
Robert v. Hippel

Lehrbuch des
Strafrechts

INTEGRATED NElWORK MANAGEMENT VIII

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World Computer
Congress held in Paris the previous year. An umbrella organization for societies working in
information processing, IFIP's aim is two-fold: to support information processing within its
member countries and to encourage technology transfer to developing nations. As its mission
statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization
which encourages and assists in the development, exploitation and application
of information technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP's
events range from an international congress to local seminars, but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and contributed
papers are presented. Contributed papers are rigorously refereed and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may be
invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working group
and attendance is small and by invitation only. Their purpose is to create an atmosphere
conducive to innovation and development. Refereeing is less rigorous and papers are subjected
to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World Computer
Congress and at open conferences are published as conference proceedings, while the results of
the working conferences are often published as collections of selected and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full members
are entitled to vote at the annual General Assembly, National societies preferring a less
committed involvement may apply for associate or corresponding membership. Associate
members enjoy the same benefits as full members, but without voting rights. Corresponding
members are not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

INTEGRATED
NETWORK
MANAGEMENT VIII

Managing It All

IFlP / IEEE Eighth International Symposium on
Integrated Network Management (1M 2003)
March 24-28, 2003, Colorado Springs, USA

Jointly sponsored by IFIP TC6/WG6.6 (Management of Networks and Distributed
Systems) and the IEEE Communications Society

Edited by

German Goldszmidt
IBM Research
USA

JUrgen Schonwalder
University of Osnabriick
Germany

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

INTEGRATED NETWORK MANAGEMENT: Managing It All
Edited by German Goldszmidt and Jlirgen SchOnwalder
ISBN 978-1-4757-5521-3 ISBN 978-0-387-35674-7 (eBook)
DOI 10.1007/978-0-387-35674-7

Copyright © 2003 by Springer Science+Business Media Dordrecht
Originally published by Kluwer Academic Publishers in 2003
All rights reserved. No part of this work may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photo
copying, microfilming, recording, or otherwise, without written permission from the
Publisher with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser
of the work.

Printed on acid-free paper.

by IFIP International Federation for Information Processing

The original version of the book frontmatter was revised:
The copyright line was incorrect. The Erratum
to the book frontmatter is available at
DOI: 10.1007/978-0-387-35674-7_66

http://dx.doi.org/10.1007/978-0-387-35674-7_66

Contents

Preface ..

Symposium Committees ..

Introduction ...

SESSIONl Anomaly I Intrusion Detection 1

An SNMP Agent for Stateful Intrusion Inspection .. 3
Luciano Paschoal Gaspary, Edgar Meneghetti,
Liane Rockenbach Tarouco

Firewall Policy Advisor for Anomaly Discovery and Rule Editing 17
Ehab S. Al-Shaer, Hazem H. Hamed

A Scaled, Immunological Approach to Anomaly Countermeasures:
Combining pH with Cfengine .. 31

Kyrre M. Begnum, Mark Burgess

SESSION 2 Internet Accounting 43

A Highly Distributed Dynamic IP Multicast Accounting and
Management Framework ... 45

Hassen Sallay, Olivier Festor

User Oriented IP Accounting in Multi-user Systems ... 59
Ge Zhang, Bernd Reuther, Paul Mueller

Tariff-Based Pricing and Admission Control for DiffServ Networks 73
Tianshu Li, Youssef Iraqi, RaoufBoutaba

v

vi

SHORT PAPER SESSION 1 Monitoring and Security 87

Monitoring Distributed Systems: A Publish/Subscribe Methodology
and Architecture ... 89

Karen Witting, James Challenger, Brian O'Connell

Proactive Intrusion Detection and SNMP-based Security
Management: New Experiments and Validation ... 93

Joao B.D. Cabrera, Lundy Lewis, Xinzhou Qin, Carlos Gutierrez,
Wenke Lee, Raman K. Mehra

NetLogger: A Toolkit for Distributed System Performance
Tuning and Debugging '" .. 97

Dan Gunter, Brian Tierney

A Case Study of Three Open Source Security Management Tools 101
Hilmi Gunes Kayacik, A. Nur Zincir-Heywood

MTreeDx: A Multicast Network Diagnosis Tool .. 105
Jaiwant MuZik, Phillip Conrad, Brian Drake, Saroj Biswas,

Musoke Sendula

Multiple Authorization - A Model and Architecture for Increased,
Practical Security ... 109

Gerald Vogt

A Controller Agent Model to Counteract DoS Attacks in
Multiple Domains .. 113

Udaya Kiran Tupakula, Vijay Varadharajan

Toward Understanding Soft Faults in High Performance
Cluster Networks ... 117

Jeffrey J. Evans, Seongbok Baik, Cynthia S. Hood, William Gropp

SHORT PAPER SESSION 2 Tools and Information Models 121

RDF-based Knowledge Models for Network Management.. 123
Jun Shen, Yun Yang

Process Management and Control for Heterogeneous Domain Models 127
Takeshi Masuda

viii

Contents Vll

Semantic Management: Application of Ontologies for the Integration
of Management Information Models ... 131

Jorge E. Lopez de Vergara, Victor A. Villagra, Julio Berrocal,
Juan l. Asensio, Roney Pignaton

A Conceptual Framework for Building CIM-based Ontologies 135
Emmanuel Lavinal, Thierry Desprats, Yves Raynaud

Policy-based Cooperation of Services in Ubiquitous Environments 139
Toshio Tonouchi, Tomohiro Igakura, Naoto Maeda,
Yasuyuki Beppu, Yoshiaki Kiriha

Design and Implementation of an Information Model for Integrated
Configuration and Performance Management of MPLS-TEIVPN/QoS 143

Taesang Choi, Hyungseok Chung, Changhoon Kim, Taesoo Jeong

Using the Access Grid as a Testbed for Network Management Research 147
Cynthia S. Hood, Satish Devarapalli, Nirav Gadhia, San jay Hegde,
Vikram Mallikarjuna, Shashank Shankar, Srikanth Yoginath

Automating Placement of Instrumentation in Applications 151
Seema Kaushal, Hanan Lutfiyya

SESSION 3 Provisioning and Service Management 155

Generic On-Line Discovery of Quantitative Models for Service
Level Management. .. 157

Yixin Diao, Frank Eskesen, Steven Froehlich, Joseph L. Hellerstein,
Alexander Keller, Lisa F. Spainhower, Maheswaran Surendra

A Generic Model for IT Services and Service Management 171
Gabi Dreo Rodosek

A Revenue-based Model for Making Resource Investment Decisions
in IP Networks , ... 185

Srinivasan Jagannathan, Jorn Altmann, Lee Rhodes

SESSION 4 Policy-Based Management 199

Policy Provisioning Performance Evaluation using COPS-PR in a
Policy Based Network .. 201

Alessandro Corrente, Marco De Bernardi, Roberto Rinaldi

ix

viii

Design and Implementation of a Policy-based Resource Management
Architecture ... 215

Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta

BANDS: An Inter-domain Internet Security Policy Management
System for IPSec/VPN ... 231

Yanyan Yang, Zhi (Judy) Fu, S. Felix Wu

SESSION-5 Monitoring and Performance 245

Performance Management for Cluster Based Web Services 247
Ron Levy, Jayakumar Nagarajarao, Giovanni Pacifici,
Mike Spreitzer, Asser Tantawi, Alaa Youssef

Facilitating Efficient and Reliable Monitoring through HAMSA 263
David Breitgand, Danny Dolev, Danny Raz, Gleb Shaviner

Dynamic Load Balancing for Distributed Network Management 277
Kiyohito Yoshihara, Manabu]somura, Hiroki Horiuchi

SESSION 6 Configuration Management 291

Scalability of Peer Configuration Management in Partially Reliable
and Ad Roc Networks .. 293

Mark Burgess, Geoffrey Canright

Khnum - A Scalable Rapid Application Deployment System for Dynamic
Hosting Infrastructures ... 307

Alain Azagury, Gerrruin Goldszmidt, Yair Koren, Benny Rochwerger,
Arie Tal

Enabling PreOS Desktop Management .. 321
Tiago Cruz, Paulo Simoes

SESSION 7 Peer-to-Peer and Overlay Networks 335

Peer-to-Peer Overlay Network Management through AGILE 337
Jan Mischke, Burkhard Stiller

Web Services Management Network: An Overlay Network for
Federated Service Management ... 351

Vijay Machiraju, Akhil Sahai, Aad van Moorsel

x

Contents ix

Auto-Discovery at the Network and Service Management Layer 365
Alexander Clemm, Anil Bansal

Managing Heterogeneous Services and Devices with the Device
Unifying Service: Implemented with Parlay APIs ... 379

Erik Vanem, Dao Van Tran, Tore E. JrjJnvik, Pal L¢kstad,
Do Van Thanh

SESSIONS Distributed Management 393

Delegation of Expressions for Distributed SNMP Information Processing 395
Rui Pedro Lopes, Jose Luis Oliveira

Weaver: Realizing a Scalable Management Paradigm on Commodity
Routers ... 409

Koon-Seng Lim, Rolf Stadler

Adaptive Resource Management of a Virtual Call Center Using a
Peer-to-Peer Approach ... 425

Munir Cochinwala, Namon Jackson, Hyong Sop Shim, Eric Sigman

Analysis of Mobile Radio Access Network Using the Self-
organizing Map .. 439

Kimmo Raivio, Olli Simula, Jaana Laiho, Pasi Lehtimaki

SHORT PAPER SESSION 3 Configuration and Architectures 453

An Architecture for Provisioning IP Services in an Operations Support
System .. 455

Ajita John, Binay Sugla, Hari Krishnan, Edwin Park, Ami Raghu,
Roshan Sequiera, Ajay Wanchoo

Wireless Terminal Management Architectures .. 459
Radu State

A Scalable and Efficient Inter-domain QoS Routing Architecture
for Diffserv Networks .. 463

Haci A. Mantar, Junseok Hwang, Steve J. Chapin, Ibrahim Okumus

Software Distribution for Wireless Devices: A Reconfigurable
Approach .. 469

Grainne Foley, Fergus O'Reilly

xi

x

VPDC: Virtual Private Data Center: A Flexible and Rapid Workload-
management System .. 473

Mineyoshi Masuda, Yutaka Yoshimura, Toshiaki Tarui,
Toru Shonai, Mamoru Sugie

X-CLI: CLI-based Management Architecture using XML 477
Byung-Joon Lee, Taesang Choi, Taesoo Jeong

A Dynamic SNMP to XML Proxy Solution .. 481
Ricardo Neisse, Lisandro Zambenedetti Granville,
Diego Osorio Ballve, Maria Janilce Bosquiroli Almeida,
Liane Margarida Rockenbach Tarouco

Interact-DDM: A Solution for the Integration of Domestic Devices on
Network Management Platforms ... 485

Antonio E. Martinez, Ruben Cabello, Francisco J. Gomez,
Javier Martinez

SESSION 9 Information Modelling 489

An SMIng-centric Proxy Agent for Integrated Monitoring and
Provisioning ... 491

Emmanuel Nata/, Olivier Festor, Guillaume Doyen

Towards XML Oriented Internet Management.. .. 505
Frank Strauj3, Torsten Klie

Grid Object Description: Characterizing Grids .. 519
Gerd Lan/ermann, Bettina Schnor, Edward Seidel

SESSION 10 SLA / Quality of Service 533

Policy Specification and Architecture for Quality of
Service Management .. 535

Nathan Muruganantha, Hanan Lutfiyya

Resource Access Management for a Utility Hosting
Enterprise Applications .. 549

Jerry Rolia, Xiaoyun Zhu, Martin Arlitt

SLA-driven Management of Distributed Systems Using the Common
Information Model ... 563

Markus Debusmann, Alexander Keller

xii

Contents xi

SESSION 11 Management System Design 577

A Management-aware Software Development Process Using
Design Patterns .. 579

Oliver Mehl, Mike Becker, Andreas Koppel, Partho Paul,
Daniel Zimmermann, Sebastian Abeck

Managing Virtual Storage Systems: An Approach Using
Dependency Analysis ... 593

Andrzej Kochut, Gautam Kar

Design and Implementation of a Generic Software Architecture
for the Management of Next-Generation Residential Services 605

Filip De Turck, Stefaan Vanhastel, Koert Vlaeminck, Bart Dhoedt,
Piet Demeester, Filip Vandermeulen, Frederik De Backer,
Francis Depuydt

SESSION 12 Fault Management 619

Using Neural Networks to Identify Control and Management Plane
Poison Messages .. 621

Xiaojiang Du, Mark A. Shayman, Ronald Skoog

Probabilistic Event-driven Fault Diagnosis Through Incremental
Hypothesis Updating .. 635

Malgorzata Steinder, Adarshpal S. Sethi

Hierarchical End-to-End Service Recovery ... 649
Mohamed El-Darieby, Dorina Petriu, Jerry Rolia

SESSION 13 Power and Optical Management 663

GMPLS Fault Management and Its Impact on Service Resilience
Differentiation .. 665

Marcus Brunner, Charlotte Hullo

Functional Evaluation of an Integrated IP over WDM
Management Solution .. 679

Joan Serrat, Eduardo Grampin, Lampros Raptis, Fotis Karayannis,
Kostas Vaxevanakis, Dimitris Chronis, Harris Katopodis,
Gerard Hoekstra, Willem Romijn, Alex Galis, Eugene Kozlovski

xiii

Preface

Welcome to 1M 2003, the eighth in a series of the premier international technical
conference in this field. As IT management has become mission critical to the
economies of the developed world, our technical program has grown in relevance,
strength and quality. Over the next few years, leading IT organizations will
gradually move from identifying infrastructure problems to providing business
services via automated, intelligent management systems. To be successful, these
future management systems must provide global scalability, for instance, to support
Grid computing and large numbers of pervasive devices. In Grid environments,
organizations can pool desktops and servers, dynamically creating a virtual
environment with huge processing power, and new management challenges. As the
number, type, and criticality of devices connected to the Internet grows, new
innovative solutions are required to address this unprecedented scale and
management complexity. The growing penetration of technologies, such as WLANs,
introduces new management challenges, particularly for performance and security.

Management systems must also support the management of business processes
and their supporting technology infrastructure as integrated entities. They will need
to significantly reduce the amount of adventitious, bootless data thrown at consoles,
delivering instead a cogent view of the system state, while leaving the handling of
lower level events to self-managed, multifarious systems and devices. There is a
new emphasis on "autonomic" computing, building systems that can perform routine
tasks without administrator intervention and take prescient actions to rapidly recover
from potential software or hardware failures. Web services, with public interfaces
and bindings described using XML, are often proposed as the latest model for
interaction between management systems and applications.

These are some of the large background issues that provide a setting for the
specific topics that will be covered by an ensemble of 41 papers, 6 panels, 24
posters, 16 tutorials, and 6 invited speakers. Our Technical Program Committee
(TPC) consists of 48 members residing in 15 countries in Asia, Europe and the
Americas. These members have helped us prepare an excellent technical program,
covering areas such as Provisioning, Modeling, Wireless, Quality of Service, Faults,
Power, Optical, Configuration, Peer to Peer, Intrusion Detection, Accounting,

xiv Gemuin Goldszmidt, Jurgen Schonwalder

Policies, and Performance Management. In addition, we have invited six outstanding
leaders to present multiple interesting perspectives on different aspects of IT that
relate to our field.

We received 149 paper submissions from all over the world, representing
research contributions in a wide variety of topics related to network and systems
management. The submissions were distributed among TPC members and additional
reviewers, resulting in 635 independent expert technical reviews, an average of 4.3
reviews per paper. After a rigorous evaluation process, 24 members of the TPC met
on October 23-25, 2002, in Montreal, Canada. At this meeting, we strived to pick
the final 41 high-quality papers for technical presentations in 1M 2003, the most
selective rate of acceptance of any 1M conference to date. The topical coverage of
the selected papers represents the excitement and diversity present in this field. In
addition, the TPC selected 24 short papers that represent the latest ongoing research
and development work on network operations and management. These short papers
will also be presented in poster sessions, enabling greater interaction directly with
the authors.

In closing, we thank the authors of all submitted manuscripts for their effort and
creativity, and the reviewers who provided valuable feedback that helped the authors
to evince their contributions. Special thanks to the members of the TPC who
participated at the meeting in Montreal, and to all the additional reviewers, for their
valuable and detailed comments. Our gratitude goes also to the session chairs who
ensured that the accepted papers addressed the concerns raised by the reviewers. We
warmly thank all those who have participated in and supported this conference, and
in particular the active members of the Organizing and Technical Program
Committees. Finally, a number of individuals deserve special mention, including
Doug Zuckerman, our General Chair, for his inspiring leadership, Peter Kropf for his
assistance in providing the local arrangements for the TPC meeting in Montreal,
Gayle Weisman of IEEE Communications Society for her vim in managing the
many aspects of this symposium, and Yana Lambert of Kluwer, for the production
of these proceedings.

German Goldszmidt and Jiirgen ScMnwalder
TPC Co-Chairs
January 2003

xvi

Symposium Committees

ORGANIZING COMMITTEE

General Chair
Doug Zuckerman, Doug Zuckerman Associates, USA

Technical Program Co-Chairs
German Goldszmidt, IBM Research, USA

Jiirgen SchOnwalder, University of Os nab ruck, Germany

PatronlExhibits Chair
Shri Goyal, Pragati-Path, USA

Tutorial Program Chair
Gabi Dreo Rodosek, Leibniz Supercomputing Center, Germany

Panels Co-Chairs
Nelson Fonseca, University of Campinas, Brazil
Felix Wu, University of California at Davis, USA

PosterlBirds-of-a-Feather Chair
Masum Hasan, Cisco, USA

Keynotes/Distinguished Experts Panel Chair
Scott Marcus, Federal Communications Commission, USA

Finance Chair
Raouf Boutaba, University of Waterloo, Canada

Treasurer
Bruce Worthman, IEEE Communications Society, USA

Publicity Chair
Roberta S. Cohen, IEEE Communications Society, USA

xvi

Local Arrangements Chair
John Strassner, Intelliden, USA

Secretary
Jerry McCollom, Agilent Technologies, USA

Special Events Chair
Kimberly Strassner, Premier Occasions, Inc., USA

IEEElComSoc Coordinator
Gayle Weisman, IEEE Communications Society, USA

STEERING COMMITTEE

Salah Aidarous, USA

RaoufBoutaba, University of Waterloo, Canada

Aurel Lazar, Columbia University, USA
Christian Rad, AT&T, USA
Veli Sahin, University of Texas at Dallas, USA

Morris Sloman, Imperial College London, UK
Doug Zuckerman, Doug Zuckerman Associates, USA

TECHNICAL PROGRAM COMMITTEE

Sebastian Abeck, University of Karlsruhe, Germany
Ehab AI-Shaer, DePaul University Chicago, USA

Nikos Anerousis, VoiceMate, USA
RaoufBoutaba, University of Waterloo, Canada
Nevil Brownlee, University California at San Diego, USA

Marcus Brunner, NEC Europe Ltd., Germany

Mark Burgess, Oslo University College, Norway

Omar Cherkaoui, University of Quebec in Montreal, Canada

Alexander Clemm, Cisco Systems, USA
Luca Deri, NETikos S.p.A., Italy

Gabi Dreo Rodosek, Leibniz Supercomputing Center, Germany

Masayoshi Ejiri, Fujitsu, Japan

Metin Feridun, IBM Research, Switzerland

Olivier Festor, LORIA-INRIA, France
Kurt Geihs, Technical University Berlin, Germany

Heinz-Gerd Hegering, University of Munich, Germany

Joseph Hellerstein, IBM Research, USA
James Won-Ki Hong, POSTECH, Korea

xviii

Symposium Committees

Cynthia Hood, Illinois Institute of Technology, USA

Gabriel Jakobson, Smart Solutions Consulting, USA

Alexander Keller, IBM Research, USA

Yoshiaki Kiriha. NEC, Japan
Peter Kropf, University of Montreal, Canada

Lundy Lewis, University of New Hampshire, USA

Antonio Liotta, University of Surrey, UK

Emil Lupu, Imperial College London, UK

Hanan Lutfiyya, University of Western Ontario, Canada

Jean-Philippe Martin-Flatin, CERN, Switzerland

Subrata Mazumdar, Avaya Labs Research, USA

Jose Marcos Nogueira, Federal University of Minas Gerais, Brazil

George Pavlou, University of Surrey, UK

Aiko Pras, University ofTwente, The Netherlands

Danny Raz, Technion, Israel

Joan Serrato Universitat Politecnica de Catalunya, Spain

Adarshpal Sethi, University of Delaware, USA
Michelle Sibilla, University Paul Sabatier, France
Morris Sloman, Imperial College London, UK

Rolf Stadler, KTH Stockholm, Sweden

Burkhard Stiller. ETH ZurichiUniBw Munich, Switzerland/Germany
John Strassner, Intelliden, USA
Mehrnet Ulerna, Manhattan College, USA
Robert Weihrnayer. Verizon, USA
Carlos Becker Westphall. Federal University of Santa Catarina, Brazil

Bert Wijnen, Lucent Technologies
Felix Wu, University of California at Davis, USA
Makoto Yoshida, The University ofTokyoINIT-AT, Japan

REVIEWERS

Masayuki Abe, NIT Info. Sharing Labs, Japan
Seongbok Baik, Illinois Institute of Technology, USA

Arosha Bandara, Imperial College London, UK
Frederico Bastos, Federal University of Minas Gerais, Brazil

Michael Bauer, University of Western Ontario, Canada
Bela Berde, Alcatel, France

Christos Bohoris. University of Surrey, UK
Herbert Bos, University Leiden, The Netherlands

Seraphin Calo, IBM Research, USA

Geoff Carpenter, FARGOS Development, LLC, USA

Roberta Cohen, IEEE Communications Society, USA

xvii xix

xviii

Juliana da Cunha, Federal University of Pernambuco, Brazil

Markus Debusmann, FH Wiesbaden, Germany
Jorg Diederich, Technical University Braunschweig, Germany
David Durham, Intel, USA

Mohamed EI-Darieby, Carleton University, Canada

Jeffrey Evans, Illinois Institute of Technology, USA

Wilson P. Paula Filho, Federal University of Minas Gerais, Brazil

Paris Flegkas, University of Surrey, UK

Nelson Fonseca, State University of Campinas, Brazil

Kenichi Fukuda, Fujitsu Laboratories, Japan

Errin Fulp, Wake Forest University, USA

Alex Galis, University College London, UK

Luciano Gaspary, Universidade do Vale do Rio dos Sinos (UNISINOS), Brazil

Stelios Georgoulas, University of Surrey, UK
Jan Gerke, ETH Zurich, Switzerland
Lisandro Granville, Federal University of Rio Grande do Sui, Brazil

Robert Haas, IBM Research, Switzerland
Takeo Hamada, Fujitsu Laboratories of America, USA

Hazem Hamed, DePaul University Chicago, USA
Anwar Haque, University of Waterloo, Canada

Hasan, ETH Zurich, Switzerland
Peer Hasselmeyer, Darmstadt University of Technology, Germany
David Hausheer, ETH Zurich, Switzerland
Klaus Herrmann, Technical University Berlin, Germany
Vasil Hnatyshin, University of Delaware, USA
Kouhei Iseda, Fujitsu Laboratories, Japan
Srini vas an J agannathan, University of California Santa Barbara, USA

Robert Ka1cklosch, Technical University Berlin, Germany
Kohnosuke Kawashima, Tokyo University of Agriculture and Technology, Japan
Chris Kenyon, IBM Research, Switzerland

Sungsoo Kim, Illinois Institute of Technology, USA

Krish Krishnakumar, Imperial College London, UK

Heiko Krumm, University of Dortmund, Germany

Jorge E. Lopez de Vergara, Universidad Politecnica de Madrid, Spain
Jaewon Lee, Illinois Institute of Technology, USA

Simon Leinen, Switch, Switzerland
Tianshu Li, University of Waterloo, Canada

Henrique Pacca Luna, Federal University of Minas Gerais, Brazil

Leonidas Lymberopoulos, Imperial College London, UK
Sheng Ma, IBM Research, USA

Edmundo Madeira, University of Campinas, Brazil
Dilmar Meira, Pontifical Catholic University of Minas Gerais, Brazil
Thomas Meuser, Niederrhein University of Applied Science, Germany

xx

Symposium Committees

Jan Mischke, ETH Zurich, Switzerland
Takashi Miyamura, NIT NS Labs, Japan

Dovel Myers JR, Ohio University, USA
Giovanni Pacifici, IBM Research, USA

Stefan Pleisch, EPFL, Switzerland

Randy Presuhn, BMC Software, USA

Jiirgen Quittek, NEC Europe Ltd., Germany

Christian Rad, AT&T, USA

Lopa Roychoudhuri, DePaul University Chicago, USA
Sambit Sahu, IBM Research, USA
Mohammed Abdul Saifulla, Indian Institute of Technology Madras, India

Luis Sanchez, Xapiens Corporation, USA
Stefan Schulz, Technical University Berlin, Germany

Thomas Schwotzer, Technical University Berlin, Germany

Jochen Seitz, University of Ilmenau, Germany

Radu State, Motorola Labs, France

Malgorzata Steinder, University of Delaware, USA
Mike Stolarchuk, F ARGOS Development, LLC, USA

Frank StrauB, Technical University Braunschweig, Germany
Masato Suyama, NIT-AT, Japan
Yongning Tang, DePaul University Chicago, USA
Andreas Tanner, Technical University Berlin, Germany
Axel Tanner, IBM Research, Switzerland
Andreas Ulbrich, Technical University Berlin, Germany
Herwig Unger, University of Rostock, Germany
Remco van de Meent, University ofTwente, The Netherlands
Marten van Sinderen, University of Twente, The Netherlands
Ning Wang, University of Surrey, UK
Andrea Westerinen, Cisco, USA
Jin Xiao, University of Waterloo, Canada
Alvin Yew, University of Surrey, UK
Diego Zamboni, IBM Research, Switzerland
Bin Zhang, DePaul University Chicago, USA
Dong Zhu, University of Delaware, USA

Nur Zincir-Heywood, Dalhousie University, Canada
Arnoud Zwemmer, Intersil, The Netherlands

xix xxi

Introduction

Managing It All

Overview

In recent years, the world economy, and especially the telecom sector, has been
hard hit by massive 'corrections,' resulting in wide-scale industry redefinition and
massive downsizing. The world is looking for solutions that will enable the
recovery, with network management positioned to playa key role. 1M 2003 will
provide the meeting ground for experts and practitioners from around the world to
present papers and interact with the goal of helping the world 'manage it all.' Of
course, it may not be practical - or even desirable - to 'manage it all.' However,
from a 'management-centric' point of view, management (and control) will playa
pivotal role as providers of networks and services seek ways to restore business and
social value and set a stage for long-term growth. It is in this spirit that 1M 2003
was held at the Broadmoor Hotel in Colorado Springs, 24-28 March 2003. It is
hoped that this proceedings will have long-lasting value in preserving and
disseminating the many high-quality, influential papers presented at the conference.

History

Each 1M (previously ISINM) had a general theme, hoping to capture the essence
of what was most important in network management at a particular time. Indeed,
many of the paper sessions, panels and tutorials addressed different aspects of the
same theme issue throughout the course of the conference week and in the
proceedings. So, let us look at the themes for a glimpse of 1M's - and network
management's - past:

1989 (Boston): Improving Global Communication through Network Management
1991 (Crystal City): Worldwide Advances in Integrated Network Management
1993 (San Francisco): Strategies for the Nineties
1995 (Santa Barbara): Rightsizing in the Nineties
1997 (San Diego): Integrated Management in a Virtual World

xxii Douglas N. Zuckerman

1999 (Boston): Distributed Management for the Networked Millennium
2001 (Seattle): Integrated Management Strategies for the New Millennium
2003 (Colorado Springs): Managing It All

In the beginnings, the main focus was on enlightening the IT industry and
researchers on the importance and necessity of integrating diverse, often
incompatible and proprietary, network management systems in a highly complex
and costly operating environment. This was followed by development of standards
(such as CMIP, SNMP and 'the older' TL-1), sometimes at odds with each other.
For the Telco industry, it brought the TeleManagement Forum, whose role was (and
continues to be) to pull together diverse approaches into workable solutions that
meet service provider business needs. As the decade reached its close, focus turned
to the New Millennium, which, if the Y2K bug didn't set us back to the Stone Age
(or at least 1900), would be a 'networked' millennium, with an even more prominent
role for management, even if more distributed than centralized. However, a year or
two into the new millennium, a new reality became apparent: the Internet may not be
growing quite as fast as predicted. There was likely a capacity glut, and many of the
startups that sprung up like weeds during this phenomenal period of perceived
network growth were just as quickly going out of business or being absorbed by
larger, more stable firms. But then, many of these larger companies started
becoming less stable and had no choice but to have massive force reductions to
remain viable. It is hoped that during the 1M 2003 year, the 'bottom' will have been
reached, and that much of the leading-edge work presented in these proceedings will
help provide the technological energy for a rebirth of our industries and a
revitalization of future 1M and NOMS events.

Future Events

As the management world continues evolving, this ongoing series of
international symposia will continue to foster and promote cooperation among
individuals of diverse and complementary backgrounds, and to encourage
international information exchange on all aspects of network and distributed systems
management. To broaden the scope of these symposia, the IEEE Communications
Society Technical Committee on Network Operations and Management (CNOM),
and the International Federation for Information Processing (IFIP) Working Group
6.6 on Management of Networks and Distributed Systems have been successfully
collaborating on the two premier technical conference series in the area of network
and systems management, operations and control - the International Symposium on
Integrated Network Management (1M) and the Network Operations and
Management Symposium (NOMS). 1M is held in odd-numbered years, and NOMS
is held in even-numbered years. NOMS 2004 will take place in Seoul, Korea on 19-
23 April 2004. The next International Symposium on Integrated Network
Management (1M 2005) is expected to be held in the Spring of 2005.

xxiv

Introduction xxiii

Starting in 1990, IEEE CNOM and IFIP WG 6.6 have also worked together to
organize the International Workshops on Distributed Systems: Operations and
Management (DSOM), which take place in October of every year. DSOM 2003 will
take place 20-22 October 2003 in Heidelberg, Germany. For more information on
future 1M, NOMS, and DSOM events, and other related activities, please get in
touch with the conference organizers.

Acknowledgments

Organizlng 1M 2003 began in April 2000, during NOMS. Organizing a
conference like 1M is a very big job. I thank the Organizing Committee members
for their perseverance and proactive efforts to make this 1M one of the best ever. In
particular, I would like to thank Raouf Boutaba, our finance chair and representative
of the 1M/NOMS Steering Committee, for his persistent efforts at assuring a high
value experience for the attendees. Also, since the technical program underpins all
aspects of the overall program, I thank TPC Co-Chairs German Goldszmidt and
Jiirgen SchOn walder for insisting on the highest quality standards.

Special thanks also go to the organizing committee members: Robbie Cohen,
Gabi Dreo Rodosek, Nelson Fonseca, Shri Goyal, Masum Hasan, Scott Marcus,
Jerry McCollum, John Strassner, Kim Strassner and Felix Wu. Each of them played
a key role on the 1M 2003 organizing committee team.

Special thanks also go to several IEEE Communications Society staff members:
Gayle Weisman diligently and cheerfully worked with us on almost every aspect of
the event planning and implementation, serving as the primary 'point of contact' for
almost all issues - thank you, Gayle! Bruce Worthman is to be thanked for helping
us keep the finances straight and in line with Communications Society expectations.
And, last but not least, thanks to Debora Kingston for leaving 'no clause unturned'
in renegotiating our arrangements with the hotel.

I would also like to thank the IFIP WG 6.6 Chair, Raouf Boutaba, and the
CNOM chair, Salah Aidarous, for the support they facilitated through these technical
committees. Finally, I acknowledge and appreciate the substantive efforts of
Branislav Meandzija and Wolfgang Zimmer in the early planning for 1M 2003.

Douglas N. Zuckerman
General Chair
January 2003

xxv

SESSIONl

Anomaly I Intrusion Detection

Chair: Felix Wu
University of California at Davis, USA

AN SNMP AGENT FOR
STATEFUL INTRUSION INSPECTION

Luciano Paschoal Gaspary
Universidade do Vale do Rio dos Sinos - Centro de Ciencias Exatas e Tecnol6gicas
Av. Unisinos 950 - CEP 93.022-000 - Sao Leopoldo, Brazil
paschoal@exatas.unisinos.br

Edgar Meneghetti
Liane Rockenbach Tarouco
Universidade Federal do Rio Grande do Sul- Instituto de Informatica
Av. Bento Gonfalves 9500 - CEP 91.591-970 - Porto Alegre, Brazil
edgar@cesup.ufrgs.br, liane@penta.ufrgs.br

Abstract:

Keywords:

Intrusion Detection Systems (IDSs) have been increasingly used in organizations, in ad
dition to other security mechanisms, to detect intrusions to systems and networks. In the
recent years severallDSs have been released, but (a) the high number of false alarms gen
erated, (b) the lack of a high-level notation for attack signature specification, and (c) the
difficulty to integrate IDSs with existing network management infrastructure hinder their
wide-spread and efficient use. In this paper we address these problems by presenting an
SNMP agent for stateful intrusion inspection. By using a state machine-based language
called PTSL (Protocol Trace Specification Language), the network manager can describe
attack signatures that should be monitored. The signatures to be used by the agent are
configured by the network manager through the IETF Script Mm. Once programmed, the
agent starts monitoring the occurrence of the signatures on the network traffic and stores
statistics, according to their occurrence, in an extended RMON2 Mm. These statistics may
be retrieved from any SNMP-based management application and can be used to accom
plish signature-based analysis. The paper also describes two experiments that have been
carried out with the agent to assess its performance and to demonstrate its effectiveness in
terms of false alarm generation rates.

Network security management, intrusion detection, misuse detection, stateful inspection,
intrusion detection SNMP agent, RMON2.

1. INTRODUCTION
Due mainly to the weaknesses of firewall technologies in blocking some malicious

incoming network traffic and to the growing number of attacks being initiated from
hosts located in the same network as the victim host, Intrusion Detection Systems
(IDSs) have been incorporated into the organizations security infrastructure. In order
to satisfy the demand for such systems, several IDSs as Snort [1], NFR [2], Bro [3] and
Stat [4] (to mention just a few) have been released to the market in the recent years.
Despite the intensive research on intrusion detection, (a) reducing the false alarm (false
positive) rates generated by IDSs, (b) providing the network manager with a high-level
notation for attack signature specification, and (c) integrating security mechanisms

http://dx.doi.org/10.1007/978-0-387-35674-7_66

4 L. Gaspary, E. Meneghetti, L. Tarouco

with the already existing network management infrastructure are some of the current
challenges in the field.

Intrusion Detection Systems employ either anomaly or signature analysis (mis
use) to detect attacks. Anomaly-based analysis uses statistical methods to distinguish
normal from unexpected behavior, while signature-based analysis tries to match the
content of data sources (e.g. network packets and system logs) with the specification
of known attacks (attack signatures). Regardless of the technique used, around 90%
of the alarms generated by an IDS are false positives [5].

In IDSs that employ anomaly analysis, it is difficult to determine what should be
considered normal and abnormal. While attacks such as distributed denial of service,
which generate considerable network traffic changes, may be detected at close to zero
percent false positive rates (good examples may be found in [6, 7]), the same does not
happen to many attacks that do not produce such substantial changes in the network
traffic. In the case of these more subtle attacks, depending on the thresholds defined,
either they may not be detected or many false alarms may be generated.

With IDSs that use signature analysis, the problem of high false alarm rates also
occurs, mainly due to the limited expressive capability of the languages available to
model attack signatures and to incomplete representation of signatures. In general, the
signature concern is to observe packet fields and not protocol interactions (stateless
inspection). An example of the effect of this limitation is the behavior of some lOSs
when configured to detect the TCP SYNfI'CP RST port scanning technique. The
signature used by them consists of the observation of TCP packets with the RST flag
on. The problem of this approach is that a TCP RST packet is not generated only
by a station that does not have a certain kind of service available (when it receives
a connection request). A station also uses this type of packet in order to restart an
ongoing connection. As those lOSs are not able to correlate packets or the signature
is not precise enough they cannot distinguish between TCP RSTs that represent port
scanning from those used during a conventional connection, triggering alarms in both
cases. The problem of false alarm generation is also related to the fact that we are not
always able to capture the essence of the potential threat. The techniques used by the
intruders and the threats posed by them to the system evolve over time and become
more sophisticated, while the signatures lag behind. In some cases, there is also a
motivation to specify a signature that will generate a large false alarm rate because the
intent is to capture and analyse other but similar hypothetical scenarios.

With reference to the integration of security mechanisms and current Network Man
agement Systems (NMSs), there is still a wide gap between security and network
management, despite some initiatives (as the ones proposed in [6, 7, 8]). There is no
Management Information Base (MIB) related to intrusion detection available. Sev
eral Network Management Systems offer an interface to configure Intrusion Detection
Systems and are able to receive events generated by them. However, as stated by Qin
et al., these systems lack efficient and effective capabilities of analyzing and managing
the alarms sent by the IDS.

This paper addresses the false alarm rate, the lack of a high-level notation for at
tack signature specification and the lack of integration of IDSs and NMSs problems,
by presenting an SNMP agent for intrusion detection that makes stateful inspection of
data (packets) collected directly from the network. By using a state machine-based
language called PTSL (Protocol Trace Specification Language) [9], the network man
ager can describe attack signatures that should be monitored. The signatures to be

An SNMP Agent for Stateful Intrusion Inspection 5

used by the agent are configured by the network manager through the IETF Script
MIB [10]. Once programmed, the agent starts monitoring the occurrence of the sig
natures on the network traffic and stores statistics, according to their occurrence, in
an extended RMON2 MIB [11]. These statistics may be retrieved from any ordinary
SNMP-based management application and can be used to accomplish signature-based
analysis.

The main contribution of our work is the development of an agent that is able
to do stateful inspection. As it will be shown along the paper, the agent provides
accurate detection of both brute force and subtle attacks (concerning network traffic
pattern changes). We have also developed a high-level and easy-to-Ieam language to
specify attack signatures. The agent is fully integrated to the SNMP architecture. The
configuration of the agent and the retrieval of results may be done using the SNMPv3
protocol.

The paper is organized as follows. Section 2 presents some related work. Section
3 presents PTSL language and some attack signatures described using this language.
Section 4 approaches the internal architecture of the agent. In section 5 experiments
that have been carried out with the agent are described. Section 6 closes the paper by
presenting some final remarks and future work perspectives.

2. RELATED WORK
The problem of false alarms originates from the lack of accuracy in the process of

detecting intrusions. As mentioned in the introduction, in the case of signature-based
lOSs this imprecision is closely related (a) to the capabilities of the attack signature
specification language provided and the respective intrusion detection engine or (b)
to inprecise signature representation. Snort [1], for instance, uses a pattern matching
model for detection of network attack signatures using identifiers such as TCP fields,
IP addresses, TCPIUDP port numbers, ICMP type/code, and strings contained in the
packet payload. Filtering rules are applied to each packet and stateful analysis is only
partially provided (limited to TCP stream reassembly and inspection, and detection
of some portscan e fingerprinting attacks), leading to a high number of false alarms.
NFR [2] and Bro [3] suffer from the same problem. Stat! [4], on the other hand, is
an extensible state/transition-based attack description language used by Stat intrusion
detection suite. This language allows one to describe computer penetrations as se
quences of actions that an attacker performs to compromise a computer system. The
detailed description of the signatures specified in Stat! results in a lower number of
false alarms (if compared to Snort, NFR and Bro).

Julisch et aI propose in [12] some techniques to process alarm logs and filter false
positives. This approach is based on the identification of alarm patterns, on the under
standing of their root cause and, if non-malicious, on the usage of these alarm patterns
for filtering. Finding filtering rules and the risk of filtering out true positives are some
of the difficulties to implementing this approach.

None of the Intrusion Detection Systems listed so far offer mechanisms to make
their integration with Network Management Systems easier. In the recent years, how
ever, some efforts have been made to bridge this gap [6, 7,8]. Qin et aI. have proposed
in [6, 7] the use of Mill II variables for network intrusion detection. This detection
technique is clearly anomaly-based and, therefore, tend to be more efficient to detect
attacks that generate considerable changes in the network traffic. In [8], Qin et. al

6 L. Gaspary, E. Meneghetti, L. Tarouco

extend their previous work by proposing (a) an approach to integrate NMSs and IDSs
and (b) a hierarchical correlation architecture for improving the detection accuracy
and identifying coordinated intrusions.

Our work should be regarded as a complement to the efforts just mentioned. By
proposing an SNMP agent for stateful intrusion inspection we provide an alternate
approach, based on signature analysis, that is able to cope with both traffic-based in
trusions (e.g DDoS) and slower traffic and stealth attacks, generating few false alarms.
In the next section we introduce PTSL (Protocol Trace Specification Language) that
is the language to be used by the network manager to specify attack signatures.

3. REPRESENTATION OF ATTACK SIGNATURES
USINGPTSL

PTSL (Protocol Trace Specification Language) is a language developed to allow
the representation of protocol traces based on the concept of finite state machines
(FSM). 1t is part of Trace, an architecture that supports high-layer protocol, service and
application management through passive observation of protocol interactions (traces)
in the network traffic. A full description of the language can be found in [9]. In this
paper, we focus on how PTSL can be used to describe stateful network-based attack
signatures.

The language is composed of graphical (Graphical PTSL) and textual (Textual
PTSL) notations. These notations are not equivalent. The textual notation allows the
complete representation of a trace (attack signature), including the specification of the
FSM and the events that trigger transitions. In turn, the graphical notation covers only
a subset of the textual notation, offering the possibility of graphically representing the
FSM and only labelling the events that trigger transitions.

3.1 Graphical PTSL Notation
Several attack signatures have been modelled using PTSL. Figures 1 and 2 illustrate

some of these specifications, described using the graphical notation of the language.
Figure 1 shows a signature that can be used to detect the TCP SYNffCP RST port
scanning technique.

r",co "TCPSYN - TCPRsr

TCPSYN

0D ,--,-,
TCPRST

Ve"lon: 1.0
Trace 10 detect po<1 seanning,

Key: TCP, SYN. RST, pO!1 scanning
Port:
Owner: lueiaJlO Paschoal Gaspary
last Update: T ue, 16 Aug 2OCX) 15:30:58

Figure 1. Signature to detect TCP SYNrrCp RST port scanning

Figure 2 shows other examples. In (a) one can see the signature to detect the
rpcinfo command (available in Unix environments). This command returns a list
of server processes that accept RPCs (Remote Procedure Calls), which is a useful in
formation for the intruder. Similarly, in (b) it is shown the signature to detect the
shoWlllount command. Although (a) and (b) may appear in legitimate traffic, the oc-

An SNMP Agent for StateJuIIntrusion Inspection 7

currence of these signatures during unusual time periods or with high frequency can be
regarded as attack evidence (e.g. someone scanning stations running portmapper).
The signature described in (c) is composed of an HTTP request where the attacker
uses the string /scripts/ .. \ %CO\ %AF . ./winnt/system32/cmd.exe?/c+dir+c: \ as argu
ment. An URL like this indicates that he intends to execute some script or CGI at the
HTTP server to obtain a list of the files located in the server. The signature to detect
the SYN flood attack is depicted in (d). This attack consists of sending a huge number
of connection setup packets (TCP packet with the SYN flag on with a fake source ad
dress) to a target host. This fake address must be unreachable or non-existent (usually
a reserved value). When the target host receives these SYN packets, it creates a new
entry on its connection table and sends a SYN/ ACK packet back to the possible client.
After sending the reply packet, the target host waits for acknowledgement from the
client to establish the connection. As the source address is fake, the server will wait
a long time for this reply. In a given time, the connection queue of the server will be
full and all new connection requests will be discarded, creating a denial of service.
Unlike other examples presented, this attack is identified by observing unsuccessful
occurrences of the trace.

RPC -msg rypo-o&&

eCb
RPC - msg rypo.1

RPC Get POf1 Mounl

(a)

T,.ce 'HTTPsu,,*lslrlng' Trace "TCP Syn !bod"

TCPSYNIACK 0D GET G e(;D iwiMVsystem3:>Jcm
5000 dexe?ki-dir+c.1

'rUACK

(e) (d)

Figure 2. Graphical representation of attack signatures

Representation of states and transitions. As for PTSL graphical notation,
one can observe from the previous examples that states are represented by circles.
From the initial state (idle) other n states can be created, but they must always be
reachable. The final state is identified by two concentric circles. In all examples
presented, the initial and final states are the same. State transitions are represented by
unidirectional arrows. The continuous arrow indicates that the transition is triggered
by the client host, while the dotted arrow determines that the transition is triggered by
an event coming from the server host. The text associated with a transition is merely
a label to the event that triggers it; the full specification can only be made via textual
notation.

8 L. Gaspary, E. Meneghetti, L. Tarouco

Representation of timeouts. Transitions, by default, do not have a time limit to
be triggered. To associate a timeout with a transition, an explicit value (in millisec
onds) must be set. In the example shown in figure 2d, the value 5000 associated to
transition TCP ACK indicates that the transition from state 2 to the initial state has up
to five seconds to be triggered.

Representation of information for cataloging and version control. The
graphical notation also offers a constructor where information about the signature,
which are relevant to cataloguing and version control of specifications, are included.
The data stored for a signature are: Version, Description, Key, Owner and Last
Update. Besides these data, there is also a Port field, used to indicate the TCP or
UDP port of the monitored protocol.

3.2 Textual PTSL Notation
Figure 3 presents the textual specification of the signature previously shown in fig

ure 1. All specifications written in Textual PTSL start with the Trace keyword and
end with the EndTrace keyword (lines 1 and 36). Catalog and version control infor
mation come right after the Trace keyword (lines 2-7). Forthwith, the specification
is split into three sections: MessagesSection (lines 9-21), GroupsSection (not
used in this example and not detailed in the paper) and StatesSection (lines 23-
34). In MessagesSection and GroupsSection the events that trigger transitions are
defined. The FSM that specifies the trace is defined in StatesSection.

Representation of messages. Whenever the fields of a captured packet match
the ones specified at a Message for the current state, a transition is triggered in the
FSM. The way those fields are specified depends on the type of protocol to be mon
itored. In the case of binary protocols (e.g. IP, TCP and UDP), known by their fixed
length fields, the identification of a field is determined by a bit offset starting from the
beginning of the protocol header; it is also needed to specify the size of the field, in bits
(this is the Bi tCounter strategy). On the other hand, in the case of variable-length
character-based protocols, where fields are usually split by white space characters
(e.g. HTTP), the identification of a field is made by its position inside the message
(FieldCounter strategy). In GET Iscripts/ .. \ %CO\ %AF . .lwinntlsystem321cmd.exe?
Ic+dir+c: \' for instance, GET is at position 0 and Iscriptsl .. \ %CO\ %AF . .lwinntl
system321cmd.exe?/c+dir+c:\ is at position 1.

The signature shown in figure 1 is for a binary protocol. The TCP SYN message
specification is shown in figure 3 (lines 11-14). In line 12 the message is defined
as being of type client, meaning that the state transition associated with the mes
sage will be triggered by the client host. In line 13 the only field that is supposed
to be analyzed is specified. All information necessary to identify it are: fetch strat
egy (Bi tCounter), protocol encapsulation (Ethernet/IP), field position (110), field
length (1), expected value (1), comparison operator (=), and, optionally, a field de
scription. The reply message TCP RST is shown in lines 16-19. The message type is
defined in line 17 as server, i.e., the state transition will be triggered by the server
host. Finally, the field to be analyzed is defined in line 18. Since the messages of the
signatures illustrated in figure 2a, b and d are composed of binary protocol fields, they
should be specified in a similar way.

An SNMP Agent for Stateful Intrusion Inspection

1 Trace "TCP SYN - TCP RST"
Version: 1.0
Description: Trace to detect port scanning.
Key: TCP, SYN, RST, port scanning

sPort:
6 Owner: Luciano Paschoal Gaspary

Last Update: Tue, 16 Aug 2000 15:30:58 GMT

9 MessagesSection
10

11 Message "TCP SYN"
12 MessageType: client
13 BitCounter Ethernet/IP 110 1 1 "Field SYN - 1 means TCP Connect"
14 EndMessage
IS
16 Message "TCP RST"
17 MessageType: server
18 BitCounter Ethernet/IP 109 1 1 "Field RST"
19 EndMessage
20

21 EndMessagesSection
22
D StatesSection

FinalState idle
2S
26 State idle
27 "TCP SYN" GotoState 2
28 EndState
29
30 State 2
31 "TCP RST" GotoState idle
32 EndState
33

EndStatesSection
3S
36 EndTrace

Figure 3. Representation of a signature using Textual PTSL

9

As opposed to the example mentioned above, the signature specified in figure 2c
is for a character-based protocol (HTIP). The attack is composed of a single tran
sition and is recognized whenever an HTTP GET request packet with the argument
/scripts/ .. \ %CO\ %AF . .lwinntl system32Icmd.exe?/c+dir+c:\ is observed. Figure 4
presents part (the MessagesSection) of the textual specification for the trace shown
in figure 2e. Lines 3-8 describe the HTTP request. In line 5 the GET field is defined.
The information needed to identify a character-based protocol field are: fetch strategy
(FieldCounter), protocol encapsulation (Ethernet/IP/TCP), field position (0), ex
pected value (GET), comparison operator (=), and, optionally, a field description.

1 MessagesSection

Message "GET /scripts/ .. \XCO\XAF.'/winnt/system32/cmd.exe?/c+dir+c:\"
MessageType: client
FieldCounter Ethernet/IP/TCP 0 GET =

6 FieldCounter Ethernet/IP/TCP 1 /scripts/ .. \XCO\XAF .. /winnt/system32/cmd.exe?
/c+dir+c:\ =
EndMessage

10 EndMessagesSection

Figure 4. Field identification in character-based protocols

10 L. Gaspary, E. Meneghetti, L. Tarouco

Representation of the FSM. Lines 23-34 in figure 3 define the textual speci
fication of the state machine shown in figure 1. The final state is identified just after
StatesSection (line 24). The states idle and 2 are defined in lines 26-28 and 30-
32, respectively. The state specification only lists the events (messages and groups)
that may trigger transitions, indicating, for each of them, which is the next state (lines
27 and 31).

4. THE INTRUSION DETECTION SNMP AGENT
The intrusion detection agent requires as input attack signatures specified in PTSL.

The configuration of which signatures should be monitored at a given moment is made
by the network manager through the Script MIB. Once programmed, the agent starts
monitoring the occurrence of the signatures on the network traffic and stores statistics,
according to their occurrence, in an extended RMON2 Mill. These statistics may be
retrieved from any SNMP-based management application by periodically polling the
agent. In order to reduce management traffic, it is possible to use the alarm and event
RMON Mill groups instead. In this case, the network manager must configure thresh
olds to certain RMON2 Mill variables and define notifications that will be sent to the
management station when these thresholds are reached. Figure Sa and b illustrates
the communication flow between manager and agent considering both approaches.
Expression [13] and Event [14] Mills could also be used. The former provides the
manager with a flexible mechanism to define thresholds (based on expressions), while
the latter extends the capabilities of the RMON alarm and event groups by allowing
alarms to be generated for MIB objects that are on another network element.

Tme

Sai>l RrDOll2
M..!.8 r --

Iouodlsignalure
signature
conftguratlon --

gelol:ljecl ...

Agenl Time
Sctpl ROlOn
MIS MIS

"slaB "9nalul. r' --
launch sgnature

signatunt
conllguratlon --

setalo""
oI:IjecIyakJe '"

.... detecllon delo<tIon
objedvalu. notiicalioo ftno>l

abort
remove_

w .. _"
l!mHVl I

abort signalule - s!9 iii1tura
remove sgnalure l!!!My.1

- -

Figure 5. Communication flow between manager and agent

4.1 Architecture

The intrusion detection SNMP agent runs on Linux stations and was implemented
using the C language, the POSIX thread library, the NET-SNMP framework [15] and
Jasmin [16]. Figure 6 shows the agent architecture. The PTSL manager thread is
responsible for the integration between the Script MIB and the PTSL core. It updates
both the data structures used by the PTSL core and the RMON2 protocolDir table
whenever a new signature is configured to be monitored or an existing signature is

An SNMP Agent for StateJuI Intrusion Inspection 11

requested to be removed from the agent. Three more threads - queue, PTSL engine
and RMON2 - operate in a producer/consumer fashion. The first thread captures all
the packets arriving at the network interface card using the libpcap library and inserts
them in a circular queue. The second thread processes every packet in the queue,
without removing them from it, to identify if they have the characteristics expected
to allow one or more signatures to evolve in the state machine. If so, special marks
are attached to the packets. Finally, the RMON2 thread removes every packet from
the queue and, according to the markings, updates the RMON2 tables in the mySQL
database.

Intrusion Dotoetlon SNMP Agent

Figure 6. Internal organization of the agent

4.2 The Management Information Base
Every time that a signature is observed between any pair of hosts, data is stored in

the mySQL database. This database is source of information for the SNMP sub-agent
that implements an extended version of the RMON2 MIB [11]. One of the differences
between our MIB and RMON2 is that the protocolDir group, which indicates the
protocol encapsulations that the agent is able to monitor, now allows protocol traces
(attack signatures) to be indexed. Therefore, monitoring granularity is considerably
increased. Besides gathering statistics about the traffic generated by hosts using cer
tain protocols, the agent also stores information related to the occurrence of attack
signatures. Table 1 shows a set of entries that could appear in an agent protocol direc
tory.

Table 1. RMON2 protocolDir table

ID
00-00-00-01-00-00-08-00

00-00-00-01-00-00-08-00-00-00-00-17
00-00-00-01-00-00-08-00-00-00-00-17-00-00-00-50
00-00-00-01-00-00-08-00-00-00-00-17 -00-0 1-00-04
00-00-00-01-00-00-08-00-00-00-00-17 -00-0 1-00-05
00-00-00-01-00-00-08-00-00-00-00-17 -00-01-00-06

Locallndex
1
2
3
4
5
6

Description
etherZ.ip

ether2.ip.tcp
ether2.ip.tcp.http

ether2.ip.tcp.rpcinfo
ether2.ip.tcp.showmount

ether2.ip. tcp.http suspect string

As it was mentioned in the previous sub-section, the protocolDir table is auto
matically updated when a new signature is configured to be monitored or an existing
signature is requested to be removed from the agent. The ID (protocolDirID) is

12 L. Gaspary, E. Meneghetti, L. Tarouco

composed of n x 4 bytes, where n is. the number of protocols that comprise the encap
sulation [17]. The number used to identify ethernet (00-00-00-01), IP (00-00-08-00)
and high-layer protocols is never longer than 16 bits (2 bytes). Hence, to avoid con
flicts with the identification of existing protocols, IDs above 65.535 are assigned to
attack signatures (see table 1 above).

We have implemented most of the RMON2 groups, including nlHost, alHost,
nlMatrix, and alMatrix. The later stores statistical data about the signature when
it is observed between each pair of hosts at the granularity of attack signatures. Table
2 illustrates the contents of the alMatrixSD table. The semantic of the MID has not
been changed, since it still stores packet and octet rates. To determine the number of
occurrences of a signature between two hosts it is necessary to divide the number of
packets (stored in the MID) by the number of transitions that form the signature. From
the third line of the table, for example, one can infer that the signature TCP SYN -
TCP RST has been observed 127 times (254 packets divided by 2 transitions).

Table 2. Infonnation from the alMatrixSD table

Source Address
172.16.108.1
172.16.108.32
172.16.108.1

125.120.10.100

Destination Address
172.16.108.2
172.16.1 08.2

172.16.108.254
172.16.108.254

Protocol
ether2.ip.tcp.http suspect string

ether2.ip.tcp.rpcinfo
ether2.ip.tcp syn-tcp rst
ether2.ip. tcp.showmount

4.3 Signature-based Intrusion Detection

Packets
4
8

254
20

Octets
4.350
7.300

1.202.126
3.204

The agent can be used to accomplish signature-based intrusion detection. Figures 1
and 2c and d show examples of signatures that, regardless of when they are observed,
indicate the occurrence of a scanning (figure 1) or attack (figure 2c and d). To ac
curately detect them it is necessary to define how many occurrences of the signature
should be observed within a time interval in order to be considered an attack. Figure
7 presents a sample Tcl script that could be used to install and monitor the occurrence
of these signatures.

The programming of the Script MID on the agent is made with the aid of a specially
developed package (line 2). In lines 10-13 the PTSL signature is installed. In line 14
the agent is asked to start observing the network for the occurrence of the signature just
installed. Then, the script polls the agent every 120 second (line 26) to get information
(line 18) and checks whether the signature has been counted or not (line 20). If the
signature has been observed three times within an interval an alarm is generated.

The examples presented in figure 2a and b, on the other hand, can be part of le
gitimate traffic. Therefore, the identification of these network patterns as part of an
attack is not straightforward. In this case, the network manager must have a precise
characterization of the network (baseline) to be able to create rules to efficiently detect
when such traffic can be regarded an attack evidence.

5. EVALUATION OF THE AGENT
This section describes two experiments that were accomplished to assess the per

formance of the agent and its behavior regarding false positive generation rates.

An SNMP Agent for Stateful Intrusion Inspection

I package require Tnm 3. 0
package require ScriptMib 1.0

4 set oid "protocolDist. protocolDistStatsEntry. protocolDistStatsPkts .1.10"
5 set prey 0

7 if { [catch {::Tnm::snmp generator -address $agent} s] } {
::Tnm: :log exit -code runtimeError "Error creating SNMP session: $s"
}

10 if { [catch {ScriptMib:: InstallScript $ma $m_owner $m_name $m_lang $m_src \
II $m_descr $m_args $m_ltime $m_etime $m_mrun $m_mcomp} e)} {
12 : :Tnm: :log exit -code runtimeError "Error installing script: $e"
13 }

14 : :ScriptMib: :RunScript $ma $m_owner $m_name 0
15
16 proc monitor {} {
17 global s oid prey
18 set val [$s get $oid]
19 set val [lindex [lindex $val 0] 2] ;
w if {[expr $val - $prev] > 3} {
21 : :Tnm: :log "Intrusion alarm:
22 }

n set prey $val
24 }

2S : :Tnm: :job create \
-interval 120000 -error {: :Tnm: :log exit -code runtimeError $errorInfo} \

27 -exit {: :Tnm: :log exit} -command {monitor}
u vwait forever

26

Figure 7. Sample script to install and monitor the occurrence of an attack

5.1 Performance Analysis

13

In order to identify the network load supported by the agent (without dropping
packets) some experiments have been carried out. The test environment was com
posed of three hosts connected through a 10 Mbps IEEE 802.3 network segment. The
first host was used to generate network traffic, while the second one was supposed to
receive it. The third host, a 450 MHz K6II PC with 64 MB RAM, was used to run the
agent. The results obtained were the following:

• The sustained agent capacity (without packet loss) is around 235 datagrams
per second when one signature is monitored. This rate was obtained by the
consecutive generation of UDP datagram sequences that matched exactly the
signature configured;

• The increase in the number of signatures monitored causes performance degra
dation of the agent. The agent capacity was reduced to 172 datagrams/second
when it was configured to monitor five signatures simultaneously and traffic that
matched exactly these signatures was generated;

• When generating traffic at 10 Mbps (around 5000 datagrams/second), with all
datagrams being part of the signature, the agent discards packets.

We have also run the agent on a small production network, characterized as follows:
(a) IEEE 802.3 network running at 10 Mbps, (b) 10 hosts (connected to a hub) running
Windows operating system and configured to share files and printers, (c) average traffic
rate of 150 packets/second during prime hours, (d) 75% of the packets was between
65 and 256 bytes long and 21 % of the packets was longer than 1024 bytes, and (e)
application protocols composed ofHTTP (45%), NetBIOS (27%) and SMTP (15%).
In this scenario, packet discards have not been observed.

14 L. Gaspary, E. Meneghetti, L. Tarouco

5.2 Alarm Generation Analysis

To demonstrate that our approach tend to generate few false positives we have car
ried out an experiment based on previous work done at Lincoln Laboratory [18]. The
main idea is to create background traffic that is similar to the traffic observed on the
production network. In the next step packets corresponding to attacks are merged to
the background traffic. By reproducing the resulting traffic, one or more lOSs can
be evaluated regarding false positive generation rates. In this experiment we have
assessed our agent.

We have used the packet trace file available at Lincoln Laboratory named DDos 1.0.
It is a distributed denial of service attack that explores a buffer overflow technique in
a sadmind server running on Solaris operating system. The attack has five phases:

• Phase 1 (host scanning): the purpose of this phase is to identify which hosts
are up and running by sending ICMP echo request packets to all hosts of the
network. This phase was cut from the original packet trace and not considered
in the evaluation, because ICMP echos and replies appear a lot in legitimate
traffic (would generate many false positives);

• Phase 2 (look/or sadmind running on a target): in this phase the portmapper
of the hosts (that replied the ICMP echo request packets in the previous phase)
are queried in order to identify which port the sadmind daemon is listening.
Next, a TCP connection to this port is opened;

• Phase 3 (try to compromise the target): once the TCP connection is established,
a buffer overflow technique is used to edit the password file and create a new
user account;

• Phase 4 (identify which target has been compromised): in this phase one must
open a telnet connection using the user account created in the previous step;

• Phase 5 (launch a distributed denial 0/ service attack): this phase was also cut
from the original packet trace and not considered in our evaluation. We have
focused on the detection of the earlier stages of the attack, because we believe
that detecting the distributed denial of service when it is occurring is not very
useful, since very little can be done against it.

The packet trace just described was merged to background traffic, collected from
an IEEE 802.3 network segment composed of 10 personal computers. The traffic is
characterized as follows: the application protocols used were NetBios (48%), HITP
(22%), mail (11 %), FrP (8%), SSH (3%) and other (8%). The packet size distribution
was: 38% «64 bytes), 51% and <128 bytes), 1% 128 and <256 bytes), 1%

256 and <512 bytes), 8% 512 and <1024 bytes) and 1 % 1024 bytes). It is
important to highlight that the background traffic has some legitimate sadmind traffic.

The test platform consisted of three hosts connected to a hub. The first host was
used as the traffic generator. The second host ran the agent prototype. The agent was
configured to monitor several attack signatures (including the ones presented in the
paper and the signatures to detect phases 2, 3 and 4 of the attack). The third host
executed a MIB browser, which was configured to poll the agent once a second (to get
the value associated to the protocolDistStatsPkts variable).

An SNMP Agent for StateJul Intrusion Inspection 15

We have then used tcpreplay [19] to reproduce the traffic. As we did not want
the agent to discard packets (to be able to focus the evaluation on the accuracy of the
detection process), we have replayed the traffic at low speed.

Our agent has triggered three alarms related, respectively, to phases 2, 3 and 4 of
the attack. No false positives have been generated. We believe this has occurred due
to the mechanism adopted by the agent, which is able to analyze packet sequences
(stateful analysis). Packet correlation (intrinsic characteristic of the agent) helps on
distinguishing legitim and attack traffic.

6. CONCLUSIONS AND FUTURE WORK
This paper presented an SNMP agent for stateful intrusion inspection. We have also

presented PTSL, a language for the representation of protocol traces that, in this paper,
was used to model attack signatures. Then we have presented some experiment results
related to the agent performance and alarm generation rates. Providing the network
manager with a high-level notation for attack signature specification, reducing the
false positive rates generated, and integrating security mechanisms with the already
existing network management infrastructure were the general objectives of the work.
It is important to highlight that the absence of false alarms in our experiment is due to
the programming of the signatures, and not due to the network management portion
of our agent.

PTSL language has shown to be very adequate for the specification of attack sig
natures because of its simplicity. The expression power of PTSL is another point to
be highlighted. The possibility of correlating packets, whether from the same flow or
not, enables the identification of attacks with a low error rate, considerably reducing
the number of false alarms. Besides, while most IDSs allow the selection of pack
ets based on a few predetermined header fields only up to the transport layer, PTSL
goes beyond, allowing the use of filters based on any protocol, all the way up to the
application layer.

The use of an extended RMON2 MIB to store information related to the occurrence
of attack signatures is a significant step towards integration of security mechanisms
with the current existing SNMP-based management applications and platforms. Our
agent should not be used isolated from other approaches. While the work published
by Qin et al. in [6, 7, 8] tend to be more efficient to detect attacks that generate
considerable changes in the network traffic (anomaly-based detection), our agent is
able to cope with both traffic-based intrusions and slower traffic and stealth attacks
(since it is signature-based).

Regarding security, the agent supports all facilities provided by SNMPv3, includ
ing the User-based Security Model (USM) [20] and the View-based Access Control
Model (VACM) [21]. Using these facilities it is assured that the agent cannot be "re
programmed" by a person who is not allowed to do this.

According to the results presented in sub-section 5.1 one can observe that the pas
sive network traffic monitoring technique is computationally onerous. To achieve bet
ter results and not to compromise the intrusion detection process we have considered
the following alternatives: use of hosts with more than one processor, distribution of
signatures to more than one host, filtering out packets that are not useful for the sig
natures being monitored (using BPF filters), and replacement of the mySQL database
by a more efficient alternative.

16 L. Gaspary, E. Meneghetti, L. Tarouco

References
[1] Snort The Open Source Network Intrusion Detection System. http://www . snort. org/.

[2] NFR Security. http://www.nfr.net/.

[3] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer Networks, 31 (23-
24), Dec. 1999, p. 2435-2463.

[4] G. Vigna, S. T. Eckmann, and R. A. Kemmerer. The STAT Tool Suite. In Proceedings of DARPA
Information Survivability Conference & Exposition (DISCEX 2000),2000.

[5] D. Alessandri. Using Rule-Based Activity Descriptions to Evaluate Intrusion-Detection Systems. In
Proceedings of International Workshop on the Recent Advances on Intrusion Detection (RAID 2000),
2000.

[6] J. B. D. Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichandran, and R. K. Mehra. Proac
tive Detection of Distributed Denial of Service Attacks using MIB Traffic Variables - a Feasibility
Study. In Proceedings of IFIPIIEEE International Symposium on Integrated Management (1M 2001),
2001.

[7] X. Qin, W. Lee, L. Lewis, and J. B. D. Cabrera. Using MIB II Variables for Network Intrusion
Detection. Data Miningfor Security Applications, Advances in Computer Security. Kluwer Academic
Press, March 2002.

[8] X. Qin, W. Lee, L. Lewis, and 1. B. D. Cabrera. Integrating Intrusion Detection and Network Man
agement. In Proceedings of IFlPIIEEE Network Operations and Management Symposium (NOMS
2002),2002,p.329-344.

[9] L. P. Gaspary, L. F. Balbinot, and L. R. Tarouco. Monitoring High-Layer Protocol Behavior Using
the Trace Architecture. In Proceedings of Latin American Network Operation and Management Sym
posium (LANOMS 2001),2001, p. 99-110.

[10] D. Levi and 1. Schonwalder. Definitions of Managed Objects for the Delegation of Management
Scripts. RFC 3165, Aug. 2001.

[11] S. Waldbusser. Remote Network Monitoring Management Information Base Version 2 using SMIv2.
RFC 2021, Jan. 1997.

[12] K. Julisch. Dealing with False Positives in Intrusion Detection. In Proceedings of International Work-
shop on the Recent Advances on Intrusion Detection (RAID 2000),2000.

[13] R. Kavasseri and B. Stewart. Distributed Management Expression MIB. RFC 2982, Oct. 2000.

[14] R. Kavasseri and B. Stewart. Event MIB. RFC 2981, Oct. 2000.

[15] NET-SNMP. http://net-snmp.sourceforge .net/.

[16] Jasmin - A Script MIB Implementation. http://www.ibr.cu.tu-bs.de/projects/jasmin.

[17] A. Bierman, C. Bucci, and R. Iddon. Remote Network Monitoring MIB Protocol Identifier Reference.
RFC 2895, Aug. 2000.

[18] R. Lippmann et al. Evaluating Intrusion Detection Systems: the 1998 DARPA Off-line Intrusion
Detection Evaluation. In Proceedings of DARPA Information Survivability Conference & Exposition
(DlSCEX 2000),2000.

[19] Tcpreplay. http://sourceforge . net/projects/tcpreplay/.

[20] U. Blumenthal and B. Wijnen. User-based Security Model (USM) for version 3 of the Simple Net
work Management Protocol (SNMPv3). RFC 2574, Apr. 1999.

[21] B. Wijnen, R. Presuhn, and K. McCloghrie. View-based Access Control Model (VACM) for the
Simple Network Management Protocol (SNMP). RFC 2575, Apr. 1999.

FIREWALL POLICY ADVISOR FOR
ANOMALY DISCOVERY AND RULE EDITING

Ehab S. Al-Shaer and Hazem H. Hamed
Multimedia Networking Research Laboratory
School of Computer Science, Telecommunications and Information Systems
DePaul University, Chicago, USA
{ehab,hhamed}@cs.depaul.edu

Abstract:

Keywords:

Firewalls are core elements in network security. However, managing firewall rules, es
pecially for enterprize networks, has become complex and error-prone. Firewall filtering
rules have to be carefully written and organized in order to correctly implement the secu
rity policy. In addition, inserting or modifying a filtering rule requires thorough analysis
of the relationship between this rule and other rules in order to determine the proper order
of this rule and commit the updates. In this paper, we present a set of techniques and al
gorithms that provide (1) automatic discovery of firewall policy anomalies to reveal rule
conflicts and potential problems in legacy firewalls, and (2) anomaly-free policy editing
for rule insertion, removal and modification. This is implemented in a user-friendly tool
called "Firewall Policy Advisor." The Firewall Policy Advisor significantly simplifies the
management of any generic firewall policy written as filtering rules, while minimizing
network vulnerability due to firewall rule misconfiguration.

Firewall, security management, security policy, policy conflict.

1. Introduction

With the global Internet connection, network security has gained significant at
tention in the research and industrial communities. Due to the increasing threat of
network attacks, firewalls have become important integrated elements not only in en
terprize networks but also in small-size and home networks. Firewalls have been the
frontier defense for secure networks against attacks and unauthorized traffic by filter
ing out unwanted network traffic coming into or going from the secured network. The
filtering decision is taken according to a set of ordered filtering rules defined based on
predefined security policy requirements [4].

Although deployment of firewall technology is an important step toward securing
our networks, the complexity of managing firewall policy might limit the effective
ness of firewall security. A firewall policy may include anomalies, where a packet
may match with two or more different filtering rules. When the filtering rules are
defined, serious attention has to be given to rule relations and interactions in order
to determine the proper rule ordering and guarantee correct security policy seman
tics. As the number of filtering rules increases, the difficulty of writing a new rule or
modifying an existing one also increases. It is very likely, in this case, to introduce
conflicting rules such as one general rule shadowing' another specific rule, or corre
lated rules whose relative ordering determines different actions for the same packet.
In addition, a typical large-scale enterprize network might involve hundreds of rules

http://dx.doi.org/10.1007/978-0-387-35674-7_66

18 E. AI-Shaer and H. Hamed

that might be written by different administrators in various times. This significantly
increases the potential of anomaly occurrence in the firewall policy, jeopardizing the
security of the protected network.

Therefore, the effectiveness of firewall security is dependent on providing policy
management techniques and tools that enable network administrators to analyze, pu
rify and verify the correctness of written firewall legacy rules. In this paper, we define
a formal model for firewall rule relations and their filtering representation. The pro
posed model is simple and visually comprehensible. We use this model to develop an
anomaly discovery algorithm to report any anomaly that may exist among the filtering
rules. We finally develop an anomaly-free firewall rule editor, which greatly sim
plifies adding, removing and modifying rules into firewall policy. We used the Java
programming language to implement these algorithms in one graphical user-interface
tool called the "Firewall Policy Advisor."

Although firewall security has been given strong attention in the research com
munity, the emphasis was mostly on the filtering performance and hardware support
issues [5, 8, 10, 11, 17]. On the other hand, few related work [6, 10] present a res
olution for the correlation conflict problem only. Other approaches [2,9, 12, 14, 18]
propose using a high-level policy language to define and analyze firewall policies and
then map this language to filtering rules. Firewall query-based languages based on
filtering rules are also proposed in [7, 11]. So in general, we consider our work a new
progress in this area because it offers new techniques for complete anomaly discovery
and rule editing that can be applied on legacy firewall policies of low-level filtering
rule representation. .

This paper is organized as follows. In Section 2, we give an introduction to firewall
operation and filtering rule format. In Section 3, we formally define filtering rule
relations, and we present our proposed model of filtering rule relations and the policy
tree representation. In Section 4, we classify and define firewall policy anomalies, and
then we describe the anomaly discovery algorithm and implementation. In Section
5, we present the design and implementation of anomaly-free firewall rule editor. In
Section 6, we give a summary of related work. Finally, in Section 7, we show our
conclusions and our future work plan.

2. Firewall Background
A firewall is a network element that controls the traversal of packets across the

boundaries of a secured network based on a specific security policy. A firewall se
curity policy is a list of ordered filtering rules that define the actions performed on
matching packets. A rule is composed of filtering fields (also called network fields)
such as protocol type, source IP address, destination IP address, source port and des
tination port, and an action field. Each network field could be a single value or range
of values. Filtering actions are either to accept, which passes the packet into or from
the secure network, or to detty, which causes the packet to be discarded. The packet is
accepted or denied by a specific rule if the packet header information matches all the
network fields of this rule. Otherwise, the following rule is examined and the process
is repeated until a matching rule is found or the default policy action is performed [3].
In this paper, we assume a "deny" default policy action.

Firewall Policy Advisor 19

order protocol src_ip src_port dst_ip dst_port action

1 : tcp, 140.192.37.20, any, *.*.*.*, 80, deny
2: tcp, 140.192.37.*, any, *.*.*.*, 80, accept
3: tcp, *.*.*.*, any, 161.120.33.40, 80, accept
4: tcp, 140.192.37.*, any, 161.120.33.40, 80, deny
5: tcp, 140.192.37.30, any, *.*.*.*, 21, deny
6: tcp, 140.192.37.*, any, *.*.*.*, 21, accept
7: tcp, 140.192.37.*, any, 161.120.33.40, 21, accept
8: tcp, *.*.*.*, any, *.*.*.*, any, deny
9: udp, 140.192.37.*, any, 161.120.33.40, 53, accept

10: udp, *.*.*.*, any, 161.120.33.40, 53, accept
11: udp, *.*.*.*, any, *.*.*.*, any, deny

Figure 1. A firewall policy example.

Filtering Rule Format It is possible to use any field in IP, UDP or TCP headers in
the rule filtering part, however, practical experience shows that the most commonly
used matching fields are: protocol type, source IP address, source port, destination IP
address and destination port. Some other fields, like TTL and TCP flags, are occasion
ally used for specific filtering purposes [5]. The following is the common format of
packet filtering rules in a firewall policy:

<order> <protocol><src_ip><src_port><dst_ip><dst_port> <action>

In this paper, we refer to the network fields as the "5-tuple filter." The order of
the rule determines its position relative to other filtering rules. IP addresses can be a
host (e.g. 140.192.37.120), or a network address (e.g. 140.192.37.*). Ports can be
either a single specific port number, or any port number indicated by "any." Some
firewall implementations allow the usage of non-wildcard ranges in specifying source
and destination addresses or ports. However, it is always possible to split a filtering
rule with a multi-value field into several rules each with a single-value field [15]. An
example of typical firewall rules is shown in Figure 1.

3. Firewall Policy Modelling
As a basic requirement for any firewall policy management solution, we first model

the relations between the rules in a firewall policy. Rule relation modelling is neces
sary for analyzing the firewall policy and designing management techniques such as
anomaly discovery and policy editing. In this section, we formally describe our model
of firewall rule relations.

3.1 Formalization of Firewall Rule Relations
To be able to build a useful model for filtering rules, we need to determine all the

relations that may relate two or more packet filters. In this section we define all the
possible relations that may exist between filtering rules, and we show that there is
no other relation exists. We determine the relations based on comparing the network
fields of filtering rules as follows.

20 E. AI-Shaer and H. Hamed

DEFINITION 1 Rules Rx and Ry are completely disjoint if every field in Rx is not
a subset and not a superset and not equal to the corresponding field in Ry.

Formally, Rx and Ry are completely disjoint iff
Vi: Rx[i] Ry[i]
where IXI E {C,::J, =}, i E {protocol, src_ip, src_port, dst_ip, dst_port}

DEFINITION 2 Rules Rx and Ry are exactly matched if every field in Rx is equal
to the corresponding field in Ry •

Formally, Rx exactly matches Ry iff
Vi : Rx[i] = Ry[i] where i E {protocol, src_ip, src_port, dst_ip, dst_port}

DEFINITION 3 Rules Rx and Ry are inclusively matched if they do not exactly
match and if every field in Rx is a subset or equal to the corresponding field in Ry.
Rx is called the subset match while Ry is called the superset match.

Formally, Rx inclusively matches Ry iff
Vi: Rx[i] Ry[i] and 3j such that: Rx[j] =F Ry[j]
where i, j E {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 1 inclusively matches rule 2 in Figure 1. Rule 1 is the subset
match of the relation while rule 2 is the superset match.

DEFINITION 4 Rules Rx and Ry are partially disjoint (or partially matched) if
there is at least one field in Rx that is a subset or a superset or equal to the corre
sponding field in Ry, and there is at least one field in Rx that is not a subset and not
a superset and not equal to the corresponding field in Ry.

Formally, Rx and Ry are partially disjoint (or partially matched) iff
3i,j such that Rx[i]1XI Ry[i] and Rx[j] Ry[j] and i =F j
where IXI E {c,::J, =}, i, j E {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 2 and rule 6 in Figure 1 are partially disjoint (or partially matched).

DEFINITION 5 Rules Rx and Ry are correlated ifsomefields in Rx are subsets or
equal to the corresponding fields in Ry, and the rest of the fields in Rx are supersets
of the corresponding fields in Ry •

Formally, Rx and Ry are correlated iff
Vi : Rx [i]1XI Ry [i] and
3i,j such that: Rx[i] C Ry[i] and Rx[j] ::J Ry[j] and i =F j
where IXI E {C,::J, =}, i, j E {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 1 and rule 3 in Figure 1 are correlated.

Firewall Policy Advisor

6. ShadowIng

o Redundancy

o Correlation

o Generalization

deny deny

r--.Ji--' r-rub--i L® __ ,@L\!)_J

accept deny

r-Nil-icq rJ-i1-'
L ____ J

Figure 2. The policy tree for the firewall policy in Figure I.

21

The following theorems show that these relations are distinct, i.e. only one relation
can relate Rx and Ry, and complete, i.e. there is no other relation between Rx and Ry
could exist. A complete proof of the theorems is presented in [1].

THEOREM 1 The relations defined above are distinct; i.e. any two k-tuplefilters in
a firewall policy are related by only one of the defined relations.

THEOREM 2 The union of these relations represents the universal set of relations
between any two k-tuple filters in a firewall policy.

3.2 Firewall Policy Representation
We represent the firewall policy by a single rooted tree that we name the policy tree.

The tree model provides a simple and apprehensible representation of the filtering
rules and at the same time allows for easy discovery of relations and anomalies among
the rules. Each node in a policy tree represents a field of the filtering rule, and each
branch at this node represents a possible value of the associated field. The root node
of the policy tree represents the protocol field, and the leaf nodes represent the action
field, intermediate nodes represent other 5-tuple filter fields in order. Every tree path
starting at the root and ending at a leaf represents a rule in the policy and vice versa.
Rules that have the same field value at a specific node, will share the same branch
representing that value.

22 E. Al-Shaer and H. Hamed

Figure 2 illustrates the policy tree model of the security policy in Figure 1. Notice
that every rule should have an action leaf in the tree. The dotted box below each
leaf indicates the rule represented by that branch in addition to other rules that are
in anomaly with it as described in the following section. The tree shows that rules 1
and 5 each has a separate source address branch as they have different field values,
whereas rules 2, 4, 6 and 7 share the same source address branch as they all have the
same field value. Also notice that rule 8 has a separate branch and also appears on
other rule branches of which it is a superset, while rule 4 has a separate branch and
also appears on other rule branches of which it is a subset.

The basic idea for building the policy tree is to insert the filtering rule in the correct
tree path. When a rule field is inserted at any tree node, the rule branch is determined
based on matching the field value with the existing branches. If a branch exactly
matches the field value, the rule is inserted in this branch, otherwise a new branch
is created. The rule also propagates in superset or superset branches to preserve the
relations between the policy rules.

4. Firewall Policy Anomaly Discovery
The ordering of filtering rules in a firewall policy is very crucial in determining the

security policy because the firewall packet filtering process is performed by sequen
tially matching the packet against filtering rules until a match is found. If filtering rules
are completely disjoint, the ordering of the rules is insignificant. However, it is very
common to have filtering rules that are inter-related. In this case, if the relative rule
ordering is not carefully assigned, some rules may be always screened by other rules
producing an incorrect security policy. Moreover, when a security policy contains a
large number of filtering rules, the possibility of writing conflicting or redundant rules
is relatively high. A firewall policy anomaly is defined as the existence of two or more
different filtering rules that match the same packet. In this section, we classify differ
ent anomalies that may exist among filtering rules and then describe a technique for
discovering these anomalies.

4.1 Firewall Policy Anomaly Classification
Here, we describe and then define a number of possible firewall policy anoma

lies. These include errors for definite conflicts that cause some rules to be always
suppressed by other rules, or warnings for potential conflicts that may be implied in
related rules.

1. Shadowing anomaly A rule is shadowed when a previous rule matches all the
packets that match this rule, such that the shadowed rule will never be activated.
Rule Ry is shadowed by rule Rx if Ry follows Rx in the order, and Ry is a
subset match of Rx, and the actions of Rx and Ry are different. As illustrated
in the rules in Figure 1, rule 4 is a subset match of rule 3 with a different action.
We say that rule 4 is shadowed by rule 3 as rule 4 will never get activated.

Shadowing is a critical error in the policy, as the shadowed rule never takes
effect. This might cause a permitted traffic to be blocked and vice versa. It
is important to discover shadowed rules and alert the administrator who might
correct this error by reordering or removing the shadowed rule.

Firewall Policy Advisor 23

2. Correlation anomaly Two rules are correlated if the first rule in order matches
some packets that match the second rule and the second rule matches some pack
ets that match the first rule. Rule Rx and rule Ry have a correlation anomaly if
Rx and Ry are correlated, and the actions of Rx and Ry are different. As illus
trated in the rules in Figure 1, rule 1 is in correlation with rule 3; if the order of
the two rules is reversed, the effect of the resulting policy will be different.

Correlation is considered an anomaly warning because the correlated rules im
ply an action that is not explicitly handled by the filtering rules. Consider rules
1 and 3 in Figure 1. The two rules with this ordering imply that all HTfP traf
fic coming from address 140.192.37.20 and going to address 161.120.33.40 is
denied. However, if their order is reversed, the same traffic will be accepted.
Therefore, in order to resolve this conflict, we point out the correlation between
the rules and prompt the user to choose the proper order that complies with the
security policy requirements.

3. Generalization anomaly A rule is a generalization of another rule if this gen
eral rule can match all the packets that match a specific rule that precedes it.
Rule Ry is a generalization of rule Rx if Ry follows Rx in the order, and Ry is
a superset match of Rx, and the actions of Ry and Rx are different. As illus
trated in the rules in Figure 1, rule 2 is a generalization of rule 1; if the order of
the two rules is reversed, the effect of the resulting policy will be changed, and
rule 1 will not be effective anymore, as it will be shadowed by rule 2. Therefore,
as a general guideline, if there is an inclusive match relationship between two
rules, the superset (or general) rule should come after the subset (or specific)
rule.

Generalization is considered only an anomaly warning because the specific rule
makes an exception of the general rule, and thus it is important to highlight its
action to the administrator for confirmation.

4. Redundancy anomaly A redundant rule performs the same action on the same
packets as another rule such that if the redundant rule is removed, the security
policy will not be affected. Rule Ry is redundant to rule Rx if Rx precedes Ry
in the order, and Ry is a subset or exact match of Rx, and the actions of Rx and
Ry are similar. If Rx precedes Ry in the order, and Rx is a subset match of Ry,
and the actions of Rx and Ry are similar, then Rule Rx is redundant to rule Ry
provided that Rx is not involved in any generalization or correlation anomalies
with other rules preceding Ry. As illustrated in the rules in Figure 1, rule 7 is
redundant to rule 6, and rule 9 is redundant to rule 10, so if rule 7 and rule 9 are
removed, the effect of the resulting policy will not be changed.

Redundancy is considered an error. A redundant rule may not contribute in
making the filtering decision, however, it adds to the size of the filtering rule
table, and might increase the search time and space requirements. It is important
to discover redundant rules so that the administrator may modify its filtering
action or remove it altogether.

24 E. Al-Shaer and H. Hamed

Figure 3. State diagram for detecting anomalies for rules R", and Ely. Ely comes after Rz.

4.2 Anomaly Discovery Algorithm
The state diagram shown in Figure 3 summarizes anomaly discovery for any two

rules, R:c and Ry where Ry comes after Rx in the order. For simplicity, the source
address and source port and integrated into one field, and the same with the destination
address and port. This simplification reduces the number of states and simplifies the
explanation of the diagram. A similar state diagram can be produced for the real case
of five fields with a substantially larger number of states involved.

Initially no relationship is assumed. Each field in Ry is compared to the corre
sponding field in Rx starting with the protocol then source address and port, and
finally destination address and port. The relationship between the two rules is de
termined based on the result of subsequent comparisons. If every field of Ry is a
subset or equal to the corresponding field in Rx and both rules have the same action,
Ry is redundant to Rx, while if the actions are different, Ry is shadowed by Rx. If
every field of Ry is a superset or equal to the corresponding field in Rx and both rules
have the same action, Rx is potentially redundant to Ry, while if the actions are dif
ferent, Ry is a generalization of Rx. If some fields of Rx are subsets or equal to the
corresponding fields in Ry , and some fields of Rx are supersets to the corresponding
fields in Ry, and their actions are different, then Rx is in correlation with Ry. If none
of the preceding cases occur, the two rules do not involve any anomalies.

The basic idea for discovering anomalies is by determining if two rules coincide
in their policy tree paths. If the tree path of a rule coincides with the tree path of
another rule, there is a potential anomaly that can be determined based on the previous
definitions of anomalies. If rule paths do not coincide, these rules are disjoint and
they have no anomalies. The algorithm for building the policy tree and determining
the anomalies among the filtering rules is shown in Figures 4 and 5. The algorithm
is divided into two main parts: an anomaly discovery routine, DiscoverAnomaly,
which represents the transition states in the state diagram, and an anomaly decision
routine, DecideAnomaly, which represents the termination states.

Firewall Policy Advisor

function DiscoverAnomaly(rule, field, node, anomaly_state)
if field = ACTION then

value_found = FALSE
for each branch in node. branch_list do

if branch. value = rule.field.value then
value_found = TRUE
if anomaly_state = NOANOMALY then anomaly_state = REDUNDANT
DiscoverAnomaly(rule, field.next, branch. node , anomaly_state)

else if rule.field.value is superset of branch. value then
if anomaly_state = GENERALIZATION then

DiscoverAnomaly(rule, field.next, branch. node , CORRELATION)
else

DiscoverAnomaly(rule, field.next, branch. node , SHADOWING)
else if rule.field.value is subset of branch. value then

if anomaly_state = SHADOWING then
DiscoverAnomaly(rule, field. next , branch. node , CORRELATION)

else
DiscoverAnomaly(rule, field.next, branch. node , GENERALIZATION)

end if
end for
if value_found = FALSE then

new_branch = new TreeBranch(rule, rule. field, rule. field. value)
node. branch_list. add (new_branch)
DiscoverAnomaly(rule, field. next , new_branch. node , NOANOMALY)

end if
else 1* action field reached *1

call DecideAnomaly(rule, field, node, anomaly_state)
end if

end function

Figure 4. Algorithm for building the policy tree with anomaly discovery.

25

In the discovery routine, the previous anomaly state is checked if there is a value
match between the field of the new rule and the already existing field branch. The
next anomaly state is determined based on the shown state diagram and the algorithm
is executed recursively to let the rule propagate in existing branches and check the
remaining fields. As the rule propagates, the anomaly state is updated until the final
state is reached. If there is no exact match for the value of a field, a new branch
is created at the current node to represent the inserted field value, and the anomaly
state is initialized to no anomaly. The decision routine is activated once all the rule
fields have been inserted in the tree and the action field is reached. If the rule action
coincides with the action of another rule, an anomaly is discovered. At that point
the final anomaly state is determined and reported. If an anomaly is discovered and
decided, the user is reported with the type of anomaly and the rules involved.

Applying the algorithm on the rules in Figure 1, the discovered anomalies are
marked in the dotted boxes at the bottom of the policy tree in Figure 2. Shadowed
rules are marked with a triangle, redundant rules with a square, correlated rules with a
pentagon and generalization rules with a circle.

Figure 6 shows the graphical user interface for the Firewall Policy Advisor. The
bottom panel shows a tabular list of filtering rules. The top-left panel displays the
policy tree showing aggregated rules. The top-right panel displays the anomalies dis
covered along with highlighting redundant and shadowed rules in a different color.

26 E. At-Shaer and H. Hamed

function DecideAnomaly(rule, field, node, anomaly)
if node has branch_list then

branch = node.branch_list.first()
if anomaly = CORRELATION then

if not rule.action = branch . value then
branch.rule.anomaly = CORRELATION
report rule rule . id is in correlation with rule branch .rule.id

else anomaly = NONE
else if anomaly = GENERALIZATION and not rule.action = branch. value then

branch.rule . anomaly = SPECIALIZATION
report rule rule . id is a generalization of rule branch.rule.id

else if anomaly = GENERALIZATION and rule.action = branch. value then
if branch. rule. anomaly = NONE then

anomaly = NONE; branch.rule.anomaly = REDUNDANCY
report rule branch.rule . id is redundant to rule rule.id

end if
else if rule .action = branch . value then

anomaly REDUNDANCY
report rule rule.id is redundant to rule branch.rule.id

else if not rule . action = branch . value then
anomaly = SHADOWING
report rule rule.id is shadowed by rule branch.rule.id

end if
end if
rule. anomaly = anomaly

end function

Figure 5. Algorithm for making the anomaly decision.

Rules Tr1!8 """'=,.,.-. r---.,-""

ptlep
::J sa 140 192 37,20132

I EI 50140.192.37.018
1 I ' :J 5p 0

1 daO.OOOlO
I I dp80

1 t • 2: om pi I -. 4: derry

I, II I a
I 8: ."apl

1 I 1- • 7: ."apl II d: 1 40132
o $' 0,0,0,010
W sa 140.192,37,30132 L pi udp

Rules USI

Rule Protocol Sourc91P
1 19! 140.192.37.20132
2-- tco 140.192,37.018
3 lCP 0,0,0,010
4 tcp: 40.192 7.1lA!
5 leo 140.192.37.30132
6 lcp 140,192,37,018
7 leD- 140. 92. 7.018
8 leo 00.0,010
9 UdD 140',19'2',37.018

1 10 udD 0,0,0,0/0

0
0
0
0
0
0

0
0
0

rule 2 is III. Qener:aUz.ation ot rule 1
rule 3 I, in cottelat10n with rule 1
Ewe 4 1, ,hodoved by rule 2
[ule 4 13 sbadowed by rule 3
x:ule: 6 1, a qe:ne:r:aUtat1on or tule: 5
rule 7 is tedWldant. to rule 6
rule 7 is in cOJ:r:elat1on vith rule 5
rule: 8 1s III. oe:ne:taU:at1on or z:u.le Z
rule 8 Is a genet:al1z:at.1on ot rule 6
rule 8 1, a O'enetaUzat,lon oc tule 7
tule: 8 1, Ito qe.nual1z:et1on ot rUle 3
rule 9 1s tedundant co rule 10
ru.le: 11 1, a l1enetal1:e.c,1on ot rule: 9
rule 11 1, a qmez:e.11z:ation tu1e 10

Showdelalls

- ---
Oeslln IP DasHn Port AeUon

0.0.0,010 80 derry
0,0,0,010 80 oceepl
161.120.33.40132 80 .ccept
6112033.41lr. 80 deny

0,0,0.010 21 deny
0,0.0.010 21 ace.ol
'te ' a 3.41lr. 21 acc,ol
0.0,0,010 0 darry
161.120.3:3.40132 53 lace.Pl

J I61.120.33.40132 53 .cc.pt

Figure 6. Policy Advisor anomaly discovery user interface.

&

9

Firewall Policy Advisor 21

5. Firewall Policy Editor
Firewall policies are often written by different network administrators and occa

sionally updated (by inserting, modifying or removing rules) to accommodate new
security requirements and network topology changes. Editing a security policy can
be far more difficult than creating a new one. As rules in firewall policy are ordered,
a new rule must be inserted in a particular order to avoid creating anomalies. The
same applies if any network field in a rule is modified. In this section, we present a
policy editor tool that simplifies the rule editing task significantly, and avoids intro
ducing anomalies due to policy updates. The policy editor (1) prompts the user with
the proper position(s) for a new or modified rule, (2) shows the changes in the security
policy semantic before and after removing a rule, and (3) provides visual aids for users
to track and verify policy changes. Using the policy editor, administrators require no
prior knowledge or understating of the firewall policy in order to insert, modify or
remove a rule.

5.1 Rule Insertion
Since the ordering of rules in the filtering rule list directly impacts the semantics

of the firewall security policy, a new rule must be inserted in the proper order in the
policy such that no shadowing or redundancy is created. The policy editor helps the
user to determine the correct position(s) of the new rule to be inserted. It also identifies
anomalies that may occur due to improper insertion of the new rule.

The general idea is that the order of a new rule is determined based on its relation
with other existing rules in the firewall policy. In general, a new rule should be inserted
before any rule that is its superset match, and after any rule that is its subset match.
The policy tree is used to keep track of the correct order of the new rule, and discover
any potential anomalies. The algorithm implementing the mechanism to insert a new
rule is fully described in [I].

The algorithm is organized into two phases: the browsing phase and the insertion
phase. In the browsing phase, the fields of the new rule are compared with the corre
sponding tree branch values one at a time. If the field value of the new rule is a subset
of an existing branch, then the new rule must be inserted before the minimum order of
all the rules in this branch. If the field value is a superset of an existing branch, the rule
must be inserted after the maximum order of all the rules in this branch. In addition, if
the field value is an exact match or a subset match of a branch, evaluating the next field
continues recursively by browsing through the branch sub-tree until correct position
of the rule within the sub-tree is determined. Otherwise, if disjoint or superset match
occurs, a branch is created for the new rule.

The algorithm enters into the insertion phase when the action field of a new rule
is to be inserted. If an action branch is created for the new rule, then the rule will be
inserted and assigned the order determined in the browsing phase. If there is more than
one possible order for this rule, the user is asked to select an order from within a valid
range of orders as determined in the browsing phase. However, if the order state of the
new rule remains undetermined then policy editor rejects this new rule and prompts
the user with the appropriate message. If the rule is inserted, the anomaly discovery
algorithm is invoked to alert the administrators with any generalization or correlation
cases as a possible source of anomalies in the firewall policy.

28 E. A/-Shaer and H. Hamed

ro .

Soutte IP Source Pot! 08911n IP

CP 0.0.0.010[.. _ . oj 161.120.33.50132

Ano"ely wexninq 1:
The new rule 1:!1 in C'ou::elat1on tdtb t"ule 1. The .fOllowing rule is i.plied:

tcp, 140.192 . 37.20132, 0, 161.120. 33.S0132, eo, deny

Figure 7. Rule editor user interface.

5.2 Rule Removal and Modification
In gener?l, removing a rule has much less impact on the firewall policy than inser

tion. A removed rule does not introduce an anomaly but it might change the policy
semantics and this change should be highlighted and confirmed. To remove a rule, the
user enters the rule number to retrieve the rule from the rule list and selects to remove
it. To preview the effect of rule removal, the policy editor gives a textual translation of
the affected portion of the policy before and after the rule is removed. The user is able
to compare and inspect the policy semantics before and after removal, and re-assure
correctness of the policy changes. Modifying a rule in a firewall policy is also a criti
cal operation. However, this editing action can be easily managed as rule removal and
insertion as described before.

Figure 7 shows the graphical user interface for the rule editor tool. The figure shows
the final step in inserting a rule in the filtering rule table. The tool alerts the user for
any anomalies that may be introduced by inserting the new rule.

6. Related Work

A significant amount of work has been reported in the area of firewall and policy
based security management. In this section, we focus our study on related work that
intersects with our work in three areas: packet filter modelling, conflict discovery and
rule analysis.

Several models have been proposed for filtering rules. Ordered binary decision
diagram is used as a model for optimizing packet classification in [11]. Another model
using tuple space is developed in [16], which combines a set of filters in one tuple and
stored in a hash table. The model in [17] uses bucket filters indexed by search trees.
Multi-dimensional binary tries are also used to model filters [15]. In [6] a geometric
model is used to represent 2-tuple filtering rules. Because these models were designed
particularly to optimize packet classification in high-speed networks, we found them
too complex to use for firewall policy analysis. We can confirm from experience that
the tree-based model is simple and powerful enough for this purpose.

Firewall Policy Advisor 29

Research in policy conflict analysis has been actively growing for many years.
However, most of the work in this area addresses general management policies rather
than firewall-specific policies. For example, authors in [13] classify possible policy
conflicts in role-based management frameworks, and develop techniques to discover
them. A policy conflict scheme for IPSec is presented in [8]. Although this work is
very useful as a general background, it is not directly applicable in firewall anomaly
discovery. On the other hand, few research projects address the conflict problem in
filtering rules. Both [6] and [10] provide algorithms for detecting and resolving con
flicts among general packet filters. However, they only detect what we defined as
correlation anomaly because it causes ambiguity in packet classifiers. In conclusion,
we could not find any published research work that uses low-level filtering rules to
perform a complete anomaly analysis and guided editing of firewall policies.

7. Conclusions and Future Work
Firewall security, like any other technology, requires proper management to pro

vide the proper security service. Thus, just having a firewall on the boundary of a
network may not necessarily make the network any secure. One reason of this is the
complexity of managing firewall rules and the potential network vulnerability due to
rule conflicts. The Firewall Policy Advisor presented in this paper provides a number
of user-friendly tools for purifying and protecting the firewall policy from anomalies.
The administrator can use the firewall policy advisor to manage a general firewall
security policy without prior analysis of filtering rules. In this work, we formally de
fined all possible firewall rule relations and we used this to classify firewall policy
anomalies. We then model the firewall rule information and relations in a tree-based
representation. Based on this model and formalization, the firewall policy advisor
implements two management tools:

• Policy Anomaly Detector for identifying conflicting, shadowing, correlated
and redundant rules. When a rule anomaly is detected, users are prompted with
proper corrective actions. We intentionally made the tool not to automatically
correct the discovered anomaly but rather alarm the user because we believe that
the administrator is the one who should do the policy changes.

• Policy Editor for facilitating rules insertion, modification and deletion. The
policy editor automatically determines the proper order for any inserted or mod
ified rule. It also gives a preview of the changed parts of the policy whenever a
rule is removed to show the affect on the policy before and after the removal.

The firewall policy advisor is shown to be very useful and effective when used on
real firewall rules in different academic and industrial environments [1]. However, we
believe that there is more to do in firewall policy management area. Our future re
search plan includes extending the proposed techniques to handle distributed firewall
policies with centralized or distributed repositories, classifying different semantics in
firewall policies and extracting them from the filtering rules, translating low-level fil
tering rules into high-level textual description, providing a query-based policy analysis
algorithms to enhance our visualization of the underlying firewall security policy.

30 E. Al-Shaer and H. Hamed

Acknowledgments
We gratefully thank Iyad Kanj for his feedback on the theory work in this paper.

We would also like to thank Lopamudra Roychoudhuri and Yongning Tang for their
useful comments on an earlier version of this paper.

References
[1] E. Al-Shaer and H. Hamed. "Design and Implementation of Firewall Policy Advisor Tools." Tech

nical Report CTI-techrep080l, School of Computer Science Telecommunications and Information
Systems, DePaul University, August 2002.

[2] Y. Bartal., A. Mayer, K. Nissim and A. Wool. "Firmato: A Novel Firewall Management Toolkit."
Proceedings of 1999 IEEE Symposium on Security and Privacy, May 1999.

[3] D. Chapman and E. Zwicky. Building Internet Firewalls, Second Edition, Orielly & Associates Inc.,
2000.

[4] W. Cheswick and S. Belovin. Firewalls and Internet Security, Addison-Wesley, 1995.

[5] S. Cobb. "ICSA Firewall Policy Guide v2.0." NCSA Security White Paper Series, 1997.

[6] D. Eppstein and S. Muthukrishnan. "Internet Packet Filter Management and Rectangle Geometry."
Proceedings of 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Jannary 2001.

[7] p. Bronen and J. Zitting. "An Expert System for Analyzing Firewall Rules." Proceedings of 6th
Nordic Workshop on Secure IT-Systems (NordSec Z001), November 2001.

[8] Z. Fu, F. Wu, H. Huang, K. Lob, F. Gong, I. Baldine and C. Xu. "IPSeclVPN Security Policy:
Correctness, Confiict Detection and Resolution." Proceedings of Policy'Z001 Workshop, January
2001.

[9] J. Guttman. "Filtering Posture: Local Enforcement for Global Policies." Proceedings of 1997 IEEE
Symposium on security and Privacy, May 1997.

[10] B. Hari, S. Suri and G. Parulkar. "Detecting and Resolving Packet Filter Confiicts." Proceedings of
IEEE INFOCOM'oo, March 2000.

[11] S. Hazelhusrt. "Algorithms for Analyzing Firewall and Router Access Lists." Technical Report TR
WitsCS-1999, Department of Computer Science, University of the Witwatersrand, South Africa, July
1999.

[12] S. Hinrichs. "Policy-Based Management: Bridging the Gap." Proceedings of 15th Annual Computer
Security Applications Conference (ACSAC'99), December 1999.

[13] E. Lupu and M. Sloman. "Confiict Analysis for Management Policies." In Proceedings of IFIPREEE
International Symposium on Integrated Network Management (IM'1997), May 1997.

[14] A. Mayer, A. Wool and E. Ziskind. "Fang: A Firewall Analysis Engine." Proceedings ofZooo IEEE
Symposium on Security and Privacy, May 2000.

[15] L. Qiu, G. Varghese, and S. Suri. "Fast Firewall Implementations for Software and Hardware-based
Routers?' Proceedings of 9th International Conference on Network Protocols (ICNP'Zool), Novem
ber2001.

[16] V. Srinivasan, S. Suri and G. Varghese. "Packet Classification Using Tuple Space Search." Computer
ACM SIGCOMM Communication Review, October 1999.

[17] T. Woo. ''A Modular Approach to Packet Classification: Algorithms and Results." Proceedings of
IEEE INFOCOM'oo, March 2000.

[18] A. Wool. "Architecting the Lumeta Firewall Analyzer." Proceedings of lath USENIX Security
Symposium, August 2001.

[19] "Cisco Secure Policy Manager 2.3 Data Sheet."
http://www.cisco.comlwarplpublic/cc/pd/sqsw/sqppmnlprodlitlspmgr..ds.pdf

[20] "Check Point Visual Policy Editor Data Sheet."
bttp:/Iwww.cbeckpoint.comlproductsldownloads/vpe..datasbeet.pdf

A SCALED, IMMUNOLOGICAL APPROACH
TO ANOMALY COUNTERMEASURES

Combining pH with cfengine

Kyrre M. Begnum
Faculty of Engineering, Oslo University College, Norway
Kyrre.Begnum@iu.hio.no

Mark Burgess
Faculty of Engineering, Oslo University College, Norway
Mark.Burgess@iu.hio.no

Abstract: We discuss the combination of two anomaly detection models, the Linux ker
nel module pH and cfengine, in order to create a multi-scaled approach to
computer anomaly detection with automated response. By examining the
time-average data from pH, we find the two systems to be conceptually com
plementary and to have compatible data models. Based on these findings, we
build a simple prototype system and comment on how the same model could
be extended to include other anomaly detection mechanisms.

1. Introduction
Computer Immunology is an approach to integrity management, based on

the notion that computer systems are healthy when their behaviour is free of
anomalous occurrences[16, 3]. The onus falls on researchers to define what
'anomaly free' means, or conversely what is normal for a system. This can be
done in several ways.

Commonly one supposes that systems are normal when they exhibit medium
term stability, i.e. stability on a time scale at which users experience the
system[4]. Health or stability is thus related to ones idea of policy. Long
term changes, such as policy revisions, can occur and short term changes are
occurring all the time. Normality is a statistical concept, which accrues over
time, and computer immunology is a form of computer learning[6, 12]. Unlike
many other methods of artificial intelligence, computer immunology is about
purely mechanistic regulation of behaviour, rather devoid of 'intelligence' in the
normal sense of the word. It concerns prescriptions for recognition of change
with computer systems. In summary, this medium term stability is achieved
with the following strategy:

• The system should be tolerant of anything determined by policy.

• Policy is partly specified and partly learned from experience.

• The system should react to abnormal or non-policy-conformant events in
order to restore

http://dx.doi.org/10.1007/978-0-387-35674-7_66

32 Kyrre M. Begnum and Mark Burgess

Two approaches have emerged for addressing these issues at different scales .

• At the University of New Mexico, the Computer Immunology group has
examined strategies for detecting signatures of abnormal computer be
haviour at kernel level. Their pH system[10, 14] learns new signatures
over time, but is resistant to doing so. The primary motivation here has
been in deflecting network intrusions, though the method is equally effec
tive in detecting abnormal local usage, such as attempts to exploit buffer
overflows. The response provoked by anomalies has been in the form of
scheduling delays in processes with unknown call sequences, in order to
urge attackers to lose interest.

• At Oslo University College we have focused on the configuration manage
ment aspect of policy, using a system of agents (cfengine) that detect and
use their environmental conditions and current configuration to detect
anomalous changes[1]. Again, the policy is partly specified and partly
learned from patterns of usage, and the response to different events is
specified itself as a matter of policy, and the agents ensure that the sys
tem tends to maintain the same state over time.

This paper describes the process of combining cfengine, a high level config
uration engine with pH, a kernel patch which enables anomaly detection and
reaction on a per process basis. The project has two independent goals: to pro
vide a better anomaly detection capability for cfengine, and a better response
engine for pH; to create a versatile framework for the collection of system re
lated data for further research into anomaly detection. There is thus a security
motivation and a research motivation. The 'science' of anomaly detection is still
in its infancy, thus the latter should not be neglected for the sake of building a
quick fix.

The plan for this paper is as follows. We begin by discussing the requirements
for compatibility between pH and cfengine, as well as what we hope to achieve
by combining them. In sections 3 and 4 we provide some details about these
two systems in order to contextualize their marriage. Finally, we provide a
cooperative model for these systems and discuss further extensions for future
work.

2. Compatibility
On the surface, it would seem that pH and cfengine are two very different

systems, with somewhat different goals. How then are they to be meaningfully
combined?

The common thread between the systems is their long term goal: that of
system regulation, or homeostasis (state regulation)[2, 3,15,6]. When a change
occurs in a system, there are two general ways that it can respond. With
negative feedback, the system responds in such a way as to reverse the direction
of change; this tends to keep things constant and allows us to maintain a
regular state; positive feedback would tend to amplify the change. This has
a de-stabilizing effect, so it does not result in homeostasis. While it can be
useful for rapid responses, it is a dangerous strategy, since the change will tend
to dominate and eventually consume a system. Regulation, or homeostasis, is
thus a self-regulating mechanism that allows a system to avoid paying detailed
attention to its most basic functions thereby helping keep it in a steady state

A scaled immunological approach ... 33

The University of New Mexico's pH kernel modification stands for process
homeostasis. Its goal is to seek a 'steady state' list of tasks that are undertaken
by a computer system (i.e. a normalized list). It detects previously unknown
tasks and offers resistance to their execution. If the new tasks persist, they are
eventually tolerated by the system.

Cfengine, on the other hand, seeks to maintain a 'steady state' configuration
of a system, where configuration means the state of the file system, process
table and service ports. It detects and opposes changes by two strategies:
i) by referring to a descriptive policy about what is considered acceptable,
and ii) by monitoring key system resource usage over days and weeks, and
responding to statistical irregularities. Thus, both pH and cfengine have a
policy of maintaining a 'normal' or 'regular' state, and both are able to learn
about long term changes by adapting their reference state. Their key difference
is the scale at which they operate: pH works at the microscopic, short-term
level of system calls, while cfengine works at medium term user time-scales.

How can these be combined? As we have already stated, an adaptive, learn
ing system is necessarily a statistical system; we should therefore ask: i) Do
they have compatible data models? ii) What are the tolerances of the systems?
i.e. with what accuracy can they make claims about system normality; hence,
when is it appropriate to activate countermeasures?

iii) Resource utilization is known to be a strongly social phenomenon, with
a marked variation over the working week. Cfengine uses the working week
as a model for measuring its medium-term state. Is the same time reference
appropriate for pH, which deals with short term events?

Combining these seemly disparate mechanisms is thus a scaled approach to
system regulation. PH detects events on short time scale, responds simply and
propagates the data forward as medium term statistics which it uses privately
for future reference. Cfengine measures medium term events and activates
medium to long term response strategies. Our aim here is to see whether
medium term data from pH can be read and utilized by cfengine in order to
bring the knowledge of short term behaviour to bear on longer term strategy.

3. Short introduction to pH
Ph is a patch for the Linux 2.2 kernel. It addresses the anomaly countermea

sure problem at the level of system call sequences. A lot of security software
today is designed to detect attacks (e.g. Intrusion Detection Systems (IDS))
or to find vulnerabilities in the system; only a few tries to stop attacks as they
occur (e.g. some can delete viruses and even repair damaged files). Although a
response capability exists in some programs, most software only issues a warn
ing, and waits for a system administrator to react.

The key is the ability to tell the difference between "benign" and "hos
tile". For pH, like most other IDS, normal is benign, and abnormal is hostile.
By analysing the pattern of system-calls made by each process using pattern
matching algorithms, pH gains knowledge about what it perceives as normal
behaviour. It also maintains a profile of each binary as to see if each process
produces the expected patterns of system-calls. As long as a process keeps it's
number of strange patterns under a certain level, it is considered normal. If the
number rises above a threshold, pH starts to sabotage the process by delaying
all the system-calls made by it.

34 Kyrre M. Begnum and Mark Burgess

Ph keeps one profile for each binary, but it reacts to individual processes.
Every process has a sequence of system calls, known as a trace. The profile of
each binary is updated and adjusted to the behaviour of the processes. This
means that instances of a specific behaviour will in time be considered normal.
Not all anomalies are real threats to the system, but earlier research by UNM
suggested that "To date, all of the intrusions we have studied produce anoma
lous sequences in temporally local clusters[lOJj pH is therefore designed to react
regarding the density of anomalous system call patterns.

Strategy
The algorithm used by pH is called "time-delay embedding" j it looks at the

trace of each process' system calls. For each system call, pH notes the calls
preceding this one within a window. This gives a number of system call pairs
for each position in the window. For instance, suppose we have the following
trace of an imagined process:

getpriority, open, write, write,
close, open, pipe, close, exit

We read the trace from the left. While reading, we note which calls come
behind the current one. Just like sliding a window over the trace. The default
window-size for pH is 6 calls. pH does not consider each sequence it encounters
as part of its process profile right away. There is a distinction between the
current profile (called test) for a given binary and the temporary profile of the
running process (called train). The train-array is continuously updated with
new pairs. Should a pair occur, that is not part of the test-array, then it is
considered an anomaly. The test-array can only be updated by replacing it with
the current train-array. This replacement occurs under one of three conditions
(from the documentation): i) The user explicitly signals via special system call
(sys_pH) that a profile's training data is valid. ii) The profile anomaly count
exceeds the parameter anomaly _limi t. iii) A specialized training formula is
satisfied.

Should an anomaly occur, then a number of the following system-calls will
be delayed. After a certain number of anomalies, the train-profile will switch to
the test-profile. This is called acquired tolerance, meaning the profile adapts to
the behaviour of the process. But should the anomalies occur too close to each
other, then pH will react in the opposite manner and reset the train-profile.

Implementation
It is possible to control pH at runtime with a system call interface: sys_pH (),

and pH-admin which is basically a front-end to the system call. This tool can,
amongst other things:

• Turn the monitoring on/off

• Write profiles to disk

• Adjust pH-variables (i.e delay _factor)

• Force the train profile to be copied to the test profile.

A scaled immunological approach ... 35

pH saves information about each running process from the /proc directory.
Each folder belonging to a process has a file called pH, which contains informa
tion about delay, system call count, if the profile is considered normal and if
the process is currently frozen.

All the messages created by pH are logged in the log file /var /log/ syslog.
The profiles for all the binaries are located in the folder /var/lib/pH/profiles
where they are sorted in a hierarchy which mirrors the actual file-system. Each
binary is therefore identifiable by it's path. For example, the program less,
which has the path /usr/bin/less, will have it's profile at

/var/lib/pH/profiles/usr/bin/less.

4. Short introduction to cfengine
Cfengine is a well-known policy based configuration management system

written at Oslo University College[l], which is comprised of a number of com
ponents (see fig 1). An agent component is responsible for enforcing specified
policy by comparing a description of the permissable states of a host's config
uration with the host's actual state. There are also file-server and scheduler
components for deploying cooperative management schemes. The cfenvd en
vironment daemon is a component that measures system resource usage, in
dependently of the other parts and records it in a database [5] , which becomes
the definition of 'normal'. This tool is intended both for regulative feedback
and for gathering research data. It classifies the current state of resource usage

,
1- .. - - - - - -I

: d encd : L _______ _ _ ,

.--- -- -- ---,
: :
L _ _ _______ I ..

" ... copy ,- - - - - - - - - -,
... : c:rC[l\'d :

" L. __ _ _ _ __ _ _ I

1-1
Local system Other syslem

Figure 1 A schematic rep
resentation of cfengine com
ponents. The environment
daemon communicates with
the agent on each host, by
providing it with classified
state information.

in relation to what has been learned previously, using units of the statistical
uncertainty (standard deviation) for each time of week. It then publishes its re
suIts for other programs to use, notably cfagent . Cfagent receives the data as
a 'classified event' which can be used to predicate countermeasures or follow-up
responses for the state concerned. Some examples of classes which can become
active in the cfagent:

RootProcs_low_dev2
netbiosssn_in_low_dev2
smtp_out_high_anomalous
www_in_high_dev3

The first of these classes tells us that the number of root processes is two
standard deviations below the average for past behaviour. This might be for
tuitous, or might signify a problem, such as a crashed server; we do not know

36 Kyrre M. Begnum and Mark Burgess

the reason, only that an anomaly has occurred. The WWW item tells us that
the number of incoming connections is three standard deviations above aver
age. The SMTP item tells us that the number of outgoing SMTP connections is
more than three standard deviations (this is the defined meaning of anomalous)
above average, perhaps signifying a mail flood. The setting of these classes is
transparent to the user, but the additional information is only visible to the
privileged owner of the cfengine work-directory, where the data are cached.

Countermeasures or follow-up actions can be attached to events in order to
automate a policy decision to the occurrence. For example, one might decide
to shut down an offending service temporarily, and then follow up with a file
audit:

processes:

c'sendmail" signal=kill

files:

lusr recurse=inf checksum=md5

time (hrs)

5. A cooperative model

Figwre 2 Cfengine measures
patterns of resource usage
over the working week. This
example shows how measure
ments of Samba file sharing
lead to an average picture of
behaviour at different times
of the week. The solid line is
the average value over many
weeks and error bars indicate
the standard deviation.

We wish to combine these two systems in order to create a better and com
prehensible high level system that can react to the systems state. This is a
topic which was not clear from the available research; therefore wish to find
a framework for collecting, storing and analyzing data on their properties. A
combined system has to be both reliable and secure if it is to be used on sys
tems that do actual work. Creating a isolated system for testing makes sense
for keeping the system clear from uncontrollable noise (users, network traffic
and so on). But if noise is normal, and normal is what you're looking for, then
the only way to test it, will be real-life.

A scaled immunological approach ... 37

Various models might be used for establishing a connection between cfengine
and pH. The first alternative is a plug-in architecture, where pH is considered to
be a cfengine plug-in module. This would facilitate a close working relationship,
but it requires permanent structural modifications to both.

A second alternative, would be a model where a higher level system invokes
and controls smaller components. The process monitoring would be done by
a detached participant. The higher level system would act on the information
delivered by the component. This information could be gathered via a spacial
interface or by parsing log files.

The model we have chosen is a feedback model that preserves the domain
of each software system, but allows a passive communications channel between
them (see fig. 4), using files and databases. Thus pH will be able to adjust
it's monitoring level depending on instruction from cfengine, and cfengine can
adjust its behaviour based on results from pH. pH has it's own engine for data
analysis and cfengine analyzes the data further.

pH already has an interface that cfengine can use to control it in the form of
shell commands. We could also go directly to the system call sys_pH instead
of going via the pH-admin command. pH stores its information in several
places: /proc, /var/log/syslog and /var/lib/pH/profiles. The profiles
are in a self-defined binary format and will be printed to the terminal by the
command pH-print-profile. The same holds for the sequence files, with the
corresponding command pH-print-sequences.

In order to collect the data from pH, we use cfengine's cfenvd daemon and
database, which in turn provides information to the agent when it activates.

In fig. 3, a number of identical trials was performed in order to simulate a
long term variation of the form measured by cfenvd (see fig. 2). An apache
web server was used as the pH monitored process. It was loaded by a number of
clients in an identical pattern of variation. Repeating the same changing load
five times, a pH process counted the total number of system calls. The average
of the five identical trials with standard deviation shown as error-bars is plotted
in the figure. Each trial measured 120 values, recorded each 30 seconds over
the space of an hour. This figure is sufficient to make two points:

• The statistical model of average behaviour with certain tolerance is com
patible with that currently used by cfenvd.

• The error bars are not zero, thus there is a natural uncertainty in the
results, even with close to identical trials.

The latter point is interesting, since these additional system calls cannot be
explained by other processes. Ph measures only system calls related to a specific
binary. No other binaries could be responsible for this error.

The fact that there is a statistical uncertainty is very important. It means
that the purely digital approach to anomaly detection is not sufficient to yield
exact repeatability. Thus if one is looking for repeat-ably identifiable signatures,
one must allow a margin for error. This is clearly significant for intrusion
detection systems, which normally recognize only exactly learned patterns. The
source of the uncertainty could lie both on the side of the server, or on the side
of the clients loading the server. It could be a result of scheduling differences,
since measurements are cumulative values over a 30 second period. Differences
due to network traffic load can be ruled out, since the trials were performed in
isolation.

38 Kyrre M. Begnum and Mark Burgess

1500 ,----------,--------,--------,

!!1
1000

i
'0

j
2 500

Time (minutes)

(.. I cfenglne

+ r r-, P""H--p-:"rln+t--•• -cu-.-nco'""l

o ·

Figure 3 Repeated trials on
a simulated load, showing
how the average number of
system calls varies in propor
tion to applied load, within
measured tolerances. This
shows that the basic cfengine
statistical model applies to
pH also.

Figure 4 Information Flow
Diagram: how cfengine and
pH exchange information
and management intructions.
Communication makes use
of existing operating system
abstractions, like the /proc
filesystem for kernel tables.
Similarly, cfengine uses the
standard pH API, maintain
ing the independence of the
two systems.

Using pH to measure process load shows us one other thing, that is inter
esting for future work: the simple measurements show a clear pattern, i.e. the
input pattern is reflected linearly, up to a standard error, in the output graph.
Monitoring the number of system calls for a process over time, we can deter
mine when it has been used, and how much. We could also build up a statistic
here to gather a trend of how much a program is used, and how much we can
expect it to be used. By measuring individual sequences separately, it would
be possible to perform a code analysis of software, indicating how much users
used different parts of the software. This is very interesting for future research.

Modifications to pH
The most important modification to pH, is having the ability to specify

what processes to delay. The monitoring will still be done on all profiles, but
a variable describing if this process is subject to delaying must exist for every
binary. In addition, we must be able to choose if this variable should be set to
delay or ignore by default on the creation of a new profile. If the default value
is delay, then pH will work as before. The administration of these variables can
be handled from cfengine. This enables us to achieve the following: i)Delayall
but these binaries (Default on). ii) Ignore all but these binaries (Default off).
Note, that the default value could be changed in runtime too.

A scaled immunological approach ...

Cfengine

_____ __

not implemented

__J

'------"""

Data storage

39

Figure 5 Architectural view
of cfengine and pH's col
laborative scheme. Both
systems are independent of
one another and communi
cate only minimally through
profiles held in the kernel.

The new pH-related data need to be stored, e.g. the number of abnormal pro
cesses, number of system calls for selected processes. The size of the database
will vary depending on the number of profiles we wish to monitor and how long
we wish to keep the data. Cfenvd stores only one week's worth of data, and
merges the data together with a average from all other preceding weeks, by a
geometric series. This approach would also be useful for data like the number
of system calls for a process. It would give us enough to generate the expected
usage throughout the week for a given application.

For other data, like the sum of anomalies at any given moment, this vari
able is a bit more tricky. This variable will be influenced by the use of new
applications and has to be monitored over a longer period. Clearly, not all
anomalies are genuine and the system must learn to tolerate those that are not
dangerous. A one-week local average can be useful as soon as the variable is
stable or else the first encounter with all applications will influence the average
and deviation so much that small and potentially interesting deviations later
on will be unrecognizable.

Cfengine is designed to work independently. An anomaly in the data will
trigger an event in cfengine, but we are not always interested in anomalies. We
need an option for getting the datasets so that we can view them in plots or
analyze them statistically (see fig 5).

6. Example regulation strategy
We envisage automated responses to anomalous behaviour. Such responses

have been considered before in other contexts (see refs [11, 9]). A simple ex
ample of a cfagent response in visualizing the interplay between the two
anomaly systems. A special cfagent class is made to activate on the presence
of a recent anomaly. This class persists until it has been expedited by an agent.

Note that pH does not try to start cfagent immediately. For one thing, pH
is in kernel space, and the agent must run in user space. However, it leaves a

40 Kyrre M. Begnum and Mark Burgess

semaphore to the cfengine scheduler to activate the agent with a special class,
on its next scheduled run.

If the agent were started immediately as a direct result of the anomaly, it
would be trivial to use this in a denial of service attack. Our strategy here is
a scaled approach: using cfengine with its normal 'policy' level of statistical
uncertainty, and leave pH itself to deter potential attacks with its delaying
tactics.

Two classes can become active: a sequence anomaly semaphore, indicating
that a potentially dangerous sequence of system calls was identified, and a load
anomaly, indicating that cfenvd has found the total load being processed by
pH is anomalous. We therefore cover qualitative and quantitative anomalies.

control:

actionsequence = (files processes)

files: II ph_sequence_anomaly::

Do MD6 integrity check on system files, in case of intrusion
lusr owner=root,bin checksum-md6 recurse=inf action=warnall

Kill the processes causing anomalous load, if it still exists
CC." signal=kill filter=ph_load_filter

pH communicates its variables (the list of offending processes) to cfagent
using one of cfengine's filter interfaces for selecting processes. pH has no func
tionality for killing a process itself, so this is a natural task for cfagent to per
form, assuming the offending process is persistent over the cfagent scheduling
interval.

7. Conclusions
We have measured the behaviour of pH and cfengine and found that they

have compatible goals and data models. Cfengine's statistical tools for state
analysis complement the powerful pH data-microscope. We have implemented
a pilot scheme for combining them into a multi-scaled approach to anomaly
detection. Our interest has been two-fold: we were keen to devise a fully auto
nomic response to anomalous behaviour in computer systems, and were driven
to learn more about the meaning of 'normal' and 'anomalous' in the context of
the human-computer interaction. We feel that we have made headway towards
both of these goals in part, by showing how two such disparate mechanisms
can cooperate in a scaled information model. In future work, we hope to study
the behaviour of the combined system in a production setting.

How many processes have anomalies? This number would be an indicator
of the stability and predictability of a host.

Analysing the behaviour of a binary over time. A comparison of profiles
across different hosts could also indicate how similar the different applications

A scaled immunological approach ... 41

are being used on the different hosts. This has Human-Computer-Interaction
ramifications, and is especially interesting for complex programs, such as com
puter games or office applications, where perhaps only a small part of the
program is actually ever used. The relevance here is thus not only system
administration, but also software engineering. We could also use these data
in a work-routine experiment. When are certain applications being used? Do
people use more complex programs at the end of their work-day? The benefit
of having the monitoring system separated from the application, is that we can
gather these data for every program on the host. Eventually such data can also
lead to better management policies.

On the issue of intrusion detection, there are numerous possibilities to ex
plore. Should a host experience a high anomaly on one process it could try to
warn other machines on the network about it, by sending inter-host semaphores.
In addition, different hosts could interchange profiles. This, off course, implies
a secure channel and a protocol for the communication. Today, cfengine of
fers a framework for the communication, and there is also research going on to
define a standard format for intrusion detection (Intrusion Detection Message
Exchange Format - IDMEF)[7].

Cfengine and pH alone might not be able to document intrusions on all fronts
of the system. They should therefore be able to spawn other intrusion detection
and forensic systems on demand if they are present, e.g. packet based detectors
like SNORT[13], or Network Flight Recorder[8], that are perhaps too demand
ing to run all the time. In that way, the combination of pH and cfengine could
act as a front-line defense against network intrusion, and vcooperate to switch
on forensic capture software and perform backup checks on system integrity.
Alternatively they could simply collaborate to identify the appropriate forensic
data for human examination. We hope to return to some of these problems in
future work.

8. Availability
GNU Cfengine may be obtained from http://www.cfengine.org. pH may be

obtained from http://www.cs.unm.edu/soma/pH

References
[1) M. Burgess. A site configuration engine. Computing systems (MIT Press: Cambridge

MA), 8:309, 1995.

[2) M. Burgess. Automated system administration with feedback regulation. Software
pmctice and experience, 28:1519, 1998.

[3) M. Burgess. Computer immunology. Proceedings of the Twelth Systems Administmtion
Conference (LISA XII) (USENIX Association: Berkeley, CA), page 283, 1998.

[4) M. Burgess. On the theory of system administration. Submitted to J. ACM., 2000.

[5) M. Burgess. Two dimensional time-series for anomaly detection and regulation in adap
tive systems. 13th International Workshop on Distributed Systems: Opemtions and
Management (DSOM 2002), page 293, 2001.

[6) M. Burgess, H. Haugerud, T. Reitan, and S. Straumsnes. Measuring host normality.
ACM Transactions on Computing Systems, 20:125-160, 200l.

[7) J. Arvidsson et al. Terena's incident object description and exchange format require
ments. RFC3067, 2001.

42 Kyrre M. Begnum and Mark Burgess

[8) M.J. Ranum et al. Implementing a generalized tool for network monitoring. Proceedings
of the Eleventh Systems Administration Conference (LISA XI) (USENIX Association:
Berkeley, CAl, page 1, 1997.

[9) J.L. Hellerstein, F. Zhang, and P. Shahabuddin. An approach to predictive detection
for service management. Proceedings of IFIP/IEEE INM VI, page 309, 1999.

[10) S. A. Hofmeyr, A. Somayaji, and S.Forrest. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151-180, 1998.

[11) P. Hoogenboom and J. Lepreau. Computer system performance problem detection
using time series models. Proceedings of the USENIX Technical Conference, (USENIX
Association: Berkeley, CAl, page 15, 1993.

[12) P.D'haeseleer, Forrest, and P. Helman. An immunological approach to change detection:
algorithms, analysis, and implications. In Proceedings of the 1996 IEEE Symposium
on Computer Security and Privacy (1996).

[13) Snort. Intrusion detection system. http://www.snort.ory.
[14) A. Somayaji and S. Forrest. Automated reponse using system-call delays. Proceedings

of the 9th USENIX Security Symposium, page 185, 2000.

[15) A. Somayaji and S. Forrest. Automated response using system-call delays. Proceedings
of the 9th USENIX Security Symposium (USENIX Association; Berkeley, CAl, page
185,2000.

[16) A. Somayaji, S. Hofmeyr, and S. Forrest. Principles of a computer immune system.
New Security Paradigms Workshop, ACM, September 1997:75-82.

SESSION 2

Internet Accounting

Chair: Burkhard Stiller
ETH Zurich / UniBw Munich, Switzerland / Germany

A HIGHLY DISTRIBUTED DYNAMIC IP MULTICAST
ACCOUNTING AND MANAGEMENT FRAMEWORK

Hassen Sallay, Olivier Festor
The Madynes Research Team
LORIA-INRIA Lorraine
615, rue de Jardin Botanique
54602 Villers-l/:s-Nancy, France
Tel: +33 (0) 383.592.000, Fax: +33 (0) 383.278.319
Hassen.Sallay@loria.fr, Olivier.Festor@loria.fr

Abstract:

Keywords:

We present a highly distributed management architecture dedicated to IP multicast ser
vices. This architecture relies on a three level hierarchical model over which both man
agement data and functions are distributed. We show how the architecture can be used to
support an extended multicast accounting algorithm which adapts itself to the dynamics
of a multicast tree and detail the implementation of the proposed framework using active
network technology.

Dynamic Accounting, Multicast Management, IP Accounting, Active Networks.

1 Introduction
As pred;cted in the last years [17], IP multicast is slowly moving from an optional

feature in some networks to a primary service in the Internet. Multicast services gain
more and more importance and become increasingly attractive. Multicast protocols are
now deployed in almost all router products available on the market and they support
a wide variety of applications (cooperative work, video-conferencing, tele-teaching,
CDN update, ...).

With the advent of protocols like PIM-SSM 1 or EXPRESS2 [26, 13] which are
scalable and which cover a wide number of applications, multicast deployment and
usage will grow even faster. Unfortunately, this success curve is currently slowed by
several factors. One of these limiting factors, is the lack of integrated management
solutions able to cope with all components entering in the multicast service delivery
chain [19].

Efficient management of multicast services is both a crucial requirement and a ma
jor challenge for multicast services. Building management solutions which can ad
dress dedicated security, accounting and fault management for multicast is a key to
their successful deployment. But, due to its differences with unicast communications,
namely the potentially huge number of participants together with its tree-based con
nectivity which dynamically evolves over time, the design and implementation of the

1 Protocol Independent Multicast - Single Source Mode
2EXPlicitly Requested Single-Source Multicast

http://dx.doi.org/10.1007/978-0-387-35674-7_66

46 H. Sallay, O. Festor

afore mentioned management services are much more complex to achieve. To be effi
cient in the multicast context, four factors need to be considered :

1 the multicast dynamics,

2 the scale factor,

3 the degree of specialisation for the management functions, and,

4 the ease of deployment and integration with the legacy.

Multicast services are dynamic by nature. This dynamic behaviour is mainly gen
erated by joinlleave operations of group members. The diffusion tree follows this
dynamic behaviour, either expanding or reducing itself over time. In such an evolving
environment, the signalling and management plane loops sometime share very close
timing requirements, management being forced to follow near real-time constraints
found in the control plane.

Multicast is in theory the solution which scales best. The problem of scalability is
in itself not bound to the multicast technology used but rather to the implementation
and the associated management solutions. For management solutions dedicated to
multicast services, scalability is essentially a gradient of :

• the number of multicast groups to manage,

• the number of nodes of each managed multicast tree,

• the frequency of change in groups,

• the overhead of management and signalling.

Designing efficient management solutions that can scale up to thousands of groups
and millions of group members, while maintaining a limited management overhead
remains a very challenging task.

Management functions such as accounting and security have to integrate the spe
cific nature of multicast in the definition of the corresponding management applica
tions and related metrics. For example, it is not an easy task to maintain an up-to-date
central knowledge of the number of participants together with their distribution in a
multicast tree. Thus, if one of the accounting approach relies on considering the exact
number of participants, these dynamic operations Goinlleave) must be traced in a very
precise way. Moreover new parameters like the number of active groups, the overall
number of groups and members in a given network, the tree topology and the number
of links, traffic volume and memory usage within routers must be considered in the
cost allocation process3 for multicast service.

For the security function, if a group has strong security requirements, cryptographic
keys have to be generated and distributed each time a member joins or leaves a group
to guarantee that members who left do no longer have access to the group's exchanged
data and that members who join do not have access to data that was exchanged before
they joined.

To be well integrated, any management solution must provide gateways and inter
faces to standard protocols and frameworks. To be efficient, they also need to take

3i.e. the application of a set of strategies which enables a cost to be associated to each participant including
the savings generated by the use of multicast.

Distributed Dynamic IP Multicast Management 41

advantage of the most recent technologies to facilitate their deployment and configu
ration. In the context of IP multicast management, this means that gateways with the
SNMP world must exists and that the management platform must be sufficiently open
and dynamic to adapt itself to changes and to be capable of supporting new types of
management algorithms.

The goal of the work undertaken in our group, is to build such a framework to
manage IP multicast services. Based on the above requirements and on an in-depth
study of multicast management, we propose a management framework that is highly
distributed and extensible to fit both very flexible service level constraints and very
dynamic network conditions. In addition to describing the core concepts of the ar
chitecture, we show how it was implemented using an active network framework. To
illustrate the applicability of the framework, we propose an extension of a recently
described cost allocation algorithm and show how the framework can cope with the
added dynamics and show how it can be used in the context of fault management.

The paper is organised as follow. Section 2 provides a description of work re
lated to multicast accounting and security management. The proposed architecture
is presented in section 3. The technology choices made to host this architecture are
described in section 4. Section 5 is dedicated to the description of the application of
the architecture for cost allocation and accounting purpose followed by the implemen
tation details (section 6). Some conclusions together with an outlook for future work
are given in section 7.

2 Related work
Several approaches have been designed and proposed so far for the management of

multicast communications. Each of them targets a set of specific management func
tions.

Within IETF, the AAA 4 model [23, 7] has been designed. This architecture inter
acts with the various services it applies to through specific modules. Diameter [6] is
the communication protocol used among different entities of the AAA architecture.
This protocol can be extended to meet the requirements of specific target applications.
So far, no extension was proposed to embrace multicast services. Thus, using the
architecture for multicast management is not feasible as is and its scalability has not
been investigated in this context.

HERZOG et al. [12, 11] propose different strategies to allocate the cost of a mul
ticast tree over its members. A cost allocation mechanism and a LPM5 architecture
defining components in charge of access control and accounting have also been pro
posed in this work. An example of the proposed strategies is ELSD6. This strategy
divides equally the cost of a link over all members in the downstream of the multicast
tree. This strategy, which is the most equal for a tree/source schema, has been imple
mented in the MultiCost prototype.
Unfortunately this strategy, together with the LPM architecture, do not take into ac
count the dynamics of a multicast tree and consider the costs associated to a link to
be static. LPM also implements access control but does not support any key distribu-

4 Authentication Authorisation Accounting architecture
sLocai Policy Modules
6Equal Link Split Downstream

48 H. Sallay, O. Festor

tion mechanism nor does it support any fault management function. The use of a tree
metric for charging multicast communications is described in [8].

Designed by HOLBROOK et aI., EXPRESS? [26], is a multicast communication
model dedicated to the single source multicast schema. Within EXPRESS, a protocol
named ECMp8 offers support for accounting tasks and integrates options for secu
rity features in addition to routing and membership management. ECMP assumes the
accounting architecture is based on a centralised architecture (the source being the
center) from where accounting campaigns on a well known attribute are initiated on
demand. Data collected through this process are global data related to the multicast
tree like number of members, number of branches, ...
Collecting more fine grained data for more precise accounting strategies, e.g. number
of members beyond a given router, generates a huge wave of requests over all nodes of
the multicast tree. Centralised management at the source is known for its bottleneck,
its intolerance to any fault, and the overload generated on the network with often un
necessary management traffic. ECMP does not consider the dynamics of the multicast
tree, nor does it implement any cost allocation strategy. The protocol remains dedi
cated to source specific multicast trees and no implementation of this part is known to
us so far.

Solutions for securing multicast can be found in [24, 10, 16,4]. Centralised key
generation by a KDC9 in charge of manually distributing these keys is proposed in
[24]. This solution has clear scalability problems due to the off-line coordination
effort that needs to be provided between the KDe and the members of the multicast
service. Several decentralised and automated solutions are proposed in [10, 16, 4].
These architectures distribute key management functions among the involved entities
and have a much better scalability.

In [1], an architecture for fault and quality management of a multicast link based
on SNMP is proposed. Another architecture, based on the integration of existing man
agement tools like MTrace and MRM10 [2] is also proposed in a previous work of our
group [18]. While these architectures offer a good level of integration and interesting
functions like limited fault management, topology discovery and test generation and
processing, they face scalability issues and do not address security nor accounting. A
dynamic topology discovery approach for IP multicast is proposed in [20]. An alter
native is proposed is [15]. A more complete monitoring environment called MCPM
[14] exists but does not address accounting.

3 A highy distributed architecture
In this section we present the basics of the management architecture we designed

to overcome the limitations of existing approaches and fit the requirements identified
in the context of IP multicast.

3.1 Design choices
The main concept behind our architecture is to distribute as much as possible both

management data and processing units to maintain a high degree of dynamics and

7EXPlicity REquested Single-Source
8Express Count Management Protocol
9Key Distribution Center
JOMulticast Reachability Monitoring

Distributed Dynamic IP Multicast Management 49

ensure scalability. This distribution follows a pattern that enables composition and
coupling of operations. Our architecture embraces this principle to meet the require
ments identified in the introduction.

We consider the multicast dynamics as a two facets entity : one at the micro
dynamics level and another at the macro-dynamics one. Through the micro-dynamics
level, the evolution of the group members (join/leave operations to a multicast group)
can be monitored. The macro-dynamic level represents the evolution of the multicast
tree through expansion/reduction operations (i.e. routers leaving/joining the multicast
tree). As we will see below, differenciating these two facets, leads to the design of
a scalable management solution especially in terms of the number of group members
supported.

The overhead generated by the transport of management data related to a multicast
service can also be reduced by setting the granularity of the data to be exchanged.
Thus, only data that is mandatory for a given management task is sent over the net
work. Management data storage becomes necessary at the places where these data are
produced and tasks can be delegated to the various network nodes that participate in
the multicast service delivery chain. In this case, the processing distribution follows
the data distribution providing the most efficient solution for large groups.

3.2 Global architecture
The proposed architecture provides a 3-level hierarchy : the source level, interme

diate nodes level and the edge nodes level. At each level of the hierarchy a dedicated
management agerit is operational (see Figure 1).

-- Multlcas! tree
MSA : Multlca' 1 SourceAgenl
MEA : Multlcasl Edge Agenl
MNA : Mulllcasl NOde Agenl

Multlcasl me

Figure 1. Global management architecture

At the multicast source level, a Multicast Source Agent (MSA) is in charge of the
management activities. The instantiation and content of this agent can be part of the
SLAlSLS that have been defined for the service between the service provided and
the multicast service customer. The agent itself can be instantiated within the source
which delivers traffic if a single administrative domain is considered. When multiple
sources exist in one multicast session, the MSA agent is placed in the rendez-vous
point node. In a multi-domain environment, we can extend our architecture by consid
ering one administrative domain as a peer. The multicast service will be established by
the cooperation of the different peer representing different domains. The source agent

50 H. Sallay, o. Festor

can play the role of the peer and negociate the service SLA setup among different ISPs
concerned by the service. In this paper we consider only the single domain scenario,
and leave the multi-domain scenario for a future work.

The MSA hosts a data storage facility that has the entire data related to the service.
The collection algorithm initiated to feed the database follows the dynamics of the
multicast tree. The database is updated each time an edge node (router) joins or leaves
the tree.

At the edge node level, Multicast Edge Agents (MEA) are deployed. These agents
manage the micro-dynamic facet of the multicast management. They maintain a lo
cal view of session join and leave operations performed by end users. To this end,
these agents interact with the membership management protocols like IGMPv3 [5] or
MLDv2 [9] through dedicated interfaces and build a local database which holds very
detailed data about each member. These agents push the data forward to the concerned
source agents (MSAs) only after all members of a session have left.

Nodes of the intermediate level (not the source, nor the edges) hold specific agents
called Multicast Node Agent (MNA). Deployment or activation of these agents is done
dynamically according to the expansion/reduction of the multicast tree of the man
aged service. This dynamic deployment implements the macro-dynamics facet related
to topology changes in the multicast tree. These agents interact with the local multi
cast routing protocol entities through a well defined interface. Through this interface,
data related to the service can be collected (e.g. number of sent/lost packets, number
of links per multicast node, ...). Each agent has a local view of the tree topology,
maintains a link with the underlying agents (MNA or MEA) as well as. a link upward
towards the source MSA.

This model is more scalable than a full source driven polling approach. Moreover it
enables source agents to build service level statistics which are specific to the service
level management process in use for the service (e.g. checking the conformity of the
delivered service to the agreed level).

4 AMAM : an active network-based support of the
architecture

The previously presented architecture can be implemented in several ways. This
can be done with feature and protocol extensions of specific multicast approaches or
through a standard management framework like SNMP with dedicated Management
Information Models and associated MIBs together with usage scenarios. We chose
an alternative to the above solutions, namely to exploit the benefit of active network
technology in terms of flexibility and extensibility, to host the various components of
the architecture [21, 22, 3]. We use this technology to dynamically download and
operate both edge and node agents (MEAs and MNAs), enabling a seamless evolution
that follows the topology changes of the managed multicast tree. The availability of a
dynamic code distribution facility and the presence of execution environments on all
nodes enables rapid and online cost calculation strategies change, update of security
components, activation of tests for fault management purpose or more generally to
push management functions where they are needed.

The resulting implementation called AMAM (Active-based Management Archi
tecture for IP Multicast) is illustrated in Figure 2. Within AMAM, multicast manage
ment functions are designed as a set of dedicated active applications called plug-ins
(accounting plug-in, security plug-in, test sender plug-in, ...). Plug-ins are stored
in a repository within the source agent context. Once installed on the source agent,

Distributed Dynamic IP Multicast Management 51

these components can be downloaded by either MEA or MNA agents where they are
executed. Plug-ins uninstall themselves when they are no longer in use.

The FLAME active network framework is the execution environment we used to
build AMAM. This execution environment enables both dynamic installation and re
moval of active applications but also APIs and associated libraries enabling the exe
cution environment to dynamically extend the interface it offers to active applications
(e.g. providing a new packet capture service). All AMAM plug-gins are defined as
FLAME applications.

I Accounting plugin (AP) I
Security plugin (SP) II Fault plugin (FP) L

Mcast proxy plugin

:
Global management

information

h . l APPlication- I
1

MSAagent I

Figure 2. AMAM architecture

The repository· contains by default four plug-ins, each of them having its own in
ternal architecture. These plug-ins are:

• the Mcast proxy plug-in (MP). The role of this plug-in is to provide trans
parency to the underlying multicast technology used. The plug-in interacts with
the routing as well as with the membership management protocols through spe
cific interfaces to collect information concerning members and delivered traffic.
Providing such a protocol independence facilitates deployment and integration
into legacy approaches. This plug-in is loaded in all agents.

In the edge agents, MP builds a multicast table that contains information
for each member on this edge. This generic table is built using proxy-lets which
provide the link with the two currently supported group membership protocols
namely IGMP for IPv4 and MLD for IPv6 (see Figure 3).

In the node agents (MNAs), proxy-lets that communicate with the routing
protocol are used. Other plug-ins use these proxy-lets and the data they collected
to perform their management task (see Figure 2);

• the Accounting plug-in (AP) specialised in accounting tasks. It owns an in
terface with the local MP, with external APs deployed in the other nodes as
well as with the group members that joined a session. Using the routing proxy
lets, this agent collects information related to the multicast traffic and feeds the
local database. Based on this information and the member table built by the
MP agent, this plug-in allocates the cost and computes the amount that will be
assigned to each member. This information can then be used directly in the
charging process and published directly towards the users through the Client
publishing interface. The agent also maintains a copy of charging units in the
local database (see Figure 3).

• the Security plug-in (SP) executes the security functions. Combined with a
policy server which can be located at any place in the network, even in the

52 H. Sallay, O. Festor

- - -r--t .,-.. .. - r " ICOSI M. ". 1
Pro:cy1lt "p
1"'-01 intertace
(IGMP(CIe"""""""",

I f AGcive pa(kel I MullJCasl (PIMI _or ' -t ::;:::r or .
Rame ! MP

Inlttfaee

Client key p.tiIr.hIng M,., ... , !
Owl FOIWatdmg : 1-.. ! II MP

FPeom:lion I
I i

I "'LOIioaSl Forwarcing eac:'" I In:ertace IOpOIOgaI diS<OYI,,1 I
OtMfll.1ed1HIS

R. __ I <hooksum
.. _Agenlilderldlet

Opc;ons I'Il1.Irnbtf of reecwrJJ
A_ell'
R ,
Rt<O< ,

Figure 3. Internal architecture of the plug-ins

multicast source domain, it ensures access control and user authentication. The
SP generates local keys and ensures their distribution to all connected members
through its key publishing interface. This plug-in also executes the algorithms
that encrypt/decrypt the multicast traffic that needs to be delivered (see figure
3).

• the Fault plug-in (FP) notifies the source of changes in the topology (i.e. add/re
move of a branch in the multicast tree) that were recorded locally by either
MNAs or MEAs. Based on the knowledge acquired through the reception of
these notifications, the source agent (MSA) builds a topological view of the dis
tribution tree. The plug-in configures itself through the source agent to generate
test cases based on the information model defined in [18]. The routing proxy-let
is also used through the MP interface to measure link quality over the distribu
tion tree.

In addition to the plug-ins, a management data exchange protocol has been defined
to enable communication among plug-ins either in different entities or in the same
system. The protocol defines a generic data format (see Figure 3). This message
format can be specialised for each plug-in. For example, the AP plugin defines a
message to transport the data necessary to allocate the costs and another to transport
the cost vector to be allocated. Each message contains the following elements:

• report plug-in type: an octet that specifies the type of the plug-in that sends
the report. For example, if the report type of an MP agent is set to 1, then all
messages received by FLAME whose type is 1 are forwarded to the local MP
plug-in;

• message type: one octet describing the message type. Each plug-in defines its
own message name-space;

• checksum: checksum over the entire packet. It is checked at each node which
processes the message;

Distributed Dynamic IP Multicast Management 53

• agent identifier: a two octet identifier uniquely identifying the agent that initi-
ated the message;

• options: used to specify a set of options required by plug-ins;

• number of records: number of data records contained in the message;

• record: contains the data which is specific to the message type.

The sequencing of messages is defined by each plugin.

5 Using AMAM for cost allocation and accounting
management

Cost allocation is done through the application of a set of strategies which enable
the assignment of a given cost to every participant in the downstream. In the multicast
case, gain can be obtained by sharing costs. For example, the ELSD (Equal Link Split
Downstream) strategy divides equally the cost of a link to all participants behind the
link. The cost is computed over several parameters like the volume of traffic, the used
bandwidth, congestion state of the link, To this transport cost, one has to add the
content cost. The ELSD strategy has been implemented in [12] but without taking into
account the dynamic nature of multicast trees.

Our architecture enables the support for an extended ELSD approach that we pro
pose. This extension, called D-ELSD explicitly considers the dynamics of a multicast
tree as a fundamental parameter of the strategy as opposed to ELSD.

Lets consider following definitions:

• An allocation session allocates costs among leaving participants. This session is
started each time an edge node looses its last participant. The node that initiates
the allocation session is represented as init in the remainder;

• denotes the duration between the arrival of the first member on an MEA
and the departure of the last member from the same MEA. Over this period, the
MEA records all arrivals and departures of its local members;

• = 8m and Nloc(i) = where nm is the number of
active members in 8m at node i;

• for each intermediate node, the MNA agent maintains the evolution of the num
ber of branches towards downstream nodes. Let = fh and Bloc(i) =
Vecth=o [bh] such that bh is the number of branches in fh 11;

• let = E;=o Tj and Ndownstream(i) = Vectf=o[nj] such that nj is the
number of members downstream of node i within Tj;

• let N merge (i) be the resulting vector of the following classification (8m, Tj)
from N downsteam (i) out of every downstream branch and Nloc over for node

i. Thus, if we have only one branch downstream: N merge (i) = V [ns]

over = as such that ns = ni + nj for as = min (8m , Tj). Thus, we

also have : the notation of the vector whose elements are 1/ns;

11 Note that one MEA can serve its members locally and have downstream branches to other MEAs or
MNAs. Thus, an MEA can maintain both vectors of numbers for members and branches.

54 H. Sallay, O. Festor

• let chem(i,j) be the path from a node i to a downstream node j belonging to
the multicast tree and finally, let cost(i,i + 1) be the cost of a link between a
node i and its first downstream node chem{i,j) towards node j;

D-ELSD cost allocation is done in two phases: (1) a preparation phase during
which the data necessary for the application of a strategy is collected. The necessary
data is the number of members downstream (in the chem{source, init) path)(2) a
processing phase where the cost for all members which receive their traffic through a
path that crosses chem{source, init). Thus:

• for the duration at, the node that initiates the cost allocation session (node i),
builds his N merge (i) vector. Once built, this vector includes the entire dynamics
of the downstream multicast subtree. The initiating node sends this vector to the
first upstream node (i - 1) on the path to the source (chem{source, i».

This vector will then be used as the N downstream (i - 1) vector. Node i - 1
then builds its fusion vector and sends it upwards. This process continues until
all vectors have reached the source;

• once the MSA received the vector V for the duration at = L:!=o i3i,
it builds the following allocation vector:

VecttoSend{SOUrCe) = cost{source,downstream_node) *
(5.1)

and sends it to the first node downstream. 1 represents all join/leave events
that have been registered for the at duration for the subtree containing chem
(source,init);

• every node i in chem{source, init) that did receive an allocation vector from
the upstream node, builds the cost vector for its members according to the fol
lowing equation :

Vectcost{i) = VecttoSend{i - 1) * l{l, l) * (M{l, k) * Nloc) (5.2)

where 1 (l, l) is the identity matrix of size 1 and M (l, k) the transformation ma
trix of the vector Nloc from size k to a size 1 vector.

1

1

0

M{l,k) =

0

0

0

1

1

0

o

o
1

o 1

where the number of 1 's per column is the number of 01 in Ok

(5.3)

Distributed Dynamic IP Multicast Management 55

• Node i sends a notification to its upstream nodes that it assigns the following
cost vector :

Vecttosend(i) = Vecttosend(i - 1) + cost(i, i + 1) * (5.4)

Every node on the path chem(source, init) does the same processing until the
vector reaches the node that initiated the session.

As soon as the cost allocation vector has been received (see equation 5.2), each
MEA agent that is in the subtree on the chem(source, init) path ensures allocation for
all its local members. This is done, based on the detailed knowledge of the behaviour
of each member, behaviour that has been recorded in the local database. A member
mi being connected during a C At period of time will get a cost equal to the sum
of elements from Vectcost for this duration. These costs can be communicated to the
members which can thus estimate their cost in near real time.

Note that the link cost is computed while respecting the strategies of load compu
tation. Load computation can rely on several parameters like the volume of received
data, the duration of the connection to the service, the used bandwidth, ...). The cost
vector depends only on the cost allocation strategy. In our framework, we used an
extended version of ELSD but other strategies can be implemented as well.

6 Implementation issues
In this section we will discuss some implementation issues in the AMAM archi

tecture. Figure 4 represents the deployment senario of the management agents. We
assume that in each edge router, a MEA is installed and that the MP plugin is down
loaded by default. The MP plugin serves to interact with the multicast membership
and routing protocols as mentionned before. When MP detects the arrival of the first
member joining the multicast session, the MEA initiates the deployment of the differ
ent MNAs in all the routers which are in the route to the first MNNMEA belonging
to the multicast distribution tree. These MNAs take their proper deployment configu
ration from a policy sever provided by the FLAME environment. Once installed, the
MNAs records the routing information that will be used in the accounting process (like
number of branches ...). The MEA records in its tum all the arrival and departure of its
local members. When The MEA detects the departure of the last member, it initiates
a cost allocation session according to the D-ELSD strategy. The source computes the
cost allocation vector and sends it to the concerned downstream routers. Each MEA,
based on this cost allocation vector and its local information computes the charge of
its local members and sends them a real time invoice. Finally, before desinstalling it
self, the MNA notifies the policy server. This interaction with the policy server is also
used to construct and update the topologic view of the multicast tree distribution at the
source. The MEA, before desinstalling its downloaded plugins (except MP plugin),
sends the local management data to the source for a final storage purposes (see Figure
4).

Note that D-ELSD is computed only when a topology change in the multicast dis
tribution tree occured and not as long as there is a joinlleave of members. Consquently,
the scalability of management functions in the core is the same as the one of the mul
ticast routing protocol since these management nodes only communicate and process
data on a tree topology change only.

The open interfaces with the membership and routing protocols can be obtained
by extending the major open source IGMP, PIM-SM and MLDv2 implementations.

56 H. Sallay, O. Festor

MEA plugln (e.cept MP). MNA : de.lnstalled V I

Figure 4. AMAM Agents deployment scenario

In our research group, we have extended the IGMPv3 interface for some accounting
purposes. For instance, the connection duration for each member is computed with
some timer variable used by the IGMP proxy let to fixe the time of arrival and departure
of each member.

To evaluate how the performance could be affected when extra functions are de
ployed in the agents, FLAME provides some integrated functionnalities for perfer
mance evaluation that we will use for our real implementation of AMAM. To improve
the scalability gain in the case of large scale of group members a simulation work will
be done for more performance analysis.

7 Conclusion and future work
In this paper, the need for developing management architectures dedicated to multi

cast services was addressed. The dynamics of these services, the very specific require
ments towards the standard management functions especially the needs for scalability
and ease of deployment and maintenance have been identified as the major points, a
management solution for multicast services should master.

Based on these requirements, a management architecture was proposed. This ar
chitecture is based on a three level hierarchy over which both management data and
functions are distributed. It enables the fusion of both signalling and management
planes for several multicast management functions like security and accounting. The
FLAME execution environment has been selected to host the architecture. The result
ing environment is called AMAM. Within AMAM, management functions are defined

Distributed Dynamic IP Multicast Management 57

in terms of active applications which can be downloaded on demand and which use
a dedicated protocol to exchange management messages. Integration with the con
trol planes (membership management and routing) is done through proxy-lets. New
management functions can be dynamically added.

Two management functions and their implementation within AMAM have been
presented. Through the proposal of an extended ELSD strategy, we have shown that
the architecture can support accounting functions that support the dynamics of mul
ticast group members. Other functions can be implemented in the framework in a
similar way. For example, in the security management process and especially in the
key management function, AMAM implements efficiently the solution based on the
principle of a single global key per source and several local keys managed by the edge
routers. The source agent generates one global key and ensures its distribution to all
nodes of the multicast tree. This key is used to encrypt the traffic that will be deliv
ered over the secured group. Each edge agent decrypts the traffic with the global key
and generates a local key, ensures its distribution to its local members and encrypts the
traffic with this local key. Local update of cryptographic keys makes the solution more
scalable avoiding a complete update over the entire tree each time a member joins or
leaves. Furthermore, the architecture can deploy approaches like MRM through con
figuration of MNAs and MEAs. Session control can be done based on the information
model proposed in [18]. Another multicast monitoring service was also implemented
in this architecture. This is the Hierarchical Passive Multicast Monitoring (HPMM)
framework [25] which does fault correlation over the multicast tree.

Pushing forward the implementation of the architecture within the FLAME active
network constitutes our first goal in the near future. This mainly requires some refine
ment in the specification of the management plug-ins. A second goal is to complete
the study of the behaviour of the framework in the context of SSM multicast services.
Finally, the architecture need to be extended to be deployed in a multi-domain (multi
ISP) environment.

References
[1] E. AI-Shaer and Y. Tang. Smnn: Snmp-based multicast reachability monitoring. Proc. NOMS'2002,

p. 467-482, 8th IEEElIFIP Network Operations and Management Symposium: Management Solu
tions for the New Communications World, R. Stadler and M. Ulema, Editors, ISBN 0-7803-7382-0,
April 2002.

[2] K. Almeroth, L. Wei, and D. Frainacci. Multicast reachability monitor (mrm), April 1999.

[3] L. Andrey, I. Chrisment, O. Festor, and E. Fleury. Les reseaux multi-media, chapter Les reseaux
actifs. collection IC2 chez Hermes, 2000.

[4] A. Ballardie. Scalable multicast key distribution, May 1996. IETF RFC 1949, Experimental.

[5] B. Cain, S. Deering, B. Fenner, I. Kouvelas, and A. Tbyagarajan. Internet group management proto
col, version 3, March 2001. RFC 1075.

[6] P. Calhoun, J. Arkko, E. Guttman, G. Zorn, and 1. Loughney. Diameter base protocol, june 2002.
<draft-ietf-aaa-diameter-l1.txt>.

[7] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. Generic AAA Architecture, August
2000. RFC 2903.

[8] H.J. Einsiedler, P. Hurley, B. Stiller, and T. Braun. Charging multicast communications based on a
tree metric, May 1999. 1st Workshop on Multicast Protokolle und Anwendungen, Braunschweig,
Germany.

[9] B. Haberman and R. Worzella. Ip version 6 management information base for the multicast listener
discovery protocol, January 2001. RFC 3019, Standards Track.

[10] H. Harney and C. Muckenhirn. Group key management protocol (gkmp) architecture, July 1997.
IETF RFC 2094, Experimental.

58 H. Sallay, O. Festor

[11] S. Herzog, S. Shenker, and D. Estrin. Sharing the "cost" of multicast trees: an axiomatic analysis.
IEEElACM Transactions on Networking, 5(6):847-860, 1997.

[12] Shai Herzog. Accounting and Access Control for Multicast Distributions: Models and Mechanisms.
PhD thesis, USC, august 1996.

[13] H. Holbrook and B. Cain. Source-specific multicast for ip. november 2000.

[14] A. Kanwar, K. Almeroth, S. Bhattacharya, and M. Davy. Enabling end-user network monitoring
via the multicast consolidated proxy monitor. In SPlE ITCom Conference on Scalability and Traffic
Control in IP Networks, Denver, Colorado, USA, 2001.

[15] Jangwon Lee and Gustavo de Veciana. Resource and topology discovery for IP multicast using a
fan-out decrement mechanism. In INFOCOM, pages 1627-1635,2001.

[16] R. Oppliger and A. Albanese. Distributed registration and key distribution (dirk), May 1996.

[17] Bob Quinn and Kevin Almeroth. Ip multicast applications: Challenges and solutions, septembre
2001. RFC 3170, Informational.

[18] H. SaIlay, R. State, and O. Festor. A distributed management platform for integrated multicast mon
itoring. Proc. NOMS'2002, p. 483-496, 8th IEEE/IFIP Network Operations and Management Sym
posium : Management Solutions for the New Communications World, R. Stadler and M. Ulema,
Editors, ISBN 0-7803-7382-0, April 2002.

[19] K. Sarac and K. Almeroth. Supporting multicast deployment efforts: A survey of tools for multicast
monitoring.

[20] K. Sarac and K. Almeroth. Scalable techniques for discovering multicast tree topology, 2001.

[21] 1. Schoenwaelder. Emerging internet management technologies. IEEE IM'99 (Thtorial), October
1999.

[22] D.L. Tennenhouse, I.M. Smith, W.O. Sincoskie, OJ. Wetherall, ,and G.J. Minden. A survey of active
network research. IEEE Communications Magazine, Vol. 35, No.1, pp80-86, January 1997.

[23] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat, M. Holdrege,
and D. Spence. AAA Authorization Framework, August 2000. RFC 2904 Informational.

[24] D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and architecture. Internet
RFC 2627, june 1999.

[25] J. Walz. Multicast Monitoring - Current Usage and a New Hierarchical Pr otocol . Master's thesis,
Dept. of Computer Science, University of Massachusetts, February 2001.

[26] Hugh W.Holbrook and David R. Cheriton. Ip multicast channels : Express support for large-scale
single-source applications. 29(4), october 1999.

USER ORIENTED IP ACCOUNTING IN
MULTI-USER SYSTEMS

Ge Zhang, Bernd Reuther, Paul Mueller
Department of Computer Science, University of Kaisers/autern
Postfach 3049,67653 Kaisers/autern, Germany
Tel: ++496312054520, ++496312052161, ++496312052263, Fax: ++496312053056
gezhang@informatik.uni-kl.de, reuther@informatik.uni-kl.de, pmueller@rhrk.uni-kl.de

Abstract: The traditional IP accounting method is IP address oriented, that means one IP address
corresponds to one user, but it can not meet the finer granularity accounting requirement
in multi-user systems, in which many users share one or more IP address at the same
time. In the multi-user systems the user oriented IP accounting can distinguish the
producers of the IP traffics, which come from the same IP address. Hence it is a more
accurate accounting method than traditional IP address oriented accounting method. In
this paper, we present the technology of the user oriented IP accounting, and describe
the principle of this method, and the realization considerations.

Keywords: IP Accounting, IP Billing, Multi-user System

1. INTRODUCTION

With the rapid development of the Internet, more and more services are provided
by the Internet, more and more users enjoy these Internet services, and consequently
more and more traffic are produced. For example, during the last three years the IP
data volume of the University of Kaiserslautern doubled every year. In this situation,
it is very important to control and measure the Internet usage. IP traffic accounting
provides information about the usage of a network and therefore helps to manage it.
The accounting data may be used also for billing. Today billing is commonly used
by Internet service providers (ISP). But billing systems might be used even within
LAN. This enables to allocate the costs, which are produced by the network traffic
of a single-user or an institution using a campus network. But billing has also an
influence on the behavior of the users. Users will not use the network resource
responsible if the usage is free of charge. Because of the rising costs it is reasonable

http://dx.doi.org/10.1007/978-0-387-35674-7_66

60 Ge Zhang, Bernd Reuther, Paul Mueller

to present bills to the end users also. This aspect becomes very important when a
network offers different Classes of Service (CoS).

It does not depend if billing is used in a LAN to allocate costs or to motivate
reasonable network usage. In both cases it makes sense to be able to correlate the
network traffic with the users, which are responsible for it. Today several IP
accounting and billing solutions exist. But these solutions correlate IP addresses and
traffic only. But there are several scenarios where an IP address is not associated
with one user. For example in the computer center of University of Kaiserslautem
the multi-user computers or PC pools playa very important role. The traditional IP
accounting solutions are not able to distinguish different users of those systems.

This paper describes method that enables the distinction of users even on multi
users systems.

2. TRADITIONAL IP ACCOUNTING METHOD

2.1 IP accounting and IP billing system

Accounting is "The collection of resource consumption data for the purposes of
capacity and trend analysis, cost allocation, auditing, and billing."[l]. Whereby
Billing is the process of utilizing the processed Accounting Records on a per user
basis to generate the invoice. The architecture of a general IP billing system is
illustrated in Figure 1 [2].

An IP Billing system consists of three layers: Traffic Flow Meter Layer,
Mediation Layer and Billing / OSS / BSS (Operating / Business Support System)
Layer. The Traffic Flow Meter Layer records the network activities in Raw Data
Records (RDR) like an electricity meter. The Mediation Layer collects the Raw Data
Records from various Network Elements, and processes the Raw Data Records to
produce the Usage Records, stores the Usage Records in database, distributes the
Usage Records to different applications in layer 3. The applications (e.g. Billing,
Fraud Detection, Traffic Analysis etc.) in layer 3 respectively process the Usage
Records for different application purposes and generate various reports. IP
accounting includes the layer 1 and layer 2 in the IP billing system architecture.

The traditional IP accounting system collects and processes the resource
consumption data on the basis of the IP address, that means, in these systems an IP
address is considered as one user. But it is not the case in the multi-user systems,
e.g. most Unix systems or Windows Terminal Servers, in these systems many users
share one or more IP addresses simultaneously. In this case one IP address is not
equal to one user. Contrasting with the traditional IP address oriented IP accounting
method, we suggest the User oriented IP Accounting method. Our NIPON
(Nutzerbasiertes IP accounting) project aims at solving this problem.

User Oriented IP Accounting in Multi-user Systems 61

- . s
y
S
T
E
M

M
A
N
A
0
E - . M
E
N
T

Layer "3 Ofll.bt.g lOSS IBSS Laye."

I Billu.c I I I 1 MC:::'::" 1 1 I· ·1 I
.--________________ ---=L:..:"'Y"=.:r:...;2=--,--- l\IletUation

Cuco N.t.fbw
RMON!
RMON!I

Rou
Switehu
SNMP

DistributIOn Adaptor

Raw Data Records Collector

La.ye.· 1 ___ Data Flow Mc'ter Layer

Loc;m_u;t
authuci.c. ion level

zwtwo de .J.un.:nt,

ONS .el"VCn
DHCP,.n"'V1I

f'Uwwall tel'\l"e'f
LDAP.:rv-.n
Jt.ad..i:w; '.l"V'<D"J

RAS '.J'V'C17

ApplM:..ton N.rnrozk pllOb" t.tv.l
.lane:n:l"

'.J'V'G7
Policy ,en.r

VoIP G.t.Nw..Jt.yt
WAPcat_an

W.'bJPlIOIK'Y'.J'Y'W'7

S.n\.Cdic:
TyJrM:

de"",.

Figure 1. IP Billing System Architecture

R
U
L
E

S
E
T
S

2.2 User Information Processing Method in Traditional
IP Accounting System

The general IP accounting process can be described in two steps:
I) The Traffic Flow Meter collects IP traffic information from various

Network Elements, and stores these information in the form of Raw Data
Records;

2) The Mediation layer collects the RDRs, and then processes (Validation, de
duplication, filtering, correlation, aggregation and normalizing) the RDRs
to produce the Usage Records.

Figure 2 illustrates the process of IP traffic information processing.

Figure 2. IP Traffic Information Processing

During the process of the IP traffic information processing, the traditional IP
accounting method will regard the IP addresses in the RDRs as the user information,
and these IP addresses will be mapped to corresponding users by the so called
Correlation module, which is one of the RDR processing modules in IP mediation
layer (see Fig.!). The function of the Correlation module is to merge several RDRs,
which have some relationships, to create a single record, this can provide a single,
complete view of information about an event [3]. In the traditional IP accounting
system the Correlation process is on the basis of IP address. The Correlation module

62 Ge Zhang, Bernd Reuther, Paul Mueller

maintains an IP address & User Map Table, according to this table the Correlation
module can map the IP addresses to the corresponding users. Figure 3 illustrates an
example of the process of how the Correlation module mapping the IP addresses in
RDRs to corresponding Users.

IP :A2 .B:2.C::tD2

U" :Al I!H,C l .01.

lP :A:2.B2 ... C2.D2

.. 1 Tab_ ..
A 1 .Dl ,Cl.Dl USERl
..A.'2 . B2.C2.D2 USER2

Figure 3. Mapping IP addresses to corresponding Users

USERl

USER2

USERH..

The above described user infonnation processing method of traditional IP
accounting system has no problem in single-user systems or in the condition that
each IP address can be considered as the user who will be responsible for the IP
traffic. In these cases an IP address can uniquely represent a person or an institution
that will be responsible for the IP traffic generated by this host.

But in multi-user systems, many users can share an IP address at the same time.
In this case an IP address cannot uniquely represent a user. The traditional IP
accounting method cannot accurately process the user information in this situation.

Figure 4 illustrates an example of the Correlation process of the traditional IP
accounting method in multi-user system.

$'S 1II.a-
Al .131 .Cl.Ol USERI
A2.B2.0.00 USER2

......
cr.Di USEM

Figure 4. Traditional IP accounting method in mapping IP addresses to
corresponding Users in multi-user system

In Figure 4 several users share a multi-user computer, and they share the same IP
address Ai.Bi.Ci.Di. According to the traditional user infonnation process method,
only the IP address information Ai.Bi.Ci.Di in the Raw Data Records will be used to

User Oriented IP Accounting in Multi-user Systems 63

represent the user. After the Correlation module processing this IP address is
mapped to USERi and the user information is recorded in the generated Usage
Records. Through this user information processing method, all the IP traffics, which
come from the same multi-user computer with the same IP address Ai.Bi.Ci.Di, but
produced by different users (userl, user2, ... ,usem), are regarded as produced by
the same user (USERi).

From the above introduced traditional IP Address oriented IP accounting
method, we know that, this traditional IP accounting method can not meet the fine
granularity requirement of the user information processing in multi-user systems.

3. THE PRINCIPLE OF USER ORIENTED IP
ACCOUNTING IN MULTI-USER SYSTEMS

User oriented IP accounting collects traffic information and processes the RDRs
on the basis of User. Before we discuss about it, we should first answer the question:
What is a User? Then we will describe the principle of User oriented IP accounting
method and the realization considerations.

3.1 User Model

3.1.1 Terminology

The meaning of the term user depends on the context where the term is used.
When talking about traditional IP accounting systems a user is a host that is the
source or the sink of IP traffic. Within IP billing systems the term user means the
person or institution, who is responsible for some IP traffic, i.e. who has to pay for
the IP traffic. In a multi-user system a login name or an identifier represents a so
called user. This user may be one real person or a group of real persons. Because of
this ambiguous usage of the term user we will present some definitions of terms,
which will be used within this paper:

• Host-Identifier is a unique identifier for an endsystem of the network layer.
In the context of IP networks an IP address can be used as a synonym for a
Host-Identifier, since IP addresses are unique numbers for network layer
devices, at least within an administrative domain.

• User-Identifier or UID is a unique identifier for an account on a multi-user
system. This term is commonly used in the context of multi-user systems.

• Traffic-Originator ::= <Host-Identifier, [User-Identifier]>. A Traffic
Originator (TO) is responsible for specific outgoing and incoming traffic
flows. A TO may be described only by a Host-Identifier or by a Host
Identifier and a User-Identifier. This means a TO is an exclusively used
computer or an account on a multi-user system.

• User::= <Traffic-Originator 1 [, .. . Traffic-OriginatorNJ> is a unique
identifier for real person or a group of persons which are associated with

64 Ge Zhang, Bernd Reuther, Paul Mueller

one or more TOs. Each TO is associated with exactly one User. Usually a
User identifies one real person who has access to one or more single-user
systems or accounts on multi-user systems. When a group of real persons
share an account or a single-user system, this group may be described by
one User.

• Purchaser::= <User 1 [, ... , UserNJ> is a unique identifier of a person or an
institution who will pay for the traffic that is originated by one or more
Users.

3.1.2 User oriented IP accounting definition

According to the definitions of the previous subchapter, traditional IP accounting
distinguishes traffic from different Host-Identifiers, i.e. IP-Addresses only. Within
the mediation or billing layer Host-Identifiers are mapped to purchasers directly. In
contrast to this the User oriented IP accounting distinguishes different TOs. Within
the mediation or billing layers the TO will be mapped to Users which are mapped to
Purchasers. It is important to distinguish between Users and Purchasers, because of
their different responsibilities. The User is responsible for the traffic that is
produced. If there occur some problems with some traffic flows or the amount of
traffic that is produced, then it is important to know who is responsible for the
traffic. But in order to send a bill to some person or institution it is only necessary to
know who is responsible for paying for the produced traffic.

The User oriented IP accounting extends the concept of traditional IP accounting
by considering User-Identifiers in addition to Host-Identifiers. Traditional IP
accounting can be regarded as a special case of User oriented IP accounting, since in
traditional IP accounting the TOs of the traffic flows have always the same UID.
Comparing with traditional IP accounting, User oriented IP accounting should
provide information about User-Identifiers, which must be correlated to the
accounted IP traffic. Therefore three technical problems must be solved for the User
oriented IP accounting:

• Accounting of User-Identifiers. More precisely a relationship between a
User-Identifier and a traffic flow must be recorded. This must be done
within the multi-user system, since this information is not available outside
of the multi-user system.

• Correlation ofTOs (which may contain User-Identifiers) with traffic flows.
• Transport of the accounting data that is recorded in the multi-user system to

the correlation module.

3.2 User oriented IP Accounting Method

With the above described User model, User oriented IP accounting will identify
the producer of each traffic flow or package, and the corresponding TO information
will be added into the RDRs to identify who produce them. A flow is defined as a
set of packets between two endpoints (as defined by their source and destination
attribute values and start and end times) [4]. For example, in the realization of the

User Oriented IP Accounting in Multi-user Systems 65

traffic meter NeTraMet [5], a flow is identified by a 5-tuple, i.e. <protocol, source
address, destination address, source port number, destination port number>.

The TO information is unknown to the outside of the multi-user systems. If we
want to obtain the TO information from a multi-user system, a mechanism must be
resided in the multi-user system to implement this function. Here we call this
mechanism Agent method.

3.2.1 Agent method model of User oriented IP accounting

Figure 5 illustrates the Agent method model of User oriented IP accounting in
multi-user systems. The User oriented IP accounting architecture is based on the
traditional IP accounting architecture. The differences between the new method and
the traditional method are:

c -c -
liIl:ti""u.E .,. IIP1

If'l.alel

•• Tallie 2

... __ /m

"hallie.
11''1.'''''

UTaII ••

adtr-... .,. .. I IPD

.P'laflle 1

•• TaBlet

£ ..
• • T

£ ..
• • T

r-----------------------l
I I
I I
I I

I

W

I
I
I
I
I
I
I

0
R •• 'IB'I I

I
K

£
C

• • T

DV'IB'I

Figure 5. Agent Method Model of User Oriented IP Accounting

• An Agent is introduced into the multi-user system, which is used to collect
the User-TrafficFlow relationship information according to the User Model.
The collected User-TrafficFlow relationship information will be recorded
into a so-called Dynamic User-TrafficFlow Relationship Table (DUTRT).
This is used to record the IP traffic flows and their corresponding TO
information. The Agent can also act as a standalone IP traffic meter, which
measures the IP traffic from the multi-user computer, in which it locates. In
this situation the entries in DUTRT can be used as RDRs. This will
simplify the correlation processing, but it will contribute more overhead to
the multi-user system.

• The Correlation module in the IP mediation layer uses a DUTRT, not a
simple IP Address-User Table, to map the RDRs to the corresponding

66 Ge Zhang, Bernd Reuther, Paul Mueller

users. In this case, more attributes in RDRs should be used for the user
correlation purpose.

The User oriented IP accounting process with Agent method can be described as
below:

I. The Agent checks all traffic flows, and then extracts the corresponding TO
and other information to identify each flow. All the generated User
TrafficFlow relationship information will be stored in a DUTRT.

2. Traffic Flow Meter collects the IP traffic information to generate the Raw
Data Records.

3. The RDRs and DUTRT records will be sent to or collected by IP mediation
layer.

4. The Correlation Module uses the DUTRT to map the RDRs to the
corresponding users and adds the user information to the new generated
Usage Records.

3.2.2 Dynamic User-TrafficFlow Relationship Table

The Dynamic User-TrafficFlow Relationship Table is generated by the Agent. It
is used to record the TO information of each traffic flow or package, and the
Correlation Module will use it to identify the users of the traffic flows.

Whenever a new traffic flow is produced, a new entry with this flow's TO and
Correlation attributes will be created into the DUTRT. And the start time of the flow
will also be recorded. If the Agent is used as a standalone meter, the continuous
statistic information of the flow (such as bytes or packages etc.) will be added into
the same entry. After the stop of the flow, the end time of the flow will be recorded
into this entry.

The records of DUTRT table will be sent to or collected by IP Mediation layer
periodically.

According to the User model, several attributes in a traffic flow and
corresponding TO information are collected to construct a DUTRT. For example, an
entry of the table may include several items as below:

<UserID, Source IP, Source Port Number, Destination IP, Destination Port
Number, Timestamp>.

A record in the DUTRT includes three kinds of attribute:
I. Traffic-Originator attribute: it is used to uniquely identify a TO, who

produces the traffic. As for the above example, TO attribute includes these
items: <UserID, Source IP>.

2. Correlation attribute: it is used to correlate a traffic flow to a corresponding
user. The Correlation attribute includes flow related information that are
usually extracted from IP traffic flows or IP packages, and RDRs produced
by meters also record all these needed attributes. [6] defines the attributes
and format of RDR. As for the above example, Correlation attribute
includes these items: <Source IP, Source Port Number, Destination IP,
Destination Port Number, Timestamp>

User Oriented IP Accounting in Multi-user Systems 67

3. Statistic attribute: If the Agent is used as a standalone meter, the attributes
such as bytes, packages count etc. will be collected for the purpose of
measuring the network resource consuming.

The Agent does not generate the RDRs directly, but generates the DUTRT, the
reasons are:

• This method can easily be integrated into the now existent IP Billing
system.

• Generating all the RDRs and all their attributes will cost more system
resource in multi-user systems and will affect the system perfonnance.

3.2.3 Agent

The Agent can be implemented as a standalone software or a part of the multi
user system kernel. It checks all traffic flows to extract user infonnation for the
purpose of User oriented IP accounting. Its main functions include:

1. Capturing packages or traffic flows and extracting the Correlation attribute
items from them.

2. According to the requirement of the User Model, retrieving the
corresponding TO attribute items of the traffic flow from the system.

3. Combining the TO attribute and the Correlation attribute items together to
generate a record into the DUTRT.

4. If the Agent works as a standalone meter, it will collect more accounting
infonnation of traffic flows and record them into DUTRT. In this case the
entries of DUTRT will be used as RDRs.

5. Transferring DUTRT records to IP Mediation layer.

3.2.4 Correlation processing

The Correlation process is the same as it in traditional IP accounting systems,
except that an additional Dynamic User-TrafficFlow Relationship Table, combining
with a Traffic-Originator & User Map Table, will be used to map the RDRs to the
corresponding users. The DUTRT is generated by the Agent, and it is used to
identify the TO of each flow. The Traffic-Originator & User Map Table is used to
record TO and User's static relationship. Whenever a new user account is created in
a multi-user system, a new entry will be added into this table. It is managed by the
IP Mediation layer. The Traffic-Originator & User Map Table will not be changed
unless the user account is changed in a multi-user system.

Figure 6 illustrates an example of the correlation processing with User oriented
IP accounting method.

From the Figure 6 we know, although the users in the multi-user system produce
the RDRs all with the same source IP address (Ai.Bi.Ci.Di), the RDRs include other
correlation attribute items<Source IP, Source Port Number, Destination IP,
Destination Port Number, Timestamp>. With the DUTRT and the Traffic
Originator & User Map Table, the Correlation Module can correlate the RDRs to the
corresponding USERs and generate the Usage Records with correct user
infonnation. Comparing with the IP Address & User Map Table in Figure 4, this

68 Ge Zhang, Bernd Reuther, Paul Mueller

method uses a DUTRT and a Traffic-Originator & User Map Table. The DUTRT
includes more detailed TO information to help distinguish all traffic flows'
producers in the multi-user systems.

De, UP Sn:Pol't DestPmt T llneSt .vnp

lli<12 Ai.Bi.Ci .Oi ->.2 b;l ,<:2 ,d2

Oidn

R..wn ..
SrcIP: Ai. Bi .CiDi
De,tIP:al.bl.el.dl

tPo:tt1.dPortl ..
Tim.el

SrGIP:Ai. Bi. u,o;
O •• t1P:02.1>2.c2.<l2

dlolt2.dPOIt2
T"-2

Src.lP:Ai.Di. Ci.D:i

,Po,b",clPCII'b1.
T ut'\m'\

• rt at

.Port2 dPaa

USERJ

USER2

USERn

Figure 6. User oriented IP accounting method correlation process in multi-user
system

3.2.5 Traffic-Originator information storing and transporting methods

After the collection of the TO information, the next consideration is how to store
and transport these TO information.

The legacy accounting protocols [1] such as Radius, Tacacs+ and SNMP etc. can
be used to work together with the Agent to implement the User oriented lP
accounting. For example, according to the above described User oriented IP
accounting principle, the realization of the Agent can be designed as a SNMP agent
in the multi-user system. At first the collected TO information will be stored into
MIB database, then the SNMP protocol can be used to transport these TO
information data in the MIB database to the meters. Using this method, a user
oriented IP accounting MIB standard should be defined. The [7], [8] described
standards can be modified to meet this requirement.

Another method called protocol header method has been discussed in [9]. The
principle of this method is to utilize the option field of the IP protocol header to
carry the TO information, which will be inserted by the Agent. By this means, no
DUTRT is needed, and the main function of the Agent is only to identify the
producer of the IP traffic, and then to add the TO information into IP packages. The
TO information will not be stored in the multi-user system. Outside the multi-user
systems, the IP traffic meter can collect the IP traffic's TO information directly from
the protocol headers of the IP packages.

User Oriented IP Accounting in Multi-user Systems 69

The advantage of utilizing the legacy accounting protocols is that these
accounting protocols are widely accepted, but they will cause more overhead to the
multi-user system and the network. The advantage of protocol method is that it will
cause less overhead to the multi-user system and network. But the disadvantage is
that this method needs the IP protocol to be modified, and security of the user
information included in the IP protocol header is also a problem. Therefore the later
method is considered to be unpractical.

3.2.6 Realization of Agent Method of User Oriented IP Accounting

According to the principle of Agent method of User oriented IP accounting, the
key of the realization of user oriented IP accounting in multi-user systems is the
realization of the Agent, which can generate the DUTRT. In order to collect the
corresponding TO information of IP traffic flows, the Agent must locate in the
multi-user system, outside the multi-user system no mechanism can obtain the TO
information of the IP traffic alone.

Because the Agent needs to obtain the TO information of the IP traffic, usually
the realization is OS dependent, in other words it is OS kernel dependent. For
example, usually the TCP/IP drivers are implemented in kernel mode. Here we
consider about two realization methods:

1. Kernel modification.
The principle of this method is, directly modifying the tcpip driver, inserting the

Agent function of the user oriented IP accounting into the driver. By this means, the
build-in user oriented IP accounting Agent can generate the DUTRT. Because the
Agent is located in the tcpip driver, it can check all IP traffics and obtain the
corresponding TO information. It can be describe as Figure 7.

