observable that the eigen-

values are λ1 + c2 = c2, λ2, …, λn for L + c2
11T

n . Accordingly, its least eigenvalue

is min{c2, λ2} > 0 and ηT
2

(
L + c2

11T

n

)
η2 ≥ min{λ1 + c2, λ2}ηT

2 η2. With (5.15), we
further get,

V̇ ≤ −(‖η1‖ − 2c1‖diag(x)L0η2‖
)2 − min{c2, λ2}‖η2‖2 ≤ 0. (5.16)

To find the largest invariant set, we set V̇ = 0 and find its solution from (5.16) as,

η1 = 0, η2 = 0. (5.17)

According to LaSalle’s invariant set principle [31], we conclude that the system
dynamics asymptotically evolve to a set S defined by (5.17).

Step 2. Analytical expression of the set S.
We proceed to derive the analytical expressions of the invariant set S. According

to (5.7), the equations in (5.17) are equivalent to the following ones,

u ◦ x − 2c21
‖x‖2x
n

= 0, (5.18)

z − c1
‖x‖21
n

= 0 → y + c1x
2 − c1

‖x‖21
n

= 0. (5.19)

One simple solution to the above equations is x = 0, y = 0. For the non-trivial
situation x �= 0, note that diag(u)x = 2c1

‖x‖2x
n from (5.18). This is an eigenvalue

equation for x , from which it is concluded that 2c21
‖x‖2
n is the eigenvalue of diag(u)

associated with the eigenvector x . Since diag(u) is a diagonal matrix, whose i th
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eigenvalue is ui in correspondence to the eigenvector ki ei (ki is a scalar and ei is a
vector with all entry 0 except the i th entry equal 1), the solution of the eigenvalue
equation is,

x = ki ei , ui = 2c21‖x‖2
n

, for i = 1, 2, . . . , n. (5.20)

The value of ki can be obtained by noticing that ‖x‖2 = k2i and thus ui = 2c21k
2
i

n .

Therefore, ki = ±
√
nui√
2c1

and x equals,

x = ±
√
nui√
2c1

ei . (5.21)

Correspondingly, y can be solved from (5.19) as,

y = ui (1 − nei )

2c1
. (5.22)

In summary, the solution of the invariant set S is obtained as,

S = {(x∗, y∗) ∈ R
n × R

n, x∗ = 0, y∗ = 0;
x∗ = ±

√
nui√
2c1

ei , y∗ = ui (1−nei )
2c1

for i = 1, 2, . . . , n}. (5.23)

Step 3. Correspondence of set S to the equilibrium points.
To show this result, we only need to prove that the equilibrium points are identical

to the solution of (5.18) and (5.19). The equilibrium point (x, y) of the presented
system (5.3) can be found by solving ẋ = 0 and ẏ = 0 in (5.3a) and (5.3b), which
yields,

0 = u ◦ x − 2c1x ◦ y − 2c21x
3, (5.24)

0 = −Ly − c1Lx
2, (5.25)

with the definition of z, the above equations re-write,

0 = u ◦ x − 2c1x ◦ z, (5.26)

0 = −Lz. (5.27)

The zero eigenvector of a Laplacian matrix is 1. Therefore, (5.27) implies z = k ′1
where k ′ is a constant. The fact z = y + c1x2 further yields,

1T (y + c1x
2) = k ′1T 1 = k ′n. (5.28)
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According to Lemma 5.1, 1T y = 0. Additionally, 1T x2 = ∑n
i=1 x

2
i = ‖x‖2.

Therefore k ′ in (5.28) and z are obtained as,

k ′ = c1‖x‖2
n

, z = c1
‖x‖21
n

. (5.29)

Substituting the expression of z above to (5.26) and (5.27), they are equivalently
expressed as,

0 = u ◦ x − 2c21x ◦ ‖x‖21
n

= u ◦ x − 2c21
‖x‖2x
n

, (5.30)

z = c1
‖x‖21
n

, (5.31)

which are equivalent to (5.18) and (5.19). This result proves the equivalence of the
invariant set S with the equilibrium point set.

About the equilibrium point set S, we have the following remark.

Remark 5.1 Generally speaking, a nonlinear system may demonstrate complex
behaviors in its evolution with time. Lemma 5.4 excludes other possibilities for
system (5.2) than the ultimate convergence to its equilibrium point set S given in
(5.6). It is noteworthy that there are totally 2n + 1 separate points in the set S, includ-
ing one special pairs, x∗ = ±

√
nui√
2c1

ei and y∗ = ui (1−nei )
2c1

, for i = argmaxk{uk}, which
correspond to the WTA solution and appear in pair following Lemma 5.2. Based
on Lemma 5.4, we only need to prove the instability of the non-WTA solutions to
conclude the global convergence to the WTA solution.

5.4.2 Instability of Non-WTA Solutions

In the previous section, we have derived the analytical expression of the equilibrium
points and proved the asymptotical convergence to this set. In this part, we use
Lyapunov indirect method to show the instability of the non-WTA solutions and
eliminate them from the ultimate stable behavior of the system.

For the convenience of statement, we define the non-WTA solution set S′ as a
subset of the equilibrium set S to include those non-WTA solution. In expression,

S′ = {(x∗, y∗) ∈ R
n × R

n, x∗ = 0, y∗ = 0; x∗ = ±
√
nui√
2c1

ei ,

y∗ = ui (1 − nei )

2c1
for i = 1, 2, . . . , n, i �= argmaxk{uk}}
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= S − {(x∗, y∗) ∈ R
n × R

n, x∗ = ±
√
nui√
2c1

ei ,

y∗ = ui (1 − nei )

2c1
for i = argmaxk{uk}}. (5.32)

The goal of this subsection is to prove that all points in S′ defined in (5.32) are
unstable. Towards this goal, we first introduce an auxiliary variable z = y + c1x2,
and correspondingly a constant z∗ = y∗ + c1x∗2. With the definition of z, the system
dynamics (5.3) can be simplified as

ẋ = u ◦ x − 2c1x ◦ z, (5.33a)

ẏ = −Ly − c1Lx
2, (5.33b)

z = y + c1x
2. (5.33c)

The dynamics of the errors Δx = x − x∗, Δy = y − y∗ and Δz = z − z∗ are
obtained as follows by linearizing (5.33) around the equilibrium points,

Δ̇x = u ◦ Δx − 2c1(Δz ◦ x∗ + z∗ ◦ Δx), (5.34a)

Δ̇y = −LΔy − 2c1L(x∗ ◦ Δx), (5.34b)

