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Invasive Species

With climate change and increasing globalisation of trade and travel, the risks  

presented by invasive pests and pathogens to natural environments, agriculture and 

economies have never been greater, and are only increasing with time. Governments 

world- wide are responding to these increased threats by strengthening quarantine 

and biosecurity. This book presents a comprehensive review of risk- based tech-

niques that help policy makers and regulators to protect national interests from 

invasive pests and pathogens before, at and inside national borders. Selected from 

the research corpus of Australia and New Zealand’s Centre of Excellence for 

Biosecurity Risk Analysis, this book provides solutions that relect scientiic rigour 

coupled with practical, hands- on applications. Focussing on surveillance, stochas-

tic modelling, intelligence gathering, decision making and risk communication, the 

contents combine the strengths of risk analysts, mathematicians, economists, biolo-

gists and statisticians. The book presents tested scientiic solutions to the greatest 

challenges faced by quarantine and biosecurity policy makers and regulators today.

Andrew P.  Robinson is Reader and Associate Professor in Applied Statistics, and 

Director of the Centre of Excellence for Biosecurity Risk Analysis (CEBRA), at 

the University of Melbourne. He works on biosecurity at national borders, inspec-

tion surveillance systems and performance metrics for regulatory inspectorates.

Terry Walshe is Decision Scientist at the Australian Institute of Marine Science. His 

research deals with the intersection of technical and social dimensions of marine 

science and marine management.

Mark A. Burgman is Professor of Risk Analysis and Environmental Policy at the 

Centre for Environmental Policy, Imperial College, London, United Kingdom. He 

works on ecological modelling, conservation biology and risk assessment.

Mike Nunn is Research Program Manager at the Australian Centre for International 

Agricultural Research (ACIAR). He has particular interests in epidemiology, risk 

analysis, emerging diseases, zoonoses, nutrition- sensitive agriculture and strategic 

foresight.
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Foreword

Towards Evidence- Based and Risk- Weighted  
Strategies for Biosecurity

Globalisation has radically increased the magnitude and scale of the human- 

mediated movement of species. Species’ ranges are no longer deined by natural 

dispersal mechanisms and biogeographical barriers. International travel and com-

merce have developed new trade routes, markets and products, and rapid climate 

change and associated factors continue to shape existing pathways and open new 

ones (Essl et al., 2015). The overall extent and magnitude of impacts is increasing 

rapidly, as is the diversity of types of impact and problems associated with the 

framing of issues and implicit assumptions regarding impacts of biological inva-

sions (Essl et al., 2016).

The interest in understanding and managing the phenomenon of biological inva-

sions has exploded in recent decades. Charles Elton’s 1958 book The Ecology of 

Invasions by Animals and Plants is widely acknowledged as the starting point for 

focussed scientiic attention on biological invasions (Richardson & Pyšek, 2007). 

In the 1980s, a major international programme under the auspices of the Scientiic 

Committee on Problems of the Environment (SCOPE) was the impetus for a major 

upsurge in interest in invasions. Substantial progress has been made in understand-

ing the ‘nuts and bolts’ of biological invasions (Richardson, 2011b). Despite many 

advances in invasion science, however, the magnitude and complexity of problems 

associated with biological invasions continue to escalate in all parts of the world 

(Richardson, 2011a).

The applied side of invasion science has morphed into the domain of biosecu-

rity in which biogeography and ecology are important but where economic and 

socio- political issues increasingly dominate agendas (Figure  1). Biosecurity is a 

relatively new term, entering the scientiic lexicon only in the late 1980s and the 

Oxford English Dictionary in 2005 (Hulme, 2012a). Various deinitions exist, but 

in its broadest sense biosecurity covers ‘all activities aimed at managing the intro-

duction of new species to a particular region and mitigating their impacts should 

they become established…, [including] the regulation of intentional (including 

illegal) and unintentional introductions and the management of weeds and animal 

pests by central and local government, industry and other stakeholders’ (Hulme, 

2012a, p. 304). Emerging biosecurity strategies typically include international treat-

ies and standards, cooperative efforts, inspections in host countries and at ports 

of entry, quarantine, intelligence and treatment of shipments (Elferink & van der 

Weijden, 2011).
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Most countries have legislation and policies aimed at biosecurity, but the mag-

nitude of the problem is so large and the challenges of dealing with all the many 

interacting drivers of biological invasions are so daunting that only a few wealthy 

countries are devoting anything near the resources required to systematically reduce 

the rate and impacts of biological invasions. How much should a country spend 

to reduce problems associated with invasive species? The economics of preventing 

invasions is receiving much attention. Results of several studies suggest that expen-

sive interventions are justiied (e.g. Leung et al., 2002; Keller et al., 2007; Williams 

et al., 2010), but other authors question whether currently applied risk assessment 

methods are accurate enough to achieve their aim (e.g. Hulme, 2012b). A key aspect 

of the complexity relates to pathways of introduction and dissemination of non- 

native species. In most cases, we simply know too little about introduction pathways 

to apply effective management (Essl et al., 2015). Even where we do know the most 

important pathways, implementing effective interventions is becoming increasingly 

complicated. For example, the World Trade Organization requires that any trade 

Figure 1. Fields of research on issues relating to biological invasions (the main ields are underlined). 

Research in ields at the left of the diagram (zone A) are largely those that produce systems 

knowledge; those closer to and within zone B produce target knowledge; and those 

within zone B and into zone C largely comprise transformation knowledge. Boundary 

management occurs towards the right of the diagram (see text for details). Zones A, B and 

C together deine the domain of invasion science.

[Reproduced, with permission, from Richardson (2011b).]
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restrictions invoked for biosecurity purposes must be science based, and should be 

‘least trade restrictive’ (Shine et al., 2000). The science on which to base decisions 

on achieving a balance between ‘least trade restrictive’ and what is most effective to 

protect people and the environment is still under development. Countries are free 

to set their own levels of acceptable risk. Substantial work has been done recently 

to apply the latest advances in risk assessment methods in the biosecurity arena, 

but major advances in this sphere are in many cases being thwarted by the inher-

ent complexity of the many interacting processes that mediate progress along the 

introduction– naturalisation– invasion continuum (Blackburn et al., 2011). The lack 

of objective criteria for assessing the risk of different categories of impacts has also 

hindered the formulation of robust policies and protocols (Blackburn et al., 2014). 

A promising approach in this regard is the Environmental Impact Classiication 

for Alien Taxa (EICAT) framework which proposes using a scheme for evalu-

ation impacts of invasive species that is similar to that applied by the International 

Union for Conservation of Nature (IUCN) to evaluate the threat of extinction of 

native species in The IUCN Red List of Threatened Species (www.iucnredlist.org/ ; 

Hawkins et al., 2015). Widespread adoption of this scheme could pave the way for 

a standardised approach for reporting impacts, thereby alleviating some of the cur-

rent problems in the implementation of standards.

This book presents a timely and authoritative review of the fundamental chal-

lenges that face us in implementing effective and sustainable biosecurity measures, 

drawing largely on the particular challenges facing Australia. Contributions deal 

with state- of- the- art methods that are available to inform objective decision mak-

ing. These include fundamental assessments to evaluate the quality and value of 

information, options for predicting distributions of non- native species, models for 

understanding the dynamics of diseases, cost– beneit analyses for biosecurity deci-

sions, and key requirements for surveillance and monitoring. Of huge importance, 

and well covered in the book, is the key challenge of ensuring that risks and poten-

tial options for biosecurity are accurately communicated to all stakeholders.

I greatly enjoyed reading the chapters in this volume. I have no doubt that the 

contributions will result in improved management of one of the most challenging 

problems of our time.

DaviD M. RichaRDson
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1 The Allocation of Inspection 
Resources
Owen Jones, Andrew P. Robinson, Martin Shield and Jessica Sibley

1.1 Introduction

Inspection is carried out by biosecurity protection authorities to detect and exclude 
biosecurity contaminations, by customs services to intercept illegal weapons and 
drugs, by taxation organisations to verify taxation returns and by environmental 
protection authorities to determine the levels of pollutants in public goods. In this 
chapter, we focus on inspections performed by regulators to ensure that a process 
complies with regulations. Our specific interest is border inspections for biosecurity 
contaminations.

We define inspection as the examination of a unit to determine whether or not 
it is compliant with relevant regulations. In the present context, an inspection will 
determine whether the unit contains biosecurity risk material. A typical unit could 
be an international passenger, a sea container or a pallet of goods. Inspection usu-
ally involves examining the unit and any accompanying packaging, and depending 
on the nature of the unit, inspection may also involve the examination of a sam-
ple taken from the unit. For example, the inspection of a consignment of oranges 
might focus on a random sample of 600 oranges, and the inspection of a consign-
ment of coffee beans might focus on one or more samples of coffee beans extracted 
from the container by means of a probe.

We will assume that units arrive sequentially and that there is no logical demarca-
tion in the flow of arrivals that could be used to define a collection of units to serve 
as a basis for structuring an inspection system. Therefore, although traditional 
methods may be used to determine the procedure for sampling from a unit such 
as a container, they are not appropriate for deciding how many or which units to 
inspect. Rather, as each unit arrives, a decision must be made on whether or not 
to inspect it. We will suppose that our inspection criteria are updated after every  
N -th arrival, for some fixed N . In particular, after every N -th arrival, we update our  
estimate of the non- compliance rate and adjust the frequency of our inspections 
accordingly.

The frequency of inspections is determined by three requirements: to intercept 
non- compliant units, to estimate the contamination level and to deter maleficent 
agents. We will assume that the only data that we have on the non- compliance rate 
of arriving units are the results of previous inspections. Moreover, we do not wish 
to use data from more than N  past arrivals because we want our estimates to be 

002
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current. Thus the frequency of inspections directly affects the quality of our esti-
mates. When contaminated units are identified, they are destroyed, treated or re- 
exported so that they do not present a biosecurity threat. The specific action taken 
will not affect our analysis here. Finally, although it is clear that when inspections 
are well publicised and the penalties for infraction are sufficient, the knowledge of 
inspection may influence the behaviour of importers; we make no attempt to model 
this feedback here.

The frequency of inspections will generally increase with the estimated rate of 
contamination, although see Cannon (2009) and Press (2009). The frequency of 
inspections will therefore be low when the estimated rate is negligible but should 
not be allowed to decrease so much that it becomes impossible to detect an import-
ant increase in the contamination frequency within a reasonable time frame. When 
the sampling rate is low, detecting a contaminated unit can cause a spike in the 
estimate of the contamination rate that may misleadingly portend a change in the 
baseline rate. A further consideration is that, assuming we update our estimated 
contamination rate after every N - th arrival, our inspection regime should allow 
for a rapid increase in the inspection frequency if  there is an important increase in 
the number of non- compliant units detected. A brief  review of inspection resource 
allocation strategies can be found in Robinson et al. (2011); see also Cannon (2009).

Robinson et  al. (2008, 2011) developed the import risk inspection sampling 
(IRIS) algorithm with the goal of determining an inspection level that reflects the 
joint needs to intercept non- compliant units and maintaining adequate estimates 
of contamination levels. The IRIS algorithm allows the manager to choose the 
length N  of  the review period, but does not allow changing the inspection fre-
quency between the review periods if  there is evidence of an increase in the con-
tamination frequency. In this chapter, we show how to combine the IRIS algorithm 
with the different sampling or alert modes used by Dodge (1943) and Dodge and 
Torrey (1951) in the continuous sampling plan (CSP) and its variants. The com-
bined algorithm retains the convenience of regular review periods while including 
mechanisms to trigger periods of high- frequency inspections.

This chapter is structured as follows. We develop a conceptual framework for the 
inspection process in Section 1.2. We review and extend the IRIS algorithm in Section 
1.3. We introduce the CSP in Section 1.4 and discuss how to combine it with IRIS and 
why this might be useful. In Sections 1.2, 1.3 and 1.4, we assume that we are acting 
on a single homogeneous pathway of units. In Section 1.5 we consider the problem 
of pathways that are too small to get adequate estimates of the contamination level, 
and suggest a way of combining pathways using our IRIS– CSP hybrid algorithm. 
We then test our approach using a simulation experiment based on inspection data.

1.2 Conceptual Framework

In this section we present a conceptual framework for the inspection process that 
we will use to describe our inspection algorithms. Here, we use the vocabulary 
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and context most suited to biosecurity inspection, but the principles are quite 
general.

We define an inspection unit as the entity upon which inspection is performed. 
Diverse kinds of units are of interest, and the method for inspection of each 
depends on the characteristics of the unit. Examples of units include people, con-
signments of imported goods and containers of commodities. Inspection units are 
analogous to sampling units in sampling theory.

We define a pathway as a sequence of units that are deemed to be similar by 
the inspectorate and over which the inspectorate has some regulatory authority. 
Defining a pathway as a collection of like units is subjective because there are numer-
ous hierarchical levels of collections of units. For example, a pathway could com-
prise all air passengers, all passengers who arrive from a certain departure point or 
all passengers who have been out of the country for more than six weeks. Similarly, 
in the case of imported coffee beans, a pathway could comprise all consignments 
of coffee beans, all consignments from a certain supplier, all consignments from a 
specific country, all consignments to a particular importer or any combination of 
these. Pathways are analogous to infinite populations in sampling theory.

We assume that inspection of a unit yields a binary result: the unit is deemed to 
be contaminated (non- compliant) or not contaminated (compliant). We also sup-
pose that the effectiveness, w, of  inspections is known and constant for any given 
pathway. This means that a non- compliant unit that is inspected will be detected 
with a known probability w. In general, this probability will not be known and must 
be estimated using a procedure called an endpoint survey.

Consider the k- th unit that arrives at the inspection point from a given pathway. 
We define the approach rate, pk, as the probability that the unit is non- compliant. 
The pk is indexed by k  because, in general, we allow it to change over time, although 
in practice we expect any change to be gradual, perhaps with occasional jumps. We 
define the sampling rate, sk, as the probability that the k-th unit is inspected, and 
we define the leakage rate, rk, as the probability that the unit is non- compliant and 
allowed past the inspection point. Thus, r ws pk k k= −( )1 . Broadly speaking, our goal  
is to choose a value of sk that is as small as possible while keeping rk at an acceptable 
level. An important feature of the IRIS algorithm is that when determining sk, it 
specifically makes allowance for uncertainty in our estimate of rk. It is also import-
ant to know how quickly the sampling rate increases when there is an increase in pk,  
to which end we incorporate the CSP methodology.

Our definition of the leakage rate gives the probability that a unit arriving at the 
inspection point is non- compliant but still gets through. We could also consider 
the probability that a unit that leaves the inspection point is non- compliant (the 
post- inspection leakage rate). These probabilities will be the same in the case of 
rectifying inspections, in which detected non- compliant units are made compliant 
and then released. In the case of non- rectifying inspections, the post- inspection 
leakage rate will always be higher than the leakage rate. However, when pk is small, 
which is often the case, the two will be close because the proportion of units that 
are rejected will be small.
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We collect units into groups of sizes N N1 2, ,…, where the first N2 units to arrive 
are considered to belong to group 1, the next N2 to group 2, and so on. We assume 
that the group sizes are known in advance. The groups could be natural groupings, 
such as containers on a ship or passengers on an aeroplane, or they could be units 
that arrive during a given time period, say every three months. In the latter case, the 
group sizes can only be estimated ahead of time and will not be known for certain. 
The accuracy of these estimates is not of particular importance when we look at the 
performance of our inspection algorithms (see Section 1.5.1).

To measure performance we use the long- run average leakage rate, either the-
oretical or estimated. For a given approach rate p, the average outgoing quality, 
AOQ(p), is defined as the long- run average leakage rate when the approach rate 
p pk =  is constant, under the assumption that units are independent and inspections 
are perfectly accurate ( )w =1 .1 For a specific data sample, the estimated long- run 
average leakage rate is the sample outgoing quality (SOQ). Note that by long- run 
average leakage rate we mean the proportion of the given pathway that is non- 
compliant and undetected.

1.3 The IRIS Algorithm

Throughout this section, we assume that the approach rate p pk =  is constant. The 
IRIS algorithm is an ad hoc procedure designed to ensure that the leakage rate is 
kept below a set level with a given probability as long as the approach rate does not 
increase. Even when p is very small, we inspect frequently enough that our estimate 
of p remains acceptably accurate.

Suppose that in the first block of N1 units there were n1 inspections that found x1 
non- compliant units, giving us a point- estimate for p of  ˆ / ( )p x wn1 1 1= . Our aim is 
to choose n2, the number of units to inspect from the next block of size N2.

We start by adding a positive bias to p̂1 to allow for error and uncertainty in 
our estimate. Let ˆ ˆ*p p= +1 ε be our biased estimate. Next, suppose that we sample 
n2 units from the second block of N2 units and find X2 non- compliant units. Let 
p X wn2 2 2= / ( ) be the estimate of p obtained from these inspections, then EP p2 =  
and VarP p wp wn2 21= −( ) / ( ). Given these,2 we adopt the following model for p 
using a beta distribution:

 P p w n p w n w
p w

w p
~ ( . ,( ) . )

( )
.* *

*

*

beta where 





′ + − ′ + ′ =
−
−

2 20 5 1 0 5
1

1
 (1.1)

 1	 The	term	average	outgoing	quality	was	first	used	by	Dodge	(1943),	who	also	used	the	average	outgoing	
quality	limit,	AOQL	=	maxpAOQ(p),	to	give	an	overall	measure	of	the	effectiveness	of	an	inspection	pol-
icy.	Lieberman	(1953)	went	a	step	 further	and	proposed	 the	unrestricted	average	outgoing	quality	 limit,	
UAOQL,	which	is	an	upper	bound	for	the	long-	run	average	leakage	rate	for	any	sequence	of	pk, not just 
constant	sequences.

 2	 We	are	treating	the	sample	units	as	independent	and	identically	distributed	observations	and	not	as	a	sample	
from	a	finite	population	of	size	N2.	This	is	because	we	are	estimating	the	long-	run	approach	rate,	not	just	the	
approach	rate	for	the	second	sampling	period.
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Under this model, conditional on ˆ ,*p P has mean

 
ˆ*p

w n
+

+
=

′
δ
δ

δ
1 2

1
2 2

where  (1.2)

and variance.

 
( )( )

( ) ( )

( ) (* * * * *p p

w n

p p

w n

p    + − +
′ + +

=
−
′

+ ′ =
−δ δ

δ δ
δ

1

1 2 1 4

1 1

2
2

2

ww p

wn
O



* )
( ).

2

+ ′ ′δ δ δwhere =  (1.3)

The δ term is included so that, even if  ˆ*p  is very small, P has a mean and variance 
bounded away from 0.

Given P, our estimate of the leakage rate, r, for the next block is R ws P= −( )1 , 
where s n N= 2 2/  is the proportion of the next block to be sampled. We take as our 
(positively biased) point estimate of r the 100 1 0

0( )− α  point of R, where α is speci-
fied by the manager, for  example 0.10. That is, if  betainv is the inverse of the beta 
density,

 ˆ ( ) betain v( , ˆ . ,( ˆ ) . ).* *r ws p w n p w n2 2 21 1 0 5 1 0 5= − − ′ + − ′ +α  (1.4)

This construction allows the manager to apply a level of surety to the estimate, pro-
viding a platform for risk- averse inspection strategies if  the consequences of fail-
ure are large. Writing s n N= 2 2/  we see that by putting r̂ r2 = , where r is our target 
leakage rate, we get an equation for n2. Equation 1.4 is easily solved numerically by 
using a root- finding algorithm.

When the IRIS algorithm was originally introduced by Robinson et al. (2008, 
2011), they suggested that ε, the bias added to p̂1 to get ˆ*p , should be such that ˆ*p  
corresponds to a percentage point from a beta distribution with mean approxi-
mately p̂1 and variance proportional to 1 2/ n . However, if  ˆ*p  depends on n2, then Eq. 
1.4 and ˆ*p  need to be solved iteratively. That is, we choose a ˆ*p  to start then solve 
Eq. 1.4 to get n2, which gives us a new ˆ*p . Using this ˆ*p , we solve Eq. 1.4 again to get 
a new n2 and thus a new ˆ*p . We continue until ˆ*p  and n2 converge. We have included 
ε  in our description because it is present in the original IRIS algorithm. However, 
the algorithm already includes a mechanism to deal with the uncertainty in our 
estimates, namely the α in Eq. 1.4. In practice, adding ε  to p̂1 does not add a great 
deal to the robustness of the method and we now suggest that it can be omitted.

1.3.1 Bayes– IRIS

Although the IRIS algorithm produces reasonable sampling rates in operational 
settings (Robinson et al., 2011), the ad hoc nature of the algorithm makes it dif-
ficult to justify theoretically. In the remainder of this section we use a Bayesian 
approach to derive an analogous algorithm from first principles. We call the result-
ing algorithm Bayes– IRIS, and although it results in a rather different equation for 
n2, it produces solutions similar to those of the IRIS algorithm in many operational 
settings.
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We suppose that the first review period has just finished and we are planning 
for the second review period. In the first review period, we sampled n1 out of N1 
units and found x1 non- compliant units. Our goal is to choose n2, the number of 
units to sample from the next N2, so that the leakage rate is kept below a threshold 
r with probability 1− α. We will suppose initially that inspections are error free, 
that is, w =1.

As before, we start with an estimate of p. We use a Bayesian approach so that 
our estimate takes the form of a distribution. We deliberately choose not to use any 
information from before the first review period when estimating p. This is because 
we want our estimate to be current and capable of responding quickly to changes in 
the approach rate. Let P0 be a distribution that represents our estimate at the start 
of the first review period based on no information. In Bayesian terminology, P0 is 
called a non- informative prior. We use the usual choice of non- informative prior for 
a probability, the beta(0.5, 0.5) distribution.3

 P0 0 5 0 5~ ( . , . ).beta  (1.5)

At the end of the first review period, we update our distribution for p based on the 
observed number of compliant and non- compliant units. We call this P1 (the poster-
ior distribution), and standard calculations give us

 P x n x1 1 1 10 5 0 5~ ( . , . ).beta + − +  (1.6)

Now suppose that we take a sample of size n2 from the N2 units that arrive during 
the second review period. Let X2 be the number of non- compliant units in that  
sample. If  we knew p, then X2 would have a binom ( , )n p2  distribution. Instead, 
using our distribution P1 for p, we obtain the distribution of X2 by integrating the 
binomial distribution over the possible values of p. The resulting distribution is 
known as the beta- binomial. We write X n x n x2 2 1 1 10 5 0 5~ ( , . , . )beta-binom + − + ,  
and we have

 P ( )
( . , . )

( . ,
X x

n

x

x x n x n x

x n2 2
2

2

2 1 2 2 1 1

1 1

0 5 0 5

0 5
= =







+ + − + − +
+

β
β −− +x1 0 5. )

, (1.7)

where β(a, b) is the beta function evaluated at (a, b).

Given X2, the leakage rate is R n N X n
n N

X2 2 2 2 2
2 2

21
1 1

= − = −






( / ) / , and 

requiring P ( )R r2 > ≤ α is equivalent to requiring P X
rn N

N n2
2 2

2 2

>
−







≤ α. Our sam ple

 
size for the second sampling period is the smallest n2 for which

 3	 Note	that	some	authors	such	as	Tuyl	et	al.	(2009)	argue	that	beta(1,	1)	is	a	better	choice	(the	uniform	prior).	
However,	the	beta	(0.5,	0.5)	prior,	which	is	an	example	of	a	Jeffreys	prior,	is	still	the	most	commonly	used.	
Practically,	the	difference	is	apparent	only	when	we	have	a	very	small	sample	size,	n1,	in	which	case	the	
Jeffreys	prior	favours	extreme	probabilities	(closer	to	0	or	1)	more	than	the	uniform	prior	does.
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n

x
x x n x n x

x

rn N N n
2

20

2 1 2 2 1 1

2

2 2 2 2 0 5 0 5





+ + − + − +

=

−

∑
/( ) ( . , . )

(
β

β xx n x1 1 10 5 0 5
1

+ − +
≥ −

. , . )
,α  (1.8)

where the truncated brackets around the upper limit of the sum mean to round 
down to the next integer.

1.3.2 Bayes– IRIS with Imperfect Inspections

When dealing with imperfect inspections, the Bayesian analysis in Section 1.3.1 
becomes more complicated. As before, we use P0 0 5 0 5~ ( . , . )beta  as a prior for p at 
the start of the first review period. In addition, we suppose that w, the probability 
of successfully identifying a non- compliant unit being inspected, has the following 
prior distribution that is independent of P0

 1 0−W a bw w~ beta ( , ). (1.9)

At the end of the first review period, having observed x1 non- compliant units from 
n1 inspected units, p and w have the following joint posterior density (Gaba & 
Winkler, 1992):

 
f p w x n c f p n y y

f w n

P W y
y

n x

1 1

1 1

1 1 1
0

1

0 5 0 5

1

, ( , , ) ( ; . , . )

( ;

= − + +

× −
=

−

∑ β

β −− − + +x y a x bw w1 1, ),

 (1.10)

where f a bβ ( ; , )⋅  is the beta( )a b,  density, c a ay y zz

n x
=

=

−∑/ ,
0

1 1  and

 a
n x

y
n y y n x y a x by w w=

−





− + + − − + +1 1
1 1 1 10 5 0 5β β( . , . ) ( , ). (1.11)

In the sum, we can interpret y as the true number of compliant units from the n1 
that were sampled.

In the case where p is small and w  is known exactly, the posterior of p is approxi-
mately gamma distributed (Johnson & Gastwirth, 1991):

 P x w n x1 1 1 1≈ − −gamma( +0.5, ) 0.5).(  (1.12)

Given a distribution for P1, we can again obtain a distribution for X2 by integrating 
the binomial distribution over the possible values of p. Again, by fixing w  and sup-
posing p to be small, we get

 P( )
( ( ) . )

( ( ) .

.

X x
n

x
w n x

n x w n x

x

2 2
2

2

1 1
0 5

2 2 1 1

0 5
0 5

1

= ≈






− −
− + − −

+

))
( . )

( . )
,

.x x

x x
x1 2 0 5

1 2

1

0 5
0 5+ +

+ +
+

Γ
Γ

 (1.13)

where Γ( )a  is the gamma function evaluated at a. (Note that this is not a true 
distribution because summing the right- hand side over x n2 20= ,...,  does not 
give 1.  The approximation is, nonetheless, reasonable for small x2.) Putting 
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R n N X n2 2 2 2 21= −( / ) /  and requiring P( )R r2 > ≤ α, we can calculate n2 as before. 
Our sample size for the second sampling period is the smallest n2 for which

 
n

x
w n x

n x w nx

rn N N n x
2

20

1 1
0 5

2 22

2 2 2 2 10 5





− −
− +=

− +

∑
/( ) .( ( ) . )

( ( 11 1
0 5

1 2

10 5
0 5

0 5
1

1 2− −
+ +

+
≥ −

+ +x
x x

xx x) . )
( . )

( . )
.

.

Γ
Γ

α  (1.14)

1.4 The CSP Algorithm

The IRIS algorithm allows for periodic updating of the sampling rate, and in par-
ticular makes sure that the sampling rate does not drop too low when few non- 
compliant units are detected, but it does not respond quickly to a sudden increase 
in the non- compliance rate. In contrast, the CSP is designed to increase the sam-
pling rate quickly if  a cluster of non- compliant units is detected, and then reduce 
it again if  the non- compliance proves to be short lived. The CSP was introduced 
by Dodge (1943) and later extended by Dodge and Torrey (1951) and Govindaraju 
and Kandasamy (2000). We present a general description of the CSP that covers 
most schemes, including the multilevel plans of Lieberman and Solomon (1955).

We suppose that we have K ≥ 2 states that represent how alert we are to non- 
compliant units, with state 1 the least alert and state K  the most alert. For each state 
k , we have a sampling rate fk, a window length gk (also called a clearance number), 
and compliance numbers ck

+ and ck
− that are used to determine when to change to a 

different alert level. If  a unit arrives while we are in state k , we will inspect it with 
probability fk. If  we are in state k  and ck

+ or more of the previous gk items inspected 
in state k  are non- compliant then we increase the alert level (by one or more levels). 
If  ck

− or fewer of the previous gk items inspected in state k  have been non- compliant 
then we decrease the alert level (by one or more levels). We can increase the alert 
level after only ck

+ inspections, but we need at least gk before we can decrease it. 
Lieberman and Solomon (1955) restrict themselves to the case where ck

− = 0, and 
suppose that changes in state are by just one level at a time.

In Tables 1.1 to 1.3 we give details for some CSP algorithms. Here, the Up destin-
ation is the state you move to when increasing the alert level and the Down destin-
ation is the state you move to when decreasing the alert level. Values for the AOQ are 
taken from Stephens (1995) and give the theoretical long- run average leakage rate.  
Here, q p= −1 .

When applying CSP- 1, CSP- 2 or CSP- 3, we need to choose a sampling rate, f ,  
and one or more window sizes. The usual approach is to start with an acceptable 
leakage rate, r, and a range of plausible approach rates, [ , ]p p− + . Using the AOQ, 
we can then get a set of potential parameters. For example, for CSP- 3 we have

 S f g g p r p p pc a= ≤ ∈ − +{( , , ): ( ) [ , ]}.AOQ for all  

We can then choose parameters from S according to some secondary consideration 
such as minimising f  or gc. Unfortunately, this approach is very much dependent 
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on the value of p+ and can result in values of f  that are too small if  p+ is small or 
values of f  that are too large if  p+ is too large. If  f  is too small then the algorithm 
is too slow to respond to changes in p and we have no guarantee of the statistical 
value of the information gained from our inspections. If  f  is too large then we 
waste resources through unnecessary sampling.

Table 1.1. CSP- 1 algorithm

AOQ( ) =
(1 )

(1 )
p

p f q
f q +q

g

g g

−
−

Alertness 
state

Sampling 
rate

Window 
size

Up 
threshold

Up 
destination

Down 
threshold

Down 
destination

2 (census) 1 g 0 1

1 (sampling) f 1 1 2

From Dodge (1943).

Table 1.2. CSP- 2 algorithm

AOQ
(1 (2

(1 )(1 ) + (2
( )

) )
)

p
p f q q

f q q q q

g g

g g g g

c a

c a c a
=

− −
− − −

Alertness 
state

Sampling 
rate

Window 
size

Up 
threshold

Up 
destination

Down 
threshold

Down 
destination

3 (census) 1 gc 0 1

2 (alert) f ga 1 3 0 1

1 (sampling) f 1 1 2

From Dodge and Torrey (1951).

Table 1.3. CSP- 3 algorithm

AOQ p =
p f q q q

f q q q q

g g

g g + g

c a

c a c
( )

(1 ) (1+ (1 ))
(1 )(1 ) + (1 (1

4

4 4

− −
− − − − qq fpqg ga c)) + 4

Alertness 
state

Sampling 
rate

Window 
size

Up 
threshold

Up 
destination

Down 
threshold

Down 
destination

4 (census) 1 gc 0 1

3 (limbo) 1 4 1 4 0 2

2 (alert) f ga 1 4 0 1

1 (sampling) f 1 1 3

From Dodge and Torrey (1951).
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1.4.1 Combining IRIS and CSP

Our response to the problem of parameter selection for the CSP algorithm is to 
combine it with the IRIS algorithm. At the end of each review period, we choose 
f  using IRIS to achieve a given leakage rate, r, with a confidence of 100 1 0

0( )− α .  
Given f , we then choose the window sizes g , or ga and gc according to secondary 
considerations, which may be operational.

As before, we suppose that units arrive in blocks or review periods of size N1, N2,  
and so forth. Suppose that during period 1 we used a CSP algorithm with base 
sampling rate f1. (At any time k , the actual sampling rate, Sk , will be either f1 or 1.)  
Given that we observed x1 non- compliant units out of n1 units inspected during 
period 1, we can estimate n2 using IRIS as described in Section 1.3. The base sam-
pling rate for period 2 is then  f n N2 2 2= / .

For example, suppose that we wish to combine CSP- 1 and IRIS to determine 
an inspection algorithm for a given pathway. If  in the previous batch of N1 1000=  
units, n1 500=  were inspected and x1 1=  non- compliant units were found. The goal 
is to choose n2, the number of units to inspect from the next batch of size N2 1000= .  
We assume that we want the prediction distribution of the leakage rate to be lower 
than 1% with probability 0.95 and that the inspection effectiveness, w, is known to 
be 0.9. Solving Eq. 1.4 for n2 yields a sampling rate of s n N= =2 2 0 479/ . , which 
we round to 0.5. To choose the window length g  for the CSP- 1 algorithm, in the 
absence of any other criteria, we can use the formula for the AOQ given in Table 1.1. 
[Graphs of this function can be found in Dodge (1943).] Using the point estimate 
p x n= =1 1 1 500/ /  and f s= = 0 5.  from the preceding, we can choose g  to achieve 
the desired AOQ. For example, for an AOQ of less than 0.095%, the clearance num-
ber (window length) would be g = 0 5. .

Alternatively, in some circumstances the clearance number can be interpreted 
directly as a burden on the importer, representing a period of intense scrutiny dur-
ing which the importer needs to demonstrate proper compliance. Given this inter-
pretation, the magnitude could be chosen to reflect expert opinion.

The IRIS algorithm is well suited to a slowly changing approach rate, with 
reviews at fixed points in time. It is not designed to continually monitor for a sud-
den increase in the approach rate, and it doesn’t have an automatic reaction if  this 
occurs. There is no need to monitor for a decrease in the approach rate under IRIS; 
we just wait until the next review point.

CSP algorithms provide an immediate measured response to any increase in the 
approach rate. CSP algorithms enable us to increase the sampling rate temporarily 
when there is a suspicion that the approach rate has increased, and then reduce it 
if  there is not a problem. Where the CSP algorithms have problems, however, is in  
the choice of parameters f  and g  (or ga and gc). Using the IRIS algorithm to 
choose f  means that we can choose g  (or ga and gc) safe in the knowledge that we 
have already controlled the expected leakage rate and how large it could reasonably 
be. We also know that our overall sampling rate will be large enough to ensure that 
we will continue to have a good estimate of the approach rate. In the example given 
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earlier, we chose f  so that the leakage rate would be below 1% with 95% confidence. 
We then chose g  so that the expected leakage rate would be 0.095%.

We note that IRIS may also be combined with other adaptive sampling tech-
nologies, such as the sampling plan A algorithm (Wald & Wolfowitz, 1945), or with 
the run- length based method of Bourke (2002). However, this approach would 
not work with algorithms that use multiple sampling rates, such as the multilevel 
plans of Lieberman and Solomon (1955), or algorithms that adjust the sampling 
rate dynamically, such as the credit methods of Baillie and Klaassen (2006) and 
Klaassen (2001). Covering the combination of IRIS and these tools is beyond the 
scope of this chapter.

1.5 Aggregation of Pathways

The IRIS algorithm supposes that arriving units are grouped into review peri-
ods of  size N . If  N  is too small then the sampling rate required to give an accur-
ate estimate will be very high. Because we want our estimates to depend only on 
recent data, the choice of  N  depends on how quickly units arrive on the pathway 
of  interest. That is, a review period will typically be limited to a certain length 
of  time, and N  is then the (expected or estimated) number of  units to arrive in 
that time.

For some pathways, the volumes are too small to enable the collection of statis-
tically useful information. This is generally a result of trying to achieve homoge-
neous risk within each pathway. That is, to get groupings of similar units with a 
similar risk of contamination, we have to subdivide the set of all arriving units into 
pathways that are individually too small for meaningful analysis. Conversely, in 
many situations, such as customs and quarantine inspections, we have some control 
over the rate at which units arrive, by appropriately grouping units into pathways 
of similar types.

We form pathways by grouping similar units, and we assume that the arrival of 
contaminated units in one pathway is independent of the arrival of contaminated 
units in other pathways. Given this assumption, we still have a great deal of lee-
way over the level of aggregation that determines a pathway and hence the arrival 
rate. For example, a pathway may consist of all rice shipments, all rice shipments 
from a particular country or all rice shipments from a particular supplier. We need 
to choose pathways that are large enough that we get enough inspections in each 
review period so that we can estimate the approach rate well. But the pathways 
should not be so large that they include diverse types of units with very different 
risks of non- compliance. Our approach to this problem is to collect a number of 
sub- pathways into a single pathway that is large enough to give reasonable esti-
mates using IRIS, as explained earlier, and then use a CSP algorithm to determine 
dynamic sampling rates separately for each sub- pathway.

Suppose that we have k  sub- pathways, and in the previous review period 
there were N i1 ( ) arrivals, n i1 ( ) inspections and x i1 ( ) contaminated units found in 
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sub- pathway i . We will suppose that the effectiveness of inspections is w  for all 
sub- pathways, although this can be easily generalised. If  we let n n i

i1 1= ∑ ( ) and 
x x i

i1 1= ∑ ( ), then we put ˆ ˆ / ( )*p p x wn= =1 1 1 , as in Section 1.3. We can now solve 
Eq. 1.4 to get n2, the total number of desired inspections for the next review period 
across all sub- pathways. Let N i2 ( ) be the number of arrivals in sub- pathway i  dur-
ing the next review period and put N N i

i2 2= ∑ ( ). Clearly, we need N n2 2≥ , which 
means either that the review period is long enough that the individual N i2 ( ) are 
large enough, or that the number, k , of  aggregated sub- pathways is large enough. 
Given n2 and N2, we get the sampling rate s n N= 2 2/  for the coming review period. 
Now, given S we apply a CSP algorithm separately to each sub- pathway but using 
the same base sampling rate f s=  in each case. The window sizes for sub- pathway i ,  
namely g i( ) (or g ia ( ) and g ic ( )), can be different for different i .

The advantage of this methodology is that we can get enough data for a rea-
sonable estimate of the approach rate averaged across the different sub- pathways. 
The disadvantage comes when the approach rate is very different across the differ-
ent pathways, in which case we risk oversampling the more compliant pathways. 
Undersampling the less compliant pathways is less of a risk because the IRIS 
algorithm has error built in and because we are applying a CSP algorithm to each 
sub- pathway.

1.5.1 Simulation Experiment

In this section, we describe a simulation experiment to test the effect of aggregating 
sub- pathways. Each of the CSP- 1, CSP- 2 and CSP- 3 algorithms were trialled, with 
a variety of clearance numbers, g  or gc and ga. Rather than estimate f  using the 
IRIS algorithm, we just used a range of suitable values to demonstrate the utility 
of combining sub- pathways whatever the value of f . The simulation experiment 
was performed using inspection data for a product imported by 20 or so different 
suppliers based in a single country. A complete inspection record was available for 
these data, and for the purposes of the experiment, we assumed that the inspections 
were error free.

Using three- month review periods, the rate at which units arrive from each sup-
plier is too small to give a good estimate of the approach rate so we combine them 
for the purposes of estimating p. In practice, we would do this using the IRIS meth-
odology described in Sections 1.3 and 1.4.1. For the purpose of this simulation, 
we consider a variety of values for f  and g  (or gc and ga) to give a more thorough 
assessment of the effect of aggregating pathways. Once we have our parameters, 
our goal is to compare the effect of applying a CSP algorithm separately to each 
sub- pathway, with the effect of applying the algorithm to the aggregated arrivals. 
That is, should we keep a separate inspection history and alert level for each sub- 
pathway, or should we just have a single inspection history and alert level that we 
apply to them all? The basis of the comparison was the SOQ, the estimated long- 
run leakage rate for the given sample of units.
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For the data in question there is reason to believe that the approach rate varies 
across suppliers and it is intuitively reasonable to have a methodology that can 
sample one sub- pathway more than others. In our case, the mechanism that enables 
this is the alert level. The advantage of this strategy is that it focuses inspection 
resources onto areas in which there is the possibility of a higher approach rate. The 
disadvantage is that extra inspection effort may be undertaken in sub- pathways 
that are relatively clean because the base sampling rate, f , is inflated by the sub- 
pathways that have contamination.

The available inspection history comprised 1,516 inspections, 157 (10.4%) of 
which were non- compliant. The inspection dates ranged from 1 December 2005 
to 2 April 2011, which is nearly five and a half  years. Consignments (units) were 
imported from 20 unique suppliers, two of whom exported overwhelmingly larger 
volumes than the others. The experiment involved 100 replicates of all possible 
combinations of the following factors:

• Strata –  none, supplier
• Inspection Rule –  CSP- 1, CSP- 2 and CSP- 3
• Sampling Fraction –  f = 0 10. , 0 33.  and 0 50.
• Clearance Number –  g g gc a= = =5, 10 and 20

Here, the strata label refers to the characteristic used to divide the consignments 
into sub- pathways. This design yielded 5,400 simulations.

The simulations involved sorting the inspection data by time and then unit by unit 
using the CSP algorithm to determine whether or not each unit would have been 
inspected. A unit is always inspected if  the alert level of its sub- pathway is in census 
mode, but otherwise, a unit is inspected at random with probability f . Because of 
the use of random numbers to simulate the sampling process, the outcome of the 
inspection algorithm is random and the simulation was repeated 100 times for each 
candidate design. For the purposes of calculating the SOQ, only inspections from 
2008 onwards were used, leaving out the two years of earlier inspections so that 
they act as a burn- in period for the algorithm.

1.5.2 Results

The results of the simulation experiment are presented in Figure  1.1, which  
gives the average leakage rate by scenario as a function of the number of consign-
ments that were inspected. Each point represents the mean of 100 simulations. Each 
of the combinations of design and stratifying variable has nine points that represent 
different values of the sampling fraction, f , and clearance number, g g gc a= = .  
The straight diagonal line represents the expected trajectory if  purely random sam-
pling is performed.

The standard errors of the mean leakage rate ranged from 0.026% to 0.076%, 
and the standard errors of the mean inspection counts ranged from 1.2 to 5 con-
signments, which suggest that the locations of the points are reasonably precise.
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We see that, regardless of which version of CSP is used and what inspection 
parameters are selected, stratifying the pathway by supplier improves the inspection 
performance considerably for this type of unit. This means that the approach rate 
varies between suppliers, which further suggests that keeping and using supplier- 
level inspection histories will increase the efficiency of the inspection process. The 
improvement seemed to be greatest at the mid- range of the inspection counts; with 
too few inspections the contaminated pathways were poorly detected, and with too 
many inspections the effort wasted on relatively clean pathways reduced the benefits 
of stratification. CSP- 1 and CSP- 3 performed approximately as well as each other, 
and both were slightly better than CSP- 2.

In this example, each unit belonged to a unique sub- pathway. By using multiple 
variables to stratify the data, units may belong to more than one sub- pathway. For 
example, we may stratify by supplier and country of origin. In such a case we can 
maintain a separate alert level for each sub- pathway and then sample each unit 
according to its highest alert level.

A simulation experiment using historical data provides a useful way of decid-
ing whether or not to include a particular stratification variable in the algorithm. 
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Figure 1.1. Simulation results. The x- axis reports the number of consignments inspected during the 
reporting period, the y- axis shows the SOQ, that is, the percentage of the pathway volume 
that is noncompliant and undetected.
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Theoretical AOQ values, such as those reported in Tables 1.1 to 1.3, are useful for 
the purposes of general comparison, but when reliable historical inspection data 
are available, the algorithms can be compared better using simulation.
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2 Tools for Designing and Evaluating 
Post- Border Surveillance Systems
Susan M. Hester, Cindy E. Hauser and John M. Kean

2.1 Introduction

Biosecurity surveillance is the collection, collation, analysis, interpretation and 
timely dissemination of information on the presence, distribution or prevalence of 
pests or diseases and the plants or animals that they affect (MAFBNZ, 2009b as 
cited in Acosta & White, 2011). When undertaken post- border, biosecurity sur-
veillance activities are carried out for a variety of purposes:  to achieve market 
access, to detect new pests and diseases sufficiently early to allow for cost- effective 
management, to establish the boundaries of a known pest or disease population 
and to monitor the progress of existing containment or eradication programmes. 
Integrated and efficient surveillance plans are essential for effective allocation 
of limited biosecurity resources, successful pest control and the maintenance of 
important export markets.

In this chapter, we provide a brief  overview of many of the theoretical methods 
and models for designing and evaluating post- border surveillance, but our focus is 
on the readily applicable tools that have emerged from this theoretical work. These 
tools range in character from rules of thumb and simple formulae to simulation 
models with user- friendly interfaces. We discuss how each tool fits into the post- 
border surveillance framework, where to locate a particular tool and the contexts 
in which each tool has been applied. A more detailed explanation of key theoret-
ical methods and models can be found in other chapters of this book; for example, 
predicting the spread of invasives is found in Chapters 5 and 6, optimising resource 
allocation is in Chapter 15, while the theory behind eradication, scenario trees and 
pathways analysis is given in Chapters 16 and 17.

Our discussion assumes that the reader has some knowledge of the many con-
cepts and methods from economics and statistics that are relevant to post- border 
surveillance. Rather than include an explanation of these, we refer the reader to 
Chapter 10 for a discussion of economic concepts, and to Chapter 18 for a discus-
sion on key statistical concepts and well- known sampling designs. We do, however, 
include a discussion on the likelihood of detecting a pest or disease that is central 
to the quantitative surveillance tools reviewed in this chapter.
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2.2 Tools for Surveillance of a Single Species

The process for prioritising multiple species and projects for surveillance was out-
lined in Chapter  1. In this section, we assume that a particular taxon has been 
identified as warranting surveillance. The type of surveillance needed will depend 
on the status of the taxon, whether it is present or absent and the goals for its man-
agement. As the presence, absence or distribution of a species changes over time, 
management goals may change and surveillance plans should also adapt.

The post- border surveillance framework illustrated in Figure 2.1 represents the 
way in which post- border surveillance activities relate to each other. Detections 
arising from surveys that are undertaken when a pest or disease is thought to be 
absent (for the purposes of market access or early detection) lead to short- term 
decision making to determine the appropriate initial response. Protocol may dic-
tate that eradication be the automatic response; alternatively, delimitation may be 
required to estimate the full spatial extent of the incursion. Knowledge of the incur-
sion’s extent would allow for longer- term decision making, such as prediction of the 
damages that the incursion might cause and the resources required for candidate 
management strategies that aim to eradicate, contain, or simply watch the incur-
sion with little interference (monitoring). Over time, further delimitation surveys 

Market access/
proof of absence

Assessing &
monitoring

Manage

Eradicate

Contain

Watch

Long-term
decision making Do nothing

or

or

Early
detection

Short-term
decision making

Delimitation

Figure 2.1. Conceptual diagram of the phases of surveillance and infestation management (Hester 
et al., 2010a).
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may be required in the evaluation of the management programmes, and depending 
on the outcome, the aims of management may change. The management option to 
do nothing would be appropriate if  further active management cannot be justified.

In Sections 2.2.1 to 2.2.4, we review surveillance approaches in the context of 
these various purposes –  market access, early detection, delimitation and monitor-
ing. We also explore methods and tools for understanding the interaction between 
surveillance and decision making, and for estimating the likelihood of detecting a 
pest or disease, the detectability, in the post- border surveillance context.

2.2.1 Surveillance for Market Access

Post- border surveillance for the purposes of securing or maintaining market access 
is undertaken to define the pest and disease status of a country or regions within a 
country. Based on international standards, trading partners may develop an agree-
ment that specifies the surveillance standards required to establish and maintain 
area freedom status for specific pests and diseases. Countries that are members of 
the World Trade Organization have their international trade in plant and animal 
products governed by a series of rules, guidelines and standards; see Hester et al. 
(2010a) for a discussion of these. Essentially, countries or jurisdictions are required 
to use science- based evidence, confirmed by targeted surveys, to support their claims 
that a pest or disease is absent. Where possible, this targeted surveillance should 
be complemented by other sources of information such as scientific publications, 
research data, documented field observations and other non- survey data. Evidence 
may be provided either by structured surveys, which are often enhanced by passive 
surveillance, or by qualitative assessment of data from a variety of sources, usually 
by a panel of experts.

When claims of area freedom are based on structured surveys, the decisions on 
how and where to look for a target pest or disease depend on whether the aim of 
surveillance is detection or monitoring. Detection surveillance involves looking for 
pests and diseases that are not known to be present, while delimitation and moni-
toring surveillance are used to verify the characteristics of a known pest population 
and are undertaken under a limited number of agreements for which market access 
from areas of low pest prevalence is allowed (e.g. FAO, 2008).

Detection surveillance using structured surveys provides evidence that a pest 
or disease is absent. Where these surveys are undertaken and no pest is found, the 
results may be used to show that there is a particular level of  confidence (e.g. 95%) 
that the pest would have been found even if  it were present at a very low preva-
lence (e.g. 0.05%). When pest- specific or disease- specific guidelines for a structured 
population- based survey have not been given, appropriate statistical practices 
should be followed and documented. McMaugh (2005) gives a thorough account 
of  the steps and relevant statistical concepts involved in detection surveillance 
for plant pests, and Cameron (1999) and OIE (2015) provide this information for 
animals. A readily available set of  web- based tools (Epitools; Hester et al., 2015; 
Sergeant, 2009) can assist with survey designs for estimating disease prevalence or 
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for demonstrating freedom from diseases in animal herds, and is also applicable to 
plant- health surveillance surveys (see Table 2.1).

Alternatively, data from structured non- random surveillance may be used to 
support claims of area freedom. For animals, this may include information from 
‘general surveillance’, which would include data from reporting or notification 
programmes, control programmes/ health schemes, targeted testing/ screening, ante-
mortem and postmortem inspections, laboratory investigation records, biological 
specimen banks, sentinel units, field observations, farm production records or wild-
life disease data (OIE, 2015). Martin et al. (2015) describe the structure of a sto-
chastic spreadsheet- based model (General Surveillance Assessment Tool) that is 
used to estimate the sensitivity of general surveillance in the Australian livestock 
sector and to predict the median time to first detection of livestock diseases.

In some countries, results from sentinel site surveys are used to support claims 
of area freedom for a large range of pests and diseases of plants and animals. To 
maximise the chance of early detection, sentinel sites (trees, traps or animals) are 

Table 2.1. Surveillance tools for market access

Technique Use of technique Application and 
reference(s)

Available tools

Survey design Providing evidence 
of area freedom 
when sensitivity 
and specificity ≠ 1, 
or sampling with 
replacement

Area surveys of animals 
(Cameron & Baldock, 
1998a, b; Cannon, 
2001; Cannon & Roe, 
1982)

Formulae for sample size in 
reference

FreeCalcV2: http:// epitools  
.ausvet.com.au/ content  
.php?page=FreeCalc2

Epi Tools Suite: http:// 
epitools.ausvet.com.au/ 
content.php?page=home

Survey design Providing evidence 
of freedom from a 
disease

Various case studies 
presented (Cameron, 
1999; McMaugh, 
2005)

Formulae available in 
references

Bayesian belief  
networks

Providing evidence 
of area freedom in 
multiple- component 
systems

Foot and mouth 
disease, classical 
swine fever, Denmark 
(Hood et al., 2009)

Netica®: www.norsys.com/ 
GeNie and SMILE: www  

.bayesfusion.com/ 

Stochastic scenario  
tree models

Providing evidence of 
area freedom

Classical swine fever, 
Denmark (Martin 
et al., 2007a, b)

Survey of an 
invertebrate, Barrow 
Island, Western 
Australia (Barrett 
et al., 2010) and a 
vertebrate (Jarrad 
et al., 2011)

Procedure and formulae 
available in reference

PopTools: www.poptools.org
AusVet Freedom 

software: http:// freedom  
.ausvet.com.au/ 
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selected at locations where there is thought to be a high likelihood of a pest or 
disease incursion, for example, at ports that receive international vessels. The sen-
tinel sites are then surveyed regularly for evidence of a pest or disease incursion 
(Stevens, 2008).

When surveillance uncovers evidence of pest or disease presence, area freedom 
status may be revoked. Managers then generally focus resources on delimitation 
and eradication monitoring, as described in Sections 2.2.3 and 2.2.4. Meanwhile, 
an effort is usually made to identify the origin of the pest or disease and determine 
how it arrived, to manage the introduction pathway more effectively. If  eradication 
is successful, reinstatement of area freedom status will depend on the terms of 
individual trading agreements, and is likely to depend on the life cycle of the pest. 
In some cases, trade with areas of low pest prevalence is allowed, and monitoring 
surveys are used to provide continued evidence of low pest prevalence (e.g. DAFF, 
2004; FAO, 2008).

The main strength of structured surveys to demonstrate area freedom is that 
a quantifiable probability estimate for the presence of the pest or disease can be 
calculated based on well- established sampling theory and methods. The main dis-
advantage is that these surveys can be very expensive because large sample sizes 
are required to provide high statistical confidence that the prevalence of the dis-
ease is at, or near, zero (Ausvet Animal Health Services, n.d.). Survey costs may 
be an important constraint and will often determine the level of surveillance that 
may be undertaken. In this context, the optimal level of surveillance activity (e.g. 
number of blood tests or surveys, or level of enforcement) will be that which mini-
mises the sum of the expected present value of all the costs associated with pest 
or disease incursion over an infinite time horizon. For example, Kompas and Che 
(2003) developed a model that can be used to determine the optimum surveillance 
level for a pest given the likely arrival time, biological characteristics, surveillance 
expenditure before detection and production losses before and after detection. 
When applied to ovine Johne’s disease in Western Australia, the optimal quaran-
tine programme should be of a severity that potentially allows entry of one infected 
sheep every eleven years (Kompas & Che, 2003). This approach was also used to 
estimate the optimal level of surveillance for foot- and- mouth disease in the United 
States (Kompas et al., 2006) and for wood borers and bark beetles in New Zealand 
(Epanchin- Niell et al., 2014).

Several recently developed techniques based on scenario tree models can use data 
from a range of different surveillance activities to calculate a quantitative estimate 
for the probability of detection, which can be used to support claims of freedom of 
disease or infection. Scenario trees are a way to represent a hierarchy of information 
about a system; these were developed for biosecurity by Martin et al. (2007a) and 
are explained more fully in Chapter 17. Where the analysis of very complex surveil-
lance systems leads to the construction of large scenario trees, spreadsheets or other 
specialist computer software must be used (e.g. @Risk: Palisade Corporation, 2015; 
and Poptools: Hood, 2010). Hood et al. (2009) showed how some scenario trees 
can be simplified using matrix algebra or Bayesian belief  networks. While it may 
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be difficult for a biosecurity manager to use the matrix method to derive the more 
compact scenario trees, it is likely that biosecurity managers can use readily avail-
able Bayesian network software such as Netica® (Norsys Software Corporation, 
n.d.) and SMILE (Decision Systems Laboratory, n.d.) to represent scenario trees 
and use them to support claims of pest and disease freedom (Table 2.1).

Readily available tools that have evolved from the methods discussed in this sec-
tion, and which can be used for market- access surveillance, are listed in Table 2.1.

2.2.2 Surveillance for Early Detection

As is the case with surveillance for market access, surveillance for early detection 
aims to find invasions of new pests and diseases early enough to enable effective 
and efficient management (including eradication or containment). In practice, the 
aims of early detection and proof of freedom often operate together. However, in 
the case of early detection, we assume that there is no trade imperative or proscrip-
tive protocol for surveillance, and because of this, additional tools and methods are 
available.

Surveillance for early detection is particularly challenging because there is often 
little or no information available about where, when and how a new target spe-
cies will arrive in a country or region (Kean et al., 2008), but the expectation is 
that a particular pest or disease will arrive eventually. There is a trade- off  between 
using resources to find incursions early and using resources to manage the incur-
sions once detected; the earlier an incursion is detected, the fewer the resources 
required for subsequent management compared with finding the incursion when it 
has spread further (Epanchin- Niell et al., 2012).

Identifying Where to Look
Pathways analysis (see Chapter 1) may be used to identify the entry and spread of 
an invasive species, where a pathway represents any means enabling the potential 
entry and spread of pests and diseases. Thomas et al. (2007) combined risk ana-
lysis with pathways analysis to enable ranking of the relative risk of weed- spread 
pathways in Victoria, Australia, so that resources for surveillance could be priori-
tised accordingly. The criteria developed for the risk assessment framework were 
weighted using an analytical hierarchical process, with weights determined using 
a software tool called Catchment Decision Assistant©. The tool helps users to 
structure the problem into a hierarchy of criteria, and then systematically rates and 
weights the relative importance of each criterion as it contributes to overall risk. 
The software also connects the decision- making framework to geographic informa-
tion systems; Barrett et al. (2010) used the software to predict likely entry points for 
an invasive ant, and from that prediction, were able to determine where surveillance 
resources should be focused.

Simple mathematical models have also been used to identify where surveil-
lance should be undertaken. Perry and Vice (2009) used a simple model to identify 
islands in the Pacific Ocean that were at high risk of brown tree snake entry and 
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establishment as a result of transport and cargo movements from Guam, where this 
species is a serious problem. Information on the risk of establishment could be used 
to inform interdiction policies on Pacific islands where the threat of snake arrival is 
determined to have changed. Similarly, surveillance effort can be focused by com-
bining spatially explicit information on the relative likelihoods of entry and estab-
lishment to generate relative risk maps (e.g. East et al., 2013; Magarey et al., 2011).

Identifying How to Look
Once the locations of early detection efforts have been determined, managers must 
decide how to undertake the surveillance. Often, a combination of active and pas-
sive surveillance is appropriate for early detection. Active surveillance is undertaken 
by pest- management agencies through targeted surveys, while passive surveillance 
involves public vigilance, where members of the community or an industry report 
possible new incursions (Hester and Cacho, 2017).

In principle, active surveillance techniques for early detection are the same as 
those discussed in the context of market access, but without any immediate trade 
imperative or prescribed survey protocol that insists on a particular testing inten-
sity or density of traps. Nevertheless, to ensure that survey results are meaningful, 
it is important that statistically appropriate survey design and sampling techniques 
be used (see Chapter  18). MacKenzie and Royle (2005) provide a useful discus-
sion on survey design and selection of sampling sites when attempting to describe 
the level of occupancy of a region or landscape. Berec et al. (2015) evaluate the 
effects of different spatial arrangements of traps or sampling points and show 
that it matters less and less as the sensitivity of the sampling method declines. The 
applicability of various sampling methods for simulated populations of an inva-
sive plant is discussed in Rew et al. (2006). Barrett et al. (2010) derived formulae 
for calculating the number of surveillance system units that would be required to 
detect non- indigenous species, with a given statistical power and a specified num-
ber of independent individuals. The surveillance system can comprise structured 
surveys, trapping methods, incidental sightings by non- experts and any other detec-
tion method for which the sensitivity and footprint are known or can be reasonably 
estimated. The methodology of Barrett et al. (2010) was subsequently extended to 
a non- indigenous vertebrate pest: the black rat on an island (Jarrad et al., 2011).

Passive surveillance has often detected new incursions of invasive pests and 
diseases (Cacho et al., 2010; Hester & Cacho, 2012). Although not directly under 
the control of biosecurity managers, the efficacy of passive surveillance can be 
influenced through targeted education and in the way that reports are processed 
and followed up (Froud et  al., 2008). Surveillance information can be gathered 
from the general public using telephone hotlines (Froud et al., 2008), but it may 
often be more effective to target the skills of farmers, private veterinarians and 
specialised pest- detection groups such as those of the National Plant Diagnostic 
Network in the United States, Weedspotters (Morton & Harris, 2008; Queensland 
Government, n.d.) and CropSafe (Agriculture Victoria, n.d) in Australia and the 
Garden Bird Health Initiative in the United Kingdom (UFAW, 2005). This type of 
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surveillance information can be combined with other surveillance data using scen-
ario trees (Martin et al., 2007a; see also Chapter 17) and can be incorporated into 
new designs or analysed after the fact using the methods advanced by Barrett et al. 
(2010).

Identifying How Hard to Look
A range of methods and tools can be used to help determine surveillance effort, 
based on effective survey frequency, survey intensity, time spent at a site or the opti-
mal search effort that should be expended in the detection process.

Harris et al. (2001) and Brown et al. (2004) tackled the issue of search frequency 
when the ability to detect a species improves over time due to its increased spread. 
Recommendations for weed surveillance intervals are given for a range of weeds in 
a range of habitat types, and these depend on the rate of weed growth, the ability to 
detect a weed and the cost of controlling the weed. The model was made available 
as a spreadsheet (see Table 2.2).

Survey intensity, the number of survey units (e.g. traps, nets or sample points) 
required for a given area, is related to the population size and detectability of the 
pest or disease and has been investigated for a range of pests and diseases (see 
Section 2.3). For the special case when a survey unit is sure to detect a pest when 
present, Green and Young (1993) showed that the number of survey units required 
for 95% confidence in detection is simply three divided by the target population 
density. Barrett et al. (2010) extended this method to select the appropriate survey 
intensity when the probability of detection in a sample unit is less than one. They 
showed how disparate sampling methods could be combined to quantify the over-
all power of a survey. Similar principles underpin stochastic scenario tree models 
(Martin et al., 2007a, 2007b; see also Chapter 17).

The optimal search effort that should be applied to detecting a pest or disease has 
been investigated with a range of models. In the simulation model of Cacho et al. 
(2006, 2007) and Hester et  al. (2010b), search theory concepts are incorporated 
into a population model and the costs of search and control are calculated as func-
tions of the amount of search effort, which is the decision variable. This approach 
is extended in Panetta et  al. (2011) and Hester et  al. (2013) to show the effect-
iveness of search and control efforts in changing the status of a weed infestation 
from active (weed is detectable above ground) to monitored (no recruits detected). 
A  user- friendly spreadsheet model for exploring the effect of changing levels of 
search effort using the methods of Cacho et al. (2006) is freely available (Cacho & 
Pheloung, 2007; see Table 2.2).

Mehta et  al. (2007), Hauser and McCarthy (2009) and Epanchin- Niell et  al. 
(2012) provided other examples of models that can be used to explore optimal 
search effort. Hauser and McCarthy (2009) used an occupancy model, a detection 
model and an economic analysis to identify how surveillance effort should be allo-
cated across a heterogeneous landscape using both benefit– cost analysis and cost– 
effectiveness analysis. The optimal surveillance effort can be implemented using a 
readily available spreadsheet tool (Hauser, 2009; see Table 2.2).
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Table 2.2. Surveillance tools for early detection

Technique Use of technique Application and 
reference(s)

Available tools

Scenario trees Designing multi- 
element surveillance 
systems to a specified 
statistical power

Survey of an 
invertebrate, Barrow 
Island, Western 
Australia (Barrett 
et al., 2010) and 
survey of a vertebrate 
(Jarrad et al., 2011); 
insect trapping 
(Kean, 2015)

Formulae available in 
references

Numerical simulation Determining time 
between surveys

Five habitat types, two 
or three weed types in 
each habitat (Brown 
et al., 2004, Harris 
et al., 2001)

Excel® spreadsheet 
model; email 
request to simon@
harrisconsulting.co.nz

Simulation model Determining 
eradication feasibility 
for various search 
efforts

Four hypothetical weed 
scenarios (Cacho & 
Pheloung, 2007) and 
for the eradication of 
miconia in far- north 
Queensland (Hester 
et al., 2010b)

Weed search: www.une  
.edu.au/ staff- profiles/ 
business/ ocacho

Spatial model of 
detection and 
treatment

Determining effort 
allocation across 
landscape; costs vs. 
benefits of early 
detection

Orange hawkweed, 
Victoria (Hauser, 
2009; Hauser & 
McCarthy, 2009)

Spreadsheet model 
email request 
to: chauser@unimelb.
edu.au

Qualitative analysis Developing a model for 
community- based 
detection

Weed detection network 
in Australia (Morton 
& Harris, 2008)

Template available in 
reference

Analytical hierarchical 
process

Ranking the relative 
risk of weed- spread 
pathways

Weed spread in 
Victoria, Australia 
(Thomas et al., 2007)

Catchment Decision 
Assistant© software 
discussed in Itami 
and Cotter (1999)

Modified failure- time 
model

Measuring time to 
detection

Two invasive grass 
species, threatened 
native plant, Victoria 
(Garrard et al., 2008, 
2009)

Computer code for 
simulating data and 
calling WinBUGS 
model in R contained 
in Garrard et al. 
(2008, 2009)
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Garrard et al. (2009) developed models based on environmental and observer 
variables for designing optimal surveillance strategies for early detection of weeds. 
They also discussed a trait- based model of plant detection time that may be used 
to provide estimates of detectability where no species- specific detection model 
exists (Garrard et al., 2008, 2009, 2013). This information is useful in prioritising 
surveillance activities and the amount of resources to allocate to surveillance (see 
Section 2.4). Computer code for implementing the method in the Bayesian freeware 
WinBUGS is provided in Garrard et al. (2008; see Table 2.2).

The range of readily deployable tools that can assist in early detection surveil-
lance is given in Table 2.2. Tools range from qualitative analysis techniques through 
to simulation models and scenario trees.

2.2.3 Surveillance for Delimitation

The aim of surveillance undertaken for delimitation is to establish the boundar-
ies of a known incursion of a pest or disease. In theory, delimitation should be 
undertaken as quickly as possible because the invasive species continues to spread 
while searching is taking place. This increases the probability of escape, the extent 
of the invasion and the ultimate effort required to manage the invasion (Leung 
et al., 2010).

Where to Look
Initially, delimitation surveillance efforts focus on determining the likely means of 
introduction as well as the method, amount and direction of dispersal from both 
the known infestation and from the original site of incursion. The initial detec-
tion site should be used as a starting point for gathering the required information, 
although this site will not necessarily be the initial point of introduction.

Trace- back and trace- forward techniques, combined with pathways analysis, can 
be used to gather information on introduction and spread. Trace- back enquiries are 
used to locate the likely original site of introduction, and if  this is successful, trace- 
forward activities will then help to locate areas, objects or animals that might be 
infested and will need to be surveyed. Australia’s National Livestock Information 
System and New Zealand’s National Animal Identification and Tracing scheme are 
examples of formal tracing schemes that could be used in the context of delimit-
ing an incursion of a pest or disease of livestock (MAFBNZ, 2009a; MLA, n.d; 
NAIT, n.d.).

Pathways analysis (see Section 2.2.2) can give additional information about pos-
sible dispersal mechanisms and is often used in conjunction with trace- forward and 
trace- back techniques in delimitation surveillance. This was the case in the delimi-
tation of Siam weed (Chromolaena odorata) in Australia (QNRM, 2006) where 
pathways identified as high risk became the basis of trace- forward investigations. 
Detailed behavioural simulation models have recently been developed to suggest 
the proximal source location of insects caught in surveillance traps (Guichard et al., 
2012), but further advances in trapping technology, specifically time- stamping 
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captures, are needed before these tools can be operationalised. When there has been 
time to establish the habitat preferences of an invasive species, dispersal and habitat 
suitability models can be used to identify areas prone to invasion. Hastings et al. 
(2005) reviewed and synthesised recent developments in the study of the spread of 
invasive species and gave examples of where models have been tested with data. 
Habitat suitability models are used to describe the habitat types that have been 
invaded, and can subsequently be used to identify similar areas that might also 
harbour the invader or are more likely to face the most immediate threat of being 
invaded. Elith and Leathwick (2009) provide a review of habitat models (including 
history, cross- disciplinary features and diverse uses) as well as their use as a tool 
for predicting the suitability of new environments for a given species. Václavík and 
Meentemeyer (2009), Smolik et al. (2010) and Chapter 6 also provide useful infor-
mation on modelling the spread of invasive species. Habitat suitability models that 
could be applied in a delimitation context range from non- linear regression models 
(Shaffi et al., 2003) to dispersal models combined with habitat suitability to predict 
weed occurrence across a landscape (Fox et al., 2009; Williams et al., 2008). Fox 
et al. (2009) reported the development of a surveillance support tool that can be used 
to assist in the delimitation and management of weed incursions. The geographic 
information system- based tool simulates invasions of plants across differing land-
scapes and through a range of dispersal mechanisms, and was used to evaluate the 
effectiveness of Chilean needle grass surveillance and to develop rules- of- thumb for 
future weed management. Hauser et al. (2016a) adapted their previous early detec-
tion surveillance optimisation (Hauser & McCarthy, 2009; Table  2.2) to accom-
modate known infestations and prioritise delimitation survey effort to high- risk 
areas beyond the known invasion extent. Their method was tested on a hawkweed 
eradication program in Australia, with survey priority maps proving a useful guide 
for managers about where surveillance effort should be allocated on the ground. 
Panetta and Lawes (2005) suggest that when information on habitat preferences 
is sparse and models of dispersal for new incursions do not exist, the delimitation 
strategy should involve systematic, intensive surveys in the local vicinity of known 
occurrences in conjunction with surveys in other areas that are selected based on 
putative dispersal behaviour and potential pathways of spread. This approach was 
further developed by Leung et al. (2010; see Section 2.2.3). In some cases, Cartesian 
methods may be used to focus surveillance effort where delimitation is the focus. 
For example, Meats (1998) used the results from sentinel trapping grids to estimate 
the location of epicentres of fruit fly populations from those detected in the traps.

How to Look
As with early detection, delimitation may use data arising from active or passive 
surveillance activities. For delimitation, resources can be better targeted because 
the identity and some of the distribution of the target pest is known. For example, 
passive surveillance was a key component of the attempts to delimit Siam weed and 
red imported fire ants in Queensland, Australia, where the community and vari-
ous stakeholder groups were targeted through paid television advertising, direct 
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mail- outs, letterbox drops, public relations events and press and radio coverage 
(Cacho et al., 2012; QNRM, 2006).

Active surveillance for delimitation should exploit the principles for survey 
design outlined in McMaugh (2005), Section 2.2.1 and Chapter 18. Pests and weeds 
that are detected early will often exist in low- density clustered distributions, for 
which adaptive cluster sampling (Thompson, 1990) is well suited. Spatial cluster-
ing implies that when one pest is found, nearby locations are much more likely 
than random locations to also have the pest (Philippi, 2005). Smith et al. (2003) 
demonstrated adaptive cluster sampling for rare (but not invasive) mussel species, 
while Philippi (2005) used this technique to determine the abundance and spatial 
distribution of a rare plant.

Conventional surveys may be impractical for determining the extent of an incur-
sion when large areas are involved or when terrain impedes location access due to 
the high costs of searching. Remote sensing (aerial photography, multispectral air-
borne sensors and satellite imagery) may be used as a surveillance tool for delimi-
tation when the pest is easily distinguished from its surroundings. For example, 
remote sensing has been used to estimate the extent of prickly acacia across 29,000 
km2 of the Mitchell grasslands of northern Australia (Lawes & Wallace, 2008), to 
quantify and map invasive species on a floodplain in Nebraska (Narumalani et al., 
2009) and for quick and economical detection of small disjunct areas of yellow 
hawkweed (Hieracium pratense) over large areas in northern Idaho (Carson et al., 
1995) and alpine areas of eastern Australia (Hung & Sukkarieh, 2015).

How to Achieve Delimitation
Panetta and Lawes (2005) suggest two rules- of- thumb for evaluating progress 
towards achieving delimitation: (1) that the cumulative area of known infestation 
becomes stable over time; and (2) that there is a decrease in the detection ratio (the 
total area of newly discovered infestation divided by the annual total area searched) 
over time. However, theory on how to determine the invasion boundary is sparse. 
Leung et al. (2010) presented one of very few published methods for rapidly delim-
iting the invasion boundary of a spreading organism, but it has not yet been devel-
oped into a readily applicable tool. Leung et al. (2010) developed a delimitation 
algorithm for circumstances when the site of the initial detection is known but there 
is no knowledge about the initial invasion site or the direction and extent of dis-
persal. The approach is based on probability and sampling theory and uses data 
assembled from the search process to draw inferences about the extent of the inva-
sion. Although this method provides a useful starting point, it requires a very large 
sample effort and is not effective for low- density populations. The approach of 
Hauser et al. (2016a) was a suitable alternative for delimiting a sparse population 
of king devil hawkweed (Hieracium praealtum) in Australia.

In some cases, particularly during the early stages of an incursion investigation, a 
full and accurate delimitation may not be required; instead investigators may need 
to know only whether the invasion is already too widespread for certain manage-
ment actions (e.g. eradication) to be feasible. In these cases, adequate information 
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for decision making may be provided by a relatively inexpensive detection survey. 
Kean et al. (2015) describe this approach in more detail, give simple formulae for 
designing an appropriate survey and demonstrate how this approach has been used 
in recent insect invasions.

Delimitation of most invasive pests and diseases is a challenging process and the 
range of methods available is limited. Table 2.3 presents the few tools available that 
can be used to undertake delimitation surveillance and assist in achieving the goal 
of delimitation.

2.2.4 Surveillance for Monitoring

The progress of ongoing infestation management requires regular assessment and 
monitoring. Active surveillance can be used for continued delimitation, identify-
ing sites that require control effort and observing changes in population density 
at known sites of infestation. It is important that the survey design and the data 
collected serve the objectives of the programme. We classify the objective of a pro-
gramme broadly as eradication, containment or watching without interference (see 
Figure 2.1). Identifying which objective is most suitable for any particular case is 
discussed in Section 2.4 on long- term decision making.

When the programme objective is containment, surveillance resources should 
usually be targeted at the invasion front or barrier zone. One notable project of this 
type is the Slow the Spread programme against gypsy moth in the United States. 
Sharov et al. (1998) found that the most cost- effective solution was to place the 
highest density of traps ahead of the population front at a distance determined by 
how far new colonies can arise from the established infestation. Bogich et al. (2008) 
extended this work with a spatially implicit model of the area infested by gypsy 
moth to determine trap densities that minimise the expected costs of a gypsy moth 
eradication programme (Figure 2.2), and Epanchin- Niell et al. (2012) used a simi-
lar approach for optimising gypsy moth trapping across heterogeneous landscapes.

Table 2.3. Surveillance tools for delimitation

Technique Use of technique Application and 
reference(s)

Available tools

Simulation model Simulating dispersal; to 
evaluate surveillance 
and management

Weeds: applied to 
Chilean needle grass 
(Fox et al., 2009)

Surveillance support 
model: www.uq.edu  
.au/ lir/ weedtoolbox

Trace- forward, 
pathways analysis

Informing delimitation 
surveys

Siam weed, Queensland, 
Australia (QNRM, 
2006)

Practical example in 
reference

Targeted detection 
surveys

Partial delimitation to 
enable rapid decision 
making during 
incursion investigation

Pasture tunnel moth, 
eucalyptus leaf beetle 
(Kean et al., 2015)

Formulae in reference
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In other cases, appropriate surveillance strategies will be influenced by the distri-
bution of the infestation, which may be measured by remote sensing (see Section 
2.2.3) and those targeted surveillance designs that are useful for early detection (see 
Section 2.2.2). Approaches that consider only pest presence or absence (e.g. Hauser &  
McCarthy, 2009) may not offer efficient designs when there is high variability in 
infestation size and the time required for treatment. The spatially explicit simu-
lation model of Fox et al. (2009) offers an alternative for weed surveillance, with 
demographics and dispersal taken into account together with a range of surveil-
lance strategies that can be explored and evaluated (Table 2.4).

Surveillance that is targeted for rapid control response is not well suited to observ-
ing changes in an infestation’s density and distribution, and will often lead to biased 
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Figure 2.2. Optimal trap density as a function of (a) infestation density, (b) growth rate, (c) eradication 
cost and (d) trap cost for a five- year gypsy moth eradication programme.
[Reprinted with permission from Bogich, T. L., Liebhold, A. M. & Shea, K. (2008). To 
sample or eradicate? A cost minimization model for monitoring and managing an invasive 
species. Journal of Applied Ecology, 45(4), 1134– 1142.]
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estimates (McMaugh, 2005). In the latter case, statistical sampling designs –  such as 
random, variable probability or stratified sampling –  are preferable (see McMaugh, 
2005; Royle et al., 2009; Samalens et al., 2007; Wikle & Royle, 1999; Table 2.4). 
Occupancy modelling can be used to detect changes in extent and guide future sam-
pling (e.g. Field et al., 2005; Fitzpatrick et al., 2009).

As a programme approaches successful eradication, pest populations may be 
present at very low densities. Targeted surveillance plans, similar to those used 
for market access (Section 2.2.1) and early detection (Section 2.2.2), are most 
effective for finding those last individuals and evaluating eradication success. 
When sampling effort and detectability can be quantified (see Section 2.3), the 
probability of  successful eradication can be derived from simple probability mod-
els together with environmental and survey data (e.g. Kean & Suckling, 2005). 
A range of  sighting methods were reviewed and evaluated by Rivandeira et al. 
(2009), who concluded that most perform well when sampling effort is relatively 
homogeneous through time, even if  absolute sampling intensity is unknown. 
These authors also supplied an Excel® spreadsheet for estimating extinction time 
from sighting records (Table 2.4). Bayesian methods have been used to quantify 

Table 2.4. Surveillance tools for monitoring

Technique Use of technique Application and 
reference(s)

Available tools

Simulation model Simulating pest dispersal 
and growth, evaluate 
surveillance and 
management

Chilean needle grass in 
Queensland, Australia 
(Fox et al., 2009)

Surveillance support 
model: www.uq.edu  
.au/ lir/ weedtoolbox

Survey design Gathering information on 
the extent and density 
of a pest or disease

Eight case studies 
(McMaugh, 2005)

Formulae in reference

Statistical methods Inferring extinction time 
from sighting records

General (Rivadeneira 
et al., 2009)

Excel® spreadsheet: 
http:// esapubs.org/ 
archive/ ecol/ E090/ 
084/ suppl- 1.htm

Optimisation, 
stochastic dynamic 
programming

Determining cost- 
effectiveness of further 
eradication monitoring 
when sample effort is 
known

Bitterweed in 
Queensland, Australia 
(Regan et al., 2006)

Rules- of- thumb in 
reference

Optimisation, 
stochastic dynamic 
programming

Determining cost- 
effectiveness of further 
eradication monitoring 
based on sighting 
records

Bitterweed in 
Queensland, Australia 
(Rout et al., 2009a)

Rules- of- thumb in 
reference

Robust optimisation, 
info- gap

Determining robustness 
of eradication 
monitoring

Rout et al. (2009b) Rules- of- thumb in 
reference
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the success of  vertebrate eradication programmes based on shooting or trapping 
methods (Ramsey et al., 2009; Solow et al., 2008; Anderson et al., 2013). Benefit– 
cost criteria can be overlaid onto these eradication probability models to identify 
when surveillance can be concluded and eradication can be declared successful 
(Regan et al., 2006; Rout et al., 2009a, 2009b; Table 2.4). This is discussed in 
detail in Chapter 16.

Planning the distribution, intensity and duration of surveillance resources in a 
monitoring programme requires careful consideration of the status of the infest-
ation and the objectives of the programme. It is important to periodically assess 
and re- evaluate management, as infestation status and objectives change. In Section 
2.4, we describe tools that can support this process for decision making.

2.3 Estimating Detection Probability

A common theme in all of the surveillance tools reviewed in Section 2.2 is the rela-
tionship between surveillance effort and the probability of detecting a population 
of the unwanted target organism. Confusingly, the term detectability has been used 
loosely in the literature to denote the probability of detecting an individual (e.g. 
Cacho et al., 2007), a population (e.g. Wintle et al., 2004) or a species (e.g. Mehta 
et al., 2007). If  all individuals are similar, then the probability of detecting a target 
population, which we call apparency (a), depends on the detectability (d) of indi-
viduals (sometimes termed observability, trappability or sample efficacy) and the 
population size (N) within the searched area as a = 1 –  (1 –  d)N.

Both detectability and apparency (collectively referred to as detection prob-
abilities) are determined by the characteristics of  the target species, the survey 
method and the sampling effort (e.g. mean search time) used, and may also 
depend on site, time or size. For many sampling methods, detectability also var-
ies with distance from the sample point or transect. Because most sampling tech-
niques were developed to measure the relative difference in population sizes over 
time or space, few have had their detection ability characterised. A special chal-
lenge for post- border surveillance is that an absolute estimate for detectability is 
required to interpret the zero results (apparent absences) that comprise much of 
the data collected.

2.3.1 Controlled Experiments for Measuring Detectability

Controlled experiments are one way to characterise the detectability of a particular 
target taxon with a specific sampling method. These generally involve calibration 
against another sampling method, release– recapture studies or techniques involv-
ing non- independent samples.

Calibration experiments simultaneously sample the same population using two 
or more techniques, where the detectability is known for one technique. The results 
then allow the detectability of the second technique to be estimated. For example, 
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Fleischer et al. (1985) calibrated various methods of sampling cotton pests against 
one another, and Byers et  al. (1989) calculated the effective attraction radius of 
bark beetle pheromone traps by calibration against passive traps.

Alternatively, mark– release– recapture (MRR) methods allow the population size 
to be identified, enabling detectability to be estimated in various ways (Krebs & 
Boonstra, 1984). It is worth noting that MRR may be used with taxa that are not 
normally associated with these methods. For example, some studies have released a 
known population of plants (Hauser et al. 2015; Moore et al., 2011) or simulacra, 
such as plastic insects and plants or artificially induced disease symptoms (Bulman 
et al., 1999; Hauser et al., 2012, 2016b; Mangano et al., 2011), to estimate detect-
ability in manual inspection surveys. Sterile insect releases for eradication or popu-
lation suppression may also be used as MRR experiments to quantify detection 
probability (e.g. Kean & Suckling, 2005).

With an appropriate MRR design, it may be possible to quantify the influence 
of covariates, such as local environment, weather and searcher identity, on detect-
ability (e.g. Chen et al., 2009; Christy et al., 2010; Yackel- Adams et al., 2011). MRR 
studies are also particularly useful for quantifying distance sampling (Buckland 
et al., 2001; Thomas et al., 2010) when detectability depends on the distance from 
a central sample point (e.g. insect trap) or transect line (as in visual surveys for 
plants). The relationship between detectability and distance may be used to derive 
an effective sampling distance that is equivalent to the area or volume beneath the 
curve in one dimension (e.g. Cacho et al., 2006), two dimensions (e.g. Kean, 2015; 
Turchin & Odendaal, 1996) or three dimensions (e.g. Byers, 2009), as appropri-
ate for the sampling method (transect walks, insect population trapping and fly-
ing insect trapping respectively). This allows the overall efficacy of a surveillance 
system to be modelled as a function of the spatial deployment of samples (Kean, 
2015), and thereby facilitates the design of optimal surveillance systems.

In cases in which neither calibration nor MRR techniques are feasible, it may still 
be possible to estimate detectability using non- independent samples. For example, 
if  a population is repeatedly sampled without replacement, then an accumulation 
curve may be derived (e.g. McCallum, 2005) and detectability estimated from the 
slope and shape of the curve. For visual sampling, detectability can be estimated 
using double- observer methods, in which two observers simultaneously sample the 
same population (Nichols et al., 2000). Alternatively, it may be possible to infer 
the detectability of trappable insects by measuring the degree of trap interference 
at different spacings (e.g. Bacca et al., 2006; Suckling et al., 2015). Although the 
trap interference effect is well known (e.g. van der Kraan & Deventer, 1982; Wall & 
Perry, 1978), the methods necessary to estimate detectability from field results are 
not well developed.

2.3.2 Empirical Approaches to Estimating Detection Probabilities

A range of statistical techniques have been developed for simultaneously estimating 
apparency or detectability together with either local population size or probability 
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of occupancy (e.g. MacKenzie et al., 2002; Peterson & Bailey, 2004; Tyre et al., 
2003; Table  2.5). Those based on empirically fitting zero- inflated distributions, 
which include many zero counts, seem to give the best estimates for population 
apparency (Wintle et al., 2004), prompting further advances in zero- inflated models 
(e.g. Joseph et  al., 2009a; Wenger & Freeman, 2008). Meanwhile, sampling the-
ory has been developed to determine the optimal strategy for data collection to 

Table 2.5. Tools that can be used for estimating population apparency or detectability

Technique Use of technique Application and 
reference(s)

Available tools

Distance sampling Quantifying 
detectability with 
distance

Thomas et al. (2010) Specialised software: www  
.ruwpa.st- and.ac.uk/ 
distance/ 

Estimating apparency 
from point survey 
data

Wintle et al. (2004) Software 
PRESENCE: 
www.mbr- pwrc.usgs.gov/ 

software/ doc/ presence/ 
presence.html

MARK: www.phidot.org/ 
software/ mark/ 

CAPTURE: 
www.mbr- pwrc.usgs.gov/ 

software/ captureshtml
SURVIV:
www.mbr- pwrc.usgs.gov/ 

software/ surviv.shtml

Estimating apparency 
and site occupancy

American toads, spring 
peepers (MacKenzie 
et al., 2002)

Software
PRESENCE: 
www.mbr- pwrc.usgs.gov/ 

software/ doc/ presence/ 
presence.html

Zero- inflated 
binomial 
distribution

Estimating apparency 
and site occupancy

Woodland birds, 
forest- dwelling 
frogs, mound- spring 
invertebrates (Tyre 
et al., 2003)

R add- on to fit zero- inflated 
binomial distributions 
to biological survey data 
by maximum- likelihood 
estimation

Zero- inflated 
distributions

Estimating apparency 
and site occupancy

Mallard duck, Cherokee 
darter (Wenger & 
Freeman 2008)

R and WinBUGS code: http:// 
esapubs.org/ archive/ ecol/ 
E089/ 166/ suppl- 1.htm

Optimal allocation of 
effort in detection 
and site occupancy 
studies

Amphibians in 
Yellowstone National 
Park, USA (Bailey 
et al., 2007)

Software 
GENPRES: 
www.mbr- pwrc.usgs.gov/ 

software

Estimating apparency 
and site occupancy

Breeding birds (Rota 
et al., 2009)

R code: www3.interscience  
.wiley.com/ journal/ 
122681954/ suppinfo
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parameterise the models. This may involve the choice of specific sampling methods 
(e.g. Cacho et al., 2007; Rew et al., 2006) or optimising the trade- off  between tem-
poral and spatial replication (e.g. Bailey et al., 2007; MacKenzie & Royle, 2005). 
For relatively immobile species, such as plants, the time spent searching at each site 
may be optimised, rather than the number of repeat visits (Garrard et al., 2008; 
Hauser et al., 2015).

A limitation of most empirical approaches is that they require a relatively large 
data set (but see MacKenzie et al., 2005), which constrains their use in biosecurity 
surveillance. In addition, they are inappropriate when there is significant change in 
local population size or habitat occupancy over time (Rota et al., 2009). This will 
be the case for many recent border incursions, and the models may give misleading 
results when the efficacy of different searchers is highly heterogeneous (Fitzpatrick 
et  al., 2009). Empirical methods, which are not necessarily cheaper than experi-
mental approaches, may be less likely to be useful for estimating detectability for 
biosecurity surveillance.

2.4 Decision Making

Justifiable and efficient surveillance is planned in the context of decision making. 
Surveys should be designed so that their data support and inform future decisions 
and management with a clear plan for how these data will be incorporated. Here, 
we discuss tools that aid decision making for pest incursion management, but take 
a broader view than just survey design. Some tools provide guidance on whether it 
is most prudent to eradicate, contain or not control an incursion, and other tools 
guide resource allocation among different activities, such as control, surveillance 
and research. Some models explicitly include the contribution of surveillance to 
overall management; others focus on other management activities and rely only 
implicitly on survey data.

2.4.1 Short- term Decision Making

Short- term decision making may be required immediately following the first detec-
tion of a species (Figure  2.1). In some cases, particularly when the species is a 
known economic threat, a protocol may have been agreed upon prior to detection, 
and management of the infestation can proceed immediately. In the absence of such 
a plan, a rapid assessment of the threat posed by the species is needed. Is establish-
ment and spread likely under local conditions? What impact is the species antici-
pated to have on the local environment? A first assessment and any management 
strategies arising from it are typically surrounded by much uncertainty.

It is potentially more cost effective to eliminate an infestation at this early, uncer-
tain stage than to embark on eradication later when the magnitude of the threat 
has been assessed in more detail and the species may have spread and caused dam-
age. For example, Harris and Timmins (2009) analysed data from fifty- eight New 
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Zealand weed control projects and estimated that if  a new infestation of a known 
weed is found, it should be controlled immediately if  control (including follow- up 
surveillance) will cost less than NZ$47 000. Furthermore, a newly found plant of 
unknown weediness should be controlled immediately if  control will cost less than 
NZ$7 000 (although this figure is likely to be an underestimate). In the first instance, 
feasibility of eradication can be assessed by comparing the time required to treat 
an infestation with the time interval during which individuals can be detected and 
accessed for treatment before they mature (Edwards & Leung, 2009; Table  2.6). 
Meta- analyses of eradication programmes (e.g. Tobin et al., 2014) have identified 
factors, including population size, that significantly affect the costs of eradication 
programmes and their likelihood of success. The Global Eradication and Response 
Database (GERDA; Kean et al., 2016; Table 2.6) provides an online tool for assess-
ing the likely success and cost of an eradication programme based on past out-
comes against similar species.