1
NcL"VV'ork Fun tiOr"l I Reques t

T C P / lP dri vet-

I Dynamio
User-TraffioFI OVV

I Ufto-" orient.ed IF' Relation.ship
accounting Agent. I I Table ..

Figure 7. Principle of kernel modification method

This method is based on this precondition: the OS source code can be obtained
and modified. It is fit for OS producer to make this modification, or for open source
code OS (e.g. Linux).
[10] has implemented UserlPAcct in Linux, which is a User oriented IP accounting
realization. In UserIP Acct the tcpip driver is modified and strengthened to record the RDRs
with TO information.

70 Ge Zhang, Bernd Reuther, Paul Mueller

2 . Kernel patch.
The principle of this method is, making the network requirements to tcpip driver

be redirected to the user oriented IP accounting Agent. This method need not modify
the system kernel, the Agent will be realized as a kernel patch. Figure 8 illustrates
the principle of this method.

o
• 0 •

::;::
• 0 •

o
o

Ncv.r Network
SYfJlen;\Culi

Figure 8. Network system call redirection

Dynamio
1Jser-TrafficFlow

Relationship
Table

In the redirection technique, the request to original network function will be
redirected to the new defined network system call, which can capture the network
traffic flows and record the traffic and corresponding TO information to generate the
DUTRT.

This method is fit for the non-OS producers, who cannot get the OS source code.
In our NIPON project we have implemented the prototype Agent software

IPTrafficRecorder (IPTR) respectively in Solaris and Windows 2000 Server
operating systems, it can collect IP traffic and corresponding TO information to
generate the DUTRT. Figure 9 is a screenshot of the prototype Agent software
IPTrafficRecorder's running under the Windows 2000 server. Here we can see that
each package is identified by a Traffic-Originator. In the realization of the
IPTrafficRecorder in Windows 2000 Server, an Agent, the IPTR driver, works
above the tcpip driver, and captures all the network request to the tcpip driver, and
then it extracts the traffic information and the corresponding TO information.

Comparing the two above described user oriented IP accounting realization
methods with each other, the kernel modification method is a better solution.
Because in this method, the Agent works in the tcpip driver, all the IP traffic related
operation can be traced and recorded. But for the kernel patch method, since it
works outside the tcpip driver, some in the tcpip driver fulfilled IP traffic related
operations cannot be recorded. For example, the three-way handshake of the tcp
connection is completed in the tcpip driver, the kernel patch method cannot capture
the packages related with this process. For the kernel patch method, it can meter
most of the IP traffic, and it is a simple method without modifying the kernel code.

The collection and transferring of the TO information of IP traffic flows will
cause overhead to the multi-user system and the network. There are some ways to
reduce the performance affection:

1. Agents collect only TO and Correlation attribute information. Other
accounting information such as bytes count etc. will be collected by the
outside meters. This can relieve the load to the multi-user system, and also

User Oriented IP Accounting in Multi-user Systems 71

...

...., ,
5679
5678
0677
567.
5675
5674
5673
5612
56"
"'70
5667
S666,
S662
566'
S660 """. S6S8

can reduce the transferring data volume from multi-user system to IP
mediation system. Agents will not be used as standalone meter.

2. Using kernel modification method to implement the Agent. This will
improve the efficiency of the Agent.

3. User oriented IP accounting may be configured as an optional function for
the multi-user systems. If this function is not needed, or IP address can be
regarded as user, the User oriented IP accounting Agent needs not be
started .

01* -.

.... ,,,j,,,,",,
OI :36:0'i.91S IfXPlORf,[XE:Z456 """ • 2'.0,0.1 :1062 ,
01 :36:09.9'15 TO> sao 131 .21I5..1In.114:187-4
DI :36:O'il.?8S """ sao 127.0.0.1 :1070 ,
OI :36:09.?e.s IEXPlOft£.De: :Z360 """ A:tC!M 127.0.0.1 : 1070 ,
01 :36:09.765 """

...., 127.0.0.1 : I 070 ,
01:36:09.765 rDPlOR.E.EXf:2360 IJCj> REC£NE 127.0.0,1:1010 ,
DI :36:09.7S5 lfXPlORE.EXE :236Q TO. 5£N) 207.66,171.247:80 lS6
01 .36:09.755 I[)GIlORE.EXE:Z360 TO> RECElVE 207,66,17 •. 2:"":00 , ..
01 :36:09.'45 TO> SEND >SO
01:36:09.73$ II!:XI>I.OU.tXI!: :%360 TO> A£C!M 207.U.171.247:80 261!
OI:l6:09.73S 1D:PL0A.!.tx!:21S6 TO> ..,., 207.68.171.247:80 '"" Qt ::)6:09.72 IDCPLORE.E)([:2156 TO> RfCEIVE ro7.68.171,247:80 ...
01 :36:09.12 IEWlOR£.EXE:2296 TO>, 131.246.103.5:80 31.
01:36:09.7. IExPLOR.£.EX£:2296 TO> RECElVE ,0<
01 :36:09.71 IEXPlORE. EXE:2296 ...,. 5£NO 177.0.0.1:1097 ,
01:36:09." £iOCPLOR£.tx£:2296 """ REaM 12'7.0.0.111097 ,
01::)6:09.7 1!XP1.0A.!.!xe::2'l4O ...,., 127.0.0. 1 il070 ,
01:36:09.6g (!XPL0R.!:.D:!:2360 ...,. R..fC!:lW 127.0.0. 1:1070 1
01 :36:09.6fI IEXPLORE.EXE;2360 l.IlP 5£NO 127.0.0.1: 1070 1
01:36:09.685 (EXPLOP.£.EXE:2360 l.IlP REat,.. 127.0.0.1: 1070 1
01:36:M.67S r!XP1.OA!:.txe::Z360 TO> 5£NO 207.68.171.2.7:80 355
01 :36:09.665 (D:Pl.0RE. D:E;236Q TO' RECEIYf' 207.60.171.247:00 260
01 :36:09.665 tEXPLOR£.EXE:2360 TO> S£NO 207.68.171.:.7:eo ...
01:36:09.6!5S ItxPLoq:. D:!:2360 TO> R.£aJYE 207.68.171.2.7180 260

to:PLORJ!.D:!:21!6 - ..,.., 127.0, 0.1: 1062 1
01:36:09.6045 [o:PlORf:.E)i:!:;2456 l.IlP .,,,,,"'" 127.0.0.1:1062 1

IDPLORE.EXE:2456 TO> S£NO 207.68 .• 71.2'41:80 3SO
01:'36:09.6-35 TO> .:t£alY£ 207.6$.• 71.2 .. ,:eo 260
01 :36:C».625 ttxP\.ORJ!.O:!:Z1$6 TO>, 207.68.171.247:80 -01 :36:09.62:5 IEXPlORE.fla:::2456 TCP R£<EM' 207.68.171.247:80 26B . __ ... _- -..

Figure 9. IPTrafficRecorder in Windows 2000 Server

The overhead caused by User oriented IP accounting is unavoidable, because the
user information is invisible outside the multi-user system. What we can do is to
lessen the performance affection to the multi-user system and the network caused by
the Agent.

4. SUMMARY

In this paper we have presented a user oriented IP accounting technology in
multi-user systems. It can provide more accurate accounting information than the
traditional IP address oriented accounting technology, and it extends the traditional
IP accounting technology.

User oriented IP accounting utilizes an Agent to collect TO information of the IP
traffic from the multi-user systems, these TO information will then be stored in the
Dynamic User-TrafficFlow Table, which can be used to correlate the user with the
IP traffic. The extended legacy accounting protocol methods can be used to convey
the TO information. In realization of the user oriented IP accounting, two methods,
kernel modification method and kernel patch method, have been suggested.

72 Ge Zhang, Bernd Reuther, Paul Mueller

Comparing with the two methods, the kernel modification method is a more precise
method, which can collect the required accounting information more completely.

The suggested User oriented IP accounting architecture is based on the
traditional IP accounting system. It is an extension of the traditional IP accounting
architecture. The traditional IP accounting meters will be used to collect accounting
information of single user systems, and the Agent will be used to collect accounting
information in multi-user systems. Now existent IP accounting systems can enhance
its IP accounting ability in multi-user systems without influencing its ability in
single user systems.

In our NIPON project we have implemented a user oriented IP accounting
prototype with the kernel patch method in Solaris and Windows 2000 server
respectively. In the future we will develop a user oriented IP accounting system in
the computer center of University of Kaiserslautern, and this user oriented IP
accounting system will mainly run in the Solaris, Linux and Windows 2000 Server.
And the kernel patch method will be used to implement this. The kernel
modification method maybe a suggestion for the OS producers. To realize the kernel
modification method, some standards of the user oriented IP accounting should be
defined.

5. REFERENCE

[1] B.Aboda,J.Arkko, D. Harrington: "Introduction to Accounting
Management", RFC2975, October 2000

[2] Ge Zhang, "Comparison and Analysis of IP billing Technologies",
Internal Report, University ofKaiserslautern, November 2001

[3] Lucent Technologies, BILLDATS@ Data Manager,
http://www.lucent.com!

[4] S.Handelman, S. Stibler, N. Brownlee, G. Ruth: "RTFM: New
Attributes for Traffic Flow Measurement", RFC2724, October 1999

[5] Nevil Brownlee, "Using NeTraMet for Production Traffic
Measurement", Integrated Management Strategies for the New
Millennium, December 5, 2001

[6] N.Brownlee,A.Blount: "Accounting Attributes and Record Formats",
RFC2924, September 2000

[7] N. Brownlee, C. Mills, G. Ruth: "Traffic Flow Measurement:
Architecture", RFC2722, October 1999

[8] N. Brownlee: "Traffic Flow Measurement: Meter MIB", RFC2720,
October 1999

[9] Volker Bauer: "Analyse von Netwerk-Abrechnungs-Systemen
bezueglich nutzerorientierter Datanerfassung", Diplomarbeit,
Univeritaet Kaiserslautern, September 2000

[10] Lars Fenneberg, et. aI., "UserIPAcct - a program to do per user ip
accounting", http://ramses.smeyers.be/homepage/useripacct/

TARIFF-BASED PRICING
AND ADMISSION CONTROL
FOR DIFFSERV NETWORKS

Tianshu Li, Youssef Iraqi and Raouf Boutaba
School of Computer Science
University of Waterloo, Canada
{dtianshu,iraqi,rboutaba}@bbcr.uwaterloo.ca

Abstract:

Keywords:

In a QoS-Enabled network environment, there are two major concerns from both user's
and provider's points of views: are there enough resources available for a particular traffic
flow and what's the price for this flow? These two questions are exactly what admission
control and pricing try to answer. An architecture that integrates pricing and admission
control seems very promising. In this paper, we propose a tariff-based pricing architecture
that integrates pricing and admission control for the DiffServ networks. We also study
some pricing setting strategies for our architecture and evaluate our strategies through
simulations.

Pricing, Admission Control, DiffServ

1. Introduction
With the Internet evolving into a multi-service network, QoS-pricing in the Internet

has been one of the hottest research areas in the recent years. Two QoS architectures:
Integrated Services (IntServ)[l] and Differentiated Services (DiffServ)[2] have been
standardized by the IETF to support QoS in the future Internet. Due to the inherent
scalability problem of the IntServ approach, it is generally believed that DiffServ is
more likely to be implemented in the Internet core. Unlike IntServ, which can charge
users based on the allocated resources, pricing for DiffServ networks is more com
plicated and has drawn a lot of attention in the networking community. Before the
wide deployment of DiffServ, an effective and efficient pricing scheme has to be de
veloped. Meanwhile, since price is such an important economic incentive for the end
users, pricing is often considered as an effective mechanism for congestion control
and admission control, which in turn can improve the level of QoS guarantees. In
deed, QoS pricing schemes proposed so far often entail either congestion control or
admission control or even both. In this paper, we first have a close look at the relation
ship between the pricing and these two traffic management functions and propose a
tariff-based pricing architecture that integrates pricing and admission control for Diff
Serv networks. The proposed architecture maintains domain and global price tables
for core networks only. In this way, we decouple the pricing for the core network from
the end-to-end pricing, which fits well into the DiffServ paradigm.

The remainder of this paper is organized as follows: Section 2 will review some
background and related work in this area. Section 3 discusses the motivation and
some design choices and presents our pricing architecture and the construction and

http://dx.doi.org/10.1007/978-0-387-35674-7_66

74 T. Li, Y. Iraqi and R. Boutaba

maintenance of pricing tables. Section 4 and 5 discuss our price setting strategy and
admission control scheme in details. Section 6 presents our simulation results and
their analysis and finally section 7 concludes the paper.

2. Background and Related Work
Pricing for the Internet in general has long been an active research area. Example

approaches such as proposed in [6-10] study the pricing for networks from various
angles. More detailed review of pricing schemes can be found in [3, 4]. Most of
approaches either assume a well-known user utility function or try to create a market
environment for auctioning. In the first case, existence of a prior known utility function
is assumed and price setting can be based on the optimization that maximizes either
the social welfare globally or the user benefit locally. However, in [10], Shenker et
al. argued that utility functions could not be well defined in short term and sometimes
even very difficult in a long-term time scale. The effectiveness of such schemes is still
questionable. Based on this observation, they proposed the Edge Pricing scheme that
charges users for the estimated path and estimated cost so that pricing is pushed to the
edge. In the second case, although auctioning does not require a prior knowledge of
user traffic characteristics and has been generally considered as the one that achieves
economic efficiency, it has significant implementation overhead. Up until now, there
has not been a well-accepted solution yet.

Many of approaches mentioned above assume that users are rational to the price
signals and have been using the pricing as a main mechanism for congestion control.
When congestion occurs, extra congestion cost will be charged in order to address
the externality issue. Since users are expected to react to the price signals, congestion
sensitive pricing schemes often emphasize user adaptation where users will adjust their
sending rate in case of congestion. Some approaches that fall into this category can
also be found in [12, 14].

However, in a strict sense, congestion-sensitive pricing does not address the QoS
guarantee in particular. When congestion occurs, QoS is no longer guaranteed. To
provide a better QoS guarantee, what we want is to avoid the congestion, not to act
after the congestion occurs. Furthermore, QoS guarantee is a commitment that service
providers made to the end users. Asking users to adapt to the price change or even
terminate the service is undesirable. We believe that a proper interpretation for the
user adaptation in a DiffServ environment is the choice of different service classes at
the beginning of a service session rather than adjusting their sending rate in the middle
of a service session. In other words, an elastic request would likely choose a lower
level service class while an inelastic request may choose a higher level service class if
the budget is sufficient. If the budget is not sufficient, then a request can either lower
the service class requirement (if it is tolerable) or decide not to enter the network at
all.

Another traffic management function that is closely related to the pricing is Admis
sion control (AC). AC is often used to control the network load by restricting the access
to the network and hence improve the level of QoS guarantee. Example approaches
can be found in [13-16]. Studies also show that simple admission control algorithms
based on estimated or measured network status are generally robust [15]. As being
done in IntServlRSVP architecture, admission control traditionally is performed at a
hop-by-hop basis [1]. However, in a DiffServ environment, adding admission con-

Tariff-Based Pricing and Admission Control for DiffServ Networks 75

trol functionality to all the core elements violate the DiffServ principle of keeping
the core simple. End-point/edge admission control that pushes the admission control
functionality into the edge of the network seems more suitable in this case. Most of
the end-point AC approaches use probing [13, 16] or explicit congestion notification
(ECN) [15, 16] to convey the network status back to the end points. A comprehensive
study on endpoint admission control can be found in [16].

However, so far, most of the studies consider the pricing and admission control
as two separate management functions. In other words, admission decisions are made
solely on the load measurement or estimation and have no direct relation with the pric
ing. Using price as a primary admission criterion has not been studied sufficiently. In
[15], authors suggest that admission decision could be made based on the user's will
ingness to pay for the ECN mark. However, it is not clear how users should pay for the
mark (i.e. what is the price for the mark). In [12], Wang and Schulzrinne presented a
complete pricing framework that integrates the admission control, congestion control,
and pricing for DiffServ networks. However, they focus mainly on the congestion
sensitive pricing and do not study the admission control in details. Admission control
in their framework is performed hop-by-hop and independently from pricing. Our ar
chitecture is similar to what they proposed but differs in a number of ways. This will
be discussed in the subsequent sections in details.

3. Pricing Architecture
3.1 Motivation and Design Choices

From the discussion so far and the implication of our view of user adaptation, it
is more desirable to tie the pricing with admission control in a DiffServ environment.
Indeed, in a QoS-Enabled network environment, there are two major concerns from
both user's and provider's points of views: are there enough resources available for a
particular traffic flow and what's the price for this flow? These two questions are ex
actly what admission control and pricing try to answer. An architecture that integrates
pricing and admission control is therefore very promising.

The design of our architecture is based on the following considerations.

• Decouple the pricing for core networks from the access networks and end users:
Due to the scale and complexity of the Internet, a practical QoS implementation
in the Internet is to deploy DiffServ in the core networks and give the access net
works the freedom of implementing IntServ, DiffServ, or other QoS techniques
[11]. This implies that a tightly integrated end-to-end pricing scheme is unlikely
to be accepted. Furthermore, a large number of service providers are involved
in the pricing of the Internet and each of them should have the choice of their
own pricing scheme. A single pricing model that suits all is very impractical.
Therefore, we emphasize a separate pricing scheme for the core networks that
implements DiffServ technology. This decoupling enables us to focus on the
network core only.

• Price should reflect the availability of the network resources in the core: As
mentioned above, the ultimate goal of QoS is to avoid congestion. Therefore,
it is more meaningful to charge users based on the remaining resources rather
than the congestion cost. Since we are more interested in the implementation
side of the problem, we do not assume a well known utility function for setting

76 T. Li, Y. Iraqi and R. Boutaba

the optimal price. In other words, each network element sets the price merely
based on its own load. The rarer the resource, the higher the price. We also
follow a simple and intuitive rule about price setting: price changes very slowly
when there are plenty of available resource and increases drastically when the
resource is scarce.

• Per-flow messaging is not acceptable in a large network such as the Internet: In
order to aggregate and convey the price information to the access networks or
even the end-users, we need a flexible and efficient architecture to accumulate
the price along the path. In [12] a signaling protocol called resource negotiation
and pricing protocol (RNAP) is proposed to accumulate the price along the path
and negotiate the price and resource with the end-users. It is easy to see that the
major drawback of such an approach is the per-flow messaging. Although the
possibility of aggregating the messages has been investigated, the control mes
sage overhead is still significant. Our architecture tries to avoid this problem by
maintaining the global price tables for the core networks at the access networks.
This aggregates the pricing messages significantly.

• Edge/end-point admission control fits well in a DijJServ environment: Since the
price reflects the availability of the resources in the core, admission decisions
can mainly or even purely be based on the price (in this case, the price is the only
admission criterion). Thanks to the decoupling of pricing for core networks, we
are able to maintain the global price table at the access networks via domain
abstraction. This enable us to push the admission control to the access networks.
In our architecture, it is the end-users or access networks that decide whether
a flow should enter the network or not. Inter-domain admission control is also
possible using a global price table.

3.2 Price Table Construction
There are two types of price tables in our architecture: domain price table and

global price table. A price entry in the domain price table represents the price for a
service class from one edge node to another edge node within a domain, where a price
entry in the global price table represents the price for a service class from one domain
to another domain. Maintaining price information at such a scale may sound very
impractical at a first glance. However, by abstracting an entire domain into a single
node in a multi-domain network, constructing a global price table becomes feasible.
Figure 1 depicts the concept of domain abstraction.

Semret et al. [9] also use a similar type of abstraction in their pricing scheme. A
global market is created for all the domains to bid for the capacity in order to provide
a QoS guaranteed service in their own domain. In their abstraction, overall capacity
requirements in a domain is abstracted into a single bottleneck capacity. Although this
is certainly a valid assumption, some inaccuracy is still introduced into the abstrac
tion. In our abstraction, we do not make any simplification or assumption but rather
accumulate the price for each actual ingress-egress path.

3.2.1 Domain price tables. Once each network element calculated the price
locally, the price information has to be exchanged and aggregated over the entire do
main. The ultimate goal here is to accumulate the price for each ingress-egress pair.
Therefore, we need to know the route from the ingresses to the egresses. This requires

Tariff-Based Pricing and Admission Control for DiffServ Networks 17

Domain Price Table
Route

Price
I Fe- Jatermedlate

..... 1 45
.1 • 5 a2,84
.1 .3 .2

.,......,..
······,· .. ·r··· , ,

Figure 1. Domain Abstraction Figure 2. A Domain Price Table

some knowledge of the domain topology and routing table information within the do
main. The choice of using a centralized or a decentralized approach largely depends
on the routing strategy used in the domain.

If a link state routing approach such as OSPF or IS-IS is used, a centralized ap
proach is preferred since all the information required to construct the domain price
table is available immediately. Centralized approach uses a pricing station for each
domain or autonomous system. The pricing station will communicate with all network
elements within the domain and collect the price information. As a result, the pricing
station will eventually maintain a price table for each ingress-egress pair. When an
ingress-egress pair has multiple possible routes, the domain routing table is consulted
and the route from the routing table will be used. Figure 2 depicts a sample domain
price table maintained in a centralized pricing station (PS).

It is relatively complicated if the distance-vector routing approach such as RIP is
used within the domain. A distributed approach can be considered in this case. One
alternative is to add price as an extra set of metrics into the routing table, However,
the major drawback of this approach is to bind the price update with the route update.
A route update implies a price update but not the other way around. Furthermore, to
propagate the price information among domains and construct the global price table,
it's relatively easier when a centralized and complete view of the entire domain (e.g. a
whole set of ingress-egress pairs) is available. One naive centralized approach in this
case is to ask each element to send its routing table to the pricing station whenever the
route update happens. Pricing station is then able to collect all the route information
and generate the routes for each ingress-egress pair. A centralized pricing station
is also well compatible with the Bandwidth Broker (BB)[5] approach. In fact, the
pricing station can be part of the BB functionality. In the rest of the paper, we assume
that a centralized pricing station is used. We also assume a pricing interval in our
pricing architecture for both domain and global price tables. However, the update of
the domain price table is not done periodically but is rather change driven to reduce
the control-message overhead.

3.2.2 The Global price table. Because of the abstraction mentioned earlier,
we are now able to construct the global price table without introducing too much over-

78 T. Li, Y. Iraqi and R. Boutaba

head. The price for an ingress-egress pair inside a domain becomes the price for passing
through the node in the abstracted global network. Different routes that take different
ingress-egress pairs through one domain will most likely have different prices. In this
way, we can view the whole core networks as a single network that contains a limited
number of nodes and links. Of course, further hierarchical decomposition can be ap
plied if the size of global price table is still too large. In this paper, to give a simple
and clear view of the idea, we assume only one level of abstraction and one level of
global price table is constructed.

Unlike the domain price table, a global price table has to be constructed and main
tained in a distributed manner. The update of the global price tables is also different.
Periodical advertisement is used to propagate the price information as done in the Bor
der Gateway Protocol (BGP). Each pricing station will advertise the price of a ingress
egress pair to its interested neighboring pricing station. Upon receiving such update
information, each pricing station will update the global price table accordingly and
propagate the update information to its interested neighbors at next pricing interval.

To deal with the issue of multiple routes through different domains, inter-domain
routing tables are consulted during the price propagation. However, this time, we do
not require a complete view of the route because the only information we want is
the next domain or autonomous system which can be easily obtained from the BGP
routing taple (assuming that BGP is used for inter-domain routing). Figure 3 depicts
the construction of global price table .

......
"Global price Table J.oc8I..Pria Table j

r-::::,...,....,--:--=-:-.,.--,,(..... 1 Src I J)aj NatD Price lUi It \ Prtu 1
Globalprl<eTable . .' 1 ", i> • - -.., hi" 'Jo 1

SrcD NnW Prk;6 ,:B C • 20 :
A D B zt.lo+25·:._ • __ . :

A 8 ··························:

, Core 1aetwork ------

Figure 3. Global Price Table in Access networks

The possibility that paths in the routing table may change after the advertisement
has a potential impact on the pricing. An admission decision based on the price of a
route may become invalid if the path in the routing table changes (packets will even
tually take a different route than the route they are expected to take and on which the
admission decision was based). In this case, service quality may not be guaranteed
especially if the new path does not have enough resources. Another concern is that

Tariff-Based Pricing and Admission Control for DifJServ Networks 79

the price agreed by user and service provider is no longer valid. In this case, if there
are enough resources in the new route, then we believe that service providers should
absorb this price difference and simply continue the service. If the new route does not
have enough resources, one possible solution is that service providers will notify the
end-users to terminate the session without any charge. Since the price for the new path
will be available "immediately", it is also possible to start a service renegotiation.

4. Price Setting Strategy
Now, the question left is how to set the price to reflect the availability of the network

resources. Each network element will incorporate a load monitor so that price can be
based on its current load level. Since network monitoring is out of the scope of this
paper, we assume an existing method to monitor the traffic load for each service class.

We assume a basic unit price per unit time Punit that can be computed offline
for each service class. This basic unit price reflects the equipment costs, mainte
nance/administrative costs and business revenue consideration for a network element.
The idea of differentiated service is to have a small number of classes where a higher
price service class attracts less traffic and consequently have a better QoS guarantee.
Hence, we consider a simple and practical approach where service providers set up a
targeted capacity fill factor Ii for each class to enable the service differentiation be
tween the classes(i.e. Ii = Ti/C;';,ax' where Ti is the targeted capacity for class i and

is the maximum capacity for class i). Therefore, it is straightforward to see that
the base price for a service class is inversely proportional to this factor.

(1)

To compute the dynamic price for a service class, Wang and Schulzrinne adopt an
iterative tatonnement process in [12]:

Where Pi(t) denotes the price for class i at time t, and Di is the demand or current
load for class i and ai is the convergence rate factor. However in their case, the price
changes gradually and can not successfully reflect the real traffic condition inside the
network. We believe that when the network is severely stressed the price should in
crease much faster. As mentioned above, we follow an intuitive way for the price
setting. Figure 4 illustrates our pricing strategy in general. When the load for a partic
ular service class is lower than its targeted capacity, the price is simply the base price

for a particular service class. When the load exceeds its target capacity the price
will be increased rapidly and even dramatically when the load is close to the maximum
capacity. we adopt the exponential growth in this case to reflect our strategy of price
setting:

P () {
if Di(t) ::; Ti

i t = . ",.[D;(') -lJ
e' Ti otherwise

(2)

Note that when demand exceeds Cmax , we can simply set the price to 00 to indicate
that there is no longer available resource for new requests. Admission control can be
enforced in this situation. Alternatively, there can be no price limit even if the demand
exceeds the maximum capacity. P ;'ax then is not the price upper bound but rather the

80 T. Li, Y. Iraqi and R. Boutaba

T: I.".ted <OpQCi1y
CIIIIU: IIUlXimum cop«Ity

Pmtu: mtuim'lIII price
Pbase: fix price for a cia, ..

Pmax ... '

T Cmax

Figure 4. General price setting strategy

price when the demand reaches the maximum capacity of that particular service class.
Since the price increases exponentially and becomes so high that we expect no user
would actually accept the price.

There are several ways to decide the O:i factor. Here, we consider a simple case
where P is known. One can use the base price for class i + 1 as the P for class
i, or alternatively decide the P based on some business considerations, which is
more likely the case in the real world. In the later case, P is allowed to be greater
than the which enables the switching between service classes when the price
for a lower level service class is higher than the price for upper level service class and
hence balances the load among service classes.

Now, assuming that a maximum price P is available for each service class,
Since h = we can obtain the O:i factor by solving the following equation.

c i pi f.
P i - p,i . -1 (__ '_)

max - base e ===} 0:, - og P. i . * 1 - f.
base t

5. End-to-End Pricing and Admission Control
5.1 End-ro-End Pricing

(3)

One of the main advantages of our pricing framework is that it enables us to focus
on the pricing in the core networks only. Depending on the particular technology
implemented in the access networks, various pricing schemes can be applied to achieve
the end-to-end pricing. For example, access networks can implement flat rate pricing
or time of day pricing for their simplicity and predictability. In this case, the cost
of accessing core networks could be absorbed by the access networks and it is the
access networks that choose an appropriate service class for the user traffic based on
some policy defined by the access networks. Alternatively, access networks can charge
user for the reserved resource if IntServ is implemented or even use the same pricing
scheme as in the core if DiffServ is used.

Since the pricing is strictly for the network core and global price tables are available
at the access networks, end-to-end pricing can be implemented without involving the
core nodes at all. This eliminates possible scalability problems caused by pricing

Tariff-Based Pricing and Admission Control for DifJServ Networks 81

and admission control signaling. it also gives the access networks the flexibility of
implementing an end-to-end pricing scheme in different protocol layers. For example,
if users or access networks are really keen on the exact end-to-end pricing, a light
weight signaling protocol can be used between the sender and receiver access networks
without any involvement of the core nodes. This protocol can be implemented in the
network layer as the pricing for core networks does or even in the upper layers such
as the transport layer or the application layer.

5.2 Admission Control
Another desirable property of our pricing framework is that the admission control

decision can be made based on this price information since it effectively reflects the
availability of the path. Our admission control algorithm then consists of the following
two parts when a flow request is generated:

1 Lookup the price for a service class in the global price table. End-users or
access networks decide whether the price is acceptable or not based on their
budget constraints and other service level agreement (SLA) parameters. If the
price can not be accepted then check the possibility of switching among service
classes (with possibly different service requirements).

2 If the advertised price is accepted, then final admission control decision is made
by the service providers based on the estimated bottleneck traffic load lmax
against the targeted threshold for the service class. This deals with the situa
tion that when users are willing to pay for the service but there is no resource
available.

Ideally, we want to know the relationship between the total price and the available
resource at the bottleneck link. In other words, we are most interested in the relation
ship between the total price (t) and the load of bottleneck link. From section 4
we know that the accumulated price at time t for class i observed at the edge is:

Given only the value of it is almost impossible to obtain the exact value
of the max [Dij(t)/ Tij]. However, in our pricing scheme, Pi(t) at the bottleneck link
becomes the dominant term in the when it reaches a fairly high level. This
is mainly because of the exponential growth of Pi (t) and it enables us to estimate the
value of the max [Dij(t)/Tij] with much less error.

For the sake of understanding, in the rest of this section, all notations are for service
class i unless otherwise specified. Let lj(t) denotes the traffic load at link j at time t
(i.e. lj(t) = Dj(t)/Ti), and lmax(t) denotes the load for the link that has the highest
load along the entire path). From equation 4, we have

P, I (t) = "p,j + " R k eodldt)-l) + R h eOh (lma",(t)-l) tota base base base (5)

82 T. Li, Y. Iraqi and R. Boutaba

where h is the link that has the highest load lmax (t) at time t along the path and the
last term in the equation is the price for the bottleneck link h. The fist term is the sum
of the price for all the links that have the base prices and the second term is the sum
of the price for the rest of the links respectively. Then a bound is given by,

n (t) > """ n p, h + P, h "h (lma., (t)-1) rtotal _ L....J rbase - base base e (6)
all

where Eall Pbase is the sum of the Pbase for all the links along the path, which is
denoted as By rearranging the terms in the equation and plugging in the value
of ah from equation 3, we can see that lmax(t) must satisfy the following relation.

log (Ptotal + 1)
1 (t) < 1 + baBe

max - log(P "!:'ax/ Pb: se) * (1{ih)
(7)

We will use the min{fh}, max{Pb: se }, and respectively and use j,
POOse and Pmax to denote them. Since they are constant for the path, they can be
collected and computed offline.

For the purpose of admission control, using upper bound often provides quite con
servative results. To examine the relationship between Ptotal(t) and Imax(t), we first
consider the case where there is a single bottleneck link along the path. Clearly, the
upper bound value obtained above will be very close to the exact lmax(t) because the
rest of the terms in equation 5 are indeed ignorable. However, it is more complicated
when there are multiple bottleneck links along the path. Some estimations are re
quired to handle this situation. Since we expect that ih, P and P vary within
a relatively small range, without loss of generality, we can rewrite equation 6 into

P, (t) rv p,total - r * R + r * R e" (lma.,(t)-1) total - base base base (8)

where r is the number of the bottleneck links along the path that all should be
taken into consideration. Note that we are using the j, Pbase, and Pmax . However, in
this case, they are not necessarily the maximum or minimum values since a number of
links are involved. Further refining such as average or weighted average can be applied
depending on the specific network condition. Solving the above equation gives us

log + 1)
1 (t) rv 1 + r*PbaBe max - L

log(Pmax/Pbase) * (1-f)
(9)

It is then clear that lmax most likely lies between the upper bound and the above
estimated value. It is difficult to estimate the value of r without any knowledge of
network topology or explicit messaging. However, for a long time scale, it is possible
that each domain is able to identify the approximate number of bottleneck links and
the probability of multiple bottlenecks existing inside the domain. In this way, one can
compute a weighted average r value for each ingress-egress pair and exchange them
offline. Of course, one can always set r to 1, which is the case of upper bound admis
sion control. In this case, the difference of these two values also indicates the error
range of our estimation. We should also notice that the error caused by the incorrect
value r is reduced significantly because of the logarithmic nature of our estimation.

Tariff-Based Pricing and Admission Control for DiffServ Networks 83

6. Simulation and Results
6.1 Simulation Model

In order to study the behavior of our pricing strategy, we setup a DiffServ network
environment using the ns 2 simulator. We modified the DiffServ implementation in
ns developed by Nortel Networks to incorporate our pricing and admission control
mechanisms. Since the goal of the simulation is to evaluate our price setting strategy
and admission control scheme, we only simulate a single DiffServ domain and do not
focus on the construction and maintenance of the domain and global price tables.

Figure 5. Simulation Network Topology

Figure 5 illustrates the network topology used in our simulation which consists of
three core routers and eight edge routers. Three core routers implement the dsRED
core queue which has no policing and marking functionality but only PHB forward
ing. All edge routers implement the dsRED edge queue which supports the DiffServ
packet classifying, marking, and policing. Edge router E1 acts as the pricing station
and handles user requests generated at sources. Additionally, six extra edge routers
are configured inside the DiffServ domain to create the cross traffic and simulate bot
tlenecks at link C 1 C2, C2C3, and C3E2.

The total capacity of each link from source nodes to the edge of DiffServ domain
is set to 20Mbps, and 50 Mbps for all links within the DiffServ domain. Propagation
delay for all the links are set to 5ms. All links are full duplex outside the DiffServ
domain and DropTail queue management is used in this case. Inside the DiffServ do
main, only the links that connect core routers are full duplex and the rest of the links
are simplex links because different type of dsRED queuing techniques are used in dif
ferent directions. Weighted Round Robin (WRR) scheduling is used in each link. In
our simulation we consider three service classes and the weights for the three classes
are distributed as 3, 3, and 4, and the expected load for each class is set to 50%, 70%,
and 90% respectively. The base price and full load price P ';'ax for each class are
set as 0.16/0.7($), 0.09/0.35 ($), and 0.04/0.16($) per time unit respectively. A pric
ing agent is attached to each link to set the price locally and communicate with each
other to propagate the price information back to the edge. The admission threshold is
set to 0.75, 0.9, and 1.1 respectively.

For each class, there are two types of traffic sources in our simulation. CBR and
Pareto on/off traffic are generated independently to the edge El and flow requests
are modelled by a Poisson arrival distribution. The holding time for each flow is
exponentially distributed with a mean value of 1508. The average rate for CBR is

84 T. Li, Y. Iraqi and R. Boutaba

i
· v j ,,-------- -V--------
f '.: 7 = __________ _ ____ _

,

Figure 6. (single bottleneck a-+c from left to right) (a) aggregated Price at El vs. Load at CIC2 (b)load
at CIC2 without/with CAC (c)request blocking ratio vs. Traffic(Mb) at CIC2

128k. For the Pareto traffics, the shape parameter is set to 1.5, where the on and off
time are both set to 500ms, and the peak rate is set to 128K. The rest of the parameters
are set to the default values in ns. The total time for each run is 1500s.

6.2 Result Analysis
6.2.1 Single Bottleneck. We first consider the case of single bottleneck to
examine the basics of our approach. The rate of cross traffic at CIC2 is set to be
approximately 40% of the class 1 capacity at CIC2. The rate of the other two cross
traffics are set to be less than 10% of the class 1 capacity accordingly at C2C3 and
C3E3. Therefore, CIC2 will be the only bottleneck along the path.

Figure 6a gives the aggregate price observed at El vs. the load at CIC2 when ad
mission control is not used. As we expected, it is a well shaped exponential curve
because there is only one bottleneck and its price dominates the total price observed
at E1. To test the effectiveness of our admission control algorithm, we first run the
experiment without admission control and then repeat the experiment with admission
control under the same traffic condition. Figure 6b shows that our estimation of net
work load based on the price is indeed accurate in the case of single bottleneck. The
load at the bottleneck link is well controlled at about 0.75, which is the admission
threshold preselected for class 1.

We repeat the simulation with different sending rates of cross traffic at CIC2. As
expected, the load at CIC2 are all well controlled but with different request blocking
ratios. Figure 6c shows the request blocking ratio for all the sources vs. the sending
rate of cross traffic at C 1 C2.

Throughout the experiment, we experience very few packet losses except when
the total sending rate of flows for all service classes exceeds the total capacity of
the bottleneck. This is mainly due to the use of WRR scheduling and no individual
dropping enforced for each class. When a class load exceeds its class capacity, it tends
to steal the bandwidth from other service classes. Since we are mostly concerned about
controlling the traffic load and keeping it lower than a threshold, we do not present the
packet loss and delay results here. Ideally, by carefully setting the admission control
threshold for each service class, we should not see any packet loss.

6.2.2 Multiple Bottlenecks. To simulate a multiple bottlenecks situation,
we increase the sending rates of cross traffics at C2C3 and C3E2 to about 35% so that
they are close to but still lower than the sending rate of cross traffic at C 1 C2. There-

Tariff-Based Pricing and Admission Control for DiffServ Networks

J "
l '
o ..

·.l""Y ''f''I''T··[j-jj L
°0 lW _ 800 1Il00 1100 I_

T_II)

(.1-,.,5--,.,

II 100 .00 600 100 lOOl! 11111 W" -..

85

Figure 7. (three bottlenecks, from left to right)(a) aggregated Price at El vs load at CIC2 (b) Load
at bottleneck CIC2 without/with CAC (c) Load at bottleneck CIC2 with different rvalues

fore, three bottlenecks are simulated in our network. As in the singe bottleneck case,
we first run the simulation without admission control and then repeat the simulation
with admission control.

Figure 7a shows the aggregated price observed at El vs. the load at bottleneck
CIC2 when admission control is not enforced. Because no single bottleneck can dom
inate the price for the entire path, the aggregated price is a little harder to predict when
the links are heavily loaded. Fortunately, the fluctuation of the price does not affect the
effectiveness or stability of our admission control algorithm. Figure 7b shows that the
traffic load at bottleneck link CIC2 is also well controlled consistently, We do observe
that the estimated load is not as accurate as in the single bottleneck. This is mainly
because we are using the upper bound admission control and the result is expected
to be conservative. The simulation result shows a fairly close traffic load estimation
(0.7 vs. 0.75). Throughout the experiment, we can see that our approach has a very
consistent performance. This indicates that our admission control approach is robust
and the fluctuation of price would not affect the stability of our approach.

Based on the discussion in section 5.2, we also vary the factor r to see how it will
affect our simulation results. Figure 7c shows three sets of load at bottleneck CIC2
throughout the experiment with r set to 1, 1.5, and 2. As we can see, r has a small but
positive impact on the load estimation. In other words, choosing a close enough r value
could indeed improve the efficiency of our admission control approach. However, the
improvement is quite small, This is because the error of our estimation is reduced
significantly by the logarithmic nature of our load estimation algorithm.

7. Conclusion
The main objective of having the global price table at the level of access networks is

to enable an accurate and fast decision-making process. In this paper, we presented our
approach to the pricing in DiffServ networks and proposed a pricing architecture that
separates the pricing for core networks from the end-to-end pricing through domain
abstraction and maintaining domain and global price tables. We also described our
pricing strategy and suggested an associated admission control mechanism. Since the
price in our scheme effectively reflects the resource availability inside the network, it is
used not only as an economic incentive but also as a mean of estimating the bottleneck
traffic load.

Our architecture is flexible in the sense that end-to-end pricing is decoupled from
the network core and scalable thanks to the domain abstraction. Admission control is

86 T. Li, Y. Iraqi and R. Boutaba

pushed to the edge and no per-flow based messaging for either pricing or admission
control is needed. This way, our architecture follows the philosophy of the edge
pricing scheme but with better network utilization and QoS guarantee. Maintaining
the price tables for core networks also enables the split of revenue among the service
providers.

We believe that the benefit gained from maintaining the price tables can certainly
overweight the overhead it introduces. Our future work includes developing a user
behavior model that models the user reaction to price change and studying the impact
it may have on the performance of our admission control mechanism. We are also
investigating the applicability of our architecture in other contexts. For example, QoS
routing using price as a constraint may be an interesting application of our pricing
architecture since the price is available immediately and reflects the availability of
resources inside the network.

References
[1] S. Shenker, et al, "Specification of guaranteed quality of service," RFC 2212, IETF, Sept. 1997.

[2] S. Blake et al, "An Architecture for Differentiated Services, " RFC 2475, IETF, Dec. 1998.

[3] M. Falkner, M. Devetsikiotis, and I. Lambadaris, "An Overview of Pricing Concepts for Broadband IP
Networks," mEE Communications Surveys & tutorials, 2nd Quarter, pp.9-13, 2000.

[4] L.A.DaSilva, "Pricing for QoS-enabled Networks: A Survey," IEEE Communications Surveys &
Thtorials, 2nd Quarter, pp.2-8, 2000.

[5] B. Teitelbaum et al. "Internet2 QBone: building a testbedfor differentiated services," IEEE Network,
vol.13, no.5, pp.8-17, September 1999.

[6] A. M. Odlyzko, "Paris Metro Pricing for the Internet," Proceedings of the ACM Conference on
Electronic Commerce, pp.l40-I47, 1999.

[7] J. MacKie-Mason, L. Murphy, and J. Murphy, "Responsive Pricing in the Internet," Internet Eco
nomics, L. W. McKnight and J.P. Bailey, Eds., Cambridge, Massachusetts, MIT Press, pp.279-303,
1997.

[8] J. K. MacKie-Mason, and H. R. Varian, "Pricing Congestible Network Resources," Selected Areas in
Communications, IEEE Journal on, voU3, no.7, pp.114I-1l49, 1995.

[9] N. Semret, R.R.-F. Liao, A.T. Campbell, and A.A. Lazar, "Pricing, provisioning and peering: dynamic
markets for differentiated Internet services and implications for network interconnections," Selected
Areas in Communications, mEE Journal on, vol.18, no.I2, pp.2499 -2513, Dec. 2000.

[10] S. Shenker, D. Clark, D. Estrin, and S. Herzog, "Pricing in Computer Networks: Reshaping the
Research Agenda," ACM Computer Communication Review, vol. 26, no. 2, pp. 19-43, April 1996.

[11] V. Fineberg, "A Practical Architecture for Implementing End-to-End QoS in an IP Network," IEEE
Communications Magazine, vol. 40, no.l, pp.122 -130, Jan. 2002.

[12] X. Wang and H. Schulzrlnne, "Pricing Network Resources for Adaptive Applications in a Differenti
ated Services Network," In Proceeding of INFOCOM 2001, Anchorage, Alaska, April 2001.

[13] Bin Pang, Huairong Shao, Wenwu Zhu, and Wen Gao, "An admission control scheme to provide
end-to-end statistical QoS provision in IP networks," Performance, Computing, and Communications
Conference, 21st IEEE International, pp.399 -403, 2002.

[14] A. Ganesh and K. Laevens, "Congestion Pricing and User Adaptation," in Proceedings IEEE INFO
COM, Anchorage, USA, April 2001.

[15] F. P. Kelly, P. B. Key, and S. Zachary, "Distributed admission control, " mEE Journal on Selected
Areas in Communications, Special Issue on Internet QoS, pp.261702628, Dec. 2000.

[16] L. Breslau, E. W. Knightly, S. Schenker, I. Stoica, and H. Zhang, "Endpoint Admission Control:
Architectural Issues and Peiformance," ACM SIGCOMM 2000, Stockholm, Sweden, August 2000.

SHORT PAPER SESSION 1

Monitoring and Security

Co-Chairs: Kurt Geihs
Technical University Berlin, Germany

Mark Burgess
Oslo University College, Norway

MONITORING DISTRIBUTED SYSTEMS
A Publish/Subscribe Methodology and Architecture

Karen Witting, James Challenger, Brian O'Connell
IBM T. J. Watson Research Center and IBM Global Services Special Events

Abstract: To support complex, rapidly changing, high-volume websites many
components contribute to keeping the content current. Monitoring the
workflow through all these components is a challenging task. This paper
describes a system in which monitoring objects created by the various
heterogeneous, distributed components are distributed to any application
choosing to present monitoring infonnation.

Key words: Publish-Subscribe, Monitoring, Distributed Systems, Workflow Monitoring,
Queue Monitoring, High Volume Web Serving, Content Management

1. INTRODUCTION

Syste-ns comprised of a large number of interacting components require a highly
flexible monitoring system. Modem, high volume web sites and their supporting
infrastructure are an example of this kind of large system. "24x7" availability
requires extremely flexible monitoring to cope with ever-changing hardware and
software components. New types of components may be needed, and previously
active components may be removed from the system. Any particular component
may provide different types of monitoring data over time.

In this paper we describe the system designed and implemented to monitor flows
within the publishing and content distribution systems for the Sydney 2000 Olympic
Website [1] [3] and the IBM sponsored Special Events websites [2].

2. SYSTEM DESCRIPTION AND ARCHITECTURE

The serving infrastructure is comprised of several geographically distributed
complexes. Content for the serving complexes flows from its originator, through one

http://dx.doi.org/10.1007/978-0-387-35674-7_66

90 Karen Witting, James Challenger, Brian 0 'Connell

or more stages, to its final destination. The number and configuration of the stages
varies by event. An application specific probe gathers monitoring data from the
components at each stage. This data is published to the distribution system which
delivers it to subscribers. Consumers subscribe to selected monitoring data and
present it in various views for display. Figure 1 shows an abstract view of the flow,
where Ml is delivering content to M2 and M3.

web content flow

• publish

._ _ subscribe

D producer

ClIl consumer

Machine M1....-_---..

Machine M3

Figure 1: Monitoring System Architecture

The monitoring system consists of three main elements: producers, consumers,
and a distribution mechanism. Producers gather and send out monitoring data,
consumers receive data. The distribution mechanism coordinates the delivery of the
data. The monitoring data itself is encapsulated into an opaque, self-describing
monitor object which is designed to be independent of both the distribution
mechanism and the consumer.

Monitor objects have properties that allow selection criteria to be applied by
consumers. Three main properties are associated with every object: event name,
("www.wimbledon.org") host name ("serverl.ibm.com") and component name
("SaveFile") to create a selection space for use by consuming applications. Beyond
these base properties, a component may add any relevant data to the object. Data is
accessed by interrogating the self-describing object allowing it. to change
independently of both distribution system and consumers.

Producers create and then publish monitor objects to the distribution system.
Each producer extracts monitor data that is specific to the monitored component.
All producers use common facilities for creating and publishing monitoring objects.

Monitoring Distributed Systems 91

Consumers receive data via subscription. After connecting to the distribution
system, consumers specify selection criteria to control which objects they will
receive. For example, a consumer may choose to receive data only associated with
a particular event, data from a particular host, data from a specific component, or
any combination ofthe above.

From the perspective of the distribution system, monitoring data is opaque.
Producers and consumers interact only with the distribution system and thus are
decoupled from each other. Because consumers are aware only of the self
describing monitor objects (and thus not explicitely aware of producers), producers
can be added to or removed from the system and can change the type of object and
data they are producing.

The systems we monitor are composed of a series of cascading hierarchically
organized task/queue structures. Work flows through the system as tasks on queues.
Every queue collects data about things like the number of tasks waiting and
executing. Each queue is a producer and publishes a monitoring object containing
the data collected about the queue.

Queues form a workflow hierarchy, where the output of tasks on one queue
results in the addition of tasks onto queues below it in the hierarchy. Since each
queue is a producer, monitoring data is generated from each node in the hierarchy.

3. EXPERIENCES

The original implementation and experiences with the system occurred while
hosting the Sydney 2000 Olympic Website [1]. The general design and flow of the
system was re-used for monitoring the Events Infrastructure [2]. These two
experiences are similar in that they both are primarily involved in distributing work
via queues and consist primarily of ensuring that work travels through the system
without significant delay. Our methodology for monitoring the systems is a product
of our experiences running these sites.

The Sydney 2000 Olympic Website was hosted on a network of IBM
RS/6000 SP2 complexes interconnected by a high-speed dedicated private network.
Producers ran on AIX machines; consumers ran on a variety of platforms. The
events infrastructure is currently hosted on a network of Netfinity X86 machines
connected by a virtual private network. All producers of monitoring data run Linux
while consumers of monitoring data run on a variety of platforms.

A key function of the monitoring systems is to provide data for management
reports. Predicting the level cf detail needed for these reports in advance is
impossible. A novel hierarchical view of queues and tasks showing workflow
enabled rapid identification of potential bottlenecks and provided a high level of
flexibility in identifying and reporting problems. Detailed information about queues
in the system was displayed in tabular views. When high queue counts are a concern
the tabular views enable rapid diagnosis and correction.

Queues with work flowing through them were classified as active, slow, or busy.
An active queue is receiving significant workload but is not overloaded. Active
queues show large numbers of tasks flowing through them but relatively low

92 Karen Witting, James Challenger, Brian 0 'Connell

numbers for queued counts. That is, an active queue has high throughput but low
queue lengths, which indicates that tasks in that queue have very little wait time.

A slow queue is not working at its expected capacity. Slowdowns generally
indicate an undesirable system condition such as a networking problem. Throughput
is lower than expected, generally resulting in excessive queue wait time. A slow
queue has low throughput and mayor may not have long queue lengths.

A busy queue is receiving more work than it has workload capacity for. A busy
queue could be indicative of component failure or simply indicate a spike in
workload. A busy queue has both high throughput and long queue lengths. It is
usually acceptable for a queue to be busy for some period of time (for example, as a
result of a load spike) but extended busy conditions could indicate subtle system
failures.

The ability for all queues to keep up with the workload demand is a significant
focus of the entire support team. When a queue is falling behind and unable to
process work in a timely manner, a great deal of focus and detailed understanding of
the situation is required. Most of the time these situations are caused by a sudden,
temporary, increase of work being added to the system, or a networking problem.

4. FUTURE ENHANCEMENTS

Enhancements include more sophisticated tools for log playback and database
driven post-event analysis tools. Failure detection can be difficult; more specialized
monitors to detect and rapidly report highly critical failures, increasing the
granularity of reporting would be useful. Integration with SNMP and other standard
protocols would allow other monitor clients to benefit from our queue based
collection and reporting scheme.

5. ACKNOWLEDGMENTS

Several people have contributed to this work including Sandy Cash, Paul
Dantzig, Cameron Ferstat, Ed Geraghty, Arun Iyengar, Herbie Pearthree, and Paul
Reed.

6. REFERENCES

l.Sydney 2000 Olympic Website www.olympics.com from September 15 through October I,
2000.

2. Selected IBM Sponsored Web sites: www.ausopen.org, www.masters.org, www.rolandgaros.org,
www.wimbledon.org

3. Challenger, Jim, et al., A Publishing System for Efficiently Creating Dynamic Web
Content. In Proceedings of IEEE INFOCOM 2000, March 2000.

PROACTIVE INTRUSION DETECTION AND
SNMP-BASED SECURITY MANAGEMENT:
NEW EXPERIMENTS AND VALIDATION

J.B.D. Cabrera I, L. Lewis 2, X. Qin3, C. Gutierrez', W. Lee3 and R.K. Mehra I
Scientific Systems Compan/:University o/New Hampshirrl:Georgia Institute o/Technology

Abstract: In our earlier work we have proposed and developed a methodology for the
early detection of Distributed Denial of Service (DDoS) attacks. In this paper,
we examine the applicability of Proactive Intrusion Detection on a
considerably more complex set-up, with hosts associated with three clusters,
connected by routers. Background rcp, UDP and ICMP traffic following
Interrupted Poisson Processes are superimposed on the attack traffic. We have
examined six types of DDoS attacks. In four of the attacks we have obtained
valid MIB-based precursors with no false alarms in all experiments. In the
remaining two attacks precursors were obtained, but false alarms were
observed. Procedures for eliminating these false alarms are discussed.

Keywords: Security Management; Data Warehousing and Statistical Methods in
Management; Network and Systems Monitoring; Information Modeling

1. INTRODUCTION

In 1.2] we developed a methodology for utilizing traffic MIB variables for the
early detection of Distributed Denial of Service (DDoS) attacks: Proactive Intrusion

Detection, as opposed to the passive detection enabled by current IDSs.

In the present paper we evaluate the Proactive Intrusion methodology in a more

realis tic scenario. We performed the experiments on a network formed by three sub

networks connected by routers. The DDoS master, the DDoS slave and the target are

placed in different clusters, allowing us to investigate the effect of routing in our
ability to extract the precursors. We produced traffic for TCP, ICMP and UDP

following Interrupted Poisson Processes and superimposed it on the attack traffic.
Finally, we experimented with six types of DDoS attacks. We refer the reader to

[2][3] for a detailed discussion ofthe Proactive Intrusion Detection Methodology.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

94 J.B.D. Cabrera et al.

2. THE NEW TEST BED AND EXPERIMENTS

Topology: RI - R3 are routers;
HI through H6 are normal hosts.

Data collection: 64 MIB

variables from the ip, udp, tcp
and i crop groups were collected
for 2 hours, at a sample rate of 3

seconds.
Attack Runs and Normal

Runs: 12 attack runs corresponding
Figure 1 The NCSU Test Bed

to 6 types of attacks were obtained. The attacks are: TFN2K SYN Flood, TFN2K
Ping Flood, TFN2K Targa3 Flood, TFN2K Mix Flood, TFN2K UDP Flood and
TrinOO Two runs are available for each attack type. 12 normal runs are also

available, in which no attacks are present.
Placement of Malicious Agents: The master agent is placed in H2 during all

attacks. Slave agents are placed in HI and H4. The target is H6.
Background and Malicious Traffic: During normal runs, HI to H6 generate

TCP, ICMP and UDP traffic according to Interrupted Poisson Processes [5]. During
attack runs, attack traffic was produced by malicious agents at HI, H2 and H4 and
superimposed on the normal traffic. Live TCP connections among the various nodes
of the network allowed us to observe the phenomenon of connection "time -out"
caused by congestion.

3. EXPERIMENTAL RESULTS

3.1 Step 1: Determining key variables at the target

Key variables were selected by comparing the time series of normal and attack

runs. Since the attacks can be classified as flood attacks, MIB variables related to
packet transmission are the best candidates for attack detection. ipInRecei ves,
belongs to this category and is the most promising as it appears in all attacks.

3.2 Step 2: Determining key variables at the attackers

We search for possible causal relationships connecting MIB variables that could
be considered key variables for each attack at the attacker hosts (HI through H5)
with the MIB variable selected in step 1 (ipInRecei ves) at the target host (H6).
The value for the causality index between these variables was obtained using the

Proactive Intrusion Detection and SNMP-Based Security Management 95

Granger Causality Test (GCT) [2]. The MIB variables found are then compared to
the ground truth variables, selected from domain knowledge about the attacks [6].

Two types of precursors are defined. The first, called T2 precursors, correspond
to the communication between Imster and slave. Second are T3 precursors, which
correspond to the type of flood depending on the DoS attack.

3.3 Steps 3 and 4: Determining key events at the
attacker

We break finding the key events at the potential attacker hosts that can be
considered as precursors of an attack into two steps: step 3, training, where we
determine the precursors at the potential attacker host and step 4, testing, where we
test these precursors. In step 3, we define a precursor as an abnormal change on a
precursor variable. To find this abnormal change, a Normal Profile for each MIB
variable is constructed from the normal runs. Any variable whose change in each
attack run was larger than the one in the Normal Profile was considered a precursor
event for step 3 for that run.
Table 1. TFN2K Ping Flood Precursor Events - Run I

T=250 Test Attack Data Normal Data
Training

Precursor Variable
Attack

Detections False Alarms False Alarms

H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5
PING_1_1 ip.ipOutRequests x

through tcp.tcpRetransSegs x
PING_1_6 tcp.tcplnErrs x x

udo.udolnErrors x x
In step 4, the precursor events of one attack run were tested on the other run.

Table I shows the results for the first run of TFN2K Ping Flood. Precursor

variables are the MIB variables that were selected following step 2 and step 3.
Under Test Attack Data, Detections corresponds to the variables that belong to
ground truth, and False Alarms are variables detected that do not belong to ground
truth. Under Normal Data, the variables that are marked are those whose jump
during a the normal test run was greater than that in the Normal Profile, in other
words, a false positive.

Table I shows that there are T2 and T3 precursor events in HI and H4, and
tcpRetransSegs appears as a false alarm in H3. HI and H4 can be detected as
the attack hosts during this TFN2K Ping Flood.

4. SUMMARY AND CONCLUSIONS

The overall results demonstrated the applicability of Proactive Intrusion
Detection using more realistic background traffic and sub-networking. In three of
the attacks (TFN2K Syn Flood, TFN2K Mix Flood and TFN2K Targa3) both T2 and

96 J.B.D. Cabrera et aZ.

T3 precursors were obtained, with no false alarms. For TFN2K UDP Flood, no false
alarms were recorded, but T3 events were not obtained. For TFN2K Ping Flood and
TrinOO UDP Flood false alarms were observed, related to the variable

tcpRetransSegs. During an attack the network becomes congested and the
open Tep connections start to time-out and Tep packets are retransmitted.
tcpRetransSegs is detected as a precursor at H3, which is. neither an attacker
nor a target. Since the Tep time -out effect and retransmission occur after the attack
starts a second pass may eliminate these false alarms. We are currently exploring an
application of precursors which is more directly related to "conventional" (not

proactive) Intrusion Detection. It has been noted [1][4] that the high rate of false
alarms in current IDSs represents perhaps the main challenge for the deployment of
IDSs. Precursors could be useful to corroborate the "hits" from a conventional IDS.

Finally, using more general traffic models instead of Interrupted Poisson
Processes for background traffic would not have changed the results for this
particular set of experiments and topology. We noted that key precursors MIBs are
not related with traffic counting processes, but with counting anomalies in the
protocol stack.

ACKNOWLEDGEMENTS

This work was supported by the Air Force Research Laboratory (Rome, NY)
under contract F30602-01-C-057 to Scientific Systems Company and by Aprisma's
University Fellowship Program 1999/2000. SSeI acknowledges the support from
the Defense Information Warfare Branch at the Air Force Research Laboratory.

REFERENCES

I. S. Axelsson. The base-rate fallacy and the difficulty in intrusion detection, ACM
Transactions on Information and Systems Security, vol. 3, no. 3, 2000.

2. lB.D. Cabrera,1. Lewis, X. Qin, W. Lee and R.K. Mehra. Proactive Intrusion Detection
and Distributed Denial of Service Attacks - A Case Study in Security Management,
Journal of Network and Systems Management, vol. 10, num. 2, pp. 225-254, June 2002.

3. J.B.D. Cabrera and R.K. Mehra. Extracting Precursor Rules from Time Series - A
Classical Statistical Proceedings of the Second SIAM International
Conference on Data Mining, Arlington, V A, pages 213-228, April 2002.

4. S. Northcutt. Intrusion Detection: An Analyst's Handbook, New Riders, 1999.
5. H.G. Perros. An Introduction to ATM Networks, John Wiley and Sons, 2001.
6. P.J. Criscuolo. Distributed Denial of Service - TrinOO, Tribe Flood Network, Tribe Flood

Network 2000, and Stacheldraht. Technical Report CIAC-2319, Department of Energy
(CIAC - Computer Incident Advisory Capability), February 2000.

NETLOGGER
A Toolkit for Distributed System
Performance Tuning and Debugging

Dan Gunter (dkgunter@lbl.gov), Brian Tierney
(bltierney@lbl.gov)
Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
Berkeley, CA 94720

Abstract: Developers and users of high-performance distributed systems often observe
performance problems such as unexpectedly low throughput or high latency.
Determining the source of the performance problems requires detailed end-to
end instrumentation of all components, including the applications, operating
systems, hosts, and networks. In this paper we describe a methodology that
enables the real-time diagnosis of performance problems in complex high
performance distributed systems. The methodology includes tools for
generating timestamped event logs that can be used to provide detailed end-to
end application and system level monitoring; and tools for visualizing the log
data and real-time state of the distributed system. This methodology, called
NetLogger, has proven invaluable for diagnosing problems in networks and in
distributed systems code. This approach is novel in that it combines network,
host, and application-level monitoring, providing a complete view of the entire
system. NetLogger is designed to be extremely lightweight, and includes a
mechanism for reliably collecting monitoring events from multiple distributed
locations.

Key words: distributed systems performance analysis and debugging

1. INTRODUCTION

The performance characteristics of distributed applications are complex, rife
with "soft failures" in which the application produces correct results but has much
lower throughput or higher latency than expected. Bottlenecks can occur in any
component along the data's path: applications, operating systems, device drivers,
network adapters, and network components such as switches and routers. We have
developed a methodology, known as NetLogger (short for Networked Application

http://dx.doi.org/10.1007/978-0-387-35674-7_66

98 Dan Gunter, Brian Tierney

Logger), for monitoring, under realistic operating conditions, the behavior of all the
elements of the application-to-application communication path in order to determine
exactly what is happening within a complex system.

Distributed application components, as well as some operating system
components, are modified to perform precision times tamping and logging of
"interesting" events, at every critical point in the distributed system. The events are
time-correlated with the system's behavior in order to characterize the performance
of all aspects of the system and network in detail during actual operation.

NetLogger has demonstrated its usefulness in a variety of contexts, but most
frequently in loosely coupled client-server architectures. We began developing
NetLogger in 1994, and in previous work we have shown that detailed application
monitoring is vital for both performance analysis and application debugging [6].
This paper gives a very brief summary of the main NetLogger components and
provides a case study. A longer version of this paper that includes extended
descriptions, details on recent NetLogger enhancements, and a more complete set of
references, is [6].

There are a number of systems that address application monitoring. log4j, part of
the Apache Project [4], has produced a flexible library for Java application logging.
However, the performance of log4j is far lower than is necessary for detailed
monitoring.

Another instrumentation package is the Open Group's Enterprise Management
Forum's [5] Application Response Measurement (ARM) API, which defines
function calls that can be used to instrument an application for transaction
monitoring. Tools to visualize and discover patterns of ARM events are described in
[3].

2. NETLOGGER TOOLKIT COMPONENTS

The NetLogger Toolkit consists of four components: an API and library of
functions to simplify the generation of application-level event logs, a set of tools for
collecting and sorting log files, a set of host and network monitoring tools, and a
tool for visualization and analysis of the log files. Instrumentation is performed by
modifying source code and linking with the NetLogger library. All the tools in the
NetLogger Toolkit share a common log format, and assume the existence of
accurate and synchronized system clocks. We have found that the NTP tools that
ship with most Unix systems (e.g.: ntpd) can often provide the desired level of
synchronization.

Figure 1 shows sample results from the NetLogger Visualization tool, nlv, using
a remote data copy application. The events being monitored are shown on the y-axis,
and time is on the x-axis. From bottom to top, one can see CPU utilization events,
application events, and TCP retransmit events all on the same graph. Each semi
vertical line represents the "life" of one block of data as it moves through the
application. The gap in the middle of the graph, where only one set of header and
data blocks are transferred in three seconds, correlates exactly with a set of TCP
retransmit events. Thus, this plot makes it easy to see that the "pause" in the transfer
is due to TCP retransmission errors on the network.

NetLogger

VVe have found
exploratory, visual anal
ysis of the log event
data (as opposed to rule
based correlation such
as that presented in [3])
to be the most useful

l1.tLQggar Yls,allra'Uon 0' Data 1,.;arl.'." AlDpllca1:lon

means of determining c"., ... ", ,·

the causes of perform
ance anomalies. The
NetLogger Visualiza
tion tool, nlv, has been
developed to provide a
flexible and interactive
graphical representation

Figure 1. NetLogger Visualization Tool

of system-level and application-level events. For more details, see [7].

99

NetLogger events can be formatted as an easy to read and parse ASCII format.
To address the overhead issues discussed above, NetLogger includes a highly
efficient self-describing binary wire format, capable of handling over 600,000
events per second. NetLogger also includes a remote activation mechanism, and
reliability support.

3. CASE STUDIES

Note: due to space limitations, the figures illustrating these two case studies are
online at http://www-didc.lbl.gov/NetLogger/examples/ under radiance_pic.png
and giobus-iogs/gridftp_seleccbug.png for the first and second case study,
respectively.

In the first case study, NetLogger was used to instrument a 3-dimensional
visualization engine called Radiance [2] that read data off disk, rendered it, and sent
it out to clients for display. The lifelines in these graphs represent the data flow to
generate one image. The upper graph shows the results before NetLogger tuning.
The developer in this case had assumed that the 110 time was greater than the image
rendering time, and therefore didn't bother to make the program multi-threaded and
overlap processing with 110. After seeing these results, however, the developer
made the program multi-threaded. The new code produced the results in the lower
graph; almost double the performance.

In the second case study a high-performance FTP client/server called GridFTP
[1] was instrumented. Among other enhancements, GridFTP extends the FTP
protocol to transfer a single file across several parallel TCP streams. In some VV AN
environments this can cause a dramatic (almost linear) speedup.

The bottom three groups of lifelines show headers and packets arriving on three
sockets for a parallel FTP client. Data should be steadily arriving on all three
sockets, but clearly the client was not servicing all three sockets equally. Further
analysis showed that there was a months-old bug in the way the Unix selectO call
was being used. Despite the bug, the multi-stream version of the FTP client was

100 Dan Gunter, Brian Tierney

faster than the single stream version, so no one had noticed this problem. This is the
type of subtle bug that NetLogger is very good at tracking down.

These two case studies demonstrate the NetLogger's ability to analyze a single
application. In both cases nlv made it easy to spot problems. However, NetLogger's
real power is demonstrated by analyzing a distributed application, and time
correlating monitoring from the application, host, and network.

4. CONCLUSIONS

In order to achieve high end-to-end performance in widely distributed
applications, a great deal of analysis and tuning is needed. The top-to-bottom, end
to-end approach of has proven to be a very useful mechanism for
analyzing the performance of distributed applications in high-speed wide-area
networks. All NetLogger Toolkit components under an Open Source license, and
can be downloaded from http://www-didc.lbl.govlNetLogger/.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science. Office of Advanced
Scientific Computing Research. Mathematical, Information, and Computational
Sciences Division under U.S. Department of Energy Contract No. DE-AC03-
76SF00098. This is report no. LBNL-51276.

REFERENCES

[1] Allcock B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., et.al. Secure, Efficient
Data Transport and Replica Management for High-Performance Data-Intensive
Computing. IEEE Mass Storage Conference, 2001.

[2] Bethel, W., B. Tiemey, J. Lee, D. Gunter, S. Lau. Using High-Speed WANs and Network
Data Caches to Enable Remote and Distributed Visualization. Proceeding of the IEEE
Supercomputing 2000 Conference, Nov. 2000.

[3] Bums, L., JL Hellerstein, SMa, CS Pemg, DA Rabenhorst, D Taylor, A Systematic
Approach to Discovering Correlation Rules for Event Management, IPIP/IEEE
Intemational Symposium on Integrated Network Management, 200!.

[4] log4j: http://jakarta.apache.orgllog4j1docs/index.html
[5] Open Group, Enterprise Management Forum. 2002,

http://www.opengroup.orglmanagementlarm.htm.
[6] Tierney, B., W. Johnston, B. Crowley, G. Hoo, C. Brooks, D. Gunter. The Netl.ogger

Methodology for High Performance Distributed Systems Performance Analysis.
Proceeding of IEEE High Performance Distributed Computing, July 1998, LBNL-42611.
http://www-didc.lbl.govlNetLogger/

[7] Tierney, B. and D. Gunter, NetLogger: A Toolkit for Distributed System Performance
Tuning and Debugging, LBNL Tech Report LBNL-51276. htto:llwww
didc.lbl.gov/paperslNetLogger.overview.pdf

A CASE STUDY OF THREE OPEN SOURCE
SECURITY MANAGEMENT TOOLS

Hilmi Gunes Kayacik, A. Nur Zincir-Heywood
kayaci/c@cs.dal.ca. zincir@cs.daLca
Dalhousie University, Faculty o!Computer Science, Canada

Abstract: Three open source security management tools - Snort, Pakemon, and Argus -
are benchmarked against DARPA 1999 Intrusion Detection Evaluation Data
Set. Performance is characterized using multiple performance metrics. Snortis
found to have the best performance in terms of detection rate, however it
creates more false positives than desired. The results show that different tools
perform well under different attack categories; hence they can be run at the
same time to increase the detection rate of attack instances.

Key words: Security management, Case Study, Open Source Software, IDS

1. INTRODUCTION

Security management plays an important role in today's network management
tasks. Defensive information operations, and intrusion detection systems are
primarily designed to protect the availability, confidentiality and integrity of critical
network information systems [3]. The automated detection and immediate reporting
of these events are required in order to provide a timely response to attacks [2]. A
balance therefore exists between the use of resources and the accuracy and
timeliness of intrusion detection information. Since most of the commercial
intrusion detection systems are at typically thousands of dollars and they tend to
represent a significant resource requirement in themselves, for small networks, use
of such IDS is not feasible. The objective of this work is therefore to evaluate three
open source security management tools in order to understand which one of them
will be more useful for network intrusion detection. To achieve this, we have chosen
Snort, Pakemon and Argus, since they are three of the most popular open source
tools [1,5,6]. "Pakemon has been developed to share IDS components based on the
open source model" [6]. It is an experimental IDS, which aims to detect evasion

http://dx.doi.org/10.1007/978-0-387-35674-7_66

102 Hilmi Gunes Kayacik, A. Nur Zincir-Heywood

methods such as fragmentation, disorder, duplication, overlap, insertion, and de
synchronization at the IP or TCP layer. Pakemons's signature structure is simpler
than other IDS (such as where this simplicity is both a strength, and a
weakness. That is to say, it takes time for IDS organizations to release new signature
files. Meanwhile, as the signatures of new attacks are revealed, it is much easier to
add them to the lightweight IDS signature databases such as Pakemon [6]. Snort is
one of the best-known lightweight lOSs, which focuses on performance, flexibility
and simplicity [5]. It is an example of active intrusion detection systems that detects
possible intrusions or access violations while they are occurring. Although not as
straightforward as the Pakemon system, flexible rule writing is supported in Snort.
In contrast to Pakemon and Snort, Argus is not an IDS but it is an open source
general network management tool [1]. This means that Argus monitors and inspects
network traffic and connections both for attempted connections and established
connections. In other words, it is a specific IP auditing tool, hence in the case of this
work, it is used to analyze the superset of the traffic logged by the other two
intrusion detection systems.

2. TEST SET UP AND PROCEDURES

The test setup of this work consists of the following components: DARPA 1999
data set, traffic re-player, and the three open source systems. The data set [4]
represents TCP dump data generated over five weeks of simulated network traffic in
a hypothetical military local area network (LAN). This data was processed into
some 7 million TCP connection records. Our work concentrates on the internal and
external traffic collected by the sniffers. In this case for, reasons of expediency, we
concentrate on the 2.5 GB of data present in the week 4 data set (week 5 is even
larger and beyond the computing resources available). The data used for testing
therefore either represented a normal connection or one of the 80 attacks [4]. This
work employed one machine as the IDS server and another machine to replay the
network traffic using TCPRepiay [7]. Moreover, all the software used are installed
and configured using their default values, and the latest signature files available
(February 2002) are used for Pakemon ·and Snort. It should be noted that log files of
the tools that are evaluated contain different types of entries including different
amounts of information about the events that occurred on the network. Therefore, 4
confidence levels are defined for determining the degree of match in order to detect
different attacks, table-I.

3. RESULTS

Out of total number of 80 attack instances, Snort detected 35 and Pakemon
detected 27 in total. Indeed, it should be noted that even if we had an intelligent way
to mine Argus log file, we could have only detected 70 attacks out of the 80 present
in the test data set. To actually determine which tool performs better, two other
parameters are analyzed: (1) the number of false alarms and (2) the number of
entries that it takes to be parsed by a network administrator to detect those attacks.

A Case Study o/Three Open Source Security Management Tools 103

Figure 1 shows the number of attack related entries over the total number of entries
in the corresponding log files. Thus, in both cases it is costly to examine all log files.
On the other hand, when the attacks detected by Snort and Pakemon are examined
more closely, a strong commonality exists between the types of attacks detected. As
it can be seen in figure 2, Snort on its own is much better than Pakemon, however if
they work together Their performance increases by approximately 20%. For both of
them though, the confidence level of detection is mostly at level-3, figure 3.

Source IP Destination IP Source Port Destination Port

Levell X X X X

Level2 X X X

Level3 X X

Level4 X

Table 1: Summary of the confidence levels (X indicates the match required)

Snort Pakemon

Total Attack
Related
Entries

o Other entries

Figure 1. Number of attack related entries in the corresponding log files

4. CONCLUSION

The work presented is a case study, but we believe sufficient to warrant
continued development. In particular, we have demonstrated a benchmark evaluation
of popular open source security management tools. The results show that none of the
tools could capture all the different attack instances: Snort captured -44% and
Pakemon -34%. Moreover, Snort has -99% false alarms whereas Pakemon has
-95%. In other words all three generate very large log files, which in return makes it
difficult to analyze for network managers. Therefore, it is important to develop
filters for these tools to decrease the number of false alarms. Furthermore, we
believe that different tools need to be used together to increase the detection rate.

104 Hilmi Gunes Kayacik, A. Nur Zincir-Heywood

50 --§, 40
::l

'" 30 Co)

VI
20 ..:.::

Co)

'" :t:

'"
10

0

Snort Snort and Pakemon

Tested software

Pakemon

Figure 2: The distribution of attacks that are caught by Snort and Pakemon

40

30

20

10

o

29

6

snort

21

5

pakemon

Dcl4

Dcl3

Dcl2

o cl1

Figure 3: Number of attacks and their corresponding confidence levels for each tool

ACKNOWLEDEGEMENTS

The authors gratefully acknowledge the financial support of the
Natural Sciences and Engineering Research Council of Canada.

REFERENCES

[1] Argus, http://www.gosient.com/argus
[2] Bass T., "Intrusion Detection Systems and Multisensor Data Fusion", Communications of

the ACM, Vol. 43, No. 4, pp 99-105, April, 2000.
[3] Kayacik G., Zincir-Heywood A. N., "Evaluation of the Cisco lOS Firewall with Darpa 99

Dataset", Technical Report, Faculty of Computer Science, Dalhousie University,
http://www.cs.dal.cai-kaYacik/download/report.pdf. November 2002

[4] MIT Lincoln Laboratory, http://www.lI.mit.edulIST/ideval/dataldataindex.html
[5] Snort, http://www.snort.org
[6] Takeda K., Takefuji Y., "Pakemon - A Rule Based Network Intrusion Detection System",

International Journal of Knowledge-Based Intelligent Engineering Systems, Vol. 5, No. 4,
pp 240-246, October 2001.

[7] TCPRepiay traffic replay utility, http://tcpreplay.sourceforge.net/

MTREEDX: A MULTICAST NETWORK
DIAGNOSIS TOOL

Jaiwant Mulik
Computer and Information Sciences Department
Temple University, Philadelphia
jmulik@temple.edu

Phillip Conrad
Computer and Information Sciences Department
Temple University, Philadelphia
conrad@acm.org

Brian Drake
Information Services and Advanced Technology Division
Goddard Space Flight Center, NASA
brian.drake@gsfc.nasa.gov

Saroj Biswas
Electrical and Computer Engineering Department
Temple University

saroj.biswas@temple.edu

Musoke Sendula
Electrical and Computer Engineering Department
Temple University
hsendaul@nimbus.temple.edu

1. Introduction
MTreeDx is a tool that is being developed to fulfill a gap in most currently

available Multicast Network Management Tools. Specifically, this tool is be
ing developed as an aid to diagnose problems in NASA's multicast network.
Management of the NASA multicast network present several unique research
challenges.

2. Motivation
The images and other data acquired from space telescopes is distributed to

research institutions using a multicast network. The network manager would
like to prevent unauthorized hosts from joining the group. Detecting senders is

http://dx.doi.org/10.1007/978-0-387-35674-7_66

106 MuZik, Conrad, Drake, Biswas, Sendula

not difficult; the tool can simply listen for transmissions from unknown sources
on the group. Detection of unauthorized receivers can be tricky. Unauthorized
receivers on a subnet with no authorized receiver can be detected by the pres
ence of an "extra branch" in the multicast distribution tree. We are investigating
techniques to use mtrace [3] or similar tools to generate and display the cur
rent multicast tree. Guaranteeing the detection of unauthorized receivers on a
shared media subnet with authorized receivers in provably impossible. We are
investigating router-based techniques to detect unauthorized hosts.

The second problem is that of monitoring the multicast traffic. Several com
mercial and open source tools are available that require specific feedback from
the network. For example, a multicast monitoring extension to a popular com
mercial network management system requires SNMP capability within the net
work. Mhealth [2] requires rtcp reports to display loss statistics. In the absence
of rtcp sources or widespread SNMP support we are currently evaluating tech
niques that involve placing "monitoring stations" at strategic locations within
the network. These stations could use techniques similar to those developed
for the MINC [1] project.

3. Features of MTreeDx
Currently, the main features of MTreeDx are:

1 Displays the tree topology of group members from the perspective of
the monitoring station [Fig. 1]. The group membership information is
obtained from a pre-configured list of hosts. Each host display includes
its IP address and the last measured round-trip time from the monitoring
host. We are currently investigating router-based techniques to obtain
group membership.

2 Provides visual information about all senders, active, and inactive.

3 Provides visual alarm, and logs identity of unauthorized sender [Fig. 3].
A list of authorized senders is pre-configured. Any sender not found in
the authorized list is deemed unauthorized.

4 Provides visual information about authorized receivers.

5 Provides visual information about currently unreachable hosts [Fig. 2].
Unreachable hosts are moved from the tree display and displayed in a
separate list.

6 Provides color-coded indications of the status of a node.

7 Multiple sessions of MTreeDx can be run in parallel.

Another challenge of creating a tool like MTreeDx comes from its require
ment as an integrated tool for both security and traffic monitoring. We want
to be able to create functionality that is common to both security and traffic

MTreeDx: A Multicast Network Diagnosis Tool 107

_ 0 x

l<ll,,,,, fU 2<111704 J , '"s 2.'.110 1

J
I

'Itms f"'5 2 .. 7.2 I))2 , f"\ 2.1 , IOJ I 400 Oft, Fill"]
I I

OU"" [' ,IU 111 J '''1m, .]

Figure 1. MTreeDx with one active sender

-OX-
111,. II ... t M Ha.r 111,11 "IIO<IIT IU

m. rU:47.1704

J
I

f",+.ol us.." U"m'
rU2., 11CU

I
L e"" l" .. J 1411 Z I 'fiOIllI ''5141111

f,J·-,,-,] :nl,"s

r2!tJ2 .:1 .J
IT
hit Leol--.!t J 1A91t',..n f H I

Figure 2. MTreeDx with an unreachable host

108 MuZik, Conrad, Drake, Biswas, Sendula

• , - ,, '
" r,. a •• J'U.flCMI TII!£I 1 ••

"" i r'1o 241_170" J

,.J, •. l
210m, 69111,. j

I
I I ",··,·,J,i.'· l r,,:·,,·<t

J
rU.2.t7.11O'

J
Ul!IIU S92ml .:U5mt

In ,-., I.. '" -I f'"'' l j'.9 11111 S.01)m,

l

J ,. -. .Jl. .. ,.,. ...

Figure 3. MTreeDx with one intruder

monitoring. For example, we are developing an intelligent display and log
ging system. Visual alarms are an important characteristic of both security and
traffic monitoring. Given potentially large networks, we are developing intel
ligent interfaces that will allow the network administrator to prioritize, based
customizable rules, portions of the network currently in view.

References
[1] Multicast-based inference of network-internal characteristics.

net.cs.umass.edulminc/.
http://www-

[2] Makofske D. B and Almeroth K. C. MHealth: A Real-time Multicast Tree Visualization
and Monitoring Tool. Technical report, University of California, Santa Barbara. Malros
fske's Master Thesis.

[3] Fenner W. and Casner S. A 'traceroute' facility for IP multicast. Technical report, IETF,
August 1998. Work in progress.

MULTIPLE AUTHORIZATION
A Model and Architecture for Increased, Practical Security

Gerald Vogt
Munich Network Management Team - University of Technology Munich
Oettingenstr. 67, 80538 Munich, Germany
Gerald. Vogt@informatik.uni-muenchen.de

Abstract: Security of systems and management infrastructure is crucial for a successful,
reliable and safe use. Most currently deployed systems are based on simple
subject/object-relations where control of access happens. This has the draw
back that any access decision occurs just on the behalf of the single subject
accessing. In this paper we describe an extended access control model that
allows to include authorization of multiple subjects thus overcoming this draw
back while still focusing on practical aspects of simple integration in many of
the existing systems.

Keywords: Security Management, Access Control, Authorization

1. INTRODUCTION

control is the part of a security sys
tem that actively maintains security checking
authorizations and thereby controlling access
to protected resources and functions. The main
parts involved in access control are shown in
figure 1. The active entity accessing the pro
tected operation is called the subject for this
access. The subject is usually linked with a real
person who has been identified during authen-

tication. The object of an access can be any reference monitor
kind of resource or function that is accessible
and protected for security reasons. A subject
performs an operation on an object by calling
a method/sending a message/making a proce- Figure 1. Simple access control
dure call, depending on the underlying para-
digm and passing all necessary parameters that define the details of the operation.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

110 Gerald Vogt

The reference monitor is the part of the security system that actively enforces access
control. It checks the authorization of the accessing subject and decides whether the
subject is allowed to execute the operation or not. The identity of the subject and/or
other concepts like tickets or capabilities can be used to determine the rights and to
prove the required authorization. It is the duty of security management to assign the
necessary rights to subjects depending on the tasks they have to work on. In addition,
many systems also allow an owner of a resource to assign rights, e.g., the owner of a
file grants access to other subjects. The responsibility of the owner often coincides
with security management.

The access control model described in this section very much follows the idea of
discretionary access control (DAC) [1], one of the traditional access control models,
that is the foundation of many current operating systems like UNIX and languages
like Java. The discussion sections briefly covers some other access control models
and how they relate to multiple authorization presented in the following section.

2. MULTIPLE AUTHORIZATION

One of the limiting factors of
current access control systems is
the dependence on a single sub
ject for authorization. It is usu
ally not possible to directly
involve other entities, i.e., other
people in a particular access con
trol decision. This, however,
would be reasonable if the
access involves an object that is
critical and severe effects could
occur unless done properly. In
the simplest case of two subjects

t, ,.
- T-

! ...
I , , ,

'P , \ , ... , , ,
, \

I' rights fsecurity
management
or owner

"
" "

reference monitor

this is the 'four-eyes' principles Figure 2. Access control with multiple authorization
from real-world scenarios when
something must be done in mutual agreement of two persons. Multiple Authorization
as presented in this section is a practical mean to integrate this idea in existing sys
tems. It is an extension of the simple, single-subject authorization model underlying
most currently used systems. Instead of depending on a single subject, it allows to
include several subjects where necessary (Figure 2). In the following, we use frac
tional rights to demonstrate the concept, e.g. 1/3 for a third of the full right. Yet, it is
not limited to fractions and arbitrary constraints could be used here as well, though
they certainly add some complexity.

First of all, when an accessing subject accesses an operation it expresses its will
to execute it. If the subject does not have sufficient rights (e.g., only 1/3) to execute
the operation alone, the authorization is in incomplete state. Other subjects in the new
role of the authorizing subject can now supplement (e.g. with another 1/3) until
authorization is complete (i.e. the sum is >= 1). Supplementing authorization of an

Multiple Authorization - A Model and Architecture ... 111

operation is a new system function that does not exist in simple authorization. As the
authorizing subject authorizes an operation access of a different subject, it needs
information about the operation in question before it can decide what to do. This
requires the ability to inspect the incompletely authorized operation with all its
parameters as well as the progress of authorization until now and further context or
state information available. The authorizing subject is completely free to choose its
decision logic. Due to access details and further knowledge of the current tasks being
executed, the decision happens on a more exact level than other models with a priori
rights assignments can reach. At the end of the decision making process the authoriz
ing subject must either authorize the operation (with all, e.g. 112, or only a part of its
own rights, e.g., 113 instead of 112) or reject authorization. Rejection prevents the
operation to be executed. A conditional authorization is used to include further sub
jects in the authorization process.

As only authorization and thus access control is directly involved for the exten
sion of the existing model, it is not necessary to completely redefine the execution
model from the perspective of the accessing subject. The main control flow of the
accessing subject remains the same. Handling of multiple authorization happens
through callbacks in a new separate extension.

This leads to a number of interfaces that an architecture integrating multiple
authorization must provide or modify to meet the new needs. There are basically four
interfaces provided by the security system:

the security management interface to configure the access rights and define the
conditions when an authorization is sufficient for an operation,

• the access control interface to check authorization of a particular operation and
delaying its execution if it is subject to mUltiple authorization,
the inspection interface to request details about the operation to be authorized for
the authorizing subject (this interface itself must be secured from unauthorized
access), and

• the authorization interface to finally grant or reject authorization for a particular
operation.
Moreover, the participating subjects must provide two interfaces used for com

munication:
the callback interface of the accessing subject called by the reference monitor if
authorization is incomplete, and

• the authorization request interface of the authorizing subject called by the access
ing subject to request authorization for the deferred operation call.

3. DISCUSSION & RELATED WORK

The presented architecture focuses on the practical integration on the base of
existing security systems which often use rather simple DAC models. In this sense, it
is not considered as a replacement of other more sophisticated security models
which, however, also require a certain level of complexity in respect to the implemen
tation of the reference monitor, the supporting infrastructure and the management of
the whole system. In contrast, the presented concept with fractional rights is still sim-

112 Gerald Vogt

pIe to understand, requires less complex changes to the reference monitor leading to
more robust implementations, and has a straight-forward integration of the existing
DAC model. For example, for an integration in Java [2], it is necessary to extend the
Policy class to support new fractional rights beside the old grant rules. A new Securi
tyManager must then be able to check for the fractional rights and do the callbacks if
necessary as well as provide the interfaces for inspection and authorization as out
lined above. A prototype for the Java integration is being developed to demonstrate
the feasibility and possible applications.

The basic idea of involving several people in critical operations is not new. Vari
ous access control models have concepts to deal with separation of duty (e.g., RBAC
[3], Policies [4]). With separation of duty two operations calls, e.g. on a particular
object, must be performed by distinct subjects. This can then be used to increase
security when, for example, someone who writes an order cannot approve an order
and vice-versa. This, however, requires two different operations to exist for this pur
pose, i.e., a write method and an approve method on an order object. This assumption
is not valid in many existing systems, e.g., in file systems that usually do not offer
something like an approve read method on a file. (The presented architecture pro
vides this split operations, thus could be used for this purpose.)

Other approaches using multiple credentials which are passed to the accessing
subject are also possible. Here, though, the authorizing subjects loose direct control
of their credentials once they have been given away. In addition, it requires them to
fully identify all possible constraints they can put on the credential to limit the extent
of the right they give away. In the end, this often means, that they have to foresee the
exact purpose of the credential. With multiple authorization they authorize an actu
ally happening operation call with 'real live' parameters and their final decision can
even be based on some manual, in-person inspection, if in doubt.

Acknowledgement. The author would like to thank the members of the Munich Net
work Management (MNM) Team for helpful discussions and valuable comments on drafts of
this paper. The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a group of research
ers at the University of Munich, the Munich University of Technology, and the Leibniz Super
computing Center of the Bavarian Academy of Sciences.

Its webserver is located at http://wwwmnmteam.informatik.uni-muenchen.del

REFERENCES

[1] M. Harrison, W. Ruzzo, J. Ullman. Protection in Operating Systems. In: Communications
o/the ACM, August 1976.

[2] S. Oaks. Java Security. O'Reilly & Associates, 2nd edition, May 2001.
[3] R. Sandhu, E. Coyne, H. Feinstein, C. Youman. Role-Based Access Control Models. In:

IEEE Computer, February 1996.
[4] M. Sloman, E. Lupu. Security and Management Policy Specification. In: IEEE Network,

16(2):10-19, MarchlApriI2002.

A CONTROLLER AGENT MODEL TO
COUNTERACT DoS ATTACKS IN MULTIPLE
DOMAINS

Udaya Kiran Tupakula Vijay Varadharajan
Information and Networked System Security Research

Division of Information and Communication Sciences

Macquarie University, Australia. {udaya, vijay}@ics.mq.edu.au

Abstract: In this paper we discuss techniques to prevent Distributed Denial of Service
(DDoS) attacks within the ISP domain and extend the scheme to prevent the
attack in multiple ISP domains. With a new packet marking technique and
agent design, our model is able to identify the approximate source of attack
with a single packet and has many features to minimise DDoS attacks.

Key words: Denial of Service, DoS, Packet Marking, Routing Arbiter.

1. OUR APPROACH

Our architecture involves a Controller-Agent model. In each ISP domain, we
envisage that there exists a controller, which is a trusted entity (within the domain)
and is involved in the management of denial of service attacks. We consider external
attacks where attacks originate outside the ISP domain and target the victim, which
is also outside the ISP domain. Routers are mainly classified into internal and
external routers. Internal routers belong to the ISP and external routers belong to
customers or other ISP's. If internal routers are connected to one or more external
routers, they are called as edge routers, otherwise they are referred to as transit
routers. In principle, the controller can be implemented on any internal (transit or
edge) router or at a dedicated host. Agents are implemented on all edge routers. If
transit routers were known to contribute a large amount of attack traffic, then the
agents can be deployed on the transit routers as well and this requires no

http://dx.doi.org/10.1007/978-0-387-35674-7_66

114 Udaya Kiran TupakuZa Vijay Varadharajan

modifications to our scheme. The controller and agents are identified with their ID's.
The controller assigns an ID for itself and a unique ID for each agent.

During the time of an attack, victim requests the controller in its domain to
prevent the attack. A session is established between the victim and the controller
after proper authentication of the victim. Depending on the number of agents present
within its domain, the controller will generate and issue the controller ID and unique
agent ID to each agent and commands its agents to mark the traffic to the victim.
Now the controller updates the victim with the controller ID and the unique agent
IDs. The agents filter the traffic that are destined to the victim and mark the traffic
with controller ID and its unique agent ID in the fragment ID field. Packets will be
marked in such a way that only the first agent that sees the traffic will mark the
packet. If an agent receives a packet that is already marked then it checks the packet
for a valid controller ID. Packets with valid controller ID are passed and the rest are
dropped. All the fragments and packets that are marked by an attacker will be
dropped at this stage. Since agents are deployed on all the edge routers, all the traffic
to the victim is marked with the controller ID and the ingress/first agent ID in the
fragment ID field. As we have assumed that agents are deployed only on the edge
routers, the traffic originating in the backbone will be marked by the egress agent of
the ISP that is connected to victim's network. Since the victim knows the controller
ID and valid agent IDs, it can identify different attack signatures based on agent ID.
Now the victim updates the controller with different attack signatures that are to be
prevented at different agents. The controller retrieves the 32-bit IP address of the
agent based on agent ID and commands that particular agent to prevent the attack
traffic from reaching the victim. As attack signatures are identified based on the
agent ID, only the agent through which the attack traffic is passing will receive this
command. Now all the agents that receive this command will start preventing the
attack traffic from reaching the victim. Only the traffic that is matching with the
attack signature will be dropped and logged at the agent. The traffic that does not
match the attack signature will be marked with the controller ID and agent ID and
destined to the victim. This is to enable the victim to easily track the changes in
attack traffic. The agents will update the controller on how much attack traffic they
are receiving. Prevention will be done until the agent receives a reset signal from its
controller.

2. EXTENDED MODEL

We now extend our model to prevent the attack in multiple ISP domains. Each
ISP domain is to have a controller. The controller maintains the database of all the
agents in its domain and the controller's in the other domains. Whenever there is
DDoS attack, the prevention process will initially begin within the victim's domain.
If the attack persists for a long time or if the victim requests to prevent the attack

A Controller Agent Model to Counteract DoS Attacks ... 115

upstream, then the prevention can be performed in other ISP domains. Now the
controller in the victim's domain requests to have a session with the controllers in
other ISP domains. A session is established between the controllers after proper
authentication between them. Now the controller in the victim's domain requests the
controllers in other domains to mark the packets destined to the victim. To avoid
overlapping of controller IDs, the controller in the victim's domain issues a unique
controller ID for every controller. The decision is based upon the number of agents
present for each controller. The controllers in each domain assign unique agent ID to
its agents and update the controller in the victim's domain with the valid agent IDs.
Now the controller in the victim's domain updates its agents with the valid
controller IDs in other ISP domains and updates the victim with valid controller IDs
and agent IDs for each controller. The controllers in other domain will command
their agents to mark the traffic to the victim. The process is similar to the marking in
the victim's domain except that the unused bit in the flags field of the IP packet is
enabled in this case to indicate that the packets are marked in other ISP's domain.
Now the traffic to the victim is marked in all domains. When the packets marked in
other ISP's domain enters the victim's ISP domain, ifthe unused flag bit is enabled,
then the agents in the victim's domain can identify that the packets are marked in the
other ISP's domain. Since the controller in victim's domain has already updated its
agents on the valid controller IDs, the agent still only needs to check for a valid
controller ID to pass the packet.

Another way to implement our model is by introducing the notion of hierarchy.
In this approach each ISP will have a controller. All these controllers will be
implemented as agents to other controller, which we call the master controller. The
master controller can be implemented at an ISP with large network or by grouping
few ISP's. Whenever there is an attack, the victim can contact the controller in its
ISP's domain and the prevention of attack is done only within the ISP domain. If the
attack is to be prevented in other ISP domains, the controller in the victim's domain
will request its master controller to prevent the attack in other ISP domains. As
prevention of attack has already started in the victim's domain, the controller in the
victim's domain will also update the master controller with the controller ID used in
its domain to mark the packets to the victim. Now the master controller will assign a
unique controller ID for the controllers in other ISP's domain and commands the
controllers to prevent the attack. The prevention process is similar to the first
approach. We prefer to use the second approach, as there is already an implemented
(working) architecture that suits our model (Routing Arbiter [2]) with a little
modification. The Routing Arbiter project is deployed at the Network Access Point
(NAP) where multiple ISP's peer with each other. The routing arbiter is developed
to simplify the routing process in multiple domains by taking all the policies of the
ISP's into consideration. There are many tools that can be used to enhance the
functions of routing arbiter. For example, there are tools that can be used to simplify
the process of routing, maintain a centralised database of all the policies of ISPs and

116 Udaya Kiran Tupakula Vijay Varadharajan

to automatically generate low-level router configurations from the high-level policy
specifications.

Our model will be implemented in a hierarchy where the routing arbiter is the
master controller and the backbone routers at the network access points are the
agents for the master controller. These agents are the controllers for each ISP, which
have their agents within their domains. There are several advantages of
implementing our extended model with the Routing Arbiter. For instance, since the
Routing Arbiter/ Route server does not forward any IP packets, it is itself protected
from DDoS attack. Also it is possible to prevent multiple attacks on mUltiple victims
in multiple domains.

3. CONCLUSION

In this paper we have proposed a Controller-Agent model to prevent DDoS
attacks within the ISP domains and extended the scheme to be implemented in
multiple ISP domains. A detailed description of our model and single ISP
implementation can be found in [1]. In a separate paper, we will discuss the
implementation of the model in more detail and also describe secure authentication
between different entities in our architecture.

REFERENCES

1. U.K.Tupakula, V.Varadharajan, "Model and Mechanisms for Counteracting Distributed
Denial of Service Attacks", Technical Report, Macquarie University, 2002.

2. D.Estrin, lPostel, Y.Rekhter. "Routing Arbiter Architecture,"
http://www.isi.eduldiv7 /ralPublications.

TOWARD UNDERSTANDING
SOFT FAULTS IN HIGH PERFORMANCE
CLUSTER NETWORKS

Jeffrey J. Evans, l Seongbok Baik, l Cynthia S. Hood, l William Gropp2

1 Department of Computer Science
Illinois Institute of Technology
10 West 31st St.
Chicago, Illinois 60616
Email: {evanjeJ, sbbaik, hood} @iit.edu

2 Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
Email: gropp@mcs.anl.gov

Abstract: Fault management in high performance cluster networks has been focused on
the notion of hard faults (Le., link or node failures). Network degradations
that negatively impact performance but do not result in failures often go
unnoticed. In this paper, we classify such degradations as 80ft faults. In
addition, we identify consistent performance as an important requirement in
cluster networks. Using this service requirement, we describe a comprehensive
strategy for cluster fault management.

Keywords: Cluster, fault management, interconnection networks, soft faults

1. Introduction and Motivation
Cluster computing systems have been rapidly evolving over the past decade.

A variety of system architectures exist ranging from tightly coupled proprietary
systems to loosely coupled commodity-based systems. The relatively low cost
of commodity-based systems along with the availability of public domain soft
ware makes them an attractive option. In research environments, clusters are
replacing supercomputers. The processing power of multiple networked PCs or
workstations is utilized through parallel computing software. Computational
clusters are used to tackle complex problems that require large amounts of
computing resources.

Our research focuses on computational clusters. Paramount here is the con
cept of a "coordinated team" of nodes and their communication environment
working together as a single entity. One of the key elements of a computa
tional cluster system is the interconnection mechanism. Since the nodes do not
physically share memory, they rely on message passing through the network.
In order to achieve good performance in message-passing multicomputer sys
tems, consistently low latency and high bandwidth are required. Given these
stringent requirements on the network, effective fault management is critical.

The negative impact of performance degradation, which we term soft faults,
is often greater than that of hard faults. Soft faults are performance degrada-

http://dx.doi.org/10.1007/978-0-387-35674-7_66

118 Evans, Baik, Hood, Gropp

tions requiring corrective action. The requirement of corrective action is then
a function of the system performance expected or assumed by an application.

For example, when a user wishes to execute an application, a request for
service is submitted to a centralized scheduler. The user requests a subset
of compute nodes for a finite period of time, thus requiring the user to know
approximately how long the job will take to run. If the application execution
happens to run longer than the user expected (or guessed), a timeout results.
The application is terminated by the scheduler and the user mayor may not
receive useful data - a waste of time and resources. Conversely, if the user
reserves compute nodes conservatively and the application executes in a shorter
period of time (Le., no faults or optimum performance), resources are again
wasted (unused), since the compute nodes were conservatively reserved.

Inconsistent performance can cause scheduling problems at many different
levels. Soft faults may cause synchronization problems when the impact of a
network fault accumulates through the run. Many variables affect application
performance in computational cluster networks, and further investigation is
required to fully understand the impact of network faults. The area of soft
fault (or degraded service) management in cluster environments will grow in
importance as the area of computational Grids and Grid computing evolves.

To better understand performance degradation in the context of clusters,
one must consider performance relationships in both the horizontal and verti
cal planes. The horizontal plane includes the causal relationships that occur
between "peers" at any layer (physical, link, kernel, application, etc.). The ver
tical plane includes causal relationships between layers, adjacent or not, all the
way up through the operating system and into the applications themselves. We
are studying performance degredation on the Chiba City cluster (6) at Argonne
National Laboratory.

2. Related Work
Considerable effort both in commercial products and in the research commu

nity has been devoted to traditional "hard" fault management issues in cluster
environments. There have also been efforts exploring performance issues in
parallel program execution. These efforts include evaluation of network effects
[2, 7], performance analysis using application and kernel code instrumentation
[4, 9, 11], performance prediction [8, 10], and program steering [3, 13]. Addi
tionally, adaptive techniques have been explored for predictive signaling and
control in cluster environments for performance management [12] and in highly
distributed networks for use in fault management [5]. Our focus, however, is on
soft faults. Specifically, we wish to understand the mechanisms behind network
contributions to soft faults and to identify ways to signal or ultimately control
such faults.

3. The Problem of Cluster Fault Management
As high-performance systems, clusters require strong performance from each

component of the system, including the application, the operating system, and
the communication network itself. Additionally, when determining how to dis
tribute processing across the nodes of a cluster, parallel computing software

Soft Faults in High Performance Cluster Networks 119

assumes consistent network performance. Therefore, the type of service re
quired from cluster interconnection networks is different from that for tradi
tional best effort or telephone networks. In best effort networks, applications
tolerate variations in network performance, and real-time fault management
primarily focuses on hard faults. In telephone networks, faults are tightly cou
pled to voice service. In clusters, however, good system performance is required
to execute a large-scale application in a timely fashion. Hence, network per
formance degradations (soft faults) need to be addressed along with link and
node failures (hard faults).

This distinction is necessary because of the time scale of action. Once de
tected, hard faults are corrected. Soft faults, however, are generally tolerated
in the short term and may be monitored for longer-term trends. The goal
of cluster fault management is to address both hard and soft faults to main
tain consistent network performance. The execution of a parallel application
is complex by definition. Performance tuning to achieve the optimum balance
between computation and communication for a given data set can be both time
consuming and unproductive. Tuning models depend on the computation and
communication speeds of the hardware and software as well as the specifics
of the application data set. Another major factor that is more difficult to
incorporate into the models is run-time environment.

Cluster fault management can be used to maintain good system perfor
mance in two different ways. First, fault management techniques can detect
and correct soft faults, thereby maintaining consistent network performance.
In addition, when correction is not possible, feedback can be provided to the
parallel computing software, allowing a more accurate description of current
network conditions to be reflected in the modeling.

4. Summary and Ongoing Work
This paper has described cluster fault management in terms of both hard

and soft faults. We defined a soft fault as a degradation resulting in inconsistent
performance. Network behaviors impacting performance include localized hot
spots, dropped packets, retransmissions or unordered messages, routing effects,
and delayed transmissions because of flow control. Ongoing research is in two
directions, (1) understanding the propagation or impact of soft faults and (2)
developing mechanisms to detect and correct soft faults.

To better understand the impact of soft faults on cluster applications and
other system components, we are currently running experiments on the Chiba
City cluster at Argonne National Laboratory. In area (1), we are exposing
horizontal and vertical performance relationships that can be cast into classes
of soft faults. Once cast, these relationships can be further explored to better
understand their causes, propogation and impact on the overall cluster system.
In area (2), we are developing new adaptive routing techniques for Myrinet
interconnection networks [1]. Myrinet uses source routing, with minimal intel
ligence and monitoring within the network, so existing techniques cannot be
used.

Our next step is to extend low level network monitoring capabilities to better
understand component issues. These tools will be used in conjunction with

120 Evans, Baik, Hood, Gropp

system and application monitoring tools to enhance our understanding and
develop strategies for adaptive cluster management.

Acknowledgments
This work was supported in part by the U.S. Department of Energy, under

Contract W-31-109-Eng-38 and NSF 9984811.

References
[1] S. Baik, C. Hood, and W. Gropp. Prototype of am3: Active mapper and monitoring

module for the Myrinet environment. In Proceedings of the HSLN Workshop, Nov.
2002.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
and T. Eicken. Logp: Towards a realistic model of parallel computation. In Proceed
ings of the Fourth ACM SIGPLAN Symposium on Princples and Practices of Parallel
Programming, May 1993.

[3] W. Gu, G. Eisenhauer, and K. Schwan. Falcon: On-line moniroting and steering ofparal
leI programs. In Ninth International Conference on Parallel and Distributed Computing
and Systems (PDCS'97), Oct. 1997.

[4] J. Hollingsworth and B. Miller. Dynamic control of performance monitoring on large
scale parallel systems. In International Conference on Supercomputing, July 1993.

[5] C. S. Hood and C. Ji. Proactive network-fault detection. IEEE Transactions on Reli
ability, 46(3):333-341, September 1997.

[6] Argonne National Laboratory. Chiba City, the Argonne scalable cluster, 1999.
http://www-unix.mcs.anl.gov / chiba/.

[7] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. Effects of communication
latency, overhead, and bandwidth in a cluster architecture. In Proceedings of the 24th
Annual International Symposium on Computer Architecture, pages 85-97, June 1997.

[8] C. Mendes and D. Reed. Performance stability and prediction. In IEEE International
Workshop on High Performance Computing (WHPC'94), March 1994.

[9] D. M. Ogle, K. Schwan, and R. Snodgrass. Application-dependent dynamic monitoring
of distributed and parallel systems. IEEE Transactions on Parallel and Distributed
Systems, 4(7):762-778, July 1993.

[10] J. M. Orduna, F. Silla, and J. Duato. A new task mapping technique for communication
aware scheduling strategies. In International Conference on Parallel Processing Work
shops, pages 349-354, 2001.

[11] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and L. F.
Tavera. Scalable performance analysis: The pablo performance analysis environment.
In Proceedings of the IEEE Computer Society Scalable Parallel Libraries Conference,
October 1993.

[12] J. Vetter and D. Reed. Managing performance analysis with dynamic projection pursuit.
In Proceedings of SC'99, November 1999.

[13] J. Vetter and K. Schwan. Progress: A toolkit for interactive program steering. In
Proceedings of the International Conference on Parallel Processing, August 1995.

SHORT PAPER SESSION 2

Tools and Information Models

Co-Chairs: Hanan Lutfiyya
University of West em Ontario, Canada

Takeo Hamada
Fujitsu Laboratories of America, USA

RDF-BASED KNOWLEDGE MODELS FOR
NETWORK MANAGEMENT

Jun Shen and Yun Yang

Center for Internet Computing and E-Commerce, School of Information Technology,
Swinburne University of Technology, PO Box 218, Melbourne, Australia, 3122

{jshen, yyang}@it.swin.edu.au

Abstract: SMlng (next generation structure of management information), an information
model for network management, is a prospective structure of management
information. When deploying the multi-agent systems to network management
environments, we have established a lightweight self-contained knowledge
model based on RDF (Resource Description Framework) and its extensions.
We also present an implementation prototype to support agent communication
and coordination by RDF-based languages.

Key words: information modeling, mobile agents, knowledge frameworks

1. INTRODUCTION

Mobile and intelligent agents play active roles in network management platforms
and products nowadays. Meanwhile, new information models and protocol
interfaces are emerging within the Internet communities, for example Script MIB
(Management Information Base) [1]. The next generation structure of management
information has become critical and the work towards SMIng [2] is in progress.

However, agent communications are critical when deploying multi-agents
system to network management platforms. In our previous prototype [3], KQML [4]
was used among managing agents by taking advantage of JatLite toolkit
Gava.stanford.edu). The basic contents of agents' dialogs include script codes and
attribute-value pairs, but they lack sufficient support to describe relations and
semantics of either managing agents or managed agents.

In this paper, we discuss how to construct a self-contained knowledge model
based on the RDF (Resource Description Framework) specifications [5] and their
extensions. Our seed information model is SMIng, which is independent of ASN.I
but explicitly defmes terms that had been derived from former versions of structure
of management information (SMI) [6]. SMIng is devised as a long-term network
information model and has a minimal but complete set of data types [3].

http://dx.doi.org/10.1007/978-0-387-35674-7_66

124 J. Shen and Y. Yang

Nevertheless, intelligent management agents should understand each other through a
language with more formal semantics.

In comparison to other content languages, the triples ofRDF statements in XML
syntax describe relations between resources and properties naturally and flexibly.
RDF and RDF Schema (RDFS) have absorbed theories of object-oriented
programming, relational databases and knowledge representations and well adapted
to semantic Web. The most important enrichment of RDF used by us is OIL
Ontology Inference Layer [7] and its extension and integration with agent language
DAML [8], as well as RDF Context [9] and FIPA-RDF [10]. At current stage,
similar to Common Information Model (www.dmtf.org), XML has been
incorporated to specify DTD or schema of SMIng (www.ibr.cs.tu
bs.de/projects/sming). Therefore, XML versions of SMIng provide a basic tag
vocabulary to link up a more complex management knowledge model.

2. RDF DESCRIPTIONS OF SMING MODULES

All object variable resources of the SNMP architecture can be described in the
RDF framework. RDFS description is modeling SMIng modules while the RDF
model specification modeling SMIng instances, which is actually MIB.

Every SMlng module has its namespace, which is identified by its authors'
organisation and its version. We define a namespace xmlns:sming in order to
describe meta classes. Besides seven basic data types, other data types are defined as
subclasses. The common statements within the SMlng parameter blocks, such as
'default', correspond to properties like rdfs:comment. These properties share the
same rdfs:domain as rdfs:Class and rdfs:range as rdfLiterals. Except zeroDotZero,
every node may have its corresponding identifier like 'Parent.Key', where 'Parent'
is the identifier of its parent node. A 'scalar' statement will be in the following
RDFS form - a whole table will be a nested form:

<rdft:Class ID= "Scalar Variableldentifier">

<rdft:subClassOf rdlresource= "Parentldentifier"l>

<rdft:subClassOf rdf-resource= "#Data Type "I>
<lrdft:Class>

Instances of SMIng modules are implementations of MIB, which is abstracted as
a set of statements that declare values of managed object variables within a specific
managing or managed entity at a specific time point. We introduce properties
sming:time and sming:value with rdfs:domain as ScalarVariableldentifier or
Columnldentifier. The RDF description of instances of column objects will be a nest
structure of rdfSeq, rdfli and rdfBag of similar instance values of class
ScalarVariableldentifier (xmlns:agent is a reification of xmlns:sming):

<agent:ScalarVariableldentifier>
<sming:time>yy:mm:dd:hh:mm:ss<lsming:time>
<sming:value>value of certain DataType<lsming:value>

<I agent: Scalar VariableI dentifier>

More specification details are discussed in [11].

3. IMPLEMENTATION OF KNOWLEDGE BASES

Relational MIB, which is developed based on traditional SMI, may be extended
to the management knowledge base with rich semantic capabilities of RDFS.

RDF-BASED KNOWLEDGE MODELS 125

Assuming every management agent has a predicate set, rules set and action scripts
set, we apply the RDF context and FIPA-RDF to describe agent's knowledge base.
sming:value becomes a basic predicate of MKB, while a description of a MIB
variable instance becomes a proposition specification of subject-predicate-object and
truth-value relationship (fipa:Proposition).

The rich predicates of MKB may replace sming:value in order to describe more
complex relationships between managed resource objects. Similarly, the operations
on managed objects are expanded with new management action scripts. Compared
with Script MIB, our knowledge base system for network management can provide
more diversified functions with more flexibility [11]. Within FIPA-RDF, the rules
are regarded as compositions of two parts: selection and manipulation.jipa:selection
selects resources according to the specific expressions with the SQL-like RDF
Query specification (www.w3.orglTandS/QLI), and fipa-manipulation describes
corresponding actions. The management process of every agent is the replicated
applications ofjipa:Rule or sming:Rule to invokingfipa:Action so as to operate on
sets offipa:Proposition, which are defined by rdfc:asserts or rdfc:assumes within a
certain rdfc:Context.

Our prototype is based on MCT (Mobile Code Toolkit) [12] and JMX. KQML
messages become carriers of contents of dialogs between agents. The KQML
message parameters are redefined, :ontology becomes SMlng modules and
:language should be languages ofRDF and its extensions. Besides SiRPAC (Simple
RDF Parser and Complier), there are also some available toolkit packages for
processing the RDF syntax, for example, RDF API (www

and Jena (www-uk.hpl.hp.com/people/bwmlrdf/jena/),
which may run upon popular XML parsers such as SAX (megginson.com/SAX) as
well as Xerces (xml.apache.orglxerces-j/).

IA

SMIOnto

RDF API

SAX

JatLite

CIA IA

TCP/IP/SNMP/JMX

Figure 1. Multi-Agent Implementation Model

The whole implementation model is shown in Figure 1, where Router/ANS helps
to route messages. The CIA (coordinating intelligent agent) maintains the global
knowledge of a group of intelligent agents (lA), they communicate with each other
in SMI or SMIng ontology. The dialogs are encapsulated packets with the headers of
RDF(S) and XML as well as the performatives of KQML. RDF-enabled agents can
understand each other by explicit semantics, for example, special requests for
coordination and inferences are added-values to traditional network management
frameworks, which solely query and manipulate on static variables.

126 J. Shen and Y. Yang

4. CONCLUSIONS

Knowledge representation among management agents is a critical issue. We
attempt to establish a lightweight knowledge model based on RDF. With SMIng
acting as a seed, mapping from SMIng modules and related MIB (management
information base) onto RDF schema (RDFS) definitions of classes, properties and
related descriptions has become feasible. Moreover, elements of the management
knowledge base, especially, rule bases and action scripts can be described by RDF
Context, FIPA-RDF and OIL. Our implementation model integrates Java based tools
at different levels to coordinate agents more effectively.

ACKNOWLEDGEMENTS

This work is partly supported by Swinburne Vice Chancellor's Strategic
Research Initiative 2002-2004. The early prototype was implemented at Southeast
University and funded by Chinese National Science Foundation (No. 90204009).

REFERENCES

[1] J. Schonwiilder, J. Quittek, C. Kappler, Building distributed management applications
with the IETF Script MIB. IEEE Journal on Selected Areas in Communications,
Vo1.18, No.5, pp.702-714, 2000

[2] C. Elliot, D. Harrington, 1. Jason, 1. SchOnwiilder, F. Straul3 and W. Weiss, SMIng
objectives. IETF Request for Comments 3216, December 2001

[3] J. Shen, J. Luo, G. Gu, An object-oriented net graph model for agent group-based network
management. In: Proceedings of Technology of Object-Oriented Language and Systems,
(TOOLS 31), IEEE Press, pp.126-132, Sept. 1999

[4]T. Finin, R. Fritzson, D. Mckay, R. McEntire, KQML as an agent communication
language. In: Proceedings of the 3rd International Conference on Information and
Knowledge Management (CIKM'94), ACM Press, pp.456-463, Nov. 1994

[5] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, 1. Broekstra, M. Erdmann, I.
Horrocks, 2000, The semantic web: The roles of XML and RDF. IEEE Internet
Computing, Vol. 4, No.5, pp.63-74, 2000

[6] K. McCloghrie, D. Perkins, 1. Schoenwaelder, 1. Case, M. Rose and S. Waldbusser,
Structure of Management Information version 2 (SMIv2). IETF Standard 58, Request For
Comments 2578, Aprii 1999

[7] I. Horrocks, et aI., The Ontology Inference Layer OIL. Technical Report of On-To
Knowledge Project in the 1ST Program, http://www.ontoknowledge.org/oil, 2000

[8] D. Connolly, et aI., DAML+OIL reference description. World Wide Web Consortium
Note, http://www.w3.org/TRidaml+oil-reference, 2001

[9]G. Klyne, Context for RDF information modelling. Available at http://
public.research.mimesweeper.com I RDF I RDFContexts.html, Oct. 10, 2000

[10] FIPA, FIPA Content Language Libmry. FIPA 99 Specification, v 0.2, Part 18,
Foundation for Intelligent Physical Agents, Geneva, Switzerland, 1999

[11] 1. Shen, Research on Multi-Agent System Based Network Management Models, Ph.D.
Thesis, Southeast University, Nanjing, China, 2001

[12] Bieszczad, Mobile agents for network management, IEEE Communications Surveys,
http://www.comsoc.org/pubs/surveys. Fourth Quarter, Vol. 1 No.1, 1998

PROCESS MANAGEMENT AND CONTROL FOR
HETEROGENEOUS DOMAIN MODELS

Takeshi MASUDA
NIT Access Network Service Systems Laboratories

Abstract: The workflow of telecommunication operation support systems (telecom
OSSs), which are a typical example of a heterogeneous domain model, often
involves complicated cancellation processing. This paper proposes a rule
driven cancellation method and a middleware component that implements the
method. They separate the cancellation process from the workflow and enable
the OSSs to be made more flexible.

Key words: process management, domain model, workflow, access network

1. INTRODUCTION

The diversification of communication services and the shortening of release
periods have necessitated the use of commercial off-the-shelf (COTS) software for
telecommunication operation support systems (telecom OSSs). Furthermore, when
constructing a system that consists of multiple subsystems and that executes
operations across all of the operation menus provided by the subsystems, the
application of a workflow management system (WfMS) has been found to be
effective [1].

When the subsystems developed for each domain are interconnected and the
domain models for state transition and cancellation operations of the subsystems
differ, cooperative processing becomes difficult. Because it is not always possible to
easily change the domain models, the WfMS must be made highly flexible to enable
different models and systems to cooperate through it. However, the scale and
complexity of the workflow description increases when the WfMS has to handle
exceptions and failures [2].

In this paper, we introduce a telecom-aSS, as a typical example of a system that
has several subsystems with different domain models. We describe the problem of
processing the telecom-aSS workflow. In Section 1, we show that in telecom-OSSs,
this problem becomes even more serious than in a typical business flow. In section 2,
we describe a middleware component we developed that implements a rule-driven

http://dx.doi.org/10.1007/978-0-387-35674-7_66

128 Takeshi MASUDA

cancellation method to handle exceptions and failures in workflow processing. We
simulated this system and found that the total number of activity nodes on practical
workflows can be reduced roughly by 50%.

2. PROCESSING THE TELECOM-OSS WORKFLOW

Telecommunication operation support systems need a workflow more
complicated than that of a general business process mainly because a telecom-OSS
domain consists of various related subdomains. This variety arises from many
differences among the subdomains, e.g., in the network structure, equipment type,
and service classification. This paper describes a system for access network element
allocation (ANEA), which is an example of a telecom-OSS. The ANEA domain
consists of three subdomains: (1) an outside cable, (2) an intra-office cable, and (3)
access equipment (Figure 1 (a». The internal state of each subsystem changes from
an initial state to a completion state. There are also two interim states: allocated and
reserved. Each subsystem has several operation menus to initiate forward processes,
which move the subsystem to the next state. The host system executes the menus of
the subsystems in a certain order; it also manages and controls the whole process.
When the host system changes a subsystem's state back from an interim state to the
initial state, a cancellation process must be performed. These transitions are modeled
as the optimal transition within the subdomain. To be more precise, each ANEA
subdomain needs a different amount of time to provide network elements. For
example, the outside-cable subdomain needs several weeks, but the access
equipment subdomain needs several seconds. Therefore, the access equipment
subdomain has only one interim state (allocated), while the other subdomains have
two interim states (allocated and reserved).

Figure I shows the effect of adding a subdomain (division or subsystem) to an
ANEA system and a typical business processing system on the processing order of
these systems' workflow. The processing order of a typical business flow (Figure 1
(b» is affected only by the stable and organized order in the whole domain, e.g., the
order of the official sanctioning. It is clear from the figure that the change of the
order is local, and the addition of the subdomain is easy: only one flow should be
added. However, adding a new subdomain (subsystem) to the ANEA system affects
the ANEA workflow (Figure 1 (a», which makes the addition all the more difficult:
in this case, five flows should be added. This is because the priority between the
agreement level and the subdomains is inverted. Therefore, the processing order of
the ANEA flow is inherently more complicated than that of the typical business flow.

On the other hand, when viewed from the perspective of all the subsystems, the
processing order consists of several phases. The internal states of all the subsystems
should be synchronized to guarantee macro data consistency. The important point is
that the number of times the state of each subsystem changes may differ according
to the subdomain model. In this paper, these subdomain models are referred to as
heterogeneous domain models (HDMs). The complexity of the HDM workflow
adversely affects the process of operation cancellation. When the user cancels an
operation or the system generates an exception) an appropriate combination of
cancellation operations must be performed for each subdomain (subsystem).
Throughout the workflow, each subdomain goes through a series of interim states.
As a result, the combinations of cancellation operations needed by each subdomain

Process Management in Heterogeneous Environments 129

change depending on the execution point in the workflow. When a WfMS controls a
combination of cancellation operations, its workflow becomes far more complex
than a simple combination of forward procedures to provide network elements. To
simplify the workflow, we developed a status management system (StMS) described
in the next section.

Subdomains , ______ ,

3rd 8-e-G @ i
Qi i i

e-e ,;@ i
... ! Q) "

.. !Qi
1st w- _

Outside !Intra-Office !Access !
Cable Cable Equipment Equipment

(a) ANEA workflow

Subdomains ;-------,

\ 1
••• i@l

purChase! contract! ACCOUnting!
Division Division Division Division

.,j .,j .,j

(b) Typical Business Flow

=This flow
should be
added.

---
This flow
should be
removed.

This flow
should be
unchanged .

Figure J. Comparison of the execution orders of an ANEA system and a typical business
processing system and the effect of adding a new subdomain on these systems' workflow

3. IMPLEMENTATION OF STMS

The basic architecture of StMS is shown in Figure 2. The StMS is a rniddleware
component that works together with the WfMS, and it exclusively handles
cancellation processing. The StMS consists of two parts, a working space and a rule
accumulator. The working space holds two categories of information as nodes in a
graph structure shown in the left part of Figure 2. These categories show the
execution history of forward operations of the subsystems and the execution
schedule for cancellation operations corresponding to the forward operations. There
are several links between the nodes indicating three types of relationships between
the operations: dependency, (e.g., operations depend on one another) cancellation
(e.g., operations have different cancellation operations), and inclusiveness (e.g.,
some cancellation operations can be substituted with other cancellation operations).

These links and nodes are built according to the generation rules prepared
beforehand when the WfMS requests a subsystem to process an ANEA operation.
The generation rules are stored in the rule accumulator. The rules have a condition
part and an action part. These parts have several operation identifiers. An operation
identifier indicates the type of corresponding operation, showing whether it is a
forward operation or a cancellation operation. It is embodied as a unique value in the
whole system. For example, an operation identifier can be coded as variable length
character data or variable length integer data. The operation identifiers in the
condition part of a rule indicate the nodes that the StMS should apply the rule to.
The operation identifiers in the action part of a rule indicate the nodes that the StMS
should look for or create. The rules holding a forward operation identifier in their
condition part have several forward operation identifiers and several cancellation
operation identifiers in their action part. The forward operation identifiers are used
to create dependency links. The cancellation operation identifiers are used to create

130 Takeshi MASUDA

cancellation links. In contrast, the rules holding a cancellation operation identifier in
their condition part have only cancellation operation identifiers in their action part.
These rules are used to create inclusive links.

This basic StMS composition makes it possible to explicitly isolate cancellation
processes from the forward operations in the workflow. We simulated this system
and found that when both the WfMS and the StMS are used for an ANEA domain,
the total number of activity nodes on 18 workflows can be reduced from 51 to 26
(Figure 3).

..... Dependency
___ Cancellation
... . lnelusivcnC8S

Figure 2. Basic architecture and working space in the StMS

Convenlional methOd
Proposed method I I I I IIJ Forward operation , I

. Cancellatlon OP8,alion
o 10 20 30 40 50 60

Total "umbof of activity nodos

Figure 3. Total number of activity nodes on 18 workflows

4. SUMMARY

We analyzed the causes of complexity in the workflow of telecom operation
support systems and clarified their workflow processing on the basis of a
heterogeneous domain model. We then proposed a rule-driven method for automatic
cancellation processing in this domain model, and described its implementation in
the form of a status management system. The proposed method can reduce the total
number of activity nodes by 51 %.

REFERENCES

[I] V.P. Wade, and T. Richardson, "Workflow - A Unifying Technology for Operational
Support Systems", Network Operations and management Symposium, Vol. 07, pp. 231-
246, Sep. 2000.

[2] N. Edelweiss, and M. Nicolao, "Workflow modeling: exception and failure handling
representation", Computer Science, 1998. SCCC '98. XVIII International Conference of
the Chilean Society of, 1998, pp. 58 -67.

SEMANTIC MANAGEMENT: APPLICATION OF
ONTOLOGIES FOR THE INTEGRATION OF
MANAGEMENT INFORMATION MODELS

Jorge E. L6pez de Vergara, Victor A. Villagni, Julio Berrocal, Juan I. Asensiot, and
Roney Pignaton
Dpto. Ingenieria de Sistemas Telematicos, Universidad Politecnica de Madrid, Spain.
{jlopez, villagra, berrocal,jasensio, roney}@dit.upm.es
t Visiting researcher from Universidad de Valladolid, Spain

Abstract: The multiplicity of Network Management models (SNMP, CMIP, DMI,
WBEM ...) has raised the need of defining multiple mechanisms to allow the
interoperability among all involved management domains. One basic
component of such interoperability is the mapping between the information
models that each domain specifies. These mappings, usually carried out with
syntactical translations, can reach the semantic level by using ontologies. This
article shows the advantages of using formal ontology techniques to improve
the integration of current network management models.

Keywords: Ontology, Management Information Models Integration, Semantic Mapping,
Behavior Information.

1. INTRODUCTION

Different standardization efforts for a unique integrated management model have
set up several models: different management domains currently exist using IETF's
SNMP, ISO's CMIP, DMTF's DMI or even OMG's CORBA. The definition of
interoperability mechanisms among these models has become essential to perform
an integrated management in a multiple domain scenario. Existing studies about this
topic [1] divide the problem in issues related to their diverse communication
protocols and information models: If a rule set can be specified that translates both
the access and the definition of the information, interoperability is possible.

DMTF's WBEM management model includes some features to deal with this
heterogeneity. In this new model, access interoperation is solved by using providers
that act as gateways, but information interoperability is still an obstacle: elM,

http://dx.doi.org/10.1007/978-0-387-35674-7_66

132 1. Lopez de Vergara, V. Villagra,1. Berrocal, 1. Asensio, and R. Pignaton

WBEM's Common Infonnation Model, defines three different mappings, which are
technique, recast and domain [2]. However, the fact is that usual translations are at
most recast mappings. Recasts only give a syntactic-equivalent definition that is not
integrated in the semantic hierarchy of the CIM schemas, which could only be done
with domain mappings.

Domain mappings are not easy to define, because they cannot be done
automatically. To solve this problem, the knowledge representation discipline
known as Ontology can be useful, because it provides all necessary constructs to add
semantics to described infonnation. In fact, some ontology tools exist that assist in
the infonnation merging and mapping task [3].

The following section introduces ontologies and compares them to CIM. Next, a
method is proposed that applies ontology techniques to the integration of different
management infonnation specifications. Finally, some conclusions are presented.

2. ONTOLOGIES

An ontology can be defined as "an explicit and formal specification of a shared
conceptualization" [4]. Briefly, it can be said that an ontology is the definition of a
set of concepts, its taxonomy, interrelation and the rules that govern such concepts.
In this way, existing management infonnation models could be understood as a kind
of ontologies: Models like CIM define the infonnation of the management domain
in a fonnal way and by common consent of working groups. However, they do not
incorporate axioms or constraints that provide the additional semantics usually
included in the so called heavyweight ontologies, and that would eventually enable
the inference of knowledge based on existing one.

Ontologies are usually defined following a pyramidal structure in which more
general and also more reusable ontologies are at the bottom level, and more usable
and also more specific and less reusable are at the top [5]. CIM has a similar
structure although it lacks both a General Common Ontology and any Task
Ontology levels (see figure 1).

Figure 1. Correspondence between CIM and Ontology architectures.

Application of Ontologies for Integration of Management Information Models 133

3. APPLYING ONTOLOGIES TO NETWORK
MANAGEMENT INTEGRATION

As stated before, semantic interoperability is not completely achieved in CIM
and thus, it should be extended. This section proposes a method to create a network
management information model based on formal ontologies. The resulting ontology
would be an extension of CIM, adding the necessary axioms and constraints to
obtain a heavyweight ontology. Furthermore, this CIM-based ontology should also
contain all information defined in other management models. This can be achieved
by merging every model with CIM, including all necessary mapping rules.

Therefore, a set of steps can be defined to obtain the desired management global
ontology, which can be used by a manager as an interoperable information model:
1. Translate all management information models to work with a single ontology

representation language.
2. Merge the models in a global ontology, defining at the same time mapping rules

between the global ontology and each model.
3. Add a set of formulae or axioms to the ontology to make it heavyweight.

The merging and mapping tasks can be assisted by means of ontology tools. In
this case, a merging of CIM and SNMP MIBs has been done with one of such tools
[6], using a subset ofCIM and the whole HOST-RESOURCES-MIB (see figure 2).
Both MOF and SMI specifications were manually translated to be readable by the
ontology tool.

s
o
, (9

"'@CLASS
"'@ SLOT
&- @.rACET
0- @ CO"STRAWT
"'@:ANNolTAnON

@.OU.,/OY.FAAM ES
• @CJ,.._MilllndiO&dEJemMI--tjm

, @CLM_J!IIan8!JedSystemElement·
' (C_IN_UtQft3IE1ement·,clm

, Omcl'··e;lrn

@CIW-,""Jet.-."OdtAdapte
e- CI,w_StorageE tnl-·

@CIM_Prlnt.r

Figure 2. Merging CIM and HostResources with an ontology tool

With this approach, a manager can use the merged ontology to have a unified
view of all the information it manages and translate it, by applying the mapping

134 J. Lopez de Vergara, V. Villagra, J. Berrocal, J. Asensio, and R. Pignaton

rules, into each domain information model taking into account the semantics of the
concepts.

Constraints contained in the description of an OBJECT -TYPE or a CIM
Property are defined in natural language and cannot be automatically enforced by a
manager. If a formal definition of these constraints is provided, specified
management information can be used to define certain manager behavior rules.
Ontology tools also allow the definition of such axioms or constraints to complete
the management ontology: For instance, the following rule could be set to impose
that "the AvailableSpace ofa CIM]ileSystem instance is going to be greater than a
10% of the FileSystemSize":

(defrange ?fs :FRAME elM _FileSystem)
(forall ?fs (> (AvailableSpace ?fs) (* 0.10 (FileSystemSize ?fs))))

4. CONCLUSIONS AND FUTURE WORK

This paper has presented a novel approach in which the definition of an
ontology-based management information model has been proposed. The advantages
of this approach can be applied when trying to map and merge different
management models from a semantic viewpoint. Also, ontology axioms and
constraints provide a way to define the behavior related to the information model.

Current developments include a program that translates MOF and SMI
specifications automatically to RDFS and DAML+OIL, dealing also with SMI
particularities. At the same time, the ontology tool [6] is being adapted to the
peculiarities of the management information when merging and mapping it.

REFERENCES

[1] Pramod Kalyanasundaram, Adarshpal S. Sethi, "Interoperability Issues in Heterogeneous
Network Management", in Journal of Network and Systems Management, Vol. 2, No.2,
June 1994.

[2] Distributed Management Task Force, Inc., Common Information Model Specification
version 2.2, DMTF Document DSP004, June 1999.

[3] Jorge E. L6pez de Vergara, Victor A. Villagra, Julio Berrocal, "Semantic Management:
advantages of using an ontology-based management information meta-model", in
Proceedings of the HP Openview University Association Ninth Plenary Workshop (HP
OVUA'2002), Boblingen, Germany, June 2002.

[4] R. Studer, V.R. Benjamins, D. Fensel, "Knowledge Engineering: Principles and
Methods", in Data & Knowledge Engineering, Vol. 25,1998.

[5] Asunci6n G6mez Perez, V. Richard Benjamins, "Overview of Knowledge Sharing and
Reuse Components: Ontologies and Problem-Solving Methods", in Proceedings of the
/JCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm,
Sweden, August 1999.

[6] Natalya F. Noy, "Managing Multiple Ontologies in Prot6ge-2000", in Proceedings of the
Fifth International Protege-2000 Workshop, Newcastle, England, July 2001.

A CONCEPTUAL FRAMEWORK FOR
BUILDING CIM-BASED ONTOLOGIES

Emmanuel Lavinal, Thierry Desprats and Yves Raynaud
IRIT-UPS, UMR 5505 CNRS. 118 Route de Narbonne, F-31062 Toulouse Cedex 4, France
{lavinal, des prats, raynaud}@iritfr

Abstract: Cooperative Management has appeared as a promising paradigm on which
Network and System Management (NSM) solutions should be partially or
entirely based This paper proposes a conceptual framework to obtain, from
any CIM schemas, NSM frame-based ontologies which can then be used in
cooperative management solutions.

Key words: Information models, cooperative management, CIM, ontology

1. INTRODUCTION

From a technological viewpoint, Multi-Agents Systems (MAS) constitute the
natural candidate to support the implementation of this cooperative management
paradigm [1, 2]. In such a context, autonomous entities interact in a cooperative way
to reach a common objective of NSM. This implies that the involved entities
understand each other and share a common representation of the domain knowledge.
More precisely, these entities interact by exchanging primitives specified by an
Agent Communication Language (ACL) like FIPA-ACL. These messages, called
performatives, convey information about illocutionary power of the interaction
within the dialogue (e.g. assertion, question, order, etc.); this information, devoted to
protocol aspects, is totally independent from the application domain. Another
conveyed information is directly related to the domain because it defines the real
semantics of the message. A shared vocabulary is required to represent the "universe
of discourse" by specifying the common concepts, attributes and relationships which
describe the target application domain. This vocabulary is called an ontology and is
used by any agent to express its knowledge about its environment [3, 4].

If we want to promote the use of MAS in the NSM domain, having ontologies
related to this domain is absolutely necessary. As there are none existing at the
moment, our objective is to provide a generic and automatic way to obtain NSM

http://dx.doi.org/10.1007/978-0-387-35674-7_66

136 Emmanuel Lavinal, Thierry Desprats and Yves Raynaud

ontologies which then should be used in a cooperative NSM context. Rather than
trying to specify one NSM ontology able to cover all the needs in this field, our idea
was to benefit from the very important works done by the DMTF: the CIM effort
currently appears as the most successful and recognized approach.

The conceptual framework we propose is based on a precise mapping which can
be applied to build NSM ontologies from existing CIM schemas. We show how it is
possible to express the CIM Meta Schema thanks to the OKBC Knowledge Model,
and therefore, how to obtain frame-based NSM ontologies from any CIM schema.

2. OKBC AND CIM OVERVIEW

OKBC (Open Knowledge Base Connectivity) [5] is a standard for frame-based
ontology. It specifies a knowledge model (KM) which provides a set of constructs
commonly found in frame-based knowledge representation systems. It includes
frames, classes, slots and facets. A frame is a primitive object that represents an
entity in the domain of discourse. A frame that represents a class is called a class
frame, a frame that represents a slot is called a slot frame, etc. Basically, classes are
similar to object-oriented approaches, slots describe properties or attributes of
classes and facets describe properties of slots. Protege-2000 [6] is an OKBC
compatible ontology editing and knowledge acquisition environment. The use of
metaclasses makes Protege-2000 easily extensible and enables its use with other
knowledge models. Due to its capacity to be expressed in a formal language like
KIF [7] and to its numerous implementations, we selected OKBC as the target
environment to obtain NSM CIM-based ontologies.

CIM [8] is a conceptual information model for describing management that is
not bound to a particular implementation. CIM defines a collection of schemas
which provides the actual model descriptions. The CIM Schema is structured into
three distinct layers: the core model, the common models and the extension models.
These generic schemas constitute a very important work for vendors who can model
their management information on a common and standard basis. CIM also specifies
a meta schema which defines the terms used to express the model and its usage and
semantics. Some elements of the meta model (MM) are descended from object
oriented approaches (Classes, Properties, Methods, Associations, References) and
others descend from management or data base domains (Qualifier, Trigger,
Indication).

3. THE CONCEPTUAL FRAMEWORK

On the one hand, ontologies and CIM serve very different purposes: ontologies
allow sharing and reuse of knowledge to provide a common understanding of some
domain whereas CIM modelizes management information to provide integrity
constraints for management systems. On the other hand, ontologies and CIM have
some common points: they both provide vocabulary and structure for describing

A Conceptual Framework for building ClM-based Ontologies 131

particular infonnation and they also have similar modeling levels (Figure 1). It is
therefore legitimate to compare both. We chose the highest level of abstraction to
perform our mapping (meta model level), that is between the OKBC knowledge
model and the ClM meta schema. This choice is motivated by the fact that we
wanted to provide a high level of genericity to exploit this work in all the underlying
levels, allowing therefore the construction of ontologies from any CIM model.

Me/a Model
Level

Imp/emelita/ion
Leve/

OKBC Knowledge Model
{cia slol./aCC<l J

Knowledge representation ontology

Knowledge
Base

elM Mela Model

Figure 1. OKBC vs. CIM modeling levels

We first made a comparative analysis between the data types, concepts and
standard elements defined in the two approaches, and then we established a set of
precise correspondences at a modeling level to reconcile the differences. We will
briefly expose our work on the concepts.

We identified three categories of concepts: (i) concepts that are exactly the same,
(ii) concepts that are the same but expressed in a different way and finally (iii)
concepts of the CIM meta model that do not have an equivalent in the OKBC
knowledge model. These categories were concealed either by direct equivalences or
by the extension of the OKBC knowledge model to express the new ClM meta
model concepts. For example, classes, slots as properties and inheritance are
concepts exactly the same in the two approaches. Concerning category (ii), we can
quote the concept of association that can be represented as a special slot in OKBC
whereas ClM defines an association as a class. Therefore we created a metaclass
CIM:ASSOCIATION to respect the CIM specification. Finally, the concepts of
qualifier, method, trigger, etc. fall in the category (iii) : we defined new metaclasses
and metaslots that we configured to reflect exactly the CIM concepts.

Figure 2. Specialization of the KM ofProtege-2000 to express the MM ofCIM

138 Emmanuel Lavinal, Thierry Desprats and Yves Raynaud

The result of this work is a complete expression of the meta model ofCIM in the
OKBC knowledge model. We applied this work in the environment Protege-2000,
adding metaclasses and metaslots to the system architecture. Figure 2 illustrates the
Protege knowledge model extended by the new concepts descended from CIM.

4. CONCLUSION AND FUTURE WORKS

The presented work allows us to express the CIM Meta Schema as a frame
based ontology. This has been achieved by extending the OKBC knowledge model
in the Protege-2000 environment in order to specify all the concepts proper to CIM.
We also realised a full mapping concerning both the data types and the CIM
standards qualifiers. This precise and complete projection has been done at the
respective "Meta" levels.

Based on that extended knowledge model, we have obtained the expression of
the entire standard CIM "Network" schema as a Protege-2000 ontology. This result
shows that the mapping defined at the "Meta" level may constitute a solid basis to
obtain NSM-related ontologies from any existing CIM models. Both the Core and
Common CIM schemas defined by the DMTF may be expressed in such a way as
ontologies. In the same manner, all the CIM extension schemas which have been (or
will be) defined by all the categories of CIM users may be transformed into
ontologies. By providing a "Meta-mapping" solution, we have reached a high level
of genericity to easily reuse the whole efforts made around the CIM modeling
approach: any CIM-based model can become a NSM frame-based ontology.

Current works intend to automate the mapping process. Based on our proposal, a
tool which allows to generate a Protege-2000 ontology from the analysis of a CIM
XML file (describing CIM schema) is under construction. This tool will help to
integrate CIM models as ontologies within cooperative NSM solutions without
requiring any expertise on ontologies.

REFERENCES

[1] J.P. Martin-Flatin, S. Znaty. Two Taxonomies of Distributed NSM Paradigms, Emerging
Trends and Challenges in Network Management, Chapter 3, June 2000

[2] K. Boudaoud, Z. Guessoum, C. Mc Cathie Neville, P. Dubois. Policy-based Security
Management Using a Multi-Agent System, Workshop HPOVUA, Berlin, June 2001

[3] A. G6mez-Perez. Ontological Engineering: a State of The Art, Expert Update, 1999
[4] C. van Aart, R. Pels, G. Caire, F. Bergenti. Creating and Using Ontologies in Agent

Communication, Workshop on Ontologies in Agent Systems, Italy, July 16,2002
[5] V.K. Chaudhri & al. Open Knowledge Base Connectivity 2.0.3, April 1998
[6] N.F. Noy, R.W. Fergerson, M.A. Musen. The knowledge model of Protege-2000:

combining interoperability and flexibility, EKA W'2000, France, October 2-6, 2000
[7] Knowledge Interchange Format. Draft proposed American National Standard:

http://logic.stanford.edulkif/dpans.html
[8] Common Information Model Specification. DMTF, http://www.dmtf.orglstandards/

POLICY-BASED COOPERATION OF SERVICES
IN UBIQUITOUS ENVIRONMENTS

Tosbio Tonouchi, Tomohiro Igakura, Naoto Maeda, Yasuyuki Beppu, and
Y osbiaki Kiriha
Network Laboratories, NEe

Abstract: Various kinds of nodes, including cellular phones and information appliances.
are to become popular and are expected to provide a variety of services.
Cooperation of these services will result in more convenient services than
keeping them isolated would. A ubiquitous network is characterized by
changeable system configurations. Because of this and the fact that a node is
so frequently connected to and disconnected from the network. the global
cooperation of services is difficult to describe in flow languages such as Web
Services Flow Language (WSFL). One of the solutions to this problem is a
policy technology. A policy attached to a node can be added or removed when
the node is connected or disconnected. The policies can re-configure a
changed system.

Keywords: Management of Grid Computing. Clusters, Peer-to-Peer Applications. and
Ubiquitous Computing Environments. Policy. Message-oriented system

1. INTRODUCTION

The ubiquitous network environment is maturing. Cellular phones with Internet
access, personal data assistants (PDAs), and wireless local area networks (LANs)
are becoming more and more popular. About 10 years ago, Weiser developed an
original PDA called 'Tab' and invented a proprietary protocol for wireless
communication [1].

Some ubiquitous nodes, especially information appliances, provide simple
services. For example, an air conditioner with network access function can be
turned on and off or can have the temperature set by a remote user. Cooperation of
these simple services provides a valuable service. For example. a cellular phone

http://dx.doi.org/10.1007/978-0-387-35674-7_66

140 Toshio Tonouchi et al

with a global positioning system (GPS) can automatically give the location of the
user to the network-connected air conditioner, which is automatically set to tum on
when the user (e.g. Tom) comes near his house.

One of the characteristics of ubiquitous networks is that some of the ubiquitous
nodes constituting the systems are not always operational. A cellular phone may be
off when the battery is dead or the network-connected air conditioner breaks down.
We call this characteristic fickle. A fickle node may suddenly disappear, and the
system suddenly stops due to this. For example, when the air conditioner breaks
down, the cellular phone cannot communicate with the air conditioner. A fan should
work instead of the air conditioner when the air conditioner breaks down.

We propose a policy-controlled message-oriented system that overcomes the
fickle-node problem.

2. RELATED WORK

A partial solution to the fickle-node problem is a publisher-subscriber system[2].
A publisher-subscriber system has a message router that automatically forwards a
message to some of the nodes registered with the message router. Stopped and
disconnected nodes will be manually unregistered. They can forward a message to
adequate nodes in normal cases but they cannot handle the message when an error
occurs. It is, therefore, difficult for the publisher-subscriber system to realize the
example of the broken air-conditioner, which replies an error message.

Web Services Flow Language (WSFL[3]) and XLANG[4] were interesting trials
for specifying the workflow among Web services. However, these technologies
encounter the fickle-node problem because the description in the control flow
languages requires deterministic routing information. The unplanned appearance
and disappearance of nodes totally affects the workflow. The programmer therefore
must rewrite the workflow.

3. ARCHITECTURE

Our architecture is basically the same as that for publisher-subscriber systems.
The architecture is shown in Figure 1. A message router called the distributor is
connected to a network. All the messages that the ubiquitous nodes (e.g., personal
computers, PDAs, and cellular phones) send go through the distributor. The
distributor determines where the messages go next.

Just as for the publisher-subscriber message-oriented systems, nodes that receive
messages must be registered with the distributor a priori. In our system, policies
describing which messages the joined nodes accept are also registered with the
distributor.

Policy-based Cooperation of Services in Ubiquitous Environments 141

ellular Phone PC PDA Information appliance

Figure 1. Architecture

Policies are the key to our architecture. We give an example of policies in
Figure 2 (a). A policy is composed of a matcher (before "I") and a generator (after
"I"). A matcher specifies what kind of message a node accepts. PI and P2 accept
any message because the matcher does not specify any condition. PI and P2 could
even accept the same message. However, the distributor non-deterministically
chooses one of them.

The interesting syntax of our policy language is the generator. Generator "*,,
creates a copy of an accepted message and distributes it to the other policies.
Suppose that PI accepts a message. PI forwards it to Node NI. PI then generates an
internal message copied from the original message with attribute "after=PI". An
internal message is a pseudo message that is used to explain the behavior of the
policy processing of the distributor. Policy P2 accepts the generated internal
message because PI has already been used and only P2 can be matched with the
internal message. Next, suppose that P2 is matched earlier than PI' PI will match
the message generated by P2. In either case, NI and N2 are chosen in the case of the
example in Figure 2 (a).

N3 is a 'fickle' backup server, whose policy, P3, accepts messages that include
"after=P2". This means that a message to Node N2 is copied to the backup server.
NI and N2 work well even if fickle node N3 is removed. Only the backup function
does not work. However, the backup of N2 will work automatically when N3 is
connected to the distributor with Policy P3. This shows that our policy approach
solves the fickle-node problem.

142 Toshio Tonouchi et al

Three nodes (Nt. N2, and N3) Pais connected to the air-conditioner
are connected to Policies Ph and Pf is a policy to the fan.
P2, andP3• Pa:= sender=tom's-phone
PI:= I * after=PI distance =10?
P2:= I * after=P2 Pc := message=error
Pa:= after=P2 I * receivers=air-conditioner

(a) Back-up service (b) Air conditioner and fan

Figure 2. Examples of policies

Figure 2 (b) shows the policies of the example in Section 1. Policy Pais fired
when the distance between Tom's cellular phone and his house is less than 110
meters and more than 100 meters ("distance=10?"). If the air conditioner is broken,
the error message is issued. The Pr is fired because it matches the error message.
Notice that both Pa and Pr have no generator. These do not generate internal
messages, and no more policy is fired.

4. CONCLUSION

We proposed a policy-based message system. We showed, using the examples,
that this system solves the fickle-node problem. Nevertheless, the syntax and
semantics of our policy language are inadequate. We are trying to improve the
policy language without losing its simplicity. Another challenge is the effectiveness
of policy processing. A distributor may have to handle a lot of ubiquitous nodes. In
such a situation, fast policy processing is required. Therefore, we are now studying
an optimization method for policy processing. The correctness of the optimization
method is proved based on the operational semantics of our policy language.

REFERENCES

[1] Weiser, M.: Some Computer Science Issues in Ubiquitous Computing, Communication
of the ACM, Vol. 36, No.7, pp.74-84, July 1993

[2] Sun Microsystems, Inc: Java Message Service, 1999
[3] Leymann, F.: Web Services Flow Language (WSFL Ver 1.0), May 2001

[4] Thatta, S.: XLANG - Web Services/or Business Process Design, 2001

DESIGN AND IMPLEMENTATION OF AN
INFORMATION MODEL FOR INTEGRA TED
CONFIGURATION AND PERFORMANCE
MANAGEMENT OF MPLS-TENPN/QOS

Taesang Choi, Hyungseok Chung, Changhoon Kim and Taesoo Jeong
ETRI, {choits, chunghs, kimch, tsjeong@etri.re.krJ

Abstract: Multi Protocol Label Switching (MPLS) is generally considered a mature
technology. Many Intemet Service Providers (lSPs) and telecommunication
carriers have deployed it or are considering deploying it. An easy-to-use
integrated management solution is requested by these ISPs. To realize a truly
integrated management solution, a combined management information model
is essential. In this paper, we propose an information model for integrated
configuration and performance management of MPLS-Traffic Engineering
(MPLS-TE)IVPN/QoS.

Key words: Information Model, MPLS-TE, MPLS-VPN, Diffserv, Configuration
Management, Performance Management

1. INTRODUCTION

As of today, Multi Protocol Label Switching (MPLS)[l] is considered as a
mature technology. Many Internet Service Providers (ISPs) and telecommunication
carriers have deployed it or are considering deploying it for various reasons:
efficient usage of their valuable network and system resources and meeting
customer's emerging service requirements such as provider managed IP virtual
private networks (VPNs) and quality of service (QoS) guaranteed IP services for
voice, video or mission critical applications.

One of the major requirements for a successful deployment is easy, efficient,
scalable and reliable management of networks and services based on MPLS. This
includes automated provisioning, network and service performance monitoring, fault
management and billing. And service providers want a more general management

http://dx.doi.org/10.1007/978-0-387-35674-7_66

144 Taesang Choi, Hyungseok Chung, Changhoon Kim and Taesoo Jeong

solution and, thus, a common integrated information model for all these
management functionalities is needed more than ever before.

In this paper, we propose an information model for integrated configuration and
performance management of MPLS-TElVPN/QoS. It is an OO-based abstract
information model which means it is independent from the existing data models,
encoding schemes and management protocols. In our proposal, we defined an
information model by using Unified Modeling Language (UML) [2] which is used
most widely to describe OO-based information models.

2. DESIGN OF THE INFORMATION MODEL

The main focus of the proposed information model is OO-based object model,
protocol independency and integration of configuration and performance
management. Our information model consists of four sub-models: one for MPLS
TE, MPLS-VPN, Diffserv[3]-based QoS, and Topology. Each sub-model is divided
into configuration and performance parts. Topology sub-model is common to all
three services. IP layer topology is a COmmon denominator of MPLS-TE, MPLS
VPN and QoS topologies. Given the IP layer topology, MPLS-TE, MPLS-VPN or
Diffserv topological information can be further added depending on an underlying
network's capabilities. For example, if the underlying network supports MPLS-TE
then both IP and MPLS-TE topological information is captured in the same topology
information model. MPLS-TE sub-model models configuration and performance
management information of MPLS-TE such as a traffic trunk, Label Switched Path
(LSP) tunnel, LSP Path and traffic statistics of LSP tunnels. Similarly MPLS-VPN
and QoS sub-models define conceptual management information and their
relationship of respective services' configuration and performance functionalities.
Due to the limited space, we only describe one sub-model: MPLS-TE.

2.1 Information Model for MPLS-TE

Figure 1 shows the information model for MPLS-TE configuration management.
It shows required object classes and their relationships. There are three important
classes: a traffic trunk, an LSP tunnel, and an LSP. The traffic trunk models the one
defined by RFC2702, ''The requirements for traffic engineering over MPLS" [4]. It
represents an aggregate of customer traffic flows belonging to the same service class
or classes. It can be mapped into zero or more LSP tunnels for load sharing
purposes. Each LSP tunnel is mapped into one or more LSPs which are represented
by dynamically calculated paths or explicitly specified paths. Other classes are
tightly coupled with these main classes. For example, a traffic trunk (TtC) and LSP
tunnel (LspTunnelC) need forwarding equivalence class (FEC) and a RSVP traffic
profile (RsvpTp). FEC is a traffic classification filter and RsvpTP is a traffic profile
attribute specification such as bandwidth, delay, jitter, etc.. Classes with letter ''C''
like TtC contain configuration and static information only. When a new class object
is created, three objects (with letter "C", "M", and "S") are created at the same time
and stores configuration-, performance-, and simulation-specific information
separately for information consistency.

Design and Implementation of an information model for integrated ... 145

0 .. 1

1

1 .. *

Figure 1. MPLS-TE Configuration Information Model

Cla<;ses with letter "M" denote that they are used for performance management.
Traffic trunks, LSP tunnels and LSPs have their operational status information and
statistics information such as packet per second every five minutes and bits per
second every five minutes. Letter "S" stands for simulation. We identified some of
the simulations which are very useful for the performance management. MPLS LSP
path availability check, NodelLink failure, Traffic trunk and/or LSP tunnels attribute
change and global optimization simulations are some of possible candidates.
Simulations can be performed off-line with historical data acquired by off-line
means. In such a situation, the simulation is typically considered to be a separate
auxiliary mechanism to help performance management. In our proposed
information model, we approached in a different way. These simulations are
performed on-line with data collected and monitored live from the managed
networks, which are stored in topology and performance sub-models. Since
simulation results can modify the existing topological and performance information,
separate place holders are needed. We modeled these "S" classes for that purpose.

The path availability check function provides an efficient way of simulating a
setting up process of an LSP. The CSPF (Constrained Shortest Path First) algorithm,
which is resident in our integrated management system, can compute the availability
of a path of an LSP without actual enforcement. The server-based CSPF can also
extend its scope to add additional constraints, e.g. actual usage instead of the
required bandwidth of an LSP, besides what the online CSPF allows. This feature is
one of the big advantages that an offline TE management system can provide. The
LSP attribute modification simulation allows network managers to evaluate the side
effects of LSP and VPN attribute modification. Modification of attributes ranges
from simple single value change (e.g., the affinity value) to an entire path alteration
for an LSP. This simulation helps the network managers create a detour route when
a particular link is congested and see the link state changes in real-time. The link and
node failure simulation depends on an online protection and recovery mechanism
and visualizes its effects. Features like standby secondary paths, as well as explicit
or dynamically configured primary and secondary paths of LSPs are also recognized

146 Taesang Choi, Hyungseok Chung, Changhoon Kim and Taesoo Jeong

for this simulation. Depending on the situation, the simulation can just visualize the
overall status of a newly optimized network status or visualize all the paths
computed by the server's CSPF algorithm. The global optimization is performed by
a customized algorithm based on linear programming (LP). The algorithm can find
near optimal paths that satisfy a given traffic demand under some constraints, such
as bandwidth, a maximum hop count, and a preferred or avoided node or link list.
Our integrated management system generates a mixed integer programming
formulation for a given optimization problem and solves it with a dedicated LP
solver. The optimization result contains each LSP's routing paths and the traffic split
ratio, in case an LSP requires multiple paths. For easy representation at network
nodes, the split ratio is chosen among discrete values (0.1, 0.2 etc.). The globally
optimized set of paths can then be applied to the MPLS networks that permit explicit
path setup. For more details, please refer to [5].

3. SUMMARY

In this paper, we proposed an information model for integrated configuration and
performance management of MPLS-TElVPN/QoS. Separate information models
make difficult to manage tightly coupled multiple services. However, integration
eliminates duplication of possible management functionality and enhances flexibility
of managing such services.

The proposed information model is implemented and used in the integrated
configuration and performance management system called Wise<TE> [6]. We have
tested it over a network with 50 nodes and found out that it showed a good
performance. The main concern is how the implementation can scale in terms of the
number of CORBA objects as the number of nodes increase. We are planning to test
our system over a network with upto several hundreds nodes. At the same time, we
are in the process of testing it in one of major ISPs in Korea.

REFERENCES

[1] E. Rosen, A. Viswanathan, R. CalIon, "Multiprotocol Label Switching Architecture ",
RFC3031, IETF, Jan. 2001.

[2] Object Management Group, "Unified Modeling Language (UML), Version 1.4",
formall2001-09-67, September 2001.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, "An Architecture for
Differentiated Services", RFC2475, IETF, December 1998.

[4] D. Awduche, 1. Malcolm, 1. Agogbua, M. O'Dell, "Requirements for Traffic
Engineering Over MPLS", RFC2702, IETF, September 1999.

[5] Y. Lee et al., "A Constrained Multipath Traffic Engineering Scheme for MPLS
Networks," IEEE ICC 2002, New York, May 2002.

[6] TS Choi, SH Yoon, HS Chung, CH Kim, JS Park, BJ Lee, TS Jeong, "Wise<TE>:
Traffic Engineering Server for a Large-Scale MPLS-based IP Network", NOMS 2002,
April 2002.

USING THE ACCESS GRID AS A TESTBED FOR
NETWORK MANAGEMENT RESEARCH

C.S. Hood, S. Devarapalli, N. Gadhia, S. Hegde, V. Mallikarjuna, S. Shankar,
S. Yoginath

Department of Computer Science
Illinois Institute of Technology

Abstract: There are many open issues in the field of network management. System data
and/or operational experience can provide insight into these issues.
Researchers often do not have access to such data or practical experience. To
overcome this, we propose using the Access Grid as a testbed for network
management research. The Access Grid is a multimedia collaboration
environment that utilizes many different network technologies. We are using
the Access Grid to collect data, gain operational experience and evaluate new
management techniques.

Key words: Network management, testbed, monitoring, multimedia, dataset

1. INTRODUCTION
Network management is a very practical, yet complex and theoretically

interesting problem. Understanding the problem requires exposure to the issues
faced in managing a complex system. We can get insight into the issues through
data analysis and operational experience. Toward this end, we are proposing the
Access Grid (AG) as a testbed for network management research. The AG is a
large-scale distributed collaboration environment where audio, video, and data is
exchanged over high-performance networks using multicasting [2]. It is a research
environment that is actively used for collaboration across geographic distances.
Over the past year, we have installed our own AG node at lIT.

Our AG node primarily serves as an environment for fault management research.
Data for this type of research is not readily available, so to begin with we focus on
generating a comprehensive dataset. The performance requirements of the audio and
video streams provide service expectations that can be used to label the data. In

http://dx.doi.org/10.1007/978-0-387-35674-7_66

148 c.s. Hood et al.

addition to the data collection, we are creating simulation models to broaden the
research capabilities. The goal is to put both the data and the simulation models in
the public domain. This paper provides background about the access grid and
describes our ongoing efforts in using the AG as a network management testbed.

2. ACCESS GRID
The Access Grid is a collection of AG nodes interconnected by high-speed

networks. There are currently over 100 AG nodes around the world [8]. An AG
node is comprised of the computational resources and equipment necessary to send
and receive audio, video, and data streams. Each node typically sends multiple
video streams and a single audio stream. The AG facilitates both formal and
informal group communication. There are eight virtual meeting rooms that can be
utilized by participants. These virtual meeting rooms accommodate events ranging
from large-scale distributed meetings to smaller informal collaborations.

Each node has one or more operators. The operator installs and maintains the
node hardware and software. During an event, the operator troubleshoots in real
time. One of the tools most frequently used by the community is the AG mud, a text
based chat system. During an event, as problems occur the operators communicate
to resolve the problems via the mud. All mud sessions are archived providing
significant insight into fault, performance and configuration management issues.
The established community of AG node operators and technical experts is willing to
discuss and assist on topics ranging from operational issues to research problems.
The resources of this community can be drawn upon to answer questions, arrange
multi-node experiments and test solutions.

The AG community welcomes new members interested in deploying nodes.
Documentation covering necessary equipment, software and installation instructions
can be found at [3]. The cost of equipment for an AG node is approximately
$45,000.

3. MEASUREMENTS
The AG spans a variety of interesting networking technologies involving LANs,

W ANs, multicast and multimedia. It is a large-scale networked system that allows us
to study problems in a realistic manner. The ability to collect significant amounts of
meaningful data is key. The data collected may include statistical measurements,
events, configuration information, problem descriptions, and any other information
that will provide insight into the system or network state. Additional information on
the network infrastructure can be found through the Quilt [10] and Abilene Network
and Operations Center website [1].

We focus on audio and video applications. Application performance is used to
identify periods of degraded service. There is a measurement infrastructure in place
to collect network, system, and application level measurements across the grid. This
infrastructure takes advantage of existing measurements and tools to create a unified
measurement log. Links to many of the measurement efforts can be found at [7].
CAIDA has comprised a list of monitoring tools at [4]. Using these tools, different
types of information can be collected in different ways.

Using the Access Grid as a Testbedfor Network Management Research 149

Measurements can be collected using active or passive methods. Active
methods add synthetic load to the system or network and observe the resulting
performance. Passive methods collect measurements resulting from existing load.
Our measurement infrastructure utilizes both of these methods. We consider the
infrastructure to be a starting point for data analysis. The goal is to determine the
utility of different types of information under different circumstances. We are
collecting

• SNMP Management Information Base (MIB) information from hosts and
routers. MIB data contains both static and dynamic information

• End-to-end measurements including Round Trip Time (RTT), packet loss,
one-way delay, out of order packets and duplicate packets

• Routing histories and changes
• System information regarding processor, memory, disks, network and other

devices
• Application (vic and rat) performance measures. Vic and rat are the video

and audio streaming applications on the AG
• Multicast beacon measurements [6].

We have been logging many of these measurements for several months. We are
in the final stages of enabling measurement collection from Abilene and regional
gigapops. Presently, we are getting readings on most of the measurements every
fifteen seconds. As the utility of different measurements is better understood, the
monitoring frequency can be adjusted. Additionally, since the AG software is in the
public domain, we can add instrumentation if necessary. The goal of this
measurement infrastructure is to provide a data set for studying the management
problem, not for real-time monitoring.

4. SIMULATION
To complement the "real" data, we also have a simulation of the AG. This

allows us to simulate performance problems and test solutions. A simulation model
of the AG can be an important tool for understanding how problems occur and
propagate, as well as for testing the trigger models that are developed as part of this
research. The simulation is particularly useful in terms of the network, because the
opportunity for inserting faults and testing models is very limited there.

We simulate the AG [5] using the OPNET [9] network simulation tool. OPNET
provides models for different types of equipment and protocols across many
different technologies. The simulation project is broken into two pieces, (1) the AG
node simulation, and (2) the network simulation.

The research described in [5] focuses on simulating the AG node. A typical AG
node contains four machines; video capture machine, video display machine, audio
machine and control machine. Our simulation models the first three machines. The
primary function of the control computer is audio control. Since we have a good
environment for studying the audio control problem directly, we have decided not to
model the control machine. The three-machine model is sufficient to simulate the
video and audio applications (vic and rat). Vic and rat use the Real-time Transport
Protocol (RTP) to facilitate QoS. OPNET does not provide an RTP model, so this

150 c.s. Hood et al.

effort primarily involved implementing RTP. In our AG node model, we embedded
RTP within the audio and video application models.

The network modeling piece is straightforward, largely involving gathering the
information about specific network nodes, topology, and configuration. For Abilene
and several regional networks, this information is readily available. Weare in the
final stages of modeling Abilene. The simulation will be validated using some of
the data collected as part of the measurement infrastructure.

5. SUMMARY

The AG provides an opportunity to learn about management issues in a large
scale networked system. Implementing an AG node at lIT has been beneficial in
many different ways. One key benefit is the collection of comprehensive, end-to-end
labeled data. The goal of this project is to put the collected data into a public
domain repository.

A second benefit is the operational experience. We have gained expertise
installing the AG node and continue to face the challenges of operating the node.
This first hand experience has helped us to identify several candidates for
automation. Given the significant manual effort required to operate the nodes,
automating pieces of configuration or troubleshooting can have big impact. The
public domain node software enables us to deploy the mechanisms we develop.
This is critical for evaluating the effectiveness of the mechanisms under realistic
situations.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge support from NSF 013067 and NSF

9984811. This work was also supported in part by the U.S. Department of Energy,
under Contract W-31-109-Eng-38.

REFERENCES
[1] http://www.abilene.iu.edul
[2] http://www.accessgrid.org
[3] http://www.accessgrid.orglagdp
[4] http://www.caida.orgltools
[5] Chowdhury, Sadia, "Simulating the Access Grid," lIT MS Project, May

2002.
[6] http://dast.nlanr.netlProjects/Beacon/
[7] http://e2epi.internet2.edultools list.shtml
[8] http://www-fp.mcs.anl.gov/fl/accessgridlag-nodes.htm
[9J http://www.opnet.com
[10] http://www.theguilt.net

AUTOMATING PLACEMENT OF INSTRUMENTATION
IN APPLICATIONS

Seema Kaushal
Motorola

Hanan Lutfiyya
Department of Computer Science
The University of Western Ontario
London, Canada
hanan@csd.uwo.ca

Abstract:

Keywords:

In this paper, we present an architecture that provides the functionality to place cus
tomized and automated instrumentation. We determine the components that are needed for
this purpose, services offered by each of these components and the algorithms showing the
steps taken. Using this architecture, the time and effort needed to develop instrumentation
toolsets can be reduced. Consequently, the time and effort needed to place instrumentation
in distributed applications, to make them manageable, can be greatly reduced. We also
describe the current state of the prototype, our conclusions and future directions.

Instrumentation, Management, Distributed Applications, TXL

1. Introduction
Effective management of distributed applications requires the ability to monitor

application-specific attributes e.g., the amount of time a specific remote procedure
call took. This requires application instrumentation; that is, code inserted into the ap
plication at strategic locations so that the application process can maintain monitored
information, respond to management requests and generate event reports based on the
evaluation of a condition on the state of the monitored information.

The advantage of manual instrumentation (i.e., adding instrumentation by hand) is
that applications can be instrumented to meet their specific needs i.e., the instrumen
tation is customized. A disadvantage of manual instrumentation is the extra effort,
resources and time is required by developers. It is this additional developer time that
is often cited as a criticizm of instrumentation [1].

With automation, instrumentation can be placed automatically This would, not only
save time in the development process, but also minimize the potential for errors.

This paper discusses the components of a toolset needed to provide the function
ality to place customized and automated instrumentation. The paper is organized as
follows: Section 2 describes an instrumentation architecture. In Section 3, the re
quirements and a description of the components and the services offered by each of
the components is described. Section 4 describes the prototype. Sections 5 and 6
describe related work and conclusions.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

152 Seema Kaushal, Hanan Lutfiyya

2. Instrumentation Architecture
The purpose of this section is to briefly discuss the instrumentation architecture

described in [6].
An application attribute is associated with a sensor. Management requirements

often place contraints on the values that an application attribute may take e.g., the
time it takes to complete a remote procedure call should be one second. Sensors have
variables representing information that includes threshold values and comparison op
erators that are used to compare monitored attribute values with the threshold values.
The sensor's methods (probes) are used to initialize sensors with threshold values and
collect values of attributes. The coordinator is the interface between the sensors and
the management system. An actuator is similar to a sensor except it encapsulates
functions that can exert control over the intrumented process to changes it behaviour.

As an example, let us assume that we have a communication statistics sensor,
which is responsible for computing the communication statistics of a remote proce
dure call (RPC) to a server that we will call echo_server(...). This server is to be
passed a string. This sensor, denoted by rpcSensor, may have the following meth
ods: Process_rpcRequestBegin(...), which will record the RPC's start time and
Process_rpcRequestEnd(...), which will record the RPC's end time. By inserting
these probes before and after a RPC, the communication statistics sensor is able to
compute the time taken by a particular RPC to complete and if a threshold is exceeded
it passes a notification to the Distributed Application Management System through the
management coordinator.

3. Toolset Architecture
Placing instrumentation code is the process of inserting probes at strategic points

(Probe Points) within the application's source code. A probe point can be described
using a pattern. A pattern is a string that describes source code that should be searched
for in order to insert instrumentation code. An example of a pattern is fopen($1 ,$2).
$1, $2 are placeholders representing strings for the file name and the mode used
to open the file. Another example of a pattern is echo..server($1) where $1 is a
placeholder for a string.

The overall approach to automatically place instrumentation code is to parse the
source code to create a parse tree, search for patterns in the parse tree, and inserting
the instrumentation code at the points where the pattern was found. This results in
modifying the original parse tree. The leaves of the modified parse tree are, then,
written back to the source code form.

Several repositories are needed to support this approach. Information about patterns
is stored in a Pattern Repository. Part of the information associated with a pattern
record is the type of source code construct that the pattern is associated with e.g., IPC,
OS, middleware (e.g., DCE), etc. This functionality allows for the categorization of
patterns (e.g., IPC, OS). An example of the usefulness of this is the following: The user
(through the GUI) can specify classes of patterns that are to be used in determining
probe points. This way the user does not have to specify each individual pattern; rather
they specify the class that the pattern belongs to. The user is also able to add patterns
to the repository.

Automating Placement of Instrumentation in Applications 153

The Pattern Recognizer traverses the source code's parse tree to find a pattern.
For each match found, the source code strings are passed to the Probe Writer com
ponent, which is is used for writing the corresponding probes i.e., the actual probe
strings. This processing needs the instrumentation repository that relates patterns and
sensors/actuators as well as a string with variable placeholders (probe patterns) that
represents a probe for each probe of the sensor/actuator. The Probe Writer analyses
the source code to get all the variables that are needed to replace the variable place
holders in the probe pattern. The result is an instantiated probe pattern which is the
actual probe to be inserted in the source code. This is put into the Probes Location
repository. The following example illustrates this need: A sensor is used to count the
number of times each file is accessed. The name of the file needs to be known. This
name is passed to the sensor using a probe that is placed just before the fopen(... } call
or fread(... } call etc; The general form of the probe code may be (... }.CountFileAc
cesses($1) where $1 is a string that represents any file name. Thus, the actual probe
code will differ for different fread(... } calls. After the tree has been traversed, the
Probe Inserter component retrieves the probes from the Probe Location component
to insert the probes in the parse tree of the source code at predetermined locations.
The source code is then written back to the appropriate file from its corresponding
transformed parse tree.

An editor is provided that allows the user to selectively choose points to add in
strumentation. It provides the user with basic editing facilities such as Open, Close or
Save a file and Cut or Paste text. It displays the list of sensors and actuators so that
any desired sensor/actuator can be selected and its probes can be added at the desired
location. This makes use of the Instrumentation Repository component.

The user interface allows the user to add patterns, sensors, associations between
patterns and sensors, and update the status if a pattern (i.e., is a pattern to be searched
for automatically).

4. Prototype and Initial Evaluation
As a proof of concept, we developed a prototype tool based on the architecture de

scribed in the previous section. The developed prototype can automatically instrument
DCE and socket C/C++ applications and also provides the flexibility of adding cus
tomized instrumentation. The User Interface is currently implemented as one process
in Java 1.1. The repositories are implemented as a set of flat files. Access to the repos
itories is through UNIX shell scripts. The processing components were implemented
through the use of UNIX shell scripts. Parsing and pattern recognition services are
implemented using TXL [3]. The Probe Writer and the Probe Inserter make use of the
Sed and Awk facilities in Unix.

The developed toolset was used by several members of our research group to in
strument socket and DCE applications including an MPEG player consisting of 5000
lines of code. The tool was found to be fairly easy to use and intuitive.

5. Related Work
Tools examined that automate the process of placing instrumentation to a varying

extent included Pablo [2], AIMS [8], Paradyn [5]. Unlike our work, none of these
tools provide the developer with the easy flexibility in adding their own set of source
code constructs for automated instrumentation. The work closest to ours can be found

154 Seema Kaushal, Hanan Lutfiyya

in [4]. There were several differences in our approaches including their inability to add
patterns and thus change the probe points where instrumentation should be placed.

6. Conclusions
This paper presented a toolset that can automatically instrument programs as well

as allow manual instrumentation. Possible directions for future work include the fol
lowing: (i) Currently, only those patterns that are associated with function calls are
recognized. This should be extended to more complex patterns. (ii) In some cases,
not all files or communications need to be monitored. The toolset should provide the
ability to specify a constraint on where the instrumentation should take place. (iii)
The current toolset prototype was implemented to demonstrate that the toolset design
concepts were sound. More work can be done on strengthening the prototype to make
it more robust and expand it to other environments such as CORBA. (iv) The toolset
prototype should be further evaluated by instrumenting larger distributed applications.
This will help us see how the current implementation, of our prototype, scales up when
instrumenting large applications.

Acknowledgements
We would like to thank Gary Molenkamp, Michael Katchabaw and other mem

bers of the Distributed Systems Research Lab at the University of Western Ontario.
This work is supported by the National Sciences and Engineering Research Council
(NSERC) of Canada and the IBM Centre of Advanced Studies in Toronto, Canada.

References
[1] U. Blumenthal, G. Kar, and A. Keller. Classification and computation of dependencies for distributed

management. IEEE Symposium on Computers and Communications (lSCC 2000), July 2000.

[2] Y. Chang. Pablo MPI Instrumentation User's Guide. Technical report, Univ. of Ill, 1999.

[3] James R. Cordy and Ian H. Carmichael. The TXL Programming Language Syntax and Semantics.
Software Technology Laboratory, Department of Computing and Information Sciences, Queen's Uni
versity at Kingston, Kingston, Canada, June 1993. Version 7.

[4] R. Hauck. Architectuer for an automated management instrumentation for component based appli
cations. Proceedings of the 12th International Workshop on Distributed Systems: Operations and
Management DSOM'200I, Nancy France, October 2001.

[5] J. Hollingsworth, B. Miller, M. Goncalves, O. Naim, Z. Xu, and L. Zheng. MDL: A Language and a
Complier for Dynamic Program Instrumentation. International Coriference on Parallel Architectures
and Compilation Techniques, 1997.

[6] M. Katchabaw, S. Howard, H. Lutfiyya, A. Marshall, and M. Bauer. Making Distributed Applications.
Manageable through Instrumentation. The Journal of Systems and Software, 45:81-97,1999.

[7] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O'Reilly and Associates, Inc., 1993.

[8] J. Yan, S. Sarvkkai, and P. Mehra. Performance Measurement, Visualization and Modeling of Parallel
and Distributed Programs using the AIMS Toolkit. Software Practice and Experience, 25(4):429-461,
April 1995.

SESSION 3

Provisioning and Service Management

Chair: Marcus Brunner
NEe Europe Ltd., Germany

GENERIC ON-LINE DISCOVERY
OF QUANTITATIVE MODELS
FOR SERVICE LEVEL MANAGEMENT

Yixin Diao1, Frank Eskesen1, Steven Froehlich!, Joseph L. Hellerstein1

Alexander Keller1 , Lisa F. Spainhower2, Maheswaran Surendra 1

11BM T.J. Watson Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

{diaoleskesen IstevefroI hellers lalexklsuren } @us.ibm.com

21BM Server Group, 2455 South Rd., Poughkeepsie, NY 12601, USA

lisa@us.ibm.com

Abstract:

Keywords:

Quantitative models are needed for a variety of management tasks, including (a) iden
tification of critical variables to use for health monitoring, (b) anticipating service level
violations by using predictive models, and (c) on-going optimization of configurations.
Unfortunately, constructing quantitative models requires specialized skills that are in short
supply. Even worse, rapid changes in provider configurations and the evolution of busi
ness demands mean that quantitative models must be updated on an on-going basis. This
paper describes an architecture and algorithms for on-line discovery of quantitative mod
els without prior knowledge of the managed elements. The architecture makes use of an
element schema that describes managed elements using the common information model
(CIM). Algorithms are presented for selecting a subset of the element metrics to use as
explanatory variables in a quantitative model and for constructing the quantitative model
itself. We further describe a prototype system based on this architecture that incorporates
these algorithms. We apply the prototype to on-line estimation of response times for DB2
Universal Database under a TPC-W workload. Of the approximately 500 metrics avail
able from the DB2 performance monitor, our system chooses 3 to construct a model that
explains 72% of the variability of response time.

Quantitative Model, Metric Discovery, Database System Instrumentation, Common Infor
mation Model, Service Level Management

1. Introduction

Central to service level management are tasks such as health monitoring to determine
if the system is in a safe operating region, early detection of service level violations,
and on-going optimization of configurations to ensure good performance. All of these
tasks require quantitative insights, preferably quantitative models that predict service
level metrics such as response time. Unfortunately, constructing such models requires
specialized skills that are in short supply. Even worse, rapid changes in provider
configurations and the evolution of business demands mean that quantitative models
must be updated on an on-going basis. This paper proposes an approach to on-line
discovery of quantitative models for service level management. The approach provides
a way to construct quantitative models without prior knowledge of managed elements.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

158 Diao, Eskesen, Froehlich, Hellerstein, Keller, Spainhower, Surendra

(a) Monitor health

2 ,..---------.,
CD

•
1.5

.. ,
m 1...1---:'-c •• .. 8. ••
m 0.5 ••••
oc a

0 0--2-0--.... 40

Time

(b) Warn early

CD 100--.--------.
E
i=
:g 50

8.
8l + •
oc

MaxClients

(c) Optimize configuration

Figure 1. Some situations in which quantitative models is of value to service level management. (a)
Identifying safe operating regions by using process control charts to track warning (horizontal line with long
dashes) and critical (horizontal line with small dashes) limits on key variables. such as sort times in data
bases. (b) Estimation of service level metrics such as response times (circles) provides early indications
of service level violations compared to measured response times (squares). (c) Quantifying the impact of
configuration parameters on response times provides a way to optimize configurations as illustrated by the
parameter MaxClients for the Apache Web Server.

A variety of quantitative models are used in practice. For example, we relate DB2
performance metrics to response times using a model of the form y = b tXt + b2X2 +
... + bnxn. Here, y is response time, the Xi are DB2 resource metrics (e.g., sort
time, total buffer pool read time), and the bi are constants estimated from the data
using least-squares regression. We refer to y as the response variable and the X i as
the explanatory variables. Other examples of quantitative models include queueing
network models (e.g., [12]), neural network models (e.g., [9]), and nearest neighbors
approaches (e.g., [1]).

Figure 1 describes several situations in which quantitative models aid service level
management. Considered first is monitoring system health by tracking key variables
that characterize performance. For example, Figure l(a) plots sort time, which turns
out to be critical to the performance of eCommerce workloads such as those charac
terized by TPC-W [18]. A second situation is motivated by wanting an early warning
of service level violations. This is illustrated in Figure 1 (b) in which the squares
are response times as measured by a response time probe. Such measurements are
typically done at a low frequency because of cost and overheads. Augmenting these
measurements with model-based estimates (the dots) provides a way to detect service
level violations early (i.e., exceeding the dashed line). Last, optimizing configuration
parameters requires having a quantitative understanding of how the parameters affect
response times, which is greatly aided by having accurate quantitative models (espe
cially for inter-related configuration parameters). Figure l(c) illustrates this by show
ing that the Apache Web Server parameter MaxClients has a "U" shaped effect
on response time, which permits using hill climbing to find a value of MaxClients
that minimizes response time. Note that this method is applicable to any service level
metric that is similarly affected by one or more configuration parameters.

While quantitative models can provide considerable value, their construction is diffi
cult. Typically, a skilled analyst is required who understands the measurement data,
configuration, and workloads. Changes in any of these or the relationships between
them may mean that the model has to be reconstructed. This motivates a desire to au
tomate model construction. Further, the approach should be generic in that it discovers
the explanatory variables to use.

Generic On-Line Discovery of Quantitative Models 159

There are a number of areas of related work. Many researchers have investigated the
detection of service degradations. Central to this is modeling normal behavior as in
[13] which uses ad hoc models to estimate weekly patterns, [10] which employs more
formal time series methods, and [19] which describes techniques for detecting changes
in networks that are leading indicators of service interruptions. Further, statistical pro
cess control (SPC) charts are widely used for quality control in manufacturing [15] to
detect shifts in a process as determined by an appropriate metric(s). These techniques
have been applied to computing systems to track critical metrics (e.g., [14]). However,
none of these approaches employ on-line model construction. More closely related to
our work is [11], which uses knowledge of the functional relationship between inputs
and outputs to detect changes in system operation. However, this work does not ad
dress how to identify a small set of explanatory variables. Several companies market
products that aid in constructing performance policies (e.g., http://www.bmc.com).
For the most part, the techniques employed are based on the distribution of individual
variables, not relationships to response variables. One exception is correlation anal
ysis (e.g., http://www.fortel.com). which uses cross correlation to identify the most
important explanatory variables. However, this approach does not model the re
sponse variable. Thus, many redundant variables may be included. Further, all of the
existing work assumes that the set of potential explanatory variables is known a priori
rather than discovered on-line.

The remainder of this paper is organized as follows. Section 2 describes the architec
ture and information model used in our system for on-line metric discovery. Section
3 discusses the algorithms employed. Section 4 provides details of the prototype we
built and illustrates its operation. Our conclusions are contained in Section 5.

2. System Overview

This section describes the architecture and information models used to support on-line
discovery of quantitative models. Throughout, we assume that widely used supporting
services are present, such as reliable message communication, persistence, registra
tion, and location services.

2.1 Architecture

Figure 2 displays our architecture. The large rectangles identify key roles: the Man
ager and Managed Element. Although we treat all components in the architecture as
objects, some can more naturally be thought of as data and others as procedures. The
former are presented by ovals and the latter by small rectangles. Cascaded components
(e.g., quantitative model) indicate that there may be several instances of them. The
arrows indicate the flow of control or data, depending on whether the arrow connects
two procedures or a procedure and data.

We begin by discussing the Managed Element. This is an encapsulation of a resource.
A resource corresponds to functional entities such as a database, operating system,
or web server. Our architecture augments the resource with an Element Schema
that describes the resource (e.g., a database has tables and tablespaces), especially
associated metrics (e.g., rows read, sort times) and configuration parameters (e.g.,
buffer pool sizes). In particular, we make use of the Common Information Model
(CIM) [4] as a way to express the Element Schema. The Agent Interface (e.g., a

160 Diao, Eskesen, Froehlich, Hellerstein, Keller, Spainhower, Surendra

Managed
Probe

Figure 2. Architecture to support on-line discovery of quantitative models.

ClM Object Manager) is responsible for maintaining current values of element data as
well as responding to requests to query the Element Schema. The use of an Element
Schema is key to providing generic on-line discovery of quantitative models. Note that
for our discussion, schema refers to the management information model describing the
capabilities of a managed element, whereas the term model denotes the quantitative
model used by the manager. Certain Managed Elements are used in special ways. A
Managed Probe is a Managed Element that provides response time information by
sending synthetic transactions to the resource and recording the transaction's start and
completion times. Here, the Element Schema describes how to operate the probe (e.g.,
what synthetic transactions can be sent, the resource to which these transactions are
sent) and the response times reported (e.g., by transaction type and resource).