Δz = Δy + 2c1x
∗ ◦ Δx . (5.34c)

There are three classes of equilibrium points in the non-WTA set S′ in (5.32).
Substituting the expressions of Δz from (5.34c), x∗ and y∗ from (5.6) into the error
dynamics described by (5.34a) and (5.34b), the dynamics of the three classes are
respectively obtained as follows:
Class 1 (zero x∗). x∗ = 0, y∗ = 0:

Δ̇x = diag(u)Δx, (5.35a)

Δ̇y = −LΔy. (5.35b)

Class 2 (positive x∗). x∗ =
√
nui√
2c1

ei , y∗ = ui (1−nei )
2c1

, for i �= argmaxk{uk}:

Δ̇x = diag(u − ui1 − 2c1nuiei )Δx − √
2c1nuidiag(ei )Δy, (5.36a)

Δ̇y = −√
2c1nui Ldiag(ei )Δx − LΔy. (5.36b)

Class 3 (negative x∗). x∗ = −
√
nui√
2c1

ei , y∗ = ui (1−nei )
2c1

, for i �= argmaxk(uk):

Δ̇x = diag(u − ui1 − 2c1nuiei )Δx + √
2c1nuidiag(ei )Δy, (5.37a)

Δ̇y = −√
2c1nui Ldiag(ei )Δx − LΔy. (5.37b)
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Δx and Δy in Class 1 are decoupled in their dynamics and the system matrix for
Δx , which is diag(u), is positive definite and thus the equilibrium point in Class 1 is
unstable.

For Class 2, it is noteworthy ei has a single non-zero element on its i th element.
As a result, all elements of Δx except the i th one are decoupled in their dynamics.
In equation, the dynamics of the j th element of Δx writes,

Δ̇x j =
{

(u j − ui )Δx j if j �= i

−2c1nu jΔx j − √
2c1nu jΔy j if j = i

(5.38)

Particularly, we consider the case j = j = argmaxk{uk} in this situation. Noting
i �= argmaxk{uk}, the dynamics of x j for j = argmaxk{uk} �= i is as follows,

Δ̇x j = (u j − ui )Δx j = (umax − ui )Δx j . (5.39)

Clearly, Δx j grows to infinity with time since umax − ui > 0 for i �= argmaxk{uk}.
Therefore, the overall system in this case is unstable.

The instability of Class 3 can be directly concluded employing Lemma 5.2 by
noticing that solutions of Class 3 can be expressed as (−x∗, y∗) in terms of the
solution (x∗, y∗) of Class 2.

So far, we have proved the instability of all points in the non-WTA solution set S′
and the theoretical conclusion is summarized in the following lemma.

Lemma 5.4 For the distributed WTA protocol (5.2) on connected graphs, all points
in the non-WTA equilibrium point set S′ defined in (5.32) are unstable.

About Lemma 5.4, we have the following remark.

Remark 5.2 The local instability of points in the non-WTA solution set S′, which is
a subset of the equilibrium point set S, implies that any small perturbation imposed
on the state variables of protocol (5.2) will lead to a permanent deviation of the state
values from the original ones.

5.4.3 Global Stability of the WTA Solution

In the past two subsections, we have proved the global convergence to the equilibrium
point set S, and the instability of equilibrium points in the non-WTA solution set S′.
Based on them, we will draw the conclusion of the global stability of the WTA
solution.
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As mentioned in Remark 5.1, the global convergent set S is composed of
2n + 1 separate equilibrium points. Due to the continuous nature of the state
variable x and the co-state variable y relative to time t , we conclude that there
must exist at least one stable equilibrium point for the presented protocol and
the system converge to those stable equilibriums ultimately. Lemma 5.4 proves
the instability of non-WTA equilibrium points (set S′) and leaves two possible
stable equilibrium points, i.e., S − S′ = {(x∗, y∗) ∈ R

n × R
n, x∗ = ±

√
nui√
2c1

ei , y∗ =
ui (1−nei )

2c1
for i = argmaxk{uk}}. Notice that this set include two points in the form

of (x∗, y∗) and (−x∗, y∗). Recalling Lemma 5.2, which proves the same stability
property for the point (x∗, y∗) and (−x∗, y∗), it is concluded that there are only two
possibilities: the points in S − S′ are either both stable or both unstable. Assume the
second possibility, i.e., both points in set S − S′ are unstable. Note that all points in
the set S are unstable in this case due to the fact that all points in S′ are unstable. It
turns out to a contradiction with Lemma 5.4, which proves the global convergence to
S. As as result, the two points in the set S − S′ have to be both stable. In summary,
we have the following theorem.

Theorem 5.1 Protocol (5.2) with a random initialization of x and an initialization
of y(0) = 0 asymptotically solves the distributedWTA problem on connected graphs.
x and y globally converge to x∗ = ±

√
nui√
2c1

ei , y∗ = ui (1−nei )
2c1

with i = argmaxk{uk}.
About the criteria to recognize the winner and losers using the state variable x ,

we have the following remark.

Remark 5.3 Until now, we have proved the stability of the presented distributed
WTA protocol. For an agent in the dynamic network, say the i th one, it can identify
whether it is a winner or a loser according to the its state value xi : it is the winner
if and only if limt→∞ xi �= 0 and a loser if and only if limt→∞ xi = 0. In practice,
this criteria can be approximated by comparing the value ‖xi‖with a small threshold
ε > 0 after running the protocol for an enough long time. In addition, for the winner
i = argmaxk{uk}, limt→∞ xi = x∗

i = ±
√
nui√
2c1

. As a by-product, the number of nodes

on the graph can be estimated by the winner using n = 2c21x
∗2
i

ui
.

About the co-state variable y, we have the following remark.

Remark 5.4 According to Theorem 5.1, the co-state y converges to y∗ = ui (1−nei )
2c1

with i = argmaxk{uk}. For a loser agent j �= i , its co-state value is y∗
j = ui

2c1
, and

conveys the value of the winner input ui . For the winner agent i , the co-state value
is y∗

i = ui (1−n)

2c1
< 0 for n ≥ 2. For large scale network with n � 1, the value of

the winner co-state y∗
i is much greater than the loser co-state value y∗

j for j �=
i (limn→∞

y∗
i
y∗
j

= −n), and therefore the co-state value y also demonstrates WTA

approximately for enough large n.
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5.5 Numerical Validation

In this part, we use numerical simulations to validate the theoretical conclusions
drawn in the chapter.