2.4.2 Long- term Decision Making

After the initial response, incursion management requires further periodic deci-
sion making. As an infestation is delimited, a more detailed threat assessment 
becomes possible and long- term management plans can be developed. Is the pur-
pose of management to eradicate, contain or watch the species? What resources 
can, or should, be deployed for this purpose? Part III of this book addresses a 
range of decision- making issues in detail. We support structured decision- making 
approaches to develop sensible and defensible strategies. Much of the literature 
on decision making for incursion management focuses on benefit– cost analyses 
in particular (see Chapter 10). Risk return approaches are also consistent with  
benefit–cost and cost– effectiveness analyses.

Long- term decision making may be required even before a species of  concern 
has arrived. Chapter  14 shows how structured decision making can be used to 
identify species of  concern. It also shows how resources might be best allocated 
to quarantine activities that prevent species entry and to surveillance activities for 
effective detection if, or when, the species enters. Leung et al. (2002) also weighed 
the cost of  preventing an invasion against the costs of  treating an established 
infestation.

Many studies have taken a benefit–cost approach and applied optimisation meth-
ods to identify the intensity of control that will minimise the total expected time- 
discounted costs of control and the damage caused by the target species (see review 
by Epanchin- Niell & Hastings, 2010). These studies assume, however, that the dis-
tribution (and sometimes, density) of the pest population is known with certainty. 
The optimal control intensity derived by these studies may not explicitly relate to 
the objectives of eradication, containment or watching, and the anticipated long- 
term outcome of optimal control may implicitly shift (e.g. from eradication to con-
tainment) as the incursion and its management proceed. High- control intensity is 
justifiable when the threatened system is highly valued and highly threatened by the 
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Table 2.6. Summary of deployable tools and techniques for long- term decision making

Technique Use of technique Application and 
reference(s)

Available tools

Model comparison Determining feasibility 
of eradication

Ciona intestinalis, a 
tunicate affecting blue 
mussels in Canada 
(Edwards & Leung, 
2009)

Equations and rules- of- 
thumb in reference

Meta- analysis of past 
experiences

Determining feasibility 
and cost of 
eradication

Kean et al. (2016); 
Tobin et al. (2014)

GERDA: http:// b3.net  
.nz/ gerda

Optimisation by 
calculus

Determining optimal 
expenditure on 
control to minimise 
the costs of control 
and damage

Leung et al. (2005) Rules- of- thumb in 
reference

Optimisation using a 
factored Markov 
decision process and 
algebraic decision 
diagrams

Prioritising infestation 
control among 
sites connected by 
dispersal

Chadès et al. (2011) Rules- of- thumb;  
see also: www  
.youtube.com/ 
watch?v=wuOvbCu_ 
nJc;www  
.youtube.com/ 
watch?v=UMsKMd- 
X8QE; www  
.youtube.com/ 
watch?v=muLzZ- 
3hIvM

Evaluating progress 
towards weed 
eradication. Corrects 
and extends Panetta 
and Lawes (2007)

Hester et al. (n.d.) 
using equations from 
Burgman et al. (2013)

MoniTool: www.acera  
.unimelb.edu.au/ 
materials/ software  
.html

Optimisation using 
Symbolic Perseus 
algorithm for spatial 
partially observable 
Markov decision 
process

Prioritising infestation 
monitoring and 
control among 
sites connected by 
dispersal

Chadès et al. (2011) Rules- of- thumb (see 
Section 2.4.2) and 
software

Optimisation by 
stochastic dynamic 
programming

Allocating resources 
between broad- 
scale searches, 
targeted searches 
and knowledge 
acquisition

Red imported fire 
ants (Solenopsis 
invicta) in south- east 
Queensland (Baxter 
& Possingham, 2011)

Rules- of- thumb (see 
Section 2.4.2)
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pest, and when methods of control are sufficiently effective in mitigating damage 
(Leung et al., 2005; Table 2.6). Discount rates and reduced time horizons reduce 
the perceived benefits of control (Epanchin- Niell & Hastings, 2010 and citations 
therein; Chapter 10).

The feasibility and optimal duration of an eradication programme depend on the 
relationship between control costs and pest density (Epanchin- Niell & Hastings, 
2010). If  it becomes increasingly difficult to treat individuals as they become scar-
cer, then slow, delayed or no eradication may be preferred over a high- intensity 
rapid eradication programme. Nevertheless, populations may be eradicable if  they 
have a tendency to decline further when at low density. As the probability of reinva-
sion increases, the value of eradication decreases, although it may still be war-
ranted. The benefit– cost approach, and most guidelines arising from it, require that 
the value of the threatened system and control costs can be measured or estimated, 
when in reality, measuring the value of a system can be difficult if  attributes of the 
system are not directly traded in the marketplace.

The relationship between control and the management purpose (eradicate, con-
tain or no control) has been addressed explicitly in models of  infestation spread 
from an introduction point (Cacho et al., 2008; Carrasco et al., 2009; Sharov & 
Liebhold, 1998). Assuming that damage caused is proportional to the area (but 
not density) of  the infestation, it is optimal to target control at its perimeter. The 
outcome of control –  eradication, containment, delay or no control –  is expressed 
through the infestation’s rate of  spread (which can be positive or negative). The 
optimal control strategy depends on the infestation’s uncontrolled rate of  spread, 
its extent when first discovered and the duration of  non- detectable life stages. 
The optimal control strategy may even switch over time as the infestation’s extent 
changes.

Other control- focused studies have addressed how to most effectively target 
control resources among life history stages (Buhle et al., 2005; Hastings et al., 
2006) or across space (Bogich & Shea, 2008; Chadès et al., 2011; Moody & Mack 
1988; Taylor & Hastings, 2004). With the exception of  Chadès et  al. (2011), 
these studies assume that the distribution of  the pest is known, presumably from 
surveillance data. Moody and Mack (1988) and Taylor and Hastings (2004) 
explored the utility of  targeting outlier populations (comparable to Sharov and 
Liebhold’s (1998) barrier zones in Section 2.2.4) versus the core infestation. 
Blackwood et al. (2010) and Chadès et al. (2011; Table 2.6) build spatially expli-
cit networks of  infestation based on their level of  connectivity to identify where 
control efforts should be targeted. Chadès et al. (2011) explored a range of  net-
work motifs, finding that optimal control effort depends on the structure of  the 
network and the stage of  the infestations. Control effort should be prioritised to 
sources before sinks, shifting attention to neighbouring sites, and to least con-
nected sites and clusters before addressing the most connected infestations. The 
extended network model of  Chadès et al. (2011) accommodates imperfect survey 
information and includes software that can solve problems involving up to only 
six sites. To maximise the probability of  eradication, optimal strategies generally 
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apply control and survey effort repeatedly, especially to well- connected sites, 
even if  the species is not observed.

Panetta and Lawes (2007; see Table 2.6) propose weed delimitation and extirpa-
tion criteria that require few inputs and account for imperfect detectability. These 
criteria can be plotted through time as an eradograph to assess progress towards 
eradication. When a programme is successful, the extirpation criterion will be larger 
than the seed longevity (non- detection time) of the species, while the delimitation 
criterion will approach zero. Figure 2.3a reproduces Panetta and Lawes’s (2007) 
eradograph for branched broomrape, where the latter few years of data suggest a 
failure to delimit the infestation effectively. Eradograph trends that indicate that 
eradication measures are not currently successful also indicate which components 
of management would gain most benefit from more resources (see Figure 2.3b). 
Burgman et al. (2013) retain the original structure of Panetta and Lawes’ (2007) 
eradograph but propose different metrics that improve biological interpretability. 
A user- friendly spreadsheet model (Monitool; Hester et al., n.d.) for exploring pro-
gress towards delimitation and extirpation using the methods of Burgman et al. 
(2013) is freely available (see Table 2.6).

There are more sophisticated ways of recognising the value of information sup-
plied by surveillance. The rate of pest removal may provide information on total 
pest abundance, allowing for removal strategies that serve the dual purposes of 
population control and improved knowledge for future control (D’Evelyn et al., 
2008). Alternatively, resources may need to be divided between separate surveil-
lance and control activities (Ndeffo Mbah & Gilligan, 2010). In Chapter 15, the 
value of additional delimitation surveys is estimated before deciding whether or not 
to eradicate a newly discovered species.

Baxter and Possingham (2011; Table 2.6) investigated the optimal allocation of 
resources to broad- scale surveys (to assist delimitation), targeted surveys (to assist 
control) and research to improve species distribution models and hence the accur-
acy of future targeted surveys. They found that over the long term, there is a benefit 
to investing in research, at the expense of survey and control, in early time steps. 
However, this may also yield rapid population spread during that initial period. 
Other heuristic strategies may provide more acceptable results (see Figure  2.4), 
although the long- term probability of eradication is likely to be substantially lower 
(97% vs. 59%, in Baxter and Possingham’s example).

For effective incursion management, surveillance must be understood and 
designed in the context of other management activities such as research and con-
trol. Tools that guide the allocation of resources between surveillance and other 
activities must acknowledge the quality of data obtained from surveillance, which 
will usually be imperfect. More common are studies that assume perfect and com-
plete surveillance data (i.e. full knowledge of pest distribution), and which recom-
mend optimal levels of pest control. Although these studies contribute important 
findings for cost- effective management, they may underestimate the cost and over-
estimate the feasibility of successful pest control if  they are adopted without fur-
ther consideration of the role surveillance plays.
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2.5 Discussion

The outcome of successful biosecurity surveillance is a reduction in the risk that 
pests and diseases will become established or spread in a country or region, particu-
larly those pests and diseases that have the potential to cause considerable harm to 
agricultural production, trade opportunities, human health or valued ecosystems. 
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Figure 2.3. (a) Eradograph for a branched broomrape eradication project, graphing the extirpation 
criterion E against the delimitation criterion log(D + 1). [Reprinted with permission from 
Burgman, M. A., McCarthy, M. A., Robinson, A. et al. (2013). Improving decisions 
for invasive species management: reformulation and extensions of the Panetta– Lawes 
eradication graph. Diversity and Distributions, 19(5– 6), 603– 607.] (b) Recommended 
resource deployment as a function of eradograph trend.
[Reprinted with permission from Panetta, F. D. & Lawes, R. (2007). Evaluation of the 
Australian branched broomrape (Orobanche ramosa) eradication program. Weed Science, 
55(6), 644– 651.]
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In this chapter, we have reviewed methods and tools for post- border surveillance 
with a view to assisting biosecurity managers to translate their observations and 
data on invasive species into management recommendations. Biosecurity managers 
are routinely faced with a range of surveillance problems and resource allocation 
decisions. Their decisions often need to be made rapidly, sometimes under close 
political scrutiny, so tools based on sound theory, which can be applied quickly and 
easily, are of great benefit. For this reason, we have highlighted tools that are freely 
available for use in each aspect of post- border surveillance and that require limited 
technical expertise to apply.

We have also covered the more technical methods and models that have been 
developed in the area of post- border surveillance, but not all of these have resulted 
in readily usable tools. There is a notable lack of tools that can be used to rapidly 
delimit an incursion. Tools to analyse absence- rich data, where sampling activities 
commonly result in the organism not being located, are also lacking. Biosecurity 
managers will, therefore, continue to benefit from the development of tools that use 
the more technical methods recently developed in this area.

Indeed, some techniques for analysing biosecurity surveillance data, such as 
stochastic scenario trees (Chapter 17), may involve complexities that preclude the 
development of simple and meaningful rules- of- thumb. Some additional training 
will be required if  biosecurity managers are to become competent in using the soft-
ware developed for creating scenario trees.
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Figure 2.4. Simulated performance of invasive species management over 20 years. (a) Comparison 
of four management strategies: cursory widespread searches; intensive focused searches; 
optimal state- dependent strategy recommended by stochastic dynamic programming; and 
continual rotating between cursory search, model- improvement and focused search. (b) 
Acquisition of knowledge when the optimal and rotational strategies are implemented. The 
two non- learning strategies (cursory and focused searching) remain at the initial level of 
a = 2 (dotted line).
[Reprinted with permission from Baxter, P. W. J. & Possingham, H. P. (2011). Optimizing 
search strategies for invasive pests: Learn before you leap. Journal of Applied Ecology, 
48(1), 86– 95.]
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In such cases, it will be important for the scientists, statisticians and analysts 
working on behalf  of biosecurity managers to involve managers and stakeholders 
in the process of obtaining results. Managers may also benefit when surveillance 
tools are presented in terms of economic tools with which they are familiar, such as 
benefit–cost analysis (Chapter 10) and control charts (Chapter 3).

Although the theories of  zero- inflated distributions (Wenger & Freeman, 
2008) and information contained in null data (e.g. Chapter 18) are developing 
rapidly, few authors have packaged their results in a form that is useful for man-
agers. A  key exception that is identified here is Epitools (Hester et  al., 2015; 
Sergeant, 2009), a suite of  tools that assist in surveillance design and proving 
area freedom.

The political nature of biosecurity means that decision makers must be well 
informed of the assumptions and uncertainties underlying the results from ana-
lyses of surveillance data. This may be especially challenging for authors providing 
simplified software black boxes or rule- of- thumb solutions.

Finally, it may not be easy for biosecurity managers to stay abreast of the new 
tools that could help them to make better decisions about surveillance systems. To 
realise fully the benefits of their work, scientists should carefully consider technol-
ogy transfer. Reviews, such as this one, may go some way towards that goal, but 
there can be no substitute for biosecurity managers and scientists working together 
to realise their shared goal of better post- border surveillance systems.
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3 Control Charts for Biosecurity 
Monitoring and Surveillance
David R. Fox

3.1 Introduction

The words monitoring and surveillance are sometimes confused and used inter-
changeably. Although both activities share common features of observation, data 
collection, analysis and assessment, there is a subtle distinction in terms of intent, 
which in turn has implications for the design and analysis of the monitoring or 
surveillance programme. The following clarifies the distinction between monitoring 
and surveillance:

Surveillance is the structured collection and analysis of data for the purpose of detecting 
incursions of new or emerging disease or infection in an area, or for demonstrating freedom 
from a disease or infection. Monitoring, in contrast, is conducted for the purpose of assess-
ing changes in the level or distribution of disease in an area. The main distinction is that 
surveillance is concerned with exotic disease, while monitoring is concerned with endemic 
disease.

(National Aquatic Animal Health Technical Working Group, 2004, p. 2)

Surveillance activities are further classified according to two objectives: early detec-
tion of incursions of disease or demonstration of freedom from disease, which we 
shall denote as mode I and mode II surveillance respectively.

While statistics has always played a key role in monitoring and surveillance activ-
ities, more recent national and international protocols have attempted to balance 
statistical rigidity with operational flexibility. Thus we see, for example, the World 
Organisation for Animal Health requiring demonstration of freedom from disease 
to meet some level of statistical confidence (e.g. 95%) without being prescriptive 
about the statistical methods by which that objective is to be assessed. Indeed, 
the World Organisation for Animal Health acknowledges that there is ‘consider-
able latitude available to Members to provide a well- reasoned argument to prove 
that absence of . . . infection is assured at an acceptable level of confidence’ (World 
Organisation for Animal Health, 2010b, p. 5). This considerable latitude is both 
a blessing and a curse. The advantages are increased flexibility and adaptability, 
while the downside is a lack of comparability between different procedures and the 
increased risk of deliberate or unintentional misuse of statistical methods. Vague 
definitions such as ‘acceptable level of confidence’ do not help either.
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The literature on monitoring and surveillance for invasive pests and plants also 
lacks specificity with respect to the identification of quantitative tools and meth-
ods for the detection of trends, anomalies or outbreaks. For example, Westbrooks’ 
(2004) paper on new approaches for early detection of invasive plants in the United 
States provides no guidance as to how the early detection is to be achieved. Likewise, 
the United States Government’s National Biological Information Infrastructure’s 
Early Detection and Rapid Assessment programme is silent on the quantitative 
aspects of early detection (National Invasive Species Council, 2003).

This chapter provides an overview of a class of statistical tools and methods that 
are well suited to biosecurity monitoring and surveillance activities. Collectively, 
these methods fall under the umbrella of statistical process control (SPC). 
Specifically, we will be looking at the role of control charts for both monitoring 
and mode I (early detection) surveillance activities. Control charts are unlikely to 
prove useful for demonstrating freedom from a disease or pest (mode II surveil-
lance) because the absence of disease or pest threats results in data streams that 
comprise only zeros. Demonstrating the absence of a disease or pest is an inferen-
tial problem and is better addressed using conventional tools of statistical inference 
such as hypothesis testing.

A common requirement of all statistical surveillance techniques is to –  as quickly 
and as accurately as possible –  detect important changes that occur in a stochastic 
process at an unknown time (Sonesson & Bock 2003). Many of the reported tech-
niques use likelihood- based methods to detect step changes in a parameter of inter-
est (e.g. process mean or variance). Although a number of papers have appeared on 
statistical surveillance in the context of epidemiology, public health and syndromic 
surveillance (Doherr & Audigé, 2001; Höhle & Paul, 2008; Marshall et al., 2004; 
Sonesson & Bock, 2003), relatively little has been published that illustrates applica-
tions to biosecurity monitoring.

This chapter examines the basics of control charts, starting with the Shewhart 
chart and various moving average charts, and then progressing to specialist charts 
for the time- between- events and the more contemporary Bayesian methods. More 
detailed information on specific SPC techniques can be found in any standard ref-
erence on the topic (e.g. Montgomery, 2012).

It is important to note that there are no universally accepted norms or conven-
tions when using control charts for biosecurity. Indeed, the notion of advance 
or early warning systems for biosurveillance has been challenged on account of 
high rates of false alarms, inadequate lead times and a lack of evidence of success. 
Critics claim that despite more than 10 years of experience, there is no evidence 
that a single bioterrorism attack has been thwarted as a result of systematic sur-
veillance. As noted by Mostashari and Hartman (2003), no surveillance system has 
provided early warning of bioterrorism, and no large- scale bioterrorist attack has 
occurred since existing systems were instituted. Demonstrating that a surveillance 
programme has reduced the likelihood of events that are yet to occur, or that may 
never occur, will always be difficult.
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3.1.1 SPC

SPC can be broadly defined as the collection of mathematical and statistical tools 
used to monitor and manage quality. This definition reveals the original context of 
SPC –  to control the quality of manufactured items in an industrial process or set-
ting. These days, the word control is de- emphasised and is usually either dropped1 
or replaced by improvement. SPC methods rely largely on data visualisation tech-
niques and as such are primarily descriptive in nature. While control limits and 
other triggering mechanisms use tools of statistical inference, the primary objective 
is not inferential. That is, we are not so concerned about testing hypotheses per se 
as we are about describing the state of the process.

The development of SPC techniques can be traced back to the First World 
War and shortly thereafter with the introduction of the Shewhart control chart 
by the American physicist Walter A. Shewhart in the 1920s. General acceptance 
and uptake of SPC tools in the West was relatively slow until it was realised that a 
major contributing factor to the high productivity and quality of Japanese manu-
factured goods was that country’s enthusiastic embrace of a total quality philoso-
phy espoused by leading American statistician and quality advocate W. Edwards 
Deming.

The 1980s saw a resurgence of interest in SPC under the banner of total quality 
management. The Six Sigma philosophy was conceived during this time in response 
to Motorola’s desire to achieve a tenfold reduction in product failure levels within 
five years. The Six Sigma methodology (based on the steps define, measure, analyse, 
improve and control) underpins the objectives of process improvement, reduced 
costs and increased profits.

Despite some negative experiences in the manufacturing sector, total quality 
management made a substantial contribution to quality improvement. The use 
of SPC methods in environmental contexts has been a more recent development –  
particularly with respect to water quality monitoring (ANZECC & ARMCANZ, 
2000; Burgman, 2005; MacNally & Hart, 1997; Morrison, 2008).

The challenge for SPC in biosecurity is not so much the fine- tuning of existing 
processes, but to identify radically new processes that alert us to impending threats 
with sufficient lead time to be useful. We next look at the adoption and uptake of 
SPC methods in biosecurity.

SPC and Biosecurity
Environmental applications of total quality management and SPC techniques have 
been identified only more recently despite the need for robust and reliable moni-
toring and surveillance systems. Fox (2001) attributed this to a lack of cross- talk 
between industrial statisticians and the environmental statisticians. Whatever the 
reasons, the slow uptake of SPC tools for environmental monitoring meant that 

 1 The American Society for Quality Control changed its name to the American Society for Quality on 1 
July 1997.
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critical assessments of environmental conditions and important decisions about 
responses relied heavily on conventional tools of statistical inference. The ecolo-
gists’ statistical toolkit was generally standard issue; t- tests, analysis of variance, 
analysis of similarities and multidimensional scaling were widely used, while the 
relatively simple techniques of Xbar- S charts, exponentially weighted moving aver-
age (EWMA) charts and capability analysis were virtually unheard of.

The use of control charts for mode I surveillance programmes has found par-
ticular application in syndromic surveillance of human populations. These applica-
tions were motivated by bioterrorism attacks in the United States when high- grade 
anthrax spores was sent via the United States Postal Service following the events 
of 11 September 2001. Exposure to anthrax initially produces flu- like symptoms in 
humans. Thus, the objective of syndromic surveillance is to provide an early warn-
ing mechanism by monitoring data on flu indicators (such as admissions to hospital 
emergency departments, sales of over- the- counter cold and flu medications and 
absenteeism levels) and an analysis of spatial clustering of outbreaks. Kulldorff  
(1997) developed a spatial scan statistic to help with the latter, while control charts 
were an obvious first candidate for the former.

Syndromic surveillance for counter- terrorism (e.g. www.bt.cdc.gov/ surveillance/ 
ears/ ) is a relatively recent development, while similar systems have been used for 
some time now to detect outbreaks, patterns and trends in diseases and epidemics 
(e.g. www.satscan.org/ ). Although these techniques do not appear to have had any 
appreciable uptake in Australia or elsewhere around the world in quarantine inspec-
tion and biosecurity, control charting has been suggested as an effective means of 
detecting trends for meat hygiene assessments (Commonwealth of Australia, 2002) 
and has also been recommended for detecting spatial and temporal clusters in vet-
erinary monitoring (Carpenter, 2001). Hall and Golding (1998) discuss the use of 
control charts in testing waste streams from wastewater treatment plants, and Stark 
et al. (2006) examine risk- based veterinary surveillance approaches to protecting 
livestock and consumer health although control charting is not mentioned.

Although syndromic surveillance has not been widely used in the context of inva-
sive species, the threat is no less tangible. Animal disease agents including those 
transmissible to humans have the potential to be used as biological weapons. They 
are particularly attractive because they have wide economic and social ranging 
impacts and are readily available (World Organisation for Animal Health, 2010a). 
As noted by Fricker (2011), some bioagents have symptoms in their prodromal 
stages that are similar to those of naturally occurring diseases. Syndromic surveil-
lance may be useful in this setting, although, as we have already noted, a major 
barrier to uptake is the difficulty in proving that any of these systems has made a 
difference or even do what they’re meant to do.

Control Charting Basics –  The Shewhart Chart
At its simplest, a Shewhart chart is essentially a time series plot of some process 
measurement or attribute –  the former being used for quantitative data (e.g. the 
time between outbreaks) and the latter for qualitative data (e.g. presence or absence 
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of a disease or condition). For quantitative data we can choose to track individ-
ual readings or a statistic such as the mean or standard deviation of subgroups of 
observations. A Shewhart chart is differentiated from a simple time series plot by 
the incorporation of control limits that are determined from the statistical proper-
ties of the phenomenon being observed and are designed to provide an early warn-
ing mechanism for impending or out- of- control situations.

To motivate the discussion of control charting, we examine the time series plot 
of some artificial invasive pest monitoring data. Figure 3.1 shows the proportion 
of samples resulting in a detection of an invasive species for a weekly monitoring 
programme and is thus referred to as a P- chart. The dashed line in Figure 3.1 is 
the result of applying a loess local smoothing procedure (Cleveland, 1979) to the 
monitoring data. The idea behind loess smoothing (and other similar procedures) is 
that the high- frequency oscillations can be removed by taking a subset of the data 
and replacing individual data points by some statistic (such as the median of the 
data in the subset). In this way, the relatively noisy data are smoothed. The degree 
of smoothing can be varied to reveal different features in the time series data. In the 
case of Figure 3.1, the trend over time is flat with no particular anomalies indicated 
although the individual data are quite variable. One way of helping address the sig-
nificance of the observed variations is through the use of control charts.

The simplest control chart is essentially Figure 3.1 with the addition of upper 
and lower control limits. The computation of control limits depends on the type of 
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programme. Dashed is a loess smooth.
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control chart and distributional assumptions underlying the response- generating 
mechanism. As a rule- of- thumb, warning limits are placed at ±2 standard devi-
ations on either side of the mean response, while action limits are placed at ±3 
standard deviations on either side of the mean response. The computation of con-
trol limits for proportion data (such as the detection rates in Figure 3.1) requires 
care because the variance of the computed proportion is invariably a function of 
the magnitude of the proportion, and this in turn affects the width of the limits. 
Although these calculations could be done manually, it is easier to have computer 
software (such as the qcc package in R) do it (Figure 3.2).

Note that the upper and lower control limits in Figure 3.2 are not constant. This 
is because the number of samples inspected each week varied. The overall mean 
rate of detection is indicated by the dashed line in Figure 3.2, which suggests that 
approximately 21% of all samples resulted in a positive detection, with a small num-
ber of violations or excursions outside the control limits. By itself, this chart raises 
no particular concerns, other than the two or three occasions when the proportion 
was significantly high and a couple of occasions when it was significantly low. How 
to respond to excursions beyond the control limits is a matter for the investigator 
to decide and will depend on a number of factors including whether the limit is a 
warning or an action limit. Typically, the triggering of a warning limit results in 
increased surveillance, whereas the triggering of an action limit results in further 
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investigations to identify causes or some form of physical intervention. Other more 
sophisticated response plans can be devised around more complex patterns of trig-
gering such as the number of runs above and below a limit or alternating patterns 
of above and below limits.

For data that are collected over time, a number of time- based control charts are 
available. Some of the more common and useful ones are described next.

Process Smoothing
The simplest way of smoothing over time is by block averaging. Figure 3.3 shows 
time series data for a detection rate divided into a number of non- overlapping 
blocks of constant width. The average of the data in each block is computed and 
plotted at the centre of the block. These points can be connected by straight- line 
segments to reveal a smoother version of the series.

Block averaging is a relatively unsophisticated smoothing method and has some 
potential difficulties –  not least of which is that the mean of each block is com-
puted without reference to the rest of the series. In other words, there is no history 
built into the mean of an individual block and the smoothed series can still exhibit 
some erratic jumps. To overcome this, we can take the basic block or window width 
and step it across the series so that there is overlap. This is achieved by replacing 
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Figure 3.3. Smoothing using block averaging.
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the oldest k observations with the most recent k observations. The block averages 
result in a moving average of the original series (Figure 3.4). An example of a mov-
ing average plot for detection rate data is shown in Figure 3.5. The points plotted 
in Figure 3.5 are the averages of all observations in the window and not individual 
measurements. A horizontal line in Figure 3.5 is placed at the mean of all these 
averages (and is denoted as X ).

By adjusting the parameters of the moving average plot, different levels of 
smoothing can be achieved. For example, Figure 3.6 shows a moving average plot 
for the proportion data using the averages of three- weekly subgroups. With this 
degree of smoothing, the underlying trend is more evident.

Time- weighted Charts
The block or moving average charts give equal importance (or weighting) to all 
data in the current window. Although this may be appropriate in some situations, it 
does not accord with the usual notion that the greater the time separation, the less 
relevant the data are. Time- weighted control charts such as the EWMA are more 
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Figure 3.4. Moving average scheme. A block or ‘window’ is stepped incrementally over the series and 
the block mean computed and plotted.
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flexible because the relative weightings given to recent and historical data can be 
specified.

By way of example, suppose we wish to form a weighted average of the current 
observation and the (k − 1) most recent values. That is, we are interested in form-
ing the weighted mean X X X Xk

k1 1
2

2= + + +α α α , where the weighting factor is α.  
The requirement that X1 is an unbiased estimator of the true mean imposes the con-

straint αi

i

k

=
∑ =

1

1, and for a given k, the solution to this is the root of the equation 

α αk − + =2 1 0. For example, if  k =10, we find α = 0 5002. . A plot of these weights 
compared with the simple arithmetic mean is shown in Figure 3.7.

The recursive formula for computing values of the EWMA chart is 
EWMA EWMA     0< <1t t tX= + −( ) −α α α1 1 . In other words, the current EWMA is a 
weighted average of the current data value and the EWMA in the preceding period. 
The determination of α for the computation of the EWMA is largely a subjective 
decision that will reflect the investigator’s desire to balance the degree of respon-
siveness (small α) and the degree of smoothing (larger α).

Figure  3.8 shows the EWMA chart for the weekday failure rate data with 
α = 0 2. .
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Figure 3.7. Comparison of exponentially declining weights (black bars) compared with equal- 
weighting scheme (grey bars) for k = 10 subgroups.
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3.1.2 Time between Events

We have seen how control charts can be used to monitor variables (e.g. the num-
ber of invasions detected) or attributes (e.g. the proportion of samples having a 
biosecurity threat). When events (e.g. the arrival of an invasive species) occur ran-
domly in time, an alternative approach is to monitor the inter- arrival time or the 
time between the occurrences of successive events. An advantage of this approach 
is that we do not have to wait until the end of some aggregation period (e.g. week, 
month or year) to obtain a measurement; it is available as soon as there has been 
a detection. However, some modifications to the standard charts are required to 
accommodate the fact that the distribution of inter- arrival times is usually (highly) 
non- normal. Details of the theoretical development can be found in Radaelli (1998). 
More recently, control charts for the number of cases between events (so- called g 
and h charts) have been developed and applied to monitoring hospital- acquired 
infections and other relatively rare adverse health- related events (Benneyan, 2001a, 
2001b).

By way of example, consider Figure 3.9, which depicts the pattern of biosecurity 
detections over time. By measuring the white spaces (i.e. computing the differences 
t ti i+ −1 ) in Figure 3.9, we obtain data on the inter- arrival times.

Our analysis of the inter- arrival data commences with an inspection of basic dis-
tributional properties (Figure 3.10).
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Figure 3.8. EWMA chart for data shown in Figure 3.5. Subgroup size defined by week of year  
(usually 5); EWMA weight = 0.2.
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It is clear from Figure 3.10 that these data are highly skewed and that the normal 
distribution is not an appropriate probability model.

The smoothed histogram in Figure  3.10 suggests that a J- shaped probability 
model is more appropriate. One such model is the negative exponential probability 
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Figure 3.9. Pattern of inter- arrival times as measured by the ‘white space’ between biosecurity 
detections (black vertical lines).
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Figure 3.10. Histogram of inter- arrival times with smoothed version (dashed line) and theoretical 
normal distribution (black line) overlaid. The normal distribution provides a poor 
description of these data (evidenced by the both the shape and probability mass associated 
with negative values of days between detects).

004
19:09:55, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


3.1  Introduction 65

65

distribution. This choice is also supported by statistical theory that says that if  
events occur randomly in time according to a Poisson probability model with an 
average rate of arrival of λ per time, then the distribution of the inter- arrival time 
is a negative exponential with parameter λ. The probability density function for the 
negative exponential is given by Eq. 3.1 and the corresponding cumulative distribu-
tion function is given by Eq. 3.2.

 f x e xX
x( ) , ,= >−λ λλ    0 (3.1)

 F x e xX
x( ) , , .= − >−1 0λ λ    (3.2)

For this distribution, the mean is 
1
λ

 and the variance is 
1

2λ
. It is readily apparent 

from Eqs. 3.1 and 3.2 that the variance increases or decreases with an increasing or 
decreasing mean; this is a violation of a basic assumption of many conventional 
statistical techniques that assume constant variance. Thus, control limits com-
puted under the (incorrect) assumption of constant variance will not perform as 
anticipated because they will result in triggering rates that differ from the nominal 
triggering rates.

One simple way of estimating the parameter λ is to equate the theoreti
cal 

and sample means. In this case, we have 
1

7 713
λ

= .  and hence our estimate is 

ˆ
.

.λ = =
1

7 713
0 130. A plot of the histogram of the data with a negative exponential 

distribution having ˆ .λ = 0 130 overlaid is shown in Figure 3.11. The adequacy of this 
fit is readily seen by comparing the empirical and theoretical cumulative distribu-
tion functions (Figure 3.12).

The false triggering due to the non- normality of the data is evident in the I- chart2 
of Figure 3.13. There are two ways of overcoming this. The first is to modify the 
control chart to account for the non- normality. The second approach is to trans-
form the data so that they are normally distributed (or approximately so) and then 
apply standard control charting techniques to the transformed data.

3.1.3 Control Chart for Time- between- Events

Rather than transform the data as described Section 3.1.2, alternative methods have 
been developed that modify existing control charts for use with untransformed (and 
non- normal) data. Radaelli (1998) describes procedures for setting control limits 
for both one-  and two- sided control charts for inter- arrival times. Only the one- 
sided case is considered here because we are generally interested only in tracking 
significant deviations in one direction (e.g. a lower control limit to alert the investi-
gator to a decreasing inter- arrival time between biosecurity events).

Let Xi  be the ith inter- arrival time. An out- of- control situation is declared if  
X Ti L<  in the case of decreasing inter- arrival times (i.e. increasing counts) or 

 2 An I- chart is simply a control chart for individual observations (i.e. ungrouped data).
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X Ti U>  in the case of increasing inter- arrival times (i.e. decreasing counts) where 
TL  and TU  are suitably3 chosen positive constants. Suppose that an in- control situ-
ation corresponds to a mean inter- arrival time of λ0

1− (where λ is the parameter in 
Eq. 3.1), then using Eq. 3.2, it can be determined that

 P X T ei L
TL< =  = − −λ λ λ

0 1 0  (3.3)

 P X T ei U
TU> =  = −λ λ λ

0
0 . (3.4)

Equations 3.3 and 3.4 are analogous to the type I error in a hypothesis test: it 
is the probability of a false positive. As in statistical hypothesis testing, the type 
I error rate (α) is set to be some arbitrarily small value (e.g. α = 0.05). The upper 
and lower control limits can be determined by setting Eqs. 3.3 and 3.4 equal to α 
and solving for either TL  or TU . Thus we have
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Figure 3.11. Histogram of days between detects. Smoothed histogram indicated by dashed line; 
theoretical exponential distribution depicted by black curve.

 3	 Because	the	definition	of	suitable	or	appropriate	control	limits	is	context	dependent,	no	generic	definition	
can	be	provided.	However,	as	a	general	guide,	this	will	be	determined	largely	by	considerations	of	balancing	
the	rate	of	false	positives	(i.e.	exceeding	a	limit	when	the	process	is	in	control)	and	false	negatives	(i.e.	the	
non- triggering of a limit when the process is out of control).
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Figure 3.12. Empirical cumulative distribution function for days between detects (dotted line) and 
theoretical exponential cumulative distribution function (solid line).
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Figure 3.13. Chart of individual values of days between detects (I- chart) with three- sigma limit indicated 
(grey horizontal line).
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 TL = − −( )−λ α0
1 1ln  (3.5)

 TU = − ( )−λ α0
1 ln . (3.6)

In addition to having a low α, we also require our control chart to signal correctly 
an important deviation from in control conditions. Suppose we wish to detect a 
change from λ0 to λ1 with some high probability ( )1− β , where λ λ1 0= k  and k is an 
arbitrary constant with k > 1 for a one- sided lower control chart and k < 1 for a 
one- sided upper control chart. That is,

 P X T ei L
k TL< =  = − = −−λ λ βλ

1 1 10 ( ) (lower chart) (3.7)

 P X T ei U
k TU> =  = = −−λ λ βλ

1
0 1( ). (upperchart) (3.8)

Again, drawing a parallel with statistical hypothesis testing, we recognise β in  
Eqs. 3.7 and 3.8 as the probability of a type II error.

Substituting TL  and TU  in Eqs. 3.7 and 3.8, respectively, we obtain

 ( ) ( )ln1 1 1− = − −( )β αek lower chart  (3.9)

 ( ) . ( )ln1− = ( )β αek upper chart  (3.10)

The performance characteristics for lower and upper one- sided charts are shown 
in Figures 3.14 and 3.15, respectively. Both of these figures show that the ability 
to detect even relatively large shifts (e.g. a doubling or halving) in the mean inter- 
arrival time is low (typically less than 0.2) for values of α less than 0.1. For example, 
using a 10% level of significance (i.e. α = 0.10), the one- sided chart of Figure 3.14 
suggests that there is a less than 20% chance of detecting a doubling (i.e. k = 2) of 
the mean arrival rate (or a halving of the inter- arrival time).

So far we have provided a review of basic statistical concepts as well as introdu-
cing some common control charting techniques that have been advocated elsewhere 
(Carpenter, 2001; Commonwealth of Australia, 2002) as being particularly suited 
to monitoring for temporal trends and aberrations in biosecurity- related applica-
tions. Control charts are particularly well suited to the visualisation and assessing 
of moderate to large volumes of time- based data. As such, control charts would be 
expected to have greater utility for container inspection regimes say, than for detect-
ing the occurrence of an invasive species.

Control charts need to be viewed as just one method in a toolkit of available 
techniques that can potentially assist field officers and biosecurity risk assessors in 
identifying unusual or aberrant trends. For events having very low probabilities of 
occurrence (e.g. rare invasive species), the monitoring of time between outbreaks 
is a potentially more useful quantity to be charting, although as shown, the statis-
tical power (ability to identify real shifts correctly in the mean time between events) 
using traditional charting techniques is relatively low. In Section 3.2 we look at a 
newer approach to control charting that has the potential to improve detection 
capabilities through the incorporation of extra information in the form of prior 
knowledge or expert opinion.
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Figure 3.14. Performance characteristics (as measured by Eq. 3.9) for a one- sided, lower control chart.
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Figure 3.15. Performance characteristics (as measured by Eq. 3.10) for a one- sided, upper control chart.
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Since the events of 11 September 2001, there has been a substantial research 
push in the area of syndromic surveillance with the accompanying development 
of new approaches and methods for detecting unusual patterns in a space– time 
continuum. Some of these techniques would appear to have direct applicability to 
monitoring for invasive species, although to date there has been little published on 
this application.

3.2 Bayesian Control Charting

Over the last decade, there has been considerable interest in the use of  Bayesian 
statistical methods in the life sciences (e.g. McCarthy, 2007). Most of  this inter-
est has been focused on alternative approaches to conventional hypothesis test-
ing frameworks and relatively little attention has been given to control charting 
methods.

In this section, we recast some of the previously discussed methods by explicitly 
incorporating prior belief  about the state of the monitored system and adaptively 
updating the alerting mechanisms. The methodology is developed in the context of 
routine inspection of quarantine import inspections, but the potential applications 
extend to other areas of biosurveillance where data are being gathered over time 
and early warning triggers are required.

Many biosecurity surveillance and monitoring programmes lend themselves to 
a statistical approach because they invariably involve small sampling fractions and 
have an overarching requirement to balance the cost of sampling with the prob-
ability of failing to detect a threat. Here we focus on the temporal component of 
monitoring –  that is, detecting important shifts or aberrations in monitored data in 
close to real time.

We have already seen that control charting methods have a number of attributes 
that make them particularly well suited to the task of identifying abnormal trends 
in biosecurity monitoring, such as an early- warning capability and easily commu-
nicated visual displays of historical results. Although some of these tools (such as 
the EWMA chart) have the ability to couple past and present observations, they 
are conventionally data- driven approaches that do not readily accommodate expert 
opinion or existing understanding about the underlying response- generating pro-
cess. This is potentially an important consideration, particularly when monitoring 
a new disease or species for which historical data do not exist.

Another difficulty with standard control charting tools is that they are con-
structed using models that assume that process parameters are known exactly and 
observations are independently and identically distributed (Tsiamyrtzis & Hawkins, 
2007). This is problematic in biosecurity applications because parameter values are 
rarely known and the assumption of independently and identically distributed data 
is frequently violated –  particularly for time series data that often exhibit moderate 
to strong autocorrelation. More recently, Bayesian control charting methods have 
been developed to help overcome some of these limitations. Baron (2001) used the 
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theory of optimal stopping of Markov sequences to develop efficient algorithms for 
the detection of a distributional change in sequentially collected data, and Hamada 
(2002) used Bayesian tolerance interval control limits in the context of attribute 
sampling.

In Section 3.3, we describe a Bayesian control charting approach that has been 
motivated by Menzefricke (2002), who used Bayesian predictive distributions to 
derive rejection regions for various monitoring applications.

Although it is beyond the scope of this book to provide a comprehensive review 
of Bayesian statistics, we shall digress momentarily to explain some of the under-
lying concepts. Readers requiring a more comprehensive treatment with applica-
tions to control charting may find the collection of papers in Colosimo and del 
Castillo (2007) a useful entry point.

3.2.1 Bayesian Statistics –  Basic Concepts

The control charting methods discussed so far fall within the realm of frequentist 
statistics. This mode of statistical thinking is by far the most common and forms 
the core of nearly all undergraduate statistics courses. The frequentist view of 
the world is one in which the only admissible probabilities are those that can be 
expressed as the ratio of the number of outcomes that are favourable to the event 
under consideration to the total number of outcomes. Alternatively, probabilities 
can be thought of as the limiting value of the relative frequency of some phenom-
enon –  hence the term frequentist statistics. A point of clear demarcation between 
frequentist and Bayesian statistics is the role of subjective probability. Subjective 
probability is eschewed in a frequentist framework; for Bayesians it is central.

The term Bayesian derives from the Rev. Thomas Bayes (b. 1702, London  –  
d. 1761). Bayes was not known as a mathematician and his only significant work, 
‘Essay towards solving a problem in the doctrine of chances’, was published post-
humously in the Philosophical Transactions of the Royal Society of London in 1763. 
Although a largely turgid piece of work, Bayes’ essay identified a fundamental 
proposition in probability. This was a profound insight and provided a logical and 
consistent way of updating a prior belief  or probability in the light of new evidence. 
The formula was named Bayes’ rule after him. The updated probability is referred 
to as the posterior probability. Unlike frequentist statistical inference, which tests 
hypotheses or estimates (unknown) parameters on the basis of information con-
tained in data alone, the Bayesian paradigm combines prior belief  about unknown 
parameters with evidence from data using Bayes’ rule. More formally, the aim of 
Bayesian inference is to make inferences about a parameter θ or future observation 
y using probability statements that are conditional on the data y. Both parameters 
and future observations are treated as random variables in a Bayesian framework, 
and we talk of the posterior density of θ [denoted p yθ( )] and the posterior predict-
ive density of y [denoted p y y( )].

The simplest version of Bayes’ rule for two events, A and B, says that the condi-
tional probability that event A occurs given that event B has occurred is given by the 
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formula P A B
P A B

P B
( ) =

∩( )
( ) , where the probability in the numerator is the joint 

probability (i.e. the probability that both A and B occur). Bayes’ theorem applies 
equally to probability density functions. Thus if  y denotes data and θ denotes some 

parameter or vector of parameters, then P y
P y

P

P y

P
θ

θ
θ

θ
θ

( ) =
∩( )

( ) =
( )
( )
,

 and the 

numerator is the joint probability density function for y and θ. The roles of y and 

θ can be interchanged in this formula so that P y
P y

P y

P y

P y
θ

θ θ( ) =
∩( )
( ) =

( )
( )
,

. A com-

parison of P y θ( ) and P yθ( ) reveals that P y P P y P y P y,θ θ θ θ( ) = ( ) ( ) = ( ) ( ). 
Finally, substituting this last expression for P y,θ( ) into the expression for P yθ( ) 
gives Bayes’ rule for probability functions:

 
P y

P P y

P y
θ

θ θ( ) =
( ) ( )

( ) .
 (3.11)

This formula takes a prior probability density for θ [i.e. P θ( )] and converts it into a 

posterior probability density P yθ( ) via the term 
P y

P y

θ( )
( ) , which is called the Bayes 

factor. The denominator in the expression for the posterior density does not involve 
θ and only serves to normalise the probability density function (i.e. make it inte-
grate to unity). Inference for θ based on the posterior is therefore unaffected by 
working with P y P P yθ θ θ( ) ∝ ( ) ( ) instead of the normalised posterior. Thus we 
see that the posterior distribution is proportional to the product of the prior and 
the likelihood of the data. In frequentist inference, only the likelihood is used; in 
Bayesian statistics, the likelihood is modified by our prior belief.

In Section 3.3, we describe a Bayesian control charting approach to biosurveil-
lance. The motivation in the present context is that conventional (i.e. non- Bayesian 
or frequentist) approaches to control charting need to be primed with hard data in 
the absence of known parameter values. Although this might not be an issue in a 
manufacturing context, where production data are both plentiful and continuous, 
it is problematic for the monitoring of processes for which little background data 
are available. This problem becomes particularly acute for the development of a 
surveillance programme aimed at detecting a new threat for which there are no 
prior data. Similarly, in the case of monitoring a rare phenomenon, data paucity is 
axiomatic. In these cases, the monitoring data will comprise a string of zeros cor-
responding to no detect outcomes. Frequentist statistical methods will estimate the 
rate of occurrence as zero with a standard error of zero. The Bayesian paradigm, 
on the other hand, commences with the specification of a prior density for the par-
ameter of interest (e.g. the true rate of occurrence) and continually updates this as 
new data become available.
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3.3 A Bayesian Control Chart for Biosurveillance

The following development assumes attribute sampling, where at time t, nt units are 
selected from a total volume of trade comprising Nt units and the result of inspec-
tion is a binary outcome:  pass or fail. The time index t will generally represent 
daily increments. On each sampling occasion, two related control charting ques-
tions are considered: (1) Is the observed failure rate for the current sample within 
acceptable limits? (2) Is the cumulative failure rate for all samples inspected to date 
within acceptable limits? These objectives mirror the detection of pulse and press 
stresses in natural ecosystem management (Underwood, 1994). In answering ques-
tions (1) and (2), we wish to incorporate both historical monitoring data and prior 
information on the true failure rate, θ. We do this through the use of a conditional 
probability distribution for the data given θ and a prior probability model for θ. 
These two elements can be combined to obtain a predictive distribution for a new 
sample. The mathematical detail is provided in Section 3.3.1. Readers not interested 
in this can skip forward.

3.3.1 Mathematical Detail

The problem as formulated leads us to consider the random variable Xt, which is 
the number of failed units in the sample of nt taken at time t. Assuming independ-
ent Bernoulli trials for each inspected unit, the conditional distribution of Xt θ is 
binomial (we have dropped the time subscript to improve clarity where it is under-
stood that all results pertain to the current sample unless otherwise indicated):

 f x
n

x
x nX

x n x
θ θ θ θ θ( ) =







− = { } < <−( ) , , , .1 0 1 0 1 ;    (3.12)

Uncertainty in the true failure rate, θ, is reflected in the prior distribution, p θ( ). 
A suitable choice for p θ( ) is the beta density:

 p a b
a b

a ba b( ; , )
( , )

( ) , , .θ
β

θ θ θ= − < < > >− −1
1 0 1 0 01 1;     (3.13)

Initial values for the a and b parameters in Eq. 3.13 can be chosen according to vari-
ous strategies depending on how much or how little we know about the true rate of 
risk for a particular commodity, country, test, and so forth. Robinson et al. (2009) 
discuss some of these strategies in the context of food imports and recommended the 
use of a Jeffrey’s prior corresponding to a = 0 5.  and b = 0 5. . A plot of this Jeffrey’s 
prior and two vague or non- informative prior densities are shown in Figure 3.16.

3.3.2 Updating the Prior

The underlying principle in the adaptive monitoring process is that our estimate 
of the true failure rate is constantly revised as new data are gathered. In the early 
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stages of monitoring, our probability model for the true failure rate will be driven 
by prior information.

At each time increment, the current prior probability for θ is updated using 
standard Bayesian methods to generate a posterior marginal probability density 
function. The procedure is described below.

At time t we have available the history of observed failures up to and including 

the current observation. We denote this as x x xN1 2, , ,{ }, where N ni
i

t

=
=
∑

1

 is the 

total number of sampled units. We let Y  denote the total number of failures at time 

t (i.e. Y Xi
i

t

=
=
∑

1

). For a stable process, the distribution of Y is also binomial with 

parameters N ,θ( ). However, N will rapidly become large (i.e. greater than ~30), and 
provided θ is not close to either 0 or 1, the binomial distribution is well approxi-
mated by a Poisson distribution with mean Nθ.

The marginal posterior distribution for Y as a function of the parameters a 
and b is

 p y a b l y p a b d, , ,( )= ( ) ( )∫ θ θ θ
0

1

 (3.14)
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Figure 3.16. Illustrative non- informative priors for true failure rate, theta.
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where l y θ( ) is the likelihood of the data (y) given θ. Thus, Eq. 3.14 can be written as
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Equation 3.15 can be evaluated using numerical integration or computed using 
Eq. 3.16 [a derivation of Eq. 3.14 is provided in Fox (2009)].
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At time t we have available the data N Y N Y N Yt t1 1 2 2, , , , , ,( ) ( ) ( ){ } . The likelihood 
is thus

 l a b y p X y y a b yi i i
i

t

( , ; ) ( , ); .= = − =−
=

∏ 1
1

0 0     (3.17)

The maximum likelihood estimates â and b̂ at time t are found by simultaneously 
solving Eqs. 3.18a and 3.18b.
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The updated distribution for θ at time t is Eq. 3.13 with parameters â and b̂. We 
use this posterior to obtain the predictive distributions for the number of failures 
( )Xt+1  in the next sample of units to be inspected and the cumulative number of 
failures ( )Yt+1 .

3.3.3 Predictive Distributions for Xt+1 and Yt+1

The predictive distribution for Xt+1 can be written as

 p X y f x p y dt t t+ +  = ( ) ( )∫1 1

0

1

θ θ θ, (3.19)

where p y
p y p

p y
θ

θ θ( ) = ( )
( ) ( )

;p y p y p d( ) = ∫ ( ) ( )θ θ θ
0

1

 and p θ( ) based on the most 

recent estimate using Eq. 3.13 with parameters  ˆ, ˆa b{ }.
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Fox (2009) shows that p X yt t+ 1  is given by Eq. 3.20.
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We next consider the predictive distribution for Yt+1. First, it can be seen that 
p Y s Y y p X s yt t t+ += =( ) = = −( )1 1 . The unconditional distribution of Xt+1, p Xt+( )1  
is obtained as follows:

 
p X p X p dt t+ +( ) = ( ) ( )∫1 1
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 (3.21)

where p X nt

d

t+ +( )1 1θ θ~ ( , )bin  and p a b
d

θ( ) ~ ( , )beta . Thus, p Xt+( )1  is a beta- binomial 
distribution and the predictive distribution for Yt+1 is therefore
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We next discuss how the predictive distributions are used to set control limits for 
routine inspection programmes.

3.3.4 Adaptive Control Limits

The idea of a control limit is to provide an early warning that the underlying 
response- generating mechanism has departed from an assumed stable state. In the 
present context we wish to set two limits (designated RL1 and RL2) on the number 
of failures in the next batch of sampled units. RL1 is set such that, when exceeded, 
it draws our attention to the fact that there are more failures in that particular 
sample of n units than would be expected. Exceeding RL2 signifies an unusually 
high number of failures that would significantly increase the cumulative failure rate. 
Clearly, the two limits are related because triggering of RL2 implies triggering of 
RL1, although the converse is not necessarily true. Thus, the second limit will tend 
to be more liberal than the first.

( ) %1 100− α  response levels RL1 and RL2 are obtained by solving Eqs. 3.23 and 
3.24 respectively.
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3.4 Example –  An Adaptive Control Chart for Shipping  
Container Inspections

The previous concepts are illustrated using fictitious data relating to the detec-
tion of  an invasive species in plant material imported by shipping containers. 
A  total of  1,718 inspections were made to give a pass or fail result for each 
consignment.

3.4.1 Updating the Prior

For the purpose of illustrating the proposed control charting methods, we have 
aggregated the results on a daily basis (as was done for the construction of the 
P- chart in Figure 3.2) and simply noted the number of failures xt out of nt consign-
ments on day t. A plot of the observed daily failure rate and cumulative failure 
rate is shown in Figure 3.18. Initial estimates of the failure rate are highly variable 
although they ultimately converge to about 3%, as evidenced by the grey trace in 
Figure 3.17.
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Figure 3.17. Daily consignment failure rate (black line) and cumulative failure rate (grey line) for 
invasive species detected in imported plant material.
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We initially assumed a beta(4,20) distribution for the prior on θ, which has 99% 
of its probability mass between zero and 0.374, a mean of 0.167 and a modal value 
of 0.136. This choice reflects little or no prior knowledge about θ other than we 
expect it to be less than 0.4. Using the methods of the previous sections, we can 
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Figure 3.18. Top: Original (subjective) prior density (grey curve) and posterior density (black curve) 
for true failure rate after one year. Bottom: Empirical cumulative failure rate (black line), 
overall mean failure rate (dotted line) and mean of posterior distribution after one year 
(dashed line).
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update the prior at any point in time using all the information available at that time. 
This could be as frequently as every day or once a month. Figure 3.18 shows the 
situation at the end of a year of monitoring.

The top panel in Figure 3.18 shows the initial beta(4,20) prior (grey curve) and 
the posterior density at the end of the one- year period (black curve). The posterior 
is a beta(6.248,165.337) distribution that has a mean of 0.036, a median of 0.035 
and a modal value of 0.031; 99% of the posterior distribution lies in the interval  
(0, 0.08). The lower panel of Figure 3.18 shows the cumulative failure rate as a func-
tion of time since monitoring

It is evident from Figure 3.18 and the related distributional summaries that the 
relatively vague prior has been considerably sharpened after a year of monitoring. 
The posterior density is compactly centred about the overall failure rate of 0.03, 
and a Bayesian 95% highest posterior density credibility interval for the true con-
signment failure rate is readily determined to be {0.011, 0.065}. The upper limit of 
a one- sided 95% credibility interval is 0.063, which suggests that a failure rate of 
more than the equivalent of 1 in 16 is evidence of a significant increase in import 
failure. A more refined instrument for alerting to changing failure status has been 
provided in the form of the two triggers, RL1 and RL2. We next illustrate how these 
operate in the present example.

3.4.2 Setting Adaptive Triggers

By way of example, suppose the current date is 7 August 2006 and we wish to place 
approximate 99% limits on the number of detects for the following day. There were 
a total of 128 consignments since the start of our monitoring period (we take this to 
be 4 July 2006) and three of these failed inspection, giving a current failure rate of 
2.3%. Solving Eqs. 3.18a and 3.18b, we obtain the maximum likelihood estimates 
ˆ .a = 3 805 and ˆ .b = 167 819. There are 17 consignments on 8 August 2006. With 
N = 128,y = 3, n = 17 and α = 0 01. , we use Eq. 3.12 to determine RL1 = 2 and Eq. 
3.12 to determine RL2 = 2. Because the outcome of the inspections is a discrete ran-
dom variable, Eqs. 3.12 and 3.13 will generally not be able to be satisfied exactly. In 
this case, the actual value for α is 0.008 for RL1 and 0.01 for RL2 as distinct from the 
nominal α = 0 01. . An analysis of the data shows there were five failures on 8 August 
2006 and this outcome would have tripped both triggers for further investigation.

In the early stages of monitoring, RL1 and RL2 will be quite close (in this case 
they are identical), reflecting the fact that not much data have been gathered and a 
significant increase in failure rate on any one occasion has a relatively large impact 
on the cumulative failure rate. As monitoring progresses, there will be greater sep-
aration between RL1 and RL2, although the difference will still be small given the 
relatively small sample sizes involved. By way of example, we advance to 28 June 
2007. By this time, there have been 1,680 consignments resulting in 58 failures. The 
approximate α = 0 01.  triggers for the following day’s 15 consignments are RL1 = 2 
and RL2 = 3. The actual result was zero, which is clearly acceptable.
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3.4.3 Discussion

The adoption of a Bayesian framework has allowed us to extend traditional control 
charting methods to accommodate expert option or prior belief  about the moni-
tored process. Furthermore, the Bayesian approach provides some other important 
enhancements. For example, ignorance about a new or previously undetected threat 
is readily accommodated and the intrinsic updating of prior information means 
that these methods are evolutionary, learning and adaptive. We believe that these 
are important prerequisites for successful biosecurity surveillance and monitoring 
systems.

It is important to distinguish between monitoring activities that aim to predict or 
forecast future events and those that aim to alert or flag the existence of an abnor-
mal event. A comprehensive biosurveillance monitoring strategy will incorporate 
both proactive and reactive components. Control charting techniques are reactive, 
but depending on how they are constructed and implemented, they can provide a 
close to real- time monitoring capability. A difficulty with proactive systems, such 
as those used in syndromic surveillance, is that forecasting (particularly rare events) 
is exceedingly difficult, with success depending very much on model choice and 
parameterisation.

As noted by Burkhom et al. (2007), a critical issue for syndromic surveillance 
and forecasting systems is their sensitivity to expected and unexpected data outliers. 
Burkhom et al. (2007, p. 4216) go on to state further that ‘for unexpected outliers, 
we have implemented automated outlier removal schemes to avoid baseline con-
tamination for the adaptive regression, but such schemes can produce unexpected 
effects and need further study’. We regard this as a flawed strategy for two rea-
sons: (1) An expected outlier is an oxymoron and (2) The automated removal of 
observations that are, in some sense, aberrant is to be strenuously avoided. It was 
precisely because of the automated removal of outliers that the hole in the ozone 
layer was initially undetected. It was only when the offending data were reinstated 
and the time series data reanalysed that the seriousness of the problem became 
apparent. Given that the utility of forward- looking systems is critically dependent 
on which data are included or excluded in the modelling process, it seems to us that 
data screening tools such as control charts have an important role to play in the 
development of forecasting tools.

Hitherto, Bayesian methods have not been widely used in biosecurity or bio-
surveillance applications, but a number of papers have appeared recently, which 
suggests that there is a growing awareness of the potential utility of this statistical 
paradigm. Wong et al. (2005) used Bayesian networks to extend the Population- 
wide Anomaly Detection and Assessment algorithm for syndromic surveillance, 
while Hogan et al. (2007) describe a Bayesian aerosol release detector that combines 
medical surveillance and meteorological data to provide an early warning capability 
for the release of Bacillus anthracis. More recently, Lu et al. (2011) proposed the use 
of Markov switching models to identify outbreak patterns in syndrome count time 
series data and gave an example using data relating to human health syndromes. 
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Future work could usefully focus on the elicitation of prior probability distribu-
tions as well as the incorporation of other covariates.
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4 Open- Source Intelligence 
Gathering and Open- Analysis 
Intelligence for Biosecurity
Geoff Grossel, Aidan Lyon and Mike Nunn

4.1 Introduction

Open- source intelligence is the analysis product of publicly available information 
that has been collected, sorted and archived. Open- analysis intelligence is the ana-
lysis of freely available information that is done out in the open by an engaged user 
community. A country’s national security agency may mine Twitter for data and 
analyse this information to predict social uprisings. This would be an example of 
open- source intelligence but not an example of open- analysis intelligence because 
the analysis of the information is confidential. An example of open- analysis intel-
ligence is the www.rdtn.org website that analysed crowdsourced measurements 
of radioactivity in Japan after the 2011 earthquake to map levels of radioactivity 
across the nation.

We have developed an online system called IBIS (International Biosecurity 
Intelligence System) that performs both open- source intelligence and open- analysis 
intelligence with the goal of tracking and forecasting terrestrial animal, aquatic 
animal and plant diseases. The result is a practical application that provides real- 
time and relevant information to decision makers with the ultimate goal of pro-
viding early warning, better planning and improving response times to animal and 
plant health issues and disease threats.

Public health intelligence gathering systems already exist on the Internet, for 
example, HealthMap and ProMED (Madoff, 2004). These websites have a one 
health perspective (One Health, 2011) that encompasses diseases of humans, ani-
mals and plants. Others, such as the World Animal Health Information Database 
operated by the World Organisation for Animal Health, focus on animal diseases 
and are emerging as vast and invaluable biosecurity intelligence resources.

These systems offer broadly similar services  –  albeit with subtle differences  –  
around a central theme of aggregating both open- source and contributed con-
tent. They are heavily biased towards news aggregation, and with the exception of 
HealthMap’s Flu Near You and Outbreaks Near Me apps, they are noticeably light 
on useful analysis output. None of the systems provides tools (other than discus-
sion threads) that are freely available to the user community to conduct any collab-
orative or open- intelligence analysis of the information gathered.
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There are no systems devoted solely to animal or plant diseases. The systems 
are slowly converging, and there is increasingly more collaboration –  particularly 
between the two most prominent public health systems, ProMED and HealthMap. 
However, there will always be an opportunity for boutique or generic intelligence 
websites that are tailor made to fill analysis gaps and offer much needed services 
that take the next step beyond simply aggregating and organising information to 
offer an open- analysis intelligence application with some effective yet easy- to- use 
analysis tools.

Our approach in designing our first model website, AquaticHealth.net, was to 
integrate components from the existing systems that would have the most utility 
for aquatic animal biosecurity and add new tools where the demands required or 
where opportunities emerged during development. Our resulting IBIS website, 
which hosts aquatic, plant and animal intelligence systems, represents a depart-
ure from pre- filtered and owner- controlled systems. Rather than a broad approach 
to open- source intelligence gathering, we give the user community as much con-
trol as possible over the gathering and organisation of information, and then also 
provide the means to produce meaningful outputs with open- analysis intelligence 
tools. This allows for a collegiate community to concentrate directly on issues rele-
vant to them. We call this approach open- source intelligence gathering and open- 
analysis intelligence for biosecurity with the aim of promoting crowdsourcing and 
active engagement in initiating and contributing to collaborative strategic intelli-
gence analysis, and control over scanning, gathering and content. Not all analysis 
needs to be crowdsourced or conducted openly online. The open- source informa-
tion can be used by discretion of decision makers for confidential analysis. This can 
be especially important when information is commercially sensitive, there are trade 
implications or when unfounded public perceptions and expectations need to be 
managed appropriately (e.g. in the national interest).

Governments need to be mindful that responsive and effective analysis of rapidly 
reported information that is already in the public domain, with or without official 
approval, is a more transparent mechanism for responsive decision making than 
private analysis of classified information –  which is often criticised as resulting in 
avoidance of critical issues and delays in responsive action against disease risks. It is 
for this very reason that independently managed applications such as ProMED exist 
today. Governments are also beginning to understand that transparency and being 
held accountable for critical emergency decision making are directly the result of 
prompt and proactive disclosure of facts. This understanding stems from the real-
isation that the risks associated with complex problems are greater when you know 
something but do nothing (for whatever reason) than if  you publicly disclose the 
facts as they are known at the time and immediately anticipate, plan or initiate an 
appropriate response. For example, a competent authority may, for managing pub-
lic perceptions, sensitivities and for strategic trade reasons, not release information 
associated with an emerging disease problem, such as oyster herpesvirus, because 
the disease may not be nationally or internationally reportable, suitable diagnos-
tics are lacking or because unfavourable public perception of the word herpes may 
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seriously affect critical trade periods (e.g. the release of conditioned oysters during 
a short distribution window over the Christmas or summer holiday period). In the 
absence of prompt public disclosure the competent authority will not be held to 
account and thus may delay a critical and timely emergency response in favour of 
a short- term trade gain. Such a strategic delay is a false economy because disease 
spreads rapidly in the aquatic environment, and a delay all too often results in estab-
lishment and spread of the disease and serious consequences for the industry at the 
regional and potentially the national level. Sustained healthy trade and responsive 
action to an emerging disease threat can coexist when managed responsibly.

In situations involving nationally and internationally reportable diseases, most 
competent authorities are obliged to promptly report nationally and to the World 
Organisation for Animal Health respectively via their established reporting mecha-
nisms. Notwithstanding such obligations, if  we scan the data held in the World 
Organisation for Animal Health’s disease notification recording system, the World 
Animal Health Information Database, it is clearly evident this is not always the 
case. The risk associated with the spread of diseases in globally traded aquatic ani-
mals and their products from non- reporting member countries alone justifies the 
need for effective open- source, open- intelligence applications to detect risk early so 
that appropriate responsive action can be taken.

4.2 Designing AquaticHealth.net

Our starting point was to develop a dedicated aquatic biosecurity intelligence infor-
mation gathering system by examining existing web- based systems to identify fea-
tures that may be particularly important for aquatic biosecurity. We examined a 
range of criteria including search strategies, language search and translation cap-
abilities, mapping capabilities and the structure and logic of information filters 
(Lyon et al., 2012). The most significant ways in which the systems differ is their 
reliance on automated software rather than human beings for content gathering 
and analysis. Some such as BioCaster (biocaster.nii.ac.jp) are fully automated, 
whereas ProMED is at the other end of the information collection spectrum and 
is completely human based. We have opted for a balanced mixture of automated 
and human crowdsourcing –  an open call to an undefined group, usually composed 
of people appropriate for a task, to contribute to an analysis or to solve a prob-
lem (Brabham, 2008). We believe that this is the best approach to take to generate 
human- mediated analysis.1 For a comprehensive analysis of the functionality and 
technology behind AquaticHealth.net and the subsequent International Biosecurity 
Intelligence System application, see Lyon et al. (2013).

The technology for developing open- source, open- analysis intelligence appli-
cations is not new. What separates applications like AquaticHealth.net from, for 
example, HealthMap is not the ability to collect and organise open- source data 

 1 See also Floridi (2009) for a more theoretical assessment of Web 2.0 and Web 3.0 technologies.
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but the capacity to offer the user complete and unfiltered control of searching 
and then provide a set of easy to use vertically integrated applications to generate 
outputs in the form of intelligence reports from which health management deci-
sions relating to disease risks can be based. An essential feature of an open- source 
intelligence application is the ability to keep abreast of the latest technology in the 
intelligence- reporting domain. To achieve this, the applications must resource and 
sustain a dynamic research community. Integrated analysis tools must continually 
be researched, constructed and uploaded as early as possible so that feedback from 
the user community can direct continual improvement of the systems or determine 
the usefulness, relevance and life span of the tools.

4.3 Wiki- based Open- Intelligence Analysis

Our research and development strategy is based around the adage fail early and 
often. We initially attempted to encourage user engagement by contributing to 
wiki pages as a simple form of  open- analysis intelligence. A range of  diseases 
were set up and seeded with rudimentary information around which narratives 
could be built, but they also included extensive reference to the site’s reports. 
Topics were originally selected for placement into two categories:  specific dis-
eases and other topics. We seeded approximately 20 wiki entries as subjects 
using aquatic diseases of  concern that were mostly diseases listed by the World 
Organisation for Animal Health. Each wiki entry also included a forecasting 
section, in which users could record educated guesses about where diseases are 
likely to spread next. The open- source nature of  the wiki was intended to allow 
users to have fluid debates about the forecasts. All revisions of  the wiki entries 
were recorded and made viewable by all users, and topics were limited only to the 
imagination of  the system users.

By tracking the use of the wiki entries over time, it became apparent that the reg-
istered user community, now growing substantially in number, did not fully engage 
and contribute, and generally showed little interest. We concluded that the wiki 
entries were not working in the way we had anticipated. Nielsen (2011), an advo-
cate of open science, proposes that open science wikis often fail because people, 
particularly those with careers in science, do not want to contribute to something 
of little or no benefit to the advancement of their careers. People would rather write 
articles, even substandard articles, for peer- reviewed journals because this kind of 
publication is far more beneficial to them individually. Nielsen proposes that this is 
not due to some kind of selfishness of the individuals, but rather the consequences 
of the wrong incentive structures being in place. A large component of hiring deci-
sions, tenure reviews and promotions are the number of publications an individual 
has accumulated. Furthermore, open contribution may compromise contractual 
research obligations and intellectual property rights.

Nielsen’s explanation for failed open science wikis may partly account for the 
failure of our wikis. However, the failure cannot so much be attributed to the wikis 
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themselves, but to the original seed topics we chose. The failure of the wikis was not 
complete and some aspects were successful. By testing the various wiki topics, we 
found community engagement was successful if  the topic, or the subject within a 
specific disease wiki, was consistent with what we were trying to accomplish –  active 
and collaborative open- analysis intelligence of emerging disease issues, capturing 
emerging disease trends, forecasting and capturing other interesting hot issues and 
topics that can be tracked and analysed with the goal of improving early warn-
ing and responsive action to aquatic animal health issues, threats and disease out-
breaks. Trying to engage registered users to update general disease information in 
the disease- focused topics was never the intention of an intelligence gathering and 
analysis website. Hence, the failure of wiki topics that were out of scope and the 
need to develop an alternative online application that is appealing, collaborative 
and yet simple. Nielsen (2011) argues that one of the challenges in making open 
science succeed is the creation of a more user- friendly online tool that encour-
ages participation throughout the network, such as the open science website (www  
.openscience.org).

4.4 Blog- based Open- Intelligence Analysis

Like Nielsen, we believe our challenge is to find the most appropriate online for-
mat to create engagement in open- analysis intelligence. We have therefore moved to 
a new hybrid wiki- blog analysis platform called Emerging Issues. It has the same 
goal of promoting open- analysis intelligence, but does so by focusing on what the 
users of the site care about most: disease outbreaks or events that might be disease 
outbreaks, emerging issues, and forecasting disease outbreaks. Emerging Issues was 
born out of the failure of the original out- of- scope wiki topics with the exception 
of a wiki titled Emerging Diseases for 2011 and from the forecasting sections of the 
disease- specific wikis. The simple and attractive core function of these wiki features 
was that they achieved our primary goal; they successfully captured events for fur-
ther analysis and resulted in user engagement.

Entries in the Emerging Issues wiki blog feature a title and date, a window for 
all users to provide content, a forecasting section, links to related reports, share 
functions, comments and a map. The systems have now stabilised on a functional 
and meaningful model that provides an easy- to- use analysis tool for our registered 
user community to construct intelligence reports. The forecasting applications 
retained from some of the older wikis in AquaticHealth.net proved to be accurate 
and potentially very useful for improving biosecurity planning and health manage-
ment in aquaculture and fisheries. These forecasts have been transferred to the most 
relevant Emerging Issues wiki blog.

For example, oyster herpes- related summer mortality in Pacific oyster culture 
was used as one of the original wiki topics. As emerging patterns in the global 
spread of the disease became apparent, the information was fed into the OsHV– 1 
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wiki. The resulting prediction was that oyster herpes presents the greatest single 
disease risk to the Australian Pacific oyster industry. Eight months after this pre-
diction was made, the Australian and New Zealand Pacific oyster industries both 
incurred outbreaks of oyster herpes- related summer mortality. In more examples, 
similar predictions were made prior to disease outbreaks in bivalve mollusc aqua-
culture in the United States and Vietnam.

To date, all four forecasts made during 2010– 2012 have proven to be correct. The 
latest Emerging Issues wiki- blog forecast is that the marine fish disease known as 
viral nervous necrosis will cause significant problems in the emerging grouper aqua-
culture sector throughout the Southeast Asia region during 2012– 2013. This fore-
cast is scheduled to play out over the long term, but recent scientific reports from 
China indicate that this forecast was correct and has now run its course. Another 
forecast made in February 2012 was that amoebic gill disease will cause major prob-
lems on salmon farms in Scotland and eventually spread to Norway in the advent 
of favourable warm conditions sometime in the next three to five summer seasons 
(e.g. the summers of 2012– 2014), amoebic gill disease had already re- emerged in 
southern regions of Norway in December 2012, and the forecast was therefore 
accurate but unexpectedly early. Emerging Issues currently arise at a rate of one 
or two issues every two months, and are all updated on a regular basis when new 
information becomes available. Our research focus for future analysis tools is to 
provide tools that are effective in producing meaningful outputs, are easy to use and 
promote collaboration within the user community. We are investigating forecasting 
tools, predictive modelling and cluster analysis, geospatial analysis, Delphi analysis 
and network analysis. The challenges we face with the tools are similar to the prob-
lems encountered with our original wiki: we need to transition the research into a 
user- friendly interface, load the tools to the website as early as possible and refine 
them according to feedback from users.

4.5 Content and Analysis Quality

An often- encountered concern about AquaticHealth.net, mostly by practising or 
publishing aquatic animal health scientists, is the quality of the information it col-
lects. Scientists and aquatic animal health experts in government roles argue that 
to be of any value, disease outbreak information must be either an evidence- based 
peer- reviewed scientific publication or officially endorsed information released by 
government or an immediate disease notification from the World Organisation for 
Animal Health.

It is neither the intention nor function of  our online intelligence gathering 
and analysis tools to be filters that are selective about the quality of  informa-
tion that enters the sites. The website’s information collection capabilities func-
tion to collect all the available electronic information coming into the Internet, 
from Twitter, YouTube videos, scientific journal articles, World Organisation for 
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Animal Health immediate disease notifications, ProMed reports, and so forth. 
Our tools intelligently —  with the help of  humans —  sort the information, add- 
value to it and archive it so that it can be retrieved later when an intelligence 
analyst is attempting to determine trends in the data, such as an emerging dis-
ease trend over a two- year period. For example, the information can be used in a 
similar way to a journalist investigating a story. An emerging disease trend may 
start by alerting the analyst to a disease outbreak problem of  unknown aeti-
ology, but the initial seed information may have a sketchy unverified source such 
as a YouTube video file and a tweet uploaded to the Internet by an interested 
bystander. Nevertheless, early seed information like this may be crucial in con-
firming the first event in a series of  disease events leading to a new and concern-
ing emerging disease problem.

To assist in later analysis, our online tools have the capability to crowdsource 
quality judgments through the four- star ranking system of reports and user com-
ments attesting to the quality of the information. However, even if  information is of 
poor quality, analysts can provide early disease trend information to aquatic health 
decision makers so that preparations for responsive action can be made. The intel-
ligence analyst can interrogate the veracity of the information and verify the val-
idity of the source during the course of investigating a disease trend or other issue 
and provide a comment or rank the information accordingly. More often than not, 
disease outbreaks in the aquatic environment will spread quickly to their natural 
limits with devastating impacts and consequences. Expensive emergency responses 
are then centred on containment, disposal and decontamination, rather than direct-
ing valuable and finite resources towards prevention. Aquatic health managers are 
keenly aware that consideration of timely information and early actions that are 
responsive and preventive are the primary and most effective considerations when 
managing biosecurity in the aquatic environment, and that waiting for high- quality 
reports to be published, such as scientific papers or official government reports, is 
an ineffective approach to responsive aquatic health management.

Another criticism we have encountered from aquatic animal health experts is 
the issue of peer review, especially of our forecasts and analysis featuring in the 
Emerging Issues section of the website. We do have peer review, but it isn’t the 
standard scholarly peer review process that publishing scientists are familiar with 
(i.e. the traditional process of sending out articles to a narrowly defined field of, 
usually anonymous, expert reviewers). All our information is open source in the 
public domain and viewable by anyone on the Internet at any time. Registered users 
can, either anonymously or not, comment on or criticise anything without approval 
from a moderator in an open and transparent manner. Non- registered users can do 
the same, but someone within a trusted group in the network approves the comment 
first. All review comments are available for scrutiny, and any registered user can 
make alterations, discuss improvements and access previous versions of the ana-
lysis to track and debate changes. We are mindful of creating an environment that 
does not shut down the debate and actively encourages an open discussion about all 
content. The open peer review process we have adopted is also a post- publication 
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review process, which is arguably more suitable for our purposes because we rely on 
open- intelligence analyses being collaborative, ongoing and updated as necessary, 
and directly targeted to the engaged demographic using our online tools.

There is potential for politically biased reporting to the site. Lobbyists for envir-
onmental groups have used the site to post information to all users via submission 
of disease news articles. However, the site’s user community, although interested in 
browsing through all content in the context of reading the range of information 
available to them, is generally not the direct target for this kind of lobbying. As 
a result, the site has proven to be an ineffective information dissemination avenue 
that the lobbyists no longer pursue. There are further ways in which this lobby-
ing pressure can be mitigated. Although the open and democratic nature of the 
site allows the possibility of pushing particular agenda, it also allows for effective 
crowdsourced agenda control. If  a user starts promoting misleading information, 
other users can quickly comment on, or even edit, that information to explain to 
everyone else that the information is contentious. We have had some users who 
joined the site to publish all articles from their own website; fortunately, the com-
munity quickly corrected this and unpublished all of the irrelevant reports. The 
overall effect was that all relevant reports from that site were published and brought 
to people’s attention and all irrelevant reports remained in the raw data scan and 
industry news feeds. The system isn’t fool- proof, but no system is, and there is no 
reason to think that this system is especially prone to being gamed. We believe this 
is because the website is of little general interest outside the community of users. 
There is little opportunity to promote causes, increase sales or solicit money from 
the registered user community.

4.6 Conclusion

Our online intelligence gathering and analysis tools are an example of what can 
be achieved in today’s technologically democratised world. Many of the key elem-
ents of our websites are outsourced. In their short history, our online applications 
have been used to capture emerging disease information, analyse and track disease 
trends, map diseases, organise data, perform basic predictive modelling, contribute 
to future health planning, provide biosecurity alerts, build biosecurity risk profiles 
and support responsive decision- making relating to imports and exports.

The power of raw data feeding into discussion and analysis in real- time is 
immense. Our sites offer the capacity to intelligently process raw information in 
real- time with the added function of unlimited application. Our mission is to create 
openness in animal and plant health. We will work to establish a system of trans-
parency, public participation, collaboration and trust. Openness will strengthen 
animal and plant health and promote efficiency and effectiveness in biosecurity. 
We hope to establish an effective open- intelligence community over time to build 
critical mass for supporting the implementation of positive and responsive action 
(adapted from Obama, 2009).
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5 Predicting Distributions of  
Invasive Species
Jane Elith

5.1 Introduction

In a newly invaded region, invasive species can progress through the stages of  
introduction, establishment and dispersal to a full range. There is currently much 
worldwide interest in predicting distributions of invasive species, and many organi-
sations will be faced with questions of whether and how to embark on such a task, 
or how to interpret predictions that others have provided. This chapter provides 
information on predicting the final stage, commonly referred to as the potential 
distribution, of the species in the invaded range. In contrast, Chapter 6 discusses 
methods for modelling the whole invasion process.

The names for these predictions of invasive species distributions can be confus-
ing because the same terms can be used for distinctly different aims and models. So 
here, regardless of other uses of the words, mention of pest risk mapping, climate 
matching, niche mapping and predicting potential distributions will all mean the 
same thing: a model or process that aims to produce a map of areas that are likely 
to be suitable for the species. The advantages of these maps are obvious: species can 
be screened for those likely to become pests (i.e. likely to cause harm), monitoring 
programs can target areas most likely to be infested, arrangements can be estab-
lished for cost sharing between jurisdictions over a large region and so on (Brunel 
et al., 2010; Cook et al., 2007; Richardson & Thuiller, 2007).

Many governments, agencies and organisations now invest in some form of pest 
risk mapping. As yet, there appears to be no complete system for mapping; most are 
examples, or case studies for particular species, or prototype systems. For instance, 
Pratique (https:// secure.fera.defra.gov.uk/ pratique/ index.cfm) is a European Union 
initiative broadly targeting pest risk analysis, but with components focusing on 
mapping ranges. In the United States, the Animal and Plant Health Inspection 
Service conducts risk assessments using NAPPFAST (Magarey et al., 2007), while 
in Australia, the Department of Agriculture and Water Resources has frequently 
used a simple climate matching system (CLIMATE) to predict climate suitability 
for species of biosecurity concern (e.g. Bomford et al., 2010). Globally, there is 
interest in linking biodiversity databases with modelling tools to facilitate pest risk 
mapping anywhere in the world, but there is understandable uncertainty about the 
likely quality of the outputs.
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This chapter begins with a brief  discussion of approaches for modelling broad 
ecological units or climates (Section 5.2). The focus then shifts to single species 
models, covering the conceptual bases (Section 5.3), touching on mechanistic mod-
els (Section 5.4) and then focusing on methods using species distribution records 
and environmental data to predict distributions (Section 5.5). The chapter includes 
a mix of commentary based on my own research, review and advice, with the inten-
tion of providing interpretation of the current state of the science and commentary 
on useful ways forward.

5.2 Community or Climate- based Mapping

Some approaches to modelling potential ranges of invasive species focus on bio-
logical or environmental units aggregated above the species level. For instance, 
Richardson and Thuiller (2007) predicted the global distribution of seven South 
African biomes. They suggested that the results, which were essentially a biologic-
ally oriented climate matching, would be useful for screening species’ introduc-
tion risks. Baker et al. (2000) reviewed applications of climate- based mapping that 
mapped climate without reference to species responses, giving examples both in 
environmental space (e.g. the early climographs of Cook, 1925) and geographic 
space (e.g. the Match Climates option in CLIMEX; see Box 5.2 and Sutherst, 2003). 
Brunel et al. (2010) proposed that Köppen– Geiger climate zones and world hardi-
ness zones provide ecoclimatic information relevant to screening potential invasive 
plant species for the European and Mediterranean Plant Protection Organization. 
Thomas and Ohlemüller (2010) used rainfall and temperature information to map 
similar climates both locally (within 1000 km of a target cell) and globally. They 
then estimated likelihood of invasion (invasibility) by assuming that similar non- 
local climates represent potential source locations of invasive species. Their maps 
comparing risks under current and future climates suggested increases in invasibil-
ity with climate change (e.g. Figure 5.1).

These types of models or data summaries can be used to develop an understand-
ing of general patterns of invasions. They can also give a broad overview of whether 
a region is even remotely likely to be suitable for a species of concern (or alter-
natively, whether the climates of two regions overlap and, therefore, whether one 
poses a potential risk for the other). In that sense, these models could be considered 
useful background information or a first step for assessing invasive potential.

5.3 The Conceptual Basis for Predicting Potential Distributions  
of Invasive Species

In many situations, predictions are needed for a particular species. Users require 
mapped estimates of where species could persist in a given region, and this is related 
to questions about the biotope –  i.e. the geographic location of the species’ niche. 
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In the species modelling arena most niche definitions rely on Hutchinson’s view-
point (Hutchinson, 1957) –  namely that the fundamental niche is a multidimen-
sional hypervolume with ‘permissive conditions and requisite resources as its axes’ 
(Colwell & Rangel, 2009, p. 19651), in which every point corresponds to a state that 
would allow the species to exist indefinitely. The dimensions of this niche are limited 
to the subset of all possible conditions that directly affect the fitness of the organ-
ism (Kearney, 2006). In practice, modellers often focus on the species’ response to 
climate, although this is neither essential nor most relevant for some species and 
spatial extents (Hulme, 2003). For a clear explanation of Hutchinson’s niche ideas, 
the links between niche (environmental) and biotope (geographic) space and impli-
cations for species modelling, see Colwell and Rangel (2009).

The full fundamental niche need not be apparent at a given time. The concept 
of the potential niche was introduced by Jackson and Overpeck (2000) to describe 
those portions of the fundamental niche (those environments) that actually exist 
somewhere in geographic space at a specified time. The idea of modelling the 
potential distribution of an invasive species in a region is related to this definition. 
The realised niche (where the species actually occurs) is usually a smaller environ-
mental volume (or geographic area) than the fundamental and potential niches. 
Hutchinson (1957) saw the realised niche as a subset of the fundamental niche, 
limited by biotic interactions  –  for instance, by the presence of competitors or 
predators, or the absence of mutualists. Others (e.g. Pulliam, 2000) refined the def-
inition to allow for source- sink theory and dispersal limitations. Thus, sink popu-
lations can allow the realised niche to be larger than the fundamental niche, and 

Figure 5.1. Change in invasibility index from 1931– 1960 to 2041– 2050, under the HadCM3 climate 
model, A2 emission scenario. Future long- distance invasion risk is increased in the dark 
grey areas and decreased in light grey areas. Black areas have no analogous climates in the 
future, so invasion risk is not calculable.
[Reproduced with permission from Thomas, C. D. & Ohlemüller, R. (2010). Climate change 
and species' distributions: An alien future? In C. Perrings, H. Mooney & M. Williamson 
(eds.), Bioinvasions and globalization: Ecology, economics, management and policy 
(pp. 19– 29). Oxford: Oxford University Press. See source for full details.]
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constraints to dispersal and past disturbances can limit the realised niche beyond 
the effects of biotic interactions.

These differences between the realised and fundamental niches are relevant to 
invasive species, particularly when we consider the realised niche in native ranges 
versus the global potential or fundamental niche. Invasive species often persist in 
environments in their invaded ranges that either were not occupied by them (because 
of dispersal or biotic limitations) or were non- existent in their native range. That 
is, invasive species are able to expand into parts of their fundamental niche that are 
not available in their native range (Le Maitre et al., 2008). Methods best suited to 
modelling the potential distribution of an invasive species in any new region are 
therefore those that most directly estimate the fundamental niche. Although these 
will usually overestimate the final distribution of the invasive species in the invaded 
range, they will at least show what areas could be occupied if  the species is able to 
spread everywhere and if  biotic conditions are suitable.

A final complication in modelling invasive species is that their spread may not 
simply represent the expression of the fundamental niche as set by the gene pool 
in their native range. Instead, new conditions in the invaded range may provoke 
adaptive evolution (Colwell & Rangel, 2009; Huey et al., 2005). Although not a pri-
ority for this chapter, methods for exploring adaptive genetic change and predicting 
traits likely to be under selection pressure are relevant to invasive species and are an 
important topic for understanding the ecology and biogeography of invasive spe-
cies (Ackerly, 2003; Alexander & Edwards, 2010).

5.4 Methods Aiming to Model and Map the Fundamental Niche: 
Mechanistic Models

Section 5.3 provides reasoning for preferring methods that model biological traits 
that are directly related to the fundamental niche of the species. I  refer to these 
as mechanistic models because they focus on mechanisms or processes rather than 
patterns. Mechanistic models could –  depending on the way the model is set up –  
include ecophysiological models, biophysical models, life- history models, pheno-
logical models, foraging energetic models and models based on functional traits 
(Buckley et al., 2010; Kearney & Porter, 2009; Morin & Lechowicz, 2008). For our 
purposes, the main criterion for considering a model to be mechanistic is that it 
attempts to capture the dominant processes contributing to survival and fecundity, 
and it links these processes to environmental data in a way that enables mapped 
predictions of the niche. These models are not fitted to species location data, and 
are, therefore, free from the problem that occurrence records are tied to the realised 
niche. Instead, they focus on the processes and physiological limits that constrain 
the distribution and abundance of a species.

Kearney and Porter (2009) review the potential to apply principles of biophys-
ical ecology to modelling species distributions and include information on how 
to model key functional traits of a range of organisms (e.g. dry- skinned and 
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wet- skinned ectotherms, endotherms, aquatic organisms and plants). Their soft-
ware (NicheMapper; www.zoology.wisc.edu/ faculty/ por/ por.html) is available, 
although it is quite complex to use and further development is underway to make 
it more broadly accessible (M. Kearney, personal communication, 2014). Examples 
of applications include Kearney and Porter (2004), Kearney et al. (2008, 2010) and 
Porter et al. (2002). These models require information on the morphology, physi-
ology and behaviour of species (e.g. how endotherms balance metabolic rate and 
heat loss at various temperatures), and a means for translating the environment 
experienced by the animal to the landscape- scale geographic information system 
data usually available for mapping.

In related examples, Buckley et al. (2010) use three mechanistic models (a bio-
physical model, a life- history model and a foraging energetic model) to model 
a butterfly and a lizard; Morin and others (Chuine & Beaubien, 2001; Morin & 
Lechowicz, 2008; Morin & Thuiller, 2009) use a phenological model, Phenofit, to 
model trees. Phenofit focuses on the impacts of physiological stress on fitness, and 
on the synchronisation of developmental stages with seasonal variations in climate 
(Morin & Thuiller, 2009).

These authors and others (e.g. Hijmans & Graham, 2006) have compared mech-
anistic models with correlative models based on relationships between observed 
species locations and measured or estimated environmental conditions. These com-
parisons often show congruence of predictions in the regions in which the correla-
tive model was trained, and a range of outcomes (from congruence to dissimilarity) 
for predictions for novel times or places (Kearney et al. 2010; Morin & Thuiller 
2009). Kearney and Porter (2009) compare the likely strengths and weaknesses of 
mechanistic and correlative models, and Dormann et al. (2012) provide an inter-
esting discussion of the apparent dichotomy between mechanistic and correlative 
models.