Next we consider the Manager. The Manager communicates with Managed Elements
through the Client Interface. The Manager has one or more Model Users, which are
management applications that make use of quantitative models. Two examples of
management applications are: (1) identifying key resource metrics for health monitor
ing and (2) predicting client response times for early detection of violations of service
level agreements. For each type of model, there is a Model Builder. For example, we
implemented a Model Builder that does real time construction of regression models
[8]. The Model Builder typically requires historical data (e.g., to estimate the bi in a
regression model). These data are accumulated by using the Client Interface to find
relevant data for the element (by querying the Element Schema) and then subscrib
ing to updates of element data that are then placed in the Manager's historical data
repository. Note that the same mechanism is used to acquire data from the managed
elements and the managed probes. It may also be used to control workload generators
if the Model Builder is conducting offline experiments to obtain a more diverse set of
workload and system data. There are separate historical data for each model under
construction. The Model Interpreter makes use of previously constructed quantita
tive models to estimate metrics of interest, such as estimating response times based on

Generic On-Line Discovery of Quantitative Models 161

resource internal metrics. The Change Detector component uses statistical techniques
(e.g., [2]) or rule based policies to determine if model predictions deviate too much
from actual values and therefore the model must be revised (possibly by re-invoking
the Model Builder).

Element'
,..-----L------""""\Data , , .

Element Schemas

"4 l , \ -) : :

Figure 3. elM Instrumentation of a Managed Element.

2.2 elM-Based Managed Element

As mentioned earlier in Section 2.1, information about the Managed Element is sur
faced by means of an agent based on the Web based Enterprise Management (WBEM)
framework, whose core component is the Common Information Model (CIM) [4], a
set of generic object oriented management models from which more specific resource
models can be derived. The steps of designing and implementing a CIM based agent
for retrieving metric data from the Managed Elements (in our case the database sys
tems ffiM DB2 UDB and Oracle9i) are depicted in Figure 3 and described below:

We identified the manageability information (e.g., descriptive and capability infor
mation, configuration parameters, statistical data such as counters and gauges etc.)
available from our two target systems ffiM DB2 UDB and Oracle9i. Then, we
isolated the information common to both systems in an ffiM .DBMS schema. The
remaining data was placed into product-specific element schemas, which are named
IBMJ)B2 and ffiM_Oracle9i, respectively (right side of figure).

2 CIM providers were implemented for the databases in accordance with the element
schemas (solid lines at the bottom of the figure) .

3 The standard CIM schema and the element schemas are loaded into the class reposi
tory of the CIM Object Manager (CIMOM). Then, the providers are registered with
the CIMOM (as indicated by the dotted lines).

162 Diao, Eskesen, Froehlich, Hellerstein, Keller, Spainhower, Surendra

4 At runtime, clients request data from the Managed Element through the Agent In
terface. These data are retrieved by the CIMOM, either from its instance repository
or directly from the CIM providers (dashed line).

Designing elM Extension Schemas for Database Systems. In accordance
with CIM principles, every class of an extension schema is prefixed with a string iden
tifying the creator of the management model (vs. the manufacturer of the resource);
consequently, the classes we have introduced carry the prefix The hierarchy
between the various CIM schemas and our extension schemas can be easily described
by means of the UML package concept, which also captures dependency relationships
(arrows between the various packages on the right side of Figure 3). It can be seen that
we have used the CIM Core, Application and Metrics schemas as a basis to create our
database models, i.e., we have derived the classes of our database models from classes
defined in these schemas.

Designing the appropriate classes was fairly straightforward, given the fact that the
basic architecture of a database system is common across multiple products: The
overall IBM..DBMS (a subclass of CIM.ApplicationSystem) consists of a va
riety of subsystems. modeled either as subclasses of CIM..softwareElement or
CIM_SoftwareFeature. In particular, we need classes to represent tables, ta
blespaces, buffer pools (aka caches), applications, and agents. The CIM schemas are
designed according to the principle that all descriptive and capability-related infor
mation of a managed element is modeled as properties of the class representing the
resource itself, while its statistical data is put in an associated class, subclassed from
CIM_StatisticalData. This reflects the fact that the number of counters and
gauges available for a managed element is in general fairly large, compared with the
aforementioned descriptive resource information. Placing all statistical information
into the resource class itself would lead to classes with many dozens of properties,
which would result in an overly large amount of data that needs to be transferred if
a class instance is to be retrieved. During our design, we were able to validate this
assumption (some database parts have more than 30 different counters associated with
them) and thus followed the recommended approach of encapsulating statistical infor
mation in separate classes. Overall, this leads to roughly a dozen leaf classes (plus a
few association classes) that need to be implemented as CIM providers. In total, the
classes of the IBM DB2 schema contain about 80 counters and gauges; for the sample
database system we used for our experiments, this leads to about 500 metric instances
that can be retrieved through the Agent Interface.

It should be noted that the DMTF Database Working Group [7] has recently
published the first draft of a CIM Database Schema, which is likely to be in
cluded in the upcoming version 2.7 of the CIM Schemas. This schema con
tains a set of classes that describe a database in a very general way, which
needs more refinement to be suitable for our purposes. More specifically, it de
fines three base classes CIM..DatabaseSystem, CIM_CommonDatabase and
CIM..DatabaseService and three additional classes to capture statistical infor
mation related to the database as a whole and thus does not take the architectural
details of a database system into account. Since our IBM..Database schema isolates
the common elements of the two database systems with the largest market share, it is
a possible candidate for submission to the DMTF Database WG for standardization.

Generic On-Line Discovery o/Quantitative Models 163

Architecture of the elM based Agent. The left part of Figure 3 depicts the ar
chitecture of our CIM agent. The part of the agent responsible for handling incoming
requests and dispatching them to our providers is the publicly available SNIA (Stor
age Networking Industry Association) CIM Object Manager, which is implemented
in Java. During our implementation, we encountered two important interoperability
issues:

1 Currently, CIM does not specify the provider-facing part of a CIMOM; it is therefore
not guaranteed that providers written for a specific CIMOM implementation are able
to run with another CIMOM implementation.

2 Since the database systems expose their manageability information through inter
faces in the C programming language, our providers are written in C, too. This
brings up the need to interface between Java and C code.

The Native Provider Interface (NPI), implemented by the mM Boblingen Laboratory
as part of the SBLIM (Standards based Linux Instrumentation for Manageability)
project [17], provides a convenient solution for both problems because it decouples
the CIMOM from the various providers and the programming languages in which they
are written. We use the NPI as glue code to interface between the Java based CIMOM
and our database providers written in C. The detailed description of our prototype in
Section 4 provides further details on our implementation experiences.

An object-oriented framework such as CIM permits the retrieval of all the statistical
data in a single operation irrespective of the resource type (overall database system,
tablespaces, tables, buffer pools, etc.). In particular, the CIM Operations over HTTP
[5] protocol provides a means to enumerate all the instances of a given class. If the
"deep" flag is set by a CIM client, this also applies to the instances of all the subclasses.
Such a mechanism for retrieving only a selected subset of the available data is clearly
superior to, e.g., a recursive "snmp-walk", which retrieves all of the data within a
Mm (sub)tree. In our case, we can take advantage of this mechanism by retrieving all
the instances of CIM_StatisticalData and its subclasses by means of a single
operation. The CIMOM provides this level of abstraction by dispatching the requests
to the appropriate providers, gathering the returned information and sending it back
together, so that it is transparent to the client if the data surfaced by the CIMOM comes
from one or many different CIM providers.

3. The Manager: Constructing Quantitative Models

This section describes the algorithms used by the Model Builder and Model Interpreter
in Figure 2 for on-line construction and exploitation of quantitative models. To aid
in this discussion, we use a running example in which DB2 UDB is the resource,
Element Data are obtained from the DB2 performance monitor, and the response
variable is response time (as measured by an external probe).

The Quantitative Model and algorithms employed by the Model Builder and Model
Interpreter are specific to the modeling techniques employed. Thus far, we have found
linear least-squares regression (e.g., [8]) to be very effective. The general form of a
linear regression model is

y = bo + b1Xl + b2X 2 + ... + bnxn·
The model relates the explanatory variables x i to the response variable y through
model parameters bi . Linear models tend to be more robust than more elaborate non-

164 Diao, Eskesen, Froehlich, Hellerstein, Keller, Spainhower, Surendra

linear models such as neural network models. Also, linear least squares regression
is widely applicable in solving real world problems. Moreover, building the linear
models is less computational intensive so that it is more suitable for on-line model
operation. .

We begin by describing the content of the Quantitative Model object in Figure 2. For
linear regression, it is sufficient to know the set of explanatory variables x i and their
associated constants bi . For the running example, the challenge is determining a small
number of metrics to use as explanatory variables out of the almost 500 metrics that
can be obtained from the DB2 performance monitor.

It is the responsibility of the Model Builder to construct the Quantitative Model. Its
inputs are responseVariable, the response variable (e.g., response time), and
candidateMetrics, the set of candidate metrics. Its output is a Quantitative
Model. Model Builder operates in two steps. The first is metric identification, which
constructs explanatoryVariables, the set of explanatory variables Xi. The sec
ond step estimates the bi .

3.1 Identifying Important Metrics

Metric identification determines which of the available metrics should be used as ex
planatory variables. Intuitively, it seems that using more explanatory variables results
in a better model. However, this is often not the case. Indeed, extraneous variables
may impair model performance when applied to new data.

Several approaches exist for selecting explanatory variables for quantitative models.
Exhaustive search (e.g., false nearest neighbors [16]) examines all possible combi
nations of explanatory variables, but this is usually tractable only if the number of
metrics is small. Ordered search explores the input possibilities according to certain
importance measures, either in the incremented order or in the decremented order. One
ordered search method is called stepwise regression. However, it may not necessarily
produce the best model if there are redundant explanatory variables and may fail when
applied to new data sets [8]. Moreover, it is computational intensive and may not be
suitable for on-line discovery.

Metric identification takes as input responseVariable and
candidateMetrics and produces explanatoryVariables, the set of
explanatory variables. Metric identification begins once Historical Data have been
collected for the candidate metrics. The details are described in Figure 4.

Note that the above algorithm does not consider all 2 m - 1 possible models (where
m is the number of metrics provided by the Managed Element). Rather, it incremen
tally selects the best metric based on what the current model does not explain. This
simplifies the computation and makes it suitable for on-line discovery.

Also note that with more explanatory variables, the model tends to overfit the modeling
data. To solve this problem, we use cross validation, a technique that employs testing
data to assess model accuracy [20].

Generic On-Line Discovery a/Quantitative Models

I Initialization.

(a) Set candidateMetrics to: list of metrics obtained from the Managed Element.

(b) Set residual variable to the response variable for the model.

(c) Set explanatoryVariables to null.

2 Find the metric that best explains residual Variable.

165

(a) Compute the cross correlation of each metric in candidateMetrics with residual Variable.

(b) Set bes tMetric to the metric with largest absolute value of the cross correlation.

(c) Append bestMetric to explanatoryVariables.

3 Update variables.

(a) Build a regression model of responseVariable on explanatoryVariables and set
residual Variable to the residual of this model (the difference between the actual and estimated
values of the responseVariable).

(b) Remove bestMetric from candidateMetrics.

4 Check for termination.

(a) Use cross validation to see if the testing error is increasing. If so
i Remove bestMetric from explanatoryVariables.

ii Return.
(b) If candidateMetrics is not empty, then goto (2). Otherwise, return.

Figure 4. Algorithm for metric identification.

3.2 Estimating Parameters with a Quantitative Model

A wide range of standard techniques exist for estimating the regression model param
eters bi . In our case, the model is built initially using batch least squares. By "least
squares", we mean that the unknown model parameters bi are estimated by minimiz
ing the sum of the squared deviations between the measured response data and the
values estimated by the model. By "batch", we mean that all data are collected and
then the bi are estimated. The batch approach is well suited for off-line analysis, but
can cause substantial computational overhead for on-line parameter estimation. As a
result, we use recursive least squares [8], a technique that allows parameter estimates
to be updated as new data are obtained. Not only does this reduce the computational
overhead, it also provides a way to adapt to changes in workloads and configuration
(although doing so requires another parameter, a forgetting factor, that determines the
relative "weight" given to more recent data). To assess model accuracy, we employ
the widely used R2 metric.

R2 = 1 _ var(y - i))
var(y)

where y is the response variable, i) is the estimated response variable, and var(.) is
the variance. The R2 metric quantifies model accuracy by computing the variability
explained by the model. R2 ranges from 0 to 1. A value of 0 means the response data
variability is not captured at all. A value of 1 may suggest a perfect fit.

4. Prototype Implementation

This section describes a proof-of-concept prototype constructed to demonstrate a
generic approach to metric discovery. The prototype is depicted in Figure 5 and fol
lows the architecture described in section 2.1. The Managed Element in the prototype
is the IBM DB2 UDB Version 8.1 database management system running on a Linux

166 Diao, Eskesen, Froehlich, Hellerstein, Keller, Spainhower, Surendra

DBMS

Figure 5. Architecture of the prototype

platform. As before, cascaded elements indicate multiple instances of an object (e.g.
tablespaces, bufferpools).

4.1 elM Providers for DB2 Performance Metrics

In order to dynamically obtain internal DB2 metrics, we developed CIM providers for
DB2 Database, Bufferpool, Table and Tablespace information. Our providers use the
db2GetSnapshot interface to obtain the data from DB2 and use the native provider
interface to access the SNIA CIMOM.

This required some special code since the CIMOM environment requires that all func
tions operate in a thread-safe and thread-independent manner while the DB2 snapshot
interface requires that all calls come from the same thread. The CIMOM can and
often does create a new thread for each different request. Since each new CIMOM
request would be driven from a separate thread and DB2 considers each thread a sep
arate entity, without some sort of thread switching protocol within our provider, only
meaningless (mostly zero) data could be extracted.

This led us to generate a separate thread for our DB2 application calls. All requests
to DB2 are generated under control of this single separate thread. We atomically
create this thread when we load the first provider and atomically delete it when we
unload the last provider. When we receive a CIMOM request, we create a request
element and atomically queue it to the DB2 thread. This request element contains a
chain pointer, a synchronization mutex and a context descriptor. If, when queueing,
the caller "atomically" recognizes that it is the first queuer, it also unlocks the DB2
accessor thread's mutex. After queueing the request, the caller waits for the DB2
thread to unlock the mutex contained in the queued request element. The DB2 thread
unlocks the queue element mutex after the associated function completes.

Generic On-Line Discovery o/Quantitative Models 167

The DB2 thread's logic is relatively simple. It has an input queue and a control mu
tex. The input queue is accessed atomically, using a locked compare and exchange
instruction sequence. The first queuer, who changes the request queue from the empty
state to the non-empty state, also unlocks the mutex after successfully changing the
state. When the thread gains control, it atomically removes all elements from its input
queue, thus changing the state back to empty. It then processes each removed element,
one by one. After processing an element, it unlocks the mutex in the associated re
quest element thus reactivating the calling thread. After processing all requests, the
DB2 thread (again) waits for the mutex to be unlocked.

4.2 Workload Generation and Response Time Probes

The workload generator we use is TPC-W [18]. The characteristics of the workload are
modulated by varying the number of emulated browsers (EB) and also the workload
mix (buy vs browse). For the results shown here three types of workload mixes are
used. The number ofEBs is varied from 15 to 30 in a periodic fashion to approximately
mimic time-of-day variations that are typical in an e-business environment.

For convenience, and also to take advantage of the measurement instrumentation avail
able with the TPC-W kit, a subset of the EBs were also instrumented to provide client
side response times (RT). Typically several transaction types are available from TPC
W, and for this work, the RT for the BestSellers transaction is used. On the same Linux
system as the DB2 database, the workload was generated using emulated browsers
each executing transactions according to the TPC-W benchmark specifications. A
four hour workload cycle was created by continually increasing the number of em
ulated browsers from fifteen to thirty and then decreasing the number back down to
fifteen. Additional variation was also introduced to the workload because of the prob
ability associated with each emulated browser executing anyone of the possible four
teen different transaction types. So analysis could be done later against the predicted
response times, each active emulated browser logged the transaction type, the start
time and completion time of that transaction.

4.3 Implementation of the Manager

The third major part of the prototype is the Manager. The Manager is built using
the Agent Building and Learning Environment (ABLE) [3]. ABLE is a Java-based
toolkit for developing and deploying hybrid intelligent agent applications. It provides
a comprehensive library of intelligent reasoning and learning components packaged as
JavaBeans (known as AbleBeans) and a lightweight Java agent framework to construct
intelligent agents (known as AbleAgents). Built on top of ABLE is a general Auto
Tune Agent framework that facilitates the construction of on-line modeling/control
agents. This general and extensible ABLE/ AutoTune based implementation allows
us to easily build the model, that is, the modules of Model User, Model Builder, and
Model Interpreter. It also provides an interface to the Managed Element (for example,
DB2) through an "adaptor" component that corresponds to the Client Interface in our
architecture. Two adaptors are built: One communicates with Managed Element for
DB2 and the other with the Managed Element for the response time probe. As an
alternative to the latter, an adapter receiving SLA violation notifications from an SLA

168 Diao, Eskesen, Froehlich, Hellerstein, Keller, Spainhower, Surendra

monitoring system (described in [6]) can be used to determine how a user experiences
the quality of service.

4.4 Interactions between Prototype Components

The operation of the prototype is as follows: First, the Model User instructs the Client
Interface to obtain an enumeration of the available metrics from the CIMOM. In this
implementation about 500 database metrics are made available. These metrics de
scribe the operational status of the database across the multiple tables, tablespaces,
and bufferpools. Although they provide a detailed view, most of them are either not
directly related to predicting response time (e.g., LockTimeouts is a constant value
which cannot be used to explain response time variations), or are essentially redun
dant. The metric identification procedure we described previously is able to discern
the database metrics which are most effective as explanatory variables for response
time.

Similarly, data from the response time probe are collected. The data are sent to the
Historical Data repository. In our prototype, both database metrics and response time
are averaged over 30 minute intervals.

Next, the Model Builder is invoked to do metric identification. To illustrate the effec
tiveness of the algorithm in Figure 4, Figure 6(a) displays the absolute values of the
correlation coefficients between the DB2 metrics (about 500) and the probed client
response times. The high values indicate there exists strong correlation between the
DB2 metrics and the client response time, which argues for building a linear model
for response time prediction.

Figure 6(b) displays how the root mean square of the residual changes with the number
of explanatory variables used. The top plot is a result of metric identification on all
data in Historical Data. We see that having more variables almost always improves
the model. The bottom plot uses cross validation, which drops observations in order
to have separate testing data. The plot indicates that only the first three metrics should
be used as explanatory variables. The resulting model is

fl' ! ! !

j ., '" 0' , ,

\ • _ _ _ _ _ _ a

DB2me1rico

(a) Correlation coefficients

•

1 -- ____

°0101152026303540
Numberolmelrloe

(b) Determining key metrics

Figure 6. (a) Correlation coefficients between DB2 metrics and client response time. (b) Determine key
metrics through cross validation.

Generic On-Line Discovery o/Quantitative Models 169

•
,

•
,

, IA h "" f'I fi
1/\ 1\ II ! I 1\\ ,

V IJ V .. " ,

. , . to .. to JIG '" ," ." '" ._-
Figure 7. Screen shot showing extended time history of measured (light trace) and predicted (heavy
trace) response time.

RT l.44ApplsExecutinglnDBCurrently
+ 8.94 X 1O-5TotalBufferpoolReadTime
+ 9.69 X 1O-7TotalBufferpoolWriteTime

which has R2 = 0.72 (i.e., explains 72% of the variability in the data). Since the
workload variation is mainly caused by varying the number of emulated browsers,
the ApplsExecutingInDBCurrently metric is identified as most important. The other
two are also relevant because reading/writing to bufferpools is often where most of
the delay in the database occurs when processing queries. The relative importance of
these metrics, which are identified here without any in-depth knowledge of DB2, is
consistent with the expectations of experienced database administrators.

Once the model is built, the Model User instructs the Model Interpreter to use the
model to predict RT based on incoming DB metrics. The effectiveness of the model is
apparent from Figure 7, where the light trace is RT as reported by the probe, and the
heavy trace is the predicted RT. Note that in the left part of the plot, the heavy trace is
flat since this is the period when the data are being collected for model building.

5. Conclusions and Outlook

Quantitative models have considerable value in performance management. Unfortu
nately, constructing quantitative models requires specialized skills that are in short
supply. Even worse, rapid changes in provider configurations and the evolution of
business demands mean that quantitative models must be continuously updated.

This paper proposes an approach to on-line discovery of quantitative models that op
erates without prior knowledge of managed elements. In particular, the Common In
formation Model (CIM) is used to discover metrics exposed by managed elements.
These metrics are input to an algorithm that selects a subset to use as explanatory vari
ables and then builds a quantitative model. Our approach employs an architecture in
which the Managed Element includes components that describe the resource (Element
Schema), contain data collected from the resource (Element Data), and an interface to

170 Diao, Eskesen, Froehlich, Hellerstein, Keller, Spainhower, Surendra

the manager (Agent Interface). The manager has a matching Client Interface used by
the Model Builder, which constructs quantitative models, and the Model Interpreter,
which runs the models. The approach is demonstrated for estimating response times
for DB2 UDB with a TPC-W workload. We show that of the approximately 500 met
rics (counters and gauges) available from the DB2 performance monitor, our system
chooses 3 to construct a model that provides very good estimates of response times.

While our initial results are encouraging, much work remains. Currently, the response
variable (e.g., response time, throughput) must be known when the Model Builder is
invoked. We are extending our architecture to include extracting response variables
from a service level agreement specification. Another direction is to adapt the model
on-line, such as when there are changes in workloads and/or configuration (which
may require change-point detection). Last, we want to scale our techniques to address
multi-tiered eCommerce systems.

References
[1) J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dillenberger. Adaptive algorithms for managing

a distributed data processing workload. IBM Systems Journal, 36(2), 1997.
[2) M. Basseville and I. Nikiforov. Detection of Abrupt Changes: Theory and Applications. Prentice Hall,

1993.
[3) J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and Y. Diao. ABLE: A toolkit for building

multiagent autonomic systems. IBM Systems Journal, 41(3), 2002.
[4] Common Information Model (CIM) Version 2.2. Specification, Distributed Management Task Force,

June 1999. http://www.dmtf.orgistandards/cirrLSpec.. v22/.
[5] Specification for CIM Operations over HTTP, Version 1.0. Specification, Distributed Management

Task Force, August 1999. http://www.dmtf.orgidownloadlspec/xmlslCIM.HTTP_MappinglO.php.
[6] M. Debusmann and A. Keller. SLA-driven Management of Distributed Systems using the Common In

formation Model. In G.S. Goldszmidt and 1. SchOnwiilder, editors, Proceedings of the 8th IFIPIIEEE
International Symposium on Integrated Network Management. Kluwer Academic Publishers, March
2003.

[7] DMTF Database Working Group. http://www.dmtf.orglabout/workingldatabase.php.
[8] Frank E. Harrell. Regression Modeling Strategies: With Applications to Linear Models, Logistic Re

gression, and Survival Analysis (Springer Series in Statistics). Springer Verlag, 2001.
[9] Simon Haykin. Neural Networks: A Comprehensive Foundation. Macmilan College Publishing Com

pany,1994.
[10] P. Hoogenboom and 1. Lepreau. Computer system performance problem detection using time series

models. In Proceedings of the Summer USENIX Conference, 1993.
[11] R. Isermann and B. Freyermuth. Process fault diagnosis based on process model knowledge. In

Proceedings of 1989 ASME International Computers In Engineering Conference and Exposition, July
1989.

[12] Leonard Kleimock. Queueing Systems Volume I. Wiley-Interscience, 2nd edition, 1975.
[13] Roy A. Maxion. Anomaly detection for diagnosis. In Proceedings of the 20th International Annual

Symposium on Fault Tolerance (FTCS), June 1990.
[14] J. McConnell, D. Helsper, L. Lewis, and S. Joyce. Predictive analysis: How many problems can we

avoid? In Networld+Interop, Las Vegas, 2002.
[15] D.C. Montgomery. Introduction to Statistical Quality Control. Wiley, 3rd edition, 1997.
[16] Carl Rhodes and Manfred Morari. Determining the model order of nonlinear input/output systems.

AIChE Journal, pages 151-163, 1998.
[17] Standards Based Linux Instrumentation for Manageability Project.

http://oss.software.ibm.comldeveloperworkslprojects/sbliml.
[18] Wayne D Smith. TPC-W: Benchmarking an ecommerce solution. In http://www.tpc.org/tpcw.
[19) Marina Thotlan and Chuanyi Ji. Adapative thresholding for proactive network problem detection. In

IEEE Third International Workshop on Systems Management, April 1998.
[20] S. Wold. Cross-validatory estimation of the number of components in factor and principal components

model. Technometrics, 20(4):397-405, 1978.

A GENERIC MODEL FOR IT SERVICES AND
SERVICE MANAGEMENT

Gabi Dreo Rodosek
Leibniz Supercomputing Center
Barer Str. 21, 80333 Munich, Germany
dreo@lrz.de

Abstract:

Keywords:

Whereas network and system components were in the focus of management research in
previous years, nowadays management of services dominates management activities. We
are witnessing a paradigm shift from device-oriented to service-oriented management,
and with this the need to deal with new challenging management issues. The management
of the underlying infrastructure with respect to the delivered services and agreed service
level agreements is certainly the fundamental challenge. It is easy to see that all research
questions center around the new managed object service and its integration with existing
device-oriented managed objects (network devices, end systems, applications). Thus. the
development of a common definition of a service in terms of a common generic service
model is essential.

Service models, Information Modeling, IT Service Management

1. Introduction
Due to the significant increase in the complexity of enterprise applications and the

need to offer distributed IT services, we are witnessing that the management focus
has turned away from device-oriented to service-oriented management. This does
not mean that device-oriented management is not of importance any more. On the
contrary, an efficient device-oriented management is a precondition for an efficient IT
service management. However, device-oriented management was exclusively in the
domain of the provider and it was driven by the objectives of the provider. Nowadays,
it is necessary to manage the underlying infrastructure with respect to services offered
to customers and agreed service levels agreements. The complexity of IT service
management becomes evident with the necessity to cope with service dependencies
and the distributed provision of a service upon several resources.

The fundamental issue of IT service management is the development of a common
definition of a service in terms of a common service model. Despite of an amount of
existing service definitions (e.g., 9, 3, 5, 13,6) a common understanding of a service
that provides a unified approach to support the concepts of service management is
lacking. A first step towards a generic service model has been proposed by the Ser
vice Management Task Force (SMTF), a group of researchers of the Munich Network
Management team, in 4. We take this service model as a basis for the development of
the common generic service model that provides the information basis upon which the
deployment of service management applications can be approached.

The paper proceeds as follows: Section 2 gives an overview of the methodology for
service modeling. The service-centric aspect is addressed with the service template

http://dx.doi.org/10.1007/978-0-387-35674-7_66

172 Gabi Dreo Rodosek

model in section 3. Section 4 addresses the provider-centric aspect by introducing the
provider-centric service template model, and section 5 proposes the customer-centric
service template model. An example of the applicability of the proposed models is
given in section 6. Finally, section 7 concludes the paper.

2. Methodology for Service Modeling
The business reference model, which provides the basis of our discussion, is visu

alized in Fig. 1, and identifies three aspects that need to be addressed: (i) the service
centric, (ii) provider-centric and (iii) customer-centric aspect of service modeling. The
role of a customer refers hereby to an organization whereas the role of a user refers to
a individual user. The further discussion refers only to the customer role.

custonler-cennric

service-centric

provider-centric

Figure 1. Business reference model (UML notation)

In the following, the identified aspects are addressed in more detail:
Service-centric part. This part refers to the elements of a service which are inde

pendent of any provider- or customer-centric issues. The main elements of the service
centric part are as follows. Firstly, the specification of the "abstract" service function
ality needs to be approached. The service functionality with respect to the service
hierarchy consists of two elements: (i) its own functionality and (ii) the functionality
of its sub-services. Secondly, the specification of the "abstract" quality of the provided
service functionality needs to be addressed. Quality of the provided functionality is
measured and expressed with service-centric QoS parameters.

Provider-centric part. This part addresses the point that services, respectively the
service functionality, can be provided in different ways by different providers (e.g.,
specific policies, specific service provisioning). Primarily, this part addresses the as
pect of service provisioning and service operation. Elements of the provider-centric
part are: (i) steps how to provide, operate, and withdraw services, (ii) the quality of
services as offered by providers and (iii) the policies how to operate services. The
workflow aspect is associated with the steps because several persons need to work to
gether on service planning, provisioning, operation, change, and withdrawal. Quality
of the provided services is measured with provider-centric QoS parameters. These pa
rameters refine service-centric QoS parameters with value ranges that are defined by
providers. In general, the specification of values for provider-centric QoS parameters
is a trade-off between quality, cost and market demands.

Customer-centric part. A service as provided by a service provider can be offered
to various customers. One of the most important elements of a customer-centric part
are customer-centric QoS parameters. A customer has the possibility to select spe-

A Generic Modelfor IT Services 113

cific values from the offered provider-centric QoS parameters, respectively the value
ranges.

We will proceed with a detailed specification of the attributes for the three identified
parts of a service. A systematical identification of the attributes and their refinement
requires to follow a methodology for service modeling.

The methodology for service modeling specifies the steps necessary for the devel
opment of the service model to address the service-, provider- and customer-centric
aspects of a service. As depicted in Fig. 2, these steps are as follows:

1 The specification of the service-centric part of a service which is addressed by
the development of the service template model. Often, the abbreviation STM
(service template model) will be used.

2 The specification of the provider-centric part which is addressed by the devel
opment of the provider-centric service template model. Often, the abbrevia
tion provider-centric STM will be used.

3 The specification of the customer-centric part of a service which is addressed
by the development of the customer-centric service template model. Often,
the abbreviation customer-centric STM will be used.

Service Template Model service-centric part of a service

Refinement

Provider-centric Service Template Model provider-centric part of a service

Refinement v
Customer-centric Service Template Model customer-centric part of a service

Figure 2. Methodology for service modeling

The order of the steps is defined by the fact that a service is an "abstract" function
ality which needs to be realized (i.e., provided) by a provider. Different providers may
provide the same services differently because of for example environmental specifics,
policies, type of customers. Different customers may subscribe to the offered services.
This is visualized in Fig. 2 with the introduction of the three models. The relation be
tween the service models is defined such that (i) the service template model is refined
to a provider-centric service template model, and (ii) that the provider-centric service
template model is further refined to a customer-centric service template model.

Covering various aspects of a service (service-, provider- and customer-centric)
with various models gives us flexibility and addresses with this the requirement of
providing the same service by different providers to different customers.

To clarify the meaning of the introduced service models, we extend the model layer
with the instance layer: a service template model is instantiated to a service tem
plate instance, a provider-centric service template model to a provider-centric service

174

Model layer Instance layer

L _ -.J I
Service Te,?plate Model r ! Service Template Instance

I
Refinement I

ProVider;entric STM ... _Pr_O_Vl_' de_r-ce_n_tn_'c_ST_I-.I

I

Refinement I

V
I L - -.J

Customer-centric STM ! I ... , _Cu_s_to_me_r_-cen_tr_ic_S_T1-.1

STM .. , Service Template Model
STI .. , Service Instance Model

Gabi Dreo Rodosek

Example

Web service

Web service as
provided by a

specific provider

Web service as
provided by a

specific provider to a
specific customer

Figure 3. Model and instance layer explained on the Web service example

template instance, and the customer-centric service template model to the customer
centric service template instance. This is visualized in Fig. 3, where horizontally
the instantiation of models to instances is visualized, and vertically the refinement of
models. Let us explain the meaning of the model and instance layer on an example.
An example of the service template instance is the Web service. An example of a
provider-centric service template instance is if the "Web service is provided by a spe
cific provider (e.g., Leibniz Supercomputing Center)". Furthermore, the "Web service
customer-centric STI" layer represents in such a case a Web service as provided by a
specific provider (e.g., Leibniz Supercomputing Center) to a specific customer (e.g.,
University of Munich).

As identified by the methodology, the first model to deploy is the service template
model.

3. Service Template Model
The service template model addresses the elements of the service-centric part of a

service (Le., the service part which is independent of any customer- or provider-centric
issues). To identify this service-centric part, the starting point of our discussion is the
definition of a service.

We define a service as a functionality that is provided with a certain quality and
cost at a Service Access Point (SAP). Elements of the service-centric part are discussed
in the following.

Functionality of a Service. The functionality of a service consists of two parts:
(i) the functionality of the service itself, and (ii) the functionality of sub-services that
are involved in the service provisioning with respect to the service hierarchy. As a
consequence, service dependencies are another element of the service-centric part of a
service which are addressed later on. A quite common approach to describe the service
functionality is with service functional building blocks. A precise specification of the
service functionality, respectively the service functional building blocks, requires to
include functional parameters into the service template model as well. Functional
parameters are associated with service functional building blocks. For example, in
order to send an email.itis necessary at least to specify the email address of the
recipient (i.e., send...email(EmailAddress). Functional parameters can be in general

A Generic Model/or IT Services 175

of all types as used in programming languages. An example is a character string or a
sequence (e.g., Email address).

Service Access Point. In the customer-provider scenario a SAP is the point at
which service functionality is accessed by a customer and provided by a service pro
vider. The SAP definition of the OSI reference model cannot be used directly for our
purposes, because such a strict layering of services is not existent in a service hierar
chy. Services on the same layer can use other services on the same layer. Therefore,
we define a SAP as a point, where a service requests the functionality of another
service or vice-versa provides its functionality to another service (regardless of any
layering of services). From the implementational point of view, a SAP can vary from
a simple router interface to a complex application call. A router interface is an exam
ple of a SAP that is used by an ISP (Internet Service Provider) whereas an application
call is an example for a SAP that is used typically by an ASP (Application Service
Provider). To distinguish between these kinds of SAPs, we introduce the term type
of a SAP. Another issue is also the necessity to identify the location, respectively the
resource that realize the SAP.

Quality of Service (QoS) Parameters. These parameters are used to measure the
quality of the provided service functionality at the SAP. Service functionality can be
measured with one or more QoS parameters, and vice-versa a QoS parameter may
measure the quality of various services (e.g., availability). There exists a many-to
many relationship between a QoS parameter and a service.

QoS parameters can be classified in general into (i) qualitative and (ii) quantitative
parameters. Qualitative parameters express the quality in ranges such as gold, silver
and bronze or yes and no, aggregating several quantitative or qualitative parameters
under each term. Quantitative parameters measure the quality of parameters in con
crete quantities and values (e.g., availability of 99,98%). A precise specification of
QoS parameters is one of the most important issues of quality management and in
cludes several elements, as depicted in Fig. 4. First, it is necessary to identify relevant
QoS parameters for a service and specify the semantics of these parameters. Addi
tionally, it is necessary to specify also the value type and the possible value ranges of
the parameters. The value type specifies that a parameter is measured for example in
percentage and that the value range may be from 0% till 100%. In the case a service
depends on other sub-services, a QoS parameter (e.g., QoS3 in Fig. 4) is an aggre
gated parameter of the basic parameters QoSl (i.e., a QoS parameter of sub-service
i) and QoS2 (i.e., a QoS parameter of sub-service j). To distinguish between basic
and aggregated QoS parameters, we introduce the term parameter type. Basic QoS
parameters are aggregations of QoD parameters (i.e., MIB variables).

The description of QoS parameters includes the following elements (as visualized
in Fig. 4): (i) specification of the semantics of a QoS parameter, (ii) specification
of the value type and value range, (iii) specification of the parameter type (basic or
aggregated), (iv) definition of the calculation metrics (i.e., how QoS parameters are
aggregated or deduced from other QoS parameters or from QoD parameters), and
(v) identification of Quality of Device parameters (QoD). The identified elements are
analyzed in the following in more details:

Semantics of QoS parameters. An explicit and precise description of the semantics
of QoS parameters from the customer's and provider's perspective is essential
to omit possible misunderstandings. In most cases, such a description is per-

176

QoS parameters

QoD parameters

QoS ... Quality of Service
QoD ... Quality of Device

Gabi Dreo Rodosek

Description elements of
QoS parameters

semantics
value type, value range
parameter type

calculation metric

identification of tile
QoD parameters

Figure 4. Description elements of QoS parameters

formed in a free-form text although a more formal description would be more
appropriate.

An alternative approach to describe the semantics in more details is to express
the service quality with several QoS parameters. An example should clarify this
statement. Assume that a customer and a provider agree on the QoS parameter
availability with a specific value. This value can be met if a service is unavail
able once for a long time period or the service is unavailable very often for
short time intervals. In the first case, such a long unavailability of a service may
cause more serious problems than the short outages. Thus, it would be appro
priate to specify additionally to the availability also that the parameter MTTR
(Mean-Time-To-Repair) should not exceed a certain time interval.

Value type and value range. A further point of discussion is the description of the
value type and with this associated the value range of a QoS parameter. Similar,
as with the definition of the types of functional parameters, types of QoS pa
rameters can be those used in programming languages. In some cases, the value
range can be derived from the value type. For example, a common value type
for the QoS parameter availability is to express this parameter as a percentage
value. The derived value range is from [0% - 100%]. In some cases, however,
such an automatic derivation is not possible, and therefore it is necessary to sep
arate between the value type and the value ranges of QoS parameters. For exam
ple, the value range for the QoS parameter Customer Satisfaction Index (CSI),
measuring the quality of the hotline support from the customer's perspective,
can be specified in various ranges.

Parameter type. QoS parameters can be of the following types with respect to the
previous discussion: (i) basic or (ii) aggregated. Basic QoS parameters are cal
culated directly from QoD parameters (i.e., MIB variables), whereas aggregated
QoS parameters are an aggregation of several basic QoS parameters.

A Generic Model/or IT Services 117

Calculation metric. The calculation metric specifies how QoD parameters are com
bined, respectively aggregated, together to obtain the requested QoS parame
ters. Calculation metrics are used to aggregate (i) QoD parameters -+ basic
QoS parameters and (ii) basic QoS parameters -+ aggregated QoS parameters.
A necessity hereby is the specification of a calculation language in order to de
scribe the calculation metrics on the service layer appropriately, as proposed in
2.

Identification of QoD parameters. QoD parameters are relevant MIB variables or
other data (e.g., log files) which can be gathered by device-oriented management
tools. If following a top-down approach, the identification of the relevant QoD
parameters, in case they exist, is certainly a challenging issue and depends on
the application scenario.

Service Dependencies. As known services depend on sub-services in terms of a
service hierarchy. The goal of this discussion is to address the description of the de
pends on relation between services and sub-services. It should be noted that we refer
to dependencies which are visible from the outside (i.e., so-called inter-dependencies),
and not to intra-dependencies within a service (e.g., dependencies between software
components of a service). Service dependencies can be presented in terms of a di
rected acyclic layered graph. We refer to this graph as a service dependency graph.
The nodes of the graph represent the services and sub-services whereas the directed
edges represent the depends on relation between services and sub-services. It should
be stressed that the dependency relation does not only exist between services on the
higher layer and sub-services on the lower layer, but also between services on the
same layer. For example, the proxy and the database services depend on the DNS
(name service). Weights or other attributes may be assigned to edges of the service
dependency graph if the graph is used for certain purposes such as root cause analysis,
configuration issues, calculation of QoS parameters or service provisioning. For our
purposes it is enough to model the dependency relation as a directed relation between
a service and its sub-services and having the ability to assign attributes to the edges of
the service dependency graph.

Service Cost. The service template model needs to address, additionally to the
service quality, also the cost of the provided services. The service cost is measured
with cost parameters, and is in relation with the provided service functionality and the
quality. Similarly as with QoS parameters, we distinguish between (i) the cost for a
whole service and (ii) the cost of separate service functional building blocks. Further
more, it is necessary to distinguish between one-time cost for the service provisioning
and the running costs. In order to measure the running costs, it is necessary to iden
tify (i) accountable units of a service and the (ii) cost for a unit. The following tasks
need to be performed: (i) the identification of service-related accountable units, (ii)
specification of the measurement methodology and reference point, (iii) specification
of tariff models to determine the service cost. The tariff model is, however, not part of
the service model but part of the SLA.

The summarized view of the service template model is shown in Fig. 5.

4. Provider-Centric Service Template Model
The next step in the methodology of service modeling is the development of the

provider-centric service template model. The provider-centric STM addresses the

;::

(;!
 y.

t:I

o -. g i [g.

S
er

vi
ce

A
cc

es
sP

o
in

l

n
a

m
e

1

de
sc

ri
pt

io
n

ty
pe

8
e

tP
ri

m
iti

ve
so

el

et
eO

Q
o

S
P

ar
am

et
er

na
rn

e
de

sc
ri

pt
io

n
va

lu
eT

yp
e

va
lu

eR
an

ge

.
pa

ra
m

et
er

T
yp

e
ca

ic
ul

at
io

nM
el

rl
c

ad
dQ

oS

su
b

st

000
8

su
bs

tr
ac

tQ
oS

d

iv
id

e
O

o
D

8

di
vi

de
O

oS

m
U

!ti
P

ly
Q

oD
8

m
u

lti
p

ty
o

o
S

a

ve
ra

g
e

Q
o

D
8

av

er
ag

eO
oS

m

.
ba

se
lin

e
SO

de

le
le

O

F
u

n
ct

ia
n

al
P

ar
ar

n
et

er

na
m

e
de

sc
rip

tio
n

ty
pe

lis
lO

de

le
le

O

co
st

W
it

hR
es

ne
ct

T
oO

ua
li

tv

I·
 11

S
er

vi
ce

F
u

n
ct

io
n

al
B

B

na
m

e

1

de
sc

rip
tio

n
pr

im
iti

ve

cr
ea

te
F

un
ct

io
na

iP
ar

am
el

er
O

cr

ea
te

S
A

P
2

ge
tP

ar
am

e
er

sO

: I
 co

n
si

st
sO

f

S
er

vi
ce

na
m

e

se
rv

ic
eO

ua
li

tv

1
ge

tS
ub

se
rv

ic
es

O

ge
tD

ep
en

de
nt

S
er

vi
ce

sO

I
r ge

tQ
oS

P

ub
se

rv
ic

es
O

cr

ea
te

O
oS

P
ar

ar
ne

te
r

de
pe

nd
sO

n
cr

e
a

te
C

o
st

p
a

ra
rn

e
te

S

cr
ea

le
S

er
vi

ce
D

ep
en

de
nc

yO

'
.

, , , , , , ,

I na
rn

e
de

sc
rip

tio
n

at
tr

ib
ut

es

ge
tA

ttr
ib

ut
es

O

as
si

gn
A

ttr
ib

ut
es

O

de
le

te
O

C
o

sl
P

ar
ar

n
et

er

n
a

m
e

de

sc
ri

pt
io

n

co
st

F
or

U
ni

t
•

on
e

T
Im

eC
os

t

m
et

er
A

oc
ou

nt
ab

le
U

ni
ls

O

de
le

te
O

.

se
rv

ic
eC

os
t

.

.... "'
I

Q
O

 o c ::t:
l

c '"

A Generic Model/or IT Services 119

provider-centric issues which refer primarily to service provisioning and operation.
The goal of this discussion is to identify the elements of the provider-centric part of a
service.

Based on the provider's primarily objectives of service provision and operation,
the following elements need to be addressed additionally in the provider-centric ser
vice template model: (i) specification of the steps for service provisioning, operation,
change and withdrawal of a service, (ii) specification of the quality of the provided
services, (iii) specification of policies to define the operation of services,(iv) specifica
tion of a Customer Service Management (CSM) to give customers a transparent view
of the quality of the provided services. These elements are analyzed in more details in
the following discussion.

Steps. Each phase of the service life cycle consists of several steps in order to
realize the goal of the phase. For example, planning steps are necessary to plan the
provision of a service. This includes mainly the identification of the resources to
provide the service and the development of an operational concept for this service.
However, planning steps are not part of the provider-centric service template model.

Provisioning steps are necessary for the configuration of resources involved in the
service provision. A step or an action is thus associated with a resource, and it can be
a simple execution of a script (e.g., traceroute www.lrz.de) or a complex process
(e.g., conftgure..database(databaseserver)). Operational steps refer to steps neces
sary for the configuration of device-oriented management tools to monitor and control
resources which are involved in the service provision. The goal is to gain a service
view based on the device-oriented information as provided by management tools. One
of the challenges hereby is the identification of the involved resources and the appro
priate configuration of the device-oriented management tools. Another issue is the
dynamic changing environment. For example, it is necessary to cope with services
that are "moved" around the infrastructure, with changes in the functionality of man
agement tools or new services that are introduced. Current management tools almost
give no support to cope with the mentioned change dynamics. There is a lot of manual
work associated with the tracking of changes. Withdrawal steps refer to the reconfig
uration of resources involved in service provisioning as well as the reconfiguration of
management tools involved in service monitoring and control.

Problems associated with the specification of steps are as follows: (i) it is necessary
to specify the steps with an adequate granularity, and (ii) to assure the up-to-dateness
of the steps. To cope with the high change dynamics, an alternative approach to main
tain the steps is as follows: firstly, to specify the steps in a generic, parameterized
way, and secondly, to improve the granularity and up-to-dateness of the steps with real
experience during the application of the steps. Obviously, an ideal solution would be
to have steps defined as executable scripts which could be executed automatically by
existing tools. Unfortunately, such granularity is difficult to achieve and also to main
tain due to the enormous effort. Such a detailed specification has already proved their
weakness in the fault management area.

Provider-centric QoS parameters. The value range of service-centric QoS pa
rameters is changed in the provider-centric service template model with respect to
provider specifics.

SLAs. Another element of the provider-centric service template model which needs
to be addressed are Service Level Agreements (SLAs), respectively the technical part
of an SLA. A provider needs to think of SLAs that he can offer to customers.

180 Gabi Dreo Rodosek

Policies. A provider has certain provider-centric constraints that have an influence
on the operation of services. Operational rules of service operation are specified as
policies. Examples of policies are to make a service available 24 hours a day, 7 days
a week or to deny everything what is not explicitely allowed. An adequate descrip
tion of policies requires the development of an appropriate specification language, as
proposed for example by Sloman et al. in 1. Besides, topics such as policy conflict
resolution (10) need to be addressed as well. Our focus lies solely on the application
of existing work done in policies to our problem area.

Customer Service Management (CSM). A requirement from the customer's side
is to have a customer-centric and transparent view on the provided quality of the sub
scribed services. A provider needs to offer a set of reports about service quality that a
customer can configure. Beside accessing reports about the provided service quality,
customers want to interact with the provider for example to report problems, order
new services, select new service qualities and service costs, track the resolution of
problems. In other words, customers want to have access to a CSM. The objective of
a provider is to develop a CSM application with the functionality to cover all phases
of a service life cycle where a customer is involved in.

Customer Service Management Access Point (CSMAP). A CSMAP is the inter
face between a customer and a provider over which a customer can access the CSM
application and the requested information. From the conceptual point of view, the
meaning of a CSMAP is similar to a SAP.

Beside the description of the provider-centric service template, another important
provider issue needs to be mentioned as well. A provider needs in some cases a more
"global" view of the provided services to customers due to operational issues (e.g.,
availability of the whole IP backbone versus the availability of the individual router
interfaces). We have referred to this view as the "all customers" view, and to the ser
vices as management services. Such a global view is important to monitor or achieve
a good utilization of resources or to act appropriately in case of failures. Again, as
sume that a provider offers connectivity services to his customers, and that a SAP to a
customer is a router interface. From the customer's perspective, only the availability
of his SAP (e.g., the router interface) as well as the provided quality of service at the
SAP is of importance. It is irrelevant for him whether other router interfaces or even
routers are unavailable so far his quality of service is not affected. However, from the
provider'S perspective, the availability of the whole IP backbone is of relevance as well
to act appropriately in the case of performance degradations or failures. Therefore, an
example of such a management service is IP backbone and its availability.

As already emphasized, management services are treated in the same way as appli
cation-oriented services with respect to monitoring QoS parameters and costs. The
only difference is that internal services have, in general, no penalties, in the case of
violating the thresholds, associated with them (in most cases), and that in general the
reporting and escalation mechanisms may be different.

A service provider uses the provider-centric service template model, or precisely
the provider-centric service template instances, to build a library of services (e.g.,
Web, Mail, UHD, backup, remote printing) that he provides to his customers with
the specified provisioning and operational steps. Several services can be combined
together to service packages (e.g., Internet access including name service, access ser
vice, connectivity service etc.). A customer may now select between these packages

to::
 ?- ti

!;l
 g, g C
; g :f.

("
) { g

A
cc

eu
.P

oI
n

t

't
y

p
e

, ""
"c

oA
cc

os
sP

oi
nt

I,

,

S
lA

Q

o
 ..

..
..

..
..

..

M
m

e

de
sc

rip
tio

n
.....

.
"'_

d
es

cr
ip

ti
on

so

ti
on

s
"
"
';

ru
<

J
f

•
va

llJ
eT

yp
e

..
 po

rt
s

va
lu

e
R

a
n

g
e

pa

ra
m

et
er

T
yp

e
.....

 .,
.-

0
ca

Io
ul

2l
.ti

on
M

et
ric

m

on
ito

rT
hr

es
ho

ld
sO

ca

lc
uk

tle
O

ua
lit

yQ

=z
=o

o
=

.l

""
""

""
0

0
 - -nogeQoS()

 - deleteQ

lo
ca

te
dU

p:
m

F
u

n
c
tI

o
n

a
I
_

M

m
e

da

sc
ri

pt
ia

1
ty

pe

,lo
t()

-
Ie

(
)

co
st

W
it

hR
e!

cc

tT
oO

ua
li

t

I,
s.

m
c.

Fu
nc

:ti
on

al
B

B

M
m

e
 --

I
pr

im
iti

ve

cr
ea

te
Fl

.n
C

tio
M

IP
aJ

am
et

eI
Q

9:
1:

0-
xm

ac
""

:1
"'"

""'
"

.....
..

!-
'--

--
-

:ip
tio

I.
-
.
.
-
.
.
J
i
t
y

-
'I

'
,

ge
tS

ub
ae

M
ce

s(
)

ge
""

"-
nr

io
oe

O

c .
..

..
 SF

BB
O

C
lN

lie
Se

rv
io

eQ
ep

en
de

nc
y(

)
go

lR
ee

ou
R

O
N

()

,
.

de
pm

is
O

D

cr
ee

te
C

SM
O

C
S

M
Q

ua
li

ty

"
"
"

l
i :
-

i
a1

lri
bu

 ..
. - L

.....
. _

 .. R
e

8
a

u
rc

e
D

e
p

e
n

d
e

n
c

y

I
I

eo
 ..

...
...

...
...

=--type ao
co

un
la

bi
eU

ni
t

.. d
o

lo
lo

()

C
U

o
I
D

_
m

t

=ci
ty

:1
1

cr
ea

te
C

S
M

A
P

O

no
,fy

C
".

'o
n.

"O

no
go

tia
to

S
eM

ce
O

nl
e<

1)

ge
r'l

!lr
ai

eR
ep

or
ta

()

'-""
'-

g
e

tS
lA

 T
h

ru
h

o
fd

V
al

u
es

()

ge
ne

m
.te

nO

ge
tS

ta
tu

sT
TO

;T

T
O

I
-
I
'
... ...

=

ge

tC
ap

ab
O

ti
es

O

ge
tS

er
vi

ce
s(

)
re

tr
ie

ve
O

oO
() 'II"

P
ol

ic
y

su
b;

ec
t

"
"
,.

,
ac

tio
n

....
n

a
m

e

de
sc

rip
tio

n
ac

ti
on

.....

. "'"
m

g
m

tT
o

o
i

ex
ec

ut
eD

==
:ne

s::+
':2

de

le
te

O

(I
> ... 1=
;. ... :;! CI
O

182 Gabi Dreo Rodosek

or customize certain quality parameters (e.g., select the availability of a service greater
than 99,98%).

The summarized view of the provider-centric service template model is shown in
Fig. 6.

5. Customer-Centric Service Template Model
The last step of the methodology is the development of the customer-centric ser

vice template model to address the customer-centric issues. The customer-centric
service template model is obtained by refining the provider-centric service template
model and by adding attributes that represent customer-centric characteristics. This
means that we add a class Customer to the provider-centric service template model as
visualized in Fig. 6.

Customer-centric QoS parameters. They are a refinement of the provider-centric
QoS parameters. A customer can select specific values from value ranges of QoS
parameters which are offered by a provider. He may request also other values. In
such a case, the negotiation about these values is started. The selected value is in
relation with the cost. Another issue is that customer-centric quality parameters should
express the quality of a service in a customer-centric way. Current practice is that QoS
parameters are expressed as provider-centric parameters, such as packet or cell loss,
reach ability etc. The reason is obvious. Such QoS parameters are device-oriented and
can be measured with existing device-oriented management tools.

Customer type. The customer type is used to distinguish between an intra- or inter
organizational provision of a service. This means to distinguish whether a service is
provided to an external or to an internal (within an organization) customer. This is
necessary because different processes (e.g., escalations, billing) may be used for an
internal or external service provision.

Customer-centric CSM. A customer-centric CSM represents those reports about
the provided quality of service that a customer has individually selected or configured
from the available reports of the provider. A customer has the possibility to config
ure (i) what reports to access (e.g., specific QoS parameters, service levels), (ii) the
periodicity of generating reports (monthly, daily, weekly etc.), (iii) the way, respec
tively the form, of providing reports (e.g., via email, Web, fax, paper). Beside the
configuration of such reports, a customer may order new services, report problems
with respect to his SLA, track resolution of problems etc. The customer-centric CSM
can be considered as the customer's individual management interface to the provider.

6. Example
A simplified example of a problem management service should clarify the appli

cability of the proposed models. The class diagram in Fig. 6 extended with the class
Customer should be consulted for that.

Service: Problem Management (PM) service with the functionality to support the
resolution of customer-reported problems.

Dependency: The PM service depends on sub-services such as DNS, IP, database
sub-service, file sub-service;

Service Functional Building Blocks: Examples are (i) documentation of problem
resolution in trouble tickets, and (ii) workflow support. Examples of primitives are
submit(Problem), accessStatusProblem(1T-Number).

A Generic Model/or IT Services 183

Functional parameters: Examples are Problem which is a description of the re
ported problems or TT-Number to identify the trouble ticket which documents the
reported problem.

QoSParameter: Examples are first response time and average resolution time.
Value type for both parameters is real whereas the value range for both parameters is
defined in the SLAs. The first response time is an example of a basic QoS param
eter and the parameter average resolution time is an example of an aggregated QoS
parameter.

SLA: An SLA consists of various QoS parameters for which thresholds, actions
and reports are defined. An example of a threshold for the QoS parameter first re
sponse time is less than 4 hours in the case the reported problem is a critical one.

CostParameter: Accountable units for the PM service could be the number of
problems (documented in trouble tickets) that can be reported by a customer in a cer
tain time period. In addition a costForUni t could be associated to these reported
problems.

Step: An example of a provisioning step is configure.database(database.server).
configure.NetworkMgmtPlatform(database.server); is an example of an operational
step. Withdrawal steps are the same steps as in the case of provisioning and operation,
however, to withdraw the PM service.

CSM: CSM and the associated interface CSMAccessPoint define the attributes and
operations that a customer can initiative over the CSM. Examples of operations are:
getProblemStatus(TT-Number);
getServiceQualityReport(average .resolution Jime);
getServiceCostReport(month).

Customer: The type of a customer can be either internal or external.
Resource: Example of a resource is the database server as well as other network

devices, providing IP sub-service, or end systems, providing DNS.

7. Assessment and Conclusions
The relevance of the developed service models can be summarized as follows: (i)

definition of a modeling approach --t object-oriented approach; (ii) definition of a
syntax for the description of service-related management information --t UML; (iii)
specification of service-related management information and service information
(e.g., what is a service, what is a SAP) in a customer-provider environment; (iv) speci
fication of relations between the identified managed objects of IT service management
(e.g., service and resource dependencies, cost and quality associations). An important
contribution of the service models in addition is that they define elements which should
be included in an SLA.

The proposed service model for IT service management represents the first attempt
to provide a generic customer- and quality-oriented model for services which can be
used as a common information basis for various applications. The proposed model
defines commonly needed service-related terms, concepts and structuring rules in a
general and unambiguous way. According to the methodology, a service template
model is proposed to model service-centric issues of a service. A provider-centric
service template model is further introduced to address provider-centric requirements
mainly with respect to service provisioning and management. Lastly, a customer-

184 Gabi Dreo Rodosek

centric service template model is proposed to cover customer-centric aspects of service
usage.

Areas for future work include: (i) further refinement of the specifications of ser
vice models (e.g., adding arguments to operations, specifying diagrams on the imple
mentation level); (ii) using the proposed approach to specify a library of services.
Such a library would include a set of service templates describing various services.
Providers could access such library, select service templates and customize them into
provider-centric service templates, and into customer-centric service templates respec
tively; (iii) building appropriate service management development tools (e.g., editors,
consistency checkers) for the description of service templates, provider-centric and
customer-centric service templates. Providers could use these tools to describe their
specific services.

Acknowledgments
The author wishes to thank the members of the Munich Network Management (MNM) Team for helpful

discussions and valuable comments on previous versions of the paper. The MNM Team is a group of
researchers of the Munich Universities and the Leibniz Supercomputing Center of the Bavarian Academy
of Sciences. It is directed by Prof. Dr. Heinz-Gerd Hegering.

References
[1] N. Damianou, E. Dulay, N. Lupu, and M. Sloman. The ponder policy specification language" in:

proceedings of the workshop on policies for distributed systems and networks, bristol, springer
verlag, lncs 1995. pages 18-39, January 2001.

[2] G. Dreo Rodosek. A Framework for IT Service Management. habilitation thesis, University of
Munich, June 2002.

[3] P. Ferguson and G. Huston. Quality of Service - Delivering QoS on the Internet and in Cooperate
Networks. John Wiley and Sons, ISBN 0-471-24358-2, 1998.

[4] M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, I. Radisic, H. Re11e, H. Schmidt,
M. Langer, and M. Nerb. Towards generic service management concepts - a service model based
approach. In Pavlou et al. [11], pages 719-732.

[5] R. Gopal. Unifying Network Configuration and Service Assurance with a Service Modeling Lan
guage. In Stadler and Ulema [12], pages 711-725.

[6] Open Distributed Processing - Reference Model- Part 2: Descriptive Model. IS 10746-2, Interna
tional Organization for Standardization and International Electrotechnical Committee, 1993.

[7] M. Langer, S. Loidl, and M. Nerb. Customer service management: A more transparent view to your
subscribed services. pages 195-206, October 1998.

[8] A. Lazar, R. Saracco, and R. Stadler, editors. Proceedings of the Fifth IFIPREEE International
Symposium on Integrated Network Management V (IM'97), San Diego, USA, May 1997. Chapman
& Ha11.

[9] L. Lewis. Service Level Managementfor Enterprise Networks. Artech House Inc., ISBN 1-58053-
016-8, 1999.

[10] E. Lupu and M. Sloman. Conflct Analysis for Management Policies. In Lazar et al. [8], pages
430-443.

[11] G. Pavlou, N. Anerousis, and A. Liotta, editors. Proceedings of the Seventh IFIPREEE Integrated
Network Management VII (1M 'OJ), Seatie, WA, May 2001. IEEE Publishing.

[12] R. Stadler and M. Ulema, editors. NOMS 2002 IEEElIFIP Network Operations and Management
Symposium - Management Solutions for the New Communications World, Florence, Italy, April
2002.IEEElIFlP.

[13] Service Architecture. Tina baseline, TINA Consortium, June 1997.

A REVENUE-BASED MODEL FOR MAKING
RESOURCE INVESTMENT DECISIONS IN
IPNETWORKS

Srinivasan Jagannathan,l Jom Altmann,2 and Lee Rhodes3

1 University of California Santa Barbara, 2 University of California Berkeley, 3 Hewlett-Packard
Company
ljsrini@cs.ucsb.edu,2jorn.altmann@acm.org, 3Iee_rhodes@hp.com

Abstract:

Keywords:

Capacity planning is a critical task in network management. It identifies how much capac
ity is needed to match future traffic demand. It directly affects customer satisfaction and
revenues. In this work we present a network usage analysis tool called Dynamic Netvalue
Analyzer (DNA), which helps alleviate a big problem that network engineers and market
ing executives face- making optimal resource investment decisions. Marketing executives
have to project customer growth while network engineers have to project traffic volume
based on the entire customer population. DNA helps the prediction process by present
ing actual network usage data from a business perspective, in a form that is useful to both
network engineers and marketing executives. Using these projections, decisions on how
to upgrade resources can be made. We show that information from DNA can be used to:
(1) quantify revenue earned on each link, (2) quantify return-on-investment on performing
a link upgrade, and (3) quantify the loss due to customer dissatisfaction when a link is not
upgraded. We also illustrate how these formulations based on business information can be
used to improve capacity planning decisions.

Network and Systems Monitoring, Investment Cycle, Business Process, Network and Ser
vice Management

1. Introduction
The explosive increase in the number of Internet users as well as in volume of usage

poses significant challenges to the network infrastructure and, by extension, to the
network service providers. Network service providers are faced with two challenges
today. On the one hand, they want larger number of customers in order to increase
revenues. On the other hand, they want to manage the data volume efficiently. Capacity
planning plays a crucial role in helping network providers tackle these challenges.
Capacity planning is the process of predicting tomorrow's needs and preparing for
them today. Network capacity planning involves combining marketing information
and traffic analysis results to predict future resource requirements. Intelligent capacity
planning can result in enormous cost savings and increased customer satisfaction. At
the other extreme, poor capacity planning can result in enormous expenditures, poor
customer service, and loss of revenues. The importance of capacity planning cannot
be over-emphasized.

Capacity planning for Internet infrastructure requires good understanding of net
work traffic growth. The overall traffic growth depends on the number of new sub
scribers on the network as well as the usage increase per subscriber. Predicting these
growth factors determines the decision on the investment size for upgrading network
capacity. Currently, there is no standardized process to combine both growth factors.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

186 Jagannathan, Altmann and Rhodes

Prediction of traffic growth and intelligent decision-making can be greatly facilitated
by correlating network data with business-relevant information. Such information can
be classified into:

1 Subscriber usage information: Considering usage of individual subscribers (or
of subscriber segments) reveals more information than considering the aggre
gated usage of all subscribers.

2 Value of the subscriber to the business: The revenue and costs of an individual
subscriber are important in evaluating the value of an investment. Clearly, an
investment is worthwhile only if the revenue per subscriber outweighs the costs
incurred per subscriber. Therefore analyzing the value of customers can help
make educated investment decisions.

3 Competition in the market: Since competition in different geographical regions
can impact subscriber loyalty, it is important to consider its impact before mak
ing costly investment decisions.

By associating such business information with raw traffic data, the network ser
vice provider can make better decisions about investments. However, today's capacity
planning for the Internet does not incorporate this kind of information. The dominant
reason is that the data collection and analysis process is not in place. The current pro
cess suffers from the problem that the data volume overwhelms conventional database
management systems. Moreover, marketing and engineering disciplines of the service
provider business lack a common vision. Marketing managers concentrate only on
customer numbers and ignore the traffic-volume aspects of the business, while net
work engineers concentrate only on traffic volumes and ignore the customer aspect of
the business. Each discipline views data in isolation, which results in myopic decision
making. A holistic view of the data is necessary for informed investment decisions. In
this paper, we present an innovative tool called Dynamic Netvalue Analyzer (DNA) that
overcomes these lacunae. DNA aggregates, analyzes and models network data streams
on the fly [1]. We show how this tool can be used to combine marketing, revenue, and
engineering aspects of a service provider's business in order to make efficient capacity
planning decisions.

In this paper, we only focus on capacity planning for regional networks. Our solu
tions are not directly applicable to capacity planning in backbone networks because of
the following differences. First, the cost structures in these two categories of networks
are dissimilar. For instance, laying optical fiber from coast to coast imposes very dif
ferent costs than laying cable in an urban neighborhood. Second, the ratio between
the traffic of an individual subscriber and the total traffic is significantly higher in case
of a regional network. On the Internet backbone however, a huge number of individ
ual flows is aggregated, thereby decreasing the impact of individual flows on overall
traffic. Conversely, traffic of one individual subscriber in a regional network has much
more impact on the overall traffic. Third, the size of the network and the volume of
traffic in regional networks is much smaller. Therefore, capacity planning solutions
for regional networks are not limited by scalability issues.

We now briefly discuss related work. Some of the previous work on capacity plan
ning has focused on IT issues. Diao et al. propose an approach to maximize prof
its in service level agreements by designing feedback loops at application level [3].
Menasce and Almeida discuss performance issues and capacity planning for client
server systems [8]. On the network side, Robertazzi presents practical aspects of plan-

Revenue-Based Resource Investment Decisions in IP Networks 187

ning telecommunication and telephone networks [12]. Keshav discusses network ca
pacity planning from the perspective of traffic management [7]. In addition, there are
many software products that perform network capacity planning [11, 9, 6, 10].

The rest of the paper is organized as follows. In Section 2, we describe the capacity
planning problem in greater detail. We describe current approaches to capacity plan
ning and illustrate how a combination of marketing, revenue, and engineering analysis
can greatly improve the planning process. In Section 3, we describe the DNA tool in
more detail, and its versatility in collecting varied kinds of network data. In Section 4,
we describe new algorithms to improve capacity planning decisions. We conclude the
paper with a discussion on architecture and implementation issues in Section 5.

2. Capacity Planning
Network Capacity planning has three phases- (1) predicting future growth in cus

tomers, (2) predicting future volume of traffic, and (3) planning resource upgrades for
the future. In the first phase, the marketing team estimates how many new customers
will join the service and how many old customers will leave the service. The mar
keting team can use historical growth patterns, advertising budget, channel strength
and customer satisfaction reviews, etc. to determine future growth and churn. This al
lows prediction of total number of users in the network. In the second phase, network
engineers translate the number of customers into possible network traffic. This helps
identify hot-spots in the network. Once the hot-spots are identified, in the third phase,
the service provider must decide where investments are necessary in order to provide
a good network service to customers.

For example, one simple approach to make investment decisions could be the fol
lowing. The service provider sets a policy that all links should have overall utilization
less than a threshold, Tsuggested. Consider link 1 with capacity 131 that has a projected
volume of traffic b',future bits over the future time period Tfuture. Therefore, overall

utilization of 1, denoted by T/ future can be computed as :r.tuturp . If this exceeds
, future J

Tsuggested, then the service provider marks the link to be upgraded. The quantum of

upgrade, Xl, should be greater than 1 X - 13,. This is obtained by
T."ggeated future

solving the following inequality representing the service provider's policy decision:

b',future
Tsuggested T (R +)

future,.,' Xl
(1)

Using some such mechanism, the service provider can construct a set of resources
S, that need to be upgraded/purchased, and also determine the capacities of these re
sources. In this paper, we assume that the service provider has done some analysis to
determine this initial set S of resources that need to be upgraded/purchased.

In the rest of this section, we examine the state-of-the-art in capacity planning and
ways to improve it using an illustrative example.

2.1 State-of-the-Art
The example we present to describe the state-of-the-art is contrived and simplified,

but it serves to illustrate the inefficiencies of capacity planning as practised today.
Consider the example network shown in Figure 1

Figure 1 shows a small network with two edge routers, A, and B, and a border
router G. There are two main links in the network- AG and BG. A back-up link AB

188 Jagannathan, Altmann and Rhodes

Figure 1. A Capacity Planning Example

is used for fault-tolerance. Customers are connected either to A or to B. Further, let
us assume that there are two kinds of customers- residential and business. Residential
customers pay a flat fee of $20 every month, while business customers pay a flat fee
of $1000 every month. Currently, there are 20 business customers, 6 at A and 14 at B,
and 200 residential customers, 150 at A and 50 at B. The problem of capacity planning
involves analyzing existing traffic, predicting growth and making intelligent decisions
on: (1) scheduling maintenance of AG and BG, (2) upgrading links AG, BG, AB,
and routers A, B, and G, and (3) changing physical topology with new nodes and
links.

Currently, service providers monitor the traffic using protocols like Simple Network
Management Protocol (SNMP) [2]. A huge amount of data is collected, usually at 5
minute intervals. Let us assume the example network also uses SNMP and that a
network engineer has analyzed SNMP data collected over the past 6 months (sampled
in 5 minute intervals). The analysis result is that link AG has overall utilization of
60% and a peak utilization of 70% (over a 5 minute interval). Similarly BG has
overall utilization of 51 % and a peak utilization of 65%. The engineer also observes
that link AB has less than 5% utilization.

The marketing team believes that it will acquire 5 residential customers each at A
and B every month over the next 6 months. In addition, it estimates that it will acquire
1 business customer each at A and B every month over the next 6 months. Further, the
marketing team believes that there will be no loss of customers in the next 6 months.
This information is presented to the network engineer.

Currently, there is no industry-wide standard for interpreting marketing projections.
Different service providers use different metrics. To the best of our knowledge (based
on direct inquiries to network service providers), network engineers use some rule
of-thumb to convert marketing data to traffic volume predictions. For instance the
rule-of-thumb may translate every new residential customer into 64kbps network ca
pacity and every business customer into 512kbps network capacity. In addition they
may assume that current customers' usage will increase 50% every 6 months. Some
service providers use the traffic volume predictions obtained from such rules-of-thumb
in sophisticated network simulation tools [11,9,6,10] to analyze points of failure and
then decide on investments and expenditures. But most service providers make deci
sions using simpler analysis. For instance, in this example, the network engineer can
compute that after 6 months the requirement would be as follows. Current customers
in A would require 0.6*10240*1.50 = 9216kbps. New residential customers will re
quire 30*64 = 192kbps, and new business customers will require 512*6 = 3072kbps.
This means that traffic on link AC will be 12480kbps which exceeds the link capacity.
Similar analysis reveals that traffic on link Be will be 11098kbps which also exceeds
the link capacity. Based on these results, the engineer may conclude that the capacity

Revenue-Based Resource Investment Decisions in IP Networks 189

of AG and BG needs to be doubled. Furthermore, this capacity increase may require
router C also to be upgraded. Suppose that upgrading AG and BG costs $20000 and
$10000 respectively. And let a high-capacity router cost $20000. Thus, using this
analysis, capacity planning expenditures total $50000.

In summary, today network capacity planning is an art and not a science. We now
present our vision for capacity planning.

2.2 Improving Capacity Planning

Our vision of capacity planning uses information that is available, yet unused. For
example, the service provider .can ascertain how much data on each link belongs to
each customer segment. This can be done by observing the source or destination IP
address of network flows and then correlating this address to the customer segment
assigned that address. The network engineer generates a histogram to study how usage
by residential customers has grown over the past 6 months. Using this information,
the network engineer can use standard mathematical techniques of extrapolation to
estimate how much volume of traffic new customers will generate. By performing a
similar analysis, the engineer can also estimate how much data the business customers
will generate. Thus the network engineer can estimate overall traffic growth in a more
objective manner.

For the example presented in the previous subsection, let us assume that the en
gineer performs subscriber-specific usage analysis and diagnoses that usage per sub
scriber has not grown over the past 6 months for both residential as well as business
customers. Based on this result, he predicts that the same trend will continue. Since
the marketing team predicts negligible customer churn, and that there will be many
new customers over the next 6 months, the service provider needs to analyze if current
capacity can sustain future traffic. Based on past statistics, the overall utilization on
both the links AG, and BG will exceed 50%. Therefore if more customers are added,
the service provider may decide on upgrading one or both the links.

The monetary value generated by the customers can also provide critical informa
tion for capacity planning. In this example, customers at A generate 6* 1000 + 150*20
= $9000 each month, and almost all the data they generate traverses AG. Similarly,
customers at B generate 14*1000 + 50*20 = $15000 each month, and almost all the
data they generate traverses link BG. Clearly, link BG has been more lucrative over
the past 6 months. Furthermore, based on the marketing projections, adding new cus
tomers to region A will increase revenues by (1000 + 5*20)*(1 + 2 + 3 + 4 + 5 + 6)
= $23100 over the next 6 months. Similarly, adding new customers to B will increase
revenues by (1000 + 5*20)*(1 + 2 + 3 + 4 + 5 + 6) = $23100 over the next 6 months.
For simplicity, let us assume that link capacities can only be doubled. Since doubling
capacity of link BG will cost only $10000, while gain in revenue is $23100, it is
worthwhile to double the capacity of link BG. On the other hand, in case of link AG,
the gain in revenue almost matches the cost of doubling the capacity. Furthermore, if
capacity of AG is also doubled, then the router will also need to be replaced. There
will therefore be a loss if one invests in link AG and BG together. Based on this anal
ysis, the service provider can decide to: (1) double capacity of only link BG, (2) ask
marketing team to not campaign aggressively in region A, and (3) ask marketing team
to intensify campaign in region B.

The example illustrates the power of combining marketing, revenue and network
usage data in devising better capacity planning solutions. A tool that collects. ag-

190 Jagannathan, Altmann and Rhodes

gregates, and visualizes network usage and revenue data is a prerequisite for such a
capacity planning scenario. In the next section, we describe one such tool.

3. Dynamic Netvalue Analyzer
HP Open View Dynamic Netvalue Analyzer (DNA) is a business intelligence and

decision support tool targeted for network service providers [1]. It transforms raw
customer usage data into business information, supporting business managers and net
work engineers to model revenues and profitability for new and existing services as
well as network capacity upgrades. It helps network service providers to understand
the usage behavior of their subscribers in real-time. In general, it enables new revenue
and return on investment paradigms.

DNA uses statistical models to analyze customer usage data. A statistical model
can be thought of as a histogram-based distribution of observed data. By converting
raw usage data into statistical models (streaming data analysis), instead of storing all
the raw data as in a warehouse approach, DNA frees storage space. It thus enables
the analysis of more historical data in a shorter time period. Also, a benefit of this
approach is that statistical models are small in size and do not grow with increased
traffic volume - instead they get more accurate. The statistical models are based on
business dimensions such as pricing plans, services, or geography. The only drawback
of using such statistical models is that it is static; the business dimensions have to be
decided well in advance. If new business dimensions are selected then new data has to
be collected to populate the statistical models along these dimensions.

DNA is comprised of a backend server, which aggregates usage data, and clients to
view and model business decisions. The backend server is built on HP's Internet Usage
Manager (IUM) mediation platform. At the data collection stage, three modUles of
IUM are used to aggregate customer information, session information, and the actual
usage data of all end-users. The second level correlates the output of the previous stage
and transforms the data into an internal format, which allows rapid access of individual
usage data. The third stage is comprised of statistical models, which are specified by
the user of the tool. The models are populated by the second stage's output. The
third stage also interacts with clients, which request model data. DNA clients allow
network usage data to be viewed in numerous formats with varying levels of detail.
Data is presented in statistical histograms, tables, and summaries. For an in-depth
analysis, it allows the business manager to view individual subscriber usage.

How DNA can improve communication between network engineers and marketing
managers, especially with respect to the capacity planning process, can be demon
strated using the analysis example shown in Figure 2. Instead of aggregating all usage
data across all subscribers to one number, DNA splits up the data into those business
dimensions (e.g. pricing plan, link, subscriber, etc) that are important for the deci
sion making process. Figure 2 illustrates the usage of individual subscribers over a
time period of 30 days for one customer segment under a flat-rated pricing plan. By
looking at this distribution and the historical trends (such as mean and variance), the
network engineers can predict the usage of new subscribers in this customer segment.
The marketing manager, who analyzes this figure, notices the imbalance between light
users and heavy users. As a consequence, he can work on introducing pricing plans
that resolve this problem.

In detail, DNA allows an on-the-fly analysis of raw data coming from a NetFlow
enabled router. Considering the example of Figure 1, DNA would analyze the NetFlow
data coming from router A and B. It would aggregate usage data in units of bytes with

Revenue-Based Resource Investment Decisions in IP Networks

12;1t'l 1 .:. ." I

{li'r:lJ 2 ' Qj II ',;

''''
"' . ..

4'Il)0'

H"''''B

11;0

...

1'Id .. , .. FOT

Figure 2. DNA analysis result of subscriber usage behavior

191

respect to the customer segment (based on the pricing plan), the destination IP address,
and link congestion. The result of the aggregation would be used to make the decision
for resource investments for all links as described in the following section.

4. DNA Decision Making Process for Resource
Investments

We now present an approach to make smarter resource investment decisions. The
approach assumes that there is an initial set of resources S that need to be upgraded
and that the quantum of upgrade for each resource is known. Our main contribution
is to associate a number called investment gain with each resource upgrade in S. The
investment gain associated with a resource upgrade indicates how much benefit is ac
crued from the upgrade per unit money spent on that upgrade. The problem of making
the right upgrade decisions then reduces to solving an optimization problem where the
total investment gain is maximized subject to budgetary constraints on the investment
costs. The investment gain for each link 1 in the network is based on two business
criteria:

1 The size of the return-on-investment (RoI). The RoI depends on the quantum of
upgrade, growth in customer base as well as on projected volume of traffic per
customer segment.

2 The loss of customer satisfaction. The loss is directly correlated with the loss
caused by not upgrading. Customers who are unhappy with the service may
choose a different service provider thereby decreasing revenue.

The investment gain is calculated according to the following formula:

192 Jagannathan, Altmann and Rhodes

(2)

where 'YI,T/utur• is defined as the revenue earned on link I in future time period
Tfuture, ("Tp,ut represents the monetary value of customer unhappiness with link I
during the past time TpBBt , FC, is the fixed cost for upgrading link 1 by a quantum Xl,
and M"T/uttAr. is the additional maintenance cost of I in time period Tfuture.

The numerator represents the sum of revenue earned and the monetary value of
gain in customer satisfaction as a result of the upgrade. We assume that the quantum
of upgrade is such that all the customers who were discontent with service before the
upgrade are no longer discontent. The denominator represents the cost of the invest
ment. The ratio reflects what is gained per unit of investment. The higher the ratio,
the greater the priority for upgrade. Suppose that a network provider has to choose
the right set of resource upgrades from set S, given a budget constraint B. For each
resource ri in S, we ascertain (FCi,) where FCi is the cost of the upgrade
and the investment gain. Let c5i denote the decision to upgrade ri, i.e., c5i = 1
represents a decision to upgrade and c5i = 0 otherwise. Then the network provider can
choose the right set by solving the following optimization problem: choose c5i E {O,
I} to maximize E subject to: E FCi c5i B. This optimization problem is a
version of the 0-1 Knapsack problem which is known to be NP-Complete. If the cardi
nality of the set S is large, then any of the well known polynomial time approximation
algorithms for 0-1 Knapsack problem can be used to solve the resource investment
problem.

In our model, even though we focus on link upgrades, the approach is easily ex
tended to include other resources like routers. Router investment costs can be sub
sumed! into the costs of the first link that necessitates a router investment.

In order to quantify return-on-investment and loss of customer satisfaction, we in
troduce two algorithms to compute 'YI,T/uttAr• and ("Tp,ut in the following two subsec
tions.

4.1 Quantifying Loss of Customer Satisfaction
Rational customers are discontent with the service if the service provider does not

meet QoS requirements. This occurs if one of the links of the data route is congested.
By observing the degree of congestion at each link, we can compute the degree of
customer dissatisfaction at a particular link.

For each link, we assume that the business manager sets a threshold. If the data
transmitted per unit time on that link exceeds the threshold, then we shall assume that
the link is congested. For example, the network provider can follow a policy that if the
data transmitted on a link in a 5 minute interval exceeds 70% of the total link capacity
then that link is considered to have been congested in that interval.

Since all customers who are using a link when it is congested are equally affected,
we shall quantify customer dissatisfaction as follows. Compute the monetary value of
bytes transmitted during congested intervals on a link. This represents revenue earned
when customers are discontent with the service. Now, let us assume that the business
manager weights the importance of customer satisfaction to his business on a scale

1 In this case Fe; is not known initially. and will vary with the candidate solutions of the knapsack problem.

Revenue-Based Resource Investment Decisions in IP Networks 193

between 0 and 1. Suppose this weight is O. Then, the monetary value of customer
dissatisfaction (can be computed as described in Figure 3.

Input:
Network topology lV, and link maintenance costs
Routing tables for time period Tpast
Customer flows J?Tpa.t for time period Tpast
Customer billing information for time period Tpast
Link utilization congestion threshold
Relative importance of customer satisfaction 8 (a
number in the range [0,1])

Output:
Customer dissatisfaction (I,Tpa.t for each link 1
within time Tpast

Algorithm:
For each link 1

Initialize customer dissatisfaction, (I,Tpa.t = 0
Using flow information and topology:

For each flow f E J?Tpa.t and small time intervals t
Let n"t be the number of links
in path taken by f over time interval t
Let b"t the number of bytes of f transmitted
in interval t

Let PI be the cost of transmitting a single byte
in flow f

Let the capacity of link 1

Let v{/, t) =
n/,t

For each link 1
For each small interval t

L/EFT b"t
If past >

P,xt -
(I,Tpast = (I,Tpast + () X L/EFT VI,t

pa.t
End.

Figure 3. Computing customer dissatisfaction

4.2 Quantifying Return-on-Investment
Return-on-Investment depends on future revenues that the service provider hopes

to earn. Therefore, to quantify RoI, we also need a mechanism to estimate future
revenues. Suppose that there exists some mechanism to project growth of data volume
as well as growth in the number of customers. Let us call this algorithm Pred - Algo.
Then the return-on-investment can be computed as shown in Figure 4. The algorithm
takes as input, the network topology, future routing information, current maintenance
costs, quantum of upgrade for different links, the cost of these upgrades, and future
maintenance costs. It produces as output, the projected revenue on all links for a
future time period Tfuture.

The algorithm for quantifying return-on-investment assumes that we know how to
quantify revenue earned on a link. To this end, we now develop an algorithm to dis
tribute revenues among the links in the network. Our algorithm considers how much
each link has been used by each customer. Then, using pricing plan information, the
algorithm partitions the customer segment's payment to each of the links based on vol-

194 Jagannathan, Altmann and Rhodes

Input:
Network topology, and link maintenance costs
Amount of extra capacity to be added to each
link I and investment and maintenance costs
Customer usage information for time period l'old
Customer billing information for time period l'old
An algorithm Pred - Algo to project usage and
revenue for the future time period l'future

Output:
RoII,T/utu". J the return on investment
for each link in l'future

Algorithm:
For each customer (j (including future customers)

Apply Pred-Algo to project growth of usage over
(source. destination) pairs and payment Pc
in time period l'future.

Let "tI,T/utu". be revenue earned on link I
in interval l'future
For each link I compute "tI,T,utu".

Let Fq be fixed cost of upgrading I
Let MI,T,utu". be the maintenance cost of I
in interval l'future

"11,T/u 'ure
RoII,T,utu". = FC,+M"T,utu" ••

End.

Figure 4. Estimating Return-on-Investment on upgraded links

ume of usage. The value of each link then, is the sum total of the money earned by that
link from all customers. By comparing the value of each link with the investment and
maintenance costs, we get a reasonable estimate of the importance of each link to the
NSP's business over a given time period. The algorithm is presented in Figure 5

The algorithm outlined in Figure 5 estimates the price of each flow and equally
distributes the payment among all the links in the path taken by that flow. Notice that
the way we choose to distribute revenues and estimate value of a link is just for "ac
counting simplicity" and by no means an exact measure. It however gives us adequate
perspective about which links are on popular revenue-generating routes. The algorithm
in Figure 5 makes an implicit assumption that there exist alternative paths to every des
tination, and that should a link in one of the paths fail, the alternate path can sustain
the traffic. Otherwise, a bridge link will be worth as much as the revenue earned from
traffic traversing that link. The path redundancy assumption is justified because of two
reasons: fault tolerance of network and computational complexity. Path redundancy is
highly desirable from the perspective offault tolerance. Hence almost every real-world
network can be expected to be a strongly connected graph with redundant paths to ev
ery destination. The computational complexity of estimating whether an alternate path
can sustain the traffic load is prohibitive2• Assuming that alternate paths can sustain

2Por each edge in a given path in an undirected graph, one can estimate the impact of removing an edge
in that path, using a modified shortest path algorithm [4, 5]. But this approach cannot be used for directed
graphs, and the problem is provably harder.

Revenue-Based Resource Investment Decisions in IP Networks 195

the traffic however allows us to perform a fast computation to estimate link value at
the cost of some loss in accuracy.

Input:
Network topology fV and link maintenance costs
Routing tables for time period l'
Customer flow information for time period l'
Customer billing information for time period l'

Output:
The revenue 'Y1,T generated by each link

Algorithm:
For each link 1

Initialize revenue earned by that link, 'Y1,T = 0
Using flow information and topology:

For each flow f
Let n I,t be the number of links in path
taken by f over time interval t
Let bl,t be the number of bytes of f
transmitted in interval t
Let PI be the price for transmitting one byte of f
For small time intervals t

For each link 1 in path

"(1,T = "(1,T + nt"

End.

Figure 5. Distributing revenues among links

We now illustrate our algorithm using an example. Figure 6 shows a network ser
vice provider (NSP) with two customers- XYZ and ABC. XYZ pays a monthly rate of
$20000 for time critical data that it transmits to other locations. ABC pays a monthly
rate of $5000 as data transmission costs. The NSP pays $5000 a month to the backbone
provider for data transmission. The maintenance costs for each link are indicated in the
figure. The figure also shows how much data has been transmitted by each customer
(say in the past month) and which links the data traverses on its way to destinations.
XYZ sends/receives 50MB data on link A-B and A-C and 200 MB data on link B-D.
ABC sends/receives 300 MB data on link A-C. For simplicity, we shall ignore the links
connecting ABC and XYZ to nodes A and B respectively.

Link Maintenance Costs

A-B: $100/month

B-D: $500/month

A·C: $600/month

200MB-xyz

Figure 6. Estimating the Value of a Link
Let us use algorithm to estimate the revenue from each link in this network. We

assume that the entire volume of data over a link was generated in a single flow. Since
payment of customer ABC is $5000, the price of each Megabyte is P ABC = = $16.67.
For customer XYZ, the payment is $20000. Hence p Xy Z = 2ggg0 = $80. ABC has

196 Jagannathan, Altmann and Rhodes

only one flow of volume 300MB over path A-C which contributes $5000 to "f A-C,T.

Customer XYZ has two flows, one over B-A-C and the other over B-D. The former
has a data volume of 50MB and contributes x X 20000 = $2000 each to "fA-B,T

and 'YA-C,T. Similarly, the second flow contributes x 20000 = $16000 to "fB-D,T·

Thus we have, "fA-C,T = $7000, "fA-B,T = $2000, and "fB-D,T = $16000.

5. Discussion
In this paper, we have described a new approach to capacity planning. We illustrated

the power of combining marketing, revenue, and customer usage information. We then
showed that the Dynamic Netvalue Analyzer (DNA), a tool that can aggregate and
analyze raw network data on-the-fly, can be used for this new approach to capacity
planning. In more detail, we outlined algorithms that use DNA-aggregated data for
making investment decisions.

We now discuss some architectural issues and tradeoffs associated with some possi
ble implementations. An important issue that arises is the location of the data collect
ing agents within the network. Network managers are very reluctant to make changes
to the network or install monitoring equipment on important or busy routers. Our archi
tecture does not require DNA at any of the internal or border routers. DNA runs at the
network edge. Because all traffic has to enter or exit through one of these edge-routers,
information collected from these routers is sufficient to capture the entire network sce
nario. Our algorithms do require routing information from the network. One possible
approach is to get a daily update of routing tables from all routers in the network. A
daily snapshot will suffice if internal routes are relatively stable over time. Even in
case of route instability over short intervals of time, our analytical results will not be
significantly affected because capacity planning is a long-term process and uses data
over long intervals of time (often using data gathered over months).

The algorithms we have described are implementation independent. They can be
implemented over a sophisticated network simulation tool, or they can be implemented
inside the monitoring tool itself, thus performing all the analysis on-the-fly. A simu
lation based approach has significant data storage and transportation overheads. To
perform a realistic simulation of observed traffic, we need detailed information about
network flows to be collected, transported and stored at a centralized location. Fur
thermore, the simulation will be computation intensive and could be time consuming.
However, since capacity planning is a long-term process, a dedicated machine can ac
complish the task. A possible optimization is to use "aggregated network data" or
traffic models instead of detailed flow information. This will reduce the accuracy of
the analysis, but will also significantly reduce the data transportation and storage costs.
DNA can be used to perform such traffic modelling [1].

If the second approach is adopted, our algorithms that compute monetary value
of links and customer dissatisfaction are implemented within DNA. This may require
approximations of the price of transmitted data because the actual price charged for
transmission may not be known in real-time (e.g. tiered-pricing plans). Moreover,
some coordination may be required with a network management protocol like SNMP.
Specifically, the network management protocol should trigger alarms whenever link
utilization over observation intervals exceed pre-configured thresholds. This is re
quired to compute the customer dissatisfaction with links. But at the cost of adminis
trative overhead, this approach saves significant data transportation and storage costs.

An important issue concerning our capacity planning vision is in evaluating the
trade-off between information utility and data collection overhead. Data collection and

Revenue-Based Resource Investment Decisions in IP Networks 197

analysis, if done efficiently, can deliver business information, whose value outweighs
the cost of the data collection. We believe that DNA and our algorithms for investment
decisions deliver this efficiency.

References
[1] I. Altmann and L. Rhodes, "Dynamic Netvalue Analyzer - A Pricing Plan Modeling Tool for ISPs Us

ing Actual Network Usage Data", IEEE WECWIS2002, International Workshop on Advance Issues
of E-Commerce and Web-Based Information Systems, 2002.

[2] I. Case, K. McCloghrie, M. Rose and S. Waldbusser, "Protocol Operations for Version 2 of the Simple
Network Management Protocol (SNMPv2)", RFC 1905, 1996.

[3] Y. Diao, I. L. Hellerstein, and S. Parekh, "A Business-Oriented Approach to the Design of Feedback
Loops for Performance Management", Distributed Operations and Management, 2001.

[4] 1. Hershberger and S. Suri, "Vickrey Prices and Shortest Paths: What is an Edge Worth?", IEEE
Symposium on Foundations of Computer Science, 2001.

[5] I.Hershberger, S. Suri and A. Bhosle., "On the Difficulty of some Shortest Path Problems," STACS,
Berlin, 2003.

[6] IPAT, http://www.wandl.comlhtmllipatlIPAT _new.cfm

[7] S. Keshav, "An Engineering Approach to Computer Networking: ATM Networks, the Internet, and
the Telephone Network", Addison-Wesley, 1997.

[8] D. A. Menasce and V. A. F. Almeida, "Capacity Planning for Web Services: Metrics, Models, and
Methods", Prentice Hall PTR, 2002.

[9] NetQuad, http://www.anitetelecoms.com/products/NetQuad.html

[10] NetRule, http://www.analyticalengines.com/

[11] Opnet, http://www.opnet.com .

[12] T. Robertazzi, "Planning Telecommunication Networks", Wiley-ffiEE Press, February 1999.

SESSION 4

Policy-Based Management

Chair: Morris Sloman
Imperial College, UK

POLICY PROVISIONING PERFORMANCE
EVALUATION USING COPS-PR IN A POLICY
BASED NETWORK

A. Corrente, M. De Bernardi, R. Rinaldi
Cefriel, Getronics

Abstract: This paper presents a study carried out to evaluate policy provisioning
performance. by COPS-PR protocol, in a policy based environment. First of
all the prototypes developed are presented. These simulate the component
behavior of the two lower layers of a policy based management system. Then
the various measurements, done on the prototypes, are shown. All measures
are carried out for several scenarios, described through the use appropriate
configuration policies. in an increasing complexity order. It is demonstrated
that the architecture. of COPS-PR is scalable, though the PDP can become a
bottleneck.

Key words: Configuration Management and Policy-Driven Management, Policy Provisioning,
COPS-PR, PRC

1. INTRODUCTION
Configuring networks is becoming an increasingly difficulty task. The problem

exacerbates as networks grow in dimensions (number and type of devices. To face
this growth, administrators discovered that they have new requirements for the
configuration of their networks. One of these new requirements is "configuration
provisioning" to a specific set of devices. An example of this type of configuration
would be instructing all routers, along a path in the network, to provide a specific
quality of service to a particular set of customers. Historically, network operators
used mechanisms and protocols such as SNMP (Simple Network Management
Protocol) [1] and CLI (Command Line Interface) to provision configurations to
network devices. Today these protocols have some difficulties due to their low level
granularity and their device specific nature. Today it's clear that network
administrators and the existing software of configuration management can't face the

http://dx.doi.org/10.1007/978-0-387-35674-7_66

202 A. Corrente, M. De Bernardi, R. Rinaldi

complexity growth of networks. Some IETF working groups (Policy Framework
WG) suggest solving these problems by moving configuration management from
device to network layer. This high level management can be obtained with the
specification of management policies and their mapping into proper configurations,
which have to be distributed to the "right" network devices to be enforced. This
abstraction mechanism allows to have simplified management data and to exploit
commonality across devices. These two features, simplified management data and
re-use of configurations, can lead to the automation of some configuration
management tasks allowing the network to operate with minimum human
intervention. This work presents a study carried out to evaluate the performance of
configuration provisioning by COPS-PR protocol [3], in a policy based network. As
case study we have considered the provisioning of DiffServ (Differentiated
Services) configurations to a DiffServ enabled device. Section two presents the
architecture of a policy based network and the interaction between its components
for the configuration provisioning. Section three presents the developed prototypes.
Section four presents the performance measurements and, finally, section five the
results. The presented work is innovative since it investigates policy provisioning
and, evaluates the efficiency of policy based configuration management.

2. BACKGROUND
Policies are set of rules that allow defining the desired behavior for network

resources or for distributed systems. As defined in [4], policies are a mean to
translate high level objectives into proper configuration of network devices. To be
implemented in an automated environment as a network, policies must be
transformed from abstract rules to functional ones. At this level policies are ECA
(event-condition-action) rules [4). IETF Policy Framework WG works especially on
the "condition action" part to define a UML information model for the
representation of policy information [5] [6]. These models can be extended to
represent policy for a specific management area (e.g. QoS policy information
model). To control a network via policies, an administrator needs a set of software
tools that allow the definition and deployment of policies to network devices. With
"policy based network" we mean the set of tools and systems that are at
administrator's disposal and are policy compliant. The major components of this
architecture are PDP, PEP and COPS-PR protocol. In this work we have studied the
distribution of DiffServ configuration [9].

2.1 PDPIPEP "configuration provisioning" interaction

This subsection describes the interaction between a PDP and a PEP in the
"configuration provisioning" scenario [3].

When a device boots, it opens a COPS-PR persistent connection to its primary
(default) PDP. After the connection is established the PEP sends, information about
itself to the PDP, as a configuration request. This information includes the
controlled device capabilities and PEP specific information used by the PDP to
determine relevant policies for that PEP. In response to this request, the PDP sends

Policy provisioning performance evaluation using COPS-PR in a PBN 203

policies/configurations to the PEP for the enforcement. In the paper we will refer to
this behavior as "start up" interaction. If the PDP detects any events that require a
configuration change, then it sends the changes to the PEP. The events that cause the
PDP to reconfigure policies could be: the deployment request of a new configuration
made by the network administrator, the activation of an higher level policy, the
configuration request to the PDP made by other sources besides the PEP. We have
called this behavior "external event" interaction.

3. THE DEVELOPED PROTOTYPES
During the work have been developed two pairs of PDPIPEP, called "start up"

and "decision", as well as two PIB for the representation of policy information. All
the prototypes have been developed in C++ language on Linux OS (RedHat
distribution, version 6.2). For the development of PDP and PEP we have used a free
set of COPS-PR API (Application Program Interface) developed by the Vovida
Organization.

3.1 The two PIBs

A PIB is a logical database used for policy information which allows the PDP and
PEP to share information in a standard way, using a common information syntax
and semantic. Policy information is represented by PRC (Provisioning Classes) and
related instances PRI (Provisioning Instance). We have developed part of two
different PIBs: the framework [7] and the DiffServ [8] PIB. The implementation of
the first one allows the organization of network device capabilities into an "interface
set", as well as, the representation of the support information, needed by the PDP, to
determine the relevant configurations for a PEP (e.g. role combination). The second
permit to represent policy for the configuration of a DiffServ enabled device
interfaces. The DiffServ PIB knows the concept of "data path" configuration [9].
This is the sequence of processing elements that must elaborate an IP packet so that
it can obtain the correct DiffServ treatment. In our DiffServ PIB implementation the
IP traffic can be classified (by a filter or by an access list); the classified traffic can
be marked with a DSCP (Differentiated Service Code Point) code (by a packet
marker); the marked traffic can be queued as input to a scheduler. Each element (the
filter, the packet marker, the queue and the scheduler), according to standard
DiffServ PIB, is modeled by one or more PRCs and is configured in compliance
with the QoS policy we want to express. We have also implemented some PRCs of
the DiffServ PIB that allow representing the DiffServ capabilities of an interface
(e.g. classification capabilities, queuing and scheduling).

3.2 PDP and PEP

The first pair of PDPIPEP is called "start up". These two prototypes simulate the
interaction between a PDP and a PEP that request its initial configuration ("start up"
interaction, see 2.1). The second pair of PDPIPEP is called "decision". These

204 A. Corrente, M. De Bernardi, R. Rinaldi

prototypes simulate the interaction between a PDP and N PEP, when the PDP
detects an "external event" that involves a (re)configuration of PEPs ("external
event" interaction, 2.1).

Start up PDP and PEP

The start up PDP is a multi threaded server that can manage N start up PEP.
Figure 1 shows the interaction between PDP and PEP.

The PEP connects to the PDP and sends, as COPS-PR request message, the
DiffServ capability, of the interface that it controls, and the information used by the
PDP to determine the relevant configuration for it. The PDP installs the capability in
its own PIBs and, then sends the DiffServ configuration to the PEP in a COPS-PR
decision message. The DiffServ configurations are contained into the DS PIB,
previously loaded in memory by the PDP. The implemented PDP is state-full. To
maintain the correct association between a single PEP and its capability, the PDP
inserts the PEP identifier (PEPid object) and the capability received into appropriate
associative maps. To build the decision message with the DiffServ configuration, the
PDP exploits the DiffServ "data path" concept. The sequence of the constituent
elements of the data path is fixed, while their number and their interconnection
pattern is variable. The PDP obtains the configuration by browsing along the data
path and exploring it completely, using the interconnection information included in
every PRC. The "correct" data path is determined by the PDP using the "role
combination" information received from the PEP. When receiving the decision
message the PEP parses and installs it, copying, the configuration in its own
DiffServ PIB.

Decision PDP and PEP

Our implemented "decision PDP" is a multi threaded server that takes an
operative event and, as response to this, configures N connected "decision PEPs".
The decision messages with the configuration are built as previous. The PEP parses
the received message and installs the configuration in its DiffServ PIB. The
operative event we selected is the Nth COPS OPEN registration message received
by server. This event is simple to implement, to monitor and, from measurement
perspective, it is logically equivalent to an external request or a higher-level policy
activation. Figure 2 shows the interaction between a decision PDP and its client.

Policy provisioning performance evaluation using COPS-PR in a PBN 205

mPIB

PEP
$Ia1 up

PDP
_up

fN(oeg.

LL----ul:I'(rr<&. si:.

(clielll<XPS·PR

Figure 1. PDPIPEP start up interaction.

mPIB

r------OP!;N ____
OPEN

F-DOC
Figure 2. Decision PDPIPEP interaction

4. EXPERIMENTAL ENVIRONMENT
Based on the implemented PDP, PEP, and PIB prototypes a set performance

measurement has been carried out. The executed measures have been designed to
cover, in an exhaustive way, the two lower levels of the architecture of a policy
based network (PDP and PEP). All measures have been also repeated with four
different DiffServ configuration in order to evaluate the impact of the policy
complexity on ihe recorded times. We have used two different test bed. In the first
test bed (called "start up" test bed) a computer is dedicated to the start up PDP
process and a computer is dedicated to the corresponding PEP. In the second test
bed (called "decision" test bed) a computer is dedicated to the PDP process and two
separated machines host up to N PEP running in parallel, with a maximum of 500
processes. In both test beds the computers are connected by a 100 Mbit switched
LAN.

206 A. Corrente, M. De Bernardi, R. Rinaldi

4.1 Measurements

Start up interaction time (Tstart-up).

With this measurement we want to estimate the time for a start up interaction on the
server side. It is done (in the "start up" test bed) with one "start up PDP" and one
"start up PEP", since is improbable that more than one PEP starts up simultaneously,
or that a PEP starts before that the PDP ends to serve the previous one. We measure
the time elapsed between the arrival at the PDP of the first "OPEN" message and the
return of the "send" function of the decision message (Figure 1). Tstart-up will
depend on: the number of the messages exchanged during the interaction, their
dimensions and the processing related to every message (e.g. the necessary time for
the construction of the DEC message). The following table 1 shows the exchanged
messages and their dimensions. One can see how the dimensions of the DEC
message changes according to the contained policy.

Table 1. Message dimension
PEP 7 PDP PEP 7 PDP

#MSG MSG Dim. (Byte) #MSG MSG Dim. (Byte)
1 OPEN(sic) 40

2 CAT(sic)
3 OPEN 40

(Client)
4 CAT(Client)

5 REQ 904
6 DEC Pol. A= 528

Pol. B= 936
Pol. C=1256
Pol. D=1616

Decision time (Tdecision).

With this measurement we want to estimate the time, needed by a "decision
PDP", to provision N "decision PEPs" with a DiffServ configuration. The measure
is done with the "decision" test bed. We measure the time elapsed between the
recording of the "operative event" and the return of the "send" function of the last
decision message to the last served PEP (Figure 2). In this interaction the PDP
process N decision messages, each sent to a PEP. Tdecision will depend on: the
number of the PEPs that must be configured by the PDP and the policy complexity.
The dimensions of the DEC message (see previous table) and the time necessary to
it construction will reflect on the last contributing factor.

Provisioning time (Tprovisioning).

With this measurement we want to estimate the entire provIsioning time,
including the installation time of configurations by the last "decision PEP" (client
side). We measure (in the "decision" test bed) the time elapsed between the sending
of the last PEP registration message (COPS-PR OPEN message) and the installation

Policy provisioning performance evaluation using COPS-PR in a PBN 207

of the DiffServ configuration made by the last PEP served (Figure 2). Also in this
measure, as in the previous one, N decision messages are exchanged and processed.

Policy information base update time, (TPIB).

With this measurement we want to estimate the updating time of the DiffServ PIB
on PEP side. We measure the time elapsed between the return of the "receive"
function of the decision message and the end of the PIB update function. We have
used the ''time stamp counter" of the Pentium processor for time measurements. The
counter is incremented by one every clock cycle and can be used to record the
execution time of a set of instructions. This time is the difference between the value
of the counter just after and just before the instruction block, divided for the
processor frequency. The value of the counter can be read using the assembler
(Intel) instruction RDTSC (read time stamp counter). This method has been chosen
for its high precision (theoretically only one clock cycle) and for its low overhead.
This method is applicable to the proposed measurements with a few other
considerations due to the multi-threaded execution of the PDP.

5. THE PROVISIONED POLICIES, THE RESULTS
This section presents the results. Initially we discuss the policy and the data path,

while the last section deals with the results done on these policies.

5.1 Policy A, basic complexity

This case study considers the scenario of a financial department that is the source
of FTP (File Transfer Protocol) traffic. This traffic must be aggregated and marked
with a DSCP code equal to AF11 (Assured Forwarding 11) for its treatment by
nodes ofthe DiffServ domain. The aggregate flow must be granted 10%- 15% of the
total available bandwidth. Figure 3 shows the data path representing the policy and,
thus, the configurations sent from PDP to PEP for the policy enforcement. Each
rectangle is an entry of a specific PRC of the DiffServ PIB of the PDP. Note how
the condition part of the policy ("IF" part) is translated into an appropriate access
list of the PIB (classifier element and IP filter), while the action part is rendered
through specific PRCs (DSCPMarkAction, Queue, Scheduler) with appropriate
parameters.

208

IIat

IEElIW

neplioa=O
lIkII'I)po=ipv4

dotAddr= 127.0.0.1
doll'l.=O

m:Addr1ll129.164.0.
....... =16
d =O
Oow=o
.... =0 do __ O

65535
mMlnP_O

m:MIIIPort= 6SS35

A. Corrente, M. De Bernardi, R. Rinaldi

IEElIW
I

....... =0
lIkII'I)po=ipv4

127.0.0.1
doIPL=O

srcAddr= 127.0.0.1
_L=O
cbcp=O
fIow=O
pro'iIIO

__ 0

dotMacPott=65535 ._20
_=21

Figure 3. Policy A data path

-. 1'''''". _.0.0

5.2 Policy B, medium complexity

This case study considers the scenario of a design department with a remote
projects database. Thus the main traffic is a FI'P flow to the DB to which a
bandwidth between 15% and 50% (of the total) must be granted, to reflect its
strategic relevance. The FrP flow must be marked as AFll traffic. The department
generates both Telnet and SMTP (Simple Mail Transfer Protocol) traffic in addition
to FI'P. Telnet Traffic is granted 10 - 30% of the bandwidth and is marked as AF12,
while to the SMTP is given 5 - 10% and is marked as AF13.

IEElIW

nepIioa=O
1IkII'I)po=ipv4

dotAddr= 127.0.0.1
dslPL=O

m:Addr = 129.164.0 .
....... =16
cbcp=O
Dow =0
.... =0 do __ O

dotMacPott= 65535
mMlnPort= 0

Figure 4. Policy B data path

Policy provisioning performance evaluation using COPS-PR in a PBN 209

5.3 Policy C, high complexity

This case study considers the scenario of a sub-net source of various traffic flows,
from five different applications. These, however, can be divided into three classes of
traffic: valuable, medium interest and low interest traffic. A single application (e.g.
VoIP) generates valuable traffic which must be marked as EF (expedited
forwarding) and granted 10 - 15% of the total bandwidth. Two different
applications, (e.g. web application and FTP) generate medium traffic which must be
granted 5-10% of the bandwidth with packets marked as AFll and AF12
respectively. Another two applications belong to the low interest traffic class (e.g.
telnet and SMTP) so are allocated 25 - 5% of the bandwidth with packets marked as
AF21 and AF22 respectively.

E=
Prid=O

negation=O
addI'I)pe= ipv4

dslAddr= 127.0.0.1
dstPL=O .rcAddr= 129.164.0.
src:PL= 16
dscp= 0
now=o
pro'=O

ds,Mi_O
ds,MacPorl= 6553S

srcMi_O
sroMaxPort= 6SS3S

Figure 5. Policy C data path

5.4 Policy D, very high complexity

This scenario is similar to the previous one but with traffic from seven different
applications. Three classes of traffic are distinguished. The first one is constituted by
a single EF application with 20 - 25% of the total bandwidth. The other two classes
consist of three applications. Application packets of the first family are marked as
AFli (i = 1,2,3), while application packets of the second as AF2i (i = 1,2,3). To
these two classes is granted a bandwidth between 10% and 20% of the total. The

210 A. Corrente, M. De Bernardi, R. Rinaldi

granted band is divided into the two families as follows: 40 - 60% (of the granted
10% or 20%) goes to family AF1, while 20 30% (of the granted 10% or 20%) goes
to family AF2.

lI!..ElIW
Prid_ 0

neglllDII" 0
addrType.lpv4

dstAddr·121.0,O.1
dstPL.O

IfcAddr.129.164.0.
stePl.16
du:p.O
flow .. 0
prot_ 0

d.tMlnPo, ... O
dltMlcPorl_ 65535

.n:MinPon- 0
stcMuPort_ 65535

5.5 Results

Figure 6. Policy D data path

--',ldaO
f\I.l\!_O.O

Me,hQdawrr
MIIIIl.t ... O,O
Ma"II.., ••

--'rld.lSoD
NUL

Method.w,.
MlnRa' •• IO'Io
MuRI".10'li

This subsection reports the measurement results obtained for the various policies
described above. To compare policies we use, as ordering criteria, the number of the
elements in the corresponding data path and their size of the policy (in bytes) when
inserted into decision message sent by PDP (the fixed overhead of the COPS-PR
protocol is not counted). The following table 2 shows the provisioned
configurations, ordered according to the criteria just expressed.

Start up Time (Tstart up).

Table 3 shows the results for this measure. We have a mean time of 0.365
seconds, which is an acceptable time considered the poor performance of the
computer and the length of the interaction. If we compare the mean value of the
Tstart up we note a substantial independence of this time for the different types of
provisioned policy. This is perhaps because the measured interaction between "start
up PDP" and "start up PEP" is so long that it "masks" the dependency of the PDP
time with the configuration.

Policy provisioning performance evaluation using COPS-PR in a PBN 211

Table 2. Policy element number and dimension
Policy A Policy B Policy C PolicyD
Num Byte Num byte Num Byte Num byte

DATA PATH 48 1 48 1 48 1 48
CLASSIFIER 2 56 2 56 2 56 2 56
CLASSIFIER 2 96 4 192 6 288 8 384
ELEMENT
IPFILTER 2 144 4 288 6 432 8 576
DSCPMARKER 1 40 3 120 5 200 7 280
QUEUE 44 3 132 3 132 3 132
SCHEDULER 40 40 40 2 80
TOTAL 10 468 18 876 24 1196 31 1556

Table 3. Mean and Standard deviation

Policy Mean (sec) Standard deviation

A 0.371377 0.000658
B 0.357130 0.028821
C 0.370961 0.002597
D 0.361734 0.053850

PDP Decision Time (Tdecision)

Figure 7 shows the tendency of the mean PDP decision time with respect to the
function of the number of PEPs that must be provisioned. The trend of this function
are clearly linear with the number of PDP clients (i.e. PEPs). This function indicates
a good architecture scalability with respect to the classical exponential trend of
response time, especially for a high number of PEPs (devices) to configure. The
decision time is variable with policy complexity in a sensible way. Higher
complexity policies grow more quickly, but always linearly.

Total provisioning time (Tprovisioning)

The total provisioning time also has a linear trend with the number of the
connected PEPs (figure 8). The provisioning time is also depends on the
configuration considered. If we calculate the time difference between the function of
figure 8 and that of figure 9 we obtain the function shown in figure 11. From the
trend of this figure we can argue that the total provisioning time (Tprovisioning) is
the sum of the total PDP decision time (Tdecision) plus a constant. It's interesting to
note that the value of this constant term is slightly than Tdecision. In other words,
the PDP time (Tdecision) is the much heavier component of the total provisioning
time of a configuration (Tprovisioning). Thus the PDP is the bottleneck of the
architecture.

Policy Information base update time, TPIB

The pm updating time obviously depends on the DiffServ configuration that we
considered. This time, however, is so short that it's negligible with respect to the

212 A. Corrente, M. De Bernardi, R. Rinaldi

PDP time and its high variability is not visible. Figure 10 shows the mean updating
time on the X axis while the empiric frequencies of the observed time are shown on
the Y axis.

Mean decision lime Provisioning Time

10.00

':
8.00 . 6.00 .r.

• 4.00 d
2.00

0.00

100 200 300 400 SOO 600 50 100 150 200 250

PEP number PEP nuntJer

--+--poIieyA _poIleyB """'*-poIleyC -,-X--poIleyO

Figure 7. PDP decision time Figure 8. Total Provisioning time

T provisioning - T decision Tpib

50 100 150 200 250

0 .•
0.5

l 1 0 .•

0.1
o __ __
0.0014 0.0019 0.0024 0.0029 0.0034 0.0039

PEP nurrtler time (sec)

Figure 9. Provisining time minus decision time Figure 10. PIB installation time

6. CONCLUSIONS
In this paper we presented a range of COPS-PR measures, simulating the

behavior of a policy based network, when acting in the configuration provisioning
scenario. The prototypes are the "start up PDP" and the "decision PDP" and the
client (PEP) developed as part of two different Pffis. We also proposed a simple
way to translate a generic PRC into an object oriented language. The realized
prototypes permit us to evaluate performance of COPS-PR protocol. The estimated
times cover the two lower level of the architecture of a policy based network. In
particular we have determined the linear trends of the PDP decision time for the
provisioning of N PEP, underlining good architecture scalability and of our PDP
prototypes, also for a big number of client (PEP). Further we have determined the
bottleneck of the enquired architecture: the PDP. Finally, we have evaluated the
impact of policy complexity on the overall processing time, pointing out that it is

Policy provisioning performance evaluation using COPS-PR in a PBN 213

negligible in a start up scenario while it's influence is much greater in an "external
event" scenario. It seems that the policy based approach can efficiently be used, in
fact the policy interaction protocol has a linear growth with the number of PEPs, so
the architecture and the protocols proposed by IETF are scalable. One more issue
that can be further investigated is how simple to use are policies and how user
friendly are policy based applications. In fact other specific technology as like as
SNMP, CLI and SCRIPT, able to support "configuration management" were

affected by usability problem.

7. REFERENCES
[1] 1. Case, D. Harrington, R. Presuhna, B. Wijen, "Message Processing and Dispatching for

the Simple Network Management Protocol", RFC 2572, April 1999.
[2] D. Durham, 1. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry, "The COPS (Common

Open Policy Service) Protocol", RFC 2748, January 2000.
[3] K. Chan, 1. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer, R.

Yavatkar, A. Smith, "COPS Usage for Policy Provisioning (COPS-PR)", RFC 3084,
March 2001

[4] R. Wies, "Policy in Network and Systems Management - Formal Definition and
Architecture-", Journal of Network and System Management, volume 2, number 1, March
1994

[5] B. Moore, E. Ellesson, 1. Strassner, A. Westerinen, "Policy Core Information Model",
RFC 3060, February 2001

[6] B. Moore, L. Rafalow, Y. Ramberg, Y. Snir, A. Westerinen, R. Chadha, M. Brunner, R.
Cohen, J. Strassner, "Policy Core Information Model Extensions", internet-draft,
November 2001

[7] M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, R. Sahita, A, Smith, F.
Reichmeyer, "Framework Policy Information Base", internet draft, November 2001

[8] M. Fine, K. McCloghrie, J. Seligson, K. Cha, S. Hahn, C. Bell, A. Smith, F. Reichmeyer, "
Differentiated services Quality of Service Policy Information Base", internet draft,
November 2001

[9] Y. Bernet, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, "An
informal management model for Diffserv routers", internet draft, February 2001.

[10] Vovida organization, www.vovida.org
[11] L. Lewis, "Policy-Based Configuration Management: A Perspective from a Network

Management Vendor", The Simple Times, volume 2, number 1, September 2000
[12] 1. Roese, "Configuration Management Services for the Large Enterprise Network", The

Simple Times, volume 2, number 1, September 2000
[13] L. Lewis, "Implementing Policy in Enterprise Networks", IEEE Communications

Magazine, January 1996.
[14] R. Yavatkar, D. Pendarakis, R. Guerin, "A framework for policy-based admission

control", RFC 2753, January 2000.
[15] Y. Nomura, A. Chugo, M. Adachi, M. Toriumi, "A policy based Networking

Architecture for Enterprise Networks", IEEE Internation Conference on Communications,
1999.

[16] M. Darnianou, N. Dulay, E. Lupu, M. Slarnan, T.Tonouchi, "Tools for Domain-based
Policy Management of Distributed Systems" NOMS2002, April 2002.

DESIGN AND IMPLEMENTATION OF A
POLICY-BASED RESOURCE MANAGEMENT
ARCHITECTURE

Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta
Centre for Communication Systems Research, School of Electronics, Computing and
Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, UK, {P.Flegkas,
P. Trimintzios, G.Pavlou, A.Liotta}@eim.surrey.ac.uk}

Abstract: Policy-based Management can guide the behavior of a network or distributed
system through high-level declarative directives that are dynamically
introduced, checked for consistency, refined and evaluated, resulting typically
in a series of low-level actions. We actually view policies as a means of
extending the functionality of management systems dynamically, in
conjunction with pre-existing "hard-wired" management logic. In this paper,
we first discuss the policy management aspects of a resource management
architecture for IP Differentiated Services networks and we focus on the
functionality of the network dimensioning component. We then present a
detailed description of the design and implementation of the components of
the policy management sub-system needed to b.:: deployed in order to make
our system policy-driven. Finally, we present examples of network
dimensioning policies describing their transformation from their definition by
the operator until their enforcement.

Key words: Policy-based Management, IP Differentiated Services, Network
Dimensioning, Resource Management

1. INTRODUCTION

For years the Internet networking community has been struggling to develop
ways to manage networks. Initial attempts brought mechanisms and protocols that
focused on managing and configuring individual networking devices i.e. the Simple
Network Management Protocol (SNMP). This model worked well in early

http://dx.doi.org/10.1007/978-0-387-35674-7_66

216 Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta

deployments of IP management systems for local and metropolitan area networks
but now, with the evolution of Quality of Service (QoS) models such as the
Differentiated Services (DiffServ) framework, the complexity and overhead of
operating and administrating networks increases enormously. As such, it is very
difficult to build management systems that can cope with the growing network size,
complexity and multi-service operation requirements. There is also a need to be able
to program management systems and network components to adapt to emerging
requirements and subsequently to be able to dynamically change the behavior of the
whole system to support modified or additional functionality. The emerging Policy
based Network Management paradigm claims to be a solution to these requirements.

Policy-based Management has been the subject of extensive research over the
last decade [1]. Policies are seen as a way to guide the behavior of a network or
distributed system through high-level, declarative directives. The IETF has been
investigating policies as a means for managing IP-based multi-service networks,
focusing more on the specification of protocols (e.g. COPS) and the object-oriented
information models for representing policies. Inconsistencies in policy-based
systems are quite likely since management logic is dynamically being added,
changed or removed without the rigid analysis, design, implementation, testing and
deployment cycle of "hard-wired" long-term logic. Conflict detection and resolution
is required in order to avoid or recover from such inconsistencies.

In the next section, we discuss the policy management aspects of a resource
management system for IP Differentiated Services networks; we then focus on the
functionality of the dimensioning component in section 3 and in section 4, we
present a detailed description of the design and implementation of the components
of the policy management sub-system needed to be deployed in order to make our
system policy-driven. Finally, we present examples of network dimensioning
policies, describing their transformation from their definition by the operator until
their enforcement.

2. SYSTEM ARCIDTECTURE

We have designed a system for supporting QoS in IP DiffServ Networks in the
context of the European collaborative research project TEQUILA (Traffic
Engineering for QUality of service in the Internet at LArge scale). This architecture
can be seen as a detailed decomposition of the concept of an extended Bandwidth
Broker (BB) realized as a hierarchical, logically and physically distributed system.
A detailed description can be found in [2]. A classification of the policies applied to
this system was presented in [3]. In Figure 1 we present only the resource
management part of the architecture together with the components of the policy
management sub-system i.e. Policy Management Tool, Policy Repository and Policy
Consumer needed to make the system extensible through policies.

Design & Implementation of a Policy-based Resource Mgmt Architecture 217

High-Level
Specification

0-0 Format
LDAP Schema

Policy-scripts
Execution of
Policies

Dynamic Route
Management

Policy
Management
Tool

High-level Policies may
result in the introduction
of related policies at
lower layers, mirroring
the system's hierarchy:

ND Policies

DRtM/DRsM Policies

Figure 1. Policy-driven Resource Management System
The Network Dimensioning (ND) component is responsible for mapping traffic

requirements to the physical network resources and for providing Network
Dimensioning directives in order to accommodate the predicted traffic demands. We
describe the functionality and algorithms of Network Dimensioning in more detail in
Section 3. The lower level of the system intends to manage the resources allocated
by Network Dimensioning during the system operation in real-time, in order to react
to statistical traffic fluctuations and special arising conditions. This part is realized
by the Dynamic Route (DRtM) and Dynamic Resource Management (DRsM),
which both monitor the network resources and act to medium to short term
fluctuations. DRtM operates at the edge nodes and is responsible for managing the
routing processes in the network. It mainly influences the parameters based on
which the selection of one of the established MPLS Labeled Switched Paths (LSPs)
is effected at an edge node with the purpose of load balancing. An instance of DRsM
operates at each router and aims to ensure that link capacity is appropriately
distributed among the PHBs in that link.

A single Policy Management Tool exists for providing a policy creation
environment to the administrator where policies are defined in a high-level
declarative language and after validation and static conflict detection tests, they are
translated into object-oriented (0-0) representation (information objects) and stored
in a repository. The Policy Repository is a logically centralized component but may
be physically distributed since the technology for implementing this component is
the LDAP (Lightweight Directory Access Protocol) Directory. After the policies are
stored, activation information may be passed to the responsible Policy Consumer in
order to retrieve and enforce them. The Policy Consumer can be seen as a collocated
Policy Decision Point (PDP) and Policy Enforcement Point (PEP) with regards to

218 Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta

the IETF Policy Framework [4]. A detailed description of the design and
implementation of these components is presented in Section 4.

In Figure 1 the representation of the policies at every level of the framework is
also depicted showing that every policy is going through two stages of
translation/refinement in its life-cycle in order to be enforced: first from the high
level specification to an object-oriented format (LDAP objects) and second from the
LDAP objects to a script that is interpreted on the fly, complementing this way
conceptually the management intelligence of the above layer in the hierarchy. For
example, a policy enforced on the DRsM component is actually enhanced
management logic that conceptually belongs to the ND layer of our system.
Although policies may be introduced at every layer of our system, higher-level
policies may possibly result in the introduction of related policies at lower levels,
forming a policy hierarchy mirroring the management system's hierarchy. This
means that a policy applied to a hierarchical system might pass through another
stage of translation/refinement that will generate the policies that are enforced in the
lower levels of the system. It is questionable if the automation of this process is
feasible without human intervention. A more detailed discussion on policy-based
hierarchical management systems can be found in [5].

In the next section, we present the algorithm by which the Network
Dimensioning component calculates the configuration of the network in order for
the reader to understand the examples of policies enforced on this component
presented in the following sections.

3. NETWORK DIMENSIONING ALGORITHM

ND performs the provisioning activities of the system. It is responsible for the
long to medium term configuration of the network resources. By configuration we
mean the definition of LSPs as well as the anticipated loading for each PHB on all
interfaces, which are subsequently being translated by DRsM into the appropriate
scheduling parameters (e.g. priority, weight, rate limits) of the underlying PHB
implementation. ND does not provide absolute values but they are in the form of
ranges, constituting directives for the function of the PHBs, while for LSPs they are
in the form of multiple paths to enable multi-path load balancing. The exact PHB
configuration values and the load distribution on the multiple paths are determined
by DRsM and DRtM respectively, based on the state of the network, but should
always adhere to ND directives.

ND runs periodically, first requesting the predictions for the expected traffic per
Ordered Aggregate [6] (OA) in order to be able to compute the provisioning
directives. The dimensioning period is in the time scale of a week while the
forecasting period is in the time scale of hours. The latter is a period in which we
have considerably different predictions as a result of the time schedule of the
subscribed Service Level Specifications (SLSs). For example, ND might run every
Sunday evening and provide multiple configurations i.e. one for each period of each
day of the week (morning, evening, night).

Design & Implementation of a Policy-based Resource Mgmt Architecture 219

The objectives are both traffic and resource-oriented. The former relate to the
obligation towards customers, through the SLSs. These obligations induce a number
of restrictions about the treatment of traffic. The resource-oriented objectives are
related to the network operation, more specifically they are results of the high-level
business policy that dictates the network should be used in an optimal manner. The
basic Network Dimensioning functionality is summarized in Table 1.

Table 1. Network Dimensioning Algorithm Overview
Input:
Network topology, link properties (capacity, propagation delay, PHBs)
Pre-processing:
Request traffic forecast, i.e. the potential traffic trunks (Tn
Obtain statistics for the performance of each PHB at each link
Determine the maximum allowable hop count K per IT according to the PHB statistics

Optimisation phase:
Start with an initial allocation (e.g. using the shortest path for each m
Iteratively improve the solution such that for each IT find a set of paths:
The minimum bandwidth requirements of the IT are met
The hop-count constraints K is met (delay/loss requirements are met)
The overall cost function is minimized
Post-processing:
Allocate any extra capacity to the resulted paths of each OA according to resource allocation
policies
Sum the path requirements per link per OA, give minimum (optimisation phase) and
maximum (post-processing phase) allocation directives to DRsM
Give the appropriate paths calculated in the optimisation phase to DRtM
Store the configuration into the Network Repository

The network is modeled as a directed graph G = (V, E), where V is a set of
nodes and E a set of links. With each link lEE we associate the following
parameters: the link physical capacity 0 1 , the link propagation delay drop, the set
of the physical queues K, i.e. Ordered Aggregates (OAs), supported by the link.
For each OA, k E K we associate a bound d1k (deterministic or probabilistic
depending on the OA) on the maximum delay incurred by traffic entering link land
belonging to the k E K , and a loss probability pf of the same traffic.

The basic traffic model of ND is the traffic trunk (TT). A traffic trunk is an
aggregation of a set of traffic flows characterized by similar edge-to-edge
performance requirements [7]. Also, each traffic trunk is associated with one ingress
node and one egress node, and is unidirectional. The set of all traffic trunks is
denoted by T .

The primary objective of such an allocation is to ensure that the requirements of
each traffic trunk are met as long as the traffic carried by each trunk is at its
specified minimum bandwidth. However, with the possible exception of heavily
loaded conditions, there will generally be multiple feasible solutions. The design
objectives are further refined to incorporate other requirements such as: a) avoid
overloading parts of the network while other parts are under loaded, b) provide
overall low network load (cost).

220 Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta

The last. two requirements do not lead to the same optimization objective. In any
case, in order to make the last two requirements more concrete, the notion of "load"
has to be quantified. In general, the load (or cost) on a given link is an increasing
function of the amount of traffic the link carries. This function may refer to link
utilization or may express an average delay, or loss probability on the link. Let xf
denote the capacity demand for OA k E K satisfied by link land uf = xf /0,
the link utilisation. Then the link cost induced by the load on OA k E K is a
convex function, fl(uf) , increasing in uf. The total cost per link is defined as
F!(Uj) = 'EJik(uf),where u, = {ufhEK isthevectorofdemandsforallOAsof

kEK
link I. The total cost per link is an approximate function, e.g. Jik(uf) = afuf.

We provide an objective that compromises between the two a) and b), that is
avoid overloading parts of the network and minimize overall network cost:

minimize 'E(F!(Uj)t ='E('EJik(Uf»)n, n 1 (1)
lEE lEE kEK

When n = I, the objective (1) reduces to objective b), while when n --+ 00 it
reduces to a).

Each traffic trunk is associated with an end-to-end delay and loss probability
constraint of the traffic belonging to the trunk. Hence, the trunk routes must be
designed so that these two constraints are satisfied. Both the constraints above are
constraints on additive path costs under specific link costs. However the problem of
finding routes satisfying these constraints is, in general, NP-complete [8]. Given that
this is only part of the problem we need to address, the problem in its generality is
rather complex.

Usually, loss probabilities and delay for the same PHB on different nodes are of
similar order. We simplify the optimization problem by transforming the delay and
loss requirements into constraints for the maximum hop count for each traffic trunk
(TT). This transformation is possible by keeping statistics for the delay and loss rate
of the PHBs per link, and by using the maximum, average or n -th quantile in order
to derive the maximum hop count constraint.

For each traffic trunk t E T we denote as Rt the set of (explicit) routes defined
to serve this trunk. For each 'It E Rt we denote as bll the capacity we have assigned
to this explicit route. We seek to minimize (1), such that the hop-count constraints
are met and the bandwidth of the explicit routes per traffic trunk should be equal to
the trunks' capacity requirements.

This is a network flow problem and considering the non-linear formulation, for
the solution we use the general gradient projection method [9]. This is an iterative
method, where we start from an initial feasible solution, and at each step we find the
minimum first derivative of the cost function path and we shift part of the flow from
the other paths to the new path, so that we improve our objective function (1). If the
path flow becomes negative, the path flow simply becomes zero. This method is
based on the classic unconstraint non-linear optimization theory, and the general
point is that we try to decrease the cost function through incremental changes in the
path flows. A more detailed description of the algorithm is presented in [10].

Design & Implementation of a Policy-based Resource Mgmt Architecture 221

4. DESIGN AND IMPLEMENTATION OF THE
POLICY COMPONENTS

In the following sections, we present and describe the design and
implementation of the policy sub-system components. First in the Policy
Management Tool section, the description of policy definition language as well as
the capabilities of the graphical interface are presented; we then focus on the Policy
Repository where the most important issue is how one models policies in an 0-0
format and then on the Policy Consumer where policies are translated to scripts and
executed on the fly. Examples of policy rules are also presented demonstrating the
different way of representation of the rules at every stage of their life cycle i.e. from
high-level directives to LDAP objects and finally to interpreted scripts realising the
new management logic added through these policies.

4.1 Policy Management Tool

A high-level definition language has been designed and implemented that
provides to the administrator the ability to add, retrieve and update policies in the
Policy Repository. The administrator enters a high-level specification of the policy,
which is then passed to a translation function that maps this format to entries in an
LDAP Directory realizing the Policy Repository (see next section) through LDAP
add operations, according to an LDAP schema of our information model; the latter
has been produced following the guidelines described in [11]. The format of a policy
rule specification is shown below:

[Policy ID] [Group ID] [time period condition] [if {condition [and] [or]}] then
{action [and]}

The first two fields define the name of the policy rule and the group that this
policy belongs to so that the generated LDAP entries should be placed under the
correct policy group entry. The time period condition field specifies the period that
the policy rule is valid and supports a range of calendar dates, masks of days,
months as well as range of times. The following {if then} clause represents the
actual policy rule where the condition and action fields are based on the information
model described earlier in this section. Compound Policy Conditions are also
supported both in the Disjunctive Normal Form (DNF) (an ORed set of ANDed
conditions) and in the Conjunctive Normal Form (CNF) (an ANDed set of ORed
conditions) as well as Compound Policy Actions representing a sequence of actions
to be applied. Our implementation also caters for the notion of rule-specific and
reusable conditions and actions in a way that every time a new policy rule is added,
it first checks if its conditions and actions are already stored in the repository as
reusable entries. If such entries exist, an entry is added with a DN pointer to the
reusable entry under the policy rule object while if not they are treated as rule
specific, placing the condition entry below the policy rule entry.

222 Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta

A compiler has been implemented in order to parse and translate the policy rules
specified with the above syntax using SabieCC [12]. This is an object-oriented
framework that generates compilers by building a strictly-typed abstract syntax tree
that matches the grammar of the language, automatically generates tree-walker
classes and enables the implementation of the actions on the nodes of the tree using
inheritance. Translation classes have been implemented that map the entered policy
rules to LDAP add operations, according to an LDAP schema of our information
model (see next section). Notifications to the corresponding Policy Consumers are
also sent every time a policy rule is successfully added to the repository. The role
attribute of every policy rule is used to distinguish which policy consumer to notify
since this attribute represents the properties of the PEPs that each PDP manages
according to Policy Core Information Model (PCIM)[13].

r---=-'-__ -lI O=_.:7 .. ,=,.=, •• '"" ••--.....
....... .. .• .. :. _

_,-=-... 1 ,-.;..I " ... -.. {n

---=--r
.. ""l . 1 . _... .

.

Figure 2.a) Policy Management Tool Screenshot b) LDAP Browser Instance

A Graphical User Interface (GUI) has been implemented in order for the
administrator to manage policies that are entered in the system (Fig. 2). It provides
capabilities to add new policies, retrieve or delete existing policies. The addition of
the policies can either be done directly by writing the whole policy rule in the format
described previously or follow a wizard that guides the administrator through the
process of creating and entering a new policy to the system step by step. A directory
browser has also been implemented and integrated with the tool that enables the
operator to browse the information stored in a tree-structured repository like the
LDAP Directory. In the browser's design, the idea of a current entry was adopted for
displaying the contents of a tree. Each browser instance has one current entry, which
is a selected tree entry. Its distinguished name (DN), its attributes' types and values,
its superior entry's distinguished name and its subordinate entries' relative
distinguished names (RDNs) are displayed. The current entry's position in the tree
can be identified by the current entry's distinguished name. The user may select any
of the current entry's subordinate entries or its superior entry and make it the
browser's current entry. This way, one can move up and down the hierarchy of the
Directory Information Tree (DIT) that is accessed. If an attribute's entry is a pointer
to another entry, the user can make it the current entry, in which case they still keep

Design & Implementation of a Policy-based Resource Mgmt Architecture 223

the option to go back. In addition, the user is allowed to fill in the DN of the entry to
be displayed in the Current Entry field.

In order to demonstrate the results of the enforcement of policies we used a 10-
node (nodes 0-9) 36-link random topology and a traffic load of 70 % of the total
throughput of the network. Our first example (PI) concerns a policy rule that wants
to create an explicit LSP following the nodes 4, 9, 7, 6 with the bandwidth of the TT
being 2 Mbps that is associated with this LSP. The policy rule is entered with the
following syntax:

If OA==EF and Ingress==! and Egress==§ then Setup LSP 4-9-7-6 2

Mbps (PI)

The second example (P2) of a policy rule concerns the effect of the cost function
exponent in the capacity allocation of the network. As we mentioned earlier by
increasing the cost function exponent, the optimisation objective that avoids
overloading parts of the network is favoured. So, if the administrator would like to
keep the load of every link below a certain point then he/she should enter the
following policy rule in our system using again our policy notation:

If maxLinkLoad > 80% then Increase Exponent by ! (P2)

4.2 Policy Repository

An object-oriented information model has been designed for representing the
network dimensioning policies, based on the IETF Policy Core Information Model
(PCIM) and its extensions (PCIMe) specified in [13] and [14] respectively. One of
the major objectives of such information models is to bridge the gap between the
human policy administrator who enters the policies and the actual enforcement
commands executed at the component in order to realize the business goal of the
administrator. Another goal is to facilitate interoperability among different systems
so that policy consumers that belong to different systems understand the same
semantics of policy and they have a mutual knowledge of how policies are stored in
the policy repository despite the fact that each policy consumer might interpret it
differently. IETF has described a QoS Policy Information Model [15], representing
QoS policies that result in configuring network elements to enforce the policies,
while our information model describes policies that are applied at a higher level
(Network Management Level). Some of these policies may possibly be refined into
lower-level policies mirroring our architecture's hierarchy and finally result into
policies configuring the Network Elements.

In our information model that represents Network Dimensioning policies that
can be enforced in our system, most of the conditions are modeled by using the class
SimplePolicyCondition with instances of the variable and value classes (IF
<variable> matches <value». Some of the actions are modeled by defining classes
derived from the Policy Action abstract class while others are modeled by using the
class SimplePolicy Action with the appropriate aggregations, using instances of the
variable and value classes ("SET <variable> TO <value>"). For example, the
maximum number of alternative trees that the ND algorithm should calculate for
every TT is represented by a pair of maxAltTree variable and IntegerValue classes
as well as the definition of the constant used in the link cost function. In [3] the

224 Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta

policyAction class hierarchy is described in more detail where the
DimensioningPeriodAction class models the policy action that sets the period that
ND is calculating a new configuration, while the NwBwAllocationAction and
LinkB w AllocationAction classes represent the actions that indicate the amount of
bandwidth to be allocated to every OA (depending on the policy condition) at a
network wide level and in every link respectively. The SpareBwTreatmentAction
and OverBwTreatment Action classes represent the policy actions that drive the
post-processing stage of NO as explained in the previous section. The SetLSPAction
class models the setup of an LSP that is defined by policy and the
HopCountDerivationAction class represents the action that influences the way the
derivation of the delay and loss requirements to an upper bound of number of hops
is done.

In Figure 3 the policy rule PI presented as an example in the previous section is
depicted modeled according to PCIM and PCIMe. As it can be seen, it comprises a
compound policy condition which represents a combination of 3 simple policy
conditions in Disjunctive Normal Form (ORs of ANDs) each of them belonging to
the same Group (GroupNumber =1) and a Policy Action represented by the
SetLSPAction class derived form the PolicyAction abstract class defined in PCIM.
The first simple policy condition uses an OA variable which takes integer values
from 1 to 4 (EF is 1, AFlx is 2, etc), the second and third simple policy conditions
use an Ingress node and Egress node variables which take integer values form 0 to 9
for our network topology (the egress node simple policy condition is not shown in
Figure 3 for illustrative purposes). The aggregations used in order to define in order
to define this rule are also depicted as defined in PCIMe.

l'lunt-OAV&.Iun

Irucp,U""11.4)

-.-----... ----.

Class-Po(ieyl.rMeptV.lut
.... ,.,u...(o..9)

A.lP,alion Lc,cnd:
_ PoIie,ccmditionlnPolic:)'R.u.lc
•.•••••
.----- PoI.,,cmdilionlnPoll<)O;olilion

- .- .- PoIiqVoIuelASin-"lel'oli<,ccocfitico
_ .. _ ...

Figure 3. Policy Rule PI according toPCIMlPCIMe

Design & Implementation of a Policy-based Resource Mgmt Architecture 225

Using the same methodology, policy rule P2 is modelled according to
PCIMIPCIMe using a Simple Policy Condition and ExponentAction class derived
from the Policy Action abstract class. These classes are mapped to structural and
auxiliary classes as defined in [11] in order to be stored to an LDAP Directory,
which realizes our Policy Repository.

Since our system described in Section 2 is a large scale distributed system, it is
valid to consider CORBA as the technology to support the remote interactions
between the components. This was the key motivation for mapping the LDAP
functionality to CORBA realizing the Policy Repository as an LDAP Directory
offering a CORBA IDL interface, identical to the LDAP specifications [16], to the
rest of the components. The following Code 1 caption shows the part of the
specification of an LDAP server in Interface Definition Language (IDL) providing a
LDAP search operation to every LDAP client in our system. Note that the CORBA
implementation of the LDAP search operation returns the result in a single message
while the LDAP protocol returns the multiple matching entries in a series of
messages, one for each entry. The results are terminated with a result message,
which contains an overall result for the search operation.

/I ...

typedef string LDAPDN_t;
enum Scope_t {

};

sc_baseObject.
sc_singleLevel.
sc_ wholeSubtree

typedef string Filter_t; /I filter for this implementation
struct SearchResultEntry_Cstruct {

LDAPDN_t objectName;
AttributeLisU attributes;

};

typedef SearchResultEntry _cstruct SearchResultEntry _t;
typedef sequence<SearchResultEntry _t> SearchResultEntryLisU;
interface LDAPServer {

void Search (
in LDAPDN_t baseObject.
in Scope_t scope.
in Filtect filter.
in AttributeDescriptionLisu attributeTypes.
out SearchResultEntryLisu searchResultList

) raises (noSuchObject. invalidDNSyntax. invalidFilterSyntax. generalError);
/I . ..

}; /I interface LDAPServer

Code 1. LDAP Search operation in IDL

226 Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta

4.3 Policy Consumer

Policy Consumers may be considered as the most critical components of the
policy management framework since they are responsible for enforcing the policies
on the fly while the system is running. The key aspect of policies apart from their
high-level declarative nature is that they can also be seen as a vehicle for "late
binding" functionality to management systems, allowing for their graceful evolution
as requirements change. So, a policy capable system should provide the flexibility to
add, change or remove management intelligence while according to traditional
management models, management logic is of static nature, parameterized only
through Managed Objects (MOs) attributes and actions. In order to achieve such
functionality, a policy is eventually translated to a script "evaluated" by an
interpreter with actions resulting in management operations. In [3] a detailed design
and decomposition of the policy consumer was presented where every policy
consumer comprises a Repository Client which retrieves all the LDAP objects
associated with a policy rule, a script generator which is responsible for creating the
script that implements the policy, and a policy interpreter which provides the "glue"
between the policy consumer and the policy-based component and interprets the
script, which includes functions that perform management operations. In the
following paragraphs, we present how the policy rule examples PI and P2 are
translated and enforced by the Policy Consumer.

After the PI rule is correctly translated and stored in the repository, the Policy
Management Tool notifies the Policy Consumer associated with NO that a new
policy rule is added in the repository, which then goes and retrieves. all the
associated objects with this policy rule. From the policy objects the consumer
generates code that is interpreted and executed on the fly representing the logic
added in our system by the new policy rule. In our implementation, we have chosen
TCL as the scripting language due to the ease with which it interfaces with C, since
the NO component is implemented in C. The pseudo code of how the above policy
is realised by the Policy Consumer is shown in caption Code 2.

TIOA: the set of TIs belonging to OA
For each tt; e TT OA we get the following:

vingress, Vegress: ingress, egress nodes
b(tt;): bandwidth requirement oftt;

for each tt; e TT EF do
if «vingress = 4) and (vegross == 6))

add_LSP ("4-9-7-6", 2000)
b(tt;) = b(tt;) - 2000

Else
Policy not executed - TI not found

Code 2. Pseudocode produced for enforcing (PI)
As it can be seen from the above pseudo-code, it first searches for a TT in the

traffic matrix that matches the criteria specified in the conditions of the policy rule
regarding the OA, the ingress and egress node. If a TT is found then it executes the
action that creates an LSP with the parameters specified and subtracts the bandwidth
requirement of the new LSP from the IT in the traffic matrix file so that the ND

Design & Implementation of a Policy-based Resource Mgmt Architecture 227

algorithm will run for the remaining resources. Note that if the administrator had in
mind a particular customer for this LSP then this policy should be refined into a
lower level policy enforced on the DRtM component, mapping the address of this
customer onto the LSP.

The same procedure explained in the previous example is followed again and the
policy consumer enforces this policy by generating a script, which is shown in
Caption C"..::0.=de.::...::.3.:..... __________________ _

maxLinkLoad: the maximum link load utilisation
after the end of the optimisation algorithm
n: the cost function exponent (initially:: I)
Optimisation_algorithm n
while (maxLinkLoad > 80)

n:: n+l
optimisation algorithm n

Code 3. Pseudocode produced for enforcing (P2)
As it can be observed from Figure 4, the enforcement of the policy rule caused

the optimization algorithm to run for 4 times until the maximum link load utilisation
at the final step drops below 80%. The exponent value that achieved the policy
objective was n = 4. There might be cases that rules like the one above will cause
infinite recursion when the algorithm cannot drop the maximum link load below a
certain threshold, so a maximum number of iterations should be defined to avoid
these kind of problems.

90

88

86

..,
82

80
:::i
1;1 78

::;; 76

74

72

2 3 4 5 6

cost function exponent n

Figure 4. Effect of the cost function exponent on the maximum link load utilization

For the purpose of demonstrating the effects of the enforcement of policies in
our system we implemented a TE-GUI shown in Fig. 5. It depicts the topology of
the network that the ND component is calculating a new configuration. The GUI
draws the links of the topology with different colours according to load utilisation
and all the LSPs for every OA created. It has also the capabilities to display overall
statistics for the load distribution for every link per OA as well as statistics for every
step of the ND algorithm i.e. average link utilisation, link load standard deviation,
max link load, running time etc. In the following figure, two snapshots of the TE
GUI are depicted one before and one after the enforcement of the above policies. As

228 Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta

it can be seen, the enforcement of the policies caused the link load to fall under 80 %
(before the enforcement of policies the link: 5->6 was loaded over 90%) as well as
the LSP created by the PI is also drawn.

BJ_· _ ,,'10

,.

.... t ... Oi ..
Ls.t.(l

AcHrI .. U.hS, .. '11ft ",polOiIlDl'II'IMI
I. " I ii_a , I Sl,I:Iod -:OJ

Figure 5. TE-GUI snapshots (a) before and (b) after the enforcement of policies PI
andP2

5. CONCLUSIONS

While most of the work on policies has focused in specifying rules for
configuring network elements, our work addresses issues for defining higher level
(network-wide) policies that apply to a hierarchical distributed management system.
We view policies as a means for enhancing or modifying the functionality of policy
influenced components reflecting high-level business decisions. When designing a
policy-based system, it is very important to identify the parameters that are
influenced by policies resulting in driving the behavior of a system to realize the
administrator's business goals. This decision should take into account the
inconsistencies caused by the coexistence of policies with "hard-wired"
functionality .

In this paper, we presented a policy-driven resource management system and
described the components of such a system, focusing on Network Dimensioning.
We then presented a detailed description of the design and implementation of the
components of the policy sub-system needed to be deployed in order to make our
system policy-driven and finally, examples of network dimensioning policies are
presented describing their transformation from their definition by the operator until
their enforcement.

As a continuation of the work described in this paper, we will be focusing on
defining policies for the rest of the components of the TE system and explore the
issue of the refinement of policies entered at the Network Dimensioning to lower
level policies that apply to Dynamic Resource and Route Management components
forming a policy hierarchy. Also we intend to look at the specification of conflict
detection and resolution mechanisms specific to our problem domain.

Design & Implementation of a Policy-based Resource Mgmt Architecture 229

REFERENCES

[1] M. Sloman. Policy Driven Management For Distributed Systems, Journal
of Network and Systems Management, Vol. 2, No.4, pp. 333-360, Plenum
Publishing, December 1994.

[2] P. Trimintzios et al.. A Management and Control Architecture for
Providing IP Differentiated Services in MPLS-based Networks, IEEE
Communications, special issue in IP Operations and Management, Vol. 39,
No.5, pp. 80-88, IEEE, May 2001.

[3] P. Flegkas, P. Trimintzios, G. Pavlou. A Policy-based Quality of Service
Management Architecture for IP DiffServ Networks, IEEE Network
Magazine, special issue on Policy Based Networking, vol. 16, no. 2, pp. 50-
56, Marchi April 2002.

[4] R. Yavatkar, D. Pendarakis, R. Guerin. A Framework for Policy Based
Admission Control, Informational RFC 2753, January 2000.

[5] P. Flegkas et al .. On Policy-based Extensible Hierarchical Network
Management in QoS-enabled IP Networks, Proceedings of the IEEE
Workshop on Policies for Distributed Systems and Networks (Policy '01),
Bristol, UK, M. Sloman, J. Lobo, E. Lupu, eds., pp. 230-246, Springer,
January 2001.

[6] D. Grossman. New Terminology and Clarifications for DiffServ, IETF
IETF Informational RFC 3260, April, 2002.

[7] T. Li, and Y. Rekhter. Provider Architecture for Differentiated Services and
Traffic Engineering (PASTE) IETF Informational RFC-2430, October
1998.

[8] Z. Wang, and J. Crowcroft. Quality of Service Routing for Supporting
Multimedia Applications, IEEE Journal of Selected Areas in
Communications, vol. 14, no. 7, pp. 1228-1234, September 1996.

[9] D. Bertsekas. Nonlinear Programming, (2nd ed.) Athena Scientific, 1999.
[10] P. Trimintzios et al.. Quality of Service Provisioning through Traffic

Engineering with Applicability to IP-based Production Networks, to appear
in Computer Communications, special issue on Performance Evaluation of
IP Networks and Services, Elsevier Science Publishers, Vol. 26, No.8,
2003.

[11] J. Strassner et al .. Policy Core LDAP Schema, draft-ietf-policy-core
schema-14.txt, January 2002.

[12] E. Gagnon. SableCC, An Object-Oriented Compiler Framework, Master of
Science, School of Computer Science, McGill University, Montreal.

[13] B. Moore et al.. Policy Core Information Model- Version 1 Specification,
IETF RFC-3060, February 2001.

[14] B. Moore et al.. Policy Core Information Model Extensions, draft-ietf
policy-pcim-ext-08.txt, May 2002.

[15] Y. Snir et al.. Policy QoS Information Model, draft-ietf-policy-qos-info
model-04.txt, November 2001.

[16] M. Wahl, T. Howes, S. Kille. Lightweight Directory Access Protocol (v3),
IETF RFC-2251, Decemeber 1997.

BANDS: AN INTER-DOMAIN INTERNET
SECURITY POLICY MANAGEMENT SYSTEM
FOR IPSECNPN

Yanyan Yangt, Zhi (Judy) Fu2, and S. Felix Wu'
JDepartment of Computer Science, University of California, Davis, CA 95616, USA,
{yyyang,s'/wu}@ucdavis.edu, 2Network and Infrastructure Research Lab (NIRL), Motorola
Labs, USA, jfu@labs.mot.com

Abstract: IPSecNPN is widely deployed for users to remotely access their corporate
data. IPSec policies must be correctly set up for VPN to provide anticipated
protection. Manual policy setup is unscalable, inefficient and error-prone.
Automated policy generation to comply with and enforce high-level security
policies is desired but difficult, especially in an inter-domain environment
when a VPN traverse multiple domains. This paper presents a distributed
framework and protocol, BANDS, for inter-domain policy negotiation and
generation. The BANDS architecture consists of two phases: AS (Autonomous
System) route path discovery and an inter-domain collaborative protocol for
policy negotiation among the autonomous systems discovered in the first
phase. Each AS conceptually has one security requirement server responsible
for the task of inter-domain policy negotiation. Following this two-step
process in BANDS, a set of distributed security policies (for the
implementation of policy enforcement) will be automatically
negotiated/generated based on decentralized and predefined security
requirements.

Key words: Inter-domain Security Management, Security Policy Management, IPSecNPN

1. INTRODUCTION

1.1 Security Management for a RemotelMobile Layer-3
Network Node

We had encountered various difficulties when we plugged in our laptop
computers in a foreign domain during a trip, as shown in Figure 1. We did not know

http://dx.doi.org/10.1007/978-0-387-35674-7_66

232 Yanyan Yang, Zhi (Judy) Fu, and S. Felix Wu

the security policies along the route path from our laptops (then being connected to a
remote layer-3 network) or we did not even know what the route path was. In our
home layer-3 network, our own laptops might be protected by an intrusion detection
system as well as some other security counter measures, but, in a foreign domain,
we in general know very little. When our traffic caused conflicts with "some"
security policies along the route path, we did not know what the root cause was (or
even target security gateway). Maybe our destination server was down during that
time. Or, possibly, our SSH requests to certain restricted sites have been dropped by
a particular IPSeclFirewalllNAT gateway on the way. In [7], we have discussed how
such conflicts can occur in the context of IPSecNPN and firewall.

Figure 1. Security management for a remote network node

What we really want is a plug-and-play Internet security management solution.
When we plug in a computer, a laptop, or any layer-3 addressable node under some
InternetNPN access points, within a couple minutes or shorter, our connections to
some corresponding destinations will be established correctly and securely.

One short-term solution to this problem is to establish a bi-directional secure
virtual tunnel from the remote laptop to a "home agent" (similar to MobileIP) in the
home layer-3 network. This tunnel may be a L2VPN, a remote IPSec tunnel, a L2TP
tunnel, a SSH tunnel, or their combination. This approach has two major
shortcomings. First, the traffic will go through sub-optimal route paths, as they must
travel through the home network in both directions. Second, with this approach, the
traffic from the remote laptop will be properly protected by the home network
security gateways because the security gateways will treat them as "trusted home
traffic". But, if the laptop (even if it is at home) wants to connect to a "new"
corresponding destination under a different administrative domain, it is not clear
whether some new "policy conflicts" will arise as we don't know the security
policies at the other end of the communication at that particular moment.

1.2 IPSecNPN Security Policy Management

Internet has been more and more "dynamic" in many ways. In order to provide
secure communications for end-to-end connections, IPSec (Internet Security
Protocol Suite) [10] policies are widely deployed in firewalls/gateways to restrict
access or selectively enforce security operations. Currently, most commercial IPSec
implementations require a manual policy configuration process, which is inefficient
and error-prone. Some IPSec management products (such as CISCO or
NET SCREEN) provide a policy distribution system to allow a centralized policy
server to distribute policies to all the IPSec devices in the same administrative
domain as shown in Figure 2. However, for all the venders we have talked to, none
of their products can provide any "correctness" assurance [7] about the IPSecNPN
policy rules stored in the policy repository in the first place. In other words,
currently, even in an intra-domain environment, commercial IPSecNPN policy tools
cannot generate or validate a set of provably correct policy rules.

BANDS 233

For the purpose of security policy formal analysis, in [1][7], we proposed a
separation principle between security policy and requirement. Based on this
principle, system administrators can unambiguously specify each individual security
model (or individual security requirement) in our policy language. Then, the
collection of such security requirements can be formally and efficiently analyzed for
its correctness and completeness properties. Furthermore, a set of IPSec security
policy rules will be automatically produced for all the PDP (Policy Decision Point) /
PEP (Policy Enforcement Point) devices.

Figure 2. A sample policy distribution system

While our earlier work [1] provides a rigorous framework for security policy
management in an intra-domain environment, we do not yet have a good solution for
securing end-to-end connections across multiple administrative domains. Therefore,
the key contribution in this paper is a distributed and yet scaleable architecture and
protocol for inter-domain IPSecNPN security policy management. The rest of the
paper is structured as follows. Section 2 defines the problem of inter-domain
security policy management. In Section 3, we briefly review the related work. Then,
we present how to solve our target problem as well as different components under
our solution in Section 4. Section 5 gives an example scenario to illustrate the
cooperation and interoperation of each component under the BANDS architecture.
We will also present some preliminary performance evaluation results in Section 6.
Finally, in Section 7, we summarize the paper and outline some future works.

2. TERMINOLOGY AND PROBLEM DEFINITION

2.1 Security Policy versus Requirement

Traditionally there is no rigorous defmition of security requirements and security
policies. As a result, the relationship between them is so vague that the correctness
of security policies cannot be formally and automatically substantiated. The needs to
distinguish high-level security requirements and low-level policies were addressed
in [4][5]. Once the high-level requirements are specified/modified, it should be
possible to determine what kind of low-level policies must be created/changed.

...... -+ A SO-A SG-B B

(., ee)

t¥un. t .. · .)

Figure 3. An example of policy (a), requirement (b) under certain network topology (c)

Therefore, under the BANDS architecture, a two-level security
requirement/policy model is used. The word "policy" means "How should a network
entity or a policy domain handle a particular flow of packets" in the context of

234 Yanyan Yang. Zhi (Judy) Fu. and S. Felix Wu

IPSecNPN. In other words, policy is the command interface between a system
administrator and a network device such that the human administrator can instruct
the device to perform certain IPSecNPN related operations. Once a "policy" rule is
defmed, a network device can unambiguously process the packet flow, including
both packet headers and payloads. The left in Figure 3 is an example of policy. It
specifies that the TCP traffic from A to B will be encrypted through an ESP Tunnel
SA using the triple DES algorithm. And, the unidirectional SA starts at the security
gateway SG-A and ends at B itself. This "low-level" policy specifies how SG-A and
B should process the TCP packets from A to B.

On the other hand, in the context of this paper, the word "requirement" means
"How should a sequence of information bits (the original payload) be handled from
the source to the destination" regardless of any possible IP/IPSec header
transformation on the route path (e.g., IPSec Transport or Tunnel mode, NAT or
NAPT, IP fragmentation and de-fragmentation). In other words, "requirement"
(sometimes we call it "high-level" policy) expresses the administrator's (or the
user's) intentions about the security of some end-to-end information bits across
different administrative domains without concerning low-level security operations.
For instance, in the above SCR (Security Coverage Requirement) shown in Figure 3,
the system administrator specifies that the TCP traffic between A and B must be
encrypted between SG-A and B. And, furthermore, it might be OK to let SG-B to
examine the content (for the purpose of intrusion detection, for example).

Policy and requirement are not one-to-one mapping. Usually, one requirement
can be satisfied by a set of low-level security policy rules. As shown in [1][7], it is
possible to find multiple security policy sets and anyone of them can satisfy the
target security requirement equally well.

In BANDS, IPSecNPN security requirements have four different types:
Access Control Requirement (ACR): ACR is related to a security gateway or
firewall's access control function to some trusted traffic.
Security Coverage Requirement (SCR): SCR applies security mechanism to
prevent traffic from being compromised during the transmission across certain
area. It requires the security protection to cover all links and nodes within the
certain area. Various algorithms of authentication and encryption can be
specified as the parameters in low-level policies.
Content Access Requirement (CAR): Some network nodes may need to access
the content of certain traffic, yet the content cannot be viewed if an encryption
tunnel is built to across it. For example, a content access policy can be defmed to
deny all the encrypted traffic.
Security Associate Requirement (SAR): Security Associations (SA) must be
formed to perform desired security functions, thus there is a need to specify that
some node desire to or not to set up SA with other nodes. Network peers are
allowed to build SA unless explicitly disallowed.

(H'oU-l. dstIl-' prot-TCP ftGPDZt-JUn: dtlUm:t.-JUn') -+
ICA 11lCIrJPtJ..1II1 StzengdPSTIUlBe

rr ... 2 TIIJII«
Tzu.hd-(3)

[0'011-1 _u.-15 pl:DVo'l'CI' -=dI'Ch:t.-AIIX pUIlEt-AInl')
CAll ,lnaryptJ.aa. AuI:JutnU..,aU.ont

Aclae ... ad ...
[_alP-i d.UP-15 prDt-1'CP 1JrOI'0Et.-U1' d.Uart.-AIII') -+ A811HJ
.AR BotznorypUcm

FJ:..-2:ro-5

BCBJ1: EKC 2-4 trusted. 3
BCB.f2: IIDTR 1-' trusted 3
BeatS: ENC 3-6 trusted ..

1485l1li CAR,l: (BNC, AUTH) by"
BARIl: not-ENe 2-5
BAllI!: IlOt-BMC 1-5
BAB.I3: not-JUJ'J'H 1-'

Figure 4. An end-to-end flow with 7 security requirements

BANDS 235

Based on the defmitions, the following policy solution shown in Figure 5 (we
use a linear picture for an intuitive view) satisfies all the requirements. In order to
provide flow protection to satisfy ENC SCRs, two encryption tunnels are built
between 1 and 4, and between 4 and 5. Similarly, to satisfy AUTH SCR, two
authentication tunnels are built between 1 and 3, and between 3 and 4. Obviously,
all the tunnels are built to guarantee the certain protection, without violating any of
the CARs and SARs. Due to the size limit, we only show the formal definition of
one ofthe policies as follows:

Figure 5. The policy solution

However, the following scenario as shown in Figure 6 may happen sometimes.
Each policy satisfies its corresponding requirement, while putting all the policies
together may cause conflicts. In this example, the flow is tunneled to 3 with
authentication. On the other hand, it is tunneled from 2 to 4 with encryption before
the authentication tunnel exits. It's easy to see that the authentication function
applies at 1 and will not be de-applied at the tunnel 2 to 4. Thus, the traffic will be
encapsulated by 1 for authentication and be encapsulated again by 2 for encryption.
When 4 decapsulates and finds out that the destination is 3, the flow will be sent
back to 3. Eventually, 3 will decapsulate the flow and send it to its destination. As a
result, the flow is sent in plaintext from 3 to 4 because of the tunnel interaction,
which violates the original security intentions (requirements). This is one of the
reasons to avoid overlapping tunnels in BANDS architecture.

Figure 6. Overlapping Tunnels that cause conflicts

2.2 Inter-Domain Security Requirement Engineering

Under the BANDS framework, a system administrator and a user will use the
SRSL (Security Requirement Specification Language) to specify one or more
requirements related to either a particular domain (such as AS) or an information
flowlbundle. Then, based on all the requirements we have in the Internet, in [7], we
show that we can automatically and efficiently generate a set of IPSec security
policy rules such that all requirements will be satisfied. Furthermore, if there are any
conflicts among the requirements such that it is impossible to fmd a policy set to
satisfy all the requirements, our program can detect such a case as well.

However, in an inter-domain environment such as Internet, it is practically and
politically impossible, very inefficient, and un-scaleable to "collect all the
requirements in the whole system" and then perform the task of requirement analysis
and policy generation. One trick we can do under this situation is to determine the
exact "route" path from the source of the information flow to the destination. Then,
we can collect the requirements along the route path and then determine how to set
up the security policy rules to satisfy all the security requirements along the route
path. Furthermore, if BANDS detects that it is impossible to satisfy all the
requirements along one particular route path, it might be able to try another route
path (for example, in the case of multi-homing). Finally, we need to worry about
"routing dynamics" in the Internet. Whenever the route is changed, BANDS needs
to decide whether our current policy set has been affected or not. If necessary, we

236 Yanyan Yang, Zhi (Judy) Fu, and S. Felix Wu

need to re-collect the requirements and re-compute the policies such that the security
will not be affected by the routing dynamics.

3. RELATED WORK

Currently, there are mainly two works related to our research, MSME project at
BBN Technologies and one of our research work --- Celestial system at NCSU.
- BBN's MSME architecture

MSME (Multidimensional Security Management and Enforcement) [2] is a
research project being conducted at BBN technologies. It presents multidimensional
architecture to allow each member in the distributed system to maintain its own
policy management system while enabling him to exchange and resolve p·olicies
with other members of the coalition. MSME uses one level policy model to achieve
the correctness of policy management, because there were vague defmitions of
security requirements and policies. The high-level security requirement is defmed in
an abstract format and somehow is mapped into a binding of the implementation, i.e.
security policy. When the policy agreements are exchanged, the policies are
complied to determine any conflict and to resolve it (if any). It is easy to see that, in
MSME architecture, security requirements are exposed when the agreements are
exchanged. Yet, in the network nowadays, people anticipate to keep the requirement
information sharing as minimal as possible.
- Celestial system

The other research work dealing with security policy management is called
Celestial system [3] at NCSU, which was designed to automatically discover
security policies along the network path and dynamically configure security
mechanisms across the network. Similarly, the Celestial system does not have
explicit definition between security requirements and security policies. It just
addresses every node's security capabilities and policies, and the receiver computes
the corresponding policy strategy. Furthermore, the Celestial architecture is an
unscalable and pure centralized security management system, indeed.

4. BANDS: A SECURITY POLICY MANAGEMENT
SYSTEM ARCIDTECTURE

4.1 Architecture overview

As we addressed in Section 2, there is a need to separate high-level requirements
from low-level policies. Therefore, the ultimate aim is to be able to defme high-level
requirements beforehand and to automatically generate the low-level policies. On
the other hand, the information shared must be kept as minimal as possible because
we require only relevant information to be exposed. In order to achieve maximum
autonomy, the principle of providing policy implementers with everything they need
to know to satisfy the relevant requirements, but nothing more, should be respected.
Furthermore, today's Internet acts like a huge distributed system. Therefore a pure
centralized network management model is not ideal enough to provide reliable and
scalable service, which could also guarantee the minimal information sharing.
Therefore, the architecture that we developed adopts a hybrid structure of
centralized and distributed systems. One of the important roles in the architecture is
that every domain (Le. AS) contains a Requirement Server (RS), which is
responsible for cooperation and policy negotiation with other RSs in a distributed
environment, as shown in Figure 7. Based on the architecture of RS, a two-phase

BANDS 237

policy negotiation process is preceded by each RS to generate correct policies
automatically.

Figure 7. An architecture example in a multiple-domain environment

The first step of the overall protocol is to discover the AS route path, in order to
get the RS of each AS involved along the path ready for the incoming negotiation
process. This phase is called "route path discovery", explained in Section 4.4. Based
on the discovered AS route path, each RS should be able to identify the IP addresses
(e.g. with DNS servers or LDAP) of other RSs along the path, such that the RS in
the original AS could fmd out the corresponding security requirements along the
path and exchange those which are relevant to each other. Each RS needs to make
queries to its "neighbor" RS along the path for requirement discovery request. This
requirement discovery phase is followed by policy negotiation. When the RS
receives the negotiation message from the remote RS, it computes the corresponding
policies using the automatical policy generation algorithm, direct approach [1], as
explained in Section 4.5. Eventually, each RS notifies its local routers the security
policies for a certain flow. Hence, under BANDS, we only introduce and add a
requirement server in each domain, which stores routing information, maintains
requirement information and performs policy negotiation, while routers remain
unchanged. From the routers' point of view, the operations of BANDS operation are
transparent, because the routers still carry out the regular router operations. A router
performs its corresponding action only when it receives the policies from its RS .

Refjv.ireJneat Server

...... -""',

Figure 8. The architecture of a Requirement Server

Figure 8 illustrates each AS's RS's architecture, which has several sub
components to interoperate with each other to precede the requirement discovery
and policy negotiation with remote RSs and has interfaces to access its routing
information, requirement information and tunnel information databases.

238 Yanyan Yang, Zhi (Judy) Fu, and S. Felix Wu

4.2 Components

The functionality of the components shown in Figure 8 is described in the
following sections.
a) Routing Management Information Base (Routing MIB) and Local

Requirement Management Information Base (Local Requirement MIB)
All the routing information of local routers is stored in each RS' s Routing MIB

such that the RS will be able to calculate the route path within the AS and the AS
path across the AS. The RS needs to maintain periodical routing update from each of
the routers in the AS through its Information Base Interface. Similarly, all the
security requirements of local routers are stored in each RS's Local Requirement
MIB. Together with the information in the Routing MIB, the Local Requirement
MIB provides the RS the capability of computing the security policy for each local
router for different flows. The RS also needs to maintain periodical requirement
update from each of the routers in the AS through its MIB Interface. And the
consistent maintenance is implemented using SNMP.

Each router runs an SNMP agent to maintain a local database of its
security/routing requirements. Each RS, as SNMP management station, must have
some SNMP management software, which is running one or more processes to
communicate with the SNMP agents within the local domain (i.e. in the same AS)
using SNMP protocol, in order to query the state of an agent's local
requirement/routing information (under PKI infrastructure if necessary).
b) Tunnel Management Information Base (Tunnel MIB)

Since each RS knows what local routers establish what kinds of tunnels with
what remote routers, every RS should be able to make query to each of its neighbors
to fmd out what are the existing tunnels that are related to certain flows. In another
word, with the information in Tunnel MIB, the RS is capable of building a tunnel
map to certain flow, with which it could easily find out all the relevant security
requirements and all the relevant existing tunnels to run the direct approach
algorithm. In addition, the RS needs to maintain periodical tunnel update from each
of the remote RSs because it must delete relevant information from its Tunnel MIB
when some tunnel has been withdrawn.
c) Policy Negotiation Module (PoINegM)

With PoiNegM, the RS negotiates with the remote RS for a set of security
policies. Through Negotiation Interface, the PolNegM not only receives the policy
negotiation requests from the remote RS and responds with its relevant requirement
information to the remote RS, but also informs the appropriate security policy to
each of the routers, which will participate along the route path. It will need to access
the Routing MIB and the Local Requirement MIB to obtain the routing information
for the flow and to gather the requirement details for each of the local routers on the
route path of the flow. After collecting all the information, including the routing
information and existing tunnel information, the PolNegM runs algorithm for each
of the security coverage requirements to obtain the policy solution and then notifies
both the local router and the remote router for the SA establishment.

4.3 Interface between Modules

a) MIB interface
The Information Base Interface provides the access interface between the

database and the Policy Negotiation Module in the requirement server module.
When the PolNegM needs to access the Routing MIB, it sends the query to the MIB
Interface. The interface forwards the message to Routing MIB and sends the
response back to PoiNegM. The same procedure applies to the communication

BANDS 239

between PolNegM and Local Requirement MIB, and between PolNegM and
Routing MIB.
b) Negotiation Interface

The Negotiation Interface provides the communication interface between the
requirement server and the remote requirement server to negotiate security policy.
When the RS contacts the remote RS to exchange requirements and to negotiate the
policies, the Negotiation Interface forwards the negotiation message to the remote
RS's PolNegM component through its Negotiation Interface

4.4 AS Route Path Discovery

The overall protocol consists of two phases, "AS route path discovery" phase
and "collaborative policy negotiation protocol" phase. Before an end-to-end
connection can be established securely, the RS in the original AS needs to initiate
the "AS router path discovery" phase to explore the AS route path to discover all the
RSs that will be involved in the subsequent policy negotiation phase.

Depending on what routing mechanism is used, the route path discovery
strategies could vary. For instance, Border Gateway Reservation Protocol (BGRP)
[11] is an inter-domain aggregated resource reservation protocol for unicast traffic,
in which a sink tree is built for each of the stub domains to perform a destination
based reservation aggregation as shown in the example in Figure 9. If we use it
under BANDS architecture, the overall protocol starts a route path discovery phase
by sending a BGRP PROBE message to the destination. After the initiator gets a
GRAFT message back, the exact AS route path has been probed and reserved. Each
RS that will be involved in the following protocol then needs to sustain the flow
information and launch the PolNegM to prepare for the negotiation.

,,",,,,,

Figure 9, An example of a BGRP reservation sink tree rooted at router 6

4.5 Algorithm: direct approach

Before we dive into the next section for the detailed collaborative negotiation
protocol, we will briefly introduce our automatic policy generation algorithm in each
RS under BANDS, i.e. direct approach presented in [1], an efficient and scalable
way for calculating policies. The algorithm considers one SCR at one time and takes
in other relevant requirements (e.g. CARs and SARs) as parameters. By knowing the
exact route path and the existing tunnels along the path, it computes the solutions to
satisfY one SCR and related requirements without violating any existing tunnels.

To ensure that the generated policy satisfies one SCR without violating
corresponding CARs and SARs, the algorithm starts with the initial (node) graph
with full connection. To remove CAR conflicts, it eliminates all the links crossing
the nodes that have CARs. Then it deletes all the links that starts or ends at the
distrusted nodes. Finally among the rest of the edges, it uses Dijkstra shortest path
algorithm to get the final tunnel solution. To better understand the algorithm, we use
the previous scenario (SCR #2) in Section 2.1 as an example. Figure 10 (a) presents

240 Yanyan Yang. Zhi (Judy) Fu. and S. Felix Wu

the initial primary graph and Figure 10 (b) shows the graph after CAR conflict check
(i.e. after removing all the edges crossing node 4). Then Figure 10 (c) takes away all
of the distrusted edges (i.e. edges that starts or ends at node 2, the distrusted node)
and Figure 10 (d) comes with the final solution.

6

(d)1iNI pohey soMion

Figure 10. An example of direct approach

4.6 The Collaborative Negotiation Protocol

The architecture is designed to provide reliable and secure end-to-end
connections in a distributed environment. On one band, the exact AS route path for a
certain flow needs to be discovered. On the other hand, after the route path is
explored, the sub-components of each RS along the path must collaborate and
negotiate to figure out the appropriate tunnel (policy) solutions to guarantee that all
the security requirements along the route path are satisfied. Our collaborative
negotiation protocol consists of two steps.
1. Requirement Discovery Phase

Procwlurf RlquirfrrMnlDi«OVfry(f1ow; Pnx.m"., a.t/Wqw.".."u(&q,./ltM)
I. ,*a.,u..rouUpoUrojIMjfQwlluwglrMIBbtuQ«. --t 1. "P01'CAR. fnIIIniltlcLocal &qui,."..1Il MlB '¥
1. -fPaIh - MI8/JJ"_&u ..]oJh(/lq><) 2. I*F",SC/i, If" .. P v. c".,...SCF,fromand""rtinJ.oLocoJ /IIquir
J. all CAJW ()1I11N palJt tltrough MlBIItI.rJac.-t J. !*otM1"Wis6 .Mlo prMOUI /IS *I
4. 4. 1f(&q;.SCRand&qAun
5. '*114'0' CAP4 .Itd Ie RIqui,."..1fl s.rwr lhmup lNgotJmJolf InurJQt; • ., J. tIN" hqJrom - MJ8(a.ljl .. ,_Prom(RIq,,fow)
6. For ... ". CAR;. CARLJ.t 6. M/8U_"_&q(&q)
7. NCS...J_&q(CA/i, fuRS) BnJo/Froc.aw.
8. '*Clwclcjo,.a1JSCRsolftMprUltUvough 1118/*'
9. SCRLJ.t - Ml8/JJ"_SCR_lUt(/lq><. '"_IV
1D. /*&quin ... ",Aungobon 'f
jl.P01'.wrySCRilrSCRlJIl
12. I/SCR. Grwlt,lh <j/Dw. WWlfgUt

13. 1Iw.SC/i,_ng/.h=j/cw.8IrWn-"
/4. 1fj/cw.&qA_ = 1
IS, "'."SC/Vrom "'P,../IS
16. NI_S.nd_&q(SC/i, fullS)
17. Ml8/j1l ___ &q(SCP)

18. j1ow.&qAun .. ,.-O
It). 1/ lID SCR /w,,...,, WfYIIII/ and _Xl /IS
2o.lIwnj/cw.&qAgg,ygou = I
BnJ of Froc.aw.

Figure 11. The pseudo code of Requirement Discovery

After the AS route path is discovered, the RS in the original AS should start
phase II to fmd out the requirements. The RS in the first AS sends out a
"Requirement Discovery" message to the RS in the next AS, including the target
security requirements for this end-to-end flow. It is easy for the RS to find out what

BANDS 241

are the local requirements for this certain flow in its Local Requirement MIB. The
RS launches its PolNegM to prepare for the incoming negotiation request from
remote RS. When the "Requirement Discovery" message reaches another RS in
another AS, the RS needs to be prepared to participate in the negotiation and find
out what are the related requirements for the flow. Furthermore, if the flow
requirements could be aggregated with certain local requirements, the RS should be
able to make the required aggregation and notify the RS, that may be affected
accordingly, to update the requirements. If a router on the route path is the one
which has CARs, its RS needs to advertise its CARs to its previous RS through its
Negotiation Interface and the latter propagates them to every RS along the path.
Therefore, for CARs, every RS on the path knows who are the ones that need to
access the content for certain flow. For SARs, because SAR is the security
requirement that two network entities cannot establish Security Associate between
each other, both RSs should maintain the SARs. When the destination RS gets the
"Requirement Discovery" message, it will respond a confirmation message to the
sender and this step fmishes. The pseudo code of the phase is as follows in Figure
II. It should be noted that solid synchronization mechanism should ensure the inter
domain requirement consistency.
2. Policy Negotiation Phase

Next, the initiator RS sends out a "Policy Negotiation" message to the
destination RS. Accordingly, the PolNegM checks its Routing MIB to get the route
path and queries Local Requirement MIB to obtain the relevant requirements. With
the interact tunnel information in the Tunnel MIB, the PolNegM runs the direct
approach algorithm to determine what policy set it will be using. Afterthe solution
is obtained, the RS must inform its neighbor and the next RS on the route path, the
intended policy solution, which will be considered as the existing tunnel as the input
parameters for the direct approach algorithm. If there is no appropriate solution
available, the RS must send an error message back to the original RS to either adjust
the requirements or withdraw the negotiation process. The pseudo code of this phase
is as above in Figure 12.

ProcHlulY PolicyN.gotialion(jJc'YI)
1. /* fAn.ral, poh"ci'fJor Nch SCR */
1, fa Oft th, f'OU14 path a/IMp through MID bu,!jQC, *I
3. rautlpalh = MJBJ_Gtltj0Ul,_Poth(flaw)
4. 1* CMckJor all SC& on 1M palh through MID intltjac, *I
S. SCRlist = MlBIJht_SCRJ.ist{fowl, roul.path)
6. 1* CMckjor all UN tlxiGUng inuracUd llntMls through MIB Inwr;/acfl */
7. BxistTWUMls = MlBCO.CExw_TU1'lMh;(fIow, rctI.tlpaJ.h)
8. f*!Om thrI dirfICt approach to pMfUte 0,. tuJuwl *I
9. 1* Uno soJutionfound, und afail /'M8$Qgf to prwv,ous RS *I
la ForrwrySCRinSCRJ..jsl
J 1. policy "" Nonov,rlappingDilYctApproach(/low, SCR, BxistTunn,!s)
12. if(policy::r NULL) Nl_&nd_Fai/(fuRS)
I J. IM4rcPohcy(pohcy, PoJicyListJ
14. 1* (fa col1firmatWn is lYCfiwd, Mtify lou,,] rouJ,.n ojpohd.s :/If
1 J.I*oIM1"I'IiStI"1Id afoi/ m,s$Qg# back *I
16. !/ a cOllfirmaUon is ,""IINBd
17.lh,n Nl_Notifyjl.out'r(pahcy)
18..1s. N1J;lInd_FaiJ(fuR3)
EndoJProclIdurw

Figure 12. The pseudo code of Policy Negotiation

When the "Policy Negotiation" message reaches the receiver and no error
occurs, the receiver responds with a confirmation message to the sender. As a result,
every RS along the path knows the solution plan is feasible and it will inform the
corresponding local router so that the router could initiate Internet Key Exchange
(IKE) to exchange the session key between itself and the certain remote router and
then set up IPSec Security Associate with the remote router. The specifications of
IKE SA and IPSec SA establishment are in [9] [10].

The overall protocol fmishes when the corresponding routers start to establish
Security Associations with remote routers. Apparently, phase I guarantees the
determination of the exact route path and make resource reservation on it if
necessary. Next, all the RSs participate in the policy negotiation, including

242 Yanyan Yang, Zhi (Judy) Fu, and S. Felix Wu

discovering all of the relevant requirements and calculating the policies. Thus
certain security mechanism and functions could be applied to corresponding
area/links to protect the flow. The security requirement information revealed in the
protocol are just those CARs on the route path that every RS must know to avoid
CAR violation during the policy computation and the existing tunnel information
that is only related to the flow.

5. EXAMPLE SCENARIO

The following example demonstrates the whole operation of the various modules
in the architecture and explains how the collaborative negotiation protocol works
among the network peers. Suppose that there are 6 autonomous systems in the
network using BGRP, each of which has an RS and some routers. Also, we have
some security requirements) at relevant routers as three SCRs (ENC, ordinary, 2, 4,
{3}), (ENC, strong, 3, 6, {4}) and (AUTH, middle, 1, 4, {3}), one CAR (ENC,
AUTH, 4) and three SARs (2,5, ENC), (1, 4, AUTH) and (1, 5, ENC).
1. Discover the route path

Router 1 needs to communicate with router 6 through a strong encryption
mechanism, in our example. It initiates a route path discovery phase by sending a
BGRP PROBE message to router 6. After router 1 gets a GRAFT message back
from router 6, the exact path has been probed and reserved as shown in Figure 13.

Figure 13. Example scenario: The original state after AS route path discovery (a) and after
requirement discovery (b)

2. Discover the requirements
Now the RS in ASI00 should begin the second phase with the requirement

discovery. It sends the "Requirement Discovery" message to next RS in AS200 to
see if there is any related requirement the latter has to share with it. The RS in
AS200 figures out that one of its SCR (ENC, ORD, 2, 4, {3}) could be aggregated
with the original flow requirement to be (ENC, STR, 1,4, {3}). As the SCR.from is
router 1, the RS in AS200 must inform the RS in AS 1 00 of the newly aggregated
requirement so that the latter must consider this new requirement when calculating
the policy while the RS in AS200 must not. When the RS in AS300 receives the
message and notices that there is a CAR related to the flow (ENC, AUTH, 4),
therefore, it passes the CAR to its previous RS (in AS200) and the RS propagates it
to the RS (in ASIOO) through its Negotiation Interface. Until the message reaches
the other end (the RS in AS400), the requirement discovery part fmishes with the
last RS sending back a confirmation message.

For simplicity, we use the abbreviation MID, ORD, STR for MIDDLE, ORDINARY,
STRONG respectively as one of the parameters of the requirements in the figure.

BANDS 243

3. Negotiate the policies
The RS in AS 1 00 gets the confirmation message and thus it could run the

PolNegM to calculate the policy solutions shown in Figure 14 (a) (we use a linear
picture for a intuitive view). Similarly, the RS in AS200 runs the algorithm in the
PolNegM to figure out the policy solution shown in Figure 14 (b). Therefore, the
overall security policy solution is as follows in Figure 14 (c).

I.) @
2 l 4)

6

I.)
2

Figure 14. Example scenario: The policy solution computed by the RS in AS 100 (a) and AS
200 (b) and the final policy solution (c)

6. EVALUATION

We have implemented a simulation program for the BANDS architecture. Under
a simulated network topology, our program takes security requirements file as input
and outputs IPSecNPN policy rules. According to our preliminary performance
results shown in Figure 15, while the number of security requirements increased
dramatically as well as the number of messages transmitted during the whole
process, the number of automatically produced security policies (the actual number
of IPSec tunnels that will be built) increased linearly with the number of
requirements. Because in the direct approach, one SCR requirement is considered at
a time to compute the corresponding policy solution, our algorithm could be
considered as a requirement-based algorithm. Certain requirement-based
aggregation will be performed during "requirement discovery phase", as we show in
the pseudo code. In summary, the BANDS framework from our simulation-based
evaluation is indeed very scaleable and practical. Currently, our simulation program
does not simulate the dynamic routing aspect of BANDS, and therefore, the route
discovery part is omitted. More real network experiments involving routing are with
development, in order to test the correctness and scalability of our architecture.

200 I
4iI , • " ! 180 ...•...••... ••.••.••• . .,- ...

3. Ie<) " ", ... "" ... "" •• ".,,, ... ,,., ••••••••• ,,,, .. ,,",, •• ,,,, ,, ""

:8 140 ".

1
'0 120 , . .

$0 -.. . ..•....••.•••..... -- .. -...•...•.•..• •.•.•••.••..• -..... •.•.•••. ••••••••••••••••••

40 • "" " ·· " ".
"0 --11 20 - •..• _ , •• _ ••.•••.••••••••••.••..••.••••••• - , •

. -'
7(l) Q(4} 11[5) 13(0) 21(1) 24(8) 41(11} 61(12) 8 1(13)

• or fequi,.",..nts ('f 0' dam ')

Figure 15. Experimental results

244 Yanyan Yang, Zhi (Judy) Fu, and S. Felix Wu

7. CONCLUSIONS

We presented a distributed architecture and a collaborative negotiation protocol
for inter-domain Internet security policy management. We introduced the separation
principle between security policies and requirements such that we can express the
security intentions unambiguously. Furthermore, under the BANDS framework, the
low-level policies are automatically generated with high-level requirements defined
in advance. As a result, with the requirement server in each autonomous system in
an inter-domain environment, we could manage the local requirements and calculate
the corresponding policies for a certain flow. The overall protocol includes "AS
route path discovery" phase and "collaborative negotiation protocol". After the AS
route path is discovered, each RS along the AS path participates in the requirement
discovery phase, followed by policy negotiation phase, which are both called the
overall collaborative policy negotiation protocol. During the negotiation phase, the
requirement information shared is kept as minimal as possible, so that only
requirements that are pertinent to the flow are revealed to others.

While the performance simulation we have so far is only for static routing on
some given end-to-end connections, our preliminary results demonstrate that our
framework is very scaleable with respect to the number of automatically generated
policy rules in an inter-domain networking environment. In the future, we will
extend our evaluation to a prototype implementation on a routing network test-bed.