We first consider a simple case with 10 agents to illustrate the dynamic com-
petition behaviors. The communication graph topology is shown in Fig. 5.1. In the
simulation, the coefficient c1 is chosen as c1 = 1 and the weight of each link in
the graph is set as 100. The input value v is randomly set as v = [0.5673, 0.4285,
0.7645, 0.3673, 0.4333, 0.8203, 0.6813, 0.3004, 0.4293, 0.8900]. The initial value of
the state variable x is randomly chosen as [−3.2873, −4.4980, −9.1094, −8.1221,
−1.8001, 6.3378, 7.4103, −9.5489, 4.5435, 6.9602]. For the co-state variable y, it
is initialized as zero. Figure5.2 shows the dynamic evolution of the state variable x
and the co-state variable y with time. Due to the nonlinear interactions, some agents
demonstrate fluctuations in their transient to the steady state (e.g., see the yellow
curve in Fig. 5.2a, which corresponds to the node 6). Ultimately, the node 10 (the
red curve in Fig. 5.2a and b), which have the largest input value u10 = 0.8900, sup-
presses activities of all the other agents to zero, and remains active at the end of the
simulation. The ultimate value of the winner at the end of the simulation run, i.e.,
x10(50), equals to 2.1103, which is approximately equal to

√
nu10√
2c1

= 2.1095. This in
turn validates the theoretical conclusion on the ultimate value of the winner.

1

2

34

5

6

7

8 9

10

Fig. 5.1 The topology of a communication graph with 10 nodes, where the solid nodes represent
the dynamic agents, the edges between nodes represent the information exchanging connection
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Fig. 5.2 The time profiles in the casewith 10 agents: aThe state variable x ;bThe co-state variable y

In the second simulation example, we consider a relatively large network involv-
ing 200 nodes with local maximum values in neighborhoods. The nodes are ran-
domly distributed in a [−2, 2] × [−2, 2] area. For each node, say the i th one with
the coordinate (xi , yi ) in the two-dimensional plane, its input value ui is com-
puted using the peaks function according to ui = 3(1 − xi )2e−x2i −(yi+1)2 − 10( x5 −
x3i − y5i )e

−x2i −y2i − 1
3e

−(xi+1)2−y2i + 10. As shown by the contour of this function in
Fig. 5.3, it has multiple peaks in the considered range and local information based
maximization algorithms, e.g., gradient ascend approaches, may finally drop into a
local optima ultimately. For the presented distributed WTA algorithm, each agent
only relies information from its neighbor agents, i.e., local information, to update
its state. The similarity between the maximization problem and the WTA problem
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Fig. 5.3 The topology of a communication graph with 200 nodes using inputs generated by peaks
function. In this figure, each node represents a dynamic agent, and the edges between nodes represent
the information exchanging connection. A square shape is used for the representation of those nodes
with the largest inputs in its neighborhood. For other nodes, they are represented with solid circles.
Both the pseudo-color and the size of the nodes indicate the values of inputs to each agent (The larger
the node size is, the greater the input is. The color-bar aside shows the correspondence between the
pseudo-color and the node size.). The level curves in this figure denote the contour of the function
employed to generate the input data of each agent

may lead us to the conclusion that the presented distributed WTA, when employed
to identify the agent with the maximum input value (the winner), may also suffer
from local maxima problem. To test the results with the presented algorithm, we
choose the same value of c1 and the same weight for each edge as in the simulation
with 10 agents. With the inputs chosen using the peaks function, there are totally 7
nodes with local maximum input values in their neighborhood (as denoted by the
square in Fig. 5.3 for those nodes). Among all the nodes, node 130 has the largest
input globally. With a random initialization of x and initialization of y from zero, a
typical simulation run is shown in Fig. 5.4a for the time evolution of x , and Fig. 5.4b
for the time evolution of y, respectively. Counter-intuitively, as reflected from the
simulation results, all agents become in-active in their states except the 130th node,
with a state value of −42.2818 remaining active at the end of the simulation for 500
seconds. In other words, different from local information based maximization algo-
rithms, the presented algorithm successfully identifies the agent with the globally
maximum input (the winner), only relying on local information from neighbors.



98 5 Distributed Competition in Dynamic Networks

0 100 200 300 400 500
−50

−40

−30

−20

−10

0

10

20

0 10 20 30

−40

−20

0

20

0 1 2
−20

0

20

winner

t (s)

x

(a)

0 100 200 300 400 500
−2000

−1500

−1000

−500

0

500

0 0.02 0.04
−60

−30

0

30

0 0.5 1
−100

−50

0

50

winner
t (s)

y

(b)

Fig. 5.4 The time profiles in the case with 200 agents using peaks function for the generation of
inputs: a The state variable x ; b The co-state variable y

To show the effectiveness of the presented WTA algorithm in the presence of
more local maximum input values, we consider another simulation example with
the communication graph topology as shown in Fig. 5.5 and random inputs (the
input value to each agent is indicated using the size of the node and its pseudo-
color). Due to the randomness in the input values, there exists more local maximum
values for the inputs to agents in their neighborhoods. In total, there are 29 local
maximum inputs. With the same choices of the parameters as in the example with
peaks function to generate inputs, and a random initialization of the state variable
x and zero initialization of the co-state y, we observer the winner-take-all behavior
in the state variable x and the co-state y as shown in Fig. 5.6. From Fig. 5.6a, it is
clear that all the state variables are gradually suppressed to zero except one state
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Fig. 5.5 The topology of a communication graph with 200 nodes using random inputs. In this
figure, each node represents a dynamic agent, and the edges between nodes represent the information
exchanging connection. A square shape is used for the representation of those nodes with the largest
inputs in its neighborhood. For other nodes, they are represented with solid circles. Both the pseudo-
color and the size of the nodes indicate the values of inputs to each agent (The larger the node size
is, the greater the input is. The color-bar aside shows the correspondence between the pseudo-color
and the node size)

variable remaining active after a period of transient. The simulation data shows that
the active state at the end is associated with the 102th agent, and the final state value
is −9.9913, which approximately equals −

√
nu102√
2c1

= −
√
200×0.9983√

2×1
= −9.9914. This

results validates the theoretical conclusion drawn in this chapter.