Mechanistic models are the subject of active research programmes, but are less 
frequently attempted than correlative models owing to the complexity of the mod-
els and the time it takes to gather appropriate data and fit models. It is conceptu-
ally appealing to focus on process and understand the constraints to distribution, 
because these will then be applicable to any geographic region or future time, pro-
viding the species does not evolve different tolerances in new environments. Despite 
the fact that mechanistic models are theoretically well suited to invasive species 
and several reviews recommend them (e.g. Buckley et al., 2010; Gallien et al., 2010; 
Kearney & Porter, 2009), few applications to invasive species exist (but see Elith 
et al. (2010) and Kearney et al. (2008) for a cane toad example). Of course, even 
though compatible with the modelling problem, mechanistic models will not be 
perfect. The most likely errors and uncertainties stem from the need to identify key 
processes (is there enough information to pinpoint these, and is the model sufficient 
to include and combine them appropriately?); parameterise the models appropri-
ately (are relevant experimental data available? Buckley et  al., 2010; Kearney & 
Porter, 2009); and match microclimate or laboratory measurements to the broad- 
scale climatic variables available for mapping. Given the time and expertise needed 
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to fit mechanistic models, I expect them to be most useful for species of exceptional 
importance, or as a guide to likely distributions if  generalised versions can be made 
available to serve as templates for sets of physiologically similar species.

5.5 Methods That Use Information on the Realised Niche

Most predictions of a species’ invasion potential are based on models fitted to 
observed location data (Venette et al., 2010). Data from the native range (and per-
haps additional records) are used to characterise and predict suitable conditions 
elsewhere. The commentary in this section is oriented towards key issues that arise 
in fitting, and predicting with, correlative models. In other words, it is more about 
the process of thinking about the data and the modelling problem than it is about 
one technique versus another. This reflects my viewpoint that the issues are crit-
ically important, and the modelling problem is one that requires careful thought.

Throughout, I will use the term correlative models (see Box 5.1 and Dormann 
et al., 2012) to refer to most of these models because they are pattern- based mod-
els that quantify the relationship between a species presence (or presence– absence 
or abundance) and a set of environmental covariates. That is, I use correlation in 
the broad sense of relationships between variables, in this case between a response 
(the species) and one or more predictors or covariates. A model that does not fall 
completely into this class is CLIMEX (Box 5.2), which relies on species records but 
has a more process- based orientation than correlative species distribution models 
(SDMs). The term pest risk models will include CLIMEX, but SDMs or correla-
tive models will not. This is for convenience of discussion; obviously CLIMEX 
could also be termed an SDM. Box 5.1 provides background to the more general 
(and original) use of correlative models for modelling species other than invasive 
species and introduces the phrase equilibrium SDM for such applications, Box 5.2 
describes CLIMEX, and Box 5.3 outlines the broad classes of correlative models. 
Table 5.1 summarises key references and examples of invasive species applications. 
If  you are unfamiliar with correlative models, reading the boxes should give enough 
background for the following sections. Note that correlative models –  sometimes 
with additional components to include processes of dispersal –  have been used to 
fit and predict distributions entirely in the invaded range. These models are gen-
erally not considered here (but see Section 5.5.2) because they require specialised 
methods and are usually relevant only where a species has been in a country for a 
considerable time.

Box 5.1 The General Use of Correlative Models in Ecology

Correlative methods include a range of techniques variously referred to as spe-
cies distribution models (SDMs), ecological niche models, bioclimatic envelopes, 
profile methods or climate matching techniques. None of these were originally 
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5.5.1 Issue 1: What Niche Can Be Characterised by These Models?

Section 5.3 discusses fundamental and realised niches, a critical issue for pest risk 
models. The dual concepts of environmental (niche) and geographic (biotope) space 
make it clear that to characterise the environmental niche well, records of species 
locations must be taken from regions in which the species has had opportunity 
to spread (geographically) to all suitable locations. Hence, it is logical to focus on 
places where the species is most likely to be at equilibrium (i.e. the native range).

designed to model invasive species. Instead, they were intended for modelling 
(and perhaps mapping) a species– environment relationship, but only using the 
current distribution of the species within the sampled geographic extent (Elith &  
Leathwick, 2009b). I  will refer to this original use as equilibrium SDM, even 
though ecologists will recognise that use of the word equilibrium opens up many 
questions about time frame, dispersal barriers, effects of disturbance and so 
on (Franklin, 2010; Peterson et al., 2011). It is important to keep this history 
in mind when reading the SDM literature and when considering the range of 
methods available because the history provides context for interpreting what 
people have done and why they have done it. For instance, some equilibrium 
SDMs use geographic space rather than environmental space as the predictors 
of occurrence (e.g. convex hulls, kernel density estimators and kriging; Elith & 
Leathwick, 2009b). These might be useful where data are very sparse or where 
geographic space strongly determines distributions, but they are not useful for 
predicting the distribution of invasive species in new geographically remote 
areas. The more common use of environmental predictors is based on the belief  
that –  at most scales and in most regions –  environment is important in structur-
ing distributions (Section 5.5.4).

The literature on SDMs has expanded rapidly since 2000, and tutorials, books 
and reviews are regularly emerging; see, for example, Austin (2002, 2007), Elith 
and Leathwick (2009b), Franklin (2010), Guisan and Thuiller (2005), Guisan 
and Zimmermann (2000); Pearson (2007), Peterson et al. (2011) and Schröder 
(2008). Equilibrium SDMs have been fitted for terrestrial, marine and fresh-
water species, and from macroecological (coarse grain, large extent) to local 
(fine grain, small extent) scales. Models using well- designed survey data and eco-
logically relevant predictor variables have produced useful insights and reliable  
predictions to new sites within the sampled regions (Bio et al., 2002; Leathwick &  
Austin, 2001; Ysebaert et al., 2002). Predictions have provided key inputs for con-
servation planning and resource management, identifying new sites for rare spe-
cies surveys and global analyses of species distributions (Ferrier, 2002; Fleishman 
et al., 2001; Rangel et al., 2006; Zimmermann et al., 2007). Because equilibrium 
SDMs aim to predict within the range of the training data, users have tended to 
evaluate their performance at points within that range (e.g. using cross- validation) 
or by assessing whether the modelled relationships are ecologically sensible.
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Table 5.1. Example correlative methods for modelling species distributions

General class Model (abbreviation) Species data Partial plots 
for effect on 
response

Comment References for (a) explaining 
model and (b) invasive 
application

Expert model Habitat suitability index 
(HSI)

Expert Yes Use expert knowledge for shape of 
species response

(a) Burgman et al. (2001)
(b) Inglis et al. (2006)

Expert model Expert Expert /  
presence

No Use expert knowledge to select 
variables and perhaps to inform 
about presence

(a, b) Rodda et al. (2009)

Climate envelope BIOCLIM Presence No Delimits climate envelope using only 
presence data, sometimes using 
percentiles; prediction from most 
extreme (limiting) variable

(a) Busby (1991)
(b) Booth et al. (1988)

Machine learning One- class support 
vector machines

Presence No Few uses, but being included in some 
ensembles

(a) Hastie et al. (2009)
(b)  Drake & Bossenbroek (2009); 

Guo et al. (2005)

Factor analysis Ecological niche factor 
analysis (ENFA)

Presence- 
background

No Also known as Biomapper (a) Hirzel et al. (2002)
(b) Steiner et al. (2008)

Machine learning Genetic algorithm for 
ruleset production 
(GARP)

Presence- 
background

No Widely used; final model is an 
average over best selected rules

(a, b) Peterson (2003)

Machine Learning Maximum entropy 
(MaxEnt)

Presence- 
background

Yes Widely used; complexity of model 
can be adjusted by choice 
of features and adjusting 
regularisation

(a)  Elith et al. (2011); Phillips 
et al. (2006)

(b) Rodda et al. (2011)

Regression Generalised linear 
models (GLMs) or 
generalised additive 
models (GAMs)

Various Yes Statistical regression methods; 
generalised additive models allow 
smoothed data- driven functions

(a) Hastie et al. (2009)
(b) Mellert et al. (2011)

Regression Non- parametric 
multiplicative 
regression

Various Yes Implemented in Hyperniche; only 
found invasive examples use 
invaded range data

(a) McCune (2006)
(b) Reusser & Lee (2008)

Machine Learning Decision tree Various Yes Also known as classification and 
regression trees; more often 
used for decision analysis (e.g. 
on whether species will become 
invasive or not)

(a)  De’ath & Fabricius (2000); 
Hastie et al. (2009) 

(b)  Václavík & Meentemeyer 2009 
(only in invasive range)

Machine Learning Ensembles of 
trees: boosted 
regression trees 
(BRT), or random 
forests (RF)

Various Some Most invasive species examples are 
within ensembles; automatically 
model interactions unless stumps 
used

(a) Hastie et al. (2009)
(b) Broennimann et al. 2007

Machine Learning Artificial neural nets Various Some One of the earliest machine learning 
methods to be used in species 
modelling; regarded as a good 
general purpose algorithm

(a) Hastie et al. (2009)
(b) Gevrey and Worner (2006)

Ensembles Ensembles of any type 
of models

Not applicable No Several examples emerging, with 
varied approaches for selecting the 
component models

(a)  Thuiller (2003)
(b)  Broennimann et al. (2007); 

Stohlgren et al. (2010)
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It is not possible to make a definitive statement about exactly what niche is being 
modelled by equilibrium SDMs (Box 5.1), but it is most closely related to the 
realised niche (Austin, 2002; Austin et al., 1990; Colwell & Rangel, 2009; Jiménez- 
Valverde et al., 2008; Soberon & Nakamura, 2009). The species data, choice of 
predictor variables and modelling method all affect the outcome. For instance, 
imagine being fortunate enough to have a large, comprehensive and unbiased sam-
ple of  the abundance of  a species across its whole range. From these data, one 
might expect to model the realised niche successfully. However, if  the available 
predictor variables fail to represent some important dimension of  the niche (e.g. 
soil phosphorus for plants needing high levels of  phosphorus) or the modelling 
method is incapable of  fitting the shape of  the true relationship, then the niche will 
be imperfectly modelled. The aim, therefore, in fitting an SDM for an invasive spe-
cies is to do as much as possible to characterise the realised niche well (excluding 
sink populations), and beyond that, to move towards approximating the funda-
mental niche. An early application of  this idea (Booth et al., 1988) expanded the 
native range climatic profile for 13 eucalypt species using forestry trial plot results 
from Africa, intending to characterise better the fundamental niche to inform suc-
cessful tree introductions for plantations. Sections 5.5.2 to 5.5.7 include discussion 
on how species records, predictors, the model and the prediction extent all affect 
how accurately the realised niche is modelled, and resulting implications for pre-
diction of  invasive potential.

Similar issues apply to CLIMEX (Box 5.2) because the model is often primarily 
fitted using location data. The CLIMEX predicted distribution may be closer to the 
realised niche than the fundamental niche, depending on the extent to which the 
dispersal of the species has been limited and on the amount of additional physio-
logical data (Lawson et al., 2010). Physiological data, if  reliable and if  successfully 
rescaled to be consistent with the predictor information, should allow the predic-
tion to edge closer to the fundamental niche (Box 5.2).

For predicting potential distributions of invasive species, one drawback of being 
tied to observation records is that biotic interactions affect the outcome: the real-
ised niche in the native range is usually affected by pathogens, pests, competitors 
and predators. In some instances, invasive species have shown evidence of release 
from inhibiting biotic factors, and models from the native ranges where biotic inter-
actions were important but unquantified have not been good predictors of distribu-
tions in the invaded range (Le Maitre et al., 2008). This is an inherent weakness of 
models based on the realised niche. Biotic interactions are notoriously difficult to 
include as predictors because their effects are almost always confounded with the 
effects of other covariates (Leathwick & Austin, 2001). Researchers often assume 
that biotic interactions vary enough across the species range that a reasonably sized 
sample will smooth over local biotic effects. This will apply only sometimes, and 
the use of these models for predicting other than the realised niche is problematic. 
Solutions may not exist, but one way to counteract this problem is to collate avail-
able knowledge on the impact of biotic interactions on the native range of a species 
and use that as a guide to likely errors in predicted distributions. Further, recent 
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Box 5.2 CLIMEX

CLIMEX is a commercially available modelling method that was first published 
in the 1980s and has now been applied to many species and adopted worldwide 
in various agencies and governmental departments (Sutherst, 2003; Sutherst & 
Maywald, 1985). It was specifically developed for modelling invasive species. The 
primary output is a mapped prediction of the favourability of a set or grid of 
locations for a given species. The model also produces a suite of information to 
allow further understanding of species response to climate. CLIMEX requires 
location records of a species in its native range, and uses these with climate data 
and other optional relevant information (locations of persistent populations in 
invaded regions, relative abundance, seasonal phenology and laboratory data) to 
infer a species’ climatic requirements. The model is based on population process 
concepts of how a species responds to environment, and attempts to charac-
terise growth and stress responses to weekly climatic conditions. The version 
current at time of writing (version 3; Sutherst et al., 2007) of CLIMEX includes 
six growth indices (temperature, moisture, light, radiation, substrate and dia-
pause/ dormancy) over which a seventh index, biotic interactions, can be used 
as a multiplier. There are up to eight stress indices based on temperature and 
moisture (heat, cold, dry, wet and their interactions, e.g. hot and dry) plus two 
constraints to persistence that can be imposed over all others: length of grow-
ing season and obligate diapause/ dormancy/ vernalisation. The indices and con-
straints aim to cover the major mechanisms by which terrestrial species respond 
to their environments.

The model is conceptualised as providing two main seasons for the species: one 
for population growth and one for population survival. This is directly relevant 
to invasive species because new geographical regions can be determined as hold-
ing suitable environments for population persistence or population growth, the 
latter most related to pest status. In fitting the model, decisions are required 
about which indices or constraints are relevant to the species, and how to esti-
mate their parameters. Growth indices relate to seasonal population growth and 
mostly require four parameters to be set (see inset graph in which parameters are 
T0 to T3). Stress indices are defined by a threshold value and an accumulation 
rate, and stress is assumed to accumulate exponentially with time. Parameters 
are often set by starting with template values and then iteratively altering them 
and assessing the effects of the changes on predicted distributions, usually by 
comparing with known locations in the native, and perhaps invaded, ranges 
(Section 5.5.2; Kriticos et al., 2011; Sutherst, 2003; Sutherst & Maywald, 1985). 

progress in methods for modelling species co- occurrences (Ovaskainen et al., 2010; 
Pollock et al., 2014) can provide strong inference about likely interspecific effects. 
However, SDMs for species without significant pathogens, pests and competitors 
are likely to be the most accurate.
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Experimental results or expert knowledge can be used to set parameters; these 
may require subjective adjustment so that they are directly relevant to the long- 
term averaged climate data (Section 5.5.4) used in the model. Underpinning the 
model with as many experimentally derived parameters as possible lowers the 
reliance on location data and should ultimately produce a more biologically 
relevant model, provided the experimental data are correct and relevant to field 
conditions.

Final mapped values include the annual average esoclimatic index (Eqs. 5.1 
and 5.2) and annual average growth index (Eqs. 5.1 and 5.2). The model is esti-
mated using weekly data so that seasonal variation in suitability can be inferred. 
This can be a major advantage over applications of correlative models that do 
not include seasonality predictors. Variation in climatic suitability across years 
can also be explored through the use of yearly rather than long- term averaged 
data and based on the assumption that these yearly variations are meaningful 
to the species. The components of the final indices are multiplicative (Eqs. 5.1 
and 5.2), meaning that a low value for any will result in a low prediction. Each 
component index is scaled from 0 to 1, meaning that each included component 
contributes equally to the outcome.

The weekly growth index is

 GIW = TIW × MIW × RIW × SVW × LIW × DIW (5.1)

where the indices on the right side are weekly temperature, moisture, radiation, 
substrate, light and diapause indices, respectively.

The esoclimatic index is

 EI = GIA × SI × SX (5.2)

where GIA is the annual growth index (mean of GIW), SI is the annual stress 
index (comprising multiplicative cold, dry, heat and wet stresses) and SX is the 
annual stress interaction index (comprising multiplicative cold– dry, cold– wet, 
hot– dry and hot– wet stresses).
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Example of a growth index based on temperature.
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Authors refer to this as a process- oriented or mechanistic model (e.g. Kriticos &  
Leriche, 2010) because (1) the model components consider environmental 
impacts on the species in a growth and stress framework, similar to process- 
based population models; and (2) growth and stress are calculated for weekly 
time steps across the year, mimicking population responses. However, the com-
mon use of species data to help fit CLIMEX models creates a clear distinction 
from the mechanistic models described in Section 5.4.

The strengths of CLIMEX for prediction of potential distributions are that 
it provides a coherent framework for including a range of information (expert 
knowledge, laboratory data, geographic locations and records of relative abun-
dance) and simple tools for exploring the effect of competitors and mutualists 
on species distributions. Its authors have emphasised the importance of under-
standing both the ecology of the species and the frailty of the data, and they 
have invested time and effort into explaining the model and correcting poor 
applications. The component indices (e.g. figure above) are restricted to being 
relatively simple and are constructed so they must define physiological limits, 
meaning that they should predict sensibly outside their ranges. Nevertheless, if  
the model is used to predict to novel climates and if  species locations are the only 
available data, the model will be uninformed about the species’ response in the 
novel climates, as for other SDMs (Section 5.5.5).

The structure and assumptions of CLIMEX bring limitations for pest risk 
mapping, as do those of any model. As explained in Section 5.5, reliance on 
location data has consequences for the modelled niche (Section 5.5.1) and for 
sensitivity to sample size (Section 5.5.2). The model structure might be incor-
rect for some species; responses might be more complex or smoother than the 
programmed piecewise linear model and growth and stress might not com-
prise multiplicative responses to variables that are equally weighted. The model 
focuses mainly on climate, and inference will be limited (particularly for species 
with few presence records) if  other abiotic variables, biotic interactions, disper-
sal limitations and disturbances also have an impact on presence records.

While CLIMEX has been widely applied, many modellers choose alterna-
tive methods of analysis. Their reasons may include (1) corporate ownership 
of CLIMEX influencing cost and willingness of public data modellers to use 
it; (2) limitation to one software implementation that restricts innovations by 
users, programmable links to other commonly used software (e.g. R) and use of 
batch files for sensitivity analyses; (3) a perception that the coarse gridded out-
put provides less useful spatial detail than that attainable from SDMs applied 
to finer scale data (this may well be a false impression, depending on the quality 
of input data, and it is also a historic problem because finer grain data are now 
available; Kriticos et al., 2012); (4) temporal extent: the existing climate data 
packaged with the program spans from 1961 to 1990 and this may not be rele-
vant to recent invasions; and (5) possibly an aversion to methods that appear to 
require more research and perhaps more subjective decisions.

006
19:10:08, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


Predicting Distributions of Invasive Species106

106

Box 5.3 Overview of Modelling Methods for Correlative Species 
Distribution Models

A plethora of methods exist for modelling equilibrium species distributions, 
and a growing body of reviews and texts describes and compares them (Elith &  
Leathwick, 2009a, 2009b; Franklin, 2010; Guisan & Zimmermann 2000; 
Peterson et  al., 2011; Renner et  al. 2015; Thuiller et  al., 2008; Zimmermann, 
2000). Table  5.1 provides examples of several techniques with key references 
and invasive species mapping examples. Free versions for all of the tabled meth-
ods are available. Here, I will simply give an overview of the main categories 
of models and the important differences affecting their use for invasive species 
modelling.

One set of methods (the true presence- only methods) models environments 
at presence locations, making no comparison with the range of environments in 
the broader landscape or at absence sites. Envelope methods are one example. 
These define the hyper- rectangle that bounds species records in multidimen-
sional environmental space, in some cases dealing with relative frequencies of 
records (e.g. by quantifying percentiles of the distribution). Variables can be 
weighted equally or unequally, or the response to the most limiting variable 
can be used for prediction (as in BIOCLIM; Nix, 1986). Related techniques 
(Franklin, 2010) use distance metrics, such as the Gower metric or Mahalanobis 
distance, to predict the environmental similarity between records of occurrence 
and all unvisited sites. A modern machine learning method, the one- class sup-
port vector machine, has also been applied to modelling invasive species (Drake 
& Bossenbroek, 2009; Guo et al., 2005). This focuses on finding boundaries that 
optimally separate occupied environments from all others.

Conceptually, the appeal of this group of methods is that it deals directly with 
the most common type of data available –  presence- only records –  and requires 
none of the additional decisions or assumptions about relevant regions, samples 
in place of absences and so forth that other techniques require. This group is 
dependent on a representative sample of presence locations (as are others), and 
is adversely affected by bias in the records (e.g. towards urban centres; Aikio et 
al., 2010) because there is generally no information on what has been sampled. 
Presence- only methods suffer from the problem that they cannot distinguish 
between landscape availability of environments and habitat suitability, because 
they include no analysis of available conditions. Presence- only methods are also 
subject to the usual problems of chance correlations with irrelevant predictors. 
Some techniques are somewhat biologically unrealistic (e.g. those that equally 
weight variables). Nevertheless, some are currently preferred in biosecurity 
because they are relatively simple to use and interpret.

All other methods require comparison of presence points with some other 
class. Some methods were developed especially for modelling equilibrium distri-
butions based on presence- only data (e.g. ENFA, GARP and MaxEnt, Table 5.1). 
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Others are techniques were designed for modelling binomial (i.e. two- class) data 
(or in some cases counts or continuous responses) which can be adapted in vari-
ous ways if  used with presence- only species records. Examples include regression 
and classification methods such as generalised linear models and generalised 
additive models, decision trees, ensembles of trees including boosted regres-
sion trees and random forests. Artificial neural networks are also used. Details 
of how these methods work are varied and best left to dedicated publications 
(Table 5.1). All are fitted to species records and environmental data. Many rely 
on additive terms within the model (e.g. generalised linear models, generalised 
additive models, boosted regression trees and MaxEnt), which means that even 
if  conditions are suboptimal according to one variable, another can compen-
sate. In contrast, non- parametric multiplicative regression (Table 5.1) is based 
on multiplicative terms and is therefore more like CLIMEX (Box 5.2) in model 
structure. Many are capable of modelling interactions between variables (i.e. the 
response to one variable depends on the value of another). Common applica-
tions of several (e.g. generalised linear models and generalised additive models) 
tend to ignore this capacity, whereas others (e.g. boosted regression trees, ran-
dom forests and MaxEnt) allow it by default.

Comparisons of methods show that for modelling species at equilibrium, the 
methods vary in their abilities to retrieve known responses and predict within the 
training range of the data (Elith & Graham, 2009; Elith et al., 2006; Heikennen 
et al., 2007; Moisen & Frescino, 2002). For instance, MaxEnt, tree ensembles 
and regression methods flexible enough to fit ecologically plausible relationships 
tend to perform well. Comparisons for invasive species modelling are more dif-
ficult because the truth about the potential distribution in the invaded range is 
unknown. There seems to be a general opinion emerging that smoother models 
(ones less tightly fitted to the known records) are more likely to predict well, 
because they do not focus on details of the sampled distribution that might 
result from survey biases, local responses to biota and so on. Smoother models 
can be fitted for methods capable of highly complex fits by limiting degrees of 
freedom and model complexity (e.g. Elith et  al., 2010; Falk & Mellert, 2011; 
Merow et al., 2014). I do not think there is enough information yet to make 
strong conclusions about this idea, although the reasoning seems logical. Studies 
with artificial species would be useful but are rare.

More generally, in my opinion, a good approach for choosing a particu-
lar method is to consider information on its known performance, theoretical 
aspects of how it works and technical details, including whether its settings 
can be easily altered and explored and whether it will run well with the types 
and amounts of data likely to be used. Understanding how a method works, 
and the implications of default or selected settings, is particularly important 
for invasive species. Further comments on correlative models, particularly the 
challenges in using them for pest risk mapping, are included in the discussion 
of important issues (Sections 5.5.1 to 5.5.7).
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5.5.2 Issue 2: How Species Records Affect the Predicted Distribution

All pest risk mapping methods benefit from accurate records across the full native 
range of the species. This will be universally true because the aim is to character-
ise all environments in which the species can persist. Accurate includes both loca-
tional accuracy and taxonomic accuracy. Locational accuracy refers to whether the 
co- ordinates properly represent the sample to a precision relevant to the grain of 
the environmental data, while taxonomic accuracy refers to whether the record is 
truly for the species of interest (Anderson, 2012; Elith & Leathwick, 2009a Elith 
et al., 2013; Funk & Richardson, 2002; Hortal et al., 2008; Reddy & Davalos, 2003; 
Robertson et al., 2010; Schulman et al., 2007). Record date is also important to 
accuracy because the record needs to be relevant to the temporal range covered by 
the available predictors.

Number of records, and their frequency in both environmental and geographic 
space, has varying importance depending on the modelling method. For instance, 
CLIMEX can be affected by the number of records, depending on the amount 
of physiological data available. Without physiological data, CLIMEX requires at 
least one record in each of the important combinations of environmental condi-
tions (the axes of the environmental space defined by the predictors) inhabited by 
the species (Lawson et al., 2010). Geographic proximity of records is unimportant 
in CLIMEX, and having more than one record in a given environmental combin-
ation does not help model fitting, except to confirm that the conditions are suitable. 
Having few records most limits the number of parameters that can be meaningfully 
fitted in CLIMEX when the records are from locations with similar climates. In 
these cases, some indices have to remain undefined, or a range of values fitted and 
their effects on the outcome evaluated (van Klinken et al., 2009).

Similar limitations apply to correlative SDMs because response data (in this case, 
species records) are needed to fit model parameters, and having few records limits 
how many parameters can be fitted, that is, they limit the complexity of the model 
(in regression, this concept is called events per variable; Harrell Jr, 2006). Further, 
most correlative SDM methods use the relative frequency of records in different 
environments to determine relative suitability and sample bias will affect them. This 
problem is particularly severe for presence- only data (i.e. records of presence that 
are unaccompanied by records of absence) because there is no information on sur-
vey effort, including where the species was not found (Phillips et al., 2009). A model 
may reflect biases in survey effort more than the distribution of the species. There 
appears to be little research targeted at defining typical biases for invasive species 
records (e.g. if  collectors tend to record presences in unexpected environments rather 
than randomly), although in the equilibrium SDM literature, research on quantify-
ing biases and methods for dealing with them in models is gradually emerging (e.g. 
Dorazio, 2014; Fithian et al., 2014; Hortal et al., 2008; Phillips et al., 2009; Warton 
et al., 2013). There are some examples for invasive species (Wolmarans et al., 2010; 
Wu et al., 2005), but the topic needs ongoing attention. Even if  the records are 
a random sample of the species distribution, distance between records should 
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be checked. Correlative SDMs assume that each record is an independent sam-
ple, which is untrue for records in very close proximity (Legendre, 1993). Methods 
for examining spatial autocorrelation in model residuals are useful for diagnosing 
problems (Bio et al., 2002; Dormann et al., 2007; Rangel et al., 2006). All of these 
issues imply that data need to be carefully screened before use. This is particularly 
important when using data from online databases because errors and duplication 
of records are extremely common (Graham et al., 2004; Robertson et al., 2010).

The type of data (e.g. presence- only, presence– absence or abundance) is also 
important. Presence- only data are most often used in invasive species SDMs 
because they are the most common type available and efforts at digitising and cor-
recting them are active and ongoing (Graham et al., 2004; and see sources for data 
in Herborg et al., 2009; Woodbury & Weinstein, 2008). Rapidly developing tech-
nologies offer intriguing possibilities for gathering and storing data (including citi-
zen science projects and the use of mobile phones to capture images and upload 
data). However, there are many reasons for preferring presence– absence data for 
correlative modelling because they provide information on what has been surveyed 
(see Section 5.5.3). Abundance data would be even more useful for invasive species 
if  they indicated the relative fitness of the species across a landscape (e.g. Hooten 
et al., 2007; Olfert et al., 2006; van Klinken et al., 2009), but only if  such relation-
ships were similar in invaded ranges. Several SDM methods can use, or at least 
be informed by, abundance data. These include CLIMEX and generalised regres-
sion methods that can model count data (e.g. Poisson regression; Fithian & Hastie, 
2013; Potts & Elith, 2006). For invasive species, presence– absence and abundance 
data will only be reliable in regions that have been occupied long enough for the 
species to have had opportunity to persist (and reach stable population states in the 
case of abundance data) or to die out. Because the aim is to characterise suitable 
conditions as comprehensively as possible (Section 5.5.1), it is worth gathering all 
reliable records that are available (i.e. from multiple sources and surveys, but with-
out creating duplicates). Combining data across different surveys does create some 
difficulties because differing survey efforts will result in differing densities of pres-
ence records, but methods are starting to emerge (Fithian & Hastie, 2013; Fithian 
et al., 2015; Hulme & Weser, 2011).

A final consideration is whether to restrict the model to one based on native range 
data or include records from the invaded range. The use of presence or abundance 
records from the invaded range is a two- edged sword. The advantage is that records 
from the invaded range are likely to expand the representation of environments and 
biota (Jiménez- Valverde et al., 2011) and can potentially edge the modelled niche 
towards the fundamental niche. This is the logic in using records from the invaded 
range in CLIMEX (e.g. van Klinken et al., 2009), and they can also be useful for 
strict presence- only (one- class) methods (e.g. Booth et al., 1988), although the lack 
of equilibrium in the invaded range brings difficulties for interpreting relative fre-
quencies of occurrence in places with active invasion fronts. For two- class methods 
(Box 5.3), the use of records from the invaded range creates additional conceptual 
problems in relation to how to set the non- positive case (see Section 5.5.3) and how 
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to make a composite dataset that reflects consistent survey effort. Several studies 
support the use of some invaded range data (e.g. Broennimann & Guisan, 2008). 
In the extreme (i.e. the majority of data from invaded ranges) the lack of equilib-
rium in that the invaded range is certain to cause problems for correlative models 
unless sophisticated models are used to adjust for variation in propagule pressure 
and the geographic (spatial) processes of spread (Cook et  al., 2007; Elith et  al., 
2010; Rouget & Richardson, 2003; Williams et al., 2008). All of these problems 
relating to lack of equilibrium in the invaded range stem from violation of the basic 
assumption of SDMs (Franklin, 2010), that records are sufficiently well structured 
to give information on the environments suitable for the species. A species that is 
spreading will have records that mix environmental preferences with spatial disper-
sal limitations, and the effects are difficult to untangle.

5.5.3 Issue 3: The Different Views of Background Records,  
Pseudo- absences and Absences

As discussed in Box 5.3, many of the correlative SDM methods applied to presence- 
only data compare the presence records (the positive case) with another case 
(note: see Table 5.1 for method abbreviations used hereafter). This approach is used 
for equilibrium SDMs based on natural history collections (e.g. museums, herb-
aria, online data portals; Graham et al., 2004) and for quantifying resource use by 
animals within available areas (Manly, 2002). The meaning of the non- positive case 
varies in subtle but important ways. For some methods and interpretations, non- 
positive is taken to mean background, landscape or available locations –  conditions 
that can be characterised independently of where the species is present. That inter-
pretation applies to ENFA and MaxEnt and increasing evidence shows it to be the 
best approach for modelling presence- only data with logistic regression. Presence– 
background enables a coherent view of how to use regression models for such data 
(Fithian & Hastie, 2013; Keating & Cherry, 2004; Phillips et al., 2009; Phillips & 
Elith, 2011; Renner et al. 2015; Ward et al., 2009). So far, most uses of regression 
(e.g. generalised linear models, generalised additive models and boosted regression 
trees) with presence- only or background data use naïve models. These do not spe-
cifically deal with the problems of presence- only or background data (e.g. that the 
background points might have a presence at or near them) and do not attempt 
to model the actual probability of presence because prevalence is unknown (e.g. 
Elith et al., 2006). Although these appear to work reasonably well in some cases, 
they are not ideal, and current statistical research unifying ideas of density estima-
tion, inhomogeneous Poisson point process models, logistic regression and MaxEnt 
(Renner et al. 2015) show how to best treat presence– background data in SDMs.

Other viewpoints treat the non- positive case as absence or pseudo- absence. The 
term pseudo- absence is used interchangeably in the literature to refer to either back-
ground or implied absence, but here it will mean implied absence. Methods that 
avoid presence records in sampling pseudo- absences implicitly accept this second 
view of the data. These include GARP and some uses of regression. For regression, 
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pseudo- absences are placed either anywhere except where presences occur or out-
side a geographic or environmental buffer around presence records. For instance, 
Engler et al. (2004) used one model to discover areas with low predicted probability 
of presence and then sampled these to use as pseudo- absences in regression. The 
species modelling literature (for both equilibrium and invasive species) includes sev-
eral suggestions about how to establish sensible locations for pseudo- absences or to 
define reliable absences in the absence of surveyed absences (Le Maitre et al., 2008; 
Lobo et al., 2010), and new papers with new suggestions keep emerging. However, 
the background viewpoint requires fewer ad hoc decisions about both position and 
number of background or pseudo- absence samples, and allows a more rigorous 
statistical framework (Renner et al. 2015).

Across both of these interpretations, correlative models require decisions about 
the extent (i.e. the landscape area) to be sampled for background or pseudo- absence 
points. Users of GARP and MaxEnt have not always understood the importance 
of this decision, failing to recognise that the model samples the background from 
any region with data in the gridded predictor variables supplied by the user. So, for 
instance, if  global maps are used without masks for a species whose native range 
is within South America, the background will be sampled from the whole world. 
This implies that the species has had the opportunity to reach anywhere and occurs 
only in South America (Figure  5.2). Unlimited dispersal opportunity is uncom-
mon. Instead, background extent should be restricted to a region that could rea-
sonably be assumed to have been available to the species (Barve et al., 2011; Elith 
et al., 2011).

True absence data (through comprehensive survey) are relatively rare, but bring 
several advantages. For instance, absence data provide information on what has been 
surveyed, and overcome many problems in survey bias. For invasive species model-
ling, absence data are likely to be useful only in the native range, unless there is clear 
evidence in the invaded range that the species has had sufficient time and oppor-
tunity to spread to, and persist in, surveyed areas, or unless specialised models are 
used (e.g. Václavík & Meentemeyer, 2009). There has been some discussion of the 
disadvantages of absence data in the correlative distribution modelling literature, 
although to my mind, this is overstated. Biotic interactions, dispersal constraints 
and disturbances affect the distribution of absences (e.g., Jiménez- Valverde et al., 
2008), but presence records will be affected similarly, so these impacts should not 
be used to argue against using absence data (Elith et al., 2011). Presence– absence 
records are valuable and worth collecting because they remove the need to assume 
random surveys or deal with survey bias. The important problem with survey- based 
absence records stems from imperfect detection (i.e. false- negative records; Hirzel & 
Le Lay, 2008; Jiménez- Valverde et al., 2008), but there are now a number of meth-
ods available for dealing with imperfect detection in correlative SDMs (e.g. Eraud 
et al., 2007; Hooten et al., 2007; Wintle et al., 2004). Data need to be used at a grain 
(spatial resolution) relevant to the species and application, and fine- scale absences 
may not be informative (e.g. Falk & Mellert, 2011). CLIMEX does not formally 
use absence data, although information on absence is required or assumed in fitting 
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stress indices (which bound the geographic distribution). In the face of considerable 
uncertainty about absence, the effect of various assumptions could be explored in 
sensitivity analyses of the parameters limiting the stress indices.

What this all means for invasive species modelling is that users need to be aware 
of the assumptions of their method and the requirements for background or 
absence data. Concepts of the niche and accessible environments are important 
(Section 5.3). I  expect it will take some time to come to a coherent view of the 
best way to treat these data in correlative methods, so users need to stay abreast of 
developments.

5.5.4 Issue 4: Choice of Predictor Variables

SDMs for invasive species usually focus on climatic variables. This is partly because 
climate dominates distributions at the global scale (see discussion of scale in Elith & 
Leathwick, 2009b) and partly because the only globally coherent terrestrial datasets 
to date have been climate based, usually long- term averaged data (for examples and 

Figure 5.2. Predictions for the distribution of a hypothetical species located in South America (black 
dots) using (a) background of South America and (b) background of the whole world. 
Predictions were obtained from MaxEnt with linear and quadratic features and five 
candidate predictors (aridity, humidity, mean temperature of the wettest quarter, highest 
monthly temperature and minimum monthly precipitation). Shading show the logistic 
output predictions: darkest is high (1.0 to 0.8) and pale grey is low (0.2 to 0.05).
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sources see Franklin, 2010; Herborg et al., 2009; Woodbury & Weinstein, 2008). 
However, a broader range of data is becoming available. For terrestrial species, 
data for soils, topography and measures of climate variability and climate close 
to the ground are being prepared globally, some at fine resolution (B. McGill & 
R.  Guralnick, personal communication, 2012; Kearney et  al. 2014), and coarse 
resolution marine datasets are now available with a suite of useful predictors (e.g. 
Tyberghein et al., 2012). Methods are also developed for modelling river networks 
and summarising environmental conditions throughout the network while taking 
connectivity into account (Leathwick et al., 2008), although global rivers databases 
suitable for modelling are currently unavailable. Within the next 10 years, it is rea-
sonable to expect substantial improvements in the quality and quantity of glo-
bally complete and biologically relevant predictors for both marine and terrestrial 
ecosystems. Additional predictors will provide more opportunity to select scales 
relevant to the modelling problem and use predictors most directly relevant to the 
species of interest. I expect that predictors that characterise climate extremes and 
variability and climate close to the ground will be particularly useful for modelling 
invasive species because they characterise processes and impacts important to spe-
cies’ persistence (e.g. Zimmermann et al., 2009).

This issue of selecting ecologically relevant predictors for correlative models is 
particularly important for modelling invasive species, and is also discussed in the 
equilibrium SDM literature. Two viewpoints are evident. The first is that intelligent 
prior selection of predictors, informed by existing knowledge and theory, will cre-
ate the firmest foundation for a useful model (Austin & Van Niel, 2011; MacNally, 
2000). Mellert et  al. (2011) call this hypothesis- driven modelling. Austin (2002) 
argues strongly for the use of proximal predictors that are functionally relevant 
and best represent the resources and direct gradients that influence species. Distal 
predictors –  such as elevation or ocean depth –  rarely affect species distributions 
directly, but instead do so indirectly through their relationships with proximal pre-
dictors such as temperature. The problem with using distal predictors is that they 
are relevant to the species only through their correlations with proximal predictors, 
and these correlations tend to change across landscapes and continents. A model 
fit in one region cannot be guaranteed to predict reliably in another region that 
has different correlations between variables (Dormann et  al., 2013; Elith et  al., 
2010; Jiménez- Valverde et al., 2011). The concept of choosing ecologically relevant 
predictors merges with the thinking behind mechanistic models, and some have 
discussed the possibility of using mechanistic models to provide physiologically 
informed predictors for correlative models (Elith et al., 2010; Kearney et al., 2010; 
Morin & Thuiller, 2009).

The alternative view, that a model should be given the full suite of available pre-
dictors so that it can discover the most relevant, is common in data mining and 
machine learning. Analyses using machine learning methods and hundreds or 
thousands of predictors have had impressive results in some fields of data analysis, 
but their success relies on large and unbiased samples of the measured response, 
and these are rarely available for invasive species.
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There are many examples of careful selection of variables for invasive spe-
cies modelling (e.g. Drake & Bossenbroek, 2009; Rodda et al., 2011; Thuiller et 
al., 2005). It is also not hard to find examples of the alternative approach –  the 
most common being the use of all 19 temperature and rainfall variables from the 
Worldclim dataset (Hijmans et al., 2005). So far, there is limited critique in the lit-
erature of the effect of these choices, and very few studies include sensitivity ana-
lyses of the effect of these choices on model predictions. However, examples are 
emerging (Le Maitre et al., 2008; Peterson & Nakazawa, 2008; Rodda et al., 2011; 
Rödder & Lötters, 2010) that confirm the importance of informed selection of dir-
ectly relevant variables. It is hard to test whether proximal variables can be reliably 
identified from an available set either by expert knowledge or by modelling, and this 
needs further exploration. Once a candidate set of variables is selected, iteration 
between model fitting and evaluation (Sections 5.5.6 and 5.5.7) might suggest the 
need for changes to the set of candidate variables (e.g. Falk & Mellert, 2011).

Issues of variable selection from extensive geographic information system data-
sets are not relevant to most CLIMEX analyses (Box 5.2) because the supplied 
data are limited to a selection of variables available at the time of development 
and deemed relevant by the authors. These are long- term averaged terrestrial cli-
mate data (temperature, rainfall and humidity) that are either site based (corre-
sponding to approx. 3,000 meteorological stations worldwide) or gridded at 0.5 
degree (approx. 50 km). Additional data can be added by users, and finer resolution 
gridded data are now available for use within CLIMEX (Kriticos & Leriche, 2010; 
Kriticos et al., 2012).

5.5.5 Issue 5: Novel Environments

In many cases, models fitted to native range data will be predicting into novel envir-
onments. This is true for all methods because it is related to the data used to fit the 
models. The general problem of using correlative models to predict to new geo-
graphic regions is often termed transferability; when this involves prediction to new 
environments, extrapolation is occurring. Here, the interplay between geographic 
and environmental space comes to the fore: new geographic regions need not, but 
often do, harbour new environments.

Protocols have been suggested for dealing with novel environments in CLIMEX. 
Where predictor values are very different in the invaded range from those for which 
data are available, it is recommended that parameters for the relevant indices are 
either not set or a range of likely options examined (van Klinken et  al., 2009). 
Much of the early correlative SDM literature on transferability of models either 
failed to determine whether novel environments occur or used methods for identify-
ing novelty (such as simple data summaries or principal component analyses) that –  
although useful –  weren’t spatially mapped (e.g. Randin et al., 2006). This makes 
the results of these studies difficult to interpret. Mapping novel environments (Elith 
et al., 2010; Mesgaran et al., 2014; Williams et al., 2007) helps interpretation of 
model output and guides users as to where predictions may be highly unreliable. 
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Novel environments can occur either because the climates in the invaded range are 
outside the ranges of the training data as assessed on a univariate basis, or they can 
occur because new combinations emerge, implying changed correlations between 
variables. If  environments are outside the bounds of the data (whether in univariate 
or multivariate space), knowledge of how the model extrapolates is essential (see 
column on partial plots in Table 5.1). That is, outside the range of the training data, 
what trend does the fitted function follow? It is surprising that there has been so 
little attention to this in the SDM literature for invasive species, although perhaps 
that reflects the complexity of the topic. Models are usually fitted over multiple pre-
dictors, and the only simple way to assess extrapolation is to view partial response 
plots and the like (i.e. one variable at a time, where the response over the others is 
held at some constant value; e.g. Figure 5.3, right column). Although useful, this 
approach does not provide a complete picture. For models including interactions 
(e.g. models based on decision trees, or regression models with interaction terms), 
understanding how the model predicts in multidimensional environmental space is 
important (Zurell et al., 2012).

Figure 5.3. Example of a tool for exploring components of predictions for the species modelled in 
Figure 5.2. The right pane shows components of the prediction (top panel) and partial 
plots for each predictor; vertical bold lines show the conditions at the location indicated by 
the arrow. This is from an interactive map produced by MaxEnt (Elith et al. 2010).
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The main concern is that using a correlative model to extrapolate beyond the 
range of the training data is using it outside the realm of safe practice. The models 
have not been developed for this problem, and methods have not been developed 
for controlling the models appropriately. Research is only now starting to emerge 
in which models have been carefully controlled through choice of predictors, limit-
ing degrees of freedom in transformations of predictors and controlling the edges 
of fitted functions (e.g. by weighting data; Mellert et al., 2011). I envisage future 
research on how to fit models that predict well in likely directions of change, how 
to identify novel environments (including substantially changed correlation struc-
tures) and how to control model behaviour to predict in ecologically realistic ways. 
Simulated data can be useful for exploring how models extrapolate (Fensterer, 
2010). Modelling methods that have no facility for visualising fitted functions 
(Table 5.1) are failing to report vital information, and methods where fitted func-
tions can be controlled (e.g. specialised splines in regression models) will be more 
easily extended for this application. CLIMEX (Box 5.2) and NAPPFAST (Magarey 
et al., 2007) were specifically developed for invasive species and have functions that 
are more likely to be appropriately controlled (depending on how well the model is 
developed). There is no reason why correlative models could not also be developed 
to use prior information from experts or experiments to control how the model 
extrapolates.

5.5.6 Issue 6: Evaluating Predictions

SDMs for species at equilibrium can be evaluated in various ways, for instance, by 
assessing variable importance and fitted functions and deciding whether the model 
is consistent with ecological knowledge about the species (Elith & Leathwick, 2009a, 
2009b), by exploring the patterns in residuals and by testing predictive perform-
ance, ideally at independent sites not used in model training. Emphasis is usually 
on the last, and statistical summaries including area under the receiver operating 
characteristic curve, kappa and explained deviance are generally given precedence 
(Fielding & Bell, 1997; Franklin, 2010; Pearce & Ferrier, 2000).

Some of these methods (particularly the site- based statistical summaries) have 
been carried over from equilibrium SDM research into invasive species modelling, 
but they are often not particularly appropriate (Jiménez- Valverde et al., 2011). The 
aim of model evaluation should be to test whether the model is appropriate for its 
intended application (Rykiel, 1996). Because prediction in the native range is not 
the aim, the fact that a model can do this successfully is reassuring but not ultim-
ately a strong test. The problem is clear: the potential distribution in the invaded 
range is unknown and test data are not available. The main question is whether the 
model fitted in the native range is relevant to the invaded range. Distributional data 
in the invaded range are unlikely to provide a reliable test of model performance 
because the species is likely to be invading; presences may not indicate persistence 
and absences will be unreliable. More attention should be given to the problem of 
evaluation, including how to simulate data that is useful for model testing (Austin 
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et al., 2006; Fensterer, 2010). Models need to be assessed for their ecological rele-
vance: by using expert knowledge, by sourcing additional data including physio-
logical information or by comparison with completely independent models that 
do not use distributional records. Evaluation could also address questions about 
the sensitivity of the model to choices made in the modelling process (see Section 
5.5.7). Methods for perturbing or resampling data that tested model behaviour in 
environments most common in the invaded range might also be useful. Because 
the problem of predicting potential invasive distribution is  –  from a modelling 
viewpoint –  quite similar to the problem of predicting changes in distribution with 
climate change, progress on evaluation methods in that arena is likely to be trans-
ferable to invasive species (for an interesting example, see Falk & Mellert, 2011).

5.5.7 Issue 7: Dealing with Uncertainty

This section relies on a mix of information from equilibrium SDMs and invasive spe-
cies applications (including models of spread in invaded ranges) because most pest 
risk mapping examples focus on only one component of uncertainty. Uncertainty in 
predictions emanates from multiple sources, including those discussed in Sections 
5.5.2 to 5.5.4, and choice of modelling method and its settings (Box 5.3, Table 5.1). 
While there have been a number of theoretical treatments and reviews of sources 
of uncertainty in correlative equilibrium SDMs and related fields (Ascough et al., 
2008; Barry & Elith, 2006; Elith et al., 2002; Kangas & Kangas, 2004; Leyk et al., 
2005; Rocchini et al., 2011), relatively little has been done in practice to characterise 
the effect of likely uncertainties on modelled predictions (but see Dormann et al., 
2008; Elith et al., 2013; Gutzwiller & Barrow, 2001; Johnson & Gillingham, 2008; 
Leung et al., 2012; van Niel & Austin, 2007). This is largely because it is difficult 
to quantify errors, and the problem seems overwhelming once possible errors are 
scoped. Uncertainty is only partly characterised by confidence intervals from mod-
els (Elith et al., 2002; Kuhn et al., 2006). Rocchini et al. (2011) emphasise the need 
for maps of ignorance to depict areas where the reliability of predictions is either 
known or unknown and suggest potential approaches for producing these.

Most research has targeted important components of  uncertainty, including 
bias in species records (e.g. Argaez et al., 2005; Hortal et al., 2008; Rodda et al., 
2011), uncertainty in predictors (Kriticos & Leriche, 2010; van Niel & Austin, 
2007), differences between modelling methods (Pearson et al., 2006) and differ-
ent parameterisations of  one model (Hartley et al., 2006). Ensembles of  correla-
tive methods are favoured by some modellers (e.g. Araujo et al., 2005; Caphina 
& Anastácio, 2010; Roura- Pascual et al., 2009, Stohlgren et al., 2010; Thuiller, 
2003) as a means of  dealing with the sometimes extreme variation in predic-
tions across methods. Their aim is to emphasise agreement of  predictions and to 
quantify model- based uncertainty. However, these are not problem free, particu-
larly for invasive species. Ensemble SDM methods are usually based on standard 
application of  the component modelling methods (e.g. generalised linear models, 
generalised additive models, Mahalanobis distance and boosted regression trees; 
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Table 5.1), with default settings chosen by the ensemble programmer and any 
weighting of  the ensemble components based on predictive performance to some 
set of  sites. Because point- based predictive performance is usually impossible to 
evaluate meaningfully for invasive species, the ensemble components are often 
simply averaged (Araújo & New, 2007). It is unclear whether variation between 
components of  the ensemble (i.e. between individual methods) is largely due to 
unrealistic models that have not been thoroughly explored and evaluated rather 
than real uncertainty between predictions. In my opinion, use of  ensembles is 
a good idea only if  the component models have been rigorously evaluated (e.g. 
Falk & Mellert, 2011). There are several reasons for this. Available species data 
sets are rarely so large and error- free that a model can be left to sort out the 
mess. The shapes of  modelled responses require evaluation. Default settings may 
not be appropriate; the model might be too complex (as is often the case with 
machine learning methods using standard settings) or too simple (linear fits in 
GLMs). The extent of  extrapolation needs to be evaluated, especially as it inter-
acts with the shape of  the modelled response (Section 5.5.6).

A useful approach for exploring uncertainty in any model is to fit multiple 
parameterisations to test the many judgments made in fitting the model (Elith et al., 
2013; Ray & Burgman, 2006; Taylor & Kumar, 2012; van Klinken et  al., 2009). 
Another angle for exploring uncertainty is to ask what type and amount of uncer-
tainty would lead to a changed decision based on the model, or whether a deci-
sion or action is robust to estimated uncertainty (e.g. Elith et al., 2013; Moilanen 
et  al., 2006; Yemshanov et  al., 2010; see Chapters  6, 12 and 13 in this volume). 
Alternatively, adaptive surveillance approaches can be used by starting with models 
based on existing information (even if  inadequate) and then iteratively updating the 
models with new information resulting from actions aimed at achieving some mix 
of management and data collection (McCarthy & Parris, 2008; Rout et al., 2014).

Although it might be easier to believe that a model is accurate, it is important to 
face the range of likely uncertainties and to communicate them in a way that aids 
decision making and future data collection. Further research –  focusing on how to 
make practically useful evaluations of uncertainty –  will progress informed use of 
predictions (Venette et al., 2010).

5.6 Conclusions

Many practitioners will need to use models based on data from the realised niche, 
whether as a stop- gap measure before better methods are available or because these 
might remain one of the only options for many species. An obvious question is 
which method to adopt. In my opinion, because these models require understand-
ing, a better question is what expertise to develop. A skilled analyst is important 
for understanding the issues; they can also learn more than one method and choose 
methods that suit their data and species. Methods such as CLIMEX have been 
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specifically developed for invasive species and have some features that make them 
safer to use (e.g. the way their indices can be controlled to extrapolate beyond the 
realised niche). These methods will not suit all species and all situations, and it is 
useful to continue development of other methods and tools. Some researchers are 
optimistic that correlative models will predict with high precision (e.g. Peterson, 
2003); although that may be true for some species at some scales of evaluation, 
I believe that the issues discussed in this chapter make substantial errors reasonably 
likely. I am hopeful that ongoing developments will produce models better suited to 
the task and tools to help practitioners to better understand predictions and their 
uncertainties.

5.7 Acknowledgements
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6 Mapping Risks and Impacts 
of Invasive Alien Species with 
Dynamic Simulation Models
Denys Yemshanov, Frank H. Koch, John W. Coulston and William D. Smith

6.1 Introduction

Invasive alien species have been acknowledged as a serious ecological and economic 
concern worldwide. Significant global impacts of invasive alien species on the agri-
cultural, forestry and public health sectors (Colautti et al., 2006; Dawson, 2002; 
Westbrooks, 1998) underline the need for reliable assessments of the risks posed 
by organisms that have been, or are likely to be, introduced into new environments 
outside their native ranges. The pertinent risks include the likelihood of successful 
establishment of the invading organism as well as the likelihood and magnitude 
of economic or ecological impacts (e.g. damage or mortality of a commercially 
important host resource). Dynamic simulation models are attractive techniques, 
not only to develop reliable estimates of these risks but also to quantify uncertainty 
around the risk estimates.

Invasions may affect large and diverse geographical areas. Assessing the poten-
tial risks in a geographical domain is always desired and helps when investigating 
regional variation in the predicted invasion outcomes. For plant protection organi-
sations and land management agencies, mapping pest risks aids in developing sur-
veillance and control strategies (e.g. early warning survey networks), appropriate 
phytosanitary regulations and effective counter- measures. Unlike road or physio-
graphic maps, pest risk maps are models that show predictive rather than observed 
data, and thus have associated errors or uncertainty. These predictive maps have 
proven to be effective aids in raising awareness and helping to address public con-
cerns regarding regulation and control of new invaders.

Ideally, a pest risk map, and its underlying model, should simultaneously address 
both the likelihood and the impact of invasion by the pest species (Venette et al., 
2010). In practice, these two aspects have typically been examined distinctly, 
sometimes with an ad hoc combination of outputs as a last step (FHTET, 2010; 
Magarey et al., 2011). Most pest risk maps and models have focused narrowly on 
particular stages of the invasion process, such as pathways or mechanisms of intro-
duction (Koch et al., 2011), or the distribution of environmentally suitable areas 
where a species is likely to persist if  introduced (Andersen et al., 2004a; FHTET, 
2010; Venette et al., 2010; see Chapter 5). Regardless of whether a risk map has 
limited scope, its risk estimates may be influenced by the nature of the mapped 
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information or by specific factors associated with the pest of interest (e.g. the area 
being infested, the rate of spread of the invader, the amount and susceptibility of 
the local host resource or the time the invading population has occupied a given 
area). Furthermore, because an invader can usually become established only at a 
minimum population size, there must be a minimum level of impact on the pest’s 
host resource for any risk estimate to be meaningful.

As these points suggest, for a risk map to provide adequate decision support, 
the underlying model of invasion risk should represent all key aspects of inva-
sion (including the time horizon of interest) in an explicit or implicit manner. 
A simulation- based approach offers an opportunity to dynamically combine the 
various aspects and stages of a pest’s invasion into an integrated, temporally expli-
cit risk framework. Stochastic models also offer the capacity to generate numerous 
plausible outcomes of an invasion through independent randomised simulations; 
in turn, these model outputs, collected over multiple model realisations, can be used 
to generate distributions of potential invasion outcomes and estimate the variation 
of invasion risks over large geographical areas. Geographically explicit simulation 
models can generate risk estimates at large spatial scales, but with spatial accuracy 
sufficient to demarcate particular hotspots of high risk, thereby providing import-
ant management information in a broad geographical context.

6.2 Dynamic Simulation Risk Models

6.2.1 Basic Concept

In general, an invasion model portrays the trajectory of an outbreak through its 
fundamental stages (i.e. entry, establishment, spread and impact) as a sequential 
simulation process. The process starts with one or more introduction events as a 
result of trade or other human activities (Williamson, 1996). Once established in a 
new locale, the invading organism spreads through the landscape, causing host mor-
tality and subsequent ecological damage that may trigger socio- economic impacts. 
These processes occur under diverse environmental conditions that variably influ-
ence the behaviour of the pest of interest (e.g. host density, connectivity and level of 
susceptibility or degree of climatic suitability for the pest) and generate a chain of 
events that determine the expansion of the invasion in time and geographical space 
(Figure 6.1). The results may be depicted as a map of the invasion risks for a given 
forecast period. Overall, a simulation- based approach offers better opportunity to 
estimate the long- term cumulative risks of multiple introductions. This is because 
all relevant components of invasion (such as spread, survival and establishment of 
the invader) are integrated in these models and feedback that occurs in time and 
space as a result of multiple introductions or interactions between existing and 
newly established pest populations can be taken into account (Rafoss, 2003).

The computational and structural complexity of the selected invasion model is 
guided by the nature and amount of available information about the pest. In its 
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simplest form, the model is usually fitted to experts’ beliefs regarding the pest’s 
behaviour in its new environment (which may be informed by evidence from other 
parts of the world, despite the differences between these environments). The model 
structure becomes more sophisticated when knowledge about the organism is more 
comprehensive (e.g. the emerald ash borer, Agrilus planipennis Fairmaire, model in 
BenDor et al., 2006). For relatively simple models of invasion, key invasion stages 
can be depicted in a generalised fashion with a functional calculus where the model 
dependencies are described using a set of continuous functions that often have ana-
lytical solutions (see example in Sharov & Liebhold, 1998). More complex processes 
of spread and population growth based on empirical and geographically distributed 
data are commonly modelled using a discrete event approach (but see Gibson & 
Austin 1996; see also Fuentes & Kuperman, 1999; Yemshanov et al., 2009b).

In this chapter, we provide a brief  overview of basic modelling components and 
approaches that may be used to depict critical steps of an invasion and estimate the 
risk and impact of new infestations.

6.2.2 Entry

The majority of non- indigenous species have been introduced to North America 
via transport of imported goods (Costello et al., 2007; Levine & D’Antonio, 2003). 
This method of entry has become increasingly important as the volume of global 
trade has risen rapidly. For decades, inspections at ports of entry have routinely 
detected unwanted organisms, not just in cargoes but –  particularly with respect 
to wood- boring insect pests –  in their packing materials as well (Brockerhoff et al., 
2006; Haack, 2006).

Susceptible
host

4. Establishment
at inland sites 3. Movement via

transportation
network 2. Arrival rates

at the ports

1. Global
arrival
rate

Regions
of origin

Ports
of entry

Inland locations

Figure 6.1. A schematic representation of the basic elements of an invasion process.
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For many invading organisms, risk assessment starts from estimating their entry 
potential. Entry potential is described by a set of probabilities, across individual 
locations of interest, which quantify the likelihood that the invader will be intro-
duced with imported goods and commodities. This step can be seen as two linked 
analyses: identification of likely pathways for the invading organism to travel from 
the region(s) where it is already established (Andersen et al., 2004b) and subsequent 
estimation of the particular entry potential at individual locations within the geo-
graphical area of interest, which may include inland locations beyond initial ports 
of entry.

The first analysis involves evaluation of the worldwide distribution of the spe-
cies of concern to identify possible regions of origin (Magarey et al., 2009). It also 
includes assessment of likely import pathways (i.e. the commodities and cargo 
types with which the pest has been associated historically). This can be accom-
plished by examining pest interception records from ports of entry as well as the 
status of commercial activities (e.g. timber production) with which the species is 
associated in the identified origin regions (Baker et al., 2005; Magarey et al., 2007; 
Piel et al., 2008). Data on recent levels of international trade at broad scales offer 
an initial way to quantify a pest’s entry potential based on origin and pathway 
information. For example, Figure 6.2 shows the probabilities of introduction for an 
invasive wood wasp, Sirex noctilio Fabricius, at North American marine ports of 
entry. Given the broad geographical distribution of S. noctilio, Koch et al. (2009) 
and Yemshanov et al. (2009b) concluded that these likelihoods (i.e. the pest’s entry 
potential) could be reasonably estimated as a function of the total value of com-
modities (Costello & McAusland, 2003; Levine & D’Antonio, 2003; Yamamura & 
Katsumata, 1999; Yamamura et al., 2001) received at each port from regions where 
S. noctilio is known to exist and has a significant economic impact. Such analyses 
may be refined by looking only at the values or volumes of commodities specifically 
associated with the species of interest, rather than total import values or volumes 
(e.g. Koch et al., 2011).

The increasing proportion of containerised shipments that do not have to be 
opened at a port of entry, but instead are opened at their final destination, together 
with the elaborate transportation networks found in North America and elsewhere, 
highlight the need to consider the domestic (i.e. intercity) flow of pest- associated 
commodities via major transportation corridors (Black, 1972; De Jong et al., 2004; 
LeSage & Kelley Pace, 2008; LeSage & Polsek, 2006; O’Sullivan & Ralston, 1974; 
Porojan, 2001). Hence, the second phase of analysis focuses on the subsequent 
movement of imported goods after they have entered at the ports. To represent the 
entry potential at final destination locations (such as urban areas), the entry poten-
tial at each port, which is based on the volumes of pest- associated cargo that the 
port has historically received, is apportioned to the inland locations to which it is 
linked by domestic trade routes (Figure 6.3).

Unfortunately, historical data relevant for calculating entry potential are often 
incomplete and inconsistent; for example, data for both domestic and international 
commodity flows are usually provided at broad scales (i.e. the data are summarised 
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at a regional level) and lack sufficient fine- scale geographical details to permit allo-
cation of flows to specific geographical locations (e.g. urban centres) that might be 
of interest with respect to invasive pests (Baker et al., 2005). One potential solution 
is to predict the entry potential at two levels: a global (i.e. broad- scale) likelihood 
of entry for the entire region of interest and a geographically distributed set of 
local entry probabilities that apportion the region- wide entry potential into loca-
tion- specific estimates for the individual ports of entry and other destination loca-
tions of interest (Herborg et al., 2007; Koch et al., 2011; Yemshanov et al., 2009b). 
This approach allows one to combine separate data assumptions for global and 
local estimates and test a wide range of local entry hypotheses independently of the 
global entry potential. For example, inland sites (such as distribution centres and 
urban areas) can be incorporated into the apportionment of entry potential among 
individual locations without changing the global entry potential. This approach 
also offers the opportunity for linkage with more advanced transportation network 
and commodity flow models (similar to de Vos et al., 2004 and Yemshanov et al., 
2012a) to quantify the long- distance movement of invasive organisms via transpor-
tation corridors.

Notably, entry potential is a dynamic variable that changes with time. Several 
studies have modelled entry potential as a function of changing climate (Magarey 

Probability of entry, yr–1

< 0.0006

0.0006–0.001

0.001–0.0016

0.0016–0.0025

0.0025–0.004

0.004–0.0063

0.0063–0.01

0.01–0.016

Ports

Figure 6.2. An example of Sirex noctilio entry potential at major marine ports in eastern North 
America from the world regions where the pest is known to exist.
[Reproduced with permission from Yemshanov, D., Koch, F. H., McKenney, D. W., 
Downing, M. C. and Sapio, F. (2009b). Mapping invasive species risks with stochastic 
models: A cross- border United States– Canada application for Sirex noctilio Fabricius. Risk 
Analysis, 29(6), 868– 884. See source for further details.]
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et al. 2007), specific weather phenomena (such as El Niño), socio- political and eco-
nomic events such as the recent global financial crisis (Koch et al., 2011) or the 
impact of new trade rules (Costello et al., 2007). Representing entry as a dynamic 
variable in a stochastic model is likely to be more realistic than point- based tech-
niques (Jarvis & Baker, 2001) because it provides a more reliable depiction of mul-
tiple reintroductions over time (Rafoss, 2003; see also Koch et al., 2009; Yemshanov 
et al., 2009b).

6.2.3 Spread

The spread of  invading organisms is one of  the most intensively studied aspects 
of  ecological invasions (Nathan, 2005; Neubert & Caswell, 2000; Okubo & Levin, 
2002; Royama, 1992). There are two broad modelling approaches for forecast-
ing the spread of  non- indigenous species (Hastings, 1996). The first approach 
employs theory- based analytical spread models such as reaction- diffusion, travel-
ling wave or stratified diffusion models (Kot et al., 1996; Sharov & Liebhold, 1998; 
Shigesada et al., 1995), essentially fitting one of  these analytical models to his-
torical rates of  spread based on observational data (Holmes, 1993; Kovacs et al., 
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Figure 6.3. Introduction potential of forest invasive insects at ports of entry and inland locations 
across Canada and the United States from all world regions (2000– 2010 estimate).
 [Reproduced with permission from Koch, F. H., Yemshanov, D., Colunga- Garcia, M., 
Magarey, R.D. and Smith, W. D. (2011). Potential establishment of alien- invasive forest 
insect species in the United States: Where and how many? Biological Invasions, 13(4) 969– 
985 and Yemshanov, D., Koch, F., Ducey, M. and Koehler, K. (2012). Trade- associated 
pathways of alien forest insect entries in Canada. Biological Invasions, 14(4), 797– 812. See 
sources for further details.]
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2010; Pitt et al., 2009; Tobin et al., 2007). These analytical models are relatively 
simple and have been well studied (e.g. Royama, 1992), but they often lack feed-
backs to ecological and economic drivers that shape a species’ particular pattern 
of  invasion. Analytical models have been long criticised for their poor capacity to 
predict long- distance dispersal and their tendency to underestimate true rates of 
spread (Waage et al., 2005).

The second modelling approach incorporates various empirical data about the 
ecology and behaviour of  the invading organism and makes use of  more complex 
mechanistic algorithms that do not have analytical solutions. This approach can 
accommodate various environmental feedbacks (BenDor et al., 2006; Sharov & 
Colbert, 1996), but the parameter- fitting procedures are often less transparent and 
rely more on expert knowledge about an invader (or on data collected in other, 
usually foreign, regions where the invader is known to exist) than analytical mod-
els. Although these complex mechanistic models may be considered more realistic 
than analytical models with their incorporation of  species’ life cycles and environ-
mental preferences (Sharov & Colbert, 1996), they can be difficult to validate. It 
can also be challenging to determine the sources of  any identified errors (which 
could, for example, arise due to a failure to recognise important interactions that 
result in missing or incorrectly specified model parameters). In general, spread 
models include at least three key components in various implementations: popula-
tion growth, spatial spread (i.e. dispersal) and establishment of  an invasive organ-
ism at newly colonised locations (BenDor et al., 2006; Nathan, 2005; Neubert & 
Caswell, 2000).

6.2.4 Population Growth and Dispersal

In conceptual terms, dispersal models link the positions of newly emerging indi-
viduals to the positions of their parents (van den Bosch et al., 1992). This can be 
depicted as a dispersal kernel K(x, y, t) that denotes the probability, at time t, that 
an offspring from an individual born at location x will start life at location y. More 
practically, kernel K specifies how emerging adults spread to other locations, and 
can usually be defined as a probability density function (Neubert & Caswell, 2000) 
for location y to which an individual at location x disperses.

The shape of the dispersal kernel K greatly affects the rate of spread (Kot et al., 
1996), but choosing the kernel’s shape and fitting it to actual spread rates calcu-
lated from field surveys can be problematic. For example, the Gaussian probability 
density function produces diffusion- like spread with constant velocity (Kot et al., 
1996). However, a Gaussian kernel does not capture well the long- distance spread 
events that have been observed in many historical invasions (Chapman et al., 2007). 
While rare events of long- distance dispersal have been widely recognised as key 
contributors to rates of spread (Clark et al., 1998; Nathan, 2003), they are notori-
ously difficult to calibrate to field observations (Higgins & Richardson, 1999; 
Shigesada & Kawasaki, 1997). A  special group of fat- tailed probability density 
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functions provides an increased probability of long- distance dispersal events and 
may be better able to simulate the accelerating rates of spread seen in many inva-
sions (Chapman et al., 2007; Clark et al., 1998; Kot et al., 1996). Alternatively, long- 
distance dispersal can be portrayed with a two- staged stratified diffusion model 
(Shigesada et al., 1995) that adds a distance- dependent probability of creating new 
population nuclei (or colonies) at distances beyond the main front of an organ-
ism’s spread. Another approach simulates long- distance spread as a spreading and 
coalescing colony, with the probability of creating new population nuclei calculated 
as a function of the geographical distance from already established infestations 
(Sharov & Liebhold, 1998).

The analytical approaches described in the preceding text depend on simplifying 
assumptions and may not resolve the issue of severe uncertainties when it comes 
to predicting long- distance spread of invasion (Melbourne & Hastings, 2009). 
Another issue is that long- distance dispersal of invaders is often a result of human 
activities, and cannot be well explained by biological, kernel- based models alone. 
One approach to predicting human- mediated long- distance dispersal is to use grav-
ity models (Bossenbroek et al., 2001). Gravity models predict the degree of interac-
tions between invaded and non- invaded locations, weighted by the geographical 
distance between them, in a manner similar to a gravity law (Bossenbroek et al., 
2001; Muirhead & MacIsaac, 2005). These models assume that the migration of 
invading organisms is guided by the attractiveness of potential destinations, which 
is often based on statistical hypotheses about economic activities, infrastructure 
and transportation networks (Muirhead et al., 2006).

The accuracy of predicting human- mediated, long- distance spread of invasive 
organisms can be further improved via explicit modelling of flows of freight, com-
modity types or vehicles that could harbour the organisms. Instead of relying on 
theoretical dispersal or gravity models, the approach makes use of network models 
built upon empirical data about these flows to estimate the likelihood of movement 
of an invader via directional pathways in the network. For instance, it is possible 
to estimate the flows of pest- specific commodities through a transportation net-
work linking cities and other populated areas (de Vos et al., 2004; Koch et al., 2011; 
Yemshanov et al., 2012a).

6.2.5 Establishment

This phase describes the process of the pest’s growth and reproductive activities in 
a newly colonised location. An invading organism requires certain resources and 
conditions to establish a persistent population in this new environment; most obvi-
ously, the likelihood of survival depends on the presence of appropriate hosts and 
suitable ranges of a number of constraining environmental factors. Several studies 
have demonstrated the effect of host resource distribution on species’ spread rates 
(Durrett & Levin, 1994; Shigesada & Kawasaki, 1997; Weinberger, 2002), popula-
tion growth (Jules et al., 2002) and severity of impact of new invaders (Condeso & 
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Meentemeyer, 2007). For invaders of forested ecosystems, any major tree species 
that can serve as hosts are typically of primary interest. National forest inventor-
ies (e.g. Gillis, 2001; Woudenberg et al., 2010) usually represent the most reliable 
source of tree species geographical distribution data. When detailed inventory data 
are unavailable, various interpolation techniques that link species information from 
field observations with satellite imagery (Lowe et al., 2005; McRoberts et al., 2005; 
Yemshanov et al., 2009a) can be used.

At broad geographical scales, the potential distributions of invasive organisms 
are often limited by climatic conditions that fundamentally affect fecundity, mor-
tality, development time and other aspects of population ecology (Magarey et al., 
2007). Typically, modelling of a non- indigenous organism’s bioclimatic range, or 
environmental niche, within an area of interest requires information on the his-
torical or present distributions of the pest in other regions with known climatic 
profiles. The reference climatic data used in these analyses are widely available at 
global (Hijmans et al., 2005) and continental scales (Hamlet & Lettenmaier, 2005; 
Magarey et al., 2007; McKenney et al., 2007).

Maps of the potential climatic distribution ranges of invasive alien species have 
become commonplace in pest risk assessments (Elith & Leathwick, 2009; Venette 
et al., 2010), and various statistical prediction methods have been introduced, espe-
cially in recent decades (Elith et al., 2006; Worner & Gevrey, 2006; see Chapter 5). 
Final predictions of climatic ranges are often affected by the choice of analytical 
techniques, number of known species observations, and the way information about 
the presence and absence of a species is translated in the model (Phillips & Elith, 
2010). As a result, assumptions about the pest’s underlying distribution records and 
the choice of the climatic variables can lead to a delineation of different distribu-
tion ranges (Elith & Graham, 2009) and overestimation (or underestimation) of the 
potential establishment range of a species of interest.

6.2.6 Integrated Modelling Approach as a Risk Modelling Tool

Integrating the invasion model in a geographical setting facilitates incorporation 
of the spatial variation of known biophysical and economic drivers in the final 
invasion risk map. For example, entry and spread are spatial processes per se and 
fit naturally into a geographical framework. Host data provide spatially heteroge-
neous input, affecting establishment and survival of an invasive pest that can serve 
as a probabilistic constraint. Integrated models also better estimate the cumulative 
impacts of invasion that may occur at different locations over time. This becomes 
especially valuable for assessing complex situations, including the combination of 
existing infestations scattered across large and diverse regions with anticipated new 
introductions of a pest (Pitt et al., 2009; Rafoss, 2003; Yemshanov et al., 2009b). 
These models may also be used to reveal the importance of key aspects of invasion 
(e.g. entry potential, population growth or presence of host) via sensitivity ana-
lyses of their relative influence on invasion outcomes (Koch et al., 2009; Neubert & 
Caswell, 2000; Watkinson et al., 2000).
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6.3 Case Study Application: Sirex Wood Wasp

A simulation- based approach to estimate risk of ecological invasions can be illus-
trated with the following example of a risk model for Sirex noctilio Fabricius, an 
invasive wood wasp that was first detected in North America in 2005 (Yemshanov 
et al., 2009a). S. noctilio is considered a threat to pine (Pinus spp.) forests through-
out the eastern United States and Canada (Borchert et al., 2007; Corley et al., 2007; 
Haugen et al., 2006).

The invasion model provides a generalised depiction of S. noctilio spread and 
impact on pine host resources across eastern North America over a 30- year period. 
The simulations started from a map of known S. noctilio infestations (De Groot 
et al., 2006), followed by anticipated additional introductions of the pest in sub-
sequent years at eastern North American marine ports (Yemshanov et al., 2009b). 
The pest’s potential for future entry was modelled as a function of the value of 
imported commodities (Costello & McAusland, 2003; Levine & D’Antonio, 2003) 
and incorporated the impact of new international phytosanitary standards for all 
wood packaging and raw wood materials (FAO- IPPC, 2006), which were imple-
mented by the United States and Canada in 2006. For each port, a local probability 
of entry was estimated from the volumes of received shipments of commodities 
capable of harbouring S.  noctilio (FHTET, 2007a); for known infestations, the 
probability of S. noctilio introduction was set to 1 (Figure 6.2).

The successful entries and already established infestations were then used to 
simulate spread of  the pest through North America using a coalescing colony 
model (Sharov & Liebhold, 1998; Yemshanov et  al., 2009a, 2009b). The choice 
of  a relatively simple model was dictated by limited knowledge about the pest’s 
behaviour in North America, because the bulk of  information about its ecology is 
based on studies in pine plantation forests in the Southern Hemisphere (Carnegie 
et  al., 2006; Haugen 2006; Haugen & Hoebeke, 2005; Hurley et al., 2007). The 
model estimated population spread as dependent on the probability of  colonisa-
tion in the nearest adjacent map location as well as the distance from the near-
est known infested location, constrained by the maximum distance at which new 
locations may be successfully invaded by biological means. In successfully invaded 
locations, the maximum annual S.  noctilio population size  –  and thus the total 
damage to the host resource –  was constrained by a population carrying capacity 
(Yemshanov et al., 2009a).

The establishment of S. noctilio populations depended on the availability and 
susceptibility of hosts (i.e. various pine species). The susceptibility value sets the 
establishment probability for new colonies, and was modelled in this case as a 
species- specific function of pine stand age; higher susceptibility values generally 
translate to a higher chance of pest survival and more severe host damage. The 
model also required tracking the geographical distribution of pine forests and 
their growth over time. Maps of pine composition and age were derived from the 
National Forest Inventory for Canada (Gillis, 2001) and the USDA Forest Service 
Forest Inventory and Analysis database (Reams et  al., 2005; USDA FS, 2007). 
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The growth of the pine resource and the amount of host surviving after S. noctilio 
infestation were modelled using tree species growth rate curves, defined separately 
for the United States (Dixon, 2002) and Canada (Yemshanov et al., 2009a).

In summary, three linked simulation events occurred at each time step: (1) gen-
eration of S.  noctilio introduction events at the ports of entry, performed sto-
chastically based on the local entry probability values; (2) stochastic spread from 
locations where the pest was already established or had been introduced recently; 
and (3) establishment of the pest at new locales with abundant susceptible hosts. 
This model structure is common in geographically explicit modelling of ecological 
invasions (see Pitt et al., 2009 for an example of a spread model for the Argentine 
ant, Linepithema humile Mayr). We assumed annual time steps, in keeping with 
the estimated S. noctilio development cycle in North America (see Borchert et al., 
2007; Haugen & Hoebeke, 2005). The results depict a progressive expansion of the 
pest’s invaded range over time. The final output is a single realisation of anticipated 
establishments of S. noctilio populations over a specified forecast period. In this 
modelling framework, multiple model realisations can be used to generate distribu-
tions of the plausible outcomes of an invasion that, in turn, can be used to calcu-
late a probabilistic estimate of risk. For S. noctilio, the invasion risk was calculated 
for each geographical location (map cell) in the study region as the probability of 
the pest establishing a viable population at that location within the 30- year time 
horizon:
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(6.1)

where τj,d is the presence– absence of an infestation at location j at the end of the 
forecast horizon for a single model realisation d, and Dreps is the total number of 
randomised model replications. Notably, this stochastic implementation also 
offers the opportunity to calculate basic measures of the uncertainty associated 
with the model; for example the standard deviation of the probabilistic risk esti-
mate calculated in Eq. 6.1 (Koch et al., 2009; Yemshanov et al., 2009b; Figure 6.4). 
Furthermore, the discrete nature of the stochastic realisations also provides a set-
ting for various model manipulation scenarios (e.g. systematic increases in the vari-
ability of key parameter values; see Koch et  al., 2009) through which it may be 
possible to discriminate sources of uncertainty in the risk estimates, such as natural 
variability or data input errors (Elith et al., 2002; Regan et al., 2002).

6.3.1 Incorporating Uncertainties in Risk Mapping

Given the extensive use of risk maps in managing biological invasions, it is surpris-
ing that very few studies have attempted to address some of the uncertainties in the 
risk mapping process and thus improve map utility for decision makers and other 
stakeholders. While widely acknowledged as a problem, quantifying uncertainties 
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of risk estimates for geographically and temporally specific analyses is challenging. 
As a result, uncertainties are often omitted from risk modelling outputs, and in 
turn, the output risk predictions are presented as effectively certain to end users 
(FHTET, 2007b; Meentemeyer et al., 2004; Woodbury, 2003). In truth, proper con-
sideration of the uncertainties associated with a set of risk estimates is likely to 
change the meaning and implications of those estimates for decision makers (e.g. 
see recent climate change forecasts in Morgan & Dowlatabadi, 1996 and Reichert & 
Borsuk, 2005; see Chapter 12). Thus, incorporation of uncertainties in a risk map 
would greatly enhance its value as a decision support product.

As a starting point, a simple combination of broad risk and uncertainty categor-
ies in a single map can serve as a practical guide for decision makers (Figure 6.4). 
However, this can be used only for relatively simple scenarios with few ordinal 

Pinvasion

Uncertainty
of Pinvasion

Risk (R) – Uncertainty (U)
classes

0
0–0.05
0.05–0.1
0.1–0.15
0.15–0.2
0.2–0.25
0.25–0.3
0.3–0.35
0.35–0.4
0.4–0.5
0.5–0.6
0.6–0.7
0.7–0.8
0.8–1

0–0.17
0.17–0.34
0.34–0.51
0.51–0.61
0.62–0.7
0.7–0.77
0.77–0.83
0.83–0.87
0.87–0.91
0.91–0.95
0.95–0.97
0.97–1

Low R – Low U
High R – Low U
Low R – Med. U
High R – Med. U
Low R – High U
Med.R – High U
High R – High U

Figure 6.4. Combining maps of invasion risk and uncertainty in a single data product (a Sirex noctilio 
example).
[Reproduced with permission from Yemshanov, D., Koch, F. H., McKenney, D. W., 
Downing, M. C. and Sapio, F. (2009). Mapping invasive species risks with stochastic 
models: A cross- border United States– Canada application for Sirex noctilio Fabricius. Risk 
Analysis, 29(6), 868– 884. See source for further details.]
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combinations of risk- uncertainty classes (such as high– low classes; see Yemshanov 
et al., 2009b). For more complex scenarios, simple classifications may overlook sub-
tle variations and potential trade- offs between these two important outputs and 
make the results difficult to interpret overall.

Other techniques that have been proposed to characterise or quantify uncer-
tainties include sensitivity analysis (Henderson- Sellers & Henderson- Sellers, 1996; 
Morgan & Henrion, 1990; Swartzman & Kaluzny, 1987; Walley, 1991), ensemble 
prediction systems (Demerit et al., 2007; Worner & Gevrey, 2006) and multi- criteria 
valuation techniques (Keeney & Raiffa, 1976; Stewart, 1992; von Winterfeldt & 
Edwards, 1986). More advanced approaches for incorporating uncertainties in risk 
assessments take into account decision makers’ preferences about risk and use tech-
niques that were originally developed for asset valuation under uncertainty in cor-
porate finance (Arrow, 1971; Levy & Markowitz, 1979; Markowitz, 1952; Sharpe, 
1964). These techniques help delineate particular types of uncertainties in a risk 
model, such as parametric uncertainty, model structure uncertainty or model out-
put uncertainty (Refsgaard et al., 2007; Regan et al., 2002; Walker et al., 2003). 
These techniques also provide a more concise depiction of the impact of uncertainty 
on decision making (i.e. to what degree it distorts the risk value; Götze et al., 2008).

To illustrate this concept in more detail, one possible approach is based on the 
well- known mean- variance rule that suggests if  two choices have the same risk 
values but the second has a higher variance in its risk value (i.e. greater uncer-
tainty), then the first choice should be preferred (Markowitz, 1952). In the pest risk 
mapping context, the basic idea is to rank map locations by their expected mean 
risk values, Ē, and the variance of those risk estimates, σ2, which represents a simple 
measure of uncertainty. Gerber and Pafumi (1998) proposed a certainty equivalent 
that adds the risk premium caused by uncertainties to the mean impact estimate. 
The certainty equivalent is calculated using

 CE = –  Ē –  0.5ασ2, (6.2)

where Ē is the expected impact of an action or event (e.g. invasion of a location 
by a pest; the minus sign assumes that the impact is negative), α is the degree of a 
decision maker’s risk aversion and σ2 is the variance of the impact values. Thus, all 
elements of a risk map can be ranked in terms of the certainty equivalent.

A more advanced approach for combining risk and uncertainty is to depict all 
potential map locations in dimensions of expected invasion risk and its variance 
(or another uncertainty measure). Essentially, this portrays all map locations as a 
point cloud in dimensions of Ē and σ2 (Figure 6.5). The points in the outermost 
boundary of the cloud depict the worst combinations of risk and uncertainty, i.e. 
a mean– variance two- attribute frontier, and are ranked as the locations of high-
est concern (Yemshanov et al., 2013). These points are temporarily removed from 
the analysis and a second frontier is determined from the rest of the cloud; this 
is assigned the next highest rank and then temporarily removed. The process is 
repeated until every point in the cloud has been assigned an integrated risk rank. 
The ranked points are then referenced back to the original geographical locations 
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and plotted as a single risk map, which shows the locations’ ordinal risk rankings, 
each representing a subsequent mean– variance frontier (Figure 6.5).

Another promising approach for incorporating uncertainties in risk modelling 
and mapping employs the stochastic dominance concept (Levy, 1992, 1998). As 
mentioned in Section 6.1, simulation- based risk models can generate a distribution 
of potential outcomes of an invasion for any given location of interest. Compared 
with a mean- variance approach, stochastic dominance considers the entire prob-
ability distribution of the potential outcomes when comparing risk between one 
location and another. The stochastic dominance concept has been widely used in 
portfolio valuation and asset pricing to differentiate efficient and inefficient sets of 
financial investments (Hadar & Russell, 1969). Stochastic dominance can be evalu-
ated at different levels (Levy, 1998) that are largely related to the anticipated risk 
preferences of the decision makers who will be using the risk model output. First- 
degree stochastic dominance simply supposes that a decision maker prefers more 
benefit rather than less benefit. Thus, when comparing the cumulative distributions 
of invasion outcomes x at two different risk map locations, f and g, represented by 

Figure 6.5. Estimating risk as a mean– variance frontier.
[Reproduced with permission from Yemshanov, D., Koch, F.H., Ben- Haim, Y. et al. (2013). 
A new multicriteria risk mapping approach based on a multiattribute frontier concept. Risk 
Analysis, 33(9), 1694– 1709.]
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their cumulative distributions F and G, respectively, location f dominates alterna-
tive location g by first- degree stochastic dominance if

 G(x) –  F(x) ≥ 0 for all realisations of x 

 and (6.3)

 G(x) –  F(x) > 0 for at least one x. 

Second- degree stochastic dominance adds the assumption that the decision maker 
is risk averse. Higher- order stochastic dominance criteria have also been developed 
(e.g. third- degree stochastic dominance; Whitmore, 1970). For example, third- degree 
stochastic dominance adds the assumption of a preference for positive skewness of 
the probability distributions of the risk estimates, therefore supposing that a decision 
maker is decreasingly risk averse (in absolute terms) as the value- at- risk increases.

Notably, the stochastic dominance approach is not restricted to any particular dis-
tribution type and can be applied to rank all map locations through pairwise com-
parisons in terms of their integrated risk. Caulfield (1988) compared the stochastic 
dominance and mean- variance approaches for forestry applications and concluded 
that the stochastic dominance concept is more useful as a screening technique for 
making decisions under risk. However, Hildebrandt and Knoke (2011) concluded 
that second- degree stochastic dominance should be seen only as a method to separ-
ate high- risk alternatives, while a precise ranking among these alternatives should 
be carried out with other approaches. Overall, the stochastic dominance concept 
offers a reliable way to incorporate the uncertainty in a model- based assessment 
into the final risk values, and can be adapted for a partial delineation of high- risk 
and low- risk areas (Yemshanov et al., 2012b).

6.3.2 Technical Aspects

Although there are many advantages to the model- based risk mapping approach, 
there are of course potential drawbacks. Gathering the volume of information 
needed to model the entire invasion process can be demanding, and may be beyond 
the capacity and time constraints of many pest surveillance and research programs. 
Validation and calibration of integrated models also represents a special chal-
lenge; finding independent validation data for newly detected invaders is extremely 
difficult because the invasion process is often in a relatively early stage of expan-
sion. Furthermore, these models are often focused on assessing the potential long- 
term outcomes as opposed to time- step- specific risks. Nevertheless, one possible 
approach is to model the potential spread of a long- established invasive species 
and then test model predictions against actual spread data obtained from historical 
occurrence records for that species (see Higgins et al., 2001). This method can be 
used only for species with a detailed observation record in the region of interest and 
has limited application for recently detected invasions.

Computing time represents another notable technical hurdle for wide imple-
mentation of simulation- based risk assessments. Stochastic implementation of a 
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geographically explicit model generally means that risk and impact values have to 
be estimated for a large number of map units (cells or polygons) over multiple ran-
domised realisations. The spatial extent of a risk map could exceed 10 to 20 million 
map units for continent- wide assessments, and 103 to 105 independent stochastic 
model replications are often required to get a representative distribution of inva-
sion outcomes. This places high demand on available computing capacity, and for 
the sake of practicality, may limit the geographical extent (or spatial resolution) 
of the final risk maps. Recent advances in parallel computing will certainly help 
resolve this issue, and hopefully will encourage the use of dynamic simulation mod-
els to analyse risk and subsequently inform the development of pest management 
and regulatory policies.
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7 Models for Understanding  
Disease Dynamics
Michael P. Ward, M. Graeme Garner, Joanne M. Potts and Brendan D. Cowled

7.1 Introduction

Disease systems consist of interactions between pathogens or pests (for simplicity, 
referred to here as diseases), their hosts and the environment. Disease systems are 
also influenced by, and have an influence on, other biotic and abiotic elements such 
as human behaviour and commercial considerations. As a simplified representation 
of a complex system, a model can increase appreciation and understanding of that 
system (Thrusfield, 2007). Models enable us to understand the effect of external 
influences on outputs, such as the consequences of management actions on disease 
dispersal in a landscape, and to communicate ideas about the behaviour of the sys-
tem (Keeling, 2005; Taylor, 2003).

Models have a long history of use in human and animal health. For example, 
Ross developed a mathematical model of malaria transmission that was published 
in 1908 and later refined by MacDonald and colleagues in the 1950s (Smith et al., 
2012). Models have been used to understand the disease dynamics and manage-
ment of endemic diseases and to assess the impact and control options for emer-
gency and transboundary diseases. In the past two decades, the latter application 
has become increasingly important as government agencies invest in preparedness 
and planning.

Recently, simulation models have been applied within a decision- support frame-
work (Chadès et al., 2011) because this approach allows disease to be considered 
in a broader context of physical, economic, technological, management and polit-
ical constraints. Some recent examples of simulation models to investigate emer-
gency and transboundary disease spread within the animal health sector include 
AusSpread for foot- and- mouth disease (FMD) (Garner & Beckett, 2005; Ward 
et al., 2009), equine influenza (Garner et al., 2011) and classical swine fever (CSF) 
(Cowled et  al., 2012a); the North American Animal Disease Spread Model for 
FMD, Aujezsky’s disease and avian influenza (Reeves et  al., 2011); InterSpread 
and InterSpread Plus for FMD (Morris et al., 2001; Owen et al., 2011) and CSF 
(Boklund et al., 2009; Jalvingh et al., 1999); and the Davis Animal Disease Spread 
Model for FMD (Bates et al., 2003; Carpenter et al., 2011) and CSF (Durr et al., 
2013; Pineda- Krch et al., 2010).