REFERENCES

[1] Z. Fu and S. F. Wu, "Automatic Generation ofIPSECNPN Policies in an Intra-Domain
Environment", 12th International Workshop on Distributed Systems: Operations &
Management (DSOM 2001), October 15-17, 2001, Nancy, France.

[2] M. Condell, G. Patz, R. Krishnan, C. Lynn, "MSME Architecture", December 17, 2001,
BBN Technologies.

[3] C. Xu, F. Gong, I. Baldine, C. Sargor, F. Jou, S. F. Wu, Z. Fu, H. Huang, "Celestial
Security Management System", DARPA Information Survivability Conference and
Exposition(DISCEX2000),IEEE Computer Society Press, Proceedings, pp.162-I72, vol. 1.

[4] Moffett, 1. D., "Requirements and Policies", Position paper for Workshop on Policies in
Distributed Systems, 15-17 November 1999, HP- Laboratories, Bristol, UK.

[5] Moffett, J. D., Sloman, M. S., "Policy Hierarchies for Distributed Systems Management",
IEEE Journal on Selected Areas in Communication, 11(9), 1404-1414.

[6] Z. Fu, "Automatic Generation of Security Policies", Technical Report,
http://shang.csc.ncsu.edulsecpolicy.pdf.

[7] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, "IPSecNPN Security Policy: Correctness,
Conflict Detection and Resolution", IEEE Policy 2001 Workshop, Jan. 2001.

[8] S. Blake et aI., "An architecture for differentiated service," RFC 2475, Internet
Engineering Task Force, Dec.I998.

[9] Dan Harkins et aI., "Proposal for the IKEv2 Protocol", Internet Draft, <draft-ietf-ipsec
ikev2-02.txt>, April 2002.

[10] S. Kent et aI., "Security Architecture for the Internet Protocol", RFC 2401, Internet
Engineering Task Force, November 1998.

[11] P. Pan, E, Hahne, and H. Schulzrinne, "BGRP: A Tree-Based Aggregation Protocol for
Inter-domain Reservations", Journal of Communications and Networks, Vol. 2, No.2,
June 2000, pp. 157-167.

SESSIONS

Monitoring and Performance

Chair: Rolf Stadler
KTH Stockholm, Sweden

PERFORMANCE MANAGEMENT FOR
CLUSTER BASED WEB SERVICES

R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract: We present an architecture and prototype implementation of a performance
management system for cluster-based web services. The system supports
multiple classes of web services traffic and allocates server resources
dynamically so to maximize the expected value of a given cluster utility
function in the face of fluctuating loads. The cluster utility is a function of the
performance delivered to the various classes, and this leads to differentiated
service. In this paper we will use the average response time as the performance
metric. The management system is transparent: it requires no changes in the
client code, the server code, or the network interface between them. The
system performs three performance management tasks: resource allocation,
load balancing, and server overload protection. We use two nested levels of
management mechanism. The inner level centers on queuing and scheduling
of request messages. The outer level is a feedback control loop that
periodically adjusts the scheduling weights and server allocations of the inner
level. The feedback controller is based on an approximate first-principles
model of the system, with parameters derived from continuous monitoring. We
focus on SOAP-based web services. We report experimental results that show
the dynamic behavior of the system.

1. INTRODUCTION

Today we are seeing the emergence of a powerful distributed computing
paradigm, broadly called web services [17]. Web services feature ubiquitous
protocols, language-independence, and standardized messaging. Due to these
technical advances and growing industrial support, many believe that web services
will play a key role in dynamic e-business [2]. In such an environment, a web
service provider may provide multiple web services, each in multiple grades, and
each of those to multiple customers. The provider will thus have multiple classes of

http://dx.doi.org/10.1007/978-0-387-35674-7_66

248 R. Levy et al.

web service traffic, each with its own characteristics and requirements. Performance
management becomes a key problem, particularly when service level agreements
(SLA) are in place. Such service level agreements are included in service contracts
between providers and customers and they specify both performance targets, known
as performance objectives, and financial consequences for meeting or failing to meet
those targets. A service level agreement may also depend on the level of load
presented by the customer.

In this paper we present an architecture, and describe a prototype
implementation, of a performance management system for web services that
supports service level agreements. We have designed and implemented reactive
control mechanisms to handle dynamic fluctuations in service demand while
keeping service level agreements in mind. Our mechanisms dynamically allocate
resources among the classes of traffic, balance the load across the servers, and
protect the servers against overload - all in a way that maximizes a given cluster
utility function. This produces differentiated service.

We introduce a cluster utility function that is a composition of two kinds of
functions, both given by the service provider. First, for each traffic class, there is a
class-specific utility function of performance. Second, there is a combiningfunction
that combines the class utility values into one cluster utility value. This
parameterization by two kinds of utility function gives the service provider flexible
control over the trade-offs made in the course of service differentiation. In general, a
service provider is interested in profit (which includes cost as well as revenue) as
well as other considerations (e.g., reputation, customer satisfaction).

We have organized our architecture in two levels: (i) a collection of in-line
mechanisms that act on each connection and each request, and (ii) a feedback
controller that tunes the parameters of the in-line mechanisms. The in-line
mechanisms consist of connection load balancing, request queuing, request
scheduling, and request load balancing. The feedback controller periodically sets
the operating parameters of the in-line mechanisms so as to maximize the cluster
utility function. The feedback controller uses a performance model of the cluster to
solve an optimization problem. The feedback controller continuously adjusts the
model parameters using measurements of actual operations. In this paper we report
the results obtained using an approximate, first-principles model.

We focus on SOAP-based web services and use statistical abstracts of SOAP
response times as the characterization of performance. We allow ourselves no
functional impact on the service customers or service implementation: we have a
transparent management technique that does not require changes in the client code,
the server code, or the network protocol between them.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents the system architecture and prototype implementation.
Performance modeling and optimization analysis are described in Section 4. Section
5 illustrates some experimental results, showing both transient responses and service
differentiation. Section 6 presents conclusions and discusses future work.

2. RELATED WORK

Several research groups have addressed the issue of QoS support for distributed
systems [15]. In this section we summarize the current state of the art.

Performance Management For Cluster Based Web Services 249

The first class of research studies deals with session-based admission control for
overload protection of web servers. Chen et al. [9] proposed a dynamic weighted fair
sharing scheduler to control overloads in web servers. The weights are dynamically
adjusted, partially based on session transition probabilities from one stage to
another, in order to avoid processing requests that belong to sessions likely to be
aborted in the future. Similarly, Carlstrom et al. [7] proposed using generalized
processor sharing for scheduling requests, which are classified into multiple session
stages with transition probabilities, as opposed to regarding entire sessions as
belonging to different classes of service, governed by their respective SLAs.

Another area of research deals with performance control of web servers using
classical feedback control theory. Abdelzaher et al. [I] used classical feedback
control to limit utilization of a bottleneck resource in the presence of load
unpredictability. They relied on scheduling in the service implementation to
leverage the utilization limitation to meet differentiated response-time goals. They
used simple priority-based schemes to control how service is degraded in overload
and improved in under-load. In this paper we use a new technique that gives the
service provider a finer grain control on how the control subsystem should tradeoff
resources among different web services requests. Diao et al. [10] used feedback
control based on a black-box model to maintain desired levels of memory and CPU
utilization. In this paper we use a first-principles model and maximize a cluster
objective function.

Web server overload control and service differentiation using OS kernel-level
mechanisms, such as TCP SYN policing, has been studied in [18]. A common
tendency across these approaches is tackling the problem at lower protocol layers,
such as HTTP or TCP, and the need to modify the web server or the OS kernel in
order to incorporate the control mechanisms. Our solution on the other hand
operates at the SOAP protocol layer, which does not require changes to the server,
and allows for finer granularity of content-based request classification.

Service differentiation in cluster-based network servers has also been studied in
[4] and [20]. The approach taken here is to physically partition the server farm into
clusters, each serving one of the traffic classes. This approach is limited in its ability
to accommodate a large number of service classes, relative to the number of servers.
Lack of responsiveness due to the nature of the server transfer operation from one
cluster to another is typical in such systems. On the other hand, our approach uses
statistical multiplexing, which makes fine-grained resource partitioning possible,
and unused resource capacities can be instantaneously shared with other traffic
classes.

Chase et al. [8] refine the above approach. They note that there are techniques
(e.g., cluster reserves [5], and resource containers [6]) that can effectively partition
server resources and quickly adjust the proportions. Like our work, Chase et al. also
solve a cluster-wide optimization problem. They add terms for the cost (due, e.g., to
power consumption) of utilizing a server, and use a more fragile solution technique.
Also, they use a black-box model rather than first-principles one.

Zhao and Karamcheti [19] propose a distributed set of queuing intermediaries
with non-classical feedback control that maximizes a global objective. Their
technique does not decouple the global optimization cycle from the scheduling
cycle.

In this paper we use the concept of utility function to encapsulate the business
importance of meeting or failing to meet performance targets for each class of
service. The notion of using a utility function and maximizing a sum [13] or a

250 R. Levy et al.

minimum [14] of utility functions for various classes of service has been used to
support service level agreements in communication services. In such analyses, the
utility function is defined in terms of bandwidth allocated (i.e. resources). In our
work, we define the class utility function in terms of the experienced performance
relative to the guaranteed service objective. Thus, it is possible to express the
business value of meeting the service level objective as well as deviating from it.
Further, the effect of the amount of allocated resources on performance level is
separated from the business value objectives.

3. PERFORMANCE MANAGEMENT SYSTEM
ARCHITECTURE AND IMPLEMENTATION

In this section we present the system architecture and prototype implementation
of a management system for web services. This system allows service providers to
offer and manage service level agreements for web services. The service provider
may offer each web service in different grades of service level, with each grade
defining a specific set of performance objective parameters. For example, the
StockOtility service could be offered in either gold, silver, or bronze grade, with
each grade differentiated by performance objective and base price. A prototypical
grade will say that the service customers will pay $10 for each month in which they
request less than 100,000 transactions and the 95th percentile of the response times
is smaller than 5 seconds, and $5 for each month of slower service.

Using a configuration tool, the service provider will define the number and
parameters of each grade. Using a subscription interface users can register with the
system and subscribe to services. At subscription time each user will select a
specific offering and associated grade.

The service provider uses the configuration tool to also create a set of traffic
classes and map a <customer, service, operation, grade> tuple into a specific
traffic class (or simply class). The service provider assigns a specific response time
target to each traffic class. Our management system allocates resources to traffic
classes and assumes that each traffic class has a homogenous service execution time.

We introduce the concept of class to separate operations with widely differing
execution time characteristics. For example the StockOtility service may support
the operations get Quote () and buyShares (). The fastest execution time for
getQuote() could be 10 ms while the buyShares() cannot execute faster that Isec.
In such a case the service provider would map these operations into different classes
with different set of response time goals. We also use the concept of class to isolate
specific contracts to handle the requests from those customers in a specific way.

Figure 1 shows the system architecture. The main components are: a set of
gateways, a global resource manager, a management console, and a set of server
nodes on which the target web services are deployed. We use gateways to execute
the logic that controls the request flow and we use the server nodes to execute the
web services logic. Gateway and server nodes are software components. We usually
have only one gateway per physical machine and in general we have server nodes
and gateways on separate machines. The simplest configuration is one gateway and
one server node running on the same physical machine.

In this paper we assume that all server nodes are homogeneous and that every
web service is deployed on each server. We can deal with heterogeneous servers by

Performance Management For Cluster Based Web Services 251

partitioning them into disjoint pools, where all the servers in a given pool have the
same subset of web services deployed. Refer to [12] for details on how to use server
pools.

The servers, gateways, global resource manager, and console share monitoring
and control information via a publish/subscribe network. In coping with higher
loads, the system scales by having multiple gateways. An L4 switch distributes the
incoming load across the gateways.

Publish/Subscribe Control Network

-- Monitoring and control path

-- Request path

Figure 1. System Overview

3.1 Gateway

We use gateways to control the amount of server resources allocated to each
traffic class. By dynamically changing the amount of resources we can control the
response time experienced by each traffic class.

Gateways dispatch requests to servers. We denote with Ns the capacity of server
s. Ns represents the maximum number of web services requests that server scan
execute concurrently. We select Ns to be large enough to efficiently utilize the
server's physical resources, but small enough to prevent overload and performance
degradation. In the remainder of this paper we assume that Ns is given.

We partition Ns among all gateways and we denote with Ng,s the maximum
number of concurrent requests that server s executes on behalf of gateway g. We
also use wg,c to describe the minimum number of class c requests that all servers will
execute on behalf of gateway g. Each request executes in a separate initial thread.
Thus, we refer to wg,c as server threads. In Section 4 we will describe how we
compute wg,c and Ng,s. while, in this section we describe how gateway g enforces the
wg,c and Ng,s constraints. For each gateway g, we use Wg and N g to denote the
following:

252 R. Levy et af.

(1)

where C and S denote the set of all classes and servers, respectively. Figure 2
illustrates the gateway components. We have used Axis [3] to implement all our
gateway components and we have implemented some of the mechanisms using Axis
handlers, which are generic interceptors in the stream of message processing. Axis
handlers can modify the message, and can communicate out-of-band with each other
via an Axis message context associated with each SOAP invocation (request and
response) [3].

Figure 2. Gateway components

When a new request arrives a classification handler determines the traffic class
of the request. The mapping functions use the request meta-data (user id, subscriber
id, service name, etc.). In our implementation the classification handler uses the user
and SOAP action fields in the HTTP headers as inputs, and reads the mappings from
configuration files. We avoid parsing the incoming SOAP request to minimize the
overhead.

After we classify the requests, we invoke the queue handler, which in turn
contacts a queue manager. The queue manager implements a set of logical FIFO
queues one for each class. When the queue handler invokes the queue manager the
queue manager suspends the request and adds the request to the logical queue
corresponding to the request's class.

The queue manager includes a scheduler that runs when a specific set of events
occurs and selects the next request to execute. The queue manager on gateway g
tracks the number of outstanding requests dispatched to each server and makes sure
that there are at most Ng requests concurrently executing on all the servers. When the
number of concurrently outstanding requests from gateway g is smaller than Ng the
scheduler selects a new requests for execution.

The scheduler uses a weighted round robin scheme. The total length of the round
robin cycle is Wg and the length of class c interval is wg•c• We use a dynamic
boundary and work conserving discipline that always selects a non-empty queue if

Performance Management For Cluster Based Web Services 253

there is at least one. The above discipline guarantees that during periods of resource
contention the server nodes will concurrently execute at least wg,c requests of class c
on behalf of gateway g.

After the scheduler selects a request, the queue manager resumes the execution
of the request's corresponding queue handler. The queue manager collects statistics
on arrival rates, execution rates, and queueing time and periodically broadcasts these
data on the control network.

The dispatch handler selects a server and sends the request to the server, using a
protocol defined by configuration parameters. Our implementation supports SOAP
over HTTP and SOAP over JMS [16). The dispatch handler distributes the requests
among the available servers using a simple load balancing discipline while enforcing
the constrain that at most Ng,s requests execute on server s concurrently on behalf of
gateway g.

When a request completes its execution the response handler reports to the
queue manager the completion of the request's processing. The queue manager uses
this information to both keep an accurate count of the number of requests currently
executing and to measure performance data such as service time.

The gateway functions may be run on dedicated machines, or on each server
machine. The second approach has the advantage that it does not require a sizing
function to determine how many gateways are needed, and the disadvantage that the
server machines are subjected to load beyond that explicitly managed by the
gateways.

3.2 Global Resource Manager

The global resource manager runs periodically and computes Ng,s and wg,c using
the request load statistics and performance measurements from each gateway. Figure
3 shows the global resource manager inputs and outputs. In addition to real-time
dynamic measurements, the global resource manager uses resource configuration
information and the cluster utility function. The cluster utility function consists of a
set of class utility functions and a combining function. Each class utility function
maps the performance of a particular traffic class into a scalar value that
encapsulates the business importance of meeting, failing to meet, or exceeding the
class service level objective. A combining function combines the class utility
function into one cluster utility function. In this paper we have implemented the
combining function as a sum of the utility functions, however, our work could be
extended to study the impact of other combining functions on the structure of the
solution.

254 R. Levy et al.

afera:l Load Servirelirre
N. Measu'ements Measurerrerts

t t t
Gob:Il Resx.r're Manager

• • Ng,s wg,s

Figure 3. Global resource manager inputs and outputs

The global resource manager uses a queuing model of the system to predict the
performance that each class would experience for a given allocation wg•c and the
corresponding Ng•s. The global resource manager implements a dynamic
programming algorithm to find the w g.c and Ng,s that maximize the cluster utility
function. After the global resource manager computes a new set of wg,c and Ng,s

values, it broadcasts them on the control network. Upon receiving the new resource
allocation parameters each gateway switches to the new values of wg,c and Ng,s' We
discuss the algorithm used to predict the class performance and maximize the cluster
utility function in Section 4.

3.3 Management Console

The management console offers a graphical user interface to the management
system. Through this interface the service provider can view and override all the
configuration parameters. We also use the console to display the measurements and
internal statistics published on the control network. Finally we can use the console to
manually override the control values computed by the global resource manager.
Figure 4 shows a subset of the views available from our management console.

X 0 - - l,oJInc:i\tlon\ -.! - -; .. "
CIDSSt:So U...,d OrlOlh AI , RP.UlOvt J RCJl.1LI!ulll16

Gold filD .\00 Th""tVh, "",r.l> 'IGdd I Sllyoef 1000 600 1 9fit.

X Sorvur capacny - ...

Capacity uY'd MD..'(

l!uUIU .w 10: t1

o r

Figure 4. Management console: configuration and control values

Performance Management For Cluster Based Web Services 255

4. MODELING AND OPTIMIZATION

In this section we describe how the global resource manager computes the
resource allocation. First we give an abstract definition of the problem solved. Then
we discuss the simplified queuing model used to predict the performance of each
class for a given resource allocation. Finally, we examine the class utility functions
detail.

4.1 The Resource Allocation Problem

The global resource manager computes the Ng,s and wg,c values to maximize the
cluster utility function over the next control period. We decouple the Ng,s and wg,c

problems by solving for the wg,c first, and then deriving the Ng,s from them.
To determine the wg,c, we use dynamic programming to find the wg,c that

maximizes the cluster utility function Q which we define as the sum of each class
utility function Uc. In particular Q is given by:

Q= I IUc(Wg,J (2)
ceCgeG

subject to:

(3)

(4)

and where C, G and S denote the set of classes, gateways and servers, respectively.
The utility function Ulwg,J defines the utility associated with allowing wg,c requests
of class c traveling through gateway g to concurrently execute on any of the servers.
In the following section we discuss the structure of the utility function and in
Section 4.3 we show how we compute Uc as a function ofwg,c'

As we mentioned in the previous section, we enforce for each server s, a limit Ns

on the maximum number of requests that may be concurrently active on that server
[12]. Once we have computed wg,c' the value Wg derived from equation I represents
the portion of server resources that have been allocated to gateway g. To compute
Ng,s for each gateway g we divide each server s available concurrency Ns among the
gateways in proportion to Wg' In particular for each server s we select the point

[N1,s ,K NnG,s]

where nG is the number of gateways) with integer-valued coordinates constrained by

(5)

256 R. Levy et al.

A A

and near the point [N J s ,K N n s] defined by
• G.

(6)

where N is the total number of resources across all servers as defined in equation 4.

4.2 The Structure of Class Utility Functions

We use Ue to encapsulate the business importance of meeting or failing to meet
class c performance. In this paper, we express each class performance objective as
an upper bound on the average response time and therefore Ue will depend on the
negotiated upper bound as well as the predicted response time given an allocation of
wg,e resources. In the studies reported in this paper, we use a prototypical function to
express the utility of class c when its requests experience a performance te under a
contracted performance objective 1;,. An example for such a function is given below.

ac i/O 5,tc <1/ Jic

U e(1:e,tJ =
(T< -1<)

ae 1:e -lIPe
1/ Jic 5:.tc <1:c

(7)

- ac (te -1:JPc
tc ;:::'1:e

fJe(1:c -1/ JiJ
The function in equation 7 and shown in Figure 5 compares average response

time te to target response time 'X'e for class c as follows. The best possible long-term
average is IIJlc where Jlc is the mean service rate for class c. When te = IIJlc
Ue ('X'e, tJ is constant. Between that point and te =1;" we simply follow a straight line.
For te > 1;, we use a negative polynomial function to map response times bigger than
the objective into a negative value of Ue (1;" tJ. For the plot in Figure 5 we have
used Jlc =1, 'X'e=6, a,,=[1,2,3] and Pe=[1,3,5]. By increasing a" we control the
business importance of exceeding the target for class c, while by increasing Pc we
can control how fast the business utility degrades when class c experiences a delay
bigger than the objective.

By changing the size and shape of the utility function we can influence how
resource are allocated to each class of traffic and in tum the class performance. A
more detailed description of the concept of the utility function and its impact on the
overall system is given in [12]. In the next section we describe how we estimate the
expected response time te for class c given a scheduling weight ofwg,e'

Performance Management For Cluster Based Web Services 257

Figure 5. Utility function

4.3 System Modeling

To predict the average response time Ig•e given a proposed allocation wg,e we use
the Qbserv,$d arrival rate, response time, and the previous allocation values, denoted
by c' tg c ' and Wf c ' respectively' we use im MIMI queue [II] to model the response time behavior of requests of
class c through gateway g, i.e., we assume that Ag,c is evenly divided
among the w.g c server threads that have been concurrently executing all requests of
class c travellng through gateway g during the previous control cycle, Using this
assumption we compute the equivalent service rate of the MlMII queue that has
been handling the fraction of requests served by one of the wg,e threads. The
equivalent service rate is given by:

(8)

Figure 6 exemplifies the above assumption. We now use j1g c to predict the
response time of all class c requests traveling through gateway g ni the next control
cycle under an allocation of wg,c threads, as follows

(9)

In the previous calculation we have assumed that the request load in the new
cycle is equal to the previous one.

Using equation 9 and 7 we can express the utility Uc (fe, tJ as a function of the
expected allocation Wg,co Using dynamic programming we can then compute the set
of wg,e that will maximize the cluster utility function,Q in equation 2 under the
constraints in equation 3.

258 R. Levy et al.

- IIII®-- thread 1
Ag,c /wg,c

- IIII®-- thread 2
Ag,c /wg,c

Ag,c • •
•
• - IIII®-- thread wg,c

Ag,c /Wg,c

14
11 iig,c

14
tg,c

Figure 6. Modeling the response time behavior for class c requests handled by gateway g

The resource allocation methodology described in this section will achieve an
optimal resource allocation only under the assumptions mentioned above. For all
other cases our methodology achieves a sub-optimal solution. Given the nature of
our system an optimal allocation can be determined only by simulation and
extensive search. More work is required to determine the difference between our
approach and an optimal allocation of resources. In [12] we report the results of
several experiments indented to study the effectiveness of this approach. In the next
section we report a subset of these experiments.

5.

In order to illustrate the fundamental behavior of the system, the following
experiments were conducted using a combined gateway and server machine, while
another machine was used to generate the traffic load.

During the experiment, clients connect to the gateway and send requests to a
synthetic service, with exponentially distributed service time. The service alternates
between CPU-bound processing and sleeping. The sleeping intervals are intended to
emulate periods in which a process awaits response from a back-end server or
database.

In order to determine the desired Ns for the one server, we examined the system
throughput for various settings of Ns. In these experiments, the load consisted of
only one traffic class, and we ensured that the request queue was always non-empty.
As shown in Figure 7, a maximum throughput of 23.5 requests/sec is achieved at an
Ns of 10. For larger values of Ns the CPU reaches saturation and the overhead begins
to degrade the server throughput. In the experiments reported below Ns was always
set to 10.

In the following experiment, clients are classified into two types: gold and silver.
The gold clients' service level agreements specify a performance objective of 1 sec
average response time, while the silver clients' service level agreements specify a 2
sec average response time target.

Performance Management For Cluster Based Web Services

25

'U' 20 .,
-a.
g
s 15
Q.
.c

'" " e
10

5

Number of concurrent executions

Figure 7. Throughput vs requested maximum number of concurrent executions

259

This experiment emulated an infinite client population, where initially the server
was subjected to lreq/sec from gold clients and 11.5req/sec from silver clients.
After lOOsec, the gold traffic rate was increased to 1l.5req/sec, which brought the
total load close to the system capacity. We show the effect of this change in traffic
on response time in Figures 8. Since the invoked service spends a good portion of its
time performing CPU-bound processing, the service time increases as the degree of
concurrency of executing requests increases. This experiment demonstrates that the
control mechanism immediately started to react to the load changes in order to
maximize the cluster utility. In this experiment, the control cycle for the global
resource manager was set to JOsec. We smoothed the load and response time
statistics used by the global resource manager over a 30sec intervals using a sliding
window. The plot in Figures 8 shows values smoothed by that 30sec-sliding
window. We report more details on these experiments as well as additional
experiments, with specific settings, in [12].

6. CONCLUSIONS AND FUTURE WORK

We have presented an architecture and a prototype implementation of a
performance management system for cluster-based web services. The management
system is transparent and allocates server resources dynamically so to maximize the
expected value of a given cluster utility function. We use a cluster utility to
encapsulate business value, in the face of service level agreements and fluctuating
offered load. The architecture features gateways that implement local resource
allocation mechanisms. A global resource manager solves an optimization problem
and tunes the parameters ofthe gateway's mechanisms. In this study we have used a
simple queuing model to predict the response time of request for different resource
allocation values. Feedback controllers based on first-principles model of the system

260 R. Levy et al.

converge quickly and with fewer oscillations than controllers based on a black-box
model.

Our work can be extended in several directions. Our platform could be enhanced
with additional management functionality such as policing, admission control and
fault management. We will need to develop more sophisticated models of web
services and web services traffic loads to study and predict platform performance
under different service and traffic conditions. The effect of control parameters, such
as control cycle, on the performance of the feedback controller needs further study.
We could refine our global resource manager by adding black box and hybrid
control techniques. Finally, we will need to study the impact of using other
scheduling algorithms on the end-to-end resource management problem, especially
in the presence of multiple gateways.

Average Response Time

" ,

I: r \ i\
CD 1'. t' a E " , ,
'; 2OC() ··-------------/-------·\----t---t--------------------------.-----.

!: : : :il' 1500 ':):,
:" :: : : ,.
: :: !,

500

200 300 400 500 600 700
lime (sec)

Figure 8. Response time for infinite client population experiment

REFERENCES

[1] T. Abdelzaher, K. Shin, and N. Bhatti, "Performance Guarantees for Web Server End
Systems: A Control-Theoretical Approach", IEEE Transactions on Parallel and
Distributed Systems, Vol. 13, No. I, Jan 2002.

[2] S. Aissi, P. Malu, and K. Srinivasan, "E-Business Process Modeling: The Next Big
Step", IEEE Computer 35(5), pp 55-62, May 2002.

[3] Apache XML Project, htt.p://xml.apache.org/axis/
[4] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar, DP.

Pazel, J. Pershing, and B. Rochwerger, "Oceano SLA based management of a computing
utility", Proceedings of 2001 1nternational Symposium on 1ntegrated Network
Management. Page 14-18. May 2001.

Performance Management For Cluster Based Web Services 261

[5] M. Aron, P. Druschel, and W. Zwaenepoel, "Cluster Reserves: A Mechanism for
Resource Management in Cluster-based Network Servers", ACM Sigmetrics 2000, Santa
Clara, CA, Jun 2000.

[6] G. Banga, J. Mogul, and P. Druschel, "Resource containers: A new facility for resource
management in server systems", Proceedings of the Third Symposium on Operating
Systems Design and Implementation (OSDI'99), New Orleans, LA, Feb 1999.

[7] J. Carlstrom, and R. Rom, "Application-aware Admission Control and Scheduling in
Web Servers", IEEE INFOCOM 2002, New York, NY, Jun 2002.

[8] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, "Managing Energy and
Server Resources in Hosting Centers", Proceedings of J8th ACM Symposium on
Operating System Principles, pages 103-116, Oct 2001.

[9] H. Chen and P. Mohapatra, "Session-Based Overload Control in QoS-Aware Web
Servers", IEEE INFOCOM 2002, New York, NY, Jun 2002.

[10] Y. Diao, N. Gandhi, J. L. HeUerstein, S. Parekh, and D. M. Tilbury, "Using MIMO
Feedback Control to Enforce Policies for Interrelated Metrics With Application to the
ApacheWeb Server", Proc. NOMS 2002, 219-234, Apr 15-19,2002, Florence, Italy.

[II] L. Kleinrock, Queueing Systems - Volume J: Theory, John Wiley, 1975.
[12] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef,

"Performance Management For Cluster Based Web Services", IBM Research Technical
Report, RC22676, Dec 2002.

[13] S. H. Low and D. E. Lapsley, "Optimization Flow Control I: basic Algorithm and
Convergence", IEEEIACM Transactions on Networking, Vol. 7, No.6, Dec 1999.

[14] P. Marbach, "Priority Service and Max-Min Fairness", IEEE INFOCOM 2002, New
York, NY, Jun 2002.

[IS] D. Schmidt, "Middleware for Real-Time and Embedded Systems", Communications of
the ACM, Vol. 45, No.6, Jun 2002.

[16] Sun Microsystems, Java Messaging Service API, http://java.sun.com/products/jms/
[17] S.J. Vaughan-Nichols, "Web Services: Beyond the Hype", IEEE Computer, Feb 2002.
[18] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra, "Kernel Mechanisms for Service

Differentiation in Overloaded Web Servers", In Proceedings of the 200J USENIX
Annual Technical Conference, Boston, MA, Jun 2001.

[19] T. Zhao and V. Karamcheti, "Enforcing Resource Sharing Agreements among
Distributed Server Clusters", Proceedings International Parallel and Distributed
Processing Symposium, IPDPS 2002, Ft. Lauderdale, FL, Apr 2002, pp. 501-510.

[20] H. Zhu, H. Tang, and T. Yang, "Demand-driven Service Differentiation in Cluster-based
Network Servers", IEEE INFOCOM 200J, Anchorage, Alaska, Apr 2001.

FACILITATING EFFICIENT AND RELIABLE
MONITORING THROUGH HAMSA

David Breitgand, 1 , Danny Dolevl , Danny Raz2, and Gleb Shavinerl

1 School of Engineering and Computer Science
The Hebrew University
Jerusalem 91904, lsrael*
{davb, dolev, gleb}@cs.huji.ac.iI
2 Department of Computer Science
The Technion, Haifa 32000, lsraelt
danny@cs.technion.ac.iI

Abstract:

Keywords:

Monitoring is a fundamental building block of any network management system. It is
needed to ensure that the network operates within the required parameters, and to account
for user activities and resource consumption.

In the SNMP paradigm, network management systems have been structured using a
two-tier architecture with managers being thick clients, and the target agents being thin
servers. This architecture may be unreliable in times since it depends on the management
station having an access to the targets. Network distance between the manager and the net
work elements also imposes high overhead traffic, large processing overheads, and long
control loops. To overcome these drawbacks, distributed network management architec
tures based on a middleware layer were proposed. However, such approaches suffer both
from the need to modify network elements, and the high (and sometime hard to predict)
overhead and complexity.

In this paper we study a solution based on a lightweight middleware architecture that
aims primarily at improving availability and efficiency of monitoring applications. We
describe the Highly Available Monitoring Services Architecture (HAMSA), present its im
plementation details, and evaluate its performance. Specifically, we demonstrate how the
system can be easily deployed and used for several monitoring applications. HAMSA
allows a high level of availability and abstraction, with relatively low overhead.

monitoring, network management, high availability, middleware, group communication.

1. Introduction and Motivation
The traditional two-tier structure of network management applications based on the

rigid client/server paradigm with thick managers and thin target agents suffers from
scalability and availability limitations [16].

Among the more prominent problems with this approach are the following.

"This research was supported in part by Intel COMM Grant - Internet Network/Transport Layer & QoS
Environment (IXA), and by Check Point PhD Fellowship program, Israel.
tPartial funding provided by the Fund for the Promotion of the Research at the Technion, and the Technion
V.P.R. Fund - New York Metropolitan research Fund.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

264 David. Breitgand, Danny Dolev, Danny Raz, Gleb Shaviner

• Since the management agents have limited functionality. and only instrument
the access to the management data, all the computations should be performed
at the manager. Thus, large volumes of data should be transferred over the
network, and the traffic overhead can be high.

• As shown in [7] reactive (i.e., event-driven) monitoring schemes are far more
efficient in terms of communication than polling-based ones. However, in stan
dard management frameworks, such as SNMP, configuring application-specific
threshold-driven traps is a non-trivial task, and not always possible.

• Manager station becomes a processing bottleneck as the size of the managed
network increases.

• Manager station is a single point of failure, which hurts availability of the mon
itoring services. Although for some types of management data disconnected
operation of monitoring can be achieved using RMON [15], the disconnected
monitoring operation is not available in the general case. This type of operation,
however, is essential for scaling monitoring services, reducing communication
overhead, and increasing survivability of management services as explained be
low.

• The unavoidable network distance between the management station and (some
of) the network elements makes it very hard to control the elements, due to the
inherent instability imposed by long control loops.

Because of these problems, alternative approaches to monitoring architectures are
being pursued [5, 6, 11, 12,4, 13, 14]. The more important of these emerging ap
proaches and their relationship to our proposal are discussed in Section 5.

One alternative is adopting the popular three-tier architecture. A typical three-tier
monitoring application is described in Figure 1 b. The target agents constitute the
lowest tier and serve as the source of the management data. The monitoring compo
nents are dynamically dispatched at the middle tier. They monitor the target agents
(and, possibly, communicate with other monitoring components) accumulating and
pre-processing the information collected from them. The end-consumers of this infor
mation, the management front-ends, constitute the uppermost tier.

Figure 1 a. Two-tier approach. Figure 1 b. Three-tier approach

Note that in the three-tier architecture, the components residing in the middle tier
can partially or fully implement some of the processing functionality that was previ-

Facilitating Efficient and Reliable Monitoring through HAMSA 265

ously residing exclusively on the manager side. Thus, using this architecture reduces
the traffic overhead, shortens the control loops, and extends the management function
ality. In particular, the middle-tier components can implement efficient application
specific event-driven monitoring schemes. Survivability and availability of the net
work monitoring services are also improved. The mid-tier components can operate
autonomously of the first-tier managers (see Figure lb). When certain parts of the
monitored network become unavailable, e.g., due to a network split, the mid-tier mon
itoring components can continue monitoring in their respective partitions, and later
merge the results. This is impossible in the centralized two-tier architecture.

On the down side, the three-tier client/server applications are much more difficult
to control. Providing high availability of the mid-tier components in spite of host
crashes, network splits and merges is especially challenging.

A standard way of creating a three-tier client/server application is using application
server that provides the mid-tier run-time environment. However, to the best of our
knowledge, no existing application server provides a highly available run-time envi
ronment that copes with the kind of failures described above, and can transparently
restarting failed stateful monitoring components from a consistent point.

Given the complexity of handling distributed three-tier applications in an unpre
dictable environment prone to various network failures, it is both important and chal
lenging to provide a maximally transparent infrastructure that allows a manager to
deploy the needed monitoring components of the second tier in a highly available
manner. This improves the overall failure behavior of the management applications,
allows more efficient applications (such as event-driven monitoring applications), and
therefore contributes to better provisioning of network services in general.

In this paper we propose a novel middleware architecture, HAMSA, that facilitates
reliable and efficient deployment of three-tier monitoring applications. We describe
the main building blocks of this architecture, and demonstrate it power for efficient
and reliable monitoring by describing and analyzing the performance of monitoring
applications implemented using HAMSA.

2. Architecture Overview
HAMSA is an architecture that defines the interfaces, and functionality of a highly

available run-time environment for HAMS A-Compatible Components. We use the
term components (as done in many other middleware software systems) to describe
objects that implement a set of the predefined interfaces allowing dynamically to mix
and match this object with other objects that conform to the same set of interfaces. The
following guarantees on the execution of these components in the second tier generate
the primary added value of HAMSA.

• Failures of the components are masked from the outside entities. As long as
HAMSA has sufficient resources for executing the components, components
function continuously despite component host failures (i.e., the machine run
ning the component), arbitrary asynchronous network splits, merges, and host
recoveries.

• In case of network splits, a single instance of each component is executed per
network partition.

266 David. Breitgand, Danny Dolev, Danny Raz, Gleb Shaviner

• The component whose host machine has failed is guaranteed to resume opera
tion from the last consistent state, i.e., the last state of this component known to
the outside world.

• Component's interactions with the environment may potentially influence the
state of other components, and/or external entities. In this case, interactions
(messages, method invocations) are termed non-idempotent. Failure, and a sub
sequent recovery, of a component being in the middle of a non-idempotent inter
action may violate the original interaction semantics. An advantage of HAMSA
over other middleware architectures is that it preserves the original at-most
once, or at-Least-once semantic of the component interactions in spite of asyn
chronous network failures.

HAMSA highly available execution model is not trivial to achieve. Due to the lack
of space we do not elaborate on these issues. More details will be provided in the full
version of this paper.

These advantages come at a certain price in bandwidth and processing overhead.
In Section 4 we discuss the trade-offs between the extended functionality of HAMSA
and this overhead. Also HAMSA restricts the inter-process communication model to
asynchronous communication and messaging. This communication model, though,
fits well into the NM domain.

A

< RMI/M glng
I V

MLM/ MLMJ

I (A'II" Group cooltollo1 (Donnont Group) Conttoll_

(00. ... nt Component 9 ... (ACIl,. Component X }

I (Activo Compon",t Y }- (Dormant CompontntY)

A I I 1\
Group Communicallon Toolkit)

V

Figure 2a.
HAMSA

Detailed Logical Structure of Figure 2b. Logical Structure of HA-MLM

2.1 Highly Available Mid-Level Managers (HA-MLMs)
The run-time environment with the above properties is provided by a set of virtual

servers termed Highly Available Mid-Level Managers (HA-MLMs) . HA-MLMs are
logical entities that are comprised of one or more physical servers called MLMs (see
Figure 2a). To its users, every HA-MLM appears as a single object. Its interface is
exported by the special component called HA-MLM Controller. Each MLM in a given
HA-MLM is capable of running the HA-MLM Controller, but at any given moment
only a single MLM is executing it. At other MLMs this component is being dormant,
see Figure 2b.

Facilitating Efficient and Reliable Monitoring through HAMSA 267

HAMSA-compatible component is dynamically delegated to a specific HA-MLM
through its controller interface using the HAMSA administration tool. The identity
of the HA-MLM to which the component is being delegated, is part of the run-time
identity of this component.

The executable code of the component is being reliably propagated to all MLMs in
the HA-MLM through the group communication service (e.g., Transis [2]), see Sec
tion 2.4. However, similarly to the HA-MLM controller component, this component
will be executed only at one MLM at any given moment. Other MLMs within the same
HA-MLM keep dormant replicas serving as warm backups for the components whose
host MLM may fail, see Figure 2b. This is different from the more common practice
of keeping components on a component server, and downloading them on demand.
HAMSA performs component propagation as above to increase their availability.

The administrator has limited direct control over the physical location of the com
ponents within HA-MLM. This is motivated by the fact that components may need
to be relocated automatically in case of failures. However, it is possible to influence
the HA-MLM placement decisions by supplying some suggestive policies that are fol
lowed as long as no failures occur.

2.2 HAMSA-compatible Components
To render warm backups of the executing components, MLMs transparently repli

cate the state of the components delegated to their HA-MLM. To achieve high avail
ability, the state is co-located with the component. This is another difference between
HAMSA, and more traditional approaches in which a dedicated database is used to
store the state of the components.

The state of a component consists of Interaction State, and Component-Specific
State. Interaction State consists of all inbound and outbound unprocessed interactions
between this component and external entities. Component-Specific State consists of
arbitrary application-specific objects (e.g., files) that implement a predefined inter
face. The state objects are managed by the components themselves. The predefined
interface allows components to demand state replication without knowing any details
of the replication mechanism. Similarly, MLMs handle a component's state with no
knowledge of its semantics.

Components may interact with other components executing within the same HA
MLM, in different HA-MLM, and outside HAMSA, e.g., with the front-ends residing
in the first tier, and the network elements.

To provide its guarantees, HAMS A requires that all non-idempotent interactions
between the HAMS A-compatible components, and any external entities are made
through HAMSA Message Service. This allows to replicate the interaction part of
a component state transparently.

However, using HAMSA Message Service is feasible only for interactions between
the entities of the second and first tiers. It is not feasible to restrict in this way the
interactions with the managed devices. Therefore, HAMSA is primarily targeted to
monitoring, and not to other kinds of management activities that may change the state
of the target devices.

268 David. Breitgand, Danny Dolev, Danny Raz, Gleb Shaviner

2.3 HAMSA Messaging Service
Allowing a direct interactions of the components with their environment is not

always safe. HAMS A defines that each component is assigned an interaction approver
that policies its interactions. In particular, it may defer interactions with the outside
entities depending on the specific state of the network, e.g., when the network splits.

The interactions between the HAMSA-compatible components and the network
elements are not restricted in any way. These interactions are supposed to be implicitly
reflected in the component-specific state objects, which get replicated on demand from
the components.

Each component is given a unique symbolic name consisting of its host HA-MLM
name and a unique prefix within this HA-MLM. Each time a component is (re-)activated
at an MLM, it updates the external Naming and Directory Service to renew the bind
ing between the component's name and its communication handles. The HA-MLM
assigns two types of communication handles for each component: Mailbox, and Proxy.

Mailbox is needed for directly sending a message to a component. There is one
mailbox per HA-MLM that is shared by all components within this HA-MLM, and
their clients. In order to support remote method invocations while using the HAMSA
consistency and ordering mechanisms transparently, we use the standard proxy ap
proach. Any remote invocation between a HAMSA component and any other party is
intercepted, and processed by the per-component proxy. The proxy creates a message
from the method call performed on it, and relays it to the HAMSA Messaging Service.

HA·MLM 100

Figure 3. Interacting through HAMSA Messaging Service

Figure 3 depicts how a message is communicated to a component. The message is
placed into the mailbox ofthis component by the MLMhosting it, (1). This message is

Facilitating Efficient and Reliable Monitoring through HAMSA 269

not delivered to the target component immediately. Instead, (2), it is being propagated
to all MLMs in the HA-MLM using the group communication service (see the next
subsection). When the message is received at the group communication service level
at all operational MLMs including the sender, (3), this message is assessed for delivery
to the target by consulting the component's interaction approver, (4). If the interaction
apProver permits the interaction, the message is delivered to the active component
proxy, (5). Finally, (6), the proxy delivers the message to the target component.

One restriction of this approach is that HAMSA-compatible component cannot sup
port synchronous method invocations with non-void return values. HAMSA commu
nication model requires that if a caller wants to receive information from a component
it has to supply either a callback interface or to be registered as a recipient at the
mailbox serving this component.

We use the Java programming language to implement HAMSA. We support Java
RMI as an instance of the RMI technology. In our prototype, we implemented HAMSA
Messaging Service as part of Java Messaging Service (JMS).

2.4 Group Communication Service (GCS)
The replication of the components state within a HA-MLM is facilitated by a group

communication toolkit that is not visible outside HA-MLM (see Figure 2a). Such
toolkit systems usually allow processes to form groups that can be addressed by a
single logical name, so that messages can be sent to the group using this name as
an address, and all operational members of the group receive them. HA-MLMs are
realized in HAMSA as process groups.

• Reliable multicast FIFO delivery of messages.

• Per-group notification of membership changes either due to network failures, or
members (i.e., MLMs in the context of HAMS A) voluntarily joining/leaving the
group.

• Virtual Synchrony model of message delivery, which, simply stated, means that
members of the group that go together through the same set of membership
changes receive the same set of messages.

• Partitionable Membership Model which means that although members of the
same group can find themselves in different network partitions (due to asyn
chronous network splits), each connected component can continue its operation,
and when a network merge occurs, the members can resume operation from a
consistent point in the message stream so that the Virtual Synchrony model is
preserved.

There are many group communication toolkits that supply this functionality [1].

3. Monitoring Applications
In this section we present two typical NM applications, demonstrate how one can

deploy them using HAMS A, and explain the benefits NM applications gain from tak
ing the HAMSA approach.

The first NM application is a highly available post-mortem failure analysis system.
In this application, several MIB scalar variables from each network element are being

270 David. Breitgand, Danny Dolev, Danny Raz, Gleb Shaviner

kept in a centralized repository, and when a network failure occurs, the management
system searches this repository for the relevant variables whose values may suggest
the source for the failure (see for example [9]).

In a typical two-tier scenario such a system is deployed at a single station, and
the MIB variables of all network elements are accessed from it. The collected data
is kept in the local file system. When a failure of a monitored element (or of several
elements from the same network region) is detected the collected data is searched and
the behavior of the relevant MIB variables is examined in order to identify the cause
of the problem.

In HAMSA, the centralized polling application and its repository are being handled
transparently by the middleware. The administrator chooses a set of MLMs by either
selecting an existing HA-MLM, or defining a new one, and delegates the polling com
ponent to this HA-MLM. Based on the component placement policy, the controller
activates this polling component at one of the MLMs, while the replicas are kept for
warm backup at other MLMs.

If the network splits, the monitoring continues automatically in each network par
tition where at least one MLM of the split HA-MLM is present. The state (e.g., the
collected MIB variables), is kept locally per replica of the monitoring component in
each network partition. When the network re-merges these autonomously collected
states become available to the administrator.

One question raised by this example concerns different configuration trade-offs
available for the monitoring application that uses HAMSA. Consider the typical net
work configuration illustrated in Figure 4a. In this scenario, the information arrives at
the monitoring station from k LANs. If the monitoring is done by centralized polling
from the management station, and the connectivity to one of the LANs is lost, the
monitoring of its elements cannot continue. In particular, if the failure is caused by a
misconfigured access interface in the LAN's access router, the information about the
cause of the problem will not be available. This is because the connectivity may be lost
before the values of the router's MIB variables suggesting the cause of the problem
are retrieved.

If however the administrator configures HA-MLM in such a way that there is at
least one MLM per LAN, the MLM in the disconnected LAN will re-start a separate
copy of the monitoring as soon as it detects (through the underlying group communi
cation service) that there is a network partition, and all variables in the router's MIBs
will be polled.

Once connectivity is re-established (say, through rolling back the configuration) the
management station will be able to access this information, and the manager will be
able to identify the source of the problem, (i.e., a wrong configuration) and to fix it.

This example also demonstrates the importance of proper HA-MLM configuration.
The administrator may be tempted to have at least one MLM in each LAN, as in our
example. However, since the state of each monitoring component is distributed by
HAMSA to all members of the HA-MLM, the communication costs induced by the
replication may become too high.

In fact, one may choose to create k separate applications, each having a different
HA-MLM containing only a pair of MLMs, as described in Figure 4b. In this case,
the monitoring application for each LAN is running separately on the local MLM (ac
cording to the distance-based component placement policy), and thus being unaffected
by a possible network partition. If, however, the local MLM itself fails, a copy of the

Facilitating Efficient and Reliable Monitoring through HAMSA 211

LAN. LAN 2 LAN' LAN' LAN 2 LAN'

Figure 4a. All MLMs are put into a single
HA-MLM

Figure 4b. Pair-wise Organization

monitoring process for that LAN will be initiated automatically by HAMSA on the
MLM that is co-located with the management station. This configuration also reduces
the overall monitoring traffic when there are no failures, since in this case the monitor
ing is done locally and the state of the monitoring components is synchronized among
the two MLMs only upon the external interactions.

There exists a trade-off between the monitoring overhead traffic, and the overhead
traffic induced by HAMSA due to replication it performs behind the scene. The actual
amount of overhead depends on the total number of MLMs in a HA-MLM, the size
of the application state in HAMS A, the frequency of external interactions, and the
amount of data involved in these interactions.

For example, in the described post-mortem failure analysis application, one can
choose to have a small state (i.e., the serial number of the last poll), or a very large
state (i.e., the actual data of the last 10 minutes polling). Clearly, the latter choice
allows a faster recovery after a failure of a monitoring component, but it generates
much more overhead traffic. We study these trade-offs in Section 4, and show that the
overhead required by HAMSA to provide the extra functionality is much smaller than
the monitoring costs we saved.

A more complex monitoring application demonstrating the inter-process communi
cation capabilities of HAMSA is an event-driven reactive monitoring NM application.
In such an application we are required to detect when a function (typically the sum) of
a number of MIB variables, each belonging to a different network element, exceeds a
predefined threshold (see [7]).

A centralized realization of this application involves a polling station that monitors
all variables at all network elements, computes the function and sets up an alarm if
the value has exceeded the threshold. This solution induces both significant traffic
overhead and computation load at the monitoring station that grow linearly with the
number of polled elements.

To address these issues, several algorithms that combine local computation, traps,
and a centralized monitoring station were proposed in [7]. However, in order to deploy
these algorithms the agent should be able to carryon simple computation tasks and

272 David. Breitgand, Danny Dolev, Danny Raz, Gleb Shaviner

issue traps, which are in many cases beyond the ability of the standard SNMP trap
framework. This is a very good example where the extended functionality of HAMSA
can be utilized. The global reactive monitoring application is executed in HAMS A
in a distributed way. Namely, a number of copies of the same monitoring component
are launched at several HA-MLMs. Each HA-MLM is responsible for its own local
set of devices. According to the algorithm of [7], if a local threshold event has been
detected (in this case the "local" means "with respect to the local set of variables"),
then the other copies of the monitoring component are being notified using HAMSA
messaging service. Then according to the algorithm, a global poll may be initiated,
and, if needed, an alarm is declared. If one of the local monitoring processes fails,
HA-MLM controller restarts it on another MLM, and the system continue functioning.
This, of course, comes with a cost of increasing the monitoring traffic, but paying such
a cost is definitely better than losing the ability to carryon with the critical monitoring
task.

3.1 HA-MLM Administration
HA-MLMs are created through the HAMSA Administration Tool. A screenshot of

HA-MLM creation operation is presented in Figure 5.

FUa hllMlM

enterprise

c:::I haMLM-8

!,gHAM5A »> Add HA-MlM

hilMI MNilIllP' IhaMLM-B-sec

'",MI M UC-.r:IIJ1'UII1: IseCOndary haMLM (or 8 sUb;:;il

11011),,:,,1111' Syltl; Polu.y: I Per message 1

MLM#2

'ute!;! ML.Ms:
MLM#1
MLM#4

G dd 1 [Cancel

Figure 5. Creating new HA-MLM

The administrator picks the MLMs she wishes and groups them into HA-MLMs
with a unique name. The same MLM may be a member of different HA-MLMs. A
logical hierarchy ofHA-MLMs may be formed. The MLMs chosen by the administra
tor form the nominal view of the HA-MLM, as opposed to the current view, which is
always less or equal to the nominal view due to failures. MLMs that are bundled into
a HA-MLM join the process group with the same name. The joining is triggered by
the HA-MLM controller that multicasts a JOIN message into the ENTERPRIZE process
group specifying the nominal view.

Facilitating Efficient and Reliable Monitoring through HAMSA 213

Each time a new member joins, it requests the state of the group from some
one that is already in the group. The state versions are identified using the pair:
< current view >:< epoch number >, where the epoch number is advanced each
time the membership changes.

The communications cost involved in creating a new HA-MLM are dominated by
the following. A single multicast through Transis is needed to propagate a join mes
sage. There are at most k membership change notifications delivered by Transis, where
k is the size of the nominal view of the new HA-MLM. Finally, there are at most k
state exchange messages needed to accommodate each newly joining MLM.

When a HA-MLM already exists, HAMS A compatible components can be dele
gated to it using the administration tool. The HAMSA components are realized as
JAR packages.

The administrator specifies the target HA-MLM, component name, and the com
ponent specific parameters, such as the interaction approving policy, and placement
policy. Two interaction approval policies are supported currently. One policy is al
ways to approve all interactions. The second policy is to approve external interactions
only if the majority of MLMs in HA-MLM are present in the network partition.

Placement policy defines either load-dependent, or distance-dependent placement
of a component. These policies are best-effort ones.

The communication cost involved in the component delegation protocol is domi
nated by multicasting a component through Transis to all MLMs of the HA-MLM,
and obviously, depends on the size of the component.

4. Performance Evaluation
In order to understand the trade-off between the communication overhead induced

by HAMSA, and the possible reduction in monitoring overhead, consider again the
scenario described in figures 4a, and 4b. We want to compare the amount of traffic
overhead generated by the monitoring application without HAMSA with the overhead
induced by HAMSA and the underlying group communication service.

The group communication service is responsible for failure detection that is based
on periodic broadcasting of short [-am-alive messages. In general, this overhead grows
as k2 , where k being the size of HA-MLM. Optimizations that reduce by factor l, the
number ofLANs, are possible [3]. However, this is inevitable overhead of failure de
tection that cannot be strictly attributed to HAMSA or group communication, because
any application wishing to achieve the high availability guarantees of HAMSA on its
own would pay these costs anyway. The experiments performed in [3] with the current
implementation of Xpand and Transis show that group communication scales to 200
hosts dispersed over WAN without visible impact on the regular traffic.

As described in Section 3 the overhead of HAMS A itself strongly depends on the
way we configure HA-MLMs and on the size of the application state. In order to
investigate the trade-off, assume that the state size sent by HAMS A is 150 bytes.
This is a reasonable size, when one chooses to use a small state (like a measurement
sequence number).

Figure 6a depicts the tradeoff for the two choices of HA-MLM configuration and
for 10, and 20 scalar MIBs variables in each LAN. We. assumed here that due to the
SNMP encoding (SMlvllSMlv2), polling of one variable takes about 150 bytes, and
thus polling 10 or 20 variables per LAN will consume 1500, and 3000 bytes respec-

274 David. Breitgand, Danny Dolev, Danny Raz, Gleb Shaviner

tively for each LAN. HAMSA's overhead depends on the HA-MLM configuration. If
all k MLMs are members of the same HA-MLM, we need to update all k states each
polling interval. This takes 150 * k2 bytes. On the other hand, if we use k different
HA-MLMs, each of size 2, HAMSA's overhead is reduced to 150 * k.

One can easily see that even for a very small number of monitored variables the
overhead of HAMS A is significantly smaller than the monitoring overhead of a tra
ditional application. This is a big advantage even without considering the HAMSA's
main goals: extended functionality and reliability.

,lllo"

j.

.... HMtSA.: 2 MlMI ""-MLM
-+- HMMA: k MlMIl¥.o.kM
... MONITORING: 10 VAAl
- MONrTORINCJ: 20VARs

• 10 12 I.
numberofLANI

Figure 6a. HAMSA communication cost,
and monitoring communication cost as a func
tion of the number of LANs.

eoo

I""

1""\
300 '-

200

- ShVlfaIIlft proho.ot
····SllV-tllfllftprohO'D01
- S laII," .o.OOOt

., ,
10" 10.... 10'"

ProbebIkyoltoillidure If'

Figure 6b. HAMSA communication cost
per state change as a function of the required
system error failure probability.

The main mission of HAMSA is increasing the system reliability. However, the
high reliability comes with the cost of introducing more MLMs. In particular, this
implies a higher communication overhead. Thus, there is a trade-off between the level
of availability and the traffic overhead. In order to evaluate this trade-off, we consider
the same scenario as above.

The current host MLM of an active component replica propagates its state to the
rest of its HA-MLM through multicast. Thus, communication cost ofHA-MLM repli
cating the state is linear in the number of group members. However, when we increase
the number of MLMs in the group, we reduce the probability of a total system failure,
since HA-MLM restarts the failed process on a different MLM as long as they are
available.

Thus, if we have n MLMs in a HA-MLM, and the independent probability of a
single MLM failure is p, the probability of the application failure is p = 1 - pn. Since
we have only one active component per network partition then the communication is
s * (n - 1) per each state in the component state, where s being the component state
size. To obtain specific numbers, let s = 150 bytes, as in our example. Then, in order

to get an application failure probability of p we pay - 1) bytes per
change. This cost is plotted in Figure 6b, for single MLM failure probability of 0.1,
0.01,0.001, and 0.0001.

As one can see, in order to get the often desired "5 nines" reliability, starting from
a very high error rate of 0.1 on a single machine, 6 MLMs are sufficient. The commu-

Facilitating Efficient and Reliable Monitoring through HAMSA 275

nication cost (150(6 - 1) = 750 bytes per state change) becomes much smaller when
the reliability of a single machine increases.

5. Background and Related Work
The quest for more efficient and versatile management paradigms has been pursued

by many researches over the last few years. One general line of approach suggests us
ing mobile agents, active networks, or programmable networks for decentralizing and
shortening the control loop [4, 13]. Usually, these proposals focus on the mechan
ics of the mobility and extended functionality rather than on the high availability and
meta-management issues being in the focus of this paper.

Several approaches for integrating the management by delegation approach [17]
into SNMP environment have been proposed recently [10]. With the advent of Java,
the delegation is easily implemented by exploiting its mobility and security features
making Java a preferred language for developing delegated programs.

Java Management Extension (JMX) [11] is an emerging Java standard for repre
senting managed objects as Java Beans. JMX Bean is an object that serves as a Java
wrapper facade for the actual managed object. JMX Beans may be co-located with
the objects they represent at the agent side, or be deployed in a distributed fashion. In
the latter case, JMX Beans need distributed object services of the second tier that are
currently left unspecified by JMX. HAMSA components can be implemented as JMX
Beans.

One of the more mature Java technologies for deploying three-tier Java applications
is provided by Enterprise JavaBeans (EJB) [8]. EJB defines interfaces for Application
Server, and Enterprise Java components (Beans) that execute in the environment of
the application server that manages transactions, persistency, security, and naming
services for the components.

The problems that HAMSA copes with are very similar to those of the stateful EJB
clustering. Some of the existing EJB implementations provide fail-over models that
allow replication of the beans' states, and support takeover of the failed beans by other
servers in the cluster [8]. Most EJB servers perform stateful fail-over by using either
in-memory replication, or persistent storage to a shared database. These solutions are
inappropriate for the NM domain, since they rely on the fact that the network remains
connected. To the best of our knowledge, there is no current implementation ofEJB, or
other application server technology that provide the high availability of the second-tier
components execution to the level that allows their comparison with HAMSA.

6. Conclusion and Future Work
Efficient monitoring of large and dynamic distributed systems becomes challeng

ing. Current standard technologies scale poorly due to their inherently centralized
approach. We present a lightweight monitoring middleware called HAMSA that dy
namically allows to enhance monitoring functionality, and decentralize it in a reliable
and efficient manner. This work presents the architectural overview of the middle
ware, and the possible functional and performance trade-offs involved in its deploy
ment. Our architecture uses a group communication middleware to increase availabil
ity, modularity, and scalability.

276 David. Breitgand, Danny Dolev, Danny Raz, Gleb Shaviner

We are currently testing our implementation under different load conditions, and
for different failure scenarios. The exetensive performance evaluation study will be
presented in the full version of the paper.

7. Acknowledgments
We thank Elias Procopio Duarte, Jr, and Aldri L. dos Santos for their valuable

comments.

References
[1] ACM. Communications oftke ACM, special issue on Group Communication Systems, 39(4), April

1996.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malld. Transis: A communication sub-system for high avail
ability. In 22nd Annual International Symposium on Fault-Tolerant Computing, july 1992.

[3] T. Anker, G. Chockler, D. Dolev, and I. Shnaiderman. The design of xpand: A group communication
system for wide area. Technical Report HUII-CSE-LTR-2000-31, The Hebrew University, July 2000.

[4] Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mobile agents for network management.
IEEE Communications Surveys, 1(1):2-9, Forth Quarter 1998.

[5] D. Breitgand, G. Shaviner, and D. Dolev. Towards highly available three-tier monitoring appli
cations (extended abstract). http://cs.huji,ac.ilrdavb/abstracts/hamsa.ps, 2000. 11th
IFIP/IEE Internationaal Workshop on Distributed Systems: Operations and Management, Austin TX,
USA.

[6] M. Daniele, B. Wijnen, M. Ellison, and D. Francisco. Agent extensibility (AgentX) protocol, January
2000. RFC 2741.

[7] Mark Dilman and Danny Raz. Efficient reactive monitoring. IEEE Journal on Selected Areas in
Communications (JSAC), special issue on recent advances in network management, 20(4):668-677,
May 2002.

[8] Roman E., Ambler S., and Jewell T. Mastering Enterprise JavaBeans(tm). Wiley, 2nd edition, 2002.

[9] E. P. Duarte Jr. and Aldri L. dos Santos. Semi-active replication of snmp objects in agent groups
applied for fault management. In ttk IEEERFIP International Symposium on Integrated Network
Management 1M, Seattle, WA, May 2001.

[10] D. Levi and J. Shonwalder. Definitions of Managed Objects for the Delegation of Management
Scripts, May 1999. RFC 2592.

[II] Sun Microsystems. Java management extensions(JMX) instrumentation and agent specification,
v1.1. http://java.sun.com/products/JavaManagement/doc.html,mar 2002.

[12] B. Pagurek, Y. Wang, and T. White. Integration of mobile agents with SNMP: Why and how. In 2000
IEEERFIP Network Operations and Management Symposium, pages 609 - 622, Honolulu, Hawaii,
USA, April 2000.

[13] Danny Raz and Yuval Shavitt. Active networks for efficient distributed network management. IEEE
Communications Magazine, 38(3), March 2000.

[14] Marcelo Gonc;alves Rubinstein and Otto Carlos Muniz Bandeira Duarte. Evaluating tradeoff's of
mobile agents in network management. Networking and Information Systems Journal, 2(2):237-
252,1999. HERMES Science Publications.

[IS] William Stallings. SNMp, SNMPV2, SNMPV3, and RMON 1 and 2. Addison-Wesley, January 1999.

[16] Y. Yemini. The OSI Network Managemnt Model. IEEE Communications Magazine, pages 20--29,
may 1993.

[17] Yechiam Yemini, German Goldszmidt, and Shaula Yemini. Network Management by Delegation. In
The Second International Symposium on Integrated Network Management, pages 95-107, Washing
ton, DC, USA, April 1991.

DYNAMIC LOAD BALANCING FOR
DISTRIBUTED NETWORK MANAGEMENT
Kiyohito Yoshihara

Manabu Isomura

Hiroki Horiuchi
KDDI R&D Laboratories Inc.,
2-1-15 Ohara Kamifukuoka-shi
Saitama 356-8502, Japan
yosshy@kddilabs.jp, isomura@kddilabs.jp, hr-horiuchi@kddilabs.jp

Abstract:

Keywords:

The scalability limitations of centralized management models have motivated distributed
management models, in which management programs describing some of management
tasks are distributed and executed on managed systems. In the mOdels, management pro

distribution that considers dynamic network resource utilization is one of the most
Important challenges, in striking a load balance between management and managed sys
tems for an entire managed network. Some methods for load balancing have been studied;
however, they cannot adequately be achieved throughout an entire managed network. This
arises from criteria for 100id balancing that lacks dynamic network resource utilization, or
from a localized subnetwork in which the performance is limited, although it does include
processing loads for dynamic network resource utilization. To solve this, a new dynamic
load balancing method is proposed for distributed network management. Thus, systems
that execute management programs are decided dynamically on tlie basis of CPU utiliza
tion for each system and the bandwidth required for executing all management programs.
Two typical algorithms derived from the proposed method, each having different criteria
in the form of mean deviation and range types with respect to CPU utilization, are in
troduced. They were evaluated analyticali:r. according to capability, i.e., how well they
perform as close to load balancing as pOSSible, as well as time complexity. The results
show that the mean deviation type algorithm performs better at almost the same compu
tational cost. A prototype system is also implemented based on the proposed method,
and evaluated empirically by applying it to an operational LAN. The proposed method
performs well in trials with a triVial overhead.

Distributed network management, load balancing, management by delegation, mobile
agent,SNMP

1. Introduction
Centralized management models, such as SNMP (Simple Network Management

Protocol) and TMN (Telecommunications Management Network), address scalability
limitations, since management tasks, including management information-gathering,
information analysis and results-oriented system controls are focused on a centralized
management system, as well as increasing numbers of managed systems resulting in
management traffic overhead [13, 9, 7,8, 11, 12,2, 14,4, 1]. These are the motivated
distributed management models. A tyrical management model is called Management
by Delegation (MhO) [13,9, 7, 8, 1], in which management programs describing
some of management tasks are executed on managed systems such as routers and
switches. Another model is management by mobile agents (MA) [12,2,14,4, 1], in
which mobile agents with some management tasks migrate to/from management and
managed systems. They provide a means to enhance scalability by distributing some
management tasks to the managed systems, and by reducing the management traffic
overhead with appropriate filters at the managed systems.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

218 K. Yoshihara, M. Isornura, and H. Horiuchi

In the distributed network management, dynamic load balancing across an entire
managed network is one of the most important challenges in which the management
programs should be distributed and executed on management and managed systems,
when considering dynamically changing network configurations and resource utiliza
tion. In a theoretical sense, the problem of finding an optimal subset of systems on
which the management programs should be distributed, such that a given objective
function associated with resource utilization is minimized, is known as a "p-center" or
a "p-median" problem, and both are NP-hard [3]. Some approximation methods do not
always provide optimal solutions but offer practical, acceptable solutions, which have
recently been studied [6,5]. Yet, they cannot adequately perform dynamic load bal
ancing. Since the criteria for load balancing is the number of management programs
and is not associated with system jrocessing load, the method [6] cannot perform
dynamic load balancing in terms 0 network resource utilization. Although another
criterion is associated with the processing load, the method [5] can be performed only
within a localized subnetwork and cannot strike a load balance across an entire man
aged network.

For a solution to this, this paper proposes a new dynamic load balancing method for
distributed network management. It allows us to strike a load balance between man
agement and managed systems across an entire managed network, in considering the
following two criteria: 1) processing load of the management and systems,
and 2) bandwidth required for executing all management programs. A typIcal example
of an entire managed network is a set of subnetworks connected together with links
like Ethernet and managed by a single organization. The proposed method is realized
by attempting to limit the value of a given function in terms of CPU utilization of sys
tems within a small specified value, as well as limiting bandwidth required to execute
all management programs within another specified value. In terms of functions, two
typical algorithms based on the proposed method are introduced, each having different
functions: 1) mean deviation function, and 2) range function. Mean deviation func
tion is defined as the absolute difference between the CPU utilization of each system
and the average CPU utilization for all systems, while range function is defined as the
difference between the maximum and minimum CPU utilization for all systems.

The algorithms are evaluated analytically according to: 1) setting appropriate lim
iting values for effective load balancing, 2) capability of two algorithms in performing
load balancing and 3) time complexity of two algorithms. Next, a prototype system is
implemented based on the proposed method with the stronger algorithm, and evaluated
empirically by applying the system to an operational LAN according to: 1) deriving
suitable limiting values used in the method, and 2) whether the proposed method can
perform well using the derived value, with trivial overhead.

The rest of the paper is organized as follows: Section 2 presents an overview of
the distributed network management. It describes two existing methods and addresses
their disadvantages with respect to dynamic load balancing in Section 3. In Section 4,
a new dynamic load balancmg method is proposed, and a prototype system is imple
mented in Section 5. Two typical algorithms derived from the proposed method are
evaluated analytically while evaluating the proposed method in an operational LAN
empirically in Section 6.

2. Overview of Distributed Network Management
The distributed management model assumes a managed system such as routers and

switches with sufficient computational resources to execute management programs or
mobile agents. As a mobile agent may be viewed as a management program capable
of traversing one or more managed systems in a specified order, this section describes
an overview of how the management program is deployed below.

A management system distributes a management program describing some of man
agement tasks and delegates the task to a managed system as shown in Figure 1(1).
Typical management programs sometimes collect management information from MIB
(Management Information Base) in the managed system, by polling limited to within
the managed system (2). Others aggregate, analyze or filter collected information (3),

Dynamic Load Balancing for Distributed Network Management 279

(4)Sending or notifying Management (I)Delegating management
results of aggregated, tasks by distributing
analyzed, and/or filtered management programs
management information

(3)Aggregating, analyzing,
and/or filtering
management information

Managed system

Fig ure 1. Overview of distributed network management

send the information or notification to the management system (4) and control the
managed systems according to the results (5). The distributed network management
provides a promising means to improve scalability of centralized management mod
els, typically through the distribution of tasks and by reducing management traffic
overhead.

3. Existing Methods and Disadvantages
In the distributed network management, dynamic load balancing is a key challenge.

For this purpose, some methods have been studied as described below.

3.1 Existing Methods

3.1.1 Method Based on Number of Management Programs. This
method [6] performs load balancing such that the number of managed systems as
signed to each management program may be almost the same when the number of
management programs has been changed by executing a new management program
and by terminating existing management programs, or on a regular basis.

When a new management program is executed, this 'leader' management program
directs an entire load balancmg process. First, the leader collects information re
quired for the process from all management programs, including distances between
each management program and the leader, and identifiers of managed systems that
each management program currently manages. Next, the leader determines managed
systems to be assigned to the leader in order of proximity, until the number of man
aged systems assigned to each management may be almost the same. Then,
the leader determines managed systems to be aSSIgned to other management programs
in the same manner. Finally, the leader makes notification on process termination with
information covering all changes.

3.1.2 Method Based on Number of Managed Systems. In the method
[5], an entire managed network is divided into some subnetworks such that the number
of managed systems in each subnetwork is less than or equal to a specified threshold.
A management program is deployed per subnetwork and load balancing is also per
formed per subnetwork.

When a new managed system is attached to a subnetwork and the number of man
aged systems in the subnetwork exceeds the threshold, this subnetwork is divided into
two subnetworks. A new manasement program is executed on a managed system in
one subnetwork, while the existmg management program remains on a managed sys
tem in another subnetwork. The two management programs manage each subnetwork
independently.

The management p'rogram can move to another managed system a within a sub
network it is responSIble for from their current managed system b, if Ua < (1 - r)

280

Management

K. Yoshihara, M.]somura, and H. Horiuchi

Managed system

Q Management program

(I)Moving management program
X to less loaded managed
system C for load balancing

(2)Monitoringlcontrolling A by
management program X on C

(3)Moving management program
Y to less loaded managed
system C for load balancing

(4)Monitoringlcont roUing B by
management program Y on C

Figure 2. Principle of proposed method

Ub, where Ux denotes a linear function of CPU and memory utilization of managed
system x , and r E (0,1) is constant. CPU and memory utilization are collected by
using another probe management program in the subnetwork.

3.2 Disadvantages
The first method based on the number of managed programs certainly takes note of

network configurations such as distance, yet it cannot perform dynamic load balancing
sufficiently as load balancing criteria is not at all assoclated with dynamically changing
network resource utilization such as processing load of management and managed
systems.

The second method based on the number of managed systems performs dynamic
load balancing to a certain extent, in considering both network configuration and re
source utilization; however, the method performs only within a localized subnetwork
and thus, cannot strike a load balance across an entire managed network. Even if the
method could be applied to an entire managed network, the function would be too
simple to perform closer load balancing where the absolute differences between CPU
utilization of any two systems should be small, as will be analyzed in Section 6.

For a solution to this, a new dynamic load balancing method is proposed for the
distributed network management below, which incorporates dynamically changing
network configuration and resource utilization, and strikes a load balance between
systems across an entire managed network.

4. Proposed Method
4.1 Design Principle

4.1.1 Coexistence of Distributed and Centralized Management Mod-
els. As described in Section 2, with respect to processing load associated with man
agement tasks on management and managed systems, as well as management traffic
overhead, the distributed management model complements the centralized one where
management tasks including management information gathering via polling are con
centrated to a management system, while processing load associated with management
tasks on managed systems can be minimized. In the proposed method, the distributed
and centralized management models coexist, and load balancing is achieved by mak
ing full use of both models.

As shown in Figure 2, management programs are executed not only on direct target
managed systems to be monitored or controlled, but also on less loaded other systems,

Dynamic Load Balancing for Distributed Network Management 281

including management systems. Suppose the management programs X and Yare re
sponsible for monitoring managed systems A and B, respectively. If the managed
system C is loaded less than A, the method moves X from A to C for load balancing
(Figure 2(1)). After that, X resumes monitoring their direct target managed system A
from C by polling or with management operations via a network similar to manage
ment systems in the centralized management model (2). If managed system C is still
loaded less than B, the method moves Y from B to C (3). Y resumes monitoring their
direct target managed system B from C in the same manner as X (4).

4.1.2 Processing Load of Management and Managed Systems as First
Criteria for Load Balancing. The CPU utilization associated with processing
load of management and managed systems is used as the first criteria for load balanc
ing. A new threshold of CPU utilization is introduced to detect a system overload.
The proposed method achieves load balancing by limiting a value of a given function
in terms of CPU utilization within a given threshold as shown in Figure 2. A variety of
functions, from simple to complex ones, are possible. Two typical and basic functions
will be defined in Section 4.2.1.

4.1.3 Bandwidth Required for Executing all Management Programs
in Managed Network as Second Criteria for Load Balancing. Some man
agement programs may be executed on a less loaded, indirect target managed system
for monitoring their direct target managed system by polling or management oper
ations through a network in the prol?osed method. This may cause additional man
agement traffic. The bandwidth reqUIred for executing all management programs in a
managed network is used as the second criteria to prevent the traffic. A new bandwidth
threshold is introduced, and the proposed method IS realized by limiting the bandwidth
to within the given threshold as shown in Figure 2

4.1.4 Load Balancing by Management System. The management sys
tem is responsible for an entire load bafancing process in the proposed method in
order for load balancing to occur across an entire managed network. The system col
lects information such as system processing loads, updates information, determines
management programs to be moved and destination systems when system overloads
are detected, and performs load balancing in accordance with the determination. Lead
ers may be changed in every process as described in Section 3.1.1, though the process
may become more complicated due to information and status synchronization between
management programs.

4.2 Dynamic Load Balancing by Proposed Method
4.2.1 Defining Criteria for Load Balancing. The proposed method uses
1) processing load of management and managed systems, and 2) bandwidth required
for executing all management programs as criteria for load balancing. The following
two basic functions from each type are defined for the first criteria associated with
processing load as the variability indices of system CPU utilization can be mainly
classified into deviation and range types. For the sake of simplicity, the computational
power of all nodes is assumed as the same in the following definitions. Note that it may
be better to use stronger nodes over weaker ones. Definitions should be changed in
this instance. A typical modification is weighted CPU utilization multiplied by some
factor depending on the calculation power.

Mean Deviation Function. Let Ci,T (%) be the average system CPU utilization
i (1 i N) over T seconds, where N denotes the number of management and
managed systems. As provided by Equation (1), the mean deviation function Ei,T is
defined as the deviation of Ci,T from the average (mean) value of all Cj,T'S (1 :::; j

282 K. Yoshihara, M. !somura, and H. Horiuchi

N) systems. Note that the average for all CPU utilization or maximum utilization
should be the CPU utilization for a multi-CPU system.

(1)

Range Function. As given in Equation (2), the range function is defined as the
difference between the maximum and minimum CPU utilization for all systems.

> def .
UT = max Ci T - mm Ci T

i ' i'
(%). (2)

If the proposed method cannot make determination with only two criteria, priority
is assigned to each management program by a network operator.

4.2.2 Determining Management Program and Destination System.
Two thresholds are introduced here. One is tolerable variation (%) and another
is tolerable bandwidth B (bps). The proposed method attempts to limit all i,TS' or
8T within as well as bandwidth required for executing all management programs
within B. They are specified by a network operator. How to set appropriate values of
these thresholds for effective load balancing will be evaluated in Section 6.1.1. For
the sake of simplicity, the rest of this section focuses attention on i,T, and the same
holds for 8T.

As candidates for load balancing, the proposed method first selects management
programs on the most loaded system i where i,T > and Ci,T is the maximum for
all the systems. Next, the proposed method determines the system j with a minimum
Cj,T as the destination system, as well as the management program to be moved from
the candidates for load balancing, such that the decrease in bandwidth required for
executing all management programs after moving towards the destination system is
maximized. If there is no such management program, it determines one where the
increase is minimized.

The management system notifies the network operator and terminates the execution
of the management program with the lowest priority on the most loaded system if
any management program movement results in excess bandwidth over the tolerable
bandwidth B.

4.2.3 Performing Load Balancing. The management system moves and
resumes the management program to the destination system in accordance with the de
termination as described in Section 4.2.2. The management system notifies a network
operator of a failure if move or resume fails for some reason. The management system
updates information required for a subsequent load balancing process such as System
table, Management program tables and current bandwidth consumption as described
in Section 4.2.4.

4.2.4 Managing Information for Load Balancing. Figure 3 shows all
information required for load balancing managed by the management system, includ
ing (a) System table, (b) Management program tables, tolerable tolerable
bandwidth B and current bandwidth consumption.

System table maintains average CPU utilization for each system and derives mean
deviation i,T from utilization. The management system distributes the CPU moni
toring program to each system to monitor CPU utilization. The management system
sets Ci,T to System table obtained by CPU monitoring programs. The Management
program table is provided for each system to maintain information on management
programs executed on the system. It includes the identifier of a management program
executed on the system, the bandwidth required when executed on the management

Dynamic Load Balancing for Distributed Network Management 283

Management
(a)System table

SystemlD
Average CPU

Deviation(c ,.T) Ir.J UliLiuuion(C'T)
Manal(ement system 46% 4%
Managed system L 78% 28%
Managed system 2 53% 3% D Automatic sellings

: : :
Managed system N·I 52% 2% D Manual or automalic

Average 50% sellings
Manual sellings

(b)Management program table
Mgmstew·) ManaMystem 1 N· I

(* I)Management system ! !!! ! ! ... ! ! !

... ---.------ -... - ----.. --.. -.. -.- .. (*2)Bandwidlh required
Bandwidth

Target managed
when executed on non·

Management
Mgmt Managed Prioritf·) target managed system

programID systenf·) system(OZ) system (*3)The smatter, the higher
program A 864bps 346bps Managed syslem I .:> (*4)Supposed to be 0 if
programB 346bps Obps(··) Managed system I 2 management program
programC I 72bps 14bps Managed system 2 J 7 1 notifies only in cases such

: : : : " : as a threshold violation.

II n I Tolerable
10%

Tolerable
II I.O"IOSbPsl ..12 BW(B)(·') (*S)Tolerable bandwidth

Current BW
3.2*IO'bps

("6)Current bandwidth
consurrq>lion("6) consumption

Figure 3. Operational information and settings required for load balancing

system and on managed systems, the direct target managed system for a given man
agement task and priority.

The current bandwidth consumption is summed up by the bandwidth consumed
by all management programs executed, which is maintained by Management program
tables. The bandwidth consumed by each management program is manually or auto
matically derived. For example, if a management program uses a specific management
protocol such as SNMP, the bandwidth can be roughly derived from the polling inter
val and the expected length of PDU (Protocol Data Unit), including the number of
pieces of management information, their syntax and expected returned values.

4.3 Example
We show how the proI?osed method performs load balance below, with operational

information and settings III Figure 3 and the flowchart in Figure 4.
The tolerable variation /:). and tolerable bandwidth B are set 10% and 1.0* 105 bps,

respectively (Figure 4 SI). The CPU monitoring program is executed on each system
(S2). Then, the method configures System table, as well as Management program ta
bles (S3), and distributes management programs on direct target systems and executes
them (S4). The method attempts to perform load balancing, since l,T (= 28%) > /:).
(= 10%) (S5). The method selects management programs on the most loaded system
1 as the load balancing target system (S6). The method determines the management
system with the minimum average CPU utilization as a destination system (S7) and
management program C as the load balancing target, resulting in a maximum 14 bps
(from 172 + 14 bps to 172 bps) decrease in bandwidth consumption (S8). Since the
reSUlting bandwidth consumption does not yet exceed the tolerable bandwidth B (S9),
the method performs load balancing by oving the management program C from sys-

284

Set Values of tolerable variation LI and

Execute CPU monitoring program on each s

Execute management programs on
their et s stems

Determine systemj such that Cl•T is the minilID1In
as destination s stem

Determine management programm on i as target
program for load balancing such that decrease in

bandwidth is maximized, required for executing all
management programs after migrating to j

such that increase is minimized, if not)

Yes
L

K. Yoshihara, M. [somura, and H. Horiuchi

Sl2
Notify system overload to network operator

S13
Terminate execution of management program with

lowest riorit

No

Figure 4. Flowchart of proposed method

tem 1 to the management system (SlO). Finally, the method returns the process to S5
after updating the tables and current bandwidth consumption (S11).

If the resulting bandwidth consumption exceeds the tolerable bandwidth B (S9),
the method does not move management program C while notifying the network oper
ator of system overloads (S 12). The method terminates execution of the management
program with the lowest priority on the system (SI3), and returns the process to S5.

5. Prototyping
A prototype system is implemented in Java. Currently, minimum functions suffi

cient for evaluating the proposed method are implemented. Figure 5 shows the system
diagram. The system runs on a PC, which emulates a managed system with sufficient
computational resources for a management program. We use legacy SNMP agent,
and AdventNet, Inc. SNMPv3 Package2.2 for Java API to the SNMP agent. We give
MID definition for initial settings. There can be many varieties of management fro
grams with different management tasks, and two typical management programs 11]
are implemented, in addition to the CPU monitoring program as in Table 1.

These management programs can be generated easily by specifying a few param
eters (Figure 5 (I}). Tile management application then approximates the bandwidth
required for each management program and registers them with Manage
ment program tables m Figure 3 (b). The download and unload, start, suspend and
resume of management program execution are realized by Java RMI (Remote Method
Invocation). When execution starts (3), polling to the legacy SNMP agent is performed

Dynamic Load Balancing for Distributed Network Management 285

0 Implemented parts

Figure 5. Prototype system diagram

Table J. Management programs in prototyping.

Management pro
gram

A

B

CPU monitoring
program

Description

notifies threshold violation to man
agement system on result of polling

sends aggregated management in
formation collected by polling for
every specified time to management
system
sends average CPU utilization col
lected by polling for every specified
time to management system

BPossible to specify multiple names.

Parameters (not exhaustive)

direct target system, names of man
agement informatJon for pollingB, polling
intervalb, upper and lower thresholdsb
direct tarset system, names of man
agement mformatlon for collectionB, polling
intervalb, sending intervalb

direct taf.!;et managed system, polling inter
val, sendmg interval

bpossible to specify a different value for each piece of management information.

according to the specified parameters (4). Threshold violations and aggregated man
agement information are also notified and sent by RMI (3). As CPU utilization is not
defined in a standard Mm, it is collected through OS-dependent API (5) and sent by
RMI (6). If heavy processing load on a system is detected, management program ex
ecution is suspended and the management program is moved to another less loaded
system with its execution context (7).

6. Evaluations
6.1 Analytical Evaluations

This section evaluates two algorithms Ad and Ar , each obtained by applying Eq.(l)
and Eq.(2) to the proposed method according to: 1) appropriate tolerable variation
value b. and tolerable bandwidth B for effective load balancing in Section 6.1.1, 2)
capability of algorithms on their ability to perform load balancing where the sum of
the absolute differences between CPU utilization of any two systems should be small
in Section 6.1.2, and 3) time complexity ofEq.(l) and Eq.(2) in Section 6.1.3.

6.1.1 Tolerable Variation a and Bandwidth B.

Tolerable Variation b.. The smaller the value of tolerable variation b., the
smaller the absolute difference between CPU utilization of any two systems Ci,T and
Cj,T (1 i, j N, i #- j), thus the algorithms can more closely strike a load balance
among systems across an entire managed network. However, if the value of b. is set
too small, even a slight difference between two systems may trigger a load balancing
process causing undesirable effects where the algorithms continue to move a manage-

286 K. Yoshihara, M.]somura, and H. Horiuchi

ment program from system to system. The optimal value of preventing the effect
should be the minimum one satisfying the following two conditions simultaneously.

Conditionl

Condition2

The value of is greater than the maximum processing load of all management
programs for all systems.

The value of is greater than the maximum processing load of all destination sys
tems when a management program moves there.

Assuming a case where only a single management program is executed on a system
across an entire network, and the average CPU utilization of all other systems is 0%,
unless Condition 1 holds, the execution of the management program on any system
triggers a load balancing process and causes the effect. It can be proven that b. sat
isfying Condition 1 for the above case can prevent the effect in any other case. For
algorithms Ad and Ar, such b. is provided by Equation (3), where Nand Cmax denote
the number of systems and maximum processing load of all management programs
for all systems, respectively.

> { Cmax (1 - liN)
Cmax

(3)

Unless Condition2 holds, the increasing processing load of the destination system
in moving a management program for the load balancing triggers another load balanc
ing process and this also causes the effect. This can be avoided by a time window, for
which the method is prohibited from a resulting load balancing process.

Tolerable Bandwidth B. Since user traffic and management traffic share band
width in LAN and WAN networks, it is generally desirable that the bandwidth for
management traffic be restricted at most to 5% of the minimum bandwidth of the
network [10]. Accordingly, for example, B is set to 100 Kbps, which is 5% of the
effective bandwidth 2 Mbps of a 10Mbps Ethernet LAN.

6.1.2 Close Load Balancing Capability. Here, an evaluation function
defined by Eq.(4) is introduced to show how closely the algorithms Ad and Ar can
perform load balancing. The smaller the value of the evaluation function is, the closer
load balancing an algorithm can perform, where the absolute differences between CPU
utilization of any two systems is small.

(4)

If the algorithms do not perform the load balancing process for a sufficient amount
of time, Eq.(5) holds. With Eq.(5), the upper limits of the evaluation function Eq.(4) of
the algorithms Ad and Ar are provided by Eq.(6) and Figure 6 for illustrative purposes.

(5)
for Ar .

Since equality of Eq.(6) holds for the algorithm Ar where half of the Ci,T = and
the rest of Ci,T = 0, and the upper limit of the algorithm Ar is tight, the algorithm Ad
can perform load balancing more closely than the algorithm Ar .

The result shows that the mean deviation function is more suitable than the range
function for the dynamic load balancing method striking a load balance across an
entire managed network. Recall that the linear function defined in the existing method
[5] is a variation of Eq.(2). This implies that even if the existing method [5] could be
applied to an entire managed network, there would still be room for improvement, and
it would be better to use the mean deviation function for closer load balancing.

Dynamic Load Balancing for Distributed Network Management 287

--Upper limit of feasible value of evaluation function

12000 ,------------

--Upper limit of evaluation function of Ad
..... Upper limit of evaluation function of AT

2500
<==

10000 ---fr
100, t>= 20

i 6000

40001--------:7'''-----

'"
:>

5 10 15 20 5 10
Number of systems N Number of systems N

Figure 6, Capability of load balancing of algorithms

{
1/4N(N - 2)6.

'<N ICi T - C· TI ::;
- L ,), 1/4N26.

6.1.3 Time Complexity of Criteria for Load Balancing.

15 20

(6)

Time Complexity of Mean Deviation Function. An evaluation of mean de
viation function Eq.(1) requires (2N + 1) additions and one division. The time com-
plexity of the mean deviation function is O(Nlog !Ci,T! + (log !Ci,TI)2) as the time
complexity of an addition and division are O(log !Ci,TI) and O((log !Ci,TI)2), respec
tively.

Time Complexity of Range Function. An evaluation of mean deviation func
tion Eq.(2) requires one max, one min and one additional operation. The time com
plexity of the range function is O(N + log !Ci,T!) as the time complexity of max and
min operations over N elements is both O(N).

The above results show that time complexity of the range function is better than that
of the mean deviation function. However, since ICi,T! represents system i processing
load and is limited by at most 100(%) in reality, the number of N systems dominates
both complexities; thus, they can be considered the same as O(N). Along with the
result in 6.1.2, the algorithm Ad with the mean deviation function performs better than
Ar at almost the same computational cost.

6.2 Empirical Evaluations
By applying the prototype system to an operational LAN, how well the proposed

method can perform load balancing with a trivial overhead is evaluated. Based on
the results in Section 6.1, the mean deviation function is used in this section. The
system specification in the evaluation is shown in Table 2. The parameter values of
management programs are set as in Table 3. All PCs are connected to the same LAN
(10Mbps Ethernet) and the maximum tolerable bandwidth B is set to 100Kbps. The
proposed method attempts to perform load balancing every 100 seconds.

6.2.1 Tolerable Deviation a in Operational LAN. First, the minimum
value is derived of the tolerable deviation D. satisfying Condition 1 in Section 6.1.1.
The processing load is 65.0% when management program A poIling 20 managed ob-

288 K. Yoshihara, M.]somura, and H. Horiuchi

Table 2. System specificationB in evaluation.

Name

Systeml
System2
System3
System4
System5

CPU

Intel Pentium
Intel Pentium

Intel Pentium II
Intel Pentium II
Intel Pentium II

aos is WindowsNT4.0 SP5.

CPU frequency (MHz)

133
150
266
450
450

Memory (MB)

32
96
64
64
128

Description

managed system
managed system
managed system
managed system

management system

Table 3. Parameter settings of management program A and CPU monitoring program.

Management program A

Management information for polling
Number of managed object instances for polling
Polling interval a
Ul?per and lower thresholds
Priority

CPU monitoring program

Polling interval
Sending interval

Object types of counter syntax in MIB-II itEntry
1, 5, 10, 15 and 20
5, 10, 15, 30, 60 and 180 seconds
500 and 0
Common to all management programs

1 second
100 seconds

BCommon polling interval when more than one object instance is specified.

ject instances for every 5 seconds and referred to as A20,5 is executed on Systeml with
the lowest processing capability of all systems. This implies that cmax =65.0%. By
Eq.(3), This value is obviously too greater. A smaller
value can be obtained by more specific and finer-grained management programs. That
is, 20 management programs each polling one managed object instance every 5 sec
onds and referred to as Al ,5, perform an almost equivalent management task together
with that of an A20,5. It brings a smaller value of for closer load balancing. In this
evaluation, there is hardly any difference betaween A20,5 and 20 Al,5 's processing
loads for any other values for the number of object instances for the polling
and polling interval. By executing the more spec1fic and finer-grained management
programs, i.e., 20 Al ,5 's on Systeml, Cmax in turn becomes 4.2%, then the value of
is reduced to 4.2x(I-I/5)=3.36%.

Next, the minimum value of satisfying Condition2 is derived. It takes 18.7,
21.5,6.5 and 4.1 seconds on average to download the management program A20,5 to
Systeml, 2, 3 and 4. This time is almost the same for any other values of the number of
managed object instances for the polling and polling interval. For every download, the
CPU utilization marks 100% all the time and this implies that these download times
correspond to the processing load per 100 seconds. The maximum processing load of
all destination systems where a management program is downloaded is 21.5% and I:l.
> 21.5% when T is 100 seconds.

From the above discussion, the minimum value of satisfying both conditions
simultaneously is 21.5%.

6.2.2 Load Balancing by Proposed Method in Operational LAN. A
heavy load is imposed on System2 by executing 20 management programs, each
polling one managed object instance every 5 seconds, as well as 25% stationary pro
cessing load. Measurement is performed for the first time when there is no man
agement program moved by the proposed method for the last 10 minutes, referred to
as convergence time, and the maximum deviation of the average CPU utilization at
convergence time, for some different values The method attempts to move a
management program every 100 seconds in sequence and all the 20 management pro-

Dynamic Load Balancing for Distributed Network Management

6000 30 0 :Convergence time
-;;;- • • III! -D-:Maximum devia.lion of
11 5000 25 '-' 8 r:: processing load

.; 4000 20 §
51 '::1 .3 3000 15 .!! 'g
I) ••••••••• -------- 12.7 t::J

2000 ---.- .- -- -- 10

rf 1000 5 a 1;',0
> 8 0 .J....L.,....L----I.-r!:-,,,-L-r-L---L.-4- o·

10 22(") 30
Tolerable deviation /j, (%)

(.) Value after 90 minules
(··)Rounded up 10 22% due

to implementation limitation

Figure 7. Convergence time and maximum deviation of average CPU utilization

289

grams being distributed to other systems is optimally desirable. Thus, it takes at least
2000 seconds (=20 xI 00) for any value of LX, shown as the white bar for comparison
in Figure 7.

As shown in Figure 7, the convergence time shortens as the value of is greater,
whereas the maximum deviation of average CPU utilization increases from value 22%
to 30%. The convergence time could not be measured within 90 minutes (= 5400
seconds) in the worst case when the value of is 10%, smaller than the value of
22%. All of the above results show that setting the value of = 22% can control
the differences in average CPU utilization between systems within a small value of
12.7% as in Figure 7. Thus, the proposed method can strike a closer load balance for
management tasks.

6.2.3 Bandwidth Consumption. The CPU monitoring (>rogram has small
bandwidth consumption for sending CPU utilization messages. It IS a one-way mes
sage at 60 bytes. It is smaller than the size of a minimum SNMP PDU of approx
imately 90 bytes, and becomes 180 bytes with a request and response pair. In this
evaluation, since the sending interval is 100 seconds, the bandwidth consumption
is 4.8bps. When the number of managed systems is 1000, then it becomes and is
sufficiently small enough if compared with the tolerable 4.8Kbps bandwidth B (=
100Kbps) in Section 6.1.1.

6.2.4 Processing Load of Management and Managed Systems. The
load balancing overhead of the proposed method on the management system is up to
16.2% and the process is completed within 1.4 seconds. This is approximately equiv
alent to that of a single polling for 12 managed object instances from the management
system in the evaluation. Since the management system performs polling in the tens
of managed object instances in general, the proposed method does not adversely affect
the advantage of the distributed management model.

The CPU monitoring program processing load is 2.3%, 2.1%, 0.9% and 0.5%,
respectively, when executed on Systeml, 2, 3 and 4. Each of them is less than or
equal to the processing load of the management program A, polling a managed object
instance every 5 seconds when executed on the correspondmg systems. This brings
hardly any impacts on the managed system in practical.

7. Conclusions
This paper proposed a new dynamic load balancing method for distributed network

management and evaluated it both analytically and empirically. The proposed method
strikes the load balance of management tasks across an entire managed network on
the basis of 1) the processing load of management and managed systems, and 2) the
bandwidth required for executing all management programs through the coexistence
of centralized and distributed management models.

290 K. Yoshihara, M. [somura, and H. Horiuchi

Since the criteria for the load balancing of an existing method is not at all associ
ated with the processing load of management and managed sy.stems, it cannot perform
dynamic load balancing in considering network resource utIlization. Although there
is another existing method whose criteria are associated with the processing load, the
method can perform only within a localized subnetwork and cannot strike a load bal
ance across an entire managed network. Moreover, the existing method is less capable,
as some load balancing functions are too simple to perform closer load balancing. The
upper limit of absolute differences between CPU utilization of any two systems of the
existing method is at most N 2 /4, where N denotes the number of systems across an
entire managed network. By introducing the mean deviation function as a new load
balancing criteria, the proposed method can improve the capability and result in ab
solute differences between CPU utilization of any two systems at up to N(N - 2)/4,
with the same calculational cost O(N).

A prototype system was also implemented based on the proposed method and eval
uated through application in an operational LAN. The results showed that the proposed
method could perform well in practice with only a slight overhead. An extenslOn to
wide area network and more evaluations in heterogeneous networks are left for further
studies.

Acknowledgments
We would like to thank Mr. Tohru Asami, President, CEO of KDDI R&D Labora

tories Inc., Dr. Yuichi Mastushima, Executive Vice President and Dr. Takeshi Mizuike
Executive Director for their continuous encouragement with respect to this research.

References
[1] P. Bellavista, A. Corradi, and C. Stefanelli. An Open Secure Mobile Agent Framework for Systems

Management. Network System Management, Vol.7, No.3, pp.323-339.
[2] A. Bieszczad, B. Pagurek, and T. White. Mobile Agents for Network Management. IEEE Comm.

Surveys, YoU, No.1, 1998.
[3] M. Garey and D. Johnson. Computers and Intractability, A guide to the Theory of NP-completeness.

W.H. Freeman and Co., 1979.
[4] D. Gavalas, D. Greenwood, M. Ghanbarl, and M. O'Mahony. An Infrastructure for Distributed and

Dynamic Network Management based on Mobile Agent Technology. In Proc. of IEEE ICC '99,
pp.1362-1366, 1999.

[5] D. Gavalas, D. Greenwood, M. Ghanbari, and M. O'Mahony. Hierarchical Network Management: A
Scalable and Dynamic Mobile Agent-based Approach. Computer Networks, Vo1.38, No.6, pp.693-
711,2002.

[6] R. Giladi and M. Gat. Meta-management of Dynamic Distributed Network Managers. In Proc. of
IFlPIIEEE DSOM 2000, pp.119-131, 2000.

[7] G. Goldszmidt and Y. Yemini. Evaluating Management Decisions via Delegation. In Proc. of IFlP
ISINM '93, pp.247-257, 1993.

[8] G. Goldszmidt and Y. Yemini. Delegated Agents for Network Management. IEEE Comm. Mag.,
Vo1.36, No.3, pp.66-70, 1998.

[9] J. Models and Support Mechanisms for Distributed Management. In Proc. of IFlP ISINM
'95, pp.17-28, 1995.

[10] IETF RFC 1157. A Simple Network Management Protocol (SNMP), May 1990.
[11] A. Liotta, G. Knight, and G. Pavlou. Modelling Network and System Monitoring over The Internet

with Mobile Agents. In Proc. of IFIPREEE NOMS '98, pp.303-312, 1998.
[12] T. Magedanz and T. Eckardt. Mobile Software Agents: A New Paradigm for Telecommunication

Management. In Proc. of IFIPREEE NOMS '96, pp.360-369, 1996.
[13] Y. Yemini, G. Goldszmidt, and S. Yemini. Network Management by Delegation. In Proc. of IFIP

ISINM '91, pp.95-107, 1991.
[14] M. Zapf, K. Herrmann, and K. Geihs. Decentralized SNMP Management with Mobile Agents. In

Proc. of IFIPREEE 1M '99, pp.623-635, 1999.

SESSION 6

Configuration Management

Chair: Danny Raz
Technion, Israel

SCALABILITY OF PEER CONFIGURATION
MANAGEMENT IN PARTIALLY RELIABLE AND
AD HOC NETWORKS

Mark Burgess
Faculty of Engineering, Oslo University College, Norway
Mark.Burgess@iu.hio.no

Geoffrey Canright
Telenor Research, Fomebu, Oslo, Norway
Geoffrey.Canright@telenor.com

Abstract:

Keywords:

Current interest in ad hoc and peer-to-peer networking technologies prompts a re-examin
ation of models for configuration management, within these frameworks. In the future,
network management methods may have to scale to millions of nodes within a single or
ganization, with complex social constraints. In this paper, we discnss whether it is possible
to manage the configuration of large numbers of network devices using well-known and
no-so-well-known configuration models, and we discuss how the special characteristics of
ad hoc and peer-to-peer networks are reflected in this problem.

Configuration management, ad hoc networks, peer to peer.

1. Introduction
Configuration management is about ensuring that the operational state of a device

or host conforms to specifications lain down by a site policy. The configuration of a
host ensures its efficiency, correctness and security in performing its function. System
configuration is usually a specification of file or database contents, attributes, and pro
cess or service characteristics, including access rights, software customization and so
on. A number of approaches has been devised for configuration management. For in
stance, the IETF model of configuration management revolves traditionally around the
Simple Network Management Protocol (SNMP)[6]. This is read/write state based pro
tocol for altering values in a management information database (MID), and is used by
a number of commercial software products. The 'Telecommunications Management
Network' or TMN[12] is an alternative scheme designed for telecommunications net
works and has a strong relationship with the OSI management model. These systems
use an abstraction based on the concept of 'managed objects'. An different approach
is used by systems like cfengine[2] and PIKT[13], which use descriptive languages
to describe the attributes of many objects at the same time, and agents to enforce the
rules.

The ability to send or receive messages is crucial to configuration management of
network devices and hosts. Indeed, maintaining the configuration of hosts over time
has many features in common with the problem of information transmission over a
noisy channel[5]. Today, distributed systems sport a global geography, and are linked,

http://dx.doi.org/10.1007/978-0-387-35674-7_66

294 Mark Burgess and Geoffrey Canright

both conceptually and physically, by a network infra-structure. Passing messages from
one part of a system to another is subject to a plethora of uncertainties. For example,
SNMP uses an unreliable transport protocol UDP for communication; any configu
ration scheme that relies on the availability of a resource or component at a specific
moment has only a limited chance of being carried out. Systems can be unavailable
due to power failures, physical breakages, absence of dependencies and so on. There is
thus an ad hoc element to network connectivity even in an ostensibly permanent infra
structure. The additional complication of mobile services, with partial or intermittent
connectivity adds to this problem.

An 'ad hoc' network (AHN) is defined to be a networked collection of mobile hosts,
each of which has the possibility to route information. The union of those hosts forms
an arbitrary graph that changes with time. The nodes are free to move randomly;
thus the network topology may change rapidly and unpredictably. Clearly ad hoc
networks are important in a mobile computing environment, where hosts are partially
or intermittently connected to other hosts. While there has been some discussion of
de-centralized network management using mobile agents[15], the problem of mobile
nodes (and so strongly time-varying topology) has received little attention. However,
we will argue below that ad-hoc networks provide a useful framework for discussing
the problems surrounding configuration management in all network types, both fixed
and mobile. This should not be confused with the notion of 'ad hoc management'[ll],
which concerns randomly motivated and scheduled checks of the hosts.

The plan for our paper is as follows. We begin by outlining how reliability can
be discussed in terms of ad hoc connectivity in order to take advantage of its known
scaling properties. Then noting how peer to peer communication implies decentralized
policy, we estimate the required flow of configuration information as a function of the
number of hosts, for a number of management models, in order to determine their
scalability.

2. Availability of peers in a network
The probability that a host will be correctly configured is related to reliability of its

communication with a policy source. As a simplest case, we assume that the reliability
of each node and each link is independent of all others, so that the probabilities of
availability are all independent random variables. In general this is not true, since
some hosts/nodes depend on others for crucial services (e.g. the domain name service
(DNS», but this should suffice to gauge orders of magnitude.

DEFINITION 1 A set o/nodes or hosts is defined by a vector o/probabilities fiT =
(pl,P2, ... ,PN), where Pi(i = 1 .. . N) is the probability that node i is available. If
the probabilities are 1, the hosts are said to be reliable, otherwise they are partially
reliable.

The nodes themselves may have any geographical location, and may be connected by
any means. The connectivity between the nodes is represented by a matrix.

DEFINITION 2 A network is defined by its adjacency matrix. By convention, the
adjacencY matrix 0/ a network or graph is a symmetric matrix with zero leading di
agonal. Zeroes denote no connectivity, while a 1 means a connection. The notation
A(l) distinguishes this (instantaneous) matrix, whose entries are binary-valued,from
the time-averaged matrix discussed below. Owing to access and routing controls, this
matrix need not be symmetrical in practice, but we shall not address that issue here.

Scalability of peer configuration management ... 295

The properties of networks can be discussed in detail, using the adjacency matrix
representation (see for instance, ref. [14]). It is not our intention to go into excessive
detail here, but rather to distill a way of estimating the properties of networks. For
this, we choose to look at the average properties of the networks.

We define a simple measure of the availability of a service, transmitted within a
closed network, by an invariant scalar value x:
DEFINITION 3 The connectivity, X, of a network N, is the probability (averaged
over all pairs of nodes) that a message can be passed directly between any two nodes.
X may be written as

1 "'T'"
X = N(N _ 1) h A h . (1)

X has a maximum value of 1, when every node is connected to every other, and a
minimum value of zero when all nodes are disconnected.

For a fixed topology and time-independent node availabilities, X is a constant char
acterizing the network. In general X is time-dependent; one then obtains a static figure
for the network by taking the long-time average.

1 n
(X) = lim - '"' X(ti).

n-+oo n L....t
i=l

(2)

The utility of this measure is that it enables us to gauge and compare different network
configurations on equal terms. It is also the vehicle by which we can map the problem
of unreliable hosts in a fixed network onto a corresponding problem of reliable hosts
in an ad hoc network.

3. Ad hoc networks
Ad hoc networks are networks whose adjacency matrices are subject to a strong,

apparently random time variation. If we look at the average adjacency matrices, over
time, then we can represent the probability of connectivity in the network as an adja
cency matrix of probabilities.

DEFINITION 4 An ad hoc network is represented by a symmetric matrix ofproba
bilities for adjacency. Thus the time average of the adjacency matrix (for, e.g., four
nodes) may be written as

(A) = (
P31
P41

P12 P13 P14) o P23 P24
P32 0 P34
P42 P43 0

An ad hoc network is therefore a partially reliable network.

To motivate our discussion further, we note that:

(3)

THEOREM 1 A fixed network of partially-reliable nodes, hi, is equivalent to an ad
hoc network of reliable nodes, on average.

296 Mark Burgess and Geoffrey Canright

PROOF 1 This is easily seen from the definition of the connectivity, using a matrix
component form:

N(N - l)(X)

This concludes the proof

L hi (Pi) (Aij(l)) hj(Pj)
ij

L hi(l) (Aij(PiPj)) hj(l).
ij

(4)

The proof demonstrates the fact that one can move the probabilities (uncertainties)
for availability from the host vectors to the connectivity matrix and vice versa; for
example

() = ()T P1r () .
1 0 P3 1 P3Pl P3P2 0 1

Thus an array of hosts with reliability probabilities Pi, is equivalent to an array of reli
able hosts in an unreliable network, where the probability of communication between
them is the product of probabilities (assumed independent) from the reliability vector.

Superposed onto the routing problem is another problem of conceptual dependence.
One is not merely dependent on connectivity to provide a route for messages, but one
depends on trusted sources of information. Thus the arrows from source to receiver
are not merely bytes exchanged but authorized policy instructions. We shall consider
this issue below.

4. Peer to peer
The emergence of network file sharing applications such as Napster and Gnutella

has focused attention on an architecture known as peer-to-peer, whose aim is to pro
vide worldwide access to information via a highly de-centralized network of 'peers'.

DEFINITION 5 A peer to peer network service is one in which each node, at its
own option, participates in or abstains from exchanging data with other nodes, over a
communications channel.

Peer to peer has a deeper significance than ad hoc file sharing. It is about the demo
tion of a central authority, in response to the political wishes of those participating in
the network. This is an issue directly analogous to the policies used for configuration
management. In large organizations, i.e. large networks, we see a frequent dichotomy
of interest:

• At the high level, one has specialized individuals who can paint policy in broad
strokes, dealing with global issues such as software versions, common security
issues, organizational resource management, and so on. Such issues can be
made by software producers, system managers and network managers.

• At the local level, users are more specialized and have particular needs, which
large scale managers cannot address. Centralized control is therefore only a

Scalability of peer configuration management ... 297

partial strategy for success. It must be supplemented by local know-how, in re
sponse to local environmental issues. Managers at the level of centralized con
trol have no knowledge of the needs of specialized groups, such as the physics
department of a university, or the research department of a company. In terms of
configuration policy, what is needed is the ability to accept the advice of higher
authorities, but to disregard it where it fails to meet the needs of the local en
vironment. This kind of authority delegation is not catered for by SNMP-like
models. Policy based management attempts to rectify some of these issues[8].

What we find then is that there is another kind of networking going on: a social
network, superimposed onto the technological one. The needs of small clusters of
users override the broader strokes painted by wide area management. This is the need
for a scaled approach to system management[3].

s. Configuration management in ad hoc networks
Configuration management deals with the problem of establishing and maintaining

a policy conformant configuration on workstations and other hosts distributed around
a network. Policy is usually a set of rules and specifications about the software and re
sources of each host, defined by a central authority and disseminated to the individual
hosts either on demand, or by common update.

Configuration management relies on two main things: i) the availability of trusted
resources to each networked host, including a policy P, and ii) the consistency of the
configuration specified by that policy. In an unpredictable environment one has poten
tially several problems: Critical dependencies, including the policy itself, can become
unavailable or out of date; trust relationships are less certain if hosts cannot verify one
another's' identity, location or integrity. Thus security and verifiable control, within
specified time limits, are at stake.

Even in a fixed infrastructure network, with only partial connectivity, the availabil
ity of the resources is open to uncertainty. This means that the ability to correctly
disseminate policy configuration is open to uncertainty. The framework of ad hoc net
works thus encompasses a number of issues and offers a framework for discussing
configuration strategies in general. In recent times, there has been a move towards
self-configuring networks. Discovery protocols like JINI have to deal with the ad hoc
nature of networks, and the protocols themselves will need to take the uncertainties in
topology into account. Today, most protocols assume a fixed infra-structure.

One question that has been posed in this connection is whether a peer to peer strat
egy, for disseminating configuration policy, could provide a way of spreading informa
tion quickly about the network. If that were the case, then the temporary unavailability
of a node to a central resource would not necessarily imply its isolation from fresh,
critical data. This kind of data distribution has been discussed before[7] in connection
with the scalability of software distribution. On the down side, peer to peer reliance is
clearly an open invitation to engage in malicious activity.

6. Predictability and scaling
As networks grow, some configuration strategies do not scale well. They continue

to be used, however, by force of habit. We are interested in examining the scaling
properties of different configuration management schemes, especially in the context
of network models that look to the future of configuration management.

298 Mark Burgess and Geoffrey Canright

We consider a number of cases, in order of decreasing centralization, or increasing
delegation. Our basic 'constitutive' assumption is that there is a simple linear rela
tionship between the probability of successful configuration and the rate(s) of com
munication with the policy- and enforcement-source(s). We look only at the coarsest
averages over time, in order to determine the long-term behaviours of the models. We
consider a change of configuration ("charge") 6.Q to be proportional to an average
rate of information flow (current) I, over a time 6.t; that is 6.Q = 16.t. This equa
tion is valid when I represents the time-averaged flow over the interval. Since we are
interested in the limiting behaviour for long times, this is sufficient for our needs.

Now we apply this simple picture to configuration management for dynamic net
works. We take the point of view of a 'typical' or 'average' host. It generates error in
its configuration at the (average) rate I err , and receives corrections at the rate Irepair'
Hence the rate of increase of error for the average node is:

ICail = (Ierr - Irepair) O(Ierr - Irepair). (5)

The Heaviside step-function is defined by O(x) = 1 if x> 0 and O(x) = 0 if x <= 0,
and signifies the fact that, if the repair rate exceeds the error rate, then (on average,
over long times) nothing remains outstanding and there is no net rise in configuration
error. Thus this averaged quantity is never negative.

If random errors and changes to configuration occur at a rate Ierr and the configu
ration agent is unavailable to correct them, then ICail = I err . If this holds during a time
6.t, the configuration falls behind by an amount:

Bytes
missing
(6.Q)

seconds
= bytes/sec x unavailable

(Ierr) (6.t)

In the following we will use p to denote the average (over time, and over all nodes)
probability that configuration management information flow (repair current) is not
available to a node. This unavailability may come from either link or node unre
liability. We can lump all the unreliability into the links (see above) and so write
p = (1 - (Aii), where (Aii) denotes both time and node-pair average. Each node
then can only receive repair current during the fraction (1 - p) of the total elapsed
time.

The repair current is generated by two possible sources in our models: i) a remote
source, and ii) a local source. In each case, the policy can be transmitted and/or
enforced at a maximum rate given by the channel capacity of the source. We shall
denote the channel capacities by CR and CL for remote and local sources for clarity,
but we assume that C R f'OoJ C L, since source and target machines are often comparable,
if not identical. If the communication by network acts as a throttle on these rates,
then one can further assume that CR < CL' In any case, the weakest link determines
the effective channel capacity. Note that in the case of a confluence of traffic, as in
the star models below, the channel capacity will have to be shared by the incoming
branches. We now have a criterion for eventual failure of a configuration strategy. If
ICail = > 0, the average configuration error will grow monotonically for all time,
and the system will eventually fail in continuous operation. Our strategy is then to
look at the scaling behaviour of ICail as the number of nodes N grows large.

Scalability of peer configuration management ... 299

Table 1. Comparison of models from the viewpoint of the different dimensions: policy dissemination,
enforcement, freedom of choice, whether hosts can exchange chosen policy ideas with peers and how polit
ical control flows. A 'push' model implies a forcible control policy, whereas 'pull' signifies the possibility
to choose. Model 3 lies between these two, in having the possibility but not the inclination to choose.

Model Application Enforcement Policy Policy Control
Topology Freedom Exchange Structure

I Star Transmitted No No Radial push
2 Star Transmitted No No Radial push
3 Mesh Local No No Radial pull
4 Mesh Local Yes No Radial pull
5 Mesh Local Yes Yes Hierarchical pull
6 Mesh Local Yes Yes P2Ppull

Star model
The traditional (idealized) model of host configuration is based on the idea of re

mote management (e.g. using SNMP). Here one has a central manager who decides
and implements policy from a single location, and all networks and hosts are consid
ered to be completely reliable. The manager must monitor the whole network, using
bi-directional communication. This leads to an N : 1 ratio of clients to manager (see
fig 1). This first model is an idealized case in which there is no unreliability in any

component of the system. It serves as a point of reference.

Figure 1 Modell: the star net
work. A central manager main
tains bi-directional communica
tion with all clients. The links are
perfectly reliable, and all enforce
ment responsibility lies with the
central controlier.

The topology on the left hand side of fig 1 is equivalent to that on the right hand
side. We can assume a flow conservation of messages on average, since any dropped
packets can be absorbed into the probabilities for success that we attribute to the adja
cency matrix. Thus the currents must obey Kirchoff's law:

Icontroller = It + 12 + ... IN· (6)

The controller current cannot exceed its capacity, which we denote by C s. We assume
that the controller puts out repair current at its full capacity (since the Heaviside func
tion corrects for lower demand), and that all nodes are average nodes. This gives that
Irepair = q;. The total current is limited only by the bottleneck of queued messages
at the controller, thus the throughput per node is only liN of the total capacity. We
can now write down the failure rate in a straightforward manner:

(7)

300 Mark Burgess and Geoffrey Can right

As N -+ 00, Irail -+ Ierr-that is, the controller contributes a vanishing repair current
per node. The system fails however at a finite N = Nthresh = Cs / I err. This high
lights the clear disadvantage of centralized control, namely the bottleneck in commu
nication with the controller.

Star model in intermittently connected environment
The previous model was an idealization, and was mainly of interest for its simplic

ity. Realistic centralized management must take into account the unreliability of the
environment.

In an environment with partially reliable links, a remote communication model
bears the risk of not reaching every host. If hosts hear policy, they must accept and
comply, if not, they fall behind in the schedule of configuration. Monitoring in dis
tributed systems has been discussed in ref. [1].

Figure 2 Model 2: a star
model, with built-in unreliabil
ity. Enforcement is central as in
Modell.

The capacity of the central manager C s is now shared between the average number
of hosts (N) that is available, thus

Cs C
Irepair = N (Aij) = (N) . (8)

This repair current can reach the host, and serve to decrease its policy error Q, during
the fraction of time (1- p) that the typical host is reachable. Hence we look at the
deficit accrued over one "cycle" of time with nQ repair current for and a
maximal current Cs/(N} for a time (1 - This deficit is then

= + (Ierr - g:}) (1 - (9)

(here it is implicit that a negative will be set to zero). Thus, the average failure
rate is

(Cs) Cs Irail = Ierrp + Ierr - (N) (1 - p) = Ierr - Ii . (10)

(Again there is an implicit f) function to keep the long-time average failure current pos
itive.) This result is the same as for Modell, the completely reliable star. This is be
cause we assumed the controller was clever enough to find (with negligible overhead)
those hosts that are available at any given time, and so to only attempt to communicate
with them.

Scalability of peer configuration management ... 301

This model then fails (perhaps surprisingly), on average, at the same threshold
value for N as does Modell. If the hunt for available nodes places a non-negligible
burden on the controller capacity, then it fails at a lower threshold.

Mesh topology with centralized policy and local enforcement

The serialization of tasks in the previous models forces configuration 'requests'
to queue up on the central controller. Rather than enforcing policy by issuing every
instruction from the central source, it makes sense to download a summary of the
policy to each host and empower the host itself to enforce it.

There is still a centrally determined policy for every host, but now each host carries
the responsibility of configuring itself. There are thus two issues: i) the update of
the policy and ii) the enforcement of the policy. A pull model for updating policy is
advantageous here, because every host then has the option to obtain updates at a time
convenient to itself, avoiding confluence contentions; moreover, if it fails to obtain the
update, it can retry until it succeeds. We ask policy to contain a self-referential rule
for updating itself.

The distinction made here between communication and enforcement is important,
because it implies distinct types of failure, and two distinct failure metrics: i) distance
of the locally understood policy from the latest version, and ii) distance of host config
uration from the ideal policy configuration. In other words: i) communication failure,
and ii) enforcement failure.

0-·············· Conlroller .-:- ogy does not assure direct connec-
·······0 tion to the controller, each node is df;h \\\0 ::' fN '" - poH" rn-

The host no longer has to share any bandwidth with its peers, unless it is updating
its copy of the policy, and perhaps not even then, since policy is enforced locally and
updates can be scheduled to avoid contention.

Let Iupdate be the rate at which policy must be updated. This current is usually
quite small compared to Ierro and was neglected in the previous models. Based on the
two failure mechanisms present here, we break up the failure current into two pieces:
Irail = Ifail(i) + Ifail (ii). The former term is

Irail(i) (Ierr - GL)(}(Ierr - GL) ; (11)

this term is independent of N and may be made zero by design. Irail(ii) is still de
termined by the ability of the controller to convey policy information to the hosts.
However, the load on the controller is much smaller since Iupdate « Ierr . Also, the
topology is a mesh topology. In this case the nodes can cooperate in diffusing policy
updates, via flooding (Note, flooding in the low-level sense of a datagram multicast
is not necessarily required, but the effective dissemination of the policy around the
network is an application layer flood.) .

302 Mark Burgess and Geoffrey Canright

The worst case-in which the hosts compete for bandwidth, and do not use flooding
over the mesh-is that, for large N, Irail -+ Iupdate. This is a great improvement over
the two previous models, since Iupdate « I err . However note that this can be further
improved upon by allowing flooding of updates: the authorized policy instruction can
be available from any number of redundant sources, even though the copies originate
from a central location. In this case, the model truly scales without limit, i.e. Irail = 0.

There is one caveat to this encouraging result. If the (meshed) network of hosts is
truly an ad-hoc network of mobile nodes, employing wireless links, then connections
are not feasible beyond a given physical range r. In other words, there are no long
range links: no links whose range can grow with the size of the network. As a result
of this, if the AHN grows large (at fixed node density), the path length (in hops)
between any node and the controller scales as a constant times Vii, This growth in
path length limits the effective throughput capacity between node and controller, in a
way analogous to the internode capacity. The latter scales as 1/ Vii [9,10]. Hence, for
sufficiently large N, the controller and AHN will fail collectively to convey updates
to the net. This failure will occur at a threshold value defined by

Irail(ii) = Iupdate - = 0,
C thresh

(12)

where c is a constant. The maximal network size Nthresh is in this case proportional

to c) 2 -still considerably larger than for Models 1 and 2.
update

Mesh topology with partial host autonomy and local enforcement

As a variation on the previous model, we can begin to take seriously the idea of
distance from a political centre. In this model, hosts can choose not to receive policy
from a central authority, if it conflicts with local interests. Communication thus takes
the role of conveying 'suggestions' from the central authority, in the form of the latest
version of the policy. For instance, the central authority might suggest a new version
of widely-used software, but the the local authority might delay the upgrade due to
compatibility problems with local hardware. Local enforcement is now employed by
each node to hold to its chosen policy Pi' Thus communication and enforcement use
distinct channels (as with Model 3); the difference is that each node has its own target
policy Pi which it must enforce.

Figure 4 Model 4. As in Model
3, except the hosts can choose
to disregard or replace aspects of
policy at their option. Question

........... :.:.0 ' marks indicate a freedom of hosts

ID

Thus tfie communications and enforcement challenges faced by Model 4 are the
same (in terms of scaling properties) as for Model 3: i.e. Irail is the same as that in

Scalability of peer configuration management ... 303

Model 3. Hence this model can in principle work to arbitrarily large N. Model 4
is the model used by cfengine[2, 4]. The largest current clusters sharing a common
policy are known to be of order 104 hosts, but this could soon be of order 106 , with
the proliferation of mobile and embedded devices.

Mesh, with partial autonomy and hierarchical coalition

An embellishment of Model 4 is to allow local groups of hosts to form policy
coalitions, that serve to their advantage. Such groups of hosts might belong to one
department of an organization, or to a project team, of even to a group of friends in
a mobile network. Once groups form, it is natural to allow sub-groups and thence a
generalized hierarchy of policy refinement through specialized social groups.

Figure 5 Model 5. Communi
cation over a mesh topology, with
policy choice made hierarchically.
Sub-controllers (dark nodes) edit
policy as received from the central
controller, and pass the result to
members of the local group (as in
dicated by dashed boxes). Ques
tion marks indicate the freedom of
the controllers to edit policy from
above.

If policies are public then the scaling argument of Model 3 still applies since any
host could cache any policy; but now a complete policy must be assembled from sev
eral sources. Once can thus imagine using this model to distribute policy so as to avoid
contention in bottlenecks, since load is automatically spread over multiple servers. In
effect, by delegating local policy (and keeping a minimal central policy) the central
source is protected from maximal loading. Specifically, if there are S sub-controllers
(and a single-layer hierarchy), then the effective update capacity is multiplied by S.
Hence the threshold Nthresh is multiplied (with respect to that for Model 3) by the
same factor. This model could be implemented using cfengine, with some creative
scripting.

Mesh, with partial autonomy and inter-peer policy exchange

The final step in increasing autonomy is the free exchange of information between
arbitrary hosts. Hosts can now offer one another information, policy or source ma
terials in accordance with an appropriate trust model. In doing so, impromptu coali
tions and collaborations wax and wane, driven by both human interests and possibly
machine learning. A peer-to-peer policy mechanism of this type invites trepidation
amongst those versed in control mechanisms, but it is really no more than a distributed
genetic algorithm. With appropriate constraints it could be made to lead to sensible
convergent behaviour, or to catastrophically unstable behaviour.

One example of such a collaborative network that has led to positive results is the
Open Source Community. The lesson of Open Source Software is that it leads to a
rapid evolution. A similar rapid evolution of policy could also be the result from such

304 Mark Burgess and Geoffrey Can right

Figure 6 Model 6. Free ex
change of policies in a peer
to-peer fashion; all nodes have
choice (dark). Nodes can form
spontaneous, transient coalitions,
as indicated by the dashed cells.
All nodes can choose; question
marks are suppressed.

exchanges. Probably policies would need to be weighted according to an appropriate
fitness landscape. They could include things like shared security fixes, best practices,
code revisions, new software, and so on. Until this exchange nears a suitable stationary
point, policy updates could be much more rapid than for the previous models. This
could potentially dominate configuration management behaviour.

This model has no centre. Hence it is, by design, scale-free: all significant inter
actions are local. Therefore, in principle, if the model can be made to work at small
system size, then it will also work at any larger size.

We note however that Model 6, of all the models presented here, has the greatest
freedom to explore the space of possible policies. Hence an outstanding, and ex
tremely nontrivial, question for this peer-to-peer model of configuration management
is: can such a system find 'better' policies than centralized systems?

7. Summary and conclusion
We have presented several models for configuration management on networks. Our

Models 3-6 depart from mainstream practice in various ways. The motivation for
considering these models is the perception that highly centralized systems are not well
adapted to networks that are too large, too heterogeneous, or too dynamic. Since
current and future networks are taking on more and more of these three qualities, it is
of interest to examine alternative models for configuration management.

We have held ourselves to a limited set of goals. The first of these is the defini
tion of the models themselves. These models offer broad avenues for future research
in configuration management; variants of one (or several) of them are likely to be
important in future systems.

Our second goal has been to assess the scaling behaviour of these models with
respect to two criteria: communication of the current policy to the hosts, and enforce
ment of the communicated policy. We have considered the various models' ability to
meet these criteria, as the number of hosts N in the network grows large. We find, not
surprisingly, that the highly centralized systems suffer from a communications bottle
neck that limits the size at which they can function effectively. De-centralizing one
or both of the two functions gives much better scaling behaviour-to the point that
all of the Models 3-6 can, in principle (with some qualifications), implement policy
communication and enforcement for very large systems.

Of course, de-centralization brings with it new problems, not addressed by the
centralized system: problems of trust, of the quality of chosen policies, and of con
vergence to a stable regime. These new problems offer attractive issues for further

Scalability of peer configuration management ... 305

research, due both to their intrinsic interest, and to their relevance to the future imple
mentation of de-centralized network systems.

References
[1] H. Abdu, H. Lutfiya, and M. Bauer. A model for adaptive monitoring configurations. Proceedings of

the VIIFlPIIEEE 1M conference on network managemellt, page 371, 1999.

[2] M. Burgess. A site configuration engine. Computing systems (MIT Press: Cambridge MA), 8:309,
1995.

[3] M. Burgess. On the theory of system administration. Submitted to J. ACM., 2000.

[4] M. Burgess. Cfengine's immunity model of evolving configuration management. Submitted to IEEE
Transactions on Software Engineering, 2002.

[5] M. Burgess. System administration as communication over a noisy channel. Proceedings of the 3nd
international system administration and networking conference (SANE2002), 2002.

[6] J. Case, M. Fedor, M. Schoffstall, and J. Davin. The simple network management protocol. RFCl155,
STD 16, 1990.

[7] A.L. Couch. Chaos out of order: a simple, scalable file distribution facility for intentionally het
erogeneous networks. Proceedings of the Eleventh Systems Administration Conference (LISA Xl)
(USEN1X Association: Berkeley, CAY, page 169, 1997.

[8] N. Damianou, N. Dulay, E.C. Lupu, and M. Sloman. Ponder: a language for specifying security and
management policies for distributed systems. Imperial College Research Report DoC 200011, 2000.

[9] P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Trans. Info. Theory, 46(2):388-
404,2000.

[10] J. Li, C. Blake, D.SJ. DeCouto, H.I. Lee, and R. Morris. Capacity of ad hoc wireless networks. Proc.
7thACM Inti. Corif. on Mobile Computing and Networking, pages 61-69, 2001.

[11] J.P. Martin-Flatin. Push vs. pull in web-based network management. Proceedings of the VI
IFlPIlEEE 1M conference on network managemellt, page 3, 1999.

[12] M. Matsushita. Telecommunication management network. NIT Review, 3:117-122, 1991.

[13] R. Osterlund. Pikt: Problem informant/killer tool. Proceedings of the Fourteenth Systems Adminis
tration Conference (LISA XIV) (USENIX Association: Berkeley, CAY, page 147,2000.

[14] D.B: West. Introduction to Graph Theory (2nd Edition). (Prenctice Hall, Upper Saddle River), 2001.

[15] M. Zapf, K. Herrmann, K. Geihs, and J. Wolfang. Decentralized snmp management with mobile
agents. Proceedings of the VIIFlPIlEEE 1M conference on network management, page 623,1999.

KHNUM - A SCALABLE RAPID APPLICATION
DEPLOYMENT SYSTEM FOR DYNAMIC HOSTING
INFRASTRUCTURES

Alain Azaguryl, German Goldszmidtl , Yair Koren2, Benny Rochwergerl and
Arie TaP
IIBM Research
AZAGURY@il.ibm.com, gsg@us.ibm.com, ROCHWER@il.ibm.com

2Technion Israel Institute of Technology
yair-k@cs.technion.ac.il

31BM Toronto Lab
arletal@ca.ibm.com

Abstract: In a dynamically scalable hosting infrastructure for e-business computing, servers need to
be quickly allocated in order to satisfy a sudden demand for increased computing power
for a hosted site.

Khnum is the applications and data management component of Oc6mo - a dynami
cally scalable hosting infrastructure for e-business computing utilities. It is responsible for
server reconfiguration and for application deployment. Application deployment involves
all services, configuration directives, executables and data of the application. A hosted site
may include several applications.

Khnum enables Oc6mo to rapidly deploy multiple applications to tens of servers si
multaneously in just a few minutes. It uses AFS as the infrastructure for secure storage,
automatically mapping files and directories onto the new servers' local filesysterns and
multicasting hot AFS cache content to the new servers. To avoid overloading the AFS
servers during the deployment process, the hot cache content is multicasted to all the new
servers, avoiding the boot storming (or "rushing") effect. This, in turn, improves the scal
ability of the deployment process; experimental results attest to Khnum's scalability in
simultaneously deploying applications to tens of servers.

1. INTRODUCTION
The Oceano project aims at providing a dynamically scalable hosting infrastruc

ture for e-business computing utilities. Current co-location hosting environments use
dedicated computing resources for every hosted site; these resources determine the
capacity of the hosted site's applications.

In these environments, the process of adding new resources is complex, time
consuming and labor-intensive. This process normally involves the physical installa
tion of the machines and supporting infrastructure (space allocation, racks or shelves,
electricity, cooling, routers, etc.), and the deployment of the hosted site's applications,
data and middleware. This process may also require some downtime while the site is
being reconfigured for the added servers.

In addition, hosted sites increasingly require support for peak workloads that, in
some cases, could be an order of magnitude larger than what they experience in their
normal steady state. During promotions, a successful marketing campaign or a high

http://dx.doi.org/10.1007/978-0-387-35674-7_66

308 Azagury, Goldszmidt, Koren, Rochwerger and Tal

seasonal demand, the number of accesses to an e-commerce site can increase signif
icantly compared to its normal steady state, requiring much more resources for han
dling the larger workloads. In this model, enabling peak-load scale on demand would
require large investments in standby, non-shared resources, which would be mostly
under-utilized, occupy large amounts of physical space and require regular mainte
nance. Furthermore, a site may still go down if faced with a larger than expected
workload and lacks proper access throttling. Clearly, such a model is not well suited
to efficiently mitigate the differences between average and peak workloads. Thus a
faster turnaround time in adjusting the resources (bandwidth, servers, and storage)
assigned to each hosted site to the actual workload is needed.

Oceano modifies the prevalent hosting model by increasing the sharing of resources,
and by dynamically adjusting the amount allocated to each hosted customer according
to the current observed demand. The Oceano model assumes that all servers are clus
tered together within the same glass-house or campus, and the hosting environment
is dynamically divided into secure, single hosted site domains. These domains are
dynamic: the resources assigned to them may be augmented when workload increases
and reduced when workload dips. This dynamic allocation of resources is controlled
by flexible Infrastructure Service Level Agreement (ISLA) contracts with hosted cus
tomers. Oceano administers the available resources, so that each hosted customer is
provisioned as specified by its contract.

To do that, Oceano maintains a pool of unassigned (free) servers that can be dy
namically assigned to hosted sites. When a higher than normal workload is expected
for a hosted site, a group of servers can be pre-allocated for the hosted site in advance.
If however, during the live operation of the hosted site, Oceano determines that the
workload is going to increase beyond the hosted site's current capacity, more servers
are then dynamically allocated for the hosted site (in accordance with the ISLA for
the hosted site), while the site is handling the current workload. On the other hand, if
Oceano determines that the workload is going to decrease and that servers are going to
be under-utilized, servers are de-allocated from the hosted site and returned to the pool
of unallocated servers. Underlying subsystems provide the mechanisms for determin
ing expected workloads, throttling access, managing resources and shifting them to
and from a hosted site domain in pseudo real time (minutes) without compromising
security requirements.

Figurel illustrates this in a simple multi-tier scenario. Servers at Tier-l and Tier-2
are dynamically reallocated as workload increases, while Tier-3 resources are assigned
to hosted sites for very long periods of time. In Figure lea) 6 servers are allocated to
hosted site A and 6 to hosted site B. Figure l(b) illustrates the server allocation status
following a detection of a significant increase in the workload of hosted site B and the
reallocation of some of the machines. In the absence of "free" machines, to fulfill the
needs of hosted site B, the Oceano system took under-utlilized resources away from
hosted site A 1 .

Once a server has been allocated to a hosted site, it should be installed with the
applications and data that will enable it to actively participate in the site's workload.
In addition, the server's network configuration should be modified to identify it as
belonging to the hosted site to which it was allocated. Setting up a new server in
volves time-consuming and labor-intensive operations such as application installation,
configuration and tuning. Many techniques are available to ease these tasks (see Sec
tion 2).

Khnum - A Scalable Rapid Application Deployment System 309

In an Oceano-hosted environment, the entire hosted site's data (including applica
tion binaries2) is kept in a shared file system; installation and configuration of applica
tions is done off-line. Khnum3 , the applications and data management component of
the Oceano architecture, is responsible for the rapid deployment of applications (and
data) on added servers. Application deployment, the process of setting up all the ap
plications on a new server, is reduced to mapping a remote shared subtree (or several
subtrees) to the local file system of the new server.

In the simplest case, the mapping involves only the creation of a few symbolic
links, but it could also be relatively complex for applications that require system con
figuration changes where symbolic links are insufficient. In addition, Khnum is also
responsible for configuring the machines to run the applications, and to pre-fetch ap
plication data and executables in order to bring them faster into the fully functional
state.

Figure 1. Resources assigned are augmented when workload increases and reduced when workload
dips

Tied
PrescnL"llion

Layer

TierZ Tier 3
Application Storage llfill

I. L.y" 1 F'} 1
G{II SitcA

10-::::', -.-._-+---+-1-=1=-1--I
• • H""ed

SiteB

(a) Two hosted sites in the same OCI:llllO hosted
environment

Tier I Tier 3
Presentation Stomge lind

L-=;.....:;' '-"fI"-. ,....1 F'} 1

II

(b) Due to sudden workload increase the servers
are reallocated

In a multi-tier environment, any considerable change in the computing power (that
is, number of servers) of any of the tiers can, if not managed properly, severely impact
the adjacent tiers. For example, in an Oceano-like hosting environment, a sudden
increase in incoming requests may cause a quick buildup of computing power at Tier-
1 and Tier-2; however, the number of Tier-3 servers stays the same, hence they may
become a bottleneck when multiple new Tier-l servers and Tier-2 servers all request
access simultaneously to the same data from the Tier-3 servers. Over-provisioning
Tier-3 for the maximum expected workload, as a way to avoid this problem, would be
expensive and probably impractical. Khnum avoids choking the Tier-3 servers by pre
fetching "hot" cache data from a running Tier-l server and a running Tier-2 server into
newly allocated Tier-l servers and Tier-2 servers, respectively. Furthermore, Khnum
uses multicast to "push" this hot data to all new servers being allocated to a hosted
site simultaneously. The Khnum model proved to be a very efficient mechanism for
rapidly deploying applications on new servers. Using this model, we have successfully
deployed multiple applications, including Apache, Jakarta-Tomcat, Real Media, and
iPlanet.

The Khnum model requires AFS distributed filesystem support and a local filesys
tem supporting symbolic links. Therefore, although our implementation was based on
RedHat Linux v6.2, other UNIX variants could be used for implementing this model.

310 Azagury, Goldszmidt, Koren, Rochwerger and Tal

The rest of this paper is organized as follows. Section 2 describes related work
in application installation, distributed file systems, and cache pre-loading schemes.
Section 3 presents Khnum's data sharing model, its components, its file system map
ping method, and its cache pre-fetching. Section 4 describes experimental results, and
conclusions and future directions are presented in Section 5.

2. RELATED WORK
2.1 Installing and Cloning

The RPM utility by Red Hat Linux [2] reduces the installation complexity by pack
ing the applications with installation scripts and a list of dependencies. The rpm
utility performs the dependencies check, unpacks applications and runs the installa
tion scripts. Disk cloning products, such as Symantec Ghost [3], tackle the installation
problem by copying entire disks from a pre-configured machine into one or more new
machines. All these approaches assume that applications and data are installed on
each machine as independent copies, which makes the task of "content management"
hard since there is a need to maintain many synchronized copies of the same data. On
the other hand, shared file systems have been used to store application binaries in a
common place. However, architectures using this approach (for [4]) limit
the use of shared data to a small set of predefined locations to reduce the complexity
of managing mount points or symbolic links, or both.

2.2 Distributed File Systems for clusters
Khnum relies on the Andrew File System (AFS) [5], for sharing the hosted site's

content between its multiple servers. Contrary to the weak caching semantics of the
popular NFS [6], AFS provides robust caching mechanisms that allow access to large
amounts of cached data with speeds comparable to those of local file system accesses.
As extensions to AFS's efficient file sharing model, which significantly reduces the
workload on the file servers, Coda [7] and Disconnected AFS [8] also allow access to
the cached data even when the file server is inaccessible, while keeping their respective
file system semantics. In the JetFile [9] multicast-based distributed file system, most
operations, which are usually managed by the server, have been moved to the clients.
JetFile also supports large caches (in the order of gigabytes), and uses dynamic repli
cation as a means to localize traffic, contrary to AFS's static read-only replication.

2.3 Cache pre-loading schemes

The Khnum model is based on the assumption of a symmetric relationship between
servers, that is, we assume that all the servers for a certain hosted site, serve more or
less the same content4 , and hence should have very similar cache contents. Therefore,
when adding new servers to a hosted site, the cache content of an active server is
multicasted to the newly added servers, under the assumption that the new servers will
be asked to serve roughly the same content. This model is different from SEER [10]
and MFS [11], which propose sophisticated hoarding mechanisms for detecting which
files should be stored in the cache, as a preparation for disconnected operation, under
the assumption that different servers need different content.

Khnum - A Scalable Rapid Application Deployment System 311

Dedicated to caching Web content, LPC [12] employs multicasting for pushing
cache content to cache replicas, and automatic tracking of popular Web pages for de
termining hot cache items. When popular Web pages are determined, their content
is pushed to the Web servers, effectively minimizing the time it will take a server to
serve that page for the first time. This is rather different from our approach, in which
all servers, other than newly added ones, are quite independent of each other. However,
in our model, we assume all servers are configured with a large enough AFS cache,
so that all popular static Web pages should eventually be stored in the local cache of
every server without imposing any additional complexity on the server [13]. On the
other hand, if the Web pages are continuously generated every few minutes (for ex
ample weather reports, stock reports, sports results), LPC may be more scalable with
large numbers of servers, significantly reducing the workload on the shared file sys
tem server. TriggerMonitor [14] uses a different, but related, approach by "sensing"
changes in database entries, which are used to compose the dynamically generated
Web pages. Generated pages are stored and used until a change is detected that re
quires a page regeneration. The newly generated pages can then be "pushed" to the
participating Web servers that serve them as "static" pages.

3. THE DATA SHARING MODEL
To reduce the time and complexity of the application deployment process on new

servers, all application data (applications executables, configuration files and data5)

reside on a shared file system and the local disk is used only for temporary data
(swapping, caching, and so on), machine specific configuration, and the basic op
erating system. Essentially, the servers on each cluster become almost "data less"
machines. When a server either fails or is removed from a hosted site, all the data
on its local disk gets wiped out (except for the basic operating system and machine
specific configuration)6.

Ideally, a single symbolic link into a subdirectory in the AFS tree would be suffi
cient to fully enable applications on the cluster nodes. However, this is doable only
for a limited set of applications. In many cases applications require files in system
directories such as fetc. Moreover, symbolic links to a shared directory should not be
used for directories and files that are, by definition, local to a particular machine. For
example, the installation of the Apache Web server creates the fvarflog/http subdirec
tory to keep a local log of http activity. To overcome these problems and still keep
the applications on the shared file system, the Khnum model suggests a three-phase
process for deploying applications on an Oceano-hosted environment:

1 Standard installation - The application is installed locally using the standard ap
plication procedure on an off-line machine designated as the installation staging
server.

2 Analysis and relocation - Once an application has been installed, configured
and tested, it is relocated to an area on the shared file system that mirrors the
local disk of the installation staging server. Some applications can be directly
installed on the shared file system, while others need manual classification of
all its files according to their access:

Read-only files which can always be relocated to the shared file system as long
as the actual path to them is kept (through symbolic links). In most cases

312 Azagury, Goldszmidt, Koren, Rochwerger and Tal

this includes configuration files since these are typically modified once (or
sporadically).

Instance read/write files contain data relevant to a particular instance of the
application, and hence cannot be shared. Log files are a good example
of this type of files. When the application is relocated, these files are
separated from the application subtree into a local subtree (by modifying
the application configuration files accordingly).

Application-wise read/write files contain information relevant to all instances
of an application. To avoid inconsistencies, applications may choose to
lock entire files or only portions of them, and to lock only during the write
operations or during the entire "life" of the application (in which case the
application becomes non-shareable).

Some applications may require an additional effort of creating customized con
figuration scripts. The purpose of these configuration scripts is to modify con
figuration files and perform additional tasks that cannot be achieved by simply
replacing the existing files with application-specific ones (for example files con
taining server-specific configuration information). These configuration scripts
will be invoked at a post-mapping phase (see below).

3 Mapping - The final step of bringing an application up includes: (a) stopping
the processes running on the server undergoing application deployment; (b) cre
ating the necessary links and directories on the server's file system; (c) running
configuration scripts (when needed); and (d) restarting the system and applica
tion processes.

The application analysis process may be difficult at first, but the knowledge acquired
on each application can be re-applied. Although the file hierarchy structure varies
from application to application, the ongoing efforts to standardize the file system struc
ture [15] will eventually simplify the process. Note that the time-consuming parts of
this process (installation and analysis) are done off-line, and hence they are not part of
the rapid deployment of applications on new servers. In addition, when a new server
is allocated to a hosted site, previously allocated servers continue to work normally
without interruption.

3.1 System Overview
As with most Oceano components, Khnum's functionality is divided between a

management sub-component - the Khnum Manager (KhnumM), which oversees and
coordinates the application deployment process; and an execution sub-component -
the Khnum Daemon (KhnumD), which is present on all servers and is responsible
for file system mapping, cache pre-fetching and configuration. KhnumM waits for
"application deployment instructions" from either eClams, the Oceano component re
sponsible for the management of servers [I), or directly from a user when working in
standalone mode. These application deployment instructions consist of a hosted site
identifier, a list of servers and a "command": either add the servers to the hosted site,
or remove the servers from the hosted site, that is, restore the servers to the unallo
cated state. As a response to these instructions, KhnumM initializes the application
deployment process on the new servers by selecting from the servers already allocated
to the desired hosted site (the "old servers") a cache pre-fetch source7 and then send
ing a START-DEPLOYMENT message to all new servers. We currently pick an arbitrary old

Khnum - A Scalable Rapid Application Deployment System 313

server as the cache pre-fetch source. However, it is not clear whether we should pick
older servers whose cache might have reached a level of stability, or newer servers that
may still hold the files required for initialization.

Figure 2. The life cycle of a server

runlevel3 runlevel7 runlevel3

Figure 2 describes the life cycle of a server from Khnum's perspective. KhnumD
on new servers is in the Free state where it waits for the START-DEPLOYMENT message
from KhnumM. When KhnumD receives a request from KhnumM it responds by
changing the system's runlevel8 to a specially tailored runlevel 79 • This transition
will cause all the services on the server undergoing applicationed deployment to be
stopped and the initialization program KhnumSetup to run. KhnumSetup will create
symbolic links to the shared file system, initialize the cache, optionally run config
uration scriptslO , and initiate another runlevel transition, which will cause the new
services to be started. A START-DEPLOYMENT message includes information on new AFS
cell configuration files, a designated cache pre-fetch server identifier and a setup file
(Khnum.setup) containing information on how to setup the required applications.

Upon receiving a START-DEPLOYMENT message, KhnumD enters the Application De
ployment state, and performs the following procedure:

1 Stop all services on the server undergoing deployment (by switching to runlevel
7).

2 Stop AFS daemonll services.
3 Copy new AFS configuration files to a standard location.
4 Restart AFS daemon with the new configuration (to gain access to the new

hosted site).
5 Find and set up all the symbolic links and directories on the hosted site's AFS

cell required by the server (by running KhnumSetup) and run configuration
scripts according to the definitions in Khnum.setup.

6 Stop AFS daemon (to prepare for cache pre-fetching).
7 If there are other servers undergoing application deployment for this hosted site,

pre-fetch the AFS cache content (from the server designated by KhnumM as
part of the START-DEPLOYMENT message).

8 Switch back to run level 3, which also restarts the AFS daemon and (system and
application) services (new services are now started because in step 5 symbolic
links were created in letclrc.dlinit.d and letclrc.dlrc3.d).

9 Send a DEPLOYMENT-COMPLETE message back to KhnumM.

314 Azagury, Goldszmidt, Koren, Rochwerger and Tal

AFS cache pre-fetching (step 7) is only needed as a performance optimization. After
application deployment, the server automatically enters the operational state in which
it listens for START-CLEANING or PREPARE-CACHE-SNAPSHOT (not shown in Figure 2) mes
sages. The "cleaning procedure" that KhnumD performs when it enters the cleaning
state is very similar to the application deployment procedure:

1 Switch to runlevel 7, which stops all services.

2 Stop AFS daemon.

3 Clean up AFS cache.

4 Remove all the files that were created locally by applications since the applica
tions were deployed on the server.

S Remove all symbolic links and directories created by KhnumD when the server
underwent application deployment.

6 Copy administrative AFS configuration files to standard location.

7 Restart AFS daemon.

8 Find and set up all the files and directories on the administrative AFS cell.

9 Switch back to runlevel3, which restarts the system services (at this point only
basic services will be started)

10 Send a CLEANING-COMPLETE message back to KhnumM.

When servers are in the "free" pool, they can potentially go though hard-drive re
imaging (that is, operating system re-installation) to produce a totally "clean" filesys
tern. As mentioned before, the time limitations during the cleaning stage are not as
tight as during the application deployment stage, and therefore more time-consuming
processes such as hard drive re-imaging and machine reboot are possible in the time
allowed.

3.2 File System Mapping

The Khnum mapping process automatically creates: (a) symbolic links for read
only and application-wise read-write data, and (b) entire subtrees needed for instance
read-write data. This process is driven by a configuration file consisting of mapping
4-tuples (SharedDir, LocalDir, policy, script) where:

SharedDir: specifies the remote root of the mapping, that is, where in the shared file
system the image of additions to the local file system is rooted.

LocalDir: specifies a subdirectory on the local file system where the links/directories
found in SharedDir are to be created (recursively).

Policy: specifies what to create on the local file system: subdirectories only (mktree),
subdirectories and symbolic links to remote files (mkdir), or symbolic links to
remote subdirectories and remote files (mklink).

Script: points to a post-mapping configuration script, that is, after the line in the
configuration file is processed, this script will be called.

The different policies together with the post-mapping script allow for maximum flex
ibility with minimal changes to the local file system. The essence of the process is to

Khnum - A Scalable Rapid Application Deployment System 315

create an image of the remote file system structure on the local file system using sym
bolic links as the preferred mechanism and creating entire subtrees whenever symbolic
links are not appropriate. At the end of the process, the minimal number of new sub
directories will have been created, while most of the data will be accessible through
symbolic links and the post-mapping script handles the special cases of files that need
to be modified instead of replaced.

3.3 AFS Cache Initialization

The AFS aggressive caching mechanism ensures that in the "steady state" access
ing frequently used read-mostly12 files is almost as fast as if the files were local
to the machine13 [16]. However, the penalty for reaching this steady state can be
high in terms of performance (for example, network traffic), in particular when many
machines try to initialize their AFS cache simultaneously. Hence, a method to get
many machines simultaneously to a known steady state, without choking the AFS file
servers, is needed.

When the AFS daemon is started, it validates all the entries in the local cache.
This means that if the cache contents are replaced with a valid content before the
daemon is started, this new content will be used as if it was received by the daemon
itself. Based on this observation and on our desire to achieve a steady state quickly,
the AFS cache on new servers is initialized, before the daemon is started, with the
contents of the AFS cache of a server already in the cluster (the cache source). Fur
thermore, to reduce network traffic and application deployment time, this pre-fetching
is done by multicasting the cache contents to all the new servers simultaneously, using
a multicast-enabled version of the TFTP protocol [17]. Figure 3 shows the message
flow of the cache pre-fetch protocol, which is divided into the following three phases:

1 KhnumM selects a server as the Cache Source and sends it a INITIALIZE-CACHE

request message to initialize the cache service and waits until the cache source
is ready; the Cache Source server takes a snapshot of the cache content, starts
the multicasting daemon, and sends a message back to KhnumM notifying that
it is ready for multicasting the cache content.

2 KhnumM sends a START-DEPLOYMENT request (with the IP address of the Cache
Source server) to each joining server. Each server then requests from the Cache
Source the cache content. Once all requests are received (or a time-out ex
pires), the Cache Source multicasts its cache contents to the new servers. Multi
cast TFTP multicasts cyclically all nonreceived blocks until the cache has been
transmitted successfully to all the joining servers. Since pre-fetching is done for
performance, we also considered multicasting in a best effort manner, that is,
populating potentially only parts of the caches. KhnumD on the new servers
performs the application deployment procedure, creating the directory struc
tures and links according to the hosted site's definition as described in the pre
vious section.

3 The new servers request the cache snapshot from the cache source and use it to
initialize the AFS cache and resume the application deployment procedure.

316 Azagury, Goldszmidt, Koren, Rochwerger and Tal

Figure 3. Cache Pre-fetching

,1 •• 11. I I I

1+ - -

I I I
I I I
I I I

START .DEPLOyMENT I I I

START·DEPLOyMENT
I I

I

I I
: I I

START.DEPLOyMENT
I

..!:
"ArHR

J ::;--
-"1RT "A"HF

I
I
I
I
I
I
I I

I

4. EXPERIMENTAL RESULTS
As mentioned previously, the prevailing hosting model at the time of writing is

that of statically allocated servers. Adding additional servers to the initial setup is
both expensive and time-consuming (a matter of days for adding additional machines,
provided that they are physically available). Therefore, there is no value in a direct
experimental comparison of dynamic allocation times and static allocation times.

On the other hand, we mentioned that adding many servers at once in our model
may stress the AFS server (or servers), and we proposed a cache multicast pre-fetch
model as a possible solution to this problem. We also conducted experiments that
show the difference in "total application deployment time" (the time it takes to add a
number of servers to a hosted site) with or without using multicast cache pre-fetching.
The results of our experiment show that multicast cache pre-fetching significantly im
proves the scalability of our solution (in terms of the number of servers that can be
added "at once" in single-digit number of minutes).

Our experiments were conducted using a set of 20 servers. Each server was a
600 MHz IBM IntelliStation with 512 MB of RAM running Linux RedHat 6.2. The
machines were interconnected with a 100 Mbps fast Ethernet switch. In these experi
ments the total application deployment time was measured, that is, the time from when
a START-DEPLOYMENT message was sent to the first server, to the time the last server has
replied with a DEPLOYMENT-COMPLETE message.

Therefore, as described earlier, all the servers, that undergo application deploy
ment, stop their current services and clear their "old" AFS caches before the applica
tion deployment for the newly hosted site begins. There are a number of factors that
may considerably affect the measured results:

Number of servers: Impacts the total amount of data that, under normal circum
stances, needs to be sent over the network. Every server independently accesses

Khnum - A Scalable Rapid Application Deployment System 311

the shared file system. Thus, when a file is requested, that is not in the re
quester's AFS cache, the file's content will need to be retrieved from the shared
file system server.

Network bandwidth and load: In many occasions, data from different sources may
traverse the network, and affect the experiment's results. In our setup we use
a dedicated private network for these experiments, minimizing the possibility
that data other than our experiments' data will traverse the network (besides the
usual "network noise").

Data set size: The total size of all the content for a given installation. We assume a
server is already installed with the base operating system services and utilities,
thus an installation refers only to any additional data that may be needed by the
server, in order to serve as an equal member of the set of servers it is joining
(for example Web servers of a specific Web site).

Cache size: The use of a cache depends heavily on the design and implementation of
the shared file system. In our experiment, we use AFS. To simplify our exper
iment, we define our entire data set as "hot" (that is the most needed data, that
needs to reside in the cache)14. That is, we define the cache size to be equal to
or larger than the data set size, which should give us the effect of having our
entire data set in the cache.

Shared file system server capacity: The more servers that need to be served from a
shared filesystem server the greater the potential workload on the shared server,
more so when new servers undergoing application deployment try to access the
same content simultaneously. The capacity of the shared filesystem server could
easily become a bottleneck when dealing with many servers.

4.1 Description of the experiments
In order to get a clearer picture on the improvement that is provided by multicast

cache pre-fetching, we tested our environment using two different data sets:

• The "Mayflower" experiment provides an example of a graphic intensive Web
site. The site consists of 5421 files of small size (3 KB to 10 KB), adding up to
112 MB. The AFS cache size was set to 120 MB.

• The "ShowBoat" experiment is an example of a streaming video site, with a
few relatively long movie clips (3 minutes to 4 minutes long). The site consists
of 1855 files adding up to 162 ME. In this case the AFS cache size was set to
180MB.

The experiments consist of deploying applications and data on up to n servers si
multaneously (0 < n < 20) and measuring the total application deployment time as
defined above. Our primary interest was to measure the effects of the multicast cache
pre-fetching; hence tests were done with and without pre-fetching. From the hosted
customer's perspective, the interesting measure is the time it takes for a new server to
serve its first request (that is, the server becomes fully operational). To approximate
this value, we "forced" all new servers to retrieve the entire content from the AFS
server such that the AFS cache fills up. Since in both experiments the cache size was
set to be larger than the data set size, the data set is exhausted before the AFS cache is

318 Azagury, Goldszmidt, Koren, Rochwerger and Tal

Figure 4. Application deployment experiments

f : --......
.!480

No <ache prcfctcblng -
With cacho prcfctcbin, .-..... .

§ 420 -----.. --.... - -.-...•. -.-... -.----.. -- ---. .,
1360

:t 240 .. - - _ - - .. - ...

1 1 120 -- -- --............ - - .. --...... - -

11 60 - -............... - .. - - -.... -............... - --.............. .

I 2 3 4 5 6 7 8 9 10 II 12 13 14 IS 16 17 18 19

Number of .imulatcDous primin, nodes

(a) "Mayflower"

1 540 -----....-.- ==
.!!. 480 ... - --...... -.-....... ----........ - - -..... -- - -....... -......... .

420 ------... - ... --.

I :
.t 240 ----;;.:-·--z· .• "':.::=: "--1
., 180 .- .. - .. --- - .. --... --........ -.. - ... - -.................. _ - -

1 120 -- __ _ ... _ __ ... _

11 60 .. - -.. -... -..... --........ - ... --.-........ -...... - - .. --.............................. -............ .

123 4 5 6 7 8 9 W II U D W

Number of .inwl_ priming oodcs

(b) "Showboat"

completely full, and thus, the entire data resides in the AFS cache (nearly simulating
the effect of having the data set locally installed).

The measured results show that the multicast cache pre-fetching significantly re
duces the total application deployment time (see Figures5(a) and5(b». Both figures
show that the application deployment time is a linear function on the number of
servers simultaneously undergoing application deployment, where pre-fetching im
poses a somewhat costlier setup time (that is preparing the cache content to be sent
and sending it to a large number of nodes). However, the difference in slope (roughly
a 6:1 ratio) shows that we easily overcame the somewhat higher setup penalty. Note
that even though cache data is multicasted, each AFS client still needs to validate the
AFS cache content with the AFS server, which causes a slight delay that increases as
the number of servers undergoing application deployment increases, hence the small
slope. The multicast cache pre-fetching model considerably improves the scalabil
ity of the application deployment process. This is especially important for "bursty
environments .. 15, where the system is expected to react fast to sudden peaks in de
mands, by adding a large number of servers simultaneously. It is also interesting to
note that there is a certain threshold (which varies depending on the data size and
number of files) under which it would be much better to avoid using multicast cache
pre-fetching in order to obtain the best results. However, since the time difference in
these numbers of servers is not large compared to the total time it takes to deploy ap
plications on the servers, a simpler approach may mandate the use of multicast cache
pre-fetching on any number of servers. The main reason for this approach being the
fact that other than conducting experiments similar to the ones we have conducted, it is
quite hard to estimate the threshold for each and every setup. Thus it may be practical
to always use multicast cache pre-fetching, even for a small number of servers.

s. CONCLUSIONS
Oceano manages a single collection of servers to provide hosting for multiple

hosted sites, and dynamically reconfigures these servers to suit the current demand.
Khnum manages the application deployment and server reconfiguration of each hosted

Khnum - A Scalable Rapid Application Deployment System 319

site. An additional feature is Khnum's cache management, which supports fast concur
rent addition of multiple servers for the same hosted site. By using multicast, Khnum
achieves significant performance gains relative to earlier methods. We believe this
model is flexible enough to host large families of applications that can serve requests
independently on separate servers, for example, search engines that access a shared
index from the shared file system.

So far, Khnum has focused on management of file system data. In the future,
we would like to investigate similar pre-fetching techniques for databases as well.
Another interesting direction for future investigation is geographical distribution of
server farms, where the Oceano system might dynamically allocate servers in the farm
closer to the end-users (for example, Web sites transparently migrate from the US to
Japan when the level of activity from Japanese users increases).

Trademarks
IBM and IntelliStation, are registered trademarks of International Business Ma

chines Corporation in the United States, other countries, or both.
Other company, product or service names may be trademarks or service marks of

others.

Acknowledgments
We would like to thank Liana Fong and Srirama Krishnakumar for their helpful

comments and ideas.

Notes
I. The methods by which to shut off a server from incoming requests until it becomes inactive, and the

ways by which to determine whether a server is active or not are beyond the scope of this paper.

2. The discussion on sharing binaries ignores any licensing constraints.

3. All Oceano component names allude to the ocean. According to Egyptian mythology, Khnum is the
lord of the cool waters.

4. Our notion is that for many Web sites that serve static (or pseudo-static) data, there is a portion of
the data which is hot (i.e. accessed by most users). With a good enough workload balancing component,
most of the participating servers will need to access that hot data.

5. In the rest of the paper, we use interchangeably "applications" and "data", since both are stored as
files in the shared file system, and treated in the same manner by Khnum.

6. Contrary to the requirement of rapid application deployment due to increased workload on a working
site, removing a server from a hosted site does not require the same speeds. Therefore, re-imaging the
server's disks is one option for a thorough "cleaning" of any residues or for installing a different version of
the operating system, or a different operating system.

7. A cache pre-fetch source is an active server in the hosted site, which is instructed by Khnum to
multicast the contents of its AFS cache to new servers being added to the hosted site. For more information
on cache pre-fetching in Khnum, see section 3.3.

8. A UNIX System V term for the set of services and kernel state (single/multi user).

9. Every Khnum controlled server is configured to include the additional run level 7, which is essen
tially similar to runlevel 6 (reboot) with few modifications for running the setup scripts and automatically
switching back to runlevel 3 (multiuser).

10. Some applications may require an additional configuration, which is achieved by customized con
figuration scripts. This is needed in those cases where there is a need for server-specific configuration.

320 Azagury, Goldszmidt, Koren, Rochwerger and Tal

II. The afsd daemon is stopped last as services run off AFS and afsd refuses to shutdown when there
are remote files open.

12. We are assuming, for simplicity, that read-mostly- files may be updated by Tier-2 servers (or ser
vices) such as a daily forecast update, etc. Updating these files by a Tier-I server can be handled by AFS,
however, it may cause unpredictable results when applied to applications that are ill equipped to deal with
sharing of files by multiple instances.

13. We assume that read-write data is stored on shared databases, which are beyond the scope of this
paper.

14. In practice, data sets for hosted sites are much larger than the cache size.

IS. Examples of such "bursty environments" are an on-line stock reports site during a stock rally, or a
news site during a large scale event.

References
[I] K.Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar, D.P. Pazel, 1. Per

shing, and B. Rochwerger. Oceano - SIA Based Management of a Computing Utility. In Proc. of the
7th IFIP/IEEE International Symposium on Integrated Network Management, May 2001.

[2] The Official Red Hat Linux Reference Guide, chapter 6: Package Management with RPM. http:
//www.redhat.com/support/manuals/RHL-6.2-Manual/ref-guide/ch-rpm.html.

[3] Symantec Ghost - Product Information. http://www.symantec.com/ghost.

[4] Z. Wensong. Linux virtual server for scalable network services. In Linux Symposium, Otawa,
Canada, July 2000. http://www.LinuxVirtuaIServer.org/ols/lvs.ps .gz.

[5] R. Campbell. Managing AFS: The Andrew File System. Prentice Hall PTR, 1998.

[6] Sun Microsystems. NFS:Network File System Version 3 Protocol Specification, February 1994.

[7] P. J. Braam. The coda distributedjile system. Linux Journal, June 1998.

[8] L.B. Huston and P. Honeyman. Disconnected Operation for AFS. In Proceedings of the USENIX
Mobile and Location-Independent Computing Symposium, August 1993.

[9] B. Gronvall, A. Westerlund, and S. Pink. The design of a multicast-based distributed file system. In
Proceedings of the Third Symposium on Operating Sytsems Design and Implementation, Feb 1999.

[10] G. Kuenning. The Design of the SEER Predictive Caching System. In Proceedings of the Workshop
on Mobile Computing Systems and Applications, Santa Cruz, California, December 1994.

[II] D. B. Terry, M. M. Theimer, K. Petersen, A. 1. Demers, M. J. Spreitzer and C. H. Hauser. Managing
Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In Proceedings of the
15th ACM Symposium on Operating Systems Principles, December 1995.

[12] J. Touch. The LSAM proxy cache: a multicast distributed virtual cache. In Proceedings of the Third
International WWWCaching Workshop, Manchester, England, June 1998.

[13] T. T. Kwan, R. E. McGrath, and D. A. Reed. NCSA's World Wide Web Server: Design and Perfor
mance. pages 28(11):68-74, November 1995.

[14] 1. Challenger, A. Iyengar, and P. Dantzig. A Scalable System for Consistently Caching Dynamic Web
Data. In Proceedings of IEEE INFOCOM ' 99, March 1999.

[IS] D. Quinlan. Filesystem Hierarchy Standard (FHS) - Version 2.1. April 2000. http://www.
pathname. com/fhs.

[16] M. Spasojevic and M. Satyanarayanan. A Usage Profile and Evaluation of a Wide-Area Distributed
File System. In Proceedings of the USENIX Winter 1994 Technical Conference, 17-21, San Fran
sisco, CA, USA, 1994.

[17] A. Emberson. TFTP Multicast Option. RFC 2090, Lanworks Technologies Inc., February 1997.

ENABLING PREOS DESKTOP MANAGEMENT

Tiago Cruz, Paulo Simoes
CISUC - Dep. Eng. Informatica, University ofCoimbra
3030 Coimbra - Portugal
{tjcruz, psimoesj@dei.uc.pt

Abstract: Desktop management is probably the most resource-consuming task for the
typical operations and support team, regardless of being frequently overlooked
as not as complex or specialized as core network operations and management.
Nowadays this scenario is even worst, since the increasing number and
complexity of desktop systems was not matched by satisfactory management
solutions - despite the relative success of products such as Intel's Landesk or
Microsoft's SMS.

In order to address this problem, we are exploring a different approach to
desktop management, through the design and implementation of the OpenDMS

management framework. This open source framework differs from available
products in several points, such as earlier remote management mechanisms
(prior to operating system load), incorporation of existing open standards, a
network-centric architecture, operating system neutrality and tighter
integration between traditional PCs, Thin Clients and Network PCs.

In this paper we discuss the current status of desktop management solutions
and we present an overview of the OpenDMS approach, including its most
relevant technical foundations and an application scenario.

Key words PC networks, Desktop Management, OSS, Open-Source Tools

1. INTRODUCTION

Processing power was gradually taken off from central mainframes and
distributed over each user's desktop, in the form of personal computers (PCs).
However, this paradigm shift does not come without a price tag: more PCs to
manage; hardware and software with ever-increasing complexity; more users
requiring support; and more network requirements. Dropping prices and increasing
user-friendliness made desktop PCs ubiquitous. Nevertheless, acquisition prices
represent just a small fraction of the total cost of ownership (TCO) of such systems.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

322 Tiago Cruz, Paulo Simoes

Among other factors, end-user training, helpdesk support and maintenance represent
determinant contributions to heavy TCO costs [1-2]. Desktop management probably
consumes the main share of human resources of the common IT department, easily
outpacing server and network management altogether. Even considering that
desktop management tasks are often less complex and specialized (and therefore less
expensive) their cost is definitely not negligible.

There were several attempts to reduce these costs, mostly lead by the industry:
commercial desktop management suites [3-4]; the DMTF initiative [5]; Thin Clients
[6-7]; Microsoft's Zero Administration for Windows and Inte1's Wired for
Management [8]. However, despite these efforts, the current practice of desktop
management is still not satisfactory.

Desktop management is usually based on some kind of runtime agent that
supports remote operations such as monitoring, configuration and inventory
management. This agent is then complemented with a centralized console used by
the operator to access and manage several PCs.

One problem with this model is that only relatively healthy PCs can be managed.
In the case of hardware, file system or operating system (OS) boot failure the agent
will not load and local intervention will be required.

Another problem is related with the lack of integration. Management suites tend
to be designed for specific environments (generally complete Windows PCs
connected to local Windows Domain Controllers) and their functionality for
alternative configurations is either reduced or non-existent at all.

Based on our own experience in the management of small PC networks with
tenths or hundreds of PCs per location, we feel the current model might cover the
basic needs in the management of groups of healthy and homogeneous Windows
PCs. However, it provides no recovery solutions for problems prior to OS load and it
lacks flexibility in the management of more heterogeneous environments, such as
diskless PCs, Unix desktops, Windows Thin Clients and terminals based on Citrix
Metaframe [9] or X-Windows.

In the OpenDMS project [10] we are exploring a different approach: the desktop
becomes remotely manageable right after the initial Power On Self Test (POST)
procedures; lighter PC configurations, such as Thin Clients, are explicitly supported
and integrated in the management model; and mainstream standards and open tools
are used to build an integrated network environment for the managed desktops.

The rest of this paper is organized as follows. The current status of desktop
management is discussed in Section 2. The general architecture of the OpenDMS

project is presented in Section 3. The next two Sections detail two of the most
distinctive features of OpenDMS: PreOS management (Section 4) and the support for
Thin Clients (Section 5). Section 6 presents a deployment scenario and Section 7
concludes the paper.

2. DESKTOP MANAGEMENT

Unlike other computer systems, for traditional PCs - "the most crash-prone
computers ever built" [11] - reliability is less important than cost, performance or
functionality. This approach opened the way for the PC in everyone's desk era and
accelerated the spread of paradigms like client/server, distributed and workgroup
computing. However, it is also truth that replacing mainframe-based computing by

Enabling PreOS Desktop Management 323

the current decentralized architecture, where the PC is the dominant specie, failed to
fully deliver some of its promises, such as a dramatic reduction ofTCO costs [1-2].

Over the years we have witnessed several industry-lead attempts to physically
redesign PCs, to standardize PC management services and even to replace the
classical full-blown PC desktop by new desktop paradigms, such as Thin Clients and
Network PCs.

TCO and ecological concerns motivated several attempts to physically redesign
the PC, with initiatives like the IBM PS/2 Energy Desktop [12]; Intel's Micro ATX
and Flex ATX [13-16], and VIA Technologies' ITX and Mini-ITX [17-19] reference
design prototypes. All these designs, as well as the PC Design Guides [20], from
Intel and Microsoft, share the same core ideas: simpler PCs with reduced power
consumption, enhanced ergonomics, flexibility, legacy-free design, small size and
aesthetics.

Thin Clients and Network PCs were also proposed as a solution for the TCO
problem. Reducing user freedom and moving data and programs back to a central
system seemed the logical solution, but the paradigm failed to reach critical mass. In
our opinion this was probably due to bandwidth limitations, the need to rewrite a
large number of applications and the "proprietary/open-disguised" vendor approach
in which software and hardware were actually closed and very platform-specific.
This happened to projects like the X-Terminal, Microsoft's NetPC [6] and Oracle's
NC [7]. Ironically, now that the hype has vanished, increasing network bandwidth
and emerging computing technologies are finally creating the conditions for
successful widespread deployment of truly open Thin Clients.

The Distributed Management Task Force (DMTF) [5] took the leading role in
determinant initiatives for desktop management standardization, such as the desktop
management interface (DMI [21]), the system management BIOS (SMBIOS [22])
and the Common Information Model (CIM [23]). DMTF standards provided ground
support for initiatives like Microsoft's Zero Administration for Windows and Intel's
Wired for Management, which tried to create a set of tools and technology resources
to help systems administrators [8].

As already mentioned, desktop management products are based on OS
dependent management agents that directly support a predefined set of management
operations, as well as direct remote desktop access for more unusual operations.
Some of these tools also provide some level of integration with Windows
management mechanisms, allowing integrated software distribution and
configuration management for Windows domains. However, interoperability
between products of different vendors is still reduced. Solutions like Intel's Landesk
suite [4] and Microsoft's SMS [3] are effective only when managing Microsoft-only
networks and following very product-specific management guidelines that difficult
interoperability.

3. THE OPENDMSAPPROACH

OpenDMS is a project where we try to complement the traditional desktop
management model, addressing issues not covered by current practices. Two of the
most relevant issues are the remote desktop management in the PreOS stage and the
integrated support of alternative desktop models, such as thin client configurations
and UNIX workstations.

324 Tiago Cruz, Paulo Simoes

To better understand how those issues interact with classical management
technologies, the project also comprises a complete management framework (built
using open standards and already available tools) that includes, for instance, a
runtime management agent with many similarities with typical desktop management
agents. However, it should be stressed that OpenDMS is not competing with tools like
SMS or Landesk. In fact, in some situations it is possible and worthwhile to
complement the OpenDMS framework with more sophisticated management agents
from commercial suites.

3.1 PreOS Management and Platform Neutrality

The OpenDMS target platform is the common PC built with of-the-shelf hardware
components. With very few exceptions (e.g. Apple machines or computers with very
exotic hardware) this practically covers every PC sold nowadays.

Minimizing OS-dependency was also possible because many procedures are
performed in an as absent state: the so-called PreaS instant of the PC initialization
sequence (see Figure 1). This opposes to typical desktop management solutions
whose pre-boot capabilities are non-existent or, at most, limited to rudimentary as
installation or image distribution.

Classic
Management

Maintenance
Boot

Back to the normal
boot sequence

PreOS
Management

PreOS Instant

Generic
Remote as Boot

Figure 1. PreOS Management vs. Classic Desktop Management

Enabling PreOS Desktop Management 325

With OpenDMS a PC becomes remotely manageable right after the initial POST
procedures. Making a remotely controlled detour in this precise instant, in order to
download and execute a special PreOS Agent or to boot an OS over the network, it
is possible to manage a PC without a working OS. It is enough to have a network
connection, a core set of operational hardware components (power supply,
motherboard, memory, processor, network adapter) and standard remote boot
firmware extensions.

OS-present operations are contemplated through the use of an additional
management agent which is similar to those normally found in classical
management suites, although somewhat different because several tasks normally
executed at OS runtime are now performed by the PreOS Agent. OS load time and
runtime load are considerable reduced, since the management agent imposes little
load on the client system: there are no integrated web-servers or hardware asset
management tools, with the only exception being the support for hot-pluggable
devices.

The OS runtime component of OpenDMS was also designed to be as platform
neutral as possible. In order to take advantage of specific OS features, the
management agents are obviously OS-dependent. However, their management
service interfaces follow a common specification. Furthermore, the whole
environment - distributed file systems, remote terminal services, thin-client support
services, etc. - is based on widespread standards and open tools available in a wide
number of multi-platform versions, including at least the Windows family, FreeBSD
and the most popular Linux variations.

3.2 Architecture

Figure 2 shows the OpenDMS client architecture. The first layer consists of PC
hardware (of-the-shelf PC components) and related resources, such as Wake-On
LAN [24] (for remote off-hours maintenance tasks like backup and virus scanning)
and system instrumentation.

The second layer consists of native firmware and standard extensions, including
Preboot Execution Environment Boot ROM (PXE [25]), PC BIOS and
DMIISMBIOS. All these components are already available in current PCs, and their
role in PreOS management will be discussed in Section 4.

OS runtime

PreOS Resources

Firmware

OpenDMS runtime agent (on top of the OS)
or L TSP-based Environment +

Management Toolset & Remote Desktop Support

Remote/Local-controlied Boot Loader

PXE Boot
ROM

OpenDMS PreOS Agent

PC I DMI/SMBIOS I
System Instrumentation

===jl S.M.;.R.T.

Figure 2. OpenDMS Architecture (Client Side)

326 Tiago Cruz, Paulo Simoes

The PreOS Agent is the key component of the third layer. This agent is
dynamically downloaded from the OpenDMS server and performs several
management tasks in the absence of an operating system. After that, the PreOS agent
passes control to the standard Boot Loader, which goes on with the boot of the
operating system (either from the network or from local storage devices).

After OS load there are two possible configurations. If we have a traditional
operating system, remote management is assisted by a classic runtime agent
controlled by the management server. On the other way, it is also possible to build a
thin-client configuration using additional resources provided by the OpenDMS

framework. These resources are organized in the form of a modular thin-client
platform specification built from commodity PC hardware, with support for network
file systems and multiplatform connection capabilities that include Microsoft RDP
based systems [26], XlWindows servers, Citrix Metaframe [9] (client not available
under GPL) and character-based protocols. Supporting access to local multimedia
and storage, if needed, this platform is flexible enough to perform adequately in
many usage scenarios, from desktop hybrid NCs-PCs to multimedia kiosks. Thin
Client support will be discussed in Section 5.

On the server side one there are two distinct servers (Figure 3). The first is the
core desktop management server. This server - built on top of GNUlLinux - uses
PXE and either the classic TFTP (Trivial File Transfer Protocol) or its multicast
enhanced version (MTFTP) to upload the PreOS agent to the managed desktop. It
remotely controls the execution of this PreOS agent (e.g. validating user
authentication), as well as the runtime management agent. The systems manager
uses a Web-based user interface and processed management information is
organized using OpenLDAP [27].

The second OpenDMS server is dedicated to thin-client support. This server
exports to the managed desktop a Linux-based thin-client environment built on top
of distributed file systems (NFS [28], SambalSMB [29] and NBD [30]), eventually
existing local file systems and remote desktop clients (X-Windows, character-based
protocols, Windows Terminal ServerIRDP [26], VNC [31] and Citrix Metaframe).
PXE and TFTP (or MTFTP) provide support to remotely boot an OS image. This set
of services is either provided by a single machine or spread across several servers. In
the specific case of Windows Terminal Server and Citrix Metaframe the service has
to be provided by a native Windows server. To configure and maintain this second
OpenDMS server the systems manager also uses OpenLDAP and a Web interface.

OpenDMS Server

I OpenLDAP II Web GUll

ThinoCUent Reference Server

OpenLDAP II GNU Toolset I

GNU/Linux

Remote Desktop
Services

Figure 3. OpenDMS Architecture (Server Side)

Enabling PreOS Desktop Management 327

4. BUILDING PREOS MANAGEMENT

The PreOS stage of the PC initialization process still remains a sensitive area for
the great majority of available desktop management tools, probably because until a
few years ago there was no built-in firmware support for PreOS management
mechanisms. However, modern PCs support a specific kind of special-purpose
firmware extensions through the use of option ROMs, normally embedded in
hardware such as Network Boot ROMs. Those extensions were originally designed
just for remote deployment of operating systems over the network, but there is no
reason not to use them to force the download of more specific software, such as a
PreOS Management Agent.

Ordinary Boot ROMs are incapable of dealing with the needs of PreOS
management due to design limitations. Standard TCP/IP Boot ROMs are built
around unicast-based protocols with remote OS load from a single point in mind.
Without any kind of load-balancing or fault-tolerant features, they are too unreliable
to use as a PreOS management tool. Furthermore, implementations from different
sources tend to use non-standard downloadable OS image formats, leading to
incompatibilities. These issues were solved by PXE Boot ROMs, designed with
interoperability and reliability concerns in mind. They extend the basic remote boot
functionality, providing a basic OS-absent program execution environment.

PXE Boot ROMs were created in the context of the Intel Boot Initiative [32],
circa 1998, and meanwhile they made its way into almost every kind of PC network
interface currently produced. At the time of this writing Intel is working in the
specification of an Extensible Firmware Interface (EPI), as a replacement for the
currently available BIOS architecture for IA-32 systems (already available for IA 64
systems), that will include a PXE-compliant facility [33]. PXE is the standard for
remote boot ROMs.

Figure 4 presents the modular structure of the PXE specification. Integrated in
the system's firmware as an option ROM, the PXE BIOS extension provides four
APIs designed to be used by any kind of Network Boot Program:

PreBoot API. This API provides the means to control the entire PXE
environment, from deactivation/activation of the embedded TCP/IP stack to
access to DHCP packet data received during the boot negotiation process.
(M)TFTP API. This API supports TFTP or MTFTP-based file transfer functions.
UDP API. This API provides basic UDP-supported 110 functions .
UNDI (Universal Network Device Interface). This API is an abstraction layer
that works as a universal device driver, allowing the other APIs to work
independently of the available network interface hardware. This layer also
allows the creation of universal device drivers partially supported by the PXE
UNDI API.

Network Bootstrap Programs (NBPs)

0 0 0
r1 PreBootAPI (M)TFTPAPI UOPAPI

UNOI API I
PXE

BIOS I Network Interface Hardware It - - -

Figure 4. The PXE Boot ROM

328 Tiago Cruz, Paulo Simoes

It should also be stressed that PXE provides fault-tolerance and load-balancing
mechanisms: there are several boot servers, allowing the client to boot from one of
them according to several load-balancing techniques.

Once the system is turned on and the POST routines are executed, the system's
BIOS begins searching and initializing all option ROMs. The PXE code will then
force the download and execution of the PreOS Agent.

Figure 5 shows the key execution steps of the PreOS Agent. Once initiated, it
tries to establish communication with the management server in order to receive
enough information to proceed with the remaining tasks. Next, if the server informs
the agent that the workstation is allowed to boot, it will make a system integrity
check and will report the status together with the hardware configuration detected
(using DMIISMBIOS or direct access methods). If the system status is satisfactory
and the hardware inventory list is coherent with what the server has in its own
database, the agent will be authorized to proceed to the next step. Otherwise the
system may lock the boot process (avoiding further progress and shutting down the
system, if needed). After an optional user authentication step, the PreOS Agent will
pass control to the bootstrap loader, allowing the system to proceed with its normal
boot sequence. Since the specific OS image to be loaded may be selected by the
OpenDMS server, it becomes possible to have a PC with multiple personalities
(Windows desktop, Unix workstation, thin-client, etc.) according to the user and the
circumstances. This feature can also be used to load an OS-environment specifically
designed for recovery operations.

local or remote
OS bootstrap

connection failure or
lock Instructions from the server

Figure 5. PreOS Agent Execution

Enabling PreOS Desktop Management 329

Thanks to the PreOS Agent, common tasks like user authentication and hardware
inventory can be performed in the PreOS stage of the PC boot sequence, without
depending on a runtime OS environment. Furthermore, the PreOS Agent is
developed around a modular approach in which functionality can be extended by
adding third-part downloadable modules. Two of the most interesting modules
already developed are memtest86 and S.M.A.R. T. (System Monitoring, Analysis and
Report Technology), which provide extensive memory and hard drive diagnostic
features accessible to the PreOS management toolset.

If the normal boot sequence is followed and an OS is loaded, the OpenDMS

runtime agent (or eventually a more feature-rich runtime agent from a commercial
third-party provider) will ensure that the system is still remotely manageable during
normal operation.

5. THE OPENDMS THIN CLIENT APPROACH

As already mentioned, Thin Clients and Network PCs were once seen as an
interesting paradigm to reduce the complexity of the user desktop and move data
and programs back to a central system. However, the proprietary approach followed
by products like the X-Terminals, Microsoft's NetPC and Oracle's NC, as well as
technological limitations, prevented the paradigm from reaching critical mass.

But nowadays such weaknesses are addressable using a different approach: why
not build a Thin Client based on common PC-hardware with the same capabilities of
its proprietary counterparts? Bandwidth is now available and current PC hardware is
far more sophisticated than the one found in most proprietary solutions. PXE also
fits these purposes: despite being used mostly for OS deployment (booting a small
mini-environment that performs OS-deployment procedures), PXE supports the
direct boot of an OS through the network. Therefore, its role is not limited to the
execution of the PreOS Agent (which is also important in the selection of the correct
"desktop personality"), since it is possible to use PXE and TFfP to load a remotely
provided Thin Client environment.

OpenDMS includes several modules - most of them adapted from the LTSP
Project [34] - that can be combined to build custom-tailored Thin Client
configurations. Four distinct operations modes were considered:

Diskless GUI-based Thin Clients, in which the system does not need any kind of
local fixed mass-storage device, booting from a cluster server, accessing a
remote file system using NFS, and using a small amount of local memory as a
ramdrive to cache frequently used data. It uses a locally executed X-server to
provide display facilities to applications ran on the remote cluster server or to
provide a graphic environment in which an RDP or Citrix client can be used to
access a Windows Terminal Server system. Access to local audio, serial, parallel
and removable storage is possible on such configurations, thanks to the use of
smart redirector methods (as the network block device protocol). This mode can
also be use to build intelligent, remotely managed multimedia kiosks or point-of
information terminals. Normal PCs may also benefit from this mode of
operation, allowing them to behave like they had an alternate Thin Client
personality, depending on a user-selectable boot option in a PXE-provided
menu. Additionally, this operation mode provides a special remote helpdesk

330 Tiago Cruz, Paulo Simoes

mode in which a normal PC can boot directly into a browser window pointing to
a helpdesk request service page.
Network Computer, a natural extension of the Thin Client mode in which the
system is allowed to possess local fixed mass-storage facilities used to store
frequently used programs and configuration data.
Network Appliance. In this mode, a PC boots from the network with a special
purpose, self-contained mini-Linux distribution in order to transform a simple
PC in a network appliance, such as a print server with no local storage facilities,
a remotely manageable Network Attached Storage system or a basic
RouterlFirewall.
Recovery Mode, a special operation mode devised to allow the remotely initiated
recovery of a PC with a seriously damaged file system. A normal PC can boot
into this mode in order to download and restore a previously-uploaded file
system image from a cluster server. This procedure depends on a set of GPL
licensed tools (like the parted partition manipulation tool) executed under the
control of automated scripts on a minimal self-contained Linux environment
booted from the network.
Thin-clients do not require top-notch hardware. Even a fifth generation x86

system (e.g. systems based on the old 90 MHz Intel Pentium, with a PCI bus, a
PXE-capable network interface card and 32MByte of RAM) is able to provide a
reasonable hardware platform to build an OpenDMS Thin Client. This way hardware
lifetime is significantly extended.