5.6 Summary

In this chapter, we defined the distributed WTA problem on connected graphs and
presented a dynamic protocol for the solution. As the presented protocol includes
multiple equilibriums, we first proved the convergence of the equilibrium point set
and then the instability of non-WTA equilibrium points, and finally concluded the
asymptotical convergence of the system dynamics to the WTA solution. Simulations
were conducted to validate the theoretical conclusions.
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Fig. 5.6 The time profiles in the case with 200 agents using random inputs: a The state variable x ;
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Chapter 6
Competition-Based Distributed Coordination
Control of Robots

Abstract In this chapter, as a application of the competition-based models investi-
gated in previous chapters, the problem of dynamic task allocation in a distributed
network of redundant robot manipulators for path-tracking with limited communica-
tions is investigated, where k fittest ones in a group of n redundant robotmanipulators
with n > k are allocated to execute an object tracking task. The problem is essen-
tially challenging in view of the interplay of manipulator kinematics and the dynamic
competition for activation amongmanipulators. To handle such an intricate problem,
a distributed coordination control law is developed for the dynamic task allocation
amongmultiple redundant robotmanipulatorswith limited communications andwith
the aid of a consensus filter. In addition, a theorem and its proof are presented for
guaranteeing the convergence and stability of the proposed distributed control law.
Finally, an illustrative example is provided and analyzed to substantiate the efficacy
of the proposed control law.

Keywords Winner-take-all competition · Motion generation and control · Redun-
dant robot manipulators · Limited communications · Manipulator kinematics

6.1 Introduction

Cooperation and competition play fundamental roles in the interaction of multi-
agent systems by enhancing the harmony and flexibility of the group and make
multi-agent systems advantageous in avoiding predators, foraging, energy conserva-
tion, and besieging and capturing preys [1, 2]. Therefore, distributed cooperation of
multi-agent systems, such as the group of mobile robots, unmanned surface vessels,
autonomousunderwater vehicles, or unmanned aerial vehicles, has received consider-
able attention [1, 2]. In such a distributed system, each agent receives the information
from its neighboring agents and then responds according to the consensus control
protocol. Consensus algorithms, as modeling of cooperation of a multi-agent system,
update the state by mitigating differences among agents involved. They have been
widely investigated and employed in many distributed problems, such as [1, 2] as
well as the references therein.
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Recently, robotics as well as other smart agents have been playing more and more
significant roles in scientific researches and engineering applications [3–11]. Note
that redundant robot manipulators play an important role in various fields [5, 8–11].
One of the fundamental issues in operating redundant robot manipulators is the kine-
matic redundancy resolution problem. That is, given the desiredCartesian trajectories
of the manipulator’s end-effector, the corresponding joint trajectories need to be gen-
erated in real time. Compared with a single redundant robot, a system composed of
multiple redundant manipulators has much more dexterity and flexibility, and can
complete more complex tasks. Motivated by these, it makes sense to investigate the
coordination of multiple redundant manipulators for executing various task.

As observed in many fields, competition is of the same importance as cooperation
in the emergence of complex behaviors [12]. The exploitation of competition among
multiple agents provides a possibility to investigate task allocation in a multi-agent
system. However, to the best of our knowledge, there is no existing scheme with
proved stability that addresses the problem of dynamic task allocation in a system
of multiple redundant robot manipulators in a distributed manner. The problem is
essentially challenging in view of the contrast between the objective to allocate the
task to the k fittest manipulators from a global perspective and the accessible infor-
mation limited to the local neighborhood of a manipulator as well as the integration
of robot kinematics. In comparison with the dynamic consensus problem, which is
widely investigated over the last decade as a powerful tool for distributed cooperation
of multi-agent systems, it is required to increase the contrast between task executors
(the winners) and the rest ones (the losers) for task allocation.

The k-winners-take-all (k-WTA) strategy, which performs the selection of the
k competitors whose inputs are larger than the rest ones, has been presented and
investigated to describe and capture this competitive nature [13–22]. Apart from the
natures of distributed-storage and high-speed parallel-processing, neural networks
can be readily implemented by hardware and thus have beenwidely applied in various
fields, including the k-WTA strategy [13–16]. It has been proven in [13] that a two-
layered network composed of weighted averaging in the first layer and WTA in the
second layer is able to approximate any nonlinear mapping in any desired accuracy.
By following optimization based formulation, WTA problem can be modeled as a
constrained convex quadratic programming (QP) problem, and then gradient descent
or projected gradient descent is employed to get the corresponding dynamic equations
for online solution of the problem [16]. It is worth pointing out that many algorithms
have been presented for online solution of QP with different emphases, such as
models presented in [4, 9, 23] as well as references therein.

Although extensive achievements have been gained for the control of a single
redundant manipulator, the research on the redundancy resolution of multiple manip-
ulators is far from up-to-date, which severely restrict its applications in practical and
academical research. In [9], a simultaneous repetitive motion planning and control
(SRMPC) scheme is designed for synchronous manipulation of two redundant robot
arms. However, this paper only considers a dual arm system and the generaliza-
tion to a network of manipulators remains unclear. Cooperative kinematic control
of multiple manipulators is investigated in [10], which uses distributed recurrent
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Table 6.1 Comparisons among different schemes for redundancy resolution of manipulators

Manipulator
numbers

Distributed
versus
centralized

Topology All
connected to
command
center

Ability to
task
allocation

Singularity
avoidance

This chapter Multiple Distributed Neighbor-to-
Neighbor

No Yes Yes

Papers [4, 5] Single NA NA NA NA No

Paper [9] Two Centralized NA Yes No No

Paper [10] Multiple Distributed Neighbor-to-
Neighbor

No No No

Paper [8] Multiple Distributed Star Yes No No

Paper [11] Multiple Distributed Tree No No No

*Note that NA means that the item does not apply to the algorithm in the associated papers

neural networks and provides a tractable way to extend existing results on individual
manipulator control to the scenario with the coordination of multiple manipulators.
Comparisons among existing schemes for manipulator redundancy resolution are
summarized in Table6.1. To the best of the authors’ knowledge, there is no system-
atic solution on dynamic task allocation in distributed coordination of multiple robot
manipulators.

In this chapter, as shown in Fig. 6.1, a new coordination behavior is first defined
in a competition manner for path-tracking via multiple redundant robot manipula-
tors, in which only the fittest ones are allocated the task and with their end-effectors
being activated to track the desired trajectory generated by a moving target while
the rest ones keep deactivated and unmoved. This is quite different from the existing
cooperation control of multiple redundant robot manipulators, which often requires
all redundant robot manipulators to execute the task together. With the aid of a con-
sensus filter, a distributed coordination control law for the dynamic task allocation
among multiple redundant manipulators is proposed, which can solve such an intri-
cate problem without relying any global information.