Although there are many examples of the use of disease models in human health 
and in animal health, there are few examples of the application of disease models 
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in plant health (Jeger et al., 2007). The use of modelling for plant health has been 
slower than for animal health, perhaps because of the slower progression of many 
plant diseases, the generally longer delays between disease incursions and detection, 
the greater variety of plant hosts and their diseases, and the lack of animal welfare 
concerns that can drive development of appropriate disease response strategies in 
animal health (e.g. the negative public response to large- scale culling of animals 
during the FMD outbreak in Britain in 2001).

The animal health sector benefits from sometimes having extensive data from 
censuses and systems for tracking livestock movements (Garner & Beckett, 2005). 
Plant disease incursions might be considered more challenging because there can 
be a long lag between incursion and detection (in some cases years, meaning that 
the estimation of when the incursion first occurred is highly uncertain); there is a 
greater variety of plant hosts and their diseases; and the distributions and habitats 
of many plant hosts and their diseases are highly uncertain.

Fox et  al. (2009) investigated surveillance protocols for Chilean needle grass 
(Nassella neesiana) by integrating a spatially explicit simulation model (including 
plant demography and dispersal vectors) within a geographical information system. 
Plant weed invasion is conceptually similar to an incursion of an animal disease, 
and analytical and individual- based models may be useful for guiding actions for 
weed management and eradication (e.g. Travis et al., 2011). These types of plant 
disease (including weed) spread models typically generate complex unique solu-
tions rather than general frameworks or rules for managing a range of plant dis-
eases in different environments. Potts et  al. (2013) developed a spatially explicit 
stochastic state- transition model of citrus canker (Xanthomonas citri) and tested 
the adequacy of various searching strategies for detecting infected host popula-
tions. Their citrus canker model includes disease spread between susceptible popu-
lations through different mechanisms such as wind dispersal and the movement of 
diseased plant material. The model also includes uncertainty in host species distri-
bution and detectability of diseased hosts.

Dispersal of animal and plant diseases is a complex process in which susceptible 
populations may be exposed to a pathogen via numerous pathways. Models should 
accommodate the frequency of dispersal between an infected and non- infected 
population (Gertzen et al., 2011) and the cumulative effect of multiple dispersals. 
Importantly, infection is a chance process affected by many factors such as environ-
mental conditions and the presence and susceptibility of the host species.

To model both plant and animal diseases successfully, the model structure should 
be realistic and have appropriate parameters. Here, we define success as the devel-
opment of a robust and reliable tool that is considered fit for purpose (Garner & 
Hamilton, 2011) and is appropriate to assist with disease management or policy 
formulation. The usefulness of models for disease management and policy for-
mulation declines with increasing uncertainty about the underlying structure of 
the model and its parameters. Model formulation requires data collection, but this 
is usually hampered by cost and time restrictions (because managers often need 
model outputs to inform their decision- making quickly).
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In this chapter, we describe the principles, approaches and applications of disease 
spread models. We briefly discuss different modelling approaches, outline stages in 
model development, describe some important considerations in designing a model 
and provide guidelines for the critical evaluation of models. We demonstrate the 
application of disease spread models by presenting three case studies –  examples of 
livestock, wildlife and plant disease spread models.

7.1.1 Principles of Building Disease Spread Models

Generic steps in model building are to determine the system and objectives of the 
modelling study; collect information and data on the study population and the dis-
ease; develop and validate a conceptual model; formulate, verify and validate the 
model; conduct sensitivity analysis; and interpret outputs and communicate results 
(Garner & Hamilton, 2011).

7.1.2 Approaches to Modelling Disease Spread

Disease spread models can vary from simple deterministic mathematical models 
through to complex spatially explicit stochastic simulations and decision support sys-
tems. The approach used should depend on the purpose of the study, how well trans-
mission and spread of the disease are understood, the amount and quality of data 
available and the experience of the modelling team. Disease spread models can be 
categorised depending on their treatment of variability, chance and uncertainty (deter-
ministic or stochastic), time (continuous or discrete intervals), space (non- spatial or 
spatial) and the structure of the population (homogeneous or heterogeneous mixing).

How disease transmission is represented is central to disease spread models. Disease 
transmission could be represented by a simple spread rate parameter that allows the 
outbreak to grow. This can be readily estimated from field data, but does not attempt to 
explain how new infections occur and limits opportunities to investigate control strat-
egies. At the other end of the spectrum, a model may explicitly represent discrete trans-
mission pathways. Although realistic values for the parameters included in these models 
can be difficult to obtain, these models offer greater opportunities to understand disease 
spread and evaluate mitigations. How the population at risk is represented is the second 
central characteristic of disease spread models. These two themes –  disease transmis-
sion and population –  are key elements in all disease spread models.

The most appropriate type of model to use will depend on the issues being stud-
ied and the objectives of the study. For example, simple deterministic models can be 
useful for understanding basic transmission dynamics, but they are of limited use as 
a predictive tool because every epidemic is unique and unlikely to follow an average 
pattern (Green & Medley, 2002). Stochastic models are more complicated to con-
struct, but are particularly useful for assessing risks and can be used to investigate 
the likelihood of different outcomes (Taylor, 2003). Spatial models can be used to 
study the importance of geographical factors in the spread of disease and test spa-
tially targeted control strategies.
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Disease models in animal health have had a strong mathematical foundation 
(Hurd & Kaneene, 1993), relying on mass- action or chain- binomial approaches 
to represent movements of individuals between different disease states. These 
approaches generally involve simple population structures with homogeneous 
mixing of the population and simplified transmission parameters to represent the 
spread of disease. New approaches include detailed spatial simulation models that 
consider location, geographical and population heterogeneity (Dubé et al., 2007a; 
Garner & Beckett, 2005; Harvey et al., 2007), network modelling using contact net-
work structures to explicitly capture complex patterns of interaction that underlie 
disease transmission (Bansal et al., 2007; Dubé et al., 2009; Hamede et al., 2012) 
and large agent- based models in which a system is modelled as a collection of 
autonomous entities that individually make decisions according to a set of rules 
and allow for the behaviour of entities to evolve over time (Macal & North, 2007; 
Perez & Dragicevic, 2009).

7.1.3 Application and Use of Models

Models can be used to study disease processes (Perez et al., 2002; Smith & Grenfell, 
1990), generate hypotheses about factors involved in the persistence of endemic 
diseases in populations to direct further studies (Chapagain et al., 2008), provide 
advice on risks associated with exotic diseases and emerging disease threats (Baylis 
et al., 2001; Le Menach et al., 2005), assess the economic impact of diseases and 
evaluate control strategies at various scales (Bates et al., 2003; Cacho et al., 2006, 
2010, 2011; Garner & Lack, 1995; Groenendaal et al., 2003; Hagerman et al., 2012; 
Pasman et al., 1994; Schoenbaum & Disney, 2003; Yoon et al., 2006), assess the 
effectiveness of surveillance and control programmes (Hopp et  al., 2003; Leslie 
et al., 2012; Parnell et al., 2010; Potts et al., 2012; Rovira et al., 2007; van Asseldonk 
et al., 2005) and provide inputs and scenarios for training activities (Harvey et al., 
2007; Jeger et al., 2007; Mangano et al., 2011). Modelling can be particularly useful 
in situations in which it is impractical, unethical or impossible to conduct experi-
mental or field studies (Garner & Beckett, 2005) and to conduct retrospective ana-
lysis of epidemics to investigate different control strategies (Mangen et al., 2001).

To be useful in policy development, models should be fit for purpose and appro-
priately verified and validated (Garner & Hamilton, 2011). This involves ensuring 
that the model is an adequate representation of the system under study and that its 
outputs are sufficiently accurate and precise for the intended purpose. Sections 7.2 
to 7.4 present examples of how disease models are being used to support planning 
and management of livestock, wildlife and plant disease threats.

7.2 FMD Preparedness in Livestock Systems

Introduced animal diseases have the potential to cause significant impacts on ani-
mal health, public health, the economy and the environment. The greatest economic 
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threat to Australia by an animal disease is FMD. A  recent study estimated the 
present value of total direct economic losses over 10 years for a large multistate 
outbreak at $A52 billion (Buetre et al., 2013). In response to the threat, Australia 
invests considerable resources in FMD prevention and planning, including surveil-
lance, early warning systems, comprehensive emergency plans (AUSVETPLAN; 
available from www.animalhealthaustralia.com.au/ our- publications/ ausvetplan- 
manuals- and- documents/ ) and training and awareness programmes. A  thorough 
understanding of the likely behaviour of FMD under Australian conditions is a 
necessary component of effective preparation and response planning. Australia 
has not had an outbreak of FMD since the late nineteenth century. Thus, disease 
spread modelling is an important tool to investigate the potential spread of disease 
and the effectiveness of eradication strategies under different outbreak scenarios.

To support FMD preparedness, the Australian Government Department of 
Agriculture has developed a disease simulation model called AusSpread (Beckett &  
Garner, 2007; Garner & Beckett, 2005; Roche et al., 2014b). AusSpread is a sto-
chastic spatial simulation model of the spread and control of FMD in livestock 
populations. The model uses the farm as the unit of interest and simulates disease 
spread in daily steps while allowing for interactions between farms with different 
animal species and different production types, and incorporating the role that these 
interactions might play in the epidemiology of an outbreak of FMD.

7.2.1 Description

Unlike many other spatial simulation models, AusSpread operates within a geo-
graphical information system environment (MapBasic/ MapInfo®). This offers sig-
nificant advantages to the user, including ready access to specialised geographical 
information system functions and statements, the ability to incorporate additional 
spatial datasets that may be important in spread and control of disease and high- 
quality visual outputs (see Figure 7.1). It incorporates the attributes and spatial 
locations of individual farms, sale yards, weather stations, local government areas 
and other features of the regional environment. The user can define a custom farm 
type or choose from seven default farm types:  specialist beef, dairy, sheep, pig, 
mixed beef– sheep, smallholders and feedlots. The model allows for the spread of 
disease through the following five pathways:

1. Direct farm- to- farm contact spread through movements of animals
2. Local spread of FMD to farms close (<3 km) to an infected farm where the 

actual source of the infection is not known and more than one possible conveyor 
can be identified (Gibbens et al., 2001)

3. Indirect farm- to- farm contact spread through movements of contaminated 
products, equipment and other fomites, including people and vehicles that could 
carry FMD from one farm to another

4. Wind- borne longer distance aerosol spread
5. Spread through sale yards and markets
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Figure 7.1. Example of a simulated FMD outbreak with control programme from the AusSpread model. Grey dots represent farms, smaller 
polygon boundaries the Local Government Areas, small lighter shaded areas the Restricted Area and larger shaded area the 
Control Area.
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Control Measures
AusSpread is configured to support the range of mitigations described in Australia’s 
AUSVETPLAN manual for FMD (Animal Health Australia, 2014). Users can 
select mitigations including quarantine and movement restrictions; stamping out 
(destruction of infected and suspected infected animals); surveillance; and tracing, 
culling and vaccination. The efficacy, efficiency and eventual success of a control 
operation will depend on the availability of resources. In AusSpread, the user can 
specify the availability of teams to undertake surveillance, culling and vaccination, 
and the effectiveness of activities such as surveillance and vaccination. If  available 
resources are insufficient to accommodate all of the operational activities sched-
uled for a given day, a backlog accumulates.

Livestock Information and Model Parameters
AusSpread has been designed to operate at a regional scale, where a region is part 
of Australia delimited by natural or geopolitical boundaries and characterised by 
reasonably homogeneous animal production industries and systems. Using the 
beef cattle industry, Australia has been divided Australia into 12 livestock produc-
tion regions taking into account environmental, production and marketing factors 
(Roche et al., 2014b) (Figure 7.2). To simulate a large multifocal outbreak involving 

Figure 7.2. Australian livestock production regions.
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several regions, separate versions of the model can be set up and movements from 
one region to another can be used to initiate new foci of disease.

AusSpread is built around a dataset that contains information about each farm 
in the study population. This includes the number and type of each animal spe-
cies present, the production type or types, as well as information about the farm’s 
spatial location. Values for disease parameters in the model are based on the pub-
lished literature, analyses of livestock industry information, databases (including 
the National Livestock Identification System; see www.animalhealthaustralia.com 
.au/ programs/ biosecurity/ national- livestock- identification- system/ ) and expert 
opinion.

Verification and Validation
Verification is the process that ensures that the logic, formulae and computer code 
of the model correctly reproduce the logical framework conceived by the model’s 
designer (Taylor, 2003). Validation ensures that the assumptions underlying the 
model are correct and that the model’s representation of the study system is reason-
able for the intended purpose. Verification, validation and sensitivity analysis of the 
AusSpread model is discussed in Garner and Beckett (2005). AusSpread has also 
been part of comparative studies, in which models from Australia, the Netherlands, 
New Zealand, North America and the United Kingdom have been compared in 
a series of scenarios of increasing complexity (Dubé et  al., 2007b; Roche et  al., 
2014a; Sanson et al., 2011).

7.2.2 Applications

Vaccination in an FMD Response
Vaccination to control an outbreak of  FMD in a previously FMD- free coun-
try is increasingly being recognised as a potentially important component of  the 
response. For major livestock exporting countries such as Australia, the impli-
cations of  vaccination, particularly the management of  vaccinated animals, 
requires careful consideration because of  current international guidelines on 
regaining FMD- free status after an outbreak (OIE, 2012). AusSpread has been 
used to explore the cost- effectiveness of  vaccination (Abdalla et al., 2005). Three 
control strategies involving stamping out with or without emergency vaccination 
were compared in an intensive livestock- producing region of  Australia. The study 
found that vaccination may be a cost- effective option when disease spreads rapidly 
and if  available resources are insufficient to maintain effective stamping out. The 
study also reinforced the importance of  early detection as a key factor influencing 
the probability of  containment.

The AusSpread model has also been used to study FMD control in an integrated 
livestock production system in Texas (Ward et  al., 2009). This study found that 
vaccination did not offer significant advantages over culling strategies under the 
assumptions of the study, either because it increased the time to eradicate the dis-
ease or because it increased the average number of herds depopulated.

008
19:13:04, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


Models for Understanding Disease Dynamics160

160

Several countries including Australia, New Zealand, Canada, the United States, 
the United Kingdom and the Netherlands are undertaking a comprehensive col-
laborative modelling study aimed at addressing operational issues related to the use 
of vaccination for FMD (Roche et al., 2014a). Under the Great Britain outbreak 
scenario studied, all models demonstrated reduction in predicted epidemic size and 
duration with vaccination compared to non- vaccination baseline control strategy. 
For all models there were advantages in vaccinating cattle- only rather than all spe-
cies, using 3- km vaccination rings immediately around infected premises and start-
ing vaccination earlier in the control programme. This study showed that certain 
vaccination strategies are robust even to substantial differences in model configu-
rations. AusSpread has also been used in Australia to model FMD outbreak sce-
narios to examine control options and resource implications of managing a large 
FMD outbreak and to conduct socioeconomic impact studies (Buetre et al., 2013; 
Garner et al., 2014; Roche et al. 2014b).

Welfare
Interest in animal welfare is growing among stakeholders, including governments, 
veterinarians, livestock industries and the broader community. A study was designed 
to investigate the possible extent of animal welfare problems arising from moderate 
and severe outbreaks of FMD in pig farms in two intensive livestock production 
regions (East et al., 2014). Three welfare management strategies were evaluated: the 
full culling of all grower and finisher pigs on farms with welfare problems, partial 
culling of finisher pigs only and permits for controlled movement of finisher pigs 
to slaughter.

Results suggested that in moderate outbreaks, resources were adequate to main-
tain an effective stamping- out strategy. Welfare management strategies did not sig-
nificantly increase the duration or extent of these outbreaks, and welfare problems 
were adequately addressed under all three welfare management strategies. The 
partial culling strategies were more effective than the full culling strategy because 
fewer animals needed to be removed. In the more severe outbreaks, resources were 
insufficient to control disease under a stamping- out policy. In these situations, the 
duration and extent of the outbreaks quickly built up. Welfare problems could not 
be addressed with full or partial culling because of lack of resources. Welfare is par-
ticularly important in the pig industry, where the numbers of pigs on infected prem-
ises quickly increase as pregnant sows continue to farrow, quickly leading to issues 
of overcrowding. Maintaining adequate feed supplies is another problem. In the 
face of resource constraints, sending pigs direct to slaughter proved to be the most 
effective option for managing welfare issues. These results, which would be inaccess-
ible by any other means, illustrate the kinds of questions that can be explored by 
complex models for which data and understanding are relatively complete.

Surveillance and Early Detection
The importance of early detection in the subsequent size of an outbreak of an 
emergency animal disease (EAD) is well recognised (Abdalla et al., 2005; Carpenter 
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et  al., 2011; Ward et  al., 2009). Animal health authorities in Australia commis-
sioned a study to identify and describe the relative likelihood of the introduction, 
establishment and spread of significant diseases, including FMD, across Australia 
and to assess the consequences of delayed detection (Hester & Garner, 2012).

Disease modelling was used to evaluate the potential spread of FMD that could 
occur between introduction and time to detection in each of the 12 Australian live-
stock production regions. The study confirmed that there is considerable heterogen-
eity in the likely size of outbreaks between regions and highlighted the importance 
of taking regional and seasonal factors into account when assessing disease risks 
(East et al., 2016). Work has also been undertaken to assess the effectiveness of the 
general surveillance system for detecting an incursion of FMD (Martin et al., 2015) 
and to test different approaches to improving early detection (Garner et al., 2016).

The findings have provided valuable information to assist preparedness planning 
in terms of surveillance, management and the resource implications for responding 
to outbreaks of FMD in different parts of Australia.

7.3 Wildlife Disease: CSF and Feral Pigs

7.3.1 Background

Infectious disease in wildlife can have ecological, biodiversity and societal 
impacts (Jones et al., 2008; Li et al., 2005; McCallum et al., 2009; Normile, 2008). 
However, management responses required for mitigation are frequently limited by 
poor understanding of  disease epidemiology in wildlife (Cowled et  al., 2012b). 
Disease modelling is one approach for providing new insights into wildlife disease 
epidemiology.

Wild pigs (Sus scrofa) are of international significance because they are found on 
every continent except Antarctica (Oliver & Leus, 2008) and are variously considered 
a damaging invasive (feral pigs), a valued endemic (wild boar) or a highly sought 
after game species. In Australia, domestic pigs became feral following their intro-
duction at European settlement. They are now found across 38% of the continent 
(Choquenot et al., 1996) and have been estimated to number as many as 13.5 mil-
lion (Hone, 1990). The distribution of populations continues to expand through 
mechanisms such as illegal translocations by hunters (Spencer & Hampton, 2005).

Feral pigs have been infected by a range of important pathogens including CSF 
(Laddomada, 2000). CSF is an important trans boundary disease of both domes-
tic and feral pigs (OIE, 2011) and has caused outbreaks costing billions of dollars 
(Meuwissen et al., 1999). CSF has a wide geographical distribution and is found 
throughout much of the world (including South- East Asia) but not Australia 
(although it occurs close to Australia in Indonesia). This case study focuses on mod-
elling the epidemiology and control of highly virulent CSF in northern Australian 
feral pig populations that was initiated to enhance emergency disease preparedness 
(Cowled et al., 2012a).
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7.3.2 Modelling Approach

The approach was similar to that described in Section 7.2.The model was extensively 
respecified to account for the important unique features of feral pig ecology and 
epidemiology (Cowled & Garner, 2008). Two models were developed: a within- herd 
model and a between- herd model. The within- herd model simulated the spread of 
infection within herds and allowed estimation of important epidemiological prob-
ability distributions (e.g. infectious and immune periods). Outputs of the within-
herd model were then used as input parameters for the between-herd model.

The between- herd model simulated the spread of infection within a feral pig 
population in the Kimberley region of north- western Australia (see Figure 7.3). 
The Kimberley region is remote and sparsely settled; it has an extensive beef cattle 
pastoral industry and feral pigs are widely dispersed across the region. The between- 
herd model simulated pig herds across the landscape using published information 
on population densities, group sizes (e.g. Twigg et al., 2005) and known feral pig 
distributions (Cowled et al., 2009). The model captured much of the known ecol-
ogy and behaviour of feral pigs. For example, feral pigs were aggregated into herds 
and adult males were allowed to exist as lone individuals. Pigs were given a seasonal 
home range and the majority were assigned high fidelity to that home range (e.g. 
Caley, 1997). Most pigs moved within a small part of their seasonal home range 
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N

Figure 7.3. Feral pig distribution in the Kimberley region. The dots represent simulated pig herds 
within known feral pig distributions. The arrow indicates the introduction site for 
all simulations. The insert shows the location of  the Kimberley region in north- west 
Australia.
[Reprinted with permission from Cowled, B. D., Garner, M. G., Negus, K. & Ward, M. P. 
(2012). Controlling disease outbreaks in wildlife using limited culling: Modelling classical 
swine fever incursions in wild pigs in Australia. Veterinary Research, 43, 3.]
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each day, but some pigs were able to leave their home range and move to adjacent 
pig home ranges if  the distance was biologically plausible. Given the sociability of 
feral pigs, home ranges overlapped. Pig distributions were structured along large 
watercourses, reflecting the pigs’ requirements for riverine habitat for thermoregu-
lation and water (Choquenot & Ruscoe, 2003; Cowled et al., 2006).

The model used daily steps and was spatially explicit. Disease transmission was 
possible if  the daily home range of an infected pig herd (or individual) overlapped 
with an adjacent uninfected herd on a particular day (see Figure  7.4). If  daily 
home ranges overlapped, transmission was modelled by sampling an appropriate 
probability distribution. Following the introduction of an infection, the epidemic 
could progress as long as transmission between adjacent pig groups and individuals 

Herd introducing CSF to susceptible herd

Legend
Herd receiving CSF from infectious herd

Infectious herd

Infectious herd daily home range

Susceptible herd

Susceptible herd daily home range

Kilometres

N

0 0.5 1

Incubating herd 

Clinically affected herd

Extirpated herd

Daily movements of infected herd

Figure 7.4. Representation of a typical disease transmission event and subsequent daily movements of 
the newly infected herd in the process model (Cowled et al., 2012a). An infected herd (red 
square) and susceptible herd (blue circle) have overlapping daily home ranges (red and blue 
circles, respectively). CSF transmission may occur according to an arbitrary probability. 
Following infection, the incubating herd continues to move normally for several days 
(yellow dots) before becoming clinically affected (red dots) with shortened daily movements 
and eventually having all herd members killed (black cross). This infected herd does not 
contact another herd and CSF is not transmitted to another herd.
[Reprinted with permission from Cowled, B. D., Garner, M. G., Negus, K. & Ward, M. P. 
(2012). Controlling disease outbreaks in wildlife using limited culling: Modelling classical 
swine fever incursions in wild pigs in Australia. Veterinary Research, 43, 3.]
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occurred before a herd had either been extirpated by infection or recovered from 
such an infection.

Surveillance and control steps following detection of an outbreak were also 
implemented in the model by assuming that disease was detected six weeks after 
introduction and that surveillance occurred to delineate infection. Control using 
aerial culling or aerial vaccination was then modelled to reflect attempts to contain 
and eradicate the outbreak.

7.3.3 Major Findings

The model showed that epidemics could persist for many years in the Kimberley, 
and would generally progress in gradual epidemic waves along river systems where 
appropriate densities of feral pigs existed in a continuous population. Importantly, 
the modelling revealed that the epidemic would fade out when the epidemic wave 
reached an area of low or discontinuous feral pig density, although this would gen-
erally take several years.

The surveillance and control modules indicated that under the assumptions 
of realistic resources, detection at six weeks and no artificial movements of feral 
pigs, disease could be contained and eradicated within weeks. This occurred by 
first delineating an infected feral pig population and then by implementing control 
zones where a proportion of feral pigs was culled or vaccinated at the periphery 
of the outbreak. The outbreak could then fade out within a contained area as the 
number of susceptible herds declined over time. Several combinations of the width 
of the control zone and the proportion of pigs culled were successful at eradicating 
infection, but as a rule- of- thumb, if  60% to 80% of populations were culled within 
20 km to 30 km of an outbreak, containment and eradication were very likely to be 
achieved. Vaccination was also successful, but was less effective than aerial culling.

Sensitivity analysis was conducted to ascertain the relative importance of the 
different assumptions. The assumed density of feral pigs, the linear distance a herd 
can move in a day, the virulence of the strain of CSF, and the transmission prob-
ability between adjacent herds can all have a substantial influence on the model 
outputs. Density is especially important because following good rainfall, when feral 
pig populations are likely to be larger and denser, the likelihood that CSF could 
establish is higher. Conversely, in dry years or if  the estimate of feral pig density 
was too high, infection may not establish. The influence of transmission probabil-
ities suggests that further information is required to enhance modelling outcomes.

7.4 Plant Disease: Citrus Canker as an Example

Citrus canker (Xanthomonas citri (Hasse) Vauterin) is a plant- pathogenic bacter-
ium that causes lesions on leaves, shoots, branches and fruit of several suscep-
tible species within the Rutaceae family (Goto, 1992; Gottwald et  al., 2002). In 
Australia, the detection of citrus canker triggers immediate quarantine restrictions 
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and disrupts the movement of fresh fruit (Dempsey et al., 2002). The last outbreak 
of citrus canker in Australia was in Emerald, Queensland, in July 2004 (Gambley 
et al., 2009). During the four and a half  years it took to eradicate the citrus canker 
outbreak, approximately 495,000 commercially grown citrus trees planted on 1,100 
hectares, 4,235 citrus trees planted on 1,238 residential properties, and 175,000 
native Citrus glauca trees in bushland were destroyed in the 3,150- km2 pest quar-
antine region around Emerald (Senate Rural and Regional Affairs and Transport 
Legislation Committee, 2006). The eradication campaign was completed in 2009 at 
an estimated cost of A$17.6 million (Gambley et al., 2009), excluding the cost to 
the industry (Alam & Rolfe, 2006).

During an incursion of citrus canker, the main aim of the biosecurity response 
is to achieve disease- free status as quickly as possible. One of the critical initial 
response activities involves tracing known movements to and from an infected 
property. During an incursion response, managers allocate surveillance resources 
to follow- up these movements in order of priority. Ranking priorities is difficult 
in plant health and is typically subjective because for many plant diseases, there is 
a lag between initial infection and detection that causes uncertainty in estimating 
the day of initial infection. In addition, host species or their distributions are not 
known with certainty and dispersal mechanisms may be unknown. Although sub-
jective judgment can be reliable in contexts in which repetition and feedback are 
substantial, most incursions of plant disease are essentially novel. The novelty and 
complexity make decision makers especially susceptible to contextual and cognitive 
frailties, rendering judgments potentially unreliable (Perry et al., 2001; Slovic, 1999; 
Wilkinson et al., 2011). This creates a need for simple rules- of- thumb that result in 
robust and effective strategies for searching during responses to incursions.

This case study outlines a simulation- based spatially explicit stochastic state- 
transition model, in which several dispersal mechanisms (e.g. wind or human- 
assisted movement of diseased plant material) can spread a disease from infected 
to susceptible host populations. In this model, not all host populations in the land-
scape must be known. Susceptible populations of suitable host species can exist, 
receive the disease and spread the disease until these host populations are discov-
ered via surveillance. This is different to many models of disease spread in animals 
that typically assume all host populations are known (e.g. Garner et  al., 2011). 
Patterns of disease dispersal emerge by running many iterations of the simulation 
model over a range of scenarios.

7.4.1 Model Description

A Network of Nodes
The simulation model is based on a network of nodes that represent areas of 
interest that may contain potential host species or suitable habitats that are spa-
tially clustered (e.g. an orchard) or act as a pathway for disease dispersal (e.g. a 
fruit- packing shed). Each node comprises a unique spatial location within the net-
work and is defined by several features including node type, area, the number of 
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susceptible host plants and the mean age of host plants. The geographical layout 
of our case study is shown in Figure 7.5 and includes three node types: block, com-
prising commercially grown citrus trees that are assumed to be exposed to the same 
management practices such as pruning, harvesting and pest- spraying; backyard, in 
which individual trees are grown in backyard settings where management practices 
such as pest- spraying may be more haphazard; and commercial nursery, where host 
plant material is propagated for planting in commercial citrus blocks. For each iter-
ation of the simulation study, a node was randomly chosen to be the first infected 
property.

Incubation, Infectiousness, Citrus Canker Dispersal, and Susceptibility
Once the first node in the network becomes infected, citrus canker has an incuba-
tion period of two weeks before the node becomes contagious and dispersal mecha-
nisms can transport bacteria to other uninfected nodes in the network. The number 
of host trees, their mean age and tree canopy area determine infectiousness, which 
represents the level of citrus canker bacteria each node can produce and disperse to 
other nodes (i.e. nodes with many infected trees have greater capability to produce 

Figure 7.5. Map of a hypothetical citrus- growing region (based on Emerald, Queensland), with areas 
containing host species represented as a network of nodes. Each node (solid black dot) is 
defined by a spatial location and area, and contains a number of citrus plants with a mean 
tree age. Commercial citrus growing areas are shaded dark grey and properties that contain 
commercial citrus areas are shaded light grey.
[Reprinted with permission from Potts, J. M., Cox, M. J., Barkley, P., et al. (2013). Model- 
based search strategies for plant diseases: A case- study using citrus canker (Xanthomonas 
citri). Diversity and Distributions, 19(5– 6), 590– 602.]
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more bacteria than nodes with fewer infected trees). When a contagious node is 
sufficiently infectious, a dispersal mechanism may transmit citrus canker bacteria 
from the contagious node to an uninfected node. In our simulations, the dispersal 
mechanisms included wind and rain as well as the movement of contaminated farm 
machinery, people (e.g. bacteria on clothing) and plant material (e.g. budwood, 
Figure 7.6). Dispersal mechanisms are directional, and a dispersal event of moving 
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Figure 7.6. Five examples of dispersal functions, with probability of dispersal, Pr(Disp), on the y- axis. 
Wind direction and wind speed- based dispersal are varied at each time step based on weather 
data. The budwood pathway (panels E and F) have node- type dependent parameters with 
Budwood- 1 parameterised with Pr(disp) = 0.0001 for citrus block to citrus block and citrus 
block to commercial nursery pathways. Budwood- 2 was parameterised with Pr(disp) = 0.04 
for commercial nursery to all other node types. Note the varying y- axis scales: panels A and C 
have Pr(disp) range 0 to1, while panels D to F have Pr(disp) range 0 to 0.1.
[Reprinted with permission from Potts, J. M., Cox, M. J., Barkley, P., et al. (2013). Model- 
based search strategies for plant diseases: A case- study using citrus canker (Xanthomonas 
citri). Diversity and Distributions, 19(5– 6), 590– 602.]
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plant material from a citrus block to a commercial nursery had a lower probability 
(Figure 7.6E) than the opposite dispersal event of moving plant material from a 
commercial nursery to a citrus block (Figure 7.6F).

Importantly, although citrus canker bacteria might be successfully dispersed 
from a contagious node to an uninfected node, the uninfected node must be suscep-
tible to infection before citrus canker can become established. That is, there must 
be suitable habitats or host plants at the uninfected node, host plants must be in a 
growth stage that is susceptible to infection and environmental conditions must be 
conducive. Susceptibility of the uninfected node was governed by temperature in a 
given time step and mean tree age at the node (Dalla Pria et al., 2006).

Detectability
Detectability relates to two processes. Initially, a new disease in a region is unlikely 
to be detected because people are unlikely to be actively searching for it, and the 
disease’s signs, if  they are observed, may go undiagnosed. This initial detectability 
is modelled as being proportional to an infected node’s infectiousness (i.e. as a node 
becomes more infectious, detectability of the disease increases).

After initial disease discovery, detectability increases as awareness is increased, 
and surveillance officers and property owners begin to search actively for the dis-
ease on host species. We model this detectability for the ith node as a function of 
the duration of infection at the ith node (i.e. the time between when the ith node 
first became infected and when it was inspected for disease presence) and the infec-
tiousness of the ith node, given the minimum period required for visual signs of 
infection to appear. The appearance of visual signs of infection is highly variable 
and can occur from as early as 7 to 10 days post- infection (Gottwald et al., 1989; 
Graham et al., 2004) to as long as 60 days or more postinfection under adverse 
environmental conditions (Dalla Pria et al., 2006; Gottwald & Graham, 1992). The 
detectability parameter was varied in the simulation scenarios.

7.4.2 Simulation Scenarios

We simulated two scenarios for the dispersal and establishment of citrus canker –  
Emerald and Mildura, a location with a more temperate climate (Figure  7.7)  –  
that were based on hypothetical rearrangements of a real incursion (Emerald, 
Queensland; Figure  7.5) but modified to reflect a wider range of initial condi-
tions and environments. Weather data were taken from the Australian Bureau of 
Meteorology between July 2009 and July 2010. Weather conditions interact with 
node infectiousness and susceptibility. For example, citrus canker bacteria cannot 
survive above in temperatures greater than 42°C (Dalla Pria et al., 2006) and because 
of extremely hot temperatures in Mildura after week 50 (panel 2, Figure 7.7), the 
infectiousness, probability of dispersal and probability of detection (panels 3, 4 and 
6 in Figure 7.7, respectively) declined significantly for the Mildura simulation scen-
ario. Each simulation was run for two years (104 weekly time steps) and repeated 
1,000 times. For each simulation, the time step at which a dispersal event occurred, 
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Figure 7.7. Weekly rainfall duration (panel 1) and temperature (panel 2) as related to infectiousness 
(panel 3), probability of dispersal (panel 4), probability of establishment (panel 5) and 
probability of detection (panel 6). The x- axis shows weeks from 1 July 2009. Data are from 
the Australian Bureau of Meteorology for Emerald, Queensland (black line) and Mildura, 
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variety, mean tree age and temperature. The drop in infectiousness, probability of dispersal 
and detection for the Mildura scenario (grey line) occurred because of extreme weather 
events (temperatures exceeding 42°C) that kill all citrus canker bacteria.
[Reprinted with permission from Potts, J. M., Cox, M. J., Barkley, P., et al. (2013). Model- 
based search strategies for plant diseases: A case- study using citrus canker (Xanthomonas 
citri). Diversity and Distributions, 19(5– 6), 590– 602.]
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the node the pest came from, the node(s) it infected and the dispersal mechanism, 
were recorded.

7.4.3 Using Model Outputs to Develop Searching Strategies for Citrus Canker 
Eradication

We tested the efficacy (number of  infected nodes detected and the number 
of  nodes visited) of  the three search strategies. The three search strategies we 
investigated were:

1. Adaptive radius: A circular search area was established around the first detected 
node (not necessarily the node that was the first infected). The radius of this 
circle was proportional to the number of months, tI, since the node was first 
infected such that r = tId, where d is an arbitrary distance. This type of search 
makes no assumptions about search direction (forward or backward tracing). In 
the citrus canker example, we varied d from 50 m to 1,000 m in intervals of 50 m.  
We used a truncated normal distribution in which input the values of the distri-
bution parameters were derived using expert opinion.

2. Closest n nodes: A given number of n nodes closest to the node where the dis-
ease was first detected were searched with internode distance calculated as the 
Euclidian distance from node edge to node edge. This type of search makes no 
assumptions about search direction. In the citrus canker example, we varied the 
number of closest n nodes from 1 to 100 in steps of 1.

3. Adaptive search of probability space: This search strategy is also centred on the 
node where a disease outbreak is initially detected. Using knowledge of disper-
sal and establishment probabilities, a matrix of all possible dispersal and estab-
lishment probabilities was calculated from each node to every other node in the 
network.

In simulations of  both hypothetical scenarios, either no spread occurred from the 
point of  initial infection (Emerald, 3.1%; Mildura, 42.7%) or the disease spread 
but remained undetected during surveillance (Emerald, 0.1%; Mildura, 18.5%). 
The detected proportion was typically greater in Emerald, where weather condi-
tions were more conducive to citrus canker spread, than in Mildura, where fewer 
nodes became infected. Regardless of  which simulation parameters were used and 
regardless of  the probability of  the detectability of  citrus canker if  present (set 
at 1.0, 0.7 and 0.3), the adaptive radius search method outperformed the other 
search methods (see Figure 7.8) in terms of  detecting the most number of  infected 
nodes in the network. However, this method also used more survey effort, consist-
ently searching a greater proportion of  nodes on the network than the other two 
strategies.

The adaptive radius rule set is similar to the approach in Gottwald et al. (2001) 
that stipulates a 580- m removal zone around every infected host species for 30 days 
following initial infection. Importantly, none of the search strategies we investi-
gated (including the adaptive radius strategy) consistently found all infected nodes 
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Figure 7.8. Performance of the searching rule sets measured by the proportion of infected nodes that 
were detected (y- axis) compared with all nodes that were searched (x- axis). The top and 
bottom rows use Emerald and Mildura weather conditions, respectively. The left, middle 
and right columns had detection probabilities of 1.0 (perfect detection), 0.7 and 0.3, 
respectively. The proportion of infected areas of interest found using the adaptive radius 
method (shaded dark grey) was calculated using a radius of between 50 m and 250 m (at 
50- m intervals) and between 250 m and 1,000 m (at 100- m intervals). The closest n areas of 
interest (shaded light grey) searched between the closest 10 and 100 nodes (in intervals of 
10 nodes). The Pr space method (shaded black) searched between 1 and 15 nodes with the 
highest probability of transmitting the disease (calculated using the transmission matrix, 
Figure 7.6). If  the disease was detected at any of the searched nodes, the next set of nodes 
was selected until no disease was detected.
[Reprinted with permission from Potts, J. M., Cox, M. J., Barkley, P., et al. (2013). Model- 
based search strategies for plant diseases: A case- study using citrus canker (Xanthomonas 
citri). Diversity and Distributions, 19(5– 6), 590– 602.]
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without searching all susceptible nodes in the region. However, the model would 
allow estimation of the probability of detecting 95% of the infected nodes and thus 
the effectiveness and reliability of different search strategies for different phases of 
surveillance (e.g. delimiting versus proof of pest eradication).

The model was developed with flexibility in mind to allow users to investigate 
the behaviour of  different strategies for searching and ranking the priority of 
traces of  citrus canker in other regions and for other plant pests and diseases. 
Potts et  al. (2012) and Potts et  al. (2013) fully describe the model. Potential 
model extensions include exploring the implementation of  control measures (e.g. 
destroying all host plants within a node) and calculating the cost of  implementing 
control measures.

7.5 Conclusions

In an emergency disease situation, policy decisions regarding control often have 
to be made in the face of uncertainty and with imperfect understanding of how 
interactions between the agent, environment and host affect transmission and 
development of disease. Disease models offer a means to provide assistance for 
decision- makers by combining available information from field and experimental 
studies with the opinion of experts to gain insight into the dynamics of infection 
and disease control.

As computing power has increased, more user- friendly software has become 
available, and with the greater availability of disease and population data (includ-
ing spatially referenced data), the scope and complexity of disease models have 
increased. Developments in geographical information systems, remote sensing, 
data analysis methods, network theory and complex systems science are leading to 
a new generation of models.

Disease systems are inherently variable and predictions based on disease spread 
models may not be sufficiently accurate and precise for use in the day- to- day man-
agement of  the response. The use of  disease models to direct decision making 
during fast-moving epidemics remains controversial (Garner et al., 2007) because 
realistic parameter values that reflect the local situation are likely to be incom-
plete. Indeed, the use of  models as decision support tools in the 2001 FMD dis-
ease epidemic in the United Kingdom has attracted much criticism in both the 
scientific literature and popular media (Kitching et al., 2006; Mansley et al., 2011; 
Nerlich, 2007).

Adding complexity to a model may not necessarily improve the quality of out-
puts (Green & Medley, 2002). Modelling invariably involves trade- offs in terms of 
complexity versus availability of data and in model specification (i.e. a model that 
is highly specified for a particular population time or location may not be applic-
able to other populations, times or places). Models are just one tool for providing 
technical advice and should not be considered in isolation from other sources of 
information.
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7.5.1 Future Directions

By definition, disease spread models are an abstraction of the real- life process of 
disease transmission. Models attempt to capture the key mechanisms that deter-
mine how diseases spread from one area or group of animals or plants to another. 
In the processing of simplifying a model to make it tractable, we can inadvert-
ently fail to include characteristics that make the model useful for decision making 
and policy development to plan for and respond to disease threats. Disease spread 
models are likely to continue to become more sophisticated by using the increas-
ingly available computer resources and data. However, there will continue to be a 
trade- off  between what can be achieved technically and what is needed to support 
decision making and policy development.

In the future, there will likely be an increasing reliance on the outputs of disease 
spread models to guide decisions on preparedness and response strategies, and to 
justify the policies that are developed. To determine if  models are fit for purpose, 
the following questions can be asked:

• What scale of resolution is needed? Is it (for example) the individual farm or an 
entire region?

• How important is the dimension of time? Do we need to understand how a dis-
ease spreads at a daily resolution, or monthly?

• What data are the model built on and are these appropriate?
• How was expert opinion incorporated into the model? Were these opinions 

obtained in a systematic and transparent manner?
• Is the model flexible enough to allow a range of management and control strat-

egies to be tested?
• Does the model require specialist software and a super- computer for it to be 

run?
• Does the model incorporate real- life issues (e.g. transportation networks and 

non- homogeneous mixing) to generate realistic outputs?

One of the major benefits of developing disease spread models is that they can be 
readily adapted to explore different scenarios to inform disease management policy 
(Garner & Beckett, 2005; Pech et  al., 1992, 1995). However, despite this poten-
tial utility, disease spread models have not been routinely used to comprehensively 
explore practical and realistic mitigation strategies under a variety of disease and 
spread incursion scenarios. To date, disease spread models have had limited impact 
on animal and plant health policy development. One possible reason is a lack of 
communication between disease modellers and decision makers − the stakeholders 
in any disease modelling programme. More effort needs to be spent on developing 
close working relationships between disease modellers and stakeholders. The lat-
ter need to clearly express their objectives in terms of how they would use model 
outputs and what critical questions need to be answered. The former must strive 
to explain both the modelling process and the interpretation of model outputs to 
inform policy and influence decision making.
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8 Bayesian Networks for Import  
Risk Assessment
Ann E. Nicholson and Kevin B. Korb

8.1 Introduction

Bayesian networks are an increasingly popular paradigm for reasoning under uncer-
tainty. A Bayesian network (Korb & Nicholson, 2011; Pearl, 1988) is a directed, 
acyclic graph whose nodes represent the random variables in the problem. A set of 
directed links connect pairs of vertices, representing the direct dependencies (which 
are often causal connections) between the variables. The set of nodes pointing to 
a node X are called its parents and are denoted pa(X). The relationship between 
variables is quantified by conditional probability tables (CPTs) associated with 
each node, namely P(X|pa(X)). Together, the conditional probability tables com-
pactly represent the full joint distribution. Users can set the values of any combin-
ation of nodes in the network that they have observed. This evidence, e, propagates 
through the network, producing a new posterior probability distribution P(X|e) for 
each variable in the network. There are a number of efficient exact and approxi-
mate inference algorithms for performing this probabilistic updating, providing a 
powerful combination of predictive, diagnostic and explanatory reasoning. In the 
biosecurity context, the typical use is predictive; given the scenario of a proposed 
importation of a product that may be a pathway for a particular pest, a Bayesian 
network can be used to incorporate evidence about the pest and its biological fea-
tures, assessments made by analysts about the likelihood of live pests on the prod-
uct at each stage in the pathway and so on.

Bayesian networks can be extended with two other types of nodes  –  decision 
nodes and utility nodes –  to form a so- called Bayesian decision network.1 Decision 
nodes represent controllable actions that have an effect on the system, while util-
ity nodes are used to assign a value to combinations of outcomes (e.g. costs and 
benefits). A Bayesian decision network can then be used to automatically compute 
the so- called expected utility of alternative decisions, supporting rational decision 
making based on decision theory (Russell & Norvig, 2010). When considering bios-
ecurity risk assessment, a Bayesian decision network not only can provide predic-
tions of the probability of entry, establishment and spread, but these probabilities 

 1	 Decision	networks	are	also	known,	sometimes	confusingly,	as	influence	diagrams	(Howard	&	Matheson,	
1981).
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can also be combined with estimates of the costs of these outcomes and the cost of 
mitigation measures, to compute the expected utility of both the unmitigated and 
mitigated risk.

Over the past 10 years, Bayesian networks have been widely used in ecological 
modelling [see Section 5.2.3 in Korb and Nicholson (2011) for a survey], with a num-
ber of modelling guidelines published (e.g. Borsuk et al., 2004; Renken & Mumby, 
2009; Varis & Kuikka, 1999), while Uusitalo (2007) has reviewed their features and 
use in modelling environmental applications. Bayesian networks have been devel-
oped for local pest detection and eradication for sheep lice (Horton et al., 2009), 
red imported fire ant (Burgman et al., 2010; Dambacher et al., 2008), dengue fever 
(Murphy et al., 2010) and non- native trout (Peterson et al., 2008). Hood (2009) has 
developed a Bayesian network for an import risk assessment of the importation 
of giant African snail into Australia. There have also been a number of assess-
ments of Bayesian networks as biosecurity tools (e.g. Baker & Stuckey, 2009; Hood 
et al., 2009; Hosack et al, 2008; Walshe & Burgman, 2010; Wintle & Nicholson, 
2014). Bayesian networks have also been used in PRATIQUE, a European Union 
project to enhance pest risk analysis techniques (Baker et al., 2009). For example, 
Holt et  al. (2012) have used the GeNIe2 Bayesian network software to compute 
and visualise combinations of uncertain risk assessments, while Mengersen et al. 
(2012) have described an approach using control point– Bayesian networks, where 
the Bayesian networks are generated in a standard template from a spreadsheet 
of questions and expert assessments of uncertainty. Kuhnert and Hayes (2009) 
have shown how Bayesian networks can be used to quantify and improve the 
qualitative risk assessment developed by the European and Mediterranean Plant 
Protection Organization; in this chapter, our focus is very similar, except we model 
the Australian process.

One advantage of Bayesian networks in these applications is that the graph-
ical structure provides visualisation of the relationships between variables, such as 
cause and effect, and can be easily modified to incorporate new factors and new 
understandings of the relationships. Bayesian networks can be constructed using 
information from a range of sources such as empirical data, the research litera-
ture, the opinion of experts and output from other models. Both the relationships 
between variables and the outcomes are expressed probabilistically, so uncertainly 
is embedded and explicit.

8.2 Biosecurity Case Study: An Insect on Fruit

We develop our Bayesian network framework for the pest risk assessment for a 
hypothetical insect on fruit; this case study was developed and used in Burgman 

 2	 GeNIe	is	made	available	in	a	compiled	form	that	is	free	of	charge	from	the	Decision	Systems	Laboratory,	
University	of	Pittsburgh	(http://	genie.sis.pitt.edu).
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et al. (2011). Figure 8.1 shows the exposure pathway for the insect, which is repre-
sented as an exposure tree; this structure was used as a template for the Bayesian 
network construction. There are seven basic steps in the pathway, beginning with 
the source orchards in the exporting country, through to consumption of the fruit 

Unrestricted Risk

Mango source orchards in India

Proportion of mango source orchards in India that are affected by
mango seed weevil

Harvesting of mangos from source orchards in India

Proportion of individual mangos that are infested with mango seed weevil
when picked in affected source orchards in India

Processing (grading and box-packing) of mangos in India

Proportion of  mango boxes from an affected source orchard that contain at least one
infested mango after processing (grading and box-packing) in India

Export (inspection, storage and international transport) of boxes from India

Proportion of boxes that remained infested after processing in India, and that still
remain infested after export (inspection, storage and international transport) from India

Import (minimum border procedures) of boxes to Western Australia

Proportion of boxes that remained infested after export from India, and that still
remain infested after import (minimum border procedures) to Western Australia

Distribution of boxes in Western Australia

Proportion of boxes that remained infested after import to Western Australia,
and that are distributed to areas supporting suitable host plants for mango seed weevil

Consumption of mangos (and disposal of waste) in Western Australia

Annual trade volume of
mangos

Number of mango seed weevils from distributed infested boxes that
survive to reach suitable host plants

Number of viable reproductive populations of mango seed weevil that are established
from weevils that survived distribution in infested boxes to reach suitable host plants

Number of new viable reproductive populations of mango seed weevil that are
established through spread from previously established populations
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Figure 8.1. Steps in the exposure pathway for insects on imported fruit case study (Burgman et al., 
2011, Figure 2.2).
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and waste disposal (in the specific area of Western Australia chosen for this case 
study). At each step, there is a description of the quantity representing the risk from 
the pest that must be assessed at each point. This progresses from the proportion 
of source orchards, to the proportion of individual fruit, to the proportion of fruit 
boxes and to the number of pests and viable populations.

The terms affected and infested in Figure 8.1, and in this chapter, refer to the 
presence of at least one pest. The proportion of boxes that remain infested is the 
net effect of pest survivorship and cross- contamination, which in our case study, we 
assume to be zero. We assume that, if  infested fruits are found during inspection, 
the affected boxes are disposed of and the remaining boxes are inspected further, 
but the entire shipment is not cancelled and the pathway is not changed. Each of 
the steps in Figure 8.1 represent bundled detailed steps covering the multiple steps 
and factors considered in import risk assessments. After the first step, each of the 
steps is conditional on the previous step.

The steps in the exposure pathway can be grouped in different ways, as can 
be seen from the different divisions of the vertical bars (to the left and right) in 
Figure 8.1. To comply with the World Trade Organization framework, the meth-
odology documented by Biosecurity Australia (2008) provided four estimates, one 
each for importation, distribution, establishment and spread (Figure 8.2), basically 
combining the first five steps in Figure 8.1 into a judgement of the likelihood of 
importation. That judgement is typically based on a subjective consideration of a 
range of factors (Burgman et al., 2011), including

• Distribution and incidence of the pest in the source area
• Occurrence of  the pest in a life stage that would be associated with the 

commodity
• Volume and frequency of movement of the commodity along each pathway
• Seasonal timing of imports
• Pest management, cultural and commercial procedures at the place of origin
• Speed of transport and conditions of storage compared with the duration of the 

life cycle of the pest
• Vulnerability of the life- stages of the pest during transport or storage
• Incidence of the pest likely to be associated with a consignment
• Commercial procedures (e.g. refrigeration) during transport and storage in the 

country of origin and during transport to Australia.

We note that importation and distribution are often together referred to as entry (as 
shown on the left of Figure 8.1).

Importation Distribution Establishment Spread

Figure 8.2 Steps in Biosecurity Australia’s model (Burgman et al., 2011, Figure 2.1).
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8.3 Business as Usual

First we show how a Bayesian network can be constructed from an exposure 
pathways tree that represents Biosecurity Australia’s 2008 qualitative assessment 
method.

8.3.1 Biosecurity Australia’s Qualitative Likelihoods

In many of its import risk assessments, Biosecurity Australia defined a set of inter-
vals associated with words that reflect likelihoods of importation, distribution, 
establishment and spread (Table 8.1). These intervals were intended only to be indi-
cative guides to the meanings of the words. These qualitative likelihoods are com-
bined with a set of rules, distilled into a matrix in Figure 8.3.

Table 8.1. Probability intervals employed by Biosecurity Australia (2008)

Likelihood Descriptive definition Indicative probability range

High The event would be very likely to occur. 0.7 < p ≤ 1.0

Moderate The event would occur with an even probability. 0.3 < p ≤ 0.7

Low The event would be unlikely to occur. 0.05 < p ≤ 0.3

Very low The event would be very unlikely to occur. 10−3 < p ≤ 0.05

Extremely low The event would be extremely unlikely to occur. 10−6 < p ≤ 10−3

Negligible The event would almost certainly not occur. 0 < p ≤ 10−6

Reprinted with permission from Biosecurity Australia (2008). Final import risk analysis report for fresh 
mango fruit from India. Technical report. Canberra, Australia: Biosecurity Australia. Available from 
www.agriculture.gov.au/ SiteCollectionDocuments/ ba/ plant/ ungroupeddocs/ Final_ IRA_ - _ Mangoes_
from_ India.pdf

Figure 8.3. Matrix showing rules for how the qualitative likelihoods are combined in the methodology 
reported in Biosecurity Australia (2008, Table 2.1).
[Reprinted with permission from Biosecurity Australia (2008). Final import risk analysis 
report for fresh mango fruit from India. Technical report. Canberra, Australia: Biosecurity 
Australia. Available from www.agriculture.gov.au/ SiteCollectionDocuments/ ba/ plant/ 
ungroupeddocs/ Final_ IRA_ - _ Mangoes_ from_ India.pdf]
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Next, we show how this assessment process can be modelled in a Bayesian net-
work using the same qualitative measures of risk (e.g. negligible, extremely low, 
very low, low, moderate and high) and when combining the risks for each stage in 
the same way (based on the matrix shown in Figure 8.3).

8.3.2 A Simple Deterministic Bayesian Network

This process can be modelled by a simple Bayesian network with deterministic 
relationships (Figure 8.4a). In this network, each of the main steps of the path-
way becomes a node in the network: Importation, Distribution, Establishment and 
Spread. These are so- called root nodes in the Bayesian network because they have 
no parents (i.e. there are no incoming arcs). They are the input or evidence nodes, 
for which values will be supplied by the import risk assessor. The assessments for 
these main steps in the pathway are combined pairwise in sequence, represented 
in this Bayesian network by so- called intermediate nodes, namely Entry (combin-
ing Importation and Distribution), and EntryAndEstablishment.3 The result of the 
final combination is a leaf node, a node with no children (i.e. there are no outgoing 
arcs), giving the overall likelihood of entry, establishment and spread. Because this 
is the output node of interest, in Bayesian network terminology, it is also called a 
target or query node.

Following the 2008 documented practice, the possible values for each node are 
{High, Moderate, Low, VeryLow, ExtremelyLow, Negligible}, representing a quali-
tative likelihood. The entries in the deterministic conditional probability tables 
(CPTs; see Figure 8.4b) were taken from the matrix in Figure 8.3 that shows how to 
combine qualitative likelihoods.

The model in Figure 8.4a has uniform priors for the root nodes because, at this 
point, we have not incorporated any information about a particular situation. Priors 
for the root nodes for an individual case study should be obtained from experts. 
The overall assessments across these scenarios are uneven because of the threshold 
effect of the rules (e.g. a combination of VeryLow with any of High, Moderate or 
Low gives VeryLow). As shown, the probability mass is concentrated around the 
‘Negligible’ end of the scale and is a by- product of the matrix rules.

Other than the uncertainty in the categorisation of risk, the documented method 
doesn’t use any distribution over that risk. We can represent this in a Bayesian net-
work by viewing the category low, for example, as a state (setting aside for the 
moment that it is indicative of a range of probabilities). Recall that a Bayesian net-
work can be used for predictive risk assessment by adding evidence about what is 
now. Here, we add evidence as a fixed setting for each of Importation, Distribution, 
Establishment and Spread. The Bayesian network software then propagates this 
evidence through the rest of the network, which in this case gives us a new posterior 

 3	 This	 combination	 of	 steps	 isn’t	 given	 a	 name	 in	 the	 pathway	 model,	 and	 is	 instead	 reflected	 by	 the	
node’s	name.
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probability distribution for the other nodes, including the main node of interest, the 
Overall node, representing the summarised overall risk assessment. Figures 8.5 to 
8.8a show four such scenarios where all the risk inputs are considered certain and 
are entered as a fixed 100% in the Bayesian network. Case 1 in Figure 8.5 shows 
a combination of Low, VeryLow and ExtremelyLow resulting in Negligible over-
all risk. Case 2 in Figure  8.6 shows how a combination of High and Moderate 
results in Moderate overall risk. Case 3 in Figure 8.7 and Case 4 in Figure 8.8a are 
examples of how different combinations of risk can result in the same overall risk 
(VeryLow in this example).

8.4 Incorporating Uncertainty

There are two types of uncertainty in the documented process: uncertainty in the 
risk assessments for each of the stages and uncertainty in how the risks are com-
bined. In this section we describe how these can be represented in the Bayesian 
network.

Figure 8.4. (a) Bayesian network representing Biosecurity Australia qualitative risk assessment for 
the case study with deterministic conditional probability tables for combining qualitative 
likelihoods. [Reprinted with permission from Wintle, B. C. & Nicholson, A. E. (2014). 
Exploring risk judgments in a trade dispute using Bayesian networks. Risk Analysis, 34(6), 
Figure 1.] No input likelihoods added, deterministic nodes indicated by the darker shade. 
(b) Deterministic conditional probability table (incomplete) for Entry node.
[These and all subsequent figures are screenshots from the Netica® Bayesian network 
software (Norsys, 2012).]
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Figure 8.5. Case 1: Low input risks (Bayesian network with deterministic conditional probability table) 
resulting in a negligible overall risk, comparing (a) certain and (b) uncertain inputs.

Figure 8.6. Case 2: High and moderate input risks (Bayesian network with deterministic conditional 
probability table) resulting in a moderate overall risk, comparing (a) certain and (b) 
uncertain inputs.
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Figure 8.7. Case 3: Mixed input risks (Bayesian network with deterministic conditional probability 
table) resulting in a very low overall risk, comparing (a) certain and (b) uncertain inputs.

Figure 8.8. Case 4: Different mixed input risks (Bayesian network with deterministic conditional 
probability table) resulting in a very low overall risk, comparing (a) certain and (b) 
uncertain inputs.
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8.4.1 Representing Uncertainty about Input Likelihoods

The input likelihoods for the Importation, Distribution, Establishment and Spread 
can be entered as uncertain in the Bayesian network in two ways:

1. By setting a prior distribution for each node (this possible because each node is 
a root node)

2. By adding so- called likelihood (uncertain) evidence

Examples comparing certain and uncertain inputs are shown in Figures 8.5 to 8.8. 
In each case, uncertainty in the inputs results in a distribution over the Overall like-
lihood, although the highest probability falls in the same category. In this example, 
we continue to think about input likelihoods as states. Uncertainties in the inputs 
represent uncertainty in beliefs that a particular input is in a given state.

8.4.2 Adding Uncertainty to the Combinations of Likelihoods

We can also represent the uncertainty in the way the likelihoods are combined. 
Each qualitative likelihood reflects an indicative probability range, as shown in 
Table 8.1. The deterministic combination of qualitative likelihoods is very coarse 
and is inaccurate, particularly when the probability range is large. For example, 
the deterministic table says that High × Low → Low. However, multiplying the 
lower range values of 0.7 and 0.05 gives 0.035, which is in the VeryLow range. 
This means that the deterministic Bayesian network, which gives P(Entry = Low 
| Importation = High, Distribution = Low) = 1, is only approximating the distri-
bution that would result if  the actual ranges were used (see Section 5 of Burgman 
et al., 2011).

It is straightforward to represent the uncertainty arising from combining dis-
cretised probability range in the Bayesian network by making the nodes represent 
continuous variables, each ranging from 0 to 100. In the Bayesian network software 
Netica® (Norsys, 2012), we discretise the nodes using exactly the labels and indica-
tive ranges from Table 8.1. The arithmetic combination of likelihoods is calculated 
using an equation, for example, P(Entry | Importation, Distribution) = Importation ×  
Entry /  100 (see Figure 8.9a). This equation is used to generate a conditional prob-
ability table for the node (using a stochastic sampling method; see Figure 8.9b).

Figure 8.10 shows the resultant Bayesian network with uniform priors for the 
root nodes; for comparison, see Figure  8.4a for the corresponding qualitative 
Bayesian network. Note that there is a slight change in the Netica visualisation 
for discretised continuous nodes. Rather than simply display discrete categories, 
there is an additional section at the bottom of each node showing the mean and the 
standard deviation of the current calculated posterior distribution.

We can see that with no informative inputs, the resultant distribution for the 
Overall likelihood for the continuous model is not very different, as expected given 
that the qualitative combination matrix was calibrated with the indicative prob-
ability ranges. Figures 8.11 and 8.12 show the result of  entering the certain input 
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risks into the new Bayesian network. The distributions for the Overall risk for 
Cases 1, 3 and 4 are similar to the previous Bayesian network. However, Case 2 
(High and Moderate inputs) provides an example of  how the Overall assessment 
can change when explicitly modelling the indicative probability ranges; here the 
highest probability outcome is P(Overall = Low | Case 2 Inputs) = 0.551, whereas 
the documented qualitative method gives a Moderate Overall combined likelihood 
(Figure 8.6a).

8.5 Improving the Bayesian Network Structure

There are limitations with the documented process as modelled by the Bayesian 
networks in Figures 8.4 to 8.12. Here we analyse these limitations and show how 
changes to the structure of the Bayesian network can overcome them.

8.5.1 Representing Dependencies between Likelihoods at Different Stages

The Bayesian network modelling discussed in Section 8.4 combines the risks for 
the different stages in a way that assumes they are independent. For example, in the 
Bayesian network in Figure 8.10, Importation and Distribution are independent 
parents of Entry:

 P(Entry) = P(Importation) × P(Distribution). 

However, this is not how the likelihood of Distribution is assessed by the analyst; 
the qualitative assessment is the likelihood of Distribution if  the pest has been 

Figure 8.9. Netica screenshots for the entry node, showing (a) the specification of the continuous range 
for high, and the equation for combining the likelihoods of the parent nodes, importation 
and distribution; and (b) the resultant conditional probability table (incomplete), from 
stochastic sampling.
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Figure 8.10. Bayesian network where the nodes represent a continuous variable, discretised according 
to the indicative ranges from Table 8.1, with the combination of likelihoods done using an 
equation (used by Netica to generate the conditional probability tables; see Figure 8.9).
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Figure 8.11. Input risk for Case 1 and Case 2 (compare with Figures 8.5 and 8.6) for the discretised 
continuous Bayesian network, with conditional probability table defined by equation (see 
Figure 8.9).
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Figure 8.11 (continued)

imported. So the qualitative method is actually providing a conditional likelihood 
that we haven’t captured in the Bayesian network models given earlier. The defin-
ition of Entry is then

 P(Entry) = P(Distribution | Importation) × P(Importation). 
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Figure 8.12. Input risk for Case 3 and Case 4 (compare with Figures 8.7 and 8.8) for the discretised 
continuous Bayesian network, with conditional probability table defined by equation (see 
Figure 8.9).
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Figure 8.12 (continued)
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8.5.2 Representing Pest Volume

The second problem is that the preceding Bayesian network modelling is doing 
a kind of meta- reasoning, producing probability distributions over likelihoods 
that represent indicative probability ranges. Given pest likelihood at one stage, the 
Bayesian network produces a distribution over the likelihood of infestation at the 
next stage. This improperly conflates aspects of volume (such as amount of fruit 
in a container and how prevalent the pest is on the fruit) with probability. These 
problems can be overcome by making the modelling changes shown in the example 
Bayesian network in Figure 8.13.

First, Entry is modelled explicitly as being conditional on Importation given 
Distribution. So instead of three nodes (one each for Importation, Entry and 
Distribution), there are now only two.

Second, we have changed the states of the nodes to explicitly represent the vol-
ume (number) of the pest for the Importation, Entry and Establishment nodes, 
while Spread models area. In Figure 8.13 these are discrete nodes in the Bayesian 
network with the names of the states representing (unspecified) qualitative levels; 
the pest volume states are {High, Medium, Low and Negligible} while the spread 
states are {Large, Medium, Small and Negligible}. In practice, for any specific 
import risk assessment, the number of states can be modified to reflect the number 
of levels that are expected to make a difference to risk. Also, the nodes should be 
turned into continuous nodes in the Bayesian network software, with each state 
specified by an interval (in the same way that we explicitly represented the inter-
vals for the qualitative likelihoods given earlier). With the new state space, the risk 
level is then the posterior distribution computed by the Bayesian network reasoning 
algorithm for each volume, or the area.

8.5.3 Modelling Consequences

In Figure  8.13, the consequences are modelled as simple three- valued nodes 
{High, Low, Negligible}, with the cost of  each consequence modelled by an asso-
ciated utility node (represented by hexagons). The utility functions were obtained 
through methods such as described in Section 11 of  Burgman et al., (2011). The 
Netica software requires that the utility function be represented by a utility table, 
with a single real number associated with each combination of  parent node values; 
Figure 8.14 shows an example utility table for the Domestic Trade Cost node. The 
utility scale is arbitrary, but it is important that the same scale be used for all util-
ity functions that represent the costs of  actions, outcomes and benefits (although 
there are no benefits represented in the Bayesian network presented here). Here, 
we have chosen to represent the costs as negative, and although our qualitative 
utility nodes are similar to Biosecurity Australia’s levels from A to G, the way we 
have included them in the decision network does not mirror Biosecurity Australia’s 
documented matrix method for combining qualitative consequences (Biosecurity 
Australia, 2008).
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Figure 8.13. Alternative Bayesian network structure that includes correct dependencies; explicit 
representation of pest volume and spread area; and representation of consequences, costs 
and the Do Nothing action of unrestricted risk. The scenario starts with a distribution over 
a predominantly very low volume importation assessment.
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8.5.4 Modelling Risk at Each Stage

Thus far, we have modelled only the basic stages used previously in the Biosecurity 
Australia qualitative risk assessment process. However, an advantage of Bayesian 
networks is that they can explicitly model the other information and factors being 
incorporated into the risk assessment. We do this by incorporating additional 
nodes that feed into the “Stage” nodes. For example, in Figure 8.15 the importation 
assessment may depend on a large range of factors such as prevalence in the place 
of origin, inspection procedures at the export location and the ability of the pest to 
survive transportation. The layout of the process reflects the sequence of stages and 
the model includes the possibility of detection (say through inspection at source) 
and whether or not the pest survives transportation.

8.5.5 Modelling Risk Mitigation Actions in Bayesian Decision Networks

It is also possible to add nodes to the Bayesian network to represent the causal 
factors influencing the unmitigated risk, as shown in Figure 8.16. All the posterior 
probabilities (shown by the bars) are uniform, because no parameters (CPTs) have 
been entered for this Bayesian network. In this example, the LocalEnvironment 
node allows us to model the difference between the establishment of the pest, given 
that it has entered, depending on whether the local environment is benign or hostile. 
The second causal factor, RegionalFruitTransport, has an impact on the spread of 
the pest.

In import risk assessment, if  the unmitigated risk is high enough to warrant fur-
ther modelling, typically the next stage is to look at risk mitigation actions and 
their associated costs. This is another straightforward extension of the unmitigated 
Bayesian network. In Figure 8.16, the possible actions modelled (as decision nodes) 
are the level of inspection on entry {High, Low, None} and whether or not to apply 
pesticides on entry or on local farms. Each action has an associated cost, which 
is modelled in the table for the utility nodes (InspCost, PCost1 and PCost2). This 
results in a Bayesian decision network.

Figure 8.14. Example utility table, representing the utility function for the cost associated with the 
consequences of the impact of entry, establishment and spread on domestic trade.
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8.6 Knowledge Engineering Bayesian Networks

The development of useful robust methodologies for constructing and using 
Bayesian networks –  which we call the knowledge engineering process –  is a well- 
established and active area of research (e.g. Boneh, 2010; Laskey & Mahoney, 2000; 
Pollino et al., 2007). However, there are certain principles that should be followed if  
Bayesian networks become a standard technique in the biosecurity risk assessment 
process.

The basic modelling steps are to select the nodes, determine the structure, elicit 
the probabilities and evaluate the outcome. The knowledge engineering process 
should be iterative and incremental (e.g. Boneh, 2010; Korb & Nicholson, 2011). 
This was done informally for this case study. Thus, during the development of 
the models presented above, there were a number of instances of revisiting past 
modelling choices following improved understanding of the problem domain. For 
example, during the elicitation of parameters from our expert, the values for the 

Source Orchard Infected

Individual Fruit Infected

Box Infected When Packed

Box Infected On Departure

Box Infected On Arrival

Box Infected After Insp

Pest Volume Importaton

Infection Detected In India

Survive Transportation

Infection Detected On Arrival

Figure 8.15. A possible sub- network for an import risk assessment.
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consequence nodes (DomesticTrade etc.) were changed from {Yes, No} to {High, 
Low, Negligible}.

The focus of this case study is the development of the Bayesian network struc-
ture: the nodes, their states and the relationships between them. The issue of how 
best to parameterise a Bayesian network is a research area in its own right (e.g. 
Druzdzel & van der Gaag, 2000). For the Bayesian networks presented in this case 
study, some parameters in the conditional probability table were obtained during 

Local_Environment
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Apply Pesticides On Entry

Apply Pesticides On Farms
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International Trade1 Indirect Environment1
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Control1

Regional Fruit Transport
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16.7
16.7
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16.7
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Negligible
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33.3
33.3
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33.3
33.3
33.3
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33.3
33.3
33.3
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33.3
33.3
33.3
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33.3
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33.3
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25.0
25.0
25.0
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Low Volume

Moderate Volume
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25.0
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16.7

50.0

Yes
No

50.0
50.0
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Figure 8.16. Modelling of causal factors for both unmitigated and mitigated risk.
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an elicitation workshop that produced probability intervals (we simply used the 
best- guess point probabilities in the conditional probability tables). Other param-
eters were obtained by elicitation of single point estimates from a single expert. 
Where we compared direct elicitation with an elicitation tool based on verbal cues, 
there were no significant differences in the time for elicitation or the parameters 
elicited. Our focus was simply to obtain plausible parameters for illustrative pur-
poses. In practice, probabilities should be elicited from multiple experts, and there 
is a large body of research on how this can be done and how their estimates can be 
combined. For example, rather than using a single point estimate, better results can 
be obtained using a three- point (or even four- point) method (Martin et al., 2012; 
Speiers- Bridge et al., 2010) with multiple experts.

An important part of the knowledge engineering process is evaluating the 
Bayesian network at each stage. Once the network is parameterised, sensitiv-
ity analysis is an important tool for understanding the uncertainty embedded in 
the Bayesian network. While elicited distributions for parameters are not used by 
Bayesian networks, distributions can (and should, when available) be used to sup-
port analysis of sensitivity to parameters. For example, if  a normal distribution 
were supplied by the elicitation process, the mean would be used in the conditional 
probability tables. However, values at, say, two standard deviations above and 
below the mean could be checked to see whether the resulting distributions under 
observations remain sensible and whether any indicated decisions or utility values 
have made dramatic shifts. Unfortunately, some of the better methods for analysis 
of sensitivity to parameters (e.g. Coupé et al., 2000) are not available in Bayesian 
network software such as Netica. Another form of sensitivity analysis that is avail-
able in Netica and is commonly used with Bayesian networks is the sensitivity to 
findings, which is the use of mutual information to rank the relative influence of 
nodes in a Bayesian network on a node of interest. For example, in the Bayesian 
network shown in Figure 8.16, sensitivity to findings can be used to indicate which 
of the factors Local_ Evironment or Regional Fruit Transport has the most impact 
on the probability of Spread.4

In the Bayesian network research literature, many methods have been proposed 
for validating a Bayesian network (whether constructed through expert elicitation, 
from data, or a combination of both) against data (Korb & Nicholson, 2011). 
Unfortunately, when doing import risk assessments, there is often little data avail-
able with which to validate the network. Certainly, case studies from other coun-
tries for the same or similar products and pests can be used for “what- if” scenarios 
(entering evidence), to see if  the Bayesian network’s risk assessment matches what 
happened in practice. But the value of this is limited when the physical and environ-
mental factors in the importing country differ from the case study data.

 4	 However,	 care	 needs	 to	 be	 taken	when	 using	 such	measures	 not	 to	 read	 too	much	 into	 such	 rankings,	
because	the	way	the	mutual	information	is	computed	means	that	nodes	further	away	in	the	graph	tend	to	
have	less	influence	anyway.
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We have illustrated how sub- networks could be used in the biosecurity context; 
a full evaluation of their use is beyond the scope of this chapter. Templates of sub- 
networks with the range of factors for each stage could be developed. Then, when 
a Bayesian network is to be developed for a new risk assessment, relevant factors 
would be selected and parameterised for the specific situation. We note that the 
Netica software used for our prototype Bayesian networks does not provide direct 
support for the use of sub- networks. As a result, risk assessment Bayesian networks 
may quickly become large, unwieldy and difficult for the risk analyst to build and 
validate. Other Bayesian network software (e.g. GeNIe5) does provides support for 
the templates and sub- networks needed for the flexible development of case- specific 
Bayesian networks. We note that Mengersen et al. (2012), with their use of control 
point Bayesian networks, also advocate more structured, rather than ad hoc, use of 
Bayesian networks.

The routine deployment of knowledge engineering for import risk assessments 
would require investment in skill development. Naïve users of these tools often 
make several predictable mistakes that may compromise the legitimacy of the ana-
lyses. Appropriate skills may be developed in people with no quantitative back-
ground in a few days of dedicated training, given follow- up support and review.

Although development of skills may be an initial hurdle, the approach holds 
the potential to capture current experienced thinking in a more formal framework 
that can accommodate expert judgements and whatever data may become available. 
Over time, sub- networks developed for specific pests, diseases and commodities will 
form a library of templates that will inform and improve the efficiency of future 
efforts.

8.7 Conclusions

A recurring constraint on the application of Bayesian networks is the reticence of 
many to nominate precise quantities for their uncertainties and values. People are 
much more comfortable with qualitative assessments. Rain today is unlikely, not 
10.5% likely; gastroenteritis is unpleasant, not pleasant to a degree of −53 utiles. 
But these qualms are not relevant in the end. As we show at the beginning of this 
chapter, whatever can be done in reasoning about uncertainty with qualitative 
tools, such as the import risk assessment model examined here, can be mimicked 
using Bayesian networks. But Bayesian networks can also do more than that. When 
precise quantities are available –  whether because the relevant expertise or the rele-
vant data are available –  Bayesian networks can use them, allowing us to better 
understand and predict the systems we are working with. For example, meaningful 
sensitivity analysis, such as determining tipping points when changed probabilities 
or values require changing our interventions, can only be done with quantitative 
tools; qualitative representations are simply too crude for them. Bayesian network 

 5	 http://	www.bayesfusion.com
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are at least as good, and sometimes better, than qualitative tools. We hope the bios-
ecurity community will take full advantage of this productive, and still emerging, 
technology.
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9 Getting the Message Right: Tools 
for Improving Biosecurity Risk 
Communication
Jane Gilmour, Ruth Beilin, Tamara Sysak and Marta Hernández- Jover

9.1 Introduction

Communicating effectively about biosecurity risk is a key responsibility for man-
agers. Tools used in other fields of risk communication and risk management can 
provide useful knowledge and inform the way managers communicate.

An area of increasing concern to agencies charged with the responsibility of 
assuring Australia’s protection against unwanted diseases and pests is the growing 
number of peri- urban landholders. The transformation of land use around urban 
areas has been extensively documented. Buxton et  al. (2006) report widespread 
agreement that the peri- urban area is expanding significantly in its geographic 
extent. The phenomenon is occurring not only in Australia, but also in the United 
States, Canada and Europe (Buxton et al., 2006). Daniels (1986) points to the pro-
liferation of hobby farms in exurban areas on the fringes of American cities.

These peri- urban landholders are assumed to lack the knowledge and experience 
of established farmers, and they are therefore expected to be less likely to follow 
approved practices. They are also believed to be less likely to access the communi-
cation channels traditionally used by the responsible agencies to disseminate infor-
mation. While conventionally such biosecurity messages are targeted as political 
rather than technical issues focused on specific crops (Higgins & Dibden, 2011), 
the peri- urban elicits a more general concern from government. In the eyes of these 
agencies, peri- urban landholders represent an unknown and potentially significant 
biosecurity risk factor.

Initial Australian studies on peri- urban landholders added to the conviction that 
these newcomers increased biosecurity risk. These studies identified the challenge 
of communicating with peri- urban landholders due to the fact that little is known 
about their numbers, behaviours, attitudes, knowledge of biosecurity and land use 
practices (Maller et al., 2007). These studies confirmed that the primary focus of 
these landholders was on lifestyle, amenity and environmental factors, not on pri-
mary production (Aslin et al., 2004). The assumption was that people not engaged 
in primary production would not have the appropriate information to manage bios-
ecurity risks effectively. Therefore, there was little to appease the concerns of gov-
ernment agencies, even though the actual levels of biosecurity knowledge within 
this group were unknown.
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A trial biosecurity risk communication was proposed by the relevant govern-
ment agency for the Yass Valley region in New South Wales, Australia (see Gilmour 
et al., 2011). This region is adjacent to the nation’s capital, Canberra, and has expe-
rienced significant demographic change in recent years. Larger landholdings have 
been subdivided into smaller lots. More people live in the region and work in the 
capital city, and there is increased land use diversity including small- scale produc-
tion (e.g. vineyards and alpaca farms) and other ventures that are driven predom-
inantly by lifestyle decisions.

Government agencies have a tendency to rely heavily on scientific advice when 
communicating risk. They are likely to take a top- down approach and work from 
what is effectively an information deficit model, where they assume that the provi-
sion of information alone will address the problem. Government agencies are gen-
erally reluctant to acknowledge scientific uncertainty and they rarely seek to engage 
local people in scoping problems and identifying solutions. Subsequent to this field 
work, research by Linkov et al. (2009) indicates the ongoing importance of bring-
ing together agency decision- makers and stakeholder risk perceptions and behav-
iour for more effective risk management. Gaillard and Mercer (2013) reinforce 
the need for integrative processes that engage with the science; and Lazrus et al. 
(2016) affirm the localised constructions of risk that will inform risk communica-
tion. These three tenets –  sourcing local understanding, acknowledging uncertainty 
and building local meanings to better inform risk communication –  are central to 
empowering risk management approaches.

We had previously developed an approach to risk management that was based 
on stakeholder analysis and mapping –  that is, an approach informed by the above 
ideas. We proposed that this, together with mental models analysis, was a means of 
capturing current knowledge, behaviours, values and beliefs, as well as information 
about communication and other networks. This would provide a useful framework 
for the development of a strategic approach to biosecurity risk communication for 
the peri- urban community in question. We therefore undertook a 12- month study 
to find out who the stakeholders in the issue were, what their networks of communi-
cation and influence were with respect to biosecurity, and the extent of their current 
knowledge and practice around biosecurity. (See Gilmour et al., 2009 for the report 
of this study.) The tools we used for these purposes were stakeholder identification, 
analysis and mapping, and mental models analysis.

The tenets referenced in the preceding text are built on a number of principles 
that informed our approach. First, building effective relations with stakeholders 
and incorporating their knowledge improves decision making and contributes to 
stakeholder acceptance of policy decisions (McDaniels et al., 1999; Wynne, 1996). 
Second, we believed that a consultative process would ensure that local knowledge 
and values would be taken into account and would contribute to the development 
of solutions; and that these solutions would necessarily need to encompass multiple 
layers of biosecurity governance (Higgins et  al., 2016). Finally, we explored the 
assumption that involving people in the process of thinking about biosecurity risk 
would contribute to more effective risk governance outcomes in the longer term. In 
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a similar vein, Bocking (2004) proposes that ‘dealing with risk is best viewed as a 
collective process, in which all interested parties participate in negotiating the def-
inition of a problem, learning more about it and coming up with solutions’ (p. 160).

9.2 Being Sure about Who the Target Audience Is

Our target group was landholders in an area adjacent to Canberra, but we needed 
to be clear about how we were defining these peri- urban landholders. Peri- urban 
landholders are often defined by the size of their landholding. In Australia, these 
have been proposed as either 1– 2 to 100 hectares (Guise & Narducci, 2005; Hollier 
et al., 2004) or 1 to 200 hectares (Maller et al., 2007). Other studies have defined 
members of the peri- urban population according to their lifestyle, values or sources 
of income, and have given them various titles including lifestylers, hobby farmers 
and tree changers. Another Australian study defines the peri- urban area in terms of 
population density, proportion of employment in non- rural industries and propor-
tion of new residents (Houston, 2005).

For the purposes of our study, we adopted a broad definition of peri- urban as 
‘the transitional zone between rural and urban Australia’ (Maller et al., 2007, p. 4) 
and intended to confine our study to landholdings up to a certain size. We were 
dissuaded from this approach at our first stakeholder consultation meeting. Those 
present questioned whether there was any difference between smaller landholders 
and larger commercial producers in terms of knowledge and practices in relation to 
biosecurity. They argued there was a mix of expertise and knowledge across both 
groups. It was agreed that the project would not be limited by landholding size, 
and that all landholding sizes would be investigated within the area of the Yass 
Valley local government area. Based on our consultations, the project study area 
was amended to encompass the whole of the Yass Valley local government area and 
the full spectrum of landholding sizes (Yass Valley council, 2008).

9.3 Methods and Tools

Our methods included stakeholder identification, analysis and mapping, and men-
tal model analysis. These were informed by two stakeholder consultation meetings, 
in- depth interviews with 33 stakeholders and a survey that was distributed to a 
stratified sample of 930 landholders

9.3.1 Step 1. Stakeholder Identification Analysis

Knowing who the stakeholders are in an issue and what the relationships among 
them are can provide valuable information for the development of  an effective 
communication strategy. There may be some organisations or agencies that are 
more trusted than others. There are inevitably some that have better networks 
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than others. As we found in this study, there are some organisations or individ-
ual agents that are unexpectedly important to the issue but had been previously 
disregarded. We used two different forms of  stakeholder mapping to depict the 
information we gathered through our processes of  stakeholder identification, 
analysis of  data from stakeholder interviews and surveys and ongoing stake-
holder consultation.

Tool 1: Stakeholder Identification Map
The first step in our research study was to draw up a list of all the possible agencies 
or individuals that could affect or be affected by biosecurity risk outcomes within 
the Yass Valley local government area. Within the extensive literature on stakehold-
ers, this is the widely accepted definition of stakeholder. (See Gilmour and Beilin, 
2007, for a detailed review of this literature and its application to risk issues.)

By establishing some broad categories of stakeholder (e.g. government agencies, 
community groups, research agencies, industry groups and professional associ-
ations), we were able to start building our list of stakeholders. We consulted local 
websites and talked to local people to ensure that the list included all relevant 
people and organisations. The resulting stakeholder map (see Figure 9.1) was then 
used as a prompt for people in subsequent interviews. As the research progressed, 
there were further additions and deletions from the map.

Figure 9.1. Map of stakeholders relevant to peri- urban landholders and biosecurity risk in the 
Yass LGA.
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Tool 2: Stakeholder Interest/ Influence Map
Our next step was to identify agencies that were trusted by the landholders and 
therefore more likely to be able to influence outcomes. We also sought to under-
stand the relative interest of different agencies in biosecurity risk management in 
the area. This mapping process is particularly useful with respect to risk commu-
nication issues because it provides insights into organisations and individuals that, 
even though they may not have high levels of interest in biosecurity risk issues, 
are widely trusted within the community and therefore could be usefully co- opted 
as participants in the development and implementation of a risk communication 
strategy.

At our first stakeholder consultation meeting, we invited those present to reflect 
on these two questions. After some discussion, they decided that the answers to 
these questions would be different depending on whether we were talking about 
weed risk or animal disease risk. We therefore determined that we would need to 
develop two maps showing the relative interest and influence of the key stakehold-
ers: one for weeds and one for animal diseases. We started to build these maps with 
the stakeholders at that first meeting and then used the data from interviews and 
surveys to complete them.

We defined interest from the point of view of the agency, that is, the extent to 
which biosecurity risk fell within its remit. Influence was defined from the point 
of view of the landowners and was based on the trust that landowners had in the 
agency, the agency’s perceived effectiveness and the regularity of landowner con-
tacts with it (Figure 9.2).

The final consultation meeting with stakeholders was an opportunity to triangu-
late the grids. These discussions highlighted the complexity and the multi- faceted 
nature of interactions within communities. The position of the key national agencies 
responsible for biosecurity risk management was firmly endorsed. Local people did 
not see these agencies as having a role at the local level and therefore these agencies 
were not seen to have any capacity to influence outcomes locally. The capacity of 
the national agencies to influence would always be through other agencies. There 
was general agreement about the role of the key local government agencies, the 
Department of Primary Industry and the Rural Lands Protection Board. The latter, 
however, was about to evolve into a different organisation and there was some con-
cern about its ongoing capacity to service the region. The discussion also confirmed 
the role of pony clubs and adult riding clubs in an area with a high percentage of 
horse ownership. Their role in the recent equine influenza outbreak had been signifi-
cant and they enjoyed high levels of trust and extensive networks within the com-
munity. Rural suppliers were also confirmed as trusted agents within the community. 
Although the New South Wales Farmers’ Association was acknowledged as having 
a significant level of interest in minimising animal disease risk, it was seen as having 
limited influence because its support in the area has declined over the years, largely 
as a result of its role in the outbreak of ovine Johne’s disease some years earlier.

As organisations change, or in response to their interactions with the community, 
their position on this map will also change. Stakeholder maps need to be reviewed 
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on a regular basis if  they are to continue to provide useful information for risk 
managers and communicators. Importantly, stakeholder beliefs as part of cognitive 
mapping processes may frequently give rise to actions. Making this as transparent 
as possible for managers can elucidate and inform planning processes (Wood et al., 
2012) embedding stakeholder and manager needs.

9.3.2 Step 2. Mental Models Analysis

Mental models are useful for eliciting people’s intuitive knowledge or understand-
ing of a specific risk (Brummette, 2013; Fischhoff et al., 2002; Morgan et al., 2002). 
Mental models have been defined as ‘the mechanisms whereby humans are able to 
generate descriptions of system purpose and form, explanations of system function-
ing and observed states, and predictions of future system states’ (Rouse & Morris 
1986, p. 351). If  these mental models do not encompass the potential seriousness of 
a risk or a complete understanding of exposure pathways, they can lead to errone-
ous conclusions, even in situations where people are otherwise well- informed about 
an issue (Morgan et al., 2002).

It has been suggested that mental models analysis starts from a knowledge deficit 
framework where an expert mental model is presented against which lay knowledge 

Figure 9.2. Stakeholder influence/ interest grid.
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is measured. Usually, the development of a mental model representation of a pro-
cess will start from an expert or influence diagram based on the knowledge of 
experts. Other knowledge is added to this as it emerges and mental models can also 
incorporate values and beliefs to create a comprehensive picture of the complex-
ity of people’s perceptions of the salient features of a particular issue. In this way, 
mental models can assist in integrating the fact that stakeholders may have different 
values and concerns about risks from the experts, as well as differences in their tech-
nical understanding of a risk (Shepherd, 2008).

Mental models can also address some of the issues around language and termin-
ology. The importance of using lay language in risk communication is well estab-
lished (Abel et al., 1998; Daly & Wade, 2013; Finucane & Holup, 2006). Mental 
models analysis can help identify where there is the potential for miscommunica-
tion and misunderstanding due to the language or terminology being used. An 
example of this, as we found, is the use of the word biosecurity; the continuing 
recognition that multiple interpretations of the terminology are likely to exist and 
that this may give rise to inherent tensions (Beilin & Bohnet, 2015) is a critical step 
in the definition of stakeholders and their inclusion. Clearly defining stakeholders 
can increase the possibility of engagement but does not guarantee the quality of 
such engagement in terms of effective responses (Marzano et al., 2015). Therefore, 
we emphasise again that the more transparent the mental models are, checked with 
stakeholders and end- users, the better the likelihood of mutual understanding 
among participants and decision- making agencies.

Tool 3: Expert models or pathways diagrams
We created two separate pathways diagrams: one for weeds and one for animal 
diseases. Through discussions with specialists and people working with these issues 
in the Yass Valley, we developed an understanding of the types of biosecurity and 
land management issues present in the area as well as potential biosecurity risks. 
We asked people to list the top five endemic and exotic animal diseases and weeds 
that exist or pose a potential threat to the area and then reviewed the literature on 
those to develop the initial diagrams. In building these diagrams, we used the widely 
accepted conceptual risk pathway framework of prevention, point of entry detec-
tion, establishment, spread, intervention or management (Maller et al., 2007).

The resulting diagrams were reviewed by two experts, one specialising in veter-
inary pathology and the other specialising in plant physiology and ecology. The 
outcome for animal disease is shown in Figure 9.3.

These diagrams were then presented to a workshop of specialists in risk analysis 
and modifications were made to reflect feedback from these professionals. A num-
ber of the factors affecting establishment, such as detectability of the disease, wea-
ther conditions and the disease incubation period, were not controllable. We needed 
to understand people’s mental models around the controllable factors. We therefore 
decided to focus the diagrams on entry, spread and management variables. We also 
included attitude and awareness variables that were based on the literature because 
we expected these would influence people’s management actions. This iterative 
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process was important because it meant that we were able to focus our subsequent 
data collection on the key variables that would be relevant to biosecurity risk com-
munication and management.

Tool 4: Semi- structured Interviews to Elicit Information about Local  
Knowledge, Behaviours, Beliefs and Attitudes
These diagrams formed the basis for developing interview questions on biosecurity 
knowledge, awareness and practices. We also included some demographic ques-
tions to assist with comparing our data with other peri- urban studies (see Guise &  
Narducci, 2005; Hollier et al., 2004). Importantly, the survey included questions 
relating to sources of information and networks to help us understand the levels of 
influence of different agencies within the community.