6. DEPLOYMENT SCENARIO

Figure 6 shows an example of an OpenDMS managed environment. In this
environment there are Linux Workstations and Windows Desktops with a "normal"
configuration based on a local OS. There are PCs that have multiple personality,
dynamically selected according to the circumstances. There are also diskless PCs,
used as thin clients, and one managed network appliance (a small routerlfirewall).
There is one OpenDMS server dedicated to the management tasks and another server
for Thin Client support.

For PCs with local OS and fixed configuration (Windows and Linux desktops)
the PreOS Agent is primarily used to diagnostic hardware or file system failures. In
the case of severe hardware failure the system may be locked waiting for local
intervention. In the case of file system or OS failure the system might boot a special
recovery environment. This special mode is a lightweight Linux installation,
provided by the "Thin Client Server", with recovery tools from the GNU Toolset
and means to allow the user to perform helpdesk request operations from the
damaged PC itself, even in the case of hard drive failure or corruption. It is also
possible to upload and locally install a previously prepared OS image of the system
stored in the "OS Images Database" (eventually overwriting the corrupted OS).
After successful OS load, the runtime management agents provide the means to
perform remote management on these desktops.

Users of multiple-personality desktops are authenticated by the PreOS Agent.
Based on the user ID and the adopted policies, the OpenDMS server enforces one of
several available configurations: a complete WindowslLinux machine booting from
a local OS; a Network PC booting from the network but still using local storage

Enabling PreOS Desktop Management 331

devices; or a Thin Client working like a diskless system in GUI mode and allowing
access to the Windows Terminal Server or a more generic Application Server.
Remotely loaded OS images are provided by the Thin Client Server, and runtime
network file systems might be provided by an additional Network Attached Storage
device using SAMBA or NFS.

Diskless PCs are a simplification of the multiple-personality desktops: although
it is also possible to choose from several available OS images, only diskless
configurations are possible (e.g. web browsers, X terminals or Windows diskless
terminals). Nevertheless, using NBD [30], it is still possible to use local devices
such as CD drives, microphones or speakers.

The network appliance loads a task-specific remote OS image each time it is
booted. There are no local file systems to maintain, and router hardware failures are
easily solved: get a new computer (or replace the faulty hardware), change the
appliance ID in the OpenDMS servers and turn on the new computer. It will
automatically load the router software and start working.

The OpenDMS server includes the DHCP server - to manage the IP pool reserved
to the client systems and to provide PXE discovery services - the PXE server and a
TFfP service to upload the PreOS Agent. This server controls both the PreOS Agent
and the runtime management agents.

The Thin Client Server is used just to maintain OS images that may correspond
to "local OS images" (i.e. uploaded to the desktop and locally booted) or operating
systems directly booted from the network: Thin Client configurations, special
recovery environments and network appliances designed for specific tasks.

Network file systems and remote desktop services are conceptually part of the
Thin Client Server (see Figure 3). However, in the presented scenario they are
provided by three distinct specialized servers: a file server using Samba and/or NFS,
a generic application server (based, for instance, on X-Windows or Web interfaces)
and a Windows Terminal Server or a Citrix Metaframe Server to run Windows
based applications (e.g. Microsoft Office) from thin clients.

OpenDMS Servers

Managed Desktops
(and Network App liances)

Application Servers
Tennlnal Servers

Network File Servers

Network Appfoance
(rOUlerlfirewall)

Diskless n n
PCs 5I :iI

_ Generic Application
Server (X·Wlndows I

I Web interface)

Unwc Workstations

Windows Desktops

Desktops with
multiple personality

Windows
Terminal Server

- or Cltn. Metalrame

Figure 6. Example of an OpenDMS Managed Environment

332 Tiago Cruz, Paulo SimOes

There are several relevant issues not explicitly exposed by the presented
scenario: the total amount of servers required to build an operational environment;
the potential usage of load-balancing mechanisms; and integration with commercial
desktop management suites.

Figure 6 presents two OpenDMS servers and three additional servers providing
network file systems and remote desktop services. Five servers might be overkill for
small networks and not enough for larger infrastructures. Our experience shows that
it is possible to concentrate the support of 10 to 20 thin-clients in one desktop
management server and one thin-client server. Even using just these two servers
(two basic Celeron 400 MHzl256 MByte machines, in our specific testbed) it is
possible to provide a basic degree of resilience and load-balancing, since several
services (e.g. NFS, PXE, TFI'P, MTFI'P and recovery support) are easily and
naturally replicable in both machines. In larger systems this natural resilience might
be combined with the distribution of services across specialized servers located in
strategic network locations, increasing the number of servers to manage but
achieving a higher level of performance, availability and scalability.

So far we have not invested much effort in the potential integration with already
existing desktop management platforms. Nevertheless, PreOS management and
specific support for thin-clients are orthogonal to current approaches, and therefore
it is possible to use OpenDMS and other platforms at the same time without
overlapping each other (except for the runtime management agents). High-level
integration could eventually be achieved using the LDAP-organized management
information and policies kept by the OpenDMS server. Tighter integration would
require adapting current platforms in order to control the PreOS Agent, whose
interface is simple and well documented. Extending this agent is also simple, since it
comprises an interface for additional software modules.

7. CONCLUSIONS AND FUTURE WORK

PC ubiquity, as well as PC increasing complexity, keeps desktop management as
one of the most resource-consuming areas of operations and support. Despite several
industry-lead initiatives the truth is that classical desktop tools target just a fraction
of the whole problem.

In the OpenDMS framework we are searching for alternative solutions for this
problem. Rather than directly competing with the best features of commercial
products - such as their suitability for integrated management of healthy Windows
domains - we are more interested in complementing these tools with less common
approaches.

One of these approaches is PreOS management. PreOS management allows
more complete control of user-available computing resources. With PreOS
management it becomes possible, for instance, to perform early hardware checkup,
user-authentication procedures and basic file system verification. Furthermore,
PreOS makes possible to flexibly select the PC personality (full-blown PC, thin
client, network PC, network appliance, etc.) according to the identity of the user and
the status of the system. Relatively recent industry standards, such as PXE, DMI
BIOS and 5MBIOS finally made possible the development of capable PreOS
management agents. However, to the best of our knowledge, OpenDMS is the first
tool that provides such functionality.

Enabling PreOS Desktop Management 333

The thin client approach also differentiates OpenDMS management. This
approach corresponds to the notion that thin clients are indeed the right answer to
many situations, with considerable advantages over traditional PCs: increased
control, increased reliability and less demanding hardware requirements. Although
this might sound as deja vu, considering the vanishing hype around previous thin
client proposals, our approach to the subject does bring some new elements. First,
we believe that some of the problems that affected previous approaches are now less
constraining than before. LAN bandwidth is becoming cheaper and cheaper, for
many uses a modern Web Browser in sufficient and even remote desktop technology
has been remarkable improved in the last few years. Second, we are not going after a
proprietary or "100% thin client" approach. Instead, we are using regular PC
hardware and open source software to build flexible thin clients that may fit many
configurations, from diskless computers to thin clients or even network appliances.
In fact, it becomes even possible to select the "desktop personality" at boot time,
according to the intended use.

OpenDMS is not limited to these two aspects, and its architecture also embraces
more classical management mechanisms, such as runtime management agents.
However, at least for now, we just use those runtime management mechanisms to
better understand the potential implications of PreOS management in classic
management practices. Implemented runtime agents (for Windows and Linux) just
provide remote desktop access (built upon VNC), basic health monitoring, software
inventory, troubleshooting and log facilities. Systems administrators needing
additional features can use OpenDMS just for PreOS management and thin client
deployment, while keeping commercial products for runtime management of
Windows PCs.

OpenDMS already includes fully functional implementations of the PreOS Agent
and the reference Thin Client environment. The proof-oj-concept server is also
developed but still needs to be productized (e.g. with simpler installation procedures
and user friendlier interfaces). We are currently testing the platform using a few
dozens of classroom PCs, in order to study scalability, robustness, and hardware and
bandwidth requirements. Further work on security is also planned: complying with
the PXE specification, the current implementation uses potentially dangerous
protocols such as TFTP, requiring either the usage of more careful network
configurations or the evolution for more secure network services.

REFERENCES

[1] Gartner Consulting Group, "TCO Analyst: A White Paper on GartnerGroup's Next
Generation Total Cost of Ownership Methodology", 1997, pp. 19-20

[2] S. Heilbronner, R. Wies, "Managing PC Networks", IEEE Communications Magazine,
October 1997

[3] Microsoft Systems Management Server (SMS) Homepage,
http://www.rnicrosoft.comlsmserver/

[4] Intel Landesk Homepage, http://www.intel.comlnetworklproducts/landeskl
[5] DMTF, Distributed Management Task Force Homepage, http://www.dmtf.org
[6] Microsoft Corporation, "Network PC System Design Guidelines v1.0b", 1997

(available at http://www.eu.rnicrosoft.com/hwdev/archive/netpc.asp)

334 Tiago Cruz, Paulo Simoes

[7] Willian Blundon, "Deciphering the NC World", JavaWorld, March 1997
(available at http://wwwjavaworld.comljavaworldljw-03-1997/jw-03-blundon.html)

[8] L. Weller, "Reducing TCO with Intel WFM and Microsoft ZA W initiatives", Intel
Developer Update Magazine Issue 17, February 1999

[9] Citrix, Citrix Metaframe Homepage, http://www.citrix.coml
[10] Tiago Cruz, Paulo Simoes, "Rethinking Desktop Management",

Proceedings of APNOMS'2002, Jeju, South Korea, September 2002
[11] Tom Halfhill, "Here's why today's PC's are the most crash-prone computers ever built

and how you can make yours more reliable", Byte Magazine, April 1998
[12] IBM Corporation, "IBM PS/2 E product information", IBM DC 00210-00,1993
[13] N. Sumrall, "High Concept Comes to the PC: Form, Function and Fashion",

Report from Intel Developer Forum, fal1'99, Intel Developer Update Newsletter
[14] Intel Corporation, "MicroATX Motherboard Interface Specification", 1997
[15] Intel Corporation, "FlexATX Addendum V 1.0 to the microATX Specification", 1999
[16] Intel Corporation, "Ease of Use Initiative - Concept PC", 2002
[17] VIA Technologies, "ITX Mainboard Specification White Paper", 2001
[18] VIA Technologies, "Mini-ITX Mainboard Specification White Paper", 2002
[19] VIA Technologies, "Information PC reference design", 2001
[20] Intel Corp, Microsoft Corp, "PC Design Guide Website", http://www.pcdesguide.org/
[21] DMTF, "Desktop Management Interface (DMI) v2.0s", 1998
[22] DMTF, "System Management BIOS Reference Specification v2.3.2", 2001
[23] DMTF, "Common Information Model (ClM) Specification v2.2", 1999
[24] AMD Corp., "Magic Packet Technical White Paper", 1995
[25] Intel Corp, "Preboot Execution Environment (PXE) specification version 2.0", 2000
[26] Mark Chapman, "Rdesktop project", http://rdesktop.sourceforge.net
[27] OpenLDAP, http://www.openldap.org
[28] Hal Stern, "Managing NFS and NIS", O'Reilly & Associates, 1992
[29] Samba Project, http://www.samba.org
[30] NBD Project, http://nbd.sourceforge.net
[31] AT&T Cambridge Labs, "Virtual Network Computing",

http://www.uk.research.att.comlvncl
[32] Intel Corp, "Intel Boot Initiative program", 1998
[33] Mike Henry, "PXE Manageability Technology for EFI",

Intel Developer Update Magazine, October 2000
[34] LTSP, "Linux Terminal Server Project", http://www.ltsp.org

SESSION 7

Peer-to-Peer and Overlay Networks

Chair: James Won-Ki Hong
POSTECH, Korea

PEER-TO-PEER OVERLAY NETWORK
MANAGEMENT THROUGH AGILE

Jan Mischkel and Burkhard Stillerl ,2

I ETH Zurich, Switzerland; 2University of Federal Armed Forces, Munich, Germany

Abstract: Currently, state of the art peer-to-peer (P2P) lookup mechanisms actively
create and manage a peer application layer overlay network to achieve
scalability and efficiency. The proposed mechanism AGILE (Adaptive,
Group-of-Interest-based Lookup Engine) extends this management approach,
adapting the overlay network such as to bring requesting peers and desired
lookup items close together, reducing the number of hops and, thus, latency as
well as bandwidth requirements for a lookup. At the same time, AGILE
introduces mechanisms to build a fair system.

Key words: Peer-to-peer (P2P) Lookup Services, Overlay Network Management,
Scalability

1. INTRODUCTION

Peers in a P2P system communicate on a logical overlay network among them.
Some existing systems, e.g., Gnutella, build this overlay network at random, adding
(or removing) links and nodes in an uncontrolled way through arbitrary ping
requests and pong responds. Unfortunately, the orderless structure requires a non
scalable flooding mechanism for lookup, and the path lengths and node degrees can
become large. More sophisticated approaches, like Tapestry [16], Pastry [4], or
Chord [1], actively manage the overlay network such as to ensure robustness and
alleviate lookup and request routing. These systems, however, pay little attention to
the heterogeneity of peers with respect to their interests and capabilities.

The proposed mechanism AGILE (Adaptive, Group-of-Interest-based Lookup
Engine) creates and maintains an overlay network according to specific topological
requirements for P2P lookup. It additionally adapts the network over time so that
groups can form according to common interests, improving the lookup performance,
while at the same time ensuring fairness.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

338 Jan Mischke and Burkhard Stiller

Essential topological requirements are derived in Section 2, while Section 3
discusses related work and identifies major gaps to those requirements. Section 4
introduces and evaluates the proposed approach AGILE, before Section 5 concludes.

2. REQUIREMENTS

It is straightforward to require that a P2P system be scalable and make efficient
use of system and peer resources, namely memory, processing power, bandwidth,
and time/latency. With up to 96% of local peer node resources being idle [2],
bandwidth and user time, or latency in the technical system, are most crucial and
will be considered in more detail in the next subsection. Furthermore, the system
should ensure a proper load balancing in that it be fair, involving peers according to
their use of the system and in that it pay attention to the heterogeneous capabilities
of peers. Finally, a P2P system has to be robust to frequent node joins and leaves
and link failures.

In general, network topologies can be characterized through their degree of
symmetry, the network diameter, the bisection width, the average node degree, and
the average wire length [6]. The functional and performance requirements (see
above) determine the desired target characteristics.

Symmetry: Only symmetric topologies are appropriate for true peer-to-peer
systems as only in this case all peers are equal from a topology point of view. At
the same time, symmetry assists load balancing. Examples of symmetric
topologies include rings, buses, hypercubes, complete meshes, cube-connected
circles, or k-ary n-cubes. Measurements as stated in [13], however, prove a huge
heterogeneity among peer nodes in terms of their uptime, average session
duration, bottleneck bandwidth, latency, and the number of services or files
offered, so that server-like roles in a P2P network may be advantageous.
Network Diameter (D): The diameter of a network is defined by the number of
hops required to connect from one peer to the most remote peer. It strongly
influences latency and bandwidth.
Bisection Width @): The number of connections from one part of the overlay
network to the other define its bisection width. Assuming proper load balancing,
the maximum throughput of the network is proportional to the bisection width,
and there is a direct relation with fault tolerance: the bisection width determines
the number of links that have to break before the system goes down or, at least,
operates only as two partial systems.
Node Degree (d): The node degree is defined as the number of links that each
peer has to maintain. The node degree can be a significant inhibitor for
scalability. The node degree determines the size of the routing table on each peer
with the proportional impact on memory consumption and processing power.
Wire Length (-c): The wire length is the average round trip delay of a
connection, contributing to the latency in the system.

It is particularly important to have a look in detail at latency and bandwidth
consumption for a lookup request. The latency L for a lookup request is defined as

L= :r. nh= :r. D . (l-fp)

AGILE 339

where nb is the number of hops for a request and the pruning factor fp denotes the
average percentage of the maximum number of hops that a request does not need to
travel, because it has been pruned off before. The pruning factor can be calculated
from the pruning probability at each hop Pp,i (i.e. the probability that the requested
item is found at that hop) through

D i-I
1

fp= 1-0 L IT (1- Pp, k); i, k E

i = Ik = 0

The pruning probability pp,o at node 0, the requesting node, will usually be zero.
Hence, three important factors determine the latency time: the network diameter, the
average round trip delay, and the pruning probability. It is possible to increase the
pruning probability in a topology by exploiting knowledge on the peers' interests.

In addition, the total bandwidth B required for a lookup request is

B = BRPnh (d- (d-l)Eroute) = BRP(d- (d-l)ErouteD(l- fp)

where BRP denotes the bandwidth or size of one request package, nb (as above) the
number of hops, d the node degree, and Eroote the routing efficiency. The routing
efficiency is defined to be 1 if only one node has to be contacted at each hop and ° if
all nodes have to be contacted. In that sense, Gnutella with its flooding approach has
a routing efficiency ofO, whereas consistent hashing algorithms like Chord [1] have
a routing efficiency of 1.

As for the latency, the network diameter and the pruning probability influence
the bandwidth requirements (and scalability) in a major way. Furthermore, the
routing efficiency plays a significant role. The equation also suggests that the node
degree be kept low. However, this applies only if the routing efficiency is smaller
than 1, as a lower node degree automatically entails a larger network diameter.

3. RELATED WORK

Tapestry [16], Pastry [4], Chord [1], and CAN [9] determine the systems most
closely related to AGILE. Their common theme is that they arrange lookup items or
keys (such as content files, services, or peer node addresses) and peer nodes in the
same identifier space. Subsequently, they hand over the responsibility for holding a
key with a certain identifier to a peer with a numerically close identifier. This
enables them to simply route a lookup request message at each node towards a
neighboring node with a closer node ID, achieving a routing efficiency of 1. All of
these lookup services propose hashing to map lookup item names and nodes (IP
addresses) onto the identifier space. Firstly, the hash function is globally known,
ensuring the same mapping for each request for or insert ofa key. Secondly, hashing
results with high probability in unique IDs. Thirdly, the pseudo-randomness of the
hash function uniformly distributes keys and nodes in the identifier space.

The main difference between these approaches is the topology they build to
arrange peers properly so that they can route closer to the desired ID, while meeting
major requirements to a good topology (cf. Section 2). Furthermore, they apply
different algorithms to constructing, maintaining, or managing this topology.

340 Jan Mischke and Burkhard Stiller

Tapestry: Tapestry builds a Plaxton mesh. IDs are represented as numbers with a
sequence of digits to a base b. At each hop, a request is routed toward a node,
whose ID matches the search key in one digit more than the previous node's ID
did, starting at the last digit (suffix-based routing). The management of the
overlay network focuses on fault tolerance: soft stating, time-outs, and
republishing to ensure accuracy of the information, triple redundancy and back
pointers in the routing tables, use of several "root" servers, i.e. redundancy in the
nodes responsible for a key.
Pastry: The basic concept and topology is the same as for Tapestry, except that
prefix-based routing instead of suffix-based routing is applied. The fault
tolerance focus is replaced by an apparently more light-weight scheme.
Chord: Chord arranges keys and nodes around an identifier circle. The node
with the largest number preceding the search key is responsible for holding it.
Nodes maintain overlay links to a couple of successors and fingers as chords in
the circle in exponentially increasing distances from the respective node,
enabling to halve the remaining ID search space at each routing step. This
becomes very similar to Tapestry and Pastry when choosing a base of 2 in the
latter ones.
CAN: CAN is based on a d-dimensional Cartesian coordinate space (or d-torus)
separated into bins of varying size to implement a distributed hash table. Other
than Tapestry, Pastry, and Chord, the node degree is thus fixed.

HyperCuP [14], takes a different approach. Like in Gnutella, flooding is used for the
lookup. However, the overlay network is actively managed as a hypercube with
good symmetry, diameter, and bisection width properties. It seems to be possible to
also use a hashing scheme to improve routing efficiency. Furthermore, the authors
propose an ontology-based routing scheme for the same reason.

Table 1 compares these systems (including AGILE) with respect to major
requirements from Section 2 according to the developers' information or
information deduced from algorithm descriptions. For all systems N denotes the
number of nodes in the system, b and d are design parameters, where b is the base
value for a digit representation of hash keys (where used) and d is the dimensionality
of the CAN torus.

All mechanisms except CAN achieve logarithmic scalability with respect to the
path length of a routing request or the netwo* diameter. Chord does not allow to
trade off the node degree for a lower number of hops by choosing a base higher than
2. Particularly for PC nodes, a higher node degree can easily be accommodated
while allowing to reduce bandwidth and latency. While the existing algorithms only
have a statistically inherent pruning probability related to their base b, they all
achieve a routing efficiency of 1 - HyperCuP with its flooding mechanism being the
obvious exception. The node degree scales logarithmically except for CAN, where it
even remains constant. However, this limits the flexibility when a network grows.
As to the wire length, Pastry, Tapestry, and CAN introduce optimization schemes.
The methods and simulations to obtain figures for the stretch (i.e., the relative
latency of overlay routing compared to IP routing) are too different to base a good
comparison on them. Several further proposals have been made to address the issue
of wire length separately [3], [17], [18], [11], and [10].

AGILE 341

Table 1 compares fault tolerance in terms of two dimensions, key redundancy
and link redundancy. While replication can be controlled by the application, the
lookup algorithms propose different mechanisms to conveniently place k replicas.
For increased fault tolerance with respect to routing, Pastry and Chord keep
redundant state information for closest neighbors or successors in the ring,
respectively, whereas CAN and Tapestry set up (3 or r, respectively) independent
entire routing tables. Tapestry further increases fault tolerance through soft-stating
and heart-beat protocols.

Maintenance complexity, which is the number of messages per node join or
leave, scales logarithmically for all systems but CAN. More detailed quantitative
information is not available, but it is obvious that Tapestry with its surrogate routing
and routing table redundancy will exhibit a higher complexity than the other
mechanisms. As all algorithms build a probabilistic but fairly symmetric topology
heterogeneity is only partly addressed by Tapestry through the BROCADE
extension [17], and by CAN through load-dependent bin splitting.

Table 1. Com2arison of Looku2 Mechanisms
Tapes- Hyper-

Characteristic try Pastry Chord CAN CuP AGILE
Network diameter O(logbN) O(logbN) "'log2N O(dNJ/d) O(logbN) "'logbN
Pruning probabilit. lib lib 11b=1I2 n/a n/a 11b+37%t

Routing efficienc. I 0

Node degree O(b* O[(b-l)* O(log2N) Oed) O(logbN) O[(b-I)logbN]
logbN)

Wire length/stretch ('" 2-4) ("'1.3-1.4) n/a ('" 2-3) nla ('" 2_4*)
Key/replica k salt k closest k succ. khash n/a k salt values*
redundancy values nodes nodes functions
Link redundancy trip!. table r closest r succ. r realities n/a triple table

entries neighbors nodes entries!
Maintenance O(logbN) 3b*logbN O(log2N) O(NI/d) O(logbN) O(logbN)t
complexity
Fairness measures none none none none none virtual nodes
Symmetry / symm. symm. symm. symm./ symm. symm./GoI
heterogeneity bin split

AGILE creates a topology where each node can be the root of a tree. It exhibits
similar network diameter and node degree characteristics as Tapestry. It adopts the
advantages of Tapestry in terms of fault tolerance and wire length as well as its
overlay maintenance scheme. However, AGILE considerably improves the pruning
probability by applying an adaptive algorithm that brings requestors and requested
keys stochastically closer together. Furthermore, it introduces fairness into the
lookup mechanism by imposing the highest routing burden on those peers making
the most frequent requests.

t For large b, otherwise 37%/(I-I/b); for assumptions, cf. Section 4.5
t Tapestry mechanism adopted

342 Jan Mischke and Burkhard Stiller

4. THE AGILE ALGORITHM

The AGILE algorithm proposed has been derived from the requirements
presented above and combines the advantages of a scalable, hashing-based
algorithm and topology with the efficiency and fairness of an interest- and usage
based group topology. The basic algorithm of the lookup inseparably combines the
overlay topology and the lookup request routing.

For the subsequent discussions, consider the following scenario, where a peer
node (the requestor) tries to find a certain service or content in the P2P network. It
has to specify what it is looking for and the P2P system should return the content or
service or a link to the content or service, e.g., the IP address of a peer where it can
be found. The desired and returned object is termed a lookup key (or simply key)
and the specified request a lookup identifier (ID). Peer nodes in the network are
characterized by their node ID, the node holding the lookup key is called provider
node. Routing is the process of finding a path from the requestor to the provider
node (which is usually unknown to the requestor) in a distributed way by forwarding
lookup requests from one peer to another. The overlay network defines the structure
on which request routing can take place.

4.1 ID Space and Arrangement of Nodes and Keys

A proper assignment of IDs to nodes and keys can be derived from the routing
efficiency requirement. In order to avoid any kind of flooding and achieve a routing
efficiency of 1, the P2P system is required to have global knowledge on the
translation of search request or lookup key into lookup ID and on the association of
the lookup ID with the provider ID. The use of hash functions, e.g., based on SHA-l
[5] or MD-5 [12], to translate the search request, e.g., the file name, into the lookup
ID solves the first problem. The second problem is solved by arranging peer nodes
in the same identifier space as the lookup IDs, e.g., by applying the same hash
function to nodes' IP addresses. The node with an ID numerically closest to the
lookup ID will be the provider peer.

Figure 1 illustrates the identifier space in AGILE with peer nodes and lookup
keys arranged in the same space. Note that due to the pseudo-randomness of the
hash function distances of peers and the number of keys associated to a provider can
vary. Stochastically, however, their distribution will be uniform. Figure 1 also
introduces a hierarchy of types and genres in the identifier space. This hierarchy is
derived from the requirement to achieve a good pruning factor. Assuming that
request routing takes place along the identifier space (which, even though not
linearly, is the case for AGILE), a good pruning factor requires that providers (or
lookup keys, respectively) and potential requestors be located close to each other.
AGILE achieves this through a clustering of keys and nodes into Groups of Interest
(Gols).

For a detailed illustration, assume a segmentation of lookup keys (content or
services) as described by the following meta-information:
- Type, e.g., music files, news information, or storage services.

AGILE 343

Genre, e.g., rock, pop, classic, or house.
Name, e.g., RollingStones_Satisfaction or Beethoven_9.
Note that the specifics of the segmentation are purely illustrative and not focus

of this work. One could as well apply a two-level hierarchy only, or subdivide the
music genre further into different styles as done at allmusic.com or iuma.com, or use
even higher level genre hierarchies [8].

Peer nodes have to be arranged in the same segmentation as content keys; in the
illustration: type, genre, name, or, for nodes, IP address. The type and genre of a
peer refer to its pre-eminent interests (its GoI). Section 4.4 below discusses how to
determine the GoI of a peer and how to handle multiple interests. Hashing is then
applied to each of the hierarchy levels. The lookup ID becomes
TypeID.GenreID.NameID while the node ID will be TypeID.GenreID.AddressID.

Type A

GenNA

- -- ---, ,
I, .:.

penre 8 Penr. c

Figure 1. Identifier Space in AGILE

Type B EJ Peer node

o Lookup key

IdentKler
···Space

A total identifier space of 128 bit will be sufficient for most P2P systems. A
distribution of bits to type, genre, and name/address, respectively, depends on the
expected number of different types, different genres within a type and
names/addresses within a type and genre. It is assumed that 32 bit each for type and
genre and 64 bit for name/address will meet most demands.

4.2 Overlay Network Structure and Request Routing

Within the identifier space defined above, lookup requests have to be routed
towards a node with the corresponding ID. It would be possible to route a request
directly from one node to an adjacent one in the ID space in the direction of the
lookup ID, who forwards it to its neighbor and so on until it finally reaches the
provider. As this is highly inefficient and not scalable nor robust, an overlay
network of virtual links needs to be constructed according to the requirements in
Section 2, enabling every peer to route a request to any other peer in the identifier
space with as few hops as possible.

A tree topology yields a good trade-off between node degree and network
diameter. The tree is an efficient structure for searching or lookup, and both the node
degree as well as the diameter scale logarithmically. For symmetry reasons and also
to increase the bisection width of the graph, however, the simple tree structure needs
to be extended: every peer has to be allowed to become the root of the tree or be on
any other level, rather than maintaining links only to one level in the tree hierarchy.

Figure 2 (left) shows an AGILE overlay lookup tree. The lookup key
segmentation defines the high-level tree hierarchy. As a root node, each peer

344 Jan Mischke and Burkhard Stiller

maintains links to peers from all different types. Within its own type, each peer
maintains links to peers from all different genres. Within its own type and genre,
each peer maintains links to all peers. This enables an efficient hierarchical lookup
request routing from the more generic type to the more specific genre and,
eventually, name.

: ;,.r- : : -• '_l_J :-.;. : : : .. - -: t i3 -..

eli b
: -' . -- -

t di @ - -
dJ lfJ - --

Figure 2. Left: An AGILE Overlay Lookup Tree; Right: Illustrative Routing Table

As the number of nodes in a genre or type can potentially become very large, a
subordinate hierarchy is introduced to reduce the node degree, with a maximum of b
nodes on each tree level. It is straightforward to associate b with the base of a
numerical representation of the node or lookup ID. The position of a node (or key)
in the tree is then determined by the succession of digits of its ID.

The resulting overlay network graph is defined through the virtual links on each
peer, i.e. the routing tables. Figure 2 (right) illustrates a peer node routing table for a
base b=16. The first row corresponds to the node being the root in a lookup tree. It
has each one entry for peers with a different first digit in their ID. The second row
holds entries for a lookup tree where the peer node is on the second level pointing to
peers with identical first but different second digits. In general, the i-th row in the
table points to peer nodes who have (i-I) digits in common with the peer in
consideration and span the entire value space (b values) for the i-th digit, if all such
nodes exist in the system.

Once the overlay topology is created, it is important to define how lookup
requests can be routed from the requestor to the provider. This becomes very
straightforward and efficient in the AGILE structure. Figure 3 illustrates the
approach. At each hop, the routing peer forwards the request to a peer such as to
match one more digit of the node ID, starting at the first digit. To simplify the
illustration, Figure 3 only represents the first three digits.

For example, consider a peer requesting a key with an example ID
12345678.12345678.1234567890ABCDEF. The requesting peer looks into the first
row of its routing table for a peer with "I" as a first digit and sends the request. The
contacted peer looks into the second row of its routing table and forwards the
request to a peer with "2" in the second digit, while the routing entries in the second
row automatically ensure that the first digit of all entries is "1". The process
continues until the type ID is matched or the search is stopped. The same

AGILE 345

mechanism runs for the genre ID. Finally, for the name ID, the process stops, when
it reaches a peer with an empty corresponding row in the routing table. This peer
holds the key, if it exists, or returns an error message. It is obvious that a requestor
directly starts with the search for the name 10, if it itself belongs to the
corresponding Gol. Similarly, a request may progress several digits at a time if the
lookup ID matches more than one further digit with the processing peer. The
pseudo-code for AGILE routing can be found in [7].

PeerB (I 03)
- first dimension correct

Dl

Figure 3. Illustration of Topology and Routing in AGILE

4.3 Insertion and Removal of Keys and Nodes

In order for the mechanisms described in the previous paragraph to work, it is
necessary to first insert keys into the system and onto the node with the numerically
closest ID. Furthermore, the topology (i.e., the routing tables) have to be maintained
as peers join and leave the network.

The insertion of keys into the system works exactly reciprocal to the lookup of a
key. The peer node wishing to offer new content or services initiates an insert
request with the according lookup ID. The request is routed just in the same way as
a lookup request until it reaches the designated provider peer node which stores the
key. For the removal of a key, the peer that stops to offer certain content or services
sends a removal request with the according lookup ID into the network. The
provider peer deletes the key.

The insertion of nodes into the system also works along the routing path. The
new node contacts any known node. A node insert request is routed according to the
usual routing procedure with the joining node's 10 as lookup 10. At each hop in the
path, the existing node learns about the new node. The joining node, in tum, can
copy a row (row i at the i-th hop) from the forwarding node's routing table to
initialize its own routing table. The insertion of nodes becomes more intricate once
one wants to optimize wire length and achieve proximity in the underlying network
for all or most nodes in the routing table. We have adopted the Tapestry [16] and
Brocade [17] mechanisms including the algorithms for node removal, redundancy
creation and fault management and the replication strategy.

346 Jan Mischke and Burkhard Stiller

4.4 Group Management and Adaptiveness

Groups of Interest (Gol) have been introduced to achieve a good pruning
probability or "tunneling", since the first hops are avoided through Gols. The goal of
adaptive Gol management is to establish a process for peers joining and leaving
Gols such as to improve pruning or tunneling while keeping the overhead for group
management itself reasonable.

A peer first joins a Gol by explicitly choosing categories of interest during the
installation phase. Afterwards, requests for content will automatically make it join
the requested Gol. That means, a peer can join more than one Gol. For each Go I, it
carries a different node ID, derived from its Gol and IP address as discussed before.
When joining a Gol and creating a new node ID, the peer effectively creates a new
virtual node. It has to maintain a complete routing table for the virtual node that
corresponds to its ID. The insertion takes place just as for a real node.

Two mechanisms help keep the overhead incurred by introducing virtual nodes
and catering for more than one ID on a single node minimal: thresholding and time
filtering. Thresholding means that a node only joins a new Gol, if the number of
requests to that Gol exceeds a certain value. Time filtering means that the
accounting of requests towards the threshold will be attenuated over time.
Effectively, a node will leave a Gol, if it no longer makes requests to that group over
a period of time - the corresponding virtual node is removed. Initially, time filtering
will be a simple windowing; subsequent improvements are possible using adaptive
filtering to predict future request behavior. It is assumed that the observation of a
peer's past behavior leads to reasonable predictions as the change rate of likes and
dislikes will be slow compared to the request rate. In addition to thresholding and
time filtering, a third mechanism, aggregation, may be required in designs choosing
a higher-level hierarchy than the three level type-genre-name example, where
requests to presumably very small leaf-Gols occur only infrequently. Requests not
only to leaf-Gols in the hierarchy will be counted, but all requests within a higher
(up to second-) level hierarchy will be aggregated. Once the threshold for the
aggregated requests is exceeded, a virtual node will be created at the leaf-Gol most
requests have been made to.

Through the introduction of Gols, their automated update, and the consequent
introduction of virtual nodes, AGILE makes the lookup topology adaptive. Nodes
eventually move toward the content they like and request.

The pseudo-randomness of the hash function in AGILE ensures load balancing,
as nodes as well as content items are spread uniformly over the key space with
respect to their type, genre, and name. However, Gols in AGILE allow hot spots in
the key space to form. If many nodes share a popular common interest, the key
space will become far more populated in the respective type/genre area than in the
areas corresponding to less popular interests. This, however, is a natural process. As
the Gols of these nodes coincide with their requests, the degree of node
agglomeration is proportional to the degree of request agglomeration. Proper load
balancing in the system is ensured.

Peers that have joined several Gols, however, do have to carry a significantly
higher routing load than others. This meets the system's fairness requirement. Peers

AGILE 341

requesting many content items from many Gols and, thus, consuming many network
resources also have an increased routing burden themselves. Peers making very
infrequent requests to Gols are not affected as the time filtering and thresholding
makes them eventually leave the Gol in concern, releasing the additional routing
burden.

Peers with frequent requests to the same Gol also carry a higher routing load in
AGILE. New virtual nodes within the same Gol are automatically created when the
number of requests per time interval exceeds a certain threshold. The pseudo-code
for Gol-management can be found in [7].

4.5 Evaluation

A detailed evaluation of the node degree and the average number of hops for a
lookup request is given here to show the impact of adaptive, group-of-interest-based
overlay management on performance.

For the node degree, the routing table is considered. The routing table is densely
populated in the first rows for type, genre, and name/node ID, depending on the
number of nodes. As Gols are spread uniformly across type ID and genre ID,
respectively, it is unlikely that one Gol will have many identical digits with another
Gol - the table becomes very sparse in the bottom rows. The same holds true for the
name ID. More precisely, the probability that entry j in row i of the type, genre, or
name area is populated is,

p .. = l-(1-b-it t,g.n- 1
1, J

where Nt,g,n denotes the number of different types, the number of different genres
within a type, or the number of nodes within a Gol, respectively. Note that the
counting of rows starts from 0 for each of the areas type, genre, and name. This
yields for the total population of the table, the node degree d

d = (1 + ny)(d t + d g + d n); dt,g,n = (b-1) [1- (1- b -i)Nt.g,n-I]
1=1

where ny is the number of virtual nodes and Rt,g,n is the number of rows for type ID,
genre ID, and name ID, respectively. The node degree is plotted in Figure 4 (left) for
a base b=16, Rt=Rg=8, Rn=16, ny=O. Two curves show the node degree for 50, and 5
different types and different genres within a type, respectively. Except for very low
number of nodes, both curves lie well below the logarithmic curve (b-1)logbN as
well as below the reference curve without grouping (Rt=Rg=O, Rn=32), which can be
regarded as an approximation for algorithms without grouping like Tapestry and
Pastry.

The average number of hops for a lookup request nh is approximated as follows:

n h = (1- POol,t) n h,t + Psuccess,t (1- POol,t,g) n h,g + Psuccess,t,gn h,n + Psuccess,t,g'1

where nh,1> nh,g, nh,n are the number of hops needed to match the type, genre, and
name of the lookup key, respectively, if the lookup key exists, but does not fall
within the requestor's group of interest. POol,t and POol,t,g denote the probabilities that
the lookup refers to the requestor's group of interest type or genre, respectively.

348 Jan Mischke and Burkhard Stiller

Psuccess,l and Psuccess,l,g define the probabilities that the request is successful with
respect to the type and genre.

The additional hop is an approximation for the hops that occur when the next
digit cannot be matched, but when nevertheless closer nodes are available in the
routing table. As type, genre, and address IDs are uniformly distributed, it is
unlikely that more than one such hop occurs.

- Nt.g=50
100 - Nt.Q=S

. _. - Reference: no grol4>8
...... (b·l)·Loq,(N) ..

.
,,',

...

... ;;:;;:;;J!.
. ,'

.';' - - -."';:::':'
::,;-

J/

0--
10' 10' 10'

N

. Log,,(N)

. -. - . - Reference: no groups

- - NtlOllNgaS, no pMing

-- N1::Ng=50,noprunlng

f 6 - N =N =5, success and Go! pn.nlng

is

O •

.

f 21"-........... --....,' ,......"'_ .. _-
<i(",.L. -:-... .

10' 10'
N

Figure 4. Left: Node degree; Right: Number of hops

10'

Based on the likelihood that a node exists sharing i digits with the lookup ID,
Pexisl,i= l-(1-b -i)Nt,g,n, it is:

nh, t, g, n = L i(Pexist, i -Pexist, i + I)TFi
i = 1

where Pexist,R+1 is defined to be zero. As some of the hops from one row to the next
one happen on one and the same node and do not represent actual hops on the
overlay network, the tunneling factor TFi is introduced. It represents the ratio of
hops on the overlay network to advances in routing table rows up to row i and can
be derived to be

. i

TF j = L (Dk(b-l)k= (l-b- l)

k = 1

The additional pruning factor achieved through the introduction of Gols
becomes

f = 1 _____ n;;"h __ --,.
p, Gol n + n + n + 1

h,t h,g h,n

The average number of hops is plotted in Figure 4 (right) for b=l6, Rt=Rg=8,
Rn= 16 as for the node degree. As before, for comparison, 10gt.N and a reference
curve without grouping (Rt=Rg=O, Rn=32), which should show similar results as
algorithms like Tapestry or Pastry are also shown. Two curves for 50 and 5 different
types and different genres within a type, respectively, show the expected number of

AGILE 349

hops, when there is no pruning due to a node requesting a lookup key within its own
Gol or due to quick abortion of the lookup when the type or genre is not available
(Psuccess=100%, PGoI=O%). For a reasonably large number of nodes, both curves are
close to 10gbN and exhibit a slight gain compared to the reference case. The last
curve represents the average number of hops for 50 different types and genres within
a type when there is pruning; the scenario assumes PGoI.t=70%, PGoI,t,g=30%,
Psuccess,t=95%, and Psuccess,t,g=85%. In this case, the pruning factor becomes 37%
compared to the reference case when there are 1 million nodes in the network.

Additional pruning gains can be achieved using a higher-level hierarchy for GoI
structuring. Effects on the node degree will be limited and beneficial as long as no
additional virtual nodes are created; this, however, is highly dependent on the
thresholding and aggregation parameters applied.

The effects of an increase in amount and type of information in the system can
be studied by comparing the graphs for Nt,g=5 and Nt,g=50 in Figure 4: the effect is
limited and mostly visible in small networks only.

5. CONCLUSIONS AND FUTURE WORK

AGILE is a new lookup and routing algorithm bringing requestors and providers
close together in Groups-of-Interest (Gol) , tackling important scalability and
performance concerns about the overlay network management for lookup and
routing, while at the same time promoting system fairness. It can be applied to all
peer-to-peer applications requiring such lookup services, as diverse as file sharing,
distributed search and indexing, and, with some adaptations, distributed storage or
file systems and distributed computing.

In future versions of the algorithm, searches with regular search expressions will
be investigated. As a first step, search within a Gol can be replaced by controlled
flooding rather than hash-based routing. Subsequently, a globally known semantic
closeness operation will be needed to replace the hashing scheme, combined with
proper load balancing, as the pseudo-random uniform load distribution due to
hashing will be lost.

ACKNOWLEDGEMENTS

This work has been performed partially in the framework of the EU 1ST project
MMAPPS 'Market Management of Peer-to-Peer Services' (IST-2001-34201), where
the ETH Zurich has been funded by the Swiss Bundesministerium fur Bildung und
Wissenschaft BBW, Bern under Grant No. 00.0275.

REFERENCES

[1] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica: Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications; ACM SIGCOMM, San
Diego, August 27-31, 2001.

350 Jan Mischke and Burkhard Stiller

[2] E.A. Brewer: Lessons from Giant-Scale Services; IEEE Internet Computing Vol. 5
Nr. 4, pp. 46-55, July/August 200l.

[3] M. Castro, P. Druschel, Y. C. Hu and A. Rowstron: Exploiting network proximity in
peer-to-peer overlay networks; International Workshop on Future Directions in
Distributed Computing (FuDiCo), Bertinoro, Italy, June 2002.

[4] Druschel, Rowstron: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems; IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany, 200l.

[5] FIPS ISO-I, Secure Hash Standard; U.S. Department of Com mercelN 1ST, National
Technical Information Service, Springfield, VA, April 1995.

[6] K. Hwang: Advanced Computer Architecture; McGraw-Hill Series in Computer
Science, p.77, 1993.

[7] 1. Mischke, B. Stiller: Peer-to-peer Overlay Network Management Through AGILE:
Adaptive, Group-oJ-Interest Based Lookup Engine; Extended Version, ETH Zurich,
Switzerland, TIK-Report No. 149, August 2002.

[S] F. Pachet, D. Cazaly: A Classification o/Musical Genre; Proceedings of Content
Based Multimedia Information Access (RIAO) Conference, Paris, France, 2000.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker: A Scalable Content
Addressable Network; ACM SIGCOMM '01, San Diego, 2001.

[10] S. Ratnasamy, M. Handley, R. Karp, S. Shenker: Topologically-Aware Overlay
Construction and Server Selection; IEEE INFOCOM, New York, June 2002.

[11] S. Rhea, J. Kubiatowicz: Probabilistic Location and Routing; IEEE INFOCOM,
New York, June 2002.

[12] R. Rivest: The MD-5 Message Digest Algorithm; RFC 1321, 1992,
http://www.cis.ohio-state.edulcgi-binlrfclrfcI321.htmlin August 2002.

[13] S. Saroiu, P. Gummadi, S. Gribble: A Measurement Study of Peer-to-peer File
Sharing Systems; Technical Report # UW -CSE-O 1-06-02, Department of Computer
Science & Engineering, University of Washington, Seattle, 2002.

[14] M. Schlosser, M. Sintek, S. Decker, W. Nejdl: HyperCuP - Hypercubes, Ontologies
and Efficient Search on P2P Networks; International Workshop on Agents and
Peer-to-Peer Computing (AP2PC), Bologna, Italy, July 2002.

[15] K. Sripanidkulchai, B. Maggs, H. Zhang: Enabling Efficient Content Location and
Retrieval in Peer-to-Peer Systems by Exploiting Locality in Interests; ACM
SIGCOMM, Computer Communication Review Vol. 30 Nr. I, January 2002, p. SO.

[16] B. Zhao, 1. Kubiatowicz, A. Joseph: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing; Technical Report UCB/CSD-OI-1141, Computer
Science Division, u.c. Berkeley, April 2001.

[17] B. Zhao, Y. Duan, L. Huang, A. Joseph, 1. Kubiatowicz: Brocade: Landmark
Routing on Overlay Networks; First International Workshop on Peer-to-Peer
Systems (lPTPS), Cambridge, MA, March 2002.

[IS] B. Zhao, A. Joseph, 1. Kubiatowicz: Locality Aware Mechanisms for Large-scale
Networks; International Workshop on Future Directions in Distributed Computing
(FuDiCo), Bertinoro, Italy, June 2002.

WEB SERVICES MANAGEMENT NETWORK
An Overlay Network/or Federated Service Management

Vijay Machiraju, Akhil Sahai, Aad van Moorsel
Hewlett-Packard Laboratories
1501 Page Mill Road, Palo Alto, CA 94034
(vijaym, asahai, aad}@hpl.hp.com

Abstract: We introduce the architecture, object model, components, and protocols of a
management overlay for federated service management, called Web Services
Management Network (WSMN). WSMN targets management of web services
that interact across administrative domains, and therefore typically involves
multiple stakeholders (examples are business-to-business, service provider
interconnections, help desks). The architecture is based on (implicit) SLAs to
formalize relations across domains. It relies on a network of communicating
service intermediaries, each such intermediary being a proxy positioned
between the service and the outside world. WSMN also exchanges control
information to agree on what to monitor, where to monitor, and whom to
provide visibility.

Key words: management, service management, SLA, web services, web service
management network

1. INTRODUCTION

By packaging software applications as 'services' that are accessible over the
Internet or intranet, enterprises achieve new and better means to utilize their own
and each other's applications. Services! can be accessed through manual user
activities (e.g., browser-based IT help desk), and increasingly through other
services. In the latter case, conglomerations of interacting services emerge, which

! We use the terms 'service' and 'web service' interchangeably, but prefer the term
'service,' since it stresses that we discuss the management of applications exposed as
services, instead of the fact that we assume these services to communicate through web
services technology (SOAP, XML, WSDL).

http://dx.doi.org/10.1007/978-0-387-35674-7_66

352 Vijay Machiraju, Akhil Sahai, Aad van Moorsel

access one another through more and more automated means. Examples can be
found in business-to-business computing (web services, supply-chain processes,
payment services), service providers (utility or grid computing) or in enterprise
applications (payroll applications, remote IT services).

In the emerging world of Int.ernet services, operational management becomes
exceedingly important and challenging (and thus interesting). Services often directly
impact the business process execution, and mishaps may directly be reflected in the
bottom line of a business. This puts a premium on fault and performance
management capabilities for services. Moreover, the services paradigm increases the
complexity of run-time operations. Services communicate across monitoring
domains [1], include different business partners, and are likely to rely on third
parties to complete a service offering. As a consequence, service management has to
deal with multi-party interactions, has to collect a large amount of data and
synthesize it to understand the health of relationships between partners, and must
resolve the limited end-to-end visibility and control one has over each other's
services.

From the above we conclude that traditional application management must
evolve into 'true' service management, and ultimately into service 'relationship'
management. First, we must manage a service 'as a whole,' that is, as it is provided
to a partner. Contrast this with application management, for which it is necessary to
understand how the service is internally implemented through a set of objects and
what exceptions each object generates. Instead, 'true' service management manages
the interactions a service has with other services or consumers, for which we need
visibility at the service interface between an application and its users. Secondly, we
must manage relations, not only through local management, but also through sharing
data between partners as needed, and, more importantly, through exchanging
signaling information about monitoring, service levels and control actions. In other
words, we need to be concerned with federated management [2].

In this paper, therefore, we propose Web Service Management Network, a
management architecture for federated service management. Since we believe it is
safe to assume Internet services will be implemented using web service technology
(SOAP, XML, WSDL), WSMN is based on such technology. The critical concept in
WSMN is that of SLAs. If SLAs are explicitly defined we make them manageable,
and if no SLAs are actually agreed upon between services, WSMN manages towards
SLAs imposed specifically for management purposes ('implicit SLAs'). The SLA
concept allows us to frame and solve many problems rather elegantly and
effectively, as we discuss further in Section 2.1, and illustrate using a WSMN
prototype implementation in Section 4. WSMN, then, is (1) a network of
cooperating intermediaries, each such intermediary implemented as a proxy sitting
between a service and the outside world, and (2) a set of protocols to manage service
relationships expressed through SLAs.

One can regard WSMN as a logical signaling network for management purposes,
a concept well known from telecom (SS7 [3]). In that sense it is quite different from
traditional management protocols such as those supporting SNMP and CIM based
monitoring. It is closer to various overlays that are emerging throughout the various
layers of the Internet stack, to establish quality guarantees that the Internet stack

Web Services Management Network 353

alone cannot create. Examples exist for instance for Internet telephony (SIP [4]) and
streaming media content delivery [5]. Also of interest are the various emerging
solutions to provide properties and features such as security, transactionality and
change management to business-to-business web services. Examples are Flamenco
Networks [6], Kenamea [7] and Talking Blocks [8]. All these companies use
networks of collaborating intermediaries, often including a third-party play
(repositories as well as services). However, none of these solutions addresses service
management, as we do in this paper. Recently, Gartner surveyed and put in
perspective these architectures, which they term web service networks [9]. Our term
'WSMN' is therefore extra appropriate, since our approach uses a web services
network architecture for purposes of service management.

We believe that future web services management technology and standards must
be based on WSMN as the architectural underpinning. The primary objective of this
paper, therefore, is to introduce and explain WSMN and argue its value as core
architecture for service and service relationship management. To this end, we
introduce the main concepts behind WSMN in Section 2 (SLAs and protocols,
respectively) and discuss the details of the intermediaries in Section 3. Section 4
then demonstrates multi-party SLA management using a WSMN prototype
implementation.

2. WSMN DESIGN CHOICES

In one sentence, Web Services Management Network is a logical overlay
network for SLA management between services, constituted of communicating
intermediaries. Figure 1 illustrates WSMN, each intermediary being a proxy
between a service (providing the interface to one or more applications) and the
outside world. The most critical and interesting aspects of our design are (1) the
choice to base all management on SLAs, and (2) the protocols for intermediaries to
collaborate. We will argue in detail why we made these two design decisions, and
discuss their consequences for the components in the intermediaries. We will not
further elaborate why service management logic is placed in intermediaries, since
we think that is an obvious enough choice-the reader can find a discussion in [9]
and [10]. We note that we assume that services interact using web services
technology, that is, XML, SOAP and WSDL [11].

2.1 SLAs as a Management Tool

SLAs are, of course, well-established in management [12], and one can argue
that especially in service relationship management, SLAs will be of increasing and
singular importance [10] [13]. However, our primary incentive to use SLAs is
different: it is not that the existence of SLAs introduces a management problem we
must deal with, but that voluntary introduction of SLAs can be a tool to manage
service relationships. Hence, if SLAs are not sufficiently detailed, or are not

354 Vijay Machiraju, Akhil Sahai, Aad van Moorsel

protocols for:

service B
• set up, organizational
• SLA measurement

service A service C

intermediary can take care of:
• instrumentation
• correlating with biz process service D
• protocol implementations
• SLA management, console
• other add·on applications

Figure 1. Web Services Management Network

explicitly agreed upon between services, we introduce SLAs for the purpose of
management. We call these SLAs 'implicit SLAs.'

A service level agreement defines a basic abstraction through which partners can
understand each other's capabilities, negotiate on service parameters, and manage to
agreed levels. SLAs are a clean way to separate management concerns between the
partners. In a situation where multiple partners interact with each other to
accomplish a goal/task, an SLA is defined between every pair of interacting partners
with well-defined expectations. This allows management of the overall task to be
broken up up-front into smaller problems of managing each interaction. An alternate
architecture is one that requires centralized intelligence, which makes sure that the
overall task completes. However, such an architecture requires management data to
be massively shared between all partners and is not scalable to a large number of
partners. Moreover, in situations where each of the managed services runs within its
own management domain, a centralized architecture will not be feasible.

Many problems in service relationship management can be solved through SLA
management. For example, the problem of discovering and selecting right partners
translates to the problem of querying for or negotiating an SLA. Similarly, the
problem of managing a relationship translates to the problem of monitoring and
assuring an SLA. Finally, solutions for rating partners and optimizing partnerships
can be built by optimizing SLAs based on the cost of meeting them and penalties of
not meeting them. Due to this close association, we use the words SLA management
and relationship management interchangeably in the rest of this paper.

In WSMN, once an intermediary learns about an SLA (either input through a
console or as the result of a semi-automated SLA negotiation protocol), it

Web Services Management Network 355

determines what elements to monitor, at what intermediary to monitor them, and
how often to set alarms (see also Section 4). To establish such automated SLA
management, the SLA must be specified unambiguously. In [14], we represent the
SLA specification language we developed for that purpose. This specification
language relies on a managed object model for web services presented in [IS].

2.2 Protocols

The intermediaries interact amongst each other through a set of management
protocols. These protocols range from basic ones that involve establishment and
sustenance of the network to higher-level protocols that implement higher-level
functionalities (partner selection, SLA assurance). We find it convenient to
distinguish three classes of protocols: life-cycle protocols, measurement protocols
and assurance protocols.

Life-Cycle Protocols. The life-cycle protocols are basic protocols that deal with
initiation and sustenance of the WSMN. In our implementation, the initiation
protocols are commenced as soon as two web services start communicating with
each other. It is assumed that if the web service supports WSMN, the intermediaries
are reachable at the address obtained by conjugating "/wSMN" at the end of the
service URL. The intermediary that detects a web service communication initiates
an establishment protocol that acquaints the intermediaries of each other's
capabilities. After the establishment phase, the synchronization protocol is executed.
A reasonably accurate clock synchronization protocol is needed because out of sync
clocks could lead to erroneous results. Once a WSMN is established, unless it is tom
down through an explicit teardown protocol, the intermediaries exchange keep-alive
messages as part of the keep-alive protocol. Through all these protocols, the WSMN
manages the various phases of its life cycle.

Measurement Protocols. We feel it is important to argue why service
management requires measurement protocols between intermediaries, because it is
not necessarily obvious such protocols are required. The key question is, if party A
guarantees an SLA to party B, why is it not sufficient to monitor the compliance to
this SLA at the intermediary of A?

There exist scenarios in which not all data required for managing SLAs can be
measured locally. For example, consider a web service A that promises certain goods
to be delivered to a customer B within five days. However, the web service uses a
third service C for shipping the goods. As a result, A will not know when the goods
were in fact delivered to B. The only way that A can measure its SLA is by
consultation with B or C. We will see this example arise in the prototype discussion
in Section 4. There, A monitors order arrival, B monitors delivery, and they
exchange the results using the measurement exchange protocol. Another common
example involves, say, a payment service provider P promising a certain perceived
(end-user) transaction throughput to its customers. However, there are several
service providers in the flow of execution between a customer and P - P's data
center Q, Q's Internet service provider R, R's carrier service provider S, and
customer's Internet service provider T - all of which have an influence on the
perceived throughput.

356 Vijay Machiraju, Akhil Sahai, Aad van Moorsel

A common theme in all these examples is that the SLA dependency relations
between web services do not exactly match the execution dependencies (in the first
example above, A has an SLA dependency with B, but the execution dependencies
also include C). An SLA can exist between two partners even though there are other
players that influence the outcome of the SLA. Hence, SLA monitoring between
web services requires an infrastructure where limited management information can
be exchanged between partners in a trusted and secure manner. For this purpose, we
developed a measurement exchange protocol, the details of which are described in
Section 3.2.

Assurance Protocols. Assurance protocols are higher-level protocols executing
more complex interactions, related to run-time optimization and control of SLAs.
SLA negotiation requires negotiation protocols to be executed between the
intermediaries. SLA assurance can be done by dynamically changing partners with
different levels of service as suppliers. In another example, we developed a trouble
ticket exchange protocol, which forwards warnings between intermediaries as soon
as SLAs are not met or are in danger of not being met. These trouble tickets are
created, their status checked and are closed once the problem is satisfactorily fixed.
Assurance protocols may very well depend on additional services, possibly offered
through third parties-e.g., a UDDI repository helps discovering web services, third
party negotiation services help setting SLAs, rating services (which maintain records
on web service performance) help identifying the right partners, etc. This paper does
not focus on such assurance protocols.

3. MONITORING AT THE INTERMEDIARIES

Figure 2 illustrates the various components of the intermediary. The
intermediary is embedded in the SOAP router, and has three main groups of
components: (1) WSMN engines for measurement and SLA management, (2)
WSMN protocol implementations, and (3) applications exploiting the engines and
protocols. We discuss the first two items in detail, in particular with respect to
instrumentation issues, and refer to Section 2 as well as the example in Section 4 for
various applications that utilize WSMN.

3.1 Monitoring Engines

SOAP routers receive the messages from SOAP clients and submit them to the
receivers (the payload layer in Figure 2). SOAP routers are the obvious candidate to
support the intermediaries, since they already act as proxy for the web service
interactions between a collection of services and the outside world. The WSMN
intermediaries add management capabilities to SOAP routers, by capturing SOAP
messages, potentially modifying the SOAP headers and extracting information from
those messages. This can be done without any modifications to existing applications,
and without re-compilation of the existing SOAP toolkit installation.

Web Services Management Network 357

business
console partner

trouble
ticket process application selection

log reader desk
r- I-- - :- -

to

-11 i

WSM N protocols
c her

SLA engine in erme

assurance protocols
c +-'
Q)

C C

Z 0 Q)

::'E :p E measurement protocols co (f) Q)
S t.... ::::J

t.... Vl
0 co life-cycle protocols u Q)

• _LE

... .. T I T J
SOAP router (payload)

tOi hternal to eXte 'nal
biZ processes services

Figure 2. Components ofWSMN intermediary

Figure 2 demonstrates two measurement engines that intercept the SOAP
messages and manipulate them for measurement purposes: measurement engine and
business process correlation engine. The measurement engine deals with measuring
the interactions with the outside world, while the business process correlation engine
deals with measuring the interactions with a process engine that maintains the state
of conversations with partners (as specified through standards such as RosettaNet or
ebXML [11]). The arrows between the SOAP Router and the WSMN engines signify
that the engines intercept the SOAP message and detour the control flow.

Both measurement engines utilize a message tracking protocol, which allows
one to correlate delays and other information over all segments a transaction
traverses [16] [17]. A notion of global flow is introduced by this protocol. Messages
in the same global flow use a unique m (GUm) as identifier either as defined in
some protocols (RosettaNet) or injected in SOAP headers by the measurement
engine. The measurement engine checks every time it catches a message whether a
GUm is present, and, if no GUm exists, it inserts a Gum into the SOAP header of
the message. All SOAP routers propagate the GUm in their communications, and,
consequently, all intermediaries are able to figure out which SOAP message is sent
in the context of which previous messages. The details of the message tracking can
be found in [16] and extensions to deal with the process engine are explained in
[17].

358 Vijay Machiraju, Akhil Sahai, Aad van Moorsel

In addition to the message data, one may very well be interested in gathering
other information about the business, and correlate the activities with external
message exchanges. To provide for that, one needs to add an application to the
intermediary, such as the business activity monitor in Figure 2. For example, HP
Process Manager logs execution data into a raw file, which can then be uploaded
into database tables by the dedicated application. Alternatively, the' add-on
application uses the Java API provided by HP Process Manager. In combination
with the GUID-based message tracking this provides a rich business activity
monitoring solution [I].

3.2 Measurement Exchange Protocol

All WSMN protocols use web services transport, that is, the WSMN messages
pass through the SOAP router just like messages with execution payload. However,
as the arrows in Figure 2 indicate, WSMN messages do not 'merge' with the
payload (as with interception methods), but are treated independently.2 We assume
that the necessary life-cycle protocols have executed as described in Section 2.2., to
establish a well-functioning WSMN. As we argued in Section 2.2, it may then be
required to combine the measurements of various intermediaries to determine if an
SLA has been met. Therefore, we developed the measurement exchange protocol.

The measurement exchange protocol has been designed with the following
objectives in mind: (a) minimize the amount of data that is transmitted between the
two intermediaries, and (b) transfer the data in time for the evaluation of SLA to
take place when triggered. Based on these two goals, WSMN intermediaries must
agree on (a) what measurements need to be transferred and at what level of
aggregation, and (b) how frequently must they be transferred. This is determined by
the SLA specification. The details of the SLA specification are given in [14], but the
important attributes are evalFunc, evalWhen and measuredAt. measuredAt specifies
which service (and thus which intermediary) collects the data, and evalWhen
specifies at what moments in time to collect the data. The attribute evalFunc allows
us to be smart in aggregation of the measurements, using typical sampling functions
such as count (t), totaled, averaged, movingAvg(lastN}, minN, maxN, threshold (see
[18] for possible strategies in data aggregation). In the case when the sampling
function cannot be determined from the evalFunc, we transfer all the measurements
from one side to the other.

The resulting measurement exchange protocol makes sure that there is
agreement on the level of aggregation and the frequency of transferring data. This
results in five different types of messages, which together form the protocol. We
explain the primitives in terms of a scenario in which a 'provider' obtains data from
a 'customer' (see Section 4). The primitives are:

2 Note that the three protocol types (life-cycle, measurement and assurance) in Figure 2 are
just a classification and do not form a stack in the sense of the ISO reference model. All
WSMN protocols execute independently from each other, but have in common that they
communicate using SOAP (that is, taking the stack perspective, all WSMN protocols sit
one layer above SOAP).

Web Services Management Network 359

[nit: sent by the customer to the provider for clauses whose measurement data
need to be exchanged. The init message carries possible choices of sampling
function, interval, duration and reporting interval details that the consumer
supports.
Request: The provider decides the exact measurement specification (sampling
function, sampling parameters and reporting parameters) that it chooses and
specifies it in its request message.
Agreement: The customer sends this message if it agrees to the request
Start: message from provider to commence the reporting
Report: actual measurement report messages
Close: message to terminate the reporting

4. APPLICATION OF WSMN

To demonstrate and test WSMN, we built a prototype WSMN intermediary, and
created a test environment based on a business-to-business scenario. In this scenario,
a PC vendor wants to manage SLAs with its customers and suppliers. Figure 3
shows the various players in this scenario: the vendor PCMaker, its supplier web
services ChipSupply, Assembly, Payment, Delivery and a customer service, namely
PCBuyerJ, thus resulting in a WSMN with six intermediaries. We have no illusions
that this scenario is particularly close to reality, but it serves our purposes of
demonstration and testing. A typical message exchange sequence between the
various players is shown in Figure 4. Effectively, the (potential) buyer logs in with
the vendor and asks for a quote from the PC vendor. PCMaker first checks with one
of its suppliers and then returns a quote to the buyer. In this case, the buyer decides
to order, and the PC vendor executes the order through its providers. Note that no
doubt a lot of manual work is involved at various stages, but that the interactions in
Figure 3 and Figure 4 only refer to electronic messages. PCMaker agrees on an SLA
with the buyer, stipulating that delivery will not take more than some number of
days-the two parties agree in their SLA that this corresponds to the time from the
moment that PCMaker receives order message 7 until PCBuyer J acknowledges
delivery through message 16.

Executing life-cycle protocols to set up WSMN. The WSMN is created as
soon as the service to service communication is detected by the intermediaries. For
that, we implemented the life-cycle protocols mentioned in Section 2.2. We also
implemented a third-party synchronizer service. This service is used by all the
intermediaries to synchronize their clocks.

We added a console as an add-on application to the intermediaries (as denoted in
the second application box in Figure 2). Later we see how we use that for visualizing
various aspects of SLA management, but we also use it to show what services are
running. In our prototype, a console is available for PCMaker. It depicts the services
that are known to PCMaker, resulting in an up-to-date 'run-time version' of Figure
3. The latest interaction that the measurement engine intercepted is colored blue-as
one can see, the latest communication at the moment of this snapshot was with the
synchronizer service.

360 Vijay Machiraju, Akhil Sahai, Aad van Moorsel

Amazon ,COlli -
1l1lcI

[ChipSupply] 4,8
I J 7 • - [PCBuyerl]

HP Sales ' , .u
HP A sembly

Dept.

[As cmbly]

Card Service
Intcrnational

(Payment]

5,9
[PCMakcr]

FedEx

[Delivery]

2,6

16

Figure 3. Example interactions

MSG TYPE SENDER
1 SubmitLoginmsg PCBt1Yerl
2 ConfirmLoginmsg PCMaker
3 SubmitQuoteRequestmsg PCBuyerl
4 RequestChipQuotemsg PCMaker
5 SendChipQuotemsg ChipSupply
6 SendQuotemsg PCMaker
7 SubmitPORequestmsg PCBuyerl
8 SendChipPOmsg PCMaker
9 RespondChipPOmsg ChipSupply
10 SendAssemblyPOmsg PCMaker
11 RespondAssemblyPOmsg Assembly
12 SendPaymentPOmsg PCMaker
13 RespondPaymentPOmsg Payment
14 SendDeliveryPOmsg PCMaker
15 SendDeliveryNotificationmsg Delivery
16 SendReceiptN otificati onmsg PCBuyerl

Figure 4. Interactions for the example

RECEIVER
PCMaker
PCBuyerl
PCMaker
Chip Supply
PCMaker
PCBuyerl
PCMaker
ChipSupply
PCMaker
Assembly
PCMaker
Payment
PCMaker
Delivery
PCBuyerl
Delivery

Web Services Management Network

<sla>

<slald>3</slaId>

<startDate>Fri Feb 15 00:00:00 PST 2002</startDate>

<endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>

<slo>

<sloId>l</sloId>

<dayTimeConstraint>Mon-Fri: 9-17</dayTimeConstraint>

<measuredltem>

<item>

361

<constructType>message</constructType>

<constructRef>PCMaker.com/SubmitPORequestmsg</constructRef>

<measuredAt>PCMaker.com</measuredAt>

<litem>

<item>

<constructType>message</constructType>

<constructRef>

PCBuyerl.com/SendReceiptNotificationmsg

</constructRef>

<measuredAt>PCBuyerl.com</measuredAt>

<litem>

</measuredltem>
<evalWhen>6PM</evalWhen>
<evalOn>all</evalOn>

<evalFunc name ="averageResponseTime"

</slo>
<Isla>

operator ="LT" Threshold ="5" unit ="days"/>

Figure 5. XML specification of an SLA

Setting up an SLA. In order to demonstrate SLA management in the overlay
network we defined an SLA between PCMaker and PCBuyer 1. Figure 5 provides
the details of one agreed upon SLA, in XML format: over the specified period, the
average time from when PCMaker receives the order until PCBuyer1 acknowledges
its delivery, must be less than five days (this is the time between message 7 and 16
in Figure 4). The SLO (service level objective) in the agreement requires
measurement at each end-point. The WSMN intermediaries at PCBuyer 1 and
PCMaker utilize the measurement exchange protocol to agree on sending
measurements for SendReceiptNotificationmsg everyday just before 6 PM and keep
sending the reports from startDate to endDate. In our prototype, the console allows
one to load the SLA in the intermediary at both at PCBuyer 1 and PCMaker-once
loaded, the intermediary immediately starts the processes necessary for SLA
management.

362 Vijay Machiraju, Akhil Sahai, Aad van Moorsel

Implementation of the intermediary. All services in our prototype have been
implemented using Apache SOAP toolkit, and we extended the SOAP toolkit to
collect the message correlation and instrumentation data. We use WSFL (Web
Services Flow Language [11]) as flow language, use HP Process Manager (HPPM)
for orchestration of conversations between services. Since HPPM provides a Java
API to control process executions by other software components, the business
process correlation engine can use this API to feed a unique ID into HPPM process
instances and retrieve it when necessary. The measured data is all stored and
modeled in a mySql database for short-term storage and in an Oracle9i data
warehouse for long term archiving. Figure 6 illustrates these and other components;
notice that Figure 6 is a more detailed version of Figure 2.

The model generator in the intermediary receives the WSDLIWSFL
specifications and creates a model of the web service in the model repository. All
the measurements collected from the service (e.g., ongoing conversations,
performance measurements, etc) are attached to this model. The instrumentation in
the web service is responsible for collecting these measurements and passing them
on to the measurement handler to be stored in the model repository. If the
measurements are collected on the client side (as determined by the measuredAt
components of the items in SLA clauses), then the communicator is responsible for
receiving the measurements and storing them into the repository. Ifit is required that
management data is transferred between intermediaries, then the management
protocol handler executes the measurement exchange protocol (see Section 3.2).

SLA engine. As soon as the SLA engine management process controller
receives the SLA it executes a monitoring process flow and accordingly informs the
SLA customizer, which in turn customizes the alarms at the Event Manager
(depending on the evalWhen and dateconstraint components). The Event Manager
comprises of the SLO Validity Period Monitor and triggers (time based and event
based). The SLA customizer also creates an SLO object in the SLA repository and
registers it as the call back handler of the events. The SLO object maintains the state
of the SLO (valid, active, invalid). If a registered event for start-date of an SLO
arrives the state of the SLO is changed from init to valid. The SLO is invalidated
when the end-date trigger arrives. While the evalWhen events are triggered (because
of a time or an event happening) the SLO evaluator evaluates the SLO. The SLO
evaluator obtains the required management information (based on evalOn, daytime
constraint and the evalFunc constituent of the specification) from the high
performance database in memory. The SLO evaluator determines
compliance/violations. The SLA violation engine maintains the record for violations,
their timestamps, the levels of violation, and the clauses that are violated (both in
memory and in log files). The violation records will also be used by the SLA
violation engine for triggering actions specified by evalAction constituent of the
SLO.

Web Services Management Network 363

l visualization console
;-- templates -

I SLA engine I
I

SLA

I I violation

I I
SLA

engine process customizer
controller

validity period monitor L J evaluator manager I custom I trigger trigger

B ilnformatiOn I
daemon

instrumentation
manager I a99r!!!!ator I

I model II template I I instrumentation II measurement I generator repOSitory nanagemen
dictionary handler C J protocol
• '" database data warehouse handler . -..I. • 1_ .. T I

SOAP router (payload)
toihternal to extema
biz processes services

Figure 6. Components of the WSMN intennediary (detailed version)

5. CONCLUSION

WSMN provides the appropriate architectural underpinnings for future
development in web service management technology and standards. WSMN is a
logical overlay network constituted of communicating intermediaries, each such
intermediary implemented as a proxy sitting between a service and the outside
world. It assumes a service-centric model for application usage, and focuses on
managing the service offering (as opposed to the internals of applications).
Moreover, it realizes that service management will be more and more about
managing the overall quality of interactions (service relationship management), and
uses the concept of SLAs to provide a flexible and scalable management solution for
such management.

'Implicit SLAs' are introduced, to allow for management of SLAs that have not
explicitly been agreed upon or of SLAs that do not specify enough monitoring
details. WSMN also provides a set of protocols necessary to deal with cases in
which multiple parties must share management data to evaluate if SLAs are
successfully met. Future research must deal with operational aspects of WSMN,
including issues of security and trust (along the lines of the work in [16] for message
tracking). The existing prototype implementation of WSMN allowed us to
demonstrate the workings of the overlay network, and will help to further test the
appropriateness of our current and future design decisions.

364 Vijay Machiraju, Akhil Sahai, Aad van Moorsel

REFERENCES

[1] G. Kar, A. Keller, S. Calo, "Managing Application Services over Service Provider
Networks: Architecture and Dependency Analysis," Proceedings of 7th IEEEIIFIP
Network Operations and Management Symposium (NOMS), Honolulu, Hawaii, USA,
April 2000.

[2] P. Bhoj, S. Singhal, S. Chutani, "SLA Management in Federated Environment,"
Computer Networks, Vol. 35, No. I, pp. 5-24,2001. Also HP Labs Technical Report
HPL-1998-203, 1998.

[3] U. Black, ISDN and SS7 Architecture for Digital Signaling Networks, Upper Saddle
River, New Jersey, USA: Prentice Hall PTR, 1997.

[4] H. Sinnreich, A. B. Johnston, Internet Communications Using SIP, John Wiley & Sons,
2001.

[5] T. Yoshimura, Y. Yonemoto, T. Ohya, M. Etoh, and S. Wee, "Mobile Streaming Media
CDN Enabled by Dynamic SMIL," Eleventh International World Wide Web Conference
(WWWII), May 7-11, 2002, Honolulu, Hawaii, USA.

[6] Flamenco Networks URL: http://www.flamenconetworks.com
[7] Kenamea URL: http://www.kenamea.com
[8] Talking Blocks URL: http://www.talkingblocks.coml
[9] B. Lhereux, "Web Services Networks Secure a New Technology," Gartner Research

Note SPA-I 7-0627, July 2002.
[10] A. van Moorsel, "Ten-Step Survival Guide for the Emerging Business Web," to be

published in Lecture Notes in Computer Science: Web Services, e-Business and the
Semantic Web: Foundations, Models, Architectures. Engineering and Applications,
Springer-Verlag, 2002, also HP Labs Technical Report HPL-2002-203, July 2002.

[11] A. Sahai, S. Graupner, W. Kim. "The Unfolding of the Web Services Paradigm," to be
published in Internet Encyclopedia, J. Wiley, also HP Labs Technical Report HPL-2002-
130, May 2002.

(12] R. Sturm, W. Morris, M. Jander, Foundations of Service Level Management, Sams,
2000.

[13] A. Keller, G. Kar, H. Ludwig. A. Dan, 1. Hellerstein, "Managing Dynamic Services: A
Contract Based Approach to a Conceptual Architecture," Proceedings IEEEIIFIP
Network Operations and Management Symposium (NOMS), pp. 513-528, Firenze,
Italy, Apr. 2002.

(14] A. Sahai, A. Durante, V. Machiraju, "Towards Automated SLA Management," HP Labs
Technical Report, HPL-2001-31O, 2001.

[15] A. Sahai, V. Machiraju, "A Data Model Based on Service and Process Abstractions for
Management of Systems," HP Labs Technical Report, HPL-2002-l90, July 2002.

(16] A. Sahai, V. Machiraju, 1. Ouyang, K. Wurster, "Message Tracking in SOAP-based Web
Services," Proceedings IEEEIIFIP Network Operations and Management Symposium
(NOMS), Firenze, Italy, April 2002, also HP Labs Technical Report, HPL-2001-199,
2001.

[17] M. Sayal, V. Machiraju, A. Sahai, A. van Moorsel, "Correlators for Monitoring Web
Services and Business Processes," to be published as HP Labs Technical Report,
December 2002 (available from the authors).

[18] S. Ff0lund, M. Jain, 1. Pruyne, "SoLOMon: Monitoring End-User Service Levels,"
Integrated Network Management VI-Distributed Management for the Networked
Millenium. Proceedings of the 6th IFIPIIEEE International Symposium on Integ;ated
Network Management (1M), M. Sloman, S. Mazumdar, E. Lupu (Editors), pp. 261-274,
IEEE Computer Society Press, Boston, MA, USA, May 1999.

AUTO-DISCOVERY AT THE NETWORK AND
SERVICE MANAGEMENT LA YER

Alexander Clemm, Anil Bansal
Cisco Systems, Inc.
170 West Tasman Drive, San Jose, CA 95134, USA
{alex, abansalj@cisco.com

Abstract: Auto-discovery capabilities of management systems typically pertain to net
work elements as a whole, i.e., the ability to automatically detect which net
work elements are connected to a network and to discover their type and
physical and logical configuration. Service- and network-layer information,
on the other hand, is in general not discovered but provisioned and provided
by the organization operating the network and services. There are however
scenarios in which the ability to auto-discover such information provides a lot
of value. This paper describes the challenges that we encountered, the ap
proach we took, and the lessons we learned in providing auto-discovery capa
bilities beyond the network element layer in the context of packet telephony
and of metro Ethernet. We believe that these experiences will also be applica
ble to other contexts.

Key words: Network management, service management, auto-discovery, VoIP.

1. INTRODUCTION

A common function of element-layer management systems, as well as systems
used for monitoring purposes, is auto-discovery. Auto-discovery is an overloaded
term used in different contexts that can hence mean different things, but in general it
refers to the ability of a management system to extract on its own certain informa
tion about what it is that needs to be managed, rather than requiring users to popu
late that information. When it comes to network and service layer management,
however, information is rarely deduced from the network. Instead, the network and
devices in it are considered service-agnostic - they support services, however infor
mation about services comes from the service provider. ("Service" refers here to the

http://dx.doi.org/10.1007/978-0-387-35674-7_66

366 Alexander Clemm, Anil Bansal

instantiation of a service for a given subscriber of that service, i.e., a service in
stance, not the service offering). The provider of a service uses service provisioning
systems to drive the network configurations required to support the services into the
network. Hence, any service information is assumed to be known a priori, not in
need of being auto-discovered - the master of this information is the service pro
vider, not the network. This service information is also used as the basis for aspects
such as service level agreements (SLAs) or billing [8]. To verify that a service is
provisioned correctly, it is always possible to check whether the current configura
tion in the network corresponds to the configuration it is supposed to have in support
of the service, i.e., whether the network configuration "as built" corresponds to the
network configuration "as planned".

In many cases, this is completely adequate. Nevertheless, there are situations in
which it would be desirable to be able to discover network ,and service configura
tions from the network directly, rather than depending on service-related informa
tion from other sources. Reasons for this include:

• A service management and service provisioning system gets deployed at a
later stage, after initial network deployment. A service provider would like
to be able to see and automatically retrieve what services had earlier al
ready been configured on the network.

• A service provider has maintained poor service records and reason to be
lieve that its service records are not up to date. This scenario can occur
specifically where service related configurations are not directly associated
with specific end subscribers. An example would be a wireless service
provider who needs to provide certain service capacity in a certain area, for
instance a certain number of channels for GSM, TDMA, and data traffic for
base station traffic.

• Operations personnel within a service provider's organization have gone
around service provisioning systems and provisioned service instances "by
hand", resulting in certain network-layer configuration mismatches that are
hard to troubleshoot.

We have found such scenarios to be applicable for instance in the context of
packet telephony management or management of metro Ethernet services, for which
we hence encountered the requirement to include the ability to auto-discover net
work and service layer information as part of the management solution. In this pa
per, we will discuss the challenges that must be addressed when attempting to pro
vide network and service layer auto-discovery, and an approach and design pattern
that deals with those challenges. Our experiences are based on systems that we built
for the management of packet telephony (Cisco Packet Telephony Center - PTC)
and of metro Ethernets (Cisco IP Solution Center - ISC), and which incorporate the
concepts described. However, no inferences should be made about Cisco product
features or product direction. We expect our experiences to be not unique to those
particular services but transferable to other service domains.

The remainder of this paper is structured as follows. What we mean by service
layer auto-discovery and some background are discussed in Section 2. Section 3
dives into the challenges and considerations for service-layer auto-discovery. A
design pattern that we have devised to tackle those challenges is subsequently intro-

Auto-Discovery at the Network and Service Management Layer 361

duced in Section 4. Two applications of this design pattern that have been realized
in actual systems, one concerning packet telephony, the other metro Ethernet, are
presented in Section 5. Finally, Section 6 offers some conclusions.

2. SERVICE LAYER AUTO-DISCOVERY

Auto-discovery is often encountered in the network element management con
text. It concerns the ability of a management system to automatically discover in
formation about the network, specifically to discover what devices are in the net
work, what type of device they are, what their physical configuration is and how
they have been logically configured. Frequently auto-discovery occurs by a man
agement application pinging a range of IP addresses specified by the user. Upon
receiving a response, the device's entity MIB is queried to identify device type and
physical configuration. Subsequently, the device can be displayed on a topology
map and is available for monitoring, MIB browsing and other management pur
poses. This way, auto-discovery obviates the need for management systems to be
populated with this information by the user or obtain it through seed files or other
systems. It allows the management system to obtain an accurate picture of the de
vices that are actually deployed in the network.

The situation is different as far as services are concerned. Management informa
tion about services is not discovered. Instead, the master of service management
information is the service provider that provisions them respectively its operations
support system, not the network. A service provisioning system is used to drive the
required device configurations to support the services into the network, with the
service provider keeping track of what services are provisioned. The provisioned
services can be verified by checking whether the actual network configuration corre
sponds to how it was supposed to be provisioned, comparing whether the network
configuration "as built" corresponds to the network configuration "as planned".
(Please note that throughout this paper, we refer with service auto-discovery to the
automatic discovery of management information that represents instances of ser
vices. This is not to be confused with auto-discovery of services themselves, e.g.,
through advertising of services by application servers in a network, e.g., [6,9].)

The following are some examples of network and service layer concepts that
would generally be provisioned but not auto-discovered by service providers:

• An H.323 zone in a VolP (Voice over IP) network
• An instance of a residential ETTH (Ethernet To The Home) data service
• An instance of a transparent LAN service (TLS) in a metro Ethernet setting

Not having the capability to automatically discover network and service layer
management information is completely adequate in many cases. However, as men
tioned in the introduction, in practice scenarios can be encountered where service
instances are not necessarily completely known and a capability to automatically
discover them is desirable. For example, in packet telephony management, the sce
nario can occur where a network and service management system encounters an
existing deployment when it is introduced. To be useful, this system needs to be
populated with service-layer managed objects ("service MOs"), such as information

368 Alexander Clemm, Anil Bansal

on H.323 zones. Entering this information is a tedious and redundant exercise; after
all, the network had already been provisioned earlier with those services. Likewise,
even with a network and service management system in place, provisioning can
sometimes occur working around it and configuring network elements directly (e.g.,
through the devices' command line interface - eLI). This leads to network-layer
concepts and instances of services being introduced through the back door, without
the management system knowing about them and without proper service MOs being
created. This is a problem where network layer integrity might be violated without
the management system knowing about it. Also, without service MOs being cre
ated, there is no way for an Operations Support System (OSS) to subsequently refer
to the network and service layer concepts that have been introduced. In some cases,
records of what services have actually been provisioned in the network do not exist
due to poor operational practices at a service provider, resulting in a network that is
overall poorly planned and resources in the network being tied up without generat
ing revenue. In each case, it would be desirable to have a capability to auto-discover
services (and network-layer concepts such as connections, which we include in our
discussion without each time explicitly referring to them separately).

So what do we mean by service auto-discovery? We refer to it as the ability of
a management system to automatically detect what service instances of a given type
of service are present in a network, without requiring the user or an OSS to "tell" the
system about those instances. In general, this involves the ability to derive service
information from network element level management information ("NE MOs") ,
such as information on the logical configuration of network devices. To provision a
service, configurations need to be applied and driven down into the network, often
several devices. Hence the service instances present in the network can be "reverse
engineered", respectively derived from the network configuration. Service auto
discovery assumes that information about the network elements is already known to
the management system and in place, as it is a prerequisite. That information could
be known as the result of (network element) auto-discovery and device configura
tion discovery that has taken place earlier. Figure 1 depicts the relationship between
service auto-discovery and service provisioning.

I
rvice Se

provisi oning

I
NE

provisi oning

ServiceMOs I

NEMOs

Servi
disco

ce-level
very

I
disco very

I Network Element I
Figure 1: Relationship between provisioning and discovery

Auto-Discovery at the Network and Service Management Layer 369

The need to auto-discover management information applies also to the network
management layer. An example are connections in an ATM network. For the pur
poses of this paper, we treat network and service level auto-discovery jointly, and
our concepts apply to both. MOs at the network management layer and at the ser
vice management layer are referred to collectively as "service MOs".

Management information constitutes the starting point for our considerations on
service discovery. Service (and network) management .layer information builds and
depends on information at the network element layer, aggregating and abstracting
information from it. Hence the mapping of service and network layer concepts onto
information concerning individual network elements is reflected by the relationships
between NE MOs and service MOs that express these dependencies (figure 2).

NE MOs
(represel/t what 's in the

lIe/lllorkJ

NEMOs

Service MOs

Service MOs
(aggregate/abstract illformation

I from NE MOs; drive configurations i 'mo ,od ,,=, 'h, "-")

NEMOs
(represent what's in the

network)

NEMOs

Figure 2: Dependencies between NE and service MOs

The knowledge of these relationships is essential for service auto-discovery.
One focus for service auto-discovery is hence to identify and be on the lookout for
NE MOs of certain classes that are capable of maintaining relationships with service
MOs, respectively that service MOs usually are dependent upon. The presence of
such an NE MO is then an indication that a service MO may also be present. For
example, an NE MO representing the endpoint of a connection is an indication for a
corresponding MO representing the connection itself. Another trickier example
would be an NE MO representing a DSO port which mayor may not be assigned to a
service (and hence related to a service MO). Because service MOs usually aggre
gate and abstract information from several NE MOs, possibly spanning across mul
tiple NEs, part of service auto-discovery concerns also identifying the various NE
MOs that go together and collectively support a service MO. In the connection ex
ample, this would involve another NE MO that represents the other connection end
point. In the port example, it might involve a set of other MOs representing connec
tion endpoints, cross connects (relating the port to the connection represented by the
connection endpoints), and service features on a feature service that refer to that
particular port that jointly together with the port make up a residential subscriber
service. Accordingly, the following are key aspects for service auto-discovery:

• Identification of NE MOs of classes that service MOs usually depend on
• Identifying which NE MOs would match up to relate to the same service

instance

370 Alexander Clemm, Anil Bansal

• Creation of service objects based on aggregate NE MO information
In addition to service information that can be derived from the network, there

can be certain aspects about service objects that cannot be derived, as they concern
service layer aspects that are not represented in the network elements but are main
tained by the service provider. An example for this would be the customer informa
tion about who subscribes to a given service instance. This type of business infor
mation is not part of the network configuration and its automatic discovery from the
network would require clairvoyant capabilities. Clearly, there may be information
in a business management system that might be associated with the network infor
mation. However, this is not the emphasis of this paper and would be subject to
further work; we assume that this type of information will still need to be associated
by the service provider.

3. SERVICE LAYER AUTO-DISCOVERY CHALLENGES

As indicated, key to our approach to service-layer auto-discovery is the identifi
cation of NE MOs that service MOs could be related to and that hence indicate their
possible presence, and derivation of service-layer information from those NE MOs.
This sounds reasonably straightforward, although as so often the devil is in the de
tails. The following are some of the aspects that need to be considered.

Multiple ways to instantiate a service. There can be different ways in which
the same instance of a service can be instantiated. This means that in general, we
need to know about different possible mappings, so we know what things to look
for. Of interest are not so much the differences and variation in actual provisioning
steps taken, but different ways in which the same service can be reflected in the re
sulting network configurations.

Identification of "matching" NE MOs. Generally, a service MO does not map
one-to-one on an NE MO but is distributed over several MOs. This raises the ques
tion how we can find out which NE MOs "match", respectively would be related to
the same service MO. How can we tell whether they potentially belong to the same
service MO, or whether they would belong to different ones? In many cases, NE
MOs related to a service MO contain information about other NE MOs to which
they are related. An example are NE MOs that represent connection endpoints and
contain information about the IP and port addresses that help identify the corre
sponding endpoint on the other side. (That MO in turn contains the first MO's NE's
IP address information.) In some cases, only some of the NE MOs related to the
same service object may have information about their relationship to the other NE
MOs. An example is a DSO port MO, cross-connect MO, and connection endpoint
MO on the same network element that are all related to the same subscriber service.
The cross connect MO may contain information relating it to the DSO port and to the
connection endpoint, but the connection endpoint MO may not be aware of it relat
ing to either cross connect or DSO port (see figure 3).

For such cases, service discovery generally needs to focus on the NE MOs that
would have information allowing to identify other NE MOs related to the same ser
vice MO first. Only subsequently the discovery will expand to try to find the other

Auto-Discovery at the Network and Service Management Layer 371

NE MOs that contain no such information but that were in part identified by the NE
MOs found earlier.

Dealing with rainy day scenarios. Service instances may have been miscon
figured. For example, referential integrity problems may exist. An example con
cerns signaling backhaul in packet telephony, where a media gateway controller
might have been provisioned to backhaul signaling to a certain media gateway, but
the media gateway expecting signaling backhaul to occur between it and a different
media gateway controller. The way management information is represented must
account for this possibility. It needs to be able to represent network and service
layer information "as built", which includes a lot more possibilities compared to a
representation of management information "as planned" that does not need to ac
count for all the things that can possibly go wrong. Information models that repre
sent services typically model services only "as planned", as indicated for instance in
the cardinality of relationships. For instance, modeling of a point-to-point connec
tion always involves two endpoints. How would the same information model repre
sent a connection that was "broken" because the endpoints don't match up, violating
referential integrity? The model needs to be capable to represent both, the network
and services "as planned" with all their constraints, and the network and services "as
built", with possible violations of planned constraints. Alternatively, two parallel
models need to be maintained. In any event, we need to be able to deal with the
world the way it is, not the way we wish it would be. A related question concerns
how rainy and sunny day scenarios can even be distinguished. For example, if an
NE MO is missing, it might be because truly a misconfiguration has taken place, or
because the other NE MO has simply not yet been identified or discovered.

Note:
Arrows indicate which
MOs maintain relationship
information to other MOs

Figure 3: NE MOs involved in providing a residential subscriber service

Incremental discovery. In general, it is unacceptable having to wait for a long
period of time, until all network information is precisely known (which might never
fully be the case due to the constant changes occurring in real-life networks), to start
discovering service MO. Service auto-discovery needs to be able to cope with in
complete information about the network, filling in missing pieces as it goes along
and able to indicate to users the status of the discovery process. This is also related
to the previous point.

372 Alexander Clemm, Anil Bansal

Obtaining accurate NE information: Information has to reflect the current in
formation in the network, requiring periodic synchronization of the NE information
that service-layer auto-discovery is based on. This is associated with the usual chal
lenges of keeping a management cache from going stale, nothing unique to service
layer auto-discovery but nevertheless worth to be mentioned. Periodic upload and
synchronization can be complex if the network or the EMS does not have the ability
to provide only the changed information. If the complete network information is
uploaded every time, the onus lies on the NMS to find out the deltas that changed
since the last upload and update its information accordingly. Event based mecha
nism can be challenging if either the configuration change events do not carry
enough configuration information, if there are too many of them, or if they are not
delivered in a reliable manner.

Model "as-planned"
stringent COllstraints,
e . 1-1 cardinaLi

mismatch!
theoreticaL constraints
ma be broken

Figure 4: Rainy day scenarios - discrepancies between "as built" and "as planned"

4. AN APPROACH FOR NETWORK AND SERVICE
LAYER AUTO-DISCOVERY

The following outlines our approach to discover service MOs from the network.
It has been applied in the context of packet telephony networks as well as Metro
Ethernet networks and expect that it can be applied also to other domains.

4.1 Initial analysis

We start with an analysis of the model of the management information that is
involved. We assume that a model representing management information from the
NEs, i.e., containing the NE MOs, will already be in place. (As mentioned earlier,
as a prerequisite for service auto-discovery we assume that NE MOs have been dis
covered already, so they need to populate some model.) Certain categories of NE
MOs will typically be part of (or referenced by) a service MO. We will refer to those
NE MOs as "service-supporting NE MOs". For example, a termination point will
be indicative of a connection.

If we do not have one already, we define a model of the network and service
layer concepts that need to be discovered. This model can be arbitrarily defined; it
can even include new services that were not known at the time when the NE MOs
were originally defined. As far as the service MOs aggregate and abstract informa-

Auto-Discovery at the Network and Service Management Layer 373

tion originating from the network, they have dependencies on NE MOs. We need to
explicitly identify these dependencies respectively relationships between service
MOs and service-supporting NE MOs. Service-supporting NE MOs generally main
tain relationships with other service-supporting NE MOs, jointly serving to support
the higher-layer abstraction represented by the service MO. In many cases, the NE
MOs will contain information that points to the other NE MOs that they are in rela
tionship with. For example, an NE MO representing a termination point may in
clude the IP address and port number of the remote end.

Knowledge of these relationships and dependencies is the basis on which the
rules can be defined according to which discovery takes place. Some of these rules
will be "triggering rules", which provide the conditions under which a service object
will be created. The trigger generally identifies certain service-supporting NE MOs,
which we will call "master NE MOs", that are a certain indication that a service MO
is present. It is important that master NE MOs are defined such that there is only
one master NE MO per service MO, so not to inadvertently introduce too many ser
vice MOs. Redundant service MOs would be difficult to match and eliminate later.
In many cases, there are different possible candidates that could serve as a master
NE MO. Often, information models are "symmetrical" in that for instance all the
service-supporting NE MOs are of the same type. In this case, a master NE MO can
be identified not by the NE MO type but by another distinction, for instance through
the system it is contained in. In the packet telephony case, the call controller is gen
erally considered key to the configuration, accordingly the service-supporting NE
MOs of the media gateway controller are considered the "master". In peer-to-peer
cases, a convention which of the service-supporting NE MOs should serve as the
master NE MO could be the NE MO whose NE's IP address is lower than that of the
other NEs to which it points.

Other rules will be "completion rules", which identify other dependencies of the
service object, i.e., the other service-supporting NE MOs that must be in place for a
service object to be "complete", or consistent. When a service MO is first created, it
is only related to the master NE MO that triggered its creation. Since other NE MOs
typically support this service MO, the information contained in it is incomplete.
Hence we also introduce a state concept to indicate the status of discovery, termed
the "discovery state". When initially created, a service MO will typically have a
discovery state of "incomplete". It moves to a completed state once the completion
rules have been satisfied, respectively all NE MOs that the service MO depends on
identified. The discovery state also helps deal with cases where services were mis
configured, for example where referential integrity is violated and other NE MOs
that are needed for the service to be consistent and complete cannot be found. An
incomplete discovery state can be an indication for such situations.

Finally, aggregation rules will define the computation of any derived attributes.
All those rules could conceivably be specified separately and processed by a discov
ery inference engine. However, in our case we chose to simply encode those rules
in the respective discovery algorithms of the systems that we implemented.

314 Alexander Clemm, Anil Bansal

4.2 Steps during runtime

The steps that occur during service layer auto-discovery are accordingly as fol
lows:

The first step is really outside the scope of service layer auto-discovery itself and
is a prerequisite for the auto-discovery of service MOs that follows. It involves dis
covery of the NE MOs. This means management information is uploaded from the
underlying element management system or network element, as part of initial upload
or (later) of synchronization. (The network elements will generally be auto
discovered themselves; however, it is not a prerequisite as this information could
also be populated using some other mechanism.) Internally, MOs representing those
NE resources are created. This includes physical aspects (cards, ports) as well as
logical aspects (protocol entities, termination points, etc.).

Next, NE MOs are scanned to identify service-supporting NE MOs, for instance
NE MOs of certain classes. Examples are termination points (indicative of a con
nection), trunk group controls in a call agent (indicative of a trunk group), a cross
connect in an edge device that relates a DSO with a trail termination point connect
ing to an aggregation device (indicative of a residential subscriber service, as per the
earlier depicted example). A matching NE MO will in all likelihood exist on an
other NE, e.g., a matching termination point in the case of the connection or a DS 1
in case of the trunk group control. If a matching NE MO is found, a service MO
with those NE MOs should be created.

Master NE MOs are identified. For each master NE MO, a service MO is cre
ated as a result. This can occur before a matching counter piece is found. In the
MGCP-based packet telephony case, the media gateway controller is generally con
sidered key to the configuration, accordingly the service-supporting NE MOs of the
media gateway controller are considered the "master". The service MO will be
marked as "incomplete", as not all NE MOs that the network/service layer concept is
composed of are identified. However, the service MO will have enough information
to locate the "missing" NE MO. For instance, a trunk group control will indicate the
port number, slot number and shelf name of the DS 1 it is supposed to be controlling,
or a termination point has the address of its counterpart on the other side.

Subsequent steps attempt to identify the other NE MOs that support the service
MOs that have been created. This can be done as NE MOs are discovered, or in an
extra pass scanning all the NE MOs. Matching NE MOs can be identified through
the specific semantics of the underlying model. A simple example concerns net
work connections: a network connection service object could be initially created
with the information contained in an MO representing a connection endpoint. This
MO contains the far end's IP address and port number. NE MOs from the far end's
systems can now be searched for another connection endpoint object, that has as far
end the initial NE MO's NE's IP address (and corresponding port number).

As service MOs are "completed", they will be marked with a discovery status of
"complete". Also, information aggregated and abstracted from the supporting NE
MOs can be computed. If conflicting information is found between the service sup
porting NE MOs, the service MO can be marked as "inconsistent".

Finally, the service provider has the possibility to associate the identified service

Auto-Discovery at the Network and Service Management Layer 315

instances with other service-related information from the ass, such as customer
information.

The steps can be interleaved. For example, it is possible for NE MO auto
discovery (or discovery) to take place while auto-discovering service objects, per
forming analysis of service-supporting NE MOs as things go along. Also, multiple
passes may be applied. In the first pass, information is extracted from the network
and raw service MOs, based on master NE MOs are created. In the second pass,
service MOs are refined and completed.

Finally, it is possible to discover service MOs on an ongoing basis, even after the
initial auto-discovery pass. Changes to NE MOs will trigger auto-discovery rules to
be re-evaluated, based on whether the NE MO was associated with a service MO to
ensure that service integrity is still met), whether the change should trigger creation
of a new service MO, or whether the change implies that the NE MO can be newly
associated with an existing service MO

To identify network-layer inconsistencies and misconfigured services, a user
should check for service MOs with a discovery state of incomplete or inconsistent.
Also, service-supporting NE MOs that are not related to any service MO are indica
tive of "orphaned" resources in the network that lie idle and should for management
purposes be garbage collected.

5. APPLICATION EXAMPLES

As mentioned earlier, we have realized the presented service and network layer
auto-discovery concepts in two systems addressing two very different domains. One
(PTC) concerns the management of packet telephony networks, the other (ISC)
management of metro Ethernet, specifically Transparent LAN Service (TLS). This
is an indication to us that the concepts are indeed generic and will be applicable to
other areas as well.

Packet telephony. The fundamental ideas underlying the system for packet te
lephony management have been described in [2]. Central to it is the notion to hide
the distributed nature of a packet telephony network by projecting virtual entities
onto it that provide a logical management wrapper around the physical network.
This greatly simplifies its management, as management complexity that results from
the distribution is largely abstracted away. Examples for virtual entities are a virtual
switch that represents a media gateway controller (MGC) and the media gateways
(MG) that it controls along with the various signaling and control connections be
tween them in an MGCP network, or a virtual zone representing a gatekeeper and a
set of associated gateways sharing the same dial prefix in an H.323 network. The
virtual entities constitute a mix of network and service management layer objects to
which auto-discovery can be applied. Provisioning of packet telephony networks
can be fairly error prone, therefore the ability to detect network-layer configuration
mismatches using auto-discovery of the virtual entities proved to be a very attractive
side aspect of the system.

An analysis of the packet telephony information model [3] yields the service
supporting NE MOs, basically the NE MOs that the various virtual entity MOs are

376 Alexander Clemm, Anil Bansal

related to. Most of the virtual entities are based on "symmetrical" relationships be
tween a virtual entity (service layer) MO and two NE MOs of the same type. We
declare the NE MOs contained by the media gateway controller the master NE MOs.
Key to discovering the various virtual entities is discovering the top-level virtual
entities, i.e., the virtual entities that contain the other virtual entities, for example the
virtual switch in an MGCP-based network. The virtual switch can be easily identi
fied by identifying the MGCP connections, derived from the MGCP termination
point maintained by a media gateway controller and the MGCP termination point of
the media gateway that it points to. In a first pass, the virtual switches are identified
this way. In a second pass, the other virtual entities are identified, i.e., the various
aspects contained in the virtual switch, such as trunk groups, trunks, or backhaul
connections. Matching up of the related NE MOs is fairly straightforward once the
virtual switch itself is known, as it is clear where to look for the counterparts of the
MGC's NE MOs.

The algorithm as described is of course somewhat simplistic. In reality, some
aspects turned out to be quite tricky. For example, there can be multiple MGCP
associations between an MG and several MGCs in a failover configuration in order
to provide fault tolerance. At the same time, an MGC can have MGCP associations
with multiple MGs, for which however the same failover configurations will need to
apply. This leads to very sophisticated construction principles for the virtual entities
and to fairly complex configuration constraints whose integrity must not be violated,
respectively many rainy-day scenarios. Another challenge was the interdependence
between service layer objects. Service objects representing PRI signaling backhaul,
trunk groups, and DSx lines are dependent on creation of MGCP association and
virtual switch objects. Unless MGCP association as well as virtual switch objects are
discovered first, PRI backhaul and other service objects cannot be discovered be
cause they use the association knowledge between MG and MGC. Thus the com
plete discovery process involves multiple phases where the initial phase discovers
those MOs that have no dependency on other MOs, and subsequent phases discover
those MOs that are dependent on already discovered MOs.

Metro Ethernet. Metro Ethernet management [1] deals with Transparent LAN
Service. TLS could constitute a multipoint to multipoint connection or a single
point to point connection and is used to transparently connect LANs at multiple cus
tomer sites as one single LAN. TLS is abstracted as a service object and is formed
by grouping multiple network layer objects. Refer to Figure 5 for a TLS example.
In the example, TLS connects three customer sites LANS together to form one vir
tual LAN. The end user is interested in only the endpoints of the TLS and does not
care which intermediate nodes the circuit goes through. However, the TLS is com
prised of multiple segments (6, in this case) at the network layer. As a part of auto
discovery, the information is read from multiple devices, individual segments are
formed, and then these segments are grouped together to form a TLS service.

When the management system is connected to a live network where some TLS
circuits are already provisioned, the management system auto-discovers all the TLS
services and makes them visible to the user. This is also useful for further resource
allocation in the network for the services provisioned later. The management system

Auto-Discovery at the Network and Service Management Layer 377

can keep track of resources such as ports, VLAN IDs which have already been used
by the auto-discovered services and does not let operator use those resources.

Similar to the case of packet telephony management, auto-discovery can also
serve to detect network layer inconsistencies. For example, a segment belonging to
TLS 1 can be misconfigured to belong to TLS2. When NMS uploads the network
objects from individual devices and correlates these objects, the algorithm can detect
the inconsistency and flag it to the user through its GUI.

Customer ile A

CLE .. , .•..
• Segmontl

Seg",_nt.
TLS gmont

Physical Connection

Segment3 ...
••• , CLE

, .
Custom.r !:'te C

Figure 5: TLS in a Metro Ethernet

6. CONCLUSION

In general, auto-discovery focuses on the network element management layer.
However, there are legitimate and important reasons to extend auto-discovery to
higher management layers as well. The concepts discussed in this paper have been
utilized by management systems for Open Packet Telephony and for Metro Ethernet,
with convincing results. The most important aspect perhaps is a side effect of the
auto-discovery itself, namely the ability to detect network-layer inconsistencies in
the network where service objects are not able to reach a discovery state that indi
cates they are consistent and complete. Some of our practical experiences have been
that service layer auto-discovery is however an expensive operation that should be
used sparingly. It is applied once during initial cold start of the system and subse
quently on operator request; essentially in situations where the service provider has
reason to believe that the service information is no longer accurate. An important
feature of our systems is the ability to restrict service-layer auto-discovery to a cer
tain scope, such as in packet telephony an H.323 zone. The scope should of course
be defined such that the service-layer concepts within it are self-contained, so that
unnecessary and erroneous flagging of seeming inconsistencies - where service
layer aspects extend to information outside the scope is avoided.

Future work could aim at deriving auto-discovery rules automatically from ser
vice definitions used to provision the network, such as the ones defined in and appli
cable to systems and methodologies such as the ones described in [4, 5, 7, 10]. An
other area for further research concerns matching auto-discovered data with infor-

318 Alexander Clemm, Ani! Bansal

mation contained in the service provider ass. This would allow for instance to
automatically associate subscriber information with service instances identified in
the network, so really complete service auto-discovery with service aspects that are
not to be derived from the network side.

ACKNOWLEDGMENTS

The authors would like to thank Prakash Bettadapur, Poon Leung, and Petre Dini
for fruitful discussions on this subject.

REFERENCES

[1] Barry, D.: Metro Ethernet Management. Packet Magazine 312002, softcopy
at http://www.cisco.comlwru:p/public/784/packet/juI02/p45-cover.htrnl,
7/2002.

[2] Clemm, A, P. Bettadapur: Building Management Solutions for Open Packet
Telephony Networks. IEEE/IFIP 1M 2001, Seattle, WA, 51200l.

[3] Clemm, A, P. Leung: Model-Driven Open Packet Telephony Management.
IEEE/IFIP NOMS 2002, Florence, Italy, 412002.

[4] Dreo Rodosek, G., L. Lewis: Dynamic Service Provisioning: A User Centric
Approach. IEEEIIFIP DSOM 2001, Nancy, France, 101200l.

[5] Garschharnmer, M., R. Hauck, B. Kempter, 1. Radisic, H. Rolle, H. Schmidt:
The MNM Service Model - Refined Views on Generic Service Management.
Journal of Communications and Networks (JCN) Vol. 3 Nr. 4,1212001.

[6] Jacob, B.: Service Discovery: Access to Local Resources in a Nomadic Envi
ronment. OOPSLA'96 Workshop on Object Replication and Mobile Com
puting, San Jose, CA, 10/1996.

[7] Kong, Q., I. Rose, D. Cameron: Towards Technology Independent and
Automated Service Activation and Provisioning. IEEE/IFIP NOMS 2002,
Florence, Italy, 4/2002.

[8] Lewis, L: Managing Business and Service Networks. Kluwer Academic 1
Plenum Publishers, New York, NY, 2001.

[9] Preuss, S.: JESA Service Discovery Protocol (SDP). Proceedings Networkers
2002 (Springer), Pisa, Italy, 512002.

[10] Shen, F., Clemm, A: Profile-Based Subscriber Service Provisioning.
IEEE/IFIP NOMS 2002, Florence, Italy, 4/2002.

MANAGING HETEROGENEOUS SERVICES
AND DEVICES WITH THE DEVICE UNIFYING
SERVICE
Implemented with Parlay AP Is

Erik Vanem, Dao Van Tran, Tore E. Jj1jnvik, Pal Lj1jkstad and Do Van Thanh
Telenor R&D, Snarf/lyveien 30, 1331 Fomebu, Norway

Abstract: Due to the Ubiquitous explosion of the Internet and the fast proliferation of
heterogeneous networked devices and services, the end user are faced with a
formidable task in managing it all. The Device Unifying Service presented in
this paper is a novel powerful concept that allows anyone confronted with
multiple devices and services to administer and manage them by themselves.
With this service, different devices connected to different networks offering
different types of data and communication services can be integrated and
handled in a straightforward way. It allows the usage of multiple devices
simultaneously and the possibility of adding, removing or changing devices in
a service session. The Device Unifying Service addresses personal service
management for both communication services and data services.
Communication services like a normal phone call can for example easily be
transferred from a fixed phone to a mobile phone or an IP phone with
multimedia capabilities with the Device Unifying Service. Additionally, a data
service like a WEB browsing session can be transferred from a PC to a laptop
or PDA including cached information like history and bookmarks. Providing
an easy way of moving services between devices, the Device Unifying Service
thus fulfils the vision of service portability in an elegant way. This paper
presents the concept of the Device Unifying Service, a novel service that will
take care of the management, coordination and configuration of all the devices
that the user has at his disposal and provide service portability and adaptation
of services to devices with different characteristics. Furthermore, this paper
will reveal how the first version of the Device Unifying Service has been
implemented using Parlay APls and H.323 technologies.

Key words: Service Portability, Management of Networks and Services, Personal
Communications, Mobility Evolution, VHE, IP/mobile technologies, Open
APls, Interoperability and Cooperative Control, Personal Network
Management.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

380 Erik Vanem, Dao Van Tran et al.

1. INTRODUCTION

The main concepts of the Device Unifying Service (DUS), developed within the
Eurescom project PllOl, has already been described in previous papers [1,2], and
will therefore only be given in brief in this paper.

The Virtual Home Environment (VHE) [3] is an important portability concept of
the 30 mobile systems that enables end users to bring with them their personal
service environment whilst roaming between networks and also being independent
of terminal used. Although considering multiple terminals, the VHE concept
addresses only the usage of one terminal at the time and the swapping between
terminals. It is thus envisaged the needs of using multiple device simultaneously and
the needs of coordination such that devices collaborate and provide a coherent user
interface.

Nowadays the user is confronted with several different devices such as a plain
old telephone, a mobile phone, a cordless phone, and a PC or a workstation as well
as more simple devices like microphones, loudspeakers, TV screens, digital cameras
etc. These devices might very well be autonomous in that they are able to function
individually and independently of each other, but the proposed service will allow the
user to manage them all and hence consider them all as one big terminal - the Virtual
Terminal.

Another important issue is the combination of mobile and stationary devices.
The user might visit places away from his home domain where there are stationary
devices offering different types of services, e.g. printers, screen displays etc, and the
DUS will allow the user to include these in his Virtual Terminal, i.e. it will offer a
dynamic configuration of the Virtual Terminal depending on what devices and
services are available on any given time.

The DUS will manage data services as well as communication services, and it
enables moving of data sessions. For example, an e-mail that is halfway written can
be transferred to another device before continuing with the writing, and a web
browsing session could be transferred with history, bookmarks and all between
devices.

This paper describes the different aspects of the Device Unifying Service and the
Virtual Terminal concept. The functional requirements are identified and the system
architecture is discussed. Finally, the implementation of the first version of DUS,
which utilizes Parlay [4] call control and a Parlay-H.323 gateway, is described.

Managing Heterogeneous Services and Devices with the DUS 381

2. THE DEVICE UNIFYING CONCEPTS

2.1 Device unification and coordination

Since many communication devices, e.g. mobile and fixed phones, may have a
limited user interface, the combination of these devices with various other devices
with different capabilities into a Virtual Terminal as illustrated in Figure 1, may
result in much better user interfaces and hence enhance the offered services.

'" - , ..

...

VT

The erml,...1

Figure 1. The Device Unifying Service

During a service session, a user may want to use one or more elementary devices
with just input and output functionality in addition to his communication device.
Examples of such elementary devices can be a big screen display, loudspeakers, a
microphone etc. In other cases the user may want to reroute the voice or data
streams coming in to his mobile phone to other, more convenient devices such as a
fixed phone, a PC etc. This can be done via the mobile device using technologies
such as Bluetooth [5], but due to limitations of the mobile device, it might prove a
better alternative to introduce the Device Unifying Service and let it handle this.

With this concept, all the different devices will be considered as one big terminal
with multiple input and output capabilities. The user terminal will no longer be an
integrated and recognizable device but a set of distributed devices that allow access
to certain services, e.g. multimedia communication services, various computing
services etc.

2.2 Virtual Terminal management

The Device Unifying Service will allow the user to define, add and remove the
devices that are included in the Virtual Terminal at any time. The user's many
terminal profiles and user profiles on different devices will be replaced by a unique
user profile defined once for all in the Device Unifying Service. Whenever this

382 Erik Vanem, Dao Van Tran et al.

profile is set up or updated. it will automatically be accessible from all other devices
contained in the Virtual Terminal.

The profiles can also be set up to specify different personal preferences when it
comes to subscription of services. user interfaces on particular device types etc so
that the user will be offered the same services and experience the same look and feel
regardless of where he is and what particular device he is using. The only
requirements are that the device in question supports such services and such user
interfaces.

2.3 Service portability and adaptation

Service portability and adaptation to devices with different characteristics are
another important feature of the DUS. Moving a telephony call from an ISDN phone
to an IP phone or GSM phone will be made possible and the signaling and media are
adapted to comply with the end-point. Likewise. a data session can be transferred
and adapted from one PC to another. from a PC to a laptop or to a PDA. This is
illustrated in Figure 2.

Figure 2. Service portability for communication services and data services

2.4 A personal secretary

The proposed service will be user centric instead of device centric in that it will
be possible to address a person directly instead of addressing one of his devices. as
illustrated in Figure 3.

Figure 3. DUS as a personal secretary

Managing Heterogeneous Services and Devices with the DUS 383

The Device Unifying Service will be responsible for handling available devices,
which may include a variety of personal or public devices. Anyone wishing to
communicate with him will dial up his Device Unifying Service, which in turn will
contact the user. In other words - the Device Unifying Service will function as the
user's personal secretary.

The Device Unifying Service will offer personal mobility to the end user in that
there are no fixed relations between the user and any specific device. In this way, the
different identities of the different devices will become transparent, but the identifier
belonging to the Virtual Terminal will stay unchanged.

3. FUNCTIONAL REQUIREMENTS

The functional requirements of the Device Unifying Service describe what
functions it should be able to perform. The following are identified as the main
functional requirements of the DUS:

• Initiating services - The user should be allowed to initiate any services
through his Device Unifying Service.

• Receiving services - The user should be able to receive any incoming
services via his DUS.

• Using multiple devices - The Device Unifying Service should allow the user
to combine and use multiple devices as if they where one in the same
session, both simultaneously and successively.

• Configuring the devices - The Device Unifying Service should help the user
to automatically configure his devices whenever this is necessary.

• Managing the Virtual Terminal - It should be possible for the user to
dynamically manage his Virtual Terminal, i.e. specify which devices are
components of the Virtual Terminal, handle different kinds of services,
define his different personal service environments, set up his preferences,
access and edit his user profiles, read his mailbox, edit his address book,
modify his schedule etc

These requirements apply for both the communication services part and the data
services part of the DUS, and from the user's point of view, no great distinction
between data and communication services should be noticed.

4. LOGICAL SYSTEM ARCHITECTURE

In order to realize the described service, a terminal management and
coordination function is needed - the Device Unifying Service. In short, such a
function should have the following capabilities: It should continuously maintain,
monitor and update the configuration of the Virtual Terminal, i.e. it should always

384 Erik Vanem, Dao Van Tran et al.

know exactly what devices are present and active in the Virtual Terminal. It should
also be able to multiply and deliver streams from applications to respective devices
and to unify and deliver streams from devices to respective applications, when
multiple devices are active in one session. This function should be located on a
server connected to a standard IP-network, which is again connected to other
networks, e.g. Internet, GSMlISDN network through gateways. This conclusion
regarding the location of the management logic is in agreement with other research
projects' conclusions [6] .

THE VIRTUAL TERMINAL

Figure 4. The logical system architecture

Figure 4 shows the proposed logical system architecture of the Device Unifying
Service. Other applications are only aware of the DUS and not of the user's many
devices. They will deliver services to the DUS, which again has the responsibility to
ensure that the delivery to the user is done through the most appropriate device - a
device within his Virtual Terminal. The DUS thus manages the users' various
devices and services, while the user manages the DUS itself.

5. nus COMPONENTS

In the design of DUS different management components are drawn up. Figure 5
shows the different components and how they are linked together.

Managing Heterogeneous Services and Devices with the DUS 385

DUS Cllonl.

Interface Manager

'W
.::"

.. '
OUS Data Manager ,;:' Co",mun!cDUI RtDds

DUS Communication Mana90r

"TTl'
Oalabaso

.(, "-
---CO;;;;,miCQlts· "

t

Figure 5. The DUS components

The different DUS components provide different types of functionality and are
implemented as java classes.

• The DUS Clients are clients used to access the DUS management service. A
standard web browser can be used to manage communication services
(making calls, adding devices to an existing voice session, transferring calls
etc.), but for the data services (e.g. transferring a WEB session) a special
DUS browser, developed within the P-1101 project is needed.

• The DUS Terminal Manager is the way into the DUS Communication
Manager or the DUS Data Manager. It is reached by the DUS clients by
HTTP and communicates with the DUS Data Manager and DUS
Communication Manager using CORBA.

• The Interface Manager provides different functions for generating the user
interfaces, which are returned to the screens of the user's devices. These can
be in the form of HTML or WML to suit different terminals with different
capabilities.

• The DUS Profile Manager. This component stores the different profiles
within the system. It also provides a range of functions to manage each
profile. It can be accessed by the DUS Data Manager and DUS
Communication Manager and provides information needed for the
management of the data and communication sessions.

• The DUS Communication Manager handles the DUS communication
sessions, i.e. voice sessions, multimedia sessions etc. This is the component
that handles call control and sets up and tears down connections in the
network between the actual devices. It reads from the DUS Profile Manager
to get necessary information from the Database.

386 Erik Vanem, Dao Van Tran et al.

• The DUS Data Manager handles the management of the DUS data sessions
and allow data services to be transferred between devices.

• The Database contains the User Profiles and communicates with the DUS
Profile Manager using JDBC.

• The User Profiles contains the information about the DUS users, their
different devices, services, preferences, environments etc.

Together, these components make up the Device Unifying Service.

6. IMPLEMENTATION OF nus VERSION 1.0

The first version of DUS has been implemented and deployed on Telenor's
research labs at Fornebu, Norway. It has been implemented on an IP-based network
with the components pictured in Figure 6.

DUSServer

IPnetwork

\
PDA's

wlWLAN

Webbtowser
DUS terminal

MCU Server

Figure 6. The physical parts of a DUS implementation

The DUS implementation contains the DUS server that contains the actual DUS
application and a MCU server that is capable of mixing multiple media streams.
Figure 7 illustrates how the DUS application is connected to the user terminals via
the MCU server that mixes the media streams in a communication session.

DUS

Figure 7. Connection between DUS application, MCU and user terminals

Managing Heterogeneous Services and Devices with the DUS 387

The DDS server also has access to a database where the user profiles, the device
profiles, the address books and the schedules are stored. The DDS user can access
and administer the service from a standard PC with a Web browser or from a PDA
as indicated in the figure.

The DDS application itself runs on a standard PC with an industry standard
operating system such as Windows, Dnix or Linux. It is implemented in Java with
development tools from Borland [7] and a Parlayl compatible development platform
from Appium Technologies [8, 9]. The server machine running the DUS application
has a Java Virtual Machine (JVM) installed and it contains a WEB application
server (Apache/Tomcat), and a user profile server. JDBC is installed to ensure
communication with the user profile server. In Figure 8, the components of the DUS
application server are shown.

GBox
TAS

DUS
CoCoon

User Profile
Server Java

Enterprise

Windows 2000
Server

Apache

Figure 8. The DUS application server

The DDS application uses a Parlay-H.323 gateway from Appium technologies to
handle call control for IP telephony. This contains an implementation of the Parlay
APls that are used for the actual call control and the signaling to and from the DDS
server is performed by H.323 [10). Such a call set-up example is shown in Figure 9.
The GSMlISDN network is connected to the DDS network through a signaling and
media gateway from Cisco systems [11] so that both IP telephony and GSM/ISDN
telephony can be managed by the DDS. The DDS network is also connected to the
Internet.

Some of the most important Parlay APls used in the DDS application are
createCall, routeReq, routeRes, release, handleCall, getCallSessionID,
getCalledAddress and getCallingAddress.

I Parlay APIs version 2.1 is used.

388 Erik Vanem, Dao Van Tran et al.

DUS Server

rouleRcq
Calling address:
C"lled ,"'dress: 20@192. 156.30. 1

callF.\'eIlINollfy
Calling address: 1234
Called lIddre .. , 5678

H.323 call (2)
Culling number: 123-1
Called l1umber. 20

/
192 .156.30. I

H.323·Parlny
Galcw"y

192. 156.30.2 ,

H.32.1call
Calling mllllber: 1234
Called lIumber. 5678

5678 = 192.156.30.2

Cisco Media f.\
GUleW:IY C.II from PSTN
192.156.30.3 numbe.o 1234

II number: 5678

Figure 9. Incoming call via the H.323 - Parlay gateway

Version 1 of DUS that has been implemented so far consists of two parts: A
communication services part and a data service part. The communication service
part includes the following functionality: session creation, session teardown, adding
devices to an existing session, removing devices from a session, session transfer
between two or more devices, e.g. transferring a session from a fixed phone to a
mobile phone and receiving services on most appropriate devices. The DUS have a
globally unique identifier, so that the user can receive services through the DUS.
This identifier consists of an E-164 number and a H.323 address so that it can be
addressed by both traditional telephony via the gateway and IP telephony directly.
The data services part provides transfer of data sessions like web browsing
(including history, bookmarks etc), e-mail etc. In addition, the user may manage his
profile and environments and modify a list of his own devices, an address book
containing his contacts and a schedule that defines different environments according
to the time of day. All this is accessible to the user from an ordinary web browser on
a PC, laptop or PDA. These two servers are combined and integrated into one DUS
server offering both communication and data DUS services.

With the DUS version 1.0 four of the five identified functional requirements are
already realized. Only the configuration of devices requirement is left for further
releases.

7. THE DUS 1.0 MANAGEMENT INTERFACE

The DUS version 1.0 offers its functionality to the user by an easy-to-use
management interface. When subscribing to the service, the user will be given a
username and a password, and should then be able to log on to the service from any
PC, laptop or PDA connected to the Internet and with a web browser. A DUS
homepage will appear, and from there it is easy to navigate between the different
functions. The display in a traditional browser will naturally differ slightly from the

Managing Heterogeneous Services and Devices with the DUS 389

PDA display, but the services they are offering are essentially the same. In this
section, some selected screenshots from the standard browser version of the DUS
interfaces are exhibited.

Welcome to your DUS Homepage, Erik

Active environment Work

Environments: fHOrM"EJ
Create call from device:

Create call to device: I

1:1.],I'14W Data Session Voice Session Enviromnent Devices Addre ss Book Schedule

.. - .-.-- -.-.-. - .-.. -,--.-.. -.--.. --. -.-.-.--.-.. --. -.-. -._-,,-. -.-- - .-.--.-. -._--- ---.. -.,-. -._-.--. -.. -.. .. -.-..
Figure 10. The DUS Homepage

In Figure 10, the DUS homepage that appears as soon as the DUS user has
logged in is shown. From this menu, the user can create a new call from any of his
devices to any user. He can use the address book to call one of his contacts or type
in the number directly. At the bottom of the screen, different icons allow for easy
navigation between the different DUS management functions.

VoIce Su slon

De\l'ic at in your active S 81 siDn:

Home fixed phone

Nokia Mobil.

iPaq PDA L...:;=",-,

Addre .. Book Schedule

Figure 11. DUS voice session management

390 Erik Vanem, Dao Van Tran et al.

Figure 11 shows the DUS voice session management interface. From here, new
devices can easily be included in an ongoing communication session, devices can be
removed from the session and the whole session can be transferred to new devices.
Different types of devices like ISDN phones, GSM phones or IP phones can be
included in the same session.

Envlronmtnt.

Modityenvironment:

Cunene. environment Work Remove

Environment Selection::

New environment: I

DavicflS in YDur a.ctive tlnvlronment:

Add device: =. .,

Rome-page Dam Session Voice Session om.1 Devices Address: Book Schedule

Figure 12. DUS environments management

In Figure 12, the DUS environment management is shown. From here, the user
can set one of his environments, e.g. work, home, travel etc, to active, meaning that
incoming calls will be routed to a device present in that environment. One can create
new environments and define what devices that belong to the different
environments. A device can belong to as many environments as desired, and for
example the user's mobile device will typically be defined in all environments. The
active environment can also be set by a default value or according to a predefined
schedule.

In addition to the displays shown in this article, similar user interfaces allow
management of data sessions, as well as management of devices, address book and
schedule.

The DUS user interfaces are offered as Java Server Pages (JSPs) that the user
can request from standard client browsers on either a PC or a PDA.

8. CONCLUSION

In contradiction to the commonly accepted assumption that the communication
devices of the future will be integrated devices integrating several functions into one
mobile device, this paper expect another trend towards several personal and public

Managing Heterogeneous Services and Devices with the DUS 391

devices, both mobile and stationary, each offering different functionality to the end
user, and each with a different network connection. These devices might be
autonomous in that they are able to function individually and independently of each
other, but they might also be coordinated so they can act together as one big terminal
- the Virtual Terminal. The outlined service is an approach to allow the users
manage its own Virtual Terminal and its own services through a management
interface over a network.

This paper has presented the concept of the Virtual Terminal and described a
novel service - the Device Unifying Service that will realize the Virtual Terminal.
The requirements and functionality this service should offer is outlined and the
design and architecture are discussed. A first version of the service has been
implemented and the concept is thus proven. However, before the service is ready to
be deployed as a large-scale commercial service in the real world, additional work
should be done. Some of the technologies that would be desired to enhance the value
of this service, i.e. service discovery and announcements via Bluetooth, location
awareness, SIP etc. are still immature. When these technologies are more mature,
they can be incorporated in DUS and add considerable value to the DUS user. Other
aspects such as security and billing issues are not considered in much detail.
Nevertheless, the first version is ready for deployment and will be introduced to real
users in field trials shortly. The feedback from these surveys will unquestionably
indicate how to improve version 1.0 to subsequent version.

The DUS can be of interest to a number of different service providers, as it does
not require any heavy infrastructure to be deployed. Access to an IP network and
some computers is all it takes. Operators and service providers offering this service
can differentiate themselves from their competitors. It can also be offered as an
enterprise service that incorporates office devices, mobile devices and home devices.
Regardless of how the service is offered to the user, it will provide a valuable
service that will be more and more relevant to the user as the number of different
devices he has to relate to increases. The Device Unifying Service thus has a
promising future deployed as a commercial service for heterogeneous device and
service management.

ACKNOWLEDGEMENT

Work with the Device Unifying Service has been carried out within Eurescom
[12], in project PlIOI [13], with partners from Telenor ASA (Norway), British
Telecom (UK), Hellenic Telecommunications Organization S.A. (Greece), Deutche
Telekom AG (Germany), Iceland Telecom Ltd. (Iceland) and Czech Telecom
(Czech Republic).

392 Erik Vanem, Dao Van Tran et al.

REFERENCES

[1] E. Vanem, D.V. Tran, T.E. JfI}nvik, D.V. Thanh, Extending VHE with the Device Unifying
Service, Proceedings of 2002 International Conference on Communications, ICC 2002,
New York City, USA, April 28. - May 2. 2002.

[2] E. Vanem, D.V. Tran, D.V. Thanh, Multimedia Communications with Multiple Devices
Using the Personal Virtual Network Service, Proceedings of 2002 IEEE Wireless
Communications and Networking Conference, WCNC 2002, Orlando, Florida, USA
March 17-21 2002.

[3] 3GPP, Technical Specifications Group Services and Systems Aspects, Service aspects;
The Virtual Home Environment, 3G TS 22.121 version 1.2.0, 1999-04.

[4] The Parlay group, (2002, July 23) [Online]. - URL: http://www.parlay.org/
[5] Bluetooth SIG, (2002, July 23) [Online]. - URL: http://www.bluetooth.com
[6] The ICEBERG project, (2002, July 23) [online]. URL: http://iceberg.cs.berke1ey.edui
[7] Borland, (2002 July 23) [Online]. URL: http://www.borland.com!
[8]The Parlay group - specifications (2002, December 11) [Online]. - URL:

hup:/Iwww.parlay.org/specs/index.asp
[9] Appium technologies (2002, June 25) [online]. - URL: http://www.appium.com!
[lO]IEC: H.323 (2002, December 11) [Online]. URL:

http://www.iec.org/online/tutorials/h323/index.html
[l1]Cisco Connection Online by Cisco Systems, Inc. (2002, July 23) [Online]. - URL:

http://www.cisco.com!
[12]EURESCOM, European Institute for Research and Strategic Studies in

Telecommunications, (2002 July 23) [Online]. - URL: http://www.eurescom.de/
[13] PIIOI, Always on - heterogeneous services - everywhere and on any kind of terminal.

(2002 July 23) [Online]. - URL: http://www.eurescom.de/public/projects/PllOO
series/plIO 11

SESSIONS

Distributed Management

Chair: Jose Nogueira
Federal University of Minas Gerais, Brazil

DELEGATION OF EXPRESSIONS FOR
DISTRIBUTED SNMP INFORMATION
PROCESSING

Rui Pedro Lopes and Jose Luis Oliveira
Polytechnic Institute of ESTiG; 5300-302 Portugal (rlopes@ipb.pt)
University of Aveiro. DET; 3810-193 Aveiro; Portugal Olo@det.ua.pt)

Abstract: Due to the scalability problems of SNMP, management distribution has been
an important topic during the last years. The DISMAN workgroup propose a
set of MIB modules to address this matter. One of the DISMAN modules has
the capability of using expressions to perform decentralized processing of
management information - the Expression MIB.

Although it is essential to network management, the Expression MIB is not as
well known as other DISMAN modules, such as the Script MIB, and not as
available in terms of implementations. This paper focuses on the Expression
MIB features, its implementation details and it also discusses, from a critical
point of view, its functionality. It also proposes minor changes which can
boost its application range and importance.

Key words: DISMAN, Expression MIB, Network Management, SNMP.

1. INTRODUCTION

During the last years the SNMP management framework has strongly guided the
development of network systems and management applications. This architecture,
regardless of some well-known shortcomings, has managed not only to survive but
also to evolve to a rather complete set of features. This fact, combined with its
inherent simplicity and APIs wide availability, has pushed it into a dominant
position in today's network management market.

On the other hand, one of the problems associated with SNMP is its centralized
architecture, not well suited to offline operation and not scalable on large networks.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

396 Rui Pedro Lopes and Jose Luis Oliveira

According to many authors, the solution to this problem is management distribution,
a research topic since the early 90'SI. More recently, mobile agents have also been a
hot research topic for management applications2•s. Considering the standardization
of a common model for wide adoption in IP-networks, the IETF have also endorsed
a working group to study this matter - the IETF Distributed Management charter, or
DISMAN6.

This group has set up a solid framework composed of several MIB modules,
namely the Script, Schedule, Expression, Event, Remote Operations, Notification
Log, Alarm and Condition MIB6. This set of MIB modules provides a rather
complete framework for distributing management operations over a hierarchy of
several midlevel managers - distributed managers (DMs).

The Script MIB is one of the best known, probably because of the early
availability of implementations. Schoenwaelder, following an excellent study of
distribution models and solutions, the distribution of management tasks in
the context of the IETF Script MIB . However, some other DISMAN modules seem
to have captured less interest from the research community and have been left
outside development plans. Our aim to evaluate management distribution in SNMP
has also led us to the development and assessment of the Expression, Schedule and
EventMIB.

In this paper, we present our work on the Expression MIB. We describe some
implementation details, which are considered relevant in this paper context, and we
evaluate the advantages and disadvantages of the current specifications. Based on
the development experience and on its trial in the network, we also propose
adaptations to the MIB that enhance significantly its functionality with minor
modifications in its structure.

The paper is structured as follows: Section 2 presents a general description of
management distribution in SNMP. Section 3 describes the Expression MIB model
and our open source architecture. It point out the assessment of this management
agent, and suggests some minor changes which can boost its applicability and
potentiality. The paper ends with some conclusions.

2. MANAGEMENT DISTRIBUTION

The history of management distribution, well discussed by Martin-Flatin in9,

started with early work by Yemini et at. in 1991 when features such as scalability,
flexibility and robustness were identified as necessary for future developments on
network management'o. Goldszmidt and Yemini early supported a management
distribution methodology by delegating management operations near management
information'. According to this concept, management processing functions are
dynamically delegated to the network elements and executed locally. This
introduces a shift in the original concept where the information is transported to a
central location to be processed. This approach is known as Management by
Delegation (MbD) and although the research prototypes did not have the expected
community recognition they unquestionably proved the concept.

Other approaches for management distributions suggested using mobile agents
to implement and distribute management functions. Many authors supported several
usage scenarios, platforms and applications and enforced the concept of a
cooperative management effort on the network2•s.

Delegation of Expressions for Distributed SNMP Information Processing 397

The industry also adopted management distribution by releasing tools, APIs or
agents, such as Sun's JMXIl or SNMP Research's CIAgentl2.

Some of these products, technology and concepts do not easily survive the
community resistance because they are neither compatible nor adapted to the
management technology of choice - the SNMP. The SNMP community has also
proposed, under the DIS MAN workgroup of the IETF', several tools for
management distribution.

2.1 Distribution under DISMAN

The typical usage scenario of the DISMAN architecture is based on the
distribution of management tasks through a set of midlevel managers known as
Distributed Managers (DMs). The main purpose of this approach is to reduce the
command exchange with the management station, to alleviate the processing load
usually residing at a single central point and to increase the system robustness by
introducing redundancy and by allowing offline operation.

Several MIB modules were proposed to address different but complementary
issues of management operations distribution. The Event MID allows monitoring the
real-time evolution of specific MID objects either locally or remotely, and takes an
action when a trigger condition occurs (a value outside a range limit for instance)13.
The action can result in a set operation or in a notification.

The Notification Log MID is intended mainly for notification providers but
consumers may also use it. It defines a mechanism to cope with lost notifications by
recording each notification data 14.

The Remote Operations MIB modules (ping, traceroute, lookup) enable the
corresponding network-checking operation to be performed at a remote location. It
provides a standard way to perform remote tests, to issue periodical sets of
operations, and to generate notifications with test resultslS. .

The Schedule MIB provides the definitions to perform the scheduling of actions
periodically or at specific times and dates. The actions are modelled by SNMP set
operations on local MID variables (restricted to INTEGER type). More complex
actions can be performed by triggering a management script, which is responsible
for carrying out complex state transitionsl6.

The Script MID module allows the delegation of management functions over
distributed managers. Management functions are defined as management scripts
written in a language supported by the managers. It may be a scripting language
(such as TCL) or native code, if the implementation is able to execute it under its
control. The module does not make any further assumptions on the language. The
distributed manager may be decomposed into two blocks: the SNMP entity, which
implements this MIB, and the runtime system, capable of executing the scripts. The
Script MID sees the runtime system as the managed resource, which is controlled by
the MIB17.

The Expression MIB was planned to move to the agent side part of the
management information processing typically performed by managers. In other
words, it supports externally defined computation expressions over existing MID
objects. The Expression MIB allows providing the Event MIB with custom-defined
objects. The result of an expression can trigger an event, resulting in an SNMP
notification. Without the Expression MIB such monitoring is limited to the objects
in predefined MIBs8.

398 Rui Pedro Lopes and Jose Luis Oliveira

The most recent modules are related to alarm reporting. In fact, SNMP is mainly
based on polling instead of alarm reporting (a node sending notifications to the
manager when status changes to and from fault conditions). These modules provide
the necessary mechanisms to build up management procedures based upon
exception handling. It starts by defining a model-neutral method to specify and store
alarmsl8 thus providing the DM access to SNMP alarm information in a consistent
manner across systems.

The DISMAN architecture may be classified somewhere between the weak
distribution model and the strong distribution model, according to the user defined
distribution policiesl9. In this case, the degree of distribution depends on the set of
operations defined in the DM, the complexity of the operations that the DM
supports, the communication between them, and the total number of DMs.

It is possible to foresee several examples of scenarios suitable for DISMAN
application. For example, the local processing of RMON probes statistics20

according to specific expressions, the autonomous resource monitoring in
workstations through the HOST-RESOURCES-MIB21, the periodic analysis of data
integrity in persistent storage and many more. These tasks can be built around the
Expression MIB, Event MIB, Schedule MIB and Script MIB, respectively.

2.2 Delegation of SNMP Operations

SNMP operations may be executed in three different locations according to its
nature, complexity and network requirements (Figure 1): on the central manager, on
the distributed manager, or on the agent. Each situation is non-exclusive, meaning
that any combination of these scenarios is possible and sometimes it is even
recommended.

Figure 1. SNMP task execution (Ops.)
a) on the management station (NMS), b) on the distributed manager (DM), c) on the agent

Under DISMAN, each MIB encapsulates a set of operations around a specific
concept. This fact allows using almost any combination of modules to achieve the
above distribution models. However, some modules are more tightly related than
others due to their type, i. e., some modules work better if associated with others
which complement their capabilities. For example, the Script MIB cannot
autonomously start scripts. This feature is obtained by associating it to the Schedule

Delegation of Expressions for Distributed SNMP Information Processing 399

MIB. On the other hand some associations are useless, such as the pair <Schedule
MIB, Expression MIB>.

Considering local or remote information handling, some modules are able to
interact with remote agents (ex. Script, Event) and others are restricted to the local
agent (Expression, Schedule). This fact reduces the number of useful associations on
real management scenarios:

a single Schedule MIB cannot start scripts on different locations: it must be
multiplied;
an expression in the Expression MIB cannot obtain values beyond the local
agent: a script could help although it is impossible to prevent an increase in
complexity.
We have developed and evaluated the Schedule MIB and the Expression MIB,

and we are currently performing some work around the Event MIB. The following
section will focus mainly on the Expression MIB. It describes the implementation
strategy and the evaluation of several aspects such as overhead, functionality and,
generically, it points out the general advantages and disadvantages collected from
the experience of placing this functionality inside the agent.

3. EXPRESSION MIB

We started working on the Expression MIB implementation when the
documentation was still in the Internet draft condition22• Meanwhile, some minor
details have changed both in the IETF documentation and in the implementation
code, particularly the expression parser and the sampling mechanism. We included a
more robust expression parser and changed some expression functions according to
the clarifications made as the document evolved. We also improved the sampling
mechanism to cope with the Event MIB requirements so that it could be used in both
modules.

The MIB is divided into three main groups:
expResource - this group is related to resource control, with particular emphasis
on sampling parameters since this operation can have some impact on system
resources.
expDejine - is organized in three tables which collect information about the
expression definition and about the errors occurred while evaluating it: a)
expExpressionTable, defines the expression string, the result type as well as the
sampling period. b) expErrorTable maintains a table of error registers gathering
information such as: the last time an error occurred on evaluating the expression,
the operation in which it occurred, the error type. c) expObjectTable controls
each element characteristics inside the expression. The expression string may
contain variables and each variable may have different sampling types and it
may either be wildcarded or not.
expValue - this group has a single table which instantiates the evaluation
objects. It is by querying this table that the result of the expression is known.
The values used in the expressions may be absolute (the values of the MIB

objects at the sampling time), delta (the difference from one sample value to the
next) or changed (a boolean indicating whether or not the object changed its value
since the last sample). In addition to sampling, the MIB also defines wildcarding,
allowing the use of a single expression over multiple instances of the same MIB

400 Rui Pedro Lopes and Jose Luis Oliveira

object. While regular objects are resolved by an SNMP get operation, wildcard
objects are retrieved through the get-next operation. Users are familiar with
wildcarding for referencing multiple files (such as the UNIX command "cp foo. *
Itmp"). If there is more than one wildcard parameter in an expression they all must
have the same OlD termination (semantics) to maintain coherence in the result.

An expression result is retrieved by querying a row in the expValueTable. Each
row has a single column, formatted according to the result type of the expression.
The value is accessed by an OlD containing the OlD for the data type, the
expression name and a fragment (Figure 2).

I I expression 010 for the data type from expValueTable name fragment

/
0

" ... _. __ ._ .. _ :::: .. _·instance
satisfied the .• _ ...•••. --

Figure 2. Value identification OlD

The expression name has the form x."owner".y."name" converted to dot
separated integers. The integer x is the length of the owner and y is the length of the
string which identifies this expression to the particular owner. Each word character
is also converted to a dot integers format according to the
SnmpAdminString textual convention 3.

The fragment starts with "0.0." and it ends with a zero, when no wildcard is
defined, or with the instance that satisfied the wildcard.

3.1 Implementation issues

The development of management agents is a complex and tedious task. To cope
with these difficulties we have developed an open source, extensible API gathering
all the agent common procedures - the Agent API24. The modular approach of this
system allows (already developed) direct access to the agent through SNMP, RMI,
CORBA, HTTP or W AP.

The Expression Mm· uses the Agent API services to provide the common
SNMP mechanisms and to simplify and accelerate the agent development (Figure 3).

According to the expression properties defined in the tables expObjectTable and
expExpressionTable, the Timer module wakes up at every delta interval and the
Sampling module calculates the value according to the sampling type (absolute,

del ta or changed). This value is then forward to the Expression Parser.

• The implementation of the Expression Mffi as well as implementations of the Schedule Mffi and

preliminary efforts on the Event Mffi are available at hUp:llnms.estig.ipb.plf.

Delegation of Expressions for Distributed SNMP Information Processing 401

Expression MI

Figure 3. Architecture ofthe Expression MIB implementation

The Expression Parser module is responsible for evaluating the expression. To
achieve this goal it must recognize the expression components (operators, functions,
constants and variables), i.e. the lexicon and the grammar (the expression
organization). There are, available as public domain software, lexical and grammar
analysis tools, which generate code such as C25 or Java26, 27. As this implementation
is Java based, we choose Javacc27. This tool generates source code based on
specification files which are then compiled (into Java .class files) and included in the
Expression MIB agent.

The lexical analyser starts by reading the stream of characters and tries to match
the sequences by identifying tokens. The tokens' information is forwarded to the
grammar, which groups them into meaningful sequences and invokes action routines
to act upon them. In this particular case, it must recognize a complete expression and
evaluate the result.

3.2 Comments to the Expression MIB

An expression is composed of operators, functions and values. The values may
be constants or variables, the latter being associated with OIDs that refer to the
corresponding value. A string defines each expression.

The variables are defined in a separate table and indexed by a number of the '$v'
form where 'v' is the variable number. For example, the expression '$1+$2+$3'
represents the sum of the variables '$1', '$2' and '$3'. Variable indexes (the number
prefixed by '$') correspond to entries in a table (expObjectTable) that contains an
OlD and the additional sampling parameters. Any expression can thus be defined
according to the following generic format:

x = Expression(oid(, oid2, ... oidn) (1)

The Expression MIB retrieves the variable values from the local agent and
evaluates the result (Figure 4).

402 Rui Pedro Lopes and Jose Luis Oliveira

SNMPAgent

Figure 4. Expression MIB operation on local SNMP agents

The possibility of using variables in expressions is, simultaneously, the strength
and the weakness of the Expression MIB. As currently proposed, the MIB does not
allow retrieving values from remote agents restricting the expression evaluation to
local objects. This limits the possibility of creating some expressions, for example,
when they require values from different sources.

This scenario is modelled as weak distribution because the connectivity between
DMs is non-existent, the delegation is occasional (restricted to expressions valid
only in the local agent) and the number of DMs with the Expression MIB is usually
low (it is more meaningful near raw management information, typical on the agent
side). These facts limit the usage of the Expression MIB to a single situation - the
agent side (Figure 5).

Figure 5. Expression MIB usage situations

Moreover, the integration of the Expression MIB module in existing SNMP
agents is not possible unless the agent uses some extensibility feature, such as
AgentX28. In this situation, the Expression MIB module could be the subagent and
the existing SNMP agent would play the master role. Even in this case, some
obstacles may persist because "Subagent access (via the master agent) to MIB
variables" is a non-goal in AgentX.

The Event MIB, for instance, depends on the SNMP-TARGET-MIB to describe
the remote hosts under monitoring. However, the same approach was not adopted
for the Expression MIB, which eliminates the possibility to construct expressions
over remote attributes. The use of "target-based" approach in the Event MIB caused
some debate in the DISMAN workgroup because of the difficulty in storing
credentials needed to contact remote hosts. However, it solves the problem (at least

Delegation of Expressions for Distributed SNMP Information Processing 403

theoretically) by storing the security name and model in the SNMP-TARGET-MIB
and by looking for the keys in the usmUserTable of the SNMP-USER-BASED-SM
MIB2!).

The same approach could be used in the Expression MIB to provide this kind of
feature thus allowing it to gather parameters from remote MIBs. This change would
allow defining expressions where variables are mapped to target tags and then
resolved with the help of the SNMP-TARGET-MIB:

x = Expression(targetJ, oid2, ... targetn) (2)

In this case, the expression variables are defined as target tag references. The
security credentials and profiles required for contacting remote agents are defined in
the appropriate tables on the SNMP-TARGET-MIB.

To update the MIB with this functionality it would be necessary to modify the
table responsible for designating the objects where parameters are obtained -
expObjectTable. Like in the Event MIB, it would be necessary to introduce the
following objects:

expObjectTargetTag - specifies the remote system. Works together with the
SNMP-TARGET-MIB.
expObjectContextName - specifies the context used to get the parameter.
expObjectContextName Wildcard - points out if the context name should be
truncated for wildcards.
The main advantage of this approach is the compatibility with the current

SNMPv3 framework. However, it requires an additional MIB module, the SNMP
TARGET-MIB.

A second approach to this problem is based on the use of SNMP URLs30 in
variable mapping instead of OIDs. We have previously proposed this concept as a
way to globally identify network management information. The main idea is to use a
single string to locate and configure network and systems parameters. Examples of
this URL can be:

snmp:/ /rlopes@swl.estig.ipb. ptlsysContactlO?op=set&value=Rui ?v3
snmp:/! guest@nms.estig.ipb.pt: 1611sys UpTime ?op=getN ext?v3 ?router

Within the Expression MIB these specifications can be used to obtain values
from remote agents thus increasing its flexibility and capability. It is then possible to
use expressions like:

x = Expression(urlJ, oid2, ... urln) (3)

This second solution implies replacing the OlD column by a URL column,
which allows changing only the column data type. It uses SNMP URLs to designate
the target host, the object, context and other communication parameters in a single
line of text. Contrarily to the first solution, this one will not require implementing a
new MIB module. The only change to the Expression MIB occurs with the
expObjectID column. Despite this modification is conceptually simple, considering
the IETF standardization track, it implies the redesign of the MIB or even the
proposal of a new one. The processing mechanism for each expression has to be

404 Rui Pedro Lopes and Jose Luis Oliveira

further elaborated in order to cope with the URLs, but the increase in complexity is
not too significant.

Regardless of the adopted solution, if the Expression MIB were allowed to
obtain remote parameters it would be possible to obtain values from remote agents
as well as remote DMs. Moreover, it could be associated to the network
management station as well as other DMs and agents (Figure 6).

SNMPAQenl SNMPAgenl

SNMPAgenl SNMPAgenl

Figure 6. Modified Expression MIB operation

A bigger picture is shown in Figure 7, revealing the increase in connectivity
among DMs and agents equipped with the Expression MIB. This scenario makes it
possible to use variables from different sources within the same expression thus
making the information correlation possible. Moreover, according to the set of
expressions defined by the manager, it is now possible to build a strong distribution
scenario.

.,

SNMPAgents

Expression MIB
operalion

(/<
.-..... -.....

Figure 7. Strong distribution with the Expression MIB

These considerations may also be extended to other modules, such as the
Schedule MIB. The current specification does not allow it to perform operations on
remote modules, limiting its functionality to the local entity< This limitation may be

Delegation of Expressions for Distributed SNMP Information Processing 405

eliminated by associating it with the Script MIB although some situations do not
require such an elaborate tool. The extension of the Schedule MIB to allow remote
operations does not seem to significantly increase the overall complexity and it
would enlarge the usage possibilities because of the added flexibility.

Generally speaking, the DISMAN architecture can successfully distribute SNMP
management operations because it is completely compatible and has a set of
meaningful autonomous management operations. It should, however, allow the
possibility for evaluation of expressions with remotely obtained parameters and to
start remote periodic or calendar actions, which would increase the overall
flexibility.

3.3 Changes to the Implementation

To cope with the previous recommendations it is necessary to perform some
changes to some objects in the Expression MIB implementation. The modification
of standard MIB structures is not a straightforward process. However and for
research purposes, this can be done in a controlled and private environment without
disrupting the standard and without affecting other management systems.

Besides the obvious type changes on the managed objects (which could imply
the creation of a new object and the deprecation of the current one), it is necessary to
change the sampling mechanism to allow retrieving values from remote locations. A
pleasant side effect of this design choice is that the new sampling mechanism also
works unchanged in the Event MIB.

We have chosen the SNMP URL approach to reduce the complexity and to
minimize the table structure modification: only a single column type is modified.

There is however another important detail which cannot be left unnoticed: the
expression functions. According to the specification, expressions can use a set of
functions which work with a broad choice of value types, such as constants,
variables, OIDs and others.

Will the SNMP URL approach dramatically change the implementation of
functions?

For example, the function sum (integerObject*) may receive an DID or a
variable referring to an DID, causing it to sum all the integer values of the
wildcarded object. Will this definition suffer some modifications to cope with the
above recommendations?

The answer is no. The resolution of the parameters happens before calling the
function. So, the function sum (OID) will receive an array of integer values. The same
happens to sum($l) or sum (snmpURL) ,all resulting in an array of integer values to be
summed. The result of the function remains unchanged regardless of the parameter
type because the latter is resolved the function is called.

The main changes to the implementation happen at the sampling level. The
suggested sampling mechanism is modular and relies on inheritance to provide
different access and sampling methods. We should not forget that the sampling can
be regular or wildcarded and absolute or delta or changed. Moreover, it can target a
local or a remote peer. By chaining together the appropriate classes we will be able
to build sampling mechanisms for any of these combinations as well as targeting
different location hosts (Figure 8).

The Sampler uses Peer objects to provide the location dependent classes, namely
the access to local or to remote agents. The value transformation (absolute, delta,
changed) and access method (regular, wildcard) is provided by chaining Sampler

406 Rui Pedro Lopes and Jose Luis Oliveira

classes. For example, the following code defines the access object to a remote
wildcard MIB object with delta sampling:

Sampler sampler = new DeltaSampler(new WildcardSampler(remotePeer»;

Sampler.sample();

Sample sample = sampler.getSample();

Further sampling examples may be built by using different classes and different
constructor parameters.

«Interface» Sample
Sampler

+geISampleO : Samp/e +setVvlldcardO : void
+.amp/eO : void +IsVvlldcardO : bool.an(Idl)

+addVar8lndO : void

I I +flrstVarSindO
AbsoluteSampler RegularSampler

-sampler: Sampler -peer: Peer

1
+getSampleO : Sample ·.ample : Sample WlldcardSampler
+sampleO : void +getSampleO : Sample 1 peer: Peer

? +.ampleO: void sampJe : Sample
+getsamp/eO : Sampl. 1

DettaSampler +.amp/eO : void
·previousSampte : Sample
-previousValldationSample : Sample

4 -newSample : Sample 1
-w!ldationSampler : Sampler «Intertace.

+getSampleO : Sample Peer

+sampleO : void 1 I;get() : <unspecified> >1
+gelVarQ : <unspecified> +getNext() .. <unspecified>

f '" I I
LocalPeer RamotePeer

I ChangedSampler I
I I +galO : <unspecified> +gel() : <un.pecified>
L+getvaro : <unspeclfied>1 +getNextO : <unspecified> +geINextO : <unspecified>

Figure 8. Sampling mechanism class diagram

4. CONCLUSIONS

Management distribution is a requirement to modem networks. As features
appear and technology evolves, better tools are needed to maintain the network in
excellent working condition.

The DISMAN workgroup have defined a rather complete set of MIB modules to
ease the distribution of management tasks under the context of SNMP, which
become compatible with the vast majority of installed systems. Among them, the
Script MIB is the most studied and deployed module thus gathering a reasonable
degree of knowledge around its features and applicability.

Mathematical expressions are fundamental to process and somehow filter the
knowledge behind the evolution of network working parameters. The Expression

Delegation of Expressions for Distributed SNMP Information Processing 407

MIB is responsible for these tasks but, unfortunately, it is not allowed to use values
from remote agents in the expressions.

In this paper we presented a possible solution to remote data retrieving by the
Expression MIB. By performing some simple changes to the specification, this MIB
can be extended to retrieve data from remote locations such as the Event MIB. Due
to its importance the Expression MIB should be less restricted.

REFERENCES

[1] O. Goldszmidt, Y. Yemini, "Delegated Agents for Network Management", IEEE
Communications Magazine, Vol. 36 No.3, March 1998, pp. 66-71.

[2] A. Bieszczad, B. Pagurek, T. White, Mobile Agents for Network Management, Carleton
University, Canada, 1997.

[3] V. Pham, A. Karmouch, "Mobile Software Agents: An Overview", IEEE
Communications, Vol. 36, No.7, July 1998, pp. 26-37.

[4] S. Krause, T. Magedanz, "Mobile Service Agents enabling Intelligence on Demand in
Telecommunications", Proc. IEEE OLOBCOM'96, 1996.

[5] R. Lopes, J. Oliveira, "Software Agents in Network Management", proc. of the 1 st
International Conference on Enterprise Information Systems - ICEIS'99, March 1999,
Setubal, Portugal.

[6] DISMAN Charter (http://www.ietf.orglhtml.chartersldisman-charter.html).
[7] 1. Schoen waelder, "Network Management by Delegation: from Research Prototypes

towards Standards", Proc. 8th Joint European Networking Conference - JENC8,
Edinburgh, Scotland, UK, May 1997.

[8] R. Kavasseri, B. Stewart, "Distributed Management Expression Mill", Internet Request
for Comments 2982, October 2000.

[9] J. Martin-Flatin, S. Znaty, J. Hubaux, "A Survey of Distributed Network and Systems
Management Paradigms", Technical Report SSC11998/024, Swiss Federal Institute of
Technology Lausanne, August 1998.

[10] Y. Yemini, O. Ooldszmidt, S. Yemini, "Network Management by Delegation", I.
Krishnan and W. Zimmer (Eds.), Proc. IFIP 2nd lnt. Symposium on Integrated Network
Management - ISINM'91, Washington, DC, USA, April 1991.

[11] Sun Microsystems, ''Java™ Management Extensions Instrumentation and Agent
Specification, vl.0", (http://www.javasoft.com/).

[12] SNMP Research (http://www.snmp.com).
[13] R. Kavasseri, B. Stewart, "Event MIB", Internet Request for Comments 2981, October

2000.
[14] R. Kavasseri, B. Stewart, "Notification Log MIB", Internet Request for Comments 3014,

November 2000.
[15] K. White, "Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup

Operations", Internet Request for Comments 2925, September 2000.
[16] D. Levi, J. Schoenwaelder, "Definitions of Managed Objects for Scheduling

Management Operations", Internet Request for Comments 3231, January 2002.
[17] D. Levi, 1. Schoenwaelder, "Definitions of Managed Objects for the Delegation of

Management Scripts", Internet Request for Comments 3165, August 200 1.
[18] S. Chisholm, D. Romascanu, "Alarm Mill", draft-ietf-disman-alarm-mib-07.txt, June

2002.

408 Rui Pedro Lopes and Jose Luis Oliveira

[19] J. Schoenwalder, J. Quittek, C. Kappler, "Building Distributed Management
Applications Using the IETF Script MIB", IEEE Journal on Selected Areas in
Communications, Vol. 18, W 5, pp. 702-714, IEEE Communications Society, May 2000.

[20] S. Waldbusser, "Remote Network Monitoring Management Information Base", Internet
Request for Comments 1757, February 1995.

[21] S. Waldbusser, "Host Resources MIB", Internet Request for Comments 2790, March
2000.

[22] R. Lopes, J. Oliveira, "Distributed Management: Implementation issues", Proc. ofthe
International Conference on Advances in Infrastructure for Electronic Business, Science,
and Education on the Internet - SSGRR 2000, August 2000, L' Aquila, Italy.

[23] D. Harrington, R. Presuhn, B. Wijnen, "An Architecture for Describing SNMP
Management Frameworks", Internet Request for Comments 2571, April 1999.

[24] Agent API (http://nms.estig.ipb.pt/).
[25] T. Manson, D. Brown, lex & yacc, O'Reilly & Associates, 1990, ISBN 0-837175-49-8.
[26] A. Appel, A Modem Compiler Implementation in Java, Cambridge University Press,

1998, ISBN 0-521-58388-8.
[27] Javacc (http://www.webgain.com/products/java3c/).
[28] M. Daniele, B. Wijnen, M. Ellison, Ed., D. Francisco. Ed., "Agent Extensibility

(AgentX) Protocol Version I", Internet Request for Comments 2741, January 2000.
[29] U. Blumenthal, B. Wijnen, "User-based Security Model (USM) for version 3 of the

Simple Network Management Protocol (SNMPv3)", Internet Request for Comments
2574, April 1999.

[30] R. Lopes, 1. Oliveira, "A Uniform Resource Identifier Scheme for SNMP", proc. of the
2002 IEEE Workshop on IP Operations & Management - IPOM 2002, Dallas, Texas,
USA 2002.

WEAVER: REALIZING A SCALABLE
MANAGEMENT PARADIGM ON
COMMODITY ROUTERS

Koon-Seng Lim & Rolf Stadler
KTH Royal Institute of Technology
Stockholm

Abstract: While there is agreement on the drawbacks of centralized management, many
approaches that address those do not scale well to large networks. We believe
that effective management of future large-scale networks requires
decentralized but coordinated control. In our recent work, we introduced the
paradigm of pattern-based management, an approach that formalizes the use of
graph traversal algorithms for controlling and coordinating lightweight agents
that perform computations and data aggregation inside the network. We have
shown analytically and through simulations that such a management system
potentially scales to tens of millions of nodes, without significant performance
problems regarding execution time and traffic overhead. In this paper, we
report on a first implementation designed to realize the paradigm. Our system,
Weaver, consists of active nodes constructed from small, low-cost Linux
computers that are deployed onto a network of commodity routers.
Management programs are written in C++ and can be validated and tested for
performance on a simulator before being deployed. From the design of
Weaver, we derive a simple performance model that allows us to predict the
execution times of management operations on this platform. We evaluate the
model through measurements on a laboratory testbed and demonstrate the
efficiency of the platform. Finally, we use the model to predict the
performance of a management operation running on a Weaver system for a
large-scale network and thus show that our system is likely to meet the scaling
potential of the paradigm.

Key words: Network management, scalability, management platform, active and
programmable networks

http://dx.doi.org/10.1007/978-0-387-35674-7_66

410 Koon-Seng Lim & Rolf Stadler

1. INTRODUCTION

Over the last decade, the drawbacks of centralized management schemes have
been recognized [2][3][22], and several approaches to distributing management
tasks have been developed [9][32]. Interestingly, most of this research aimed at
distributing the computations associated with a management task while keeping the
overall control of a task centralized. In our recent work, we reached the conclusion
that effective management of future large-scale networks requires decentralized
management operations.

A significant step towards decentralized control has been made with the
introduction of mobile agents for management tasks. Mobile agents can be
characterized as self-contained programs that move in the network and act on behalf
of a user (i.e., a human operator) or another entity. Mobile agents are generally
complex, since they often need a degree of intelligent behavior for autonomous
decision-making. Our approach can be understood as a variation of the mobile agent
paradigm, where a management operation is realized through the coordinated
actions of a swarm of lightweight mobile agents. However, in contrast to most
mobile agent schemes to date, the agents in our approach are very simple; they
exploit the parallel processing capability of the network, and, although they always
carry state, they carry program code only when necessary

We call our approach to distributed management, which we have developed over
the last two years, pattern-based management [16][18][19]. It centers around the
concept of the navigation pattern, used for controlling and coordinating the actions
of light-weight agents. Navigation patterns realize graph traversal algorithms that
determine the dissemination of local management operations and the aggregation of
the results of these local operations.

As our previous work shows, the approach of pattern-based management
systems has interesting implications. First, management programs can be formally
analyzed with respect to performance and scalability. The analysis of a management
program is based on the analysis of the graph traversal algorithm of its underlying
pattern. Second, navigation patterns allow the separation of the semantics of a
management operation from the distributed programming aspects of the operation.
From a software engineering perspective, this separation allows us to design generic
patterns that can be combined with specific semantics to implement a particular
management operation. A pattern, once designed, can be reused in the
implementation of many management tasks. Conversely, a specific management
task can potentially be built from a choice of patterns, which enables us to build
management operations with different performance profiles. Ultimately, this
approach frees an application programmer from developing distributed algorithms,
allowing him/her to focus on the management task at hand, by selecting a navigation
pattern from a catalogue that captures the requirements for that task.

Third, as our work on robust patterns indicates, the reaction to network faults,
which can be complex to understand and handle, can be programmed into a pattern,
thereby eliminating the need for the management application programmer to deal
with faults. Finally, the degree of code mobility can be controlled in a fine-grained
manner, since the execution of a management operation in a network involves
distributing only those parts of the program that are not already resident in the
network nodes. In other words, for a management program that is frequently
executed, only the states of the distributed computation need to be exchanged
between network nodes, not the code, which is locally available.

Weaver: Scalable Management on Commodity Routers 411

From the perspective of scalability, a pattern-based management system can
eliminate bottlenecks associated with centralized processing of management data by
distributing the load to network nodes via an appropriate navigation pattern. For
example, the Echo pattern is particularly efficient at distributing and aggregating
data over large networks [18]. By using an Echo pattern as a means for distributing
computation to network nodes, highly scalable management programs can be
implemented in compact form.

In order to support the development and study of pattern-based management
programs, we have developed a PC-based discrete-event simulator, called
SIMPSON [20]. SIMPSON is a C++ application that runs under Microsoft Windows
(Win98, NT, 2000, XP) and is capable of simulating a large pattern-based
management system of up to 60,000 nodes. Management programs on SIMPSON
are written in C++ and compiled into dynamic libraries that are loaded on the fly for
simulation. SIMPSON's interactive features allow the dynamics of a pattern to be
visualized and recorded when its associated management program is executed.
Performance data, such as completion time and volume of management traffic, can
also be collected and analyzed.

In this paper, we describe the design and implementation of a pattern-based
management system, called Weaver, on a network of commodity routers. Our design
requires neither modifications to the routers nor any special features on them. The
paper articulates and supports our belief that it is possible to build flexible and
scalable network management systems at moderate cost, by using our paradigm.

This paper relates to previous publications on pattern-based management as
follows. In [16], we introduced the idea of a management pattern and outlined an
architecture supporting a pattern-based management system. We further reported on
an explorative prototype, built to validate the very concept of management patterns.
That prototype was based on Voyager, a commercial mobile agent platform, and
was written in Java. The system presented in this paper is completely new and has a
very different design focus, which is to demonstrate the feasibility of an efficient
and scalable platform. In [18], we presented the Echo pattern and analyzed its
performance with focus on large networks. In [19], we discussed a possible software
design for management patterns and introduced SIMPSON, the simulator we had
developed to test the functionality and estimate the performance of pattern
programs.

In section 2 of this paper, we present the architecture of Weaver and discuss its
operation as well as pertinent design issues. In section 3 we benchmark the
performance of Weaver and develop a performance model for analyzing its
behavior. In section 4 we use the performance model and the results from the
previous section to evaluate its scalability through simulation. Finally, we conclude
with a discussion of lessons learnt and future work. An appendix summarizes the
aspects on management patterns needed to understand this paper, relieving the
reader from accessing [16][18] and [19].

2. THE WEAVER PATTERN-BASED
MANAGEMENT SYSTEM

Figure 1 shows the architecture of a pattern-based management system, first
described in [16]. The gray nodes represent physical routers, while the white nodes,

412 Koon-Seng Lim & Rolf Stadler

attached to them, represent the execution environments in which management
programs run. The combination of a physical router and its associated logical
execution environment constitute a logical network node. The execution of a
pattern-based management program begins, when it is launched by a network
management station onto the execution environment of the start node. When the
program has completed executing on the node, its pattern determines the subsequent
node (or nodes), on which the program must execute next. If that node already
contains a copy of the program, only the program's state is transferred to it.
Otherwise, both code and state are transferred. Alternatively, a node can download
the program code directly from a secure repository called a code server.

Router

Management
Program

NetNork
Launch Management staHon

g
Code Server

i
...

Code \

Figure 1. Architecture of a pattern-based management system

A pattern-based management system can be realized in a number of ways, for
example, using a general purpose framework, such as Java, or an active networking
toolkit, such as ANTS [31]. It can run internally on the processor of a router or
externally on a device attached to the router, etc. However, realizing such a system
at low cost on commodity routers restricts the design space and thus poses a
significant challenge.

2.1 Weaver design aspects

Our most important design goals for Weaver were, first, to realize an efficient
implementation of a pattern-based management system. By efficient, we mean that
management programs complete execution quickly, even in large networks. Second,
we wanted to realize a system that works with virtually all commodity routers.

In our system design, each router is managed by a dedicated active node that
hosts the execution environment needed for running pattern programs. Such an
active node, called a Weaver Active Node (WAN), is an internet-enabled, single
board computer, equipped with an Intel StrongARM 1110 microprocessor, 32MB of
SDRAM, and a lOMbps Ethernet interface. The hardware of the WAN is
commercially available at a cost of an average PDA, in the form of an aluminum

Weaver: Scalable Management on Commodity Routers 413

cube of 3 inches per side. To provide sufficient local storage, we attached a 1GB
IBM Microdrive to the onboard compact flash slot. Each WAN runs a modified
distribution of the Linux kernel (version 2.4.9), as well as an Apache web server,
which is used to implement the WAN's management interface.

Code mobility was a further design issue in the development of our platform.
Specifically, we had (1) to choose between transferring program code in either
binary or source form, and (2) to decide, if code is to be transported by patterns or
downloaded from code servers. The decisions made in addressing these questions
have implications on the system's performance and its vulnerability to attacks.

For instance, if a program is to be transferred in source form, then a time
consuming compilation process must be invoked, before it can be executed. In
addition, every node must be equipped with sufficient disk space to store the
compiler, the linker, and the header files. The advantage of transferring source code
is that source programs are significantly smaller than compiled programs.

On the second question, code servers can become bottlenecks, if the network
becomes very large. Increasing the number of such servers introduces other
problems, because keeping the code on all repositories up-to-date and consistent can
be expensive.

In the current design of Weaver, programs are transferred in binary form by the
pattern itself. We made this choice for performance reasons, as our tests indicate that
simple management programs (for instance, programs based on type 1 to type 4
patterns, see appendix) take 10,000 times longer to compile than to run.
Furthermore, compiled management programs in Weaver are generally less than 10
times larger than their source.

Figure 2 shows the software architecture of a WAN with its primary
components. The first, the Active Node Manager (ANM), comprises an Apache
SSL-enabled web server and a set of server-side PHP scripts [1]. The main
functionality of the ANM is to offer a web interface to the management station for
configuring and operating the node. The second component, the Active Node
Daemon (AND), is a C++ application running as a background process. It
implements the execution environment, which runs the pattern-based management
programs on the node. In addition, there are several repositories (drawn as cylinders)
with state information. For example, the node state repository holds the operational
state of the node (such as the numbers and parameters of executing management
programs), while the binaries repository serves as a cache of ready-to-run patterns
and aggregators. When a pattern migrates to another node, it can leave local state
variables in the local program state repository. Finally, the result repository provides
for persistent storage of the results returned from a management operation.

2.2 Executing a pattern program on Weaver

In order to start a management program on Weaver, the management station
downloads the source code of the pattern and aggregator, as well as the run-time
parameters, via http onto a WAN, which will be the start node of this operation. The
WAN's ANM then saves the code into its source repository and relays the source
file names and the parameters to the preprocessor module through a local socket
(Figure 2).

414

Manag.m.nI p'09ram lucUilon rlSuns

Koon-Seng Lim & Rolf Stadler

Transport
Aceut:
P'*'I

Activit Node Engine

SoUIU.Stat'

Weaver
Active
Node

Figure 2. Software architecture of a Weaver Active Node (WAN)

The preprocessor module invokes the compiler to process the program source,
computes the MD5 checksum of the resulting binary, and invokes the execution
environment to run the program. If the compiler encounters an error, the execution is
aborted, and an error code is returned to the management station via the ANM. If the
program binaries are already in the WAN's repository, the preprocessor invokes the
execution environment directly, passing to it the filenames and paths of the
compiled binaries.

The execution environment dynamically loads the program and instantiates the
pattern and the aggregator objects. It also generates a system-wide unique cookie,
which associates the distributed state of the program with its current execution.
Finally, it relinquishes control to the program, passing to it the arguments as
specified by the management station.

A program accesses the management interface of the attached router through the
WAN's device manager. In addition to the specific access protocol, the device
manager also implements low-level monitoring procedures, such as heartbeats, to
detect failures in the attached device. In principle, a WAN may include multiple
device managers, one for each access protocol supported by a router. Our current
prototype, though, has only a single device manager for SNMP.

When the management program has completed its execution on a node, it returns
control back to the execution environment, along with a list of node addresses, to
which to migrate next. After that, the execution environment stores the local
program variables in the local state repository, serializes the mobile state variables,
and passes them to the transport access point, along with the list of node addresses
and the cookie.

Weaver: Scalable Management on Commodity Routers 415

The main function of the transport access point is to securely transfer program
code and states between adjacent nodes. Whenever a WAN is initialized, it connects
to its neighboring W ANs by establishing secure channels.

When a transport access point receives a request to send program code and
(mobile) state to a neighboring WAN, it first checks, whether the destination already
has a copy of the program. If so, only the state of the program and the cookie are
sent. Otherwise, the program code is sent, as well.

Every transport access point keeps a record of the nodes, to which it has sent
programs, by saving their MD5 checksums. If no record exists for a particular node
and a program checksum, then the program code is sent to the neighboring node,
despite the chance that the neighbor might actually have a copy of the program.
While this scheme incurs a (usually small) overhead, it is simple and requires no
handshake.

When program code is sent, the receiving transport access point saves it into the
local binary store, if necessary, and invokes the execution environment. Using the
cookie, the execution environment determines, if the node has participated in the
current execution of the program. If so, it checks for the program's local state
variables, before passing control to the pattern and aggregator objects. Otherwise,
new instances of the pattern and aggregator objects are created prior to program
execution.

3. BENCHMARKING WEAVER

In this section we give a performance model for pattern-based management
programs that are executed on the W AN architecture described in the previous
section. The metric of interest in our model is the execution time of a management
operation. It is measured as the time period from when a program is launched on a
start node to when the results are returned to the management station.

We have conducted two series of experiments to obtain a delay profile for
Weaver management programs. Table 1 and 2 show results from these experiments.
The first series focuses on measuring the delay incurred by a management program
based on the type 1 pattern, which models a simple polling operation, where control
passes from a node to one of its neighbors before returning (see appendix). Other
types of patterns (e.g. the type 2 and type 4 pattern, see appendix) can be expressed
as serial compositions of type 1 patterns. In a similar manner, the type 3 pattern (see
appendix) constitutes the basic building block for patterns, in which control is
passed to neighboring nodes in parallel. The Echo pattern (see appendix), for
instance, can be built from a type 3 pattern.

For accurate measurements, the experiments have been carried out on an isolated
testbed of four Cisco 2621 routers, which are interconnected via a Cisco Catalyst
2900 fast Ethernet switch. Each router is equipped with two fast Ethernet ports, one
of which is connected directly to a WAN. A 1.13 GHz DELL Inspiron 8100
notebook serves as the management station. Static routes have been set up from each
router to the fast Ethernet switch, so that all nodes are able to communicate with
each other.

In order to understand the delay profile of a management program that is based
on a type 1 pattern, we decompose the execution of the program into a series of
phases, listed in Table 1.

416 Koon-Seng Lim & Rolf Stadler

As we are only interested in measuring the delay from the point of view of the
management program, the first phase begins when control is passed to the
management program (Tl). We call this the execution phase. When the program
completes its execution, the serialization phase (T2) is invoked, in which the
program's mobile state is serialized and then, during the dispatch phase (T3), sent to
the remote WAN. The receiving phase (T4) begins, when the mobile state has been
received on the remote node. Depending on whether the management program has
been executed on this node before, the next phase can be either the loading phase
(TS) or the instantiation phase (T6).

The loading phase occurs the first time a management program is executed on
the node. Typical tasks performed include invoking the dynamic linker to load the
program code as a shared library and instantiating the pattern and aggregator
objects. Also, the program code, if received during T4, is saved in this phase. If the
management program has already been loaded because of a previous execution, only
the instantiation of the objects are performed. This is referred to as the instantiation
phase.

If the program is still active on a node (i.e., the pattern will traverse the node
again during its current execution), the pattern and aggregator objects are not deleted
when the program migrates to another node. In this case, only a lookup will be
needed to return their object references. We refer to this phase as the resolving phase
(T8). Finally, the de-serialization phase (T7) creates (or recreates) the mobile state
variables in the program's address space.

Table 1. Overhead incurred by each phase of execution of the type 1 pattem
Duration in IDS Performed by Module

Execution (Tl) 1.57 (0 = 0.4S) Execution Environment
Serialization (T2) 3.46 (0 = 0.71) Execution Environment
Dispatch (T3) 1.67 (0 = 0.49) Transport Access Point
Receiving (T4) 0.62 (0 = 0.30) Transport Access Point
Loading (T5) 23.42 (0 = 0.70) Execution Environment
Instantiation (T6) 0.77 (0 = 0.015) Execution Environment
De-serialization (T7) 2.04 (0 = 0.49) Execution Environment
Resolving (TS) 0.15 (0=0.001) Execution Environment
Communications Delay (Tc) 4.04 (0 = 0.10)

Table 1 gives the mean and standard deviation of the delay for each of the
phases (T 1 through T8 and T d, as measured over 40 runs. The communication
delay on the last row of the table includes transmission delay, propagation delay and
operating system overhead. The size of the mobile state is 207 bytes. The pattern
program contains the minimal code necessary to implement the type 1 pattern and
does not perform any other computations. The aggregator program contains only
empty functions.

Based on the above discussion, we can derive the (average) completion time of a
type 1 pattern as:

Tlypel = 3T1 + 2(T2 + T3 + T4 + T7) + T6 + T8 + Tc

For a more detailed explanation of the above formula, see [21]. When the pattern
is executed for the first time, an additional delay of TS-T6 incurs, because the
execution environment needs to invoke the dynamic linker. Also, the estimate given

Weaver: Scalable Management on Commodity Routers 417

by the above equation does not take into account the situation when the node
daemon is swapped out by the operating system. Such instances appear rarely during
our measurements, because of the small testbed and the light system load.

Following the above approach, we can derive similar expressions for the average
completion times of management programs based on the type 2, 3, and 4 patterns.
(See [21] for more details).

Table 2 compares the estimated completion time (based on the above formula
and table 1) with the actual measurements on the testbed for all 4 basic pattern
types. As can be seen, the estimations lie below the measured delays in all cases,
with a margin of error between 8.3% and 10%.

Table 2. Comparison of estimated vs. actual measurements for the four basic patterns

Type 1
Type 2
Type 3
Type 4

Average completion time
(estimated)
25.2 ms
72.6 ms
44.3 ms
49.5 ms

Average completion time
(measured on testbed)
27.6ms
78.4 ms
47.6 ms
55.0 ms

4. EVALUATING THE SCALABILITY OF WEAVER

In this section, we investigate the scalability of the Weaver architecture when the
network to be managed becomes large. Specifically, we estimate the completion
times of pattern-based management programs on large networks using SIMPSON
and the delay profiles shown in the previous sections. For comparison purposes, we
also estimate the time of the same operation executed on a centralized SNMP-based
management system, polling nodes serially or in parallel.

For simplicity, we assume the network topology to be a full b-ary tree with
height h. Each node in the network is a router with b+ 1 ports, one of which is
connected to a WAN. This way, each WAN manages exactly one router. We assume
that the latency between two adjacent routers is identical to that experienced in our
testbed (i.e. TC1=Tc2=O.STc=2.022ms). We also assume that routes taken by packets
are symmetrical; that is, PDUs of an SNMP request take the same path, from the
manager to the managed device and vice versa. We assume that the management
station is attached to the root of the tree and that all management program
executions use the root as the start node. Finally, we choose the management task to
be an operation that computes the average value of a specific MIB variable across
all nodes in the network.

Given the above topology, the total number of nodes in the network, N, is
therefore given by

nh+1 _1
N=-

n-l

418 Koon-Seng Lim & Rolf Stadler

The most scalable manner to implement the task in a centralized management
scheme is to compute the network-wide average value of the desired variable
incrementally from the values obtained from each node that is polled (via SNMP
GET). If the polling is performed serially on N nodes (i.e., each GET operation must
complete before the next GET is initiated), and if we neglect the time needed for the
simple averaging computation, the total completion time is given by:

Tcentralized_S = (Tc +Ts)+(2Tc +Ts)n+ ... +«h+1)Tc +Ts)bh

which evaluates to:

where Ts is the time required by the SNMP agent on a node to process a request.
Our measurements on the Cisco 2621 routers puts this to be approximately 1.9 ms.
On the other hand, if the polling is performed in parallel (Le., the system does not
wait for the completion of a GET before polling the next node) and nodes farther
away are polled first before nearer nodes, the total completion time is given by:

Tcentralized _P = 2hTc + (bh -1)Tp

where Tp is the polling interval between nodes. Our measurements on the W ANs
indicate that this is approximately 1.5ms.

In the case of a pattern-based management solution, we employ the Echo pattern
described in section 2 to accomplish the same task.

We compare the performance of Weaver against centralized management using
the serial polling scheme as a common yardstick. Specifically, we define the
scalability measure S to be the ratio between the average completion time of a
management task using the serial polling scheme and the scheme underlying the
specific management task (such as parallel polling or WeaverlEcho). Figure 3 plots
S against h, the number oflevels in the tree network, (a) for parallel polling (dashed
lines) and (b) WeaverlEcho (solid lines), for the two cases where b, the number of
children of each node, is 2 and 6, respectively.

From the plot it is evident that parallel polling always outperforms serial polling,
since its scalability measure S never falls below 1. Furthermore, for networks of
small to moderate size (Le., b=2, h<7 and also b=6, h<3), it also outperforms
Weaver!Echo because of its lower overhead. However, for large networks, Le., (b=6,
h>4) WeaverlEcho yields completion times that are several orders of magnitude
lower than the other schemes.

Weaver: Scalable Management on Commodity Routers 419

10000
:; .: ..

1000
... - - _ ... _ ... -1-... __ ... -- ----.... --.... -- --

/" N=55,987

;=::::::-==:::::::::: ... ::::::::::::::::::::::---.: ¥-=. :....::::::: ::::::-=-=---.

@: 100
>.

:.c
.!!l
rJ 10

(/)

.. : .. 0:-=.. __ ::==:
-. .. . "'---. _ - _- _. ... - _.:...:. :--=--:....

.-----... - - - .. - - _ _-1--........ _---1---.. _-_._ -.-----

o 2 3 4 5 6 7

Height of Tree Network (h)

--- b=2 (WeaverlEcro) --b=6 (WiaveriEcro)
- -0- - b=2 (parallel Pollilll) - -tr - b=6 (ParaDei Pollilll)

Figure 3. Scalability (S) versus Height (h) for parallel polling and Weaver/Echo.
N indicates the number of network nodes.

5. DISCUSSION AND CONCLUSIONS

In this paper, we described a possible realization of the pattern-based
management paradigm, using a network of low-cost, single-board computers that are
attached to commercial routers. Our goal was to engineer a system that (a) would be
lightweight, fast, and scalable, and (b) would be deployable on existing networks.
The fIrst goal dissuaded us from using a general-purpose mobile agent platform,
which, while probably cutting down the development effort, would have provided
unneeded flexibility at the cost of performance. The second goal necessitated the
design of an execution environment external to a router, since the current generation
of commodity routers does not permit the execution of user-supplied code internally.
We chose a low-cost solution in terms of both hardware costs and space needed for
the management devices inside the network. The choice of SNMP for router access
also arose from our desire for a widely deployable solution.

Since every testbed limits the performance predictions of a system for different
confIgurations, sizes, etc., we developed a performance model for a pattern-based
operation on Weaver and used the testbed to instantiate and validate the model.
Based on the measurements we took so far, we believe the model given in Section 3
to be basically sound. However, the accuracy of +/-10% for the predicted execution
times of the type 1 to 4 patterns on our testbed tells us that our model must be
refIned. We are currently investigating, why the current model seems to

420 Koon-Seng Lim & Rolf Stadler

systematically underestimate execution times, and why a large variance in certain
sub operations occurs.

In Section 4, we gave evidence that pattern-based management operations on a
large-scale Weaver system are likely to be very scalable. To prevent
misunderstanding, we add two comments here. First, we measure scalability by
comparing an Echo-based operation to a centralized operation. This means that we
use the centralized management solution as a point of reference. Specifically, we are
not implying that traditional or current solutions to managing very large networks
are centralized in this manner. Second, one could probably come up with a
traditional management system that is built on a hierarchy of SNMP agents and
would exhibit similar scaling properties as shown in Figure 3. Note though that,
while scalability is a key design goal of Weaver, its underlying paradigm of pattern
based management potentially has many advantages over traditional management
systems. For instance, the communication and computation structure of a
management operation is dynamically constructed by the pattern during its
execution, which makes patterns independent of network topology and network size.
Also, the discussion in Section 4 is based on the Echo pattern, which exhibits a
specific hierarchical communication structure. Other patterns establish different
communication structures during execution.

As with any system that includes mobile code, there is a danger of unsafe or
malicious code being introduced. In its current implementation, Weaver addresses
this issue as follows. First, all communication between the management station and
a WAN occurs through an SSL-enabled web interface. This reduces the risk of
unauthorized access and protects against masquerade attacks. Second, the compiled
code of a management program is only executed within the context of a separate
process, with restricted rights and resource quotas. This prevents management
programs from interfering with one another or from crashing the daemon, should a
fatal error occur. Finally, the communication channel between Transport Access
Points of peer nodes is implemented usingoa simple TLS-like protocol [12], thereby
preventing a third party from altering the program code or state while the data is in
transit. In addition, all Linux services that are not needed to run Weaver have been
disabled in our platform. While the above measures introduce security elements into
the design of Weaver, a thorough study of this system's vulnerabilities and how to
reduce them effectively still needs to be carried out.