6.2 Preliminary and Problem Formulation

In order to lay a basis for further investigation, the preliminary on the redundancy
resolution of the redundant robot manipulator, the problem formulation on dynamic
task allocation and the existing k-winners-take-all (k-WTA)model are first presented
in this section.



106 6 Competition-Based Distributed Coordination Control of Robots
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Fig. 6.1 With limited communications among redundant manipulators, how to allocate the path-
tracking task dynamically to the k redundant manipulators with their end-effectors being activated
to track the desired trajectory generated by the moving target and with the rest n − k ones kept
unmoved? With our deliberately designed coordination control law in this chapter, only the k fittest
redundant manipulators, in terms of distance from its end-effector to the target, are activated to
execute the task while the rest ones keep unmoved

6.2.1 Redundant Robot Manipulator

For the i th redundant robot manipulator with p joints (or p DOF, degrees-of-
freedom), the end-effector position vector ri ∈ R

m can be described by the following
equation:

ri = fi (θi ), (6.1)

where θi ∈ R
p refers to angles of the p joints, and fi (·) is a differentiable nonlinear

function with a known structure and parameters for the i th manipulator. In addition,
Ji ∈ R

m×p is the Jacobianmatrix defined as Ji = ∂ fi (θi )/∂θi . Note that ri is expected
to track the desired path rd, i.e., ri = fi (θi ) → rd. Based on the gradient descent
method, an inverse-free control scheme can be designed for the i th redundant robot
manipulator to track the desired path via the following steps.

First, define a norm-based energy function:

εi = ‖rd − fi (θi )‖22/2, (6.2)

where ‖ · ‖2 denotes the two-norm of a vector.
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Second, a rule is designed to evolve along a descent direction of this energy
function until the minimum point is reached. The typical descent direction is the
negative gradient of εi , i.e.,

− ∂εi/∂θi = JT
i (rd − fi (θi )), (6.3)

where superscript T denotes the transpose of a matrix or vector. Then we combine the
aforementioned negative gradient (6.3) and the following gradient dynamics design
formula :

θ̇i = −c0∂εi/∂θi , (6.4)

where parameter c0 > 0 denotes the feedback gain used to scale the convergence
rate.

Finally, we thus have the following inverse-free control scheme for solving the
inverse kinematics problem of the i th redundant robot manipulator:

θ̇i = c0 J
T
i (rd − fi (θi )). (6.5)

Evidently, the above control schemedoes not require the Jacobian inversion operation
usually existing in pseudoinverse-based solution.

6.2.2 Problem Definitions and Assumptions

We present definitions on the communication graph and communication topology.
Communication graph is the graph with the nodes being redundant manipulators

and the edges being communication links. Moreover, N(i) is used to denote a set
of redundant manipulators with communication links to the i th redundant manipu-
lator, which is to represent the neighbor set of the i th redundant manipulator on the
communication graph.

Moveover, the definition on communication topology of limited communications
is presented as follows [6].

Assumption Limited communication, with each redundant manipulator as a node
and the communication link between one-hop neighboring robots as edges, is of
the communication topology being a connected undirected graph. We use j ∈ N(i)
denoting the neighbor set of the i th redundant manipulator in the communication
graph.

In this chapter, the dynamic task allocation in the coordination of multiple redun-
dant manipulators for path-tracking in a competition manner with limited commu-
nication topology is considered, which is defined as follows.
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Problem (k competitive tracking with limited communications): Under the
Assumption, design a coordination control law for n redundant manipulators
described by (6.5) to compete with each others such that the k redundant manip-
ulators with their end-effectors being nearest from the moving target stay active for
tracking while the others are deactivated and keep unmoved.

6.3 Dynamic Task Allocation with Limited
Communications

In this section, we present a distributed competition control law for dynamic task
allocation in the coordination of multiple redundant manipulators for path tracking
with limited communications.

A k-WTA neural network model is presented in [15], which is described by

dz

dt
= −λ

(
n∑

i=1

wi − k

)
, (6.6)

wi = gΩi

(
z + vi

2a

)
. (6.7)

where z ∈ R is a auxiliary variable, λ > 0 is used to scale the convergence rate,
vi denotes the i th element of input vector v, wi stands for the i th element of output
vector w ∈ {0, 1}n , a is a constant being enough small, gΩi (·), as the i th element of
projection function gΩ(·), is defined by

gΩi (z + vi
2a

) =
⎧⎨
⎩
1, if z + vi

2a > 1
z + vi

2a , if 0 ≤ z + vi
2a ≤ 1

0, if z + vi
2a < 0.

(6.8)

Under the conditions that the kth largest element in v denoted by v̄k is strictly larger
than the k + 1th largest one denoted by v̄k+1, and that the constant parameter a
satisfies a ≤ 0.5(v̄k − v̄k+1), it has been proven in [15] that the above k-WTA neural
network model can be used for solving the following k-WTA problem:

wi = φ(vi ) =
{
1, if vi ∈ {klargest elements of v}
0, otherwise.

(6.9)

In addition, we define the WTA index as

vi = −εi = −‖rd − fi (θi )‖22/2. (6.10)

The movement control for the i th redundant manipulator can be formulated as
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θ̇i = wic0τi = wic0 J
T
i (rd − fi (θi )), (6.11)

where τi is defined as ∂vi/∂θi = JT
i (rd − fi (θi )). It can be readily concluded from

(6.11) that, for the situation of wi = 0, the i th manipulator is deactivated and
unmoved, and that, for the situation of wi = 1, the end-effector of i th manipula-
tor executes the path-tracking task.

Substituting (6.7) into (6.6) and (6.11), we obtain

⎧⎨
⎩ θ̇i = gΩi

(
z + vi

2a

)
c0τi ,

ż = −λ
(∑n

i=1 gΩi (z + vi
2a ) − k

)
.

(6.12)

Combining the control input of allmanipulators in the group, the coordination control
law for executing the path-tracking task can be written into a compact form:

⎧⎨
⎩ θ̇ = gΩ

(
z I2n + v

2a ⊗ I2
)
c0Φ,

ż = −λ
(
I Tn gΩ

(
z In + v

2a

) − k
)
,

(6.13)

where θ = [θ1, . . . , θn]T; Φ = [τ1, . . . , τn]T; ⊗ is the Kronecker product; I2n , In
and I2 denote vectors composed of 2n, n and 2 elements with each element being 1,
respectively.