Thirty- three semi- structured ethnographic interviews were conducted by one 
researcher who was locally based for the period of this field work. The interview-
ees were selected from five different landholding sizes:  0– 2 hectares, 2– 40 hec-
tares, 40– 100 hectares, 100– 500 hectares and more than 500 hectares. These were 
determined after consultation with key stakeholders in the Yass Valley and after 
referring to a map of holding areas by hectares provided by local government. 
Interviews were also held with a selection of people representing key stakeholder 

Figure 9.3. Expert model or pathways diagram for animal diseases.
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groups. Interviewees were identified through a number of processes including web-
site searches, snowball sampling, cold sampling, attendance at events and an article 
placed in the local council newsletter.

The semi- structured interviews averaged about one hour and were held at partici-
pants’ properties, offices or local meeting places. The interviews focused on elicit-
ing respondents’ insights into, and awareness of, biosecurity, and also established 
their practices, sources of information and communication networks. Immediately 
following the interviews, the researcher recorded her own commentary and impres-
sions of the interview. All interviews were recorded and transcribed soon after, as 
were the researcher’s comments.

The locally based researcher also visited relevant businesses including local 
shops, nurseries, real estate agents, equipment hire companies, newsagencies and an 
information service centre to gain further insight into the area. Observations from 
these visits were also recorded and transcribed by the researcher.

The responses were then analysed against the expert model. Key points from 
the interview data were abstracted and added to the diagrams to represent the full 
extent of the known and expected pathways associated with the particular risks.

Tool 5: Survey
The survey instrument was based on the semi- structured interviews and influence 
diagrams. The objective was to understand how well concepts are understood, 
whether there are misconceptions, and if  so, whether they are widely shared. Ten 
pilot surveys were sent to landholders and key stakeholders in the region asking for 
feedback about completion time, ease of reading and comprehension. Six of these 
were returned completed and with comments, prompting some further amendments 
to the survey instrument. The final survey instrument included 33 questions cover-
ing demographic data, activity on property, biosecurity knowledge and networks, 
travel patterns, and communication. The survey took 20 to 30 minutes to complete 
and the majority of the questions were closed questions. Surveys were sent to a 
stratified sample of 930 people across the landholding size groups (Table 9.1). The 
sample size per group was determined on the basis of statistical advice to allow for 

Table 9.1. Survey distribution and return rate

Yass Valley local 
government area  
(1 hectare and over)

Surveys sent Surveys returned Surveys returned as 
% of surveys sent

0– 2 hectares 519 190 18 9

2– 40 hectares 1465 204 36 18

40– 100 hectares 661 196 28 14

100– 500 hectares 553 191 38 20

Over 500 hectares 150 150 23 15

Overall 3,350 930 144 15
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comparability of responses between landholding sizes. A follow- up card was sent 
four weeks later to the same people and a reminder announcement was made on 
Yass community radio. The overall return rate was 15%.

Tool 6: Data Analysis
All survey data were entered and analysed using the statistical package SPSS ver-
sion 17.0. Not all respondents completed the whole survey, choosing to skip some 
questions. Chi- square tests, using the conventionally accepted 0.05 as the signifi-
cance level, were applied to a number of the comparisons to identify any significant 
statistical relationships between responses and landholding size.

9.3.3 Step 3. Identifying the Key Data from the Interviews and Survey Relevant to 
People’s Attitudes to, Knowledge of and Behaviour with Respect to Biosecurity

Identifying What People Know about Biosecurity
We were able to determine that many landholders were not clear about the mean-
ing of biosecurity, which reflects the findings of previous researchers (Hollier et al., 
2006). Only 22% said they were familiar with the term; 62% said they were some-
what familiar and 16% indicated they were not familiar. Nonetheless, respondents 
generally had a comprehensive understanding of the factors contributing to the 
spread of pests and diseases, indicating that they had practical knowledge, but they 
did not necessarily see how this related to a broader understanding of biosecurity. 
All the pathways identified as important by the experts were acknowledged as hav-
ing either some or significant impact by 60% or more of respondents. Other peo-
ple’s practices, lack of information, people not seeing disease and weed spread as a 
risk, and people’s failure to recognise diseases or weeds were all widely recognised 
as contributing factors. There were, however, some factors that had much lower rec-
ognition, with between 20% and 40% of people saying that they did not see water, 
movement of people, movement of equipment and machinery and ineffective quar-
antine practices as having any impact.

Across the different landholding sizes there was very little difference in people’s 
understandings of the factors contributing to the spread of weed and animal dis-
ease (Figure 9.4).

There were some gaps in knowledge. Respondents had greater knowledge of 
weeds and weed pathways than of animal diseases. More than half  of the respond-
ents (58%) were able to name five or more weeds, with only 8% leaving the question 
blank. In contrast, only 13% of respondents were able to list five or more animal 
diseases that they thought were or could become significant in the area, and 34% 
left the question blank or indicated they did not know. Those on larger landhold-
ings had better knowledge of animal diseases than those on smaller landholdings.

Identifying People’s Biosecurity Practices
A number of comments from interviews suggested that, even if  people are aware 
of the factors contributing to spread of pests and diseases, it cannot necessarily be 
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Figure 9.4. Awareness of significance of factors contributing to spread of pest and disease.
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assumed that they will act on this knowledge. This is not an uncommon finding, as 
indicted by the study of Sayers et al. (2014) of dairy farm veterinarians and advi-
sors. In our research, one interviewee commented that he had a couple of clients 
who had been running farms for 50 years but refused to drench (the use of an oral 
dose of medicine, particularly for sheep against worms). Another commented that 
complacency leads to people not complying with required procedures. Nonetheless, 
with the exception of hygiene practices (washing shoes, vehicles and equipment), 
people responded that they regularly undertook the appropriate behaviours to min-
imise the spread of weeds and animal diseases, including maintaining their fences, 
holding new stock in separate paddocks, vaccinating stock and monitoring for and 
spraying weeds (see Figure 9.5).

Despite overall low level of knowledge of animal diseases, the majority (82%) of 
respondents said they would ask a specialist if  they noticed unusual symptoms in 
one of their animals.

Providing Insights into Landholder Attitudes and Motivations
By asking about people’s reasons for managing weeds on their property, we were 
able to use this as a proxy for their motivations. The most common responses were 
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Figure 9.5. Steps people take to keep their land free from pests and diseases.
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good land management (89%), pasture protection (61%) and responsibility to 
neighbours (35%).

9.3.4 Step 5. Applying the Findings to the Mental Model Diagrams

The findings from the interviews and survey were then correlated with the mental 
model diagrams, to identify areas where awareness and practice suggested there 
was reason for concern. Figure 9.6 represents the combined data from the inter-
views and surveys relating to people’s knowledge, actions and general awareness of 
the biosecurity risk posed by animal diseases. It shows that there is generally poor 
awareness of animal diseases and that there is reason for concern about people’s 
attitudes to the risk of animal disease. It also shows the lack of knowledge around 
some specific pathways and the fact that precautionary practices are not followed 
rigorously.

A similar diagram with respect to weeds indicated a lack of knowledge around 
certain pathways and failure to implement the associated management practices. 
Overall awareness and understanding of weed risk was, however, much higher.

The diagrams were presented at the final stakeholder meeting as a form of tri-
angulation to clarify findings, identify any responses that seemed improbable, 
reinforce positive practices and encourage local engagement. Initially, the mod-
els required some decoding before participants felt confident to engage with the 

Figure 9.6. Animal diseases pathway diagram indicating landholder’s knowledge, awareness and 
practice.

010
19:38:06, subject to the Cambridge Core terms of use,



9.4  Implications for a Communication Strategy 219

219

information they contained. However, after working through the models in detail, 
participants found them to be a useful way of representing the data.

9.4 Implications for a Communication Strategy

9.4.1 Getting the Message Right

Biosecurity is not a term with which people feel comfortable. We suggest that using 
the word biosecurity in any form of communication will be ineffective without 
some discussion of its meaning. Overall, landholders in this region had good know-
ledge of the possible pathways for the incursion and spread of weeds and animal 
diseases, and based on this knowledge, good management practices are widely fol-
lowed. Policymakers and communications experts need to note that this is not a 
high priority area for any form of top- down generic biosecurity risk message, and 
any communication needs to relate to specific practices or specific risks. There was 
no need for a message that was directed specifically towards smaller landholders. 
With few exceptions, the data did not indicate any major differences in awareness, 
knowledge or practice between large and smaller landholders.

The lack of  knowledge about animal diseases could represent a threat in the 
region. However, another finding from the survey –  that the majority of  landhold-
ers would seek expert advice if  they noticed any unusual symptoms in an animal –  
suggests that the threat of  animal disease is not seen as an active management 
issue for landholders. If  a disease occurs then it becomes a priority, but not other-
wise. Landholding size did make a difference in terms of  knowledge of  animal 
diseases, with fewer than 20% of  people on smaller landholdings (0– 40 hectares) 
able to name three or more animal diseases compared with 65% of  people on 
landholdings of  more than 500 hectares. We noted that the traditional channels 
for communication about animal diseases are directed primarily to commercial 
farmers. This suggests that, with respect to animal diseases, communication needs 
to be directed through a diverse set of  channels to reach the non- commercial scale 
landholders.

The lack of awareness of the significance of the risks posed by individual path-
ways  –  specifically the movement of people, vehicles and equipment and hence 
the importance of hygiene practices –  may indicate the need for specific attention, 
particularly in circumstances of a disease outbreak. Other studies have found that 
people’s mental models of natural phenomena are better developed where the phys-
ical processes are more immediately comprehensible. Lazrus et  al. (2016) noted 
the diversity of understanding among the 26 mental model interviews about flash 
flooding in Colorado. Wagner (2007) found that people had more comprehensive 
mental models of flash floods than of landslides. This research revealed that people 
were less aware of the risks posed by water and people movement. Alternatively, 
people may simply have made a heuristic assessment that these pathways were in 
fact of much less significance than others.
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If  responsible agencies want to address the risks posed by these pathways, they 
need to address the beliefs, rather than the behaviours that stem from the beliefs. 
Fischhoff et al. (2003) found that people who hold strongly to erroneous beliefs 
are not likely to seek advice before making a decision, with the result that nei-
ther the belief  nor the practice is challenged. If  you don’t think the risk posed by 
people movement is high, you will be unlikely to clean your footwear and clothing. 
The communication therefore needs to be directed at changing people’s knowledge 
about pathways for them to be motivated to change their practice.

9.4.2 Appealing to People’s Motivations and Values

Communication needs to appeal to people’s values and motivations; and Liu and 
Cook (2016) note the importance of establishing how best to represent diverse 
values through formal and structured decision analysis of the issues. Pannell et al. 
(2006) found that landholders’ adoption of practices depends on their expectation 
that it will allow them to better achieve their goals. This study found that land-
holders are motivated by considerations of good land management, pasture pro-
tection and good neighbourliness (with respect to weed management). Landholders 
were also motivated by economic considerations because it is cheaper to deal with 
weeds before they get out of control. Where information assists people to achieve 
their goals, they are more likely to implement recommended practices. Biosecurity 
risk communication therefore needs to make the connection between biosecurity 
risk and good farm management, stock health (particularly for those on smaller 
landholdings) and good neighbourliness, and address concerns about cost and 
cost- saving. While standardising public practices can improve risk communication, 
messages must still be local and particular enough to be useful for all, including dis-
advantaged populations (Dickmann et al., 2016), whether this disadvantage is due 
to socio- economic, distance, isolation or other causes. Biosecurity risk communica-
tion needs to present a whole of landscape solution to the issue rather than focus-
ing solely on the actions of individual landholders. Finally, any biosecurity risk 
message needs to address real risks and tangible outcomes, not some potential risk 
that people cannot see as important in the day- to- day heuristic triage they conduct 
with respect to what they can do and what they do not have time (or money) to do.

9.4.3 Working Locally

Importantly, any risk communication strategy needs to be developed in consult-
ation with local stakeholders and involve the different networks operating within 
the region to ensure that it reaches all landholders. There is a diversity of formal 
and informal networks, some of which have already been involved in different ways. 
As we have seen, the Pony Club, for example, played an important role in com-
municating to local people at the time of the equine influenza outbreak. Other 
local organisations are actively involved in natural resource management commu-
nication with varying focus on biosecurity risk issues. Other organisations, such as 
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rural suppliers, contractors, garden clubs and nurseries, are not involved in natural 
resource management communication. A comprehensive biosecurity risk commu-
nication strategy should look at how it can involve organisations and agencies that 
enjoy the confidence and trust of the local community and are, as set out in the 
interest/ influence grid, seen by the local stakeholders as having the capacity to influ-
ence the issue.

9.5 Conclusion

This chapter describes an investigation that started from the premise of an assumed 
biosecurity risk communication need. A series of tools were developed using local 
and expert knowledge. These elicited what landholders know, believe and do with 
respect to biosecurity, who they trust within the community and which organisa-
tions they see as being able to influence the outcome. A continuing process of stake-
holder consultation was built into the study and all findings were verified with a 
stakeholder consultative group.

The mental models analysis proved to be an effective way of capturing people’s 
knowledge, attitudes and practices with respect to biosecurity risk. It allowed us 
to highlight areas where there are gaps in knowledge; areas where there are differ-
ences between people on different landholding sizes, indicating the need for dif-
ferent communication strategies; and areas where changing attitudes and beliefs 
may be critical to changing behaviour. The mental models diagrams proved to be 
effective tools for communicating and engaging with stakeholders on these issues. 
To the responsible agencies, they provided some level of comfort that, although 
there were some specific gaps in knowledge and practice, overall understanding of 
risk pathways was good and there was fairly widespread compliance with good risk 
management practice.

The investigation revealed that the initial assumption that smaller- scale peri- urban 
landholders posed a greater biosecurity risk than traditional larger- scale commer-
cial landowners was unfounded. It also demonstrated a framework for any future 
risk communication that incorporates expert opinion, draws on local knowledge, 
addresses landholder motivations and values and involves multiple local networks.

Risk communication needs to be undertaken within an interdisciplinary frame-
work that takes into consideration scientific knowledge, cultural perceptions and 
norms, together with stakeholder (or lay) knowledge, beliefs and preferences. 
Information about what people already know and understand, what their attitudes 
and values are with regard to a potential risk, whether there are people within 
the community whose opinions and actions they trust above others and whether 
there are issues that are of major concern to them that may or may not affect their 
response to a risk situation are all critical to the development of an effective stake-
holder communication process.

The tools we have described allowed us to generate detailed information about 
the Yass Valley with respect to biosecurity risk. These tools could easily be used by 
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this or any other local community, with the help of a facilitator, to address ongoing 
biosecurity risk management issues while recognising the need for, and the dynamic 
nature of, adaptive management processes.

Box 9.1 Stakeholder Interest and Influence Mapping to Inform Risk 
Communication for Improved Biosecurity among Small- scale Pig Producers in 
Australia

This box presents the finding of a separate study that applied the methodolo-
gies of stakeholder mapping to another biosecurity risk communication issue in 
Australia. Recent studies among small- scale pig producers in Australia suggest 
that this sector could pose a biosecurity risk to the commercial livestock indus-
try due, for example, to being less informed about potential risks for disease 
introduction and spread and less engaged with industry and government agen-
cies (Hernández- Jover et  al., 2012a; Schembri et  al., 2006). Producers’ active 
engagement and participation within the pig industry could be enhanced with 
better extension and communication networks among producers and industry 
and government stakeholders. However, a better understanding of these pro-
ducers’ biosecurity practices, current networks, relationships with stakeholders 
and what the influences and interests of both producers and stakeholders are, is 
essential for improving communication effectiveness and subsequently the man-
agement of the potential biosecurity risks.

On- farm biosecurity and health practices of pig producers in Australia have 
been previously investigated (Hernández- Jover et  al., 2012b; Schembri, 2009; 
Schembri et al., 2014, 2015) and a summary of the main findings of these stud-
ies is presented in Table 1. As suggested by these studies, on- farm biosecurity 
practices and disease knowledge and reporting behaviour, especially among 
small- scale pig producers, could be improved. Some of the barriers to disease 
reporting identified by Schembri (2009) included the economic impact of the 
disease, over- reaction from the media and government agencies, the fear of 
negative consequences and the previous negative experiences with authorities.

Evaluation of the Interest and Influence of Stakeholders

Two influence/ interest maps were created to investigate industry and govern-
ment stakeholders’ perceptions of their influence and interest on on- farm 
management practices, and disease reporting attitudes. On- farm management 
encompasses a range of producers’ practices related to biosecurity, including 
general husbandry, health management, feeding practices and biosecurity meas-
ures such as isolation of new animals and footwear and clothing precautions. 
Producer reporting refers to the mandatory requirement for all notifiable dis-
eases to be reported to the relevant authority.
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Box 9.1, Table 1. A review of on- farm practices related to biosecurity of small and large- scale pig producers in 
Australia reported in previous studies

Small- scale pig producers (<100 sows)

(Schembri et al, 2014, 2015; Hernández- Jover 
et al., 2012a)

Large- scale pig producers (>100 sows)

(Hernández- Jover et al., 2012b)  
 

Practice Producers applying 
the practice, n (%)

Practice Producers applying 
the practice, n (%)

On- farm biosecurity 
practices

On- farm biosecurity 
practices

Footwear precautions in 
piggery

49 (50.5) I provide visitors with 
overalls and/ or boots.

89 (84.0)

Overalls provided for 
visitors/ staff

12 (12.4) I do not let any visitor 
inspect my pigs.

39 (36.8)

Visitors allowed in 
piggery

68 (70.1) I have a controlled entry 
preventing visitors 
contacting my pigs.

85 (84.9)

Pig isolation practices I keep records of visitors 
to my pig farm.

80 (75.5)

 Nothing 38 (39.2) I display quarantine 
sings for visitors at my 
farm entry.

80 (80.2)

 >30 days and >100 m 
isolation

3 (3.1) I allow my staff  to 
contact pigs other 
than my own.

9 (8.5)

I record movements of 
pigs on and off  my 
farm.

93 (87.7)

Herd health management Herd health management

Keeping health records 49 (50.5) I inspect my herd 
regularly for unusual 
signs of disease.

96 (90.6)

Exotic Animal Disease 
training

5 (5.2) I regularly consult my vet 
or pig health specialist.

95 (89.6)

Contact a veterinarian in 
the last 12 months

16 (16.5)

Disease knowledge Disease knowledge and 
reporting

Foot- and- mouth disease 95 (97.9) I train workers in 
emergency disease 
recognition.

68 (64.2)

Erysipelas 77 (79.4)

Ringworm 67 (69.1)

(continued)
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Small- scale Pig Producers’ Perceptions of Influence of Stakeholders

In addition, the influence that stakeholders had on producers’ practices, as per-
ceived by producers, was estimated from information on communication net-
works and trusted sources of information on small- scale pig producers gathered 
during previous studies (Schembri, 2009). This information included perceived 
influence on their on- farm management and disease reporting practices.

Key Findings
Figure A shows the industry and government stakeholders’ self- rating interest/ 
influence ranking for (a) on- farm management practices and (b) disease report-
ing. Figure B represents the influence of stakeholders as perceived by small- scale 
pig producers.

The self- ranking interest/ influence of stakeholders on on- farm manage-
ment practices and disease reporting suggests that veterinarians, the Australian 
Quarantine Inspection Service, the State Food Authority and other producers 

Disease reporting

Would you report foot- 
and- mouth disease?

93 (95.9)

Seek veterinary advice 
if  unusual signs of 
disease

83 (85.6)

Feeding practices

Home table scraps 14 (14.4)

Retail waste food (café, 
shops)

5 (5.2)

Adapted with permission from Hernández- Jover, M., Gilmour, J., Schembri, N. et al. (2012a). Use of 
stakeholder analysis to develop risk communication and extension strategies for improved biosecu-
rity among small- scale pig producers. Preventive Veterinary Medicine, 104(3– 4), 258– 270; Hernández- 
Jover, M., Taylor, M., Holyoake, P. & Dhand, N. (2012b). Pig producers' perceptions of the influenza 
pandemic H1N1/ 09 outbreak and its effect on their biosecurity practices in Australia. Preventive 
Veterinary Medicine, 106(3– 4), 284– 294; Schembri, N. (2009). Biosecurity practices of producers trad-
ing pigs at saleyards. PhD thesis. Farm Animal and Veterinary Public Health, University of Sydney, 
Camden, Australia; and Schembri, N., Hernandez- Jover, M., Toribio, J.- A. L.  M. L.  & Holyoake, 
P. K. (2013). Demographic and production practices of pig producers trading at saleyards in eastern 
Australia. Australian Veterinary Journal, 91(12), 507– 516.

Small- scale pig producers (<100 sows)

(Schembri et al, 2014, 2015; Hernández- Jover 
et al., 2012a)

Large- scale pig producers (>100 sows)

(Hernández- Jover et al., 2012b)  
 

Practice Producers applying 
the practice, n (%)

Practice Producers applying 
the practice, n (%)

Box 9.1, Table 1 continued
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4
Animal Health

Australia Australian
Pork Limited
Researchers

Veterinarians
AQIS

Animal Health 
Australia
DAFWA

DAFF
DEEDI
LHPA
PIRSA

Researchers

Other 
producers

Veterinarians

3

DAFF
DPI NSW

DAFF
Food 

authority
Other 

producers
DPI NSW

Food 
authority

AQIS
saleyards

2
PIRSA

Abattoirs
DEEDI

Saleyards/ 
livestock 
agents

Australian
Pork Limited

Abattoirs

1

1 2 3 4 1 2 3 4

Influence
On-farm practices

Influence
Disease reporting

DPI Victoria LHPA DPI Victoria

Box 9.1, Figure A Influence/ interest map representing the self- ranking influence and interest of 
stakeholders on (a) producer on- farm practices and (b) disease reporting behaviour 
of small- scale pig producers (< 100 sows) in Australia. Influence level is categorised 
as: 1, no influence; 2, some influence; 3, significant influence; and 4, high influence. 
Interest level is categorised as: 1, no interest; 2, some interest; 3, significant interest; 
and 4, high interest. (Adapted from Hernández- Jover et al., 2012a).
Abbreviations: AQIS, Australian Quarantine Inspection Service; DAFF, Department 
of Agriculture, Fisheries and Forestry; DEEDI, Department of Employment, 
Economic Development and Innovation Queensland; DPI NSW, Department 
of Primary Industries New South Wales; DPI Victoria, Department of Primary 
Industries Victoria; LHPA, Livestock Health and Pest Authorities; PIRSA, Primary 
Industries and Resources South Australia

In
flu

en
ce

4 Veterinarians 
Other producers 

Family 

3 Livestock agents 
Rural suppliers 

Abattoirs 
Buyers 

2 State Department of Primary Industries 
Australian Pork Limited 

1 Animal Health Australia 
Department of Agriculture, Fisheries and Forestry 

On-farm practices 

Box 9.1, Figure B Influence of stakeholders on on- farm practices, as perceived by Australian small- scale 
pig producers (<100 sows). Influence level is categorised as: 1, no influence; 2, some 
influence; 3, significant influence; and 4, high influence.
(Adapted from Hernández- Jover et al., 2012a).
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10 Cost– Benefit Analysis for 
Biosecurity Decisions
Tom Kompas, Tuong Nhu Che, Pham Van Ha and Hoang Long Chu

10.1 Introduction

Economists normally praise the benefits of international and regional trade. But 
trade it is not an unqualified good. Rapid increases in trade and tourism through-
out the world have increased the likelihood of the incursion, establishment and 
spread of exotic diseases and pests. These can do great harm and can be devastating 
to local industry, the environment and the health of animals, plants and humans. 
Foot- and- mouth disease (FMD), severe acute respiratory syndrome (SARS), 
bovine spongiform encephalopathy disease and avian influenza are recent headline 
concerns, but there are hundreds of other key pests and diseases that can cause 
substantial damages. Traditional approaches to prevent these threats have focused 
on pre- border, border and post- border quarantine measures; local surveillance pro-
grammes; and eradication and containment campaigns when a pest or disease has 
already been detected in the environment. In many cases, these biosecurity meas-
ures are undertaken by local, state and national governments. In other cases, private 
industry and volunteer groups provide effective measures against invasive threats.

All of this activity generates at least a few essential economic questions. In par-
ticular, how much should be spent, or what costs for biosecurity should be incurred, 
to protect the environment as well as animal, plant and human health? How should 
resources be allocated across the large number of threats? Who of industry, taxpay-
ers, government or consumers should pay for this activity? How should expenditure 
be allocated across biosecurity measures? How much should be spent at the border? 
How much for local surveillance to ensure the early detection of an invasive threat? 
Should an invasive threat be eradicated or contained, or should it simply be ignored 
and potentially treated at a later date or not treated at all?

Most of the work on biosecurity by economists has, by far, focused on relatively 
standard cost– benefit analyses (CBA) of eradication and containment campaigns. 
With the identification of an invasive threat, an economist is often asked to evaluate 
the relative costs and benefits of a control measure and to form an assessment of 
the cost- effectiveness of various actions. When ratios of benefits to costs are greater 
than one, action is usually undertaken, subject to budget constraints or available 
resources.

Not until recently has more elaborate work been done on CBA for optimal border 
quarantine and surveillance measures, and much less has been done on allocating 
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scarce resources across different biosecurity measures and invasive threats. Along 
with highlighting some problems and establishing basic principles for the use of 
CBA in biosecurity measures, the purpose of this chapter is to describe recent 
extensions to standard CBA approaches to the economics of biosecurity and pro-
vide a better understanding of how economics can assist in answering some of the 
essential questions surrounding biosecurity measures.

The main sections of this chapter focus on the principles for CBA in biosecurity 
as well as economically justifiable approaches to containment, eradication, optimal 
surveillance and border quarantine measures. Practical case studies are included to 
provide a set of simple examples of how economists approach CBA for biosecurity. 
Although these case studies deal with specific diseases, the concepts are equally 
applicable to any pest or pathogen.

10.2 Problems and Principles for CBA in Biosecurity Measures

Biosecurity is defined as measures to reduce the risk of disease incursion and 
spread of an invasive species, one that affects the environment or the well- being of 
humans, plants or animals. Consequently, CBA in biosecurity focuses on the costs 
and benefits of implementing these measures. In other words, a CBA exercise will 
compare the cost of one or a combination of these measures with the avoided losses 
that would have occurred if  the biosecurity measures were not implemented. Costs 
and benefits, all properly discounted, are simply compared to determine whether it 
is economically rational to take a control action.

The application of CBA in biosecurity faces several key challenges. First, the ben-
efits of biosecurity measures often cannot be easily measured or measured directly. 
As a result, simulation methods and choice experiments must often be used. These 
are complicated procedures and are not easy to implement (but see Chapter 11). 
Second, biosecurity measures applied in one sector can influence other sectors of 
an economy, so that total costs and total benefits are rarely (if  ever) comprehen-
sively evaluated. For example, the loss caused by an animal disease outbreak can 
be much greater than simply multiplying the average value of an infected animal 
by the quantity infected because the disease outbreak also has an impact on other 
sectors of the economy (e.g. food suppliers, domestic consumers, exporters and so 
on). Some authors, such as Gohin and Rault (2013), Keogh- Brown et al. (2009), 
Smith et al. (2011) and Wittwer et al. (2005), address this issue with computable 
general equilibrium models, but most of the usual CBA work is done in a simple 
sector- specific partial equilibrium framework.

The third challenge is the difficulty in measuring the benefits of biosecurity meas-
ures relating to a human disease or the environment. For human diseases, some 
authors use the concept of quality- adjusted life years (e.g. Prieto & Sacristan, 2003), 
but the monetary value of a quality- adjusted life year is still under intense debate 
(Nord et al., 1999). Regarding the environment, it is usually difficult (if  not impos-
sible) to obtain an exact monetary measure for the environmental services saved 
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by a biosecurity measure, simply because there is no market price for them. Choice 
experiment techniques have been used to provide statistical estimates of these 
values (e.g. Choi et al., 2010 or Wang et al., 2007), but the high cost of this kind of 
research along with its inherent econometric difficulties are still key obstacles.

There are 10 basic or general principles for implementing a CBA exercise in 
biosecurity. These are important and not always followed. First, the measure of 
benefits should be calculated from all known avoided losses from the biosecurity 
measure. Avoided losses, depending on context, may include losses to plant, ani-
mal and human health; damage to the environment; losses from trade bans that 
often accompany a disease or pest incursion; and spillover effects to other indus-
tries and areas.

Second, the measure of benefits must be conditional on both an area and density 
spread model for the disease or pest and the specific biosecurity actions taken (and 
their likely effects). A proper CBA for containment or eradication measures avoided 
losses marginally at each point in time and relative to the time- dependent effects of 
the biosecurity measure, and not as the simple difference between the disease- free 
state and the total potential avoided damages assuming maximum saturation of the 
pest or disease in the environment. Avoided damages and the costs of the campaign 
have to be evaluated and discounted at each relevant point in time. The further for-
ward in time the avoided losses and costs, the more heavily discounted and smaller 
they are in terms of present value.

Third, the measure of cost should include the full range of specific containment 
or eradication actions (e.g. sprays, vaccinations, screening, inspections, blood tests, 
public awareness campaigns and so on). Fourth, because prices and costs used to 
measure avoided losses and the cost of a biosecurity action may vary over time (e.g. 
an outbreak of an animal disease can affect the price of meat and the resulting 
value of the animal over time) and by region, these values must also be measured 
as time dependent. Fifth, where dollar amounts of costs and benefits cannot be 
measured by market values, non- market valuations should be used wherever pos-
sible. Examples of these are contingent value estimates, hedonic pricing and choice 
modelling exercises.

Sixth, because streams of costs and benefits vary over time and potentially occur 
at different points in time, all dollar amounts must be discounted to the present. 
Because a dollar today is worth more tomorrow if  it is invested and given a bank 
rate of return, a dollar tomorrow is worth less today given the same rate of return. 
Seventh, the discount rate is typically the inflation- adjusted real rate of return, the 
Treasury bill rate or bank rate (i.e. the common or non- risk adjusted real rate of 
return). For environmental assets it is not uncommon to use lower or time- con-
tingent discount rates, or rates that decline through time (see Pearce et al., 2006). 
Eighth, the time horizon for discounting is normally contingent on the full period 
of time over which damages occur or on a point in time where the present value of 
future benefits or costs is zero.

Ninth, the present value of all benefits and costs should reflect likely outcomes 
based on given or estimated probability distributions for key parameter values. 
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Calculations should account for the variance in the spread rate along with the 
variance in the estimated values of costs, prices and measured avoided losses. The 
resulting CBA should report a range of potential values and a probability distribu-
tion for costs and benefits. Finally, sensitivity analysis of parameter values should 
be reported to determine their relative importance. In some cases, the analysis will 
be especially sensitive to the discount rate, the probability of entry and spread 
and various cost and price assumptions on the potential damages and costs of the 
campaign.

10.3 Eradication and Containment

10.3.1 Control Strategies and Associated Economic Components

Once a disease or a pest is confirmed to be present in an area, there are two basic 
economic strategies for dealing with it: eradication and doing nothing. A combin-
ation of these two options is containment (Cacho et al., 2008), which is to eradicate 
a sub- area and keep the disease inside the remaining area, which is often referred to 
as a containment zone. Because the benefit of doing something is the avoided losses 
that would have occurred from a potential disease spread, spread rates are always 
a key variable in a CBA exercise of a control measure. A rule- of- thumb is that if  
the spread rate is larger than the discount (or interest) rate, then the net benefit of 
eradication is almost always positive (Harris et al., 2001).

The cost of an eradication programme normally includes (1) the cost of actual 
removal (or slaughter in the case of animals), which may have to be repeated due 
to re- incursions, and (2) the cost of monitoring activities to make sure eradication 
objectives are met. For example, Schoenbaum and Disney (2003) at the time of their 
study calculate the cost of slaughtering cattle with FMD in the United States is 
roughly US$17 per animal plus US$5,000 to US$7,000 per farm for post- slaughter 
cleaning. In addition, the cost for a testing and monitoring visit is between US$200 
and US$500 per farm. Hinrichs et al. (2006) estimate that the costs per bird for cull-
ing poultry with H5N1 are US$0.25 in Vietnam and US$1 in Nigeria. For animal 
diseases, the eradication cost is often calculated by multiplying the affected num-
ber by a constant unit cost and adding this to an expenditure for culling- related 
activities.

For plants and small pests, calculating eradication costs is often more compli-
cated and available estimates are often very broad. It is generally agreed that the 
cost of eradicating invasive plants or pests increases exponentially with infestation 
size, and after some point becomes practically unaffordable (Adamson et al., 2000; 
Hester et al., 2004). However, rough estimates for the unit cost of a successful eradi-
cation do not always exhibit this trend (see Cunningham et al., 2003; Rejmánek and 
Pitcairn, 2002; Woldendorp and Bomford, 2004), but these estimates may be biased 
because they generally exclude eradication feasibility issues. Taking into account 
this eradication feasibility, Panetta et al. (2011b) estimate that among the 41 Class- I 
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invasive plants under the Queensland Land Protection Act 2002, only one cannot 
be practically eradicated, 12 could be eradicated at a cost of more than A$1 mil-
lion, and 28 could be eradicated for less than A$1 million.

One feature of the eradication cost for invasive plants is that it often includes 
cost components over a long period of time because eradicating an invasive plant 
often takes more than 10 years (Panetta & Lawes, 2007). For example, Panetta et al. 
(2011a), using a stochastic dynamic model, estimate that to eradicate branched 
broomrape in South Australia would take, on average, 73 years at a net benefit of 
A$68 million. For other weeds (Cunningham et al., 2003; Woldendorp & Bomford, 
2004), the time horizon may not be so long, but a significant component of the total 
eradication cost should be devoted to monitoring activities over a fairly lengthy 
period of time (see Chapter 16).

10.3.2 When Eradication or Containment Is Cost- Effective

Kompas et al. (2013) derive a condition that determines when eradication is more 
cost effective than doing nothing: d c r c+ × ≥ × ρ, where d , r, c and ρ are respect-
ively the annual damage caused by the disease, the annual spread rate of the disease, 
the eradication cost and the discount rate. The left- hand side of this expression 
presents the avoided loss if  eradication is delayed for one year, which includes the 
damage d caused in that year plus the cost of eradicating the new infection c r× . 
The right- hand side is the opportunity cost of immediate eradication which is the 
interest paid on the upfront eradication cost c × ρ. When considering this condition 
in an area containing heterogeneous locations where the damage, eradication cost 
and spread rate can vary spatially, it often turns out that parcels that satisfy the 
condition belong to eradication zones and the rest belong to containment zones.

The condition not only determines the cost- effectiveness of eradication meas-
ures, but also has an important implication for the cost- effectiveness of surveillance 
measures. Surveillance measures are desirable only when one needs to detect a dis-
ease so that eradication can take place early. If  the eradication measures are not 
cost effective, then it is not worth paying for early detection. When the benefit of 
eradication is larger than the cost, the size of this gap will determine the attractive-
ness of early detection.

10.4 Local Surveillance Measures

10.4.1 Fundamental Factors in a CBA for Surveillance

Surveillance is the search for unknown incursions. It can be implemented either 
when there are unknown incursions or when known incursions are confirmed but 
their locations are unknown. The cost of surveillance is the money spent to imple-
ment the search, and the benefit of surveillance is the value of early detection in 
terms of avoided losses that would have resulted otherwise. Thus, surveillance has a 
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benefit only when the control actions, such as eradication or containment, are cost 
effective.

The comparison between the costs and benefits of a surveillance programme 
depend on how early a search can detect an unknown incursion if  it is present. An 
ambitious surveillance programme can detect a disease very early, but it may be too 
expensive; an inexpensive programme may not provide satisfactory detectability or 
detect early enough. Quantitatively, the relationship between surveillance effort and 
detectability plays a key role in determining the cost- effectiveness of surveillance 
measures.

Figure  10.1 illustrates the basic idea in a CBA exercise when surveillance, to 
some degree, is desirable. From left to right, in return for an increase in surveillance 
expenditure, the damage caused by a disease and the eradication/ treatment costs 
diminish thanks to early detection. It follows that total costs will be minimised 
when a $1 increase in surveillance expenditure is compensated by a $1 reduction in 
the damage and eradication costs. If  too much is spent on surveillance (the points 
to the right of the minimum point on the bold line for total cost), the cost is too 
high because of the high cost of the surveillance programme itself; if  too little is 
spent (the points to the left of the minimum point), detection is not early enough 
and the damages that result are too high. In practice, quantifying the three cost 
components in Figure 10.1 often requires models that can connect economic, tech-
nical and biological variables. Chapter 14 provides an overview of how these three 
elements inform optimal resource allocation. In the text that follows we describe 
and illustrate coherent integration of economic, technical and biological variables 
in more detail.

Surveillance budget

M
on

et
ar

y 
V

al
ue

Surveillance Expenditure Damage Eradication/Treatment Cost Total Cost

Figure 10.1. Fundamental factors in a CBA exercise for surveillance.
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10.4.2 A Model of Optimal Surveillance Design

An optimal surveillance model normally has three main components:  (1)  a bio-
logical component to describe the growth and density of infected herds (in the case 
of animals), (2) a surveillance expenditure function that maps the cost of surveil-
lance to the spread of the disease and the point of detection and (3) a measure of 
production losses before detection occurs, disease management costs and trade and 
other losses that result during the disease management period (either in terms of 
disease containment or the time it takes for eradication). The resulting model will 
evaluate the sum of the three components for each surveillance design and choose 
the one that minimises the total cost.

Growth and Density Growth of Infected Livestock
As an example, take the unit of measurement as a herd, subject to a disease incur-
sion where the growth in the number of infected herds is assumed to follow a 
Verhulst– Pearl logistic function, so that

 dN t gN t
N t
N

dt N t dW N dQ N dQn n i e e( ) = ( ) 1
( )

( ) 0−






+ + −
max

σ , (10.1)

where N t( ) is the number of infected herds at time t, g  is the intrinsic or biological 
growth rate, Nmax is the maximum number of infected herds relative to the environ-
mental carrying capacity, Wn is a Brownian process that captures the natural uncer-
tainty in the infected population and Qi  and Qd are Poisson processes that capture 
the disease incursion and detection.

The arrival rate λd  for disease detection depends on the number of infected herds 
and the target number (subject to determination of the best surveillance level) of 
infected herds X  in the following way:

 λ θ
δd

N t X
N t X

=
( ) /

( ) / +
, (10.2)

where θ and δ are positive coefficients. The functional form ensures that the rate of 
detection will be maximised when the number of infected herds reaches the target 
value X, and be zero when N t( ) = 0.

In a similar fashion, density growth is given by

 dD t zD t
D t
D

dt D t dW D dQ D dQd d i e e( ) = ( ) 1
( )

( ) 0−






+ + −
max

,σ  (10.3)

where z is the density growth rate, D t( ) is the ratio of the number of infected herds 
to total herds and Dmax is the maximum density rate.

Surveillance Expenditure Function
Following Kompas et al. (2004), a surveillance expenditure function maps sur-
veillance expenditure to a point of early detection of a disease incursion and is 
expressed in terms of the number of potentially infected animals in the population. 
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Larger surveillance expenditure (e.g. blood and viral tests, screening or physical 
examination) generally result in points of earlier detection and a smaller number of 
potentially infected livestock. Define Rm as the number of infected animals occur-
ring at the natural detection point, or where the disease incursion is self-evident or 
recognised by farmers or the public without any surveillance expenditure. In add-
ition, let Em be the amount of surveillance expenditure that will ensure the earliest 
possible detection, or where the number of infected animals is near zero (depending 
on the efficacy of border quarantine measures) or the incursion is detected before 
the spread of the disease. This amount of expenditure can be finite, but it may also 
be infinite. The surveillance expenditure function is given by

 E X
E R X
R X

m m

m

( , ) =
( )
( 1)

η
η

−
+

, (10.4)

where X  is the target number of infected animals that potentially enter a population 
and η ≥ 0 is a surveillance effectiveness parameter. The higher the value of η, the 
lower the expenditure on surveillance for a given number of infected livestock, or 
the more convex the expenditure function. When η = 0, the expenditure function is 
linear. When η > 0, the marginal benefit of surveillance decreases with a decrease 
in the target value X .

Production, Disease Management, Trade and Tourist Losses
The potential production cost before detection depends on both the length of time 
over which the disease has developed and the time to eradication. Assume that pro-
duction loss at time t depends both on the number and the density of herds and is 
given by

 C t c N t D tp p( ) = ( ) ( ), (10.5)

where cp is the average production loss per herd. For simplicity, it is assumed that 
any reduction in infected herds (through containment or eradication) implies that 
both density and infected herd numbers are reduced proportionately.

A disease can immediately generate disease management costs. One possibil-
ity is that all infected herds are destroyed and costs for disinfection and cleaning 
activities must be incurred. Vaccination costs may also be imposed for all herds 
entering the affected area for a period of time after a successful eradication cam-
paign. Assuming that all costs are proportional to the target number of potentially 
infected herds X  gives

 C c X C c Xme me mv mv= = φ , (10.6)

where Cme is the eradication cost and Cmv is the vaccination cost, with average cost 
parameters cme  and cmv.

Another possible cost component of an outbreak is a trade ban for importing 
related products into a disease- free area. This is often the most significant cost com-
ponent. In addition, the tourism industry also suffers losses due to travel restrictions 
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and quarantine provisions. In general, the larger the number of infected herds, the 
longer the disease management period. Let the length of time for disease manage-
ment (Tm) be given by

 T Xm = 0α β+ , (10.7)

where α0 is the minimum time for disease management and is a given parameter. 
Thus, trade and tourism losses (Ctt) are

 C Y Y Ttt m= 1 2α αtr tou+( ) , (10.8)

where Ytr  and Ytou are the gross value of livestock trade and relevant tourism respect-
ively, and α1 and α2 are parameters.

Objective Function
The problem of identifying the optimal surveillance scheme is to choose the one 
that minimises the present value of all three cost components. Mathematically, the 
problem is to minimise the total cost
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0

1 2( ) ( )φ α α ρ

 (10.9)

subject to motion Eqs. 10.1 and 10.3, where the control variable is the target num-
ber of potentially infected herds X, and E is the usual expectations operator. The 
functional representation after invoking Ito lemma is1
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 (10.10)

Equation 10.10 has no analytical solution and must be solved using numerical 
techniques for each value of the parameter values that determine the surveillance 
expenditure. The solution algorithm will choose the value that minimises the total 
cost function C(.). In Section 10.4.3, we provide a case study as a basic example that 
calibrates the model to FMD in the United States at an aggregate level and subject 
to a time period when data are publicly available.

 1 Here, we assume that Brownian processes are uncorrelated and drop the time subscript t for simplicity.

011
19:38:37, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


Cost–Benefit Analysis for Biosecurity Decisions238

238

10.4.3 Calibration to FMD in the United States

Baseline Scenario: Parameters and Optimal Surveillance Expenditure
Key incursion and biological parameters are drawn from the GAO (2002) and 
Bates et al. (2001, 2003a, 2003b). The probability of  an FMD incursion is the 
most difficult parameter to determine. The probability of  an incursion is thought 
to be increasing over time with increases in international trade and the growing 
prevalence of  the disease in various parts of  the world, but its precise meas-
ure for the United States is unclear. With current quarantine restrictions in 
place, a possibility of  an outbreak once every 30 years is commonly assumed. 
Subject to sensitivity analysis, the annual probability of  an incursion λi  is thus 
approximately 0.03.

The transmission or growth rate of FMD is more easily known, with studies 
drawn from the recent United Kingdom experience (GAO, 2002) and Uruguay 
(Chowell et al., 2005). The value g  is taken as 0.45% per week and density growth z 
is 0.2% per week. According to United States Department of Agriculture estimates 
(GAO, 2002), the potential number of initial infected herds N0 is 15 and the max-
imum number of infected herds Nmax is 81,000. The initial density D0 is taken as 5% 
of a given herd, the maximum density Dmax is 75% and the eradication zone is typ-
ically (in practice) set at a radius nine times the radius of the original area in which 
infected livestock were found. To determine the detection rate, values of θ = 52 1.1×  
and δ = 0.1 are assumed.

The parameter values for the surveillance expenditure function are based on 
Bates et al. (2003a, 2003b). At this time, surveillance expenditure for FMD in the 
United States was roughly US$8.29 million. This is based on foreign animal dis-
ease operating expenses of US$24 million and associated capital (laboratories and 
equipment) of more than US$140 million. The cost of surveillance for FMD, given 
the 834 foreign animal disease investigations for a number of different diseases, is 
thought to be about 25% of the total operating budget and roughly 35% of the 
value of all labs and equipment. A 5% interest rate is used to account for capital 
costs. Detecting FMD in the first week of an outbreak is estimated to require at 
least 2,000 individual foreign animal disease inspections for FMD alone, compared 
with 200 in 2005. The natural detection point Rm is calculated to be 4,000 herds and 
Em is 10 times current expenditure, or US$82.9 million. The value of the surveil-
lance effectiveness parameter is approximated by η = 0.0021.

Herd size varies across different livestock, as does the cost of production losses 
associated with an FMD outbreak. In this simulation, it is assumed that the cost 
of the disease in terms of production loss occurs only at the farm level (e.g. directly 
affecting milk and meat production) and not to the indirect farm sector (e.g. trans-
portation, retail and supporting industries). It is also assumed that only the beef, 
dairy, sheep and pig industries are potentially subjected to FMD. The production 
losses are drawn from a United States Department of Agriculture study (USDA, 
2005) with a value of cp = 0.224 and are comparable to average production losses 
in the 2001 United Kingdom outbreak (GAO, 2002).
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Average indemnity cost is estimated to be roughly US$224,000 per herd. This 
value is estimated from the average market value of livestock (Bates et al., 2003a), 
average herd sizes and the proportional share of dairy, beef, pig and sheep farms in 
susceptible areas (USDA 2005). The market value per head for dairy heifer, heifer 
calves, sheep and pigs is US$1,200, US$602, US$231 and US$120 respectively 
(Bates et al., 2003a). The average cost of cleaning and disinfection is US$18,062 per 
herd and average vaccination costs are US$2,960 per herd (Bates et al., 2003a). The 
vaccination zone is taken as eight times the size of the radius of the initial infest-
ation, as simulated in the study of a hypothetical outbreak of FMD in California 
(Bates et al., 2001). Thus, φ is 8, and the calculated average disease management 
costs, cmv  and cmv, are 0.018 and 0.00296 respectively.

The value of α0 is 24 weeks, the usual minimum time requirement for FMD- free 
status assuming that the disease can be detected and eradicated in the first week 
of incursion. For time periods longer than this, β = 0.008, based on the United 
Kingdom experience (DEFRA, 2002). Losses from trade bans and falls in tourism 
depend on the length of time needed for disease management. The average weekly 
gross value of exported livestock is US$5.7 million (USDA, 2005) and the aver-
age weekly value of all tourist activities is estimated to be US$0.7 billion (USCB, 
2005). Clearly, only a small fall in tourist revenue should be expected from an FMD 
outbreak. The values of α1 and α2 are specified to be 0.1 and 0.005, roughly the 
same proportions as in the recent United Kingdom experience (DAFRD, 2002; 
GAO, 2002).

Using the baseline parameter values, the minimum mean- value cost func-
tion obtained by varying the number of potentially infected herds X is given in 
Figure 10.2. All growth and density rates and potential damages are translated into 
yearly measures. The approximated optimal value of X is 405 herds at a potential 
disease incursion cost of US$4,309 million or roughly US$4.3 billion. Using Eq. 
10.4, optimal surveillance expenditures for an FMD incursion amount to roughly 
US$40.3 million per year. Annual surveillance expenditures for this time period are 
approximately US$8.29  million, far below optimal values. Current expenditures, 
assuming that current policy was consistently applied with Eq. 10.3 operating, act 
as if  the target was 2,000 potentially infected herds rather than 405. There is a com-
mon and characteristic flatness near the optimal point, but current surveillance 
measures are far outside this point.

Sensitivity Analysis
Sensitivity across key parameter values varies considerably. For example, a change 
in the growth rate of disease transmission is relatively insensitive; a 16- fold increase 
in the growth rate results in only a 0.01% change in total incursion costs and a neg-
ligible variation in the target value of X . A change in the density growth rate has 
even less effect, with virtually no change in the target number of infected herds over 
a wide range of parameter values (tables indicating all results for changes in growth 
and density rates across a range of parameter values are available from the authors 
on request). The reason for these outcomes is straightforward. Although a higher 
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growth rate for disease transmission causes more damage, it is also more likely to 
be detected earlier and, therefore, controlled and eradicated. In terms of density 
growth, higher density growth rates do create more production losses initially, but 
an outbreak of FMD immediately creates an eradication zone in which all animals 
are destroyed regardless of their density growth.

In terms of the sensitivity results, differences in the probability of an FMD incur-
sion do matter. Table 10.1 shows that the total costs of a disease incursion (million 
US$) with different probabilities (p) of a disease incursion and the optimal target 
number of infected herds (X ). The benchmark case is p = 0.03 and X = 405. An 
increase in the probability of an incursion to 0.036 results in the optimal target for 
X  falling to 330; a fall in the probability of an incursion to 0.024 increases X  to 510. 
It is important to note that, even at a very low incursion rate and target of optimal 
surveillance, expenditures are still US$28.8 million dollars, or nearly three and a 
half  times more than the surveillance expenditures in the United States at the time 
of writing. In Table 10.2, an increase in average production losses clearly decreases 
the optimal target X . The benchmark case is cp = 0.22. If  cp increases to 0.31, X  
decreases to 385, with an annual surveillance expenditure of roughly US$41.4 mil-
lion. Table 10.3 shows limited sensitivity between the size of the eradication zone 
and the optimal target number of infected herds X. The benchmark is 8. The larger 
the eradication zone, the larger the resulting damages in production and disease 
management costs, and thus the smaller the target number of infected herds.

Finally, a change in the natural detection point results in large changes in opti-
mal results. This implies that education and extension services, designed to generate 
early detection on farms independently of formal surveillance activities, matter a 
great deal. For example, values of Rm of  3,000, 2,000 and 1,000 herds (from the 
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Figure 10.2. Surveillance for FMD: Baseline scenario.
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Table 10.1. Total costs of a FMD incursion in US$ million with different probabilities (p) of disease incursion and the optimal target number of infected herds (X )*

P X

265 270 325 330 335 405 495 510 515 665 670

0.018 3,002.88 2,998.32 2,954.73 2,951.31 2,947.98 2,909.37 2,877.98 2,874.39 2,873.29 2,858.45 2,858.48

0.024 3,671.45 3,668.02 3,636.86 3,634.58 3,632.37 3,609.57 3,598.46 3,598.25 3,598.27 3,617.14 3,618.29

0.030 4,339.60 4,337.29 4,318.51 4,317.34 4,316.27 4,309.18 4,318.24 4,321.39 4,322.53 4,374.91 4,377.17

0.036 5,007.32 5,006.14 4,999.66 4,999.62 4,999.66 5,008.20 5,037.33 5,043.81 5,046.06 5,131.76 5,135.13

0.042 5,674.63 5,674.56 5,680.33 5,681.40 5,682.55 5,706.65 5,755.72 5,765.52 5,768.88 5,887.69 5,892.16

* Bold indicates baseline in all cases relative to sensitivity results.
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Table 10.2. Total costs of a FMD incursion in US$ million with variations in average production losses (cp) and the optimal target number of infected herds (X )*

Cp X

380 385 390 395 400 405 410 415 425 430 435

0.134 4,289.78 4,289.19 4,288.67 4,288.22 4,287.84 4,287.52 4,287.27 4,287.08 4,286.89 4,286.88 4,286.93

0.179 4,299.94 4,299.48 4,299.1 4,298.79 4,298.54 4,298.35 4,298.23 4,298.17 4,298.24 4,298.37 4,298.55

0.224 4,310.1 4,309.78 4,309.53 4,309.35 4,309.23 4,309.18 4,309.19 4,309.27 4,309.6 4,309.86 4,310.18

0.269 4,320.26 4,320.07 4,319.96 4,319.91 4,319.92 4,320.01 4,320.15 4,320.36 4,320.96 4,321.35 4,321.81

0.314 4,330.42 4,330.37 4,330.38 4,330.47 4,330.62 4,330.83 4,331.11 4,331.45 4,332.32 4,332.85 4,333.43

* Bold indicates baseline in all cases relative to sensitivity results.
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benchmark case of 4,000) lowers optimal surveillance expenditure to US$37.9, 
US$32.7 and US$18.15 million respectively. At a value of Rm of  630 herds, optimal 
surveillance expenditure is zero.

10.5 Border Quarantine

10.5.1 The Costs and Benefits of Border Quarantine

Quarantine measures at the border are designed to reduce or eliminate the prob-
ability of an incursion. As usual, there are costs and benefits from this activity. 
The benefits are avoided losses from a disease entry. In terms of costs, apart from 
administrative and border quarantine service expenditure, losses in consumer wel-
fare caused by restricted trade flow are usually seen to be the most significant cost 
of a quarantine measure (Mumford, 2002). In a few cases, some authors claim 
that the cost of restricting trade flow may be so significant that bans should be 
lifted until a more clearly quantified risk of incursion is confirmed. An extreme 
example of this is a partial equilibrium analysis of the Australian banana market 
by Anderson and James (1998), who show that the benefit of free trade is, on aver-
age, enough to compensate, even if  the whole domestic banana industry is wiped 
out by an imported disease. This is, somewhat, supported by another analysis by 
Leroux and MacLaren (2011), who show that the net cost of restricting the flow of 
goods is, on average, positive but reduced by uncertainties and the relative irrever-
sibility of bans once they are in place. In these works, cost is generally more than 
the avoided losses or benefits of stopping an incursion, so it is not cost effective to 
have a quarantine programme.

Other studies provide more clear evidence for quarantine activity. For example, 
Cook et al. (2011) show that the price difference between imported apples and the 
autarkic price is insufficient to outweigh the increase in expected damages resulting 
from an increased fire blight risk. Soliman et al. (2013) calculate that the economic 
impact of the invasion of the plant pathogenic bacterium in Europe is, on average, 

Table 10.3. Total costs of a FMD incursion in US$ million with variations in the size of the eradication zone (φ) and the 
optimal target number of infected herds (X )*

Φ X

395 400 405 410 415 420

4.8 4,307.82 4,307.68 4,307.61 4,307.60 4,307.65 4,307.77

6.4 4,308.93 4,308.81 4,308.75 4,308.76 4,308.82 4,308.95

8 4,310.05 4,309.94 4,309.90 4,309.91 4,310.00 4,310.14

9.6 4,311.17 4,311.07 4,311.04 4,311.07 4,311.17 4,311.33

11.2 4,312.28 4,312.2 4,312.18 4,312.23 4,312.34 4,312.51

* Bold indicates baseline in all cases relative to sensitivity results.
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€114 million per year more than the benefit of a completely non- quarantined flow 
of trade. Another estimate from Breukers et al. (2008) shows that reducing monitor-
ing frequency in brown rot quarantine increases the costs to €12.5 million per year 
in the Dutch potato production chain, 60% of which are export losses. According 
to these authors, the benefit far exceeds the cost and establishing a quarantine pro-
gramme clearly improves economic welfare.

The key idea of a CBA exercise for border quarantine is to minimise the sum 
of the direct costs of a potential disease incursion, the cost of the quarantine pro-
gramme itself  and the resulting welfare losses from quarantine restrictions. This is 
achieved through a variation in the potential number of, say, infected livestock that 
enter a region or a country. Clearly, the larger the expenditure on a quarantine activ-
ity, the larger the welfare losses and cost of the quarantine programme. However, 
the more severe the quarantine activity, the smaller the risk of a disease incursion 
and the direct costs of the disease to the affected industry. In principle, there will be 
cases in which the disease is so devastating that the direct cost of an incursion will 
require vast expenditure on quarantine services and large welfare losses to guar-
antee that the risk of a disease entry is virtually zero. On the other hand, for some 
diseases, reducing the risk of a disease incursion to zero may imply that the cost of 
the quarantine measures and the resulting welfare losses more than surpass the (pre-
sent value) of the direct cost of the disease to the local industry. Finding the correct 
value of the likelihood of disease entry, and with it the associated expenditure level 
and optimal quarantine activity, requires minimising all of the (properly discounted) 
potential and actual costs associated with managing imported livestock.

10.5.2 An Optimal Quarantine Model

Assume that the disease incursion happens with an arrival rate that depends on the 
quarantine expenditure λ( ) =q q, where q is the risk of infected rams entering per 
month under the current quarantine scheme. The initial number of sick animals 
crossing the border at any disease or incursion outbreak is assumed to be some 
value x0. The number of infected animals then increases according to a quadratic 
growth function

 dx q gx x x dt d qm( ) = ( ) ( )− + ℵ , (10.11)

where ℵ is a Poisson random variable with arrival rate q, which represents the out-
break incursion, and the rate of the production loss is C q c x q( ) = ( )× , where c is the 
production and management cost coefficient.

The next relevant component in the cost is the quarantine expenditure. Following 
Kompas and Che (2009), the quarantine expenditure can be defined as a decreasing 
function of the number of entering infected animals (say rams used for breeding in 
a sheep import scheme):

 E q
E q q
q q

m m

m

( ) =
( )
( 1)

−
+η

, (10.12)
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where q is the risk of infected rams entering under the current quarantine scheme 
and qm is the risk of infected rams entering under no quarantine.

Finally, quarantine activities can restrict trade, much like tariffs. To approximate 
welfare losses from restricting imports with a quarantine activity, assume linear 
supply and demand schedules for livestock. The welfare loss from quarantine activ-
ity can then be calculated by

 L q E q M
E q M
p p

( ) = ( )
( )

2( )

2 2

0 *
α α

−
−

, (10.13)

where M , p* are the import and price without quarantine and p0 is the domestic 
price.

The total cost of the quarantine programme is the present value of a cost flow 
consisting of the three components, or
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10.5.3 Calibration to Ovine Johne’s Disease Quarantine Measures in Western Australia

Equation 10.14 is a partial differential equation that must be solved using numerical 
techniques (e.g. finite difference or projection methods). Specifying the optimal arrival 
rate (q) generally requires that the equªtion be solved with a grid of possible values 
and then picking the one that minimises the total cost of the quarantine programme.

Figure  10.3 calibrates the model to calculate the optimal budget for an ovine 
Johne’s disease quarantine scheme in Western Australia. Following Kompas and Che 
(2009), the baseline parameter values are (all parameters are on monthly basis unless 
otherwise indicated):  g = 2.7110 9−  (reaches maximum after 80  years), qm =18.5
, xm = 6.76106, σ = .05, Em = $500, 000, η = 3.13, cp = $14 per year, α = 0.001875, 
M = 550, p p0 = $1 000− ∗ ,  and ρ = 0.05 per year. Figure 10.3 shows a typical trade- 
off  between production cost and quarantine related expenses. A very strict quar-
antine programme may minimise production losses, but it also induces substantial 
quarantine costs and trade impacts. A less restrictive quarantine scheme, allowing 
for a higher probability of a disease incursion, is less expensive but production losses 
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are also significantly higher. On balance, the optimal quarantine budget is one that 
minimises the sum of all cost components. Nevertheless, depending on the curva-
ture of the production loss, quarantine expenditure and trade impact functions, 
the total cost may rise when we depart from an extreme zero- incursion quarantine 
regime (see Table 10.4). This happens when production cost rises very quickly as we 
start to relax our quarantine measure and outweighs the reduction in quarantine 
expenses. As we depart further from a zero- incursion quarantine regime, the quar-
antine expenditure will decrease at a faster rate and, at some point, the trade- off  
argument will apply. This complicated feature forces us to check the whole range of 
possible quarantine measure values, not just to find a local minimum point.

Sensitivity tests again give a sense of the importance of parameter values. 
Table 10.4 shows how sensitive the optimum quarantine measure is to a change in 
the growth rate of the disease. As expected, the extreme trade- off  between quaran-
tine expenditure and disease management costs exists only when the growth rate 
is low. A higher growth rate for disease transmission clearly indicates that more 
should be spent on quarantine measures.

The magnitude of the maximum quarantine cost raises the value of the zero 
target arrival rate. At some point, it reduces the optimum quarantine expenditure 
from its maximum point. Table 10.5 shows that as the value of the maximum quar-
antine measure increases, less should be spent on quarantine. On the other hand, 
the management cost parameter (cp) is very important in determining the optimum 
quarantine measure. Table 10.6 shows that the increase in the cost parameter means 
a stricter quarantine measure throughout.
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Figure 10.3. Optimal quarantine scheme.
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10.6 Closing Remarks

CBA is an important exercise for evaluating the economic efficiency of biosecurity 
measures. However, the costs and benefits of each measure, whether it be border 
quarantine, post- incursion control or local surveillance, are rarely trivial to esti-
mate. We often need to develop complicated bioeconomic models to calculate the 
cost and benefit components adequately. These approaches will normally require 

Table 10.4. Sensitivity with respect to the intrinsic growth rate (A$ million)*

G Target incursion probability

0 0.04 0.08 0.16 0.32 0.64 1.28 2.5 4 8 18.5

6.30E- 10 185.74 177.26 166.33 147.76 121.82 93.92 72.07 61.23 59.88 66.21 85.54

1.70E- 10 185.74 194.54 187.35 173.16 152.39 130.55 115.68 112.42 116.89 132.49 164.02

7.10E- 10 185.74 223.81 221.3 212.22 197.18 181.69 173.68 177.4 186.9 210.08 250.77

2.50E- 10 185.74 262.25 264.54 260.45 250.79 241.03 238.93 248.34 261.76 290.52 337.49

7.90E- 10 185.74 306.43 313.21 313.6 308.6 303.68 306.38 320.17 336.48 369.15 420.15

* Bold indicates baseline in all cases relative to sensitivity results.

Table 10.5. Sensitivity with respect to the maximum quarantine cost (A$ million)*

Em Target incursion probability

0 0.04 0.08 0.16 0.32 0.64 1.28 2.5 4 8 18.5

0.3 125.37 167.57 168.36 165.25 159.45 155.19 157.6 168.72 181.76 208.21 250.9

0.4 157.88 197.48 196.27 189.72 178.86 168.68 165.72 173.08 184.34 209.15 250.83

0.5 185.74 223.81 221.3 212.22 197.18 181.69 173.68 177.4 186.9 210.08 250.77

0.6 208.97 246.56 243.44 232.75 214.42 194.25 181.5 181.67 189.45 211.01 250.7

0.7 227.55 265.71 262.71 251.3 230.57 206.34 189.16 185.91 191.99 211.94 250.64

* Bold indicates baseline in all cases relative to sensitivity results.

Table 10.6. Sensitivity with respect to the production cost (A$ million)*

cp ($/ 
month)

Target incursion probability

0 0.04 0.08 0.16 0.32 0.64 1.28 2.5 4 8 18.5

0.7 185.74 201.29 194.36 180.23 159.3 136.9 120.76 115.24 117.33 127.92 150.33

0.93 185.74 212.55 207.83 196.23 178.24 159.3 147.22 146.32 152.12 169 200.55

0.17 185.74 223.81 221.3 212.22 197.18 181.69 173.68 177.4 186.9 210.08 250.77

0.4 185.74 235.07 234.76 228.22 216.12 204.09 200.15 208.48 221.69 251.16 300.99

0.63 185.74 246.33 248.23 244.21 235.06 226.48 226.61 239.55 256.48 292.24 351.21

* Bold indicates baseline in all cases relative to sensitivity results.
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integrating substantial biological and economic information. Standard cost– benefit 
analysis will simply not do.

Along with some basic problems and principles of CBA applied to biosecurity 
measures, in this chapter we have illustrated some relatively new optimal bioeco-
nomic modelling approaches to containment, eradication, surveillance and border 
quarantine measures. These are the approaches that economists would normally 
use now, or at least should use, with their emphasis on optimal expenditure, dis-
counting and time contingent measures of all relevant costs and benefits. These 
approaches are especially useful to decision makers who are allocated fixed or lim-
ited budgets to obtain biosecurity outcomes.

The models illustrated here are still relatively simple. More complicated ver-
sions should endeavour to include more sophisticated biological models and spatial 
dimensions. This can still be done for the economist, in otherwise comparable bio-
economic models, although such models are computationally much more difficult 
to handle. In many cases, optimal results will not be obtainable. It will depend on 
the algorithm employed and computing capacity.

Nevertheless, the goal for the economist in all cases will be the same:  to find 
expenditure values that minimise the cost of any biosecurity measure, including the 
cost of the quarantine, eradication or surveillance programme itself. This general 
principle is illustrated in all approaches given in the preceding text, and should be a 
guide for all economic modelling, however complicated.
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11 Valuing Protection against Invasive 
Species Using Contingent Valuation
John Rolfe and Jill Windle

11.1 Introduction

Invasive species create particular challenges for policymakers who need to iden-
tify and evaluate appropriate management responses (Born et al., 2005; Perrings 
et al., 2000). Although some deliberately introduced species contribute significantly 
to agricultural production and other purposes, many invasive weed and animal 
pests have the potential to generate substantial costs through impacts on agricul-
tural production, biodiversity, ecosystem services, infrastructure and communities 
(Lovell et al., 2006; Pimentel et al., 2005). For example, Pimentel et al. (2005) esti-
mated that invasive species in the United States cost more than US$138 billion per 
year in damages and control, while McLeod (2004) reported that the impact of 
invasive animals in Australia generates costs of more than A$700 million per year.

In economic terms, efforts to control invasive species should be assessed by com-
paring the potential costs of the control against the benefits that may be generated, 
such as through the application of cost– benefit analysis (Born et al., 2005; Burnett 
et al., 2008). Control efforts can be categorised into three broad groups: preven-
tion efforts (such as quarantine protocols) are aimed at preventing establishment, 
eradication measures can be applied at any time after establishment and control 
measures are aimed at restricting spread at some point after establishment (Born 
et al., 2005). The justification for each of these measures, and the distribution of 
effort between measures, should be based on an assessment of the net benefits aris-
ing from the different options (Burnett et al., 2008).

There are several factors that complicate the application of a simple cost– benefit 
framework (Born et al., 2005). First, biological invasions occur over space and time, 
and many benefits of control relate to the avoidance of future impacts and redu-
cing the risks that impacts might occur. Second, there is a great deal of uncertainty 
about the current and potential impacts of biological invasions, making it diffi-
cult to assess impacts precisely (Burnett et al., 2008). This is complicated by the 
dynamic, non- linear growth patterns of most biological pests and the difficulties of 
predicting spread and impact over time (Olson, 2006; Perrings et al., 2000). Third, 
many of the benefits of control are difficult to value, especially those involving 
reduced impacts on human health and the protection of environmental assets and 
ecological processes (Born et al., 2005; Lovell et al., 2006). Fourth, there are a large 
number of different invasive species, and both the costs and benefits of control often 
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involve cooperation and complementarities. Fifth, invasive species usually involve 
multidimensional and partial impacts (sometimes offsetting; Pimentel et al., 2005), 
requiring net marginal impacts to be considered (Born et al., 2005). Sixth, impacts 
and the costs and benefits of control vary over locations, so it is not appropriate to 
assume uniform values across diverse locations (Olson, 2006).

Born et al. (2005) identify a number of deficiencies with the current pool of eco-
nomic studies of invasive species. Key research gaps include a lack of systematic 
valuation studies that assess non- use values, particularly those relevant to environ-
mental impacts; a focus on ex post evaluation instead of ex ante studies; a focus on 
control measures instead of distinguishing among prevention, control and eradica-
tion options; and deficiencies arising from uncertainty rarely being considered as 
an explanatory factor.

The focus of this chapter is on valuing the benefits of controlling invasive pest 
species using a non- market valuation technique. The study was conducted with 
households in Brisbane, Australia to identify awareness of invasive species and 
values to avoid future outbreaks. Brisbane has had major outbreaks and subse-
quent control efforts for red imported fire ants, and one goal of the survey was 
to identify awareness of issues associated with fire ants and the attempts to eradi-
cate the outbreaks. The chapter is structured as follows. In Section 11.2, the under-
lying economic framework is described together with a review of previous studies 
in this field. An overview of the contingent valuation method (CVM) is provided 
in Section 11.3, followed by a description of the case study and application of the 
experiment in Section 11.4. Study results are described in Section 11.5, and discus-
sion and conclusions are presented in Section 11.6.

11.2 Outlining the Economic Framework

Many public policy frameworks dealing with invasive species involve at least an 
implicit consideration of  the benefits and costs of  different control efforts or pol-
icy changes. An extended cost– benefit analysis formalises this process and is one 
of  the key approaches that can be used in an economic evaluation of  control 
options for invasive species (Born et al., 2005). The advantages of  a cost– benefit 
study are that it attempts to be inclusive in terms of  measuring all the outcomes 
of  a proposed action, explicitly values the different impacts and outcomes and 
provides a framework in which very different outcomes may be assessed against 
each other. The methodical approach of  cost– benefit analysis helps in the evalu-
ation of  issues and can guard against rent- seeking behaviour by special- interest 
groups.

A key stage in the analysis of environmental values is to categorise the types of 
benefits that might be associated with controlling or avoiding pest invasions (Born 
et al., 2005; Figure 11.1):

• Direct use values are benefits that directly accrue to individuals, and can be either 
extractive or non- extractive. Extractive use values include harvesting of natural 
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resources such as fishing and agriculture. Non- extractive values involve tourism, 
research and education.

• Indirect use values are gained indirectly from the natural resource, usually 
through support and protection of  other economic activities. Examples include 
support to agriculture, fisheries, water quality, community lifestyles and indigen-
ous culture.

• Non- use values to society arise indirectly, either through potential future uses or 
through the knowledge of the presence of the resource. These can be divided into 
option values, quasi- option values, existence values and bequest values. Option 
values are for use in the future, existence values are for knowledge of their pres-
ence and bequest values arise from wanting to preserve the public good for future 
generations. Non- use values can be derived without any actual current human 
use of the resource.

In many cases, it is difficult to estimate each component of value separately. 
Under the Total economic value approach, values arising from controlling an 

Figure 11.1. Total economic value and attributes of values for controlling invasive species.
[Adapted from Born, W., Rauschmayer, F. and Brauer, I. (2005). Economic evaluation of 
biological invasions –  a survey. Ecological Economics, 55, 321– 336.]
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invasive species are either estimated jointly in a single valuation exercise or values 
from separate estimation exercises are summed to give a total value estimate of the 
asset of interest.

Most efforts to value the benefits of controlling invasive species have focused 
on the extractive direct- use values, such as those associated with agriculture losses 
or treatment costs (Lovell et al., 2006; Olson, 2006; Pimentel et al., 2005). Some 
studies have involved the use of the travel cost method to estimate non- extractive 
use values for recreation that are affected by invasive species (Lovell et al., 2006). 
Although direct and indirect use values are important for some types of invasive 
species, they rarely represent the total economic value, and may not be very sig-
nificant for other invasive species. Other studies (e.g. Sinden & Griffith, 2007) have 
focused on estimation of the costs of control and mitigation strategies as a weak 
proxy for the value that society assigns to avoiding invasive species. Estimation of 
values through replacement costs or defensive expenditures is unlikely to represent 
underlying community preferences for control, particularly where large non- use 
values are involved (Shogren et al., 2006).

A more comprehensive approach to valuing benefits of controlling invasive spe-
cies requires the assessment of both non- use and use values. Non- use values can be 
assessed through the application of stated preference techniques such as the CVM 
or choice modelling experiments. Applications involve people being presented with 
hypothetical scenarios about different options for resource management and the 
associated costs. Analysis of the preferred choices reveals how people would make 
trade- offs between different environmental outcomes and the monetary cost, allow-
ing predictions of value to be made.

There has been limited application of stated preference techniques to issues 
involving invasive species (Born et al., 2005; Lovell et al., 2006), although the num-
ber of studies has increased in recent years. Turpie et al. (2003) use the CVM to 
estimate loss of existence values from invasive species in the Cape Floristic Region 
in South Africa. Numes and Van Den Burgh (2004) report the use of a joint travel 
cost study (to estimate recreation benefits) and a CVM (to estimate non- use ben-
efits) associated with the removal of harmful algal- bloom species along the coast of 
the Netherlands. Other studies have used choice modelling experiments to estimate 
the benefits from controlling algal blooms in Lake Tenkiller, Oklahoma (Roberts 
et al., 2008); the Black Sea Coast of Bulgaria (Taylor & Longo, 2010); and in a 
region of the South Island in New Zealand (Beville et al., 2012). Both Horsch and 
Lewis (2009) and Zhang and Boyle (2010) have use hedonic pricing model property 
values over time to estimate the impact of a common aquatic invasive species (mil-
foil) on lakefront property values in Wisconsin and Vermont respectively. Champ 
et al. (2005) apply the CVM to assess the benefits of a weed control program in the 
United States, while Carlsson and Kataria (2008) use choice modelling experiments 
to assess the benefits from weed- control programs in both Sweden and the United 
States. Other studies transfer benefit estimates from recreation, property, health or 
environmental valuation studies to infer the benefits of controlling an invasive pest 
species (Lovell et al., 2006).
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11.3 The Contingent Valuation Method

The application of the CVM involves people being asked to indicate their preferred 
trade- off  between changes in the quantity of an environmental good and an oppor-
tunity cost, usually money. Respondents are asked, through a survey mechanism, 
for their willingness to pay (WTP) for a specific change in the provision of an envir-
onmental good. In the open- ended format, respondents are asked to nominate their 
preferred trade- off, while the dichotomous choice format involves respondents 
being asked to indicate ‘yes’ or ‘no’ to whether they would support a nominated 
trade- off. The technique has been in use since the early 1960s, when direct inter-
views and bidding games were used to value the benefits of outdoors recreation 
(Mitchell & Carson, 1989). Since then, the technique has been widely used to help 
quantify, in monetary terms, social preferences for a variety of environmental and 
other outcomes (Carson, 1997).

The random utility model is the behavioural basis of the dichotomous choice 
CVM (Hanemann, 1984; Hanemann & Kanninen, 1996), and it provides a base 
for a mechanical assessment of preferences that may be used to describe how an 
individual or group of people might be likely to choose between different items. In 
choosing whether to answer ‘yes’ or ‘no’ to a dichotomous choice CVM survey, it is 
assumed, on the basis of utility maximisation, that individuals choose options that 
offer more utility. For a situation where a survey respondent is offered an increase 
in an environmental good (from q0 to q1) at a specified trade- off  ($a), the probabil-
ity of a ‘yes’ response is given by the probability that the new situation has more 
utility for the individual than the old, as follows:

 Pr(response is yes) = Pr{v(p, q1, y − a, s) + ε ≥ v(p, q0, y, s) + ε}, (11.1)

where v represents the indirect utility function for the individual, p the price of mar-
ket goods, q the non- market good of interest, y the individual’s income, a the cost 
of the trade- off, s other factors and influences and ε the unexplained component of 
each choice (Bockstael et al., 1989).

This outcome can also be expressed in terms of compensating surplus (c), which 
is the individual’s WTP for a change from q0 to q1 that holds the initial level of 
utility constant. Under this formulation, compensating surplus is the amount that 
satisfies the relationship

 v(p, q1, y − c, s) + ε ≥ v(p, q0, y, s) + ε. (11.2)

Compensating surplus represents the individual’s maximum WTP for the change 
in the quantity of the environmental amenity. It follows that when the nominated 
bid a in a CVM survey is less than the maximum WTP c, individuals will answer 
‘yes’, and vice versa. The random utility model implies that this compensating sur-
plus measure has some random element (Hanemann & Kanninen, 1996). While 
individuals presumably know what their WTP for a change is, it appears to the 
outside observer to have some random components. Thus, although responses to a 
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particular bid value will indicate, through some statistical estimation process, what 
the likely WTP amount would be, the stochastic nature of the responses means that 
the estimated WTP will lie within specific confidence intervals.

There are a range of different models that can be used to generate estimates of 
compensation surplus (Hanemann & Kanninen, 1996). If  the cumulative distribu-
tion frequency for the WTP amounts is specified as a standard logistic distribution, 
the choices can be estimated with a logit model. Welfare measures are calculated 
from the resulting models by estimating either the mean or the median of the esti-
mated WTP function. For example, the mean WTP can be calculated from the logit 
model as

 Mean WTP = (1/ β1)ln(1 + eβ0) (11.3)

where β1 is the slope of the function plotted against price and β0 is the intercept 
value (Loomis & Ekstrand, 1997).

11.4 The Case Study and Design of the Survey

Queensland is a decentralised Australian state with a large land mass and sub-
stantial variety in land types and biodiversity. Its tropical and sub- tropical pos-
ition means that it is susceptible to a variety of  pests and diseases that might 
generate risks to human and animal health, agricultural crops, and to the natural 
environment. There are particular risks of  entry for some pests and diseases at 
the Torres Strait in the north, and major industries, such as the horticulture and 
livestock sectors, rely on effective biosecurity controls to keep diseases out of  the 
country.

In recent years, there have been a number of well- publicised outbreaks of exotic 
diseases and pests that have entered Queensland. Some of the outbreaks have cen-
tred on the agricultural sector. In the north, there were outbreaks of Papaya fruit fly 
in 1995 and Black Sigatoka (in bananas) in 2001, with active control measures suc-
cessful in eradicating the pests. In central Queensland, citrus canker was discovered 
in orchards at Emerald in 2004; it was eradicated by 2009 after every citrus tree in 
the district was removed. Sugarcane smut was detected in the cane industry in 2006, 
but inability to eradicate the disease meant that cane growers have had to plant dif-
ferent varieties of cane that are resistant to the disease.

Red imported fire ants were accidentally introduced to Australia, with infesta-
tions found in the port areas and south- western suburbs of Brisbane in February 
2001. Follow- up surveillance identified scattered infestations in more than 300 km2 
of the area (Scanlon & Vanderwoude, 2006). Modelling suggested that the pest 
could invade half  of Australia within 35 years if  it was not controlled (Kompas & 
Che, 2001; Scanlon & Vanderwoude, 2006). The Queensland government led a vig-
orous eradication policy funded by the Australian and state governments to iden-
tify and control outbreaks; this included regular inspections and control efforts, 
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such as restrictions over the movement of soil and garden waste in areas at risk. 
Equine influenza, also known as horse flu, was introduced to southern Queensland 
in August 2007 after the virus spread from Japanese race horses at a quarantine sta-
tion in Sydney. The outbreak led to a shutdown of horse movements across large 
areas of eastern Australia, with substantial disruption to racing and other eques-
trian events. The controls over horse movements and other activities were quickly 
successful in limiting further spread of the disease, and all controls were lifted by 
February 2008.

Brisbane is the capital city of Queensland. In the survey of Brisbane residents, 
a key goal was to identify values for avoiding future outbreaks of exotic diseases 
and pests. Part of the survey focused on red imported fire ants, and provided back-
ground information on the pest, its discovery in Brisbane and subsequent efforts 
to control it. This helped to frame the valuation exercises. Specific questions about 
potential control mechanisms for the red imported fire ant were designed to test 
whether residents would support mandatory control measures, the use of preventa-
tive baiting and the use of chemicals in baiting and controls. For the contingent 
valuation experiment, respondents were provided with summary information about 
major pest and diseases outbreaks in Queensland in the previous 10 years. They 
were then asked about their WTP to reduce the rate of future outbreaks. Six differ-
ent price trade- offs, ranging from $50 to $1,000 (Australian dollars (AUD)) were 
used as bid values. The information provided and the trade- off  question is shown 
in Figure 11.2.

Figure 11.2. The contingent valuation question.
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The survey design was tested and refined during 2009 with four focus groups of 
Brisbane residents (each with eight to ten participants). The final survey instrument 
included the following five key sections:

• Background information to define the issues and refer respondents to further 
information if  required

• Collection of data about knowledge, attitudes and experience with red imported 
fire ants

• A choice modelling experiment (not reported in this chapter)
• A contingent valuation survey about reducing future outbreaks
• Collection of data about respondent characteristics.

The survey was conducted online with a private organisation employed to host the 
survey and to provide access to an internet panel of Brisbane residents. Three hun-
dred and twenty- nine respondents were surveyed from the Brisbane metropolitan 
area, with similar proportions answering each of the three versions. Fifty- six per 
cent of the respondents were living within a Fire Ant Restricted Area1 and 44% 
were living outside the restricted area. The survey responses were collected during 
a three- week period in August 2009.

There were some small differences between the study sample and the census data 
for Brisbane. The average age of  respondents, as well as the gender proportion, 
was similar to that of  the general population (based on 2006 census data from 
the Australian Bureau of  Statistics; Table 11.1). The average household income 
was slightly lower than that from the general population. The education of  the 
respondent group was slightly higher than that of  the general Brisbane popula-
tion, with 3% more having post- school qualifications and many more having ter-
tiary education.

The majority of respondents were long- term residents of Brisbane, with close to 
60% living in the area for 15 years or more. Two- thirds of the respondents intended 
to stay in the city for at least the next 10 years, with more than half  intending to 

Table 11.1. Respondent socio- demographic characteristics

Sample population ABS population

Mean age (within the range sampled) 43 43

Proportion of females 52% 51%

Proportion of households with children 38%

Education:

 Post- school qualification 59% 56%

 Tertiary education 42% 24%

Mean household income (AUD) $62,665 $66,112

 1	 As	defined	by	the	Queensland	Government	dated	15	May	2009.
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stay the rest of their lives. Most respondents lived in houses, with more than 50% 
owning their homes. Nearly 90% of respondents had access to a yard or garden, 
with 70% of them using the space often or very often.

11.5 Study Results

It is important in CVM studies that respondents are familiar with or understand 
the issue of interest and the trade-offs being presented, and that the way the trade-
offs are framed does not generate hypothetical bias or protests. The evidence from 
many of the contextual questions in the survey were that respondents were familiar 
with red imported fire ants and the risks of infestation, and viewed ongoing efforts 
to control the pest as realistic.

The large majority of respondents (95%) indicated that they were concerned 
about pest and weed species in their city. When asked to name three major pest or 
weed species, more than half  (53%) were able to name three different species. Of 
those that named pest species, fire ants were mentioned by 60% and cane toads were 
mentioned by 58%. Other pest species that respondents named were: ants (species 
other than fire ants) (9%), lantana (16%), termites or white ants (8%), hares or rab-
bits (7%) and rats or mice (6%).

A majority of respondents (88%) were aware of the outbreaks of red imported 
fire ants in Brisbane, with only 5.5% of respondents not aware of the pest at all. 
Two- thirds of respondents (66%) were concerned about the impact of fire ants on 
themselves and the wider community. Fire ants can impact the community in many 
ways, and respondents were asked to rate common impacts on a Likert scale ranging 
from 1 for ‘not concerned’ to 5 for ‘very concerned’. The summary of responses in 
Figure 11.3 demonstrates that most concerns are on personal impacts around loss 
of recreational use of their backyards and risks of painful stings. Respondents were 
least concerned with damage to buildings and the impacts to golf  and sporting 
fields.

Respondents were asked how they viewed the effectiveness of control measures 
for red imported fire ants over the next five years. Only 4% were confident there 
would be full eradication, while most (53.2%) thought the chance of a full eradi-
cation was somewhere between 10% and 66%. When asked about types of control 
measures (Figure 11.4) the preferred approach toward eradication (88% support) 
was for the government to undertake mandatory inspections in areas at risk. Many 
(59%) preferred targeted baiting in infested areas rather than preventative baiting in 
areas at risk of infestation (41%); the use of chemical baiting was preferred (71%) 
over non- chemical options (29%).

The responses to the CVM trade- offs are shown in Figure 11.5, and demonstrate 
that the willingness to support measures that would reduce the rate of future out-
breaks falls as the bid level rises. The responses are confounded by a large percent-
age (44%) of ‘not sure’ responses. When these are coded as ‘no’ responses, support 
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for the payment level falls from 45.8% at the $50 bid level to 15.5% at the $1,000 
bid level. However, if  the ‘not sure’ responses are removed from the data set, then 
support levels range from 71% down to 25% over the same bid levels.

Logit models were developed to explain the influences on participants’ responses 
to the contingent valuation question. Two main models were developed; one where 
the ‘unsure’ responses were treated as ‘no’ responses (model 1)  and the second 
where the ‘unsure’ responses were not included in the analysis (model 2). Details of 
the variables used in the logit models are presented in Table 11.2 and model results 
are presented in Table 11.3.

Both models are statistically significant with chi- square values higher than the 
test statistic. The socio- demographic characteristics of respondents were not strong 

Figure 11.3. Respondent concerns regarding the impact of fire ants on themselves and their community.

Figure 11.4. Preferences of respondents between different control options.
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influencing factors, and only gender was significant in model 1, with females being 
less likely to say ‘yes’ to one of the payment levels. Age was weakly significant (at 
the 10% level) in model 2. Removing the ‘unsure’ responses resulted in a stronger 
model fit (with higher McFadden pseudo R2 value).

The results of these analyses demonstrate that the average respondent has sub-
stantial values to reduce the rate of future invasions, with annual WTP (in Australian 
dollars) estimated at $306 per household when all responses were considered, and 
$535 when the ‘not sure’ responses were excluded. The CVM experiment was to 
reduce the rate of serious outbreaks by three outbreaks over 10 years, and the value 
to avoid a single outbreak was approximately $102 per household per year. Values 
were not dependent on whether or not respondents lived in an area infested with 
red imported fire ants, suggesting that the results may be transferable across the 
population.

Table 11.2. Model variables

Variable Description

Constant Accounting for the unexplained influences in the model

Contingent cost Cost levels presented to respondents: $50, $100, $200, $400, $750 and 
$1,000 (AUD)

Gender Female = 1; Male = 0

Age Respondent’s age in years

Number of children Number of children in the household

Education Coded from 1 = primary to 5 = tertiary degree or higher

Income Five categories; the mid- point of each category was used for analysis with 
50% added to the highest category.

Living in a RIFA area 1 = living in a RIFA restricted area; 0 = not living in a RIFA restricted 
area

RIFA, red imported fire ant.

Figure 11.5. Percent support for reducing future outbreaks by CVM bid level.
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11.6 Conclusions

The research reported in this chapter has focused on the potential for stated pref-
erence techniques such as the CVM to assess values for preventing or addressing 
outbreaks of invasive species. Benefit estimates are required to perform more sys-
tematic analysis of intervention strategies in frameworks such as cost– benefit ana-
lysis. There is a current paucity of studies that estimate benefits involving non- use 
values, such as those affecting communities and the environment. Given the range 
of invasive species that have major non- commercial impacts, a demonstration that 
stated preference techniques can address these information gaps is important.

The study shows that respondents in Brisbane have significant values to reduce the 
rate of future outbreaks of exotic pests and diseases in Queensland, with the value to 
avoid a major incursion estimated at $102 per household per year over a 10- year period.

The total present value of these 10- year payments for the Brisbane popula-
tion [based on a population of 2 million, an average household size of 2.7 (2011 
Population Census], and a 5% discount rate) was estimated at $602.7 million (ran-
ging from $379.8 million to $1,236.9 million) to avoid a major outbreak from an 
exotic pest or disease. If  a 10% discount rate was applied, the total present value 

Table 11.3. Logit models with responses to the contingent valuation question

Model 1 (all data) Model 2 (excluding ‘Not sure’)

Coefficient SE Coefficient SE

Constant −0.470 0.882 −0.239 1.091

Contingent cost −0.002*** 0.000 −0.002*** 0.000

Gender −0.779*** 0.273 −0.523 0.337

Age 0.009 0.009 0.019* 0.011

Number of children 0.018 0.099 0.010 0.107

Education 0.114 0.128 0.164 0.159

Income 3.2E- 06 3.1E- 06 2.9E- 06 3.6E- 06

Living in RIFA area 0.269 0.269 0.183 0.329

Model statistics

Number of observations 329 183

Log- likelihood −172.915 −111.022

AIC 1.101 1.301

McFadden R2 0.080 0.122

Chi square (dof) 30.107 (7) 30.723 (7)

Mean WTPa $306 $535

95% confidence interval $202– $623 $373– $947

***  Significant at the 1% level; * significant at the 10% level; AIC, Akaike information criterion; RIFA, 
red imported fire ant; SE, standard error; WTP, willingness to pay.

a calculated from a model with contingent valuation and constant only.
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was estimated at $479.6 million (ranging from $316.6 million to $984.2 million) to 
avoid a major outbreak from an exotic pest or disease.

The high value estimates are likely to be underpinned by values that Brisbane res-
idents have for maintaining their health, lifestyles and environment. This informa-
tion will help policy makers to evaluate different management options and engage 
in the political economy of generating support and providing information back to 
communities. The estimated values suggest that many, if  not most, quarantine and 
other protection policies are likely to generate net benefits to society and support 
efforts to avoid major biosecurity incursions.