There have been many efforts into building efficient management platforms by
recent research into active and programmable networks. First, high-performance
active network platforms have been used to implement management applications
where management traffic is processed (close to) wire speed. Systems implemented
with this philosophy typically have low-level, assembly-style instruction sets
[14][23][29], optimized for space and speed. Unfortunately, developing
management programs on such systems is difficult, due to their low-level nature,
and thus limited to applications, such as programmable traffic probes. Furthermore,
these platforms are built on customized or special network nodes that require
features not available in commodity routers [10][11][17]. In order to apply some of
these techniques to the management of traditional IP networks, (PC-based) software
routers have to be used [5][14][17][23][25][29]; In these environments, the
(operating system) kernel intercepts packets for processing in a management
execution environment, usually through an IP option called Router Alert [15].

The second approach suggests that scalability can be achieved through mobile
agent platforms that support intelligent preprocessing and data aggregation inside

Weaver: Scalable Management on Commodity Routers 421

the network [3][6][22][24]. Many of the systems developed along this line
emphasize flexibility over performance. They generally require the support of a
heavyweight infrastructure, which is often Java-based [4][6][24].

Our current and planned work in pattern-based management follows several
tracks. On the one hand, we are further exploring the potential of pattern-based
management, by designing patterns for dynamic construction of network hierarchies
and routing schemes, as well as investigating how basic patterns can be combined
into complex ones with desirable properties. At the same time, we are accelerating
our work on Weaver. We are currently extending our testbed from 4 to 16 nodes,
which will help us in better evaluating and refining our performance model. Since
Weaver is a decentralized system, initializing it is a non-trivial task, even in a
medium-size network. We began working on a (pattern-based) scheme that would
automatically configure Weaver on any network topology and dynamically integrate
new W ANs into the system. Finally, we have begun studying the use of patterns in
policy-based management systems for disseminating policies in large networks and
for dynamically re-computing policies, when triggered by state changes or network
faults.

REFERENCES

1. S. Bakken, A. Aulbach, E. Schmid, 1. Winstead, L. Wilson, R. Lerdorf, A. Zmievski and J.
Ahto, PHP Manual, at http://www.php.netlmanuallen.

2. M. Baldi, S. Gai and G. Picco, "Exploiting Code Mobility in Decentralized and Flexible
Network Management," First International Workshop on Mobile Agents (MA'97), Berlin,
Germany, April 1997, pp. 13-26.

3. M. Baldi, G. Picco, "Evaluating the Tradeoffs of Mobile Code Design Paradigms in
Network Management Applications," First International Working Conference on Active
Networks (IWAN'99), JunelJuly 1999, Berlin, Germany.

4. C. Baumer and T. Magedanz, ''The Grasshopper Mobile Agent Platform: Enabling Short
term Active Broadband Intelligent Network Implementation," First International Working
Conference on Active Networks (IWAN'99), JunelJuly 1999, Berlin, Germany.

5. S. Berson, B. Braden and L. Riciulli, "Introduction to ABone", June 15,2000, available at
http://www.isi.edulabonelDOCUMENTS/ABarchl

6. A. Bieszczad, T. White and B. Pagurek, "Mobile Agents for Network Management," IEEE
Communications Surveys, Vol. 1, No.1, September 1998, pp. 2-9.

7. E. 1. H. Chang, "Echo Algorithms: Depth Parallel Operations on General Graphs," IEEE
Transactions on Software Engineering, Vol. 8, No.4, pp. 391-401, July 1982.

8. 1. Case, M. Fedor, M. Schoffstall and 1. Davin, "A Simple Network Management Protocol
(SNMP)," RFC 1157, IETF, May 1990.

9. R. Preshun (chair), Activities and Results of the IETF Working Group on Distributed
Management (disman), http://www.ietf.orglhtml.chartersldisman-charter.html.

to.D. Decasper and B. Plattner, "Dan: Distributed Code Caching for Active Networks," IEEE
INFOCOM'98, San Francisco, California, MarchlApril1998, pp. 609-616.

I1.D. Decasper, G. Parulkar, S. Choi, 1. DeHart, T. Wolf and B. Plattner, "A Scalable High
Performance Active Network Node," IEEE Network, Vol. 13, No.1, January 1999, pp. 8-
19.

12. T. Dierks and C. Allen, "The TLS protocol version 1.0", RFC2246, January 1999.

422 Koon-Seng Lim & Rolf Stadler

13.J. Gosling, B. Joy and G. Steele, The Java Language Specification, Addison-Wesley,
1996.

14.M. Hicks, J. Moore, D. Alexander, C. Gunter and S. Nettles, "PLANet: An Active
Internetwork," INFOCOM'99, New York, New York, March 1999, pp.1l24-1133.

15.D. Katz, "IP Router Alert Option," RFC 2113, IETF, February 1997.
16.R. Kawamura and R. Stadler: "A Middleware Architecture for Active Distributed

Management of IP networks," IEEElIFIP NOMS 2000, Honolulu, Hawaii, April 2000, pp.
291-304.

l7.D. Larrabeiti, M. Calderon, A. Azcorra and M. Uruena, "A Practical Approach to
Network-Based Processing," 4th International Workshop on Active Middleware Services
(AMS'02), Edinburgh, U.K., July 2002.

18.K.-S. Lim and R. Stadler, "A Navigation Pattern for Scalable Internet Management," 7th
IFIP/IEEE IM'Ol, Seattle, USA, May 2001, pp. 405-420.

19.K.-S. Lim and R. Stadler: "Developing pattern-based management programs," 4th
IFIP/IEEE International Conference on Management of Multimedia and Network Services
(MMNS'Ol), Chicago, Illinois, OctoberlNovember 2001, pp. 345-358.

20.K.S. Lim, "SIMPSON-A simple pattern simulator for large networks," source code and
documentation, http://www.comet.columbia.eduladm/software.htm.

21.K.S. Lim, R. Stadler, "Weaver: Realizing a Scalable Management Paradigm on
Commodity Routers," KTHlIMIT/LCN Technical Report Nr. 02-5021, August 2002.

22.A. Liotta, G. Knight, G. Pavlou, "On the Performance and Scalability of Decentralized
Monitoring Using Mobile Agents," DSOM '99, Zurich, Switzerland, October 1999.

23.J. Moore, M. Hicks and S. Nettles, "Practical Programmable Packets," IEEE
INFOCOM'Ol, Anchorage, Alaska, April 2001.

24.A. Puliafito and O. Tomarchio, "Using Mobile Agents to Implement Flexible Network
Management Strategies," Computer Communications Journal, Vol. 23, No.8, April 2000.

25.D. Raz and Y. Shavitt, "An Active Network Approach for Efficient Network
Management," First International Working Conference on Active Networks (IW AN'99),
June/July 1999, Berlin, Germany, pp. 220-231.

26.M. Rose, The Simple Book. New Jersey: Prentice Hall, 1994.
27.E. Rosen, A. Viswanathan and R. Calion, "Multiprotocol Label Switching Architecture,"

RFC 3031, IETF, March 1998.
28.A. Segall, "Distributed Network Protocols", IEEE Transactions on Information Theory,

IT-29, pp. 23-35, 1983.
29.B. Schwartz, A. Jackson, W. Strayer, W. Zhou, R. Rockwell and C. Partridge, "Smart

Packets: Applying Active Networks to Network Management," ACM Transactions on
Computer Systems, Vol. 18, No.1, February 2000, pp. 67-88.

30.G. Tel, Introduction to Distributed Algorithms, Cambridge University Press, 2nd Edition,
2000.

31.D. Wetherall, J. Guttag and D. Tennehouse, "ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols," First Workshop on Open Architectures and
Network Programming (OPENARCH'98), San Franciso, California, March 1998.

32. Y. Yemini, G. Goldszmidt and S. Yemini, "Network Management by Delegation," IM'91,
Washington, DC, April 1991, pp. 95-107.

33.E. Gamma, R. Helm, Ralph Johnson, and John Viissides: Design Patterns-Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995.

Weaver: Scalable Management on Commodity Routers 423

APPENDIX: PATTERN-BASED MANAGEMENT

The pattern-based management paradigm is a distributed management approach
based on the use of graph traversal algorithms to control and coordinate the
processing and aggregation of management information inside the network. From
the perspective of a network manager, the algorithms provide the means to 'diffuse'
or spread the computational process over a large set of nodes. A key feature of the
approach is its ability to separate this mechanism of diffusion and aggregation from
the semantics of the management operation. The paradigm achieves this through the
development of two important concepts; the navigation pattern and the aggregator.
The former represents the generic graph traversal algorithms that implement
distributed control while the latter implements the computations required to realize
the task. A pattern-based management program includes both components.

Pattern Typical Application V isualuation

type I: node-to-node I node controVmonitor (e.g. getlsetof 0:2 -=n variables)

type 2: VISit all nodes I flow/path control (e.g. traceroote,
along a path/flow bottleneck detection, signalling, VPN

operation) 2
type j:OIstnoute agents suonet contrOl, message oroaocast
to all nodes in subnet (e.g. congestion location detection)
(parallel control) & I I

.& 2
type 4: visit all nodes in subnet control (e.g. topologydetec-

D subnet (sequential con- tion)
trol)

Figure 4. Examples of simple navigation pattems

Figure 4 presents the simplest examples of navigation patterns. The most basic
pattern is the type 1 pattern, where control moves from one node to another and
returns after triggering an operation. The manager-agent interaction is an example of
this pattern. A type 2 pattern represents the scenario where control moves along a
path in the network, triggers operations on the network nodes of this path, and
returns to the originator node along the same path. A possible application of this
pattern is resource reservation for a virtual path or an MPLS tunnel [27]. In a type 3
pattern, control migrates in parallel to neighboring nodes, triggers operations on
these nodes, and returns with result variables. This pattern can be understood as a
parallel version of the type 1 pattern. Finally, in a type 4 pattern, control moves
along a circular path in the network. As these examples illustrate, navigation
patterns can be defined independently of the management tasks performed in an
operation.

424 Koon-Seng Lim & Rolf Stadler

For further clarification, we briefly discuss the Echo pattern, first introduced in
[18]. It is an extension of the basic type 3 pattern and is based on a class of
distributed graph traversal algorithms known as wave algorithms [7][28][30]. The
behavior of the Echo pattern can be described as follows. The pattern starts out from
a single start node, migrating to all its neighbors for further execution. This forward
migration of the pattern from a node to each neighbor is called an explorer. An
explorer, arriving on a node for the first time, marks the node as 'visited' and
generates an explorer for each neighbor, except for the one from which it arrived
(which is called its parent). Explorers arriving on a node that has been marked as
'visited', terminate at that node (i.e., they do create more explorers). If the node has
no neighbors other than its parent, the program returns to its parent node. This return
of the pattern from a node to its parent is called an echo. When a node has received
an echo from each of its neighbors, it returns an echo to its parent. The Echo pattern
terminates, when the start node has received an echo from each of its neighbors.
Figure 5 shows the Echo pattern in pseudo code. It is a refined version of the code
given in [19].

var visitedi : boolean

Gi : set of integers
parenti : integer

1 Echo (inmsg: from: integer) {

2 Gi := Gi - from;

3 If visitedi = false {
4 parenti : = from;

5 visitedi := true;
6 OnInitiate (inmsg. outmsg);
7 if Gi != empty (

8 dispatch(Gi' outmsg. i);

else (
9 OnAggregate(inmsg);

10 if Gi = enpty (

11 OnCOmp1ete (outmsg) ;
12 if parenti >= 0

13 dispatch(parenti' outmsg. i);

14 else OnTerminate (inmsg) ;

init : false;

init : neighbors();

init : -1;

Figure 5. Echo pattern in pseudo code

Note that the concept of a navigation pattern is very different from that of a
design pattern as used in software engineering [33]. While a navigation pattern
captures the flow of control of executing a distributed operation, a design pattern
describes communicating objects and classes for the purpose of solving a general
design problem in a particular context.

ADAPTIVE RESOURCE MANAGEMENT OF A
VIRTUAL CALL CENTER USING A PEER-TO
PEER APPROACH

Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman
Applied Research, Telcordia Technologies Inc
445 South Street
Morristown, New Jersey 07960, USA
{munir, namon, hyongsop, erics}@research.telcordia.com

Abstract: As the number and diversity of end user increase, services
should be able to dynamically adapt to available resources in a given
environment. In this paper, we present the concepts of migratory services and
peer-to-peer connections as the means of facilitating adaptive service and
resource management in distributed and heterogeneous environments. Our
approach has been realized using object-oriented principles in Adaptive
Communicating Applications Platform (ACAP). The architectural design and
implementation of a real-life high-level service, Virtual Call Center (VCC),
are used to illustrate issues in adaptive service and management issues and
discuss in detail our approach in ACAP.

Key words: Adaptive and Distributed Service and Resource Management, Peer-to-Peer
Application, Service Platform, and Virtual Call Center

1. INTRODUCTION

With the increasing availability of network connectivity and network-enabled
devices at work, at home, and on the road, users will require that services be
adaptive to their environments and devices. Already, some popular services, such as
email and instant messaging, are available on PCs, PDAs, and cell phones.
However, the existing practice of creating multiple versions of the same service for
execution on different devices is inefficient, unproductive, and wasteful of
development and management resources. Ideally, services should be built once and

http://dx.doi.org/10.1007/978-0-387-35674-7_66

426 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman

be able to dynamically adapt to available resources and capabilities in diverse
environments. Thus a mechanism is needed that allows service providers to
effectively deliver and manage services in different environments

In this paper, we describe a peer-to-peer approach for managing end user
environments and resources in a scalable and flexible manner. An environment
mainly refers to a computing/communication platform from which the user accesses
their services, and a resource refers to a specific hardware device or application tool
used in a service. In our approach, each environment manages its own resources and
is aware of their capabilities, and services negotiate with a given environment for
required resources at runtime. An environment could be a home network, an ISP or a
provider network. The approach is peer-to-peer in that once a service is activated in
an environment, service endpoints communicate with the environment for resource
requests. Subsequently, service endpoints share data and resources directly among
themselves. Any accounting and state update information at the end of a service
session is relayed to the service provider on an as-needed basis.

Since each environment is self-managed, the load increase on service providers
needed to support new environments is incremental compared to a centralized
approach, in which service providers manage all the environments and resources
themselves. This helps increase the scalability of services and allows for rapid
introduction and management of new services Our approach is also adaptive in that
resource availability can be locally maintained and environment management can be
tailored to the specific characteristics and requirements of individual environments.

Our approach has been incorporated in a prototype platform, called Adaptive
Communicating Applications Platform (ACAP) [1]. ACAP takes an object-oriented
approach to managing services and resources. Specifically, in ACAP, services
specify resource requirements, and environments provide resources that match the
requirements--multiple resources may match specific requirements. Services
dynamically execute in diverse environments by adapting to available resources by
migrating and requesting available resources from environments at runtime.
Migratory services are facilitated by use of migratory objects.

ACAP is a working prototype and has been used to develop a number of
applications to show the viability of our approach to service and resource
management. In this paper, we present one such application, Virtual Call Center
(VCC), to illustrate service and resource management issues in distributed and
heterogeneous environments. We also describe in detail how ACAP is used for the
development of the VCC application. Note that ACAP is a general-purpose
platform that can be used for any application that requires integrated service and
resource management in distributed environments.

The rest of the paper is organized as follows. Section 2 describes VCC and its
service and resource management issues. Section 3 provides an overview of ACAP.
Section 4 describe and discuss in detail the use of ACAP for VCC. Section 5
discusses related work of ACAP with emphasis on industry efforts on service
management. Section 6 describes future work and concludes the paper.

Adaptive, P2P Resource Management of a Virtual Call Center

2. VIRTUAL CALL CENTER: A MOTIVATING
EXAMPLE

427

A virtual call center (VeC) consists of operators who are geographically
distributed, and on duty at different times. When a customer calls, vee's call
processing/scheduling engine determines an operator and routes the call to the
operator. In this paper, we show the call processing/scheduling engine as a
centralized dispatcher. Dispatching functionality can be distributed across
environments or implemented in distributed databases such as in 800 call routing
[10]. Either ofthese mechanisms could easily be incorporated into our approach.

One critical issue in increasing the effectiveness of the vee (or a regular call
center) is state transfer. A typical user experience with a call center is that the
customer often has to repeat relevant information while being transferred from one
operator to another. This problem is even more prevalent with the advent of the
Web, where users often perform a lot of "work" before calling the vee, e.g.,
putting potential purchases into online shopping carts, filling out electronic order
forms, and registering with merchant sites.

vee can allow operators to effectively determine what callers are trying to do
without requiring further, duplicate information by seamlessly transferring caller
registration, history, state, and other information. This dramatically enhances the
quality of user experience and increases the likelihood of turning users into
customers. Furthermore, a centralized approach of having server components
always manage state transfer and update transactions would not scale to a large
number of callers and any server failure may disrupt the services of all callers, which
would significantly degrade the effectiveness of the overall system. Thus, a
distributed approach is needed that efficiently allows for scalable, robust, and fast
state transfer. In this paper, we describe a peer-to-peer approach, in which server
components "get out of the way" once an operator is connected to a caller, and the
operator is responsible for updating the state information of the caller at the vee
once the call is complete or on an as-needed basis.

Another issue involves the means by which vee operators and callers
communicate and exchange information. Different callers may have different
preferences for how to communicate with the operator. Some may prefer text-based
instant messages, while others may prefer more interactive, real-time
communications. In the latter case, the caller preference may range from a
telephone/cell phone to a VoIP call to a multimedia call that includes voice, video,
and documents. In order to accommodate diverse caller preferences, the
communication mechanism used by the vee should be adaptive to end user
environments and available resources. At the same time, it is unreasonable to expect
that the vee would/could pre-provision all the computing/network environments of
distributed operators to meet all caller requirements; doing so would be prohibitively
expensive. Therefore, an efficient mechanism is needed to dynamically discover
and adapt to available resources, and their capabilities in diverse operator
environments. We use the concept of migratory services to address this issue.
Specifically, calls are represented as services that can dynamically move to operator
and caller environments and execute using locally available or preferred resources.

428 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman

3. ACAP

Adaptive Communicating Applications Platform (ACAP) is an object-oriented
service platform that provides support for developing and managing high-level
services in a distributed and peer-to-peer manner. In this section, we provide a high
level overview of its basic constructs: services and environments. In Section 4, we
describe in detail how the VCC system is built using these constructs.

The main objective of ACAP is to provide support for adaptive services. An
adaptive service can change the way it operates, depending on available resources in
environments. To illustrate, a two-party voice call service can be made adaptive by
facilitating the parties involved to use the communication devices of their choice,
e.g., a regular phone for the caller and a PC-based phone for the called party. In
ACAP, the concept of a migratory service is the main means by which adaptive
services are realized. The basic mode of operation in ACAP is that a service
endpoint first moves to an environment, negotiates for the available resources in the
environment, and then executes using the negotiated resources. This way, services
adapt to environments in a distributed manner, in which much processing occurs at
or near endpoints. This reduces processing overhead on servers, which, in turn,
helps increase the scalability of services. To facilitate migratory services, ACAP
uses migratory objects. Specifically, a service is modeled as a collection of service
objects that can move based on user request and system resource availability. A
service object implements service logic, maintains service state, and specifies a
resource requirement for the service. A service is a special service object that also
functions as a container of other service objects. A service may be contained in
other service containers, thus fonning a hierarchy of services. Henceforth, the
terms, service and service object, are used interchangeably, unless a distinction
needs to be made.

Services and their service objects always maintain their containment
relationships, even when they are at different locations. When a service moves, only
those objects that are co-located with the service also move. In ACAP, we use
remote references to represent inter-object relationships. A remote reference is
similar to an ordinary object reference, except that (1) when a remote reference is
serialized, it does not serialize the referee, and (2) when a serialized remote
reference is recreated, it points to the original referee, even if the recreation is on a
different machine. Remote references are used for passing objects in (possibly
remote) method invocations and also allow migratory service objects to maintain
their links to other service objects.

In ACAP, environments are modeled in terms of available resources and their
capabilities. For example, a PSTN phone is modeled as a resource capable of audio
communication with a certain bandwidth requirement. An environment is modeled
as a resource, which in turn, is a collection of other resource objects. In this way,
the entire environment, including the network, can be modeled hierarchically. It
also allows us to efficiently compute and manage the state of an environment and by
induction, the state of any service or system.

Each environment can independently administer its own resources. Policies may
be used for security and/or enforcing user preferences. This allows us to efficiently

Adaptive, P2P Resource Management of a Virtual Call Center 429

and independently represent and introduce new resources into the system without
central administration and provisioning. Rapid introduction of new resources
requires that new devices and services are deployable by multiple third party
providers.

When a service enters an environment, ACAP binds each service object with a
resource object that can meet its requirements. For example, a call service object
may require resources for inputting and outputting audio, for which ACAP may bind
a resource object that represents a regular phone, an IP phone or a PC audio system
to the call service object. The decision as to which resource objects are bound to
service objects depends on resource availability in a given environment and user
preferences.

In our current implementation, resource requirements are hard requirements. If
no resource is available, then the service will not be able to execute. We already
have the notion of service adaptation to equivalent resources such as different types
of phones. We are designing mechanisms for services to adapt to degraded
resources such as insufficient bandwidth for video streaming. We can easily adapt
to degraded resources using service specific logic such as the designer of the service
replacing streaming with periodic still images. We are currently exploring
generalized mechanisms for resource degradation (non-availability is the worst kind
of degradation).

4. ACAP AND VCC

VCC makes use of ACAP support for adaptive services to provide scalable and
adaptive call center services. Specifically, VCC models a call as an adaptive service
that can dynamically move to the environment of the VCC operator who gets
assigned to the call. By executing the received call, the operator can retrieve
registration, history, current state, and any other relevant information of the caller
and establish a peer-to-peer communication channel with the caller. In fact, a call is
a container object that has other objects with caller information and VCC call
service logic. In this section, we describe and discuss in detail use of ACAP in the
development of the VCC application.

4.1 Architecture

Figure 1 graphically shows an architectural overview of the VCC in relation to
ACAP. VCC DISPATCHER is the central administrative hub for the system. It
maintains a database of customer registration information, operator information
(e.g., their schedules, locations, and state), and other system resources. It also
handles all the incoming calls and assigns them to appropriate and available
operators, the process of which is described shortly.

In Figure 1, VCC OPERATOR is an ACAP-based tool that implements the VCC
application logic for VCC operators. It provides a notification service that alerts the
operator. Furthermore, it can interact with the tools and resources that are available

430 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman

VCC DISPATCHER

ACAP

VCC OPERATOR

ACAPPROXY

INCOMING

CALLS

VCCCALLER

Figure 1. Architectural Overview of the VCC Using ACAP

in the operator's environment via the ACAP Resource Manager (RM) , which is
described shortly.

VCC CALLER is an ACAP-based tool that enables the caller to interface with
the assigned operator. It establishes a peer-to-peer communication channel with the
VCC OPERATOR of the operator and creates collaboration/communication sessions
between the caller and operator on an as-needed basis. Currently, it is assumed that
the VCC CALLER is pre-installed and configured in callers' environments, say, as
part of creating a subscription with a service provider. However, it could also be
provided as an applet that can dynamically be downloaded via a Web browser and
installed and configured for the caller's environment when a call is made.

Callers may use regular or cell phones to contact the VCC. In such a case, the
VCC OPERATOR connects to the ACAP PROXY to establish a voice channel
between the caller's phone and the operator's device for voice communication.
ACAP PROXY is a logical entity that may include PSTNlVoIP gateways to allow
use of SIP phones or VoIP application tools. ACAP PROXY keeps track of the
capacity and current usage state of its PSTNlVoIP gateways. VCC may have
multiple instances of ACAP PROXY, in which case the VCC DISPATCHER may
dynamically determine a particular instance to be used based on the caller phone
number and the location of the assigned operator.

In Figure 1, the flow is from a caller to the dispatcher, which migrates the call to
the appropriate operator so that the operator can communicate directly with the
caller. Resources are allocated to the call once it migrates to the environment of the
assigned operator. In the next sub-sections, details of interactions among various
components are described.

Adaptive, P2P Resource Management of a Virtual Call Center 431

4.2 ACAP Resource Manager (RM)

In ACAP, Resource Manager (RM) manages devices, application tools, and
other resources that are available in a given environment. Typically, RM runs in the
same environment as the one whose resources it manages (as is the case for the VCC
system). However, if infeasible to do so, RM can also run at a remote location.

Resources are associated with a hierarchical, ACAP-defined type system. Figure
2 shows a partial resource type hierarchy and example resource instances for a
typical VCC operator environment based on a networked desktop computer. Each
resource type has a set of attributes that describe capabilities and other properties.
For example, the resource.comm.audio.ip type represents resources for VoIP
communication and has properties, in and out, which represent audio input and
output resources/devices respectively. The same resource type hierarchy is used by
ACAP services to specify required resources.

Figure 2. A Partial Resource Type Hierarchy and Example Resource Instances for a vee
operator environment. A resource type is a rectangular box, and a resource instance is a

circular box.

432 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman

Part of the VCC OPERATOR/CALLER installation and configuration process is
to construct a resource hierarchy for an environment, most of which can
automatically be deduced from the local (file type tool) association settings.
Multiple instances may exist for a given resource type, e.g.,
resource.comm.audio.ip and resource.comm.data.html.browser in Figure 2, in
which case the operator/caller is prompted to specify preferences.

When a service enters an environment, each of its contained service objects
makes a request to the RM for a required resource. If the requested resource is
available, the RM returns the corresponding resource object. The resource object is
a proxy for the real device or application tool and provides an interface through
which the service object can control, communicate, and manage the device or
application tool. Communication between a resource object and the corresponding
device or application tool is device or application-dependent. For example, the
resource object for Microsoft NetMeeting may use a COM interface of this tool that
allows other applications to control it programmatically. This way, existing tools
and devices can easily be integrated with an ACAP environment, which in turn helps
reduce the "learning curve" both for VCC operators and callers.

4.3 Handling Incoming Calls

Upon receiving a call, VCC DISPATCHER performs the following tasks:

Retrieve the caller history (based on caller id), current state (e.g., URL history),
address, and preferred method of communication of the caller.
Create a CALL service object, which is a topmost container that represents the
current call and contains USER, CONTEXT, and COMM service objects. The
USER object stores any registration information of the caller, the CONTEXT
object any received state information, and the COMM object the caller's current
location and preferred methods of communication in terms of resource types.
Each of these service objects has an application-specific interface.
Create and store a copy of the CALL object for record keeping and persistence.
This is the primary copy and holds the true state of the call if the information is
lost in transit.
Select an operator and put the CALL object in the QUEUE of the selected
operator. QUEUE represents a communication channel between the VCC
DISPATCHER and VCC OPERATOR of the selected operator. The exact
operator scheduling and selection criteria may be policy-dependent and are
beyond the scope of this paper.

When the CALL object arrives at the operator site, ACAP notifies the operator
end of the QUEUE, which, in turn, notifies the VCC OPERATOR. VCC
OPERATOR starts or activates the new CALL and alerts the operator of its arrival.
When the operator wishes to communicate with the caller, the VCC OPERATOR
makes a request to the COMM service object, which first asks the ACAP RM for a
communication resource of the same type as that of the caller's top preference.
When the RM returns a resource object (see Section 4.2), the COMM creates two

Adaptive, P2P Resource Management of a Virtual Call Center 433

ACAP Endpoint objects. Each Endpoint is a service object that represents an end
point of a "call" of a specific type and is to be bound to a resource object for a
device or application tool used for the call. Binding an Endpoint to a resource object
may involve starting an application tool and retrieving its address information, e.g.,
the IP address and port of the host computer, on which the application tool is
running. In ACAP, this address information is called the resource address of the
Endpoint. Subsequently, the COMM asks the RM to bind the operator Endpoint to
the returned resource object and then sends the other Endpoint to the caller.

On the caller's side, the VCC CALLER receives and starts the caller Endpoint
object, at which point the Endpoint asks the RM in the caller's environment for a
communication resource of its type. When the RM returns a resource object, the
Endpoint object binds to it and alerts its counterpart at the operator's site of its
resource address information. Subsequently, the operator's Endpoint makes a
request to its resource object to initiate a communication session, passing it the
resource address of the caller Endpoint. In turn, the resource object instructs its
application tool or device to "call" the specified destination.

Figure 3 graphically illustrates the architecture of an example communication
session between the VCC operator and caller, the set-up process of which is just
described. This architecture applies to all types of communication in ACAP. The
operator and caller Endpoints may continue to exchange information even after a
communication session has been established. For example, in a collaborative Web
Browsing session, the operator Endpoint may send to the caller Endpoint the URLs
of the Web pages that the caller's Web browser should display and vice versa. For
"multimedia" sessions, ACAP allows multiple pairs of operator caller
Endpoints to exist and operate at the same time.

Note in Figure 3 that the resource objects do not have to run on the same host as
their application tools or devices. This design is critical in increasing ACAP's
ability to adapt to the preferred or available resources. To illustrate, consider a case
where the operator and caller wish to have a voice communication, and one or both
of the parties wish to use a regular phone. Here, the resource object cannot control
the phone directly. Instead, it interfaces with a gateway to the phone network,
which most likely is located at a remote site, and control the phone via this gateway.
Furthermore, the operator/caller may be on a device with limited resources or
capability, e.g., a phone. ACAP can still accommodate such a case by running the
resource and Endpoint objects on a proxy host. Also note in Figure 3 that the
COMM object on the operator site still contains the caller Endpoint object, even
after it has moved to the caller's site. This way, the COMM object can still maintain
context across contained objects in presence of the mobility.

When the call is complete, the VCC OPERATOR requests that the CALL
release all the allocated resources. Furthermore, it notifies the VCC DISPATCHER
of the call completion and sends it any state updates by sending the CALL and its
contained objects back. Subsequently, the VCC DISPATCHER updates its database
with any updated information from the received CALL. It may be possible that the
connection between the VCC OPERATOR and DISPATCHER may fail while the
operator and caller communicate. In such a case, the VCC OPERATOR locally
stores the CALL and its contained objects until the connection is restored. The state

434 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman

of the call is contained within the object and can be updated in the future, even in
batch mode, if desired.

Agent Site Caller Site

Figure 3. Example Architecture for Operator and Caller Communication

5. RELATED WORK

To our knowledge, ACAP is the first adaptive services platform that uses the
concept of migratory services and peer-to-peer connections as the main means of
developing and managing high-level services. However, the idea of adapting
services to available resources in end user environments has been receiving an
increasing amount of attention. For example, Open Services Gateway Initiative
(OSGi) [2] is an industry consortium that specifies an object-oriented framework for
remotely delivering and managing services. The OSGi framework provides a
common life-cycle management service and allows services from different vendors
not only to co-exist in the same environment but also dynamically discover and
make use of each other. In addition, it allows a variety of end user devices to be
represented and integrated with other services.

Note that the OSGi framework does not specify the mechanics of service
operation, whereas ACAP specifies a model of service operation using migratory
objects. This makes ACAP and OSGi complimentary to each other. For example,
ACAP can use the service/device management facilities of the OSGi framework in
implementing its Virtual Call Center (VCC) application as follows. ACAP
Resource Manager can be implemented as an OSGi service bundle. This bundle

Adaptive, P2P Resource Management of a Virtual Call Center 435

can be downloaded and installed on the OSGi framework of a call center operator, at
which the Resource Manager, once activated, can discover communication and other
resources of the operator's environment. The ACAP call service can also be
implemented as an OSGi service bundle, which can dynamically be downloaded and
activated and discover the local Resource Manager. Integration with the OSGi
framework is part of the future work.

Telecommunications Information Networking Architecture (TINA) [3] is an
example of high-level service deployment and management platform that takes a
client-server approach. Mainly developed from the viewpoint of service providers,
TINA specifies a set of architectural principles and object-oriented information
models for next generation multimedia telephony services. TINA takes a client
server view of how services should be provided in that every aspect of managing a
service involves server components "running in the network." For example, in
TINA, creating end-to-end communication channels involves a Communication
Session Manager (CSM), which is mainly responsible for collecting and distributing
the address information of end user devices to be used.

In contrast, ACAP is inherently peer-to-peer. In ACAP, the basic model of
communication is to create and send peer service objects to communicating
endpoints. Once in place, these objects connect to each other directly. This way,
much processing of the application logic of a service can take place directly in end
user environments, and server components mostly perform administrative tasks such
as billing and subscriber management. Thus we argue that ACAP provides better
support for scalable service environments than TINA.

Object mobility has received a lot of attention in the literature. One of the main
applications of object mobility has been in localizing access to distributed objects in
order to increase system performance. The main idea is to move an object to where
it is needed, which makes accessing the object not much more expensive than local
method calls. In order to automate the decision as to when and where to move
objects, a variety of system- or language-level support is provided. For example,
Kan [4] extends the Java language to include Kan-specific keywords and constructs
for asynchronous method calls and transactions and keeps track of read/write access
patterns on Kan objects. When a Kan object is write-accessed one thread at a time,
it migrates. Otherwise, the object is replicated to where read requests are issued,
and write requests are sent to its home site. StratOSphere [5] allows migratory
objects to adapt to the available resources of new sites by enabling them to adopt the
local implementations of their methods. The Aleph toolkit system [6] facilitates
efficient location of migratory objects via its Arrow distributed directory protocol.
Migratory objects, in the form of mobile operators, have also been used in the area
of active messaging, e.g. [7].

In ACAP, migratory objects do not contain any "intelligence." Rather, they are
used in designing and managing migratory and adaptive services in a distributed
environment. Specifically, they are mainly used as the means of transporting
application code and data to end user environments and establishing peer-to-peer
connections between communicating endpoints.

436 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman

6. FUTURE WORK AND CONCLUSION

ACAP has effectively been used for rapid development of VCC and other
advanced services, and its capabilities have successfully been used in both internal
and external demonstrations. However, a number of important issues still remain.
One such issue is security. Specifically, ACAP dynamically moves among
communicating endpoints services objects that may contain executable code. This
raises the issue of how to trust the authenticity and integrity of received service
objects. On the other hand, service object owners should have control over who has
access to their objects and where they move. In the former case, a PKI-based
approach may be used to sign and verify the integrity of migratory service objects.
In the latter case, we have a capability-based [8] approach, which allows owners to
keep track of and revoke capabilities even when their objects are at remote locations.
Fully addressing these and other security issues in ACAP is part of future work.

Another area of interest is to apply ACAP approach to management of network
resources. Specifically, our model of individual environments managing their own
resources can be extended to include network-level resources. That is, when a
service migrates and asks for resources, the RM can grant or deny requests based on
both current network conditions and locally available resources. This way, network
operators/service providers can have fine-grained control over access and utilization
of their resources. Providers can also implement resource usage-based billing.

Integrating network resource management with service creation and
management is an important area for providers. This will allow providers to manage
and prioritize limited manpower and network resources to revenue generating
services. We are actively working in this area developing a service model that
allows service definition across network and service layers.

In summary, ACAP applies object-oriented principles to managing services and
environments. In ACAP, services are specified in terms of required resources, and
environments in terms of available resources. ACAP facilitates services to adapt to
diverse environments by allowing them to dynamically migrate and discover
available resources in a given environment. Migratory services are facilitated by use
of migratory objects in ACAP. In this paper, we have described in detail a Virtual
Call Center (VCC) system to illustrate adaptive resource management requirements
for high-level services. Furthermore, we have shown our approach to addressing
these issues by describing how support for migratory services and peer-to-peer
connections in ACAP is used in its architecture and implementation.

REFERENCES

[1] Alberi, 1., Cochinwala, M., Cohen, E., Jackson, N., Pucci, M., and Sigman, E., "An
Object-Based Framework for Communication Services," IEEE GlobeCom 2000,
Workshop on Service Portability and Virtual Customer Environments (SerP-2000),
December 2000.

[2] "OSGi's Service Platform Release 2" available at http://www.osgi.org.

Adaptive, P2P Resource Management of a Virtual Call Center 437

[3] Abarca, C., et al., "Service Architecture," TINA-C Deliverable available at
http://www.tinac.comlspecifications/documents/sa50-main.pdf.

[4] James, J. and Singh, A.K., "Design of the Kan distributed object system," Concurrency:
Practice and Experience 12(8): 755-797, 2000.

[5]Wu, D., Agrawal, D., and Abbadi, A.E., "Mobility and Extensibility in the StratOSphere
Framework," Distributed and Parallel Databases 7(3): 289-317,1999.

[6] Demmer, M., and Herlihy, M.P., "The Arrow Directory Protocol," Proc. of 12th
International Symposium on Distributed Computing, September, 1998.

[7] Okino, C. and Cybenko, G., "Modeling and Analysis of Active Messages in Volatile
Networks," Proc. of the 37th Allerton Conference on Communications, Control and
Computing, Monticello, IL, 1999.

[8] Landwehr, C.E., "Formal Models for Computer Security," ACM Computing Surveys, Vol
13, No.3, September 1981.

[9] http://www.recursionsw.comlproducts/voyager/voyager.asp.
[10] Cochinwala, M., "Database Performance for Next Generation Telecommunications,"

Proceedings ofInternational Conference on Data Engineering 2001: 295-298.

439

ANALYSIS OF MOBILE RADIO ACCESS NETWORK
USING THE SELF-ORGANIZING MAP

Kimmo Raivio,l om Simula,l Jaana Laiho2 and Pasi LehtimakP

IHelsinki University of Technology
Laboratory of Computer and Information Science
p.o. Box 5400, FlN-02015 HUT, Finland
{Kimmo.Raivio,OIli.Simula,Pasi.Lehtimaki}@hut.fi

2Nokia Networks
P.O. Box 301, FlN-00045 Nokia Group, Finland
Jaana.Laiho@nokia.com

Abstract:

Keywords:

Mobile networks produce a huge amount of spatia-temporal data. The data consists of
parameters of base stations and quality information of calls. The Self-Organizing Map
(SOM) is an efficient tool for visualization and clustering of multidimensional data. It
transforms the input vectors on two-dimensional grid of prototype vectors and orders them.
The ordered prototype vectors are easier to visualize and explore than the original data.
There are two possible ways to start the analysis. We can build either a model of the
network using state vectors with parameters from all mobile cells or a general one cell
model trained using one cell state vectors from all cells. In both methods further analysis
is needed. In the first method the distributions of parameters of one cell can be compared
with the others and in the second it can be compared how well the general model represents
each cell.

Neural networks, self-organizing map, cellular network, performance optimisation.

1. Introduction
As the launch of third generation technology approaches, operators are forming

strategies for the deployment of their networks. These strategies must be supported
by realistic business plans both in terms of future service demand estimates and the
requirement for investment in network infrastructure.

When provisioning 3G services the control for the access part can be divided into
three levels. Two lowest layers are radio resource management (RRM) functionalities
and the highest hierarchy level is control performed by the network management sys
tem (NMS). More about this control hierarchy can be found in [10]. The scope of this
paper is the NMS level. The role of NMS is essential owing to the fact that major en
hancements or new service roll-outs are planned by utilizing the measured long term
performance data from existing network.

The multidimensional performance space in future cellular networks force the tra
ditional operator processes to go through some major changes. Additional challenges
arise from the fact that in the case of 3G there will be multiple services, customer dif-

http://dx.doi.org/10.1007/978-0-387-35674-7_66

440 Raivio, Simula, Laiho and Lehtimiiki

ferentiation (customers with different priorities) and multiple radio access technolo
gies to be managed simultaneously, optimally, as one resource pool. Furthermore, the
high competitive situation forces operators to fast changes in service provisioning. All
this will move the focus of operators daily tasks from offline planning to rapid network
performance evaluation, trend analysis and optimisation based on network measure
ments. Therefore new analysis schemes for 3G networks are presented in this paper.
The strength of the proposed method is its ability to combine multiple measurements
and thus provide the result in a simple format despite the fact that the input space
is very complex. The method also aids the operator in visualizing the service per
formance and in classifying the cells. The cell classification (clustering) will aid the
operator in setting the configuration parameters controlling the service provisioning.
Furthermore, similarly behaving cells can be identified and thus problem solving in
the network is more effective.

In this paper, the use of the Self-Organizing Map (SOM) in optimization process
is proposed. The SOM is a widely used neural network algorithm [7]. It has several
beneficial features that make it a useful tool in data mining and exploration. The SOM
follows the probability density function of the underlying data and functions, thus, as
an efficient clustering and data reduction algorithm. The SOM is readily explainable,
simple and - perhaps most importantly - highly visual. SOM based methods have
been applied in the analysis of processes data, e.g., in steel and forest industry [8]. In
addition, the SOM has been used in analysis and monitoring of telecommunications
systems. Applications include novel equalizer structures for discrete-signal detection
and adaptive resource allocation in telecommunications networks. In this paper, wide
band code division multiple access (WCDMA) mobile network has been analyzed
using the SOM. The goal is to develop efficient adaptive methods for monitoring the·
network behavior and performance. Special interest is on finding clusters of mobile
cells, which can be configured using similar parameters.

In [3], [5] and [13] examples of 3G optimization cases are represented. In general
the availability of references related to 3G analysis and optimization is limited. This is
owing to the fact that there are very few commercial networks deployed at the time of
writing. In abovementioned references the approach has been parameter centric: how
to measure and tune configuration parameters to obtain wanted performance. In the
case of this paper the network status visualization is the main focus. This information
can be further used in order to obtain optimization of correct parameter/parameter set
of selected cells.

In the next section, the application domain which is mobile radio access network
is described. Then the SOM algorithm is presented in Section 3 and two methods to
classify mobile cells are described in Sections 4 and 5.

2. Mobile network and the data
The scope of this section is to describe the used network scenario and the param

eters used in the simulations. The data used in this work has been generated using
WCDMA radio network simulator [6]. The WCDMA radio network depicted in Fig. 1
has been planned to provide 64-kbps service with 95% outdoor coverage probability.
The average site distance is around 910 m.

The network configuration used to produce the data consisted of 32 base stations in
Helsinki city area. The users of the network were circuit-switched with 64-kbps and

Analysis of Mobile RAN Using the SOM

Network Scenario

BS
so

'. BS31

Figure 1. Helsinki city area with base stations.

441

the admission control was parameterized so that uplink interference had no impact on
the admission process. The most important radio network simulation parameters are
listed in Table 1.

Table 1. Important radio network parameters

Tenninal maximum power
Base station maximum power
Base station maximum power per link
Target of UUDL FER
Uplink system noise
Downlink system noise
Terminal speed

126mW
20W
450mW
5%
-102.9 dBm
-99.9dBm
3 kmlh

Used propagation model was Okumura-Hata with average area correction factor
of -1.5 dB (excluding water areas). The multipath channel model was Vehicular A:
five-taps with gains of -2.9, -5.2, -9.5, -13 and -15 dB respectively.

Slow fading deviation was 8 dB and the correlation distance was 50 m. Minimum
coupling loss was 50 dB. Pilot power was 1 W. Softhandover was limited by saving
maximum 3 links per terminal.

Power control is done once in a frame only to speed up the simulation. The power
control step size is 0 to 15 dB depending on the difference between the average Eb/10
over 10 previous frames and the target Eb/10 [9]. Number of subscribers was 2112,
which generate five 120 second calls on the average in an hour. Total simulation time
was 1800 seconds.

The state of the network is characterized by 17 parameters of each base station
which are saved every lOOms. The parameters include uplink noise raise in dBs, down-

442 Raivio, Simuia, Laiho and Lehtimiiki

link average total transmission power in watts, number of users and average frame
error rate (FER) of both uplink and downlink.

In this study, only uplink noise raise and uplink FER of each cell is used. A loga
rithmic scale with 10-2 as minimum FER is used.

3. Self-Organizing Map
The Self-Organizing Map forms a nonlinear topology preserving mapping from the

input space to the output space. This means that patterns near each other in the input
space are mapped to neurons which are close to each other in the neural net. In the
original algorithm, the SOM is trained by the following unsupervised algorithm.

Each input vector x(t) is compared with node vectors mi to find the best-matching
unit (BMU) c.

(1)

The best-matching node and the neighboring nodes are modified in the direction of
the input data.

(2)

The neighborhood function hci is usually a Gaussian function, which is centered
around node c and multiplied by decreasing learning rate a(t).

One step of the training algorithm of the SOM is illustrated in Fig. 2. The size
of the SOM is 16 units, which have been arranged into a two-dimensional grid of 4
by 4 units. A data sample is marked with a cross; the black circles are the values of
the prototype vectors before, and the gray circles after updating them towards the data
sample. This kind of an update step is repeated iteratively during the training process.

Figure 2. An illustration of the SOM training.

In this work, a batch version of the original algorithm is used, because it is com
putationally more effective. The samples collected from a fixed time interval are first
averaged over the topological neighborhoods of the respective winner cells in the map.
After that the node vectors are updated in one step using these averaged values, as in
the classical K-means algorithm [11].

Analysis of Mobile RAN Using the SOM 443

The SOM algorithm is able to perform both data clustering and visualization. The
benefit of using SOM is in visualization of interesting parts of data. The algorithm
moves the nodes of the map towards the areas of higher density of mapped input
vectors. As a result, the SOM efficiently visualizes the clusters.

4. Classification of mobile cells using correlations of SOM
component planes

Here a method for clustering mobile cells on the basis of covariance matrixes of
SOM component planes is presented. The method utilizes the SOM algorithm twice.
At first SOMs of one variable are built (see Sec. 4.1). Then the covariance matrixes
of the SOM component planes are computed. Covariances of one or more variables
are used as data to a second SOM. The outputs of the second SOM are the clusters of
mobile cells (see Sec. 4.2). In Sec. 4.3 the classification of using several variables is
demonstrated.

4.1 SOM of one variable
Data of each cell is masked so that one variable of each mobile cell is analyzed with

the corresponding ones of the other cells. The data to be analyzed has been normalized
to zero mean and unit variance as one data vector over all the cells. Here uplink noise
raise and logarithm of uplink FER have been analyzed using the SOM. Hexagonal 2D
neighborhood grid of 10 x 15 nodes is used. Fig. 3 shows the SOM component planes
when the FER is studied. There is one component plane per each mobile cell. The
parameter values of the mobile network state at one moment can be read from similar
locations on component planes. For example, upper left corner gives one possible
combination of network error rates.

Cl c2 c3 c4 c5 c6 c7 c8

Figure 3. SOM component planes of the FERs. Minimum FER is fixed to 10-2 .

The component planes are visualized using a common color axis. This makes it
possible to see the real error rates, but it also hides the smaller variations inside the

444 Raivio, Simula, Laiho and Lehtimiiki

cells. In the figure only some of the cells seem to differ from the common behavior.
Cell 26 has a lot higher FER than all the others.

4.2 Reorganized SOM component planes
If we are interested in, for example, to find out which mobile cells have similar

FER distribution, the task of human analyzer can be made easier by further processing
the component planes of SOM. This kind of postprocessing is more important if the
number of component planes is higher.

The component planes are considered as separate figures. Covariance matrix of the
figures is computed by first converting the figure dot or node values cij to vectors an,
where i and j are the coordinates on the map and n is the mobile cell number. The
length of each vector an is the product of component plane dimensions.

The covariance matrix C of the planes an is the new data, which will be used in
Sec. 4.3. This data has one row for each mobile cell. A new second level SOM is
trained using the covariance matrix. The topology of the new SOM is 2D rectangular
grid. Because 32 component planes are analyzed grid of size 8 x 8 nodes is used.
The covariance matrix row of each cell is mapped on the second level SOM and the
best-matching unit (BMU) for each mobile cell is found. The map nodes are labeled
using the results of BMU search.

The second level SOM can be visualized using the labels or the corresponding first
level SOM component planes. In the latter case the SOM component planes have been
reorganized so that the similar ones locate near each other. This makes it easier to find
correlations between SOM components.

The SOM planes reorganization method has been discussed earlier in [14] and [15].
In the latter paper several modifications of the algorithm have been represented. In
Fig. 4 the SOM component planes of Fig. 3 have been reordered using the method
above.

From the Fig. 4 we can see that cell 26 has higher error rate than the others and that
also the FER distributions of cells 12, 14, 17,21,25,29,30 differ quite much from
the others. The rest of the cells have similar FER distribution. The different behavior
of cells can be partly explained with the help of the radio network plan: cells 26 and
21 suffer from bad interference situation (due to the fact that the water areas allow
easy propagation for interfering signals), in case of cells 12 and 29 the difference can
be explained with the position of the cell. These cells are located at the edge of the
network, and thus only little data is available. Number of neighboring interfering cells
is also lower compared to the other cells.

4.3 Classification using several variables
Several SOMs for different variables can be built and reorganized using the meth

ods of previous sections. The covariance matrixes Ck of all first level SOMs can be
combined so that we get a new data matrix C = [CkCl .. . j, k =I- 1. Matrix C has a
row cn for each cell n. The row is a concatenated vector of cell correlations of used
variables.

When the SOM is trained using this new data, we are able to get a new ordering of
the cells. The result (Fig. 5) is about the same as in Fig. 4. Only cells 14,21,25 and 26
differ from the others. It is obvious that in this case correlations of uplink noise raises

Analysis of Mobile RAN Using the SOM

c26

c21

c14 c

c25

I
i IIII

II II
I i III
lilill

445

Figure 4. SOM planes representing error rates of the mobile cells are reorganized. Planes are also
labeled using cell numbers. Color scaling is as in Fig. 3.

do not have a meaningful effect on clustering. The same cells differ from common
behavior as before.

Clusters of mobile cells can be found using U-matrix presentation [12] or hierarchi
cal clustering of SOM node vectors [16]. Hierarchical clustering can be either divisive
or agglomerative [2]. In divisive hierarchical clustering data vectors are separated in
finer groupings. Agglomerative hierarchical clustering methods add similar groups to
gether starting from some initial base clusters. The base clusters can be either all SOM
node vectors or some set of them like local minimas. Here, group-average hierarchical
clustering is used with SOM node vectors as base clusters.

The number of clusters can be fixed manually on basis of the U-matrix or more
sophisticated methods like Davies-Bouldin index can be used [1]. Here, the number of
clusters is fixed manually to four. The clusters of the original data are shown in Fig. 6.
The classification result combined with locations of the cells has been shown in Fig. 7.
As it can be seen, cells can be characterized and divided into different clusters. In a
radio network optimization process it is reasonable to assume that the configuration
parameters for cells within a cluster are at least partly the same. The BMUs of the
original data have been printed (in Fig. 6) using subscript 1 and the BMUs of the new
data set with subscript 2 (ell means cell 1 with original data). In the new data set, the
pilot power of cells 21 and 26 have been decreased from the original 1 W to O.Sw. The
reason for this change was to reduce the physical size of these two cells to improve the
overall quality of service. It can be seen in the following results that the change was
not yet adequate.

446

c26 c21

c25 c14

II
i I
II
II I I

Raivio, Simuia, Laiho and Lehtimiiki

30 31

a
II

C17

Figure 5. SOM planes representing error rates are ordered using correlations of both uplink noise raise
and FER component planes.

e17;

026 c2', c212 c30, 020,

3 c31,

4

1
e14, 014, 020,

05,
022,

c25 C'7, c30, 03',
,<.,.,,,,

05, C19,
e7, 022,

c4 c18, e13,
cl,

028, e24
e13,

e2, cIS, e8,
08, 06, C16,

2
e32, c'o ell,

e15, e'8, 032,

C28,
c9, 02, e8, e3 c18, C19,

el,
c12 el, ell 023, c23,
c27
c29

Figure 6. Four clusters of mobile cells. Cell clusters are found using correlations of both uplink noise
raise and FER component planes.

Analysis of Mobile RAN Using the SOM 447

."or{"'
.14

.. --<"
c8 031

Figure 7. Locations and classes of mobile cells.

When new data is analyzed, SaM component plane representation of the data has
to be constructed. The easiest way to do this is training the SaM again. When the
SaM is trained, the new data can be used in the BMU search or it can be masked
out. If the new data is masked out in the BMU search, but used when the neurons are
updated we can obtain similar SaM as before, but in addition we get the component
planes for the new data. From the component planes new covariance matrices can be
computed, new clusters can be found and the BMUs of the new and the old data can
be found.

The method described above classifies mobile cells on basis of correlations of se
lected variables. A model of mobile network which describes the relations between
mobile cells has been built. This method analyses the correlations between cells i.e.
does a bad performing cell have degrading influence also on the neighboring cells.

5. Classification of mobile cells using cluster histograms
In Section 4 method to form data clusters was presented. The input data was used to

build a model of the network. In this section another method for classification of mo
bile cells is presented. Also this method uses two levels of SOMs. In order to analyze
sequence of data samples instead of a single data point a histogram map is computed.
Histogram consists of proportions of data samples falling in each of the data clusters.
These histograms describe the long-term behavior of data sequences and they are used
in the cell classification. A new SaM is generated using the histogram information
as the training set. By using a clustering algorithm exact behavioral clusters can be
generated. These behavioral clusters are found by hierarchical clustering method, here
the Ward clustering [2] with local minimas of SaM node vectors as base clusters. His
tograms for each mobile cell are computed using the clusters as bins. The histograms
are the data, which are used to train the second SaM and to find the BMUs for each
cell.

448 Raivio, Simuia, Laiho and Lehtimiiki

ulAveNoiseRaise ulFER - 0 .784

-1 .69

Figure 8. SOM trained by uplink noise raises and error rates of all the cells of the network.

5.1 General mobile cell model
In Fig. 8 the component planes of the general mobile cell model are shown. The

optimal number of clusters minimizes Davies-Bouldin index [1]

(3)

where C is the number of clusters, Be within-cluster distance and dee between clusters
distance, Qk and Q/ are the clusters. When Ward clustering is used, four clusters or
states for mobile cells minimize the Davies-Bouldin index. In Fig. 9 state 4 represents
the higher load state and the others normal state.

Figure 9. Four clusters of SOM node vectors given by Ward clustering and Davies-Bouldin index.

The BMUs of data vectors give the state or the class of the cell. From a sequence of
states we can compute the class frequencies of mobile cells. Using these histograms
as data to a second level SOM we get a SOM of histograms. The topology of the new
SOM is 2D rectangular grid. Grid of size 8 x 8 nodes has been used as in 4.2. The
BMU search of the map is based on Kullback-Leibler distance [4]. The Kullback
Leibler distance or relative entropy between two probability distributions px(x) and
qx (x) is defined by

Analysis of Mobile RAN Using the SOM 449

px(x)
Dp11q = px(x) log(-(-))

xEX qx x
(4)

where the sum is over all states of the system (i.e., the alphabet X of the discrete
random variable X).

The group-average hierarchical clustering with local minimas of SOM node vectors
as base clusters gives new clusters of mobile cells. These clusters with mobile cell
BMUs are shown in Fig. 10. The result is about the same as in the previous section.
The shifts of states of cells when the pilot power of cells 21 and 26 is decreased are
visualized using old clusters to label the new data and compute new histograms. As
before the BMUs of the original data have been printed using subscript 1 and the
BMUs of the new data set with subscript 2. The clustering information with spatial
data is also shown in Fig. 11.

Figure 10. Three clusters of mobile cells. Cell clusters are found using cluster histograms of SOM
trained by uplink noise raise and FER of each cell.

The method described above classifies mobile cells using class frequencies as mod
els of mobile cell behavior. The distributions describe how much a particular mobile
cell differs from a general cell model, which has been built using as much data as pos
sible. General cell model is an absolute reference for cell performance. The position
of the cell on the reference map reflects its actual performance.

6. Conclusion
In this paper two new methods to monitor mobile network state have been pre

sented. In the first method, lower level SOMs of one variable are first build. Covari
ance matrices of the component planes of these SOMs are then used to train another

450 Raivio, Simuia, Laiho and Lehtimaki

c27

c28

.
c.2 J,Cl1 c5 ji123 c ••

CJ 20

c2

c.3

c'4

010 c22 c21 c28

c8

c30

c3,

I

Figure 11. Locations and classes of base stations.

map, which reorders the mobile cells. In the second method, a lower level SOM, which
represents general mobile cell model is built. Histograms of the states of the base sta
tions are built using clusters of lower level SOM. The same clusters can be used later
to find out histograms of new data. Thus, the operational mode of each cell and the
whole network can be monitored. The first method is powerful when the correlation
between the cells is of interest. The second method is used when information of the
absolute performance of cells is required.

The data which is used to build the lower level SOM in the method based on class
histograms should be selected carefully so that it represents well all the possible states
of the cells. If it does not, the lower level SOM should be trained again using new set
of data.

In this paper it has been demonstrated that SOM can be used in cell clustering.
The possibility of finding similarly behaving cells will make the operators' optimiza
tion task more cost effective. Similar configuration parameter sets for cells within a
cluster can be utilized. Furthermore, owing to the highly visual nature of SOM, the
multidimensional performance space can be visualized more effective than with tra
ditional tools. Thus the operators have means to get an interpretation of the service
performance.

Acknowledgment
The study has been financed by Nokia Networks, Nokia Mobile Phones and the

Technology Development Centre Finland (TEKES) which is gratefully acknowledged.
Furthermore, the authors wish to thank their colleagues for valuable comments during
the work.

References
[I] D.L. Davies and D.W. Bouldin. A cluster separation measure. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 1(2):224-227, April 1979.

[2] B.S. Everitt. Cluster Analysis. Arnold, 1993.

Analysis of Mobile RAN Using the SOM 451

[3] A. Flanagan and T. Novosad. Automatic selection of window add in a WCDMA radio network based
on cost function minimization. In Proceedings of International Symposium on Spread Spectrum
Techniques and Applications, 2002.

[4] S. Haykin. Neural Networks, a Comprehensive Foundation. Macmillan, 1999.

[5] A. Htlglund and K. Valkealahti. Quality-based tuning of cell downlink load target and link power
maxima in WCDMA. In Proceedings of IEEE Vehicular Technology Conference, Fall 2002.

[6] S. HlImlllllinen, H. Holma, and K. SipiHl. Advanced WCDMA radio network simulator. In Personal,
Indoor and Mobile Radio Communications, volume 2, pages 951-955, Osaka, Japan, September
12-15 1999.

[7] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 1995.

[8] T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas. Engineering applications of the self
organizing map. Proceedings of the IEEE, 84(10):1358-1384, October 1996.

[9] R. Kwan and M. Rinne. A comparison ofWCDMA network performance results with frame vs slot
resolution simulations. In Proc. 5th CDMA International Conference & Exhibition, volume 2, pages
478-482, Seoul, Korea, Nov 22-25 2000.

[10] 1. Laiho, A. Wacker, and T. Novosad (ed.). Radio Network Planning and Optimisation for UMTS,
chapter 8, pages 329-363. John Wiley & Sons Ltd., 2001.

[II] Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer design. IEEE Transactions on
Communications, 28(1):84-95, January 1980.

[12] A. U1tsch and H.P. Siemon. Kohonen's self organizing featnre maps for exploratory data analysis.
In Proceedings of the International Neural Network Conference, pages 305-308, Dordrecht, Nether
lands, 1990.

[I3] K. Valkealahti, A. Htlglund, J. Parkkinen, and A. HlimliUlinen. WCDMA common pilot power control
for load and coverage balancing. In Personal, Indoor and Mobile Radio Communications, volume 3,
pages 1412-1416, 2002.

[14] 1. Vesanto. SOM-based data visualization methods. Intelligent Data Analysis, 3(2):111-126, 1999.

[15] J. Vesanto and J. Ahola. Hunting for Correlations in Data Using the Self-Organizing Map. In
H. Bothe, E. Oja, E. Massad, and C. Haefke, editors, Proceeding of the International ICSC Congress
on Computational Intelligence Methods and Applications (CIMA '99), pages 279-285. ICSC Aca
demic Press, 1999.

[16] J. Vesanto and E. Alhoniemi. Clustering of the self-organizing map. IEEE Transactions on Neural
Networks, 11(3):586-600, May 2000.

453

SHORT PAPER SESSION 3

Configuration and Architectures

Co-Chairs: Cynthia Hood
Illinois Institute of Technology, USA

Omar Cherkaoui
University of Quebec in Montreal, Canada

AN ARCHITECTURE FOR PROVISIONING IP
SERVICES IN AN OPERATIONS SUPPORT
SYSTEM

A. John!, B. Sugla2, H. Krishnan, E. Pat:k, A. Raghu, R. Sequiera, A. Wanchoo
Jajita@avaya.com. 2sugla@dset.com. DSETCorporation, Shrewsbury, NJ

455

Abstract: This paper discusses an architecture for a provisioning system that meets the
challenges currently facing service providers in a service and subscriber-based
OSS environment. The architecture makes a clear separation between a
provisioning core, which is a general framework for provisioning services, and
service definitions that model the provisioning view of a service. The
architecture is distributed, scalable and extensible and is especially suited for
scenarios where a large number of services is expected to be offered,
deployed, and managed. The service definitions can be used by the other OSS
components to correlate information to provide complete device-to-service-to
subscriber diagnostics for faults, performance degradations, and accounting. It
is argued that this approach leads to natural, efficient and effective
management solutions.

Key words: Provisioning, IP services, Operations Support System, OSS, VPN

1. INTRODUCTION

The evolution of Operations Support Systems (aSS) from basic device
management components to service and subscriber-based ones has come with
complexities in widely differing services, standards, and vendors and complexities
in interactions between different ass components. These complexities have made
the provisioning and maintenance of IP services such as VPNs, firewall-based
security, and web-based hosting a major hurdle. The major issues in provisioning
are providing support for multiple services, dependencies among services, multi
vendor equipment, transaction and rollback, seamless interaction with other ass
components, scalability and customization requirements in different service provider
environments. This paper discusses these issues and a provisioning architecture to
address them. The architecture consists of service definitions that model the

http://dx.doi.org/10.1007/978-0-387-35674-7_66

456 A. John, B. Sugla et. al.

provisioning view of a service and a provisioning core that uses distributed service
agents. The service definitions can be used by the other ass components to
correlate information to provide complete device-to-service-to-subscriber
diagnostics for faults, performance degradations, and accounting.

With respect to related work, the representation of services has been explored in
[1], [2]. Several approaches for provisioning services such as service object-based
approach [3], profile-based service provisioning [4] and model-based configuration
[5] have been looked at. This work undertakes a comprehensive provisioning
architecture for multiple IP services in the context of the current challenges faced by
service providers. While the notion of distributed service agents is not new, the
contribution of this work is to show how the use of a distributed architecture and an
effective decoupling of service definitions and the provisioning core can address the
current challenges ofIP service provisioning.

2. ISSUES IN PROVISIONING

A provisioning system provisions services on the service infrastructure of a
service provider. The service infrastructure includes devices such as web servers,
email servers, AAA servers, firewalls and routers. Services may be server-based
services such as web hosting or network-based services such as VPNs. The
architecture for a provisioning system should support mUltiple services on a single
platform and the easy addition of new services on the same platform. It should be
possible to modifY the implementation of a service without affecting other services,
compose existing services into new ones as in combining an authorization service
(from a AAA server), a DNS service, and the provisioning of a web server into a
web service. It should also support multi-vendor solutions. A provisioning system
should easily interface with other ass components. The provisioning system forms
a key component of a modem ass by providing the models of a service that should
follow well-structured definitions that other ass components can decipher. IP
services such as VPNs may span the domains of multiple providers. The
provisioning system for the service provider that accepts service requests should be
able to negotiate with the provisioning systems of other service providers, under the
agreements they have between them. The provisioning of a service may also require
calls to legacy or proprietary systems. The system should be scalable in the number
of simultaneous users of the system, the throughput of service requests, the number
of supported service infrastructure elements such as routers, and the number of
subscribers and services. The provisioning system should also enable transaction
support for service requests by rolling back changes to a device if any part of the
service request fails. However, the service provider may still want control over the
rollbacks and hence it cannot be hard-coded into the system.

3. PROVISIONING SYSTEM ARCHITECTURE

Our architecture is separated into a provisioning core that is responsible for
handling service requests and service definitions that model the provisioning view of
services. The provisioning core interprets service definitions to provision requests

An Architecture for Provisioning IP Services in an OSS 457

for services. A service may be as complex as an MPLS VPN service or it may be a
component of a complex service such as the configuration of an edge router or it
may be an operational service such as sending email.

The provisioning core is a distributed framework for provisioning. It consists of
entities called service agents. Each service agent is a provider of one or more
services and accepts requests for provisioning these services. A service agent may,
in turn, send requests for services to other service agents. Service agents register
with a registry to advertise their identity, the services they are providing, and any
distinguishing characteristics about the services provided. Depending on the needs
of the service provider, there may be several provisioning systems, each composed
of a set of service agents, for offering several services. Service agents may be
deployed at different locations. For instance, a service agent at the Network
Operation Center may request a service agent at a customer premise location to
provision the customer's firewall. The communication between the service agents is
secure and can traverse firewalls. Communication is asynchronous so that requesting
service agents are not blocked until requests are provisioned.

Each service agent exports a set of interfaces for the services it provides. Each
interface consists of: (1) a service-independent part containing the type of request
(add/delete/edit), subscriber information etc. and (2) a service-dependent part
(described below) containing the service parameters that have to be provisioned for
the service. Recent industry efforts such as OSSJ [6] can be used for the service
independent part of the interfaces.

Service definitions model the provisioning view of a service by defining its data
and process models. The three major components of a service definition are: (1)
Service parameters capture the data that comes as part of a service order for that
service. Some parameters for a VPN service are the VPN Identifier, the end points
of the VPN, and the requested bandwidth. (2) Process model captures the
decomposition of a service request into requests for sub-services that are provided
by other service agents or the invocation of a software module for the allocation of
system resources such as IP addresses. In addition, the process model specifies the
transactional semantics for the service: what actions need to take place in the event
of a failure returned by the invocation of a sub-service. (3) Service Instance is the
information that needs to be stored in a service inventory for a service request after
it is provisioned. It includes service parameter values and is associated with the
subscriber for whom the service is provisioned.

After receipt of a service request, it is translated into requests for sub-services as
specified by the process model. Replies from these sub-requests need to be managed
and rollbacks specified by the transactional model may need to be invoked. After
completion of this process, a service instance may be created in the service
inventory. A workflow engine may be needed to manage the process model if the
services provided by the service agent are composed of sub-level services with
notions of transactions. Examples of this may be the IPSec VPN or MPLS VPN
services. If the services provided by the service agent are simpler, a call to a simple
routine may be sufficient.

The advantages of the proposed architecture are numerous. New services can be
added without changing the provisioning core. Existing service definitions may be

458 A. John, B. Sugla et. al.

customized or composed to form new services without changing the provisioning
core. The composition of services enables multi-vendor solutions to be supported
and enables external provisioning systems to be invoked as a sub-service. Calls to
proprietary or legacy systems from the process model of a service can be
accommodated. Scalability requirements on a parameter (such as users, network
devices) can be met through the distributed architecture where a group of service
agents can collectively provide a service. The group may act as a cluster where load
balancing over the parameter is done. Modifying the process model can
accommodate the need for customization of rollbacks in transactions.

A provisioning system incorporating the proposed architecture and based on the
J2EE specification is in place at DSET Corp. The provisioning core has been
implemented using java. Communication between the different service agents is
done through the Java Messaging System OMS). The agent and service interfaces
are represented using XML and the process model is represented using XSL. The
service and subscriber information is partitioned between an LDAP-based directory
and a relational database.

4. CONCLUSIONS

This paper discusses the issues in building a provisioning system for multiple IP
services in an OSS. It lays out an architecture based on service definitions that
model the provisioning view of services and a provisioning core that interprets the
service definitions to provision service requests. The paper highlights how a
flexible, extensible, and scalable architecture addresses many of the difficult issues
faced in building a provisioning system. Additionally, a service definition approach
helps other components in the OSS to infer service relationships between the
subscribers and service infrastructure. This enables the offer of an end-to-end OSS
architecture where faults and degradations from the devices flow into fault and
performance management systems that correlate information using the service
definitions to report affected subscribers and services.

REFERENCES

[1] Common Information Model (CIM). Core Model, DMTF, 1998.
[2] Serivce Level Management for Enterprise Networks. L. Lewis. Artech House,

ISBN 1-58053-016-8, 1999.
[3] Provisioning Voice Over Packet Networks: A Metadata Driven, Service Object

Based Approach. Jung Tjong, Prakash Bettadapur and Alexander Clemm. Proc. of
the 12th International Workshop on Distributed Systems: Operations and
Management DSOM'2001 France, Oct. 2001. Eds: O. Festor and A. Pras.

[4] Profile-based Subscriber Service Provisioning. F. Shen, A. Clemm. Proc. of the
8th Network Operations and Management Symposium, NOMS 2002, April 2002.

[5] Model-based Configuration ofVPNs. I. Luck, S. Vogel, H. Krumm. Proc. of the
8th Network Operations and Management Symposium, NOMS 2002, April 2002.

[6] OSSJ: Java Specification for Operations Support Systems. Sun Microsystems.

WIRELESS TERMINAL MANAGEMENT
ARCHITECTURES

R. State
The MADYNES Research Team, INRIA-LORIA, 615 Rue du Jardin Botanique, 54600 Villers
les-Nancy, France, Radu.State@loriafr

Abstract: The advent of multi-technology networks offering ubiquitous services
over advanced wireless network infrastructure demands an integrated
management approach. We address in this paper an integrated
management approach for wireless and mobile infrastructures by
analysing the particularities of this environment and proposing a
management architecture based on application based overlay networks.
Our approach proposes the integration of a management agent within
a service gateway as well as an additional notification support based
either on a peer to peer infrastructure or on the session initiation
protocol.

Key words: Terminal Management, OSGI, SyncML, Beyond 3G

1. INTRODUCTION

The advent of advanced wireless networks providing high quality multimedia
services to mobile users creates an important market for value added services
offered on top of these networks. Such services will be typically offered by service
providers to end-users. Service providers will interact with different network
operators in order to allow service deployment to be done efficiently over a large
geographic area. One important problem that service providers are facing is
concerned with the interaction with wireless network operators. The difficulty in this
interaction lies mainly in service management capabilities offered to the service
manager.

We address in this paper the management of future, next generation services.
These services will be provided to the end-user seamlessly and in a technology and

http://dx.doi.org/10.1007/978-0-387-35674-7_66

460 R.State

infrastructure transparent way. Nowadays, mobile users are bound to network
operators and have a limited choice of services to which they can subscribe. Most of
these services are dependent on the network operators to provide them. In most
cases, the management of new services is limited.

The challenge to provide ubiquitous services to users demands a new way to
manage the inherent dynamics.

2. CHALLENGES FOR TERMINAL
MANAGEMENT

Although, management architectures have been widely developed for the
management of fixed infrastructure network elements, the advent of personalized
wireless technology demands the extension of the management towards a new
dimension. This new dimension is given by several factors: We have to manage low
resource type of equipment needing minimal software overhead for their
management.

The connection with these devices will be done wireless, over unreliable links across
several management domains. Roaming from within foreign access networks
demands access to management agents across one or several domains. Such a
situation is rarely encountered in current network management, where the
connectivity network to the agent is within the same administrative domain.

The managed entities will not be always online. Due to coverage factors, equipment
battery power and its user behavior, management actions should be performed
asynchronously.

The network connectivity towards the terminal will be done over heterogeneous
links. While current practical management solutions assume an SNMP over IP
communication, the range of wireless access protocols 0N AP: Wireless Access
Protocol), GPRS [1] (General Packet Radio Service, where incoming connections to
a terminal are not possible), HTML or even SMS (Short Message Service) demands
a versatile communication paradigm to work over these technologies. There are a
large variety of terminal related technologies. These multiple technologies are due to
the converged usage of multiple access networks envisaged in the beyond 3G
proposals where multimode terminals have support for WLAN/GPRSIDVB or
subsets of this set, and services are delivered based on the coverage, service
accessibility or desired service levels, but also to a personalized service environment
where multiple devices cooperate in order to provide a global service to a user.

On a higher level, service and application level management are more. important,
since in a first phase most new functionalities will be application related. Early
attempts have already started with ringing tones that can be downloaded by users
and next steps could go more further. For instance, in a car, new software for the
injection control could be upgraded. Terminal management would allow easier
service management and hence facilitate the introduction of new attractive services.

WIRELESS TERMINAL MANAGEMENT ARCHITECTURES 461

3. MANAGEMENT ARCHITECTURE

While current terminal software architectures can vary considerably and are mostly
vendor specific, we consider a management architecture as described next (see
Figure I), as a common minimal requirement. The environment on which services
are dynamically deployed is an Open Service Gateway Initiative [2] framework.
This framework allows a service to deliver services to a local network. Services are
implemented in Java and encapsulated in software packages called bundles.
Although, the initial framework was designed with the target scenario of service
providers providing services to residential gateways, the low resources required to
run the framework make it a candidate to be use on a wide range of J2ME (Java
Micro-edition) devices like portable phones, and to more powerful targets like for
instance embedded computers in vehicles or homes.

OSGI Service Gateway

Agent Management
bundle

I

SIP
User

Agent or
P2P

Managamr servlet

module SyncMl
SyncMl server agent

dient agent / 1 1 SyncML SyncML riI
adaptor adaptor

Transport : HTTP. WAP e1c... I
Management Agent Manag&ment Platfonn

Figure 1. Management architecture

The framework uses a service registry, where bundles can locate needed services,
and where each service can be associated to a set of properties. Events are generated
whenever a service is registered, unregistered, started, stopped, or when some of its
properties are changes. This mechanism allows building a management bundle
responsible to manage the rest of the bundles relatively easy. Such a bundle relies
on the framework to monitor the life cycles and changes in other bundles properties.
It can be also used to change these properties. For our management purposes we
require two special bundles to run in the framework. The first one is a management
agent responsible for managing the OSGI framework, the second one is a SyncML
client agent bundle, responsible for providing a communication stack to the
management bundle.

The SyncML language is based on XML, and provides a synchronization protocol,
as well as a device management protocol [3] and a set of device level standardized

462 R.State

managed objects. Several characteristics make it a good choice for a management
protocol. Firstly it was conceived with small footprint devices in mind and transport
over different protocols (IP, HTTP, W AP, Bluetooth, SMTP) is possible. Secondly,
most terminals will have a SyncML engine for synchronizing e-mail boxes,
calendars etc. Therefore, it is natural to reuse this engine for the management plane.
Thirdly, a synchronization protocol is well adapted to communicate with equipment
being offline relatively often. If SyncML was initially designed for the
configuration of devices, its extension towards OSGI type of service management is
relatively straightforward. From a management point of view we need an agent
capable of coping with a dynamic MIB.

The communication between the management bundle and a management application
comprises a regular datapath for the management information and an additional
notification support. The main objective of this notification support is to allow the
management application to contact the agent and notify the latter that it must be
managed. This notification should be capable to deal with dynamic addresses of the
agent and with firewalls blocking management traffic. Two potential solutions for
such a notification support are proposed: the first one uses a peer-to-peer
infrastructure and the second one is based on SIP.

The Agent Management Bundle is responsible for the management instrumentation
of the service gateway. Its design is conceptually similar to the dynamic MIB agent
proposed in [5]. This bundle is capable to receive a XML encoded MIB of a bundle,
store it in its MIB and perform management operations based on this MIB. This
approach is an extension to the standard usage of SyncML where only simple device
management is proposed. The extension concerns the usage to service configuration.
The agent is responsible to dynamically build the bundle MID for bundles that are
installed or configured otherwise than through the agent.

4. REFERENCES

[1] C. Andersson. "GPRS and 3G wireless applications". Wiley, 2001 Publishing.
1999.

[2] OSGI Service Platform Release 2. The Open Service Gateway Initiative
www.osgLorg.

[3] SyncML Device Management Protocol v1.1. SyncML forum.
www.syncml.org.

[4] H. Handley, H. Shulzerinne, E. Schooler and J. Rosenberg. "SIP: seSSlOn
initation protocol". IETF (Proposed standard) 2543, March 1999.

[5] A. John, K. Vandween, B. Sugla. "XNAMI -An extensible XML Paradigm for
Network and Application Management Instrumentation". Proc 10 tho
International workshop on Distributed Systems: Operations and Management
DSOM' 1999 Zurich, Switzerland

A SCALABLE AND EFFICIENT INTER-DOMAIN
QOS ROUTING ARCHITECTURE FOR DIFFSERV
NETWORKSl

Haci A. Mantar', Junseok Hwang+, Steve J. Chapin', Ibrahim Okumus'
·L. C. Smith College of Engineering and Computer Science
+SchoolofInformation Studies, Syracuse University
{hamantar, jshwang,iokumus}@fyr.edu, chapin@ecs.syr.edu

Abstract: With Bandwidth Broker (BB) support in each domain, Differentiated Services
(Diffserv) is seen as a key technology for achieving QoS guarantees in a
scalable, efficient, and deployable manner in the Internet. In this paper we
present a Route Server (RS) architecture that is compatible with the BB model
for inter-domain QoS routing. The RS is responsible for determining QoS routes
on behalf of all the routers and for exchanging routing information with its
neighboring peers. It optimizes network resources by taking the intra-domain
resource utilization state into account for selecting a route. It also achieves
scalability by pre-computing a limited number of paths for each destination
region and mapping all the packets to one of these paths regardless of their
sources.

Key words: Bandwidth Broker (BB), Inter-domain QoS Routing, Route Server.

1. INTRODUCTION

Providing end-to-end QoS in a multi-domain environment is a very complex
problem. Each domain is under different administration so that QoS policies and
services in one domain might be significantly different from those in other domains
[1,4,5]. A domain administration has control only of its own domain resources and
discloses very restricted information about its internal network to others (e.g.,
competitors).

Recently, many studies [1,3-9] have addressed the important role of central
servers for controlling access and managing resources in a domain. A well-recognized
central server is a Bandwidth Broker (BB) [1]. The idea behind the BB model. is to
provide Intserv-type end-to-end quantitative QoS guarantees in Diffserv-enabled
networks without per-flow state in the network core. With such a scheme, control
functionalities such as policy control, admission control, and resource reservation are
decoupled from routers into the BB and therefore the BB makes policy access and

IThis work is supported by the National Science Foundation under grant ANI-0123939

http://dx.doi.org/10.1007/978-0-387-35674-7_66

464 Haci A. Mantar, Junseok Hwang, Steve J. Chapin, Ibrahim Okumus

increases the scalability of scalable as well as the likelihood of the deployment ofQoS
because of the minimum changes required in network infrastructure, and
simplification of accounting and billing. Similarly, the IETF proposed COPS, where
a Policy Decision Point performs tasks similar to those of a BB. In this sense, the BB
supported Diffserv model is realized to be a key technology by many researchers [1,3-
9] for making end-to-end QoS possible across multi-domains networks.

Having said all this, the BB-supported Diffserv model still has the following open
issues: 1) how to get dynamic link states without signaling with routers; 2) how to
assure quantitative QoS guarantees with no reservation in core routers; 3) how to get
QoS and cost information about the networks beyond its domain (e.g., which provider
it should choose for border-crossing traffic); 4) how to perform service mapping in the
inter-connection points; 5) how to manage its domain resources efficiently; 6) how to
communicate and reserve resources with neighboring BB for border-crossing traffic;
7) how to achieve inter-domain scalability (signaling between BB and state in border
routers). In our previous work [3,6,7], we presented solutions for problems 6 and 7.
The concept of this paper is a base for the solution of problems 1-5.

We propose a route server (RS) architecture that works in conjunction with a BB
reservation model (independently BGP-4) and makes scalable and efficient QoS
routing possible in a multi-domain, multi-policy, multi-technology environment with
restricted routing information. In particular, we define two central routing entities
called Exterior Route Server (eRS) and interior Route Server (iRS) as main
components of a BB (Figure 1). The eRS is mainly responsible for routing
information distribution between domains and path computation and selection at a
high level. The iRS maintains intra-domain QoS information and presents to the eRS
in a simplified fashion. At run time the BB uses both iRS and eRS databases to
perform admission control without invoking routing protocol and interaction nodes
along the path.

2. DIFFSERV ROUTE SERVER ARCHITECTURE

2.1 Assumptions and Definitions

As shown in Figure 1, our BB architecture comprises three main components: the
Exterior Route Server (eRS), the Interior Route Server (iRS), and the Reservation
Module (RM). Before going into more detail on these components, we make the
following definitions.
Service level agreement (SLA): We assume that domains have bilateral SLAs with
their adjacent neighbors, which can act as both customer and provider.
Destination region: Due to signaling and state scalability problems with per-flow
routing schemes, a destination region (destID) in RS represents a domain, a network,
or a set of points identified by CIDR (IPv4/X whereX<32).
Point-to-Destination Services (descserv) specifies the upper bounds of QoS
constraints (such as delay, loss ratio) that identifiable traffic will be experienced from
ingress point of the provider domain to the final destination region, regardless of the
network utilization. Each domain assumed to have limited numbers of pre-defined
(see next section) desCserv for each destination region and all incoming traffic is
mapped to one of these desCserv.
Edge-to-Edge QoS Class defines upper bounds of QoS constraints that identifiable
traffic will experience from the ingress nodes to the egress nodes of a domain,

A Scalable and Efficient Inter-Domain QoS Routing Architecture for diffserv networks 465

regardless of network utilization. Conceptually, this is very similar to Per-domain
behavior (PDB) defined in [2]. (From now on, the terms "edge-to-edge QoS" and
"PDB" will be used interchangeably.) Following [2], we assume each domain has
limited number ofPDBs.
Inter-domain routing information is solely maintained by the eRS of each domain,
independently of BGP-4. As shown in Figure 1, each eRS communicates and
exchanges routing information with its peers via the same TCP session that is already
established between BBs for resource reservation (see SIBBS [3] for detail). A routing
information message basically includes destID, and desCserv, <destID, descserv>.
For a destID, there might be multiple paths, each of which represents a different
desCserv. A descserv includes the service ID (servID) and the cost of the service in
addition to QoS parameters.
Maintenance of intra-domain network state: The iRS acts as a link state protocol
peer with the nodes in the network and gets link state data as part of the protocol
operation. As shown in Figure 1, each node sends its state directly to the iRS instead
of flooding it to all the nodes in the domain.

! . SlBBS

//(r' .. ---"--,
: ,----

{
\
:

:------------BB------------:

i I
Adjacenl eRS Adjacent eRS

SLA&POlicy
information

•••• j, •••
rL---L, Destination

: '-- Services

L..----=' __ j \\ t==ld.=S=Ls=.'=V):::: __ _ ___"'====:::j
j

Fig.I. Diffserv QoS Architecture Fig.2: Functional decomposition of eRS

2.2 Overview

Based on the above assumptions and definitions, the RS model can be briefly
described as follows: the iRS dynamically receives link utilization state from each
node, computes the cost and available bandwidth (BW) of pre-established paths
between each ingress-egress pair and then maintains this information in the abstracted
edge-to-edge database (Figure 2). The eRS performs inter-domain route selection for
each <destID, descserv> among the routes received from its peers by taking intra
domain network utilization into account. Note that the available BW in a route is not
directly taken into account in route selection and it is not included in route
advertisement. It is explicitly not the task of an eRS to locate routes that are
guaranteed to have resources available at the time of route advertisement. This is
motivated by the fact that even if available BW is included in route advertisements, it
is not guaranteed to have available BW at the time of reservation because of dynamic
network conditions.

Note that neither the iRS nor eRS algorithms affect existing reservations. They can
be considered as modules that work in the background and maintain the databases as

466 Haci A. Mantar, Junseok Hwang, Steve J. Chapin, Ibrahim Okumus

shown in Figure 2. In other words, they are not triggered by individual reservation
requests. When a BB needs to make a reservation, it checks the abstracted edge-to
edge QoS database maintained by the iRS for the intra-domain admissibility test and
RIB maintained by the eRS for selecting the next BB.

2.3 Edge-to-Edge QoS Routing Model

Quantitative Per Hop Behavior (PHB): We assume that each PHB is assigned to a
certain share oflink capacity and that each PHB can use only its share, no preemption.
The surplus capacity of a PHB can only be used by best-effort traffic. With the
exception of EF [1], all PHBs in Diffserv context define relative QoS assurance. To
have quantitative QoS guarantees in a scalable manner, we associate an upper delay
bound d, loss ratio bound I, and cost, <d, I, cost> to each PHB (e.g.
d < 3ms ,I < 10 -2). It is assumed that d and 1 are pre-determined at the stage of
network dimensioning (configuration) [2,3,9], which is done over long time intervals
(e.g., days, weeks). The cost is dynamically changed with link utilization.
PDB (edge-to-edge QoS) and Path: Similarly to PHB, PDBs are determined at the
stage of network dimensioning [2,3,9]. A PDB is expressed by the sum of PHB
constraints of all the nodes along the path. In offline, the iRS establishes a path
between each ingress-egress pair, one for each PDB. Here, the path can be an MPLS
tunnel or any other existing scheme. A path, in tum, a PDB is associated with delay
bound D, loss ratio bound L, and cost value COST, <D, L, COST>.

Because of the scalability problem, it is clearly recommended that both PHB and
PDB QoS constraints, for guaranteed services, be independent of network utilization
[2]. To achieve this in a scalable manner, we introduce a self-adaptive per-node
provisioning algorithm. The iRS installs PHB parameters (d, l) in each node. The
algorithm, in each node, then dynamically monitors each PHB queue size and adjusts
the scheduler rate and the buffer size for each PHB to meet pre-defined PHB
constraints with respect to the traffic rate. It also calculates the current available BW
and cost and sends them to the iRS. So, there is no need for a signaling scheme that
configures each node along the path when a new reservation is granted. Due to
communication overhead and the scalability concerns, we use a threshold-based
triggering [4] of link state updates, where a new update is sent when the change in
cost since the last update exceeds some predetermined threshold. By having the cost
and available BW of each PHB in each node, the iRS dynamically computes the
available BW and cost of each path (PDB) and stores this information in the edge-to
edge QoS database. Here, the cost is used by the eRS for route selection and the
available BW is used by the BB for resource reservation. Although an iRS has
detailed knowledge of its domain, it represents the domain in an abstract fashion to an
eRS. The eRS sees the domain as if it consists only of border routers.

2.4 eRS Route Selection Algorithm

The eRS route selection algorithm is based on three main components, PDBs and
their cost, destination services (desCserv) , and the route received from peers. As
mentioned before, from the eRS point of view, PDBs and desCserv can be considered
as static components (modified at the stage of network dimensioning). The cost of
PDBs and the route received from peers are dynamically changed with the network
conditions. An eRS may have multiple peers from just a few up to hundreds, and each

A Scalable and Efficient Inter-Domain QoS Routing Architecture for diffierv networks 467

of them can be potential customers and providers. Upon receiving a route from its
peer(s), it performs the following algorithm:

• Discard all the routes that failed in policy and SLA checks.
• Add PDBs to each desCserv(n) received from peers, and compare with

desCserv(I). All the results that satisfy desCserv(1)'s requirements are
selected as candidate routes.

• Store all candidate routes in RIB in the order of increasing cost, and send
least costly one to peers.

• Repeat steps 2-3 for each descserv(n) (1,2 ... n).

2.5 Resource Reservation

By having the up-to-date intra-domain network state (available BW in each path)
in edge-to-edge database and inter-domain routes in eRS's RIB, the resource
reservation is very simple and straightforward. Upon receiving a resource reservation
request (RAA), the BB first queries the eRS's RIB for possible next BB, which
supports the given QoS requirements, and the associated egress router. It then queries
the edge-to-edge QoS database for intra-domain resource availability. If both of the
queries succeed, it sends RAR to next BB (see 3, 6 and 7 for details). It does not have
to check individual links in its domain. Also, since the route in RIB has the cost
associated with it, it chooses the least costly one among multiple possible routes.

3. CONCLUSION

In this paper we have presented a Route Server (RS) architecture that is compatible
with the BB model for QoS routing. We addressed the role ofRS in solving complex
inter-domain routing in a scalable and efficient fashion. In particular, we first showed
that how a Diffserv domain can provide quantitative QoS guarantees across its cloud
and how a dynamic network state can be maintained in a scalable way. We also
presented an inter-domain scheme that provides QoS route information to a possible
destination region by taking inter-domain policies into account. Finally, we briefly
describe the effeteness of RS in reservation state. In our future work we integrate RS
with our existing inter-domain BB implementation.

References:
[1] K. Nichols et al. "A Two-bit Differentiated Services Architecture for the Internet" rfc2638
[2]
[3]

[4]
[5]
[6]
[7]

[8]
[9]

K.Nichols, B. Carpenter "Definition of Differentiated Services Per Domain Behaviors" RFC 3086
QBone Signaling Design Team, "Simple Inter-domain Bandwidth Broker Signaling (SIBBS)",
http://qbone.internet2.edu/bb/
G. Apostolopoulos et al. "Server Based QoS Routing", Globecomm'99, Rio de Janeiro, Brazil
P. Aukia et al. "RATES: A server for MPLS Traffic Engineering", IEEE network magazine, 2000
H. Mantar, et al. "Inter-domain Resource Reservation via Third-Party Agent", SC 2001
I. Okumus, J.Hwang, H. Mantar, S.Chapin, "Inter-domain LSP Setup Using Bandwidth
Management Points", Globalcom 2001
P. Auki et al. "RATES: A server for MPLS Traffic Engineering", IEEE network magazine, 2000
P. Trimintzios et al.."An Architecture for Providing QoS in Differentiated Services" IM2001

SOFTWARE DISTRIBUTION FOR WIRELESS
DEVICES
A reconfigurable approach

Griiinne Foley and Fergus O'Reilly
Cork Institute a/Technology, Bishopstown, Cork, Ireland

Abstract: The dramatic rate of evolution and technology divergence from 2G to 3G and
onwards broadens requirements for interoperability across software systems
and wireless devices. These should interoperate seamlessly, transparent to
users, who need only concern themselves with the final result. The challenge
of providing transparent and reconfigurable content to wireless devices is
addressed in this paper.

Key words: Wireless networks, Software distribution, Reprograrnmable wireless devices

1. INTRODUCTION

Currently most European countries offer GSM and GPRS networks. Roaming on
the GSM network is widespread and popular through a series of cooperating
standards and agreements. The same system does not operate worldwide. In order to
bridge the gaps and advance wireless telecommunications, 3n1 generation (3G)
networks were envisaged [1]. These networks require changes in network structure,
user devices - hardware and software implementations. With the continued rapid
development and rollout of wireless IP infrastructures and devices, the rate of
obsolescence of user equipment is increasing dramatically. Currently 25% of
handsets are replaced annually [2]. This trend will accelerate as new network
architectures and technologies are introduced. Maturing these technologies will
require many iterations and releases of software and hardware.

A system for software and device independence is explored here using Java.
Java provides platform independence and is ideally suited to software delivery to
divergent wireless devices over differing networks. It is predicted that Java will be
present in 74% of wireless phones shipped in 2007 [3]. Java is implemented in the
Services Archive (see below), making the solution presented Java end-to-end.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

470 Grainne Foley and Fergus O'Reilly

2. SERVICES ARCHIVE ARCHITECTURE

The Heterogeneous Services Archive illustrated in Figure 1 manages the
distribution of software and firmware/hardware updates to wireless devices.

Figure 1. Heterogeneous Service Archive Architecture

User services may be device-activated, on a user service requirement basis, or
network-activated, facilitating operators, manufacturers and service providers [4].
Thus, the mobile device must be able to support dynamic service downloading
facilities, in addition to service execution. Two Java platforms are employed, the
Java 2 Enterprise Edition (J2EE) in the Services Archive and the Java 2 Micro
Edition (J2ME) on the wireless device [5].

3. WIRELESS DEVICE ARCmTECTURE

J2ME provides a hardware independent platform designed for limited memory
footprint devices. It does this using the Connected Limited Device Configuration
(CLDC) and the Mobile Information Device Profile (MIDP) [5], which respectively
provide virtual machine features needed to support wireless mobile devices; and
networking, user interface, persistent storage and application APls. Code for the
MIDP and CLDP resides in a vendor-customed Kilobyte Virtual Machine (KVM). It
is suitable for devices with 16/32-bit RISC/CISC microprocessors/controllers, with
as little as 512 KB of total memory available. The J2ME wireless device has a four
component architecture:
a) Management Component: Managing software and hardware components.
b) Services Component: Controls the execution of MIDP applications - MIDlets. A

MIDlet, or a suite, is packaged in a Java Archive file (JAR) containing code and
other resources. There may be many MIDlet suites on a wireless device.

c) Persistent Memory Component: For application and versioning data.
d) Hardware Component: Implemented using an Adaptive Computing Machine

(ACM) [6]. The ACM provides advantages over other hardware technologies
(DSP, ASIC and FPGA) enabling dynamic fast reconfiguration of evolving
algorithms and standards without concerns of untimely obsolescence [7].

Software Distribution for Wireless Devices 411

4. WIRELESS DEVICE UPDATES

Software updates are largely catered for within the J2ME specification. Updates
to the underlying hardware are delivered from the Services Archive to the wireless
device, Figure 2. Suitability is firstly verified by downloading a Java descriptor file.

Services Wireless Services Management ACM
.Archive Device Component Component

Javt D escriptar file
(]1ID) ..

po JADfile Suitable? ...
... JNO-end

GttJAR "'ll!l) -get JAR

JARfile

Emactnsoum

Bin81Yfile Verify

OK-inrull
!OK-end

Binuyfile
r

Itlsttll

Figure 2. Hardware updates sequence diagram

The services component extracts an ACM resource (binary) from a JAR file. The
management component then checks and installs the file, an MPEG-4 update for
example. This mechanism requires operating system support and interaction but
makes extendible, reconfigurable component based mobile devices a reality.

5. Y..:EMORY AND PERFORMANCE EVALUATION

The MIDP specifies 32KB of run time memory for all Java applications. The
statistics shown in Table 1 use the J2ME reference implementation.

Table 1. Execution statistics for MIDlet suites (bytes)
MIDlet Suite Details JAR file Executed

MyFileClient
Animation
WTKDemo

Connect server, get file
Series- PNG images
Show system properties

size byte codes
3,266 120,182

12,690 336,718
144,445 276,502

Dynamic
Objects

43,664
64,488
93,368

Heap
Used
35,020
36,080
32,608

The JAR file is highly compressed for efficient delivery. It swells significantly at
run time indicating that even very small suites may use considerable amount of

472 Grainne Foley and Fergus O'Reilly

memory. The amount of heap used for one MIDlet execution already exceeds 32KB
in two cases. While manufacturers can optimize memory usage, they are already
targeting total heap sizes in excess of 32KB. The Motorola iDEN phones specify a
maximum JAR size of 50KB for one MIDlet suite, while the Nokia 3410 specifies
30KB.

Table 2. Typical download times for MIDlet suites with GPRS and UMTS
MIDlet Name Function Size Transfer Time

Nokia Tester For testing Nokia phone features
Crossword Solver Crossword puzzle solver
Live Weather Graphical current weather
SoccerLeague
Uemail

Online multiplayer soccer
Mail for J2ME and WAP clients

* GPRS two channels - 26.8kbps

(KB) GPRS* UMTSA
SKB 0.19 see o.OS see
6KB

2SKB
88KB

0.23 see
0.94 see
3.3 see

0.06 see
0.2S sec
0.88 see

164KB 6.2 see 1.64 see
A UMTS at likely 100kpbs throughput

From Table 2 we can see limits in Over-The-Air capacity may not significantly
limit MIDlet suite size and functionality. If roaming from 3G to GPRS, performance
rates are still reasonable. This is important, as JAR sizes will increase to deliver new
services to devices.

6. CONCLUSIONS

In this paper we examined an overall architecture to provide transparent and
reconfigurable content to wireless devices. The Services Archive manages the
distribution of services activated from the network or from the device itself. The
wireless device employs Java as a delivery mechanism for updates to software and
firmware/hardware. Wireless devices, reconfigurable OT A, become more flexible
and robust in a rapidly changing personal communications environment. This
reduces the cost of technology evolution, an important consideration given the
significant concerns over 3G-rollout expenditure [8].

REFERENCES

1. J. De Vriendt, P. Laine, C. Lerouge, X. Xiaofang, "Mobile Network Evolution: A
Revolution on the Move," IEEE Communications, Apr. 2002, pp 104-111

2. Nokia CEO, Jorma Ollila at Year End Strategy Update, December 3, 2002 Dallas Texas
3. Zelos Group Report "Wireless Java (Sept. 2002)" http://www.zelosgroup.com
4. Farnham, T., Clemo, et al .. , 'Reconfiguration of Future Mobile Terminals using Software

Download', 1ST Mobile Communications Summit 2000. pp.159- 168
5. J2EE and J2MB at http://java.sun.com/. Specifications at http://jcp.org/
6. Tuttlebee, W. (Ed.), Software Defined Radio Enabling Technologies, J Wiley & Sons Ltd,

Chichester, England, 2002, pp. 272 - 288
7. Bing, B., Jayant, N. "A Cellphone for all Standards," IEEE Spectrum, May 2002, pp 34-39
8. "Ericsson sends shock waves across sector" Financial Times, 221412002

VPDC: VIRTUAL PRIVATE DATA CENTER
A Flexible and Rapid Workload-Management System

Mineyoshi Masuda, Yutaka Yoshimura, Toshiaki Tarui, Torn Shonai, and Mamorn Sugie
Hitachi, Ltd., Central Research Laboratory

Abstract: Rapid server allocation implemented on Virtual Private Data Center (VPDC),
which is an autonomous server allocation system for a three-tier web system,
has been developed and tested. The test results show that with this new system
elapsed time for application server allocation is about 20 seconds, and that for
database server allocation is 140 seconds.

Key words: autonomous, server, allocation, rapid

1. INTRODUCTION

Autonomous server-resource management[I][2] is one of the key technologies for
current information systems. Server resource management allocates or de-allocates
servers in response to fluctuations of system workload. This technology can
maintain adequate system capacity; thus, cost performance improves especially in
the case of a web transaction system, in which system workload fluctuates
frequently.

Adaptive server allocation is one of the key issues concerning easy managements
of complex systems. Furthermore, rapid server allocation is another important issue.
In particular, rapid server allocation for server-resource management has two
advantages:
(1) adaptation to "Slash Dot Effect" (a phenomenon in which a web system

receives tens times more accesses than usual in a short time) ,
(2) improvement in server utilization (because of reduction in extra server

resources which act as a "buffer") .
Focusing on a rapid sever allocation, we have developed Virtual Private Data

Center (VPDC), an autonomous management system for a three-tier web system.
The present study showed that the rapid server allocation implemented on this
VPDC system is effective.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

474 Mineyoshi Masuda, Yutaka Yoshimura et aI.,

2. RAPID SERVER ALLOCATION

System Overview
VPDC is a hosting utility in a

data center; it manages several
customer systems hosted in a
server farm. Figure. 1 shows an
overview of the VPDC
management system. It is
composed of a single control server
and agents working on each server

Control Server

Control
Proglllm

Workload
Monitoring

VPDC
Agent

Send start-up/shutdown

Load Balancer

Fig. 1 VPDC management system

(Le., on both allocated and spare servers). The system has three main functions.
1. Monitoring: The agents on all allocated server periodically obtain load

information about a server (i.e., CPU, network, disk utilizations, etc) and the
control server gathers them.

2. Decision making: The control server analyzes load information in accordance
with a predefined allocation policy for each customer and makes server
allocationldeallocation decisions.

3. Action: The agent receives a set of commands for start/stop application, and
then the control server changes the configuration of a load balance group.

Implementation
For rapid server allocation,

the following two approaches
are implemented on the VPDC.
(l) Cutting out data copy

Apps boot

Figure.2 shows typical and Fig.2 VPDC rapid server allocation parts

VPDC server allocation sequences (the length of each rectangle means a time
cost). In the first and the third parts in the typical server allocation [shown in
Fig.2 (a)], data copy to a local server takes a long time (several minutes). In
VPDC server allocation, such data copying is cut out by the following methods.

OS installation is not executed during a server allocation time. OS is pre
installed, and for the purpose of security maintenance, the OS is initialized
during a server deallocation time.
Shared file server is used for deploying application programs.

The VPDC server allocation parts are shown in Figure.2 (b). The total server
allocation time is considerably shortened and the application program start-up time
dominates.
(2) Eager allocation and lazy deallocation

The control server makes the decision to allocate servers as soon as it detects the
signs of a slash-dot effect. This policy might make mistakes if, for example, the
workload returns to a normal level in a short period. However, this policy is adapted,
since VPDC gives preference to avoiding late server allocation in the case of the
slash-dot effect. In contrast, to prevent repeated server allocation and deallocation in
a ping-pong fashion, a server deallocation decision is made only after the workload
has stayed low for a certain time.

VPDC: Virtual Private Data Center

3. EVALUATION

Prototype System
Figure.3 shows the

construction of the VPDC
prototype. The NFS server
provides application
programs and contents
data. The VPDC agent
software has been
developed as a SNMP
agent to which VPDC
specific MIB modules are
installed. Agents run on
all servers including spare Fig.3 VPDC prototype

475

servers. Apache runs on the web servers, Tomcat with a hand-maid session handover
runs on the AP servers, and Oracle Parallel Server (OPS) runs on the DB servers.

Results
Experiments on the VPDC prototype are performed to confirm the effectiveness

of VPDC rapid server allocation. The test program running on the prototype is a
subset of TPC-W[3]. System workload is increased in order to load the DB and AP
servers so that server allocations are triggered.

Figure.4 shows relative amount of accesses to the prototype, average response
time measured on a client, CPU utilization of allocated servers, and elapsed time for
server allocation per layer. Each vertical line means an event time such as a server
allocation. These results show that elapsed time for the AP server allocation is about
20 seconds. This is because the control server takes 10-15 seconds to detect the sign
of the slash-dot effect. On the other hand, the time for the DB server allocation is
about 140 seconds. This is because DB application initialization takes a long period
before the DB server is ready to receive requests. After the DB-layer bottleneck is
removed, the AP-Iayer is able to send a larger amount of requests to the DB-layer.
Thus, the control server allocates server AP#2.

4. CONCLUSION

A rapid server allocation implemented on VPDC was developed and evaluated.
Due to server allocation without a disk copy, in the application layer, VPDC
improves the site's response time to within approximately 20 seconds after the start
of the slash-dot effect. Workload management of the DB layer improves the site's
response time to within 140 seconds. Elapsed time for the AP server is rapid enough,
but that of the DB server is rather slow because of the start-up time of the DB
application.

476 Mineyoshi Masuda, Yutaka Yoshimura et aI.,

-Mb.1

-

I ••••••. DBt2

.. f----l---t--+I/-'-',;-:;l,14-I\A;HJU----'-'--V

..

Fig. 4 Relationship between workload, response time, and server utilization

ACKNOWLEDGEMENTS

We would like to thank all the people who supported the VPDC development.

REFERENCES

[1] K. Appleby et al.: Oceano SLA Based Management of a Computing Utility, IEEE
[2] International Symposium on Integrated Network Management 2001, (2001)
[3] L.L. Fong et al.: Dynamic Resource Management in an eUtility, NOMS2002 (2002)

"TPC-W" http://www.tpc.org/tpcw/default.asp

X·CLI : CLI·BASED MANAGEMENT
ARCHITECTURE USING XML

Byung-Joon Lee, Taesang Choi and Taesoo Jeong
{bjlee,choits,tsjeongj@etri.re.kr, Internet Traffic Management Team, ETRI, Gajung-Dong,
Yusong-Gu, Daejeon, Republic of Korea

Abstract: As Internet technology becomes more complex, the policy information for
managing the Internet grows beyond the capability of a simple protocol like
SNMP. IETF suggested COPS as an alternative, but it has not been widely
accepted. For that reason, many administrators have developed network
management systems which control network devices using CLI, but systems
based on CLI have a maintenance problem: when the syntax of CLI changes,
the implementation of the system must be modified. In this paper, we suggest
X-CLI as a solution for this problem, and describe its design principles.

Key words: Network Management, CLI, XML, X-CLI, API

1. INTRODUCTION

Traditionally, SNMP has been a major management protocol for the IP network
because of its simplicity. But for the new technologies such as MPLS, VPN or QoS,
the policies for managing network have become too complex. IETF standardized
COPS to cope with that complexity, but it is not being widely accepted.

For that reason, systems implemented on CLI (Command Line Interface) of the
network devices are being widely used. Those systems translate a policy into a
sequence of CLI commands, and send those commands to the devices using the
TELNET protocol. However, those systems are dependent on the syntax of the CLI
command: the syntax change of the CLI commands results in the implementation
modification of the policy-to-CLI conversion logic.

In this paper, we suggest X-CLI (XML wrapper API for CLI) as an alternative to
SNMP, COPS, and traditional CLI-based solutions. It is based on the concept of
XML template which represents a group of CLI commands in a hierarchical manner.
The template is converted into the actual CLI commands, and sent to the network
devices by the X-CLI API interfaces.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

478 Byung-Joon Lee, Taesang Choi and Taesoo Jeong

2. XML TEMPLATE

The concept of 'XML template' corresponds to the concept of 'function' in
general programming languages like C/C++: it maps a set of CLI commands to
some specific configuration action. But the XML template differs from 'function'
because it exists as a file, and designed to be able to represent hierarchical
dependency, argument dependency and result dependency which are the basic
characteristics of the CLI commands of most of the current network devices [1] [2].

2.1 The Characteristics of CLI commands

Figure 1 shows the configuration steps for setting up an IBGP session between
PE routers for the dissemination of the route information in the VRF table.

(config)# router bgp 55555
(config-router)# address-family ipv4 vrfVRF-SEOUL
(config-router-af)# neighbor 203.255.25.15 remote-as 5555
(config-router-af)# neighbor 203.255.25.15 activate

Figure 1. BOP configuration steps for VPN at CISCO PE router

As shown in the figure, the CLI commands are executed in a hierarchical
manner. For example, the command "address-family ipv4 vrf VRF-SEOUL" cannot
be executed without the successful execution of the command "router bgp 55555."
We call this kind of behavior 'Hierarchical Dependency.'

In the command "router bgp 55555," the '55555' is the required argument of the
CLI command "router bgp <as-number>". Without the argument, the CLI command
cannot be executed. We call that kind of behavior 'Argument Dependency.'

As a result of a CLI command execution, one of the three following situations
can happen: (1) CLI execution error (2) request more input from the administrator
(3) successful execution. When (1) happens, most of the commands scheduled to be
given to the devices cannot be delivered. For case (2), every scheduled command
hangs until the additional input is given by the administrator. We name this kind of
conditional behavior 'Result Dependency.'

2.2 XML Representation of the CLI Commands

As shown in the example XML template of Figure 2, an XML template is the
hierarchy of the <cli><lcli> XML tags. A containment relationship between <cli>
tags represents a hierarchical dependency. Other kinds of the dependencies are
represented by the attributes of the <cli> tag.

The attribute 'command' has CLI command string as its value. To represent the
'argument dependency', the command string can contain formal argument names
which start with special character '$.' Parenthesis can be used with formal argument
names to specify the optional part of the CLI command. The thorough description of
the command string syntax can be found in [2].

X-CLI: CLI-based Management Architecture Using XML

<eli promptl="#- command="config termdnal N errorstr="AU>
<cli tag="bgpP pronptl="#"

command=Nrouter bgp $asnumN errorstr=NA">
<eli>

<cli tag="bgp2" promptl="#"
command="address-family ipv4 vrf $vrfname"
errorstr="" ">

<eli>
<cli tag="bgp3" prompt1="#"

command="neighbor $ipnl remote-as $nasnum"
errorstr=""'''>

</cli>
<cli tag="bgp4" promptl="#"

command="neighbor $ipn2 activate"
errorstr=""">

</cli>
</cli>
<cli pronptl="#" always="true" command="exit"></cli>

</cli>
</cli>
<eli promptl="#" always="true H command="exit"></cli>

</cli>
<eli prompt1="#" always="true" command="exitN></cli>

</cli>

Figure 2. XML template for Figure 1

479

The attribute 'errorstr' and 'always' express the result dependency. When a
reply of the network device contains the value of the attribute 'errorstr', it is
considered as an error. The attribute 'always' is a flag indicating that the eLI
command can be executed in spite of the execution failure of the previous eLI
command.

The attribute 'tag' is introduced for uniquely identifying <cli> tag. The prompt
attribute 'promptl' and 'prompt2' are needed to send a eLI command to the
network device using TELNET. A client starts sending a eLI command to the server
when the value of the attribute 'promptl' is received from the server, and stops
receiving replies from the server until the value of the attribute 'prompt2' is
received. If not specified, the value of the attribute 'prompt2' is the same as that of
'prompt!.'

A <cli> tag with no attribute is called a PAT (Pure Aggregation Tag). A PAT
specifies that the enclosed <cli> tags can be converted into actual eLI commands
repeatedly. The <cli> tags not enclosed by the PAT can only be converted once.

3. X-CLIAPI

X-CLI API is the interface for manipulating XML template. It provides
functionalities for loading an XML template, 'materializing' it, and sending it to the
network device. The 'materialization' is the process of converting an XML template
into a sequence of eLI commands.

After loaded into the memory by the X-eLI API, a template is translated into the
internal data structure of a tree topology. This tree is materialized by traversing it
with the arguments given by the X-eLI application programmer [2]. This process is
similar to the act of passing arguments to a function which generates some specific
control flow. The materialization result of the Figure 2 is shown in the Figure 3. The
arguments '55555,' 'VRF-A-Seoul,' '203.255.255.13,' '5555' and '203.255.255.13'
are delivered to the XML template in sequence.

480 Byung-Joon Lee, Taesang Choi and Taesoo Jeong

I contig tannlnal

Figure 3. Materialized result of Figure 2

The materialized commands are sent to the network device sequentially. When
an error happens, the failure branch target (depicted as an directed edge in Figure 3)
is taken. After the branch, only commands which have 'true' value for the attribute
'always' can be sent to the device.

X-CLI API is greatly enhanced recently for the device monitoring. The <cli> tag
is extended to express the monitoring actions, and the monitoring result is parsed
automatically by the X-CLI API [2]. This feature aids the programmers who want to
develop an application which monitors network device statistics using CLI.

4. CONCLUSION

X-CLI enhances the maintainability of the network management software by
eliminating a dependency on the syntax of the CLI command from the software. The
CLI syntax only exists in the XML templates. And besides, because the X-CLI API
uses TELNET as its communication protocol, it can be easily secured by the SSH
protocol. Adding support for the SSH to the X-CLI API can be easily done.

X-CLI API is being integrated with Wise<TE> [3], which is the network
management server for traffic engineering, QoS and VPN. Wise<TE> is being tested
against the several tens of the routers of Juniper and CISCO. The architecture of the
Wise<TE> and the details about integration with X-CLI API is described in [2].

REFERENCES

[l]Byung-Joon Lee, Taesang Choi and Taesoo Jeong, "X-CLI: CLI based Policy Enforcement
and Monitoring Architecure using XML", APNOMS 2002.

[2]Byung-Joon Lee, Taesang Choi and Taesoo Jeong, "X-CLI: CLI based Management
Architecture using XML", Technical Report, 2002.
http://oopsla.snu.ac.kr/-bjleeldocumentlx-c1i1x-cli-techreport-2002.doc

[3]TS Choi, SH Yoon, HS Chung, CH Kim, JS Park, BJ Lee, TS Jeong, "Wise<TE>: Traffic
Engineering Server for a Large-Scale MPLS-based IP Network", NOMS 2002

ADYNAMIC SNMP TO XML PROXY SOLUTION

Ricardo Neisse, Lisandro Zambenedetti Granville, Diego Osorio Ballve,
Maria Janilce Bosquiroli Almeida, Liane Margarida Rockenbach Tarouco
Federal University of Rio Grande do Sui - Institute of Informatics
All, Bento GOTlfalves, 9500 - Bloco IV - Porto Alegre, RS - Brazil
{neisse, granville, dob, janilce, liane}@inf.ufrgs.br

Abstract:

Keywords:

The network management area has some proposals to use XML to encode information
models and managed object instances. In this paper we present a solution to dynamically
create SNMP to XML proxies using a SAX parser and the translation facilities from the
libsmi tools. We also present an analysis system that uses the management information
provided by the proxies in XML.

Web-based Network Management, SNMP, HTIP, XML, XPath

1. INTRODUCTION
The information used to manage computer networks are tipically defined accord

ing to some rules (e.g. SMIv2, SPPI, XML), and retrieved using some protocol (CLI,
SNMP, COPS, HTTP). Currently, an important problem is that the set of different op
tions for the definition of management information and protocols increases the com
plexity of managing a network, since there is no consensus in a single definition lan
guage and protocol.

If a unique definition language could provided (e.g. SMIng [1]) and accepted, the
other problem will still remain: which unique protocol should be used? In our view,
this question is unsolvable because we believe that several different protocols will
be still required to manage older devices. However, from the network administrator
point of view, the lack of consensus on a single protocol should not refrain the use
of a single representation of the retrieved information. To allow that, protocol and
information representation translations is needed.

Although the SNMP is the de facto TCP/IP management protocol, its management
information is defined through SMIvl or SMIv2, which is not suitable when we are
searching for a common representation. XML, however, seems to be more appropri
ated, besides being already addressed by the SMIng working group. We developed a
system that automatically generates SNMP/XML proxies that reside in HTTPIHTTPS
servers. The proxy generating system receives a SMIvl or SMIv2 MIB definition as
source parameter and creates a PHP4 script file that is the proxy itself. The just created
proxy can then contact a target device via SNMP and generates a XML-based result.
We have used the libsmi [2] package to support the generation of the XML files, and
the expat package to provide the PHP4 support for SAX (Simple API for XML). We
have validated the proxy system through its use in a RRDTool-based [3] monitoring
front-end.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

482 R. Neisse, L. Z. Granville, D. O. BaUve, M. J. B. Almeida, L. M. R. Tarouco

2. ARCHITECTURE AND IMPLEMENTATION
Figure 1 shows, how a proxy operates after its creation. A network manage

ment station (NMS) retrieves information throughout a SNMP/XML proxy hosted
by a HTTPIHTTPS server. Each server can hosts several proxies, and the selection of
which proxy should be used in done in the URL passed from the NMS to the server.
Additionally, the selected proxy receives the address of a target device and an SNMP
valid community that are used to access the target device via SNMP. Normally, one
single access to a proxy generates several SNMP accesses to the target device, mainly
when the information to be retrieve is stored in MIB tables. After the SNMP infor
mation is retrieved from the target device, the proxy compiles such information into a
single XML and sends it back to the NMS.

Web server

SNMPIXML proxy

SNMP/XML proxy 1S::t----..:---------,

Figure 1. SNMP/XML Proxy operations

Comparing the amount of management information found in the NMS/proxy inter
actions, it is fewer than the amount of management information found in the proxy/target
device interactions. Thus, pushing SNMP/XML proxies closer to the managed devices
will reduce the overall amount of management traffic. Also, since we based our im
plementation in the smidump tool, the XML returned to the NMS contains not only
the value associated to the management information, but also the whole description
of such information originally defined in SMIvl or SMIv2, allowing a new NMS to
discover these definitions on demand.

The proxies are implemented as PHP4 scripts. New MIBs could be supported only
through the development of new PHP4 proxies. With the great variety of available
MIBs, creating new PHP4 scripts every time a new MIB is required would be a quite
slow process. To solve that, we have automated the processes of creating new proxies
in our solution.

} .. ":!eb server

1-===4.1 Instrumentation New proxy

Figure 2. Architecture for SNMP/XML proxy creation

Figure 2 presents the steps to create new PHP4 SNMP/XML proxies. First, a
SMIvl or SMIv2 MIB is uploaded to the server that will host the new proxy. Inside
the server, the smidump checks the passed MIB and if no errors are found it gener
ates an XML temporary file. This file is then instrumented adding PHP4 code that

A Dynamic SNMP to XML Proxy Solution 483

can contact SNMP-enabled devices. The proxies is then stored in a standard directory
in the server, as well as the original MIB (for documentation purpose) and the XML
intermediate file.

3. ANALYSIS TOOL
We have also developed an XML analysis tool that uses the SNMP/XML proxies.

We have used the RRDTool [3] to store performance data and the MySQL to store
configuration data. Basically, the tool is a generic monitor that collects XML files
addressed in URLs. Any information available in XML can be monitored, which
includes, obviously, the SNMP data indirectly provided by the SNMP/XML proxies.

The tool is also based on Web technology and accessed through HTTPIHTTPS.
The network administrator defines which information should be monitored, and which
proxies have to be used. Other information required is the IP of the target device, the
SNMP community string and an XPath expression which locates, inside the retrieved
XML, the specific information to be analyzed. All this configuration data is then stored
in the MySQL. For example, the configuration data required to monitor the incoming
traffic in the interface 2 of the IP 200.132.73.54 throughout the interfaces.xml.php
proxy hosted by noc.metropoa.tche.br are:

Taroel device: 200.132.73.54
SNMP/XML proxy: inlerfaces.xml.:.:.;.ph",,-p _ _

_ p,-u_b_lic,
Proxy Web server: noc.metropoa.tche.br
XPath expression: val[@oid="inlerfaces.iITable.ifEnlry.iflnOclels.2"]/@value

Figure 3 presents one possible configuration for the analysis tool and a proxy in
teraction. In this case, both analysis tool and the proxy are located within the same
server. Due to this configuration there are no network traffic overhead between the
proxy and the analysis tool.

RRDTool MySOL

Web server

Figure 3. Analysis tool accessing an SNMP/XML proxy

Figure 4 presents a real traffic data analysis generated through the Aberrant Be
havior Detection (ABD) [4] algorithm of a university campus link in the Brazilian
National Research Network backbone. The thick line is the observed value of the
incoming traffic and the thin lines are min and max bound values (confidence band).

484 R. Neisse, L. Z. Granville, D. O. Bailve, M. 1. B. Almeida, L. M. R. Tarouco

Alggrithm' toofigUr;ttfODf

FURC - RNP Unk I n Traffic

Craph Parameters:

IClmIP l\:,l:mrl :tDP
1 8it .. L.IMU billA .OOOOFF 0 " X

2 Upp.r Bound Ave,ao_ lUlU billA .FFOOOO 0 0 " X

3 low., Sound Ave,aOIl LINU bib. .FFOOOO 0 " X

Add Crapb Parameter

Figure 4. Analysis tool snapshot for the Anomalous Behavior Detection

4. CONCLUSIONS AND FUTURE WORK
We presented in this paper a dynamically SNMP/XML proxy creating solution that

produces SNMP/XML proxies from standard SMIvl or SMIv2 MIBs. Since the cre
ated proxies reside inside Web servers, they act as intermediate managers that uses
SNMP to retrieve management information and generates XML document as a result.

We have also presented the monitoring tool that uses the SNMP/XML proxies to
analyze the network behavior. Proxies and the management tool could be located
into a different device, differently from the example presented in figure 3, and no
modifications are need to the architecture, as the access to the proxy is done through
HTTPIHTTPS and, therefore, it is transparent to the analysis tool the physical location
of the proxy.

One improvement for the SNMP/XML proxy is the implementation of a filter that
would receive and XPath expression as an extra parameter in order to specify only the
specific data that should be fetched and transferred to the management application.
This would reduce the traffic between the NMS an the SNMP/XML proxy and also
will reduce the processing overhead in the target device.

REFERENCES
[I] F. Strauss, 1. Schoenwaelder. SMIng - Next Generation Structure of Management Information, draft

ietf-sming-02, July 20, 2001.

[2] F. Strauss. Libsmi - A library to access SM) MIB information, http://www.ibr.cs.tu-
bs.de/projectS/libsmil.

[3] Oetiker T. Round Robin Database Tool (RRDTool) http://www.rrdtool .org

[4] BrutJag,l. D. Aberrant Behavior Detection in Time Series for Network Monitoring, Proceedings of
the 14th Systems Administration Conference (LISA 2000) New Orleans, Louisiana, USA December
3-8,2000.

INTERACT-DDM
A Solution For The Integration Of Domestic Devices On
Network Management Platforms

A. E. Martinez, R. Cabello, F. J. G6mez, J. Martinez
Escuela Politecnica Superior. Universidad Autonoma de Madrid.
28049 Cantoblanco. Madrid. Spain. Phone: 34 91 348 2338

Abstract: This paper presents Interact-DDM, a solution that integrates domestic devices
with traditional computer networks. The architecture proposal is based on
TCPIIP network management standards: SNMP protocol and Management
Information Bases, Mm. The centralized management operation has been
enhanced with additional capabilities integrated on the agents. The design has
been performed permitting a very flexible device definition and dynamic
configuration. This is achieved by the meta-definition of devices in the system
Mm. A laboratory experiment has been deployed to check and validate the
design proposed, where mUltiple configurations have been tested, and the
design modularity has been proved.

Key words: Ubiquitous Computing, Domestic Networks, SNMP management.

1. INTRODUCTION

The evolution of the electronics industry gives the possibility of inserting
programmable control devices into home appliances at an affordable price. This
simplifies their design and enhances their functionality [1], allowing their
integration on a domestic appliance network. Additionally, their integration into a
standard communication network opens a new scope of possibilities [2]. Some work
have been done to provide this connection, using new communication architectures
[3][4], or integrating the appliances into IP networks [5][6]. Some standards are
emerging on this area, such as the Universal Plug and Play, the VESA Home
Network initiative, and the Open Services Gateway Initiative. These architectures
present a complete solution, well suited for complex devices, but expensive for low
end devices, which are important in the domestic environments.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

486 A. E. Martinez, R. Cabello, F. J. Gomez, J. Martinez

The present work describes Interact-DDM (Interact - Domestic Device
Management), a solution for doing this integration that is based on IP network
management standards and SNMP. It is built according to three basic principles: The
meta-definition of the devices being controlled on the system MIB; the existence of
a single focal point to act as a gateway between the domestic network and the user
interface applications; and the autonomy of the device agents to perform some
simple functions without the intervention of the central management application.

Interact-DDM is being used on the Interact project, which is being developed by
a multidisciplinary research team at the Computer Engineering College of
Universidad Aut6noma de Madrid [8]. The project objective is to develop the
technology to implement an intelligent domestic/office environment (domotic
environment), where the user interaction with the system is performed in a natural
way (speech, signs, actions ...), taking into account the context of the task.

2. ARCHITECTURE AND DESIGN

Interact-DDM is based on SNMP. We consider SNMP a very good approach to
solve the network management problem, especially in domestic environments, for
the following reasons. First, SNMP is simple; SNMP agents are simpler than, for
example, web servers, that are used in other domestic solutions [7]. Simpler agents
reduce the total cost of the solution. Second, SNMP agents can send notifications to
the clients if a special situation is detected, while other solutions (such as web
servers) can't. Third, UDP datagrams used by SNMP as transport mechanism are
well suited to communicate in a domestic network, where the media reliability is
very high; connection oriented protocols are not needed. Fourth, the polling
mechanism used by SNMP, that in some applications can consume a broad
communications bandwidth, is not a problem in domestic environments, where the
interactions with the system will be mainly done as results of human actions: the
frequency of SNMP messages will be low. And finally, SNMP allows the
integration of domestic devices in a more complex network management platform.

The basic system structure is presented on Figure I. Devices and agents are
connected to a Local Area Network, that is the domotic communications backbone.
Depending on the location or specific characteristics of each device, an agent
manages a single device or a group of devices. The agent and all the devices that are
under its control are called an Area. Each area has its own IP Address.

The Central Point of Control (CPC) is the manager application. It interacts with
the agents to query or modify the status of the devices. CPC can be used to control
the devices by itself, or as gateway by Intelligent User Interface Applications to link
to the real world.

The managed objects of an area are contained in the Interact MIR. The structure
of the MIB is common for all the agents on the system, independent of the devices
attached to it. The MIB has been defined to provide a very high level of flexibility
on the definition of the environment. In the case of devices, for example, the MIB
contains not only the value of the different parameters or attributes that define the
status of a device, but also the definition of the device. In this way, the MIB can

INTERACT-DDM 481

store any kind of device. Additions of new device types can be done without
modifying either the Agent or the CPC. Only the User Interface applications must
know how the device operates and the meaning of its attributes. This information is
stored in the MIB. The MIB contains the meta-definition of the managed objects, in
addition to the objects themselves.

Intelligent
User

Interface
Applications

Area 4

Area 2

Figure 1. Basic System Structure

Area 5

Agents have additional capabilities. They allow the definition of groups of
devices and connections between them. Devices can be dynamically assigned to
belong to a group. The whole group is then seen by the CPC as a single entity. When
the value of an attribute is set for a group, the agent spreads this change to all the
devices on the group. This reduces the workload on the CPC and the network traffic.
A connection is a link between a sensor device that can receive an interaction from a
user, and another device whose status can be changed remotely. An agent detects the
user's interaction in a sensor, locates target devices or groups that should be
informed of this modification, and sends them the appropriate command to modify
their status. Agents send remote request to other agents to perform this function.

3. EXPERIMENTAL LABORATORY

To evaluate the proposed architecture and to prepare the MIB definitions for the
devices that will be available at domotic environments, an experimental laboratory
has been deployed. A World Wide Web access to the basic functionality and status
of this laboratory is available [8]. The backbone of this laboratory is a 100 Mbps
Ethernet network. Devices are connected directly to it or through a computer or an
embedded computer. Devices currently connected are microphones, speakers, TV
capture boards, VCRs, CD or DVD players, video screens, personal card readers,
and simple domestic devices (lamps, switches, electronic locks, presence detectors,
etc.) connected using the European Installation Bus, EIB, which is attached to the

488 A. E. Martinez, R. Cabello, F. J. Gomez, J. Martinez

Ethernet network through a gateway built on an embedded computer. An agent
manages each area, and access to the devices by means of an Application
Programming Interface (API), that is common for all the devices. For each device,
an interface module has been developed to implement this API, converting standard
calls into commands that are understood by the device. All the communications over
the LAN have been implemented using TCP/IP protocols. Streaming services have
been implemented using multicast transport technology.

4. CONCLUSIONS AND FUTURE WORK

Interact-DDM has an architecture that allows a dynamic definition and access to
networked appliances, compatible with network management standards. As proof of
concept, an experimental laboratory has been built. This experience has
demonstrated that this architecture provides an easy method to perform the remote
control of the domestic devices. Also, it can be considered the base for more
complex applications developed to improve the man-to-machine interaction.

ACKNOWLEDGEMENTS

This work is partially funded by the Spanish Government on the project number
TIC2000-0464.

REFERENCES

[1] Badami, Vivek V. and Chbat, Nicolas W., "Home appliances get smart", IEEE
Spectrum, Vol. 34 No.8, August 1998, pp. 36-43.

[2] Saif, U, Gordon, D, Greaves D.l "Internet Access to a Home Area Network", IEEE
Internet Computing, Vol. 5, Iss. 1 , January-February 2001, pp 52-63.

[3] Minoh, Michihiko and Kamae, Tak, "Networked Appliances and Their Peer-to-Peer
Architecture AMIDEN", IEEE Comm. Magazine, Vol. 39, October 2001, pp. 80-84.

[4] Koon-Seok Lee, Hoan-Jong Choi, Chang-Ho Kim and Seung-Myun Baek, "A new
control protocol for home appliances - LnCP", Proceedings of ISlE 2001, IEEE
International Symposium on Industrial electronics 2001, Vol.1, 2001, pp.286-291.

[5] Kinne, A., "ElB IP Connectivity", Proceedings of the EIB Event 2001, Oct. 2001. URL:
http://www.emt.ei.tum.de/eibaiConference _ 0 IlProceedings/04. pdf

[6] Desbonnet, J. and Corcoran, P.M., "System Architecture and Implementation of an
InternetiCEBus Gateway", IEEE Transactions on Consumer Electronics, Vol. 43, Nov.
1997, pp.1057-1062.

[7] Riihijiirvi, Janne, et. aI., "Providing Network Connectivity for Small Appliances: A
Functionally Minimized Embedded Web Server", IEEE Communications Magazine,
Vol. 39, October 2001, pp. 74-79.

[8] http://odisea.ii.uam.es/

SESSION 9

Information Modelling

Chair: Alexander Clemm
Cisco Systems, USA

AN SMING-CENTRIC PROXY AGENT
FOR INTEGRATED MONITORING
AND PROVISIONING

Emmanuel Nataf, Olivier Festor, Guillaume Doyen
The Madynes Research Team
WRIA - University of Nancy 2 - INRIA
615, rue du Jardin Botanique
54602 Villers-les-Nancy, France
Surname.Name@loriajr

Abstract:

Keywords:

The combined use of SNMP and policy based frameworks is growing very fast. From
both an information model and programmation interface point of view, an integrated view
is highly desirable. Several approaches have been proposed so far in the information model
sphere. In this paper we present the experience gained in using the SMlng approach for
building an integrated management environment that provides seamless integration of both
policy provisiouing and MID mouitoring. The developed management environment has
been deployed for managing an active network called FLAME, dedicated to dynamic IP
monitoring.

SMlng, management platform, active networks, integration

1. INTRODUCTION
During the last few years, many attention has been brought to novel information

modelling techniques, management services and protocols. Results from these efforts
are very different in nature mostly because they emerge from different communities
with very different requirements (e.g., backward compatibility with a legacy approach
or technology conformance). As part of the Operations and Management area of the
IETF, a working group was created back in 2000 to address the issue of the evolution
of the SNMP Structure of Management Information Version 2 (SMlv2) [11, 12, 10].
Part of this evolution is also concerned with a subset of the policy management frame
work related to provisioning (COPS-PR [3]) and the associated policy information
specification technique (SPPI [9]).

While working on a management framework for an active network environment
called FLAME, we faced the need to deal within management applications with both
management policies in a provisioning framework and monitoring services relying on
SNMP. One of the goals we had in mind, when looking at possible solutions was to
provide an unique view of objects to the management applications. Thus, we natu
rally looked at SMlng Next Generation Structure of Management Information which
provides a neutral object model and offers mapping facilities to both SNMP-SMI and
COPS-PR SPPI.

FLAME is an active network based architecture developed within our research
group dedicated to the hosting of IPv6 monitoring and management services. It in-

http://dx.doi.org/10.1007/978-0-387-35674-7_66

492 E. Nataf, O. Festor, G. Doyen

eludes a BSD native execution environment which can host active applications, a set
of servers from which active applications can be downloaded and a management en
vironment dedicated to the configuration and monitoring of the active management
framework itself. The management interface of a node is divided into three parts: a
command line interface for configuration and activation purpose, an SNMP agent im
plementing all objects of MIB-II together with objects dedicated to the active node
monitoring, and a policy enforcement point (PEP) through which the node configura
tion is downloaded and activity policies enforced. This environment has been used for
various management purposes among which multicast monitoring [13].

In this paper we share the experience gained with SMIng at both management infor
mation specification and mapping levels, as well as at a programmatic and engineering
level within a management platform. At the information modelling level, we both per
formed reverse engineering from SPPI and SMlv2 specifications to SMIng classes
and we extended the model with specific SMIng objects that were later mapped to
SNMP and/or COPS-PR respectively. For the platform part, we describe the design
and the development of this SMIng environment and show how it was applied to the
FLAME execution environment, used here as the managed environment and not as the
management platform.

The remainder of the paper is organised as follows. Section 2 presents the needs of
management and provisioning in FLAME. From theses needs, we present an SMIng
specification in section 3. Section 4 describes the architecture of the proxy between
SMIng objects and management/provisioning information on the network. Section 5
details how we built a proxy agent from SMIng specifications and how it was inte
grated with the Java JMX environment. The use of the proxy for FLAME is shown in
the section 6. Related work and conclusions are given in sections 7 and 8.

2. FLAME MANAGEMENT AND PROVISIONING
As already described in the introduction, FLAME is an active network dedicated

to host IPv6 monitoring services. The architecture of a FLAME node is illustrated in
Figure 1. It is elose to several other active nodes like the ASP EE [2] on which it was
initially built.

Basically, a node is divided into three parts: the standard routing engine of the node
on which the environment resides, the execution environment (EE) which offers the
basic services to active applications (dynamic code loading, access to node resources,
naming, ...). Active applications (AA) are executed on execution environments and
use in addition to standard services, dedicated APIs provided by the FLAME envi
ronment (e.g., a packet capture API, a multicast routing table manipulation API, ...).
These APIs are also globally named in FLAME and can be dynamically deployed
through a FLAME specific management operation within a node. Each element within
a FLAME node is under the control of a standard management entity through which
configuration and control is performed. Each node today hosts one SNMP agent as
well as a PEP for enforcing configuration choices. We use separate technologies for
management and provisioning, with SNMP and COPS-PR, because some of their spe
cific properties match well with the FLAME environment. Monitoring information is
made of several counters modelling active node activity. The role concept of COPS
PR is a way we use to distinguish some FLAME node (border gateway, community
of nodes, ...). Underlying TCP connections reduce the needed complexity for the
critical operation of policy rules dowloading.

An SMlng-centric Proxy Agent 493

SMIng objects tetwork I Policy Management

of 096
Applications

COPS-PR I SNMP FLAME Node

commands

AgentSNMP Mgmt r---- D M2mt
I

flame U AAs S server
SNMP MIB T

mib-2 R
I 1< ..

Core API B loader
PEP U

.::-

flame U loaded API ... I packets COPS-PR PIB
loaded API r- receiver

+
Active Packets l
Routing Engine

Figure 1. Architecture of a FLAME node

The need of a common information model appears with the fact that several faults
can be deduced from network management data and can be reduced by policy-based
configuration. For example, some policy rules are listed below:

• authorization policies, e.g., the active application MRMMoni tor can be launched
on the node, if its instantiation parameters are valid (e.g., identity of the code
server for the active code, identity of the principal who wants to launch the
application);

• obligation policies, e.g., an active application needs to end correctly on 99% of
its executions, an active application cannot use more than 20% bandwidth;

• configuration policies, e.g., APIs that are loaded in the FLAME node, ...

The FLAME SNMP MIB includes MIB-U objects and several FLAME specific
ones like: the number of incoming/outgoing octets per active application, the number
of active messages processed by an active application, the owner of an active applica
tion, the number of shutdowns of an active application, ...

Many of theses informations could be related as when an active application shows
a number of crashes, policy rules should be changed to stop any further launch of the
suspicious application. With many such relations, management applications are less
complex with an unified interface than with differents protocol APIs. SMIng appears
to be one way to seamless integrate SNMP network management and COPS-PRlSPPI
policy rules management. To unify the management information model dedicated to
FLAME, we have built an SMlng specification for the FLAME specific objects put in
the SNMP agent as well as SMIng classes for provisioning policies (upper left part of
Figure'l).

494 E. Nata/, O. Festor, G. Doyen

3. SMING
SMIng (Structure of Management Information next generation) is a proposal that

was submitted to the sming IETF working group [6]. This proposal is not the sole can
didate for standardisation (SMI-DS Data Structure is an example of another possible
approach) but has the advantage of being object-oriented like, and not being bound to
any underlying approach while offering compatibility with both SNMP-SMI and SPPI.

While SMIng is described in the related drafts, we shortly present its structure
through an example (Figure 2). It contains the definition of management information
which model statistical measures of active application executions and together with
policy rules used to decide if an active application could be launched.

(1) typedef Counter32 {
(2) type Unsigned32;
(3) };
(4) typedef Counter64 {
(5) type Unsigned64;
(6) };
(7) typedef AAName {
(8) type OctetString(255);
(9) };
(10) typdef EEName {
(11) type OctetString(64);
(12) };
(13) typedef AAVersion {
(14) type OctetString(8);
(15) };
(16) class AARunning {
(17) attribute Counter32 run;
(18) attribute Counter32 crash;
(19) attribute Counter32 end;
(20) };
(21) class AANetvork {
(22) attribute Counter64 inOctets;
(23) attribute Counter64 outOctets;
(24) };
(25) class AAStats {
(26) attribute AAName name;
(27) attribute AARunning run;
(28) attribute AANetvork net;
(29) };
(30) class AAThresold {
(31) attribute Counter32 crash;
(32) attribute Counter32 bandvith;
(33) };

(34) class AAInstance{
(35) attribute AAName name;
(36) attribute EEName env;
(37) attribute AAVersion ver;
(38) attribute AAThresold thr;
(39) };
(40) snmp{
(41) table ActiveApplStats {
(42) oid flame-mib.2.3;
(43) index(l);
(44) implements AAStats {
(45) object 2 name;
(46) object 3 run.run;
(47) object 4 run. crash;
(48) Object 5 run.end;
(49) object 6 net.inOctets;
(50) object 7 net.outOctets;
(51) };
(52) };
(53) };
(54) copspr{
(55) prc AAInstancePolicyRule {
(56) oid flame-pib.l.4;
(57) pibindex (1);
(58) implements AAInstance {
(59) Object 2 name;
(60) object 3 env;
(61) object 4 ver;
(62) object 5 thr.crash;
(63) Object 6 thr.bandvith;
(64) };
(65) };
(66) };

Figure 2. SMlng management information specification

3.1 Type and class definitions
SMIng is designed for the definition of data interfaces. Thus, there is no procedural

or functional statement support but only data oriented specifications. SMIng provides
a set of basic data types like OctetString, Unsigned32, etc. From these types,
new ones can be defined through the use of the typedef statement. Examples of such
typedef statements are shown in lines 1 to 15 on Figure 2 (some Counter and Name).

SMIng provides a class statement to define object classes that are composed of
attribute and event statements and can use simple inheritence (not shown in this

An SMlng-centric Proxy Agent 495

paper). Examples of class definitions are shown in lines 16-39 (AAStats, AAlnstance
and contained classes AARunning, AANetwork and AAThresold).
Class AAStats models statistical counters for executions status and network use of all
active applications designed by its name in the AAName attribute. Class AAlnstance
models a policy rule for an authorized AA to be instanciated with its obligations (i.e
numbers of crashes and network bandwith use).

Class attributes can be either of base types (defined through the typedef statement
as shown in lines 17-19,22,23,26,31,32,35-37) or of another class (lines 27, 28 and
38).

At this level, one can specify when a new active application, say aa is ready to be
downloaded by the FLAME node, an instance of the AAlnstance class is created in
all nodes that will use aa to enable launches. The name aa and other property values
are given respectively to the defintion of the class (line 35). The first launch in a node
will be followed by the creation of a AAStats with the name aa and counters start to
be updated. Further launches of aa will equally update the AAStats instance.

A fault state appears when an active application shows a number of shutdowns in
the crash attribute of AAStats greater than the same attribute in the AAlnstance.
This case could be detected by a polling procedure (notification reception through an
SMlng event is possible but not used here) and the following action should be the
deletion of the AAlnstance object. Therefore, already launched applications could
(maybe correctly) finish but no other launch of this application on this node can be
done. On the other hand one can choose to increase the crash number threshold.

3.2 Mapping specification
The core of SMIng is protocol independent and can be used for both network and

policy management as well as other domains. As these approaches strongly rely on
dedicated information models, albeit sometimes very similar, and specific protocols,
SMIng offers a facility to express the specification of a mapping from classes and
their attributes to protocol specific information. As an example, we show both a SNMP
(lines 40 to 53) and a COPS-PR (lines 54 to 66) mapping specifications. Each mapping
specifies which SMI table or SPPI provisioning class of the existing MIB and PIB
for FLAME implements some SMIng object class. The oid part (lines 42 and 55)
gives the global object identifier (other SMIng constructs allow a full definition of the
object identifiers for flame-mib and flame-pib). Following is the index column(s)
specification of the table or PRC and the implemented SMIng class (lines 44 and 58).
The object statement maps a column identifier to an SMIng class attribute. If an
attribute is itself a class, a dotted notation is used to go until a simple value attribute is
found (lines 46-50 and 62, 63).

4. A SMING-BASED PROXY AGENT
ARCHITECTURE

Remember that our goal is to build a set of tools that enable SMlng specifications
to be used in the core of management platforms as a unique data model. We there
fore need to instantiate SMlng objects in order to use them as programmatic object
instances.
We expect management applications to become less complex by hiding specific pro-

496 E. Nata/, O. Festor, G. Doyen

tocol dependent operations and as a consequence, to be more homogeneous when
processing both policy and network management information.

The architecture that was designed can be seen as an SMlng distributed middleware
hosting SMIng object instances. Groups of objects are hosted by several integration
agents which are SMlng proxies. This is illustrated in Figure 3.

SMIng proxy agents ,L::.:::7I
.-=--=-----, SNMP I

management
applications

Figure 3.

.manager r

COPS-PR

SNMP

SNMP

fPiJPk..r--7I

General architecture

An SMlng proxy agent contains an object view (interface 0) that can be used by
object-oriented management applications to access, modify, create or delete managed
object instances. These managed objects can then be mapped to underlying resources
through two main interfaces:

• interface s can be seen as an SNMP manager that has direct access to local or
remote SNMP agents. Through this interface, mapping between SMlng and
SNMP SMI is automated according to the rules defined in snmp statement im
plementation specifications;

• interface c can be seen as a policy decision point (PDP) that pushes policy infor
mation to policy enforcement points (PEP) using the COPS-PR protocol. Here
we stick to the mappings defined in copspr statement implementation specifi
cations.

A third interface (named a) represents access to internal SMlng objects.

5. IMPLEMENTATION
5.1 Generation of object instances

To implement the proxy architecture for SMlng objects, we chose the Java Man
agement eXtension (JMX) framework!. Figure 4 contains an illustration of an SMlng
proxy agent that includes managed objects taken from the example given in Figure 2.

Only Java objects corresponding to typedef values are protocol dependent (AAName
or Counter32). Other SMIng objects are created after the instanciation of contained

1 http://java.sun.com/products/JavaManagementi

An SMlng-centric Proxy Agent 497

objects (AAStats is created after AARunning) and linked to each other from the im
plementation specification. In doing so, the process of object instanciation never leads
to "null pointer" troubles.

/ /Y {J JMX

(AAName)

Hun! name
{counter32) run--t

AA71 adaptor AAlnstance

crash name AAName

V C:),
HTIP

COPS-PR SNMP

Figure 4. SMIng object instances in a JMX container

Figure 5 shows how the instance creation process is automatically generated from
the implementation specification. On the left part of the figure there is a schematic
representation of the implementation. It is always a tree structure that is given by our
SMIng parser and followed by our proxy agent generator. The root is the name of
the class. Intermediate nodes are always attributes that reference a class, while leaf
objects are simple types. The right part shows a subset of the generated Java code
for this tree. The code of the lines I to 6 is for the creation of SMIng typedef ob
jects. Parameters of these objects are generated following the object-identifier naming
of the implementation (here the ActiveApplStats as in Figure 2 line 41) and the
remote SNMP agent from which the MIB is translated. Once these leaf objects are
created, the generated code creates SMIng object instances (lines 7-9) and sets their
attributes through its constructor method invocation The same code is generated for
the AAlnstance class with its attributes.

(1) name = new AAName(...);
(2) runrun = new Counter32(...);
(3) rune rash = new Counter32(...); AAStats (9)
(4) runend = new Counter32(...);
(5) netinOetets =

new Counter32(...);
(6) netoutOetets = name run (5)

run
(2)

crash end
(3) (4)

net (8)

/----
new Counter32(...);

(7) run = new AARunning(runrun,
runerash, runend);

in Octets outOctets (8) net =

(6) (7) new AANetwork(netinOetets,
netoutOetets);

(9) aastat = new AAStats(name,
run, net);

Figure 5. Implementation scheme generation

This code is generated for each SMIng class implemented directly by an SNMP
table. When the processed group is a table, there will be exactly as many object in
stances created as the number of lines in the table for each SNMP managed object. In

498 E. Nata!, O. Festor, G. Doyen

order to do this, we use the get-next SNMP request, starting with the table SNMP
object identifier and walk through the table in order to get the values we need to create
the leaf objects first, and end with containing objects. When SMIng classes are imple
mented by a scalar group there should be only one object created by the SNMP agent
proxy to SMIng and we use one get request for all needed values.

When the underlying mapping is COPS-PR, the approach is similar. Mapping to
SPPI can even be seen as a subset of the mapping from SMIng to SMIv2 since only
tables can be defined using SPPI (no scalar) and these tables all hold an unique and
known index. A major difference is that SpPI values in PIB should not be read from
the PEP, as it is the case for SMI values from agents MIBs. Instead the creation of
such one SMIng instance should be mapped to a provisioning COPS-PR request for
the corresponding rule in the PEP (or in a PDP that will forward rules as in Figure 3).

5.2 Naming scheme
Within a JMX container, object instances are named according to a standard naming

scheme, very close to the OSI Distinguished Name pattern. The general form of an
instance name is:

Domain::attrl = value.attr2 = value ...

where Domain, each attri (attribute) and value are character strings. Within our
SMlng mapping entity, we use this naming convention to uniquely identify SMlng
instances as follows:

• the domain identifier is the SMlng module name where the class is defined;

• attributes and values are defined as:

- I = SNMP agent or COPS-PR PEP DNS name or IP address

- c = SMlng class name

- p = position of the class in the containing class

- i = instance number

Every instance has a name which contains these attributes. Since JMX does not put any
constraint on the order of attribute occurrences in a name (the lexicographic ordering
is defined as the normal form), they can appear in any order. Figure 6 illustrates
the naming with our FLAME example. The position of an instance in a containing
instance is built from the containing SMIng class definition and from the instance
number of the latter object according to its class identifier. For example the AAStats
class (Figure 2 lines 25-29) has three attributes and their relative positions are 1, 2
and 3. We chose to give the value "1"to each SMIng object that is not contained
in any other SMIng object. So objects referenced by name, run and net attributes
have respectively "1.1", "1.2" and "1.3" for their p naming attribute value. Contained
SMIng objects have the same prefix than the containing SMIng one. We chose to
keep an SMI object identifier like notation to reduce the length of object name. If the
class is not contained by any other class, its name is the class name followed by same
value for the position and the instance number. We keep this redundant information to
always have the same number of naming attributes. The instance number attribute is
given by the proxy agent for each object creation. If an SMlng object is contained by
more than one other object, this former should have as many names. In any case, one
name provides a way to access to exactly one object instance.

An SMlng-centric Proxy Agent 499

c=AAStats, p=l, i=l

c=AAName, p=l.l, i=l

o
c=AARunning, p=1.2, i=l o

c=Counter32, p=1.3,1, i=3

c=Counter32, p=1.2.l, i=l o
c=Counter32, p=1.3.2, i=4

c=Counter32, p=1.2.2, i=2

Figure 6. Naming of instances

5.3 Notification support
SMIng allows event definitions in object classes. Such a feature of object instances

is only implemented by SNMP notification in the SNMP framework (COPS-PR does
not support notifications). Figure 7 illustrates the use of events whithin SMIng objects.
System and If are object classes that represent the system and the interface group of
MIB-II. Events are defined in classes (lines 3 and 8), after attributes. The snmp state
ment (lines 10-21) contains the implementation of these events. Standard notifications
(lines II, 12 and 15, 16) are related to object events by a signals statement (lines 13
and 17) with a dotted notation (ClassName. eventName). If the trap carries SNMP ob
ject values that are also SMIng attribute values, a mapping can be specified (line 18).
In this case, a linkdown notification received will update the adminState SMIng ob
ject attribute (line 6). Figure 8 shows how SNMP traps are catched by a dedicated ob-

(1) class System {
(2)
(3) event warmStart;
(4) };
(5) class If {
(6) attribute AdminState adminState;
(7)
(8) event linkDown;
(9) }
(10) snmp{
(11) notification warmStart {

(12) oid snmpTraps.2;
(13) signals System.warmStart{};
(14) };
(15) notification linkDown {
(16) oid snmpTraps.3;
(17) signals If.linkDown {
(18) object If.adminState;
(19) };
(20) };
(21) };

Figure 7. SMlng events definition and implementation

jeet playing the role of an SNMP trap catcher. Its role is also to map incoming SNMP
notifications to java object that are forwarded to registered SMIng object instances.
In the context of JMX, the trap catcher and SMIng objects (that are all JMX MBean
objects) must implements specific interfaces. The NotificationListener interface
allows SMIng object to receive notification signal by registering itself with the stan
dard notification oid to a Nodif icationBroadcaster interface implemented by the
TrapCatcher.

Generated SMIng events follow a similar operation, i.e., they are distributed using
the JMX notification model.

500

J

M

X

E. Nata/, O. Festor, G. Doyen

I SNMPTRAP SNMP

1 Agent

o I!J} - 0 NotificationLi ",
SMIng objects TrapCatcher

I NotificationBroadcaster L-__________________

x: 1.3.6.1.6.3.1.1.5.3 (linkDownNOTIFICATION-TYPE)

y: 1.3.6.1.6.3.1.1.5.2 (warmStart NOTIFICATION-TYPE)

Figure 8. SMIng events support

Some standard notifications are related with SNMP table entries because they con
tain an index value that specifies which line of the table is the root of the generated
SNMPtrap.

When an SMlng class containing event definition is implemented by an SNMP
table and when there is a standard notification that carries an index value then each
SMIng object (one object per line) should be able to capture the corresponding event.
This index value is used by the TrapCatcher to identify the SMlng object.

In addition, some notifications carry values that should be updated in the object
instance, or be interpreted as the need to refresh some object attribute. We exploit this
in conjunction whith a regular polling service in charge of maintaining the consistency
between SNMP MIBs and the proxy.

5.4 Code generation tools
For generating the Java classes, we use an SMIng extension of the MODERES

framework. MODERES is basically a set of Open Source Java tools maintained by
our research group dedicated to the parsing and processing of multi-approaches man
agement information models (GDMO/ASN.l SMIvl, SMIv2, CIM-MOF, ...). The
toolkit is available on the group's web page2•

Figure 9 shows the use of these compiler tools for the SMIng proxy generation.
First a syntax and semantics check is performed on incoming SMIng specifications
(both core definition and protocol mappings) by the parser. The specifications are
then stored in a repository in the form of a decorated syntax tree. This repository is
the source for the SMIng agent toolkit (SMlngAtk) that generates Java classes and
interface mappings to SMIng classes. Note that SMIng typedef as well as events, are
also mapped to Java classes and interfaces (dashed arrows). Additionally some Java
classes are generated in order to realize the necessary operation to get/set values in a
specific protocol (SNMP, COPS-PR).

2http://www.madynes.org

An SMlng-centric Proxy Agent

/
I

I
I ,

SMlng

classes

repository

Java
________ 7 classes

Figure 9. SMlng tools

6. APPLICATION TO FLAME

Java
classes &
interfaces

501

Having all components defined as SMIng objects was of great use especially for
those applications which access objects mapped to the two worlds. For example, one
policy application automatically updates the policy repository of all nodes, if it finds
out that an application uses too many resources on a node (e.g., number of crashes).
The updated policy forbids instantiation of the application with the parameters that
cause the trouble in one node. Building such an application with our framework is
straight-forward since one only needs to know the SMIng class that corresponds to
this policy family and set up a monitoring service for the attribute that represents
the number of crashes of an active application. To push a configuration policy that
forbids the execution and further instantiation of an application, only the policy object
AAlnstance defined in Figure 2 lines 34-39 need to be instantiated. Once instantiated,
the decision is mapped onto a COPS-PR service invocation and pushed towards the
concerned PEP. A java.rmi adaptor to the SMIng proxy agent was designed to allow
processing in our network management java application.

7. RELATED WORK
The object oriented network modelling is well described in [1]. The concept of

Meta Managed Objects [14] contains the same base elements as those proposed by
SMIng with a separate definition of data and their different representations. Other
mappings exists from objects to TMN or SNMP management information [16,4] or
the opposite way e.g., from WBEM to OSI based management [5].

The libsmi project of the Technical University of Braunschweig 3 provides a library
to access SMI information. A component of this library is an SMIng parser that allows
a syntax and semantical analysis of modules. An HTML version can be tested on line
at the Simple Web site4• An API provides access to MIB and PIB modules informa
tion to ease the development of management applications. Our project has a structure
similar to the libsmi parser. The main differences are the programming language envi-

3http://www.ibr.cs.tu-bs.delprojectsllibsmi
4http://www.simpleweb.org

502 E. Nata!, O. Festor, G. Doyen

ronment (C for libsmi and Java in our case) and the application domains (information
model core tools for libsmi and agent toolkit in our case).

As mentioned in different parts of the paper, the FLAME environment configura
tion is done through policy-based management. The use of policy-based approaches
for the management of active networks is investigated in several other places and is
not explained in this paper. The reader will find studies on this topic in [15] and [8]
for policies dedicated to resource management in active networks.

8. CONCLUSION AND FUTURE WORK
In this paper, we described a software architecture based on the SMIng approach

and its application to the management of an active network infrastructure called FLA
ME (with is itself an environment dedicated to the management of IP networks).

Several lessons can be learned from this experience. First, the situation where both
policy-based approaches and the standard SNMP framework need to be combined ex
ists and the number of occurrences will probably grow in the next few years (e.g.,
the COPS model is proposed for provisioning and outsourcing in several 30 archi
tectures). The second lesson is that SMIng appears to be a reasonable evolution in
the standard framework, in the sense that it provides enough support for our needs
namely object-orientation and automated integration of monitoring and provisioning.
As it was demonstrated in this paper, the approach can be implemented to build an
operational management framework. The third lesson, which is obvious, is that the
design and development of applications that combine policy manipulation and Mffi
object access is much more convenient within a common framework. This has been
demonstrated while we developed the applications for the active environment.

The first evolution of the presented work is to let the designed management frame
work follow the evolution of the outcome from future evolutions of IETF groups work
ing on this topic. Work is still in progress on this subject and extended proposals will
emerge. In parallel to this work, we are looking at how the mapping principles de
fined in SMIng can be reused in other approaches like WBEM since the same need
for dynamic mapping will appear for these approaches as well. Finally, we will con
tinue the refinement of policy definitions for managing the FLAME environment. The
final goal is to end-up with a complete automated monitoring environment driven by
pushing configuration policies into the active nodes.

References
[1] S. Bapat. Object-Oriented Networks: Modelsfor architecture. operations and management. Prentice

Hall. 1994.

[2] B. Braden. A. Cerpa. T. Faber, B. Lindell, G. Phillips, and 1. Kann. ASP EE: An Active Execution
Environment for Network Control Protocols. Technical report, USc/lSI, December 1999.

[3] K. Chan, J. Seligon, D. Durham. S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer, R. Yavatkar, and
A. Smith. COPS Usage for Policy Provisionning (COPS-PR), RFC3084, March 2001.

[4] T.R. Chatt. TMN/C++: An object-oriented API for GDMO, CMIS, and ASN.l. In [7J. pages 177-
191.1997.

[5] o. Festor, P. Festor, L. Andrey, and N. Ben Youssef. Integration of WBEM-based Management
Agents in the OSI Framework. 1999. in Integrated Network Management, VI, Sloman, M. and
Mazumdar, S. and Lupu. E. editors,IEEE Press, Proceedings of the IFIP/IEEE 6th International Sym
posium on Integrated Management. Boston. MA. 24-29 Mai. 1999.

[6] F. Strauss J. Schoenwaelder. Next generation structure of management information for the internet. In
R. Stadler & B. Stiller. editor. Active Technologies for Network and Service Management. DSOM'99

An SMlng-centric Proxy Agent 503

Zurich, Switzerland, pages 93 - 106. Lecture Note in Computer Science, IFIP/IEEE, Springer, Octo
ber 1999.

[7] A. Lazar, R. Saracco, and R. Stadler, editors. Integrated Management V. IFIP, Chapman & Hall, May
1997.

[8] I. Liabotis, O. Pmjat, and L. Sacks. Policy-Based Resource Management for Application Level
Active NEtworks. August 2001. Proc. Second IEEE Latin America Network Operations and Man
agement Symposium, LANOMS'2001, Belo Horizonte, Brazil.

[9] K. McCloghrie, M. Fine, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, and F. Reichmeyer.
Structure of Policy Provisionning Information (SPPI), RFC3159, August 2001.

[10] K. McCloghrie, D. Perkins, and J. Schoenwaelder. Conformance Statements for SMIv2., April 1999.
IETF, STD58, RFC 2580.

[11] K. McCloghrie, D. Perkins, and J. Schoenwaelder. Structure of Management Information Version 2
(SMIv2), April 1999. IETF, STD58, RFC 2578.

[12] K. McCloghrie, D. Perkins, and J. Schoenwaelder. Textual Conventions for SMIv2., April 1999.
IETF, STD58, RFC 2579.

[13] H. Sallay, O. Festor, and R. State. A distributed Management Platform for Integrated Multicast Mon
itoring. pages 483-496, 2002. Proc. IEEFlIFIP Network Operations and Management Symposium
NOMS'2002, R. Stadler and M. Uierna, editors, IEEE ISBN 0-7803-7382-0, Florence, Italy, April
2002.

[14] J. Seitz. Meta managed objects. In [7J, pages 650 - 660.

[15] M. Sloman and E. Lupu. Policy Specification for Programmable Networks. In S. Covaci, edi
tor, Active Networks: Proc. First International Working Conference, IWAN'99, pages 73-84, Berlin,
Germany, June 1999. Springer Verlag, LNCS 1653.

[16] N. Soukouti and U. Hollberg. Joint Inter Domain Management: CORBA, CMIP and SNMP. In {7J,
pages 153-164, 1997.

TOWARDS XML ORIENTED
INTERNET MANAGEMENT

Frank StrauS
Technical University Braunschweig, Germany
strauss@ibr.cs.tu-bs.de

Torsten Klie
Technical University Braunschweig, Germany
tklie@ibr.cs.tu-bs.de

Abstract:

Keywords:

Internet Management is based on IETF specifications that have been developed and used
during the past 14 years: There are multiple versions and options of the management
protocol (SNMP), two versions of the language for specifying the stnlCture of management
information (SMI), and more than 160 Standard MIB modules. This altogether represents
the most widely deployed management technology these days.

However, the SNMP centered management framework has some drawbacks especially
related to efficient configuration management and efficient application development pro
cesses. Today to many people the whole family of XML technologies seems to promise a
fancy way out of this trouble.

This paper presents an approach to automatically convert SMI MIB definitions and
according SNMP agent data into XML Schema definitions and appropriate valid XML
documents. Instead of a plain mapping of MIB trees to nested XML elements, we tried to
adapt the XML philosophy of a rather flat element containment hierarchy and appropriate
XML Schema type definitions. We also present an approach towards an SNMP/XML
gateway and our thoughts on management applications based on XML technologies.

Internet Management, Configuration Management, Information Model, Data Model,
SNMP, SMI, MIB, XML, XML Schema, XSLT, SNMPIXML Gateway.

1. Introduction
Since 1988, when the first specifications of SNMP and the SMI and the first def

initions of managed objects have been published by the IETF [1, 2, 3], the SNMP
framework evolved dramatically in a way that problems have been identified and fixed,
many details in specifications have been clarified and - probably the hardest part of
the work - more than 160 MIB modules have been designed, refined and standard
ized by various IETF working groups. See the latest issue of the Simple TImes [4] for
an overview of all related IETF Standards documents.

The result of this solid standardization work is a fundamental technology upon
which many hardware vendors, software manufacturers, network operators, and ad
ministrators have built software systems to manage a wide range of computer net
works. These implementations also represent huge investments.

However, the SNMP framework has some drawbacks that cannot be solved without
massive modifications or completely new technologies [5,6]. Some people expect that
at least two of the major problems can be solved by applying XML based technologies

http://dx.doi.org/10.1007/978-0-387-35674-7_66

506 Frank StraufJ, Torsten Klie

to network management tasks: (a) efficient and atomic transfer of configuration data
is problematic with SNMP, and (b) usual development processes of SNMP agents and
other applications are quite slow and expensive, since the abstraction layer of MIB
definitions and the SNMP protocol is much lower than the typical tasks that have to
be fulfilled, so that well experienced staff is essential.

Section 2 explains how some of the core XML technologies are related and how
they could be applied to typical network management tasks. In Section 3 we present
some related work on XML based techniques for network management. In Section
4 we present and discuss our work on a MIB compiler that generates XML Schema
definitions out of SMIv2 MIBs. Subsequently, in Section 5 we present some thoughts
on potential XML based network management tasks. We also describe our approach to
retrieve real-world SNMP data as XML documents through a simple SNMP-to-XML
gateway that complies with our automatically generated XML Schema definitions.
The last Section concludes with some experience statements and a rough outlook on
future directions.

2. XML Technologies in Network Management
Clearly defined and standardized data structures, encoding schemes and access in

terfaces are a key issue for any kind of open communication systems. During the
past in several areas different base technologies have been applied in a quite success
ful manner, e.g. management data definitions in the worlds of SNMP and CMIP as
well as many protocol definitions are based on ASN.I, business data is exchanged by
EDI-compliant messages, databases are often accessible through well defined ODBC
or JDBC APIs, remote procedure calls and remote object access can be defined and
realized through RPC and CORBA technologies, etc.

While these and many other technologies evolved over time and work quite well
today, they have been developed independently. They do not build upon each other
and they hardly use basic concepts in a common fashion, although many of them have
to solve similar questions like byte ordering, data framing, data encryption, etc.

In contrast, XML [7] is a core building block upon which other related technolo
gies are being developed. This "toolkit concept" allows for more efficient development
processes of according applications. For example, existing XML parsers can be used
to develop XSLT [8] processors and XML Schema [9, 10, 11] based validators, since
XSL and XML Schema themselves are XML compliant. XML Schemas can be de
fined and used by validating XML parsers to ensure XML data integrity. Specific XML
compilers can be built as XSL stylesheets using any already existing XSLT processor.

These advantages of existing XML-based specifications and their already existing
implementations are applicable as building blocks to a wide range of network man
agement aspects as well:

• Management data can be represented as XML documents. While the SNMP
framework focuses on a simplistic management protocol and small items of
management data which are appropriate for monitoring, it has severe disadvan
tages when larger chunks of configuration data has to be retrieved from an agent
or stored to an agent: The performance of large chunks of GetNext or Set oper
ations is quite poor [12]. Even more critical is the lack of a transaction model
to ensure data integrity across a sequence of protocol operations. When a com
plete set of management data is represented as an XML document without any

Towards XML oriented Internet Management 507

formal length restrictions it could be moved efficiently and handled atomically.
Of course, this requires an appropriate transport protocol.
Comparing XML to plain ASCII information that can be retrieved from many
devices through a command line interface, parsing tagged XML data is much
easier than the error-prone processing of hardly structured ASCII information
that is intended for human reading.

• Widely deployed protocols can be used to ship the data. E.g. TCP and HTTP
are implemented in almost any network device these days. These protocols
can easily be used to transfer XML documents. URLs [13, 14] can be used to
address the requested data [5].

• The DOM and SAX APIs can be used to access management data from
applications. Most XML parsers implement these standard APIs to access the
contents ofXML documents ([15], et at). They can be used by individual man
agement applications [6, 16,5].

• Items within management data documents can be addressed through
XPath expressions [17] [6]. This could be useful e.g. when only parts of very
large data are being transfered between entities or when management data is
processed by XML based applications, e.g. through XSLT:

• XSLT can be used to process management data. Although a little cryptic,
XSL [8] is a quite powerful stylesheet language. E.g., it can be used to filter
XML data, to correlate data from several documents, to generate statistics, or to
create concise HTML pages or reports in other text-based formats.

• The structure of management data can be expressed as XML Schemas
[9, 10, 11]. This would allow, e.g., to ensure the integrity of configuration data
documents through the use of a usual XML parser that checks whether the doc
ument is well-formed and valid according to the XML Schema definition.

• High-level management operations can be defined through WSDL and
called via SOAP [6]. E.g., row creation and deletion in SNMP through RowSta
tus objects can be quite complicated. This task can be achieved by higher-level
operations in a more convenient way. However, these operations have to be well
defined by WSDL [18] definitions for SOAP [19,20,21] functions.

Figure 1 illustrates how the XML technologies and according tools that are dis
cussed above relate to each other. Specifications and tutorials for all of these tech
nologies as well as pointers to detailed literature and implementations are available
from the W3C [22].

3. Related Work
This section presents a vendor product, three research projects on Web and XML

based management and an open source software project, as well as the starting points
of related standardization work within the IETF and an industry consortium.

3.1 JUNOScript from Juniper Networks

Recent releases of routers from Juniper Networks are equipped with a JUNOS oper
ating system that supports the JUNOScript [23] subsystem. JUNOScript allows client

508 Frank StraujJ, Torsten Klie

used XSLT processor
_ XMLparser

vall'd+aCtl.roenates \ t t' th
through s a IS lOS. we pages. 0 er

reports human readable documents
SAX DOM

Figure 1. XML technologies and tools.

applications to connect to the Juniper router and exchange messages formed as XML
documents. The grammars of these documents representing requests and responses
are supplied by Juniper as DTDs and XML Schemas along with documentation that
details the semantics of all message elements. A Perl module is supplied to ease the de
velopment of client applications communicating with the routers. Further processing
of the XML documents can be achieved with third party XML tools that are available
for Perl and many other programming languages.

Various protocols can be used to establish sessions between client applications and
JUNOScript servers, e.g. TELNET, SSL or SSH. The messages sent by the client con
stitute RPC requests wrapped in <rpc> ... </rpc> elements, upon which the server
responds with <rpc-reply> ... </rpc-reply> responses. The contained elements
represent the requested actions, e.g. client authentication, configuration queries, con
figuration modifications, locking for exclusive access, etc. Collections of configura
tion data can be represented as nested XML elements within the messages as well as
in the text format that is also used by the mNOS CLI.

Towards XML oriented Internet Management

3.2 Avaya Labs Research on an XML based Management
Interface for SNMP Enabled Devices

509

Concepts for an XML based interface to read and write management information
of SNMP agents are being researched in a project at Avaya Labs [24J. To achieve
these aims, a mapping from SMI MIB modules to XML Schema definitions has been
defined and implemented. Furthermore, an XML-RPC based protocol is being defined
and implemented for retrieving and modifying MIB information on SNMP agents.
This protocol uses XPath to identify MIB variables within the agent.

The XML Schema definitions are derived from SMI MIB definitions in a
straightforward way. For instance, the native XPath expression for addressing
the first interface within an XML document derived from the IF-MIB would be
/ IF-MIB/ interf aces/ if Table/ if Entry [index=' 1 ']. For one SMI MIB mod
ule the compiler generates a number of XML Schema files: one main file, one file
containing all type definitions, one file per scalar object group, one file per additional
MIB tree level and one file per MIB table. All these files are included by the main
XML Schema file.

Much of the MIB information that is not necessarily required in XML Schema
definitions is dropped, e.g. description clauses and display hints of type definitions.
Some SMI types are mapped to more 'tolerant' XML Schema types, e.g. IpAddress
is mapped to xsd: string. Elements representing scalar groups contain a redundant
index attribute and, more seriously, tables with multiple index attributes are not yet
supported. However, these problems could probably be fixed subsequently in this
project.

The development and implementation of an appropriate SNMP-to-XML adapter
based on the NET-SNMP and XML-RPC libraries has been underway during this writ
ing.

3.3 POSTECH Research on XML-based Internet Management
Hong et al propose an XML-based Management (XBM) architecture [6J that is

based on XMLlHTTP as its management protocol. To allow the integration of SNMP
managed devices they propose three methods to realize an XMLlSNMP gateway [16].

The first approach is to implement a DOM interface that translates DOM function
calls to SNMP operations. The results of the internally executed SNMP operations are
then translated to XML nodes and passed back to the DOM based management appli
cation. In this approach the gateway is tightly bound to the management application
through the DOM API.

In the second approach, a standalone gateway accepts HTTP requests from manage
ment stations that are based on URIs that may contain XPath or XQuery expressions to
address specific agent object instances. The gateway parses these requests and trans
lates them to SNMP operations issued to the SNMP agents. The SNMP responses are
used to build a "response XML document" which is then sent back to the manager
in response to its request. SNMP traps destined to the gateway can be processed in
a similar way and forwarded as XML documents to managers through HTTP POST
requests.

In the third approach, the gateway implements a SOAP RPC service. On receipt
of a SOAP input message from a manager it is translated to SNMP operations. Vice

510 Frank Strauj3, Torsten Klie

versa, the SNMP responses are used to construct the SOAP output message. While
this approach introduces the most protocol and processing overhead, it also gives the
best possibilities to extend the gateway with more powerful operations like scheduled
polling.

Although this project carefully examines valuable methods to realize an
XMUSNMP gateway, the mapping of SNMP management data to XML documents
is quite simple and driven by SNMP practice, similar to the Avaya approach (Section
3.2).

3.4 WlMA
The Web-based Integrated Management Architecture (WIMA) proposed by

Martin-Flatin [5] integrates multiple management data models, namely at least SMI
and ClM, without introducing another data model. This is achieved by defined map
pings of specific data models at two levels: In case of SM!, on the model-level an
SMI MIB module is mapped to a DTD, i.e., an XML document that complies to such
a DTD represents management instance data, e.g., retrieved from an SNMP agent.
On the metamodel-Ievel the items within an SMI module are mapped to element and
attribute values within a document that complies to a generic WIMA-specified DTD.

WIMA's model-level SMI mapping is comparable to the mapping of SMI to XML
Schema definitions presented in this paper: The resulting documents describe a formal
grammar of management instance data. On the other hand, WIMA's metamodel-Ievel
mapping is also comparable to the XML Schema mapping presented in Section 4 in
a way that its vocabulary is generic (WIMA-proprietary vs. XML Schema) while its
content represents MIB data models.

As with the approaches presented in Section 3.2 and 3.3, the mapping from SNMP
and SMI to XML and XML Schema is quite simple and bound to SNMP requirements
and not driven by native XML concepts.

3.5 SeLl
Seli [25] is a tool that implements a command line interface to interact with SNMP

agents in an interactive or batch-mode fashion. Despite many other SNMP tools, seli
is not a generic tool to process arbitrary MIB data. Instead, it is designed in a way so
that it is aware of the structure and semantics of a number of MIB modules. This
way, it is capable to present and accept information to and from the user in a much
more human friendly form that often significantly differs from the underlying MIB
structures. E.g., when a user requests information on a specific interface, it can be
specified by its human-friendly name instead of the agent's notion of an ifIndex
variable. The data that is displayed is formatted in a human-readable tabular form
where numbers are printed with appropriate units and the items are gathered from
different tables of different MIBs like the IF-MIB, the IP-MIB, and the ENTITY-MIB
[26,27,28]. It requires a well experienced person to develop new seli modes, but
the resulting functionality facilitates the work of less experienced users significantly.

Besides the plain text form, seli is also capable to dump its information in an
XML form. This way, it is possible, for example, to post-process the data by XSL
stylesheets. The XSL programmer can benefit from seli's gathering of all related
information and its pre-processing. Currently, XML output is only supported for a

Towards XML oriented Internet Management 511

limited number of seli modes. XML Schema definitions for those XML dumps are
not yet available.

3.6 The IETF XMLCONF BOF
During the 54th IETF meeting in Yokohama in July 2002, a BOF session concerned

with XML configuration management (XMLCONF) has been held [29]. The goals
were to discuss today's operator requirements for configuration management, to iden
tify the disadvantages of today's IETF technologies to meet these requirements and
to evaluate some XML related technologies with this respect, namely, SOAPIWSDL,
SyncML, WBEM, and JUNOScript. There are some Internet-Drafts that represent a
starting point to narrow down these requirements and evaluations. It has not yet been
decided whether a new working group shall be formed to continue this work, but it
looks very reasonable to work on the standardization of XML based network man
agement within the IETF so that the gap between the wide range of existing SNMP
environments and new XML based solutions can be bridged.

3.7 The OASIS Management Protocol Technical Committee
In July 2002, OASIS, a consortium that focuses on industry standards specifica

tions based on XML, founded a technical committee [30] that intends to provide a
web-based mechanism to monitor and control managed elements "based on indus
try accepted management models, methods, and operations, including, OMI, XML,
SOAP, DMTF CIM, and DMTF CIM Operations".

4. Converting SMI MIBs to XML Schema Definitions
While the previous two Sections presented general concepts and actual efforts to

use XML technologies for network management tasks, in this Section we will study
how the large existing SNMP infrastructure can benefit from XML based management
data processing. This obviously requires a representation of SNMP data as XML
documents.

While the structure of SNMP data is formally described in SMI MIB modules, the
structure of XML documents can be defined as a Document Type Definition (DTD)
or an XML Schema definition. Whereas DTDs follow a rather simple grammar no
tation, XML Schema is more flexible to express characteristics of XML documents,
e.g., there is a type system that allows to define derived types, and a powerful mecha
nism to express the format of string values as regular expressions. Furthermore, XML
Schema definitions themselves are well-formed XML documents so that they can also
be processed by XML parsers.

Consequently, a mapping from SMI MIB modules to XML Schema definitions is
useful. While the approaches presented in Sections 3.2 - 3.4 use a straightforward
way, we attempt to represent the data in a way that narrows the usual XML character
istics as closely as possible to make the XML instance documents as convenient for
reading and processing as possible. For instance, we explicitly do not intend to stick
with deep OlD equivalent nesting hierarchies. On the other hand, the generated XML
Schema definitions contain as much of the underlying SMI MIB module information
as possible. The following list describes the most relevant characteristics of the XML
documents and XML Schema definitions:

512 Frank StraufJ, Torsten Klie

• The range of data that can be represented in an XML document shall be as
flexible as possible. Hence, the root element is not bound to a specific MID or
agent or point in time.

• The root element may contain an arbitrary number of <context> elements at
the second level that represent agent contexts which are identified by a tuple of
an SNMP agent, a community string (in case of SNMPvl), and a time stamp
to specify the point in time when a context has been created. This allows, for
instance, to store data from multiple agents or time series of polled data in a
single document.

• The third-level elements can either represent containers of scalar elements that
appear at most once, or instances of objects that are derived from table entries
and thus can appear multiple times. Note that the list of these elements is not
limited to a single MID module. While scalar container elements don't have
any attributes, the table entry elements include one ore more index attributes
to uniquely identify the instances. These attributes are derived from the MID
entry's INDEX clauses.

• Note that MID modules are not represented by elements. Instead they are iden
tified by namespaces in which the elements are defined. Since unique narning in
SMI is based on modulename-descriptor pairs, we compile each MID module
into a separate XML Schema definition where each schema defines an according
namespace.

• The fourth-level elements represent scalar objects or columnar objects. There
is no deeper level of element containment (except for nested tables described
below), since there is no need for a hierarchy such as with OIDs. This way
the XML document hierarchy remains simple but powerful. Unique narning is
purely based on namespaces, grouping names with indexing attributes, and leaf
element names without any ambiguity.

• Augmentation tables and tables that share a common prefix list of index objects
with another table are somewhat confusing SMI constructs to represent nested
data structures. When these structures appear in a single MID they are mapped
to a native representation in XML: The columnar objects of augmentation tables
are simply added as child elements of the element that represents the parent
table. Similarly, "tables in tables" are represented by nesting the according
elements.

• The text of leaf elements (and index attributes) is represented in a human read
able fashion where possible: Integers are written as decimal numbers. Named
number types, such as enumeration types and bit sets, are written as the accord
ing names. Strings are written in a human readable ASCII form, if the underly
ing MID type has a display hint that 'suggests' an according representation of
all octets of the value.

• Type and TEXTUAL-CONVENTION definitions in MID modules are
mapped to XML Schema types derived from base types with appro
priate <xsd :restriction> clauses containing value restrictions for
numbers «xsd:minlnclusive>, <xsd:maxlnclusive» or strings
«xsd:minLength>, <xsd:maxLength». However, some limitations

Towards XML oriented Internet Management 513

such as length alternatives (i.e., not length ranges) cannot be expressed
completely in XML Schema.

• Even complex display hints can automatically be translated to <xsd: pattern>
constructs with regular expressions that formally limit the value set so that, e.g.,
a number of typos or otherwise illegal values in XML documents can be pre
vented.

• SMI MIB module information that is not necessarily required in the XML
Schema definition is contained in <xsd: appinfo> clauses. This way, it re
mains available for special applications, e.g., XSLT-based MIB compilers or
MIB browsers.

• Despite the representation of the status of MIB object instances an XML docu
ment can also represent a sequence of notifications. Hence, the XML Schema
for a MIB module contains a <xsd: choice> construct where the second alter
native is intended to form the grammar rules for arbitrary lists of notifications
conforming to a MIB's NOTIFICATION-TYPE definitions.

Figure 2 shows an example of an XML instance document, while Figure 3 illus
trates some XML Schema constructs compiled from the SMIv2 IF-MIB module [26].
The compiler implementation is based on libsmi[31].

<?xml version·llt.O"?)
<!-- This module hilS been generated by mibdump 0.1. Do Dot edit. -->
(snmp-data xmln •• ''http://vww.ibr.cB. tu-b •. de/proj ecta/libami/xsd/IF-MIBII

xmlDB: IF-MIB.uhttp://vww.ibr.cB. tu-ba .de/projecta/libami/xsd/IF-HIB"
xmlns :x.i-''http://vww . w3. org/2001/XMLSchamo-iD8tance"
xBi : achemaLocation-''http://vyw . ibr. CB. tu-bs .da/projecta/libami/xsd/IF-MIB

http://vww.ibr.cB. tu-ba .de/projecta/libami/x8d/IF-MIB .xad">
<context agent-"ciscobs .rz. tu-bs .de" community.llpublic" port-"161"

time-"2002-12-l2T23: 42+0100" >
<IF-MIB: interfaces>

<IF-HID: ifNumber>7</IF-HID: ifNwnber>
</IF-MIB: interfaces>

[... J
<IF-MIB:ifEntry ifIndex""2">

[... J

[. .. J

<IF-MIB: ifDeacr> FastEthernetO/O</IF-MIB : ifDeacr>
<IF-MIB: ifType>ethernetCsInacd</IF-MIB: if Type>
<IF-HID: ifHtu>1600</IF-HID: ifHtu>
<IF-HID: ifSpeed>100000000</IF-HID: if Speed>
<IF-MIB: ifPhysAddreaa enc-"hex">OO: 03 :fd :32: e4: OO</IF-HIB: ifPhysAddreBs>
<IF-MIB: if AdminStatus>up</IF-MIB: ifAdminStatus>

<IF-HIB: ifName>Gi1/0</IF-MIB: if Name>
<IF-MIB: ifLinkUpDownTrapEnllble>enllbled</IF-HIB: ifLinkUpDownTrapEIJable>

</IF-HID: if Entry>
[. .. J

<IF-HIB: ifStackEntry ifStackRigherLayer-"2" ifStackLowerLayer""O" >
<IF-MIS: ifStackStatus>acti ve</IF-MIS: ifStackStatus>

</IF-HID: ifStackEntry>
</context)

<I snmp-data)

Figure 2. An XML instance document conforming to the IF-MIB XML Schema.

<?xm1 version-"l.O"?>
<!-- This module has been generated by amidump 0.4.2-pre. Do not edit. -->
<xad: achema

514

targetNamespace-.. http://www.ibr.cB.tu-bs.de/projects/libsmi/xad/IF-HIB ..
xmlna :xml-''http://wvw . v3 .org/XML/1998/namespace"
xmlns :xsd-''http://www.v3.org/2001/XHLSchema''
xmlns :smi-.. http://wllw.ibr.cB.tu-hs.de/projects/libsmi/xsd/ami li

Frank StraufJ, Torsten Klie

xmlns :SNMPv2-SHI-''http://vwv.ibr.cR. tu-bs .de/projects/libsmi/XBd/SNKPv2-SMI"
xmlns :SNMPv2-TC-.. http://www.ibr.cB.tu-be.de/projects/libsmi/xsd/SNMPv2-TC ..
xmlns : SNMPv2-CONP-"http://www.ibr.C8.tu-ba.de/projecta/libami/XBd/SNMPv2-CONF ..
xmlns: SNMPv2-MIB-lIhttp://vww.ibr.CB. tu-bs .de/proj ects/libsmi/xsd/SNKPv2-HIB"
xmlns: IANAifType-MIB-"http://vww.ibr.c8. tu-bs .de/proj ecta/libam.i/xsd/IANAifType-MIB"
xml :lang_ltenlt

elementFormDefault="qualified li

attributeFormDefault-"unqualified">
<xsd: annotation>

<xsd :documentation>
The MID module to describe generic objects for network
interface sub-layers. This MID is an updated version of
MID-II's if Table, and incorporates the extensions defined in
RFC 1229.

</xsd : documentation>
</xsd:annotation>
<xsd : import namespace-''http://vww.ibr.cs.tu-bs.de/projects/libami/xsd/SNMPv2-SMI''

schemaLocation-.. http://wwv.ibr.cs.tu-bs.de/projects/lib8mi/x8d/SNMPv2-SMI .xad"/>
[. .. J

<xsd:element name-"snmp-data">
<x8d: complexType>

[... J

<xsd: sequence>
<xsd:element name-"context U minOccurs-IIO" maxOccurs."unbounded">

<xsd: complexType>
<xsd: sequence>

<xsd: element name.uinterfaces" type- lI interfacesType ll minOccurs-II O"/>
<xad:element name-II if Entry" type-uifBntryType li minOc:cur.- IIO" maxOccurs-uunbounded ll />

</xsd: sequence>
<xsd:attribute nameallagent" type-"xsd:NMTOKBN" use-"required"/>
<xsd:attribute name-"community" type-"xsd:NMTOKEN" use-"required"/>
<xsd:attribute name-"port" type-"xsd:UDsignedlnt" use-lirequired"/>
<xsd:attribute name- ll tima" type-"xsd:dateTime" use-"required ll />

</xsd: complexType>
</xsd: element>

</xsd: sequence>
</xad: complexType>

</xsd: element>
[. .. J

<xsd: complexType name:" ifEntryType" >
<xsd: annotation>

<xsd: appinfo>
<maxAccess>not-accessible</maxAccess>
<status>current</status>
<oid>1.3.6.1.2.1.2.2.1</oid>

</xsd:appinfo>
<xsd :documentation>

An entry containing management information applicable to a
particular interface.

</xsd :documentation>
</xsd: annotation>
<xsd: sequence>

<xsd:element name- lI ifDescr ll minOccurs-"O">
<xsd :annotation>

<xsd: appinfo>
<maxAccass>read-only</maxAccess>
<status>current</status>
<oid>1.3.6.1.2.1.2.2.1.2</oid>

</xsd: appinfo>
<xsd :documentation>

A textual string containing information about the
interface. This string should include the name of the
manufacturer, the product nama and the version of the
interface hardware/software.