It can be observed from (6.12) that the summation term
∑n

i=1 gΩi (z + vi/(2a))

requires information from every manipulator in the group and thus, this term is the
obstacle to distributing the centralized coordination model. A consensus estimator
is presented in [24] to decentralize an averaging operation, which allows n agents
(i.e., manipulators in this chapter) with each of them measuring the dynamic term
gΩi (z + vi

2a ) and computes an approximation of ḡΩi (z + vi
2a ) = 1

n

∑n
i=1 gΩi (z + vi

2a )

using only limited communication.With the aid of the consensus estimator presented
in [24], a manipulator is able to estimate the average of filter inputs by running the
following protocol:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ̇i = −γ
∑

j∈N(i) Ai j (ρi − ρ j ) − γ (ρi − gΩi (z + vi
2a ))

−γ
∑

j∈N(i) Ai j (ρi − ρ j ),

ρ̇i = ∑
j∈N(i) Ai j (ρi − ρ j ),

(6.14)

where ρi is the estimate of 1
n

∑n
i=1 gΩi (z + vi

2a ); N(i) denotes the neighbor set of
the i th manipulator on the communication graph defined in the Assumption; ρi is
scalar state maintained by the i th manipulator; Ai j is a positive constant for j ∈ N(i)
and satisfies Ai j = A ji ; γ is a positive constant used to scale the convergence rate.
Besides, it is worth mentioning that, for j /∈ N(i), Ai j = A ji = 0. By running (6.14)
on every manipulator, ρi is able to track the average of inputs, i.e.,

∑n
i=1 wi/n or∑n

i=1 gΩi (z + vi/(2a))/n.
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Thus, the term
∑n

i=1 gΩi (z+vi/(2a)) in (6.12) can be replacedwith the distributed
filter (6.14). Then, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇i = −γ
∑

j∈N(i) Ai j (ρi − ρ j ) − γ (ρi − gΩi (z + vi
2a ))

−γ
∑

j∈N(i) Ai j (ρi − ρ j ),

ρ̇i = ∑
j∈N(i) Ai j (ρi − ρ j )

θ̇i = gΩi (z + vi
2a )c0τi ,

ż = −λ(nρi − k).

(6.15)

Combining the control inputs of all redundant manipulators in the group, the coor-
dination control law for executing the path-tracking task in the situation of limited
communications can be written into a compact form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ̇ = −γ Lρ − γ (ρ − w) − γ L
∫ t
t0
Lρdt,

θ̇ = gΩ(z I2n + v
2a ⊗ I2)c0Φ,

ż = −λ(I Tn ρ − k),

(6.16)

where t0 denotes the initial time instant; Laplacian matrix L = diag(AIn) − A with
diag(AIn) being the diagonal matrix whose n diagonal entries are the n elements of
the vector AIn with the i j th element of matrix A being Ai j .

Remark 6.1 A stable distributed coordination control law (6.16) for the dynamic
task allocation in multiple manipulators coordination for executing the path-tracking
task can be expected if the consensus filter (6.14) runs fast enough relative to the
centralized coordination control law (6.13). That is to say, if the parameter γ is large
enough relative to λ, thenwe expect the resulting dynamics to converge semiglobally.

It is difficult to conduct rigorous analysis on the convergence and stability of
coordination control law (6.16). Therefore, for simplicity, we have the following
theorem to analyze the coordination control law (6.16) based on its original model
(6.13) and Remark 6.1.

Theorem 1 For a group of n redundant manipulators described by (6.1) and the
coordination control law (6.13), exactly k redundant manipulators with the minimum
distance are activated and their end-effectors move towards to the moving target with
time.

Proof Define

V0 = λ

[
n∑

i=1

h
(
z + vi

2a

)
− kz)

]
,
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with

h(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if x < 0

x2

2 , if 0 ≤ x ≤ 1

− 1
2 + x, if x > 1.

For the properties of h(x), we have the following results.

• ∑n
i=1

[
h(z + vi

2a ) − k(z+vi /2a)

n )
]
is lower bounded. Note that

h(x) − kx

n
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− kx
n , if x < 0

x2

2 − kx
n , if 0 ≤ x ≤ 1

− 1
2 + n−k

n x, if x > 1.

It can be concluded that

h(x) − kx

n
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− kx
n ≥ 0, if x < 0

x2

2 − kx
n ≥ − k2

2n2 , if 0 ≤ x ≤ 1

− 1
2 + n−k

n x ≥ n−k
n − 1

2 , if x > 1.

Therefore,
∑n

i=1

[
h(z + vi

2a ) − k(z+vi /2a)

n )
]
is lower bounded.

• It can be obtained that ∂h(x)/∂x = gΩ(x).

In addition, let

Ψ = 2a

c0λ
V0 + 1

c0

n∑
i=1

εi .

We have the following results on the properties of Ψ ,

• Ψ is lower bounded. We have

Ψ = 2a

c0

n∑
i=1

[
h(z + vi

2a
) − k

n
(z + vi

2a
)

]
+ n − k

c0n

n∑
i=1

(−vi ).

As proven above,
∑n

i=1

[
h(z + vi

2a ) − k(z+vi /2a)

n )
]
is lower bounded. Besides, εi is

also lower bounded. Therefore, Ψ is lower bounded.
• For Ψ̇ , we have the following results.

Ψ̇ =
(

∂Ψ

∂z

)T

ż +
n∑

i=1

(
∂Ψ

∂vi

)T

v̇i ,
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in which, we have

∂Ψ

∂z
= 2a

c0

n∑
i=1

(
gΩi

(
z + vi

2a

)
− k

n

)
= 2a

c0

n∑
i=1

(
wi − k

n

)
= 2a

c0

n∑
i=1

wi − k,

∂Ψ

∂vi
= 2a

c0

(
gΩi

(
z + vi

2a

) 1

2a
− k

n

1

2a

)
+ k

c0n
− 1

c0
= 1

c0

(
gΩi

(
z + vi

2a

)
− 1

c0

)
.

and
v̇i = c0gΩi (z + vi

2a
)‖JT

i (rd − fi (θi ))‖22,

In addition, we further have

(
∂Ψ

∂z

)T
ż = −λ

2a

c0

⎛
⎝ n∑
i=1

wi − k

⎞
⎠
T ⎛

⎝ n∑
i=1

wi − k

⎞
⎠ = −λ

2a

c0

⎛
⎝ n∑
i=1

wi − k

⎞
⎠
2

≤ 0,

and

(
∂Ψ

∂vi

)T

v̇i =
(
gΩi

(
z + vi

2a

)
− 1

)
gΩi

(
z + vi

2a

)
‖JT

i (rd − fi (θi ))‖22.