Two key caveats about the size of the benefit estimates should be noted. First, 
the survey was conducted at a time when major pest and disease incursions were 
prominent in the media, and risks of other outbreaks, such as avian bird flu, were 
well publicised. It is possible that concerns over these issues have led to high WTP 
values that may not be maintained over time. Second, the methodology used has 
not allowed values to be differentiated according to the risks and issues involved 
in a pest and disease outbreak, with the result that the value estimated may be 
only applicable to major biosecurity incursions. Further research to provide more 
detailed estimates of values is recommended.
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12 Management of Invasive Species: 
Info- Gap Perspectives
Yakov Ben- Haim

12.1 Introduction

Invasive species create difficult challenges for environmental managers. Invasive 
species may disrupt existing processes and behave in new and unpredictable ways, 
and thus reduce the relevance of ecological experience and established scientific 
understanding in managing them.

Scientific models are extremely useful for evaluating and selecting strategies for 
managing invasive species (see, e.g. Potts et al., 2013). However, because the real 
ecological system may differ in unknown ways from the system represented in the 
model, managers should use such models cautiously. In particular, model- based 
predictions of optimal outcomes may be very unrealistic when there is a mismatch 
between the mathematical model and the ecological system. This means that evalu-
ating a strategy in terms of its model- based predicted outcome, and choosing a 
strategy whose predicted outcome is best, may be unrealistic. A management strat-
egy asserting that ‘This is the best model we have’ (which is probably true), ‘so 
we should use this model to identify and strive for the best possible outcome’, is 
wishful thinking. The best possible outcome is unknown because the model errs in 
unknown ways. We simply cannot reliably identify a strategy whose outcome will be 
better than all other strategies.

Gigerenzer and Selton (2001) take a very different approach, by attempting to 
achieve adequate –  rather than optimal  –  outcomes. This approach employs the 
concept of satisficing introduced by Simon (1955, 1956) and motivated by the lim-
ited information and information- processing ability of the decision maker, which 
Simon referred to as bounded rationality. To satisfice has come to mean ‘To decide 
on and pursue a course of action that will satisfy the minimum requirements neces-
sary to achieve a particular goal’ (Oxford English Dictionary, online version, 1989). 
Satisficing makes very good sense in situations of severe uncertainty such as man-
aging many invasive species. When one’s understanding may be very deficient, it is 
bad policy to exploit that understanding too extensively. Satisficing strategies seek 
solutions that deliver minimally acceptable outcomes, even when the true ecological 
system turns out to be very different from the model system.

The goal of  this chapter is to provide a conceptual framework for selecting 
management strategies that satisfice, rather than optimise, the outcome. We show 
how the decision maker can choose a strategy to achieve maximal confidence 
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of  adequate outcome. We will see when outcome optimisation is the strategy 
of  choice, and when it is not. Our work is based on info- gap decision theory 
(Ben- Haim, 2006).

We discuss a few examples of the management of invasive species. The aim is 
not to advocate specific models, or to develop real- life policy recommendations. 
Rather, the goal is to illustrate the info- gap decision methodology so the reader can 
understand how an info- gap robustness analysis is used in the selection of a man-
agement strategy, and what insights it provides. No attempt is made to explain the 
mathematical details of how the info- gap analysis is actually performed, which is 
described extensively elsewhere (Ben- Haim, 2006; Burgman, 2005; http:// info- gap.
com; Regan et al., 2005).

We will consider three examples of progressive complexity. In Section 12.2 the 
manager must allocate a limited budget between culling the invasive species and 
studying the ecology of the system. The purpose of this  example –  which is static, 
simplistic and stylised –  is to introduce the central ideas of info- gap uncertainty and 
robustness. In Section 12.3 we consider a dynamic model and illustrate the ways in 
which the info- gap robustness analysis supports the choice of a time- varying cull-
ing effort. We extend this example in Section 12.4 to include both uncertainty in 
the parameters of the ecological model as well as conflicting expert opinion on the 
structure of the model itself. Our examples employ versions of the Lotka– Volterra 
model of population dynamics, providing an opportunity to study the implications 
of model uncertainty for the selection of management strategies.

12.2 Culling and Learning: An Allocation Problem

12.2.1 Problem Statement

Consider a feral cat population preying on an indigenous bird species. Our aim 
is to keep the bird population viable. We can exert effort to control the cat popu-
lation, but we are unable to eradicate all cats; it is simply too hard to find them 
all. Furthermore, our understanding of the population dynamics is limited. How 
many cats should we cull in order to confidently maintain a healthy bird popula-
tion? Should we allocate some of our management budget to study the popula-
tion dynamics so that we can choose a more effective and reliable culling strategy? 
Initially we will consider a simplified static example.

Assume that we have access to a team of analysts who have built a Lotka– Volterra 
model for the two- species interaction between cats and birds (Krebs, 1978; Pielou, 
1969; Royama, 1992). Regarding birds, the model states that the bird population 
would grow exponentially if  they were not predated by cats. Regarding cats, the 
model states that the cat population would decay exponentially if  they were not 
able to consume birds.

This model predicts two possible stable states for the bird– cat interaction. Either 
both species become extinct, or both species stabilise at population sizes that 
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depend on the properties of the dynamic interactions. The equilibrium size of the 
bird population, Beq, as it interacts with the cat population, is

 Beq =
γ
γ

1

2

.  (12.1)

The equilibrium size of the bird population is the ratio of the rate at which the cat 
population would decline in the absence of birds, γ

1
, to the rate at which the cat 

population grows as a result of each bird– cat encounter, γ 2. (An analogous expres-
sion describes the equilibrium size of the cat population but it needn’t concern 
us here.)

We can influence the size of the equilibrium bird population by management 
actions such as investing effort in culling cats or investing resources in studying the 
population dynamics so that culling efforts can be more effectively deployed. Our 
management goal is to keep the equilibrium bird population viable. We would like 
to stabilise with at least 200 individuals, which is the minimal acceptable equilib-
rium population size for birds, denoted Bmin. If  the equilibrium bird population is 
no less than Bmin, then the management activity has succeeded. We would like to 
know if  it is feasible to equilibrate at no less than 200 birds, and what management 
strategy is needed to reliably achieve this.

12.2.2 Uncertainty and Robustness

Our analysts should be able to help answer these questions. However, their quanti-
tative model is uncertain. Our analysts are using an adaptation of the best available 
model developed in similar situations, but the specifics of our situation are unique. 
This particular invasive species (the cat) has not been studied before in this habitat 
with this particular prey (the bird). In addition, we suspect that the habitat is chan-
ging, perhaps due to urbanisation, or climate change, or other factors.

Our analysts are fully aware of the limitations of their model. They therefore 
recognise that, in order to use the models for selecting a management strategy, it 
is essential to evaluate robustness- to- uncertainty, as we will demonstrate. By strat-
egy they mean the fraction of a fixed budget that is allocated to the culling of cats, 
while the remaining budget is devoted to studying the ecosystem and improving the 
population dynamics model. By the robustness of  a strategy they mean how good 
the strategy will be, even if  the model is wrong. The concept of robustness can be 
expressed more precisely in two different –  but complementary –  ways.

One way to understand the idea of  the robustness of  a strategy is as an answer 
to the following question: if  we want to achieve an acceptable outcome (yield-
ing a bird population no less than Bmin), then how large an error in the esti-
mated species- interaction model can we tolerate? Robustness is a measure of 
our immunity to model error while achieving a specified required outcome. The 
strategy is robust if  acceptable bird population size is maintained even at large 
modelling error.

013
19:39:02, subject to the Cambridge Core terms of use,



12.2  Culling and Learning: An Allocation Problem 269

269

If  the robustness of a particular strategy is large, then an acceptable outcome 
will be achieved even if  the best model we can think of is very wrong. That is, large 
robustness means that the bird population at equilibrium will not fall below the 
specified minimal value even if  the real interaction dynamics are greatly different 
from the mathematical model. On the other hand, small robustness of a strategy 
means that the outcome requirements are confidently achieved only if  the habitat 
dynamics are quite close to our analysts’ model. We will tend to prefer a strategy 
that is more robust over a strategy that is less robust.

The other way to understand the robustness of a strategy is as an answer to the 
following question: how small could the bird population be if  our model contains 
errors up to a specified magnitude? This turns things around. Rather than specify-
ing the minimal acceptable population size, we specify the magnitude of error of 
the model and ask: how much could the bird population fall, given this strategy, if  
our model errs by this amount? The strategy is robust if  bird loss is small even with 
large modelling error.

Whichever of the two interpretations of robustness that we use, the robust pref-
erence between strategies will be the same.

The robustness can also be used to evaluate the feasibility of different choices of 
the minimal acceptable population size, Bmin. For a given strategy, we can ask: what 
value of Bmin has large (or small) robustness? Values of Bmin that, for a given strat-
egy, have large robustness are more feasible (with that strategy) than values of Bmin 
that have low robustness. We illustrate these ideas with some graphs.

12.2.3 Interpreting Robustness Curves

Our analysts display the robustness of a specified strategy in terms of its robustness 
curve, as shown in Figure 12.1. The vertical axis is the minimal acceptable popu-
lation size, while the horizontal axis is the robustness. This curve is for a specific 
strategy: an allocation between culling cats and studying the ecosystem.

The interpretation of the scale on the robustness axis depends on how the uncer-
tainty is modelled. Our analysts have estimated the values of the coefficients in the 
equation for the equilibrium size of the bird population, γ

1
 and γ 2 in Eq. 12.1, and 

they have estimated the errors of these estimated coefficients (e.g. standard errors, or 
spread of expert opinion, etc.) Uncertainty may be expressed as an unknown frac-
tional error of each coefficient with respect to its estimated error. Robustness is the 
greatest fractional error of the estimated parameters of the model up to which all 
models yield acceptable outcome. Thus, for instance, a robustness of 0.5 means that 
any magnitude of error in all coefficients of the model, up to 50% error, does not 
jeopardise the corresponding minimum bird- population size requirement, which is 
600 birds for this value of robustness, as we see in Figure 12.1. Similarly, a robustness 
of 1.4 means that γ

1
 and γ 2 can each err by as much as 140% (each coefficient with 

respect to its estimated error) if  the minimal requirement is for 176 birds.
Three features of all robustness curves appear in Figure 12.1: trade- off, cost of 

robustness and zeroing.
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The negative slope of the robustness curve in Figure 12.1 represents the trade- off 
between robustness and performance: better performance (larger minimal popula-
tion size) is obtained in exchange for lower (worse) robustness to uncertainty. The 
negative slope in Figure 12.1 quantifies the ordinary intuition that higher aspira-
tions (for large values of Bmin) entail greater vulnerability (lower robustness) than 
lower aspirations. The negative slope enables us to evaluate how much immunity 
against model- error must be foregone in exchange for an increase in our perform-
ance requirement. For instance, we see from Figure 12.1 that requiring an equilib-
rium population size of birds no less than 800 has a robustness of 0.22: the bird 
population will not fall below 800 provided no model coefficient errs by more than 
22%. Allowing the equilibrium size to be as small as 400 birds entails a robustness 
of 0.86.

The trade- off  property is manifested in the slope of the robustness curve which 
can be understood as a cost of robustness. A shallow slope means that a unit decrease 
in the minimal population size entails a large increase in robustness. A steep slope 
means that a unit decrease in population size results in only a small gain in robust-
ness. For instance, we see in Figure 12.1 that decreasing Bmin from 300 to 100 birds 
results in an increase in robustness of about 0.5. In contrast, a decrease from 1,000 
to 800 results in an increase in robustness of only 0.2. The cost of robustness is 
lower at the lower right than at the upper left of the curve in Figure 12.1. Shallow 
slope means low cost of robustness, while steep slope means that robustness is very 
costly in units of decreased performance.
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Figure 12.1. Robustness vs. minimal bird population size, Bmin, for strategy S
1
.
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The trade- off  property has a further important implication for strategy selec-
tion. Recall that a robustness curve is evaluated for a specific management strategy; 
Figure 12.1 is for a strategy labelled S

1
. Using this strategy, the analysts tell us that 

the estimated model predicts an equilibrium population of 1,000 birds. As we see in 
Figure 12.1, this is precisely the value of Bmin at which the robustness equals zero. 
This illustrates a property of all robustness curves: the robustness of a strategy is 
zero when attempting to achieve the outcome which is predicted for that strategy. 
Best- model predictions have zero robustness. This is called the zeroing property.

This means that we should not evaluate a strategy in terms of the predicted out-
come of that strategy, because this prediction is an unreliable indication of how the 
strategy will fare. Rather, we should evaluate a strategy by its full robustness curve. 
Using the concept of trade- off  between robustness and performance, we can evalu-
ate the robustness of poorer- than- predicted outcomes; these are the only outcomes 
which have positive robustness against modelling error.

A further implication has to do with outcome optimisation. A common approach 
to selecting a management strategy is to seek the best outcome that can be achieved, 
based on our best model (why settle for less?). The problem with this approach is 
that best- model predictions have no robustness against uncertainty, so outcome 
optimisation can be wishful thinking as we will see.

Each strategy has its own robustness curve that reflects the trade- off  and zero-
ing properties of  that strategy. Why are some curves steep and some curves shal-
low? What does this indicate about the corresponding strategies? A strategy has 
large predicted equilibrium bird population (hence the robustness becomes zero 
at a large value of  Bmin) if  that strategy effectively exploits the properties of  the 
system as represented by the estimated model of  the population dynamics. A strat-
egy will have low cost of  robustness (and hence a shallow robustness curve) if  that 
strategy is insensitive to the gap between the estimated and the correct model. 
These two properties of  a strategy  –  predicted outcome and robustness against 
error in the predictive model –  together determine the slope and intercept of  the 
robustness curve.

The method for selecting a management strategy that is indicated by these con-
siderations is called robust- satisficing. Identify an outcome that you can accept, and 
seek a management strategy that maintains at least an acceptable outcome over 
the widest possible range of deviation of reality from your model. That is, satisfice 
(rather than optimise) the outcome and robustify against modelling error. This is 
illustrated in Figure 12.2.

12.2.4 Selecting between Management Strategies

Figure 12.2 shows robustness curves for two management strategies, e.g. different 
allocations between culling cats and studying the population dynamics. Strategy 
S

1
 entails more culling of cats and less modelling effort than strategy S2. The best- 

model prediction for S
1
 is that the equilibrium bird population will have 1000 indi-

viduals while S2 predicts only 500. On the other hand, because S2 is based on a more 
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thorough study of the bird– cat interaction, the cost of robustness is lower with S2 
than with S

1
. That is, the robustness curve for S2 is shallower than for S

1
.

Consider strategy S
1
. The predicted equilibrium size of the bird population, based 

on S
1
, is 1,000 individuals. However, the robustness to uncertainty in this value is 

zero, so we cannot rely on stabilising at 1,000 birds if  we implement strategy S
1
.  

Only smaller populations have positive robustness against modelling error. We are 
aiming to maintain at least 200 individuals, and we see from the solid curve in 
Figure 12.2 that the robustness for this requirement is 1.3; the coefficients of the 
Lotka– Volterra model can all err up to 130% without jeopardising the requirement 
that the final population not fall below 200 individuals.

Now consider strategy S2, whose robustness curve is the dashed line in Figure 12.2. 
The predicted outcome of S2 is only 500 birds (because we are culling fewer cats 
than with S

1
). Nominally –  based on the best- model predictions –  we would prefer 

S
1
 over S2 (because 1,000 birds is better than 500). However, because predicted out-

comes have zero robustness, this is not a good basis for comparing these strategies. 
Rather, we see that the robustness for achieving a population no smaller than 200 
birds is 2.1 with strategy S2 (as opposed to 1.3 with S

1
). Using S2 (with its larger 

share of ecosystem research), the model coefficients can all vary up to 210% with-
out allowing the equilibrium bird population to fall below 200. Strategy S2 is more 
robust to uncertainty than strategy S

1
; the robust preference –  given the require-

ment for at least 200 birds –  is for S2 rather than S
1
. What has happened is a reversal 
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Figure 12.2. Robustness vs. minimal bird population size, Bmin, for strategies S
1
 and S2.
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of preference between these strategies, resulting from the fact that their robustness 
curves cross one another.

Let’s summarise the robust- satisficing approach to strategy selection. Strategy S
1
 

is nominally preferred over S2: the best- model prediction is better with S
1
 than with 

S2. However, best- model predictions have zero robustness. Furthermore, the robust-
ness curves of these two strategies cross one another at a value of Bmin denoted B×.  
If  an outcome below the crossing point is acceptable (Bmin less than B×) then S2 is 
more robust and hence preferable over S

1
. S

1
 is preferred if  we need a population 

larger than B×.
There are many management strategies that are intermediate between S

1
 and S2, 

all with the same total budget. The robustness curves of two such intermediates are 
shown as thin curves in Figure 12.3, together with the curves for S

1
 and S2. The four 

strategies all show the trade- off and zeroing properties, as well as extensive curve 
crossing. Most notably, however, we see that –  to a good approximation –  the robust-
ness curves for S

1
 and S2 enclose the intermediate strategies. This means that either 

S
1
 or S2 is more robust than the other strategies which thus need not be considered.

12.3 Variable Culling Effort

We now extend the example of Section 12.2 to include variation of the culling effort 
over time. Our aim, as before, is to maintain a healthy bird population threatened 
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Figure 12.3. Robustness vs. minimal bird population size, Bmin, for strategies S
1
, S2 and 2 others.
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by an invasive cat. We have a fixed budget that determines the total culling effort 
that can be exerted over a specified duration. However, when the cat population is 
small, a large effort is needed to remove additional cats, while culling from a large 
population requires less effort. The question is how to allocate culling effort over 
time in order to reliably maintain a viable bird population in light of uncertainty in 
the population dynamics.

12.3.1 Formulation

The analysts estimate that the amount of effort, Et, required to remove nt cats (at 
any time step t) depends on the current size of the cat population, Ct, as:

 E
C n Ct

t t t

=
−

−
ε ε

 (12.2)

where ε  is a constant. Removing no cats (nt = 0) requires no effort, but as nt 
approaches the size of the cat population (i.e. as we attempt to remove all but the 
last few cats) the required effort increases without bound. This equation can be 
inverted to express the number of cats culled as a function of the effort and the size 
of the cat population. We denote this as n E Ct t t( , ). (Strictly speaking, this is the 
greatest integer less than the value of nt which satisfies Eq. 12.2.) This is a feedback 
strategy because the size of the cat population feeds back to influence the culling 
action.

The discrete- time Lotka– Volterra equations that the analysts use are:

 B B B Ct t t t+ = +( ) −1 3 41 γ γ  (12.3)

 C C B C n E Ct t t t t t t+ = −( ) + − ( )1 1 21 γ γ ,  (12.4)

The coefficients γ
1
 and γ 2 are the same as in Eq. 12.1. γ 3 is the fractional growth rate 

of birds in the absence of predation, and γ 4 is the death rate of birds per bird– cat 
encounter. Equation 12.4 contains the cat- culling term, n E Ct t t( , ), that depends 
on the size of the cat population and on the culling effort that is allocated for the 
current step.

Our management goal is to maintain the size of the bird population above a spe-
cified minimum value, Bmin, throughout the planning period T. That is, we require 
that B Bt ≥ min for each time step t from t = 1 to t T= . Our budget determines the 
total culling effort that can be exerted, E , and our task is to allocate this effort over 
time subject to the budget constraint, E Et

T

t
=

=∑ 1
.

We will consider three different strategies for allocating the culling effort. The 
effort, Et, can be constant over time, or it can increase linearly from zero to maximal 
effort at time T , or it can decrease linearly to zero effort at time T . While there are 
other time varying strategies, these three will suffice to illustrate the decision meth-
odology. We will also consider the impact of different total budget sizes, E .

The robustness of a strategy can be understood exactly as in Section 12.2, where 
we discussed two equivalent definitions. The robustness of a specified strategy 
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(allocation of effort over time) is the greatest uncertainty in the parameters of the 
model that can be tolerated while also maintaining the bird population above the 
minimal requirement, Bmin, throughout the management duration. Equivalently, 
the robustness of a strategy can be understood as the smallest size that the bird 
population could attain, given a specified level of error in the model. In this latter 
definition, robust strategies ensure large bird populations even with large model 
errors.

12.3.2 Results

Figure 12.4 shows a robustness curve for constant culling effort over a duration in 
which both the bird and the cat populations display more or less periodic fluctua-
tions. The number of cats that are culled varies up and down over time as the size 
of the cat population changes, in accord with Eq. 12.2, even though the total effort 
expended on both culling and learning, Et, is constant.

We see the same three generic features of the robustness curves that were observed 
in Section 12.2. First, robustness trades off  against performance: requiring that the 
bird population not fall below a large minimal size entails low robustness against 
modelling error. Second, the robustness can be significantly increased without sub-
stantially reducing the population minimum only if  the slope is shallow. Third, 
the robustness equals zero at the population size that is predicted by the estimated 
model for this strategy.
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Figure 12.4. Robustness vs. minimal bird population size, Bmin, for constant culling effort.
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The striking difference between the robustness curve in Figure 12.4 and those in 
Section 12.2 is that here the robustness is jagged and piece- wise flat. The step- like 
shape in Figure 12.4 results from the discrete culling process in which small num-
bers of cats are culled, typically between 0 and 10 per time step. Thus for instance 
the long plateau in the robustness curve at a value of Bmin about 300 results from 
both the culling, and the extremes of the fluctuating bird population, staying the 
same for the corresponding wide range of different models.

This long plateau is quite significant because it shifts the lower right part of the 
robustness curve to substantially larger robustness values. For instance, we see from 
Figure 12.4 that the robustness is 1.38 if  our goal is to maintain at least 200 birds 
throughout the management period. This means that fractional errors in all of the 
model parameters of 138% (each with respect to its own estimated error) do not 
jeopardise this requirement. In contrast, the robustness is only 0.55 if  we require a 
Bmin of 300 birds.

Figure 12.5 shows robustness curves for three different culling strategies, all with 
the same total effort. The curve with constant culling effort is reproduced from 
Figure 12.4. The dashed curve that crosses the constant- culling curve has linearly 
increasing effort starting with zero effort in the first time step. The robustness curve 
in the lower left corner has linearly decreasing culling effort reaching zero effort in 
the last time step. The numbers of cats that are culled in each step are different in 
each case, and fluctuate as the cat population fluctuates due to the feedback from 
population size to actual culling.

The first thing to conclude from Figure 12.5 is that the decreasing- effort strategy 
is vastly more vulnerable to error in the model than either the constant- effort or the 
increasing- effort strategies. From among these three options (at the total budget 
considered) one would never choose the decreasing effort strategy.

The choice between constant and increasing effort is more subtle, because their 
robustness curves cross one another, which raises the possibility of preference- 
reversal between them, as discussed in Section 12.2. Nominally, these strategies are 
almost the same: their predicted minimal population sizes are nearly identical. In 
contrast, their robustness curves are substantially different over part of the range of 
Bmin. For instance, for a minimal acceptable bird population size of 500, the robust-
ness of the constant- culling strategy is 0.26 while the robustness of the linearly 
increasing strategy is 0.58, more than twice as robust. On the other hand, at Bmin of 
200 the preferences are reversed though the robustness advantage of the constant- 
effort strategy is not as dramatic.

Figure 12.6 shows robustness curves for constant- effort culling strategies at three 
different total budgets of culling effort. The overall trend is clear and unsurpris-
ing: more total effort is usually more robust. A total budget of E = 2 0.  is strictly 
more robust than a total budget of E = 1 5. , though the robustness advantage of the 
greater effort is not constant over the range of Bmin values. A budget of E = 2 0.  is 
more robust than E = 1 0.  over most, but not all, of the Bmin values.

Figure  12.7 shows a close- up of Figure  12.6 in the high- performance low- 
robustness corner of the graph. Here we see extensive curve- crossing, with the 
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Figure 12.5. Robustness vs. minimal bird population size, Bmin, for three different culling effort 
strategies.
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Figure 12.6. Robustness vs. minimal bird population size, Bmin, for constant culling effort at three 
different total budgets.
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associated potential for reversal of preferences among these management options. 
In particular, for Bmin between 800 and 900 birds, the lower effort has twice the 
robustness of the higher effort, when comparing E = 1 0.  against E = 2 0. . If  a very 
large bird population is required –  and recognising that the associated robustness 
is relatively low –  then one might prefer the lower total effort (from among these 
constant- effort strategies).

This somewhat counterintuitive conclusion is a result of the non- linear popula-
tion dynamics and the feedback between population size and actual culling. Culling 
too many cats can lead to a rise in the bird population, which can then cause a sharp 
rise in the number of cats, which in turn may drive the bird population below the 
acceptable level. We can’t predict this at all precisely because the model is uncertain, 
but the robustness analysis reveals this mechanism and steers us away from being 
too trigger happy.

These examples illustrate how the choice of a dynamic state- feedback culling 
strategy is supported by analysis of robustness to modelling uncertainty. These 
models capture uncertainties in the model parameters. Other uncertainty models 
would be required to explore other sources of uncertainty; for instance, we explore 
uncertainty in model structure in the text that follows. The most important thing 
to emerge in this initial analysis is the qualitative understanding this provides of 
the impact of uncertainty on the managers’ objectives. Such explicit consideration 
of uncertainty provides important insight into the strategies that may determine 
population viability.
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Figure 12.7. Close- up of Figure 12.6.
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12.4 Conflicting Experts

Experts often disagree with one another. For instance, the Intergovernmental Panel 
on Climate Change presents suites of science- based models predicting different 
global climate futures (IPCC- AR4, 2007). Likewise, macroeconomic processes 
can be modelled in many conceptually distinct but credible ways. Nonetheless, the 
axiomatic, conceptual and predictive disparity among these models is substantial 
(Snowdon et al., 1994).

Ecological models and experts are no exception. Expert opinions on matters of 
fact –  how large a population can this habitat sustain, how low a rainfall can this 
species tolerate, and so on –  can vary greatly. Experts’ opinions depend on how 
the questions are formulated, how the elicitation interview is structured, and many 
other factors. Experts tend to be overconfident in assessing statistical confidence 
intervals, which can be ameliorated only by careful design of the elicitation proced-
ure (Speirs- Bridge et al., 2010). Opinions can differ on the conceptual foundations 
and mathematical structure of predictive models for ecological processes. Several 
distinct paradigms are in use for describing spatial and temporal population dynam-
ics, including the Lotka– Volterra model, time series modelling (Turchin & Taylor, 
1992), meta- population modelling (Hanski, 1999) and others. Even within the class 
of Lotka– Volterra models, specific realizations vary widely.

In this section we study the choice of a time- varying culling strategy when our 
team of analysts is divided in two groups, each supporting a different model of the 
population dynamics. Both models are uncertain, their predictions are different, 
and we must choose a culling strategy before the scientists are able to work out 
their differences. We have no reason to believe, or to disbelieve, one model more 
than the other. We are not able to bet on either model. Both models cannot be true, 
and in fact both are uncertain so both are likely to be false. And yet each model is 
founded on sound evidence and supported by credible scientific opinion. It is not 
due to negligence or incompetence that the scientists disagree among themselves. 
The specific ecological situation that must be managed is unique in important ways. 
We may believe that the scientists, given time and resources, would work out their 
differences. But we must choose a management strategy for the current situation 
now. In this section we illustrate an info- gap robustness approach to strategy selec-
tion in this predicament.

12.4.1 Two Models

The two models used by our team of analysts are both finite- difference Lotka– 
Volterra models, but their structures are different and some of each model’s param-
eters are fractionally uncertain as described in Section 12.2.3.

The first model is specified in Eqs. 12.3 and 12.4 with the culling quantity deter-
mined by Eq. 12.2 in terms of the culling effort. That is, the culling strategy deter-
mines the culling effort at each time step, and the actual number of cats that are 
removed with this effort depends on the size of the cat population.
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The second model is also a finite difference Lotka– Volterra model with a different 
structure (this model is motivated by Krebs, 1978, p. 242):

 B
B

B B Ct
t

t t t+ = −






−1
2

3 41
ς

ς ς  (12.5)

 C B C n E Ct t t t t t+ = − ( )1 1ς ,  (12.6)

The coefficients, ςt, are all positive. ς2 is the carrying capacity of birds in the habi-
tat in the absence of predation by cats. ς3 is the fractional growth rate of birds in 
the absence of predation and far below the carrying capacity. ς4 is the death rate 
of birds per bird- cat encounter. ς1 is the growth rate of cats per bird- cat encounter. 
n E Ct t t( , ) is determined by Eq. 12.2.

The dramatic predictive difference between the two models is illustrated in 
Figures 12.8 and 12.9. These figures show bird and cat population sizes versus time 
for each of the two models, given a constant culling effort. The first model shows 
fairly stable and nearly harmonic oscillation of the populations, while the second 
model shows rapid and highly damped convergence to an equilibrium in which 
cats have been eradicated. The same total budget for culling effort is available in 
both cases, but the second model actually expends far less effort because the cats 
are eradicated fairly early. Thus the policy implications of these models are quite 
different, and we will see that their robustnesses to uncertainty are different as well.

Our management goal, as in Section 12.3, is to maintain the size of the bird 
population above a specified minimum value, Bmin, for times t = 1 through t T= . 
We must choose the culling effort at each step, Et, subject to the budget constraint, 
E Et

T

t
=

=∑ 1
. The question is: how to choose a culling strategy? The answer is based 

on the idea of robustness.

12.4.2 Robustness

We define the robustness for each model just as we did in Section 12.3. Indeed, 
model 1 here is the same as the model used in that section so the robustness is the 
same as well. We denote the robustness functions for these two models as 



h B1 min( ) 
and 



h B2 min( ). In each case, we can understand the robustness in either of the senses 
introduced in Section 12.2. If  we specify a lowest acceptable bird population size, 
Bmin, then the robustness is the greatest fractional error of the model parameters at 
which the bird population will not fall below Bmin. Equivalently, if  we postulate the 
magnitude of fractional error, then the robustness function determines the lowest 
size that the bird population can reach. The robustness function depends on the 
culling strategy. More robustness is better than less robustness, so the robustness 
function generates preferences on culling strategies.

Figure 12.10 shows robustness functions for the two models with constant cull-
ing effort. The difference in the dynamic predictions of these models, which was 
illustrated in Figures 12.8 and 12.9, is transformed here into dramatic difference  
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Figure 12.8. Bird and cat populations predicted with model 1; constant culling effort.
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Figure 12.9. Bird and cat populations predicted with model 2; constant culling effort.
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in robustness. Model 1, which predicts persistence of both populations and hence 
persistent removal of small numbers of cats, shows the step- like robustness curve 
that we encountered in Section 12.3. Model 2 predicts smooth and rapid extinction 
and its robustness curve is smooth as well.

Model 2 is more robust than model 1 for acceptable bird- population sizes below 
600. For instance, requiring no less than Bmin = 200 birds, we are vastly more robust 
if  we can rely on model 2 rather than model 1 (



h2 200( ) is off  scale far to the right). 
But we are not in a position to favour model 2 over model 1. And furthermore, if  
we need a larger bird population, say Bmin = 800, then model 1 is more robust than 
model 2.

How should we choose among culling strategies? The approach is to extend the 
info- gap model of uncertainty beyond the fractional errors of the parameters and 
to include the structural uncertainty as well (as reflected in having two models rather 
than one). For any minimal acceptable population size, Bmin, the robustness is the 
greatest fractional error in the parameters of either model, so that the correspond-
ing model satisfies the population requirement. We don’t know the actual fractional 
errors of the parameters of either model, and we don’t know which of these models 
we really should pay attention to. Consequently, we attend to both models and 
evaluate a culling strategy according to whichever model is more vulnerable at the 
specified minimal population size. The robustness of a culling strategy is the robust-
ness of the more vulnerable of the two models. We state this formally as
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Figure 12.10. Robustness versus minimal bird population size, Bmin, with constant culling effort, for two 
conflicting models.
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h B h B h Bmin min minmin ,( ) = ( ) ( ){ }1 2  (12.7)

The thick curve in Figure 12.11 is the overall robustness, 


h Bmin( ), evaluated from 
the two model robustnesses displayed as thin curves. The constant- effort culling 
strategy is evaluated as the worst of the two alternatives. We don’t know which 
model is in fact more accurate, so we evaluate the strategy in terms of whichever 
model is more vulnerable to error because we are unwilling to favour either model 
over the other.

12.4.3 Strategy Selection

Having established what we mean by robustness to conflicting uncertain models, we 
are now ready to evaluate alternative culling strategies.

Figure 12.12 shows the overall robustnesses for the three different culling strat-
egies described in Section 12.3.1. The culling effort can be either constant over time, 
linearly increasing, or linearly decreasing. The total budget of effort is fixed.

Figure 12.12 is a truncated version of Figure 12.5. We can understand this trun-
cation by considering Figure 12.11 in which the robustness curve for model 1 is 
truncated by the robustness curve for model 2. Much of the discussion of strategy 
selection in Figure 12.5 applies here as well. The decreasing culling effort would 
not be chosen because it is dominated by the other two strategies. The robustness 
curves for constant and linearly increasing effort cross one another so the preference 
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Figure 12.11. Same as Figure 12.10, indicating overall robustness, 


h Bmin( ).
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between them depends on our performance requirement as discussed in Section 
12.3.2.

The policy impact of having two conflicting models is demonstrated in 
Figure  12.12. At high performance (Bmin > 600) the robustness is determined by 
model 2 for which the constant culling strategy is more robust. At lower perform-
ance (Bmin < 600) the robustness is determined by model 1 for which either constant 
or increasing culling is more robust, depending on Bmin.

Figure 12.13 shows robustness curves for three different total budgets of culling 
effort, all with constant effort over time. This is a truncated version of Figure 12.6. 
The presence of two conflicting models has eliminated all curve crossing and estab-
lished an unambiguous preference ordering: more culling effort is preferred over 
less in this specific case, unlike the situation in Figure 12.6.

12.5 Conclusion

Science- based models are useful, even when applied to systems that deviate in 
unknown ways from those for which the models were developed. However, it is then 
necessary to deal with the info- gap between model and reality. Management strat-
egies cannot be evaluated only by their model- based predicted outcomes, because 
these predictions have no robustness against error in the model. We discussed three 
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Figure 12.12. Robustness vs. minimal bird population size, Bmin, for three different culling effort 
strategies.

013
19:39:02, subject to the Cambridge Core terms of use,



12.6  Acknowledgements 285

285

examples in which an info- gap robustness analysis is used to select a management 
strategy in attempting to reliably achieve an acceptable outcome.

These examples can be extended in many directions (relevant examples can be 
found in Ben- Haim, 2006). We could explore the robustness of the predator popu-
lation, and the management implications of considering both predator and prey 
robustness. Our analysis can be applied to systems with three or more species. We 
could study how monetary allocations are translated into models of population 
dynamics. This would introduce additional uncertainties that must be modelled and 
managed. One might wish to consider uncertainty about the size of the smallest 
viable prey population. We have represented uncertainty in the population dynamics 
with non- probabilistic info- gap models of uncertainty. In some situations we have 
probabilistic information that, although valuable, may itself  be uncertain. One may 
like to consider adaptive extensions: use part of the budget for exploratory manage-
ment, improve the dynamic model from what is learned, and then invest the remain-
ing budget. These and other extensions can be explored using info- gap techniques.
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13 Decisions with Relative 
Robustness
Colin J. Thompson

13.1 Introduction

Allocation of resources among alternative strategies or options is a common and 
important problem in many areas of environmental management, including bio-
diversity, species conservation and threats from invasive species. A general theoret-
ical framework for analysing this problem was presented by McCarthy et al. (2010), 
who stressed that management should indicate overall objectives in terms of the 
benefits (and costs) derived from allocation of resources to available management 
options. The problem then reduces to optimising objectives. Several applications of 
this approach can be found in McCarthy et al. (2010) and similar problems were 
addressed in Wintle et al. (2010).

The benefits derived from individual management options for a given allocation 
of resources will typically be subject to severe uncertainty. This issue was discussed 
recently by Thompson et al. (2012) in the context of surveillance for threatened 
and invasive species. The purpose of this chapter is to present a simple example of 
resource allocation under severe uncertainty to illustrate how different methods in 
decision theory (French, 1986) and robust optimisation (Kouvelis & Yu, 1997) can 
provide different robust- optimal solutions, depending on the method and choice of 
management objectives.

13.2 Model Objective Functions

The general theory of McCarthy et al. (2010) considers the problem of allocating a 
fraction xi of  a total budget to n  management options with expected benefits p xi i( ) 
for options , , ,i n= …1 2 . They assume that the management objective is to maximise 
the overall expected benefit, that is, the sum of p xi i( ), subject to the budget con-
straint where the sum of the fractions xi is unity. In the case of two management 
options, the objective function can be written as

 V x p x p x x; ,λ( ) = ( ) + −( ) ≤ ≤1 2 1 0 1  (13.1)

where the fraction x of  the budget is allocated to option 1, 1− x is allocated to 
option 2 and λ denotes some parameter set that characterises the functional form 
of p1 and p2. McCarthy et al. (2010) considered exponential, hyperbolic and linear 
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functional forms, while Thompson et al. (2012) explored functions inversely pro-
portional to their respective allocation. Wintle et  al. (2010), on the other hand, 
considered more general situations involving products of functions of x  and  1−( )x .

Here, for illustrative purposes, we consider the linear model

 V x x x x, ,λ λ λ( ) = + −( ) ≤ ≤1 21 0 1  (13.2)

which can be thought of as a simple portfolio model of two assets with the expected 
returns λ1 and λ2. Given this formulation, one would clearly like to choose x to maxi-
mise the overall benefit V x, »( ) in Eq. 13.1. For the portfolio example in Eq. 13.2,

 V
x

V x
x

xM λ λ
λ λ λ
λ λ λ

( ) =
≤ ≤

( ) =
> =( )
< =( )

max when

when0 1

1

0
1 1 2

2 1 2

, {  (13.3)

which is an all x =( )1  or nothing x =( )0  solution assuming that one actually knows 
λ1 and λ2. In reality, of course, λ1 and λ2 are unknown and are possibly subject to 
severe uncertainty.

13.3 Classical Maximin Solutions

We assume that λ λ λ= ( ,2 1) is unknown and lies in some possibly large rectangular 
region of uncertainty Ω as shown in Figure 13.1.

In classical decision theory (French, 1986), there are several methods to deter-
mine an appropriate asset allocation x, depending on the management objective 

Figure 13.1. Region of uncertainty Ω for model parameters λ1 and λ2.
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function. For example, the Wald maximin rule chooses x  to maximise the worst 
case (scenario) outcome. For the objective function (Eq. 13.2), the worst case (for 
λ ∈ Ω) occurs at the lower left- hand vertex of Ω, where λ1 = a  and λ2 = b. From 
the preceding discussion and assuming b a> , the Wald solution is xW = 0, which is 
a very conservative solution.

An alternative objective function is the Savage regret rule (French, 1986)

 S x V V xM, , ,λ λ λ( ) = ( ) − ( )  (13.4)

which measures the deviation of V x,λ( )  from its true unknown maximum VM λ( ) 
(Eq. 13.3). Savage’s regret rule then chooses x xs=  to minimise the maximum regret 
(Eq. 13.4) taken over λ ∈ Ω, which is easily seen to occur at either vertex P or vertex 
Q. The value of x xs=  is precisely where the maximum regret functions at P and Q 
are equal, viz after a little algebra,

 x A b A b B as = −( ) − + −( )/ , (13.5)

which is clearly a much less conservative solution than Wald’s all- or- nothing solu-
tion ( )x b aW = >0 when .

From a management perspective, a better objective function (as a measure of 
overall performance) may be the dimensionless ratio

 R x V x VM, , / ( ),λ λ λ( ) = ( )  (13.6)

which measures the performance V x,λ( ) relative to its true unknown maximum 
VM λ( ) in Eq. 13.3.

The Wald maximin rule applied to Eq. 13.6 shows that the (worst case) minimum 
of R x,λ( ) with respect to λ ∈ Ω again occurs at either vertex P or vertex Q, with a 
maximum at the point at which they are equal, giving the solution

 x b A a B b AR ( / ) / ( / / ),= − − + −1 1 1  (13.7)

which differs from both the Wald and Savage solutions.

13.4 Acacia Rust: A Hypothetical Case Study

Rust fungi pose serious threats to horticulture, crops and indigenous flora. To illus-
trate the use of the approaches outlined in the preceding text, we use a hypothet-
ical case study for a hypothetical disease. We suppose there are very little data and 
considerable uncertainty, which is the case in many real situations, especially those 
involving new and emerging pests and diseases. We further suppose that there are 
many possible pathways for entry of the hypothetical rust, including air cans and 
tourists returning from Kenya (especially those who have been on safari).

In our hypothetical example, we assume that detection of rust spores is propor-
tional to both the approach rates along pathways and the number of inspections 
carried out on each pathway. The linear model above (Eq. 13.2) is a measure of the 
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overall detection rate along the two pathways. In this context, the parameters λ₁ 
and λ₂ in Eq. 13.2 are the approach rates along the two pathways, x is the propor-
tion of inspections targeting tourists and (1 − x) is the proportion of inspections 
targeting air cans. The objective is to maximise the overall detection rate defined by 
Eq. 13.2. The problem, of course, is that the approach rates λ₁ and λ₂ are unknown 
and subject to possibly severe uncertainty.

For our hypothetical case study, we consider the uncertainty region Ω in 
Figure 13.1 and choose (in some appropriate units) A a B= = =6 1 3, ,  and b = 2.  
From the solutions described in the previous section, we then use Eqs. 13.2, 13.3, 
13.5 and 13.7 to obtain

 x x xW s R= = =0
2
3

1
2

, , . (13.8)

This result shows that different methods in classical decision theory can lead to dif-
ferent values for decision variables (which is not unusual).

We note that in the present hypothetical example, the choices A = 6 and B = 3 
reflect a belief  that returning tourists may be twice as likely to import rust spores 

(on clothing, shoes etc.) than air cans. The Savage regret value of xs =
2
3

 then seems 

(intuitively) to be a reasonable solution (compared with xW = 0 and  xR =
1
2

).

We further note that if  one sets a b= = 0 in this example (allowing for the possi-
bility of zero approach rates), one obtains the same solutions for xs and xR  in Eq. 
13.8 (from Eqs. 13.5 and 13.7), but with xW indeterminant. In fact, it will be seen 

from Eq. 13.7 that when a b xR= = =0
1
2

,  for any choice of A and B. This gener-

alises, in an obvious way, to equal numbers of inspections across any number of 
pathways (which could, in some circumstances, be seen as quite reasonable). The 
generalisation of the Savage solution (Eq. 13.5), however, is not as obvious.

13.5 Robust Optimal Solutions

Rather than optimising some objective function, Simon (1959) argued that under 
conditions of uncertainty, one should aim to satisfy some minimally acceptable 
performance requirements. For example, one could require that V x; λ( ) in Eq. 13.2 
be within some fraction ε  of  its true unknown maximum VM λ( ) in Eq. 13.3. For the 
regret function (Eq. 13.4) and the ratio (Eq. 13.6), this requirement is equivalent to

 R x;λ ε( ) ≥ −1 . (13.9)

In the important field of robust optimisation (Kouvelis & Yu, 1997), we note that 
Eq. 13.9 is similar to the so- called relative robustness framework, and the require-
ment S x;λ ε( ) ≤  for the Savage regret rule (Eq. 13.4) is similarly related to the so- 
called robust deviation approach.
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From Eq. 13.6 it is easily seen that Eq. 13.9 requires λ λ λ= ( )2 1,  to lie in both Ω 
and the wedge W  bounded by two straight lines i.e. in the shaded region W ∩ Ω 
shown in Figure 13.2. From Eqs. 13.3 and 13.6, the slopes of the upper and lower 
boundary lines defining W  are, respectively, x x/ −( )ε  and 1 1− −( )( )ε / x , assum-
ing ε ε< < −x 1  and showing that for small ε > 0, one or both of these lines pass 
through Ω. It follows that for small ε, one must sacrifice some level of uncertainty 
to satisfy Eq. 13.9.

To quantify this loss of uncertainty, we follow the pioneers of robust optimisa-
tion, Gupta and Rosenhead (1968; see also Rosenhead et al., 1972) and define (as in 
Thompson et al., 2012) the G R−  robustness g

R x( ) to be the area of W ∩ Ω divided 
by the area of Ω. The G R−( ) robust optimal solution then occurs at x xGR= , where 
g

R x( ) is a maximum (corresponding to a minimal loss in the uncertainty region Ω).
Clearly, for large enough ε ε*≥ , W encloses Ω corresponding to a maximum g

R x( ) 
of  unity. The borderline case, when

 ε ε= = −



 −



 − + −





* 1 1 1 1
a
B

b
A

a
B

b
A

 (13.10)

corresponds to the bounding lines of W  passing through the vertices P and Q 
shown in Figure 13.2. For ε ε*≥  it is then not difficult to show that xGR where g

R x( ) 
takes its maximum is precisely the Wald value xR for the objective function R x,λ( ) 
in Eq. 13.6.

Figure 13.2. Performance requirement of Eq. 13.9 requires λ λ λ= ( )2 1,  to lie in the shaded region  
W ∩ Ω.
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When ε ε*< , it is possible to derive explicit expressions for g
R x( ) and xGR and to 

generalise the above results when management has more than two choices for allo-
cation of resources. For example, when n = 2, A > B and b > a,

 x
b
AGR = − −



1 1ε , (13.11)

with gR x( ) in general a non- decreasing function of ε. As a numerical example with 
A a B b= = = =6 1 3 2, , and  (cf. Eq. 13.8), we have ε* = 1 3/  (from Eq. 13.10), 

xR =
1
2

 and gR xR( ) = 1. For a higher performance aspiration of ε = 0 2.  one has
 

xGR = 0 7.  (from Eq. 13.11) and gR xGR( ) = 0 73.  showing a 27% loss in robustness to 

uncertainty to achieve the higher level of performance.

13.6 Info- gap Robustness

Unlike the robust optimisation approach outlined in the previous section, info- gap 
theory (Ben- Haim, 2006) begins with best- guess estimates for the uncertainty varia-
bles (e.g. for the n = 2  portfolio model, λ λ λ λ= = ( )  

2 1, ) and considers a nested set of 
uncertainty regions U (α) that expand as the horizon of uncertainty α increases and 
contract to the best guess λ when α = 0. This is shown schematically in Figure 13.3, 
which also shows a dotted rectangle to indicate the original region of uncertainty Ω 
and the wedge regions W  determined by Eq. 13.9 (as in Figure 13.2).

To satisfy the performance requirement in Eq. 13.9 for all λ α∈ ( )U , it is clear 
that U α( ) (shown in Figure 13.3 as the sequence of rectangles expanding outwards 
from λ) must be enclosed by the wedge U Wα( ) ⊂ . The largest value α of  α, for 
which U Wα( ) ⊂ , is called the info- gap robustness corresponding to at least one 
vertex of U α( ) touching a boundary line of W . Further maximisation of  α α= ( )x  
with respect to x then gives the robust- optimal info- gap solution xIG . We will not 
present any details or examples here except to note that, in general, one would 
expect the region U α( ) to be smaller than W ∩ Ω, particularly for ε ε*< , and that 
xIG  will depend on λ, providing different solutions to those derived in previous 
sections. Further discussion on the info- gap approach can be found in Chapter 12.
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14 Optimising Resource Allocation
Cindy E. Hauser and Tracy M. Rout

14.1 Introduction

Compared with the scale of impacts caused by invasive species worldwide, resources 
available for managing them are limited (Pimentel et  al., 2005). It is, therefore, 
important for managers to allocate these resources to the greatest effect. However, 
in systems that are logistically and ecologically complex, it is difficult to determine 
intuitively how to achieve the best outcome.

These issues are not unique to invasive species management, and techniques have 
been developed to solve resource allocation problems in fields such as stock port-
folio management, project and production management and marketing and nat-
ural resource management (Sethi & Thompson, 2006). Decision making can be 
improved by posing and solving problems in a logical and structured way. At a basic 
level, this involves specifying three things (Howard, 2007):

1. What we want –  the management objective(s) describing preferences about the 
outcome of the decision

2. What we can do –  the alternative options we must choose from
3. What we know –  a description of the system, including the likely outcomes of 

each alternative.

In this chapter, we address situations in which the objective can be expressed in a 
single currency such as monetary value. We outline several scenarios in which the 
alternative options are the different ways that resources –  in the form of money, 
time or effort –  can be allocated to manage an invasive species. There are some com-
mon resource allocation questions for invasive species management: Which species 
should we manage? How should we manage them? And where should we manage 
them? We discuss structured approaches and efficient strategies for resource alloca-
tion in each case.

14.2 Which? Allocating Resources across Species

There is often a long list of candidate invasive species that managers could be 
searching for, containing, controlling or eradicating. A common question is, there-
fore, on which taxa should we be focusing our effort? Some species may be known 
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to occur, while others may not be known to occur and are at some risk of being 
introduced. To make the most of limited resources, it is essential to have a transpar-
ent and repeatable procedure for prioritising species.

In developing a list of candidate species for management action, we must assess 
the current or potential impact of each species on the local environment. If  consid-
ering pre- border quarantine or surveillance, we must also assess the likelihood of 
each species entering, establishing and spreading (see Chapter 8). In addition, we 
need some understanding of how these values will change if  a species is managed. 
A natural objective for this resource allocation problem is to minimise the total 
impacts caused by all species.

However, given that a species’ entry, establishment, spread, impact and response 
to management are likely to be uncertain, the precise form of the objective should 
also reflect the manager’s tolerance of risk. A risk- neutral manager focuses on the 
impacts that are most likely or can be expected on average. A risk- averse manager 
places more emphasis on avoiding undesirable outcomes, while a risk- prone man-
ager focuses on opportunities for unusually beneficial outcomes. A range of object-
ive functions and solution techniques are available in each case, and we discuss 
these further in Section 14.6.

Joseph et al. (2009) developed a heuristic scheme for prioritising species conserva-
tion projects that takes a risk- neutral approach. They rank projects using the score

 E W B
S
Ci i i

i

i

= × × , (14.1)

where Wi is a weighting incorporating social, political or biological values for spe-
cies i; Bi is the benefit of investing in a project conserving species i; Si is the probabil-
ity that the project is successful; and Ci is the cost of investing in the project. These 
parameters could be redefined in a biosecurity context with Wi being the impact 
of an unmanaged species i infestation; Bi the expected proportional reduction in 
impact brought about by detection and response; Si the probability that infestation 
management is successful; and Ci the cost of infestation management.

The highest scoring projects are selected for investment until the budget is 
exhausted, and these projects yield the highest expected return per unit invested. 
This ranking approach approximates an optimisation of expected total impact, 
subject to an investment budget, and is known as the greedy algorithm (Martello & 
Toth, 1990). It should provide optimal or near- optimal solutions when the cost of 
individual projects tends to be much smaller than the total budget.

In the study of Joseph et al. (2009), conservation projects are of a predefined 
size; each comes at a known cost and is expected to yield a single corresponding 
outcome. McCarthy et al. (2010) explored a set of resource allocation problems in 
which investment in a given option (i.e. species) can be varied continuously with 
corresponding variation in outcomes. The more a manager invests in managing spe-
cies i, the less impact species i is expected to have on the local environment.

When the relationship between species impact and management investment 
is linear or displays diminishing returns, the solution can easily be represented 
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graphically (see Figure 14.1). The rate at which impacts are reduced per unit of 
investment (the gradient or steepness of the slope) determines the cost- effectiveness 
of an option. The optimal strategy is, therefore, to ‘invest in the options for which 
the marginal benefits [impact reduction per unit investment] are large, and invest 
to a level in each such that the marginal benefits are equal’ (McCarthy et al., 2010, 
p. 1281). In Figure 14.1, the relationship between investment and consequent spe-
cies impact is plotted for hypothetical species 1 and 2. Investment in species 2 is 
initially more cost effective because impact reduction per unit investment (the slope 
of the graph) is largest at point a. When investment exceeds point b, returns on 
investment have diminished so that investment in species 1 and species 2 is equally 
cost effective:  the slope of the graph at point b equals the slope of the graph at 
point c. When the investment budget is exhausted, the optimal allocation invests to 
a level in each species so that cost- effectiveness is equal (e.g. points d and e, where 
the curves have the same slope).

While this graphical approach may be useful for a small set of candidate spe-
cies, algorithms are required to optimise investment across many species. McCarthy 
et al. (2010) provide explicit solutions to this problem when the relationship between 
expected impact and investment is linear, exponential or hyperbolic. A spreadsheet 
is available to solve the exponential case (Hauser, 2009). McCarthy et al. (2010) 

Figure 14.1. Graphical representation of optimal investment in management of species to minimise 
overall impacts. Each curve represents the relationship between investment and ultimate 
impact for a different species. Species 2 is prioritised for investment because of its steep 
slope at point a. If  the total budget exceeds the investment at point b, then it is optimal 
to invest in both species 1 and 2 because the slope at point c is equal to the slope at point 
b. The budget should be exhausted such that positions on each investment curve have the 
same slope (e.g. points d and e).
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found that when the impact– investment relationship is uncertain, resources should 
be invested across a broader range of options (i.e. species), thus avoiding reliance 
on the few investments that are currently thought to be highly cost effective.

The prioritisation methods proposed by Joseph et al. (2009) and McCarthy et al. 
(2010) measure the impact Wi of  invasive species in a single currency. However, 
species may have an impact on a range of values relating to the environment, eco-
nomic revenue or public health. Methods exist for weighing various impact types 
and aggregating values into a single currency, such as cost– benefit analysis and  
multi-criteria decision-analysis. Multi-criteria decision-analysis is increasingly being  
used for prioritisation in a biosecurity context because it offers scope to elicit pref-
erences from a range of stakeholders (e.g. Benke et al., 2011; Cook & Proctor, 2007; 
Hurley et al., 2009). Criteria must be scaled carefully to ensure that the process is 
well calibrated and subsequent species rankings are robust (Steele et al., 2009).

14.3 How? Allocating Resources across Management Actions

When an invasive species has been identified as warranting management, there are 
usually a range of potential management actions. These actions could be differ-
ent control methods, for example, burning, herbicide application or mechanical 
removal. Alternatively, they could be actions that target different stages of invasion, 
for example, choosing to invest in quarantine versus surveillance or containment 
versus eradication.

If  the set of candidate management actions are independent, that is, the bene-
fit of implementing an action does not depend on the amount invested in other 
actions, then this allocation problem can be solved using the methods described in 
the Section 14.2. The methods of Joseph et al. (2009) and McCarthy et al. (2010) 
can be easily adapted to this problem by taking the index i to refer to candidate 
management actions rather than candidate taxa.

Dependencies between management actions become particularly important when 
allocating across the biosecurity continuum, that is, between pre-  and post- border 
management of a species. For example, the earlier an invasion is detected, the more 
successful control and eradication efforts can be. The amount invested in surveil-
lance to detect an invasion can, therefore, affect the subsequent amount of control 
effort needed. There has been considerable research into these types of questions, 
with models exploring the trade- offs between quarantine and control (Burnett 
et al., 2006, 2008; Finnoff et al., 2007; Finnoff & Tschirhart, 2005; Leung et al., 
2002; Olson & Roy, 2005), surveillance and control (Bogich et al., 2008; Epanchin- 
Niell & Hastings, 2010; Mehta et al., 2007), quarantine and surveillance (Moore 
et al., 2010) and between all three actions (Polasky, 2010; Rout et al., 2011, 2014).

Moore et al. (2010) used a simple model of island invasion to find the optimal 
allocation of resources for quarantine and surveillance, and were able to identify 
some general rules of thumb for management. They describe the invasive species 
as being absent, localised or widespread on the island (Figure 14.2). If  localised, 
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the invasive species can be detected only by investing in surveillance. If  widespread, 
the invasive species is certain to be detected, even without surveillance. There are 
benefits to detecting the species early; if  it is detected while localised, it has only a 
small impact and costs a small amount to eradicate, while if  it becomes widespread, 
it has a much larger impact and costs much more to eradicate. The probability of 
quarantine and surveillance being successful increases as investment in each action 
increases, albeit with diminishing returns. While Moore et al. (2010) illustrated their 
model with a case study of black rat invasion on an island, this general model could 
be applied equally well to animal or plant invasion of any isolated site.

Moore et al. (2010) take a risk- neutral approach, minimising the total expected 
cost of keeping the island invasion free. This expected cost includes investment in 
management as well as the ecological, economic and social costs of the impact of 
an invasive species. When aiming to minimise the total cost, it will never be opti-
mal to invest more in preventative management than the cost of the worst possible 
outcome. The expected cost of the species entering and becoming widespread (its 
impact and cost of eradication) provides an upper limit on the total amount to 
invest in quarantine and surveillance.

Figure 14.2. A diagram describing the island invasion model, adapted from Moore et al. (2010). 
Given the possible combinations of species distribution and the manager’s belief  about 
the species, the species can be (1) absent, (2) localised and undetected, (3) localised and 
detected or (4) widespread and detected. The probability of incursion PI is a function 
of the amount invested in quarantine, while the probability of detection PD is a function 
of the amount invested in surveillance. If  not detected when localised, the species has 
probability g of  becoming widespread. Localised and widespread invasions are successfully 
eradicated with probabilities λL and λW respectively, and their combined costs of 
eradication and impact are CL and CW respectively.
[Reprinted with permission from Moore, J., Rout, T. M., Hauser, C. E., Moro, D., Jones, 
M., Wilcox, C. & Possingham, H. P. (2010). Protecting islands from pest invasion: optimal 
allocation of biosecurity resources between quarantine and surveillance. Biological 
Conservation, 143(5), 1068– 1078.]
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The effectiveness of quarantine and surveillance, that is, the rate at which their 
probability of success increases as investment is increased, affects the optimal 
amount to invest in each. Moore et al. (2010) found that if  quarantine is more effect-
ive than surveillance, it is best to invest only in quarantine. However, if  surveillance is 
more effective, it can be best to invest in both quarantine and surveillance simultan-
eously. Surveillance is useful only if  there is a benefit to catching the invasion early, 
so the amount to invest in surveillance also depends on the ratio of the impact of 
localised invasions to the impact of widespread invasions. Even the outcome of an 
optimal decision is likely to be expensive unless quarantine is cost effective.

14.4 Where? Allocating Resources across Space

When post- border management of an invasive species has been prioritised, 
resources must typically be deployed in a heterogeneous environment. The species 
is more likely to be introduced and become established at some locations rather 
than others. The species may be more visible or amenable to control in some cir-
cumstances over others. The species may have an impact on some features of the 
landscape more severely than others. How should resources be allocated to account 
for such variation?

Hauser and McCarthy (2009) determined how to allocate staff  time to surveys 
for a weed. They divide a heterogeneous landscape into equal- sized cells that can be 
treated as homogeneous units. For each cell, they require a measure of the following:

1. The probability that the weed is present, based on its likely introduction, spread 
and establishment

2. The benefit of successfully detecting the weed, based on the cost of weed control 
and the value of the cell

3. The detectability of the weed, based on local conditions for survey.

They assumed that the probability of successfully detecting the weed in a cell, 
when it is present, depends on both local conditions and the time spent search-
ing (Garrard et al., 2008; Moore et al., 2011). Believing the vegetation type to be 
the key influence on detection, they developed contrasting detection functions for 
shrubby and low grassy cells (Figure 14.3).

Hauser and McCarthy (2009) adopted a risk- neutral approach, focusing on the 
expected (mean) impact in cells containing undetected weeds. They examined the 
survey design problem from two different perspectives:

1. Allocating survey effort to optimally trade its cost against the expected (mean) 
impacts caused by undetected invaders

2. Allocating a survey budget to minimise the expected (mean) impacts caused by 
undetected invaders.

In both cases, they found that the importance of including each cell in the survey 
could be rated using the same score,
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with the highest- scoring cells offering the greatest potential for reducing weed 
impact from survey. These cells are likely to contain the weed; offer large benefits 
from detecting and treating any weeds present; and provide conditions under which 
any weeds can be detected easily, relative to other cells.

The optimal survey duration at each cell is a more complicated function of the 
input variables (see equations 2, 5– 7 in Hauser & McCarthy, 2009). The more likely 
it is that the weed is present, the longer the optimal search time (Figure 14.4a). 
Likewise, higher benefits associated with weed detection and treatment yield longer 
optimal search times (Figure 14.4b). However, these relationships are non- linear, 
and only a small additional search time is justified at the highest levels of these 
parameters. The effect of weed detectability on optimal search time is more com-
plex still (Figure  14.4c). Cells in which it is extremely difficult to find the weed 
should not be surveyed at all. Cells in which it is somewhat difficult to find the 
weed require long search times to determine the species’ presence or absence with 

Figure 14.3. Detection functions proposed by Hauser and McCarthy (2009) for ground searches of 
flowering orange hawkweed plants in south- eastern Australia. The probability of detecting 
the weed, when it is present, depends on the surrounding vegetation (low grassy or 
shrubby) and time spent searching.
[Reprinted with permission from Hauser, C. E. & McCarthy, M. A. (2009). Streamlining 
‘search and destroy’: Cost- effective surveillance for invasive species management. Ecology 
Letters, 12(7), 683– 692.]

015
22:24:08, subject to the Cambridge Core terms of use,



14.5  Combining Allocation Questions 301

301

confidence. Cells in which it is easy to find the weed require only short searches to 
achieve equivalent confidence.

The optimal allocation of surveillance resources can be calculated using a spread-
sheet with one row per cell (Hauser, 2009). Data can be imported and exported from 
a spreadsheet, allowing for useful visualisations such as maps (Figure 14.5). High- 
priority areas for surveillance can be identified clearly in space and related back to 
the input data. Williams et al. (2008) predicted the likelihood of orange hawkweed 
occurrence across south- eastern Australia’s Alpine National Park as a function of 
likely seed dispersal from the known source and habitat suitability for hawkweed 
establishment (Figure  14.5a). Hauser and McCarthy (2009) identified the broad 
vegetation type in each cell from the data of Williams et al. (2008) (Figure 14.5b) 
and associated these with detection functions (Figure 14.3). The search time that 
optimally trades survey costs against expected impacts from detection failures 
is influenced by both of these inputs (Figure 14.5c). Effort is most concentrated 
in regions with a high likelihood of seed arrival and establishment; within these 
regions, shrubby locations require longer searches to accumulate sufficient confi-
dence that hawkweed is absent, rather than present and undetected.

Hauser and McCarthy’s (2009) study effectively treated each cell in the landscape 
independently. They ignored the variable costs of travelling between cells during 
the survey (later addressed by Moore and McCarthy, 2016), and intended that the 
spatial correlations between cells and the dynamics of management be captured 
using the input data. Many other studies have taken a more strategic approach to 
invasive species management by explicitly modelling population and management 
dynamics; a range of these are summarised in Section 2.2.

14.5 Combining Allocation Questions

While many management problems can be related to one of the three questions 
outlined in Sections 14.2 to 14.4, there are situations when it is necessary or 

Figure 14.4. Optimal search time for a cell as a function of (a) the probability that the cell contains the 
weed, (b) the benefits obtained by detecting and treating the weed and (c) the detectability 
of the weed under local conditions.
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Figure 14.5. Maps of the Alpine National Park, in south- eastern Australia, vulnerable to orange hawkweed infestation, showing (a) the probability 
of occurrence, as predicted by Williams et al. (2008), (b) vegetation type (affecting detectability as in Figure 14.3) and (c) search time (in 
minutes) that optimally trades survey cost against expected impact, when a detection failure is expected to incur 100- fold costs beyond 
successful detection and treatment.
[Reprinted with permission from Hauser, C. E. & McCarthy, M. A. (2009). Streamlining 'search and destroy': cost- effective surveillance 
for invasive species management. Ecology Letters, 12(7), 683– 692.]
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advantageous to consider more than one question simultaneously. For instance, the 
question of which species to manage can be inextricably linked to the question of 
where to manage them. Evans et al. (2011) considered both these questions for inva-
sive rabbits and foxes in Australia, and found that incorporating spatial dependen-
cies in the impact of these species increased the cost- effectiveness of management. 
The interactions between rabbits and foxes and the native species they threaten 
mean that, in some areas, the benefit of managing both species simultaneously is 
much greater than the summed benefits of managing them separately. There can 
also be spatial dependencies in the costs of management, and managing multiple 
species in a single area can be cheaper than the sum of managing each species sep-
arately (Evans et al., 2011).

While these interdependencies may be important for some management prob-
lems, expanding the scope of a problem comes at a price: the more complex a prob-
lem becomes, the more difficult it is to solve and to understand and communicate 
the results. Decision problems must, therefore, be framed in a parsimonious way, 
incorporating only the elements that are really influential within the system and 
important to the decision maker.

14.6 Uncertainties and Risk Tolerance

Resource allocation occurs in the face of uncertainty and natural variation. The 
allocation examples discussed in this chapter have focused on risk- neutral strat-
egies, which produce the best outcomes when we average over all plausible scenarios. 
Managers may instead have a risk- prone (emphasis on positive outcomes) or risk- 
averse (emphasis on negative outcomes) attitude towards uncertainty; for invasive spe-
cies management risk- neutral and risk- averse objectives are generally most relevant.

Early literature on optimal portfolio investment (Markovitz, 1952; Roy, 1952) 
recognised that decision makers are likely to be interested in both positive average 
outcomes and reliable outcomes across the range of uncertainty (i.e. low variation 
in outcomes). Among the set of efficient allocations, there is typically a trade- off  
between positive average outcomes and high reliability. A manager’s level of risk 
tolerance could be placed at any point along this trade- off  curve, from risk- neutral 
(maximising average outcomes with no concern for variation) to entirely risk- averse 
(minimising variation in possible outcomes with no concern for positive outcomes).

To derive an optimal solution to a resource allocation problem, the decision mak-
er’s relative preferences for positive outcomes and reliability must be articulated in 
some sense. Because the risk- neutral approach takes an average across all possible 
scenarios, a set of probabilities or belief  weightings need to be ascribed to the full 
range of plausible scenarios. Not all approaches require weightings. For example, 
a worst- case analysis identifies the worst possible outcome under each candidate 
allocation and selects the allocation with the best outcome. This is an extremely 
risk- averse approach, where the solution is derived from the single worst outcome 
for each scenario.
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Another risk- averse approach is the use of a regret function (see Chapter 13 for 
more detail). A regret function shows the losses incurred from selection of a candi-
date allocation instead of the optimal allocation when the true underlying scenario 
is known (i.e. in the case without uncertainty). Decision makers can view those 
losses across all plausible scenarios and select an allocation that yields tolerable 
losses across all scenarios. This selection can be made by weighting and averaging 
scenarios or by focusing on the greatest loss scenario for each candidate allocation; 
these same methods can be applied to the outcomes themselves in the risk- neutral 
and worst- case approaches already discussed.

There are also a range of methods that impose thresholds on acceptable and 
unacceptable outcomes. The safety first approach was introduced early in the devel-
opment of investment portfolio theory (Roy, 1952), and has since been applied 
to the management of veterinary diseases (Prattley et al., 2007). The safety first 
approach requires that a target outcome be set, and identifies an allocation of 
resources that maximises the probability that the target will be met. Info- gap the-
ory (see Chapter 12) identifies the resource allocation that meets a target outcome 
under the broadest range of plausible scenarios, without weighting the relative like-
lihood of each scenario.

Although minimising impact is a common objective for most invasive species 
management, there are an infinite number of ways that preferences can be expressed, 
particularly with regard to the trade- off  between expected impact and plausible 
variation around the mean expectation. It is important that the objective function 
selected reflects the preferences of the stakeholders involved with, or affected by, 
the resource allocation decision.

14.7 Conclusion

Deciding how to best allocate limited resources is a pervasive problem in the man-
agement of invasive species. Fortunately, tools exist for answering resource allo-
cation questions. Risk- neutral approaches are the most common among invasive 
species studies, including those we have covered in detail in this chapter. Other 
risk- averse approaches have been introduced to the invasive species literature more 
recently, and the solution techniques discussed here can be adapted for this pur-
pose by altering the objective. Chapters 12 and 13 discuss risk- averse methods for 
decision making under uncertainty. The optimal resource allocation is driven by 
the stated objective, and it is, therefore, most important that the objective func-
tion reflects the preferences and risk tolerance of the stakeholders involved with, or 
affected by, the resource allocation decision.

When optimal solutions to resource allocation problems are sought, quantita-
tive optimisation techniques are required. Some of  the solution approaches dis-
cussed here [e.g. the project prioritisation protocol of  Joseph et  al. (2009) and 
the efficient environmental management of  McCarthy et  al. (2010)] are highly 
adaptable to a range of  problems. Others (e.g. the quarantine and surveillance 

015
22:24:08, subject to the Cambridge Core terms of use,



14.8  Acknowledgements 305

305

allocation of  Moore et al. (2010) and fox and rabbit management of  Evans et al. 
(2011)] are tailored to more specific problem structures. The original articles offer 
more detailed accounts of  the optimisation techniques used, and many other 
resource allocation problems for invasive species have been solved and published 
in the academic literature. More general literature on optimisation methods 
for scientists and engineers (e.g. Bhatti, 2000; Sarker & Newton, 2008; Sethi & 
Thompson, 2006) may assist in posing and solving unique problems of  resource 
allocation management.
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15 Value of Information Analysis 
as a Decision Support Tool for 
Biosecurity
Michael C. Runge, Tracy M. Rout, Daniel A. Spring and Terry Walshe

15.1 Introduction

Invasive species managers often make decisions in the face of considerable uncer-
tainty (Parma et al., 1998). For example, they may be uncertain about the spatial 
extent of an invasion, the efficacy of treatment options or the various life- history 
characteristics of species.

In some cases, managers have the option of reducing uncertainty by investing in 
monitoring or experimentation. However, this often means diverting resources away 
from control actions, or delaying actions until the results of research are known. 
It is therefore important for managers to assess the benefits and costs of collect-
ing this additional information. Some uncertainties, although scientifically interest-
ing to resolve, may not actually affect decision making. Managers must determine 
whether investing in collecting additional information will lead to a better manage-
ment outcome, and if  so, how much better?

These questions can be answered using a method known as value of  informa-
tion (VOI) analysis (Raiffa & Schlaifer, 1961). VOI analysis was developed within 
the theory of  information economics and has been applied to decision problems 
in diverse fields such as medicine (Groot Koerkamp et  al., 2008; Singh et  al., 
2008), epidemiology and health risk management (Shea et  al., 2014; Yokota & 
Thompson, 2004a, 2004b) and resource exploration (Eidsvik et al., 2008). In the 
domain of  invasive species, Wiles (2004) emphasises the relevance of  decision sci-
ence and VOI analysis to weed management. D’Evelyn et al. (2008) identify cir-
cumstances in which information on population size obtained via catch- per- unit 
effort in a species control program can contribute substantially to reducing total 
costs. Sahlin et al. (2011) apply VOI analyses to evaluate the benefit of  improving 
the accuracy of  a trait- based screening model of  species invasiveness. Ward and 
Kompas (2010) provide an illustrative analysis of  the value of  resolving uncer-
tainty in the magnitude of  damages caused by fire ants in Australia arising from 
the transfer of  estimated impacts in the United States. Applications in environ-
mental management beyond invasive species are emerging (Maxwell et al., 2015; 
Moore & Runge, 2012; Runge et al., 2011; Williams et al., 2012), suggesting that 
the tool may be underutilised.
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VOI analysis has been recommended particularly as a decision support tool for 
complex problems with high stakes and large uncertainties (Yokota & Thompson, 
2004b). To be more specific, VOI analysis is useful in situations in which

• A decision must be made, for example, choosing between candidate management 
actions.

• There is uncertainty in elements of this decision.
• Information can be collected to resolve all or part of this uncertainty.
• There is debate about whether the benefits of resolving uncertainty outweigh the 

direct and opportunity costs of gathering the information.

VOI analysis assesses the benefit of collecting this information while considering 
the context of the decision to be made.

Assume a manager must choose between several possible management actions, 
and this choice is affected by an uncertain variable. The simplest type of VOI cal-
culation is the expected value of perfect information (EVPI; Howard, 1966). This 
calculates the expected improvement in the outcome of the decision if  all uncer-
tainty could be resolved. The equation for the EVPI is

 EVPI = −
∈∈ ∈ ∈∫ ∫[max ( , )] ( ) max[ ( , ) ( ) ],

a As S a A s S
u a s f s ds u a s f s ds  (15.1)

where f(s) is the probability of the uncertain variable taking value s, and u(a, s) is 
the utility of taking action a when the uncertain variable has value s.

The first half  of this equation calculates the expected utility with perfect informa-
tion, assuming that if  the decision maker knew the value s of  the uncertain variable, 
he or she would choose the action with the highest utility for that particular value. 
This utility is then multiplied by the probability that the true value is s, and summed 
for all possible values of s. The second half  of the equation describes the scenario 
under uncertainty, assuming the decision maker will take the action with the high-
est expected utility across all possible values of the uncertain variable. In this way, 
the equation finds the difference in expected utility between the best decision given 
perfect information and the best decision under uncertainty. That is, the calculation 
answers the question, ‘what is the difference in the expected outcome of the deci-
sion under certainty and uncertainty?’ If  the utilities are measured in dollars, then 
the output of this calculation is the absolute maximum that should be spent on 
research or monitoring to improve knowledge about this uncertain variable.

Biosecurity is the applied management field that deals with the effect of inva-
sive organisms on a nation, state or community’s economic livelihood, health, rec-
reation or well- being. Agencies responsible for biosecurity sometimes distinguish 
among pre- border activities (preventing the arrival of an invasive species by taking 
action before it reaches the border), border activities (detection and treatment at 
the moment of arrival, e.g., at ports of entry) and post- border activities (manage-
ment of invasive species after its arrival and possible establishment). In this chap-
ter we demonstrate how VOI analysis could be used for practical decision making 
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in biosecurity, focusing on the common post- border decision problem of choos-
ing whether to eradicate or contain an invasion. Throughout this chapter, we use 
the value of perfect information to find the maximum amount to invest in redu-
cing uncertainty. We show how the analysis can be tailored to a specific manage-
ment problem, illustrated with a case study of red imported fire ants in south- east 
Queensland.

15.2 Prototype for a Post- border Biosecurity Decision

Here we develop a prototype VOI analysis for deciding whether to eradicate or 
contain an existing infestation. We consider the decision a one- off, irrevocable allo-
cation of resources to either eradication or containment. The expected costs and 
benefits of either action are a function of the extent of the infestation. From ana-
lysis of these costs and benefits we can determine a threshold extent, above which 
it is optimal to contain, and below which it is optimal to eradicate. Uncertainty in 
the extent of the infestation induces uncertainty about the optimal decision. In the 
circumstances we consider, we have the option to learn the extent of infestation 
precisely before committing our resources. We calculate the expected improvement 
in management from obtaining that information, allowing us to determine whether 
it is worth the cost to acquire it.

15.2.1 The Decision Model

Let x be the extent of a circular infestation in hectares (square hectometres, hm2). 
If  we choose the contain action, we will incur an expense that is proportional to the 
perimeter of infestation, and we will seek to contain the infestation at that extent 
for the indefinite future. The cost would be spread over the time frame of interest. 
This might be a fixed time horizon, or might be viewed as the net present value of 
annual payments made over an infinite time horizon; either way, the cost is finite. 
Thus, the cost of containment (Figure 15.1a) is

 Cost( ) ,C c x= ⋅1 2 π  (15.2)

where c1 is the long- term cost of containment per hectometre (hm, 100 m) of 
perimeter.

If  we choose the eradicate action, we incur a large, immediate expense that is 
proportional to the areal extent of infestation. If  the eradication succeeds, the 
infestation is removed and there are no further costs. If  the eradication fails, then 
the containment cost is incurred and we assume, for the sake of simplicity, that 
the infestation remains at the original extent in perpetuity. The probability of fail-
ure is an increasing function of the extent of infestation, taking a sigmoid shape 
(Figure 15.1b),

 p
e m x a

( ) ,
( )

failure =
+ − −

1
1

 (15.3)
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where a is the half- effectiveness area (at which the probability of failure is 50%), 
and m measures how steep the failure curve is near the inflection point. Then, the 
expected cost of eradication (Figure 15.1a) is

 Cost E c x
c x
e m x a

( ) = +
+ − −( )2

12
1

π
, (15.4)

where c2 is the cost of eradication per hectare, and the second term is the cost of 
containment times the probability of failure to eradicate.

In addition to the costs of management, we need to consider the losses associated 
with the long- term presence of the infestation (due to loss of production, social 
amenity, etc.). It is reasonable that these losses are proportional to the extent of 
infestation. If  the contain action is taken, the long- term extent of infestation is 
the current extent of infestation, x. If  the eradication action is taken, the long- 
term extent of infestation is 0 if  eradication succeeds, and x if  eradication fails. 
Therefore, the expected loss, as a function of the initial extent of infestation, is

 Loss
if containment

if eradication
=

+





 − −

c x

c x
e m x a

3

3

1 ( )

, (15.5)

Figure 15.1. Costs of management actions as a function of extent of infestation. (a) Costs of 
eradication and containment, where the cost of containment (c1) is $1,000 per 100 m 
of perimeter and the cost of eradication (c2) is $100 per hectare. The total costs of 
containment and eradication are equal when the extent of infestation is 753 ha. (b) 
Probability of failure to eradicate as a function of extent of infestation, where the half- 
effectiveness area (a) is 1,000 ha and the efficiency slope (m) is 0.005. Note: All costs are 
given in Australian dollars.
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where c3 is the net present value of the long- term loss per hectare of infestation 
(Figure 15.2a).

The combined losses and costs, T, can be found by summing Eqs. 15.2, 15.4 
and 15.5,

 T
c x c x

c x
c x c x

e m x a

=
+

+
+

+ − −

2

2
1

1 3

2
1 3

π

π

if containment

if eradicat
( )

iion









. (15.6)

The objective to minimise the combined losses and costs gives rise to a threshold 
extent of infestation, x*, below which it is optimal to attempt eradication, and 
above which it is optimal to commit to long- term containment (Figure 15.2b):

 x c x c x c x
c x c x

e m x a
* : * * *

* *
.

*
2

2
11 3 2
1 3π π

+ = +
+

+ − −( )  (15.7)

Figure 15.2. Production and amenity losses (a) combined with management costs (b) as a function of 
initial extent of infestation, for two management actions. The production and amenity 
loss rate (c3) is $500 per hectare. The decision threshold occurs at 1,321 ha; if  the extent 
of infestation is less than this, the best course of action is eradication; otherwise, the 
best course of action is long- term containment. At this level of infestation, the cost of 
eradication is $239,000 and the cost of containment is $129,000, but eradication is expected 
to reduce the production and amenity losses more than containment. All costs are given in 
Australian dollars.
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15.2.2 Binary Uncertainty

Now, suppose that we are uncertain about the extent of infestation, x. This uncer-
tainty about the state of the system may induce uncertainty about which action to 
take. Further, let us suppose that we could undertake a survey that would allow us 
to reduce this uncertainty before we had to make the decision (and suppose that the 
survey could be conducted fast enough so there were no consequences associated 
with delaying action, other than the cost of the survey). How much would this sur-
vey be worth to us?

First, by way of a simple illustration of the value of perfect information, imagine 
that our uncertainty is binary, that is, the extent is either 750 ha (small) or 1,750 ha 
(large; Figure 15.3).

Figure 15.3. A decision tree illustrating the choice between eradication e and containment c for the 
scenario with binary uncertainty in the extent of the infestation (small s, or large l). The 
costs of eradication, containment, and impact i are greater for large infestations, as given 
by Eqs. 15.2, 15.4 and 15.5. The probability that eradication will fail is also greater for large 
infestations, as given by Eq. 15.3. The tree assumes that if  eradication fails, management 
reverts to containment.
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A standard analysis of the expected VOI (Eq. 15.2) using the parameters given in 
Figures 15.1 to 15.3, gives the total costs and losses shown in Table 15.1.

With a prior belief  of  0.4 that the extent is small, the best action to take 
in the face of  uncertainty is to eradicate, because the expected total loss is 
$776,900 versus $802,800 (losses are given in Australian dollars). If  we could 
resolve that uncertainty ahead of  time, we would eradicate if  the extent is small 
(expected loss  =  AU$180,100), and contain if  the extent is large (expected 
loss = AU$1.023 million). Averaging over the prior beliefs that we would discover 
those states of  nature, the expected total loss, provided we can resolve uncertainty 
first, is $686,000. Thus, by reducing uncertainty, we decrease our expected loss by 
$90,890. So the expected value of  perfect information is $90,890, and we should be 
willing to pay up to that amount for the survey that would let us know the extent 
of  the infestation.

15.2.3 Continuous Uncertainty

Next, consider a more realistic situation, and suppose instead that our uncertainty 
about the extent of infestation is continuous and can be expressed by a probability 
distribution, f(x), defined for 0 ≤ x < ∞. For example, our prior belief  that the extent 
is x might be described by a lognormal distribution with mean μ and standard 
deviation σ:

 f x
x

e
x

xx

( ) = =
−





− −( )1

2

1
2

2

2

2

πσ σ
φ µ

σ

µ
σ

ln ln
, (15.8)

where φ(z) is the standard normal probability density function.
The expected cost (EC) of taking the contain action is found by integrating the 

total loss (Eq. 15.6) over the range of possible extents, weighted by our prior belief  
in the extent, that is,

Table 15.1. Expected value of perfect information with binary uncertainty in the extent of infestation

Small extent

(750 ha)

Large extent

(1,750 ha)

Weighted average

Belief = 0.4 Belief = 0.6

Action: Contain $472,080 $1,023,300 $802,810

Action: Eradicate $180,130 $1,174,800 $776,920

Best $180,130 $1,023,300 $686,030

EVPI $ 90,890

The entries are the combined costs and losses associated with each action and the extent of the infest-
ation. The parameters for the cost and loss functions are those given in Figures 15.1 to 15.3. The value 
of information is expressed in Australian dollars.
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The expected cost of taking the eradicate action is found in a similar manner:
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 (15.10)

The best action in the face of uncertainty is the minimum of Eqs. 15.9 and 15.10, 
that is, the action that minimises the expected total loss. The expected total loss in 
the face of uncertainty, ECu, is

 EC eradicate containu x x
T x f x dx T x f x dx= ∫ ∫min[ ( | ) ( ) , ( | ) ( ) ].“ ” “ ”  (15.11)

If  we can resolve uncertainty about the extent first, before making the decision, 
then we would take the eradicate action if  we find out that x is less than x*, and the 
contain action if  we find out that x is greater than x*. Thus, prior to collecting that 
information, the expected cost of the decision under certainty, ECc, is

 

EC eradicate containc

x

x
T x f x dx x f x dx

c x

= +

=

∫ ∫
∞
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∞
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π π
( )

*
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( ) ( )∫∫

 (15.12)

and the expected VOI is the difference between the expected cost under uncertainty 
and the expected cost under certainty:

 EVPI EC EC= −u c . (15.13)

Consider the set of  parameters given above, for which x* = 1,321 ha. Suppose 
that our belief  about the extent of  infestation can be characterised as a lognormal 
distribution with μ  =  ln(1,000) and σ  =  0.3 (Figure  15.4). The probability that 
the extent of  infestation is less than the decision threshold is 0.823 (Figure 15.4). 
In the face of  uncertainty, the expected total loss of  taking the contain action is 
$636,154, and the expected total loss of  taking the eradication action is $481,526. 
The best course of  action is eradication, reflecting the weight of  evidence that the 
extent is lower than the decision threshold. But there is a 17.7% risk of  making the 
wrong decision. If  the extent of  infestation can be determined before the decision 
is made, the expected total loss is $465,663. Thus, the expected VOI is $15,863, 
which is the maximum we should spend reducing uncertainty in the extent of  the 
invasion.
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15.3 Tailoring the Analysis to a Specific Management Problem

We now illustrate how our prototype VOI analysis can be applied to a specific man-
agement situation, using an example of red imported fire ant management in south- 
east Queensland. Red imported fire ants (Solenopsis invicta, hereafter fire ants) were 
first detected in Brisbane in early 2001 (Moloney & Vanderwoude, 2002). Since 
that time they have been the subject of a major eradication campaign (Moloney &  
Vanderwoude, 2002). One of the world’s 100 worst invaders (Lowe et al., 2000), 
fire ants damage agricultural crops, injure livestock and affect human health and 
ecosystems (Moloney & Vanderwoude, 2002). Fire ants are a significant pest in the 
United States, with estimated costs of control, medical treatment and damage to 
property greater than US$6 billion annually (Lard et al., 2006).

In the early stages of the Brisbane eradication campaign, fire ants were present 
at high density within a relatively small area. While eradication efforts successfully 
reduced population density, occasional long- distance dispersal has led to a very 
large area (hundreds of thousands of hectares) being occupied at a low density 
(Keith & Spring, 2015). Reflecting these changed circumstances, the focus of man-
agement has shifted from intensive surveillance and treatment of a small area to 
methods better suited to eradication over a larger area.

This new approach has been informed by quantitative models of fire ant spread 
under alternative surveillance and control strategies (Keith & Spring, 2013; Schmidt 
et al., 2010; Spring et al., 2010). One of the main findings of modelling research is 

Figure 15.4. Uncertainty in the extent of infestation, expressed as a lognormal distribution with mean 
μ = ln(1,000) and standard deviation σ = 0.3. The probability that the extent is less than the 
threshold (x*) is 0.823.
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that if  eradication is to be a viable option, new methods will be required to search 
larger areas at lower cost. Remote sensing technology, which uses an infra- red cam-
era from a helicopter, was identified as a candidate method and recommended for 
further evaluation. Modelling work indicates there is a threshold level of sensitivity 
of remote sensing, below which eradication is unlikely to be feasible.

Other cost- effective strategies for containment and eradication are also being con-
sidered. One potential strategy is extensive application over general areas of infest-
ation of broadcast pesticide baits (baiting), which are so- named because the poison 
is designed to be palatable to fire ants, which take the baits to their nests. Managers 
are currently conducting trials to further evaluate the efficacy of baiting and thereby 
determine its cost- effectiveness as a containment or eradication method.

To show how VOI analysis can answer practical management questions, we cal-
culate the value of learning about two uncertain variables: the sensitivity of remote 
sensing and the efficacy of baiting. VOI analysis can tell us how much effort should 
be expended on research and evaluation of these methods, or if  it may be more 
cost- effective to simply implement these methods despite uncertainty. As in our 
prototype analysis, we also consider uncertainty about the current spatial extent of 
the invasion.

15.3.1 Fire Ant Treatment Methods

Several different actions are employed to detect and kill fire ant nests (Table 15.2). 
Two kill methods are used: baiting, in which bait is broadcast over a large area, 
and nest injection, in which poison is applied directly into detected fire ant nests. 
Baits contain an attractant and poison, so they are taken back to undetected nests 
by fire ant workers (Moloney & Vanderwoude, 2002). Baits can be distributed on 
foot, from all- terrain vehicles or from the air (Moloney & Vanderwoude, 2002). 
Experience in North America indicates that baiting is between 80% and 95% effect-
ive (Barr et al., 2005), although its efficacy for fire ants in Queensland is uncer-
tain. Given this uncertainty, we use a modal value of 80% and consider the effect 
of uncertainty (Table 15.2). Nest injection is fully effective in killing fire ant nests 
(Table 15.2) but can be applied only after a nest is detected.

The most effective detection method is surveying with odour detection dogs, 
which have close to a 100% nest detection rate given optimal search routines that 
account for the distance from which a dog can detect a nest (Wylie et al., 2016). 
This surveillance method is also the most expensive (Table 15.3) because two han-
dlers must accompany the dog and relatively few hectares can be searched per day. 
Visual surveillance, in which trained field staff  form an evenly spaced line and 
move forward uniformly to scan an area for fire ant nests, has an 80% nest detec-
tion rate (National Red Imported Fire Ant Eradication Program, pers. comm.). 
Visual surveillance is both less effective and more expensive than canine surveil-
lance (Table 15.3).

Remote sensing involves capturing images of a landscape with an infra- red cam-
era from a helicopter and analysing the images to map the location of fire ant nests 

016
22:24:55, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


Value of Information in Biosecurity Decisions318

318

(Vogt, 2004). Testing in North America has found this method to be capable of 
detecting up to 79% of fire ant nests within an area, with a false- positive rate of 
only 4% in the habitats in which the detection algorithm was tuned (Vogt & Wallet, 
2008). The false- positive rate was much higher (17.5%) when the method was 
applied to a habitat with different features than the one it was tuned to, suggesting 
site- specific or habitat- specific tuning is needed. The technology is currently being 
developed for application in south- east Queensland, and its efficacy in this setting 
is currently unknown (Table 15.2). Because large areas can be covered quickly and 
easily with remote sensing, it is expected to be substantially cheaper per hectare 
than ground- based surveillance methods when a large area needs to be searched 
(Table 15.3).