</xsd :documentation>
</xsd:annotation>
<xsd: simpleType>

<xsd :restriction base-"xsd: string">

Towards XML oriented Internet Management

[. .. J

<xsd:pattern value-".{O.265}1I/>
</xad:reatriction)

</xsd: simpleType>
</xad: element>
(xsd : element name-"ifType" type-"lANAifType-MIB: IANAifType" minOccurs-"O">

<x8d :annotatioo)

(xed: simpleType name-" Interface Index")

<xed: annotation>
<xsd :docwnentation>

A unique value. greater than zero, for each interface or
interface Bub-layer in the managed system. It i8
recoDll\ended that values are assigned contiguously starting
from 1. The value for each interface Bub-layer must remain
constant at least from one re-initialization of the entity's
network management system to the next re-initialization.

</xsd :documentation>
(xed: appinfo>

<diaplayHint>d</diaplayBint>
</xsd:appinfo)

</:ud:annotation>
<:ud :reatriction baa a-" ami : Intagar32 1t>

<xsd:minlnclusi ve value-"l"l>
<xsd:maxlncluaive value-"2147483647"1>

[. .. J
</xad: schema>

Figure 3. An XML Schema file automatically generated from IF-MIB.

5. Applications

515

The previous Section presented an approach to represent management data as XML
documents and their structure as XML Schema definitions. So, in this Section we will
discuss some applications that could make use of these representations. Note that at
this point in time these applications, except the one presented in Section 5.4, are just
ideas that have not yet been implemented by the authors of this paper.

5.1 Configuration Management
SNMP is not very suitable for configuration management, since moving configura

tion data between devices and managers is inefficient and cannot be done in an atomic
way without additional MIB support. Putting XML technologies on top of it cannot
do any better. Furthermore, data dumped from arbitrary MIBs cannot be regarded as a
configuration: To restore a configuration, e.g., if a broken device has been replaced by
a new one, additional information like ordering of the required SNMP Set operations
and the semantics of many MIB objects is required. However, it could be an advantage
if such additional information on a specific MIB is provided in a DOM or XSLT based
application and the dumped data is available as an XML document. Accessing data
through the DOM API or addressing items through XPath expressions would be more
flexible and more familiar to many developers than using any proprietary management
toolkit.

5.2 Notification Processing
Not only the values of agent objects that can be read or written, i.e., instances of

the MIBs' OBJECT-TYPE definitions, can be represented as XML elements. Instances

516 Frank Strauj3, Torsten Klie

of notifications emitted by an agent can be dumped as XML documents as well. This
way, they can be filtered, searched, and post-processed by XPath and XSLT means,
for example. Even event correlation tasks could be realized as XSLT applications and
produce HTML output for a concise presentation to the operator.

5.3 Agent Validation

Today, there are many agent implementations of MIBs that do not conform to the
underlying SNMP and SMI MIB module specifications. Typical cases are objects that
have another base type than that in the authoritative MIB definition, string objects of
illegal length or object values that the agent is not aware, but which are served as
unspecified 'zero' values instead of just skipping the object.

To some degree such flawed implementations can be checked automatically based
on a comparison of an agent's dump against the MIB specification. If the data is
represented as an XML document and the MIB structure is represented as an XML
Schema definition, this comparison can be done by any validating XML parser. Of
course, this would require a very 'verbose' representation of agent data that keeps
a lot of SNMP specific information in the XML document which is not necessarily
required for other XML based post-processing.

5.4 An SNMP-to-XML Gateway

An obvious approach to make management data supplied by SNMP agents avail
able as XML documents is the use of an appropriate translator or gateway. We have
implemented a prototype of such a translator that conforms to the XML Schema char
acteristics described in Section 4. The example of an XML document seen in Figure
2 has actually been generated by this translator named mibdump. It works as follows:
The SNMP agent (address, port, SNMPvl community string) and the MIB module to
be dumped are passed to mibdump. Then the SNMP session is initiated, the structure
of the MIB is analyzed through 1 i bsmi means, and then sequences of SNMP GetNext
operations are issued to retrieve all subtrees ofthe MIB from the agent. Mibdump col
lects the retrieved data in internal data structures, first. When the gathering phase has
been finished, the contents of these data structures are dumped in the form of appro
priately nested XML elements forming a valid document with respect to the XML
Schema.

Mibdump has been developed as a first prototype of a translator to generate XML
instance documents that comply to the XML Schema definitions we proposed in Sec
tion 4. Hence, for simplicity reasons it supports no other granularity than the level of
MIB modules: neither single objects or tables of a MIB, nor the whole set of all MIBs
implemented by an agent can be retrieved through mibdump at once.

Work is underway to develop a real gateway that translates HTTPrequests for XML
documents to SNMP operations and forms the resulting XML document out of the
SNMP response messages. This approach is very similar to the second method pro
posed by POSTECH (Section 3.3, [16]). The gateway accepts HTTP GET requests
for URIs that contain XPath expressions to address regions of the schema compliant
XML documents with the full complexity of XPath. Generally, location paths of the
XPath expressions can be interpreted in the gateway before sending SNMP requests
in order limit SNMP operations, while the predicate parts have to be applied when
the SNMP data has been received at the gateway to filter out the parts that the XML

Towards XML oriented Internet Management 511

requestor wishes to receive. DOM is used to represent and access the XML documents
at runtime in the gateway. In case of HTTP GET requests the DOM is built by the core
translator based on the received SNMP response messages. In case of HTTP POST
requests the applied document is parsed to build the DOM so that the translator can
access it to issue appropriate SNMP Set operations. Traps can be logged (for later
access by managers) and result in short XML documents sent to registered managers
that listen as HTTP POST receivers. To enhance performance in case of subsequent
XML operations on related objects, a short-term cache can be used. Problems related
by caching and write operations to create or delete objects are subject for future work.

HTTPGET
HTTP SNMP

SNMPGer

Engine Engine
XML-based SNMP
Management

PO
(with (Command Agent

Application CGi Generator

(HTIPPOST) or and
SNMPTrap

Serviet Notification
Intertace) Originator)

Figure 4. Architecture of an SNMP/XML gateway.

6. Conclusions and Outlook
This paper gave a condensed overview of some XML technologies and how they

can be used to solve network management tasks that are partly difficult to address with
the current SNMP framework as it is. A number of related projects and standardiza
tion efforts that are underway have been presented. However, it has been argued that
a smooth bridging between the widely deployed SNMP infrastructure and the 'new
generation' of XML based solutions is essential.

The presented approach to represent management data received from and stored
to SNMP agents as XML documents and to represent their structure as automatically
generated XML Schema definitions based on SMI MIB modules constitutes one step
in this direction. In contrast to other attempts that define a simple straightforward
mapping of SMI data models to DTDs or schemas the presented approach is driven
by the goal to tap the full potential of XML and XML Schema leaving drawbacks
of SNMP behind where possible. Furthermore, this paper presents some visions on
other XML applications. Within the presented project, an SNMP-to-XML gateway
is under development that represents management data conforming to the presented
XML Schema model.

The standardization work done so far in the area of XMLlSNMP integration is not
much more than the discussion of requirements and the evaluation of some technolo
gies. In the future, more work on specific schemas and protocol support has to be done
to support the higher-level tasks in XML based network management and configura
tion management.

References
[I) M. Rose and K. McCloghrie. Structure and Identification of Management Information for TCP/IP

based internets. RFC 1065, TWG, August 1988.

518 Frank Strauj3, Torsten Klie

[2] K. McCloghrie and M. Rose. Management Information Base for Network Management of TCP/IP
based intemets. RFC 1066, TWG, August 1988.

[3] 1. Case, M. Fedor, M. Stoffstall, and J. Davin. A Simple Network Management Protocol. RFC 1067,
University of Tennessee at Knoxville, NYSERNet, Rensselaer Polytechnic Institute, Proteon, August
1988.

[4] 1. ScMnwlilder and A. Pras. The Simple Times. An openly-available online pUblication on SNMP,
http://www.simple-times.org/.

[5] J.-P. Martin-Flatin. Web-Based Management of lP Networks and Systems. Wiley, 2002.
[6] H. Ju, M. Choi, S. Han, Y. Oh, J. Yoon, H. Lee, and J. W. Hong. An Embedded Web Server Archi

tecture for XML-Based Network Management. In Proc. 2002 IEEEllFIP Network Operations and
Management Symposium, April 2002.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup Language (XML) 1.0
(Second Edition). W3C Recommendation, October 2000.

[8] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommendation, November 1999.
[9] D. C. Fallside. XML Schema Part 0: Primer. W3C Recommendation, IBM, May 2001.

[10] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures. W3C
Recommendation, University of Edinburgh, Oracle, Lotus, May 2001.

[11] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C Recommendation, Kaiser Per
manente, Microsoft, May 2001.

[12] R. Sprenkels and J. P. Martin-Flatin. Bulk Transfer of MIB Data. Simple Times, 7(1), March 1999.
[13] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators (URL). RFC 1738, CERN,

Xerox Corporation, University of Minnesota, December 1994.
[14] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax.

RFC 2396, MIT/LCS, U.C.lrvine, Xerox Corporation, August 1998.
[15] L. Wood, et al. Document Object Model (DOM) Levell Specification Version 1.0. W3C Recommen

dation, Soft Quad, October 1998.
[16] y. Oh, H. Ju, M. Choi, and J. W. Hong. Interaction Translation Methods for XMUSNMP Gateway. In

Proc. 13th IFIPREEE International Workshop on Distributed Systems: Operations and Management,
October 2002.

[17] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recommendation, Inso
Corp., November 1999.

[18] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 1.1. W3C Note, Microsoft, IBM, March 2001.

[19] N. Mitra. SOAP Version 1.2 Part 0: Primer. W3C Working Draft, Ericsson, June 2002.
[20] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. F. Nielsen. SOAP Version 1.2 Part 1:

Messaging Framework. W3C Working Draft, DevelopMentor, Sun, IBM, Canon, Microsoft, June
2002.

[21] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. F. Nielsen. SOAP Version 1.2 Part 2:
Adjuncts. W3C Working Draft, DevelopMentor, Sun, IBM, Canon, Microsoft, June 2002.

[22] W3C. W3C - The World Wide Web Consortium. WWW Page, 2002. http://www.w3c.org/.
[23] Juniper Networks. JUNOScript API Software. WWW Page, November 2002.

http://www.juniper.netlsupportljunoscriptl.
[24] Avaya Labs Research. XML-Based Management Interface for SNMP Enabled Devices. WWW Page,

2001. http://www.research.avayalabs.com!user/mazumlProjectsIXMU.
[25] J. SchOnwlilder. Specific Simple Network Management Tools. In Proc. LISA 2001, pages 109-119,

December 2001. http://www.ibr.cs.tu-bs.delprojectslsclil.
[26] K. McCloghrie and F. Kastenholz. The Interfaces Group MIB. RFC 2863, Cisco Systems, Argon

Networks, June 2000.
[27] K. McCloghrie. SNMPv2 Management Information Base for the Internet Protocol using SMIv2. RFC

2011, Cisco Systems, November 1996.
[28] K. McCloghrie and A. Bierman. Entity MIB (Version 2). RFC 2737, Cisco Systems, December 1999.
[29] M. Wasserman. XML Configuration BOF. WWW Page, July 2002.

http://www.ietf.org/ietf/02juVxmlconf.txt.
[30] OASIS. Management Protocol TC. WWW Page, December 2002. http://www.oasis-

open.org/committeeslmgmtprotocoV.
[31] F. StrauB. Libsmi - A Library to Access SMI MIB Information. WWW Page, December 2002.

http://www.ibr.cs.tu-bs.delprojectsllibsmil.

GRID OBJECT DESCRIPTION: CHARACTERIZING
GRIDS

Gerd Lanfermann
Max Planck Institute for Gravitational Physics - Albert Einstein Institute
Am Muhlenberg I, 14476 Golm, Germany
lanfer@aei.mpg.de

Bettina Schnor
University of Potsdam, Dept. of Computer Science
August-Bebel-StrafJe 89, 14482 Potsdam, Germany
schnor@cs.uni-potsdam.de

Edward Seidel
Max Planck Institute for Gravitational Physics - Albert Einstein Institute
Am Muhlenberg I, 14476 Golm, Germany
eseidel@aei.mpg.de

Abstract:

Keywords:

We present a new data model approach to describe the various objects that either represent
Grid infrastructure or make use of it. The data model is based on our experiences and
experiments conducted in heterogeneous Grid environments. While very sophisticated
data models exist to describe and characterize e. g. compute capacities or web services, we
will show that a general description, which combines all of these aspects, is needed to give
an adequate representation of objects on a Grid. The Grid Object Description Language
(GODsL) is a generic and extensible approach to unify the various aspects that an object
on a Grid can have. GODsL provides the content for the XML based communication in
Grid migration scenarios, carried out in the GridLab project. We describe the data model
architecture on a general level and focus on the Grid application scenarios.

Grid Computing Information Model, Interoperability, Grid Migration

Introduction
Computational Grids are becoming increasingly common, promising ultimately to

be ubiquitous and thereby change the way global resources are accessed and used.
We have investigated several large scale Grid scenarios for autonomic applications,
based on a previous prototype, dubbed the "Cactus Worm" [1]. Two of the major ones
are nomadic migration [18], which describes the autonomic migration of applications
from one compute resource to another, and application spawning [20] which allows
an application to accelerate the main execution thread by taking advantage of work
flow parallelism. In this case internal routines are "outsourced" to external compute
resources. These scenarios are realized through service environments, which offer file
transfer, resource selection and job submission capabilities to autonomic applications
by interfacing with a wide spectrum of existing infrastructure of Grid middleware,
batch systems and basic transport and shell methods.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

520 G. Lanfermann, B. Schnor, E. Seidel

The "Grid substrate" that these services operate on is heterogeneous in availability
and type. We address service availability issues in [19, 20J through a fault-tolerant
service topology and focus here on the problem that all objects which constitute the
Grid come with different access types, batch submission systems, resource selection
processes etc. Clients of such an environment are e. g. characterized through their
non-web service compliant functionality or resource requirements.

The problem of heterogeneous environments is well known and projects like Globus
or Legion address it through a Grid middleware that provides a uniform access to ma
chines. However, many sites do not install this software, they fail to maintain it prop
erly, or test installations are never integrated into the normal production environment.
Nevertheless, most of these sites support launching of jobs through the standard login
procedure and batch submission systems. The direct interaction with Grid middleware
is often the only way to access resources if sophisticated packages like Globus fail.

Before we can integrate existing Grid infrastructure as well as proprietary user
applications, we need a way to describe such "objects" on a Grid. This description
goes beyond the current scope of web service or resource characterization. While
sophisticated information models exist for the individual aspects, we are lacking a lean
data model, that combines these aspects into a single entity which is simple enough
to be used not only for server communication but also within client applications. In
the following case study, we will motivate such a common description system with a
concrete Grid migration scenario.

1. The Grid Migration Scenario
Nomadic Migration denotes the self-controlled and automatic relocation of large

applications to provide faster or more efficient code execution [20]. Nomadic il
lustrates the low frequency of this event and the self-contained operation: It is an
application-initiated and self-determined process in a service environment. Nomadic
migration is investigated by the Max Planck Institute for Gravitational Physics to relo
cate numerical relativity simulations to increase the job throughput of their large-scale
computations [2J.

Migration mechanisms and strategies were well studied in the context of cycle
stealing clusters in the mid 90s (see for example [22, 24, 3]). The motivation for mi
gration has more or less stayed the same: Administrative reasons, when the compute
requirements of an application exceeds the queue time limits offered at a compute cen
ter and Performance reasons when "better" compute capacity becomes available. Our
scenario goes beyond the scope of migrating within a single cluster or a homogeneous
intra-Grid machine pool: we relocate across global Grids.

Traditional Job Re-submission. If the resource demands of an application ex
ceed the granted limits (e. g. memory or processors), the application needs to relocate
to a different machine or batch queue. The user engages in a tedious process of in
structing the application to checkpoint, securing the checkpoint files and archiving
them if necessary. If the application can only be continued on another host, the check
point files need to be transferred. After deriving the new resource requirements the
program is resubmitted to the queuing system. At all steps, the user's involvement
makes the process prone to failure:

Grid Object Description: Characterizing Grids 521

Migration Client

1
Checkpoint

In Queue Time Slot --- Stream --
erlefo

Queue cfl0f>
ReSfllv.d Tim. <»

Checkpoint
., E E i= & Migration F .,
:l

i Calculallon .,
:l a

Recovery

Checkpoint File
Transfer

.•

Host A Host B Host C

Figure 1. "Nomadic Migration".

Checkpoint files can be erased by disk purging policies and lack of bandwidth
can make the checkpoint transfer unacceptably slow.

2 Resource requirements have to be correctly analyzed, otherwise the job will be
rejected by the resource management system, either at submission time or worse
- during runtime. Conservative estimates of resource requirements usually lead
to longer waiting times.

3 The researcher is required to remember usernames and passwords as well as the
interfaces to a wide range of different machines, architectures, queuing systems
and shell programs.

From experience, the overhead of this procedure encourages the researcher to resubmit
a job on the same machine, discarding potentially faster machines.

Automated Job Re-submission. The process of resubmitting to an arbitrary
host, which fulfills the application's minimum resource requirements, is a prime can
didate for automation: In Figure 1 we illustrate a migration process for an application.
The migration progresses from left to right across three different host types A, Band C,
indicating a network of workstations, a cluster of PCs and a traditional supercomputer,
respectively. The left inset shows the different phases of an application in a queue: a
migration client receives reserved compute time, called a "slot". Within this time slot,
all code execution has to take place: the recovery from a previous checkpoint, the cal-

522 G. Lanfermann, B. Schnor, E. Seidel

culation phase, and saving the new state to a new checkpoint file. Applications which
exceed their time slots are terminated.

In the illustration an application is started on hostA. A migration server (not shown),
which is responsible for the relocation of applications, receives information on the
client's resource consumption and its location. It monitors the availability of new
machines which meet the requirement. As "better" resources become available, the
application on A is informed and it checkpoints. The checkpoint files are transferred
to host B. The migration client is restarted or submitted to the queuing system. As
the application runs out of compute time on B, the last checkpoint is archived in a
storage facility and the program is resubmitted to the queue on the same machine. The
application will execute a second time on B.

Some advanced applications are able to receive the checkpoint as a socket stream
instead of reading from file. In combination with advanced reservation scheduling,
this transfer mode allows for fast checkpoint transfer, shown in the migration to ma
chine C: The program on B is aware of the expiration of its time slot and requests in
advance a slot on machine C, which overlaps with the compute slot on B. By the time
the application is about to finish on B, the migration server starts an uninitialized ap
plication on C, which receives the application state through the streamed checkpoint
and continues the calculation. GridLab [25] is currently investigating these prototypes
to study the functionality which they will make available in a generic way to a wide
class of applications.
This case study identifies some of the problems that have to be solved:

• File Transfer: A migration service stages executables and other files to a new
host. Therefore, it must be able to determine and support different file transfer
methods for each of the source and target machines.

• File Description: The service must provide a compact description of multiple
files, including information on where the files are located and how they can be
accessed.

• Job Submission: The migration server is responsible for submitting the new job
to individual queuing systems.

• Resource Description: It is essential to characterize resource requirements of an
application as well as resource capacities of machines or queues. The migration
service must be able to evaluate and compare them.

• Hardware Description: A migration service must describe the location of ma
chines, including the ways to access it.

2. Related Work
Quite a number of different software packages exist to assist in interfacing with

heterogeneous environments. Resource management systems are primarily aimed at
users, while web services and related technology are designed for applications. In this
section we list the most important packages and discuss how we can incorporate their
functionality in our information model.

Grid Object Description: Characterizing Grids 523

2.1 Resource Management Systems and Tools
These systems focus on describing the compute capacities of machines and the

requirements of applications. They provide advanced scheduling policies to achieve
high job throughput and provide a uniform access to machines. Typically each of these
submission systems comes with its own way of characterizing resources.

Globus. Globus [13] makes a significant contribution to the Grid infrastructure.
We use Globus functionality for our migration service wherever and whenever possi
ble. Globus requires a working and maintained installation. Within the Globus instal
lation base, a well specified job submission and resource selection system is supplied
to the user.

The Globus Resource Specification Language (RSL) [23] provides a common inter
change language to describe resources. It is used to define resource requirements for
applications which are submitted through the Globus Resource Allocation Manager
(GRAM) [16]. The Meta Directory Service (MDS) [10] is the information service
component of the Globus Toolkit. MDS services can deposit and extract information
on the current resource situation of a machine or queue. MDS is based on LDAP
and represents information as a set of objects organized in a hierarchical namespace,
in which each object contains key-value pairs. MDS introduces yet another set of
vocabularies to express resources.

Condor. The Condor [4] system is designed as a "cycle-stealing" middleware
to harvest unused compute capacity for single processor applications. It supports
transparent checkpointing and operates primarily on homogeneous machines within
a single administrative domain, called a 'flock". Condor-G [14] is a modified Condor
package, that joins multiple condor "flocks" from diverse sites through Globus.

Condor Classified Advertisement (Class-Ad) is a sophisticated data model to de
scribe resources in general and includes a matchmaking ability which makes it a valu
able tool to compare resource requirements with constraints. Condor does not come
with a fixed set of attributes but requires the information in the Class-Ad syntax.

Batch Submission System. Packages like PBS, LSF, Load Leveler, Sun Grid
Engine, etc. are responsible for submitting the application to a computer. They come
with a proprietary script syntax and offer different capabilities. Submission scripts are
traditionally prepared by users - either manually or through graphical user interfaces.

2.2 Web Services

Most of the services listed above are designed to be accessed by a user - either
from the command line or through graphical interfaces. They are not primarily de
signed to be accessed by an application. The application-centric utilization of services
has been a very recent trend and builds on the concept of web services. Technolo
gies like "eXtensibleMarkup Language" (XML) [6], "Simple Object Access Protocol"
(SOAP) [5], XML-Remote Procedure Call (XML-RPC) [27], "Web Service Descrip
tion Language" (WSDL) [7] and "Universal Description Discovery and Integration"
(UDDI) [26] enable applications to autonomously connect to other programs to ex
change information and services. WSDL, which is an XML language used to describe

524 G. Lanfermann, B. Schnor, E. Seidel

network service endpoints, has become the standard to describe web services. The re
cently released Open Grid Service Architecture (OGSA) [12], which is a specification
that integrates the concepts of web services and Grid technology, builds heavily on
these web service standards.

2.3 Related Information Models
There are some unification efforts for the description of Grid entities under way:

Globus GRAM provides interfaces to address the most common batch submission
systems. The Global Grid Forum features the Job Submission Description Language
(JSDL) working group which investigates a standard description for job submissions to
incorporate the different resource dialects. The Common Information Model (CIM) [8]
is developed by the Distributed Management Task Force (DMTF). CIM's data model
is an implementation-neutral scheme for describing management information in a net
work/enterprise environment. CIM has similarities regarding our goal to provide a
common description system.

The JSDL is similar in spirit to what GODsL aims for, but is restricted to job
description. The Globus RSL, which unifies access to different submission systems
through Globus GRAM has only rudimentary support for file information. CIM infor
mation models on the other hand offer a functionality which reaches far beyond what
we feel is necessary to describe entities on the Grid and which makes it difficult to
deploy such models on clients. We follow a more simplistic approach to describe Grid
Objects.

3. Grid Objects
The design of the Grid Object Description Language is based on our experiences

with the migration service environment and in particular on these observations:

• To use an information model, we cannot require or rely on the global installation
of a single Grid middleware. Because of the administrative autonomy of sites,
we will be faced with anything from modern Grid web services to traditional
interactive commands.

• Web service technology has excellent solutions for providing information on
services. But our system must accommodate "legacy-services", like ssh-based
machine access as well. Furthermore, we need to describe non-web service
compliant user programs and have to associate service descriptions with file or
machine information.

• We require a solution which abstracts a compute capacity from the hardware
that provides it and which is able to describe resource requirements as well.

• A description of files must be included for migrating an application: a check
point file contains the "hibernating" state of a migrating application and is of
equal importance as the application's executing state, which can be character
ized as a service.

With this motivation, we do not attempt to reproduce any of the software packages or
Grid middleware listed above. We target a uniform description of the various systems
and their abilities. We motivate an information model that allows for a precise defini
tion of an "object" on the Grid independently of the circumstances under which it is

Grid Object Description: Characterizing Grids 525

realized: this object can be a distributed file, a compute capacity offered by a machine
or the resource requirements of an application. We attempt to capture these different
aspects in a single data model.

3.1 Grid Object Examples

The following examples illustrate how the different aspects of items on the Grid are
interchangeable:

1 The information on the name and directory of a data file is only sufficient if
we know on which physical machine the file resides. However, we have no
information on how we can access that particular computer, we are not able to
look at the file, copy it or treat it in any other way.

2 The file on that machine may have been generated by an application. Unsurpris
ingly, the machine which hosts the service is identical with the machine location
of the file.

3 The application has a minimal resource requirement, and a computer may pro
vide resource capacities. The host can execute the application if and only if the
hardware's resource capacity is greater or equal than the application's resource
requirement.

4 If requirements and constraints are matching, the application can be hosted on
that particular hardware. The description of the application remains the same,
but the host information changes.

In these simple examples we can identify four core components of an object, which
are service, hardware, file and resource properties.

3.2 Grid Object Description Language

We propose Grid Objects as a general description of objects on a Grid. We call
the structure to describe such an entity the Grid Object Description Language. A
Grid Object is a collection of sub-objects, termed a Container, each of which holds
one or more Profiles that reflect the different properties of this object, as illustrated
in Figure 2. The container structure in a Grid Object is optional and depends on the
background situation that is described.

For our purposes we define a Grid Object as follows:

Grid Object -+ UId Label {Machine Profile} {Resource Profile}

{ Service Profile} {File Profile}

The profiles and container can be optional. Multiple profiles are collected in a con
tainer structure. Profiles can be copied (example 2, in which the file's machine profile
can be inherited from the description of the application) or compared (example 3,
where two profiles are put in relationship). Profiles can be added or replaced (exam
ple 4, adding or replacing the description of the hardware as the application starts or
migrates, respectively).

526 G. Lanfermann, B. Schnor, E. Seidel

Grid Object

Figure 2. Grid Object structure

3.3 Machine Profiles
Machine profiles contain the information which are obligatory to address the hard

ware on the internet. Typical information items are the type of the hardware, the
hostname, the domain name and the IP address. Multiple machine profiles can be
grouped in a Machine Container. A machine container can e.g. describe a network of
workstations or the participating machines of a meta-computer.

3.4 Resource Profiles

The resource profile structure characterizes the compute and storage capabilities or
requirements of a Grid Object. Key attributes of a resource profile are e. g. the number
of processing elements, memory, information on the operating system and CPU type.

The reason to treat the resource characteristics separately from a machine profile is
justified by the fact that resource profiles are not necessarily tied to a hardware device.
Instead they can be used to characterize abstract resource situations: An application
may provide a resource profile to interested parties to relay information on its resource
consumption. In this context the resource profile is not attributed to a hardware (ma
chine profile) but to an application, which is described through its location (machine
profile) and functionality (service profile). As hinted above, multiple resource pro
files may be used to characterize the different batch queues which partition the total
compute resource of a machine, specified through a machine profile.

3.5 Service Profiles

A Service profile is a description of a functional ability which is available on a
machine or provided by an application, usually through a port or range of ports. We
aim at describing modern web services as well as traditional interactive commands like
secure-shell based access to a hardware or queue submission system. Key attributes,
which are used to describe such a profile are operation for traditional command line
programs, binding specifying contact information on web service based operations,
method the name of the method under which a rpc-typed service can be accessed,
followed by port information. Multiple service profiles can be grouped into a Service
Container. Such a container may e. g. list all access methods (e. g. ssh, rsh, http,
Globus gatekeeper) that permit access to a hardware.

Grid Object Description: Characterizing Grids 521

The Grid Object information model that we suggest does not try to supersede
or copy WSDL technology. Instead we look for a pragmatic way to include non
webservice compliant, legacy applications as well as proprietary user codes in the de
scription of Grid entities. While WSDL has some capabilities to store service related
information, we do not regard WSDL as a suitable place e. g. to store the description
of a migratable entity (application, checkpoint, parameter files). We would suggest
using WSDL for describing the interface to retrieve such an object description from a
database.

3.6 File Profiles
File profiles describe properties of files and directories. Their main attributes are

Filename and Directory to locate files on a filesystem. Size and Compactijication
information allow a transfer operation to favor certain services over others or to rule
out potential target hosts, e. g. due to the lack of bandwidth.

3.7 Grid Objects

The different profiles and containers that we introduced above are combined to
provide a unified description of the different aspects of objects on the Grid. The Grid
Object structure collects the various containers into a single entity. Container informa
tion is optional, containers are appended to the Grid Object depending on the situation
which is described. The Grid Object may hold a Machine Container, Service Con
tainer, File Container and Resource Container. Each component (profile, container,
object) provides space for a human readable label and a unique identifier (UId) to dis
tinguish the different components in a machine readable style. Multiple Grid Objects
can be collected into an array of Grid Objects, called a Grid Object Container.

The classification into the four fundamental types is inspired by our underlying
migration scenario, whose communication content we intend to express with this data
model. For other scenarios, different profiles may become important while others can
be omitted. In section 5 we suggest several important additions to the Grid Object
information model.

3.8 GODsL Toolkit

The GODsL Toolkit (GODsL-Tk) provides a number of routines to manage Grid
Objects, container and profile structures for the C programming language. It can be
used to copy profile and container constructions and attach them to already existing
objects. The toolkit provides routines to serialize the Grid Objects from C to XML and
deserialize objects in XML into the appropriate C structures. Our migration service is
such an XML-RPC based service, which uses XML representation of Grid Objects as
data for the migration requests.

4. Grid Objects Applied: Grid Migration Service
In this section we give actual examples of how Grid Objects are used in the context

of the migration service, which we introduced as our main motivation for developing
this data model.

528 G. lAnfermann, B. Schnor, E. Seidel

Grid Object
label: Checkpoint Files for a=9. 8 T=4. 2 on Vidar2
Uld: 120341

FIle Container

Label: checkpoint Files
Uld: 120341.31234

I File Profile 111

I File Profile '2
I File Profile t3

File Proflle'4

Name: Cp_045_U .bin
Directory: Iscratch/job04S
Size: 1034
SlzeUnlt M
Uld: 120341. 31234'F4
Compact: 0.8

Label: Run a-9.8 T=4.2

Service Container

Label: Data Transfer
Uld: 120341.3

Service Profile .1

Type: copy
Operation: sftp
Binding:
Transport ssh
Uld: 120341. 31C

Lebel: copy access

I Port' 22
. PortLebeI: ssh

Machine Container

Label: Test Machine

Uld: 34524.4

Machine Profile #1

Hostnama: vidar2.aei.mpg.de
IP:
Binding:
Uld: 34524. 424M

Label: Test Machine

Figure 3. Grid Objects describe distributed files generated through parallel JlO as well as the hosting
machine and the access methods.

4.1 Multiple Files on a Single Machine
Large data files in parallel applications are usually brought to disk through parallel

I/O methods to speed up the process of data writing. It has the drawback in that it
generates multiple files, as sketched in Figure 3, which shows the four checkpoint file
chunks which compose a single logical checkpoint. In the same way that a service
container can hold several access profiles for a machine, we can group multiple file
profiles in a file container.

In Figure 3 we show the resulting Grid Object, which holds the file container, that
stores the four file profiles. The Grid Object can be completed with information where
the file is located through a machine profile and how it can be accessed: this service
profile identifies secure-shell ftp as the only transfer method. We can now pass such
a Grid Object as the source part in a copy request to a migration server, e. g. to store
the files in a storage facility. With the method call, the copy service receives all the
necessary information to move this file from the specified machine to a new site. The
service can also decline the copy operation, if it does not provide the transfer methods
which are required to access the files on the machine.

4.2 Resource Identification, Evaluation and Request
Before any job is executed on a supercomputer, a three stage process needs to be

completed, which is traditionally done by the user, interactively and intuitively: The
user determines the resource requirements of his application, typically through edu
cated guesses or trial and error. Secondly, the user has to familiarize himself with the
compute capacities on the machines in question. This knowledge is usually gathered

Grid Object Description: Characterizing Grids 529

by reading up on the site's batch submission configuration. The user then chooses a
particular supercomputer, where he selects a queuing system, whose constraints will
not be violated during the runtime of the program. The user requests the resources,
usually by filling out a batch submission script, in which he states the requirements,
like number of processors and memory. The user has to obey the particular queue
syntax. The job is finally submitted.

If we express the diverse resource requests and constraints, job submission inter
faces, etc. as profiles in a Grid Object, we have accomplished a first step to automate
this user-centric process. In Figure 4 we show the use of Grid Objects in each of the
three stages and explain the mapping between the different vocabularies ofMDS [10],
Condor's Class-Ads [9], PBS [17] and LSF [29]. The attributes of a resource profile
(abbreviated RP), a service profile (SP) and a machine profile (MP) are being exchanged
with the corresponding third party vocabulary. The automated process consists of
these procedures:

Resource Identification. In the identification phase, the available resources are
reported by monitoring systems like MDS, and the mapping of the MDS vocabulary to
the Resource profile's attributes is performed. This step is illustrated in the top section.
If more than one resource is obtained, the lookup service provides a Grid Object for
each of the results. The resource requirements of an application can be measured at
runtime with tools like Performance-API [21] and are also expressed in a resource
profile of a Grid Object (bottom part).

Resource Evaluation. To determine which resource provides the best compute
capacity for a given resource constraint, we prefer using existing technology, like Con
dor's Class-Ads: A migration service rewrites the resource profile of the application
and the resource profiles of the available resources as Class-Ads. The Class-Ads pars
ing algorithm compares the job requirement to the constraints and returns a match if
possible.

Resource Request. When a match is found, the migration server can proceed to
submit the job and needs to fill out the proper batch submission script. Depending
on the scheduling system found on the particular machine, the server provides the
resource requirements as arguments to the batch scheduler: The content of the resource
profile is now mapped onto the vocabulary of the batch submission systems. As shown
for PBS and LSF in the bottom part of Figure 4, this is a straightforward translation
process.
Reusing existing software is an indispensable ability and the Grid Object Descrip
tion Language permits to converse with already existing software packages and grid
middleware. For example, a statement on the amount of memory is expressed as
physica1memorysize (MDS), Memory (Class-Ads, user defined), #BSUB -M (LSF
directive), #PBS -1 mem (PBS directive). The mapping between different vocabular
ies is performed through modules in the individual programs.

5. Conclusions and Future Research
In this paper we have described the hierarchical and modular architecture of the

Grid Object Description Language. Grid Objects represent the different aspects of an

530 G. Lanfennann, B. Schnor, E. Seidel

Resource Identification Resource Evaluation Resource Request

I R8eource COntainer I
R to . J PBS script

Resource Lookup (MDS) "MO."'O',onlo., r I [I J: 1 Procs • 128 IpBS -1 mam- RP .:memory
RP.memory • phyaicalmemoryaize RnourceProfl!eI, Memory. 2048
MP.hoatname • hoatname Processors: 128 1 mpirun -np RP.proce.8ora
SP.oparation- lc:he4ulertype Memory: 2 /'

MemUnh: G (Class-Ads
• LSF script

Application Resource Needs / ". RHOUr'Ce ProHl •• ,

Prooessors: 64 I' rt·- I RP.memory . 500 conltraint • m,pprun -n RP.proc •• aora
RP.label • "HySim,· Memory: 600 (Proci >- 64 II •
D. processors • 64 MemUnit; M J Memory >- 500)

Figure 4. Grid Objects provide the translation capabilities to make use of already existing resource
management technology. Resource profiles are used as a mediator between the different systems.

abstract entity on the Grid. Its hierarchical structure allows Grid Objects to scale with
the increasing complexity of the described situation. Profiles and container compo
nents can be exchanged between Grid Objects which permits uncomplicated genera
tion, updating and management of Grid Objects. The attributes of its profiles can be
mapped onto existing Grid middleware in a straightforward manner, which is an im
portant requirement to take advantage of sophisticated legacy middleware, which are
omnipresent in today's Grid infrastructure.

We have illustrated in several examples that Grid Objects can be used to describe
complex situations on Grids in a flexible way. These examples are taken from experi
ments with the Grid Migration Service, which uses Grid Objects to communicate the
state of files, services and resources. Migration experiments have been conducted on
the European Testbed (EGrid) [11] to develop and test communication through Grid
Objects.

Open Grid Service Architecture. The Grid Object description approach falls
short in respect to the capabilities of today's web service technology. For the future
development of GODsL, the interfacing with web service technologies, like OGSA,
will become an important field of research. The OGSA code base has been changing
quite drastically over time and has now reached a stage where it has started to stabilize.
We intend to take advantage of OGSA services in migration servers, for example to
utilize Grid copy operations.

Network Profiles. The current version of GODsL does not support the charac
terization of network performance. The Network Weather Service [28] is a distributed
system that periodically monitors and dynamically forecasts the network conditions
like bandwidth. Currently, we investigate, how Grid Objects can be extended through
Network Profiles [15], which will allow a migration service to select a potential mi
gration host based on its network connectivity. Such a profile should also be capable
to typify internal networks to give users a way of requesting a preferred network in
terconnect within a cluster or parallel computer.

Time. Future work will include the notion of time and time intervals. The present
system of profiles is static in the sense that profiles do not timeout or become invalid.

Grid Object Description: Characterizing Grids 531

Especially in the field of meta-computing and advanced reservation scheduling it is
necessary to describe the beginning and expiration time of a resource. We are working
on methods to complete the Grid Object structures to express these dynamic proper
ties.

With GODsL we do not intend to provide the community with yet another way of
solving the problems of resource detection or web service description. However, from
our application background, we see the need to express a unifying view on general
objects on a Grid: We see compelling demand to glue together both the advanced and
historical software technologies, which are the fabric of today's Grid infrastructure, as
well as user applications. The Grid Object Description Language suggests a solution
to this problem.

Acknowledgments
We are pleased to acknowledge support of the European Commission 5th Frame

work program, which is the primary source of funding for the GridLab project, but
also the German DFN-Verein, Microsoft, the NSF ASC project (NSF-PHY9979985),
and our local institutes for generous support for this work. We also thank Gabrielle
Allen, Thomas Dramlitsch and Ian Kelley for helpful discussions. We are grateful for
using the compute resources of the EGrid and at NCSA.

References
[1] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, and J. Shalf.

The Cactus Worm: Experiments with Dynamic Resource Discovery and Allocation in a Grid
Environment. Int. J. of High Performance Computing Applications, 15(4):345-358, 2001.
http://www.cactuscode.org/Papers/IJSA-2001.pdf.

[2] G. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, W. Benger, C. Hege, A. Merzky, J. Mass6,
and J. Shalf. Solving Einstein's Equations on Supercomputers. IEEE Computer, 32(12):52-59, 1999.

[3] A. Barak, A. Braverman, I. Gilderman, and O. Laaden. Performance of PVM with the MOSIX
Preemptive Process Migration. In Proceedings of the 7th Israeli Conference on Computer Systems
and Software Engineering, pages 38-45, Herzliya, June 1996.

[4] J. Basney, M. Livny, and T. Tannenbaum. High throughput computing with Condor. HPCU News,
1(2), June 1997.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte, and
D. Winer. Simple Object Access Data Protocol (SOAP) 1.1. W3C Note, May 2000. http:
//www.w3.org/TR/SOAP/.

[6] T. Bray, J. Paoli, C. Sperenberg-McQueen, and E. Maler. Extensible Markup Language (XML) 1.0.
W3C Recommendation, October 2000. http://www . w3. org/TR/REC-xml.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerarawana. Web Service Description Language
(WSDL). W3C Note 15, March 2001. http://www . w3. org/TR/wsdl.

[8] Common Information Model (CIM) Standards. The DMTF webpage: CIM Specification v2.7 and
Standards, September 2002. http://www • dmtf . org/ standards / standard_ cim. php.

[9] The Condor Classified Advertisement. The Condor Webpage. http://www . CB. wisc. edu/
condor/classad/.

[10] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services for Distributed
Resource Sharing. In Proceedings of the Tenth IEEE International Symposium on High-Performance
Distributed Computing, (HPDC-IO). IEEE Press, August 2001.

[11] T. Dramlitsch, G. Lanfermann, E. Seidel, A. Reinefeld, et al. Early Experiences with the EGrid
Testbed. In IEEE International Symposium on Cluster Computing and the Grid, 2001. Available at
http://www.cactuscode.org/Papers/CCGrid-2001.pdf.gz.

532 G. lAnfermann. B. Schnor, E. Seidel

[12] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid Service
Architecture for distributed systems integration, June 2002. http://www • globus. org/ogsa/.

[13] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International
Journal of Supercomputing Applications, 11(2): 115-128, 1997.

[14] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke. Condor-G: A Compu
tation Management Agent for Multi-Institutional Grids. Journal of Cluster Computing, 5:237-246,
2002.

[IS] C. Fricke. Characterizing networks through the Grid Object Description Language. Student's Thesis,
University of Potsdam, 2003. To appear.

[16] Globus Resource Allocation Manager. The Globus GRAM Webpage. http://www • globus .org/
gram.

[17] R. Henderson and D. Tweten. Portable Batch System: External reference specification. Technical
report, NASA Ames Research Center, 1996.

[18] G. Lanfermann, G. Allen, T. Radke, and E. Seidel. Nomadic Migration: A New Tool for
Dynamic Grid Computing. In Proceedings of the Tenth IEEE International Symposium on
High Performance Distributed Computing, HPDC-IO, pages 435-436. IEEE Press, August 200t.
http://www.cactuscode.org/Papers/HPDC10-2001_Worm.ps.gz.

[19] G. Lanfermann, G. Allen, T. Radke, and E. Seidel. Nomadic migration: Fault tolerance in a disruptive
grid environment. In Proceedings of the Second IEEElACM International Symposium on Cluster
Computing and the Grid, pages 280-281, 2002.

[20] Gerd Lanfermann. Nomadic Migration - A Service Environment for Autonomic Computing on the
Grid. PhD thesis, University of Potsdam, Potsdam, 2003. To appear.

[21] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T. Spencer. End-user tools for appli
cation performance analysis, using hardware counters. In International Conference on Parallel and
Distributed Computing Systems, August 200t. http://icl.cs.utk.edu/projects/papi.

[22] S. Petri and H. Langendtlrfer. Load Balancing and Fault Tolerance in Workstation Clusters - Migrat
ing Groups of Communicating 'Processes. Operating Systems Review, 29(4):25-36, October 1995.

[23] The Globus Resource Specification Language RSL vt.O. The Globus Webpage. http://www-fp.
globus.org/gram/rsl_specl.html.

[24] B. Schnor, S. Petri, R. Oleyniczak, and H. Langendtlrfer. Scheduling of Parallel Applications on
Heterogeneous Workstation Clusters. In Koukou Yetongnon and Salim Hariri, editors, Proceedings
of the ISCA 9th International Conference on Parallel and Distributed Computing Systems, volume I,
pages 330-337, Dijon, September 1996. ISCA.

[25] E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski. GridLab - A Grid Application Toolkit and Testbed.
Future Generation Computer Systems, 18(8):1143-1153,2002.

[26] Universal Description, Discovery and Integration (UDDI). http://www • uddi. org.

[27] D. Winer. XML-RPC Specification, June 1999. http://www.xmlrpc.com/spec.

[28] Richard Wolski. Dynamically forecasting network performance using the network weather service.
Cluster Computing, 1(1):119-132, 1998.

[29] Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle. Utopia: a load sharing facil
ity for large, heterogeneous distributed computer systems. Software - Practice and Experience,
23(12):1305-1336, 1993.

SESSION 10

SLA / Quality of Service

Chair: Heinz-Gerd Hegering
University of Munich, Germany

POLICY SPECIFICATION AND ARCHITECTURE FOR
QUALITY OF SERVICE MANAGEMENT

Nathan Muruganantha and Hanan Lutfiyya *
Department of Computer Science
The University of Western Ontario
hanan@csd.uwo.ca

Abstract:

Keywords:

An application's Quality of Service (QoS) requirements refers to non-functional, run-time
requirements. These requirements are usually soft in that the application is functionally
correct even if the QoS requirement is not satisfied at run-time. QoS requirements are
dynamic in that for a specific application, they change. The ability to satisfy an applica
tion's QoS requirement depends on the available resources. Since an application may have
different QoS requirements in different sessions, the resources needed are different. A dif
ferentiated service must be supported. Since an application's QoS requirement is soft, it
may not always be satisfied. It must be possible to dynamically allocate more resources. In
an overloaded situation, it may be necessary to allocate resources to an application at the
expense of other applications. Policies are used to express QoS requirements and actions
to be taken when the QoS requirement is not satisfied. Policies are also used to specify ac
tions to be taken in overloaded situations. Policies dynamically change. Supporting these
policies is done through a set of distributed managed processes. It must be possible spec
ify policies and have these policies distributed to managed processes. This paper describes
how these policies can be formally specified and a management architecture (based on the
IETF framework) that describes how the policies are distributed and used by the manage
ment system. We conclude with a discussion of our experiences with the management
system developed.

QoS Management, Policies, Application Management

1. Introduction
An application's Quality of Service (QoS) refers to non-functional, run-time re

quirements. A possible QoS requirement for an application receiving a video stream
is the following: ''The number of video frames per second displayed must be 25 plus
or minus 2 frames". A QoS requirement is soft for an application, if the application
is functionally correct even though the QoS requirement is not satisfied at run-time.
Otherwise, the QoS requirement is said to be hard (e.g., flight control systems, patient
monitoring systems).

The allocation and scheduling of computing resources is referred to as QoS man
agement. QoS management techniques (e.g., [25]), such as resource reservation and
admission control can be used to guarantee QoS requirements, since resource reserva-

*This work is supported by the National Sciences and Engineering Research Council (NSERC) of Canada,
the IBM Centre of Advanced Studies in Toronto, Canada and Canadian Institute of Telecommunications
Research (CITR).

http://dx.doi.org/10.1007/978-0-387-35674-7_66

536 Nathan Muruganantha, Hanan Lutfiyya

tions are based on worst-case scenarios. This is useful for applications that have hard
QoS requirements, but often leads to inefficient resource utilisation in environments
that primarily have applications with soft QoS requirements.

Application QoS requirements are often dynamic in that they may vary for different
users of the same application, for the same user of the application at different times,
or even during a single session of the application. We developed a QoS management
system that deals with soft and dynamic QoS requirements by providing management
services (implemented by a set of management processes and resource managers) that
support the following: (1) Detecting that an application's run-time behavior does not
satisfy the application's QoS requirements. This is called a symptom and is considered
a manifestation of a fault in the system; (2) Fault location, using a set of symptoms,
determines a hypothesis identifying possible faults causing the violation of the QoS
requirements; (3) Based on the fault and the system state, adaptation actions are cho
sen that may take either the form of resource allocation adjustments or application
behavior adjustments. These adaptations depend not only on the cause of the viola
tion, but also depend on the constraints (administrative requirements) imposed on how
to achieve the QoS requirement. This is especially important in the case of overloaded
conditions.

It should also be possible for the QoS management system to communicate to an
application that it should adapt its behavior (e.g., change video resolution) if it is
not possible to reallocate resources. The implication of different QoS requirements
suggests that a differentiated allocation of resources should be allowed.

Policies are used to express requirements. A policy can be defined [20] as a rule
that describes the action(s) to occur when specific conditions occur.

The QoS management system should be able to support the strategy described
above as well as deal with changes in QoS requirements.

Our earlier work [11] described a policy-based QoS management framework and
the initial results indicated that this approach is worth pursuing. This paper focusses
on the definition and specification of different categories of policies and describes
how they can be distributed to the appropriate entities in the QoS management sys
tem. This paper is organized as follows: Section 2 describes the different types of
policies needed and the architecture needed to support the QoS management system
to support the QoS management strategy described earlier. Section 3 briefly describes
the implementation. Section 4 discusses the lessons learned. Section 5 discusses the
related work. Finally a conclusion is presented.

2. Architecture
This section describes different categories of policies and architectural components

(depicted in Figure 1) needed to support the strategy to QoS management described in
Section 1. The management architecture used in this work is considered an adaptation
of the IETF policy framework [14, 19,22] and is a generalization of our architecture
described in [11]. An example QoS requirement that will be used throughout the paper
is the following:

EXAMPLE 1 A video client is to receive video at a frame rate of 25 frames per
second, plus or minus 2 frames.

Policy Specification and Architecture for Quality of Service Management 537

Event
:) Manager
I
I

I- event

r - - - policy - - - - - - - - - - -
I
I

Name
Server

A
I
I

Policy Editor

Policy
Manager

I
I
I
I

I
I
I
I
I
I
I
I
L

I
I
I
I
I
I
I

I
I

1-------- ----

I
I
I
I
I
I

event
I

PDP

,
: policy

I :
I . --...!

- -action, reques,t- - - -)-

I I
I
I 1-----

I
I

PEP

resource adjusunent
request

Resource
Manager

Figure 1. Policy-Based QoS Management Architecture

2.1 Expectation Policies
An expectation policy is used for stating how QoS requirements are determined

and where to report the violation of a QoS requirement and any other possible actions.
Expectation policies are specified using Ponder obligation policy formalism (for more
information see [3]). In this formalism, the policy specifies the action that a subject
must perform on a set of target objects when an event occurs. An expectation policy
type associated with Example 1 is the following:

538 Nathan Muruganantha, Hanan Lutfiyya

EXAMPLE 2
type oblig QoSreq_spec (target Coordinator, ScriptType FindQoSReqs){

subject PolicyManagerj

}

on requestQoSRequirements(ProcessInfo)
do FindQoSReqs(in ProcessInfo,

out EventIdentifier,
out AttributeConditionList,
out ActionList)j -->

Coordinator. Initialize (EventIdentifer,EventManagerIdentif ier,
AttributeConditionList, ActionList)j

Tbis can be instantiated as follows:

inst VideoClientProcessReq=
QoSreq_spec(VideoClientProcessCoordinatorSet,DetermineA11owedFrameRate)j

It is assumed that each process has a management coordinator. The target domain
for policy VideoClientProcessReq is the set of management coordinators of pro
cesses instantiated from the executable at .. '/syslab/rockyroadlvideoClientExecutable
(where ... refers to Ica/uwo/csd/syslab). It is not assumed that all instantiations are
executing on rockyroad. DetermineAliowedFrameRate is a script that computes
the frame rate per second that the process is allowed to have. Its input is process in
formation (represented by Process Info) that includes the user of the process and the
time. The script returns the QoS requirements in AttributeConditionList. This is a list
of attribute conditions. Application QoS requirements can be specified as a conjunc
tion of the conditions specified in the attribute conditions. The general form of an at
tribute condition is the following: (anAttribute, comparisonOperator, aThreshold,
Eventldentifier) where anAttribute denotes the attribute being monitored, aThresh
old denotes a threshold that the value of anAttribute is being compared to, and com
parisonOperator denotes the comparison operator by which the value of anAttribute
and aThreshold are to be compared. Eventldentifier is the identifier of the event
that is generated when this specific attribute condition is not satisfied (and hence the
the QoS requirements are not satisfied). If an application process is to have the QoS
requirements stated in Example 1, then the attribute condition list would be the fol
lowing: «currenUps, 27,fps_high),(currenUps, fpsJow». The attribute
identifier, currenUps, represents frames per second. The event, fps_high, is gener
ated when current frames per second is above 27 and fpsJow is generated when the
current frames per second is below 23.

The "calculation" or determination of QoS requirements can be guided by policies.
A simple policy can be informally stated as follows: "if the process belongs to the
GroupA users then it gets a target frames per second of 2S plus or minus two frames;
if the process belongs to other users besides GroupA users then the target frames per
second is 20 plus or minus two frames". This can be stated using Ponder formalism.

The Action List denotes the action(s) the coordinator is to execute if the conjunction
of the attribute conditions in the attribute condition list is found to be true. The general
form of an action is the following: action = (targetObject, (actionMethod, action
MethodParameter» A specific example is the following: {EventManagerHandle,
(notify, currenUps, targeUps,. ..). Basically, this action specifies that an event han
dler process, that can be referenced using EventManagerHandler, is notified of the
values of specific application attributes.

Policy Specification and Architecture for Quality of Service Management 539

2.2 Monitoring
Example 2 illustrates that application QoS requirements are defined in terms of

application-specific attributes. Monitoring of the application is needed to collect val
ues of the attributes (e.g., currentJps). One monitoring mechanism is through instru
mentation of the application which is briefly described here.

An attribute is associated with a sensor (see Figure 1). A sensor is a class with
variables for representing threshold and target values. Sensors are used to collect,
maintain, and process a wide variety of attribute information within the instrumented
processes. The sensor's methods (probes) are used to initialise sensors with threshold
and target values and collect values of attributes. Probes are embedded into process
code to facilitate interactions with sensors.

As an example, consider the sample psuedo-code for a video playback application
in Figure 2 that has the QoS requirement stated in Example 1 and sensor 81. This
QoS requirement suggests an upper threshold of 27 frames per second and a lower
threshold of 23 frames per second. Sensor 81 includes probes such as the following:
(1) An initialisation probe (line 3 of Figure 2) that takes as a parameter the default
threshold target value, and the lower and upper bounds. When the coordinator was
instantiated (line 2 of Figure 2) it communicated with the QoS management system
to get the application's QoS requirements in the form of the AttributeConditionList.
Thus when the sensor requests this information, the coordinator will already have
retrieved it. (2) A probe that (i) determines the elapsed time between frames and
checks to see if this time falls within a particular range defined by the lower and upper
acceptable thresholds. Unusual spikes are filtered out; and (ii) informs the coordinator
if the frames per second fall below the lower threshold or is higher then the upper
threshold.

When the coordinator retrieved the QoS requirements, it also retrieved the action
list consisting of the actions in the form of the ActionList to be taken if the QoS
requirement is not satisfied. In this example, this action is to notify the Event Manager
process of the QoS management system whose handle is EventManagerHandle. The
coordinator generates an event whose identifier is the event identifier found in the
received action list.

We note that not all sensors measure attributes that are directly used in the spec
ification of a QoS requirement. For example, a sensor may be used to measure the
current size of the communications buffer.

2.3 QoS Management System
In the IETF framework, a Policy Decision Point (PDP) is used to retrieve stored

policies (which is stored in the repository), and interpret and validate them. PDPs
also make decisions on actions to be taken based on the receipt of an event which is
generated from the monitoring of the environment. A Policy Enforcement Point (PEP)
applies these actions. In this section, we will describe how PDPs and PEPs are used
in this work and the additional components needed to support the QoS management
strategy described in Section 1.
Name Server. When an applications starts up, it instantiates its coordinator. The coor
dinator then registers with the Name Server. The Name Server receives and maintains
in a repository registration data from other components and application processes. It

540 Nathan Muruganantha, Hanan Lutfiyya

Given: Video application v.
QOS expectations e.

1. Perform initialization for v.
2. Initialise coordinator c.
3. Execute 81 -+ init.probe(e)
4. while (v not done) do:
5. Retrieve next video frame!
6. Decode and display!
7. Execute 81 -+ probe.framerate()
8. endwhile

Figure 2. Instrumentation Example

assigns a unique instance identifier for each registered process. The Name Server
coordinates the interaction between the QoS management components and the appli
cation's coordinator.
Policy Decision Points (Policy Manager). Within an administrative domain, there is
one Policy Decision Point (PDP) that communicates with a repository where policies
are stored and information about users is kept. This PDP is referred to as a Policy
Manager. The Policy Manager is responsible for retrieving and mapping high-level
policies to rules and communicating the rules to the appropriate management entities.
The need for this should become clearer later in this section. The Policy Manager
keeps track of where policies were deployed to.

After the application has registered with the Name Server, it requests its QoS re
quirements from the Policy Manager. It does this by generating an event requestQoS
Requirements(Processlnfo). Upon receiving the request, the Policy Manager deter
mines the policy that applies. If the policy that applies is Example 2 then the Policy
Manager will execute the script DetermineAliowedFrameRate. The Policy Man
ager sends the QoS requirements and actions to be taken in the case of QoS violation
to the application's coordinator as a condition list and action list which were described
earlier.

The Policy Manager is the only type of PDP to receive events directly. The rea
son for this is the assumption that within an administrative domain there is only one
Policy Manager and that the only type of event that it can receive is the requestQoS
Requirements event.
Event Manager. The Event Manager receives events and allows other management
entities to register an interest in an event. The Event Manager can receive events from
the coordinators that are generated in response to a violation of QoS requirements and
it can receive events that represent a regular report of monitored data e.g., resource
usage information.
Policy Decision Points for Violation Location. In Section 1, we identified the need
for violation location. In this work, the location process is event-driven in the sense
that the location process does not begin until an event indicating that a QoS require-

Policy Specification and Architecture for Quality of Service Management 541

ment is violated is generated. Conditions on the state of the system are evaluated to
help in diagnosis.

PDPs are used to respond to a violation of a QoS requirement. This violation is
an event. The PDP uses this event and other monitored information to diagnose the
problem. Diagnostics are guided by diagnosis policies. A diagnosis policy associated
with Example 1 is the following:

EXAMPLE 3

inst oblig fps_lowl
{

};

subject s = /ca/uwo/csd/brown/pdpServer;
target t = /ca/uwo/csd/syslab/rockyroad/PEP;

on fps_low(VideoClientlnfo, current_fps, low_target_fps
current_buffer_size, current_buffer_trend);

do t.CPUlncrease(VideoClientlnfo.Processldentifier,current_fps),
when registered(VideoClientlnfo.Processldentifier) and

(current_fps < low_target_fps) and
(buffer_size> bufferThresholdValue) and
(current_buffer_trend = UP);

This policy states that if the current frame rate (currenUps) is lower then the tar
get frame rate (targeUps) and if the size of the client's communication buffer (cur
renLbuffer _size) is higher then a specific buffer threshold and if the client's buffer
size (currenLbuffer _trend) tends to increase it should be requested that the resource
manager at host rockyroad.sylab.csd.uwo.ca should increase the CPU priority of the
video client. A policy fpsJow2 is used to specify that if the event fpsJow has oc
curred and the size of the buffer is relatively low and the CPU load of the machine
that hosts the video server is high, then the manager process on the video server's host
machine is to be instructed to increase the CPU priority of the video server process.
These related policies are grouped into one composite policy.

There is a similar composite policy for when the current frame rate is higher then
the higher bound allowed on the frame rate.

PDPs get the diagnosis policies associated with an application after the application
registers with the Name Server. Upon receiving a registration request from an applica
tion process through its coordinator, the Name Server registers the application process
with a PDP. There may be several PDPs. It is assumed that the administrator has de
termined how application processes are assigned to PDPs (which can be formalized
as policies). The Policy Manager retrieves the diagnosis policies. However, Ponder
policies are not executable. The user of Ponder makes it relatively easy for an ad
ministrator to use it, but it is too high-level to be executable by a PDP. An alternative
formalism for specifying policies is needed. We refer to an executable policy as a rule.
In this work, the alternative formalism was chosen to be JESS. An example of a JESS
corresponding to the policy in Example 3 is the following:

EXAMPLE 4

(defrule fps_low_local
(registered process_id ?pid)
(fps low ?current_fps ?target_fps)
(and (buffers high ?current_buffer)

(buffers up_trend ?current_buffer)

542 Nathan Muruganantha, Hanan Lutfiyya

=>
bind ?amount (resource_distance ?current_fps ?target_fps 10)

(if (> (resource_conditions ?pid rtcpu ?amount) 0.5)
then
(adjust_resource ?pid rtcpu ?amount)

(if (< (possibility_condition) 0.1)
then
(assert (service_diff rtcpu)
)

(set_reset_delay 1)

We will not go into details of what each specific part means. The point being made
here is that formalisms that can be executable are usually more difficult to understand
by administrators. Hence, the need for different formalisms.

JESS actually refers to a low-level rule engine and language. The Policy Manager
will map the diagnosis policies specified using Ponder to JESS rules and then send
the rules to the requesting PDP. Also sent to the PDP are the corresponding event
identifiers that trigger the execution of rules. The PDP then registers its interest in the
event identified by the event identifier with the Event Manager.

A PDP uses the set of rules to determine the corrective action(s). This involves de
termining the cause of the policy violation and then determining a corrective action(s).
The process of determining the rules to be applied is called inferencing. Inferencing
is used to formulate other facts or a hypothesis. Inferencing is performed by the In
ference Engine component of the PDP. The inferencer chooses which rules can be
applied based on the fact repository. The inferencing that can take place can either be
as complex as backward chaining (working backwards from a goal to start), forward
chaining (vice-versa) or as relatively simple as a lookup. In this work we used forward
chaining.

A PDP is also used to authorize actions for PEPs on behalf of applications. This
will be explained in more detail.
Policy Enforcement Point. A PEP is a management process that is responsible for
monitoring the device that it is on and executing actions. A PEP receives requests from
a PDP for a resource allocation. It verifies that it may execute the action, through the
use of a PDP. This PDP uses administrative policies that formalize the administrative
requirements.

Administration requirements can be specified using Ponder authorization policy
constructs. In Ponder authorization policies, a policy is imposed by the target object,
where the target can prohibit an action on itself based on different criteria such as
subject, date and time. An authorization policy type associated with Example 1 is the
following:

EXAMPLE 5
type auth+ authCPUlncreaseT (subject s, target t)
{

}

action CPUlncrease(Processldentifier,normalizedvalue)
when belongs(GroupA, Processldentifier) and
CPUResourcesAvailable(normalizedvalue);

This can be instantiated as follows:

Policy Specification and Architecture for Quality of Service Management 543

inst auth+ allocateResourcePolicy=
authCPUlncreaseT(/ca/uwo/csd/syslab/rockyroad/PEP,

/ca/uwo/csd/syslab/rockyroad/ClientVideoProcess);

This policy states that PEP on .. ./syslab/rockyroad is allowed to increase the CPU
priority for a video client process if the video client process belongs to GroupA and
if there are enough CPU resources which is calculated by CPUResourcesAvaiiable.
The parameters to this action include the process identifer (Process Identifier and
a normalized value (normalizedvalue) representing the difference between the at
tribute's current value and the expected value. The actual control of allocating CPU
resources is encapsulated by a resource manager. There is a resource manager for
each resource.

This is a simple policy and it is not application specific. It is host machine specific.
A possible application-specific policy could be the following:

EXAMPLE 6

type auth+ authChangeApplicationResolution (subject s, target t)
{

action ChangeResolution(Processldentifier);
when not(CPUResourcesAvailable(normalizedvalue»;

}

This can be instantiated as follows:

inst auth+ authChangeApplicationResolution=
authChangeApplicationResolution(/ca/uwo/csd/syslab/rockyroad/PEP,

/ca/uwo/csd/syslab/rockyroad/ClientVideoProcess

This policy specifies that/ca/uwo/csd!syslab/rockyroad/PEP requests that the video
client process's resolution is to be changed if there are not enough CPU resources
available. This is an authorisation policy since this action should be prohibited except
under specific circumstances.
Policy Editor. The Policy Editor provides a Graphical User Interface (GUI) for the
administrators to compose and store high-level management policies (through the Pol
icy Manager) in a policy repository.
QoS Management System Organization. It is assumed that each administrative do
main has one policy server and at least one PDP. It is possible to have a configuration
with one PDP on each device, a configuration with one centralized PDP or a configu
ration with more than one PDP, but not one on each device.

3. Implementation
We have built a C++ instrumentation library that implements a hierarchy of sensor

classes. The base of the hierarchy provides a registration method that provides the
ability to have all sensors register with the coordinator in a uniform manner. Other
base methods are for enabling/disabling and read/report. C++ was used since we have
an instrumentation library that has been developed and evolved over a period of time.
There is a prototype of a Java instrumentation library that can be used for Java pro
grams to interact with the QoS management system.

The repository used was LDAP. LDAP is used since this seems to be the choice of
the IETF. The PDP, Event Manager, Name Server, and Policy Manager were all written

544 Nathan Muruganantha, Hanan Lutfiyya

in Java. The rule engine used by the PDP is JESS. The PEP has two components. The
first component, implemented in Java, interacts with PDPs. The second component
has specific resource managers such as the CPU manager and the Memory Manager.
These resource managers actually manipulate the resources. This is written in C and
is specific for Solaris. Currently, the CPU manager is integrated into the prototype.

The Policy Editor has a GUI that allows the user to enter policies The GUI was
designed so that the user could be guided through the development of the policy by
selecting whether they want to define event names, events, actions, attribute conditions
(through the constraints). The policies were put into XML and references to the XML
file were placed in the LDAP directory. XML was the language syntax used to express
the Ponder policies. The user is able to directly put Ponder policies (in the Ponder
format) in files and ask that they get loaded into the LDAP repository.

Translation is based on the existence of templates for each type of Ponder policy.
The Policy Manager has a JESS template of rules associated with each Ponder policy.
The Policy Manager uses this template to guide the transformation of a parsed Ponder
component to a JESS rule or part of a JESS rule.

We have deployed the prototype within our laboratory and instrumented a number
of applications. Currently, the prototype works as expected.

4. Discussion
This section describes our observations and experiences.

1 Section 2 describes how an application can be instrumented. It will not always
be possible for a user or administrator to instrument an application themselves.
They may have to rely on the output of logfiles that many applications generate.
It is still possible to use the architecture of the QoS management system de
scribed in Section 3. The coordinator refers to a process that reads the logfiles
generated by an application or uses the operating system to retrieve information
about the application behavior. .

2 Currently, PEPs determine if they are authorized to carry out an action by send
ing a message to the PDP. Potentially, the PDP could become a bottleneck. The
PEP could have a rule engine to directly determine if it can carry out the action.
This would reduce the load of the PDP, but increase the management load on the
device that the PEP is on. This is not a problem in the sense that our architecture
can easily handle this. Alternatively, multiple PDPs might be necessary. One
PDP focusses on diagnosis and the other PDP focusses on messages from the
PEP.

3 In our earlier work [11], diagnosis was distributed. This assumed that there
were management processes on each host machine as well as a 'global' man
agement process for an administrative domain. Rules to diagnose the cause of a
violation of a QoS requirement were found in the local management processes
as well as the 'global' management process. These management processes are
similar to the PDPs. We found the translation of diagnosis policies to rules and
the deployment of those rules was more complicated. This is the result of the
translation having to take into account that if management process determines
that it cannot resolve the problem, it needs to send an event to another man
agement process so that it might try to resolve the problem. On the otherhand,

Policy Specification and Architecture for Quality of Service Management 545

the use of one PDP results in many rules being sent to that PDP and it could
become a bottleneck. More work is needed in understanding how to optimize
the configuration ofPDPs.

4 It is possible to have the different management entities interested in a specific
event to directly register with the component generating the event i.e., the gen
erator of the event acts as its own event manager. The disadvantage is that
this assumes that these management entities know apriori where the events are
coming from. Another possiblity is to have the policy specifications explicitly
specify the source and receivers of a specific event. However, if we change the
configuration of PDPs by changing their location and/or number then the pol
icy specification should be changed. By separating these out, we can continue
to use the same policy specification even if the underlying management system
changes.

5 It is assumed that there is agreement on attribute names. It is assumed that
the attribute names of values that are sent as part of a notify message from the
coordinator are the same as what is expected in the diagnosis policies. This
requires that policies entered are checked for consistency.

6 The policy stated in Example 5 is quite detailed in that it assumes that the admin
istrator will specify the normalized value (specified using normalizedvalue) is
to be used to determine if there are enough CPU resources available. We be
lieve that we can simplify this by assuming that this is part of the mapping of
the policy to rules.

7 We find the specification of expectation and administrative policies relatively
easy. Diagnostic policies are more difficult and require a good understanding of
the applications and how they behave. The administrator must specify a good
deal of information. There is a good deal of work on diagnostics (e.g., [10, 9,
7, 8]) that use a variety of techniques. There exists efficient software to support
these techniques. We believe that the diagnostics process should be able to take
advantage of these techniques and tools. This will likely require changes in the
way diagnostic policies are specified. Potentially, this could reduce the number
of rules needed by the rule engine.

8 JESS is a rule-based engine. Initially, we found that JESS had a lot of overhead
and had an impact on the application processes on the executing on the same
machine. However, this was optimized and we no longer have this problem. It
seems to be fast enough, but we do not have experience with an environment
with hundreds of applications and potentially thousands of policies. However,
in this case there would likely be more PDPs. This would distribute the load and
thus minimize the number of policies at a specific PDP.

5. Related Work
Our work involved the use of policy formalisms and the development an architec

ture for distribution and enforcement of policies. Relatively little of this work ex
amined all of these issues in an integrated framework that addresses end-to-end QoS
management. Our work does this. In this section, we describe the related work done in
policy specifications and architectures. We describe how we differ and how our work
relates.

546 Nathan Muruganantha, Hanan Lutfiyya

Policy Specification.
IETF is currently developing a set of standards (current drafts found in [14, 19,22])

that includes an information model to be used for specifying policies, a standard that
extends the previous standard for specifying policies for specifying QoS policies and a
standard for mapping the information model to LDAP schemas. Informally, speaking
an IETF policy basically consists of a set of conditions and a set of actions. The
standards focus on low-level details related to policy encoding, storage and retrieval.
We have experience in using the IETF standards. We did examine the use of IETF
rules for specifying policies. IETF rules are reasonable for expectation policies, but
we found that it was much more difficult to specify the administrative and diagnostic
policies. Generally, we found easier to use. It is possible to specify policies using
Ponder and translate to the IETF format.

Other language standards by IETF, as well as other network policy languages (sum
marized in [21]), include RPSL for describing routing policy constraints, PAX for
defining pattern matching criteria in policy-based networking devices and SRL for
creating rule sets for real-time traffic flow measurement. These languages primarily
focus on policies applied to a network device. None of this work addresses the use of
policies applied to applications.

Other policy specification languages [2, 6, 5, 15] focus on features that enable the
specification of security related policies. The Ponder Policy Specification language [3]
has a broader scope than most of the other languages in that it not only was designed
with specifying security as the primary objective, but also general management policy.
Ponder allows the administrator to use declarative statements and is independent of
underlying systems. This is the primary reason why we have chosen to use Ponder to
describe a high-level specification representation of policies.

Policy languages vary in the level of abstraction. Some languages focus on the
specification of policies that describe what is wanted, while others focus on how to
achieve what is wanted. This has resulted in different levels of policies, which has led
to several attempts at a policy classification. This includes a policy hierarchy and a
formal definition of policies defined by [24]. Our work defines two levels and would
seem to correspond to the bottom two levels of the hierarchy in [24].
Architectures, Policy Distribution and Enforcement.

There has been some recent work in service level management [17, 16] that de
scribes an architecture and policies for management of a differentiated services net
work so that users receive good quality of service and fulfill the service level agree
ments. This work does not make use of administrative or diagnostic policies.

There has been quite a bit of work (e.g., [1, 18, 23, 12]) that has looked at the trans
lation of policies to network device configurations which are then sent to the PEPs so
that the PEPs can configure the network devices. The focus is on network devices.
In most of this work, policy distribution is initiated by an administrator and focusses
on one device. Our work differs in that it focusses on applications and it is the initi
ation of an application session that causes the distribution of polices to management
components.

A deployment model was developed by [4] for Ponder. Each policy type is com
piled into a policy class by the Ponder compiler. The instantiation of a policy class is
a policy object. Each policy object has methods that allow a policy object to be loaded
to an enforcement agent and unloaded from an agent. Additional methods include en
able and disabling of objects. Agents register with the event service to receive relevant

Policy Specification and Architecture for Quality of Service Management 547

events (as specified by the policies) generated from the managed objects of the sys
tem. There is no discussion on configuration of devices or applications. The roles of
PDP and PEP is similar to that of an enforcement agent. We decided though that use
of JESS would make certain tasks easier. For example, although Ponder assumes that
the policies are independent in the sense that the order they are presented in does not
matter. We assumed that order of policies mattered when translating to JESS rules.
This meant that not every single JESS rule that is interested in a specific event has to
be executed. This is important for the following reason: Example 3 described a policy
called fpsJow1 that is triggered when the event fpsJow is generated. fpsJow2 is
also to be triggered when the event fpsJow is generated. The difference is that that
the action to be taken depends on different conditions of the state. If the conditional
statement in the when clause is true in Example 3 this implies that the fault has been
found and there is no reason to look at fpsJow2. JESS's implementation allows for
this. In the Ponder deployment model, all policy objects that register for a specific
event will receive notification that the event has occurred and conditions are checked.

Generally, we found that very little work focusses on applying policies at the appli
cation level. The difficulty with the application level is that different policies will be
needed for different sessions of the same application.

6. Conclusions
The initial deployment of the prototype has proven to be successful. The exper

imental results are similar to that reported in [13, 11]. The prototype allows a user
to specify Ponder policies from a console and distribute them to the distributed com
ponents of the management system successfully. This work is one of the few that
addresses the use of policies to application QoS management.

Future work includes addressing some of the issues brought up earlier in the Dis
cussion section as well as the following:

1 We chose to specify our framework based on the IETF policy-based manage
ment framework. We are currently working on integrating network resource
management.

2 We would like to do more work on ensuring that policy specifications are con
sistent. This requires many changes to the mapping approach used.

3 We are examining an environment with a mix of applications such as soft IP
phones and web servers.

References
[1] M. Brunner and J. Quittek. MPLS Management using Policies. Proceedings of the 7th IEEEIIFIP

Symposium on Integrated Network Management (IM'OJ), Seattle USA, May 2001.

[2] F. Chen and R. Sandhu. Constraints for Role-Based Access Control. Proceedings of Jst ACMINIST
Role Based Access Control Workshop, Gaithersburg, Maryland, USA, ACM Press, 1995.

(3) N. Damianou, N. Dalay, E. Lupu, and M. Sloman. Ponder: A Language for Specifying Security and
Management Policies for Distributed Systems: The Language Specification (Version 2.1). Technical
Report Imperial College Research Report DOC 2000/01, Imperial College of Science, Technology
and Medicine, London, England, April 2000.

(4) N Dulay, E. Lupu, M. Sloman, and N. Damianou. A Policy Deployment Model for the Ponder Lan
guage. Proceedings of the 7th IEEEIIFIP Symposium on Integrated Network Management (IM'OJ),
Seattle USA, May 2001.

548 Nathan Muruganantha, Hanan Lutfiyya

[5] J. Hoagland, R. Pandey, and K. Levitt. Security Policy Specification Using a Graphical Approach.
Technical Report Technical Report CSE-98-3, UC Davis Computer Science Department, UC Davis
Computer Science Department, July 22,19982002.

[6] S. Jajodia, P. Samarati, and V. Subrahmanian. A Logical Language for Expressing Authorisations.
Proceedings of the IEEE Symposium on Security and Privacy, 1997.

[7] S. Katker. A Modelling Framework for Integrated Distributed Systems Fault Management. In Pro
ceedings IFlPIIEEE International Conference on Distributed Platforms, pages 186-198, 1996.

[8] S. Katker and H Geihs. A Generic Model for Fault Isolation in Integrated Management Systems.
Journal of Network and Systems Management, 1997.

[9] S. Katker and M. Paterok. Fault isolation and event correlation for integrated fault management. In
Proceedings of the 5th International Sypmposium on Integrated Network Management, 1997.

[10] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. A Coding Approach to Event Correlation.
In Proceedings of the 4th International Sypmposium on Integrated Network Management, 1995.

[11] H. Lutfiyya, G. Molenkamp, M. Katchabaw, and M. Bauer. Issues in Managing Soft QoS Require
ments in Distributed Systems Using a Policy-Based Framework. Proceedings of the Policy 2001
Workshop:International Workshop on Policies for Distributed Systems and Networks, Bristol, UK,
Springer-Verlag LNCS, pages 185-201, January 2001.

[12] P. Martinez, M. Brunner, 1. Quittek, F. Strauss, 1. Schoenwaelder, S. Mertens, and T. Klie. Using the
Script MIB for Policy-Based Configuration Management. Proceedings of the IFlPIIEEE Symposium
on Network Operations and Management Symposium (NOMS'02), Florence, Italy, 2002, pages 461-
468, January 2001.

[13] G. Molenkamp, H. Lutfiyya, M. Katchabaw, and M. Bauer. Resource Management to Support
Application-Specific Quality of Service. IEEEIlFlP Management of Multimedia Networks and Ser
vices (MMNS2001), October 2001.

[14] B. Moore, J. Strassmer, and E. EIJeson. Policy Core Information Model- Version 1 Specification.
Technical report, IETF, May 2000.

[15] R. Ortalo. A Flexible Method for Information System Security Policy Specificatio". Proceedings
of 5th European Symposium on Research in Computer Security (ESORICS 98), Louvain-laNeuve,
Belgium, Springer-Verlag, 1998.

[16] P. Pereira, D. Dadok, and P. Pinto. Service Level Management of Differentiated Services Networks
with Active Policies. 3rd Conferencia de Telecomunicacoes., Rio de Janeiro, Brazil, December 1999.

[17] P. Pereira and P. Pinto. Algorithms and Contracts for Network and Systems Management.
Proceedings of the 1st IEEE Latin American Network Operations and Management Symposium
(LANOMS99), Rio de Janeiro, Brazil, December 1999.

[18] Alberto Gonzalez Prieto and Marcus Brunner. SLS to DiffServ Configuration Mappings. Pro
ceedings of the 12th International Workshop on Distributed Systems: Operations and Management
DSOM'2001, Nancy France, October 2001.

[19] Y. Snir, Y. Ramberg, 1. Strassner, and R. Cohen. Policy Framework QoS Information Model. Tech
nical report, IETF, April 2000.

[20] Startdust.com. Introduction to QoS Policies. Technical report, Stardust.com, Inc., July 1999.

[21] G. Stone, B. Lundy, and G. Xie. Network Policy Languages: A Survey and New Approaches. IEEE
Network, 15(1):10-21, January 2001.

[22] 1. Strassner, E. Ellesson, B. Moore, and Ryan Moats. Policy Framework LDAP Core Schema. Tech
nical report, November 1999.

[23] P. Trimintzios, I. Andrikopoulos, G. Pavlou, and C. Cavalcanti. An Architectural Framework for
Providing QoS in IP Differentiated Services Networks. Proceedings of the 7th IEEEIlFlP Symposium
on Integrated Network Management (1M 'OJ), Seattle USA, May 2001.

[24] R. Wies. Polcies in Network and Systems Management - Formal Definition and Architecture. Jour
nal of Network and Systems Management, 2(1):63-83, 1994.

[25] D. Yau and S. Lam. Adaptive Rate-Controlled Scheduling for Multimedia App lications. Proceedings
of the 1996 ACM Multimedia Conference, Boston, Massachusetts, November 1996.

RESOURCE ACCESS MANAGEMENT FOR A
UTILITY HOSTING ENTERPRISE
APPLICATIONS

J. Rolia, X. Zhu, and M. Arlitt
Hewlett-Packard Laboratories
Palo-Alto, CA, USA, 94904
jerry.roliaCilhp.com. xiaoyun.zhu@hp.com. martin.arlittCilhp.com

Abstract:
In this paper we introduce a Resource Access Management (RAM) frame

work for resource utilities that facilitates Class of Service (CoS) based auto
mated resource management. The framework may be used to offer resources
on demand to enterprise applications that have time varying resource needs.
The classes of service include guaranteed, predictable best effort, and best
effort. The analytical apparatus we exploit requires the notion of application
demand profiles that specify each application's resource requirements. These
profiles may be statistical in nature. Consequently a policing mechanism is
introduced to constrain each application's resource usage within its profile. A
case study that exploits data from 48 data center servers, is used to demon
strate the framework. We show that our techniques are effective in: exploiting
statistical multiplexing while providing service level assurances, limiting appli
cation demands in the presence of hostile application behaviour, and providing
for differentiated service levels as planned.

Keywords: Resource management, Grid computing, Utility computing, Enterprise appli
cations

1. Introduction
Enterprise applications, such as enterprise resource management, customer

relationship management, and store fronts, can benefit from utility computing
in the same way they currently benefit from storage and server consolidation ex
ercises. Consolidation helps to decrease costs of ownership and increase return
on investment. Resource utilities aim to provide such benefits on a large scale
by automating management processes and increasing the effectiveness of con
solidation. In this paper, we introduce a resource access management (RAM)
framework for resource utilities that support enterprise applications.

Utility and Grid computing offer an appropriate starting point for automat
ing consolidation processes for enterprise environments. Our approach relies
upon: utility computing, where complex infrastructure is provided to enterprise
applications on demand [2] [4] [10] [14] [19]; and Grid computing, which of
fers open services that help to match resource demands with supply, and that
implements protocols for reserving, acquiring, and releasing resources adap
tively [6] [7].

http://dx.doi.org/10.1007/978-0-387-35674-7_66

550 J. Rolia, X. Zhu, and M. Arlitt

With this view, we assume that infrastructure service providers, which in
clude data centers that may be internal to medium and large enterprises, will
offer information technology resources as a utility service. Customers with ap
plications, for example a department within an enterprise, will anticipate or
characterize the demand of their applications and then discover, via Grid ser
vices, which utility is best able to satisfy the demands. The application will
then be deployed and acquire and release resources as needed.

This paper presents a resource access management (RAM) framework for
resource utilities that support Grids for enterprise applications. The frame
work helps to increase the effectiveness of consolidation processes by balancing
utility asset utilization with Quality of Service (QoS) for resource access by
applications. Differentiated QoS allows an infrastructure provider to be more
flexible regarding the business models and services they offer to their customers.
The framework provides Class of Service (CoS) based admission control and
resource allocation for applications and implements a policing mechanism that
governs access to resources. The CoS include guaranteed, predictable best ef
fort, and best effort. For predictable best effort, the utility provides access
to resources with a statistical assurance level e. A case study demonstrates
features of the framework.

The remainder of the paper is organized as follows. Section 2 describes
related work. Our RAM framework is introduced in Section 3. A case study
illustrates the behaviour of the framework for a hypothetical data center in
Section 4. Summary and concluding remarks are given in Section 5.

2. Related Work
Grid resource management systems, such as LSF [22], Condor [11], and Le

gion [12], provide appropriate scheduling support for batch style computing
jobs. However, they do not address the needs of enterprise applications. En
terprise applications operate continuously, have the potential for large peak-to
mean ratios in resource demands, and may have variable numbers of users. Re
source management systems that support enterprise applications can increase
asset utilization by exploiting the notion of statistical multiplexing. However,
service level assurances are essential; enterprise applications must have confi
dence they will have access to resources when needed.

MUSE [3] is an example of a utility that treats hosted Web sites as services.
All services run concurrently on all servers in a cluster. A pricing/optimization
model is used to determine the fraction of cpu resources allocated to each
service on each server. The over-subscription of resources is dealt with via the
pricing/optimization model. When resources are scarce, costs increase thereby
limiting application demand. Commercial implementations of such goal driven
technology are emerging [5][18].

Garg et al. describe an SLA framework for QoS provisioning and dynamic
capacity allocation [8]. They describe a mechanism that links application QoS,
SLAs, and pricing. It includes the notion of penalties for utilities that do not
live up to their obligations and incentives for applications to release resources
when they are not needed. We also assume that applications have an incentive
to relinquish resources that are not needed.

Resource Access Management for a Utility Hosting ... 551

Our demand management approach differs from the above in the following
way. Instead of relying on a dynamic pricing model we use historical and/or
anticipated load information to specify a statistical demand profile (SDP) for
each application [16]. An SDP bounds an application's expected resource re
quirements with a time ordered sequence of probability mass functions (pmfs),
with one pmf per resource type. This enables support for statistical multi
plexing and corresponding statistical assurances regarding resource availability.
FUrthermore, we separate the resource demand specifications of an application
from mechanisms that control that demand. Each application is solely respon
sible for delivering an appropriate quality of service to its customers. It must
translate a quality of service to a quantity of resources required to achieve that
level of service [21]. The utility is responsible for providing resources on de
mand with a particular level of assurance (Le. a probability) to its applications.
We believe this separation of concerns is practical for many kinds of enterprise
applications.

Urgaonkar et al. also consider quality of service issues [20] regarding resource
access, but they do not characterize statistical assurance for a utility. Also they
do not take into account the time varying nature of demands.

Hellerstein et al. illustrate the use of ANOVA [9] models and second order
auto-regressive models [17J to characterize an application's request behaviour.
Auto-correlation analysis is used to identify cycles of behaviour, such as weekly
cycles versus daily cycles. ANOVA models give an additive workload model
for daily, weekly, and monthly cycles. The second order auto-regressive models
provide for a detailed characterization of residual behaviour once such cycles
are removed. Their approach is to anticipate metric threshold violations over
short time scales so that some preventative action can be taken before the
violation occurs. The policing approach we present in this paper differs. It
specifies directly when a utility may throttle an application's demand. It is a
credit-based system, similar to a leaky-bucket approach [13], but based on time
varying historical application behaviour.

In [16] we model and explore the impact of correlations among application
demands on estimates for the number of resources needed for resource pools
and the accuracy of our statistical assurance. In the next section we build
upon [16] to introduce a RAM framework, classes of service, and a policing
mechanism for a resource utility that supports enterprise applications.

3. Resource Access Management
This section describes our framework for Resource Access Management

(RAM). The framework includes three components: admission control, polic
ing, and CoS. Admission control decides whether an application will be permit
ted to execute within a utility. Policing mechanisms govern application requests
to acquire and release resources as they execute within the utility. The CoS
provide differentiated service to the admitted applications.

The RAM framework relies on SDPs. An SDP describes the expected re
source usage of an application over time. Together, the SDPs of many ap
plications include information required by a utility to estimate the number of
resources required to satisfy their aggregate requirements while taking into ac-

552 J. Rolia, X. Zhu, and M. A rlitt

count statistical multiplexing. SDPs are used to implement admission control
and are reviewed in Section 3.1. Policing and CoS are introduced in Sections 3.2
and 3.3, respectively. Policing relies on the notion of application entitlement
profiles (EP). These are used by the utility to decide whether an application's
per-slot requests for resources are consistent with its SDP. If a request is not
consistent then the utility can reject the resource request. The RAM framework
as a whole is described in Section 3.4.

3.1 Statistical Demand Profiles (SDPs)
SDPs [16] represent historical and/or anticipated resource requirements for

applications. For each unique resource type used by an application, we model
the corresponding quantity of resources required as a sequence of random vari
ables, {Xt , t = 1, ... , T}. Here each t indicates a particular time slot, and T
is the total number of slots used in this profile. For example, if each t cor
responds to a 60-minute time slot, and T = 24, then this profile represents
resource requirements by hour of day.

Our assumption here is that, for each fixed t, the behaviour of X t is pre
dictable statistically given a sufficiently large number of observations from his
torical data. This means we can use statistical inference to predict how fre
quently a particular quantity of resources may be needed. For each slot we use
a probability mass function (pmf) to represent this information.

Figure l(a) shows the construction of a pmf for a given time slot (9-10 am)
for an SDP of an application. In the example only weekdays, not weekends, are
considered. The application required between 1 and 5 servers over W weeks of
observation. Since there are 5 observations per week, there are a total of 5 W
observations contributing to each application pmf. Figure 1 (b) illustrates how
the pmfs of many applications contribute to a pmf for the utility as a whole
for a specific time slot. As with applications, the SDP for the utility has one
sequence of pmfs per resource type. The aggregate demand on a shared pool
for a particular resource type is modeled as a sequence of random variables,
denoted as {Yt , t = 1, ... , T}.

A complete description of SDPs, confidence intervals for probabilities in
pmfs, correlations between application demands, and a mechanism for estimat
ing the size of a resource pool needed to offer a particular level of service is
offered in [16].

3.2 Policing and Entitlement Profiles (EPs)
SDPs provide a mechanism for characterizing expected resource require

ments for each time slot t. They are appropriate for sizing the resource pools
needed by the utility. However to provide the expected levels of statistical as
surance, applications must behave according to their SDPs. Though a pmf of
an SDP limits the maximum number of resources an application is entitled to
for its corresponding time slot, we still require a method to ensure that each
application adheres to its pmfs over time. The purpose of our policing mecha
nism is to specify an application's entitlement to resources over both short and
longer time scales, to recognize when an application exceeds its entitlement,

Resource Access Management for a Utility Hosting ... 553

WEEKl { "7' l'!!!!!!!!W!!!!!!!!!!!
s..illiaio...dPoi ... ",w.,..IppIio6aIio"rr9-=IO=A.\{="="",=SIot=====iI

{ ... ,,"
WEEK W ITIIIJrn;;UoJIIIlTIIIITIJ

OA

OJ
i
1 0.2

0.1

I I 1 4 S
ISet\<aI NooIoI

(a) pmf of an application SDP

D.4

t :
I

... bt-DAN

U

i :
I 1 4 l I I 1 4 l i ,--

(b) pmf of a utility SDP

Figure 1. Creating statistical demand profiles

and to enable the framework to deal with surplus requests for resources in a
systematic manner.

For short time scales, a horizontal profile characterizes the percentage of
resource usage H;: that may occur over a sliding window of w slots ending at
time slot t, for one or more values of w for all time slots. For example, H;: for
time slot t = gam to lOam and w = 3, describes the interval between 7am and
Warn on the same day. If the maximum possible demand for the interval, based
on the application's demand profile, is units, then the horizontal entitlement
H;: is a percentage of for example 80%.

For longer time scales, a vertical profile characterizes the percentage of re
source usage that may occur over a sliding window of w instances of the
same time slot t, for one or more values of w, for all slots. For example, an
application may be entitled to a total of resource units over 0 instances of
a gam to lOam time slot. The vertical profile of may specify that no more
than 50% of the units may be consumed in w = 0/3 successive instances
of a slot and no more than 100% of units may be consumed in 0 successive
instances of the slot. In this way the vertical component captures medium to
long-term entitlements.

We define the H;: and for an SDP's time slots for multiple values of
w as an entitlement profile (EP). We use the EP to implement our policing
mechanism that governs per-interval requests for resources. If an application
requests more resources than it is entitled over any of the values for w then
RAM can treat the requests according to some policy. For example it may
reject the surplus requests without contributing to the utility's service level
violations or treat them as best effort.

554 J. Rolia, X. Zhu, and M. Arlitt

As with the construction of SDPs, the EP should be based on automated
observation of the application's demand behaviour. They should be derived
while constructing SDPs.

Lastly, it could be the case that an application acquires resources but holds
them longer than expected thereby exceeding its next time slot's Hf or for
some w. In this case the application may be required to release some resources.
We refer to this as clawback.

3.3 Classes of Service
This section describes classes of service for applications. Without loss of

generality, in this paper we assume that an application acquires resources ac
cording to one CoS, and that its access to resources is constrained by its EP.
In general, an application is expected to partition its requests across multiple
classes of service to achieve the level of assurance it needs while minimizing its
own costs.

We define the following CoS: Guaranteed, the application receives a 100
percent assurance it will receive the resources specified by its SDP; Predictable
Best Effort (PBE) with probability (), the utility offers resources to applications
of this CoS with probability () as defined in Section 3.1; and Best Effort, an
application has access to these resources when they are available but must
release these resources to the utility on demand.

For the PBE CoS, per-slot access to resources is governed by application
EPs. For the Guaranteed CoS, an application's SDP need only contain the
peak requirement for each time slot. It is always entitled to its per-slot peak
requirement.

Consider a set of applications that exploit the utility. Using the techniques of
Section 3.1, for the same applications, the utility will require a larger resource
pool for a guaranteed CoS than for a predictable best effort CoS. Similarly,
larger values of () will require larger resource pools. In this way CoS has a
direct impact on the cost of resources offered by the utility.

3.4 Resource Access Management Framework
This section describes the overall resource management framework. Figure 2

illustrates the admission control and policing process from the perspective of
applications.

Figure 2(a) shows admission control and resource access steps for an applica
tion that aims to be hosted by the utility. The application presents its SDP and
EP with a specific CoS. The utility performs an admission control test using the
SDP to determine whether it has sufficient resources to accept the application
while satisfying its obligations to existing applications. If accepted, the appli
cation may acquire resources, become deployed and begin its execution. Once
in execution the application acquires and releases resources as needed but in
accordance with its EP. As time progresses, each application's actual resource
usage is characterized. For each time slot, for each sliding window, we compute
each application's history of actual resource usage C. Actual resource usage is
computed in the same manner as Hf and but with recent measurements.
C and its EP are presented for a policing test by the utility. An application is

Resource Access Management for a Utility Hosting ...

---------------.---

Application specifies its
resource requirements for
next interval

i I

I Application requests new/revised deployment

I Utility conducts admission control test

Application in execution

I Utility conducts per-interval policing test

(a) Resource Access Management

: :

Application
acquires/releases

additional resources

I

Application rejected

J

Clawback

(b) Utility's admission control test (c) Utility's per-interval policing test

Figure 2. Resource access management processes

555

always permitted to release resources. The policing test decides the number of
additional resources an application is entitled to or how many it must return
(clawback). Even when permitted to request additional resources, depending
on the application's CoS it may not actually receive all of the resources it re
quests. Receipt depends on resource availability, CoS based arbitration, and
utility policy.

Figure 2(b) illustrates the admission control test. To begin, we assume that
the application will be accepted. We unfold the SDP of the application onto
the time slots of the utility's calendar, and then determine the total number of
resources, r, needed to support all applications of all CoS over the future time
slots. [16] explains how the pmfs of SDPs can be used to bound the potential
impact of correlation in application demands on r when admitting a new ap-

556 J. Rolia, X. Zhu, and M. Arlitt

plication to a utility. r is then compared with the actual size of the resource
pool to determine whether it is possible to accept the additional application. If
so, then the changes to the utility's calendar are made permanent; otherwise,
the request for admission is rejected and the application does not receive any
resources. For the PBE CoS we use the techniques of [16J, based on the SDPs
of Section 3.1, to compute the number of resources required by each PBE CoS
resource pool separately. For the Guaranteed CoS we need a pool large enough
to satisfy peak application demands on an interval by interval basis. The num
ber of resources needed by the utility, r, is chosen as the sum of the number of
resources needed by each of its CoS separately.

Figure 2(c) illustrates the policing test. Given an application's history of
resource usage C and its EP we compute the maximum number of additional
resources N' to which the application is entitled. If N' is less than 0, the
application must return IN'I resources to the utility (clawback).

4. Case study
This section presents a case study that demonstrates how the RAM frame

work may be applied in practice to: quantify application demand requirements,
explore the impact of policing, observe the impact of service differentiation,
and illustrate resource availability. For this case study, we consider cpu uti
lization information from 48 servers in an enterprise data center. Sections 4.1
through 4.5 describe our hypothetical resource utility and demand characteri
zation, the classes of service chosen for our study, our experimental design, and
results.

4.1 Hypothetical Resource Utility
For the purpose of our study we were able to obtain cpu utilization infor

mation for a collection of 48 servers. The servers have between 2 and 8 cpus
each, with the majority having either 4 or 6 cpus. The data was collected be
tween September 2, 2001 and October 24, 2001. For each server, the average
cpu utilization across all processors in the server was reported for each £lye
minute measurement interval. The information was collected using Measure
Ware (Openview Performance Agent) [IJ.

We interpret the load of each server as an application for a resource utility for
enterprise applications. Whereas the groups' servers have multiple cpus in our
study we assume the utility has many servers with one cpu each. If a server only
required one cpu in an interval then its corresponding application requires one
server in the utility. We exploit the fact that changes in server utilization reflect
real changes in required activity for its applications. Our applications have the
same changing behaviour. However since our purpose is simply to validate our
techniques we are not concerned with whether it is feasible for the loads on
the multi-cpu servers to be hosted on many single cpu servers. Similarly we do
not scale the loads with respect to processor speed and/or memory capacity.
Further details and results for our study are available in [15].

Resource Access Management for a Utility Hosting ... 557

4.2 Statistical Demand Profiles and Entitlement
Profiles

For this case study we chose to characterize the application SDPs by weekday
and by hour of day. We consider all weekdays to be equivalent, and we omit
data from weekends. As a result, our profile consists of 24 one hour time slots.
Since we have utilization data for 35 days, there are 0 = 35 data points that
contribute to each pmf in each application's SDP. We used the maximum of
the utilizations observed at 5 minute intervals as the utilization value for a
corresponding hour.

Values for Hf are based on observation of the 100-percentile of total servers
used over a window size of w = 4, which contains four 60 minute time slots.
The values for H;: are typically in the 70-90% range. For example, for a sliding
window of w = 4 slots, the sum of the peak values for the corresponding pmfs
may be 8 whereas the observed maximum number of resources used for the
window may have been only 0.78. Values for ytw are 100% of the total demand

as observed over the w = 35 observations used to characterize the SDP.

4.3 Classes of Service
For our case study we consider the following classes of service: guaranteed,

predictable best effort with () = 0.999, denoted as PBE(0.999); and predictable
best effort with () = 0.99, denoted as PBE(0.99).

We use a simulator that generates streams of resource requests according to
the pmfs of application SDPs [16]. We submit applications to the utility for the
three classes. Each class is an instance of the 48 applications. All applications
are accepted. Their SDPs, along with their classes of service, determine the
total number of resources for the simulated resource pool. We keep track of
unused resources and assume these are offered as part of a best effort service
to batch style jobs or other applications that can tolerate resource clawback.
For each experiment, we simulate 1000 days of resource access.

4.4 Experimental design
For our experiments, we examine how effectively our policing mechanisms

curtail bad behaviour. Policing determines which entitlement mechanisms are
used. Bad behaviour is defined as the case where certain applications demand
more servers than which they are entitled. Finally, in our experiments we
exploit pool sharing. Each PBE class is given access to unused surplus servers
of the other PBE class. The number of surplus servers for a CoS for a time slot
t is defined as the difference between the total size of the server pool for that
CoS (over all slots) and the number of servers needed to offer the assurance
level () for slot t. PBE(0.999) applications are given higher priority of access
than PBE(0.99).

For bad behaviour, we consider the cases where all applications of the
PBE(0.99) CoS run at the peak oftheir pmfs between time slots 10 and 18 (9am
to 6pm). These are the slots with the greatest aggregate demand. Applications
start their bad behaviour at random within the first 35 simulated days. Though

558 J. Rolia, X. Zhu, and M. Arlitt

this is not the worst possible behaviour, we believe it represents significant
hostile behaviour with respect to applications in a resource utility.

For policing, we chose entitlement profiles as described in Section 4.2. In
this study, when servers are clawed back an application must return them
immediately.

In each case unused servers from the guaranteed and predictable best effort
classes of service are made available to applications via a best effort CoS. Note
that as a result the number of servers available for best effort service is time
varying.

We illustrate and evaluate the RAM framework based on the the following
metrics: utility service level violations for the predictable best effort classes
(() achieved for the utility), and, application service levels for the predictable
best effort classes (() perceived by each application). These metrics verify that
the utility provides the levels of service that are planned, that applications
receive qualities of service distinguished based on CoS, and that policing has the
desired impact. We also show that that there remain significant opportunities
for exploiting servers via a best effort CoS.

4.5 Results
Figures 3(a) and (b) illustrate service levels achieved by the utility over the

1000 day time scale with applications of the PBE(0.99) CoS exhibiting bad
behaviour between the 10th and 18th time slots. The impact of horizontal,
vertical, and a combination of horizontal and vertical policing are shown. The
horizontal line at () represents the boundary between acceptable and unaccept
able performance. Without policing, there are a large number of service level
violations for the PBE(0.99) class. Vertical policing is effective as a mecha
nism to limit application demands. The combination of horizontal and vertical
policing appears to further reduce service level violations. The PBE(0.999) is
spared from the bad behaviour because its applications have higher priority
access to resources.

Figure 4 provides Cumulative Distribution Functions (CDF) to illustrate
service levels obtained by the individual applications. For the figure, x-axis
labels have been chosen on a case by case basis to best illustrate density between
() and 1. The figures correspond to the scenarios of Figure 3. As in Figure 3,
Figure 4(b) shows that vertical policing is an effective mechanism for ensuring
application service levels. The combination of horizontal and vertical policing
further reduces service level violations. Policy mechanisms for the utility may
be used to ensure that an application does not receive a better quality of service
than its entitled to even if resources are available.

Figure 5 provides CDFs for the number of servers available for the best effort
CoS. These represent the unused servers from the Guaranteed and PBE classes
of service. Figure 5(a) shows resource availability with pool sharing for the
scenarios without bad behaviour. We note that over all time slots, there are
between 150 and 170 servers that are unused - which is approximately 30% of
the total resource pool. These can be used to support true best effort workloads,
where the servers may be clawed back on demand, or they could be used by
the utility to support unexpected demands by applications. Figure 5(b) shows

Resource Access Management for a Utility Hosting ...

2 1.(00

m
m
m

1 n
ci 0,009
II

<D

8

i 0,009Ii
j
&

0,009

&
en

4

2 0009

5
0,009

'S
00088

0,0088

+ 0
x 'V x 0

00 x

0 0

X

o ooJXI/
x IKiriJXllor/f
'VvertJXllor/f
t IKiritvertJXI/

£t
2 4 6 a m g M m ffl m M

Houro/Day

(a) () = 0.999, PBE(0.99) Bad behaviour

1.05

, uuuun·W$t1!rtji'Utnu•
O,g

m
ci

5

,9 °
0,85

&
o

0, 8
&
en

5 01
5
t)
&
ii
'S

1 OooJXI/
x IKiriJXI/OIV!
V VerlJXI/orIf
+ hoIitvertJXI/ 0,85

6

X x x

0

0
0

x

X X

x

x
x 0

0

0
0 00

2 4 6 a m g M m ffl W M

Hour 01 Day

(b) () = 0.99, PBE(0.99) Bad behaviour

Figure 3. Impact of bad behaviour and policing on utility service levels

0,9

0,8

0.1 •• roJXI/
'''''IKiriJXI/Or/f

0,6 .. 'vertJXI/or/f
-lKiritverlJXI/

0,4

02

0,'

,
I ,.,

I

oL-__ __ ____ __
0,0096 0,9991 0,0098 0,9009

Simulated Awbioo SeIVice level I 0,0,999)

), 0.1
t:
:0
aI 0.6

05

1ij
'j 0,4
E
J

o 0,3

02

0,1

.. ooJXI/
"'"
.. "
-lKiritYertJXI/

."

".

,

!'
}
,

j/I
8!!9 0,991 0,992 0,993 0,994 0,995 0,995 0!!91 0.998 0,009 ,

AflPOCaioo SelVice level 16::0,99)

(a) () = 0.999, PBE(0.99) Bad behaviour (b) () = 0.99, PBE(0.99) Bad behaviour

Figure 4. Impact of bad behaviour and policing on application service levels

559

560 J. Rolia, X. Zhu, and M. Arlitt

0.9

0.8

0.7

1 0.8
Q.

i
0.0

0.4

<3
0.3

0.2

0.1

940 1M 1.

Dally Average 01 Number 01 Servers for BE COS

(a) No bad behaviour

0.9 I .
0.8 , ,

,. _ .
....... -..•.•. .,

•
0.7

,
f I

0 .• I

! i Q.

I
D." II
0.0 'I I!
0.3 ,!

11
0.2 I, ,.

Ii
0.1 ii

?40 180 170 180 190 200 210 220 230

Dally Averaga 01 Number 01 Servera lor BE COS

(b) Bad behaviour in both PBE classes of service

Figure 5. Best effort server availability

results for the case with both PBE classes of service exhibiting bad behaviour
between the 10th and 18th time slots. It shows that policing limits demand
thereby increasing the number of unused servers. From the figure, we note
that the no policing and horizontal policing only scenarios overlap while the
combination of vertical and horizontal policing is the most effective.

5. Summary
This paper presents a Resource Access Management (RAM) framework for

enterprise applications that access resource utilities. The framework supports
admission control, CoS, and policing. A case study used measurements from
48 servers in a data center to demonstrate the effectiveness of our approach for
a hypothetical utility.

Based on our case study we find that the hypothetical utility is able to offer
differentiated services including predictable best effort with multiple levels of
assurance. Applications in these classes of service receive service in propor-

Resource Access Management for a Utility Hosting ... 561

tion to the service levels of their class. Our credit-based policing mechanism
reduces service level violations in the presence of bad behaviour from appli
cations. Policing improves the service levels yet maintains the property of
service differentiation between the two predictable best effort classes. Finally,
even with resource sharing and statistical assurances there remain significant
opportunities for making resources available as part of a best effort service.

We find that statistical demand profiles and entitlement profiles are comple
mentary in their support of RAM. The SDPs help to size resource pools. An
EP specifies the time scales and manner in which an application must conform
to its SDP. Correspondingly for a PBE CoS, a utility must also provide a time
scale over which it provides its assurance level.

Last, we fully expect that from time to time applications will require more
resources than expected. Our RAM framework provides the basis to decide
when its possible to support such requests. Our future work includes exploring
the use of multiple time scales with vertical policing, dealing with long term
growth in demands (trending), exploiting EPs to look ahead at resource entitle
ments when considering resource allocation issues, supporting multiple resource
types, exploring issues of time scale and statistical assurances, and providing
quantitative support for models that take into account pricing and penalties.

References
[1] HP Openview Performance Agent. www.openview.hp.com/products/performance.

[2] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and M. Kalantar. Oceano - SLA based
management of a computing utility. In Proceedings of the IFIP /IEEE International
Symposium on Integrated Network Management, May 2001.

[3] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing energy and
server resources in hosting centers. In Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles (SOSP), October 2001.

[4] Think Dynamics. www.thinkdynamics.com.

[5] Ejasent. Utility computing white paper, November 2001. www.ejasent.com.

[6] 1. Foster and C. Kesselman. The grid: Blueprint for a new computing infrastructure,
July 1998. ISBN 1-55860-475-8.

[7] 1. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An open
grid services architecture for distributed systems integration, www.globus.org, January
2002.

[8] R. Garg, R Singh Randhawa, H. Saran, and M. Singh. A sla framework for qos provi
sioning and dynamic capacity allocation. In Proceedings of IWQoS 2002, pages 129-137,
Miami, USA, May 2002.

[9] J. Hellerstein, F. Zhang, and P. Shahabuddin. A statistical approach to predictive
detection. Computer Networks, January 2000.

[10] Hewlett-Packard. HP utility data center architecture.
www.hp.com/solutionsl/infrastructure/solutions/utilitydata/architecture.

[11] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In
Proceedings of the 8th International Conference on Distributed Computing Systems,
pages 104-111, June 1988.

[12] A. Natrajan, M. Humphrey, and A. Grimshaw. Grids: Harnessing geographically
separated resources in a multi-organisational context. In Proceedings of High Per
formance Computing Systems, June 2001.

562 J. Rolia, X. Zhu, and M. Arlitt

[13] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. A scalable architecture for fair
leaky-bucket shaping. In IEEE INFO COM (3), pages 1054-1062, 1997.

[14] J. Rolia, S. Singhal, and R. Friedrich. Adaptive Internet Data Centers. In Proceedings of
SSGRR'DD, L'Aquila, Italy, www.ssgrr.it/en/ssgrr2000/papers/053.pdf. July 2000.

[15] J. Rolia, X. Zhu, and M. Arlitt. Resource access management for a utility hosting
enterprise applications. Technical Report HPL-2002-346, HP Labs, Palo Alto, CA, Dec
2002.

[16] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak. Statistical service assurances for appli
cations in utility grid environments. In IEEE/ACM International Symposium on Mod
eling, Analysis and Simulation of Computer and Telecommunication Systems, pages
247-256, Fort Worth, TX, October 2002.

[17] D. Shen and J. Hellerstein. Predictive models for proactive network management:
Application to a production web server. In IEEE NOMs, 2000.

[18] Sychron. Sychron Enterprise Manager, 2001. www.sychron.com.

[19] TerraSpring. www.terraspring.com.

[20] B. Urgaonkar, P. Shenoy, and T. Roscoe. Overbooking and application profiling in
shared hosteing platforms. In Fifth Symposium on Operating Systems Design and
Implementation (ODSI), Dec. 2002.

[21] D. Xu, K. Nahrstedt, and D. Wichadakul. Qos and contention-aware multi-resource
reservation. Cluster Computing, 4(2):95-107, 2001.

[22] S. Zhou. Lsf: Load sharing in large-scale heterogeneous distributed systems. In Work
shop on Cluster Computing, 1992.

SLA-DRIVEN MANAGEMENT
OF DISTRIBUTED SYSTEMS
USING THE COMMON INFORMATION MODEL

Markus Debusmann1*, Alexander Keller2

1 FH Wiesbaden - University of Applied Sciences, Department of Computer Science
Kurt-Schumacher-Ring 18, 65197 Wiesbaden, Germany
m.debusmann@computer.org
2 IBM T.J. Watson Research Center, PO. Box 704, Yorktown Heights, NY 10598, USA
alexk@us.ibm.com

Abstract:

Keywords:

We present a novel approach of using CIM for the SLA-driven management of distributed
systems and discuss our implementation experiences. Supported by the growing accep
tance of the Web Services Architecture, an emerging trend in application service delivery
is to move away from tightly coupled systems towards structures of loosely coupled, dy
namically bound systems to support both long and short term business relationships across
different service provider boundaries. Such dynamic structures will only be successful if
the obligations of different providers with respect to the quality of the offered services
can be unambiguously specified and enforced by means of dynamic Service Level Agree
ments (SLAs). In other words, the management of SLAs needs to become as dynamic as
the underlying infrastructure for which they are defined.

Our previous work has shown that Web Services, as a typical example for a service
oriented architecture, can be extended in a straightforward way for defining and monitoring
SLAs. However, SLAs defined for a Web Services environment need to take into account
the underlying managed resources whose management interfaces are defined based on
traditional management architectures, such as SNMP-based management or the Common
Information Model (CIM). As a solution to this problem, the approach presented in this
paper addresses the integration problem of how to transform a Web Services SLA so that it
can be understood and enforced by a service provider whose management system is based
on a traditional management architecture, such as CIM.

SLA, Web Services, Common Information Model, Inter-Domain Management

1. Introduction and Problem Statement
Over the last year, emerging component based service architectures built on top of Web
Services [12], such as the Open Grid Services Architecture (OGSA) [7, 20], have been
gaining increasing acceptance beyond computing-intense scientific and commercial
applications: It appears highly likely that the next generation of e-Business systems
will consist of an interconnection of services, each provided by a possibly different
service provider, that are put together "on demand" to offer an end-to-end service to a
customer. Such an environment - referred to as 'Computing Grid' [6] - will be admin
istered and managed according to dynamically negotiated Service Level Agreements
(SLA) between service providers and customers [l3, 21]. Consequently, systems ma-

• Work done while author was an intern at IBM T.J. Watson Research Center.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

564 Markus Debusmann, Alexander Keller

nagement will increasingly become SLA-driven and needs to address challenges such
as dynamically determining whether enough spare capacity is available to accomo
date additional SLAs, the negotiation of SLA terms and conditions, the continuous
monitoring of a multitude of agreed-upon SLA parameters and the troubleshooting of
systems, based on their importance for achieving business objectives. A key prere
quisite for meeting these goals is to understand the relationship between 'high-level'
SLA parameters (e.g., Availability, Throughput, Response Time) and 'low-level' re
source metrics, such as counters and gauges. However, mapping SLA parameters onto
metrics that are retrieved from managed resources is a difficult problem [14].

This paper presents our approach for mapping SLAs, defined using the Web Ser
vice Level Agreement (WSLA) framework (described in section 2), which is based
on the Web Services Architecture, onto the Common Information Model (CIM) [2].
Thus, the work described in this paper can be regarded as a precursor to future work
on integrating emerging service architectures with traditional enterprise management
frameworks. The novelty of our approach lies in the way we address the following key
questions; these questions also reflect the structure of this paper:

How can SLA parameters be mapped onto resource metrics?
At the core of our approach to this problem is the WSLA language that allows
a party involved in the establishment of an SLA to define what is actually meant
by an SLA parameter. Instead of merely assigning thresholds to pre-defined SLA
parameters whose semantics vary greatly [1], the WSLA framework (presented in
section 2) allows the precise definition of how SLA parameters are supposed to be
computed and aggregated from resource metrics.

2 What SLA monitoring components ought to be implemented as Web Services?
For which components is CIM the better answer?
Based on an inter-domain SLA management scenario, section 2 breaks down the
SLA monitoring process into a set of elementary services needed to enable the
management of an SLA throughout the various phases of its lifecycle. Since we are
dealing with a service architecture and a resource management architecture, every
service may be implemented either as a Web Service or based on CIM. An analysis
and an evaluation of the various options is given in section 3.

3 Which parts of the SLA should be modeled in CIM and how does a suitable
model look like?
While this question is closely related to the previous one, there are a few additional
implications a suitable CIM model for SLAs needs to take into account: In partic
ular, the CIM model needs to provide a means for keeping data that relates to the
definition aspects of the SLA while being able to measure and store the actual SLA
paremeter and metric values at runtime. Stated differently, the measured values
need to be tied back to their definitions and to the SLA in which they are defined.
Our solution to this problem, based on the CIM Metrics Model, is described in the
second part of section 3.

4 How can one delegate management functions to an agent in a WBEM/CIM en
vironment?
Traditionally, the purpose of CIM subagents (termed "providers") is to make
the instrumentation of managed resources accessible to a CIM Object Manager
(CIMOM). Providers respond to incoming requests, retrieve the requested man
agement information and return the results to a CIMOM. Thus, they playa passive
role in the management process by reacting to requests coming from a CIM client.

SLA-driven Management of Distributed Systems using CIM 565

Since an SLA is usually associated with a schedule that indicates precisely when
and how often the measurements are supposed to be taken, a CIM provider needs
to take an active role when carrying out its measurements. Our approach to this
classical problem of (statically, in our case) delegating measurement functionality
to agents [22], with a specific focus on SLAs and CIM, is described in section 4.

5 Finally, how can one achieve Interoperability between the Web Services Archi
tecture and elM?
This is obviously a very broad question, for which a generic approach is likely to be
as complex as the well-known approaches for achieving interoperability between
traditional management architectures (for an in-depth discussion of this subject,
see [17, 19]). Nevertheless, we have designed and implemented a mechanism for
deploying SLAs from a Web Services environment into a CIMOM and a way to
deliver measurements from a CIMOM back to a Web Service. Our experiences
with the proof-of-concept implementation are described in section 5. Our work can
be regarded as a precursor to future work dealing with the development of generic
mechanisms for integrating Web Services based management with existing man
agement infrastructures, such as CIM.

2. Web Service Level Agreements (WSLA)
This section describes our work towards a flexible SLA monitoring framework,

primarily targeted at Web Services, but applicable to any kind of managed resource in
a distributed management environment as well. In order to address the requirements of
facilitating the SLA definition and the automated configuration of an SLA monitoring
infrastructure in inter-domain environments, we have specified and implemented the
Web Service Level Agreement (WSLA) framework [10]. In [9], we have described the
concepts behind WSLA. Although it is not the purpose of this paper to describe WSLA
in detail, we need to provide a brief overview of WSLA and its principles to set the
stage for our CIM based SLA model detailed in section 3 and the architecture of our
solution described in section 4.

Our approach to enable SLA-driven Management of distributed and highly dy
namic systems, WSLA, consists of a flexible and extensible language [15] based on
the XML schema and a runtime architecture based on several SLA monitoring ser
vices, which may be outsourced, either in full or in parts, to third parties to ensure a
maximum of accuracy [IS]. WSLA enables service customers and providers to un
ambiguously define a wide variety of SLAs, specify the SLA parameters and the way
how they are measured, and tie them to managed resource instrumentations. In addi
tion, the various WSLA monitoring services, described below in further detail, can be
configured automatically according to the terms and conditions specified in the SLA.
A Java-based prototype implementation of the WSLA framework, termed SLA Com
pliance Monitor, is included in the current version 3.2 of the publicly available IBM
Web Services Toolkit [S].

2.1 SLA Lifecycle in the WSLA Architecture

Figure 1 depicts the typicallifecycle of an SLA in a multi-provider environment.
The lifecycle consists of the following straightforward phases: SLA creation, SLA
deployment, SLA execution, and SLA termination. For the sake of brevity, the latter
is not depicted in the figure.

566

C
R
E
A
T
E

o
E
P
L
o
y

E
X
E
C
U
T
E

Markus Debusmann, Alexander Keller

Service Customer I 3,d Party Service Providers : Service Provider

SLA NegobalJon

Managomont
Service

Figure 1. Lifecycle of a Service Level Agreement in a Multi-Provider Environment

The SLA creation process involves the negotiation and signing of an SLA by both
a service provider and service customer. During this process, a customer retrieves
the metrics offered by a provider, aggregates and combines them into various SLA
parameters, defines service levels for every SLA parameter, and submits the SLA to
the service provider for approval. On the side of every signatory party (a party that
signs an SLA) a Business Entity carries out the negotiation: It embodies the business
knowledge, goals and policies of a party. Such knowledge enables the Business Entity
to decide which service levels should be specified in the SLA to ensure compliance
with its business goals. A typical example for such a decision on the service customer
side is to define thresholds for response times or throughput, depending on the price
he is willing to pay. On the provider side, typical business actions are to decide if
the SLA is acceptable as a whole or whether the customer-specified thresholds are too
restrictive. Once agreement on the main elements of the SLA is reached, customer
and provider may define third parties (which we call supporting parties in the WSLA
context), to which SLA monitoring tasks may be delegated. Supporting parties come
into play when either a function needs to be carried out that neither service provider
nor customer wants to do, or if these signatory parties do not trust their counterparts
to perform a function correctly. Keynote Systems, Inc. [11] and Matrix NetSystems,
Inc. [16] are real-life examples of such third-party monitoring service providers.

Once the SLA is finalized, both service provider and service customer make the
SLA document available for deployment. The Deployment Service is responsible
for checking the validity of the SLA and distributing it either in full or in appropriate

SIA-driven Management of Distributed Systems using elM 567

parts to the supporting parties (gray shaded area in the middle of Figure 1). The latter
is needed to ensure that a supporting service receives only the amount of information
it needs to carry out its tasks.

In our scenario, we assume that a part of the SLA monitoring and supervision
activities is delegated to third party service providers. Their runtime interactions are
depicted in the lower part of Figure 1. Typical services that may be outsourced to third
parties fall into two categories:

Measurement Service: The Measurement Service maintains information on the
current system configuration, and runtime information on the metrics that are part
of the SLA. It measures SLA parameters such as availability or response time either
from inside, by retrieving raw metrics directly from managed resources, or outside
the service provider's domain, e.g., by probing or intercepting client invocations. A
Measurement Service may measure all or a subset of the SLA parameters. Multiple
Measurement Services may simultaneously measure the same metrics, e.g., a Mea
surement Service may be located within the provider's domain while another Mea
surement Service probes the service offered by the provider across the Internet from
various locations. For our discussion, we call metrics that are retrieved directly from
managed resources Raw Metrics. Composite Metrics, in contrast, are created by ag
gregating several raw (or other composite) metrics according to a specific algorithm,
such as averaging one or more metrics over a specific amount of time or by breaking
them down according to specific criteria (e.g., top 5%, minimum, maximum, mean,
median etc.). This is usually being done by a Measurement Service within a service
provider's domain (depicted in Figure 1 as the oval having a black background), but
can be outsourced to a third-party Measurement Service as well (Measurement Service
with white background). In sections 4 and 5, we will describe our approach to design
ing and implementing an internal Measurement Service (black oval in the Figure) in
CIM and how it accesses managed resource instrumentation.

Condition Evaluation Service: This service is responsible for monitoring compli
ance of the SLA parameters at runtime with the agreed-upon Service Level Objective
(SLO) by comparing measured parameters against the thresholds defined in the SLA
and notifying the Management Services of the service customer and provider. It ob
tains measured values of SLA parameters from the Measurement Service(s) and tests
them against the guarantees given in the SLA. This can be done each time a new value
is available, or periodically.

Finally, both service customer and provider have a Management Service: Upon
receipt of a notification, the Management Service (usually implemented as part of a
traditional management platform) will take appropriate actions to correct the problem,
as specified in the SLA. The main purpose of the Management Service is to execute
corrective actions on behalf of the managed environment if a Condition Evaluation
Service discovers that a term of an SLA has been violated.

2.2 Expressing SLAs in the WSLA Language
In this section, we provide a brief overview over the parts of the WSLA language

that relate to the definition of SLA parameters and the way they are monitored. For a
detailed discussion of the entire WSLA language, the reader is referred to [10].

The Parties section identifies the contractual parties and contains the technical
properties of a party, i.e., their addresses and interface definitions (e.g., the ports for
receiving notifications).

568 Markus Debusmann, Alexander Keller

The Service Description section of the SLA specifies the characteristics of the ser
vice and its observable parameters as follows: For every Service Operation, one or
more Bindings, i.e., the transport encoding for the messages to be exchanged, may be
specified. In addition, one or more SLA Parameters of the service may be specified.
Examples of such SLA parameters are service availability, throughput, or response
time. Every SLA parameter refers to one Metric, which, in turn, may aggregate one
or more other (composite or raw) metrics, according to a measurement directive or
a function. Examples of composite metrics are maximum response time of a service,
average availability of a service, or minimum throughput of a service. Examples of
raw metrics are: system uptime, service outage period, number of service invocations.
Measurement Directives specify how an individual raw metric can be obtained from
a managed resource or from a system acting as a proxy for the resource. 1Ypical ex
amples of measurement directives are the uniform resource identifier of a hosted com
puter program, a protocol message (e.g., an SNMP GET message), the command for
invoking scripts or compiled programs, or a query statement issued against a database
or data warehouse. Functions are the measurement algorithm that specifies how a
composite metric is computed. Examples of functions are formulas of arbitrary length
containing mean, median, sum, minimum, maximum, and various other arithmetic
operators, or time series constructors. For every function, a Schedule is specified. It
defines the time intervals during which the functions are executed to retrieve and com
pute the metrics. These time intervals are specified by means of start time, duration,
andfrequency. Examples of the latter are weekly, daily, hourly, or every minute.

Obligations, the last section of an SLA, define the SLOs, guarantees and con
straints that may be imposed on the SLA parameters. For the sake of brevity, we have
omitted their description here; further details and usage examples can be found in [10].

3. Integrating the WSLA and elM Environments
Considering an SLA management environment as shown in Figure 1 raises the

question how the five services can be integrated in the most efficient way. Today,
the Business Entity is usally a human being. The Management Service represents the
management platform run by the service provider and customer. Thus, the key ques
tion for integrating WSLA and CIM is: Which of the remaining services (Deployment,
Measurement, Condition Evalution) are best implemented as a Web Service and which
services ought to be implemented with CIM? Three alternatives can be considered:

1 The first approach is to implement the services entirely in a Web Services environ
ment, as demonstrated by the WSLA Compliance Monitor of the Web Services
Toolkit [8]. This obviously simplifies the delegation of services to third party
providers; however, the integration with a management platform and today's man
aged resources is challenging as none of them have a management interface based
on Web Services. Therefore, a pure Web Services based solution is highly unlikely.

2 Implementing all services on a CIM basis is the other extreme. This simplifies the
integration with managed resources. However, if certain tasks are to be delegated
to third party providers, this solution makes assumptions about their management
infrastructure and thus limits the flexibility of the overall SLA management system.

3 For maximum flexibility, it is crucial to find the right balance between those two
extremes. In our solution, we chose the Measurement Service to be CIM based (de
picted as a black oval in Figure I), which facilitates the ties between high-level SLA
parameters and low-level resource metrics as well as the integration with managed

SLA-driven Management of Distributed Systems using elM 569

resources. Making the Condition Evaluation Service a Web Service yields the flexi
bility of delegating its tasks to third party providers. The Deployment Service is the
gateway between both worlds by having a Web Services interface. Its backend acts
as a CIM Client and is thus able to communicate with the CIM based Measurement
Service for setting up the measurements defined in the SLA.

3.1 Representing SLA Definitions in elM
Obviously, the straightforward way of implementing an SLA model in CIM is to

reuse existing classes of the CIM Core and Common Schemas. However, CIM does
not yet provide explicit classes for defining SLAs and SLOs. The CIM Policy Schema
consists of various classes representing policies (CIM-Policy), which aggregate con
ditions (CIM..PolicyCondition) and actions (CIM..PolicyAction). Consequently, these
classes could serve as a basis for defining the CIM equivalent of WSLA Obligations.
However, obligations are evaluated by the Condition Evaluation Service, which we
decided to keep outside the scope of our CIM implementation. Furthermore, the
CIM Policy Schema does not provide an explicit representation of conditions and ac
tions, which is the case of WSLA. On the other hand, we were able to reuse the class
CIM_PolicyTimePeriodCondition, which maps to the WSLA Schedule concept and
therefore serves as base class of IBM...schedule. It should be noted that recent work in
the Policy Working Group aims at extending the Policy Schema by a mechanism to
express SLAs in CIM.

Information relating to the definition of SLA parameters and their associated met
rics is found in another CIM Common Schema: The CIM Metrics Schema de
fines, among other, two classes that allow the representation of metric definitions
(CIM..BaseMetricDefinition) and - once a metric instance is created - its value
(CIM..BaseMetricvalue). This matches the WSLA philosophy very well, since the
metric definitions (and the way they are computed) are part of an SLA and there
fore - in a first step - deployed to the Measurement Service in charge of computing
them. Once the monitoring process starts, a Measurement Service obtains and com
putes values for these metric definitions and thus creates new instances of the class
CIM..BaseMetricValue (or more specific subclasses). We were therefore able to fully
take advantage of the CIM Metrics Model. Distinguishing between metric definitions
and values has the following advantages:

1 keeping both definitions and values together and thus linking information from the
deployment and runtime stages,

2 leveraging the power of CIM queries for SLA retrieval, e.g., retrieve all SLA pa
rameters for a given SLA,

3 enabling the service provider to develop a collection of common-off-the-shelf met
ric definitions that can be reused for different customers.

Figure 2 depicts the CIM SLA model, which is equivalent to WSLA in terms of
its expressiveness. As a result of the decision to implement the Measurement Ser
vice in CIM, the model reflects only those parts of an SLA that define the relation
ships between SLA parameters and metrics, i.e., the aggregation functions and the
schedule for their retrieval. The central element of the model is the IBM .sLA class,
which ties together all the other elements comprising the SLA. It is derived from
CIM.ManagedElement. Several instances of IBM..sLA can exist in parallel, thereby rep
resenting SLAs of one individual or several different customers.

570

c:1 .. J"oIIqoJ

.. 1IOfV ... 1tAIO, .. U
.,0 "'1'1.1 ... U1ftillCl

""_0
,,""'iI

Markus Debusmann, Alexander Keller

""'"i
' "t_ ..

11I'I'1U.Ia1l' : •• • ...-0,, '.,"' _ _
It'IOVltu. •• na

...
ot MOl

Figure 2. elM Model of Service Level Agreement definitions and values

IBM..MetricDefinition is the base class of the various SLA metric definitions;
it inherits from the CIM.BaseMetricDefinition class and is refined as follows: As
discussed in section 2.1, WSLA distinguishes between raw metrics, composite met
rics, and time series. Consequently, the model comprises three corresponding classes
IBM..RawMetricDefini tion, IBM_Composi teMetricDefini tion and IBM_TimeSeries

Definition that hold the definitions for these metric types. Composite metric defini
tions are further subclassed because they represent complex metrics that are computed
by the Measurement Service. The IBM.Ari thmeticComposi teMetricDefini tion class
represents the arithmetic operator (e.g., +,-,*,1) which aggregates two IBM Metric

DefinitionS by following the association IBM.ArithmeticOperandDefinition. The
IBM_StatisticalCompositeMetricDefinition class captures the definitions of sta
tistical functions that apply to times series. The latter are stored using the IBM..Time

SeriesDefini tion class, which holds metric values sampled in regular intervals, e.g.,
according to an IBM.Bchedule. IBM_TimeSeries instances may be used as input for
any number of statistical composite metrics. This reduces redundancy and ensures the
integrity of measurement data by providing a shared basis for statistical calculations.
The intervals during which metrics are collected and placed into a time series (cf. the
association IBM.Bamplingperiod) are represented by the class IBM.Bchedule, which
extends the class CIM_PolicyTimePeriodCondition by a property 'Interval'.

The three metric types, along with the function definitions and their schedules allow
the definition of arbitrarily complex SLA parameters, such as the average utilization
of network interfaces or the maximum reponse time within the last hour. Note that
all the classes discussed until now - depicted in the left part of Figure 2 - are used
to represent the definitions within an SLA - and not the actual measurement values.
They are instantiated whenever a new SLA is deployed to the CIM based Measurement
Service. Once the definition classes are instantiated, the Measurement Service uses
these definitions to retrieve and compute the actual values.

SLA-driven Management of Distributed Systems using elM

CIM request
serviced by CIMOM

--- -- -- -- -- -- - - - ---.
CIM: getlnstance

Trigger: call
GetNewValue 0

Schedule :
Schedule

• EndDale : Dale
·lnle""' : Long
• SlartDate : Date

Figure 3. Aggregating the 3 metric types: raw metrics. composite metrics and time series

3.2 Computation and Aggregation of Metric Values

571

The computation of SLA parameters requires the automatic retrieval of metric val
ues by the Measurement Service. During runtime, instances of IBM.schedule are used
to trigger the retrieval of current metric values and to perform metric computation and
aggregation. The input metrics and the (intermediate or final) results are represented
by the classes we will discuss below; they are depicted in the right half of Figure 2.

The runtime relationships between metric value instances comprising a simple SLA
are shown in Figure 3. There are two separate activation mechanisms for calculating
the metrics: timer-triggered (solid arrows) and request-triggered (dashed arrows). In
regular time intervals, an IBM..schedule instance initiates the collection of a new met
ric value for an IBM_TimeSeries object by invoking its GetNewValue () CIM method.
This causes the collection of the IBM.ArithmeticCompositeMetric associated with
the IBM_TimeSeries, which is done by means ofthe CIM operation getInstance, de
fined in [4]. Before the IBM.ArithmeticCompositeMetric instance can be calculated,
its associated IBM..RawMetricS have to be retrieved. After the calculation is done the
result is given back and finally stored within the IBM_TimeSeries object.

The second possible activation mechanism is a CIM request from a CIM client. In
our example, a request for the IBM.statisticalComposi teMetric is handled, thus the
associated IBM_TimeSeries instance has to be retrieved. After that, the average value
is calculated based on the values retrieved from the IBM..TimeSeries object.

4. CIM based SLA Measurement Service
Figure 4 depicts the architecture of our CIM based SLA Measurement Service.

Since the CIMOM is the central component responsible for realizing the Measurement
Service, the SLA structure has to be mapped first onto a CIM model, as described in
section 3.1. This model has to be loaded once into the CIMOM (1) and appropriate

572 Markus Debusmann, Alexander Keller

WSLA Schema!
elM mapping

I
I

CD:

Figure 4. Architecture of the elM based SLA Measurement Service

I

elM
Schema

providers implementing this information model have to be developed. Since all the
SLAs share a common structure, this CIM SLA model is stored in the class repository.

After this WSLNCIM schema is loaded, SLAs of different customers can be de
ployed (2). In our implementation, the deployment of SLAs is realized as a custom
based solution that fits the WSLA environment (cf. section 3). Therefore, the Deploy
ment Service offers a Web Services interface for receiving new WSLA documents,
i.e., agreed-upon SLAs signed by the signatory parties. After receiving an SLA, the
Web Service backend uses an XML parser to analyse and process the SLA. If the doc
ument is valid, the backend sends a series of CIM requests to the CIMOM to create
the CIM instances and associations representing the content of the SLA. This leads to
the instantiation of all the definition classes, which were described in section 3.1.

We distinguish between two types of providers: A WSLA provider, implementing
the SLA model (maintaining the SLA definition and carrying out the computations)
and one or more resource providers. The resource providers are responsible for ex
posing metrics from managed resources. In the next step (3), the classes of the WSLA
provider that relate to metric values at runtime (described in section 3.2) calculate
the SLA parameters based on the raw metrics obtained from one or more resource
providers. The computation is either triggered by IBM.schedule instances or CIM
requests issued by an external CIM client, respectively. Finally, in step (4), the com
puted SLA parameters are forwarded as SOAP events to the Condition Evaluation Ser
vice (implemented as Web Service) through a SOAP library embedded in the WSLA

SLA-driven Management of Distributed Systems using CIM 573

provider. This mechanism is detailed in section 4.3. Note that since CIM providers
are implemented on a per-class basis, the term WSLA provider is used as a shorthand
for the set of CIM instance and association providers implementing the SLA model.

4.1 Active elM Providers
One of the major novelties of our approach is the use of active CIM providers.

While active management agents are known in the network management community
for some time (e.g., the OSI Event Report Management Function or the Summariza
tion Function), CIM providers are, until now, stateless resource providers. They are
passive and only surface information from managed resources without providing ad
vanced processing capabilities. Normally, the retrieval of information is initiated by a
management system acting as a CIM client. Stateless providers may cause a consider
able overhead by requiring periodic polling for new values.

In our implementation, the WSLA provider actively monitors the SLA by au
tonomously retrieving metric values from managed resources and calculating SLA
parameters without being triggered by an external client. Instead, the retrieval of new
metrics is automatically requested by the provider implementing the IBM .schedule
class of the SLA model (see section 3.2 for details). Having this delegated manage
ment functionality executed autonomously eliminates the need for polling and thus
reduces the overhead significantly.

4.2 Recovery Mechanism
SLA management requires the continuous monitoring of SLA parameters and met

rics. Since the CIM providers are not loaded automatically, but rather on demand,
there is the potential problem that providers are not reactivated after a restart of the
Measurement Service. Since the monitoring is triggered by the provider implementing
the IBM_Schedule class, one needs to make sure this provider is properly reactivated.

Two different cases have to be considered: First, the deployment of a new SLA
and, second, the restart of the CIMOM after a failure. When a new SLA is deployed
to the CIMOM, the IBM_Schedule provider is loaded automatically, since every SLA
contains one or more instances of the IBM.schedule class. Thus, the first case is not a
cause for concern. However, in the CIMOM restart case, providers are not loaded au
tomatically, but only when a request for their data comes in. Consequently, a recovery
procedure needs to be in place to guarantee that the IBM.schedule provider is always
loaded, since it issues requests to the providers of other classes (e.g., IBM.TimeSeries)

of the SLA model, which forces the CIMOM to load them if they are not activated.
In other words, the IBM...schedule provider is used to bootstrap the other providers
of the SLA model. This can be achieved by having a simple CIM client enumerate
the IBM_Schedule instances once the CIMOM has started. Such a command can be
included in the startup script of the CIMOM.

4.3 Event Forwarding
In addition to collecting resource metrics and computing SLA parameters, the Mea

surement Service needs to forward newly computed SLA parameters by means of
asynchronous events to the WSLA Condition Evaluation Service (cf. Figure 4).

CIM defines an event model [3] that enables CIM clients to subscribe to events
published as CIM objects by the CIMOM and its providers, respectively. The CIM
event model distinguishes between ClassIndication (creation/deletion/modification

574 Markus Debusmann, Alexander Keller

of ClM classes), InstIndication (creation/deletion/modification/read of ClM in
stances as well as the invocation of methods), and Process Indication (not CIM
specific alerts caused by managed resources, e.g., SNMP traps). The client can apply
filters to limit the number of events being generated. Events are delivered by a handler
and are currently limited to the XML-encoded CIM operations. Other handler types
are intended for the future, but not specified yet. In this approach, a ClM client would
need to act as a gateway to forward ClM events into a non-ClM environment.

Since a generic CIMIWeb Services interoperability solution would require the defi
nition of mappings between the different information models and communication pro
tocols (a non-trivial task comparable to generic management gateways, as described in
[17]), we chose a more pragmatic approach that is not based on the CIM event model.
Instead, we enable our WSLA provider to emit events directly to a WSLA Condition
Evaluation Service. This implies bypassing the CIMOM and, thus, the CIM event
model. Our task is facilitated by the fact that the provider is already aware of the SLA
parameters that are to be sent to each party, because - in WSLA - this event subscrip
tion information is already part of the SLA. By doing so, we are able to augment the
provider with a SOAP library, which allows the sending of SOAP notifications to the
WSLA Condition Evaluation Service. This principle can be applied to notification
mechanisms of other architectures (CORBA events, SNMP traps, etc.) as well.

5. Prototype Implementation
The prototype has been implemented using the SNIA (Storage Networking Industry

Association) CIMOM vO.7 and the Java Development Kit (JDK) v1.3.1. In principle,
every ClM class - as well as the associations - is implemented by a separate (instance
or association) provider. This facilitates the adaptability of a model if it is subject to
changes and reduces the complexity of individual providers.

However, the principle of implementing every ClM provider on a per-class basis
could not be held up for the implementation of the IBMAri thmeticComposi teMetric,

IBM_StatisticalCompositeMetric, and IBM_Timeseries classes because they have
cyclic dependencies (cf. Figure 2). Consider, e.g., the case when the ClMOM is
restarted after a failure and when persistent instances have to be reloaded (no per
sistent storage mechanism of ClM instances is standardized yet, thus every CIM im
plementation handles this differently) in order to monitor the deployed SLA(s). Each
ClM instance of these metric classes is associated with a calculation object that per
forms the retrieval of raw metric values and the metric calculation. These calcula
tion objects have to be initialized with the references to their associated objects. As
suming an IBM_TimeSeries instance has to be initialized, its associated class can be
either of type IBM.RawMetric, IBM.ArithmeticCompositeMetric, or IBM..statisti

calComposi teMetric. If an operand is either an IBM.Ari thmeticComposi teMetric or
a IBM_StatisticalCompositeMetric, the attempt to resolve the reference to this in
stance would result in a request to the corresponding provider without having finished
the initialization of the IBM_TimeSeries instances (cf. Figure 5). During the initializa
tion of the other providers, a single reference to an IBM.TimeSeries instance would
entail an attempt to initialize the IBM_TimeSeries provider again, thus resulting in a
loop.

Combining the initially three separate providers into a single provider - responsi
ble for handling all three classes - solves this deadlock situation because all metric
instances are jointly restored from persistent storage. By doing so, the provider has
all information available internally to resolve the references without having to rely on

SLA-driven Management of Distributed Systems using elM 575

LO'MOMj

StatistjcalCompositeMetrioProvider

'--""---r-'----"---
initialize 0

_ initialize 0 I
---------,-,,-"------,-,-,,"-,------- -, -'-------------'-----------'--->[]

enumlnstances (TimeSeries) J

initialize 0 U
I

Figure 5. Deadlock between different elM provider classes

other CIM providers. In case of deploying a new SLA, this problem does not occur
because the Deployment Service creates the instances in the correct order.

The CIM based Measurement Service and the WSLA Condition Evaluation and
Deployment Services are new extensions to an existing prototype for discovering
quantitative models for service level management (see [5] in this book for more de
tails). The CIM based Measurement Service, described in this paper, is used to carry
out SLA measurement tasks and sends its results through the WSLA Condition Evalu
ation Service both to the AutoTune Manager and a Managed Probe. The Measurement
Service obtains its data from the IBM DB2 UDB database management system, which
has been extended by a CIM based management instrumentation.

6. Conclusions and Outlook
We have presented a novel approach for SLA-driven management of distributed

systems using CIM. It uses the WSLA framework to define and formally represent
SLAs as XML documents. To access existing managed resource instrumentations,
these documents need to be transformed into a representation compatible with typical
management architectures. Here, we assume a CIM based management environment.

Our approach to this problem consists of developing a CIM based model for SLAs
that preserves the expressiveness ofWSLA, and an SLA Measurement Service, imple
mented as a CIM provider. The model is populated by a Deployment Service whenever
a new SLA needs to be monitored by our system. The Deployment Service is imple
mented as a Web Service. It acts as a CIM client and is able to perform the mapping
of the SLA into a CIM based environment. During deployment, the Measurement
Service instantiates CIM objects that represent the SLA definitions. During the run
time phase, new metric data is collected from managed resources and subsequently
aggregated into SLA parameters and forwarded to one or more Condition Evaluation
Services, according to the schedule defined in the SLA. This implies that the data col
lection must be triggered from within the CIM Object Manager by means of so-called
active CIM providers. This concept, available e.g., in the Summarization Function of
the OSIITMN management framework, goes beyond the capabilities of today's CIM
providers, which are passive and need to be triggered by external management appli
cations. The move from traditional stateless CIM providers to active CIM providers
required some work, since typical CIMOM implementations are not geared towards
active providers. In particular, we had to address the problem of ensuring a recov
ery after a CIMOM failure. Other problems were caused by the interdependencies
between different CIM providers, for which we were able to find a solution.

576 Markus Debusmann, Alexander Keller

While our work shows that it is possible to implement more advanced functionality
- such as data collection capabilities - with elM Object Managers, a more general
approach to elM provider initialization is needed to avoid potential deadlocks. In ad
dition, the customized mapping ofWSLA documents into the elM schema needs to be
expanded to support the full interoperability of elM with a Web Services environment.

Acknowledgments
The authors express their gratitude to Bob Moore and Lee Rafalow of IBM for helpful
discussions and ongoing advice and for their help to making this work succeed.

References
[1] ASP Industry Consortium. White Paper on Service Level Agreements. 2000.
[2] Common Infonnation Model (CIM) Version 2.2. Specification. Distributed Management Task Force.

June 1999. http://www.dmtf.orglstandardsicim.spec.. v221.
[3] CIM Event Model White Paper. Version 2.6. Distributed Management Task Force. March 2002.
[4] Specification for CIM Operations over HTIP. Version 1.1. Specification. Distributed Management

Task Force. May 2002. http://www.dmtf.orglstandardsldocumentsIWBEMlDSP2oo.html.
[5] Y. Diao. F. Eskesen. S. Froehlich. J.L. Hellerstein. A. Keller. L.F. Spainhower. and M. Surendra.

Generic On-Line Discovery of Quantitative Models for Service Level Management. In G.S. Gold
szmidt and J. ScMnwlilder. editors. Proceedings of the 8th IFIPREEE International Symposium on
Integrated Network Management. Kluwer Academic Publishers. March 2003.

[6] I. Foster and C. Kesselman. editors. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann. 1999.

[7] I. Foster. C. Kesselman. J.M. Nick. and S. Tuecke. The Physiology of the Grid: An Open Grid Service
Architecture for Distributed Systems Integration. Draft. Globus Project, July 2002.

[8] IBM Corporation. Web Services Toolkit version 3.2. August 2002. Available at:
http://www.alphaworks.ibm.comltechlwebservicestoolkit.

[9] A. Keller. G. Kar. H. Ludwig. A. Dan. and J.L. Hellerstein. Managing Dynamic Services: A Contract
based Approach to a Conceptual Architecture. In R. Stadler and M. Ulema. editors. Proceedings of
the 8th IEEElIFlP Network Operations and Management Symposium (NOMS'2002). pages 513-528.
Florence. Italy. April 2002. IEEE Press.

[10] A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring Service Level Agree
ments for Web Services. Journal of Network and Systems Management, Special Issue on E-Business
Management. 11(1). March 2003.

[11] Keynote - The Internet Performance Authority. http://www.keynote.com.
[12] H. Kreger. Web Services Conceptual Architecture 1.0. IBM Software GrouP. May 2001.
[13] L. Lewis. Managing Business and Service Networks. Kluwer Academic Publishers. 2001.
[14] L. Lewis and P. Ray. On the Migration from Enterprise Management to Integrated Service Level

Management. IEEE Network. 16(1):8-14. January 2002.
[15] H. Ludwig. A. Keller. A. Dan. R.P. King. and R. Franck. Web Service Level Agreement (WSLA)

Language Specification. IBM Corporation. November 2002.
[16] Matrix NetSystems. Inc. Beyond Mere Latency. 2002. http://www.matrixnetsystems.com.
[17] S. Mazumdar. Inter-Domain Management between CORBA and SNMP. In Proceedings of the

IFlPIIEEE International Workshop on Distributed Systems: Operations & Management. L' Aquila.
Italy. October 1996.

[18] C. Overton. On the Theory and Practice of Internet SLAs. Journal of Computer Resource Measure
ment. 106:32-45. April 2002. Computer Measurement Group.

[19] N. Soukouti and U. Hollberg. Joint Inter-Domain Management: CORBA. CMIP and SNMP. In
A. A. Lazar and R. Saracco. editors. Proceedings of the 5th International IFlPREEE Symposium on
Integrated Management (1M). pages 153-164. San Diego. USA. May 1997.

[20] S. Tuecke. K. Czajkowski. I. Foster. J. Frey. S. Graham. and C. Kesselman. Grid Service Specification.
Draft 3. Global Grid Forum. July 2002.

[21] D. Venna. Supporting Service Level Agreements on IP Networks. Macmillan Publishing. 1999.
[22] Y. Yemini. G. Goldszmidt. and S. Yemiui. Network Management by Delegation. In I. Krishnan

and W. Zimmer. editors. Proceedings of the Second International Symposium on Integrated Network
Management. pages 95-107. Elsevier Science Publishers B. V. (North Holland). April 1991.

SESSION 11

Management System Design

Chair: Olivier Festor
LORIA-INRIA, France

A MANAGEMENT-AWARE SOFTWARE
DEVELOPMENT PROCESS USING DESIGN
PATTERNS

Oliver Mehl, Mike Becker, Andreas Koppel, Partho Paul, Daniel Zimmermann and
Sebastian Abeck
{oliver.mehl, mike. becker, andreas. koeppel, partho.paul, daniel.zimmermann, sebastian.
abeck}@Cooperation-management.de
Cooperation & Management
Institute ofTelematics, University of Karlsruhe
Zirkel 2, D-76128 Karlsruhe, Germany

Abstract: The provIsIon of quality-assured IT services through a service provider
requires that all IT components involved in these services can be managed in
an efficient and effective way. The necessary management infrastructure must
be adapted to these IT components and must be standard-based to allow its
integration into an overall management environment. The broad spectrum of
applications differing in functionality and architecture together with the need
for a deep correlation of the management infrastructure with the internal
structure and processes of an application make it difficult to use pre-defined
application management solutions off-the-shelf.
The development process described in this paper addresses the problem by
integrating the development of the management infrastructure into the
software development process. The integration assures that the management
infrastructure is adapted to the application to be managed. The infrastructure,
including the management model as its core component, is based on the
Common Information Model (CIM) standard. To support the development of
the management model, a management design pattern catalog is introduced,
that provides CIM-based patterns for the definition of standardized
management models. The use of this catalog is demonstrated by an extension
to the management model for the distributed Enterprise Resource Planning
System Rl3 of SAP AG.

Key words: application management, software development process, management
infrastructure, management model, design pattern, CIM

http://dx.doi.org/10.1007/978-0-387-35674-7_66

580 O. Mehl, M. Becker, A. Koppel, P. Paul, D. Zimmermann, S. Abeck

1. INTRODUCTION

Modem software systems have to be able to provide IT services to customers in
a quality-assured way. Therefore, every component that forms an application -
including network-, system- and application components - must provide a
management infrastructure including management models and corresponding
instrumentation mechanisms.

Due to the broad structural variety and individual functionality of application
architectures, the process to create an adequate and sound management
infrastructure is a complex task. Additionally, in contrast to network or systems
management, where management models can be built on dedicated base models, in
most cases application management models must be built from scratch. An in-depth
look into the application and its internal processes is necessary to ensure that the
generated model reflects the application system appropriately. This puts the task of
creating such a management model into the hands of the software developer. Being
the person most familiar with the application, he is predestined to deal with the
provisioning of the necessary management infrastructure.

2 , , I/)

II I > use of I IT -based business process. IT -services I

lis. 3 i AI i
• ! :l:g:

.--L---,-I ---'-, i

____________ !! _____ :_:J ·
---- --------------r------------ ------------.. --.. ---...... ---------- .. --.......... -.. --.. ---,

software development process a. I/)
CD 0

!
, management infrastructure development process '" -! !:! ' 0 I ", r+I"'Oca
! a !
L __ .. ________________________________ _ .. .m ____ .. j

Figure 1. Development of management-aware software

To reduce the complexity of this task, an integrated process for the development
of management-aware software systems as depicted in Figure 1 is necessary. A tight
integration of the software and management infrastructure development processes
avoids the problems ofa too late alignment and harmonization of the application and
its management infrastructure. To handle the additional complexity of this approach
an integrated approach must provide guidelines and tools for application developers
to ensure that management aspects are considered in all phases of the process.

Within this context the paper focuses on the development of the management
model as part of the management infrastructure and demonstrates how the use of a
design pattern catalog for management models supports the process. The design

A Management-Aware Software Development Process 581

patterns presented describe recurring parts of management models for application
systems, modeled on a level of abstraction suited for management needs using a
standardized management modeling language to ensure reusability and portability.

2. STATE OF THE ART

2.1 Management of applications

The complexity of application management [1] is not only driven by its various
functional aspects but also by the broad spectrum of applications as managed
objects. An important requirement for a successful management of applications is an
adequate information model, which describes the applications' functional
components and relations in the context of the business processes. Regarding the
way to develop these models two basic approaches can be identified.

The most frequently used approach at present is a disjoint development of the
software system and the corresponding management model. In this case, the
management model and instrumentation code [2] need to be developed and
integrated after the implementation of the application. If integration is impossible,
the management must be based on information already available from the software,
complemented by information gathered from an outside view of the application (e.g.
system management information). This approach bears the risk of significant
differences between the representation of the application in the management model
and the actual software structure. The quality of the management achieved in this
approach depends heavily on the degree to that additional instrumentation code can
be integrated into the existing application system.

The second approach is to integrate the development of the management model
into the software development process. This approach reduces the danger of
inconsistent views on the application through a tight coordination between the
development processes of both models. Due to their different aims and viewpoints a
total match of the models is unlikely. Nevertheless, an integrated approach usually
results in a well-adapted management view on the managed application that directly
influences the quality of the overall management solution. The management-aware
development process presented in this paper follows this integrated approach as
described in detail in section 3.

2.2 Management infrastructure

In today's management scenarios required information for managing an
application is often provided trough a specific management infrastructure in a non
standard way. To be integrated into a broader context such as service management
management information must be accessible not only by application-specific
management tools, that are tightly coupled to the managed application, but also by
external management applications or platform such as Tivoli [3], BMC [4] or HP
Openview [5] to enable correlation and aggregation of the management information.

582 O. Mehl, M. Becker, A. Koppel, P. Paul, D. Zimmermann, S. Abeck

A standard for modeling management information is the Common Information
Model (CIM) [6] specified by the Distributed Management Task Force (DMTF). In
contrast to management information languages such as SMI-GDMO (Structure of
Management Information, Guidelines for the Definition of Managed Objects) [7],
DMI-MIF (Desktop Management Interface, Management Information Format) [8] or
SNMP-SMI (Simple Network Management Protocol, Structure of Management
Information) [9] that are devoted to particular management domains CIM is an
implementation and architecture-independent modeling language that allows to
describe overall management information in a networked I enterprise environment
[10]. It is flexible and extensible and therefore provides a wide range of
applications. The rules for building CIM-compliant management models are defined
in the CIM meta schema [6]. A set of basic elements to model management
information is provided through the CIM base schema. CIM extensive use of
the concepts of classes and instances known from object-oriented modeling and uses
UML class diagrams to describe the models. This fact supports the idea to use CIM
in an integrated development process in which the software developer must carry out
the development of the management model as he is usually already familiar with
these concepts and the notation.

The CIM compliant management infrastructure can be used to guarantee
standardized access to an application's management information and functionality.
To provide a manageable application that supports this approach, a developer has to
provide the CIM-based management model, additional instrumentation code as well
as a CIM provider for the application that can be registered with the ClM object
manager (CIMOM) to make the CIM model, management data and functionality
available to management applications.

3. AN INTEGRATED MANAGEMENT
DEVELOPMENT PROCESS

The idea to integrate the management development process into existing
software development processes assumes the identification of a generic core
process. This process can then be extended to incorporate management aspects
taking into account the integrated development of a standard-based management
infrastructure for a management-aware software system. The integrated process can
then be mapped to the original development processes to make them management
aware. Obviously the integrated development approach increases the overall
complexity of the software development process that must be handled by the
software developers. Even though a separate development team that is specialized in
management details might transparently develop the complete management
infrastructure, an intense synchronization between both processes is inevitable and
results in additional costs. On the other hand the integrated process avoids the costly
and error-prone process of adding management components after the
implementation of the core functionality of a software system. The consideration of

A Management-Aware Software Development Process 583

management aspects right form the start of the application development improves
the application's manageability in terms of the overall quality of its services.

When taking a closer look at established software development models such as
the waterfall model, the V model or the spiral model [11] all of them share three
main phases: a system analysis phase, a software design phase and an
implementation and test phase. The integrated management development process
depicted in Figure 2 is based on a software development process (SWD process) that
consisting of these three shared phases. The management infrastructure development
process (MID process) is separated into corresponding phases. The integration of
both processes is done for each phase separately to ensure a consistent completion of
each phase and by that to ease the integration of each of the phases into existing
development processes.

,"""""""""""""""""""""""""'""""""""""""""""""""""""""""""" g
i use of IT ,services i !e.
i I IT,based business process> i
L",,'m"n.'n"'nn""nn""n""nn"'n'n"nn""n"'0000'00'00"'00'000000"0000'0000'0000'0000: (1)

IT i management I,:

application i application i
1 L"", """,l or 3 Q) 1 'C
I ::1:g'-'
: se.3J =::
: 2<0 CD&l:a:

r'-----'-L-, U 3 g. i !!!

'l'r===='===;--r,,=,,=,,:±,,=,,=,,=i,,',,-,,-,,--,
,--------- ---- - ---- ----- ------ -- - ----- ---- --- - - --- -- -- - -- --- -- (IJ

, t
CD
0.

0'

L"",,"""'"n""'n"'n"n"'nn""' __ n" __

Figure 2. An integrated, elM-based development process for management-aware software

To ensure a standardized access to the management information and
functionality of the application the management infrastructure developed in this
processes is supposed to be CIM-compliant. It deals with the development of the
management model, the provider, the instrumentation code as well as the
management application.

The following sections describe the first two phases of this development process.
The last phase is left out as it concerns only implementation details.

584 O. Mehl, M. Becker, A. Koppel, P. Paul, D. Zimmermann, S. Abeck

3.1 The system analysis phase

The main focus of the system analysis phase is to determine and describe the
requirements for an application system defined by the end user or customer. The
requirements are documented in a product concept catalog and are later transferred
into a customer requirement specification. Both documents describe the scope of the
services of the developed application. In both cases the specification of the
management requirements is realized after the requirements for the software have
been defined as most management aspects are linked to or based on details of the
software requirements analysis. To support the defmition of management
requirements a management catalog is used. The catalog provides a very high level
classification of generic management information organized according to the five
functional areas FCAPS of the OSI management [12]. It can be used in interviews to
capture and define the customer's management requirements by instantiation and
adaptation of the generic management aspects to the developed product.

After the requirements are defined, a product model is specified. Based on this
model prototypes of the graphical user interfaces (GUI) are constructed that provide
both, the software engineer and the customer, with a first vision of the application.
In addition, a first version of a user manual is produced that is completed during the
other two phases of the development process. If the development of a management
application is necessary, the GUI for this application is specified in this phase
following the same process but on a more general level. At first the management
data provided by the management application is described in a broad outline through
the defmition of a first set of relevant management information and access functions
for the application. This process is also supported by the management catalog that
allows the definition of this data based on input from the requirement analysis.
Additionally control mechanisms for the application are specified. Management data
and management functions are then implemented in the management GUI.

The system analysis phase ends with the review of all the documents and
specifications that have been created during this phase to guarantee that the
specifications meet the requirements. In case of inconsistencies, changes or
extensions to the existing specifications must be carried out.

3.2 The software design phase

The software design phase depicted in Figure 3 deals with the transformation of
the specified requirements into a software architecture. During this process
constraints and limiting conditions are refmed and extended based on the outcomes
of the system analysis phase. In addition, operation conditions are defined.

The software architecture describes the structure of the software system by
defining the system components and their relationships. A system component is a
closed part of a software system dealing with a specific (functional) aspect of the
application. Depending on the level of detail the components are organized into
layers or tiers whereas logical layers are mapped onto physical layers. The mapping
of the components can be done following predefined schemes.

A Management-Aware Software Development Process 585

After the system components and the architecture have been defined, the
components are specified in detail. This includes the definition and documentation
of their interfaces as well as their internal behavior in a formal or semi-formal way.
Tools supporting this process are e.g. UML CASE tools to create static (class
diagrams) or dynamic (activity or sequence diagrams) diagrams of the components.
Due to its complexity, the process of defining the software architecture and its
components is carried out iteratively, refining the results of the preceding phase. If
necessary, results must also be fed back into prior phases of the design process to
change or extend earlier specifications or constraints.

The design of the management model can be initiated after the system
components and the overall architecture have been defined. The management model
can include various kinds of management information from the different
management areas depending on the focus of the management. Constraints and
decisions taken in the design of the application architecture influence the
development of the management model. They must be taken into account to ensure a
consistent and sound management view of the application. To ease the development
of the management model, a management design pattern catalog is used. The
purpose of this catalog, its structure and usage is described in section 4 in detail.

MID

1* 3

I + chango I oxtend cnange I oxlona I

Figure 3. Management-aware software design phase

The management information and functionality is provided by the application
components through the instrumentation. Therefore the instrumentation
requirements extend the component specification as they define additional functions
and parameters that need to be integrated into the components. The instrumentation
also influences the design of the management model: only aspects that can be
covered by the instrumentation can be instantiated in the management model.

After the management model and instrumentation design become more stable,
the design of the management provider and, if necessary, the management

586 0. Mehl, M Becker, A. Koppel, P. Paul, D. Zimmermann, S. Abeck

application development is initiated. The provider is responsible to transfer the
management data received from the instrumentation to the management application
(via the CIMOM) and must therefore implement the management model. The
management application is designed and refined according to the requirements and
the initial GUI design defined in the system analysis phase. Based on the
information represented in the management model, details about management data
presentation and possible data manipulation operations are specified.

4. A MANAGEMENT DESIGN PATTERN CATALOG
FOR THE SOFTWARE DESIGN PHASE

The component- or object-oriented way to design the CIM-compliant
management model in the integrated development process fosters the reuse of design
models in the form of patterns that solve. recurring design problems. In software
engineering design pattern consist of a combination of components or classes, their
interfaces and relationships that reflect important aspects of a solution to a specific
problem. The reuse of these patterns is only possible if they provide a sufficient
level of abstraction from both the underlying problem and the solution. While
software design patterns usually handle details of the system design, patterns used to
build management models operate on a higher level of abstraction relying on
component- and function-oriented view of an application system. Following this
approach a management design pattern catalog can be used to assist in the
development of management models. Using such a catalog provides several
benefits: The developer of the management model gets a set of building blocks that
allow an efficient implementation of the model. The patterns also support the
development of the application system instrumentation as they specify operations
and attributes that must be provided by the application to enable its management.
Both aspects reduce the effort to develop an appropriate management infrastructure
for an application as only additional application-specific characteristic that are not
covered by the patterns must be added to the model. Additionally, the use of
management design patterns stimulates the development of comparable management
models. By basing the representation of application system components in the
management model on well-defined building blocks the interoperability with other
models providing similar attributes and inheritance hierarchies is supported.

4.1 Management design pattern catalog

In contrast to application software design the management model design focuses
on the functional units and services of an application on a reasonable level for
management tasks. When analyzing the functional aspects of the application various
indicators help the developer to discover such entities. Examples are components
supporting asynchronous data processing or boundaries between software
components that are embedded in separate executables or communicate remotely.

A Management-Aware Software Development Process 587

The management design pattern catalog supports the developer in identifying
such entities as well as in the selection of the parts of these entity that are relevant to
be include in the management model. The resulting requirements for the
instrumentation of the application system can then be fed back into the application
design process. The level of abstraction used for the patterns is located in between
the rather abstract concept of architecture styles (see [13]) and the fine-grained
software design patterns used in the software design process. The patterns focus on
the description of logical processing elements such as services and sub-systems. The
patterns are described following the approach used in [14] to ease their selection and
use by software developers. Therefore each pattern in the catalog is described by its
name, a short overview as well·as examples for its use. Synonyms and related terms
are mentioned to ease navigation and search for an appropriate pattern. While this
information is intended to support the selection of a pattern from the catalog, each
pattern is also described in detail and visualized by a elM model. Preconditions and
limitations for the use of the pattern are mentioned.

The initial set of design patterns for the management design pattern catalog were
identified during the design of a management infrastructure for the Enterprise
Resource Planning System (ERP System) Rl3 of SAP AG. A strong effort during the
analysis was put on keeping the identified patterns independent from the specific
characteristics of the SAP software to guarantee their reusability and to define them
on a suitable level of abstraction to keep them applicable for other scenarios.

Two high-level patterns were identified as starting points for further analysis:
The basic structure of an application system as a class model is presented in the
distributed application system pattern.
Systems featuring logical segments with private data and configuration sections
may be modeled using the logical system pattern. A web server providing
services for different virtual sites on the same hard- and software platform can
be taken as an example for such a system.

Design patterns for single services that were identified in the functional analysis
include:

An application service represents a service that provides a set of related
functions in an application system.
A distributed service is provided by services of different component systems. A
load balancing service can be taken as an example for this pattern.
A specialized service represents a service implemented from specialized
components or component systems within a distributed application system,
playing a vital role as a single point offailure for the system.
A queued service uses data queues or asynchronous request processing to
provide its service. An example is a request processing service of a print server.

In addition, the following patterns can be used to describe more general
component relationships.

The pattern client-server relationship represents the relationships between two
components that are part of a service provide/service user relationship. The

588 o. Mehl, M. Becker, A. Koppel, P. Paul, D. Zimmermann, S. Abeck

communication relation ship between business tier components and a database
can be described using this pattern.
To create a model describing the properties of an external component that is
used by an application system the pattern external view may be used.

4.2 Pattern examples in detail

In the following sections the design patterns distributed service and specialized
service are described in detail using the catalog structure introduced in section 4.1.

4.2.1 Application Service

Overview: An application service combines a set of functions of a technical service.
All processing elements of an application can be mapped to such a service. Criteria
for this kind of services are a fixed interface and permanent service availability.
Example: A spool service for print jobs or a web server module such as a SSL
module for communication encryption can be modeled as application service.
Related terms: functional group, processing element, module

CIM..AppllcatlonSystom

Antecedent 1

CIM_HostedServlce

CIM_ServlceSAP
Dependency

CIM_SAPSAPOepondency

GroupComponent *

SettlngContext

AppServParameters

Figure 4. elM model of the management design pattern application service

Motivation: The pattern allows to model the management aspects of any relevant
components of an application system from a functional point of view.
modeling details: The ApplicationService class is linked to the CIM_Application
System class that implements the service functionality. It can use other application

A Management-Aware Software Development Process 589

services to implement its functions or provide its own functionality to other services.
This is done by the use of a ServiceReference (to use functions of other services) or
a ServicePort (to provide functionality) that are derived from the class ClM_Service
AccessPoint. The use of data storage systems is modeled through the class Logical
StorageResource. Configuration options are mapped to the AppServiceSetting class
derived from ClM_Configuration that represents a part of the overall application
settings.
Preconditions and limitations: The key problem to use this pattern is the
identification of the relevant elements of an application that should be modeled as
application services. Therefore an adequate level of abstraction of the software
component model must be chosen before this pattern can be used.
Visualization: See Figure 4

4.2.2 Specialized Service

Overview: The pattern specialized service represents a service that is implemented
only by specific components and is of central importance for the overall system.
Example: The payment transaction component of an e-commerce application can be
seen as a specialized service. It is the single interface of the application providing
access to the bank to carry out fmancial transactions and it is used by all other
components of the e-commerce application requiring this functionality.
Related terms: Dispatcher, master, single point offailure

Component
AppllcatlonSyatem

DASHoslenSpecAppServ

CSysHostingSpecAppServ

DASGlobalAppService

CASLocalAppServlce CSysHostlngSpacAppServ

• Depedenl

SAServConsumer

Figure 5. elM model of the management design pattern specialized service

Motivation: Specialized services are of special interest from a management point of
view regarding fault or performance management. A failure on their part has major
implications on the overall system availability. Their performance influences the
overall productivity of the system.

590 0. Mehl, M Becker, A. Koppel, P. Paul, D. Zimmermann, S. Abeck

Modeling details: A specialized application service is modeled by the Specialized
ApplicationService class derived from the ApplicationService class. This class is
associated with a component system SpecializedComponentApplicationSystem that
provides the service. The specialization of this system does not necessarily involve
special software components but can also be achieved through specific configuration
options. The service is used by other application services indicated by the
SAServConsumer association to the ApplicationService class.
Preconditions and limitations: The overall application system must be built from
different component systems. The services provided by the application system must
be provided through component-based services. The relationships between these
services must be known to allow the identification of specialized services. The
pattern does not represent the functional aspects of the relationships.
Visualization: See Figure 5

5. USE OF MANAGEMENT DESIGN PATTERNS IN
THE CONTEXT OF THE ERP SYSTEM SAP Rl3

The overall architecture of the ERP system SAP R/3 follows a distributed three
tier architecture. In this scenario the database tier is a centralized external relational
database providing its services to the business tier. In the business tier so called
work processes use this central database to provide their functionality in the context
of various business processes. The work processes are grouped to application servers
that are located on different physical systems. Each application server consists of
exactly one dispatcher process and an optional gateway service to handle the
distribution of requests between °the local work processes and the communication
between the applications servers of a single SAP system.

The Internet Communication Manager (ICMan) component enables an
application server to communicate using IP-based protocols such as HTTP or
SMTP. This is achieved by extending the application server by a separate ICMan
process that can be addressed by the work processes through the dispatcher process.

In the following the use of the management pattern catalog is demonstrated in
the development of a management model for the ICMan.

5.1 Management model for the ICMan component

Based on the functional and architectural aspects of the ICMan component the
management pattern specialized service was identified as best choice to develop the
management model. The service provided by the ICMan can be characterized as
specialized service, because its service is provided by not more than one component
instance but it is accessed by several other components to provide their services.
Even though the ICMan component can't be seen as central in the overall
application context it is central in the context of its associated application server.

Figure 6 depicts the CIM model of the ICMan component as it was integrated
into the management model of the SAP base system. According to the design pattern

A Management-Aware Software Development Process 591

specialized service the ICMan component was modeled as a CIM class
SAP _BClnternetCommMgrService derived from the abstract class SAP _Application
Service that corresponds to the class ApplicationService in the design pattern. The
association CsysHostingSpecialService is instantiated as SAP _BCKernelICMan
Implementation and is linked to the SpecializedComponentApplicationSystem that
implements the component system including the ICMan, which in this case is
represented by SAP _ BCKernel. As the service of the ICMan is used by the work
processes of the application server the dependency SAServConsumer is modeled by
the association SAP _BCICManProvidesServiceToWP between the SAP _BClnternet
CommMgrService class and the SAP_BCWorkProcess that correspond to the
ApplicationService class in the pattern.

SAP _BCAppllcaUonServerKemel

GroupComponent
SAP _BCKa,nat

parteomponentL...-_-::--:-":T:'" ___J

Depedent 1

SAP _BCKemeliCManlmplementation

Antecedent 0 .. 1

SAP _BClnla,nolCommMgrService

Figure 6. CIM model of the ICMan component

6. CONCLUSION

The management-aware development process depicted in this paper presents an
approach for the integrated development of applications and their management
infrastructure by the inclusion of management aspects in all phases of the software
development. It fosters the alignment and integration of the management
infrastructure, weaving the management model with the application system in a
standardized way. The design pattern catalog presented supports application
developers to handle the additional complexity of the integrated development
process. It provides as set of patterns to ease the construction of CIM-based
management models as an important building block of the management
infrastructure. The use of the pattern catalog was demonstrated in the development
of the management model of a central component of an ERP system.

592 o. Mehl, M. Becker, A. Koppel, P. Paul, D. Zimmermann, S. Abeck

The integrated development process is currently being evaluated in the
development of different management-aware components. The results are fed back
into the ongoing improvement of the process and the supporting tool set. Actual
activities focus on the specification of an extended schema for a product concept
catalog and a customer requirement specification used in the system analysis phases
as well as customized methods for using them efficiently. As one of the supporting
tools the design pattern catalog is also continuously evaluate, revised and extended
by modeling further components of the SAP ERP system to improve and verify the
reusability of the design patterns defined so far.

REFERENCES

[l]R. Stunn and W. Bumpus, "Foundations of Application Management": John Wiley &
Sons, 1999.

[2] M. Katchabaw, S. Howard, H. Lutfiyya, A. Marshall, and M. Bauer, "Making Distributed
Applications Manageable Through Instrumentation", presented at 2nd International
Workshop on Software Engineering for Parallel and Distributed Systems (pDSE'97), 1997.

[3] IBM, "Tivoli® Software", http://www.tivoILcom.
[4] B. Software, "Enterprise Applications Management", http://www.bmc.com.
[5]H.-P. Company, "HP OpenView", http://www.openview.hp.com.
[6]DMTF, "Common Information Model (CIM) Specification, Version 2.2",

http://www.dmtf.orglstandards/cim_spec_v22/.
[7] ISO, "International Organization for Standardization - Information Technology - Open

Systems Interconnection - Structure of Management Information: Guidelines for the
Definition of Managed Objects, ISO 10165-4", 1992.

[8]DMTF, "DMTF, Desktop Management Interface (DMI) Standards",
http://www.dmtf.orgistandards/standard_dmLphp, 1998.

[9] IETF, "RFC1155 - Structure and Identification of Management Information for TCPIIP
based Internets ,Internet Engineering Taskforce", 1990.

[10] W. Bumpus, "Common Information Model: implementing the object model for
enterprise management". New York, N.Y: Wiley, 2000.

[11] G. Kotonya and I. Sommerville, "Requirements Enginerring": John Wiley & Sons,
2000.

[12] ISO, "International Organization for Standardization - Information Technology - Open
Systems Interconnection - System Management: Object Management Function, ISO
10164-1 ", 1993.

[13] D. Garlan and M. Shaw, "An Introduction to Software Architecture", vol. Volume I:
World Scientific Publishing Company, New Jersey, 1994.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design Patterns: elements of
reusable object-oriented software": Addison-Wesley Publishing Company, Reading, MA,
1995.

MANAGING VIRTUAL STORAGE SYSTEMS:
AN APPROACH USING DEPENDENCY ANALYSIS

Andrzej Kochut '"
Computer Science Department
University of Maryland
College Park, Maryland 20742, USA
kochut@cs.umd.edu

GautamKar
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598, USA
gkar@us.ibm.com

Abstract:

Keywords:

We present an approach for managing the performance of virtual storage systems by
experimentally identifying the dependencies that exist between various components that
comprise the system. Specifically, we show how one may profile dependencies between
each logical volume exported by a storage system and components that this volume uses.
To do so the technique estimates the arrival rate and size of requests issued to the internal
system component as a functions of arrival rate and size of requests issued to the logical
volume. The complete dependency profile of the system consists of a set of such functions
for READ and WRITE operations separately and for each pair: logical volume - internal
system component. The empirical technique of obtaining such profiles for typical existing
storage systems is presented. We propose the use of Common Information Model (CIM) as
a way to express dependency and performance information in an architecture-independent
manner. The dependencies between components are computed as a fraction of bandwidth
that is passed on to the sub-components. We discuss how the dependency profile of the
system may be used to perform root-cause analysis and early Service Level Agreement
violation notification. We also demonstrate the use of the method by applying it to a Linux
system using software RAID.

Dependency analysis, virtual storage systems, root-cause analysis, Service-Level Agree
ment, systems monitoring.

1. Introduction
Fast growth in demand for big, efficient and reliable storage systems has led to the

development of very complex and heterogeneous architectures. With this increase in
architectural complexity and size of storage, new challenges for design, monitoring
and management have emerged. The share of management costs in the Total Cost of

·Work done while author was an intern at IBM T. J. Watson Research Center.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

594 Andrzej Kochut, Gautam Kar

Ownership for storage systems has increased steadily, creating a need for storage man
agement systems that are scalable and autonomous. Management problems associated
with storage systems start with the design of the system itself. The tasks of optimal
allocation of data objects to logical volumes, configuration of software and hardware
components, determining root-causes of problems, and predicting the violation of Ser
vice Level Agreement (SLA) prove to be very difficult. There is substantial amount of
work done in the area of virtual storage design. The suite of storage design algorithms
presented in [1] and [2] may be used to automatically design and configure a set of
RAID arrays, given performance and reliability requirements of the request streams.
In [9] authors show a way to automatically configure Storage Area Network to suit
the needs of predicted data transmission. Difficulty in the design of the system stems
from the trade-off between the utilization of components of the storage system and the
nature of guarantees in the SLA used by the users of the system. Moreover, the de
sign of the storage system is an ongoing process, because needs/demands of the users
change constantly, making it necessary to re-evaluate storage requirements and re
provision storage allocation. Since, today, storage systems, in the form of SANs, are
shared between multiple servers, and hence multiple applications, such reprovisioning
is necessary to honor SLAs between the storage service layer and the applications.

In this paper we concentrate on aspects of performance problem detection and res
olution in distributed environments consisting of virtual storage systems, e.g. SAN.
The special emphasis of this research has been to understand how problems identified
at the storage layer can be related to problems manifested at the application layer. The
approach we have taken is to develop methods to characterize and compute dependen
cies that exist between virtual storage entities that applications and file systems use,
and physical storage entities, such as RAID drives, into which the virtual entities are
mapped. We propose modeling the dependencies between components of the system
as a set of functions representing the arrival rate and size of requests issued to the
internal component as a function of arrival rate and size of requests issued to the logi
cal volume exported by the system. These functions are numerical representations of
the storage policies implemented by the system. Storage policy defines the way data
is stored and retrieved, what communication media are used to transfer the data, and
what additional operations are performed while executing the request. For example,
RAIDI ([4], [6]) storage policy defines on which physical devices the data is repli
cated, from where the data is read (load balancing), how the system behaves when one
of the devices fails, etc. Figure 1 depicts a virtual storage system. Logical volumes
LV1 and LV2 use a fiber switch to transfer the data to and from hard drives and virtual
storage systems, such as IBM's Enterprise Storage Server (ESS). Data objects (D01
through DOS) are mapped onto logical volumes. Streams of requests (S1 through S6)
access the data objects.

Although it is sometimes possible to obtain an analytical model of the storage pol
icy (one of the examples may be found in [8]), in general storage systems it may be
very difficult to obtain a model that is close to reality. Thus we propose an empirical
technique for estimating the dependency profile by applying controlled, variable load
to logical volumes and observing the impact it has on internal system components.
Our approach requires instrumentation of the system that can supply the management
application with data about the component's performance. Because of the heterogene
ity of the storage systems, the data needs to be expressed in a uniform, standard way to
enable interoperability between components supplied by different vendors. To achieve

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis 595

SI S2 S3 S4 S5 S6

! !

Fiber Switch

HD2 HD3 HD4

Figure 1. Example of a virtual storage system. Logical volumes LV land LV2 are mapped onto physical
drives HDl through HD4 and ESS using fiber switch. Data objects (DOl through D05) are mapped onto
logical volumes. Streams S1 through S6 access data objects.

this goal we propose the use of Common Information Model (CIM) as defined in [5].
CIM is a set of classes that may be used to describe system components as well as
metrics associated with each component. By use of this standard, the management ap
plication may gather system-wide information about each component's performance
and use it to prepare dependency profiles and later monitor the behavior of the system.
Our method is similar to Active Dependency Discovery (ADD) technique presented in
[3], where the authors perturb a system's components in order to estimate dependen
cies between them. However ADD is used for application-level dependencies while
our method quantifies the performance dependencies between the elements of the stor
age subsystem.

The remainder of this article is organized as follows. Section 2 describes the way
we model the system and use the model for computing dependencies. In Section 3 an
example application of our method to the Linux Software RAID is presented. Finally,
in Section 4 we discuss our future research plans.

2. Active Modeling Technique
Today's storage systems are usually heterogeneous, capable of storing terabytes

of data and employing complex storage policies. A virtual storage system exports to
its users a set of logical volumes that resemble physical devices. However, usually
they are not mapped directly to the underlying physical devices in a simple one-to-one
manner. Instead, the mapping is generally very complex. All these factors make a
virtual storage system very difficult to design, model and monitor.

596 Andrzej Kochut, Gautam Kar

2.1 Model of the Virtual Storage System
We model the storage system as a set of independent components treated as "black

boxes" that execute requested actions by interacting with other components of the
system. Each storage component presented with a request (i.e. READ or WRITE
operation issued by another component or upper-level subsystem) performs internal
computations and may issue requests to one or more other lower-level components.
The request may be fulfilled in synchronous or asynchronous fashion. Moreover, we
assume that each component may buffer requests and perform various optimizations
on them before requesting processing from other components. For example, it is quite
typical for storage systems to coalesce requests in order to increase sequentiality of
physical disk access. In our example from Figure 1, the model of the system con
sists of eight components corresponding to two logical volumes, fiber switch, ESS
and four hard drives. The way the components interact is decided by a set of policies
that are defined for the system. For instance, policy of the logical volume LV1 deter
mines what actions are performed once the LV1 is presented with the READ request.
A simple scenario may involve issuing two READ requests to two hard drives and
then transmitting the data using one of the channels of the fiber switch. However, in
more realistic, real-world situations, the sequence of events may be considerably more
complex. Various mirroring and striping techniques, multiple levels of caching, and
other storage optimization strategies may make the process very tough to model and
understand.

We believe that due to the complexity and heterogeneity of storage systems it is
very important to have a modeling technique that could be applied with different lev
els of granularity. For example, we may want to model IBM's ESS either as a single
storage element exporting storage space characterized by the size of the storage, its
performance and reliability properties, or we may want to model it at a greater level
of detail taking into consideration its internal structure. The choice between various
levels of detail depends on available performance data as well as on the precision of
predictions we want to make. Our model is flexible, making it possible to choose the
level of detail that is suitable for a particular system. In a more elaborate scenario, in
stead of one component representing ESS, we can have many interacting components
corresponding to elements of the drive arrays, cluster caches and other performance
related elements of the architecture.

The second part of our model consists of sets of metrics associated with each stor
age component. We identified three metrics as being crucial for understanding the
behavior of a system's component: request arrival rate, size of requests, and request
service time. An important metric that may be computed based on the above values
is the utilization of a component. We use the standard definition of utilization as a
multiplication of arrival rate and service time. The utilization indicates how close a
given component is to becoming a bottleneck.

In order to make it possible to gather system-wide information in the heterogeneous
virtual storage system we propose the use of Common Information Model (CIM) de
fined by Distributed Management Task Force. CIM is a common data model for de
scribing management information. In particular, the standard contains a set of classes
describing virtual storage subsystem as well as general framework for expressing met
rics associated with system's elements. Each vendor (hardware or software) that con
tributed to the storage system that we want to monitor should provide the performance

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis 591

metrics described in the standard. The management application may access the per
formance data of all hardware and software elements constituting the virtual storage
system. In the example from Figure 1, manufacturers of hard drives, fiber switch, and
ESS should provide specific software that could populate performance information in
the elM schema. Similarly, software vendors should provide corresponding perfor
mance information about logical volumes. We believe that existing software drivers
may be easily extended with the performance metrics we require. In order to use elM
with our method it is sufficient to add instances representing the performance metrics
to the class MetricDefinition. Modeling of components and their dependencies may be
done using classes from CIMDevice schema. A good example of modeling the storage
system using elM may be found in [7]. In Section 3 we present an example of ap
plication of our method to the Linux software RAID. We demonstrate how to extend
the information exported by each device participating in the virtual storage subsystem
with performance metrics required by our method. The extension task proves to be
easy and non-intrusive.

2.2 Dependency Discovery Technique
We describe a method to dynamically gather information about the way compo

nents of a virtual storage system interact with each other. Our method consists of
three major stages: instrumenting the system, applying controlled load to the col
lection of logical volumes, measuring the metrics (identified in the previous section)
associated with the physical storage volumes, and finally, analyzing the obtained data
and preparing the dependency profiles.

In the instrumentation stage, each component that may influence the performance
should export the metrics described in Section 2.1. The use of elM makes it possible
to have multi-vendor systems be monitored using a common data model. In practice,
each vendor would supply its specific elM provider (piece of code publishing the
performance data in the common elM data repository). We have implemented an
experimental elM provider for our Linux system described in Section 3.

The second stage is devoted to inter-component dependency discovery and quan
tification. In order to do so, we propose estimating the impact of each of the logical
volumes on the physical system components. Given a logical volume V and a compo
nent C of the storage system, we want to measure the way a stream of requests applied
to V affects the system component C. We model this dependency as a set of functions
computing arrival rates and sizes of requests issued to component C in terms of arrival
rates and sizes of requests issued to logical volume V. We call this set of functions a
dependency profile of component C on logical volume V. In the general case, each
type of operation issued to logical volume may cause an arbitrary operation on any
other component of the system. However, in most of the storage systems the situa
tion is simpler. The WRITE operation causes only WRITE operations to be issued to
other components, and similarly the READ operation causes only READ operations
to be issued to other components. However, it may be the case that the WRITE re
quest issued to a logical volume causes a READ request to be issued to one of the
components. For example, if the storage system uses indexing, the index may be read
in order to obtain information needed to perform the WRITE operation. Thus the full
dependency profile of a component C on logical volume V consists of four functions:

598 Andrzej Kochut, Gautam Kar

• READ-RATE(V, C, type, rate, size) - average rate of arrival of
READ requests to the component C, given that requests of type type
arrive at V with average rate rate and are of average size size and all
remaining logical volumes remain idle.

• READ_SIZE(V, C, type, rate, size) - average size of arrival of
READ requests to the component C, given that requests of type type
arrive at V with average rate rate and are of average size size and all
remaining logical volumes remain idle.

• WRIT E..RAT E(V, C, type, rate, size) - average rate of arrival of
WRITE requests to the component C, given that requests of type type
arrive at V with average rate rate and are of average size size and all
remaining logical volumes remain idle.

• WRITE_SIZE(V,C,type,rate,size) - average size of arrival of
WRITE requests to the component C, given that requests of type type
arrive at V with average rate rate and are of average size size and all
remaining logical volumes remain idle.