It can be concluded from (6.8) that

(
gΩi

(
z + vi

2a

)
− 1

)
≤ 0

gΩi

(
z + vi

2a

)
≥ 0.

Then, we have

(
∂Ψ

∂vi

)T

v̇i ≤ 0,

with = holding for gΩi
(
z + vi

2a

) = 1 or gΩi
(
z + vi

2a

) = 0. In addition, it can be
obtained readily that Ψ̇ ≤ 0.

Using LaSalle’s principle [25] (also known as the LaSalle’s invariance principle, a
criterion for the asymptotic stability of an autonomous dynamical system), let Ψ̇ = 0,
and we have, ∀i ,(

gΩi

(
z + vi

2a

)
− 1

)
gΩi

(
z + vi

2a

)
‖rd − fi (θi )‖22 = 0, (6.17)
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and
n∑

i=1

wi = k. (6.18)

For the above two cases, we have the following analysis results.

• As to the case of (6.17), we have the following three subcases.

– Subcase 1. gΩi (z + vi
2a ) = 1 ⇒ wi = 1 ⇒ θ̇i = c0τi , and finally, we can have

fi (θi ) → rd as t → ∞.
– Subcase 2. gΩi (z + vi

2a ) = 0 ⇒ wi = 0 ⇒ θ̇i = 0, and finally, we can have that
the i th redundant manipulator is deactivated and fi (θi ) is unmoved.

– Subcase 3. rd − fi (θi ) = 0 ⇒ fi (θi ) = rd

• As to the case of (6.18), we have

n∑
i=1

wi = k =
n∑

i=1

gΩi (z + vi
2a

).

Reordering vi for i = 1, 2, . . . , n as v∗
1 ≥ v∗

2 ≥ · · · v∗
n . Then,we have gΩi (z+ v∗

1
2a ) ≥

gΩi (z + v∗
2

2a ) ≥ · · · ≥ gΩi (z + v∗
n

2a ).

With n1+n2+n3 = n, assume that gΩi (z+ v∗
1

2a ) = gΩi (z+ v∗
2

2a ) = · · · = gΩi (z+
v∗
n1
2a ) = 1, that the values of gΩi (z + v∗

n1+1

2a ), gΩi (z + v∗
n1+2

2a ), . . . , gΩi (z + v∗
n1+n2

2a ) ∈
(0, 1), and that gΩi (z+ v∗

n1+n2+1

2a ) = gΩi (z+ v∗
n1+n2+2

2a ) = · · · = gΩi (z+ v∗
n1+n2+n3

2a ) = 0.
We further have the following three subcases.

– Subcase 1. For v∗
i with i ∈ {1, . . . , n1}, we have wi = 1 ⇒ θ̇i = c0τi , and

finally, we can have fi (θi ) → rd as t → ∞.
– Subcase 2. For v∗

i with i ∈ {n1+ 1, . . . , n1+ n2}, we have wi > 0, and finally,
we can have fi (θi ) → rd as t → ∞.

– Subcase 3. For v∗
i with i ∈ {n1 + n2 + 1, . . . , n1 + n2 + n3}, we have wi =

0 ⇒ θ̇i = 0, and finally, we can have that the i th redundant manipulator is
deactivated and fi (θi ) is unmoved.

For the subcases 1 and 2, vi approaches maximum for both cases and thus gΩi (z+
v∗
n1+1

2a ) reaches the same value for them. In addition, we have

k =
n∑

i=1

gΩi (z + v∗
i

2a
) = n1 +

n1+n2∑
i=n1+1

gΩi (z + v∗
i

2a
).

As stated above, for i ∈ {n1 + 1, . . . , n1 + n2},

gΩi (z + v∗
i

2a
) = 1.
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Thus, k = n1+ n2 and all of them are winners in the sense that gΩi (z + vi
2a ) = 1.

Therefore, for a group of n redundant manipulators described by (6.1) and the coor-
dination control law (6.13), exactly k redundant manipulators with the minimum
distance are activated and their end-effectors move towards to the moving target
with time. The proof is thus completed. �

We have the following five remarks on the proposed distributed coordination con-
trol law (6.16) applied to the dynamic task allocation in distributed coordination of
multiple redundant robot manipulators for path-tracking with limited communica-
tions.

Remark 6.2 To incorporate the constraint of joint-velocity limits into the proposed
distributed coordination control law (6.16), a simple and direct method is to employ
the following saturation function with θ̇+

i and θ̇−
i denoting the upper and lower limits

of the joint-velocity of the i th redundant manipulator, respectively:

S(θ̇i ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ̇+
i , if θ̇i > θ̇+

i

θ̇i , if θ̇−
i ≤ θ̇i ≤ θ̇+

i

θ̇−
i , if θ̇i < θ̇−

i .

Remark 6.3 To handle the range limits of joint-angles and joint-velocities simulta-
neously, a conversion technique based on techniques investigated in [9] is provided
in this remark. Since the proposed distributed coordination control law (6.16) is
solved at the joint-velocity level, the joint physical limits can be converted into a
bound constraint in terms of joint velocity θ̇i . The new bounds can, thus, be written
as ξ−

i ≤ θ̇i ≤ ξ+
i , with the j th elements of ξ−

i and ξ+
i being defined, respectively, as

ξ−
i j = max{κi (θ−

i j − θi j ), θ̇
−
i j },

ξ+
i j = min{κi (θ+

i j − θi j ), θ̇
+
i j },

where κi is the scaling factor for the i th redundant manipulator used to determine
the deceleration magnitude when a joint approaches its limits; θi j , θ−

i j , θ+
i j , θ̇−

i j , θ̇+
i j

denote the j th element of θi , θ
−
i , θ

+
i , θ̇

−
i , θ̇

+
i , respectively. In mathematics, κi should

be greater than or equal to 2max1≤ j≤p{(θ̇+
i j /(θ

+
i j − θ−

i j ),−θ̇−
i j /(θ

+
i j − θ−

i j )) with p
denoting the number of joints for the i th manipulator. Therefore, a new saturation
function can be written as

S̃(θ̇i ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ+
i , if θ̇i > ξ+

i

θ̇i , if ξ−
i ≤ θ̇i ≤ ξ+

i

ξ−
i , if θ̇i < ξ−

i .
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Remark 6.4 In view of the facts that the end-effector of a redundant manipulator has
limited operation plane and that the manipulator with the nearest distance from its
end-effector to the desired target may fall into the singularity situation, we present
a criterion to avoid such a situation. That is, if the sum of the absolute values of the
second joint angle to the pth joint angle is less than 0.05, then the corresponding
vi is adjusted to vi − ς , where ς denotes a positive parameter with large enough
value. It can be readily deduced that the k + 1th redundant manipulator will win
the competition and be activated to execute the path-tracking task after such an
adjustment.