15.3.2 The Decision Model

We frame the decision in the same way as in the previous section, that is, broadly 
as a choice between eradication and containment of fire ants. Let x be the extent 
of the fire ant infestation in hectares, which for simplicity we assume to be roughly 

Table 15.2. Efficacy of fire ant nest detection and kill methods

Kill method Estimated efficacy λ = p(killing nest)

Nest injection 1

Baiting Currently uncertain, best estimate is 0.8 (Barr et al., 2005)

Detection method Estimated sensitivity δ = p(detecting nest | present)

Canine surveys 0.99 (Wylie et al., 2016)

Visual surveys 0.8 (NRIFAEP, pers. comm.)

Remote sensing Currently unknown

Table 15.3. Costs of fire ant nest detection and kill methods

Parameter Cost per ha Source

Cost of tracking with dogs + nest 
injection (/  ha)

$184 D. Spring, pers. comm.

Cost of visual surveys + nest 
injection (/  ha)

$276 D. Spring, pers. comm.

Cost of remote sensing + nest 
injection (/  ha)

$108 D. Spring, pers. comm.

Cost of baiting (/  ha) $195 Three different baiting methods are used, 
depending on land type. Costs range from 
$147 to 240/ ha, average $195 (NRIFAEP, pers. 
comm.)

All costs are given in Australian dollars.
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circular. If  eradication is chosen, a one- off  treatment will be applied across the 
entire extent x, which may or may not be successful in eradicating fire ants. If  con-
tainment is chosen, treatment will be applied annually to a ring of width b (meas-
ured in hm) around the outside of the infestation (Figure 15.5), which we assume 
will successfully contain the infestation to area x.

The annual cost of containment is then c xb b1
22 π π+( ), where c1 is the annual 

per hectare cost of the treatment applied. Containment will be applied every year 
from now (t = 0) indefinitely into the future (t = ∞). Using standard exponential 
discounting, the net present cost of containment is therefore

 Cost( )
( )

,C
c xb b

j
c xb b

j
jt

t

=
+( )

+
= +( ) +



=

∞

∑ 1
2

0
1

2

1
2

1π π
π π  (15.14)

where j is the annual discount rate. Throughout this section we use a discount rate of 
j = 0.05. Eradication is a one- off  management expenditure, but if  eradication fails 
we assume containment must then be enacted. The cost of eradication is therefore

 Cost success Cost( ) ( ( )) ( ),E c x p C= + −2 1  (15.15)

where c2 is the one- time per hectare cost of eradication and p(success) is the prob-
ability that eradication will be successful.

The probabilities that eradication will be successful and that containment will 
eliminate all nests within the treatment buffer depend on the combination of 
detection and kill actions used as part of the eradication or containment strategy. 
A strategy may comprise a number of dog surveys, visual surveys, remote sensing 

Figure 15.5. Diagram showing the infestation area x (outlined in bold), and the area in which 
containment actions are applied (shaded in grey) defined by buffer width b.
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surveys and rounds of baiting. Assuming these actions are independent, the prob-
ability an individual nest will survive treatment is

 p n n n( ) ( ) ( ) ( )survive dogs visual remote
dogs visual rem= − − −1 1 1δ δ δ oote bait

bait( ) ,1− λ n  (15.16)

where δy is the sensitivity of detection method y, ny is the number of surveys with 
method y, λbait is the probability the nest will be killed with bait and nbait is the num-
ber of rounds of bait applied.

We assume the nests have a density γ across the extent, which means the total 
number of nests is given by γx. The probability that all nests within the treatment 
area will be killed is then

 p p z( ) ( ( )) ,success survive= −1 γ  (15.17)

where z is the treatment area, which is

 z
b x b

x
= +





2 2π π if containment

if eradication
. (15.18)

Throughout this analysis we assume a fire ant density in the treated area of γ = 1 
nest per hectare (Antony, 2009).

Along with the cost of managing fire ants, there will be losses incurred as a result 
of the fire ant presence. We assume this impact is proportional to the area occupied. 
If  containment is chosen, the long- term extent of the infestation will remain at the 
current extent x. If  eradication is chosen, the long- term extent of the infestation 
will be zero if  eradication is successful and x if  eradication fails. The expected loss 
caused by the long- term presence of fire ants is therefore given by
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∞
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(15.19)

where ci is the per hectare annual cost of impact and j is the annual discount rate. 
For simplicity, we assume that the impact losses and costs of management are dis-
counted at the same exponential rate.

A recent cost– benefit analysis estimated the potential loss due to the long- term 
presence of fire ants in south- east Queensland to be as much as AU$43 billion 
(Antony et al., 2009). We simplified the method applied in that analysis to derive 
an annual cost of fire ant impact of AU$1,031.48 per hectare. As in Antony et al. 
(2009), this includes the costs of ongoing private treatment of fire ant infested 
areas, the health care costs associated with fire ant stings, and the impact of fire 
ants on ecosystem services.

016
22:24:55, subject to the Cambridge Core terms of use,



15.3  Tailoring the Analysis to a Specific Management Problem 321

321

The combined total cost and loss of each action, T, can thus be found by sum-
ming Eqs. 15.14, 15.15 and 15.19:

 T

c b x b c x j
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2 1
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(15.20)

If  all model parameters are certain, the most cost- effective management strategy is 
the one with the lowest total cost, as given by Eq. 15.20 above.

15.3.3 Uncertainty in the Extent of the Infestation

We now investigate the VOI for one uncertain parameter at a time, starting with the 
extent of the infestation, which is estimated to be hundreds of thousands of hec-
tares (Keith & Spring, 2015); we’ll assume approximately 200,000 ha for the pur-
poses of this analysis. To confine our uncertainty to a single variable, we consider 
only management strategies involving detection and kill methods with a known 
efficacy.

We compare two management strategies:

• A containment strategy applied to a buffer (b = 10 hm) around the perimeter of 
the infestation, involving two canine surveys and two visual surveys per year and 
injection of detected nests with poison

• An eradication strategy applied over the entire extent of the infestation, involv-
ing two canine surveys and one visual survey, and injection of detected nests with 
poison.

These strategies were chosen to provide an interesting conceptual model and are 
not based on current practice. For the containment strategy, the intensive combin-
ation of canine and visual surveys is necessary to give a high probability of elim-
inating all nests within the containment buffer (Figure 15.6), consistent with the 
model assumption that containment is successful in maintaining the infestation at 
its current extent.

Given the cost estimates in Table 15.3, the containment strategy will cost $920 
per hectare per year ($19,320 per hectare, net present value of all annual treatments 
over time), while the eradication strategy will cost $644 per hectare over a larger 
area (unless stated otherwise, all costs are given in Australian dollars). The total 
cost of each strategy includes the cost of management as well as the costs of fire 
ant impact (Eq. 15.20). The most cost- effective strategy depends on the extent of 
the infestation (Figure 15.7). Eradication is optimal for an infestation size of up 
to 179,449 ha, while containment is optimal if  the infestation is any larger (Figure 
15.7). At an extent of x = 200,000 ha, the expected treatment cost for eradication 
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Figure 15.6. The probability of killing all fire ant nests within the treated area under different 
management strategies, and for different infestation extents. The treatment area is either the 
containment buffer (containment) or the entire extent (eradication). The probabilities are 
calculated with Eq. 15.17, using the parameter estimates in Table 15.2.

Figure 15.7. The total expected cost of different management strategies for different extents of the fire 
ant infestation, calculated with Eq. 15.20.
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is $435 million, but the probability of success is only 1.8%, so the expected amenity 
cost is $4.253 billion and the total expected cost is $4.688 billion. By comparison, 
the long- term treatment cost for containment is $312 million, the amenity cost is 
$4.332 billion and the total cost is $4.645 billion. With this extent of infestation, 
eradication is more expensive than containment and is unlikely to succeed, making 
containment more advantageous.

But what if  the extent of infestation is not known with certainty? Given that the 
extent of the infestation affects which strategy is the most cost effective, the decision 
maker may be concerned that uncertainty in extent could influence the decision. To 
calculate the value of resolving uncertainty about the extent, we first describe this 
uncertainty with a lognormal distribution:

 f x
x

e
x

( ) .
(ln )

=
− −1

2 2
2

2

2

πσ

µ
σ  (15.21)

We use a mean μ = ln(200,000) and standard deviation σ = 0.2 to describe uncer-
tainty about the extent (Figure 15.8).

The expected cost of each management strategy can be found by integrating the 
total cost (Eq. 15.20) across the range of possible extents, weighted by our prior 
belief  that each is the true extent (Eq. 15.21):

 
EC containment containment

EC eradication

( ) ( | ) ( )

(

max= ∫ T x f x dx
x

0

)) ( | ( ) .
max= ∫ T x f x dx

x
eradication)

0

 (15.22)

Figure 15.8. The lognormal probability distribution (Eq. 15.21) expressing uncertainty in the extent of 
the RIFA infestation. The mean μ = ln(200 000), and the standard deviation σ = 0.2.
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To be consistent with Antony et al. (2009), the largest possible extent we consider 
is xmax = 2.7 million ha.

The best strategy in the face of uncertainty is the strategy that minimises the 
total expected cost given the prior distribution for the uncertain variable. That is, if  
Figure 15.8 represents our belief  about the likelihood of different infestation sizes, 
we should choose the strategy with the lowest expected cost across these possible 
extents. Taking this best strategy, the expected cost under uncertainty is

 EC EC containment EC eradicationu = [ ]min ( ), ( ) , (15.23)

where the expected costs are given by Eq. 15.22. The best strategy under uncer-
tainty is containment, with an expected cost of approximately AU$4.734 billion.

If  we could find out what the true extent was before making our decision, we 
would choose the strategy with the lowest expected cost for that particular extent. 
That means we would choose eradication if  we knew the extent was less than 
x* = 179,449 ha, and we would choose containment if  we knew the extent was more 
than 179,449 ha. Prior to collecting information about the extent, the expected cost 
of the decision is

 EC eradication containmentc

x

x

x
T x f x dx T x f x= +∫ ∫( | ) ( ) ( | ) ( )

*

*

max

0
ddx,

 (15.24)

which is equal to AU$4.717 billion.
The expected value of perfect information about the extent is the difference 

between the expected cost under uncertainty and the expected cost under certainty:

 EVPI EC EC( ) ,x u c= −  (15.25)

which in this case is only AU$15.2 million. Although perfect information about the 
extent of the infestation is not likely to be possible, this puts an upper limit on the 
amount that should be spent acquiring information about the extent.

Why is information about the extent worth relatively little, when our analysis 
shows the choice of strategy depends on the extent? According to our prior belief  
distribution (Figure 15.8), it is likely (70.6%) that the infestation is large enough 
for containment to be the most cost- effective strategy, but there is still a substantial 
chance (29.4%) that eradication is the best strategy. But, for extents near 200,000 
ha, the total costs of the two actions do not differ greatly (Figure 15.8); thus the 
cost of choosing the wrong strategy is not large.

15.3.4 Uncertainty in the Sensitivity of Remote Sensing

We now explore the value of learning about the sensitivity of remote sensing, 
another uncertain parameter in this model. To do this, we compare three possible 
management strategies. In addition to the containment and eradication strategies 
considered previously, we add a new eradication strategy with two canine surveys 
and two remote sensing surveys, where detected nests are injected with poison. 
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Given the cost estimates in Table 15.3, this new strategy will cost AU$584 per hec-
tare (compared with AU$920 per hectare per year for containment and AU$644 
per hectare for the eradication strategy without remote sensing). Again, these three 
management strategies are chosen for illustrative purposes and do not reflect cur-
rent or intended future practice.

The total expected cost calculations show that the cost- effectiveness of including 
remote sensing in an eradication strategy depends on its effectiveness (Figure 15.9). 
The eradication strategy with remote sensing is optimal if  the probability of detect-
ing a nest with remote sensing is greater than 0.571. Otherwise, the original eradica-
tion strategy is more cost effective. Note that these calculations are for an infestation 
extent of x = 200,000 ha.

Previous analyses of remote sensing found that eradication using this technol-
ogy is feasible at much lower levels of sensitivity than 0.571 (Spring et al., 2010). 
Although feasibility and cost- effectiveness are not equivalent measures, differences 
in the fire ant models may have led to differences in the results of these analyses. In 
particular, this analysis has several simplifying assumptions, for example, that fire 
ant nests are uniformly distributed across the infestation extent.

To calculate the expected VOI, we start by describing our uncertainty in the sen-
sitivity of remote sensing, using a beta distribution:

 f
B

( )
( )

( , )
,δ δ δ

α β

α β

remote
remote remote=

−− −1 11
 (15.26)

Figure 15.9. The total expected cost of different management strategies for different values of the 
effectiveness of remote sensing, calculated with Eq. 15.20.
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where α and β are shape parameters, and B(α, β) is the beta function:

 B u u du( , ) ( ) .α β α β= −− −∫ 1 1

0

1
1  (15.27)

The beta distribution is defined on the interval [0,1] and is thus a suitable and com-
monly used distribution for describing probabilities. To reflect the ongoing devel-
opment of remote sensing technology and the subsequent high level of uncertainty 
involved, we use a prior distribution with shape parameters α = 1 and β = 1, equiva-
lent to a uniform distribution over the interval [0,1].

Again, the expected cost of each management strategy can be found by integrat-
ing the total cost (Eq. 15.20) across the range of the uncertain variable, weighted by 
our prior belief  that each value is the true value (Eq. 15.26):
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The best strategy in the face of uncertainty is the strategy that minimises the total 
expected cost, given the prior probability distribution:

 EC EC containment EC eradication EC eradication withu = min ( ), ( ), (   RS)[ ].
 (15.29)

In this case, the best strategy under uncertainty is the eradication with remote sens-
ing strategy, with an expected cost of AU$3.841 billion.

Under certainty, we would choose eradication with remote sensing if  the effect-
iveness of remote sensing is greater than δremote

*  = 0.571, and we would choose the 
containment strategy if  the effectiveness is less than 0.571. The expected cost of the 
decision under certainty is
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which equals AU$3.780 billion.
The expected value of perfect information is the difference between the expected 

cost under uncertainty and the expected cost under certainty:

 EVPI EC ECremote( ) ,δ = −u c  (15.31)
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which is AU$60.6 million. The value of perfect information is substantial in this 
case because we assume so little is known about the sensitivity of remote sensing, 
and this ignorance is likely to affect the outcome of the decision, especially given 
the large difference in the expected cost of the strategies when the effectiveness of 
remote sensing is high (Figure 15.9).

15.3.5 Uncertainty in Bait Efficacy

The third uncertain parameter in this model is the efficacy of baiting undetected fire 
ant nests. To calculate the value of learning about this parameter, we again compare 
the original containment and eradication strategies with a new eradication strategy, 
this time involving two canine surveys (where found nests are injected with poison) 
and four rounds of baiting. This new eradication strategy will cost AU$1,148 per 
hectare compared with AU$920 per hectare per year for containment and AU$644 
per hectare for the original eradication strategy. Again, these three management 
strategies are chosen purely for illustrative purposes.

The baiting strategy is the most cost- effective strategy if  the efficacy of baiting 
is 0.377 or greater (Figure 15.10). For values below this, the containment strategy 
is optimal. This outcome is consistent with the findings of previous modelling that 
aggressive containment using extensive baiting can be an effective eradication strat-
egy when combined with high- sensitivity visual surveillance (Spring et al., 2010). 
Note again that these calculations are for an infestation extent of x = 200,000 ha.

Figure 15.10. The total expected cost of different management strategies for different values of the 
efficacy of baiting, calculated with Eq. 15.20.
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We use a beta distribution to describe uncertainty in the effectiveness of baiting:

 f
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 (15.32)

Our intuition about the efficacy of baiting is stronger than that of remote sens-
ing, but still contains substantial uncertainty. We use shape parameters α = 5 and 
β = 2 to give an asymmetric distribution with a mode ((α –  1)/ (α + β –  2)) of 0.8 
(Figure 15.11), which is the current best estimate of bait efficacy.

The expected cost of each management strategy is found by integrating the total 
cost (Eq. 15.20) across the range of the uncertain variable, weighted by our prior 
belief  that each value is the true value (Eq. 15.32):
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(15.33)

Again, the best strategy in the face of uncertainty is the one that minimises the total 
expected loss given the prior probability distribution, which makes the expected 
cost under uncertainty

 EC EC containment EC eradication EC baiting)u = [ ]min ( ), ( ), ( . (15.34)

Figure 15.11. The beta probability distribution (Eq. 15.32) expressing uncertainty in the efficacy of 
baiting (parameters α = 5 and β = 2).

016
22:24:55, subject to the Cambridge Core terms of use,



15.4  Discussion and Future Directions 329

329

The best strategy under uncertainty is eradication with baiting, which has an 
expected cost of AU$1.313 billion.

If  we could fully reduce uncertainty, we would choose the containment strategy 
if  the bait efficacy is less than λbait

* = 0.377, and we would choose eradication with 
baiting if  the bait efficacy is 0.377 or greater. The expected cost of the decision 
under certainty is
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which equals AU$1.309 billion.
The expected value of perfect information is the difference between the expected 

cost under uncertainty and the expected cost under certainty:

 EVPI EC ECbait( ) ,λ = −u c  (15.36)

which is AU$4.52 million. The value of perfect information is quite small in this 
case because, although we are uncertain about the effectiveness of baiting, our prior 
belief  is very high (96.9%) that it is at least 0.377. Thus, although we are uncertain 
about the parameter, we are not uncertain about what action to take.

15.4 Discussion and Future Directions

This chapter provides an introduction to VOI analysis, in particular the expected 
value of perfect information, and describes how this analysis can be useful for bios-
ecurity decision making. VOI analysis enables managers to identify which uncer-
tainties affect the outcome of management decisions, thus allowing the managers 
to prioritise investment in research and monitoring. An EVPI calculation requires

• Clearly defined alternative actions
• A description of uncertainty, whether as discrete probabilities or a continuous 

probability distribution
• Predictions of how alternative actions perform under different possible values of 

the uncertain variable.

The output of this calculation, the expected value of perfect information, is the 
amount by which resolving all uncertainty is expected to improve the decision out-
come. This provides managers with an upper limit on the amount that should be 
spent on research or monitoring to reduce their uncertainty.

Although our models capture the basic elements of the eradicate-or-contain 
decision problem, further work is needed to increase the realism of the models. 
First, reducing uncertainty through research or monitoring takes time and delays 
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decisions, which might allow further spread of the invader during the delay. This 
opportunity cost could be substantial, but could be accounted for in the decision 
analysis if  estimates of the rate of spread were available. Second, we have not 
accounted for the consequences if  containment fails. Third, we have treated con-
tainment as a fixed long- term strategy, but there might be dynamics that increase 
or decrease its efficacy over time. Fourth, we have not considered long- distance 
dispersal (naturally occurring or human mediated) of the invader past the contain-
ment ring. Fifth, we have not considered constraints on the availability of various 
treatments (e.g., whether there are enough trained dogs to search the area of inter-
est). In short, there are many other aspects of this general problem that might need 
to be treated in more detail in specific settings, but the insights from this prototype 
still provide guidance.

While our fire ant case study demonstrates the flexibility of VOI analysis, we note 
that it is primarily a conceptual model and embodies strong simplifying assumptions 
about fire ant biology. Those simplifying assumptions may have a substantial effect 
on the choice of management strategy and on decisions regarding research and 
monitoring to reduce uncertainty. For the particular case of fire ants in Queensland, 
a number of important details have been, or are being, built into predictive models, 
including the specific spatial arrangement of known infestations, the probability of 
opportunistic detection by individual members of the public, the effect of incentive 
programs for detection and the timing of action relative to the spread of ants. One of 
the findings of this predictive modelling (Keith & Spring 2013) is that areas known 
or likely to be infested by fire ants occupy a small proportion of the delimited area. 
Management strategies being considered that address this spatial pattern of infest-
ation include searching only part of the delimited area, rather than the entire area 
as implied in our formulation. Another feature of some of the management strat-
egies currently being considered is to conduct surveillance both near the estimated 
invasion boundary and in selected areas of higher infestation likelihood within the 
delimited area. These strategies blur the sharp distinction made in our formulation 
between containment and eradication strategies because elements of both strategies 
are likely to be applied in practice, regardless of whether the objective is containment 
or eradication. Despite the need for such elaborations for practical application, our 
model still provides a basis for the development of a decision support tool.

In this chapter we have focused on the EVPI, which gives an upper bound on 
the value of any reduction in uncertainty. Other types of VOI calculations can deal 
with more nuanced measures of information value. For example, when a decision 
involves multiple sources of uncertainty simultaneously, the expected value of par-
tial information can be used to assess the relative importance of resolving the uncer-
tainty from each source and is the best way of performing a sensitivity analysis in 
a decision context (Runge et al., 2011). The expected value of partial information 
calculates the difference in expected utility between the best decision with perfect 
information about a variable x (but with uncertainty in other variables y), and the 
best decision given uncertainty in both x and y. In Section 15.3 we performed three 
separate EVPI calculations for three uncertain variables, each considering different 
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candidate management options. By simultaneously incorporating the uncertainty 
around multiple variables, the expected value of partial information gives a meas-
ure of the relative importance of resolving uncertainty in each variable, and would 
enable simultaneous consideration of all possible management options.

Obtaining perfect information is impossible for many systems; thus the decision 
maker must instead rely on imperfect sample information that reduces but does not 
eliminate uncertainty. The expected value of sample information, another form of 
VOI analysis, takes the imperfect acquisition of information into account and can 
be used to evaluate what level of investment in research or monitoring is warranted 
(Runge et al., 2011).

In some applied environmental contexts, VOI methods are difficult to use, because 
they require two important prerequisites: the framing of the problem as a decision 
(with articulation of objectives and development of alternatives) and a reasonable 
basis for estimating the outcomes of alternative interventions across the range of 
uncertain states. But the recognition of the utility of VOI analyses can motivate the 
prerequisite steps, which may be even more important than the subsequent analysis. 
The full framing of environmental problems as decisions opens up access to the rich 
array of tools from decision analysis (Gregory et al., 2012). Many biosecurity prob-
lems, by virtue of their economic impact and the public attention brought to them, 
are considerably well developed: they have often been framed as economic decisions; 
baseline information exists; and funding for surveillance, research and interven-
tion is available. Thus, the prerequisites for VOI analysis are met, and the agencies 
with responsibility will often have the technical expertise to conduct them. The VOI 
framework brings the same rigour to the question of reducing uncertainty as has 
already been brought to the analysis of the potential damage, and it does so from 
the standpoint of the decision- making agencies with responsibility to take action.

A VOI analysis, in contrast to a traditional sensitivity analysis, changes the focus 
of attention from the influence of uncertainty on the predictions to the influence 
of uncertainty on the decisions recommended. Although this seems like a subtle 
change in wording, it can represent a profound change in direction and can help 
agencies avoid spending scarce resources on surveillance, monitoring or research 
that will not help them make a materially better decision.

In summary, although VOI analysis is an established and extensively used deci-
sion support tool, it is not currently widely applied within the field of biosecuity 
management. This chapter provides a first step in increasing the use of VOI analysis 
for biosecurity decision support, demonstrating its potential utility and outlining 
several directions for future research and application.

References

Antony, G., Scanlan, J., Francis, A., Kloessing, K. & Nguyen, Y. (2009). Revised benefits and 
costs of eradicating the red imported fire ant. Brisbane, Australia: Queensland Department 
of Primary Industries and Fisheries.

016
22:24:55, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


Value of Information in Biosecurity Decisions332

332

Barr, C. L., Davis, T., Flanders, K., et al. (2005). Broadcast baits for fire ant control. Texas 
Imported Fire Ant Research & Management Project.

D’Evelyn, S. T., Tarui, N., Burnett, K. & Roumasset, J. A. (2008). Learning- by- 
catching: Uncertain invasive- species populations and the value of information. Journal of 
Environmental Management, 89(4), 284– 292.

Eidsvik, J., Bhattacharjya, D. & Mukerji, T. (2008). Value of information of seismic ampli-
tude and CSEM resistivity. Geophysics, 73(4), R59– R69.

Gregory, R., Failing, L., Harstone, M., et al. (2012). Structured decision making: A practical 
guide for environmental management choices. West Sussex, UK: Wiley- Blackwell.

Groot Koerkamp, B., Nikken, J. J., Oei, E. H., et al. (2008). Value of information analysis 
used to determine the necessity of additional research: MR imaging in acute knee trauma 
as an example. Radiology, 246(2), 420– 425.

Howard, R. A. (1966). Information value theory. IEEE Transactions on Systems Science and 
Cybernetics, 2(1), 22– 26.

Keith, J. M. & Spring, D. (2013). Agent- based Bayesian approach to monitoring the progress 
of invasive species eradication programs. Proceedings of the National Academy of Sciences 
of the USA, 110(33), 13428– 13433.

Keith, J. M. & Spring, D. (2015). Has the Brisbane fire ant infestation been delimited? 
Unpublished report to Queensland Department of Agriculture and Fisheries.

Lard, C. F., Schmidt, J., Morris, B., et al. (2006). An economic impact of imported fire ants in 
the United States of America. Project Report. College Station, TX: Texas A&M University.

Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the world's worst 
invasive alien species:  a selection from the global invasive species database. Aliens 
12(pull- out), 1– 12.

Maxwell, S. L., Rhodes, J. R., Runge, M. C., et al. (2015). How much is new information 
worth? Evaluating the financial benefit of resolving management uncertainty. Journal of 
Applied Ecology, 52(1), 12– 20.

Moloney, S. & Vanderwoude, C., (2002). Red imported fire ants:  A  threat to eastern 
Australia’s wildlife? Ecological Management and Restoration, 3(3), 167– 175.

Moore, J. L. & Runge, M. C. (2012). Combining structured decision making and value- 
of- information analyses to identify robust management strategies. Conservation Biology, 
26(5), 810– 820.

Parma, A. M., Amarasekare, P., Mangel, M., et  al. (1998). What can adaptive manage-
ment do for our fish, forests, food and biodiversity? Integrative Biology: Issues, News and 
Reviews, 1(1), 16– 26.

Raiffa, H. & Schlaifer, R. O. (1961). Applied statistical decision theory. Cambridge, 
MA:  Division of Research, Graduate School of Business Administration, Harvard 
University.

Runge, M. C., Converse, S. J. & Lyons, J. E. (2011). Which uncertainty? Using expert elicit-
ation and expected value of information to design an adaptive program. Biological 
Conservation, 144(4), 1214– 1223.

Sahlin, U., Rydén, T., Nyberg, C. D. & Smith, H. G. (2011). A benefit analysis of screen-
ing for invasive species –  base- rate uncertainty and the value of information. Methods in 
Ecology and Evolution, 2, 500– 508.

Schmidt, D., Spring, D., Mac Nally, R., et  al. (2010). Finding needles (or ants) in hay-
stacks: Predicting locations of invasive organisms to inform eradication and containment. 
Ecological Applications, 20(5), 1217– 1227.

016
22:24:55, subject to the Cambridge Core terms of use,



15.4  Discussion and Future Directions 333

333

Shea, K., Tildesley, M. J., Runge, M. C., Fonnesbeck, C. J. & Ferrari, M. J. (2014). Adaptive 
management and the value of information:  Learning via intervention in epidemiology. 
PLoS Biology, 12(10), e1001970.

Singh, S., Nosyk, B., Sun, H., et al. (2008). Value of information of a clinical prediction 
rule: Informing the efficient use of healthcare and health research resources. International 
Journal of Technology Assessment in Health Care, 24(1), 112– 119.

Spring, D., Cacho, O. & Jennings, C. (2010). The use of spread models to inform eradica-
tion programs: Application to red imported fire ant. Australian Centre for Biosecurity and 
Environmental Economics Discussion Paper. Available from www.acbee.anu.edu.au/ pdf/ 
publications/ 2010/ IDEC10- 03.pdf

Vogt, J. T. (2004). Quantifying imported fire ant (Hymenoptera: Formicidae) mounds with 
airborne digital imagery. Environmental Entomology, 33(4), 1045– 1051.

Vogt, J. T. & Wallet, B. (2008). Feasibility of using template- based and object- based auto-
mated detection methods for quantifying black and hybrid imported fire ant (Solenopsis 
invicta and S. invicta × richteri) mounds in aerial digital imagery. The Rangeland Journal, 
30(3), 291– 295.

Ward, M. & Kompas, T. (2010). The value of information in biosecurity risk- benefit assess-
ment: An application to red imported fire ants. Environmental Economics Research Hub 
Research Reports. Canberra, Australia: Australian National University.

Wiles, L. J. (2004). Economics of weed management:  principles and practices. Weed 
Technology, 18, 1403– 1407.

Williams, B. K., Eaton, M. J. & Breininger, D. R., (2012). Adaptive resource management 
and the value of information. Ecological Modelling, 222(18), 3429– 3436.

Wylie, R., Jennings, C., McNaught, M. K., Oakey, J. & Harris, E. J. (2016). Eradication 
of two incursions of the red imported fire ant in Queensland, Australia. Ecological 
Management & Restoration, 17(1), 22– 32.

Yokota, F. & Thompson, K. M. (2004a). Value of information analysis in environmental 
health risk management decisions: Past, present, and future. Risk Analysis, 24(3), 635– 650.

Yokota, F. & Thompson, K. M. (2004b). Value of information literature analysis: A review 
of applications in health risk management. Medical Decision Making, 24(3), 287– 298.

016
22:24:55, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


334

16 Declaring Eradication of an 
Invasive Species
Tracy M. Rout

16.1 Introduction

Imperfect detection methods mean that it is difficult to tell whether a species is absent 
from a site or remains undetected. For this reason, the decision to conclude an eradi-
cation program and declare a species successfully eradicated is fraught with uncer-
tainty (Morrison et al., 2007). There are two errors that can be made (Regan et al., 
2006). First, if  the species is declared eradicated when it is still present, its population 
could grow undetected, causing large economic and environmental damages. There 
are costs associated with reinitiating the eradication campaign and reducing the spe-
cies’ population to a low level. Second, monitoring cannot continue indefinitely, and 
continuing to survey when a species has already been eradicated uses resources that 
could be better deployed elsewhere. This chapter reviews statistical models that can 
be used to quantify the certainty that a species has been successfully eradicated from 
a site. It then describes how to analyse logically the decision to declare eradication, 
considering the risks and consequences of getting it wrong.

16.2 Quantifying Certainty of Species Absence

A range of statistical models have been used in the literature to quantify certainty of 
species absence. Choosing the most suitable model for a particular species depends 
primarily on the amount and type of data that are available. This can range from a 
basic time series of sightings or detections, to detailed information on the number 
of individuals removed during an eradication campaign and the management effort 
employed over time. This section summarises different statistical methods from the 
literature, using hypothetical case studies to illustrate how they can be applied.

16.2.1 Sighting Data

It is possible to quantify certainty of species absence when the only information 
available is a series of sightings over time (e.g. Table 16.1). In these cases, we can 
apply simple statistical methods that test whether the recent lack of sighting is 
exceptional, given the previous frequency with which the species was sighted (or 
otherwise detected). Such methods are known as sighting record methods (Boakes  
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et al., 2015). Although these methods were originally developed to test for the 
extinc tion of rare or cryptic species of conservation interest (Solow, 1993a), they 
can also be applied to assessing the success of eradication campaigns. Although 
referred to as testing extinction, this is synonymous with the eradication or extirpa-
tion of a species from the site where it was previously seen.

The record of sightings is described as occurring over a defined time interval, 
from 0 to T. For bottleweed (Table 16.1), the first sighting in 2001 defines the start 
of this interval (t = 0), which then goes for nine years (T = 9) (Figure 16.1). During 
this time there were n sightings, with the most recent at time tn. Because the first 
sighting defines the start of the record, it is not included in the total number of 
sightings, so for bottleweed, n = 3 and tn = 6 (Figure 16.1). This way of classifying 
the sighting data is common to all sighting record methods.

Sightings are assumed to represent a realisation of a Poisson process, which is a 
stochastic process in which events (in this case, sightings) occur continuously and 
independently. Other events that can be modelled as a Poisson process include the 
arrival of telephone calls to a switchboard and the radioactive decay of atoms. 
Within a Poisson process, events occur at a certain rate; for species sightings, this 

Table 16.1. Hypothetical survey data for bottleweed, 
an imaginary weed species

Date of survey Detected?

9 Sep 2001 Yes

5 Sep 2002 Yes

8 Sep 2003 No

11 Sep 2004 Yes

4 Sep 2005 No

6 Sep 2006 No

12 Sep 2007 Yes

8 Sep 2008 No

2 Feb 2009 No

6 Sep 2010 No

Figure 16.1. A schematic representation of the sighting record for the imaginary bottleweed. Closed 
circles represent surveys when bottleweed was detected, while open circles represent surveys 
when it was not detected. Surveys occurred annually, beginning in 2001 (t = 0) and ending 
in 2010 (t = T). After the beginning of the surveys, there were three sightings, with the most 
recent in the sixth time step (t3 = 6).
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rate is driven by both species abundance and the amount of effort that went into 
observation. To make inferences about the exceptionality of a recent lack of sight-
ings, it is necessary to make some assumptions about this sighting rate parameter. 
The simplest assumption is that the sighting rate is constant before eradication 
(known as a homogeneous Poisson process), and then after eradication the sighting 
rate drops to zero. We can then test whether successful eradication is likely to have 
occurred before the end of the sighting period, which is usually the present time.

Taking a hypothesis- testing approach, the p- value for the null hypothesis that the 
species remains present at the site is (Solow, 1993a)

 p
t
T

n
n

.= 





 (16.1)

This p- value is the probability of obtaining the observed data (or more extreme 
data) if  the null hypothesis were true. Hence, a low p- value gives support to the 
alternative hypothesis that the species has been successfully eradicated. For our 
example of bottleweed, the p- value is (6/ 9)3  =  0.3, lending little support to the 
hypothesis that eradication has been successful. Traditionally, a null hypothesis is 
rejected if  the p- value is less than 0.05, an arbitrary threshold of certainty that may 
not reflect the consequences of being wrong, as discussed in detail in Section 16.3.

This constant sighting rate model has been modified in several ways, with 
authors developing hypothesis tests that accommodate multiple sightings in a sin-
gle time step (Burgman et al., 1995), account for differences in observational effort 
(McCarthy, 1998) and remove the influence of the length of observation period 
(McInerny et al., 2006).

This model can also be applied in a Bayesian framework (Solow, 1993a). Instead 
of calculating a p- value for the null hypothesis that a species is still present, the 
Bayesian version directly calculates the probability the species is present as
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where B is the Bayes factor
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and π is the prior probability of presence, that is, the probability that the species is 
present independent of its observed sighting record.

This prior probability can be estimated by obtaining values from one or more 
experts (McCarthy, 2007) or by modelling the success rate of eradication programs 
for similar species (Rout et al., 2009a). For example, Campbell and Donlan (2005) 
summarised the success and failure of goat (Capra hircus) eradications on islands 
and found that 120 out of 130 documented eradications were successful. From this, 
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we can estimate a prior probability of eradication failure (and thus a prior probabil-
ity that goats remain following an eradication attempt) of 0.08. In some cases, the 
probability of eradication failure can be predicted as a function of site or species 
characteristics. For example, Campbell and Donlan (2005) found that the failure 
rate on larger islands was higher than on smaller islands. McCarthy and Masters 
(2005) illustrated this approach by predicting annual survival rates of bird species 
from regression models of published data. Informative prior information has been 
found to increase the precision of estimates without systematically reducing accur-
acy (Morris et al., 2015). The ability to incorporate prior information is a major 
advantage of Bayesian methods (McCarthy, 2007). However, if  no prior informa-
tion is available, an uninformative prior probability of 0.5 can be used, and the 
posterior probability of presence will be driven solely by the observed sighting data.

Another advantage of this Bayesian method is that the output –  the probabil-
ity of presence –  is much easier to use and interpret than a p- value. Indeed, in the 
literature, the p- value for the null hypothesis that the species is present is often 
interpreted incorrectly as the probability that the species is present. It is important 
to note that these are not the same quantity, and calculating them with the same 
data will give different results. Take the example of the imaginary bottleweed. After 
the three most recent surveys failed to detect bottleweed, the probability it is still 
present (with π = 0.5) is 0.62, whereas the p- value for the null hypothesis that it is 
present is 0.30.

It can also be useful to examine how the probability of presence will decrease 
as future surveys fail to detect the species (Figure 16.2). Because of bottleweed’s 
short sighting record (and in particular its small n), the probability that it is present 
decreases quite slowly as the number of surveys since the last detection increases. 
After 20 surveys without detection, the probability that bottleweed is present is 0.10.

The methods described so far have modelled the sighting record as an homo-
geneous Poisson process, assuming that the rate of sightings is constant prior to 

Figure 16.2. The probability that bottleweed is present despite being undetected for a number of 
surveys, calculated with the Bayesian constant sighting rate model (Eq. 16.2), with π = 0.5. 
There have been three surveys since bottleweed was last sighted (marked with circle), 
making the probability it remains present 0.6.
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eradication. The sighting record can also be modelled as a non- homogeneous 
Poisson process, where the pre- eradication sighting rate changes with time, for 
example, declining exponentially at an unknown rate (Solow, 1993b). Boakes et 
al. (2015) summarise and illustrate the current range of sighting record methods, 
including constant and declining sighting rate methods, as well as a number of non- 
parametric tests that make no assumptions about the distribution of the pre- eradi-
cation sighting rate. More recent methods can also take into account uncertainty in 
the veracity of individual sighting records (Boakes et al., 2015).

As with any statistical method, users should be aware of  the underlying 
assumptions of  these models and the implications of  those assumptions (see 
Boakes et al. (2015) for a summary of  the assumptions underlying each method). 
Assuming a constant sighting rate implies (in the simplest case) that both species 
abundance and observational effort are constant over time. This makes the model 
suitable for species with a low but stable population, where individuals that are 
detected and removed are replaced through reproduction. We might reasonably 
expect that, during an eradication campaign, the abundance of  the species would 
decrease as the campaign progresses, making a decreasing sighting rate model 
more appropriate.

As mentioned, these sighting record methods were developed for rare species 
with incidental observations over time, rather than for species that were system-
atically and repeatedly surveyed. Sighting record methods can be applied in their 
original form to bottleweed because the surveys occurred at regular time intervals, 
in this case years, which can be used as the base unit for the sighting record. If  
surveys occur at irregular time intervals, then observational effort is not continuous 
through time, and this violates an assumption of the Poisson process model.

In these cases, the Poisson model can still be applied by using the number of sur-
veys as the base unit for the sighting record (Rout et al., 2009a). This means inter-
preting T as the total number of surveys for the species, n as the number of surveys 
in which the species was detected and tn as the survey number when the most recent 
observation was made. This means that the sighting rate is modelled across surveys 
rather than over time. This distinction is subtle when considering a constant sight-
ing rate, but becomes important when using non- constant models. For example, 
modelling a decreasing sighting rate means that either abundance or observational 
effort is decreasing with every survey performed, even when individuals are not 
detected. This may be a realistic assumption for abundance if  herbicide is applied 
or poison baits are dropped across the target site whenever surveys are conducted. 
Note that, although the timing of surveys becomes irrelevant when using surveys 
as the base unit of the sighting record, surveys must occur far enough apart in time 
to be considered independent observations.

16.2.2 Data on Persistence and Detectability

If  the species has been surveyed at regular intervals and there is some information 
about its life history, then the model of Regan et  al. (2006) may be suitable for 
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calculating the probability of presence. Under this model, the probability that a 
species is still present following d surveys without being detected is

 p s q
d

presence( ) = −( )( )1 , (16.3)

where s is the probability that the species persists in the time interval between sur-
veys and q is the probability a survey will detect the species if  it is present. The 
probability of persistence can be estimated with life history data such as seed bank 
longevity (Regan et al., 2006). The probability of detection can be estimated from 
survey data or more rigorously as a function of local conditions such as the sur-
rounding vegetation type and the amount of time spent searching (see Chapter 14; 
Garrard et al., 2008; Moore et al., 2011).

Imagine we obtain information about the seed bank longevity of bottleweed that 
allows us to estimate its annual probability of persistence as r = 0.9. We can use 
the sighting data in Table 16.1 to estimate the probability that bottleweed will be 
detected in a survey if  it is present. Bottleweed was detected in four surveys and 
was present for at least seven surveys (up until the last sighting) and perhaps up to 
ten surveys (up until the last survey). The probability of detecting bottleweed if  it 
is present is, therefore, somewhere between 0.4 (four out of ten) and 0.57 (four out 
of seven). Using the model of Regan et al. (2006), the probability that bottleweed 
is currently present after three surveys without detection is between 0.06 and 0.16 
(Figure 16.3).

16.2.3 Data from a Single Survey

The two previous models are suitable for species with multiple surveys or obser-
vations over time. For some species, it may be more appropriate to calculate the 
probability that the species is present in an area after a single extensive survey has 

Figure 16.3. The probability that bottleweed is present despite being undetected for a number of surveys 
calculated with the persistence and detectability model (Eq. 16.3), with s = 0.9, and two 
different values for q: 0.4 (dotted line), and 0.57 (dashed line). The current probability 
that bottleweed is present, after three surveys without detection, is between 0.06 and 0.16 
(marked with circles).
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failed to detect it. Scott et al. (2008) addressed this problem for several birds of con-
servation interest by developing a Bayesian model based on the proportion of the 
species’ range that has been effectively surveyed. They assume that there is a well- 
defined range or target area for the species, that individuals are uniformly distrib-
uted over this area and that they are detected independently. The probability that a 
species remains present despite being undetected by the survey is

 p e
m

E
Apresence( )= −

− −



 ,1

1
 (16.4)

where m is the mean of a Poisson distribution describing the prior belief  about 
population size, E is the effective survey area and A is the species’ range area. In 
their appendix, Scott et al. (2008) provide an alternative calculation in which the 
prior belief  in species abundance is described with a geometric distribution.

To show how this method can be applied, let us consider another hypothetical 
eradication campaign, this time of feral cats (Felis catus) on an island. Following 
an extensive baiting program, managers described their belief  about the number of 
cats remaining on the island with a Poisson probability distribution with a mean 
and variance of λ  =  2 (Figure  16.4). Note that a prior probability distribution 
could also be constructed more rigorously using data on the number of individuals 
removed, if  available; see Section 16.2.4.

Under the distribution the managers described, the most likely number of cats 
remaining is either one or two (both are equally likely with a probability of 0.27). 
The probability that fewer than five cats remain is 0.95, while the probability that 
no cats remain is 0.14 (Figure 16.4).

A spotlighting survey was then conducted, comprising 20 line transects, each 200 
m long. This survey failed to detect cats. The effective area of this spotlighting sur-
vey can be calculated as (Scott et al., 2008)

 E Lw,= 2  (16.5)

where L is the total transect length and w is the effective detection distance. A pre-
vious test on the island found that the eye- shine of a cat could be detected by spot-
light from up to 40 m away, giving an effective survey area of E = 2 × 4,000 m × 40 
m = 0.32 km2.

The entire island area of 42 km2 is considered as potential cat habitat (A = 42 
km2). Using Eq. 16.4 to combine the managers’ prior belief  with the spotlighting 
data, we can calculate the probability of cat presence on the island as

 p epresence( )= − =
− −



 . .

.

1 0 86
2 1

0 32
42  (16.6)

This detection model assumes that all individuals could potentially be detected 
if  the survey effort were high enough. For invasive plants with undetectable seed 
banks, this model can be used to assess the likelihood that adults and seedlings are 
present, but cannot make inferences about the complete eradication of the spe-
cies. This model is unlikely to be suitable for gregarious animal species because of 
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the assumption that individuals are uniformly distributed over the target area. For 
example, the tendency for feral pigs to congregate means that their detection is not 
independent, and this is well known and often exploited by eradication managers.

16.2.4 Removal Data

If  data are available on the number and timing of individuals removed throughout 
an eradication campaign, this can be used to model the population and calculate 
the probability that individuals remain at the conclusion of the eradication cam-
paign. Solow et al. (2008) analysed trapping data from the unsuccessful eradication 
of Asian shrews (Suncus murinus) from a Mauritian island. Their Bayesian model 
assumed the population was closed and non- reproducing during the eradication 
campaign, and the population size  –  both before and after the campaign  –  was 
unknown. They used the record of individual trapping times to make inferences 
about the population size at the conclusion of the campaign, when successful eradi-
cation was mistakenly declared.

Solow et al. (2008) began by describing a prior probability distribution for the 
number of shrews remaining that was estimated independently of the observed 
trapping data. As with the single survey model (see Section 16.2.3), they used a 
Poisson probability distribution to describe this prior belief  (e.g. Figure 16.4). They 
modelled the trapping data as a realisation of a non- homogeneous Poisson process, 
and the assumptions discussed in Section 16.2.1 apply, namely that trappings are 
stochastic and occur continuously and independently of one another. They then 
used Monte Carlo simulation to generate the posterior probability distribution for 
the number of shrews remaining. Using this approach, they found that the prob-
ability that the eradication was successful (i.e. that zero shrews remained at the con-
clusion of the eradication campaign) was only 0.27. They argue that this analysis 

Figure 16.4. The prior probability distribution for the number of cats remaining on a hypothetical 
island following a baiting program –  a Poisson distribution with a mean of 2.
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could have prevented the mistake of declaring eradication prematurely (because 
presumably managers would have required a higher certainty of absence than 0.27).

The assumption of a closed population makes this model suitable for species 
in which the eradication is conducted outside the breeding season (as for the case 
study of shrews) or occurs on a short time scale compared with the generation time 
of the species. This assumption may make this model unsuitable for plant species in 
which there is ongoing germination from the undetectable seed bank.

16.2.5 Removal and Effort Data

When there are data on the amount of management effort employed during an 
eradication campaign as well as the number of individuals removed (or sighted) 
over time, this information can be used to assess the likelihood of eradication suc-
cess and the effectiveness of different management methods. Ramsey et al. (2009), 
Ramsey et al. (2011) and Rout et al. (2014) apply catch– effort models to the island 
eradications of feral pigs, cats and foxes respectively.

These three studies model the relationship between effort and detection rate for 
different types of search and removal activities, for example, trapping, hunting with 
dogs, surveillance with cameras, and searching for scats. In these Bayesian mod-
els, prior estimates are required to calculate the probability of eradication success 
and the sensitivity of each search and removal method. Although Ramsey et al. 
(2009) and Ramsey et al. (2011) both assume that the pest population is closed and 
non- reproducing during the eradication campaign, it is possible to accommodate 
violations of this assumption using catch– effort models using data on reproduction 
(or germination), mortality and immigration or emigration rates (Seber, 1982). For 
example, Rout et al. (2014) used data from an independent study of an unharvested 
fox population as an estimate of the natural population growth rate. These models 
also assume that, given a particular sampling period and method, all individuals 
have an equal probability of detection.

The advantage of these catch– effort models is that they can incorporate data 
from different management methods by including a combination of removal data 
from trapping or hunting, and observation data from search- only methods such 
as camera surveillance. Catch– effort models can also incorporate variations in the 
amount of management effort employed over time.

16.3 Deciding to Declare Eradication

Section 16.2 described methods for quantifying the certainty that a species has been 
successfully eradicated, using either a null hypothesis test or a direct estimation of 
the probability that the species remains present. The absence of a species can never 
really be proven, although confidence in absence increases as more searches fail to 
find the species (e.g. Figures 16.2 and 16.3). How certain do we need to be to stop 
searching and declare eradication?
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One option is for managers to set a threshold level of certainty that will trigger the 
decision to declare eradication. For example, in the eradication of pigs from Santa 
Cruz Island, managers and consulting scientists agreed that eradication be declared 
when they could be 95% sure that no pigs remained (Ramsey et al., 2009). However, 
setting an arbitrary threshold does not take into account the relative consequences 
of making a mistake. If there are huge negative consequences to declaring eradica-
tion prematurely, it would be sensible to set the threshold level of certainty very high. 
Conversely, if  surveying is very expensive and the consequences of falsely declaring 
eradication are insubstantial, it would be best to set a much lower threshold.

These risks and consequences can be considered explicitly using decision theory. 
Regan et al. (2006) posed and solved this problem by using economic cost to quan-
tify the consequences of error. They calculated the net expected cost of declaring 
eradication after d surveys without detection as

 NEC = presenced d C p d Cs e( ) −( ) + ( )1 | , (16.7)

where Cs is the cost of one survey, Ce is the expected cost of declaring eradication 
prematurely and p(presence|d) is the probability that the species is present when 
it has not been detected for d surveys. Regan et  al. (2006) then found the point 
at which this expected cost is minimised as the optimal point at which to declare 
eradication.

Regan et al. (2006) interpreted the cost of declaring eradication prematurely as 
the expected cost if  the species were to escape from the eradication site and cause 
damage. This was calculated using

 C P P Ce ,= × ×escape damage damage  (16.8)

where Pescape is the probability that the species will escape, Pdamage is the probability 
that it will cause damage and Cdamage is the cost of that damage. This cost could 
be an economic cost, such as a loss in agricultural production, or it could be an 
environmental loss that has been monetised using economic valuation methods 
(Spangenberg & Settele, 2010). Alternatively, the cost of declaring eradication pre-
maturely could be the cost of having to re- start the eradication program and repeat 
the treatments applied (Ramsey et al., 2009; Rout et al., 2014).

For example, consider again the imaginary bottleweed. A single survey for bottle-
weed costs A$1,000. If  falsely declared eradicated, bottleweed has a 0.4 probability 
of escaping its previous area of infestation, and there is a 0.5 chance it will cause 
A$1 million worth of agricultural damage. The expected cost of escape is, therefore, 
Ce = 0.4 × 0.5 × 1,000,000 = A$200,000. The probability that bottleweed remains 
present after several surveys without detection was calculated previously using the 
Bayesian sighting record method (Eq. 16.2 and Figure 16.2). This probability can 
be used within Eq. 16.7 to calculate the net expected cost of declaring bottleweed 
eradicated (Figure 16.5).

Declaring eradication after only a few surveys without detection has a very high 
net expected cost that is driven by the expected cost of falsely declaring eradication. 
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For bottleweed, this expected cost is 200 times the cost of a single survey. The net 
expected cost of declaring eradication increases again after many surveys without 
detection as the cost of conducting surveys accumulates. For bottleweed, it is opti-
mal to declare eradication after 24 surveys without detection, when the expected 
cost is lowest.

Within Eq. 16.7, the probability that the species is present when it has not 
been detected for d surveys can be calculated using any of  the Bayesian meth-
ods described Section 16.2. There are several examples of  this in the literature: 
Regan et al. (2006) apply the persistence and detectability model (Eq. 16.3) to 
find the optimal time to declare eradication of  a weed species; Rout et al. (2009a) 
apply sighting data models, including the constant (equation 16.2) and declining 
sighting rate models, to the same weed species as Regan et al. (2006), Ramsey et 
al. (2009), Ramsey et al. (2011) and Rout et al. (2014) apply catch– effort mod-
els to find the optimal time to declare eradication of  feral pigs, cats and foxes. 
Hypothesis testing calculations (e.g. Eq. 16.1) cannot be used within this frame-
work, although Field et al. (2004) describe how to optimise the error thresholds 
of  a hypothesis test to account for the consequences of  making the wrong man-
agement decision.

The framework of Regan et al. (2006) is risk neutral, focusing on the best esti-
mates of parameters and the mean expected outcomes. A  risk- averse decision 
maker would focus instead on the worst plausible values of uncertain parameters 
and avoid the worst outcomes, while a risk- tolerant (or risk- prone) decision maker 
would focus on the best plausible values and outcomes.

Rout et al. (2009b) apply an info- gap uncertainty analysis to the framework of 
Regan et  al. (2006) for declaring eradication. They take a risk- averse approach, 
seeking decisions that have an acceptable net expected cost while being most robust 
to uncertainty in the probability of presence. In info- gap analysis, uncertainty is 

Figure 16.5. The net expected cost of declaring eradication of bottleweed after different numbers of 
surveys without detection. The net expected cost is shown as a ratio compared to the cost 
of one survey. The probability bottleweed remains present is calculated using the Bayesian 
sighting record method (Eq. 16.2; see Figure 16.2). It is optimal to declare bottleweed 
eradicated after 24 surveys without detection (black dot).
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propagated around a nominal, or best- guess, estimate, and the best decision (i.e. the 
number of surveys without detection after which eradication should be declared) is 
known as the robust- optimal decision (see Chapter 12). Rout et al. (2009b) used the 
model of Regan et al. (2006) (Eq. 16.3) as the nominal model for how the probabil-
ity of presence declines with the number of surveys without detection. They derive 
a general result for any convex nominal model of the probability of presence: the 
robust- optimal solution will always be greater than the optimal solution using that 
nominal model. In other words, if  managers are uncertain about their model of the 
probability of presence, they should survey for longer than the solution that mini-
mises the net expected cost (Eq. 16.7).

Another parameter in this framework that is likely to be uncertain is the cost of 
declaring eradication prematurely (Ce). As discussed in Section 16.3, this cost can 
be interpreted in different ways, for example, as a potential cost of impact of the 
invasive species or as the cost of restarting the eradication campaign. When there 
is no clear best method for estimation, it could be advantageous to combine costs 
or use the limits of multiple estimates as a plausible interval for this cost. Ramsey 
et al. (2009) point out that many potential indirect costs of falsely declaring eradi-
cation, such as political costs or opportunity costs, are likely to be both substantial 
and essentially unknowable. Underestimating Ce by ignoring these costs could lead 
to underestimating the amount of search effort needed before eradication can be 
declared. If  this is a concern, it could be prudent to take a risk- averse approach, 
such as relative regret or info- gap analysis (see Chapters 12 and 13).

16.4 Conclusion

The decision to declare eradication can be difficult, with large risks and large 
uncertainties. Formulating a formal decision problem has several advantages. 
By explicitly considering the different risks involved, managers can provide a 
formal justification for their decisions. This could be helpful in many ways, par-
ticularly because a bad outcome does not imply a bad decision. For example, 
a species can be rediscovered even when the probability of  it being present is 
extremely small. A  formal analysis could also be helpful in securing resources 
for additional surveys. This being said, decision tools need not dictate precisely 
which action should be taken. Rather, they can be used as decision support to 
help managers understand and communicate the implications of  their decisions, 
and to form a basis for further discussion and compromise between managers 
and stakeholders.
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17 Surveillance for Detection of Pests 
and Diseases: How Sure Can We 
Be of Their Absence?
Tony Martin

17.1 Introduction

17.1.1 Context: Trade in Animals, Plants and Their Products

The Agreement on Sanitary and PhytoSanitary measures of the World Trade 
Organisation requires member countries to follow international standards when 
establishing measures to protect the life and health of their humans, animals and 
plants in international trade. These standards are set by the World Organisation 
for Animal Health, the International Plant Protection Convention and the Codex 
Alimentarius Commission. Measures taken by a country to protect its livestock, 
agriculture and natural environment from the potential introduction of pests 
and diseases as a result of international trade in animals, plants and their prod-
ucts should be the minimum (least trade- restrictive) necessary to provide a level 
of protection consistent with the country’s appropriate level of protection. Where 
there is no applicable international standard, or where a country wishes to impose 
measures different from those specified in the international standards, the measures 
imposed must be supported by a science- based import risk analysis.

International standards and import risk analysis both necessarily recognise that 
for a pest or a disease, its presence in, or absence from, the exporting country, zone, 
compartment or area is critical in determining the risks associated with impor-
tations from that area, and thus in determining appropriate protection measures. 
Similarly, the appropriate protection measures to be applied by the importing coun-
try depend on its own pest or disease status. Surveillance for detection of the pest or 
disease is the means by which its presence can be determined (by detecting it) and 
also the means by which evidence for its absence can accumulate (by not detecting 
it). Although in the absence of the pest or disease, surveillance may be planned to 
provide a reassuring level of confidence in its absence, the level of confidence must 
be documented and quantified if  trading partners are to be convinced.

17.1.2 Evidence for Absence

If  we are going to be sure that a pest or disease is not present, we have to be sure 
that we would detect it if  it were present. Detection of pests and diseases in an 
area or in a population is achieved by surveillance, which includes all processes by 
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which the pests and diseases might be detected. A surveillance system for an exotic 
pest or disease typically comprises several different surveillance system components 
(SSCs), any one of which might detect its presence. The commonest SSC is the gen-
eral diagnostic, or passive, reporting system; others might include sentinel herds, 
flocks or farms, a random cross- sectional survey of a population, or routine testing 
of products intended for export.

Without a perfect test applied simultaneously to the entire population, we can 
never prove freedom from any pest or disease. The best we can do is to demonstrate 
a high level of confidence, or certainty, concerning its absence. Supporting evidence 
for the absence of a pest or disease is provided by all functioning SSCs when they 
do not detect it. The more likely the SSCs would be to find the pest or disease if  it 
were present, the greater the supporting evidence they provide.

Rephrasing this in the language of surveillance, a surveillance system for a pest 
or disease has a sensitivity, which is the probability that it will detect the pest or 
disease that is present in the population at some specified level (the design preva-
lence). The higher the sensitivity (i.e. the more likely it is that the surveillance system 
will detect the disease), the greater our confidence that the pest or disease is truly 
absent if  the surveillance system has not found it. This chapter explores how we can 
quantify the sensitivities of all types of SSCs, and accumulate evidence for freedom 
to derive a quantitative estimate of the resulting level of confidence that a pest or 
disease is not present in a population. These methods are applicable to invasive spe-
cies (vertebrates, invertebrates and plants) and to diseases of plants and animals, 
in both terrestrial and aquatic environments, and will be illustrated using a series 
of examples.

17.1.3 Terminology and Assumptions

Authorities in a member country of the World Trade Organization is interested 
in knowing whether or not it is free from pests and diseases that may affect trade, 
and to this end they conduct surveillance aimed at detecting the presence of a pest 
or disease of interest. In using the results of this surveillance as evidence for free-
dom from the pest or disease, we must assume that the pest or disease has not been 
found, and all surveillance outcomes are negative (see Results and Outcomes in 
this section below). If  the pest or disease has been found, then it is present and the 
country is not free of it. The following terminology is used throughout this chapter. 
Key terms are emphasised in italics.

Pests and Diseases
This chapter presents a method that may be applied to any unwanted organisms, 
most of which are normally covered by one or other of the terms pest and disease. 
Reference to pests and diseases in the text is clearly intended to be comprehensive; 
reference to one or the other does not imply that the method under discussion is 
applicable only to that one, but is simply using the appropriate term for the example 
presented. Pest is a term usually used to imply a free- living species that is unwanted 
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because of its adverse impacts on the environment or agriculture. A disease is the 
unwanted manifestation in a host species of infection or infestation with a parasitic 
organism. This organism is often microscopic (e.g. bacteria, viruses and fungi), and 
although it is the organism that is actually unwanted, it is its manifestation (the dis-
ease) to which we often refer.

Infection and Infestation
Pests are generally said to infest, and diseases to infect their hosts. The two terms are 
taken to have the same meaning in this chapter.

Units, Groups and Populations
General Description
Within a country (or other jurisdiction), surveillance is conducted in or on a popu-
lation. A population is made up of some number of population elements, and the 
smallest collection of elements that is assessed or processed by the surveillance 
forms a surveillance unit. The units that are processed (tested) form a subset or 
sample (≤100%) of the population under surveillance. This sample may be repre-
sentative of the population under surveillance (i.e. randomly selected) or it may be 
biased (i.e. non- representative). The population under surveillance consists of all 
units with a non- zero probability of being processed. Results from the surveillance 
might be extrapolated to a wider reference population, which may or may not be 
equivalent to the whole population of the country. So, if:

• the sample of units processed is 100% of the population under surveillance;
• the population under surveillance is the same as the reference population; and
• the reference population includes all the population elements in the country

then the surveillance is effectively a census of the population.
There are many possibilities and options in this description of the hierarchy of 

population elements, and this is inevitable when defining terms to cover a com-
prehensive range of scenarios and surveillance programmes. Surveillance units are 
often, but certainly not always, considered to form clusters or groups of  units based 
on shared attributes, such as

• How they are managed
• Who owns them
• Their categorisation by administrative bodies
• Their spatial location
• Their exposure to factors affecting their probability of being infected
• Their exposure to factors affecting the probability of infection being detected.

Application to Pests
A pest infests a plot of land, an area of forest, a district, a river system, a field or 
some other spatial entity. When we conduct surveillance for this pest (to detect 
the pest if  it is present) we carry out inspections, or in some other way test for the 
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presence of the pest, on individual plots of land, areas of forest, districts, river 
systems, fields or other entities. These are then the surveillance units. So we might 
inspect an orchard for the presence of a fruit fly, or we might inspect ponds for 
the presence of an aquatic weed, or suburban gardens for the presence of an ant 
species. The surveillance unit in these examples is the orchard, the pond and the 
suburban garden, respectively. When considering the presence of pests or wildlife 
species in an environment, the elements that constitute the assessable population 
are generally at the small end of a continuous spatial scale. The method presented 
here deals with discrete units of  population; hence the need to define, somewhat 
arbitrarily, recognisable and assessable collections of elements as forming surveil-
lance units. The population under surveillance in these examples is the population 
of fruit trees, the population of ponds and the population of suburban gardens that 
might be tested in the surveillance programme.

When analysing the surveillance results, useful groupings of surveillance units 
might be areas (e.g. towns or districts), shared ownership (e.g. farms) or vegetation 
types (e.g. dense scrub). The reference population of units is the wider population 
of units that we believe to be represented by the units under surveillance. In the 
examples presented, the reference populations might be all fruit farms in the coun-
try for fruit fly, all waterways in the country for the aquatic weed, or the whole 
country for ants.

Application to Diseases
A disease infects an animal or a plant, and in this scenario individual animals or 
individual plants are the elements of the population. Surveillance to detect the 
disease may deal with individual animals or plants (e.g. in the diagnostic labora-
tory), in which case the individual population elements are the surveillance units. 
Alternatively, a surveillance activity may perform its test on a collection of animals 
(e.g. a herd, a shed or a farm) or a collection of plants (e.g. a crop, an orchard or 
a farm), and in this case the herd, shed or farm is the surveillance unit. The popu-
lation under surveillance might be, for example, all beef cattle in the country or all 
chipping potatoes, and the reference populations might be all cattle in the country 
and all potatoes grown in the country.

If  the individual cow is the surveillance unit, surveillance results will often 
accumulate or be summarised at the herd level. An individual herd is then a 
group of  units, and herds in general form a grouping level for summarising sur-
veillance results. It is possible further to summarise results at the regional (or 
other) level, and in this case regions form another grouping level. Alternatively, 
the herd of  cows may be the surveillance unit. In the terminology defined here, 
the herd is not a group of  units because it is simply a single unit. Results can still 
be aggregated at the regional level, and in this case a region would be a group 
of units.

The level at which the surveillance observations are made defines the surveil-
lance unit, and with animal diseases this is most commonly the individual animal 
of the host species. For plant diseases, an area of land where the plant grows is 
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more commonly the surveillance unit, or a unit may even be a quantity of seed (e.g. 
Hammond, 2010).

Surveillance Systems and Components
Typically a surveillance system for detection of a pest or disease has multiple con-
tributing SSCs, each of which comprises a separate surveillance activity. Each such 
activity consists of applying a test for the presence of the pest to a unit of the popu-
lation. This unit has then been processed in the SSC.

Sensitivity and Specificity
The efficacy of a surveillance activity or system for detection of a pest or disease is 
assessed from its sensitivity. This term may be used for a test applied to an individ-
ual surveillance unit (i.e. the test sensitivity), a testing procedure applied to a group 
of units such as a herd of cattle (i.e. the herd sensitivity) or the whole surveillance 
system applied to the population (i.e. the sensitivity of the surveillance system). 
Sensitivity in this context is the probability that the test, group test or surveillance 
system will give a positive outcome when the pest or disease is present in the surveil-
lance unit, group of units or population. This use of the word sensitivity is analo-
gous to the diagnostic sensitivity of a diagnostic laboratory test –  the probability that 
the test will give a positive result when it is applied to a specimen from an infected 
individual (or other entity). This is different from the analytic sensitivity, which is a 
measure of the minimum quantity of the assayed substance that a test can detect.

The specificity of  a test on a surveillance unit, or a group test or a population test 
(an SSC or the whole surveillance system), is the probability that the test will give a 
negative result when the unit/ group/ population is not infected.

Results and Outcomes
An SSC for detection of a pest or disease applies at least one test to each unit pro-
cessed. Each test has a dichotomous result: positive or negative. For example, the 
inspectors saw ants at a site (positive) or they did not (negative); the laboratory test 
for the presence of antibodies in a blood specimen gave a positive result or it did 
not. Tests for which the results are expressed other than dichotomously need to be 
considered here to have given a negative result or a non- negative (positive) result.

An SSC applied to a unit gives a dichotomous outcome:  positive or negative. 
Positive implies truly infected and detected. Negative outcomes may be obtained 
either when the unit is uninfected or when it is infected and undetected (i.e. truly 
uninfected or a false negative).

Box 17.1 Enzootic Bovine Leukosis

Authorities in country A  consider its dairy cattle population to be free from 
the viral infection enzootic bovine leukosis (EBL). EBL infection can cause a 
range of disease syndromes in infected animals, particularly lymphatic system 
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tumours, which are seen most commonly in mature animals. The virus is com-
monly transmitted from infected adults (cows and bulls) to their progeny and 
may also be transmitted by any process that transmits blood lymphocytes from 
one animal to another (e.g. biting flies feeding on multiple animals; or shared 
injection needles). Once infected, an animal remains infected (and infectious) 
for life and also develops an immune response to the infection. The disease may 
be detected clinically (by recognising the tumours or other clinical signs of dis-
ease) or at the abattoir during post- mortem inspection, and infection may also 
be detected by tests for antibodies in the blood or milk. Viruses may be detected 
in a range of tissues from infected animals.

The country exports dairy heifers, which are individually tested before export, 
using a blood test for antibodies to EBL. There is also routine six- monthly test-
ing of all dairy herds supplying milk to processing plants, using a test for anti-
bodies to EBL that is applied to a sample of bulk tank milk. Other SSCs for 
EBL detection in this country are the general (passive) surveillance component 
in which clinical disease is diagnosed, and both ante- mortem and post- mortem 
inspection at the abattoir, where tumours can be detected.

17.1.4 Perfect Specificity

Consider the country in the example in Box 17.1. Suppose that it exports dairy 
products and dairy heifers, and suppose that importing countries require that both 
dairy products and heifers should be free from EBL. Heifers may be individually 
blood- tested prior to export, and the importers are satisfied with this because the 
test, an enzyme- linked immunosorbent assay (ELISA) for antibodies or immune 
proteins in the blood, has a sensitivity of greater than 99.9% (i.e. fewer than one in 
a thousand infected heifers will incorrectly pass the test by giving a false- negative 
ELISA result). Since the population from which they are drawn is believed to be 
free of infection, this provides an extremely high level of confidence that a heifer 
that tests negative will be uninfected. (Even if, contrary to our belief, infection is 
present in the population, we can still be at least 99.9% confident that a heifer that 
tests negative will be uninfected.)

But what if  a heifer gives a positive ELISA result? Is she genuinely infected, or is 
this a false- positive test result? The importing country will refuse to accept her (and 
possibly all other heifers from country A) unless this is resolved and the heifer is 
proven to be uninfected. For this purpose, the exporter must follow up with a defini-
tive test (detection of virus antigen in the heifer’s blood), which will provide the 
required certainty. Although the antigen detection test may be less sensitive than 
the ELISA, in theory (i.e. barring laboratory mix- ups) it cannot give false positive 
results; it has perfect specificity. It is a kind of backstop, ensuring perfect specificity 
for the testing procedure applied to each heifer. Such perfect specificity is neces-
sary for all testing procedures used to demonstrate freedom from a pest or disease 
because positive test results are unacceptable when the population is supposedly 
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free from the pest or disease. Unless a positive test result can be demonstrated to be 
a false positive by use of a follow- up test with perfect specificity, it will be taken to 
indicate the potential presence of the pest or disease.

This follow- up testing forms an integral part of the SSC, and any associated 
reduction in the sensitivity of the SSC must be incorporated into calculations of 
the SSC’s sensitivity. In practice, when dealing with a disease that is believed to be 
absent from the population, the programme of testing used to follow up a positive 
test on a unit often involves testing all neighbouring or otherwise associated units. 
This theoretically enhances the overall sensitivity of the SSC by testing further 
high- risk units, and in such situations it is often reasonable to assume that follow- 
up testing has a sensitivity of 100%.

Returning to the export of dairy products, the importing country requires that 
these are also EBL-free, which means that the herd or herds from which they came 
must be shown to be free from EBL. For a herd to be free from EBL, all the cows 
in the herd must be uninfected. If  the products are derived from the milk of a single 
herd, evidence for freedom of the herd from EBL might be derived from a single 
test applied to a well- mixed sample of bulk tank1 milk (again, an ELISA for anti-
bodies). The sensitivity of this single test applied to the whole herd will depend on 
the herd size (the number of cows contributing milk to the bulk tank).2 The test’s 
specificity, as with the blood test on the heifer, may be less than perfect, but arrange-
ments for follow- up testing in the event of a positive ELISA result will ensure that 
the whole testing procedure has 100% specificity. In this case, because the test is 
applied to the whole milking herd and the dairy cow population is believed to be 
free of EBL, follow- up will probably include individual testing of all cows that 
contributed to the bulk milk, using the ELISA for antibodies. Follow- up testing of 
any cows giving positive ELISA results would ensure that the overall herd- level spe-
cificity of the procedure would effectively be 100%, while the herd- level sensitivity 
would be considerably enhanced (for detection of a single infected cow, to 99.9%).

Suppose now that instead of using the bulk milk ELISA, the herd was tested by 
taking a specimen of blood from each of the 100 cows in the herd. Although 100 
ELISAs were run, the end result for the herd is a single herd test with a negative 
outcome (i.e. all 100 blood ELISAs gave negative results). The sensitivity of this 
herd test is the probability of getting one or more positive results if  the herd were 
infected. What about its specificity? Again, agreed testing arrangements need to 
include follow- up testing to resolve any positive blood ELISA results into true posi-
tives (an infected herd) and negatives, resulting in a herd test with perfect specificity.

 1 The bulk tank is where milk from all milking cows in the herd is mixed, awaiting collection by the dairy 
company.

 2 The ELISA has a certain analytic sensitivity (the minimum number of molecules of antibody that must be pre-
sent in the test well for the assay to give a positive result). Since an infected herd is one in which there is at least 
one infected animal, the ELISA applied to the bulk tank milk must be able to detect antibodies from a single 
infected cow. The diagnostic sensitivity of this test is then the probability that it will give a positive result when 
milk from a single infected cow is mixed with milk from all the other (uninfected) cows in the milking herd. 
The concentration of antibodies in the bulk milk, and thus the capacity of the test to detect them, will therefore 
depend on the number of cows in the milking herd, decreasing with increasing numbers of cows.
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In the context of exotic3 pests and diseases, all surveillance processes and all test-
ing procedures must include any necessary follow- up testing to resolve positive test 
results into true positive outcomes and negative outcomes. The surveillance process 
or testing procedure may then be said to have perfect specificity. We will assume 
henceforth that all surveillance processes providing evidence for freedom from pests 
or diseases have perfect specificity.

17.1.5 The Surveillance System as a Diagnostic Test Applied to the Population

In the preceding section we saw that the herd test for EBL might be a single bulk 
milk ELISA (with appropriate follow- up) or the summary outcome of 100 individ-
ual cow blood tests. In the same way, a surveillance component may be seen as a sin-
gle test for the presence or absence of disease that is applied to a whole population.

Continuing with the example in Box 17.1, suppose the dairy products to be 
exported are derived from milk drawn from many herds in the population. In this 
case, the importing country needs evidence that the entire dairy population of 
the exporting country is free from EBL. To support this claim, a test is applied 
to the reference population of dairy herds. This test, which might be carried out 
every six months, consists of testing each dairy herd in the country using the bulk 
milk ELISA. This population- level test has a certain sensitivity (the probability 
that a positive test outcome will be obtained when the population of dairy herds 
is infected), and like all population- level tests in disease- free contexts (see Section 
17.1.4) it will have perfect specificity. The sensitivity of the population- level test 
may be calculated from the sensitivities of the individual herd bulk milk tests and 
the proportion of herds that would be infected were the population infected (the 
design prevalence; see Section 17.1.7). Like any diagnostic test applied to an indi-
vidual unit of the population, the performance of the test applied to the group 
(herd), or in this case to the whole population, may be described in practice using 
various test attributes, of which sensitivity, specificity and negative predictive value 
(NPV) are of use to us here.

17.1.6 Confidence in Freedom, and Some Notation

The NPV of a diagnostic test applied to an individual is the probability that the 
individual is truly uninfected given that the test gave a negative result. In notation 
used throughout this chapter, this is Pr(D– |T– ). For the herd test for EBL, the same 
principle applies, as it does also for the SSC (a test applied to the population). In the 
latter case, the NPV is the probability that the population is truly uninfected (free 
of EBL; D– ) given that the six- monthly testing of all herds had a negative outcome; 
Pr(D– |S– ), where S–  indicates a negative surveillance outcome. Note that, in the 
case of group (herd) tests or population- level tests (SSCs), it is necessary to qualify 
the definition of the NPV by including the design prevalence, which is effectively 

 3 Exotic: not present in the population.
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the (hypothetical) level of infection in the herd or population that constitutes the 
cut- off  between infected and uninfected.

The NPV is equivalent to the level of confidence we have concerning the pest- free 
or disease- free status of the population, given currently available surveillance find-
ings. The term confidence in freedom is often used to convey this concept. The word 
confidence is also used in other contexts to mean different things (e.g. in hypoth-
esis testing, for 1 –  Pr(type I error), or when evaluating an SSC, the sensitivity of 
the SSC is referred to as the confidence of detecting the pest or disease). It is thus 
important to use the word with care, and in this chapter we use it only to denote 
confidence in freedom, or the probability that the population is free from the pest 
or disease at the design prevalence.

NPV is predicated on a negative test outcome and clearly the same is true for 
any statement about confidence in freedom from the pest or disease. If  any positive 
surveillance outcomes are obtained, the unit, group or population cannot be con-
sidered free of the pest or disease, whatever the design prevalence may be.

17.1.7 Design Prevalence

The sensitivity of any SSC or surveillance system is the probability that it will detect 
the pest or disease if  it is present. Clearly, it cannot be detected if  it is absent. To 
estimate sensitivity, we therefore need to assume that the pest or disease is (hypo-
thetically) present. For an SSC applied to a population this means we must specify 
the amount or frequency of the pest or disease that marks the artificial boundary 
between its presence and its absence. This boundary is necessarily artificial, and is 
used simply as the standard at which SSC sensitivity is estimated.

Some might like to specify the presence of a single ‘element’ of the pest or disease 
agent (e.g. a virus, a bacterium, an insect egg, a bird, or a fungal spore) as mark-
ing its presence in the population. In most circumstances, the probability that this 
single element will be detected will be extremely low, whatever the nature of the 
SSC. However, given a reasonably sensitive test, we are highly likely to detect the 
pest or disease when it is present in most population units, but the value of being 
able to do so is questionable because the principles of surveillance suggest that the 
information generated (in this case, the presence of the pest or disease) should be 
acted upon, and in most situations early detection will be important. It is therefore 
sensible to select an amount of pest or disease that defines its presence in the popu-
lation that is

• Reasonably detectable
• Low enough not to cause unacceptable impacts on human health, the environ-

ment or other values
• Low enough that action could be taken to eliminate or control the pest or disease 

if  it were detected
• Acceptable to trading partners (or others with an interest in the outcome) as a 

level defining presence or absence.
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The level selected is known as the design prevalence (denoted by P*) and is generally 
expressed as the proportion of population units in which the pest or disease is pre-
sent. The design prevalence is the minimum amount of the pest or disease that will 
be present if  it is present at all. In the case of rapidly spreading disease, this may 
well be a substantial proportion of units (say 25%), but with a slowly spreading pest 
or disease it will probably be a smaller proportion.

Often, and particularly within small groups, the within- group design prevalence 
may be specified as one infested/ infected unit in the group because the group cannot 
be infested/ infected if  no individual units are infested/ infected. The herd of dairy 
cows tested for EBL (see the example in Box 17.1) is considered infected with EBL 
if  one or more cows is infected, and the within- herd design prevalence is therefore 
the inverse of the number of cows in the herd. Another example is that of surveil-
lance for bovine tuberculosis in farmed deer (see More et al., 2009).

For the SSC testing herds using the bulk milk ELISA, the design prevalence will 
probably be expressed as a proportion of dairy herds that are infected with EBL, for 
 example 0.002, which is the design prevalence prescribed by the World Organisation 
for Animal Health (2012) for EBL. As another example, serological surveillance 
of poultry for notifiable avian influenza in the European Union is designed and 
assessed using two levels of design prevalence: an among- flock design prevalence 
[the (hypothetical) proportion of all poultry flocks that is infected] of 0.05, and a 
within- flock design prevalence (the proportion of birds that is infected within an 
infected flock) of 0.3 (European Commission, 2007).

In quantifying the probability of having achieved eradication of tuberculosis- 
infected possums from an area, Anderson et al. (2013) superimposed a grid over 
the area, and the surveillance unit was one grid cell. The design prevalence in their 
analysis was then the proportion (0.0004) of grid cells containing infected possums 
if  the area were infected.

Design prevalence, is an integral part of all quantitative estimates concerning 
probability of detection or confidence in freedom. Thus, the sensitivity of an SSC 
is its sensitivity at a specified design prevalence. When this sensitivity is then used 
to estimate confidence in freedom, the estimate is the confidence in the population 
being free of the pest or disease at the design prevalence. Thus confidence in disease 
freedom must be conditioned on an underlying design prevalence.

17.1.8 Clustering of Infection

In animal diseases, and sometimes in other applications, infectious disease clusters. 
Typically, there is clustering at the level of the management group, and for domes-
tic livestock this is very often the farm. Once introduced to a farm, a disease can 
spread among animals that are kept in close contact. The disease may not spread 
so readily to animals on other farms if  there is little contact between them. Even 
in an area containing many neighbouring farms with the same species of livestock, 
some farms will be infected and others will stay uninfected. This is due to vary-
ing degrees of contact between pairs of farms, in particular movement of animals 
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between farms, as experienced in the foot and mouth disease epidemic in the United 
Kingdom in 2001 (Ortiz- Pelaez et al., 2006).

Where clustering is likely to occur, the probability that an individual animal (or 
other surveillance unit) is infected is not the same across all population units; an 
animal in an infected herd has a different probability of being infected from an ani-
mal in an uninfected herd. When estimating SSC sensitivity in these circumstances, 
it is necessary to specify two design prevalences, one at the farm level (PH

* ) and one 
at the animal level (PU

*). In the EBL example in Box 17.1, if  the individual cow is 
the surveillance unit, there is a need for an among- cow, within- herd, design preva-
lence, and in estimating population- level SSC sensitivity there is also a need for an 
among- herd design prevalence (the proportion of herds in the population that are 
infected). PU

* is the design prevalence within an infected herd. The prevalence in an 
uninfected group (herd) is zero.

It is possible to specify numerous design prevalences, each applying to a group-
ing level in the population. In practice, one or two are generally used. Note that the 
overall proportion of the population which is notionally infected is the product of 
the design prevalences, PH

*  × PU
*.

Box 17.2 Red Imported Fire Ants

Red imported fire ants (RIFAs; Solenopsis invicta) are difficult to live with and 
difficult to control. Under suitable conditions, RIFAs form extensive super 
colonies that have multiple queens, that spread rapidly. They are omnivorous 
opportunistic feeders that prey on invertebrates, vertebrates and plants. RIFAs 
destroy seeds, harvest honeydew from specialised invertebrates and scavenge. 
Their foraging can affect whole ecosystems by reducing plant populations and 
through competition with native herbivores and insects for food. RIFAs have a 
fiery sting that is unusual in that blisters and pustules develop at the sites of the 
stings, which are generally numerous4.

RIFAs are assumed not to be present in country X, which receives many ship-
ments of imported goods, including many that could harbour soil and possibly 
RIFAs. If  RIFAs are to be eradicated, early detection is essential and an active 
surveillance programme is conducted around all ports and associated high- risk 
sites such as import depots. This programme consists of periodic visits to all 
high- risk sites by a team of trained inspectors who examine the sites for evidence 
of RIFAs and take samples of any suspicious- looking ants for identification by 
entomologists.

Other components of the surveillance programme include reporting of 
unusual or unwanted ants by the public and reports from medical practitioners 
of cases of blisters and pustules following ant bites.

 4 See Wikipedia (2013) and Collins and Scheffrahn (2001) for more information on the biology of RIFAs.
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17.2 Surveillance Systems, Components and Their Applicability

In this chapter, a surveillance system for a pest or disease refers to all of the surveil-
lance activities that might detect the pest or disease in question. The surveillance 
system comprises one or more surveillance system components and applies to a 
particular reference population.

17.2.1 Reference Population

The reference population is the population of surveillance units to which the sur-
veillance system is applied, for which surveillance data are available for each of the 
SSCs and about which inference will be made based on any analysis of the surveil-
lance findings (see Section 17.1.3).

17.2.2 Defining Infection or Infestation

When conducting surveillance for detection of  a pest or disease that is believed 
to be absent, a positive surveillance outcome must involve definitive identifica-
tion of  the pest or disease. Many SSCs may, however, aim primarily to detect 
something different; this is particularly true in animal health, where an immuno-
logical response to infection is often used as a proxy for actual infection. In the 
example in Box 17.1, the export heifers are tested for antibodies to the EBL 
virus. This is a valid proxy for detecting EBL virus because infected animals 
develop antibodies to the virus and also remain infected for life. However, many 
viral infections are transient (e.g. influenza and foot- and- mouth disease) and 
detection of  antibodies merely implies a past infection. In fact, in many viral 
infections, by the time an animal has developed a measurable level of  antibodies, 
it will no longer be infected. In both plants and animals, a disease syndrome may 
be pathognomonic for a single causative agent and an SSC may focus on detec-
tion of  this syndrome.

Clearly, these complications serve to emphasise that care should be taken in 
defining what constitutes a positive surveillance outcome, and as discussed in 
Section 17.1.4, all SSCs should include any necessary follow- up testing needed 
for resolving positive results from the initial screening test into true positives and 
negatives.

17.2.3 Random and Non- random Surveillance Components

SSCs may provide data on a representative sample of  the reference population, 
as in the case of  a structured, random, cross- sectional survey; or they may pro-
vide information that is either deliberately or accidentally non- representative 
of  the population. Factors that affect the probability that a pest or disease will 
be detected in the population (i.e. that surveillance will have a positive outcome) 
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are those that affect the probability of  infection or infestation as well as factors 
that affect the probability of  detection of  infected units. So to be truly represen-
tative of  the population (i.e. unbiased), a sample of  units must be representative 
of  the distribution of  these factors in the population, or at least be stratified by 
levels of  the key factors affecting probability of  infection and probability of 
detection.

SSCs often process units opportunistically, without regard to representativeness 
or to relevant factors affecting the probability of a positive outcome. An example 
of this is the SSC described in Box 17.1 in which heifers intended for export are 
tested for EBL antibodies. The heifers are not representative of the dairy popu-
lation of the country: among other things they are all female, they are from a few 
specific farms, they are all between 12 and 30 months old and none of them has had 
a calf  or lactated.

Many surveillance components are deliberately designed to process units that 
are more likely to give positive outcomes; if  you really want to find a pest or dis-
ease, look where you are most likely to find it if  it is present. This is risk- based 
surveillance, and a good example is the strategy of inspecting high- risk sites for red 
imported fire ants (RIFAs) described in Box 17.2. Negative findings in this SSC 
provide greater reassurance of the absence of RIFAs than if  the inspections were 
conducted at a random sample of sites across the country.

Whether deliberately or accidentally acquired, data from biased samples of 
population units generate valuable information. If  the units are high risk (i.e. they 
have an above- average chance of being infested or infected), negative outcomes 
give us more confidence in the population being free from disease than do negative 
outcomes from units with only an average chance of being infested or infected. 
Similarly, for low risk units, negative surveillance outcomes are less convincing 
(with regard to the population being free of the pest or disease) than those from 
units at average risk.

Similar reasoning applies to the probability that an infected unit will be detected. 
Negative results from infected units with a high chance of being detected provide 
better evidence for freedom than negative results from those with an average or low 
chance of being detected. In the case of EBL in the example in Box 17.1, infected 
animals generally develop clinical signs (tumours) later in life, if  at all. Noting that 
no young animals (e.g. the heifers being exported) have clinical disease is not at all 
convincing, and the same observation for cows more than over 10 years old would 
carry much more weight.

The differential surveillance benefits gained from units with different probabil-
ities of infection or detection, or both, are readily quantified in estimating the 
sensitivity of an SSC, provided the necessary information on the relevant factors 
affecting these probabilities is available to the analyst, for each unit processed, and 
(in summary form) for the whole of the reference population. The sensitivity of the 
overall surveillance system can readily be estimated by combining the sensitivities 
of random and non- random SSCs.
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17.2.4 Coverage of the Reference Population

Some SSCs process every population unit, and thus have comprehensive coverage 
of the population. Passive general surveillance forms an important component of 
many surveillance systems for exotic pests and diseases. This is the process whereby 
people who manage domestic animals or plants, or who live in the region under 
surveillance, report or seek diagnostic or other assistance with pest occurrences or 
clinical signs of disease. Each population unit has a chance of being infected and 
a chance of being detected. It is important to be clear whether an SSC has com-
prehensive or partial coverage of the population. In the EBL example (Box 17.1), 
milking cows, dry cows, bulls, calves, steers and heifers that are not exported have 
no chance of giving positive surveillance outcomes in the SSC that tests export heif-
ers for EBL, so this SSC does not have comprehensive coverage of the population 
of dairy cattle. It is important to be aware that where some units are systematically 
excluded from an SSC, it will sometimes not be possible to include those units in 
the reference population. In the example in Box 17.2, if  high risk site inspections 
are conducted in only one of several regions in the country, the results of this SSC 
may well not be applicable to the other regions.

17.3 Principles of Analysis

17.3.1 Confidence in Freedom

As discussed in Section 17.1.6, our level of confidence in a population’s pest- free 
or disease- free status (taking into account current surveillance evidence) is given by 

Box 17.3 Newcastle Disease in Poultry

Country C has commercial poultry industries involving chickens, ducks and 
turkeys. In addition, around 30% of  people keep backyard poultry. The coun-
try is believed to be free of  Newcastle disease, a viral infection that, in its 
virulent form, causes very high mortality in poultry. The virus may be trans-
mitted from bird to bird and via faeces and environmental contamination. 
Wild birds may spread the virus and non- virulent strains of  the virus can 
mutate to virulence. From all perspectives, authorities in country C are keen 
to maintain its disease- free status and want to detect infection as early as pos-
sible should it occur. To this end a surveillance programme is planned, and the 
efficacy and value of  the general diagnostic (passive surveillance) system is 
being estimated because it is thought likely that this should be the cornerstone 
of  surveillance to detect a disease with obvious clinical signs. Active, targeted 
surveillance can then be designed to supplement the general diagnostic system 
as necessary.
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the NPV of the surveillance system when we consider the surveillance system to be 
a diagnostic test applied to the population.

The NPV for a diagnostic test applied to an individual unit may be given by an 
application of Bayes’ theorem:

 NPV = − − =
− − × −

− − × − + − + ×
Pr( | )

Pr( | ) Pr( )
Pr( | ) Pr( ) Pr( | ) P

D T
T D D

T D D T D rr( )
,

D+
 (17.1)

This theorem states that the probability of the unit being uninfected, given a nega-
tive test result, is equal to the probability of getting a negative test result from an 
uninfected unit divided by the total probability of all possible ways of getting a 
negative test result.

This can be transcribed into the notation of sensitivity (Se = test sensitivity) and 
specificity (Sp = test specificity):

 NPV = − − =
× −

× − + − ×
Pr( | )

( )
( ) ( )

,D T
Sp p

Sp p Se p
1

1 1
 (17.2)

where p is our pre- test estimate of the probability that the unit was infected. This 
prior probability that the unit was infected is commonly estimated by the prevalence 
of infection in the population, or in the case of an exotic disease, by the design 
prevalence, P*. The NPV is then our revised, or posterior, estimate of the probabil-
ity that the unit is not infected, given a negative result to the test.

When we apply the same formulae to the surveillance system (sys-
tem sensitivity  =  SSe, system specificity  =  SSp, and prior probability of 
infection = PriorPInf), we get

 NPV = − − =
× −

× − + − ×
Pr( | )

( )
( ) ( )

D S
SSp PriorPInf

SSp PriorPInf SSe P
1

1 1 rriorPInf
. (17.3)

Now unlike the diagnostic test applied to the individual unit, our surveillance sys-
tem has perfect specificity (see Section 17.1.4), so this reduces to

 NPV D S
PriorPInf

SSe PriorPInf
= − − =

−
− ×

Pr( | ) .
1

1
 (17.4)

It is apparent from this equation that the two quantities required for estimating the 
probability that the population is free from disease (at the design prevalence) given 
a negative surveillance system outcome, are

1. An estimate of the prior (pre- surveillance) probability that the population was 
infected (at the design prevalence)

2. An estimate of the sensitivity of the surveillance system (at the design prevalence).

The prior probability of the population being infected (PriorPInf) might be esti-
mated in various ways:

• Expert opinion. An estimate based on one or more person’s expert knowledge of 
the pest or disease, its global distribution, its potential for establishment in the 
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region concerned, the probability of it having been introduced, the capacity of 
the country’s surveillance system to detect it if  present, past surveillance findings 
and any other relevant considerations.

• Agreement by interested parties. A figure that is acceptable to key stakeholders in 
the process.

• A conservative or ‘uninformed’ estimate (one not allowing any bias towards the 
disease being either present or absent). This implies that prior to the surveillance 
which has recently been conducted there was no information on which to base 
an estimate, and we had no idea whether the country was infected (at the design 
prevalence) or not. Such an estimate might be 0.5.

• Past surveillance findings. The estimate of PriorPInf for this year can be derived 
from the last year’s posterior estimate of confidence in freedom (i.e. last year’s 
NPV). This can be repeated sequentially over multiple periods (see Section 17.9).

The sensitivity of the surveillance system at the design prevalence is the only meas-
ure of the efficacy of our surveillance that is needed for estimating confidence in 
freedom. SSe is a measure of how hard we have looked for the pest or disease. If  
we have put a great deal of effort into finding the pest or disease or looked in all the 
most likely places, or both, then we can be confident that it is not present. On the 
other hand, if  we didn’t see the pest or disease simply because we didn’t look very 
hard, or because we looked in the least likely places, we won’t be very confident that 
it is absent. The rest of this chapter focuses on estimating SSe and the sensitivity of 
the contributing SSCs.

17.3.2 Group Sensitivity

This section describes calculation of sensitivity for a group, cluster or aggregation 
of similar units such as herd- level sensitivity in the EBL example (Box 17.1) when 
this is assessed from results of individual animal blood tests. Where there is no 
intermediate grouping of units, this approach applies equally to calculation of SSC 
sensitivity such as the RIFA SSCs described in Box 17.2 or the bulk milk testing 
SSC for EBL (Box 17.1).

The sensitivity of  any diagnostic test is the probability that it will give a positive 
result when applied to an infected individual. This assumes a dichotomous test 
outcome. The same assumption is made when considering tests applied to groups 
of  individuals. A single test applied to the group (e.g. the bulk milk ELISA for 
EBL antibodies in the dairy herd) has easily defined positive and negative results. 
The sensitivity of  the test varies with the optical density value used as the cut- off  
between positive and negative in the laboratory, and with the dilution of  milk 
from infected cows in the bulk tank. When the group test consists of  a series of 
individual tests applied to a sample of  the units comprising the group, a nega-
tive outcome for the group test occurs when all the individual tests have negative 
results. A positive group test outcome is when at least one of  the individual tests 
has a positive result.
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For an individual surveillance unit in an infected group to give a positive out-
come, it must be both infected and detected. If  the sensitivity of the diagnostic 
test(s) applied to the unit is SeU and the probability that it is infected is PU

*, then the 
probability that it will give a positive outcome is

 Pr(U+) = Pr(D+) Pr(T+|D+)=× ×P SeUU
* . (17.5)

This follows from the probability of a positive test result being conditional on the 
disease status of the unit; SeU is actually Pr(T+|D+), where D+ denotes an infected 
unit. Furthermore, because an SSC has perfect specificity, we can ignore the possi-
bility that uninfected units generate positive test results; these will not be demon-
strated to be true positives in the follow- up testing.

If  we assume that the group is homogeneous with regard to probabilities of 
infection and detection, and in a group- testing procedure we process n units in 
this infected group, then if  n is small relative to the group size N (n < 0.1N), it is 
reasonable to assume that each unit has the same probability of  giving a positive 
outcome. For each of  them, Pr(U+) = PU

* × SeU, and Pr(U– ) = 1 –  PU
* × SeU. 

For the group test, the probability that one or more of  the n tested units gives a 
positive test result is the complement of  the probability that all n give negative 
results:

 Grouptest sensitivity = = − − ×( )SeH P SeUU
n

1 1 *  (17.6)

or one minus the product of all processed units’ probabilities of having a negative 
outcome. The assumptions made here, if  valid, allow use of a binomial probability 
formula (Cameron & Baldock, 1998).

Non- homogeneous Groups
Where subgroupings of units can be identified as having different probabilities of 
being infected or detected, group sensitivity can be calculated separately for each 
subgroup using Eq. 17.6. Each subgroup to which Eq. 17.6 is applied should be 
homogeneous with regard to probability of infection and probability of detection.

If  group- level sensitivity is to be calculated for non- homogeneous groups whose 
constituent units are independent of each other (i.e. their probabilities of infection 
or detection are not dependent on the infection or detection status of other units 
in the group), the probability that one or more members of the group will give a 
positive outcome is

 Grouptest sensitivity = = − − ×( )
=

∏SeH EPIU SeUj j
j

n

1 1
1

 (17.7)

where EPIUj is the effective probability of infection for the jth unit among the n 
units processed (see Section 17.5), and SeUj is the sensitivity of the detection pro-
cess applied to it.

In the EBL example (Box 17.1), suppose a sample of h out of a total of H dairy 
herds in the country is tested for EBL using an ELISA on individual cow blood 
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samples, with a varying number of animals tested in each of the h herds. For each 
herd tested, the sensitivity of the herd test is

 SeH P SeUi U
ni= − − ×( )1 1 * , (17.8)

where the subscript i denotes the individual herd and ni is the number of animals 
tested in the ith herd.

Hypergeometric Probability Formula; Small Groups
In many surveillance activities, however, the number of units processed may well be 
more than 10% of the group (or population) size. In these cases, a hypergeometric 
probability formula should be used instead of the binomial, and a simple formula 
for SeH approximating the hypergeometric probability is

 SeH
n
N

AveSeU
N PU

= − − ×





×

1 1
*

, (17.9)

where AveSeU is the average unit sensitivity for those processed in the group 
(Cameron & Baldock, 1998; MacDiarmid, 1988). In this formula, N × PU

* is the 
number of infected units in the group. In general, it is appropriate to round this 
quantity to a whole number, since a fraction of a unit makes little sense –  each unit 
is either infected or not infected. When estimating surveillance sensitivity and confi-
dence in freedom, rounding down is generally a good idea, since it will lead to more 
conservative sensitivity estimates.

If  the probability that units are infected also varies among the units processed 
in this group (see Section 17.5), the same hypergeometric probability formula 
can be used with the average probability of  infection (AveEPIU) for the units 
processed:

 SeH
n
N

AveSeU
N AveEPIU

= − − ×





×

1 1 . (17.10)

Exact Probability Formula; All Units Tested
Where all the units in the group are processed (n = N), an exact probability for-
mula should be used. In this case, given the design prevalence, we know how many 
infected units have been processed if  the group is infected: N × PU

*. The probability 
that one or more of them will give a positive outcome is one minus the probability 
that they will all give negative outcomes. Because we have perfect specificity, the 
uninfected units cannot give positive outcomes. The probability that an infected 
unit will give a positive outcome is SeU (or AveSeU if  SeU varies among units) and 
the group level sensitivity is

 SeH AveSeU
N PU= − −( ) ×

1 1
*

, (17.11)

which is a straightforward derivation from Eq. 17.9.
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In the EBL example, where a within- herd design prevalence is the inverse of the 
herd size (i.e. one animal infected), this simplifies further to

 SeH SeU SeU= − −( ) =1 1
1

. (17.12)

17.3.3 Among- Group Sensitivity

Having calculated the sensitivity for each group of units processed, the same logic 
and principles apply to calculating the sensitivity of the SSC in which units are 
organised in groups for the analysis:  the among- group sensitivity. In the EBL 
example, where herd sensitivity was calculated based on the individual animals on 
which blood tests were performed, the next step is to calculate the SSC sensitivity 
based on the individual herds that have been tested. This two- stage process deals 
appropriately with the clustering of infection within herds. In theory, this can be 
repeated at multiple levels (where there are multiple grouping levels, each with a 
design prevalence specified). In most cases, two levels are sufficient (e.g. Christensen 
et al., 2011; Hadorn & Stärk, 2008; Martin, 2008; Frössling et al., 2009).

In among- group estimation of SSC sensitivity (CSe) we can use binomial, 
hypergeometric or exact probability formulae as dictated by circumstances (see 
Table 17.1).

17.4 Visualising Surveillance Processes Using Scenario Trees

A scenario tree is a logical branching structure that depicts how a surveillance unit 
processed in an SSC gives a positive outcome in the SSC. A scenario tree can sum-
marise the structure of an SSC to show how the SSC relates to the reference popu-
lation and the entire population of the country, what is done in the SSC, what is 
done to individual units and any groups to which they belong, and how the SSC 
can give a positive outcome. The scenario tree can be useful for some calculations, 
and is valuable in showing exactly what information is needed to estimate the sen-
sitivity of the SSC.

The scenario tree representing an SSC should include all the factors affecting the 
probability that a unit is infected, and all factors affecting the probability that it 
will be detected. In estimation of the sensitivity of the SSC, its principal uses are to

• Define the structure of the SSC
• Represent the SSC visually
• Identify inputs required for estimation of SSC sensitivity
• Calculate average sensitivity for a processed unit –  useful where unit- specific data 

are not available on factors affecting probabilities of infection or detection.

In the context of  modelling surveillance components, a scenario tree is a model of 
all possible ways that a surveillance unit can give a positive outcome in the SSC. 
The starting point is the reference population being infected or infested with the 
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disease or pest at the design prevalence. A branching structure breaks this popu-
lation down into its component subpopulations and units, separating these into 
infected and uninfected, and then detected and undetected subsets. This process 
is illustrated in Figures 17.1a, 17.1b, 17.2 and 17.3. The scenario tree consists of 
a series of  nodes, each of  which marks a branching point and represents a factor 
affecting the probability that a surveillance unit will give a positive outcome. The 
perfect specificity of  SSCs for exotic pests and diseases allows considerable sim-
plification of  model structure. Uninfected units cannot yield positive surveillance 
outcomes and redundant limbs can therefore be truncated.

Table 17.1. Formulae for calculation of among- group or SSC sensitivity in different circumstances

Circumstances Formula Within- group 
equivalent

Where all groups processed have 
equal probabilities of infection 
and detection AND are 
independent of each other  
(h < 0.1H)

 CSe P SeHH
h= − − ×( )1 1 *         (17.13) Eq. 17.6

Where groups have differing 
probabilities of infection, 
differing sensitivities, AND are 
independent of each other  
(h < 0.1H)

CSe EPIH SeHi i
i

H

= − − ×( )
=

∏1 1
1

       (17.14)
Eq. 17.7

Where groups have equal or 
varying sensitivities, equal 
probabilities of infection, AND 
h > 0.1H

CSe
h
H

AveSeH
H PH

= − − ×





×

1 1
*

     
(17.15)

Eq. 17.9

Where groups have varying 
sensitivities, differing 
probabilities of infection, AND 
h > 0.1H

CSe
h
H

AveSeH
H AveEPIH

= − − ×





×

1 1
   

(17.16)
Eq. 17.10

Where all groups in the population 
have been processed

CSe AveSeH
H PH= − −( ) ×

1 1
*         (17.17) Eq. 17.11

Where all groups in the population 
have been processed, and the 
design prevalence is based on one 
group being infected (PH

*  = 1/ H)

CSe = AveSeH              (17.18) Eq. 17.12

Key to new notation used in this table

Variable Meaning

AveSeH Average group sensitivity for the groups processed in the SSC

EPIH Effective Probability of Infection for a group (see Section 17.5)

AveEPIH Average EPIH for all groups processed in the SSC
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Figure 17.1a shows a scenario tree representing a model of the bulk milk testing 
SSC of the example in Box 17.1, while Figure 17.1b shows a tree for the testing of 
individual animals prior to export. In Figure 17.2, a scenario tree is shown for the 
example in Box 17.2 in which high- risk sites are inspected for RIFAs. Figure 17.3 
illustrates a scenario tree for the general surveillance component of Newcastle dis-
ease surveillance described in Box 17.3. These diagrams illustrate the three main 
node types used in scenario tree models of surveillance components. These are 
(using the nodes in Figure 17.2 as illustrations)

• Infection nodes (e.g. SITE STATUS) dividing units or groups into those that are 
infected and those that are uninfected

• Detection nodes (e.g. RIFAs DETECTED) dividing infected units into those that 
are detected and those that are not detected

• Category nodes (e.g. PATHWAY, HABITAT and DETECTION DIFFICULTY) dividing the 
population or group into subpopulations or subgroups, or categorising an indi-
vidual unit, according to the factor specified by the node.

Category nodes are generally of three kinds:

• Risk category nodes, or risk nodes, which divide the population into subpopula-
tions with different risks of being infected or infested. In Figure 17.2, the PATHWAY 
risk node divides the country into five different categories of sites with different 
probabilities of RIFAs being introduced. In this case these are artificial categories 
representing five qualitative levels of probability of introduction from very low 
(1) to very high (5). The HABITAT risk node further divides the population of sites 
into five categories representing different levels of habitat suitability for RIFA 
establishment from very low (1) to very high (5). In Figure 17.3, the MANAGEMENT 
node divides each of the turkey, chicken and duck populations into Backyard and 
Commercial flocks because Backyard flocks are thought to be at greater risk of 
infection than Commercial flocks.

• Grouping category nodes, or grouping nodes, which divide the population into 
subpopulations based on administrative categories. They do not per se have 
different probabilities of infection or detection, but represent subpopulations 
within which the data for the SSC are grouped, or by which the results need to 
be reported (e.g. REGION in Figures 17.1a and 17.1b and SPECIES in Figure 17.3).

• Detection category nodes, which divide the population into subgroups with 
different probabilities of being detected. The node DETECTION DIFFICULTY in 
Figure  17.2 splits inspection sites into five different categories based on their 
vegetation cover and topography. Again, these are contrived categories for which 
detection difficulty is estimated qualitatively from very difficult (1) to very easy (5).

All factors affecting probability of infection or probability of detection need to 
be included in any model of the SSC, since the goal is to calculate its sensitivity.

Each branch of each node has a probability (infection and detection nodes) or 
proportion (category nodes) associated with it. At any node, all possible outcomes 
are specified by its branches so that branch probabilities or proportions sum to 1 
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(a)

(b)

Figure 17.1. (a) Scenario tree for the Bulk Tank Testing SSC described in Box 17.1. All six regions 
have identical limb structure, but for clarity only region B is completed. (b) Scenario 
tree representing the SSC comprising individual animal blood testing prior to export, 
as described in Box 17.1. Only one limb is shown, but all truncated limbs have the same 
structure. Refer to part (a) for a key to the symbols and notation.
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at each node in the tree. Each branch probability or proportion is conditional on 
all preceding nodes in its limb of the tree. In the expanded limb of the Newcastle 
disease general surveillance SSC shown in Figure 17.3, the probability associated 
with the Yes branch of the CLINICAL SIGNS node is the probability of clinical signs 
occurring in an infected flock of commercial turkeys in country C. Branch prob-
abilities or proportions associated with a particular node will vary among occur-
rences of that node in the tree. This model is of those units that are processed in 
the SSC, and the category node branch proportions required for SSC sensitivity 
calculations are proportions of units actually processed.5 This structure allows for 

Figure 17.2. Scenario tree for the SSC Inspection of high- risk sites as described in Box 17.2. The 
complete structure is shown for only one instance of PATHWAY and HABITAT; they all have 
the same structure.

 5 As will be seen in the section on differential risk, proportions of the reference population must also be speci-
fied for branches of risk nodes. These proportions and the associated estimates of relative risk must be spe-
cified for all branches of a risk node; hence the inclusion of PATHWAY categories 1, 2, 3 and 4 in Figure 17.3.
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easy visualisation of all the probabilities and proportions that must be estimated to 
estimate SSC sensitivity.

17.4.1 Alternative Representations of SSCs for Computation of Sensitivity

Hood et al. (2009) presented two alternative formats for visualisation of SSCs and 
computation of component sensitivity. Matrix algebra may be used for calcula-
tion of average sensitivity (see Section 17.5), and Bayesian belief  networks may be 
used to visualise the surveillance process and compute the component sensitivity. 
Readers should refer to the paper by Hood et al. for further information; here we 
stick to the straightforward logic of the scenario tree formulation.

17.4.2 Calculating Average Sensitivity

The structure of the scenario tree allows calculation of the sensitivity for the aver-
age surveillance unit or group. The scenario tree is a model of all possible ways in 
which a randomly selected, processed unit can give a positive outcome in the SSC. 
The probability that this randomly selected unit will give a positive outcome given 

Figure 17.3. Scenario tree for the General Surveillance SSC described in Box 17.3.
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that the population is infected at the design prevalence(s) is then the sum of the 
limb probabilities for all limbs with positive outcomes. This is of use where hyper-
geometric or exact probability formulae are to be used in calculating CSe, or where 
relevant attributes (e.g. SPECIES and MANAGEMENT in Figure 17.3) of individual pro-
cessed units are not known. In these situations, an average probability is required, 
either because of the computational requirements of the formula approximating 
the hypergeometric probability (Eqs. 17.9, 17.10, 17.11, 17.12, 17.15, 17.16, 17.17 
and 17.18) or because in the absence of unit- specific data on relevant factors, the 
best we can do is to use an average figure for all units processed. However, we hope 
we have data for all or most of the units processed.

The average probability of a positive outcome can be calculated at any level of 
the tree; common examples are as follows. Averages for processed units (as opposed 
to all units in the reference population) are calculated using the relevant propor-
tions of units processed (notated PrSSC_ xxx) where these data are available, rather 
than population proportions.

a. Average probability that a processed unit will have a positive outcome given that 
the population is infected at the design prevalence(s).

In the tree in Figure 17.3, this is obtained for the illustrated limb with a posi-
tive outcome by multiplying together all branch proportions and probabilities on 
the limb:

Pr(U+ for Commercial Turkey flocks) =PrSSC_ Turkey ×PrSSC_ 
Commercial|Turkey ×EPI_ Commercial|Turkey ×Pr(Clinical signs|Infected 
Commercial Turkey flock) ×Pr(Farmer calls vet|Clinical signs in Infected 
Commercial Turkey flock) ×Pr(Samples to lab|Vet called; Clinical signs;  
Infected Commercial Turkey flock) ×Pr(Virus isolated|Samples; Vet;  
Clinical signs; Infected Commercial Turkey flock) (17.19)

where PrSSC_ Turkey is the proportion of flocks processed that are Turkey flocks; 
PrSSC_ Commercial|Turkey is the proportion of Turkey flocks processed that are 
Commercial, and EPI_  Commercial|Turkey is the effective probability of infection 
for Commercial Turkey flocks (see Section 17.5). Positive- outcome limb probabil-
ities are calculated similarly for Backyard Turkey flocks, Commercial Chicken flocks, 
and so on. Then the average probability of a unit (flock) having a positive outcome 
is the sum of all these positive outcome limb probabilities.

Note that in this example, the SSC has comprehensive coverage of the popula-
tion, so the proportions processed are the same as the population proportions.

b. The average sensitivity for a unit within an infected group is the average prob-
ability that an infected processed unit will have a positive outcome given that the 
group is infected.

In the tree in Figure  17.2, the average site sensitivity might be needed if  the 
DETECTION DIFFICULTY of some individual sites has not been recorded. It may be 
calculated as
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 AveSiteSe PrSSCp h d p h d p h
d

, , , , ,Pr( ) ,= ×( )
=

∑ RIFA detected
1

5

 (17.20)

where AveSiteSep,h is the average site sensitivity for processed sites of PATHWAY cat-
egory p and HABITAT category h, PrSSCd,p,h is the proportion of units processed that 
are DETECTION DIFFICULTY d in PATHWAY category p and HABITAT category h, and 
Pr(RIFA detected)d,p,h is the sensitivity of the inspection for a site of DETECTION 

DIFFICULTY d in PATHWAY category p and HABITAT category h. Then the inspected 
sites in HABITAT h and PATHWAY p for which no detection difficulty was recorded can 
be allocated a site sensitivity of AveSiteSep,h. (For sites with a complete inspection 
record, the site sensitivity is simply Pr(RIFA detected)d,p,h.)

17.5 Differential Risk of Infection

Although the population is deemed to be infected at the design prevalence (for 
the purposes of  estimation of  SSC sensitivity) this does not mean that infection 
is necessarily uniformly distributed across the population. Surveillance units 
exposed to risk factors for infection are more likely to be infected than those 
that are not, and infection may cluster in groups. The latter scenario (clustering) 
is effectively accommodated by specifying separate among- cluster and within- 
cluster design prevalences, and the use of  two- stage (or multistage) calculation 
of  SSC sensitivity as laid out in Sections 17.3.2 and 17.3.3. The former scenario 
(differential risk arising from differential exposure to risk factors) is the subject 
of  this section.

Where an SSC processes units based on convenience or any other non- random 
selection process, the processed units cannot be assumed to be representative of the 
reference population. Within the population, there may be subpopulations of units 
with different probabilities of being infected, given that the population is infected at 
the design prevalence. In the RIFA site inspection SSC (Box 17.2; Figure 17.2) the 
presence of RIFAs depends on the ants having been introduced to the site and the 
suitability of the habitat at the site. It is more likely that RIFAs will be present at a 
site to which imported goods are taken regularly than at a randomly selected site, 
to which it is unlikely that imported goods would ever be taken directly from the 
port. Site inspections are therefore aimed at the high risk sites. There is greater sur-
veillance benefit from inspecting high risk sites and surveillance benefit is measured 
in terms of SSC sensitivity.

Differential risk is most readily quantified using the concept of relative risk (RR), 
which is the risk (or probability6) of infection in one group relative to the risk of 
infection in another. The reference, or lowest, risk group is generally assigned a RR 
of 1. A higher risk group might have a RR of 5, implying that units in this group are 
five times as likely to be infected as those in the reference group. In the Newcastle 

 6 Here and throughout this chapter, risk refers to likelihood (probability) only.
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disease general surveillance SSC (Box 17.3; Figure 17.3), we might estimate that 
Backyard flocks are five times as likely to be infected as Commercial flocks, given 
that the population is infected at the design prevalence P*.

Without any information on differential risk associated with MANAGEMENT, P* is the 
best estimate of the probability that a flock is infected. By specifying RRs for the sub-
populations Backyard and Commercial, we are effectively assigning different infection 
probabilities to flocks in these two risk groups. When estimating SSC sensitivity and 
confidence in freedom, we do so for the specified design prevalence P*, so it is import-
ant that the average prevalence across the population should be P*. The effective prob-
abilities of infection (EPIs) that result from application of the RRs in our calculations 
must therefore average P* over the reference population. This is achieved by applying 
adjusted relative risks (ARs) such that the ARs retain the relativity of the RRs and they 
average 1 over the reference population. Then

 EPI Backyard AR Backyard P_ _ *= ×  (17.21)

such that

 
AR Backyard

AR Commercial

RR Backyard

RR Commercial

_
_

_
_

=  (17.22)

and

 (AR_ Backyard × PrP_ Backyard) + (AR_ Commercial × PrP_ Commercial) = 1,
 (17.23)

where PrP_ Backyard and PrP_ Commercial are the proportions of flocks in the refer-
ence population that are Backyard and Commercial respectively; in the expanded limb 
of Figure 17.3 this will be the proportion of Turkey flocks in the reference population 
that are Backyard. Simplifying and generalising the two conditions above

 AR
RR

RR PrP
k

k

k k
k

K=
×( )

=
∑

1

, (17.24)

where ARk, RRk and PrPk are the AR, RR and population proportion for risk group 
k of K risk groups.

In calculating group and among- group sensitivities, the calculated EPI is then 
used as the probability that a unit (or group) is infected. In so doing, EPIs are 
applied to all the units processed in the SSC, and where the proportions of units 
processed are different from the population proportions used in equation 17.24, the 
calculated sensitivity will be different from that obtained when the units are pro-
portionally representative of the reference population. Sensitivity will be higher if  
a relatively high proportion of high risk units is processed and lower if  a relatively 
high proportion of low risk units is processed.
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Clearly, it is not reasonable to specify relative risks that are inconsistent with the 
design prevalence and population proportions. Analysts should be careful not to 
apply logically impossible RRs to P*, or the EPI may exceed one.7

17.5.1 Multiple Risk Factors

Where there are multiple risk factors for infection, represented by multiple sequen-
tial risk nodes in a scenario tree model, effective probabilities of infection can be 
estimated by calculating ARs for each contributing category of each applicable risk 
factor, and then combining them multiplicatively with the design prevalence.

For example, in Figure  17.2 the PATHWAY and HABITAT risk nodes both apply 
to the probability of infestation for an inspection site. RRs are specified for each 
branch of the PATHWAY node relative to the lowest risk branch and also for each 
branch of the HABITAT node relative to its lowest risk branch. ARs are calculated 
(separately) for both of these nodes, using the appropriate population proportions. 
For the expanded limb of the scenario tree shown in Figure 17.2, the EPI for a site 
in PATHWAY category 5 (P5) and HABITAT category 1(H1) is then

 EPI_ P5_ H1 = AR_ P5 × AR_ P5_ H1 × P*, (17.25)

where AR_ P5 is the AR for sites in P5 (relative to other PATHWAY categories), and 
AR_ P5_ H1 is the AR for sites in H1 (relative to the other HABITAT categories) 
within Pathway category 5.

This may be followed for more than two risk nodes. In all cases, it is import-
ant that the appropriate population proportions should be used to adjust the RRs. 
Where only a single risk factor is present, this is generally straightforward, although 
the issues raised in this section should still be considered. Where there are multiple 
risk nodes, or one risk node and one or more grouping category node, the following 
considerations apply.

Using the terminology of scenario trees, the population proportion applicable 
to a branch of a category node is conditional (dependent) on all preceding node 
branches in the limb on which the node occurs. In the expanded limb shown in 
Figure 17.2, the proportion of inspection sites in HABITAT category 1 is the pro-
portion of P5 sites that are H1. The same is true for the relative risk; RR_ H1 may, 
theoretically, vary among branches of the PATHWAY node.

ARs calculated in this way will be specific to the PATHWAY category for which they 
are calculated, and this is appropriate when the HABITAT category is not independ-
ent of the PATHWAY category. However, if  HABITAT is independent of PATHWAY, ARs 
should be calculated using overall population proportions (i.e. independent of the 

 7 For example, if the within- group design prevalence is high (as is often appropriate for highly contagious 
diseases –  say 30%) and the proportion of high risk units in the group is low, the maximum possible rela-
tive risk is the reciprocal of the design prevalence (3.33 in this case), so estimates of the RR should be 
constrained accordingly.
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PATHWAY category; the same values for each occurrence of the HABITAT node). This 
is true whether PATHWAY is a risk node or simply a grouping category node.

In general, where a risk factor is independent of higher level category nodes, 
population proportions used for adjusting the RRs at the risk node should be 
summed across all branches of those higher nodes. Where a risk factor is not inde-
pendent of a higher level risk or grouping node, its RRs should be adjusted based 
on population proportions within the branches of the higher level node(s). Where 
multiple risk nodes are independent of each other, they may be combined into a 
single multibranch risk node with branch proportions calculated assuming inde-
pendence of the individual contributing risk factors (i.e. by multiplication), and 
these branch proportions should be used to adjust the RRs of each branch (which 
are also calculated multiplicatively).

17.6 Differential Detection Probability

In estimating the sensitivity of an SSC that gives a series of negative outcomes 
when surveillance units are processed, we need to know the probability that each 
of those units would give a positive outcome if  infected. This is the SeUj of  Eq. 
17.7. This may be constant among units, for example the sensitivity of the blood 
ELISA on an individual infected heifer in the EBL example (Box 17.1), or it may 
vary among units. In the RIFA example in Box 17.2, as illustrated in Figure 17.2, 
inspection sites are categorised according to their level of DETECTION DIFFICULTY. 
For each of the five categories of site, there is a different probability of detecting 
RIFAs if  they are present (SeU), and within a category, all sites have the same SeU.

It is also possible that each site has a unique value for SeU. Continuing with the 
RIFA example, the probability of detecting RIFAs (when a nest is present) at a site 
may be calculated as a function of several variables:

• Detection difficulty (1, 2, 3, 4 or 5) –  a measure of the density and type of vege-
tation and the topography of the site

• Area of the site
• Number of inspectors and experience or skill of inspectors
• Time spent inspecting.

Similarly, in the bulk milk testing SSC described in Box 17.1, the sensitivity of the 
test applied to the bulk tank milk varies with the number of cows contributing milk 
to the tank and the amount of milk they each contribute, since an infected herd 
contains at least one infected cow(s), and the milk from the infected cow or cows is 
diluted by the milk from the rest of the herd.

In these cases, if unit- specific data are not available for calculation of SeU, an aver-
age SeU will have to be used. Although this may give a mean group sensitivity esti-
mate close to that obtained by calculating unit- specific SeUs, variability associated 
with diverse unit properties will not have been incorporated and the group sensitivity 
estimate will be inaccurate if its individual units are not typical of the population.
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17.7 Combining SSCs

Sensitivities of individual SSCs comprising the surveillance system for the pest or 
disease in question may be combined into a surveillance system sensitivity (SSe) as 
follows:

 SSe CSel
l

L

= − −( )
=

∏1 1
1

 (17.26)

This is valid if  the L contributing SSCs are independent of each other, with no pro-
cessing of the same units (or the same groups) in multiple SSCs.

17.7.1 Overlap and Non- independence of SSCs

Within a surveillance system for detection of a particular pest or disease, SSCs 
may not be independent of each other if  some units or groups of units have been 
processed in both. Even where there is no clustering of the pest or disease in groups 
of units, if  some of the same units have been processed in both SSCs using tests 
that are related (i.e. tests for the same manifestation of infection), they cannot be 
considered independent, and Eq. 17.26 cannot be used without first making some 
adjustments for this lack of independence as follows.

Where overlap has occurred, the sensitivity of the detection process in the second 
SSC must be adjusted for the fact that a negative result has already been obtained 
in the first SSC. In the example in Box 17.1, suppose that a dairy herd that exports 
heifers has two sets of evidence for its freedom from EBL: blood tests done on 
the heifers prior to export (SSC1) and a herd test consisting of the same blood 
test applied to all non- milking animals in the herd (SSC2). If  both SSCs are con-
tributing current information, for example the testing was all carried out in the 
same surveillance period (see Section 17.9)], then any heifer tested twice can have 
only one test counted because the second test simply duplicates the first. Animals 
exported before the herd test was carried out can be added to the herd test results 
because they had only one test. If  different laboratory tests were used for the SSCs 
for animals that were tested twice, the sensitivity used for the second test should be 
its sensitivity when it is applied to animals that have already given a negative result 
in the first test. Once the adjusted sensitivity of the second SSC has been calculated 
(i.e. accounting for the overlap and non- independence of the diagnostic tests), Eq. 
17.26 may be used.

The same principles apply when considering non- independence of SSCs with one 
or more grouping levels. Continuing with the EBL example in Box 17.1, SSC1 and 
SSC2 are supplemented at the national level by bulk milk testing for antibodies to 
EBL (SSC3). Combination of the sensitivities of SSC1 and SSC2 was dealt with 
by combining them at the herd level and incorporating appropriate adjustments for 
overlap in duplication of testing. Each processed herd then has a herd- level sensitiv-
ity, SeH_ 12i, based on SSC1 and SSC2. SSC3 provides only herd- level information. 

018
22:24:36, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


Surveillance for Absence of Pests and Diseases378

378

Within the herd, it can be considered independent of SSC1 and SSC2 because it 
processes only milking cows, which have not been blood tested. At the national 
level, however, SSC3 is not independent of SSC1 and SSC2, because it provides 
additional information about the same herds.

One way of looking at this is that after getting negative results for a herd in SSC1 
and SSC2, we already have some evidence that the herd is free from EBL, and the 
additional evidence provided by a negative outcome in SSC3 will not raise our con-
fidence in its free status by as much as it would if  we had no information from SSC1 
or SSC2. In this case

 SeH 123 SeH 1 SeH 2 SeH 3i i i i_ _ _ _ ,= − −( ) × −( ) × −( )1 1 1 1  (17.27)

which is a within- herd application of Eq. 17.26. This assumes that the non- 
independence of test results within the herd has been accounted for in the calcu-
lation of SeH_ 1i, SeH_ 2i and SeH_ 3i (see also Cannon, 2002). This is the simplest 
way to deal with the overlap in herd coverage of SSCs. The sensitivity of the sur-
veillance system, SSe, is then calculated using one of Eqs. 17.14 to 17.18, as appro-
priate (see Table 17.1).

17.8 Comparison of SSCs

If  the efficacies of different SSCs, or combinations of SSCs, in a surveillance system 
are to be compared using their calculated sensitivities (CSes), it is important that 
the same risk node structure and design prevalence(s) are used in each. Comparison 
may then be made directly between the component sensitivities. Alternatively, the 
CSe of  an SSC may be compared to the CSe that would be obtained if  the same 
SSC were used with random or representative sampling of surveillance units from 
the reference population. This type of comparison illustrates the sensitivity benefits 
or costs of any non- random or risk- based sampling used in the SSC.

17.9 Use of Historical Surveillance Information

Past surveillance findings can be used as the basis for quantitative estimation of the 
prior probability that the population is infected at the design prevalence, thereby:

• Quantifying what we naturally do in our heads when making a subjective quali-
tative estimate

• Deriving the otherwise elusive prior probability of population freedom that is 
necessary for estimating the posterior (post- surveillance) probability that the 
population is free from the pest or disease

• Using otherwise- redundant historical surveillance findings in an appropriate way.

Here we explore how this is done. Suppose we have been conducting surveillance for 
an exotic pest or disease for two years and have not detected it. If  our surveillance 
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period is one year (as might be appropriate for the examples in Boxes 17.1 and 
17.2) we can divide the accumulated surveillance findings into two one- year data 
sets. In so doing, we assume that sequential observations on the same unit or same 
group of units are independent of each other when they occur in different periods. 
(When there is a constant threat of introduction and a surveillance period that 
defines the required frequency of reassessment of pest or disease status, this seems 
appropriate.)

For each of these two periods, we can calculate the surveillance system sensitiv-
ity, SSetp, where tp represents the year. Before conducting the surveillance we had 
no evidence one way or the other as to whether the disease was present, so we cal-
culate our confidence in freedom from the disease (at the design prevalence) after 
the first year’s surveillance (tp = 1) using a value of 0.5 for PriorPInf1 (see Section 
17.3.1) in Eq. 17.4:

 PostPFree
SSe1
1

1 1

1
1

=
−

− ×
PriorPInf1

PriorPInf1
. (17.28)

We now have a post- surveillance estimate of the probability that the population was 
infected at the end of year 1:

 PostPInf1 = 1 –  PostPFree1. (17.29)

SSe1 is bound to be greater than zero, so PostPInf1 will be less than PriorPInf1. 
As evidence for freedom accumulates, the probability that infection is present 
decreases.

17.9.1 Probability of Introduction

The only reasons why the probability of the disease being present might change 
between the end of year one and the end of year two are that the disease might be 
introduced during the year or the disease might be eradicated during the year.

There can be no ongoing eradication programme because the disease is believed 
to be absent, and it is reasonable to assume that spontaneous eradication does not 
occur. A new introduction of the disease is therefore the only means by which dis-
ease status of the population might be changed. All reference to disease status in 
this context necessarily includes at the design prevalence, so here we are saying that 
the only way the probability that the population is infected at the design prevalence 
can change from one year to the next (without inclusion of any new evidence for 
presence or absence) is through the possibility of the introduction of disease at the 
design prevalence. The concept of introduction at the design prevalence includes 
an increase in the prevalence of pre- existing disease to cross the design prevalence 
threshold. If  we assume that the probability of introduction of the disease is rea-
sonably constant from one period to the next, and that the likely rate of spread of 
the disease following introduction does not vary from one period to the next, then 
the probability of the prevalence becoming >P* during a period is equal to the 
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probability of introduction during a period.8 Using this convenient proxy for the 
probability of disease being introduced at the design prevalence, during period 2 
the probability that the population is infected at the design prevalence increases due 
to the constant threat of introduction. So when we come to estimate a level of con-
fidence in population freedom following the second period’s surveillance evidence, 
our prior probability of the population being infected is derived as

 Pr iorPInf PostPInf PIntro PostPInf PIntro2 1 2 1 2= + − ×( ) (17.30)

because it is possible that infection was present at >P* at the end of period 1, and 
that it was also introduced during period 2. (PIntrotp is the probability of infection 
being introduced (at P*) during time tp.)

This prior probability then feeds into period 2’s Bayesian revision of the prob-
ability that the population is infected at the design prevalence. Applying Eq. 17.4,

 PostPFree
SSe2
2

2 2

1
1

=
−

− ×
PriorPInf1

PriorPInf1
. (17.31)

This same process can be followed through sequential periods with negative sur-
veillance outcomes, steadily increasing or decreasing our confidence in freedom, 
depending on the balance between PIntro and SSe9 (see Figure 17.4). The equilib-
rium level of confidence obtainable (PFreeEquil; see Watkins et al., 2009) may be 
calculated for constant PIntrotp and constant SSetp:

 PFreeEquil
PIntro SSe

PIntro
tp tp

tp

=
−

−
1

1
. (17.32)

PIntrotp is generally estimated as part of an import risk analysis. For the process 
described here, quantitative estimates are required.

17.10 Dealing with Uncertainty

It is inevitable that most of the quantities needed for quantitative evaluation of sur-
veillance for detection of pests and diseases will not be known for certain. Either 
estimates need to be made from available data or, in the absence of relevant data, 
from expert opinion. These estimates may be represented in the calculations by 
their most likely values, but generally it will be preferable to incorporate the uncer-
tainty associated with the estimates into the calculations using stochastic modelling 
software. A comprehensive discussion of this process is given by Vose (2008).

 8 If these assumptions are not valid, alternative methods for estimating the probability of infection being 
introduced at the design prevalence, for each period, will need to be used. See, for example, Martin (2008).

 9 Confidence in freedom will decrease in period tp if the probability that disease will be introduced during 
that period outweighs the evidence for freedom derived from the surveillance evidence accumulated over 
the same period. Specifically, if PIntrotp is less than the product of SSetp and PriorPInftp, PostPFreetp will 
increase, and it will decrease if PIntrotp > (SSetp × PriorPInftp).
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17.11 Summary

This chapter presents methods for quantifying the sensitivity of a surveillance 
system for detection of a pest or disease believed to be absent from a country or 
region. The sensitivity of the surveillance system may then be used to provide quan-
titative estimates of confidence in the pest- free or disease- free status of the country 
or region, and this level of confidence may be revised following further surveillance 
conducted in sequential periods. This approach provides an objective quantitative 
basis for otherwise subjective qualitative assessments of confidence in freedom. 
Both random (representative) and non- random (biased or risk- based) sampling 
strategies in components of the surveillance system are equally amenable to this 
quantitative evaluation.

A significant component of most surveillance programmes for exotic pests and 
diseases is the general (passive) surveillance component. The value of this compo-
nent can be quantified and incorporated into quantitative estimates of confidence 
in freedom of the population or country from the pest or disease.

The approach described in this chapter may be applied to any evaluation of 
the efficacy of  surveillance for detection of  pests or diseases. It is typically used 
for assessing the efficacy of  surveillance in support of  claims to disease or pest 
freedom.

Figure 17.4. Probability of population freedom from infection (at the design prevalence), given ongoing 
negative surveillance findings (over 10 surveillance periods) from a system delivering a 
sensitivity in the range 0.4 to 0.6 and constant probability of introduction of infection of 
0.1 per period.
[After Martin, P. A. J., Cameron, A. R. & Greiner, M. (2007). Demonstrating freedom from 
disease using multiple complex data sources 1: A new methodology based on scenario trees. 
Preventive Veterinary Medicine, 79(2– 4), 71– 97, with permission.]
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Design and evaluation of surveillance for notifiable avian influenza in Canada 
(Christensen et al., 2011) and Europe (Alba et al., 2010; Welby et al., 2010) has 
been based on this approach, as has evaluation of surveillance for bovine tuber-
culosis in Europe (More et  al., 2009), Australia (Sergeant et  al., 2010), Sweden 
(Wahlström et al., 2010), Denmark (Carlo- Artavia et al., 2013) and New Zealand 
(Anderson et al., 2013). Other animal disease applications include brucellosis in the 
United Kingdom (Hesterberg et al., 2009), Switzerland and Bosnia (Hadorn et al., 
2008); porcine reproductive and respiratory syndrome in Sweden (Frössling et al., 
2009); classical swine fever (hog cholera) in Denmark (Martin et al., 2007b); bovine 
Johne’s disease in Sweden (Frössling et al., 2009) and Australia (Martin, 2008), and 
Trichinella in Denmark (Alban et al., 2008).

Applications to plant pests and diseases are less common, although surveillance 
in this field is equally amenable to quantitative evaluation and risk- based design 
(Hammond, 2010). Surveillance for unwanted vertebrate pest species may also be 
evaluated in this way, and Anderson et al. (2013) have used this approach to quan-
tification of confidence in freedom for assessment of possum eradication in control 
of bovine tuberculosis in New Zealand.

Watkins et  al. (2009) assessed acute flaccid paralysis surveillance for human 
poliomyelitis in Australia, but instances of freedom from disease in human medi-
cine are rare outside global eradication campaigns.

Quantification of the value of surveillance for pest and disease detection, in par-
ticular the valuation of differential risk, opens the door for wider use of risk- based 
(and therefore potentially more cost- effective) surveillance in support of freedom 
claims in international trade. It also makes possible the adoption of output- based 
standards for surveillance (More et  al., 2009), freeing surveillance planners and 
funders from prescriptive input- based requirements. Whittle et al. (2013) describe 
a quantitative, probabilistic approach for designing a cost- effective, risk- based, 
multiple- pest, output- driven surveillance system, when tackling conservation of the 
ecology of a small island in the face of new industrial activity.

Accumulation of surveillance evidence gathered over time into a current quanti-
tative estimate of confidence in freedom implies less reliance on annual testing for 
maintenance of an acceptable level of confidence. This has the potential to reduce 
costs and free resources for a broader surveillance programme.

17.12 Further Reading

Food and Agriculture Organization of the United Nations. (2014). Risk- based dis-
ease surveillance  –  a manual for veterinarians on the design and analysis of surveil-
lance for demonstration of freedom from disease. FAO Animal Production and Health 
Manual No. 17. Rome, Italy. Available from www.fao.org/ publications/ card/ en/ c/ 
1440fee4- be47- 4d38- 8571- 4dad3f3036d6/ 

Willeberg, P., Paisley, L. G. & Lind, P. (2011). Epidemiological models to support animal 
disease surveillance activities. Scientific and Technical Review of the OIE, 30(2), 603– 614.
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18 Some Questions to Ask Yourself
Rob Cannon

18.1 Introduction

Words with almost the same meaning have become entrenched in the different dis-
ciplines that deal with biosecurity. Using either pest or disease by itself  in a general 
context inevitably results in a suggestion that the other be added. We use infected 
for diseases and infested for pests. Prevalence, density and infestation rate are other 
examples of words with similar usage. There are even more options for describing 
the proportion of times a procedure will do what it is meant to do: sensitivity and 
specificity (serological tests), efficacy (treatments), effectiveness (inspection) and 
confidence (statistics). The action being done will depend on context, for example, 
testing, surveying or inspecting. When reading this chapter, please translate these 
types of words into a context you are familiar with.

18.2 How Much Surveillance Is Required to Demonstrate Freedom?

‘Why do we want to demonstrate freedom?’ is probably the first question to ask our-
selves. It might be to facilitate trade, it might be to allay public concern, or it might 
be because we have been told to do so. Whatever the reason, the answer to that 
question will be taken as known. This section discusses some of the key questions 
you need to ask yourself  about the broad design of such a surveillance programme.

18.2.1 Can Surveillance Demonstrate Freedom?

Sometimes we can use the biology of the pest to prove freedom of an area when no 
pests are found by a survey. The number of pests in a region will vary over time, 
but will generally increase. As discussed later, despite this variation and uncertainty, 
we may still be able to agree on a minimum pest density (MinDen) that would be 
present at the time of the survey if  the area being surveyed were infested. From our 
knowledge of the pest’s biology, we can say

1. If  the pest is present, its density will be greater than MinDen.

We would design our survey so that it is large enough to be able to say
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2. A survey that finds no pests implies that the pest density is less than MinDen.

If  we find no pests in the survey, we can conclude from statement (2) that the dens-
ity is less than MinDen, and then from statement (1), we can say that the pest can-
not be present. Of course, statement (2) should really be qualified by the phrase 
‘with a certain degree of confidence’. Our confidence that the pest is not present 
when we have a negative survey is equal to the probability that the pest would have 
been detected if  its density were MinDen.

This argument can’t be used in every situation; sometimes we cannot, or do not 
want to, specify a minimum density. If  we have no statement (1) to fall back on, we 
must specify a design prevalence and base our survey size on it. We can then simply 
say that, if  the pest had been present at a density greater than or equal to the design 
prevalence, we would have detected it with the required confidence.

18.2.2 Can the Pest Still Get in?

The standard (and completely correct) criticism about using surveys to demon-
strate freedom is that the pest might have only recently entered the region and its 
density would not have increased to a level that could be reliably detected by the 
survey. To demonstrate that a region is free from a pest, we must be able to dem-
onstrate that strong measures are (and were) being taken to reduce the chance of 
infestation or reinfestation. This might be achieved by inspection at the border of 
everything entering the region, by a host- free zone around the region or by appro-
priate surveillance of a buffer zone around the region.

18.2.3 What Is the Minimum Pest Density?

When designing a survey, we use the minimum pest density expected in an infested 
area to determine the survey size that will achieve the desired confidence of detect-
ing the pest. For some pests, infestation rates in similar regions overseas might pro-
vide useful information. In other cases, we may decide to model the increase in 
pest density over time because we may be doing surveys over a number of years. 
Ideally, the modelling would also include information that would help us determine 
the sensitivity of the inspection methods by modelling not just (say) the propor-
tion of trees infested in an orchard but also the proportion of an infested tree that 
is affected. The modelling would begin with a small pest population that had just 
been introduced or had survived eradication. The starting day would be the date 
quarantine measures were imposed, the date of a possible incursion or the date 
the last control treatments were applied after an eradication campaign. A simple 
answer to the minimum density question is not possible. While the pest’s biology is 
of prime importance, other factors such as weather, availability of hosts and meth-
ods of transmission might need to be considered. Chapters 5, 6 and 7 have more to 
say on this topic.
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18.2.4 What Level of Confidence Do We Need?

Before tackling this question, let’s remind ourselves what we mean by confidence 
in a statistical sense: it’s the probability that the conclusion drawn from our data is 
correct.

Although we wouldn’t need the concept of confidence limits in this chapter, given 
how often they are calculated, it seems worthwhile mentioning them. When we ana-
lyse data to determine a numerical characteristic (or parameter) of a population, for 
example the proportion of passengers who have failed to declare prohibited goods, 
we typically want two things: a point estimate (our best bet) and, to cover ourselves, 
an interval estimate (also called confidence limits) that gives a range of values for 
the parameter for which the observed results are not too unlikely. Because we can 
devise any number of algorithms for calculating interval estimates, we need a way 
to measure how well they perform. One way to do this is to ask: ‘What is the prob-
ability that the calculated interval would include the value of the parameter?’ This 
question is often expressed as: ‘What is the probability that the parameter is within 
the confidence intervals?’ Superficially, these two formulations of the question are 
the same. However, the emphasis has changed; the second suggests (wrongly) that it 
is the parameter that can vary –  it is the end points of the interval that vary depend-
ing on the observations.

The probability that the calculated interval will include the value of  the param-
eter is called the confidence level. In some cases (typically with continuous data), 
the confidence level is the same for all values of  the parameter. For other cases 
(typically with discrete data), the confidence level depends on the actual value of 
the parameter, and we can say things such as ‘the method gives at least 95% con-
fidence’ or ‘the probability our interval covers the true value averages out at 95% 
but is sometimes slightly better and sometimes slightly worse’. Box 18.1 shows 
this for binomial limits. We can view our algorithms as black boxes with numbers 
such as 95% or 99% stamped on the side. Which black box should we use?

For surveys to demonstrate freedom, the confidence provided by the survey is 
the probability that the survey would detect the disease or pest if  it were present 
(and strictly speaking, we should add ‘at the specified disease level’). The overall 
level of  confidence that we want a survey to achieve will depend on a number of 
factors. Comparing the cost of  sampling with the likely cost if  we wrongly con-
clude the area is free of  disease may be one consideration in setting the confidence 
level, especially if  the survey is for home consumption. Sometimes we do not have 
to ask this question: the confidence required of  the survey will be specified by some 
(international) agreement or by the people requiring the survey. If  we are relying 
solely on a survey to demonstrate freedom, a very high level of  confidence would 
be required at the overall level –  maybe 99% or higher. We may not want to use the 
same level of  confidence for every region; we might want a greater confidence that 
we would detect the pest in regions that have been at a greater risk of  an incur-
sion. Such a high level of  confidence might not be required if  the survey is just one 
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Box 18.1 Confidence Limits

This example shows how the level of confidence achieved by an interval estimate may not 
be the same for all possible values of the parameter. Three ways of determining 95% confi-
dence limits for the prevalence p of  a binomial distribution when we find x positive items in 
a sample of size n can be expressed in terms of the percentage points of the beta distribution 
(Betainv) as

(Normal): x/ n ± 1.96 √[x/ n (1 –  x/ n) / n]
(Clopper– Pearson): Betainv(0.025, x, n –  x + 1) to Betainv(0.975, x + 1, n –  x);

Lower limit 0 if  x = 0; upper limit 1 if x = n
(Jeffreys): Betainv(0.025, x + 0.5, n –  x + 0.5) to Betainv(0.975, x + 0.5, n –  x + 0.5)

Figure 18.B1 graphs the probability that the true value of the parameter would be included in 
the calculated confidence limits for n = 50. The shape is similar for other values of n. The graphs 
are a mirror image for values of p greater than 0.5.

The Clopper– Pearson confidence limits always provide greater than 95% confidence. 
The Jefferys confidence limits provide about 95% confidence on average, sometimes 
more, sometimes less. For small or large values of  p, all three methods behave poorly: the 
Clopper– Pearson give more confidence than required, and the other two methods give con-
siderably less confidence for some values of  p. The Normal approximation is generally less 
than 95% and averages about 90%.
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Figure 18.B1. Interval estimation: how the confidence depends on the parameter value. The figure 
shows the confidence obtained by three different methods to calculate interval estimates 
based on a sample of 50 observations from a binomial distribution.
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component of  a set of  evidence of  freedom; instead, we would be happy with the 
survey providing, say, 95% confidence of  detecting the pest if  it were present.

Unfortunately, survey design often revolves around just two questions:  ‘How 
much money do I have?’ and ‘How much does a sample cost?’ Dividing one by the 
other gives the size of the survey. If  this is the case, the important question to ask 
becomes ‘What level of confidence would this give me?’ This would probably be fol-
lowed by a request for more funds.

18.2.5 What Do We Do about False Negatives?

Unfortunately, our conclusion when examining a specimen (or doing a test) won’t 
be correct every time. An error occurs when we classify an infested plant as not 
infested –  a false negative. When demonstrating freedom, false negatives are more 
of an annoyance than a problem. We can compensate (and take more samples) by 
incorporating the test sensitivity into the calculations used to determine the required 
survey size.

In contrast, when inspecting consignments at the border, false negatives are 
a problem because there is no second chance –  once the consignment has been 
cleared, that’s it. Sometimes the problem can be resolved by using a better method 
of  inspection. However, this might not be a practical or optimal solution if  the 
better inspection costs more or, as a more likely restraint, takes longer. This 
question arises later when we ask how to optimise the effort expended on a test.

18.2.6 What Do We Do about False Alarms?

The opposite error, a false positive, incorrectly concludes the pest is present when 
it isn’t. This is a much greater problem in a survey aiming to show freedom. These 
false positives or false alarms might occur only occasionally for serological tests 
or might be quite frequent when lay people are reporting sightings of the pest. 
Further, when a specimen is in such a poor state that a definitive identification can-
not be made, an uncertain result can be just as bad as a positive result in some situ-
ations. We have to ask ourselves what we will do about false alarms and document 
the answers, preferably before starting the survey.

We want our survey method to be specific so that we will have a positive result 
only if  the specimen is actually the pest. The specificity of a test is the proportion 
of pest- free samples that return a negative test. The false- positive rate (one minus 
the specificity) is possibly a better and more familiar term in some contexts. The 
importance of false positives depends on why we are doing the test.

For border control purposes, unless too frequent, false positives are of  no great 
concern (except to the owners of  the inspected items) and are a cost to be borne. 
Indeed, in many applications a two- stage procedure provides an ideal comprom-
ise between cost and accuracy. The first stage is a quick and cheap screening 
procedure that must have a very high sensitivity and an adequate specificity. Any 
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items bought to our attention by the screening procedure undergo the second 
stage of  inspection, a generally slower and more expensive definitive procedure 
that has extremely high specificity. For example, passenger bags can be X- rayed, 
with any suspicious bags inspected fully. As another example, we might look at 
a number of  plants in a glasshouse and submit only leaves with symptoms for 
further tests.

At the start of  a pest or disease eradication campaign, false positives may be 
considered as just an unfortunate extra cost. But as the campaign continues, 
false positives become a greater problem because they hide the fact that eradi-
cation may have been achieved. At the final stage of  an eradication campaign, 
or when we are doing surveys to confirm freedom, false positives become a huge 
problem.

One approach to false positives can be described as test, retest and test again. 
As an integral part of  designing a survey to demonstrate freedom, we must spe-
cify what will be done if  positive or suspicious results are detected. Typically, 
a further (and more expensive) sequence of  tests on the same specimen, or 
extra surveillance of  the area in question would be required, so that for all 
practical purposes, the protocol gives 100% specificity (i.e. no false positives). 
Including more testing in the protocol to increase the overall specificity will 
decrease the overall sensitivity, and the calculation of  the survey size required 
must reflect that.

What happens if  this approach is not possible and false positives can still 
occur? The statistical problem posed by the survey changes completely: a single 
positive is no longer proof  that the pest is present. We then need to design our 
survey so that we can distinguish between the number of  false positives found if  
the region is free of  pests and the number of  false and true positives found if  the 
region is infested. This inevitably means that we need to specify a tolerance limit 
for the number of  positive samples found before the survey is considered posi-
tive. It cannot be stressed too much that this tolerance limit must be increased 
if  the number of  samples taken is increased. In determining the survey proto-
col –  the survey size and the tolerance –  we need to specify two error levels: our 
confidence (or the sensitivity) that the survey would conclude pests were present 
if  they were present at the design prevalence and the specificity of  the survey 
(or one minus the probability we would conclude the pest was present when it 
wasn’t).

The problem becomes more complicated if  we are dealing with animals in herds 
(or trees in orchards) because we have to set two tolerance values: one for the num-
ber of animals testing positive in a herd and one for the number of apparently 
positive herds in the area. We also need to set the number of animals per herd and 
the number of herds to be tested. Our choice of tolerance value will determine 
the herd- level sensitivity and specificity. We then need to define a tolerance for the 
number of positive herds that would be consistent with the area being free of the 
disease. Box 18.2 provides an example. For a given number of animals being tested, 
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Table 18.B2 The effect of tolerance value on the accuracy of a survey for the text’s example

We will say that … Tolerance /  sensitivity (%) /  specificity (%)

A herd is positive if more than … positive 
animals

10 11 12 13 14 15 16

Probability infected herd classed as positive 82.99 73.29 61.63 49.01 36.69 25.75 16.89

Probability non- infected herd classed as 
negative

99.06 99.68 99.90 99.97 99.99 100.00 100.00

An area is infected if more than … positive 
herds

4 3 2 1 0 0 0

Probability infected area classed as infected 97.49 95.88 95.45 95.98 97.57 92.53 81.68

Probability non- infected area classed as 
non- infected

95.90 99.58 99.89 99.84 98.53 99.65 99.92

Box 18.2 Tolerance Level versus Survey Confidence

This example illustrates how the tolerance values and accuracy from our survey are related. 
Suppose that if  the area were infected, at least 5% of the herds would be infected, each 
with at least 20% of their animals infected. The available test has sensitivity of 95% and 
a specificity of 90%. Our problem is to differentiate between an apparent prevalence of 
10% in a non- infected herd and 27% in an infected herd. Because the survey has no inter-
national implications, we decide that it would be adequate to be 95% certain that we detect 
an infected area and 95% certain that we don’t claim a non- infected area is infected. Just 
for this example, it is convenient if  50 animals are randomly sampled from each of 200 ran-
domly chosen large herds.

Table 18.B2 shows how our choice of tolerance values affects the accuracy of the survey. 
At the herd level, one obvious point from the first half  of the table is that as the tolerance 
is increased the sensitivity (probability of concluding an infected herd is positive) decreases 
while the specificity increases.

The second half  of the table looks at the overall accuracy of the survey. The first five pairs 
of tolerance values each define a survey that meets our requirements, but clearly some are 
better than others. However, as the last two columns show, it is possible to increase specifi-
city at the herd level so much that it is not possible to achieve the desired overall sensitivity 
for the survey.

It is interesting to compare this result with an opportunistic survey that could reasonably be 
assumed to look at randomly chosen animals from the area. We need to be able to differentiate 
between an apparent prevalence of 10% and 10.85%. The tolerance (expressed as the propor-
tion of positives in the sample) would be a point about midway between these two values. For 
convenience, we shall use the point that gives the same sensitivity and specificity for the survey. 
For the same number (10,000) of animals as the herd survey, we would achieve 91.8% sensitiv-
ity and specificity. To increase this to 95% we would need about 13,800 samples, and to achieve 
98.0%, a level comparable to the farm survey, we would need about 22,000 samples.
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a strategy that has a tolerance of zero for the number of herds classified as infected 
will usually provide the preferred survey.

18.2.7 Have We Set an Impossible Task?

This question can arise when the survey is based on a very small design prevalence 
and a non- perfect test. The number of samples required will be very large, and may 
be the same regardless of the population size. For a small population we may need 
to use a design prevalence that is inversely proportional to the population size to 
limit the amount of survey effort.

As an example, consider the requirements of the World Organisation for Animal 
Health (OIE) for country freedom from bovine spongiform encephalitis.1 The ani-
mal surveillance requirement is based on detecting a ten- in- a- million prevalence 
and requires the equivalent of 300,000 randomly selected animals being tested over 
a number of years. The prevalence of bovine spongiform encephalitis in animals 
showing neurological signs will be higher than in the general population and the 
300,000 tests can be reduced by targeting symptomatic animals. Nonetheless, the 
number of animals to be sampled still poses an impossible target for a country with 
only a small cattle population. Further, a prevalence of ten- in- a- million is totally 
unrealistic if  there are only 25,000 animals in the country. To resolve this problem, 
the design prevalence for small populations (of less than a million in OIE’s code) 
was expressed as an absolute number –  10 infected animals in the population. The 
design prevalence would therefore be larger for smaller populations of animals. 
This has the effect of putting a limit on the proportion of the population that must 
be tested so that the same proportional effort is required regardless of the number 
of animals in the country.

This example reminds us that we must be pragmatic. It also reminds us of a very 
important question we should answer before our survey gets underway: ‘Who has 
to be convinced?’

18.2.8 Who Do We Have to Convince?

After we have determined the parameters needed to calculate the survey size (such 
as the test sensitivity and design prevalence), it is worthwhile circulating these 
values to the people or organisations that have to be convinced by our assertion 
of freedom. It is best if  all parties agree that the survey design will be adequate to 
detect the pest. It’s not a bad idea to ask yourself  if  you, deep down, would accept 
your arguments if  somebody else were proposing them.

 1 http:// www.oie.int/ international- standard- setting/ terrestrial- code/ access- online/ 
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18.3 What Is the Best Surveillance Method?

There are often several ways that we can look for pests. As an example, suppose that 
we are looking for exotic mussels in a port. We could look at keels when boats are 
in dry dock. We could create artificial pontoons on which the mussels might grow. 
A diver could inspect underwater surfaces such as pier pylons. We could trawl for 
plankton using either gene probes or visual identification. We could simply rely 
on members of the public noticing strange mussels on flotsam. How do we choose 
which method to use?

In addition, we will often have information from several sources, all of which 
indicate that the pest is not present. Surveys might have been done each year, with 
the value of each successive year’s survey increasing because the density of the pest, 
and hence the likelihood that it would have been detected, would have increased. 
Alternatively, we may have several sources of information: formal surveys, oppor-
tunistic observations and passive monitoring

Humans like to classify, and there is more than an adequate opportunity to clas-
sify sources of information. For example, some surveys such as walking a transect 
through scrub can be considered to be continuous, while others such as inspecting 
individual boxes can be considered discrete. For others, the distinction between 
continuous and discrete information may not be clear cut.

The words active and passive are often used to describe information gather-
ing: the former implies that we have organised information gathering while the lat-
ter implies that we are waiting for information to trickle in or that we will use the 
lack of adverse reports as confirmatory evidence. Opportunistic information gather-
ing is when we take advantage of an unrelated event to obtain information for our 
purposes. Sometimes this differentiation of surveillance types is beneficial, some-
times it is not; whatever the case, we would like a way to combine the confidence 
obtained from different sources.

18.3.1 When and Where Should We Look?

‘Look in the most likely places at the time when they would be most prolific’ is 
a quick answer to the when and where question. This gives the greatest chance 
of  detecting the pest. It might be prudent to look in other places as well in case 
our underlying assumptions are wrong. If  it is you who made the claim that there 
are no pests present, you would need to provide acceptable justification for your 
choice for your survey design. On the other hand, if  someone else has claimed 
that there are no pests present, it is acceptable to target your inspection on areas 
where you expect the pest to congregate at times when you expect the pests to be 
most obvious. When you are looking for several pests, some care is required when 
designing targeted surveys based on one pest’s behaviour. In contrast, when the 
task is to estimate pest density, a targeted survey is usually not appropriate unless 
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the relationship between the average density and the density in the targeted areas 
is well known.

18.3.2 What Is the Most Economical Test?

Each surveillance method will have a different cost per sampling unit. Each method 
will also have a different chance of detecting pests and this chance might vary 
according to the time of the year and the location. Roughly speaking, the num-
ber of tests required to achieve a desired level of confidence is inversely propor-
tional to the sensitivity –  the lower the sensitivity, the greater the number of samples 
required. Dividing the sensitivity by the cost of the method provides a convenient 
way to measure the efficiency of the method.

Sometimes it is straightforward to determine the most economic test method; 
sometimes more complicated mathematics is required. As an example, increasing 
the number of trees inspected in an orchard increases the likelihood of detecting 
a pest in the orchard. This in turn decreases the number of orchards we need to 
inspect to demonstrate freedom. However, depending on the ratio of the incre-
mental cost of inspecting another tree in an orchard to the incremental cost of 
inspecting another orchard, there will be an optimal number of trees to inspect in 
an orchard. This example is discussed in Box 18.3.

Logically we would choose the most cost- efficient method. But there may 
be other reasons why we would prefer to use other methods. There may be 
insufficient opportunities to use the most efficient method or laboratory cap-
acity might be the limiting factor. We would like to protect ourselves from 
our assumptions being slightly incorrect. For example, although it might be 
cheapest to concentrate our inspection effort to a small part of  the region, to 
provide some protection from our assumption of  homogeneity being wrong, 
we might choose a wider- based but more expensive method. The benefit of 
good public relations might mean that low- cost, low- sensitivity passive sur-
veillance is worthwhile even though the added cost of  false alarms must be 
accounted for.

18.3.3 What Is the Confidence Obtained from a Survey?

The probability (γ) that a survey will detect the presence of the target species 
depends on the density (ρ) of the pest, the effectiveness of the inspection (ϕ), the 
area of a sample unit (a), the number of sampling units (n), the spatial and tem-
poral distribution of the target species, and the design of the survey. Occasionally, 
slightly different terms are required. For example, in a line transect, the area of the 
survey might correspond to an effective sweep reach (or some similar term) that 
takes into account how inspection effectiveness decreases with distance to the left 
and right of the transect path.
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Box 18.3 How Many Consignments and How Many Oranges?

This example shows how our sampling design changes according to what we hope to do. 
Suppose our survey inspects consignments of oranges for disease. An exporter might want 
to use these inspections to demonstrate that his suppliers are disease- free. An importer sim-
ply wants to find as many diseased consignments as possible.

Both the importer and the exporter have agreed that if  there were a problem, the pro-
portion of diseased consignments would be at least q, and that the proportion of diseased 
oranges in a diseased consignment would be at least p. For this example, assume that it costs 
on average $f to open a consignment for inspection and an extra $c per orange inspected. 
They agree that the method will detect disease with probability Tse and that n oranges will 
be inspected from each of m consignments. This example could also be couched in different 
terms, for example, herds and animals, or orchards and trees. We have $F to spend on this 
survey. How should we determine m and n?

We pretend that n and m can be fractional and convert the solution to integers. Our fixed 
budget determines the relationship between m and n. Because inspecting n oranges in a con-
signment costs $(f + cn), the number of consignments we can afford to inspect is

 m = F /  (f + cn). (18.B3.1)

We shall assume the binomial distribution is adequate to determine the probability 
that at least one of  the n inspected oranges or m inspected consignments is found to be 
infected. Hence the confidence Cse that a diseased consignment would be detected and the 
confidence Sse that the survey would detect disease are

Cse = 1 –  (1 –  pTse)n and Sse = 1 –  (1 –  qCse)m = 1 –  (1 –  qCse)(F /  (f + cn)). (18.B3.2)

To demonstrate freedom, the exporter would usually want to determine n and m to give 
the most economic survey in terms of survey confidence divided by survey cost. Because 
the survey cost is fixed, this is the same as finding the survey with the greater overall con-
fidence Sse. From Eq. 18.B3.2, calculus gives the following equation that can be solved 
iteratively for n:
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In contrast, the importer wants to maximise the number of diseased consignments found, 
namely mqCse, which is equal to qFCse /  (f + cn). This criterion is equivalent to finding the 
most economic consignment- level survey in terms of consignment sensitivity divided by 
cost of testing a consignment. Calculus shows the best value for n is obtained when
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For small q, both criteria give almost the same value for n. However, for larger values of 
q, the difference is greater. This reflects the fact that we need to find only one diseased con-
signment to disprove freedom.
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For completeness, suppose we want to maximise the expected number of dis-
eased oranges (m q n p Tse) found. This can be rewritten as q p Tse F n /  (f + c n),  
which has a maximum when n is infinite. With this criterion we would look at just one 
consignment and at as many oranges as the budget  allowed  –  not a strategy one would 
recommend!

As a numeric example, suppose that p = 5% of consignments from a diseased supplier 
have diseased fruit at a level of  q  =  20% if  the consignment is diseased. The inspec-
tion process has a sensitivity Tse = 95% and costs $20 per consignment and $0.25 per 
fruit. We don’t want to spend more than $1,000. Figure 18.B3 shows the relationship 
between the number of  oranges inspected in each consignment and the average number 
of  diseased consignments found and the probability that we would detect a diseased sup-
plier. The maximum for the two curves occur at n = 14.42 and 14.54 respectively. Each  
corresponds to sampling a fraction more than 42 consignments. In practice we might use 
m = 42 and n = 15. It should be noted that spending $1,000 will at best give us 87.26% 
confidence of  detecting a diseased supplier. We would need to spend $1,450 by inspecting 
an extra 19 consignments to raise this to 95% confidence.

(b)

(a)

Figure 18.B3.  An example of how survey capabilities change with sampling rate under a fixed budget.
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In a continuous survey, if  the probability of  detecting each target individual 
in the sampling unit is the same, and if  the individuals are independently dis-
tributed at a constant density, then the number of  target individuals detected 
in a sampling unit can be treated as a Poisson random variable with a mean 
(E) that is proportional to the area sampled and the likelihood that pests 
are found:

 E = ρ × a × ϕ. (18.1)

The mean E is sometimes called the encounter function or rate. The level of confi-
dence obtained by inspecting n sampling units is simply one minus the probability 
that no target species are detected:

 γ = 1 –  exp(– n × E). (18.2)

Taking logarithms of Eq. 18.2 gives a relationship that we shall make extensive use 
of later, and from which we can easily calculate the survey size required to give the 
desired confidence:

 n × E = – ln(1 –  γ). (18.3)

In a discrete survey, if  there is the same probability (E) of detecting the target spe-
cies at each possible survey site, the number of sites at which the target species is 
detected by the survey can be treated as a binomial random variable. Again, the 
confidence obtained by inspecting n sampling units is simply one minus the prob-
ability that no target species are detected:

 γ = 1 –  (1 –  E)n ≅ 1 –  exp(– n × E). (18.4)

Equation 18.4 includes the Poisson approximation to the binomial distribution. 
There are some points to be made. If  this approximation is used to calculate the 
sample size, the number calculated will be slightly higher than needed, by a factor 
of – ln(1 –  E) /  E. The approximation is adequate when the pest density is likely to 
be low if  pests are indeed present. More importantly, the approximation shows that 
Eq. 18.4 can be replaced by Eq. 18.2, with the probability E being equivalent to the 
encounter function –  the same equation can often be used for both discrete and 
continuous surveys.

Encounter functions usually can be determined for most survey methods and Eq. 
18.2 forms the basis of the next section when we look at how to combine the confi-
dence obtained from a number of surveys.

Before doing that, there is one important final point. We have assumed that 
the distribution of  pests is random. However, often pests will be found in clus-
ters. If  so, we must focus on clusters rather than individuals and, if  these clus-
ters occur randomly, we can use the methods being discussed to determine the 
survey size.

019
22:24:08, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


Some Questions to Ask Yourself398

398

18.3.4 Combining the Information from a Number of Sources

The scenario trees and pathways analysis discussed in Chapters  16 and 17 pro-
vide one approach to determine the confidence obtained when combining infor-
mation from a number of sources. The remainder of this section uses the Poisson 
approximation in Eq. 18.4 as a quick way to combine information from a number 
of surveys.

The sum of a number of Poisson distributions is a Poisson distribution with a 
mean equal to the sum of the means, which, in terms of the encounter functions of 
our different sources, is ΣniEi. When designing a survey program that uses informa-
tion from k independent sources, any combination of ni source units where

 n1E1 + n2E2 + … + nkEk = – ln(1 –  γ) (18.5)

will have the same confidence of detecting the pest. It is a convenient approach, 
even though it does overestimate the total number of source units that would be 
required.

As a simple illustration of the use of Eq. 18.5, if  an identical survey is done in 
an environment with twice the expected density, the encounter function would be 
twice as large, and consequently the survey would require only half  as many sam-
ples to have the same probability of detecting the target species. Another example 
of Eq. 18.5 has been implicitly used in Section 18.2.4. If  the pest density (and hence 
the encounter function) is proportional to the population size, then the survey size 
required will also be proportional to the population size.

Equation 18.5 justifies the comment made in Section 18.3.2 about using sensitiv-
ity divided by cost as a way to compare tests. Suppose we want to choose between a 
quicker inspection method with 80% effectiveness and a slower method giving 95% 
effectiveness. Using the quicker but less effective method requires about 19% more 
samples (0.95/ 0.80) to achieve the same level of accuracy. However, providing its 
cost was less than 0.80/ 0.95 (about 84%) of the slower, it would be more econom-
ical to use it.

Another example of the use of Eq. 18.5 would be to measure the amount of pas-
sive and opportunistic information obtained during the year and then determine 
the size of the formal survey required to top up the surveillance to reach the desired 
level of confidence.

18.3.5 Inspecting the Same Sample Unit Twice

Some care is needed in determining the encounter function for methods that inspect 
the same unit twice, and indeed this applies to any statistical analyses of the data. 
As an example, consider the inspection of a plant or animal in two successive years 
for a disease for which the symptoms are slow to show. The encounter function for 
the second year would correspond to the change in the likelihood that the disease 
was discernible. Similarly, when two tests are performed on the same specimen, the 
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encounter function is equal to the sum of the two encounter functions minus the 
probability that both tests would detect the problem.

18.4 How Should We Allocate Surveillance Resources between Regions?

So far we have concentrated on finding the most economical way of performing 
surveillance in a homogeneous region. From now on, we shall assume that has been 
resolved and we can concentrate on how we should allocate our resources between 
different regions, not just for demonstrating freedom from a pest or disease but for 
other biosecurity reasons.

An example seems the easiest way to introduce this section. Suppose we have 
an ongoing monitoring program for exotic mosquitoes at international airports. 
Doing the same monitoring at each airport is an obvious approach; it is operation-
ally simple and is often adequate. But each airport is different; the risks depend on 
the proportion of planes coming from mosquito- ridden countries, busier airports 
have a greater chance of an incursion, an incursion may have greater consequences 
in more populous cities and dry or cooler climates might be less suitable for mos-
quito breeding. We could ask if  we can increase the benefit of the monitoring pro-
gram by taking into account these differences.

The most important thing is to ask is: ‘What do we want to achieve?’ to which 
we must add ‘on our limited budget’. We will discuss several options after giving a 
general method to solve to the problem.

18.4.1 The Best Allocation of Resources on a Limited Budget

We want to divide our total resources (F) between k regions to give the greatest 
overall benefit, the definition of which we shall leave until later. For the time being, 
we know that a benefit Bj(fj) is obtained from using fj resources in region j. It will 
usually be more convenient to treat fj as a continuous variable, even though it may 
not be possible in practice. We’ll give the formal solution first and then an informal 
explanation.

Our aim to maximise the total benefits subject to our restricted budget can be 
expressed as

 maximise Σ Bj(fj) subject to the restriction Σfj = F. (18.6)

The solution can be found using calculus in terms of the derivatives Bj′(fj) and a 
constant whose value is determined (often iteratively) from the resource limit F as

 B1′(f1) = … = Bk′(fk) = a constant. (18.7)

We can derive this solution informally as follows. The derivative Bj′(fj) simply 
measures the incremental benefit obtained from slightly changing the amount of 
resources used. If  we had allocated our resources so that the incremental benefit 
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in region i was greater than in region j, we could obtain a greater overall benefit by 
moving resources from region j to region i. We can keep on shuffling our resources 
like this until we obtain a combination of resources that has the same incremental 
benefit for each region. This is the optimal solution and is simply Eq. 18.7.

Occasionally, the optimal solution is negative for some regions, especially when 
there are only a few resources available. We would not allocate any resources to 
these regions (other than under the proviso mentioned in Chapter 1 that we must 
do some monitoring in each region to know what is happening in each region). If  
the optimal amount of resources is greater than what is available in the region, we 
would use all that we could. In either case, we would recalculate the optimal values 
for the other regions based on the resources remaining.

18.4.2 The Optimum Is a Guide, Not the Master

Although we can determine an optimal solution, we will usually be more than sat-
isfied with a close to optimal solution because of practicality or other intangible 
benefits. At a trivial level, the continuous precise optimal values will need to be 
converted to integers. The chance that procedures will not be followed correctly 
increases with their complexity. It may be that we might prefer to use a standard 
set of rates for operational ease, for example rounding numbers up to a multiple 
of 10. Some sampling rate calculations might be based on an estimate of future 
throughput and the actual numbers tested in a year will be different from those 
used in the calculations. We will assume that the amount of resources available is 
flexible enough to accommodate some uncertainty, although the resources being 
used should be monitored during the year and the optimal solution re- evaluated if  
necessary.

Occasionally the optimum allocates no resources to some categories. However, 
when border control is primarily done to find and rectify non- compliance, we also 
need to monitor the non- compliance rate in case it has changed (either intentionally 
or non- intentionally) and should re- allocate resources to do so. Inspecting none 
of particular types of items would not be prudent. Similarly, when surveying for 
disease, there may be reasons why it is unacceptable to survey only some regions, 
and hence a slightly less than optimal solution might be essential. One approach 
could be to allocate a certain amount of resources as general monitoring and use 
the remainder for targeted inspection or surveillance. Chapter 1 relates to a slightly 
different problem: setting the resources for each pathway so that it is unlikely that 
the undetected items of concern (the leakage) will exceed a specified level.

The analysis might also need to consider the uncertainty in the estimated prob-
abilities that underpin the optimal solution. Because of this, a more robust solu-
tion based on fewer assumptions may be preferred (Chapter  13 and Box 18.4). 
Regardless, it would be useful to compare the result of other allocation strategies 
with the optimum; this may indicate that there is little difference or suggest an 
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acceptable compromise. In short, treat the calculated optimal solution as a guide 
rather than a fixed rule that must be obeyed.

18.4.3 Maximise the Number of Pests Found

In this, and the next few sections, we consider different ways to define best and 
benefit. Maximising the number of pests found is not an appropriate objective for 
a survey to demonstrate freedom. It is wasteful because we only need to find one 
pest to dismiss the claim of freedom. It is, however, a very good objective for bor-
der control when we are trying to ensure that no pests enter or re- enter a region. 
We would like to inspect all incoming goods, but with a limited budget, we might 
only have sufficient resources to inspect (say) 60% of incoming goods. As a result, 
we would expect to only find about 60% of incoming pests. How can we do better?

By examining data from previous inspections we can often divide the incoming 
goods into a number of streams (or pathways) that have different proportions of 
non- compliant items, a process that is often called profiling. It is important that 
an item can easily be assigned to a stream by inspectors. It is easy to show that we 
will find the most non- compliant items for a given amount of resources if  we only 
inspect the streams with the higher proportions of non- conforming items (often 
called the approach rate). The number of inspections allowed under the budget and 
the expected number of items that would arrive in each stream will determine which 
streams will be fully inspected and which will have no inspection at all. But, and 
this is a very big but, if  we don’t inspect any goods in some streams, we will have 
no way of knowing if  the risk has changed and hence we have no way to determine 
when to change our inspection strategy. Consequently, we need to allocate some 
of our resources to monitoring the lower risk streams. Chapter 1 discusses this in 
more detail.

Occasionally, it is possible to adjust the effectiveness of inspection by changing 
the number of items in a consignment that are inspected. If  we can determine 
effectiveness as a function of inspection effort, we can mathematically determine an 
appropriate inspection rate for each stream that will maximise the amount found. 
The second part of Box 18.3 gives an example. In situations in which the theoretical 
optimal sampling rate is not sufficient to monitor changes in the approach rate in 
some streams, a less than optimal scheme will be necessary.

18.4.4 Minimise the Time Pests Remain Undetected

Minimising the time that pests remain undetected is another aim that is not directly 
pertinent to proving pest freedom, although it is relevant to finding an economical 
way of demonstrating that pests have not arrived. It is a more appropriate aim 
when we are monitoring such as surveillance at sea ports or airport for arriving 
pests, auditing the compliance of fumigators, or checking for incursions into a buf-
fer zone around a pest- free production area. We need to ask ourselves about how 

019
22:24:08, subject to the Cambridge Core terms of use,

www.ebook3000.com

http://www.ebook3000.org


Some Questions to Ask Yourself402

402

the cost of a delay in detection is related to how long it takes to detect the problem. 
The risk from an arriving pest will often be proportional to the time undetected. 
Sometimes we might consider that the risk is proportional to the square of the time 
undetected because the increasing pest population would be more likely to escape 
the surveillance area. Other formulations for the risk posed could take into account, 
for example, there being two or more pest incursions before the trap is emptied.

A limit on the number of insect traps that can be processed each year means that 
we may have to decide between the number of sites for traps and the time between 
collecting the traps. If  we change traps frequently, we detect pests quickly and can 
treat the buffer area (we hope) before the pests have escaped into the wider area. 
We will, of course, use our resources more quickly and not be able to cover as many 
sites. Increasing the time between inspecting the traps will increase the number of 
sites we can cover but will also increase the likelihood that the pests escape the area 
around the trap before the incursion is detected. Box 18.4 gives an example.

18.4.5 Maximise the Probability of Detecting the Pest

Maximising the probability of detecting the pest is a good objective for a survey 
to demonstrate pest freedom. It is usually straightforward to write down the prob-
ability that the survey would fail to detect the pest although solving the resultant 
equations might be harder. Box 18.3 gives an example. However, if  we are allocating 
resources between regions, there is one important point to consider: we need to spe-
cify the (relative) probabilities that each region might have become infested and, if  
so, the prevalence within each region. These probabilities would take into account 
other information that we must collect, such as the amount of arriving trade and 
density of hosts in the region. If  we assume that all regions have become infested, 
the probability of detecting the pest is maximised by taking all of our samples from 
the region with the highest expected prevalence, not a good strategy.

18.4.6 Maximise the Benefit of the Survey

Maximising the number of regions in which pests are detected –  as distinct from 
maximising the number of pests detected  –  is a good objective when we want 
to demonstrate freedom. This criterion has a solution that is approximately the 
same as maximising the probability of detecting a pest. It leads to slightly sim-
pler calculations, but more importantly, it can be modified to apply weights to the 
regions according to other criteria such as the likelihood and cost of an incursion. 
Chapter 14 discusses this approach in greater detail.

18.4.7 Minimise the Consequences of a Wrong Allocation

So far, the tacit assumption has been that the various probabilities and costs are 
known reasonably precisely. Sometimes, we only know the relative values of the 
parameter. For example, the best we can say is that the risk will be proportional to 
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Box 18.4 Insect Trapping

Insect traps are often placed at entry points (like ports) to detect the arrival of pests. ‘Detect 
them as quickly as possible’ would seem to be a good way to decide how many traps should 
be placed at each port and how often they should be checked when we have a fixed budget. 
Although this example ignores many things that would need to be considered in practice 
such as seasonal variation, biological limitations and the effect of multiple traps, it provides 
a simple way to illustrate some of the points in this chapter.

Suppose that occasionally colonies of pests arrive at ports. The rate of arrival, λi per year, 
at port i would depend on factors such as the throughput of the port and origin of the ves-
sels. The average delay until a pest is caught in one of the traps around the port is μi. Traps 
are regularly inspected ni times per year, adding an extra 1/ (2ni) to the average time to detec-
tion. The effort of visiting a port is the dominant component of the cost and about the same 
for each port. Our budget sets a limit N = Σni for the number of visits. We want to allocate 
our resources to minimise the average delay until the pest is detected.

The average time, T, expressed in terms of colony- days, that pest colonies are undetected 
over a year, is

 T
ni i

i

= +




∑λ µ 1

2
. (18.B4.1)

Minimising this subject to the limit on the number of visits shows that the relative effort at 
each port should be proportional to the square root of the arrival rate:

 T
L
N

n N L Li i j j imin .= + = =∑ ∑λ λ λµ
2

2
   when  and  (18.B4.2)

As a numerical example, suppose we have budgeted to visit each of three ports every four 
weeks (which gives N  =  39.13). Experiments have shown that the average time until an 
insect enters the trap is μ  =  0.03  years, which is just under 11  days. The arrival rates λi 
are 0.75, 0.50 and 0.25, respectively, giving an average of 1.5 arrivals per year. During the 
year, we would be waiting 16.44  days for the insects to enter the trap and 21.00  days it 
to be emptied, 37.44 days in total. Using Eq. 18.B4.2 to minimise the average delay gives 
n1 = 16.35 = 39.13 × √0.75/ (√.75 + √.50 + √0.25), n2 = 13.35 and n3 = 9.44. This corresponds 
to visiting the ports every 22.34, 27.36 and 38.70 days respectively and reduces the average 
delay by about a day, to 36.49 days. For a practical schedule, these values might be rounded 
so visits were done every 3, 4 and 6 weeks (ni = 17.39, 13.04 and 8.70). This gives an average 
delay of 36.56 days.

Suppose, however, that the arrival rates are not known precisely and that the λi above 
are the mid- points of the ranges (0.5– 1.0, 0.25– 0.75 and 0.1– 0.4) reflecting our uncertainty 
for λi. Section 18.4.7 discusses why our approach must change when there is a considerable 
degree of uncertainty about the values of the parameters. While we still want to minimise 
the average delay until discovery, we need to assess each allocation choice by comparing the 
delay resulting from the choice with the best we could achieve. Our regret could be expressed 
in absolute or relative terms as either
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This example uses the minimax algorithm with T /  Tmin as the regret function to allocate the 
resources. For each set of ni, the maximum regret over the parameter values will occur at one 
(or more) of the eight vertices of the cube defined by the ranges of λi. Although an analytic 
solution can be found for this example, a systematic search can be used: choose a value for 
n1, find the value of n2 that gives the smallest maximum regret, readjust n1 and repeat. The 
first five rows of Table 18.B4 shows the regret for five of the many steps in this process with 
the maximum in bold The shaded sixth row shows the consequences of rounding the opti-
mum to a practical survey schedule.

Using the bolded optimum values for ni leads, at worst, to a 3.55% larger average period 
pests remain undetected compared to what could be achieved if  we knew the values of λi. 
These values correspond to visiting every 22.2, 27.4 and 39.2 days respectively. As before, 
we might round these values to visits being made every 3, 4 and 6 weeks, respectively. The 
shaded row shows that we would be at most 4.78% worse off  if  we did.

The second bottom row of the table uses the values 16.35, 13.35 and 9.44 for ni that we 
calculated earlier using the mid- points of the ranges for λi. It shows that this is not much 
different from the optimum, giving at worst an increased delay of 3.75%. The final row has 
our resources being evenly deployed between the ports: the maximum increase in waiting 
time would be 11.61%, showing that there is a benefit in adjusting our resource allocation 
according to risk.

Table 18.B4. Examples of how regret changes for different allocations of resources
Over a year, 39 visits need to be allocated among three sites. The table gives the regret (T/ Tmin) over making the 
wrong allocation for the extreme values of the parameters (λi) and the numbers of visits per site (nj).

T /  Tmin λ1 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.00

λ2 0.25 0.25 0.75 0.75 0.25 0.25 0.75 0.75

λ3 0.10 0.40 0.10 0.40 0.10 0.40 0.10 0.40

n1 n2 n3

14.00 15.40 9.74 1.0265 1.0422 1.0202 1.0054 1.0825 1.0583 1.0375 1.0059

15.00 14.78 9.35 1.0149 1.0421 1.0206 1.0114 1.0604 1.0472 1.0275 1.0023

16.48 13.33 9.32 1.0047 1.0355 1.0355 1.0233 1.0355 1.0285 1.0257 1.0011

17.00 13.03 9.10 1.0026 1.0391 1.0391 1.0296 1.0284 1.0268 1.0244 1.0028

18.00 12.46 8.68 1.0007 1.0481 1.0481 1.0438 1.0173 1.0257 1.0240 1.0081

17.39 13.04 8.70 1.0010 1.0478 1.0379 1.0355 1.0234 1.0300 1.0206 1.0051

16.35 13.35 9.44 1.0056 1.0336 1.0357 1.0217 1.0375 1.0283 1.0269 1.0008

13.04 13.04 13.04 1.0532 1.0108 1.0713 1.0098 1.1161 1.0478 1.0865 1.0184
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the number of vessels arriving. This may not be a problem because often the opti-
mum resource allocation depends only on the relative values of the parameters. But 
what should we do if  we only have a limited knowledge –  say just a range –  for the 
possible values of the parameters?

While we must still decide on a particular objective (such as maximising the 
chance of detecting a pest), our approach to allocating resources must change to 
minimising our regret about making a non- optimal choice. For any set of param-
eter values, our regret compares what we will achieve if  we use a particular set of 
resources with what we would achieve if  we used the optimum resources for those 
parameter values. Our comparison could either be the difference or the ratio of 
these two.

If  our uncertainty about the parameter values could be expressed as a probability 
distribution, we would consider the regret averaged over the parameter range and 
choose the allocation that minimised this. Otherwise a method such as the minimax 
algorithm could be used so that for each allocation choice we would determine the 
maximum regret over the possible parameter values and then use the allocation that 
gives the smallest maximum. Box 18.4 gives an example. Allocation of resources 
under uncertain knowledge is discussed further in Chapter 13.

18.5 Summary

One should view the theoretical solution as a guide. Actions can be summed up as

• Define the problem.
• Obtain estimates of the parameters.
• Determine a preliminary solution.
• Confirm that the parameter values are acceptable to all concerned.
• Re- analyse the problem if  necessary.
• Convert the precision of the theoretical answer into a practical solution.
• Check that the benefits haven’t strayed too far from the optimum benefits.
• Finally, promise yourself  that next time you will seek statistical advice beforehand.
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spatial, 25t2.2, 154
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