Remark 6.5 For the situation of vi = vi+1, it is an equilibrium point of the proposed
distributed coordination control law (6.16). However, it is not a stable equilibrium
point of the proposed control law. Note that, there are inevitable perturbations, in the
form of noise from sensors or disturbance from actuators, under real-world condi-
tions. Any small perturbations can trigger a non-reversible process to distinguish vi
from vi+1.

6.4 Illustrative Example

In this section, computer simulations are conducted based on 12 redundant manipu-
lators executing a path-tracking task in a competition manner to illustrate the effec-
tiveness of the distributed dynamic coordination control law (6.16) with limited
communications, where the desired path is the trajectory of a moving target. In the
examples, we choose a = 0.1, c0 = 30, λ = 10, γ = 105, ς = 10000, p = 4 with
each link length in each manipulator is 1 m and the task duration is 20 s. In addition,
Ai j is set as

Ai j =
⎧⎨
⎩ 1, if |i − j | ≤ 1

0, otherwise.

Besides, the initial values of the rest parameters are set as 0. The distributed coor-
dination control law (6.16) with joint-velocity limitation is investigated with k = 1.
The corresponding simulation results are illustrated in Fig. 6.2 through Fig. 6.5.

Specifically, Fig. 6.2 shows the entire process of the path-tracking task handled
by distributed coordination control law (6.16), where the initial position of the base
of each redundant manipulator is randomly placed with the initial joint angle of each
manipulator being [π/2, π/4, 0, π/6]T. In addition, the initial values of distributed
coordination control law (6.16) are randomly generated. As shown in Fig. 6.2a, at
the initial time, the moving target is located at around (0, 4) and the redundant
manipulator with its end-effector nearest to themoving target (in terms of the shortest
distance to the target) is activated to execute the path-tracking task. As the moving
target approaches to the end-effector of one of the losers, the winner at the initial
time fails in the competition and becomes a loser afterward. As a continuator, the
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Fig. 6.2 With k = 1 and
n = 12, path-tracking
performance synthesized by
distributed coordination
control law (6.16), where
each blue circle in subfigure
(a) denotes the initial
location of the end-effector
of a redundant manipulator.
a Desired path generated by
the moving target and
tracking trajectories of
different redundant
manipulators. b Profiles of
joint-velocity of all the
redundant manipulator. c The
output of k-WTA network
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tracking task is allocated dynamically to the newwinner labeled as the secondwinner
and the latter’s end-effector begins to track the desired path generated by the moving
target. Then, as illustrated in the figure, the end-effector of the third winner redundant
manipulator relays to execute the task. The corresponding profiles of joint-velocity
of all redundant manipulators are visualized in Fig. 6.2b. It can be readily observed
from the figure that, corresponding to the coordination tracing performance shown in
Fig. 6.2a, at each time instant, only four joints move while the value of the rest ones
remain zero. It isworth pointing out that, as shown in Fig. 6.2b, several joint velocities
reach lower limit θ̇− and upper limit θ̇+, but never violate them, which demonstrates
that the constraint of joint-velocity limits presented in Remark 6.2 works effectively.
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Fig. 6.3 Profiles of
joint-angle and joint-velocity
of the first winner redundant
manipulator as well as the
corresponding motion
trajectories synthesized by
distributed coordination
control law (6.16) with
limited communications.
a Profiles of joint-angle.
b Profiles of joint-velocity.
c Motion trajectories
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It can be found in Fig. 6.2c that, starting with randomly generated initial state, the
outputs of the k-WTA network rapidly converge to the correct results, and the outputs
change rapidly when the target approaches to the new winner. In addition, as shown
in the square-marked area, oscillation appears during the change of output, which
is mainly because of the estimation on

∑n
i=1 gΩi (z + vi/(2a)) via consensus filter

(6.14).
To observe the dynamic task allocation in multiple redundant manipulator coor-

dination for path-tracking in detail, simulation results on different phases of the
path-tracking task are illustrated in Fig. 6.3 through Fig. 6.5. It can be seen from
Fig. 6.3a that, starting from the given initial state, the four joints of the first winner
redundant manipulator work well to track the desired path generated by the moving
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Fig. 6.4 Profiles of
joint-angle and joint-velocity
of the second winner
redundant manipulator as
well as the corresponding
motion trajectories
synthesized by distributed
coordination control law
(6.16) with limited
communications. a Profiles
of joint-angle. b Profiles of
joint-velocity. c Motion
trajectories
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target. In addition, these joints stay unmoved after 4 s, which means that the path-
tracking task is being delivered to the second winner redundant manipulator. The
corresponding joint velocities of the first winner redundant manipulator are shown
in Fig. 6.3b, which are kept in the joint-velocity bound and remain 0 after 4 s. The
motion trajectories of the first winner redundant manipulator are shown in Fig. 6.3c,
from which we can see how the manipulator tracks the desired path with four joints.
It is worth pointing out here that, as shown in the square-marked area in Fig. 6.4a,
the criterion presented in Remark 6.4 is satisfied and thus the corresponding adjust-
ment is activated to avoid the possible singularity. Therefore, the path-tracking task
is allocated to the third winner manipulator. The simulation results on the second
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Fig. 6.5 Profiles of
joint-angle and joint-velocity
of the third winner redundant
manipulator as well as the
corresponding motion
trajectories synthesized by
distributed coordination
control law (6.16) with
limited communications.
a Profiles of joint-angle.
b Profiles of joint-velocity.
c Motion trajectories
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and the third phases are similar to that of the first phase, and thus the correspond-
ing descriptions are omitted. These simulation results verify the effectiveness of the
proposed distributed coordination control law (6.16) with limited communications.

6.5 Summary

In this chapter, a new coordination control law of multiple redundant manipulators
has been defined for task allocation in executing a path-tracking task, in which only
the winners allocated with the task are activated with their end-effectors commended
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to track the task while the rest ones keep unmoved. We have proposed a distrib-
uted coordination control law with limited communications and with the aid of a
distributed consensus filter. The stability of the distributed control has been proved
in theory. Finally, illustrative simulation examples based on redundant manipulators
have been provided and analyzed to substantiate the efficacy of the proposed distrib-
uted coordination control law for dynamic task allocation in executing path-tracking
tasks in a competition manner with limited communications.
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