All of the above functions characterize the impact of requests issued to the logical
volume V on the internal system component C. This interaction is determined by a
number of factors, the most important of which is the storage policy of the storage
system. This is a set of algorithms governing the way the data is stored and retrieved.
For instance, in the example from Figure 1 the storage policy determines what oper
ations are performed once the READ request is issued to the logical volume LVl. It
decides from which physical drives the data should be read as well as what communi
cation channel in the fiber switch should be used to transmit the data. Some of these
choices may be random. For example, if LVl implements RAID 1 algorithm and uses
drives HDl and HD2, then the system may randomly choose the drive from which the
data should be read. It is quite common to have load balancing techniques that use
randomization to maximize the parallelism of data access.

Complexities of the virtual storage systems make it very difficult to compute the
above functions analytically. We propose estimating them by applying controlled vari
able load to components of the system. Assuming that all performance-critical ele
ments were instrumented and the data is readily available for the management appli
cation using the CIM standard, we can observe the impact of request streams issued to
the logical volume on components of the system. In this way, by varying the type (i.e.
READ or WRITE), arrival rate, and size of requests issued to the logical volume, we
may obtain sample values of the functions constituting the dependency profile. During
the measurements we increase the load until the utilization of one of the components
approaches 1. At that point we know that the maximum capability of the subsystem
was reached, and sampling may stop. In order to obtain service time profile of the
component, we apply varying load to this component and observe the variation of its
performance metrics. By varying arrival request rate and size of requests, we may ob
tain samples of the service time function. Similarly, as in the case of computation of
the dependency profiles we stop increasing load once one of the components becomes
fully utilized.

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis 599

After obtaining dependency profiles for each pair (logical volume - component)
as well as service time functions for each component of the system, it is possible
to determine the dependencies between elements of the storage system. We propose
using effective bandwidth as a measure of dependency. More precisely, for each log
ical volume V we identify a set of components that V depends upon. This set may
be identified by inspecting dependency profiles. If the size and rate functions for a
volume-component pair are non zero, it means there is a dependency between these
components. For each component C on which V depends, we compute the bandwidth
demand put on component C by traffic coming into component Vas

BW(V, C, type, rate, size) = WRITE-RATE(V, C, type,rate, size) *
WRITE-BIZE(V, C,type, rate, size) + READ-RATE(V, C, type,rate, size) *

READ_SIZE(V, C, type, rate, size)

As a measure of the dependency strength between logical volume V and com
ponent C we elected to use the coefficients obtained by first order linear regression
applied to pairs: bandwidth incoming to V, bandwidth demand put upon component
C. We believe, that the distribution of the bandwidth depends primarily upon the stor
age policy, and not the size and arrival rates of requests. Experiments that we have
conducted with Linux Software RAID support this assumption. However, in a general
case, it may be possible that the dependency between components changes with the
load applied to the system (i.e. changes in the arrival rate or average request size of the
stream accessing logical volume). In that case we have a dynamic dependency quan
tification updated each time the traffic pattern changes. However we believe that this
situation is not likely in the real-world storage systems. Thus, in the article we assume
that the dependency strength may be modeled using linear regression on bandwidth
distribution.

2.3 Applications of the Method
Dependency information, as collected in the previous section, may be used to build

a dependency graph. While monitoring a set of applications, e.g. a file system, if a
performance deterioration is observed, it would be possible to narrow down the set of
probable causes by traversing the graph. The root-cause of the problem may then be
determined by analyzing the set of suspected components resulting from the traver
sal. In our interpretation, for pair of components V and C, a dependency strength
of 1 indicates that full bandwidth is passed on to component C. Values higher than
1 suggest that additional traffic is generated in order to execute requests. Value of
zero denotes lack of any dependence between V and C. Values higher than zero, but
smaller than one imply partial dependence between components V and C. These inter
pretations may be used as hints while traversing the graph in search of the root-cause
of the problem. Figure 2 depicts example dependency graph for system from Figure 1
for READ operation. Arrows denote dependency between components of the system.
Values associated with arrows in the graph denote strengths of dependencies. For ex
ample, data object D02 depends on logical volume LV1 with strength 1. LV1 depends
upon ESS with strength equal to 0.8, which means that 0.8 of the bandwidth of READ
operations issued to LV 1 is "handed over" to ESS.

600 Andrzej Kochut, Gautam Kar

Fiber Switch HDI HD2

Figure 2. Example of the dependency graph for READ operation for the storage system from Figure 1.

Another application of the model is SLA violation prevention. Assuming that for
a given system all of the performance profiles have been obtained, we can monitor
each component of the system during its operation and alert the users (i.e. the oper
ating system that uses the storage subsystem) about the possibility of SLA violation.
Performance related SLA requirements are typically expressed as constraints on the
maximum time spent by the system on processing a request, given that the arrival rate
of requests and their sizes remain within the declared bounds. To forecast an SLA
violation we propose monitoring the utilization of each component. Whenever the
utilization of a component approaches one, the probability of queuing delays on this
component increases. Using the dependency information it is possible to determine
which data objects and requests streams may be affected by the delay and issue an
alert to owners/issuers. The notification may be used by the users to throttle down the
request rate or to take other preventive actions.

The third possible use of our model is data objects placement. Given an existing
virtual storage system, the act of assigning data objects to logical volumes is a difficult
one. The obtained dependency profile may be used to predict utilization of internal
components given characteristics of request streams accessing the data objects and
placement of data objects. Thus we may use our profiles as input to a verification stage
in the optimization algorithm, searching the exponential space of possible placements.
However, issues related to this application are beyond the scope of this article.

3. Method application to Linux Software RAID
To demonstrate the use of our method we present its application to an example

virtual storage system. Our experimental system consists of Linux RedHat 7.1 running
kernel 2.4.9. The virtual storage system consists of two hard drives and two logical
volumes: RAID 0 and RAID 1. Figure 3 depicts this configuration.

Two physical hard drives HDA and HDC were partitioned into HDA1, HDA2,
HDA3, and HDC1, HDC2, respectively. The first logical volume implemented soft
ware RAID 0 algorithm and used three partitions HDA1, HDA2, and HDC1. The
second volume, implementing software RAID 1 algorithm, spanned two partitions:

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis 601

RAID 0

HDA HDe

Figure 3. Linux software RAID architecture used for the experiment. Logical volume implementing
RAID 0 algorithm spans partitions HDA1, HDA2, and HDC1. RAID 1 uses partitions HDA3 and HDC2.

HDA3, and HDC2. To instrument the system we extended the standard Linux ker
nel statistics with metrics defined in Section 2.1. For each block device we obtained:
average request arrival rate, average service time, and average size of the READ and
WRITE requests (averaged over short intervals). The instrumentation we added is
non-intrusive and relies on the data structures already present in the kernel. We be
lieve that obtaining these metrics is quite easy for most of the storage architectures.

8000

7000

o

o
o

2000

1000

Bandwidth on RAID 0 (KBla)

Figure 4. Dependency between logical volume RAID 0 and components HDA and HDC for READ
operation. X axis represents bandwidth observed on logical volume RAID O. Y axis denotes bandwidth
observed on HDA (circles), and bandwidth observed on HDC (crosses). The solid line represents first-order
linear regression model of the dependency between RAID 0 and HDA. Dashed line represents first-order
linear regression model of the dependency between RAID 0 and HDC.

602 Andrzej Kochut, Gautam Kar

5000

4000 0

0

] a 0

5 3000 a

ii

2000

1000

1000 2000 3000 4000 5000
Bandwldth on RAID 1 (K8Is)

Figure 5. Dependency between logical volume RAID I and component HDA for WRITE operation.
X axis represents bandwidth observed on logical volume RAID 1. Y axis denotes bandwidth observed on
HDA (circles). The solid line represents first-order linear regression model of the dependency between
RAID I and HDA.

Internal Logical Volume Internal Logical Volume
component RAIUU RAID I component RAIDu RAID 1
HDA 0.62 0.65 HDA 0.67 1.00
HDAI 0.31 0.00 HDAI 0.33 0.00
HDA2 0.31 0.00 HDA2 0.33 0.00
HDA3 0.00 0.65 HDA3 0.00 1.00
HDC 0.37 0.34 HDC 0.33 0.99
HDCl 0.37 0.00 HDCl 0.33 0.00
HDC2 0.00 0.34 HDC2 0.00 0.99

(a) (b)

Table 1. Estimation of dependency strengths for READ operation (a) and WRITE operation (b) obtained
using our method.

The process of gathering the dependency information consisted of applying a con
trolled varying load to components of the system (one component at a time with re
maining components being idle). Requests were randomly scattered over the volumes
to minimize the effect of OS level caching. We developed an application that applied
increasing load as long as all components of the system were under-utilized. First,
we applied load to the RAID 0 logical volume. As a result we obtained samples of
the rate and size dependency functions for various sizes and request rates arriving to
RAID O. The arrival rates and sizes of requests issued to all components as a result of
the experiment were gathered. We used Matlab statistical toolbox to compute the first
order linear regression for the sample points representing bandwidth applied to logical
volume and internal component. The resulting dependencies between RAID 0 and
components HDA and HDC are depicted in Figure 3. Figure 4 shows the dependency
between RAID 1 and component HDA for WRITE operations.

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis 603

Similar sampling and regression modeling was performed for RAID 1 volume. The
results are summarized in Table 1 (a). Values in the table denote the fraction of the
bandwidth applied to the logical volume (columns) that were "passed on" to the in
ternal components (rows of the table). For example, 0.37 of the amount of bandwidth
observed on RAID 0 appeared on HDC. It may be seen, that the method precisely iden
tified nearly equal split of work between three equal-sized partitions (HDA1, HDA2,
and HDC1) caused by striping. Workload relayed to HDA was equally split among
HDAl and HDA2. The load-balancing algorithm of Linux software RAID 1 showed
bias toward the drive HDA. Results for WRITE requests and both logical volumes are
presented in Table 1 (b). Again we can observe equal split of workload among all
partitions participating in the RAID O. As expected in the case of mirroring, full in
coming workload of the RAID 1 volume was relayed to both partitions participating
in the mirror. Presented results show that the method properly identified dependencies
between components of the Linux software RAID.

4. Conclusions and Future work
This paper presents an empirical method for detecting and quantifying performance

dependencies between components of the virtual storage system. We have proposed a
flexible model and a set of metrics that may be used to quantify these dependencies.
Use of the elM standard enables our solution to be used in heterogeneous environ
ment. We have described an empirical technique for quantifying the inter-component
dependencies by applying controlled load to logical volumes exported by the system
and monitoring the effect it has on the internal system components. We have proposed
effective bandwidth as a measure of dependency and have showed an application of it
in a Linux environment using software RAID.

The results reported in this paper are based on experiments conducted on a simple
virtual storage system. One of the areas we are pursuing as future research work
is to relate the dependency knowledge obtained at the storage layer to performance
metrics measured at the application layer. In addition, our future research plans also
involve investigation of the correspondence between workload applied to a logical
volume V and utilization of internal system component C. It is possible to use the
dependency profiles defined in this article and knowledge about service time of C to
predict the utilization of C caused by the request stream applied to the logical volume
V. Moreover, the total predicted utilization of the component C may be estimated as
a sum of utilizations of all volumes that use C. This information will help a systems
designer in the allocation of data objects with associated quality of service, such as
data base table spaces, to virtual storage entities such a logical units.

References

[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy, R. Golding, A. Merchant, M. Spa
sOjevic, A. Veitch, and 1. Wilkes. Minerva: An automated resource provisioning tool for large-scale
storage systems. ACM Transactions on Computer Systems, 19(4):483-518,2001.

[2] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and Q. Wang. Ergastulum: quickly finding
near-optimal storage system designs. HP Technical Report, 2001.

[3] A. Brown, G. Kar, and A. Keller. An active approach to characterizing dynamic dependencies for
problem determination in a distributed environment. International Symposium on Itegrated Network
Management, May 2001.

604 Andrzej Kochut, Gautam Kar

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. Raid: High-performance,
reliable secondary storage. ACM Computing Surveys, Vol. 26 No.2, pp. 145-185, 1994.

[5] DMTF. Common information model specification. http://www.dmtforg, June 1999.

[6] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for redundant arrays of inexpensive disks (raid).
International Conference on Management of Data (SIGMOD), pages 109-116, 1988.

[7] J. Schott. Modeling storage. DMTF SystemlDevice Working Group, http://www.dmtforgl, 2001.

[8] M. Uysal, G. A. Alvarez, and A. Merchant. A modular, analytical throughput model for modem
disk arrays. In Proc. of the Ninth International Symposium on Modeling, Analysis and Simulation on
Computer and Telecommunication Systems (MASCOTS), August 2001.

[9] J. Ward, M. O'Sullivan, T. Shahoumian, and 1. Wilkes. Appia: Automatic storage area network fabric
design. In Conference on File and Storage Technologies (FAST), Monterey, CA., January 2002.

DESIGN AND IMPLEMENTATION OF A
GENERIC SOFTWARE ARCHITECTURE FOR
THE MANAGEMENT OF NEXT-GENERATION
RESIDENTIAL SERVICES

Filip De Turck· , Stefaan Vanhastel, Koert Vlaeminck,
Bart Dhoedt, Piet Demeester
Depanment of Information Technology, Ghent University - IMEC
Sint-Pietersnieuwstraat 41, B-9OO0 Gent, Belgium.
Tel.: +3292673587, Fax: +3292673599
filip.deturck@intec.rug.ac.be

Filip Vandermeulen, Frederik De Backer, Francis Depuydt
Belgacom ANSINIS Strategy Department
Koning Albert II-Iaan 27, B-1030 Brussel, Belgium.
Tel.: +3222021080, Fax: +3222027135
filip. vandermeulen @belgacom.be

Abstract:

Keywords:

In this paper, we address the design of a generic architecture for the management of res
idential services. The architecture consists of components both at the customers' side
as well as at the service provider's side. The key features of the architecture are service
modularity, the concept of service sessions, service packaging and subscription. The archi
tecture allows service providers and telecom operators to rapidly provide new integrated
value-added services to their customers. Layer-based design ensures that the architecture
is independent of the particular service and service realization technology. The architec
ture provides generic access session management, service session mangement, subscrip
tion management and billing. Its implementation is based on J2EE (Java 2 Enterprise
Edition). The various components of the architecture will be discussed, together with the
implementation issues.

Service Management, Multimedia Home Services, Subscription Management, OSGi, J2EE

1. Introduction
Recently, there has been a growing interest shift from the provisioning of commod

ity services towards value-added residential services. Commodity services are mainly
connectivity services such as internet access, leased lines and VPNs. The manage
ment of this type of services has been studied in extensive detail [1, 2] and various
management platform solutions exist. However, the revenue for telecommunication
network operators and network service providers from these commodity services is
stagnating. As a consequence, residential services are gaining more and more interest.

·Postdoctoral Fellow of the Fund of Scientific Research - Flanders, Belgium (F.W.O.-V.)

http://dx.doi.org/10.1007/978-0-387-35674-7_66

606 F. De Turck, F. Vandermeulen et al.

Popular examples include Video on Demand (VoD), video-conferencing, e-gaming,
virtual home environments and domotics systems. Due to the customer interaction,
management of such residential services is more complex and critical than the man
agement of commodity services. The design of efficient management solutions for
such services has not yet been studied in enough detail. At the time of writing, dif
ferent standards and systems are emerging for the delivery of residential services to
customers. The following areas and industry segments in the service provisioning
market can be distinguished:

(i) Multi-party Multi-media Conferencing Systems and Applications: traditional
telecommunications equipment vendors are introducing the concept of soft swit
ches which take over the signalling and transport functionality of traditional
TDM-based PSTN networks. Soft-switches control the voice gateways at the
edge of an IP based packet transport network, and translate traditional PSTN sig
nalling into other signalling protocols (SIP [3], H323 [4], MGCP [5], Megaco [6],
etc.) which are more aligned with the IP network. Soft-switches can also sup
port these new forms of signalling directly to the consumer's appliance end
points, such as Intelligent Access Devices (lADs) or IP telephones (either stan
dalone or software based IP telephony clients on a PC platform such as Mi
crosoft NetMeeting). By means of standardized and Java based APIs such as
those defined by Sun's JAIN framework [7], these protocols can be controlled
and handled from within J2EE-based [8] application servers.

(ii) The Connected Home and Home Gateways: the concept of the connected home
implies a household, which is connected to the outside world via a broadband
gateway terminal (i.e. a home gateway). The home gateway acts as some kind
of internal driver and application management system, which is able to per
form driver life-cycle management and configuration management of in-house
devices and appliances. In addition, the home gateway can act as repository
for content downloaded from the Internet or from network server-side service
and content delivery platforms. This temporary locally-proxied content can be
consumed within the house from different rooms and consumer devices (such
as TV sets, PCs, PDAs, etc.), by connecting them to a multi-room multi-source
system.

(iii) Home Theatre Systems: home theatre systems are currently entering the resi
dential home at an increasing speed, as high-end plasma screens and projector
based systems are gradually becoming affordable for households. In combi
nation however with network side Video-on-Demand (VoD) server platforms,
home theatre systems could be used to view content streamed in real-time (e.g.
via RTP). Another area where the home theatre system could be used as multi
media endpoint consumption system is online gaming.

(iv) The Intelligent Home: Domotics is yet another emerging industry area with in
creasing potential to bring added value to the home. Domotics systems allow
to control systems such as lighting, heating, home surveillance, etc. More and
more vendors of domotics systems provide touch-panel like controls on their
system, but some of them go even further by providing IP modules that con
nects to the bus or the central computer of the system. Via the home gateway,
the domotics system can be connected to the outside world. Through the IP

Generic Software Architecture/or Next-Generation Service Management 607

modules, the domotics system can be controlled and interfaced from anywhere.
For example, events in the home could trigger the setup of a video connection
from an in-house video camera to a PDA.

In each of these areas, different vendors come up with different systems and platforms
that in most cases are implemented without any adherence to a standard - in so far any
standard exists. None of the above areas and applications will unlock massive revenue
streams in the residential market, since a key element is clearly missing in the above
description. That missing element is the enabling platform that allows rendering the
set of isolated potential solutions and platforms into one integrated package.
This paper describes the design and implementation of a platform which supports (i)
integration of several existing stand-alone service components, (ii) generic subscrip
tion management to all services, (iii) generic access session management, and (iv)
related billing. The platform consists of components both at the service provider's
side as well as at the customers' side. The platform implementation takes benefit of
the most recent enabling software and middleware technologies: J2EE (Java 2 Enter
prise Edition) based application servers, EIBs (Enterprise Java Beans) in the backend
layer, servlets in the control layer, and JSPs (Java Server Pages) in the view layer. As
such, the Model-View-Control (MVC) design pattern is exploited in its most generic
way. XML-RPC [9] and RMIIIIOP [10] are used as enabling middleware protocols for
communication between components in the subscribers' end-terminals and the plat
form components. The use of J2EE for building service provisioning systems has
already been reported upon in [11]. However, service subscription, access session
and interaction with software components at the customers' side were not addressed
in [11]. The IETF OPES (Open Pluggable Edge Services: [12]) Working group also
aims at designing architectures to allow for service provisioning, but doesn't provide
service providers with a platform to address all their needs.
The remainder of this paper is structured as follows: section 2 describes the key fea
tures of the platform. The platform's software architecture is introduced in section
3, whereas the It-flow concept is described in section 4. The main components of
the architecture are described in section 5. The scenario of a service access session
is detailed in section 6. The database model is covered in section 7 and the gateway
components are addressed in section 8. Finally, section 9 sums up the conclusions that
can be drawn from this study and the important issues for further work.

2. Key Features of the Architecture
The main characteristics of the implemented service management architecture are:

(i) service modularity, (ii) the concept of service sessions and (iii) service packaging
and subscription. Each of these characteristics is described in more detail below:

(i) Service Modularity: The platform allows the subscription to, and consumption
of value added services according to a session driven model. In order to cope
with the heterogeneous base of multimedia and entertainment delivery and pro
cessing platforms, the architecture is built around the concept of Pluggable Ser
vice Driver Modules (PSDMs). A PSDM is a plug-in component, which con
trols, manages and interfaces underlying delivery platforms. Examples include
a VoD delivery platform consisting of video servers spread over the country,
or an e-gaming service delivery platform. Another example is a network of

608 F. De Turck, F. Vandermeulen et al.

soft-switches, which can handle the setup and delivery of IP-Telephony calls
or Video-Telephony calls. For each of these service technologies and in par
ticular for each vendor specific implementation of a service, a PSDM can be
provided which plugs into the service architecture. These PSDMs export well
known control interfaces within the platform and act as drivers to the underlying
service delivery platforms.

(ii) Service Session Concept: Every kind of service consumption takes place within
the context of sessions. When a user accesses the application server implement
ing the service architecture, he/she starts and enters the context of an access
session. This access session establishes a secure context with the service archi
tecture. Within the access session, the end-user is authenticated. From within
this access session, which is materialized by a server side access session user
agent component, the end-user can start a service session. Within this service
session the end-user can execute the logic of the service. The service session is
materialized by a PSDM session instance within the application server.

(iii) Service Packaging and Subscription: The platform enables the easy packaging
of services, applications and features into product packages to which a customer
or a subscriber can subscribe online. Even for services for which new appliances
are needed, the stakeholder who exploits the platform (e.g. the telecommuni
cation operator or service provider) will deliver and install these appliances as
a result of an online subscription. Subscription is at the heart of unlocking
revenue streams. Combined with the concept of customer zero-concern with
getting the right hardware and software environment at home for consuming
certain services, subscription triggers certain company processes in order to in
stall the customer (download software to the home gateway in a secure way or
ship certain hardware appliances which the customer connects and which get
configured remotely).
When an end-user starts a certain service, the service architecture checks whether
the user is authorized to launch the service session according to his actual sub
scription profile. If this is the case, the service is launched via the appropri
ate PSDM module. As a result of this service consumption session, a trig
ger/message can be sent to the billing systems to start billing the service on
whatever basis: time interval during which the service is used, type of service,
exchanged traffic volume, etc.

The next section provides an overview of the service management platform.

3. Platform Overview
The platform is implemented on a J2EE based application server. The implemen

tation consists of four levels, which are positioned according to the fragments of the
Model-View-Control (MVC) design pattern:

(1) A backend resource layer: This layer consists of the database(s) and any under
lying service delivery platform, which is under control of the platform.

(2) An EJB backend layer: This layer consists of a number of deployed Enterprise
Java Beans (EJBs) that abstract the resources from the underlying backend re
source layer. These EJBs are also referred to as the Pluggable Service Driver
Modules (PSDMs). Amongst others, the following EJBs have been deployed:

!- [8 .g [i o ..., g f s ! o ..., ., o <,. <>

H
o

m
e

G
W

H

o
m

e
 T

h
e

a
lr

e

V
ie

w
 F

lo
w

 F
ra

m
e

w
o

rk

VO
O

a:
ef'

oll
Ce

 $
III

«:
IJ

on
1J

ow

.-
.-.

.
.. '"

S
8I

V
1e

t

D
S

L
 A

c
c
e

s
s
 N

e
tw

o
rk

W

A
R

P
1

0
 B

A
S

 C
o

n
te

x
t

II>
 ;:;
" l (:l

;::
-

.... ?;t C
)

II>
 i:l - g" ! I ! CO

610 F. De Turck, F. Vandermeulen et al.

(a) An Access Session Bean;

(b) A Subscription Management Facade Session Bean together with a set of
subscription level RDMS entity beans;

(c) A Service Control Bean;

(d) A VoD Service Session Bean;

(e) An on-Line Gaming Session Bean;

(f) A Digital Video and Audio Conferencing Bean (DVAC Bean);

Each of these beans will be described in the next section.

(3) The control layer: This layer contains a number of servlets which execute ser
vice management control by invoking business functions exported by the EJBs
of the underlying EJB backend layer.

(4) The View framework layer: At this layer, the actual components that materialize
the application views to the end-users are located. The view framework is de
veloped around the paradigm of a JL-flow-processing framework. Every logical
functionality a user can invoke via the service portal is implemented through
and supported by a JL-flow. This JL-flow consists of a number of steps, each im
plemented in an action task class. An action task class implements an atomic
piece of functionality in a generic and reusable way (reusable in other JL-flows).
The action class is the place where actual calls are made to backend EJBs. A
flow description is read and parsed by a controller servlet which subsequently
instantiates the required set of action classes. Each action class is linked to a
JSP page which requests the end-user at the browser front-end for the required
input, and which returns the appropriate outputs. Every JSP page contains a
link to the logically next page, which invokes an operation on the next task class
according to the logic of the flow. For every logical action on the service portal
front-end, a JL-flow is defined: a flow for setting up an access session, a flow for
starting a VoD service session, a flow for taking a new service subscription, etc.

Figure 1 shows the High-level computational decomposition of the platform for the
setup of a sample Video on Demand (VoD) service. The authentication and service
selection flow is shown, which are implemented as Java Server Pages. These invoke
operations on the underlying servlets and Enterprise Java Beans (EJBs). The VoD
Service Session EJB is responsible for the configuration of the involved Video Servers
and video consumer plugins. For a video session with garantueed bandwidth, an dedi
cated connection can be realized in the underlying DSLlATM network (via automatic
invocation of the connection management platform).

4. JL-ftow Model
The view framework uses the concept of modular configurable JL-flows, which im

plement the logic of a stepwise execution process with a wizard like presentation style
in the browser for the end user. The view framework consists of the following compo
nents:

(1) Description of a JL-flow in XMLformat: a JL-flow consists of a number of steps.
Within each step, there is indication of (i) the name of a Java task class, which

Generic Software Architecture for Next-Generation Service Management

<state>
<!d>2</id>
<view>/tasks/serv!ceselect. j sp<lview>
<ternplate>O</ template>
<controllerclass>com. belgacom. warpportal .

task. Serviceselect <: I contro llerclass>
<:errorsta te> 1< I errors ta te>

<events>
<event>

<id>l</id>
<actianflow>l</actionflow>
<actionstate>3 </ actions tate>
<act iontype>forwardunload< I action type>

</event>

<?xml version='l.O· encoding="UTF-S' ?>

<staternachine>
<initialize>

<start f!ow>l</start flow>
<start state> 1 </ startstate>
<secur i ty> 1 < I securi ty>

</initialize>
<flows>

<flow id""l" type='task':>
<states>

<state>
<id>l</id>

<view> I tasks / LoginTask. j sp</view>
<template>O</template>
<controllerclas s>com. be!gacom. warpporta 1.

611

<event>
<id>2</id>

task. LoginTask< I controllerclass>

<actionflow>l < I act ion flow>
<act ionstate>4 <I actions tate>
<actiontype>forwardunload</actiontype>

</event>

<I flow>
<I flows>

</statetnachine>

<errors tate> 1 < I errors tate>
<events>

<event>
<id>l</id>
<actionflow>l</actionflow>
<act ions ta te>2< I actionsta te>

<actiontype>forwardunload</actiontype>
</event>

</events>
</state>

Figure 2. Sample XML fragment describing a ,",-flow.

executes the logic of the step, (ii) the JSP page to be used for querying the input
and presenting the output of the step, and (iii) the next steps/states to be taken
in the flow based on possible outcomes of the executed logic in the step. It is
possible to refer within a particular flow description to another type of flow. In
other words, it is possible to jump from a step in a flow of type X to a step
described in a flow of type Y. As such, flows described as a demarcation of a
number of steps belonging together in a logical way can be reused within other
flows. A sample J,£-flow description is shown in the XML fragment in Figure 2.

(2) A p-flow controller servlet: The controller servlet parses on system startup the
XML code of the different flows to be supported, and instantiates within a log
ical scope of each flow a tree of task classes pertaining to each step/state in the
flow.

(3) Task classes: Each step in a flow is materialized by a task class which imple
ments the TaskHandler Java interface. The most important method of a task
class is the executeO method. This method pushes the appropriate JSPIHTML
page to the web front-end in order to query for any user input. Next the task
performs the required logic by interfacing with the system backend layer, and
returns the appropriate output back to the front-end.

(4) Memory Handler class: Each flow instance disposes of a memory handler ob
ject which maintains the data belonging to and determining intermediate states
within a flow. Within the same flow instance all that state data is maintained on
the memory handler object which acts as some kind of data clipboard associated
to the servlet session. By default, the memory object is cleared when a jump is
made from a state in one flow to a state in another flow, however, this default
behavior can be changed by configuration in the flow's XML file.

612 F. De Turck, F. Vandermeulen et al.

5. Component Description
Access Session Bean. The Access Session Bean is invoked by classes in the ac
cess session {£-flow. The first method invoked on the Access Session Bean is loginOn
AccessSession. Subsequently, the Access Session Bean invokes a method in the
Subscription Utility Class (SU) in order to check the subscriber's existence. Directly
after authentication, the IP address assigned to the end terminal or home gateway of
the end-user is determined. It is initially supposed that the subscriber connects from
his home environment via the DSL access network. When the subscriber has been
successfully authenticated, the access session flow can take a number of directions
depending on the user's preference. The following functionalities can be chosen: (i)
service selection and setup, (ii) on-line subscription management, and (iii) identifica
tion management. Each of these functionalities will be detailed in section 6.
Figure 3 shows the generic EJB interface operations of the Access Session Bean.

Subscription Management Facade Session Bean. The Subscription Man
agement Facade Session Bean allows the control of the subscription management. A
distinction is made between a customer, a subscriber and a subscribergroup.
Each subscribergroup has an associated Service Access Group (SAG), which con
tains the different services, the subscribergroup is subscribed to. The internal
database model will be further detailed in section 7.
Figure 4 shows the generic EIB interface of the Subscription Management Control
EJB. Only the creation operations are shown. Obviously, the interface also offers
deletion and modification operations.

Service Control Bean. This bean allows the generic addition, modification and
deletion of services and the associated service parameters. The EJB Service Control
interface is shown in Figure 5.

interface AccessSession extends EJBObj ect {

public String loginOnAccessSession(
String loginNaroe,
String loginPinCode,
String password

) throws AccessSessionLoginError,
RemoteExceptioni

public Collection getAllServiceTypes (
) throws AccessSessionInfoError,

RemoteExceptioni

public Collection getSubscribedServices (
) throws AccessSessionlnfoError,

RemoteExcept ion;

public EJBObject setupServiceSession(
String serviceName

) throws
AccesssessionActionError,

RemoteExceptioni

public SubscriptionMgmtControl
setupSubscriptionMgmtSession (

) throws AccessSessionActionError,
RemoteExceptioni

public void changeLoginCredentials (
String loginName,
String password

) throws AccessSessionInfoError,
RemoteExceptioni

public void changeIdentification(
SubscriberValObj subscriberInfo

} throws AccesssessionInfoError,
RemoteExceptioni

Figure 3. The Access Service Session EJB interface.

Generic Software Architecturefor Next-Generation Service Management 613

public interface SubscriptionMgmtControl extends
EJBObject {

II Customer operations
public Long createCustomer (

CustomerValObj customer)
throws CustomerAlreadyExists,

InvalidObj ectA t tribu tes,
ManagementError I
RemoteException;

/ I Subscriber group operations
public Long createSubscriberGroup (

String customerRefNr,
SubscriberGroupValObj subscriberGroup)

throws Cus tomerNot InExi stance I
SubscriberGroupAlreadyExis ts,
Inval idObj ectA t tributes.
ManagementError,
RemoteException;

II Subscriber operations
public Long createSubscriber (

String customerRefNr,
SubscriberValObj subscriber)

throws CustomerNotlnExistance,
SubscriberAlreadyExis ts,
Inval idObj ectA t tributes,
ManagementError,
RemoteException;

/ / Service SAG operations
public Long createSag (

String custornerRefNr,
String groupName,
SagValObj sag)

throws CustornerNotlnExistance,
Subscr iberGroupNotlnExis tance,
SagAlreadyAssigned,
InvalidObj ectAttributes,
ManagementError,
RemoteException;

/ I Service SAG operations
public Long addServiCeToSag (

String cus tomerRefNr,
String groupName,
String sagNarne,
SagServiceValObj sagService,
Collection sagServiceParams)

throws CustomerNotlnExistance,
SubscriberGroupNotlnExistance,
SagNot InExis tance,
InvalidObj ectAttributes,
ServiceAlreadylnSag,
InvalidObj ectAttributes,
ManagementError,
RemoteException;

Figure 4. The Subscription Management Control EJB interface.

Service Session Bean. Different specific Service Session Beans have been de
veloped: (i) a VoD service session bean, (ii) an on-line gaming session bean and (iii)
a digital video and audioconferencing bean. Other types of beans can easily be inte
grated with the described platform.

6. Access Session Scenario
When an end-user logs in to the service portal, the access session p-ftow's first task

class instantiates an Access Session Bean, of which the reference is put on the HTTP
session context object of the user's HTTP session (created and managed by the view
framework controller servlet). After login, the IP address of the end terminal or home
gateway of the end-user is determined and the following choices are presented to the
customer:

• Choice 1: Service selection and setup The user is guided via a number of
subsequent task classes through the selection and setup of a service.

• Choice 2: On-Line subscription management The user enters subscription
management mode and can take a new subscription to a set of services and ser
vice packages, or can change and adapt the detailed characteristics of an existing
subscription. Note that in this case the subscriber should have the authorisation
to adapt subscription assignment groups and services within subscription as
signment groups.

614

interface ServiceControl extends EJBObject {

pub! ie Long addService (
ServiceValObj service,

Collection serviceparameters)
throws ServiceAlreadyExis ts I

Inval idObj eetAt tributes I
ManagementBrror.
RemoteBxception;

public void modi fyService (
String currentServiceName,
ServiceValObj service)

throws ServiceAlreadyExis ts,
ServiceNotlnExistence,
InvalidObjectAttributes,
ManagementError,
RemoteBxceptionl

public void deleteService (
String serviCeName)

throws ServiCeNotlnExistence,
LinkedObj ectsError ,
ManagementError,
RelOOteException;

F. De Turck, F. Vandermeulen et al.

public Collection addParametersToService (
String serviceName,
Collection serviceParameters)

throws ServiceNotlnExistence,
parameterlnExistenceError,
ManagementError,
RemoteException;

public void modi fyServiceParameters (
String serviceName,
Collection serviceParameters)

throws ServiceNotlnExistence,
parameterlnExistenceError,
ManagementError,
RernoteException;

public void deleteServiceParameter (
String serviceName,
String parameterName)

throws ServiceNotlnExistence,
ParameterlnExis tenceError,
LinkedObj ectsError ,
ManagementError,
RemoteException;

Figure 5. The Service Control EJB interface.

• Choice 3: Identification management The end-user enters a mode where per
sonal identification parameters can be altered, e.g. : login names, passwords,
address information, phone numbers, etc.

Each of these choices is detailed in the subsequent paragraphs.

Choice 1: Service Selection and Setup.

(1) In case of service selection, the flow passes via a service selection task class,
which calls the getSubscribedServices method of the Access Session Bean.
This method returns all the service types and corresponding service parameter
ranges for which the subscriber has the right to launch service session instances.

(2) Subsequently, the subscriber selects a service and indicates he/she wants to start
a service session instance. For this purpose, the access session flow will invoke
for this purpose the setupServiceSession operation and passes the name of
the service type. As a result, the access session bean will start up a service
session bean of the right type and places the obtained reference on the HTTP
Context Session of the subscriber's HTTP/servlet session. The access session
flow stops here, and hands over the control to a service specific flow, which then
handles the steps specific to the setup of the selected service.

Choice 2: On-Line Subscription Management.

(1) In case of on-line subscription, the access session flow delegates further con
trol to the subscription management flow, which starts the subscription manage
ment feature selection class. This class starts a subscription management ses
sion through the operation setupSubscriptionMgmtSession. This operation

Generic Software Architecture for Next-Generation Service Management 615

instantiates a subscription management session bean and returns its reference.
This reference is put on the HTTP/Serviet Session Context object.

(2) In a subsequent flow task class, the subscriber can select one of the basic features
of subscription management which are:

(a) AdditionlDeletion of service subscriptions to the portfolio of one of the
customer's subscription assignment groups;

(b) Modification of a service subscription within a subscriber group's SAG;
Amongst others:

• Change of subscription periods and intervals;
• Change of service quality degrees and profiles;
• Adaptation of basic service parameters;

(c) Addition of new subscribers to one or more subscriber groups;

(d) Modification of properties pertaining to the customer identity or pertaining
to the subscriber group(s) created within the customer's scope;

(e) Granting on-line subscription management authorisation at different levels
to subscribers belonging to the customer's scope.

(3) Once the desired subscription management feature has been selected, the sub
scription management flow passes via the actual feature execution task, which
invokes the subscription management bean created in the previous step. Its logic
is executed through aid of the subscription management utility class.

Choice 3: Identification Management.

(1) In case of on-line identification management, the access session flow passes the
action task class allowing identification change management feature selection.
Two basic features are exported:

• Modification of login credentials: login name and password. The login
pincode has been assigned to the involved subscriber at the time of initial
off-line subscription of the initial set of subscribers, or at on-line subscrip
tion when an authorized subscriber created the account for the involved
subscriber. This pincode cannot be changed.

• Modification of detailed affiliation data pertaining to the subscriber: ad
dress info, phone numbers, aliases, etc.

(2) After selection of the desired feature, the flow passes the feature execution task
class, which on its turn invokes either changeLoginCredentials or change
Identif icat ion dependently.

7. Database Model
The database's internal structure is detailed in Figure 6, which shows the scheme

of the involved records. Every user of the system is described as a subscriber. If a
user does not have a subscriber object configured in the system for which he knows
the login name, password and pincode, that user cannot be authenticated to the ser
vice platform. There are two types of subscribers: residential subscribers and

616 F. De Turck, F. Vandermeulen et al.

corporate subscribers. A subscriber object can only be of one type. A residen
tial subscriber is acting independently and has full control over the services with the
associated parameters he/she subscribes to. A corporate subscriber is always linked
to a larger affiliation, which we represent in the inventory as a customer. Under the
authority of a customer, a number of subscriber groups can be created. These
subscriber groups contain one or more corporate subscribers. A subscriber group rep
resents a logical group of users who have the same subscription contract, i.e. who
have the same set of services (and service customizations) to which they are sub
scribed. A corporate subscriber is made member of a subscriber group through a
subscriber membership object. As such a corporate subscriber can be part of mul
tiple subscriber groups. A subscription to one or more services is always represented
by a subscription assignment group or a SAG. A SAG contains one or mUltiple
sagservice objects. A sagservice is a customization object of a corresponding
singleton service object. This service object has a number of associated service pa
rameter objects. These service parameters represent the customizable properties of a
service together with maximum/minimum values or a set of allowed values or strings.
For example, a video conferencing service has as property the number of parties that
can be connected together in a session. The minimum value will be 0 and the maxi
mum value could be 10. A sagservice object is a customization of a service object. A
SAG is connected to either a subscriber group or directly to a residential subscriber.
In case it is connected to a subscriber group, all corporate subscribers belonging to the
group have the subscription as described by the SAG. In case it is connected to a resi
dential subscriber, the SAG describes the subscription contract of only that residential
subscriber. Finally, there are a number of auxiliary tables which are service specific.
In the figure, the VODSERVER and MOVIE tables are specific for the VoD service imple
mentation.

8. Home Gateway
The terminal architecture, also referred to as the home gateway, from which end

users consume multimedia and domestic services, is designed on a Linux based plat
form. The home gateway is designed according to emerging OSGi (Open Service
Gateway initiative: [13]) concepts. A NM based OSGi control kernel and corre
sponding bootstrapping software will be automatically downloaded from the platform
on initial powering and sign-on of the gateway. The service management platform
takes all responsibilities to download, remotely configure, and manage the Java based
service consumption bundles on top of the JVM based OSGi execution kernel. Remote
version management of these software bundles is under control of the platform.

9. Conclusion and Further Work
A generic architecture has been designed for the integration of stand alone ser

vice components, be it off-the shelf or developed in-house, through Pluggable Service
Driver Modules (PSDMs). PSDMs act as service abstracting computational compo
nents that wrap and abstract the technology and vendor specific service logic within
the generic service delivery architecture. The architecture has been implemented by
making use of J2EE technology.
Examples of service technologies integrated in the platform are video conferencing
control systems (e.g.soft-switches enabling SIP based video telephony, VoD platforms,

Generic Software Architecture/or Next-Generation Service Management 611

SUBSCRIBERGROUPMEMBERSHIP I- SUBSCRIBERBROUP

SUBSCRIBeRID DESCRIPTION

I
SUBSCRIBER

JI1.
SUB!IC8J¥ABI!!FNuM'ee
CUSTOMERID
FIRSTNAME
LASTNAME
PHONENUMBER
MOBIlENUMBER
STREET
STREETNR
POBOX
CITY
POSTCOOE
EMAIlADDAESS
BIRTHDATE
LOOINNAME
LOOINPINCODE
PASSWORD

GROUPAllAS1
GRQUPALlAS2
CUSTOMERIO
SA-OlD

SAO
JI1.
J.A!lII.YIf.
SUBSCRI8EAGROUPID
STARTDATE
ENDDATE

JI1. JI1.
SAOID

SERVICEOESCRIPTIOH SERVICEID

1
SERV'CEPARAMETER
JI1.
SERVICED
DESCRIPTION
MIMCeeMAMmAN4Me
PAMMETERMIN
PARAMETERMAX
PARAMETERDISCRETEVALUES

SlARTOATE
ENDOATE

SAOSERV'CEPARAMETER
JI1.
SAO"
SERVtcEID
!'MAMwANIMr

PARAMETERMIN
PARAMETERMAX
PARAMDlSCRETEYAUJES

SUBSCRIPTIONMANAOEMENT

CUSTOMER

JI1.
CUITOMeABffNUMDre
ASSOCIATIONNAME
ASSOCIATIONAl1AS1
ASSOCIATIONAl1AS2
AFFlUATlONTYPE (RESIOiCORp)
COMPANYNAME
SPOCAUAS
SPOCFlRSTNAME
SPQCLASTNAME
SPOCPHONE1
SPOCPHOHE2
STREET
STREETNR
POBOX
CITY
POSTALCODE
EMAllAODAESS
CUSTOMERURL

Figure 6. The internal database structure.

YODSERYER

JI1.
.BIWBI!IAIIL
SERVERIPADDRESS
SERVERVRl
SERVERPORT
smEAMINOL 1PROTOCOL
STREAMlNOl..2PROTOCOL
STREAMINOl3PROTOCOL
SERVERLOCATION
SERVERADMIN

MOYIE

JI1. -MOVIETVPE
MOVIEDESCRIPTION
MOVIEMINIMAlAOE
MOVIElENOTH
ISSUEDATE
SUBTITLED
SUBTlTlElANOUAOE
SPOKEM.ANOUAOE
MOVIERATING
ENCOD1NOFORMAT

VODSERYICE

e-gaming control platforms, domotics systems at home, etc.) By means of an extensi
ble internal RDBMS architecture, the platform will allow extensible on-line subscrip
tion management of customers, customer subscriber groups, and subscribers. The
whole process of setting up an access session from the home with the platform, se
lecting a next generation service, consuming it and billing it within the controlled and
managed scope of a single/multi-party, multimedia session, is handled according to a
flow-driven model in a transactional execution context.
Important issues for further work include: (i) a thorough performance evaluation of
the platform, (ii) application of load balancing techniques for the distribution of the
platform load and (iii) development and thorough testing of several other types of ser
vice control beans, especially for the control of services delivered to wireless devices
and (iv) designing Terminal QoS matching algorithms for deciding the best termi
nal parameters for conversational services between users with heterogeneous terminal
equipment. The design of these QoS matching algorithms will be based on the work,
presented in [14].

Acknowledgments
The first author wishes to thank his colleagues at the IBCN (INTEC Broadband

Communication Networks) research group, Ghent University for the stimulating dis
cussions.

618 F. De Turck, F. Vandermeulen et al.

References
[1] F. De Turck, F. Vandermeulen, P. Demeester, On the design and implementation of a hierarchical,

generic, scalable open architecture for the network management layer, IEEElIFIP Network Operations
and Management Symposium, pp.745-758, Honolulu, April 2000.

[2] F. De Turck, S. Vanhastel, F. Vandermeulen, P. Demeester, Design and implementation of a Generic
Connection Management and Service Level Agreement Monitoring Plaiform Supporting the Virtual
Private Network Service, IFIP/IEEE 1M 2001 conference, Seattle, May 2001, pp. 153-166.

[3] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg, SIP: Session Initiation Protocol, IETF RFC
2543, March 1999.

[4] ITU H.323 Standard: Packet-based multimedia communications systems

[5] M. Arango, A. Dugan, I. Elliott, C. Huitema, S. Pickett, Media gateway control protocol (MGCP),
IETF RFC 2705, October 1999.

[6] Media Gateway Control (megaco) Charter, www.ieif.orglhtml.charterslmegaco-charter.html

[7] Java API for Intelligent Networks (JAIN), http://java.sun.comlproductsljainlapLspecs.html.

[8] Java(TM) 2 Platform, Enterprise Edition (J2EE),java.sun.com/j2ee/

[9] XML-RPC Specification, http://www.xmlrpc.comlspec

[l0] SUN Microsystems, Java Remote Method Invocation Specification, 1998,
http://java.sun.comlproductsljdk/I.lldocslguidelrmiispec/rmiTOC.doc.html

[11] S. Sengal, J.w. Gish, J.F. Trernlett, Building A Service Provisioning System using the Entreprise Java
Bean Framework, Network Operations and Management Symposium, 2000, pp. 367-380.

[12] IETF Open Pluggable Edge Services (opes) Working Group, http://www.ieif.orglhtml.charters/opes
charter.html

[13] Open Service Gateway initiative (OSGi) - Specification Overview,
http://www.osgi.orglresourceslspec_overview.asp

[14] F. Vandermeulen et ai, "A MuUimedia Terminal Architecture for Dynamically Conjigurable Protocol
Stacks", ICME 2000 conference, New York, August 2000.

12

Fault Management

Chair: Joseph Hellerstein
IBM Research, USA

USING NEURAL NETWORKS TO IDENTIFY
CONTROL AND MANAGEMENT PLANE
POISON MESSAGES

XIAOJIANG DU, MARK A. SHAYMAN, RONALD SKOOG
Department of Electrical and Computer Eng. University of Maryland, Telcordia Technologies

Abstract: Poison message failure propagation is a mechanism that has been responsible
for large scale failures in both telecommunications and IP networks: Some or
all of the network elements have a software or protocol 'bug' that is activated
on receipt of a certain network control/management message (the poison
message). This activated 'bug' will cause the node to fail with some
probability. If the network control or management is such that this message is
persistently passed among the network nodes, and if the node failure
probability is sufficiently high, large-scale instability can result. Identifying
the responsible message type can permit filters to be configured to block
poison message propagation, thereby preventing instability. Since message
types have distinctive modes of propagation, the node failure pattern can
provide valuable information to help identify the CUlprit message type.
Through extensive simulations, we show that artificial neural networks are
effective in isolating the responsible message type.

Key words: Poison message, neural network, node failure pattern, fault management

1. INTRODUCTION

There have been a number of incidents where commercial data and
telecommunications networks have collapsed due to their entering an unstable mode
of operation. The events were caused by unintentional triggers activating underlying
system defects (e.g., software 'bugs,' design flaws, etc.) that create the propagation
mechanism for instability. These system defects are generally not known to the

http://dx.doi.org/10.1007/978-0-387-35674-7_66

622 X Du, M. Shayman, R. Skoog

network providers, and new defects are constantly introduced. More importantly,
these points of vulnerability can be easily triggered through malicious attack.

Our goal is to develop a fault management framework that can protect networks
from unstable behavior when the trigger mechanism and defect causing instability
are unknown. This can be accomplished by identifying generic failure propagation
mechanisms that permit failures to lead to network instability. Once these
mechanisms are identified, control techniques can be designed to prevent or
interrupt the failure propagation. There are several failure propagation mechanisms
that can cause unstable network. Five generic propagation mechanisms have been
identified thus far [4]:

System failure propagation via routing updates;
System failure propagation from management / control plane 'poison message';
System failure propagation from data plane 'invalid message';
Congestion propagation from congestion back pressure;
Deadlocks created from overload and timeouts.
Here we focus on one of these that we call the 'poison message' failure

propagation mechanism.

1.1 The Poison Message Failure Propagation Problem

A trigger event causes a particular network control/management message (the
poison message) to be sent to other network elements. Some or all of the network
elements have a software or protocol 'bug' that is activated on receipt of the poison
message. This activated 'bug' will cause the node to fail with some probability. If
the network control or management is such that this message is persistently passed
among the network nodes, and if the node failure probability is sufficiently high,
large-scale instability can result. Several such incidents have occurred in
telecommunication and other networks, such as an AT&T telephone switching
network incident in 1990 [8]. We are also aware of an incident in which malformed
OSPF packets functioned as poison messages and caused failure of the routers in an
entire routing area for an Internet Service Provider.

In the AT&T incident above, the trigger event is the normal maintenance event
that caused the first switch to take itself out of service. The poison message is the
ordinary message sent to neighboring switches informing them that it is temporarily
going out of service. The poison message creates a state in the neighboring switches
in which faulty code may be executed. In this case, an auxiliary event must occur for
the faulty code to be executed causing the node to fail, namely the arrival of a pair
of closely spaced call setup messages. The dependence on the auxiliary event makes
the node failure probabilistic with the probability depending on network load (the
rate of call setup messages). While in this particular example, the poison message
itself is not flawed, in other examples such as the OSPF case referred to above, the
poison message may be malformed or contain fields with abnormal values.

Using Neural Networks to IdentifY ControllMgmt. Plane Poison Messages 623

Obviously, the more challenging case is the one in which the message itself is
completely normal and is 'poison' only because of a software defect in the router or
switch.

There are some discussions about the poison message problem in [8]. One idea
to fight the poison message problem is to limit the number of similar type Network
Elements managed by the central control function and use a distributed architecture.
But the above idea is not practical [8]. It might cause lots of changes to the existing
systems. And it also causes software, hardware inconsistency in the system.

Our philosophy is to add some functions to the existing system rather than
change it. We want to design a fault management framework that can identify the
message type, or at least the protocol, carrying the poison message, and block the
propagation of the poison message until the network is stabilized. We propose using
passive diagnosis and active diagnosis to identify and block the corresponding
protocol or message type.

1.2 The Problem Features

This problem has several differences from traditional network fault management
problems. Typical network fault management deals with localized failure [5] [7].
For instance, when there is something wrong with a switch, what propagates is not
the failure but the consequences of the failure on the data plane (e.g., congestion
builds up at upstream nodes). Then multiple alarms are generated that need to be
correlated to find the root cause [3] [9]. In our problem, the failure itself propagates,
and propagation occurs through messages associated with particular control plane or
management plane protocols. It is also different from worms or viruses in that
worms and viruses propagate at the application layer.

A message type may have a characteristic pattern of propagation. For example,
OSPF uses flooding so a poison message carried by OSPF link state advertisements
is passed to all neighbors. In contrast, RSVP path messages follow shortest paths so
a poison message carried by RSVP is passed to a sequence of routers along such a
path. Consequently, we expect pattern recognition techniques to be useful in helping
to infer the responsible message type.

We make the following three assumptions:
I) There is a central controller and a central observer in the network. I.e., we use

centralized network management.
2) The recent communication history (messages exchanged) of each node in a

communication network can be recorded.
3) Because the probability of two message types carrying poison messages at the

same time is very small, we assume there is only one poison message type when
such failure occurs.

In this problem, we use centralized network management scheme. This is due to
the nature of the problem. The failure itself propagates in the whole network. In

624 X Du, M Shayman, R. Skoog

order to identify the responsible protocol, event correlation, failure pattern
recognition and other techniques are used. They all need global infonnation,
correlation and coordination. We also suggest some distributed methods to deal with
the poison message problem, such as the Finite State Machine (FSM) method. The
FSM in our framework is a distributed method in the sense that it is applied
separately to infonnation collected at individual failed nodes, rather than across
multiple failed nodes. The details are given in section 2.

There are several ways to record the communication history. Here we assume
we can put a link box at each link of the network. The link box can be used to record
messages exchanged recently in the link. The link box can also be configured to
block certain message types or all messages belonging to a protocol. We refer to the
blocking as message or protocol filtering. Filtering may be used to isolate the
responsible protocol by blocking one or more message types and observing whether
or not failure propagation continues. The filter settings mayor may not be chosen to
be the same throughout the network.

We suggest combining both passive diagnosis and active diagnosis to fmd out
the poison message. Passive diagnosis includes analyzing protocol events at an
individual failed node, correlating protocol events across multiple failed nodes, and
classifying the observed pattern of failure propagation. Active diagnosis uses
protocol or message type filtering.

2. PASSIVE DIAGNOSIS

Passive diagnosis includes the following methods.
1) Finite State Machine Method: This is a distributed method used at a"single

failed node. All communication protocols can be modeled as finite state machines
[3] [11]. When a node fails, the neighbor of the failed node will retrieve messages
belonging to the failed node. From the message sequence for each protocol, we can
determine what state a protocol was in immediately prior to failure by checking the
FSM model. We can also find out whether those messages match (are consistent
with) the FSM. If there are one or more mismatches between the messages and the
FSM, that probably means there is something wrong in the protocol.

2) Correlating Messages: Event correlation is an important technique in fault
management. Recently exchanged messages are stored prior to node failure. Then
we analyze the stored messages from multiple failed nodes. If multiple nodes are
failed by the same poison message, there must be some common features in the
stored messages. One can compare the stored messages from those failed nodes. If
for a protocol, there are no common received messages among the failed nodes, then
we can probably rule out this protocol--i.e., this protocol is not responsible for the
poison message. On the other hand, if many failed nodes have the same final
message in one protocol, we can use Bayes' Rule to calculate the probability of the

Using Neural Networks to IdentifY ControllMgmt. Plane Poison Messages 625

final message being the poison one. We have reported the details of this technique in
[1].

3) Using Node Failure Pattern: Different message types have different failure
propagation patterns. One way to exploit the node failure pattern is to use a neural
network classifier. The neural network is trained via simulation. A simulation
testbed can be set up for a communication network. The testbed has the same
topology and protocol configuration as the real network. Then for each message
type used in the network, the poison message failure is simulated. And the
simulation is run for the probability of a node failure taking on different values.
After the neural network is trained, it is applied using the node failure sequence as
input, and a pattern match score is the output. In addition, we can combine the
neural network with the sequential decision problem. The details are discussed in
Section 4.

The node failure pattern can also be combined with the network management
and configuration information. For example, suppose BGP is the responsible
protocol carrying the poison message. Since only the BGP speaker routers exchange
BGP messages, when we get several failed nodes, we can check if all these nodes
are BGP speakers. If any failed node is not a BGP speaker, then we can rule out
BGP--i.e., BGP is not the poison protocol.

Generate Probability Distribution: The output of passive diagnosis will be a
probability distribution that indicates for each protocol (or message type) an
estimated probability that it is responsible for the poison message.

3. ACTIVE DIAGNOSIS

From passive diagnosis we have an estimated probability distribution over the
possible poison protocols or message types. In active diagnosis, filters are
dynamically configured to block suspect protocols or message types. Message
filtering can be a valuable tool in helping to identify the culprit message type. For
example, if a single message type is blocked and the failure propagation stops, this
provides strong evidence that the blocked message type is the poison message. On
the other hand, if the propagation continues, that message type can be ruled out.

In addition to its use as a diagnostic tool, filtering offers the possibility of
interrupting failure propagation while the culprit message type is being identified.
For example, all suspect message types can be initially blocked stopping failure
propagation. Then message types can be turned on one-by-one until propagation
resumes. While this approach may be attractive in preventing additional node
failures during the diagnostic process, disabling a large number of control or
management messages may result in unacceptable degradation of network
performance. Consequently, the decision making for filter configuration must take
into account tradeoffs involving the time to complete diagnosis, the degradation of

626 X Du, M. Shayman, R. Skoog

network performance due to poison message propagation for each of the suspect
message types, and the cost to network performance of disabling each of those
message types. Each decision on filter configuration leads to further observations,
which may call for changing the configuration of the filters. This suggests that
policies for dynamic filter configuration may be obtained by formulating and
solving a sequential decision problem [6] [12].

The Sequential Decision Problem
• At each stage, the state consists of a probability distribution vector with a

component for each message type potentially carrying the poison message, and
the recent history of the node failures.

• Based on the current state, a decision (action) is made as to how to configure
filters.

• When new node failures are observed, the state is updated based on the current
state, action and new observation.

• Actions are chosen according to a policy that is computed off-line based on
optimizing an objective function taking into account:
degree to which each action will help in isolating the responsible message type;
urgency of diagnosis under each potential message type. E.g., if a suspect
protocol sends its messages to a large number of nodes via flooding, the risk of
network instability were it to be poison would be particularly great, and this risk
provides additional impetus for filtering such a message type;
impact of filtering action on network performance. A critical protocol or
message type should be blocked only ifthere is a compelling need to do so.
There are three possible outcomes when message filtering is considered.
I) If message filtering is used and the propagation is stopped within a certain

time, then either the poison message type is found (if only one message type is
filtered) or the types that are not filtered are ruled out (two or more types are
filtered).

2) If message filtering is used but the propagation is not stopped within a certain
time, then we did not find the responsible message type this time. The filtered
message types are removed from the possible suspect set. Collect more information,
update the probability vector and reconfigure the filters.

3) If the current action is not to filter any message types, then we simply take
another observation. Several other nodes will fail as the poison message propagates
in the network. This information is used to update the probability vector. Based on
the updated state, a new action is taken to configure the filters.

The sequential decision problem is modeled as a Markov Decision Process
(MDP) in [2]. Also we proposed a heuristic policy and used a Q-factor
approximation algorithm to obtain an improved policy for the MDP problem in [2].

We have proposed passive diagnosis and active diagnosis to identify the poison
message. In this paper, we focus on one of the methods in passive diagnosis - Using
Node Failure Pattern. We use neural networks to explore the node failure pattern of

Using Neural Networks to IdentifY ControllMgmt. Plane Poison Messages 627

different poison messages. Also neural networks can be combined with the
sequential decision problem in active diagnosis. Details are given in section 4.

4. NEURAL NETWORK SIMULATION RESULTS

We have implemented an OPNET testbed to simulate an MPLS network in
which poison messages can be carried by BGP, LDP, or OSPF. The testbed has 14
routers of which 5 are Label Edge Routers and 9 are (non-edge) Label Switching
Routers. The topology of the testbed network is shown below.

Figure 1. The Topology of OPNET Testbed

We use the Neural Network Toolbox in MATLAB to design, implement, and
simulate neural networks. There are several different neural network architectures
supported in MATLAB. We implemented two kinds of them in our simulation.

1) Feedforward backpropagation. Standard backpropagation is a gradient
descent algorithm. This type of neural network is most commonly used for
prediction, pattern recognition, and nonlinear function fitting.

2) Radial basis networks provide an alternative fast method for designing
nonlinear feed-forward networks. Variations include generalized regression and
probabilistic neural networks. Radial basis networks are particularly useful in
classification problems.

Training and Learning Functions are mathematical procedures used to
automatically adjust the network's weights and biases. The training function dictates
a global algorithm that affects all the weights and biases of a given network. The
learning function can be applied to individual weights and biases within a network.
The training function we used is: trainb, which is a batch training with weight and
bias learning rules.

628 X Du, M. Shayman, R. Skoog

4.1 Neural Network Structure and Training

We have implemented three feedforward backpropagation neural networks and
one radial basis neural network. They have similar structure; all of them have three
layers.

1) Input layer with 28 inputs. There are 14 nodes in the communication network.
We use a vector to denote the node status in the communication network:

S k = [s!, s; '''., S!4 r ' where k is the discrete time step, and S; = 0 or 1. (0
means this node is normal, and 1 means this node is failed). The 28 inputs represent
node status vectors at two consecutive time steps: S k-l' S k •

2) Hidden layer in the middle. In the middle of the three layers is the hidden
layer. There is a transfer function in the hidden layer. A lot of transfer functions are
implemented in MA TLAB. In our simulation, we use three kinds of transfer
functions in the feedforward backpropagation neural networks: 'tansig', 'logsig',
and 'pure lin'.

a. tansig - Hyperbolic tangent sigmoid transfer function.
b. purelin - Linear transfer function.
c. logsig - Log sigmoid transfer function.
3) Output layer with 12 outputs. The output is the probability distribution vector

of the poison message. 12 outputs represent 12 message types in the OPNET
testbed. Each output is the probability of the corresponding message being poison.

From the OPNET simulations, we record the node status vector Sk at time k.
Then we use these data to train the neural networks. The input of the neural
networks is a 28-element vector representing Sk-l & Sk' We use 32 sets of such
input to train the neural networks. And the target of training (Le., the output during
training) is a 12-element vector representing the probability distribution vector of
the poison message. Since we know what is the poison message during simulations,
we know the target vectors. For example, a target vector of the 4th message being
poison is [000100000000]. We set the training goal to be: error <10-10 • And the
training epoch number set to be 50. One epoch means that the training data is used
once. All neural networks meet the training goal.

4.2 Main Test Results

After training neural networks, we use some new data to test the neural
networks. In our simulation we use 17 sets of 28-element vectors to test the four
different neural networks. The result is very good. All of the neural networks can
output a good probability distribution of the poison message for 14 out of 17 input
data. Four sets of outputs are listed in Table 1.

In Table 1, "NN" means Neural Networks. And ml,m2,m3 & m4 represent four
different poison messages. The numbers 1,2,3 and 4 in lSI row represent four
different neural networks. Number 1,2 and 3 represent three feedforward

Using Neural Networks to IdentifY ControllMgmt. Plane Poison Messages 629

backpropagation neural networks with transfer function being: 'tansig', 'purelin' in
1, 'tansig', 'tansig' in 2, and 'tansig', 'logsig' in 3. And 4 represents the radial
basis neural network. The outputs of neural networks include both positive and
negative numbers. We call the outputs the 'distribution scores'. And the final
probability distribution of poison message is an origin shift and normalization from
the distribution scores. I.e., y=a(x+b), where x is the distribution score and y is the
probability distribution, and a & b are parameters. Since during the neural network
training, the output of non-poison message is set to zero, we set the transformation
of the smallest (negative) number in the output vector to be zero. I.e., set b to be -
Xo where Xo is the smallest number. And a can be determined from LY=l. The
data in Table 1 is the probability distribution after transformation. The training data
for the neural networks in Table 1 only included five different poison messages.
That is why the outputs from neural networks 3 and 4 have several zeros.

Table 1. Output of Neural Networks

NN 1 2 3 4 NN 1 2 3 4

0.0841 0.1953 0.9992 0.8212 0.0140 0.1302 0 0.0796

ml 0.1235 0.1273 0 0.1127 m2 0.1791 0.1925 0.0067 0.3986

0.1146 0 0 0.0078 0.1148 0.0656 0 0.1599

0.0427 0.0191 0.0006 0.0322 0 0 0 0.0032

0 0.1035 0.0002 0.0262 0.1514 0.1919 0.9933 0.3586

0.0892 0.0794 0 0 0.0937 0.0471 0 0
0.0898 0.0870 0 0 0.1149 0.0793 0 0
0.1331 0.0780 0 0 0.1237 0.0375 0 0
0.1269 0.0805 0 0 0.1242 0.0844 0 0
0.0446 0.0844 0 0 0.0022 0.0519 0 0
0.1143 0.0743 0 0 0.0499 0.0488 0 0

0.0373 0.0711 0 0 0.0320 0.Q708 0 0

0.0348 0.1247 0.0061 0.0475 0.0003 0.0885 0 0.0096

m3 0 0 0 0.0298 m4 0.0132 0 0 0.0032
0.1677 0.1290 0.7421 0.6973 0.3187 0.0711 0 0.0032

0.0413 0.1227 0.0000 0.0010 0.0777 0.1551 0.9999 0.9735

0.1128 0.1281 0.2518 0.2244 0.0388 0.1549 0.0001 0.0105

0.0745 0.0496 0 0 0.1162 0.0735 0 0

0.0515 0.0876 0 0 0.1164 0.0819 0 0

0.0984 0.0373 0 0 0.1452 0.0731 0 0

0.0919 0.1057 0 0 0.0738 0.0812 0 0

0.1172 0.0464 0 0 0.0653 0.0785 0 0

0.1782 0.0646 0 0 0.0345 0.0676 0 0
0.0317 0.1043 0 0 0 0.0746 0 0

The boldface numbers are the probabilities assigned to the actual poison
messages. And the underlined numbers are instances where the neural networks

630 X Du, M Shayman, R. Skoog

assign largest probability to wrong message types. Thus, poison messages 1, 3 and 4
are correctly diagnosed by neural networks 2,3,4 but misdiagnosed by 1. Poison
message 2 is correctly diagnosed by neural networks 1,2,4 but misdiagnosed by 3.
From Table1, we can see that most of the time, the four neural networks can provide
a good probability distribution about the poison message--i.e., the neural networks
can identifY the poison message. Combining all the test results, we find that the
radial basis neural network performs the best. Also we find that different neural
networks fail for different cases. This suggests that we can combine the outputs
from two (or more) neural networks to get better results.

4.3 Serial Test

In the previous tests, we only use Sk_l & Sk as input--Le., we only use the node
status at two time steps. Another way to test the neural network is to input a series
of node status, e.g., SI'S2; S2,S3; ... Sk_I'Sk . This means we want to input
more information to the neural network in the hope of getting better results.

In particular we did the serial tests for the data sets that the neural network failed
to correctly diagnose with the original input. The results are encouraging. The
neural network can gradually identifY the poison message for about of
these data sets--Le., the output gradually changed from a bad probability distribution
to good probability distribution. One example of the serial test is given in Table 2.
In the example, the neural network is a feedforward backpropagation neural
network. We also used radial basis neural network for the serial test and have
similar results. In this example, message No.3 is the poison message. And the data
in Table 2 is the probability distribution after origin shift and normalization.

Table 2 Serial Test Result
Input S"S? S?,S, S" S4 S4. S. S. S S, Ave.

1 0.1296 0.0633 0.1558 0.0339 0.1231 0.0811 0.0865

2 0 0.0056 0.1032 0 0 0.1191 0.0380

3 0.0743 0.1267 0.1101 0.1635 0.1726 0.1461 0.1415
4 0.1231 0.1942 0.0725 0.0403 0.1205 0.0412 0.0986

5 Q.1258 0.1217 0.1228 0.1100 0.1221 0 0.1004
6 0.0816 0.0888 0.0937 0.0727 0.0570 0.0860 0.0800

7 0.0975 0.1145 0.0774 0.0502 0.0664 0.0866 0.0821
8 0.0569 0.0185 0.0398 0.0960 0.0499 0.1283 0.0649
9 0.0983 0.0491 0 0.0896 0.0822 0.1224 0.0736
10 0.0642 0.1107 0.1337 0.1143 0.0473 0.0431 0.0855
11 0.0652 0 0.0142 0.0961 0.0684 0.1102 0.0590

12 0.0835 0.1070 0.0769 0.1333 0.0906 0.0359 0.0879
In Table 2, the 1st column is list of the 12 message types. And column 2 through

column 7 are the probability distribution for different inputs. From Table 2, we can

Using Neural Networks to Identify ControllMgmt. Plane Poison Messages 631

see that at the beginning, the neural network assigns message No. 1 the largest
probability, so it does not find the poison message. When we input S4'SS' the
neural network finds the poison message - message No.3. And the neural network
continues to find the poison message in the later tests. That shows the outputs of the
neural network stabilized after input S4' S5 . The last column is the average
probabilities of the previous 6 columns. The average probabilities can be thought of
as the combined result from a series of inputs. From Table 2, we can see that the
combined result finds the poison message--Le., it assigns the largest probability to
the poison message.

4.4 Integration With the Sequential Decision Problem

The neural network can provide a good probability distribution about the poison
message. But it cannot solve the problem completely since the neural network may
assign a large probability to a wrong message type. W e need some actions to
confirm that we find the poison message. One action is to use message filtering -
turn off the possible poison message, and see if the failure propagation stops in a
certain time. If it stops, then the identity of the poison message is confirmed. On the
other hand, if failures continue, then we have new data to input to the neural
network. However, we need a neural network that takes into account the knowledge
that a particular message type is blocked. Thus, it should output a probability
distribution over the remaining message types.

We considered two approaches to combining neural networks with message
filtering. In the first approach, We added another 12 inputs to the neural network.
Each input represents one message type. When a message is turned off, the
corresponding input is set to -1. Also the corresponding output in training is set to -
1. The idea is that we use -1 to denote that this message is turned off. We trained
the new neural network and tested its performance. But it did not work well for the
test data.

In the second approach, we assumed that at most one message is turned off at
any time. Then we created 12 additional neural networks, one corresponding to each
message type that can be turned off. Each neural network has 28 inputs as before,
but only 11 (rather than 12) outputs. If a message is turned off, we remove the
output corresponding to that message. We trained these neural networks and the test
results show that this method works well. One example of the integration with the
sequential decision problem is given in Table 3. In the example, a feedforward
backpropagation neural network is used.

In Table 3, the first four columns correspond to the test with II-output neural
networks. Each row is the probability of the corresponding message type being
poison. And in the first row, k is the time step in the sequential decision problem.
The poison message in this example is message No.3. In the example, we use the
policy of filtering the message type with the highest probability at each time step.

632 X Du, M. Shayman, R. Skoog

The bold number corresponds to the message being turned off. At time step 1,
message No.4 is turned off. Since it is not the poison message, the failure still
propagates. We observe some nodes fail and input that node status to the
corresponding neural network with 11 outputs. We list the outputs in column 3
(k=2). From Table 3 we can see that at time step 2, message No.5 has the highest
probability and it is turned off. The poison message is not found yet. So we observe
some other node failure, and input the information to the neural network
corresponding to message No.5 turned off. Then at time step 3, we find the poison
message -- message No.3.

able 3. InteJ!1"ation of Neural Networks With the SeQuential Decision Prob lem
Step k=1 k=2 k=3 New k=1 k=2 k=3

D. 0.1086 0.1475 0.1431 Test 0.1086 0.1669 0.1665

D. 0 0 0 0 0.1440 0

D. 0.1280 0.1459 0.1480 0.1280 0.1831 0.1722

D. 0.1650 / 0.1407 0.1650 0 0

D. 0.1633 0.1478 / 0.1633 0.1881 0

DL 0.0386 0.0689 0.0569 0.0386 0.0451 0.0662

D. 0.0541 0.0803 0.1004 0.0541 0 0.1169

D. 0.0906 0.0604 0.0428 0.0906 0.0621 0.0498

Do 0.0553 0.0995 0.1213 0.0553 0.0199 0.1411

Don 0.1194 0.0572 0.0533 0.1194 0.0326 0.0620

D. 0.0671 0.0828 0.0741 0.0671 0.1030 0.0862

P12 0.0099 0.1097 0.1196 0.0099 0.0552 0.1392

Since the identity of the poison message does not change, it follows that if a
message type has been filtered and propagation continues, that message type can be
ruled out as the poison message. Thus, it would make sense to eliminate it as a
possible output from the neural networks applied in subsequent time steps. In the
example, when message type 5 is blocked, it would be desirable to use a neural
network that had the outputs for both types 4 and 5 removed. However, to apply this
approach in general would require training a neural network corresponding to each
subset of the set of message types. The number of neural networks would be
exponential in the number of message types, which is not practical. So we tried
another approach that uses the original neural network with 12 outputs and
computes the conditional probabilities given all message types that have been
previously ruled out. For the message type that has been ruled out, its probability is
set to zero, and the probability distribution is obtained by normalizing the rest of the
outputs. The results of the new tests are listed in the last three columns in Table 3,
and the underline zeros are those set manually. From table 3, we can see that the
new approach works well, and it requires only one neural network.

If different message types have different filtering costs, the policy of blocking
the message type with highest probability can be extended to the well known

Using Neural Networks to Identify ControllMgmt. Plane Poison Messages 633

heuristic policy based on the ratios E[Cj]/pj. I.e., the message type selected for
blocking is the one that has the smallest ratio E[Cj]/pj where E[Cj] is the expected
cost (in terms of network performance) associated with blocking message type j for
a time step, and Pj is the current estimate ofthe probability that message type j is the
poison one. In our example, we are considering the special case where the costs are
all equal.

5. SUMMARY

We have discussed a particular failure propagation mechanism--poison message
failure propagation, and provided a framework to identify the responsible protocol
or message type. We have proposed passive diagnosis, which includes the FSM
method applied at individual failed nodes, correlating protocol events across
multiple failed nodes and using node failure pattern recognition. If passive diagnosis
cannot solve the problem by itself, it can be augmented by message type filtering,
which is formulated as a sequential decision problem. In this paper, we focus on
identifying node failure pattern using artificial neural networks. We have
implemented and tested four different types of neural networks. Our tests show that
neural networks can provide a good probability distribution for the poison message
in most cases. We also performed the serial test that works for many of the data sets
for which the original test failed. Furthermore, we have combined the neural
networks with the sequential decision problem. In the sequential decision problem,
the decision as to which message type(s) to filter is based on the current state
consisting of the set of failed nodes together with the estimated probability that each
message type is poison. The neural networks appear to be effective as a
computational tool for updating these probabilities without requiring an explicit
model for the transition probabilities in the underlying Markov chain.

ACKNOWLEDGEMENT

This research was partially supported by D ARP A under contract N 6600 I-OO-C-
8037.

REFERENCES

[I] X. Du, M.A. Shayman and R. Skoog, "Preventing Network Instability Caused by
Control Plane Poison Messages" IEEE MILCOM 2002, Anaheim, CA, Oct. 2002.

634 X Du, M. Shayman, R. Skoog

[2] X. Du, M.A. Shayman and R. Skoog, "Markov Decision Based Filtering to
Prevent Network Instability from Control Plane Poison Messages" submitted for
publication.
[3] A. Bouloutas, et aI, "Fault identification using a finite state machine model with
unreliable partially observed data sequences," IEEE Tran. Communications, Vol.:
41 Issue: 7, pp: 1074-1083, July 1993.
[4] R. Skoog et aI., "Network management and control mechanisms to prevent
maliciously induced network instability," Network Operations and Management
Symposium, Florence, Italy, April 2002.
[5] H. Li and J. S. Baras, "A framework for supporting intelligent fault and
performance management for communication networks", Technical Report, CSHCN
TR 2001-13, University of Maryland, 2001.
[6] M.A. Shayman and E. Femandez-Gaucherand, "Fault management in
communication networks: Test scheduling with a risk-sensitive criterion and
precedence constraints," Proceedings of the IEEE Conference on Decision and
Control, Sidney, Australia, Dec. 2000.
[7] I. Katzela; M. Schwartz, "Schemes for Fault Identification in Communication
Networks", Networking, IEEEIACM Transactions on , Vol.: 3. Issue: 6, pp: 753 -
764, Dec. 1995.
[8] D. J. Houck, K. S. Meier-Hellstem, and R. A. Skoog, "Failure and congestion
propagation through signaling controls". In Proc. 14th Inti. Teletraffic Congress,
Amsterdam: Elsevier, pp: 367-376, 1994.
[9] A. Bouloutas, S. Calo, and A. Finkel, "Alarm correlation and fault identification
in communication networks", Communications, IEEE Transactions on, Vol.: 42,
Issue: 2, pp: 523 -533, Feb-Apr 1994.
[10] D.A. Castanon, "Optimal search strategies in dynamic hypothesis testing",
IEEE Trans. Systems, Man and Cybernetics, Vol.: 25 Issue: 7, July 1995
[11] A. Bouloutas, G.W. Hart and M. Schwartz, "Simple finite-state fault detection
for communication networks," IEEE Trans. Communications, Vol. 40, Mar. 1992.
[12] J-F. Huard and A.A. Lazar. "Fault isolation based on decision-theoretic
troubleshooting", Technical Report 442-96-08, Center for Telecommunications
Research, Columbia University, New York, NY, 1996.
[13] R. Sutton and A. Barto. Reinforcement Learning: An Intro .. MIT Press 1998.
[14] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vols. I and II,
Athena Scientific, 2000.
[15] D. Bertsekas and J. Tsitsiklis. Neurodynamic Programming, Athena Scientific,
1996.

PROBABILISTIC EVENT-DRIVEN FAULT DIAGNOSIS
THROUGH INCREMENTAL HYPOTHESIS UPDATING

M. Steinder and A. S. Sethi
Computer and Information Sciences Department
University of Delaware, Newark, DE
{ steinder,sethi} @cis.udel.edu

Abstract: A probabilistic event-driven fault localization technique is presented. which uses a symp
tom-fault map as a fault propagation model. The technique isolates the most probable
set of faults through incremental updating of the symptom explanation hypothesis. At any
time. it provides a set of alternative hypotheses, each of which is a complete explanation of
the set of symptoms observed thus far. The hypotheses are ranked according to a measure
of their goodness. The technique allows multiple simultaneous independent faults to be
identified and incorporates both negative and positive symptoms in the analysis. As shown
in a simulation study. the technique is resilient both to noise in the symptom data and to
the inaccuracies of the probabilistic fault propagation model. 1

1. Introduction

This paper presents a non-deterministic event-driven fault localization [9, 10, 17]
technique, which uses a probabilistic symptom-fault map as a fault propagation model.
While investigating fault localization techniques suitable for bipartite fault propaga
tion models, this paper states the following objectives:

- Usage of probabilistic reasoning, which is necessary to diagnose Byzantine prob
lems or when relationships among system events may not be determined with
certainty, e.g., due to their dynamic nature [5, 6, 8, 10, 11].

- Ability to isolate multiple simultaneous faults even if their symptoms overlap [6,
10], which improves the technique's applicability to large systems.

- Event-driven diagnosis, which avoids the inflexibility of window-based tools [1],
is not prone to inaccuracies resulting from an incorrect time-window specification,
and allows fault localization to be interleaved with testing.

- Resilience to lost and spurious symptoms [5, 8, 17], which may dramatically
reduce its accuracy if not taken into account by a fault localization algorithm.

- High accuracy and low-polynomial computational complexity.

In addition to providing the above features, the fault localization technique pro
posed in this paper is incremental, i.e., the interpretation of an observed symptom is
incorporated in a solution resulting from the interpretation of the previously observed
1 Prepared through collaborative participation in the Communications and Networks Consortium sponsored
by the U. S. Army Research Laboratory under the Collaborative Technology Alliance Program. Cooperative
Agreement DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

636 M. Steinder and A. S. Sethi

symptoms without re-analyzing them. Thanks to this feature, the algorithm continu
ously provides a system administrator with information about which faults are likely
to exist in the system given symptoms observed thus far. In non-incremental tech
niques, such information is available on a periodic basis only [10, 17]. The technique
proposed here produces a set of alternative hypotheses rather than just a single ex
planation. These hypotheses are ranked according to their measure of goodness. As
a result, the system administrator obtains a better understandihg of the system state.
This feature also facilitates exchanging the hypotheses order as dictated by hypothesis
ranking schemes that are not easy to express through a goodness function, e.g., those
taking into account fault gravity, testing difficulty, or urgency of repair. Since an oc
casional inaccuracy of the most likely hypothesis may not be avoided, the ability to
replace an incorrect hypothesis with its alternative without repeating the entire fault
localization process improves the robustness of the fault management system.

While relationships between faults and symptoms in real-life systems are usually
more complex than may be represented by a bipartite graph (in particular, they are
frequently indirect), many fault localization techniques proposed in the literature [4,
10, 16, 17] use bipartite fault propagation models. The focus on this type of a model is
justified by the following arguments: (1) Performing fault localization with more com
plex representations is (In general, the problem is NP-hard [10].) To avoid
this complexity, more detailed models are frequently reduced to bipartite ones through
a sequence of graph reduction operations [17]. (2) Building more complex models re
quires a profound knowledge of the underlying system, while symptom-fault maps
may be obtained through external observation. In many real-life problems, only bipar
tite symptom-fault models are feasible [4]. (3) Some fault localization sub-problems
may be accurately represented by bipartite symptom-fault maps [16], thereby neces
sitating fault localization algorithms suitable for bipartite fault propagation models.
The distinguishing features of the approach presented in this paper, when compared to
previous fault localization techniques suitable to use with a symptom-fault map as a
fault propagation model, are as follows: the technique is more general by not assum
ing any particular problem domain or probabilistic model [4, 10, 17], resilient to lost
and spurious symptoms [7,10], event-driven [4, 7,10,17], incremental [4,7,10,17,
15, 16], and more efficient [15, 16].

The paper is structured as follows. Section 2 describes the concept of probabilistic
incremental hypothesis updating, which was originally introduced in [13]. In Sec
tion 3, incremental hypothesis updating is extended to include positive and lost symp
toms in the analysis. Section 4 presents the methodology of dealing with spurious
symptoms and discusses the necessary modifications to the original algorithm. In Sec
tion 5, the experimental study of the technique is described.

2. Incremental hypothesis updating
A symptom-fault map is a bipartite directed graph that, for every fault, encodes

direct causal relationships between the fault and a set of symptoms observed when the
fault occurs. We will use :F and S to denote the sets of all possible faults and symp
toms, respectively. In a non-deterministic model, with every fault Ii E :F a probability
of its independent failure is associated, which is denoted by p(fi). The edge between
Ii E :F and Sj E S indicates that Ii may cause Sj. The edge is weighted with the
probability of the causal implication, p(sjl/i). A subset of symptoms observed by the

Probabilistic event-driven fault diagnosis ... 631

management application is denoted by So. The purpose of fault localization is to find
Fd F that maximizes the probability that (1) all faults in Fd occur and (2) each
symptom in So is explained by at least one fault from Fd.

The technique we present in this section, which is called incremental hypothesis
updating [13] (IHU), creates a set of most likely hypotheses, which may all be pre
sented to the system administrator. Rather than waiting for a specific period of time
before presenting a solution, the technique makes all these hypotheses available on a
continuous basis, and constantly upgrades them with the information learned from the
arriving symptoms. This allows the administrator to initiate recovery actions sooner,
and it allows additional testing procedures to be performed. Each hypothesis is a sub
set of F that explains all symptoms in So. We say that hypothesis hj F explains
symptom Si E So if it contains at least one fault that explains Si. The hypotheses
are ranked using a belief metric, b. The algorithm proceeds in an event-driven and
incremental fashion. The execution triggered by the ith symptom, Si, creates a set of
hypotheses, Hi, each explaining symptoms Sl through Si. Set Hi is created by updat
ing H i- 1 with an explanation of symptom Si. We define HSi as a set Uk E F} such
that fk may cause Si, i.e., the fault propagation model contains a directed edge from
fk to Si· Using the notation from [10], HSi is the domain of symptom Si.

After the ith symptom is processed, belief metric bi represents the probability that
(1) all faults belonging to hj have occurred, and (2) hj explains every observed symp
tom Sk E SO,i = {Sl, ... , silo Formally, bi(hj) is defined as follows:

bi(hj) = (IT p(Ik)) IT (1- IT (l-p(sdlk)) (1)
fkEhj SlESQ,i fkEhj

To incorporate an explanation of symptom Si into the set of fault hypotheses, in the
ith iteration of the algorithm, we analyze each hj E H i - 1 . If hj is able to explain
symptom Si, we put h j into Hi. Otherwise, h j has to be extended by adding to it a
fault from H Si • To avoid a very fast growth in the size of Hi, the following heuristic
is used. Fault fl E HSi may be added to h j E Hi-1 only if the size of hj, Ihjl, is
smaller than J-l(fl), the minimum size of a hypothesis in Hi-1 that contains fl and
explains Si. The usage of this heuristic is derived from the fact that the probability of
multiple simultaneous faults is small. Therefore, of any two hypotheses containing fl,
the hypothesis that contains the fewest faults is the most likely to constitute the optimal
symptom explanation. Thus, since it is not efficient to keep all possible hypotheses,
we remove those that are bigger in size. While updating the set of hypothesis, bi (h j)

is approximated iteratively based on bi - 1 (h j) using the following equations:

- If hj E H i - 1 and hj explains Si

bi(hj) = bi- 1 (h j) (1 - IT (1 - p(siIM) (2)

flEhjnHsi

- Otherwise, if fl explains Si

(4)

The upper bound on the worst case computational complexity of the resultant algo
rithm is O(ISolkIFI), where k is the maximum size of the set of hypotheses and k is
O(IFI) (in our study, k = 21FI). When IHil = k, a new hypothesis may be added to
Hi only after a hypothesis with the smallest bi 0 is removed.

638 M. Steinder and A. S. Sethi

3. The analysis of positive symptoms
The original version of IHU [13] formulates explanations of observed system dis

order while not taking advantage of the fact that some possible indications of the
disorder have not been observed. As many researchers point out [2, 17], the fact that
many of its possible symptoms have not been observed should decrease our confidence
in the fault's occurrence. In the realm of fault localization, an observation of network
disorder is called a negative symptom. Both an opposite observation and the lack of
any observation are considered positive symptoms. As it was shown in the study on
fault localization with belief networks [15], the inclusion of positive symptoms into
the fault localization process may significantly increase its accuracy.

To include the analysis if positive symptoms in IHU, the belief metric bi associated
with hypothesis hj E 'Hi needs to contain two components: a negative component bf
and a positive component bf, where bi(hj) = bf(hj) bf(hj) and bf(hj) = bi(hj) of
Equation (1). The positive component is defined as the probability that faults in hj

have not generated any of the symptoms in S - So,i. It decreases the value of the
belief metric associated with hypothesis hj if many of the symptoms that can occur as
a result of faults in hj have not been observed. The positive component of bi (hj) is
expressed through the following equation.

(4)
8IES-So,. fkEhj

When investigating a fault localization technique that takes advantage of positive
symptoms, two properties of the managed system have to be taken into account: symp
tom observability ratio and symptom loss rate, which lead to refinements in the calcu
lation of bf presented in the following sections.

3.1 Symptom observability ratio

Frequently, an indication of an existing disorder may not be observed by the man
agement system because the system configuration configuration excludes some condi
tions from being monitored, or filters out some of the symptoms before they reach the
management application. If this fact is not taken into account, the reduction of bi (hj)

caused by the positive multiplier bf (hj) may be excessive. Symptoms which may not
be observed as a result of the management system configuration may be dealt with
by not including them in the fault propagation model. An alternative solution, which
preserves the model despite the management system configuration changes, associates
a flag 1 or 0 with every symptom in the model to indicate that, in the current configu
ration, the symptom is observable or not observable, respectively. We will denote by
So S the set of all symptoms which are observable in a current management system
configuration. When symptom observability status is taken into account, the second
product in Equation (4) is calculated over SI E So - SO,i rather than SI E S - SO,i.

The ratio of the number of all observable symptoms to the number of all possible
symptoms is called an observability ratio, and is denoted by OR = Isol/lSI [15]. The
observability ratio is an important parameter of the fault management system, which
informs us of the extensiveness of the system instrumentation. It may be expected that
a higher instrumentation level allows fault localization to be more accurate, but causes
it to be less efficient as it requires the processing of more symptoms.

Probabilistic event-driven fault diagnosis .,. 639

3.2 Symptom loss

In a real-life system, a symptom that has been triggered by faults in h j may be
lost before it reaches the management application as a result of using an unreliable
communication mechanism to transfer alarms from their origin to the management
node, as is the case with the SNMP protocol [3], or too liberal threshold values which
prevent an existing problem from being reported. When a fault localization algorithm
relies on positive information, a high rate of lost symptoms, if ignored by the algo
rithm, can reduce its accuracy. Thus, in the management system in which symptom
delivery is not guaranteed, including positive symptoms into account necessitates the
analysis of lost symptoms as well.

Let us denote by Ploss (Si) the probability that symptom Si E S is lost. The value of
Ploss (Si) may be derived from a packet loss rate in the communication system, or from
the confidence measure associated with the system baselining tool used to calculate
the monitored threshold values. Symptom loss is included into the fault localization
algorithm by modifying the definition of bf (hj) (Equation (4» as follows.

bf(hj) = II (PloSS(SI) + (1 - Ploss (St)) II (1 - p(stllk))) (5)
slEso-SO,i /kEh j

3.3 Incremental calculation of bP

IHU based on both positive and negative symptoms proceeds as follows. Initially,
all observable alarms are considered positive symptoms. The only valid hypothesis is
0, and bf(0) = bf(0) = 1. In the process of analyzing new symptoms, the value of
belief metric bHhj) is calculated by multiplying bf(hj) and bf(hj), where bf(hj) is
computed incrementally using Equations (2)-(3). We obtain bf (hj) as follows.

- If hj E 1ii - 1 explains symptom Si, then bf(hj) may be approximated using the
following formula.

If/(h j) = bf_l(hj) (6)
t I1!lEhj (Ploss (Sl) + (1- Ploss(st))(l - P(Stllk)))

- Otherwise, let It E HSi be a fault used to extend hj. The value of bf(hj U {It})
is calculated as follows.

(7)

In Equation (7), bf ({it}) denotes the positive component of a belief metric associated
with a singleton hypothesis {it} calculated given all symptoms observed thus far.
The values of bf({il}) are pre-computed when the model is initialized. After every
symptom observation, bf({il}) is incrementally updated using Equation (6).

4. Dealing with spurious symptoms
In real-life communication systems, an observation of a network state is frequently

disturbed by the presence of spurious symptoms, which are caused by intermittent
network faults or by overly restrictive threshold values. Spurious symptoms, if not
taken into account by the fault localization process, may significantly deteriorate its
accuracy. When a fault localization algorithm does not recognize that some symptoms
may be spurious (as such they do not require an explanation), it strives to find the

640 M. Steinder and A. S. Sethi

explanation of all the observed symptoms, thereby creating hypotheses which contain
many non-existent faults [15]. In this section, we introduce an extended version of
IHU, IHU+, which incorporates spurious symptoms in the analysis.

To deal with spurious symptoms IHU has to be modified as follows. Let Si be the
ith observed symptom and let Ps(Si) denote the probability that symptom Si is spuri
ously generated. While deciding whether hypothesis hj E 'Hi-l should be placed in
'Hi without modification or extended, the algorithm has to consider two possibilities:
(1) that the symptom is valid and (2) that the symptom is spurious. When hypothesis
hj explains Si, then regardless of these two possible interpretations of symptom Si, hy
pothesis hj can be added to 'Hi and the two choices are incorporated in the calculation
of the belief metric for hj . When hypothesis hj does not explain Si, then treating Si as
valid necessitates extending hj' and treating Si as spurious allows us to put hj in 'Hi
without extension. Since the first and second cases occur with probability 1 - Ps(Si)
and Ps(Si), these values are used as multipliers embedded in the calculation of the
corresponding values of the belief metric. Recall from Section 2, that the original al
gorithm does not allow adding hj E 'Hi-l to 'Hi unless it explains or is extended to
explain symptom Si.

The inclusion of spurious symptoms into the analysis only affects the calculation
of the negative component, btn(hj), of the belief metric, bt(hj), while the positive
component remains the same, i.e., biP(hj) = bf(hj) (Eqns. (6)-(7». The modified
negative component, btn(hj), is calculated iteratively as follows.

- If hj E 'Hi - 1 explains symptom Si, then

btn(hj) = btHhj) (PS(Si) + (1 - Ps(Si)) (1 - II (1 - p(sill,))) (8)
flEhjnH' i

- Otherwise

btn(hj) = (9)

In addition, for every fault II E HSi used to extend hj

(10)

Besides modifying the definition of the belief metric, the inclusion of the spuri
ous symptoms' analysis in the fault localization process necessitates two additional
changes in the original IHU. Recall from Section 2 that IHU takes advantage of two
heuristics that allow us to limit the size of the set of hypotheses. The first heuristic
forbids adding fault II to hypothesis hj E 'Hi if the size of the resultant hypothesis
hj U {II} would be greater than /-t(fl). The second heuristic applied by Algorithm
IHU limits the maximum size of the set of hypotheses to k E O(IF/) and removes the
least probable hypotheses if this limit is exceeded. These two heuristics are modified
in IHU+ as described in the following sections.

4.1 Calculating hypothesis size

In IHU, function /-t(fl) is defined as the minimum size of hk E 'Hi-l that contains
II and explains symptom Si, where the size of hk is Ihkl. In IHU+, the size of hj'
ll! (hj) is defined as the number of faults in hj plus the number of symptoms observed
so far that h j considers spurious. This modification serves two purposes. It:

Probabilistic event-driven fault diagnosis ... 641

- Helps avoid the creation of duplicate hypotheses.
Duplicate hypotheses introduce redundancy into the set of hypotheses, which may
affect the accuracy of the technique. They increase the size of the set of hypothe
ses thereby making hypothesis removal due to the excessive set size more fre
quent. Thus, they increase the probability of removing a (currently) least likely
hypothesis that may later tum out to be optimal. Although it is possible to unify
duplicate hypotheses within the computational complexity bound of IHU+, the
necessity to do so renders the implementation of the algorithm more difficult.

- Prevents hypotheses that contain fewer faults while not explaining many symp
toms from being given unwarranted preference.
When small hypotheses are unfairly favored over bigger hypotheses, it is difficult
for the algorithm to extend a small hypothesis so that it provides an explanation to
a bigger number of symptoms. As a result, the algorithm is likely not to provide
an explanation to many observed symptoms.

4.2 Controlling hypotheses number

The second heuristic applied by Algorithm IHU limits the maximum size of the
set of hypotheses to k E O(IFI). To add a new hypothesis to Hi, when IHil = k, a
hypothesis hI for which bi (hI) is minimal must be first removed from Hi. It is possible
that symptoms to be received in the next iterations would increase the belief associated
with hI so that hI would become the most probable hypothesis. If such hI is removed
at an earlier stage of the fault localization process, the algorithm will not propose
the optimal solution. The phenomenon of removing a hypothesis that would become
optimal at a later stage of fault localization, if it was kept in the set of hypotheses, will
be referred to as the problem of premature hypothesis removal.

Although the problem of premature hypothesis removal exists regardless of includ
ing positive, lost, and spurious symptoms into the analysis, in most cases it may be
ignored. A hypothesis removal due to the big size of Hi is a rare event, and it usually
happens after many symptoms have been observed and analyzed. At this stage, the
algorithm is already converging to the final solution, thus the removed hypothesis is
not likely to become optimal in the future. However, when spurious symptoms are in
cluded in the analysis, the size of Hi grows much faster, and therefore the probability
of prematurely removing an optimal hypothesis is high. The early removal of an opti
mal hypothesis is caused by the positive component of the belief metric, whose value
may be very small if at this stage of fault localization, only a few symptoms related to
the optimal hypothesis have been observed. The crux of the problem is that b+P(hj)

is calculated as if the current set of observed symptoms was the final one.
IHU+ avoids the problem of the premature hypothesis removal by using function

ranki rather than b+ to choose a hypothesis that has to be removed. Similar to the
belief metric, function ranki is composed of positive and negative components b+P

and b+n , but the contribution of btP is weighted according to the number of symptoms
observed so far. In the following definition of ranki(hj), B:;n(hj) and BtP(hj)
represent logarithmic-scale values of btn(hj) and biP(hj), respectively.

(11)

Function f3(i) represents the contribution of the positive belief-metric component.
In general, function f3(i) should assume a very small value when the number of symp-

642 M. Steinder and A. S. Sethi

toms observed so far, i, is small, and increase asymptotically to 1 as the value of i
increases. In this study, we define f3(i) as follows.

(12)

In Equation (12), the expected evidence factor, EEF, and the average symptom
weight, SW, are model-dependent. The expected evidence factor determines how
quickly the value of f3(i) should converge to 1 in the absence of spurious symptoms.
It is proportional to the average number of symptoms which may be observed per

fault, i.e., EEF = c In this study, we use c = 4. The average symptom weight
accounts for the fact that some symptoms may be spurious, and, as such, should not
increase the value of f3(i). This value should be equal to 1 when no spurious symptoms
occur, and decrease as the spurious symptom probability increases. We define SW
using the following formula.

SW = 1- L:siESPS(Si)
L:SiES L:'IEFP(SiIM + L:siESPs(Si)

(13)

The values of EEF and SW are pre-computed at the model initialization phase, and
remain constant during the process of fault localization, as long as the fault propaga
tion model is not changed. Other definitions of function f3 are possible. For instance,
we could incorporate a temporal aspect into function f3 by increasing its value with
time. Such a definition could represent a property that, after a certain time since the
fault localization process is started, all relevant symptoms should have been observed.

4.3 IHU+ algorithm

We are now ready to define an extended version of the incremental algorithm,
IHU+, which incorporates positive, lost, and spurious symptoms in the analysis and is
parametrized by observability ratio OR, symptom-loss probability function Ploss, and
spurious-symptom probability function Ps.

Algorithm: Incremental hypothesis updating - IHU+(OR,Ploss,Ps)

let 1to = {0}, b;jn(0) = bciP(0) = 1, and a(0) = 0
for every observed symptom Si:

let 1ti = 0, and for all II E F let ,..,.(fl) = IFI + 180 I
for all h j E 1ti-l do

for all II E hj such that II E HSi
set ,..,.(ft) = min(,..,.(fl), a(hj))

add hj to 1ti and calculate bt(hj)

for all hj E 1ti -l \ 1ti do
ijPs(Si) > 0

add hj to 1ti, calculate bt (hj), and set a(hj) = a(hj) + 1
for all II E F n HSi such that ,..,.(fl) > a(hj) do

add hjU{fI} to 1ti, compute bt(hjU{fI}), and set a(hj) = a(hj) + 1
choose hj E 1tlsNI such that is maximum

Observe that the worst-case computational complexity of the algorithm that takes
positive, lost, and spurious symptoms into account is still O(1801IFI2).

Probabilistic event-driven fault diagnosis ... 643

5. Simulation study
In this section, we describe a simulation study performed to evaluate the techniques

presented in Sections 2, 3, and 4. As a real-life application domain we chose end-to
end service failure diagnosis [16], which deals with isolating faults responsible for
a malfunctioning of end-to-end connectivity between systems. The first step toward
diagnosing these problems is to isolate the responsible host-to-host services, where a
host is an intermediate node used to provide the end-to-end connectivity. In the prob
lem of end-to-end service-failure diagnosis, a fault propagation model is a bipartite
causality graph with host-to-host and end-to-end service failures at the tails and at the
heads of the edges, respectively.

The simulation study presented in this paper uses tree-shaped network topologies,
which result, for example, from the usage of the Spanning Tree Protocol [12] as the
data-link layer routing protocol. The usage of tree-shaped topologies greatly simplifies
their random generation, while it does not affect the validity of the results presented
in this section. We focus on diagnosing Byzantine types of problems, for which the
usage of a non-deterministic fault propagation model is necessary.

We design the simulation described in this section according to the model we pre
viously used to evaluate another fault localization algorithm [15], which is based on
belief propagation in belief networks. We use OR, LR , and SSR to denote the ob
servability ratio (ISo I/ISI), ratio of the number of generated alarms that were lost
to the number of all generated alarms (i.e., alarm loss rate), and probability that an
alarm is generated in a spurious manner (i.e., spurious symptom rate), respectively.
We aim at creating a homogeneous set of test scenarios to establish the upper limit on
the accuracy of the proposed techniques and its relationship to the parameters of the
simulation model. Consequently, we assume that the fault propagation model used in
the study accurately approximates the relationships that exist in the real system.

Given the simulation model with parameters OR, LR, and SSR for a given net
work topology of size n, where n represents the number of intermediate network
nodes, we design 100 simulation cases. We build a random tree-shaped topology,
and generate the probability distribution in the fault localization model. The inde
pendent failure probabilities and conditional probabilities are uniformly distributed in
ranges [0.001,0.01] and (0,1), respectively. We randomly choose ORISI observable
symptoms, and place them in the set of observable symptoms, So. In a simulation
case, we create a number of simulation scenarios (typically 100-200) as follows. We
randomly generate a set of faults that exist in the system, :Fe :F. Using:Fe and the
conditional probability distribution we randomly generate the set of observed negative
symptoms So So. When SSR > 0, we also randomly choose SSR Isol symptoms
from So, and add them to So. When LR > 0, we remove LR ISol random symptoms
from So. Then, we run algorithms IHU, IHU+, or both to produce the most probable
explanation of So, :Fd, i.e., the hypothesis with the highest value of belief metric in
the final set of hypotheses proposed by the algorithm. We compare :Fd to :Fe, and
calculate the detection rate DR = and false positive rate FPR = 1Fi;dlcl .

5.1 The impact of including positive symptoms

To evaluate the impact of including positive symptoms into fault localization, we set
LR = 0, and SSR = ° in the simulation model. Correspondingly, we use Ploss (Si) = °

644 M. Steinder and A. S. Sethi

and Ps(Si) = 0 in the fault propagation model. While setting OR to 0.5, 0.2, or
0.05, we compare DR and FPR achievable with IHU, which does not take positive
symptoms into account, and IHU+, which includes positive symptoms in the analysis.

As presented in Figs. lea) and l(b), including positive symptoms in the process of
fault localization allows DR to be significantly increased and FPR to be significantly
decreased. Overall, thanks to the positive information, the fault localization accuracy
improves. The smaller OR, the bigger the improvement. Parameter OR determines
the system instrumentation level defined as the average number of symptoms that may
be observed per fault. (Note that the average number of symptoms in the system
is a squared function of n, thus the system instrumentation level naturally improves
when n increases.) It may be concluded that, in poorly instrumented systems, positive
symptoms may be effectively used to improve the accuracy of the fault localization
process without worsening its performance.

0.95

0.9

i 0.8

·80.75

;3 0.7

0.65

0.6

0.55

....... ····i··· ..

0.5 L-.--'-__ '-_..L-_-.l...._--'-_---"
20 40 60 60 100 120

Network size

(a) Detection rate

0.5 r---.--.----,----.----r----"
0.45

0.4

IZI 0,3

!0.25

j 0.2
.f

0.15

0.1

0.05
>·0· •••• '"

20 40 60 60 100 120
Network size

(b) False positive rate

Figure 1. Accuracy achievable with algorithms IHU and IHU+ for various ORs.

5.2 The impact of ignoring symptom loss on the accuracy offault localization

To isolate the impact of symptom loss on the accuracy of fault localization, we
set SSR = 0, and vary LR from 0.0 to 0.2. In the fault propagation model, we
use Ploss = 0, and Ps = O. (The fault localization algorithm effectively ignores the
symptom loss.) We apply algorithm IHU+ to this model.

Symptom loss, when ignored by the fault localization process, does indeed de
crease its accuracy: we observe a decrease of DR (Fig. 2(a)) and an increase of FPR
(Fig. 2(b)). The strength of the symptom-loss impact on the accuracy is related to
the value of LR and the system instrumentation level. Nonetheless, the decrease of
accuracy caused by symptom loss is small (within 5% for both DR and FPR), which
allows us to conclude that IHU+ is resilient to symptom loss even when it relies on
positive information to perform fault diagnosis and does not include the explicit rep
resentation of lost symptoms in its model. To determine whether including this rep
resentation may improve the fault localization accuracy, we observe that decreasing
accuracy when symptoms may be lost is due to two factors: (1) fewer symptoms are
observed and therefore the system instrumentation level perceived by the fault man
agement application decreases, and (2) some symptoms are incorrectly interpreted as
positive ones. The relative contribution of these two factors determines the upper
bound on the possible increase in the accuracy resulting from including symptom loss

Probabilistic event-driven fault diagnosis .,. 645

in the fault propagation model. Observe that the impact of only the second factor may
be alleviated by including the representation of symptom loss in the model.

0lI=0.5 -
OR-O.05 ----.

LR-O.O >+-<
IHU OR,O,O), LR=O.1 >+-<
IHU OR,O,O), LR-O.2

O.B 1..--..1. __ '--_-'-_-'-_-..1._---"
20 100 120

(a) Detection rate

0.5.....---.--.,..--..,.-----r---.----"

0.45

0.4

OR.0.5 -
OR-O.05 ----.

LR=O.O _
IHU+(OR,O, ,LR=O.I
IHU+(OR,O,O , LR--o.2

(b) False positive rate

Figure 2. The impact of symptom loss on the accuracy for various ORs and LRs.

To estimate the relative impact of factors (1) and (2), we perform another exper
iment. We execute the simulation study using the following parameters of the sim
ulation model: (1) OR = 0.05, LR = 0.0, (2) OR = 0.05, LR = 0.2, and (3)
OR = 0.04, LR = 0.0. The amount of information provided to the fault localization
algorithm in the second and third cases is the same, because 0.05(1-0.2)=0.04. Thus
the difference between the accuracies observed in the first and second cases represents
the impact of factor (1). The difference between the accuracies observed in the second
and third cases represents the impact of factor (2). As shown in Figs 3(a) and 3(b)
the overall decrease of accuracy due to symptom loss is split evenly between the two
factors. This lets us conclude that, were symptom loss represented in the fault propa
gation model, the resulting improvement in accuracy could not be greater than 2-2.5%.
Indeed, our experiments with a fault propagation model using Ploss (Si) = 0.2 did not
reveal any statistically provable improvement in accuracy. With higher values of LR,
some small improvement in accuracy has been observed.

0.95

0.9

I O.B

00.75

0.7

0.85

OR.O.04 -
OR.O.OS ----.

IHU+(OR,O.O/. LR=O.O
IHU+(OR,O,O • LR=O.2 >+-<

O.B 1---..1. __ '--_-'-_-'-_-..1._---"
20 40 eo eo 100 120

Networkelze

(a) Detection rate

0.5 r---.--.,..--..,.-----r---.----"

0.45

0.4

io.35

• 0.3

10.25

.ll 0.2
af

0.15

0.1

0.05

20

OR.O.04 -
OR=O.05 ----.

IHU+(OR.O,Q), LR=O.O _
IHU+(OR.O,O), LR=O.2 >+-<

40 eo eo 100 120
Network size

(b) False positive rate

Figure 3. The impact of factors (1) and (2) in system with OR = 0.05 and OR = 0.2.

This simulation study assumes that all symptoms are equally likely to be lost, while
in reality Ploss (Si) is different for different symptoms, e.g., when symptom are trans-

646 M. Steinder and A. S. Sethi

mitted in-band. We expect that when the symptom-loss probabilities are not equal, the
benefit of including symptom loss in the analysis would be more evident.

5.3 The impact of analyzing spurious symptoms

The impact of including spurious symptoms in the fault localization process is eval
uated by applying IHU+ to fault propagation models using Ps(Si) = 0 and Ps(Si) =
SSR, respectively. We vary OR between 0.5 and 0.2, and use SSR of 0.01 and 0.1.
As shown in Fig. 4(a), the inclusion of spurious symptoms in the fault localization
process in small networks decreases DR. This is explained by the fact that in poorly
instrumented networks only a few symptoms are available to the fault localization pro
cess. When the possibility of spurious symptoms is taken into account, and the amount
of available evidence is small, the algorithm concludes that there is no sufficient ev
idential support for the existence of faults, and considers all the observed symptoms
spurious. Otherwise, DR would be higher (Fig. 4(a» but FPR would be very high
as well (Fig. 4(b ». When system instrumentation improves, so does the DR of IHU+
with an accurate representation of spurious symptoms in the fault propagation model.
Overall, we conclude that including spurious symptoms in the fault propagation model
has a big impact on the accuracy of the fault localization algorithm. However, to take
full advantage of this capability, the system instrumentation level should be increased
correspondingly to the rate with which spurious symptoms are generated.

20 40 60
Network size

(a) Detection rate

80 100

0.8

E
GI 0.6
il

0.4
u.

0.2

/::::.j::i',....'t.-." ...

tI'/" ,:
it'
i'

(

20

IHU+{OR, 0, SSR) >+-<
IHU+(OR, 0, 0) t+-<

OR=0.5,LR.0,SSR=0.Q1 -
OR = 0.5, LR = 0, SSR • 0.1 ••••.
OR=O.2,lR=O,SSR=O.1·····

40 60
Network size

80

(b) False positive rate

Figure 4. The change of accuracy as a result of spurious symptoms analysis.

5.4 The impact of conditional probability estimation errors

100

In the final set of experiments we evaluate the impact of conditional probability
estimation errors on the fault localization accuracy. We consider a scenario in which
instead of the accurate conditional probability values, a small number of confidence
levels, c, are being used. To represent the real-life probability p, the model uses the
ith confidence level, where i = [pc J. Thus, effectively, real-system probability p

is mapped into propagation-model weight +fc. The creation of the probability
model by a human is feasible, if high fault-localization accuracy may be achieved
even when only a small number of confidence levels is used.

Fig. 5(a) and 5(b) compare the DR and FPR of Algorithm IHU having exact
knowledge of the probability distribution with the DR and FPR achieved using one,

Probabilistic event-driven fault diagnosis ... 647

two, and three confidence levels for various observability ratios. The figures prove an
important property of the algorithm presented in this paper: it allows the expert to use a
small set of meaningful qualitative probability assignments such as unlikely, possible,
and likely, rather than exact probabilities, while preserving very high accuracy.

0.9

0.85

0.8
c
,g0.75

0.7

0.65 exact
three confidence levels I-t--t

0.6 two confidence levels ..e-t
one confldence level

0.55

0.5 L....L_-'---'---'_..L--L..--..JL..--1-.....L---1I
10 20 30 40 50 60 70 80 90 100

Network size

0.45 exact
three confidence levels H-I

0.4 two confidence levels I-B-l
one confidence level I-*-i

CD 0.3

'[0.25

,; 0.2
tl!

0.15

0.1

0.05

w 50 60 ro 60 90
Network size

(a) Detection rate (b) False positive rate

Figure 5. Accuracy for various granularities of confidence levels.

6. Conclusion
The technique proposed in this paper isolates the most probable set of faults through

incremental updating of the symptom explanation hypothesis. It uses a probabilistic
model, which makes the technique applicable to systems with a high degree of non
determinism. While assuming the pre-existence of such a model, the technique is
robust against the model's imperfection. As shown in the simulation study, the tech
nique offers high accuracy, even in the presence of observation noise. It also has low
polynomial complexity. When applied to the problem of end-to-end service failure di
agnosis, our implementation of the technique solves multi-fault scenarios in networks
composed of more than 100 routers or bridges within less that 10 seconds.

Since fault localization is not a new problem and many fault localization techniques
have already been proposed, it is important to consider comparing these techniques
with respect to their accuracy and performance. Unfortunately, the techniques pro
posed in the literature [4, 7, 10, 15-17] that are suitable for bipartite models differ
with respect to assumptions they are based on, capabilities, and problems they aim at
addressing. Some of the properties that distinguish lHU from the previously published
approaches are introduced in Section 1. The different assumptions and capabilities
render the techniques difficult to compare in quantitative terms as they make any such
comparison inherently unfair. A set of objective criteria that allow the comparison to
be performed have yet to be identified, which is an interesting future research problem.

Nevertheless, IHU may be compared to our previously investigated fault localiza
tion approach, which is based on belief updating in belief networks [15, 16]. The
belief-network approach is more flexible as it does not constrain the shape of a fault
propagation model to a bipartite one, but it is not incremental and its computational
complexity, even in bipartite models, is higher. Thus, while the belief-network ap
proach offers similar accuracy and resilience to model imperfections and observation
noise as IHU, its scalability is significantly lower.

648 M. Steinder and A. S. Sethi

Some of the observations made in the simulation study presented in this paper, e.g.,
the dependence of the benefit resulting from positive symptoms analysis on the system
instrumentation level or necessity to increase system instrumentation level in systems
with high spurious symptoms rates, are rather natural and could have been anticipated.
Our study allows these observations to be quantified. Since similar results have also
been obtained in the analogous study on the belief-network approach [15], we believe
these results apply to the fault localization problem in general.

Future work will include designing a distributed version of the algorithm, which ex
plores the domain semantics of management systems. In the application to end-to-end
service failure diagnosis, the distributed technique will follow the initial ideas pre
sented in [14]. The algorithm presented in this paper assumes that alternative causes
of the same event should be combined using logical OR. It will be extended to allow
other models such as AND or NOT models. 2

References
[1] K. Appleby, G. Goldszmidt, and M. Steinder. Yemanja-a layered event correlation system for multi

domain computing utilities. Journal of Network and Systems Management, 10(2):171-194,2002.
[2] A. T. Bouloutas, S. Calo, and A. Finkel. Alarm correlation and fault identification in communication

networks. IEEE Transactions on Communications, 42(213/4):523-533, 1994.
[3] 1. D. Case, K. McCloghrie, M. T. Rose, and S. Waldbusser. Protocol Operationsfor Version 2 of the

Simple Network Management Protocol (SNMPv2). IETF Network Working Group, 1996. RFC 1905.
[4] C. S. Chao, D. L. Yang, and A. C. Liu. An automated fault diagnosis system using hierarchical

reasoning and alarm correlation. Journal of Network and Systems Management, 9(2): 183-202,2001.
[5] R. H. Deng, A. A. Lazar, and W. Wang. A probabilistic approach to fault diagnosis in linear lightwave

networks. In Integrated Network Management III, pp. 697-708. Apr. 1993.
[6] A. Dupuy, J. Schwartz, Y. Yemini, G. Barzilai, and A. Cabana. Network fault management: A user's

view. In Integrated Network Management I, pp. 101-107. May 1989.
[7] M. Fecko and M. Steinder. Combinatorial designs in multiple faults localization for battlefield net

works. In IEEE Military Commun. Corif. (MILCOM), McLean, VA, 2001.
[8] P. Hong and P. Sen. Incorporating non-deterministic reasoning in managing heterogeneous network

faults. In Integrated Network Management II, pp. 481-492. Apr. 1991.
[9] G. Jakobson and M. D. Weissman. Alarm correlation. IEEE Network, 7(6):52-59, Nov. 1993.

[10] I. Katzela and M. Schwartz. Schemes for fault identification in communication networks. IEEE
Transactions on Networking, 3(6):733-764, 1995.

[11] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. A coding approach to event correlation. In
Integrated Network Management IV, pp. 266-277. May 1995.

[12] R. Perlman. Interconnections, Second Edition: Bridges, Routers, Switches, and Intemetworking Pro
tocols. Addison Wesley, 1999.

[13] M. Steinder and A. S. Sethi. Non-deterministic diagnosis of end-to-end service failures in a multi
layer communication system. In Proc. of ICCCN, pp. 374-379, Scottsdale, AZ, 2001.

[14] M. Steinder and A. S. Sethi. Distributed fault localization in hierarchically routed networks. In Int'l
Wksp on Distributed Systems: Operations and Management, pp. 195-207, Montreal, QC, Oct. 2002.

[15] M. Steinder and A. S. Sethi. Increasing robustness of fault localization through analysis of lost,
spurious, and positive symptoms. In Proc. of IEEE INFOCOM, New York, NY, 2002.

[16] M. Steinder and A.S. Sethi. End-to-end service failure diagnosis using belief networks. In Proc.
Network Operation and Management Symposium, pp. 375-390, Florence, Italy, Apr. 2002.

[17] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and robust event correlation.
IEEE Communications Magazine, 34(5):82-90, 1996.

2Tbe views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied of the Army Research Lab or the U.S.
Government.

HIERARCHICAL END-TO-END SERVICE
RECOVERY

Mohamed EI-Dariebyl, Dorina Petriul and Jerry Rolia2

1 Systems and Computer Engineering Dept., Carleton University, Ottawa, ON, Canada
K1S5B6 {mdarieby, petriul@sce.carleton.ca

21nternet Systems and Storage Lab., Hewlett-Packard Labs, Palo Alto, CA, 94304, USA
jar@hpl.hp.com

Abstract: Failed networks, for example MPLS, can cause signaling storms the size of
which can grow dramatically with network size. This paper presents a new
scalable fault notification protocol that reduces the size of this storm. The
protocol causes failure notification signals to travel vertically up and down a
network hierarchy instead of horizontally along the service routes. This
reduces the signaling required for longer paths and provides signaling
scalability for larger network sizes. The protocol also alleviates the number of
fault notification signals by hierarchically aggregating them. Aggregation is
based on path management information maintained in the network hierarchy.
We show how the protocol reduces the size of the signaling storm analytically
and with simulation. However, this comes at the price of increased storage
overheads when compared with existing restoration techniques.

Keywords: Service recovery, Hierarchical networks, Fault notification, MPLS

1. INTRODUCTION

The efficient provisioning of network services is a competitive differentiator
among network Service Providers (SP). A SP has to ensure service survivability by
recovering network failures in a responsive manner. In general, end-to-end service
recovery requires the notification of ingress network nodes about such failures. Fault
notification constitutes a major part of recovery time and is a fundamental criterion
for evaluating the performance of the recovery process [3]. It results in flooding the
network with recovery signals (a.k.a. signaling storm [2]). The magnitude of the

http://dx.doi.org/10.1007/978-0-387-35674-7_66

650 M.El-Darieby, D. Petriu, and 1.Rolia

signaling storm grows dramatically with network size because 1) services are
expected to span larger numbers of network nodes as the network size grows; and 2)
the number of services carried over an individual link grows proportionally as the
transport technology matures (e.g. OC 92 versus OC 3 links).

In this paper, we propose a new Scalable end-to-end Path Recovery Protocol
(SPRP) that addresses scalability aspects of the fault notification problem. SPRP
works in conjunction with a service creation protocol called the Hierarchical
Distributed Routing Protocol (HDRP) [9]. Both HDRP and SPRP use a standard
hierarchical network structure (e.g. the ATM PNNI). However, in SPRP and HDRP,
hierarchical nodes! (Bandwidth Brokers) participate in service provisioning (routing,
signaling & fault notification), whereas Peer Group Leaders in PNNI only reflect
static network connectivity information and do not participate in fault notification.

To provide signaling scalability for longer paths, failure notification signaling
messages travel vertically up and down the network hierarchy instead of
horizontally along the routes traversed by the paths. This is enabled by the path state
information maintained at nodes at higher levels of the hierarchy by HDRP.

SPRP alleviates the number of fault notification signals by aggregating signaling
messages based on the physical proximity of ingress routers. The protocol uses path
management information maintained in the network hierarchy to aggregate the
signals. A single notification message will be raised per path aggregate (instead of
one per individual path).

We evaluate analytically the performance of SPRP and compare it to existing
fault notification approaches. Analytical analysis gives insights into why and how
SPRP reduces the size of the signaling storm compared to these approaches. The
simulation experiments we conducted confmn these analytical results.

To the best of our knowledge, this work is the first to propose hierarchical end
to-end service recovery. We present SPRP in the context of Multi-Protocol Label
Switching (MPLS) [5, 13] because MPLS is the lowest layer of the network
architecture that has knowledge of end-to-end paths. This implies that the fastest
end-to-end path recovery is achievable at this layer. In addition, MPLS is becoming
the de facto standard for controlling many IP-based network transport infrastructures
[2]. An MPLS service is a path! route that traverses many networks.

This paper is organized as follows: In section 2, we describe the proposed
recovery protocol, and in the following section, we relate our protocol with other
research and standards. Section 4 provides analytical analysis and simulation results
regarding the overhead of SPRP and compares it to other schemes. Conclusions are
offered in the last section.

2. IDERARCHICAL SERVICE RECOVERY

This section describes our approach to hierarchical networks, the Scalable Path
Recovery Protocol and introduces signaling aggregation to enhance its performance.

Hierarchical end-to-end service recovery 651

A hierarchical network is a traditional solution to the network-scaling problem
[12]. Nodes are organized into different interconnected sub-networks called
Autonomous Systems (AS)! domains. An AS consists of a number of interconnected
network nodes (i.e. IP routers or ATM switches). We assume Service Level
Agreements are in place among ASs. A Bandwidth Broker (BB) manages and
maintains topological and state information about the nodes and links of an AS. BBs
are connected to each other and to physical nodes with fault tolerant connections.

The process of grouping BBs (at one hierarchy level) into logical ASs and
abstracting such ASs via a BB (at the next higher level) is done at all levels of the
hierarchy (see Figure 1). The physical nodes of the network belong to levell, and
their managing BBs to level 2. Level-2 BBs are interconnected in a manner that
corresponds to the interconnectivity of level-l ASs. Level-l BBs are grouped into
logicallevel-2 ASs. Each level-2 AS is represented and managed in turn by a level-3
BB, which maintain topology and state information about level-2 ASs, and so on.
This hierarchy is assumed to be static. Fault-tolerant signaling channels between
different BBs (same-level and child-parent) are also assumed. Internet standards
(e.g. OSPF and BGP) propose a two-level hierarchy. The ATM PNNI standard
supports a hierarchy of up to 105 levels [12].

BBs are software processes that can run on network nodes or on separate server
nodes. We assume the latter approach in accordance with recent directions on the
surveillance and control of the MPLS/TE-based networks that suggest the use of a
centralized resource manager (i.e. BB) within each Autonomous system [15, 16].
Server nodes are cluster-based server farms that can grow in capacity based on the
intensity of route calculation requests. Server nodes are implemented in branch
offices or Internet Data Centers. As a result, storage and communications overhead
are not a system concern.

2.1 The Scalable Path Recovery Protocol (SPRP)

SPRP solves the problem of very long paths by signaling vertically, instead of
horizontally, up and down the network hierarchy. We assume that SPRP messages
have highest priorities. Figure 1 gives an example of SPRP signaling. The SPRP
algorithm is shown in Figure 2. We use the following notation:

Vik: a network node or a BB with address i, at level k. Physical nodes have k =1

and BBs have k > 1
pid: (JD, Vsk): a pair that uniquely identifies a path
ParenCBBk (Vil): a level k BB that has a view of node Vil

Pik: (i, Vsb Vab Vbk, ... vtJ: a level k path with pid= i that has Vsk as ingress node, Vtk
as egress node
Plistk: list of pids of failed level k paths
AggPjk: (j, Vjb V(j-l)b-·· Vsb Plistk): a level k aggregate route that aggregates a set
of APi1k-l) with pids in Plistk and that traverses the route listed

652 M.EI-Darieby, D. Petriu, and 1.Rolia

We use the "." notation to refer to members of a data structure. For example, to
refer to the ingress router for path Pib we use Pik.lngress.

SPRP is executed in response to a failure detected by a node, vfl. A Failure
message is sent vertically up the hierarchy that contains a list of pid's and ingress

routes of paths affected by the failure. As a ParencBBk (VII) recieves a Failure
message, it scans the list of affected paths and if it views Pjk• Ingress where Pjk €

Plistb it notifies its child BB that views this ingress router. This is accomplished by

sending a FailureNotify message down the hierarchy. The entry for Pjk is then

removed from Plistk. Then, ParentJjBk (vfl) sends a Failure message up the

hierarchy to its parent BB (i.e. ParentJjBk+I (VII».
This is repeated up the hierarchy until ParenCBBL+I (VII), which we call RootBB,

is reached. RootBB is defined to have a view of all ingress routers of the paths that
belong to PlistL. RootBB sends a FailureNotify message down the hierarchy to each

ParenCBBL(Ptuingress) where PtL PlistL.
A ParencBBk (Pjk-ingress) that receives a FailureNotify message forwards it

down the hierarchy to notify ParenCBBk.I (Pjk-ingress) about the failure in Pjk. This

is repeated down the hierarchy till the FailureNotify message reaches Pjk-ingress.
This completes the notification process for this path.

As an example, Figure 1 shows three uni-directional paths that are affected by a
failure in the link connecting nodes 2.1.2 and 2.3.2. The paths follow the thick lines
at level 1. The ingress and egress nodes of the three paths are as follows: 2.3.1 and
1.4.1 for path #1, 2.1.5 and 2.2.3 for path #2 and 4.3.4 and 2.2.1 for path #3. The
master node for the failed link (node 2.1.2) sends Failure message (#1 in Figure) to
BB 2.1 that contains the pids of the affected paths (#1, 2 and 3). BB 2.1 scans the list
of ingress nodes of failed paths looking for the nodes that it has a view of. It sends a
FailureNotify message (#2) to node 2.1.5 about the failure in path #2 and removes
the pid for path #2 from the list of affected paths. As the list is not empty yet, BB 2.1
sends a Failure message (#3) to BB 2. BB 2 finds the ingress node of path #3 to be
within its view, so it sends FailureNotify message (#4) to BB 2.3 and removes path

#3 from the list. BB 2.3, in turn, sends a FailureNotify message (#5) to physical

node 2.3.1. Now, BB 2 realizes that some paths (i.e. #1) are out of its view, so it

sends a Failure message (#6) to BB *. BB * has a view of node 4.2.1 so it sends a

FailureNotify message (#7) to BB 4. BB 4 notifies BB 4.3 that in turn notifies node
4.3.4 of the failure (message #8 and #9). Now, BB * realizes there are no path left to
be processed and it stops forwarding messages up the hierarchy.

The number of SPRP vertical notification messages required for each affected
path will be 2 *(K-J) where the BB that has a view of the failure master node and the
ingress router of the affected path is at level K. One extreme case (e.g. path #2) is if

the two nodes are in the same network domain then RootBB is at level 2 and the
number of notification messages is 2. The other extreme (e.g. path #1) is where

RootBB coincides with the root of the network hierarchy (level 4) where the number
of notification messages will be 6 messages.

Hierarchical end-to-end service recovery 653

Upper Levels

Level 4

Level 3

Level 2

AS I

Levell

AS 1.4

\
" BB* ,. \

- .. Notify

...... FailureNotify

Failed path

• Ingress node of
Failed path

.... \
. . u AS4

: 2.4 '.

2.; ; \.
".

Figure 1. The Hierarchical Restoration Protocol

2.2 SPRP with Signaling Aggregation

To enhance the performance of SPRP, we propose to take advantage of the
physical proximity of the ingress routers of some of the affected paths, such that one
notification message is sent for them instead of a message for each path. This
exploits path management information maintained in the network hierarchy by
HDRP.

Information about individual paths that traverse the same route and that have
ingress routers within a network domain can be aggregated. Aggregated information
describes an aggregate path such that network nodes along this route identify the set
of individual paths (the aggregate path) by a single pid. The concept of an aggregate
path resembles that of Aggregation Areas [11]. An individual path is a (non
aggregated) physical or abstract path. HDRP implements path aggregation at all
levels of the network hierarchy to reduce information storage overheads.

Aggregation is recursive. An aggregate path may aggregate a number of
aggregate paths, each of whom aggregates in turn a number of lower level
(aggregate or individual) paths. In other words an aggregated path is a rooted
hierarchy (tree) of aggregate and individual paths.

654 M.El-Darieby, D. Petriu, and 1.Rolia

Switch

}

Case Failure (FailedPlist(l.l) {
Initialize FailedPlistl = NULL;
For (each path Pk1 E FailedPlist(l_l){
If (Vil is ParencBB (Pkl. Vsl»

Send (FailureNotify, Pk1. Vsl, FailedP;(l_l);
Else{
If (Pkl E AggPjl) {

}

If (AggPj1Ji! FailedPlistD
FailedPlistl += {AggPkd;
FailedPlistl Pk1

Else FailedPlistl +={ AP(Pkl); }
}

}
Send (Failure, ParenCBB (Vil), FailedPlistl);

}/*end case*/

Case FailureNotify (FailedPlist(l+l) {
If (Vil is a physical node) Switchover &
For (each path Pk1 E FailedPlist(l+l){
If (Pkl is an Aggregate path){

For (each Pjl E Pk1)
Send (FailureNotify, ParencBB(Pjl.Vsl), Pjl.list)

}
Else

Send (FailureNotify, ParenCBB(Pk1.Vsl), Pjl.list);

}/*end case*/

Figure 2. The SPRP algorithm

SPRP uses aggregate paths to reduce the size of the signaling storm. SPRP raises
one notification message for each aggregate path instead of a notification message
per each individual path. The message contains the pid of the aggregate path rather
than pids of individual paths.

A scenario for SPRP with signaling aggregation is as follows: as node Vjl detects
a network failure, it sends a Failure message up the hierarchy to its parent BBs.
ParenCBBivjl) applies the SPRP algorithm with an extra step: parenCBBivjl)

composes a new list of affected paths replacing individual component paths with
their aggregate path. If an individual path is not to be aggregated with other paths, it
is added to the list as an individual path. Then, ParenCBBivjl) forwards the Failure

message to ParencBB{k+dvil). This is repeated up the hierarchy until RootBB has
been notified of the failure. RootBB sends FailureNotify messages to its child BBs
that have these ingress routers within their views.

Hierarchical end-to-end service recovery 655

A BBik that receives a FailureNotify message has a view of the ingress routers of
the failed path (aggregate or individual) in the message. In case of an aggregate path,
BBik deaggregates it into its children paths. A FailureNotify message is sent per each

child path down the hierarchy. In the case of an individual route, only one
FailureNotify message is sent down the hierarchy. This is repeated down the

hierarchy until all the ingress routers have been notified of the failure.
For example, Figure 3 shows 4 paths following the thick lines at level 1. The

ingress and egress nodes of the three paths are as follows: 4.3.4 and 2.2.1 for path

#1, 4.3.2 and 2.2.1 for path #2, 4.2.1 and 2.2.1 for path #3, and 4 2.1.5 and 1.4.1 for
path #4. As the physical link connecting node 2.1.2 and node 2.3.2 fails, node 2.1.2
sends a Failure message (#I,in Fig. 3) to BB 2.1. BB 2.1 realizes that. the ingress for

path #4 is within its view. So, it sends a FailureNotify message (# 2) to the ingress

of that path (node 2.1.5) and removes its entry from the list. BB 2.1 also realizes that

paths #1 and #2 have the same ingress router at level 1. So, it replaces the entries for
paths #1 and #2 with a signle entry for their aggregate path (which we call AggPn).
Then, it sends a Failure message (#3) to BB 2 with the new list of affected paths.

BB 2 finds it has no view of ingress routers of the paths in the list. BB 2 realizes that

AggPJ2 and path #3 have the same ingress router at level 2, so it removes replaces
their pid's with the pid of their aggregate path (AggPH). Then, it sends a Failure

message (#4) to BB *. BB * has a view of the ingress routers of the aggregate path.

It sends a FailureNotify message (#5) to BB 4 that views the ingress nodes of
AggPJ3. BB 4 decomposes the aggregate path into its component paths (which are
AggPI2 and path #3). It sends FailureNotify messages to BB 4.2 about the failure in
path #3 and to BB 4.3 about the failure in AggP12• BB 4.2 sends a FailureNotify
message to node 4.2.1 about the failure in path #3. BB 4.3 notifies the ingress
routers of the different component paths of AggPl2• That is, it sends a FailureNotify
messages to nodes 4.3.4 and 4.3.2. This completes the failure notification process.

3. RELATED WORK

Network recovery has two basic models [11]: 1) restoration where a recovery
path is established on demand as the network nodes are notified with the fault; and

2) protection switching where the recovery path is established prior to the
occurrence of the fault. The scope of the recovery process may span a single
network link, a segment (a set of links) of a path or an end-to-end path.

MPLS path recovery involves the following processes [13]: working and
recovery path setup, fault detection and notification, switchover from the working
path to the recovery path, fault repair [8] and a switchback from the recovery path to
the working path.

656 M.EI-Darieby, D. Petriu, and].Rolia

Upper Levels
- + Notify

Level 4 FailureNotify

Failed path
Level 3

Level 2

............. , ..•.
.....

AS(4)

.$,

\.:::.
....... \

....

\\)

Levell

: /

Figure 3. Hierarchical Service Recovery Signaling

In [1], a signaling protocol for fast restoration in optical networks is proposed.
The protocol may be used for span and end-to-end restoration. The end-ta-end
restoration mechanism is as follows: A failure indication message is sent by the
master node of the failed link along the working path towards the ingress node of the
path. This message is transmitted periodically every 90 ms until a Failure
acknowledgment message is received from the ingress node. Then, the ingress node
sends a switchover request message towards the egress router of the path along the
recovery path. This message is transmitted periodically every 90 ms until a
switchover response message is received from the egress node. The authors define
the data structures maintained at different nodes, and the general format for the used
messages.

Existing MPLS path restoration schemes [1, 11] require the master node of the
failed link to re-transmit failure notification signals periodically if they do not
receive an acknowledgement from the ingress node of the MPLS path.
Consequently, as an ingress node for a path receives a failure notification message,
it acknowledges that through sending a FailureAck message. In SPRP, the
FailureAck message travels exactly the same route as the failure notification
message but in the reverse direction.

In [5], a "scalable and bandwidth efficient" path recovery mechanism for MPLS
networks is proposed. The mechanism does not require acknowledgements or
handshaking because it is based on the periodical transmittal of failure notification

Hierarchical end-to-end service recovery 657

messages until the "switching over" nodes learn of the failure. Specifically, the
authors focus on fault notification for aggregated! (merged) MPLS paths. The
mechanism is scalable because it builds a point-to-multipoint Reverse Notification
Tree (RNT) that is the exact mirror of the aggregated working paths. Due to the
sending of only one signaling message along the shared segments of the RNT, the
mechanism enables a reduction in the signaling overhead. We evaluate this method
and compare it to SPRP in the following section.

4. EVALUATION

In this section we evaluate analytically the performance of SPRP and compare it
to existing fault notification approaches. Using multicast is a price to pay for faster
fault notification. This is not exclusive to SPRP (see RNT described in section 3).
Then we present the results of our simulation experiments that evaluate how SPRP
reduces the size of the fault notification tree compared to standard approaches [13].

The analytical comparison is based on the power-law relationship [4] that relates
the total number of multicast links and the average unicast path length in terms of
the number of receivers:

(1)

where L(m) is the total number of multicast links in the multicast tree, J.l is the
average path length between any two nodes, m is the number of receivers in the tree
(which represents the number of ingress routers to be notified) and k f::i 0.8 for a
number of real life and generated topologies.

Equation (1) characterizes the reduction in the size of the signaling storm
achieved by the RNT [5] approach that builds a multicast tree as compared to
unicast approach [1].

SPRP hierarchically unicast fault notification signals up and down the hierarchy.
SPRP with aggregation builds a number of multicast trees to perform fault
notification. Each multicast tree is rooted at a BB that has a view of the master node
of the failed link and an ingress router. The multi cast tree has the ingress routers of
the affected paths as its leaves. Equation (1) characterizes the effect of aggregation
on SPRP. Aggregating singling messages takes advantage of the savings multicast
achieves as compared to the unicast case. This comes at the non-trivial cost of
implementing multicast. In SPRP, JlSPRP is on average equal to L, which is the
number of levels in the network hierarchy.

SPRP with aggregation further reduces the size of the signaling storm with
respect to RNT. This is because SPRP has much smaller JI than RNT. We can
estimate JlRNT as the effective diameter of the network, which gives the average
number of hops between any two nodes in the network with high probability (about
80%). According to [10], the effective diameter of an N-nodes network (i.e. JlRNT) is:

658 M.EI-Darieby, D. Petriu, and J.Rolia

(
2)'/H

f.JRNT = N 2E
(2)

where H is the hop-plot exponent which is a constant value for the graph. For
inter-domain data sets, the average value for His 4.7 [10]. E is the number of edges
in the graph and can be estimated by:

EN = 1---N (1)
() 2{R+l} N R+' (3)

f.JRNT depends on network size. We choose R = -0.80 which is the value for many
Internet topologies discussed in [10]). Substituting from (3) into (2) with the values
given above, then f.JRNT can be roughly approximated by:

I'::l (0.2 * N)"4.7
f.JRNT 1.2 _ N-O.2

(4)

For our simulation experiments, we used the OMNet++ simulator [14]. We
developed simulation models for different topologies of the network and for
different hierarchy structures. We considered networks of 256 and 1296 nodes and
hierarchies of 3 and 5 levels. The toplogies are described in Table I.

TABLE I. DIMENSIONS FOR NETWORK HIERARCHY STUDIED

ffierarchy HI H2
Network Size 256 256 1296 1296
Number oflinks E given by (1) 53464 53464 199517 199517
Number of levels K + 1 3 5 3 5
Number of nodes per domain m 16 4 36 6
Number of phsyical domains 16 64 36 216

Path creation requests are assumed to arrive following a Poisson distribution.
The source and destination of each connection is randomly chosen. 2000 requests
are generated during each simulation run. At the end of each simulation run,
network failures are generated on each node of the physical network that carries a
specific number of paths. The number of SPRP messages caused by each of these
failures is counted. Multiple runs are carried out and their results are averaged. We
used the fully connected topology aggregation scheme when building the hierarchy.

Hierarchical message aggregation reduces the size of the fault notification
signaling storm. This is shown in Figures 4 and 5 that compare the average size of
the storm for standard unicast approaches to its average size with SPRP. The size of
the storm is characterized in terms of the number of affected paths. The Figures
show the effect of the aggregation of signaling messages on the size of the signaling

Hierarchical end-to-end service recovery 659

storm by showing the average size of the storm with no signaling aggregation to its
size with signaling aggregation.

SPRP proves to be a scalable technique for failure notification. Hierarchical
signaling aggregation results in small increases in the size of the signaling storm as
the network size increase. For example, the average size of the signaling storm for
300 failed paths is 1310 and 1520 messages for hierarchies H2 and H4 (which have
the same number of levels), respectively. This is relatively a small increase in the
size of the signaling storm compared with the increase from 4300 to 6970 messages
with the unicast approach (for the same network sizes and number of paths).

The deeper the hierarchy is, the larger the size of the signaling storm for the
same network size and for the same service workload. Analytically, a deeper
hierarchy has a larger p. A deeper hierarchy also results in a smaller domain size and
consequently the ingress routers of the affected paths will be more sparingly
distributed among network domains. This results in larger number of smaller
multicast trees built by SPRP. This alleviates the overhead of building and
maintaining them as compared with RNT.

Figures 6 and 7 show the control overhead required for SPRP operation. The
average number of BBs managing a path is shown in terms of the path length. The
effect of different hierarchy structures on the control overhead is also shown. The
required number of BBs to manage a path is a good indication for the overhead of
SPRP. It reflects the amount of management data that has to be maintained in the
hierarchy as a function of the length of the corresponding path.

For the same network size at the physical level, as the hierarchy grows deeper,
the domain size becomes the number of physical domains traversed by a
path of a given length is likely to become larger, and consequently a larger number
of managing BBs is required.

For example, the domain sizes are 16 and 4 for hierarchies HI and H2,
respectively. In Fig. 6, a path of 20 nodes is managed by an average of 9.4 BBs in
HJ, and of 15.5 BBs in H2. The same argument applies for different networks
considering hierarchies with the same depth (e.g. HI and H3)' To manage path of 20
nodes, H3 requires an average of 5.6 BBs (in Fig. 7) as opposed to the 9.4 BBs
required by HI' HI and H3 correspond to the two-tier architecture of the Internet.

5. CONCLUSIONS

We propose a new Scalable end-to-end Path Recovery Protocol (SPRP) that
results in faster recovery times. In SPRP, signaling messages travel vertically up and
down the network hierarchy instead of horizontally along the paths. This reduces the
number of signaling messages to notify the ingress router of the path. The protocol
uses path management information maintained in the network hierarchy to aggregate
signals so that a single notification message would be raised per the path aggregate.

660 M,EI-Darieby, D, Petriu, and l,Rolia

12000 E -:;-no hierarchy

.9
II) -£r-- H1·aggregated

10000 0> c -x - H2·aggregation 'iii
8000 C

0> ••• iii ••• 'H1·no aggregation Ii 'iii
6000 'l5

_ ... + H2·no aggregation

OJ
4000 N

'iii

2000
,./ " .+-.--j--.. • ' .. 9' X--x

0
=_-----u-u

"'F'

30 90 150 210 270 330 390

256-node network # failed paths

Figure 4, Average size of signaling storm in terms of path length

12000 E no hierarchy
.9 ./1 10000
II) -£r--H3·aggregaUon
0>
,5 ·x H4-aggregallon ,-/1

8000 iii
/' c •• ,iii, • ,H3·no aggregallon 0>

6000
'iii

H4-noaggregallon , (.. 'l5 + ..

OJ
4000 N

. j @" 'iii
--+--9,·0" .

2000 .-+-.---+"" ,e' X-X--x St X-X-r.t-<
0 , ,

30 60 90 120 150 180 210 240 270 300 330 360 390

1296-node network # failed paths

Figure 5. Average size of signaling storm in terms of path length

256-node network 1296·node network -o-H3

18 IB -+-H4
&! 16 16

14 &! 14
':,12 III 12

i,10 10

l' 8 :! 8
Iii 6 :e .. 4 ..

2
0

5 8 10 13 15 16 18 20 25 30 B 10 13 15 16 16 20 25 30

Path length Path length

Figure 6, Average number of BBs managing a path
in terms of path length

Figure 7: Average number of BBs managing a
path in terms of path length

Hierarchical end-to-end service recovery 661

SPRP is a scalable technique for failure notification as the size of the network

grows as shown by analytical analysis and simulation results. The performance of

SPRP is a function of the number of levels in the network hierarchy while the

performance of RNT depends on network size. The protocol provides imporved

performance when compared with the RNT and standard unicast approaches.

Hierarchical structure affects the size of the signaling storm. The deeper the

hierarchy, the larger the size of the signaling storm for the same network size and for

the same service workload. These advantages come at the cost of increased control

overhead required in the network hierarchy.

REFERENCES

[1] D. Brungard et al, "Generalized MPLS Recovery Functional Specification," IETF Draft,
"Work In progress," August 2002.

[2] G. Bernstein, et aI, "Optical Inter Domain Routing Considerations," IETF draft, "Work In
progress," Nov. 2001.

[3] G. Li, J. Yates, R. Doverspike, and D. Wang; "Experiments in Fast Restoration using
GMPLS in Optical/Electronic Networks," Optical Fiber Comm. Conf., March 2001.

[4]J. Chuang and M. Sirbu, "Pricing Multicast Communications: A Cost-Based Approach,"
Telecommunication Systems 17: (3), July 2001.

[5] K Owens et aI, " A Path Protection/Restoration Mechanism for MPLS Networks," IETF
draft, "Work In progress," July 2001.

[6] M. EI-Darieby and J. Rolia, "Performance Modeling of a Service Provisioning Design," in
Lecture Notes in Computer Science, Vo1.l890, Springer Verlag, 2000, pp. 81-92.

[7] M. EI-Darieby, D. Petriu, and J. Rolia, "Scalability Analysis of Virtual Network-Based
Service Provisioning," In IFIP/IEEE Integrated network Management, Seattle, USA 2001.

[8]M. EI-Darieby, and A. Biezschad, "Intelligent Mobile Agents: Towards Network Fault
Automation" In IFIP/IEEE Integrated network Management, Boston, USA 1999.

[9] M. EI-Darieby, D. Petriu, and J. Rolia, "HDRP: A Hierarchical Distributed Routing
ProtocI," Technical Report-07-03, Systems and Computer Engineering Dept., Carleton
Univesity, Submitted for publication.

[10] M. Faloutsos, P. Faloutsos and C. Faloutsos, "On Power-Law Relationships of the
Internet Topology," In ACM SIGCOMM'99, Boston, MA, USA, 1999.

[11] F. Baker, C. Iturralde, F. Faucheur and B. Davie, "Aggregation of RSVP for IPv4 and
IPv6 reservations," Internet Draft "Work In progress," <draft-ietf-isslI-rsvp-aggr-02.txt>.

[12] R. Cohen, R. Emek and E. Felstine, "Framework for Multicast in Hierarchical
Networks," In IEEE INFOCOM, Tel-Aviv, March 2000.

[13] V. Sharma et al, "Framework for MPLS-based Recovery," Internet Draft, "Work In
progress," July 2001.

[14] The OMNET++ Simulator: http://www.hit.bme.hu/phd/vargaalornnetpp.htm
[15] G. Ash, "Traffic Engineering & QoS Methods for IP-, ATM- & TDM based Multiservice

Networks," Internet Draft, "Work In progress," <draft-ash-te-qos-routing-01.txt>.
[16] S. Salsano et aI, "Inter-domain QoS Signaling: the BGRP Plus Architecture," Internet

Draft, "Work In progress," <draft-salsano-bgrpp-arch-OO.txt>.

SESSION 13

Power and Optical Management

Chair: Adarshpal Sethi
University of Delaware, USA

GMPLS FAULT MANAGEMENT AND ITS
IMPACT ON SERVICE RESILIENCE
DIFFERENTIATION

M. Brunner, C. Hullo
NEC Europe Ltd., Adenauerplatz 6, D-69115 Heidelberg, Germany, brunner@ccrle.nec.de
EANTC AG, Sprembergerstr. 6, D-12047 Berlin, Germany, hullo@eantc.de

Abstract: Generalized Multi-Protocol Label Switching (GMPLS) is currently under
standardization. It basically reuses the MPLS control plane (IP routing and
signaling) for various technologies such as fiber switching, DWDM, SONET,
and packet MPLS. Since GMPLS runs in core networks, fault management is
of major concern. However, fast fault recovery and backup capacity
assignments are very expensive and not all customers need this or are willing
to pay for it. Therefore, we propose in this paper to use several protection and
bandwidth-sharing schemes on the same network in order to provide
differentiated services in the resilience space. This means an operator can offer
and provide several customized services. The service management system
implementing the schemes is built on top of a GMPLS network management
system developed in our Lab.

Key words: Optical Networks, Fault Management, Resilience, and Service Management

1. INTRODUCTION

Fault management aims at helping network operators automatically detecting
and recovering from faults before human beings, and so before customers notice
them. By localizing faults when they happen and improved speed of repair, they
might save paying refunds against broken SLAs (Service Level Agreement).

Recently, a technology called Generalized Multi Protocol Label Switching
(GMPLS) has showed up and is currently under standardization at the IETF [1]. The
primary goal of GMPLS is reusing the MPLS [2] control plane, namely IP routing
protocols and path setup protocols for different kinds of networks such as SONET,
DWDM, and packet MPLS. Since these technologies operate mainly in backbone

http://dx.doi.org/10.1007/978-0-387-35674-7_66

666 M. Brunner, C. Bullo

networks, fault management is of primary interest, as it ensures the reliability of data
delivery.

On the other hand, fault management might be expensive in terms of allocating
resources for failure cases and on mechanisms (hardware or software) for fast
detection and restoration. So fault management has to respond to the trade-off
between making the network robust and avoiding too much resources to be allocated
for not directly paid use, but for fail-over cases.

Another key feature of GMPLS is the fast and dynamic provisioning of optical
or packet paths using an IP/MPLS control plane. This implies that also the fault
management issue needs to be concerned about the low provisioning times and the
dynamic behavior of the network.

On the other hand various customers have various requirements and demands on
the service availability. So it does not make sense to install only one mechanism for
all customers. That's where differentiation of the service in terms of resilience is
used.

In the literature, different possible schemes for fast restoration and protection
switching for various technologies have been published ([3], [4], and [5]). However,
none of them propose the approach of differentiation of services based on different
protection and bandwidth sharing schemes in a dynamic service creation
environment. In this paper, we propose to integrate different schemes into a single
network, in order to offer various availability parameters for customers. The
availability needs to be specified on the service request, and it must be provided by
different means in the network.

The only work the authors are aware of proposing a similar scheme is [13].
However, they have looked into IP and MPLS restoration only. They do not
consider the GMPLS case, where different technologies are controlled and managed
by the same management system. Additionally, they have not implemented their
scheme for real world hardware as we did. And we tried to apply the different
random generated topologies, where they had one topology of their test network.
However, they have been more extensive in simulating various algorithms without
mentioning the results in the publication, whereas we have chosen only one
algorithm.

2. GENERALIZED MULTI-PROTOCOL LABEL
SWITCIDNG (GMPLS)

GMPLS is, as its name suggests, a generalization of MPLS. GMPLS first
generalizes the control plane such that it is not only used for packet switched
networks, but also for optical switched, TDM-based, and physical networks. This
requires that the control-plane and data-plane are no longer only logically separated
but might also be physically separated. Second, GMPLS extends the notion of a
label in order to support multiple switching layers. For instance a label might be an
optical wavelength number.

The major goai of GMPLS is to control optical backbones as flexibly and
dynamically as IP backbones today. GMPLS intend to reuse existing technologies
by combining MPLS control technology namely RSVP-TE and CR-LDP [6] with

GMPLS Fault Management and Service Resilience Differentiation 661

operational experience of IP routing with some extensions towards GMPLS in order
to provide a general network solution.

Combining
low· order

LSPs

Combining
hlgh·order

LSPs

FSC Cloud

Cs

TOMs

PSCs

Figure 1. GMPLS Architecture

Splitting of
high·order

LSPs

Splitting of
low·order

LSPs

The strength of GMPLS is to also provide a uniform semantic for network
management, operations, and control in hybrid networks. Additionally, GMPLS
provides a tool for real-time service provisioning of different types of channels as
well as easy and cheap equipment operation and management. Finally, MPLS allows
performing traffic engineering on packet-based network, and its generalization
GMPLS to perform this on optical networks as well.

The following are the most often-heard interface types to be supported with
GMPLS: (1) Packet Switch Capable (PSC) interfaces (e.g. IP, MPLS, and Ethernet).
(2) Time-Division Multiplex Capable (TDM) interfaces (e.g. SONET/SDH Cross
Connect). (3) Lambda Switch Capable (LSC) interfaces (e.g. Photonic Cross
Connect (PXC) or Optical Cross-Connect (OXC)). (4) Fiber-Switch Capable (FSC)
interfaces.

As a consequence of the various interfaces, GMPLS establishes a link hierarchy
(Figure 1). And as MPLS Label Switched Path (LSP) can be nested, optical channel
trails have discrete bandwidth granularity in units of individual wavelength capacity.

A generalized label contains enough information to allow the receiving node to
program its cross connect (switching hardware), regardless of the type of this cross
connect. Since the nodes sending and receiving the new forms of label know what
kinds of link they are using, the generalized label does not contain a type field,
instead the nodes are expected to know from context what type of label to expect.

668 M. Brunner, C. Hullo

3. FAULT MANAGEMENT IN GMPLS

Fault management includes detection, localization, and recovery of/from
failures. The detection of the fault by continuous or periodic checking is the very
first step in order to take provisions to repair it. Various mechanisms allow for
immediate localization of the fault, others need more work to find out where the
fault really is, by analyzing or testing. Fault notification includes notifying an entity
to perform recovery and possibly raises alarms in the operations center. Or an entity
that performs service management is notified about the inability to provide the
network part of a service (e.g. alarms).

3.1 Fault Detection

For fault detection, various approaches exist. Those mainly used for plain
MPLS, where some of them also work in more general cases. For MPLS networks
that can be classified into three groups: the first one using IP capabilities to detect
MPLS defects (ICMP extensions, GTTP, LSP Ping), the second one using the
MPl;S layer only to detect MPLS defects (Y.1711), the third one operating only on a
hop-by-hop basis (LMP, data plane encoding). Note that the first two groups work
end-to-end of an LSP.

ICMP Extensions [7] use ICMP messages to convey control information to
source hosts. Extensions to ICMP allow an LSR to append MPLS stack information
to ICMP messages. Generic Tunnel Trace (GTTP, [8]) supports enhanced tunnel
tracing applications that network operators use to trace paths through an IP or MPLS
network's forwarding plane. LSP PING [9] verifies the availability of a connection
(Label Switched Path). ITU-T Recommendation Y.1711 [10] provides mechanisms
for user-plane fault management, by defining OAM packets sent over an LSP on a
predefined label. GMPLS introduces a new protocol called the Link Management
Protocol (LMP, [11]). It runs between adjacent nodes and is responsible for
establishing control channel connectivity as well as failure detection. LMP also
verifies connectivity between channels. The detection of optical data-channel failure
is measured by detecting Loss Of Light (LOL). LOL propagates downstream along
the connections path and therefore all downstream nodes may detect the failure.

3.2 Fault Localization

The fault localization of the control-link is done simultaneously with the fault
detection in many cases, since it is applied locally. E.g., the localization of a data
link failure might be achieved by the Link Management Protocol's (LMP) fault
localization procedure that sends LMP Channel-Status messages between adjacent
nodes over a control channel maintained separately from the data-bearing channels.
In other cases, it is pretty difficult to localize the fault, since only end-to-end fault
detection mechanisms are involved.

GMPLS Fault Management and Service Resilience Differentiation 669

3.3 Fault Notification

Depending on where the faults are detected, there is an upstream notification
needed or at least a management system alarm needs to be raised.

RSVP specifies that errors be notified to upstream node using PathErr messages
and to downstream nodes using ResvErr messages. Moreover, a Notify message
(that contains the affected LSP and failed resource) has been added to RSVP-TE for
GMPLS to provide a mechanism for informing non-adjacent nodes of LSP-related
failures. These Notify messages do not replace existing RSVP error messages as
they differ from them in that they can be targeted to any node other than the
immediate upstream or downstream neighbor.

3.4 Fault Recovery

The purpose of fault recovery is to trigger for corrective actions when failures
occur. The goal is that this must happen as fast as possible. However, the recovery
speed has an impact on the potential service downtime and on the resources
allocated within the network. That's where service differentiation makes a lot of
sense, because also prices will be differentiated.

Several differentiators are possible including the following:
Recovery is done via the control plane or the management plane, where control

plane recovery is faster, but needs configuration to do the expected thing.
Secondary paths are pre-established (protection) or established on demand in

case of a failure (restoration).
The failure might be addressed either at the transit node where the failure is

detected, or at the endpoints. The transit node handling is faster, since it does not
need a signaling action taking place in order to notify the end nodes of a path.
However, it might mean that several secondary paths are established from several
transit nodes, if protection switching is used.

Different bandwidth sharing schemes are possible. No sharing at all, share
several secondary paths for the same primary LSP, share bandwidth for several
primary paths.

Secondary, pre-established paths are carrying traffic all the time (1 + 1 protection)
or it will be switched over in case of failure (1: 1 protection). The fist choice is faster
or even no service interruption at all.

In the following we constrain ourselves to only part of the problem.

4. GMPLS SERVICE MANAGEMENT

GMPLS Service Management is applied to administrative boundaries such as the
user-to-network or the network-to-network interface. In general, two ways shown in
Figure 2 are envisioned to request a GMPLS-based service. The managed way is
over any communication means the service request is received by the service
management system (in our case we use a web interface). The second way, mainly
envisioned by the IETF allows using signaling messages (RSVP-TE or CR-LSP) for
requesting an end-to-end service.

610 M. Brunner, C. Hullo

Since, none of the standardization bodies use resilience as a service parameter so
far, and since we provide other services such a Gigabit Ethernet over MPLS as well,
we favor the managed way, but will work on the signaled way in the future.

Another issue for fault management in GMPLS is that the control plane is
applied to different underlying technologies. Therefore not all of the possible
protection schemes are possibly implemented. This means the managed approach
allows for better targeting the service requested knowing the service able to be
provided.

Finally, there is the issue of hierarchy, where GMPLS is applied to several
networking technologies within the same domain and potentially IP runs over a
GMPLS network. In this case, one needs to decide on what layer what protection
scheme is used. Otherwise all protection schemes will be implemented at all layers,
which is an overhead not needed. On the other hand, the layer performing fault
recovery must be chosen based on protection and restoration capabilities and
operators policy.

Web-based
Service request

RSVP-TE
Service request

GMPLS Service

Figure 2. General System Overview

Figure 2 also shows the interaction between the service management and the
network management system and the interaction between the network management
system and the GMPLS switches. The functionality available on the network
management level is in our case topology discovery, basic configuration
management, monitoring, and viewing capabilities. For setting up a service the
network management system gets the GMPLS LSP (the primary and secondary
paths) and configures it into the network using different means. It mainly needs to
manage label space or it triggers RSVP-TE to setup the LSP.

4.1 Service Definition

The service definition for bandwidth and resilience might include several
parameters depending on what is possible in the network and what a customer
requires, and what technology is used. In our service definition the following
parameters are used:

GMPLS Fault Management and Service Resilience Differentiation 671

Source and Destination Address of the service, where we currently use IP
addresses, but GMPLS in general allows for unnumbered links, where an interface is
a number on a switch.

Service Type specifies what type of service a customer requests. At the moment
we can support packet MPLS (packet over anything), lambda paths (DWDM),
Gigabit Ethernet over MPLS (a specific application).

Bandwidth, specifically, for packet MPLS cases we have a high granularity, for
other technologies the granularity is given by the technology, e.g. SONET
granularity.

Maximum Service Interruption Time specifies the time a customer is willing to
accept a service outage. Which means the service is not available at all during that
time.

Minimum Bandwidth in failure cases denotes the bandwidth, which needs to be
available when a failure occurs. This translates into the bandwidth allocated for
secondary paths, where the traffic is switched to in case of a failure, or the
bandwidth signaled for in fast rerouting.

4.2 Application to an Optical Label Switch

In the following we are getting more specific towards our implementation. For
that reason some explanations of the underlying hardware restrictions and
constraints are given. See [12] for a more extensive description.

The main functionality of the Optical Label Switch (OLS) is that it runs GMPLS
for optical paths and for MPLS packet paths. We implement the overlay model only,
which means that the links seen on the packet layer are optical paths. Both path
setups are triggered by the management system and use RSVP-TE with GMPLS
extension in order to setup paths in the network.

For fault recovery we have a constraint that on the optical level path setup,
update, and switching to a secondary path are very slow. On the other hand, on
MPLS level switching to a secondary path is basically instantaneous after the failure
has been detected. Failure detection is possible on the sending side of an optical
path. This means on the MPLS level each hop of an MPLS LSP can switch to a
secondary path.

Naturally, any failure raises an alarm in the GMPLS network management
station. In case of the optical path having troubles, the management system can
decide on what secondary path the traffic might be mapped. So here we use on
demand, managed secondary path setup scheme only. Due to a limitation of the
number of optical interfaces per OLS, it is in many cases not possible to even setup
a secondary optical path.

On the packet MPLS level however, we are able to use the fast protection
switching capability of the OLS. However, this means we need to pre-compute and
pre-setup secondary paths in advance during service provisioning time.

672 M. Brunner, C. Bullo

4.3 Protection Schemes Used

In the following, we describe the protection schemes evaluated. However note
again that most of them are well known from the literature [13], [6], [5]. As
described in the previous chapter the schemes and the evaluation take into account
some of the constraints of the OLS specific features. So we assume only pre
established paths, where the establishment is different and the failure notification
mechanism is different.

For protection schemes we use end-to-end, link local, and local-to-egress, (see
Figure 3 - Figure 5).

Primary

Secondary
Figure 3. End-to-end Protection Scheme

End-to-end means one secondary path is setup from the ingress switch to the
egress switch. The benefit of this scheme is the number of secondary LSPs used for
backup. Namely there is only one secondary used per primary and the bandwidth
allocated for the secondary is pretty low depending on sharing schemes. However,
the worst-case notification time is bigger then in the following schemes.
Additionally, a signaling protocol is used to signal failures upstream such that the
traffic can be switched to the secondary path.

Primary

Link local requires the setup of secondary paths from the ingress and from each
intermediate switch to the following switch on the primary path (in Figure 4 from 1
to 2, from 2 to 3, from 3 to 4). The benefit lies in the fast reaction time in case of
failures. Basically only link failure detection is needed and no upstream signaling is
required. However, the large number of secondary is a problem, as well as the
bandwidth allocated for the secondary LSPs is a problem, since in most cases they
do not share the same path for the same primary LSP.

GMPLS Fault Management and Service Resilience Differentiation 673

Local-to-egress means, from each intermediate switch a secondary path is setup
to the egress switch (in Figure 5 from 1,2,3 to 4). In this scheme, we have the same
fast recovery as in the Link-Local Scheme, but we have better sharing capabilities.

Primary

Secondary 1

Figure 5. Local-to-Egress Scheme

For certain topologies and a small number of nodes one can run linear
programming based optimization and achieve about the same sharing ratio as the
end-to-end protection scheme [14]. One of the drawbacks of this scheme is, that it is
very difficult to implement it in the control plane. It is difficult to change the
signaling protocols to work such that the protection scheme is setup. In our case, this
is not a problem, because we mainly rely on managed networks and only setup the
LSP with pre-computed secondary paths.

4.4 Sharing Schemes

For bandwidth sharing schemes we use no sharing, per path sharing, max
bandwidth sharing, percent sharing per path, and percent sharing global.

No sharing means there is no bandwidth sharing at all. Also in link-local or
local-to-egress protection schemes, all the bandwidth is allocated on the secondary
paths. Specifically, in local-to-egress, this is a bad solution. In Figure 5 it would
mean to allocate three times the bandwidth of the primary LSP on the link from 7 to
8.

Per path sharing is useful for local-to-egress and link local protection schemes,
where several secondary paths are used for the same primary path. In Figure 5 it
would mean to allocate only once the bandwidth of the primary LSP on the link
from 7 to 8.

Max bandwidth sharing allocated only the maximum bandwidth of all secondary
paths crossing through that link. This does not give any guarantee on the bandwidth,
but the hope is that in cases where only one primary path is affected it still has
enough backup capacity. So the backup capacity is a function of the number of
failed LSPs using a particular link as backup.

The percent sharing schemes allocate a certain percentage of the primary path to
the secondary path. This is mainly used for service specification, where a customer
is willing to reduce his bandwidth demand for a certain time in failure cases.

Percent sharing per-LSP is an optimization such that in protection cases, where
several secondary paths are allocated and that they share the bandwidth. This is
basically a combination ofper-LSP and percent sharing.

614 M. Brunner, C. Rullo

5. EVALUATION

In the following, we give a numerical evaluation of the different schemes with a
set of topologies. Since we do not have enough Optical Label Switches, we need to
simulate the schemes, however we have implemented some of the schemes also for
the real system. We use a homegrown Java-based simulation tool for that task. Some
of the simulation results are qualitatively known in advance, but if it comes to
charging for a service, we need to get some quantitative measures of the different
schemes and their behavior.

The routing algorithm used is constraint shortest path first (CSPF), which has
known problems but is very easy to implement. All the numbers are averaged
numbers over 100 simulation runs and averaged over all links in the network. The
stopping criterion is defined as 10 consecutive failed service setups. The link
bandwidth of all topologies is 2.4 Gbitls and the degree of the topology is 4. We
have chosen the degree of 4, because of hardware limitations on the OLS.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

'"
,-

V-

V-

V-

V-

V

V

V

0
c:

\

o Primary Bandwidth ID Secondary Bandwidth 0 Free Capacity

f' r '" i'" c- ;>: <= r"" r"" "" r""

l- I- l- I- - l- I- >- I- - I-

- - I- - I- - I-

- 1-- - I- - I- 1-1 - - "- - 1-11 - "'"

- I- - I- - l- I- - "'" "- - I- -
I- - l- I- I- - - I- - l- I- -

I- l- I- - I- - - I- - l- I- - I- -

- I- - I- - - I- - I- - - I- -

- I- - I- - - I- - I-, - I- -

- I- - I- - - "- - I- --' - I- -

Q. S 'E Q. 0 Q. S 'E Q. 0 Q. S 'E Q.

(/) m <II (/) c:
(/) m <II (/) c:

(/) m <II (/)

-' -' -' x -' -' -' x x ... '" <II ;;; ... '" <II ;;; Q; '" '" Q;
'" :2 Q. a. Q) :2 Q. a. :2 Q. a. a. a. a.

0

;1<A.
0

;1< A.
0

;1<) '" '" on

y V V
end-Io-end local-Io-end link local

Figure 6. Topology 16 Nodes, Degree 4, Ring-Mesh

5.1 Experiment 1

In the first experiment, service requests are chosen with random originating
node, terminating node, and bandwidth in the range of 10-100 Mbitls. Results of one
topology with 16 nodes are shown in Figure 6. The topology is basically a ring with
additional links between each second and third node in the ring.

GMPLS Fault Management and Service Resilience Differentiation 675

Figure 6 also shows the effect of sharing schemes. For end-to-end protection it
does not matter whether we have no or per LSP sharing, because there is only one
secondary path anyway. Also in the other protection schemes it does not matter too
much. Not surprisingly we see that the Max BW sharing scheme performs best in
terms of secondary path bandwidth consumption. However, no guarantees can be
given that these paths get the requested bandwidth in failure cases. In case of sharing
based on 50% of the primary path the primary to secondary bandwidth ratio is much
better compared to other schemes.

In summary, the Max BW sharing scheme does perform by far the best, with the
least guarantee. So all service requests with very small bandwidth guarantee in
failure cases will use this scheme. Most likely this service type also does not need
fast protection switching. So this class of service will use end-to-end with Max BW
allocation for secondary paths.

S.2 Experiment 2

As seen before per LSP sharing naturally makes no sense for end-to-end
protection schemes. Therefore we excluded it and all Max BW sharing schemes in
the following simulations. In this experiment we study the effect of topology on the
results of the scheme. We use three different topologies, the random, the ring-mesh,
and a mesh, all of them again with degree 4. The difference from the ring-mesh to
the mesh is that in ring mesh the links are nearer to the ring, where in the meshed
topology links run across the complete network. Figure 7 shows the result of
simulating various schemes in various topologies. The values shown are the ratio
between total capacities allocated for primary paths divided by the total capacity
allocated for secondary paths.

We definitely see that end-to-end protection is performing better compared to
local-to-egress or link local. lIowever that scheme needs longer detection and
notification time. In case of link failure detection, the head end of an LSP must be
notified. Or in case of end-to-end connectivity check the failure detection takes more
time. So we use this scheme for service requests with moderate service interruption
time allowed, because the capacity cost is less than with the other schemes.

Furthermore, it can be seen that for link local and local-to-egress the per-LSP
sharing scheme (with or without percentage) performs well compared to without
sharing. Since per LSP sharing does not influence the service performance but is
using the capacity more efficiently we choose this one.

The other important observation is that depending on the topology local-to
egress and link-local performs different. Since in more meshed topologies such as
mesh 16 and mesh 32 in Figure 7, the local-to-egress scheme performs better, we
have chosen that one for our implementation. However, there is more work needed
to exactly figure out the impact of topological issue influencing what part of the
problem.

676

0>
C
'co

'" "'"
-0; c (,)
., 0 -.,
e.

0.."'"
(/).§
...J _

'" ., " e.Q

M. Brunner, C. Hullo

ID random 16 random 32 D ring-mesh 16 D ring-mesh 32 . mesh 16 D mesh 32 1

Figure 7. Ratio Primary to Secondary Capacity Used (Y-axis)

Comparing per-LSP and percent per-LSP sharing, we see that percent per-LSP
sharing performs better. But naturally secondary paths might not have full capacity.
They only get guaranteed X% ofthe primary capacity. However, taking into account
that only a small set of failures occurs, it still might get full capacity, but without
any guarantee.

5.3 Experiment 3

So far we have simulated only one scheme per network. In the following we
simulate various schemes running at the same time on the network. This is the
simulation of different service types running on one network. With the above
observations we choose end-to-end and local-to-egress protection scheme, and per
LSP, percent sharing, and percent sharing per-LSP.

Additionally, we have broadened the topology scope and added a 64-node
topology of each type, and added two new random generated types of topologies

GMPLS Fault Management and Service Resilience Differentiation 611

know as the Waxman topology [15] and the Barabasi and Albert topology model
[16] .

0,9

,-l

I f' "" F
- I- - l- I-

F

0 ,8

0,7

0 ,6
r- l- I- I- - l- I- l- f-

I f- "'" l- I- l- f- - l- I- l- f-
'I 0,5

F
",- I- l- I- l- I- - l- I- I--

F 0 ,4

"" I- F I-V- I- l- I- I-
0,3

I- I- I- - - I- - I--

",- - I- - l- I- - I- - - - - - I- - I--
0,2

",- - I- - - l- I- I-
0,1

- - - - - I- - I--

o
<D C\I <D C\I '<t <D C\I '<t <D C\I '<t <D C\I '<t

C') <D C') <D C') <D .- C') <D C') <D

E E E .c .c .c .c .c .J:: ';lj C\I ';lj C C C
<II <II <II <II <II <II tIS l\l l\l tIS

0 0 0 Q) Q) Q) Q) Q) Q) .D .D .D E E E "C "C "C E E E E E E c c c >< >< ><
6> 6> 6> l\l tIS l\l

C C C := := :=
.;:: .;:: ';::

Figure 8. Primary/Secondary BW Ratio (Y-axis) for Services Mixed on the Network

Figure 8 shows results, which basically are similar for all the topologies. The
bad numbers for the random topologies again stem from many unavailable
secondary paths (no two distinct to reach the nodes). The remarkable result here is
in the numbers for the ring-mesh 32 and 64 topology. Here we get worse result.
This stems from the average hop count of primary paths allocated in the network.
The average hop count for the "ring-mesh 32" is 4.31, whereas it is 2.33 for "ring
mesh 16",2.04 for "mesh 16", and 3.16 for "mesh 32". And it is even worse for ring
mesh 64, where the average hop count is 8.25. Note that the bigger the average hop
count the more secondary paths are allocated for local-to-egress protection scheme,
which impacts the overall allocation of mixed protection schemes.

6. CONCLUSION

The idea of differentiating GMPLS-based services proposed in this paper is a
reasonable way of efficiently use the bandwidth of a network and still provide the
customers the service they want. We mainly differentiate the service based on
resilience parameters. We implemented the most appropriate schemes as an add-on
for a GMPLS network management system built for an Optical Label Switch (OLS).
However, we used simulation as a method to numerically evaluate the schemes first
to figure out the benefits and drawbacks.

678 M. Brunner, C. Hullo

So far we have not considered the hierarchical nature of GMPLS in the
simulations. For the less general GMPLS service management system
implementation, we included also the hierarchical issue. Basically, we kept the two
hierarchies pretty independent, but changed the algorithm for the secondary path
calculation such that not only the underlying 'virtual' topology is used, but also the
physical topology beneath is taken into account for secondary path calculations.

The simulation regarding the mixture of different services on the same network
needs much more attention and work to detect the influencing parameters.
Additionally, we have not considered a dynamic system, where customers come and
go. One of the problems is the estimation of the call arrival process and the service
type distribution.

REFERENCES
[1] Mannie et al., "GMPLS Architecture", IETF Intemet Draft, work in progress, draft-ietf

ccamp-gmpls-architecture-03.txt, August 2002.
[2] Davie and Rekhter, "MPLS Technology and Applications"; Morgan Kaufmann

Publishers, 2000.
[3] Banerjee et al., "GMPLS: An Overview of Routing and Management Enhancements",

IEEE Communications Magazine, January 2001.
[4] G. Li et al., "Control Plane Design for Reliable Optical Networks", IEEE

Communications Magazine, Feb 2002.
[5] Sharma and Hellstrand (Editors), "Framework for MPLS-based Recovery", IETF Draft,

draft-ietf-mpls-recovery-frmwrk-08.txt, work in progress, draft-ietf-mpls-recovery
frmwrk-08.txt, October 2002.

[6] Banerjee et al., "GMPLS: An Overview of Signaling Enhancements and Recovery
Techniques", IEEE Communications Magazine, July 2001.

[7] Bonica et al., "ICMP Extensions for Multi Protocol Label Switching", Intemet Draft,
draft-bonica-icmp-mpls-02.txt, work in progress, Nov. 2000.

[8] Bonica et al., "Generic Tunnel Tracing Protocol (GTTP) Specification", Internet Draft,
draft-bonica-tunproto-01.txt, work in progress, July 2001.

[9] Pan et al., "Detecting Data Plane Liveliness in RSVP-TE", Internet Draft, draft-pan-Isp
ping-02.txt, work in progress, 2002.

[10] ITU-T Draft Recommendation Y.1711, "OAM mechanism for MPLS networks", work in
progress, 2002.

[11] Lang (Editor), "Link Management Protocol (LMP)", Internet Draft, draft-ietf-ccamp
Imp-07.txt, November 2002.

[12] M. Arai et al., "High Performance Network with Merged Optical and IP", IEEE High
Performance Switching and Routing Workshop (HPSR'02), Tokyo, May 2002.

[13] A. Autenrieth, A. Kirstaedter, "Engineering End-to-End IP Resilience Using Resilience
Differentiated QoS", IEEE Communications Magazine, Vol 40(1), January 2002.

[14] H. Saito, M. Yoshida, "An optimal recovery LSP assignment scheme for MPLS fast
reroute", 10th International Telecommunication Network Strategy and Planning
Symposium (Networks 2002), Munich, Germany, June 2002.

[15] B. Waxman, "Routing of Multipoint Connections", IEEE Journal of Selected Areas of
Communications (JSAC), December 1988.

[16] A.L. Barabasi and R. Albert, "Emergence of Scaling in Random Networks", Science,
286:509-512, October 1999.

FUNCTIONAL EVALUATION OF AN
INTEGRATED IP OVER WDM MANAGEMENT
SOLUTION

Serrat,J.\ E.Grampin', L.Raptis2, F.Karayannis3, K.Vaxevanakis4, D.Chroniss,
H.Katopodiss, G.Hoekstra6, W.Romijn6, A.Galis7 and E.Kozlovski7

(1) Universitat Politecnica de Catalunya; (2) National Technical University of Athens; (3)
OTE-Consulting; (4) Ellemedia Technologies; (5) OTE; (6) Lucent Technologies; (7)
University College London

Abstract: The management of heterogeneous and hybrid networks has been always a
challenge for network operators. Different frameworks and architectural
approaches have been proposed and investigated in the literature. The purpose
of this paper is to present the evaluation results of an integrated network
management solution for the provisioning and maintenance of IP over WDM
end-to-end services with network parameters derived from Service Level
Agreements (SLAs). A detailed description of the test-bed environment as
well as an integrated scenario for architectural evaluation is also included.

Key words: Management oflP over Optical Networks

http://dx.doi.org/10.1007/978-0-387-35674-7_66

680 Serrat, J. et al.

1. INTRODUCTION

Procedures in the field of network provisioning have become increasingly
complex. The manual configuration of connectivity pipes on the network is costly.
time consuming, and error prone. As the demand for timely delivery of more
innovative services increases, the requirement to automate the provisioning process
is stronger than ever. Automating the provisioning process allows service providers
to scale their operations and improve quality of end-to-end deployment for new
customers.

In the area of network technology, current trends are pointing IP over an Optical
Transport Network based on WDM as the approach that will prevail in the future.
These two layers need to be integrated with the goal of providing enough bandwidth
for quality-differentiated services. Here again an automated provisioning process
bound with a personalised service management mechanism is required.

Different approaches have been proposed for the smooth, fast and reliable
provisioning and management ofInternet services over the optical layer. Most of the
research in the area has been focused in the control plane by extending the
distributed Internet network control approach to the optical layer using signalling
mechanisms either in an overlay model or a peer model. Such efforts, driven by
different standardisation bodies, are among others the ASON/ASTN [1] and the
Generalised MPLS frameworks [2].

Complementing the above mentioned trends, in July 2000 the 1ST project
WINMAN [3] was launched to look for an integrated network management solution
capable of providing end-to-end Integrated Connectivity Services (lCSs) with
parameters derived from SLAs. The WINMAN solution consists of the extension of
the telecom-style network management approach to the IP layer through the use of
MPLS, which could be treated as a connection-oriented technology. The Internet
services would be offered mostly by the management plane, but some features of the
control plane, such as restoration and protection mechanisms or routed connection
set-up could be exploited.

The WINMAN network management solution and system architecture for
managing hybrid IP over WDM networks have being developed and presented so far
[4],[5] . In addition the initial results of the evaluation of the WINMAN solution
have been available quite recently.

This paper is precisely the presentation and evaluation of these results along with
the test-bed that was necessary to show up the system behaviour. Hence, after the
summary presentation of the WINMAN management approach of Section 2, we
devote Section 3 to describe the test-bed that was installed with the purpose of
validating the functional characteristics of the WINMAN system. This section
covers details of the IP and WDM infrastructure as well as the adaptations that were
required to use proprietary management systems, at NE level, with the WINMAN

Functional Evaluation of an IP/WDM Management Solution 681

network management system prototypes. Section 4 presents the integrated testing
scenario that was conducted with emphasis on the applications that were executed
and the detailed steps that were conceived. Section 5 presents the results obtained
along with comments on the fulfilment of the specified functional behaviour. Finally
we end with remarks on what we have learnt from these results.

2. THE WINMAN MANAGEMENT APPROACH

The WINMAN scope is defined through a model following the TMN layers. As
shown in Figure I, WINMAN focuses in the Network Management Layer (NML) of
the TMN pyramid. The NML is further subdivided in two sub-layers, one being the
integrated or inter-technology network management layer, and the other one being
the technology dependent layer. This approach is currently being adopted by the
ITU SG4 and in particular Q7/4.

WINMA NOperator

Actor

I
I

:ll

..
"'I>

'"

SeNice Management

Actor

------------------- ---------------------
Northbound Reference Point

INTER· DOMAIN
MANAGEMENT FUNCTION

WDMNElWORK IP- MPLS NElWORK

MANAGEMENT FUNCTION MANAGEMENT FUNCnON

Southbound - Reference Points ------------ ------------------- ---------

WDM

Element-Management

Actor

IP·MPLS

Element·Management

Actor

Figure 1. WINMAN High Level Functional Architecture

Service
Management
Layer

Network
Management
Layer

Element
Management
Layer

The reference points for interactions with the outer world are the northbound
reference point towards other Service Management Systems, such as VPN or VolP
and the southbound reference points to the Element Management Layer (EML).
Also a Workstation function in TMN terms enables the WINMAN operator

682 Serrat, J. et al.

controlling and monitoring the WINMAN functionality through the corresponding
workstation reference point. The WINMAN solution provides inter-technology
(inter-domain) functionality as well as network layer functionality for WDM and IP
functional systems. For testing or demonstration purposes a lightweight Service
Management Layer (SML) has been also developed.

As it is well known the TMF has launched a significant activity to capture the
needs of network operators and service providers and thus to enable the "end-to-end
process automation of telecommunications and data services operations processes".
The Telecom Operations Map (TOM) is the framework for accomplishing the above
mission [6]. The TOM defines the business processes and their interactions used by
Service Providers in the Customer, Service and Network Management areas. This
methodology of business processes decomposition has been also adopted by
WINMAN making the appropriate adaptation and customisation.

Specifically, WINMAN covers the following processes of the Network and
Systems Management layers:

• Network Provisioning
• Network Inventory Management
• Network Maintenance and Restoration
• Network Data Management

The requirements capture of the WINMAN system was also based in the TOM
Business Process decomposition. Specifically, the functional requirements
considered in the area of network provisioning are:

• The Provisioning of end-to-end IP paths over light-paths using MPLS
technology (the Integrated Connectivity Service or ICS). In this context the
WINMAN system is capable of calculating, designing and creating MPLS
Label Switched Paths (LSPs) over the corresponding light-paths in the
optical domain.

• Support traffic and QoS parameters (network level parameters) for MPLS
LSPs derived from SLAs. Policies are also applied in the path-provisioning
process.

Secondary functions supporting the above ones are: the discovery of network
resources; the maintenance of an inventory of all the network resources with their
status and their hierarchical relationship; the notification to the SML about service
status and network parameters identified in the SLAs and the updating of the Fault
and Performance Management units with the network configuration changes.
Network Data Management and Network Maintenance and Restoration although
being part of the WINMAN solution are not considered in this paper, because at the
time of the writing no results from a test-bed environment were yet available. More
detailed information is provided in [7].

Functional Evaluation of an IP/WDM Management Solution 683

From the physical point of view, the WINMAN solution was implemented as
three interconnected network management systems (NMSs), namely one is for
managing the IP, another for the WDM and the third one is meant for the integrated
view of the end-to-end connectivity. These NMSs were specialised from a generic
NMS solution, thus giving the design the flexibility to incorporate other
technologies. A more detailed description of the physical architecture is contained in
[5).

3. TEST-BED SET-UP FOR THE EVALUATION OF
THE WINMAN SOLUTION

The test-bed includes the WDM infrastructure, the IP infrastructure as well as
the corresponding element management systems (EMSs). The EMSs are out of the
WINMAN solution and therefore they must be considered in the test-bed as
complementary modules along with the data transport equipment. In this section we
present the main aspects of this test-bed.

3.1 Description of the WDM test-bed infrastructure

As shown in Figure 2 the WDM infrastructure consists of a hub and 3 remote
nodes, connected via a 2-fibre counter-rotating ring. In fact the hub can be
considered as a remote node as well. On the outer fibre ring dedicated (fixed)
wavelengths are used for communication between the hub and the remote nodes. On
the inner fibre ring, each node is provided with a programmable optical add and
drop multiplexer (OADM) to set up wavelength paths with other remote nodes or
with the hub. At every node aggregated IP traffic from the LAN is routed to the
appropriate wavelength. The remote nodes are located at business sites where IP
over 10/100 Base-T is the major service.

The distance between two remote nodes is 8 km on average, with a total ring
circumference of 32 km. An optical supervisory channel at 1310 nm is used to
transport the management information.

The WDM test-bed contains the following management systems (not represented
in Figure 2):

• A NE manager per optical node. This software presents a management
view of the OADMs to the agents that control the optical components by
means of an RS-232 link.

• An EMS, which will control the four agents. The information model and
the northbound interface of this system are aligned with the TMF-MTNM
standards [8].

684

ulgolbll

nfi:

"7
(1 (Iff 00

Hhf.mriJ

(llollb [the t
swttt:l1l1P

__ iOl9"blt
l1t1emet

Figure 2. The WDM validation test-bed

Serrat, J. et al.

LIotN
Dr. 0]0 Jt.'bps
e,h rn.tJ -

3.2 Description of the IP test-bed infrastructure

The IP part of the test-bed is depicted in Figure 3 and consisted of the following
devices:

• 3 CISCO 7200 routers, namely RI, R2 and R3 comprising the Provider
Network. The RI and R2 are considered Provider Edge routers, connecting
to the customers, while R3 is considered a Network Provider router. Each
of the 3 routers has 3 Fast Ethernet interfaces. Two such interfaces at each
router are needed to establish the triangle transport network of Figure 3.
The third Fast Ethernet port is used to connect traffic analyser equipment
with Fast Ethernet interfaces, particularly in router Rl and R2. Each router
also has serial links used to connect to the customer LANs as well as to the
DCN.

• 2 CISCO 1700 routers, serving as Customer Edge routers (CE), namely
CE_l and CE_2. In the customer LANs suitable workstations are connected
in order to generate real time traffic such as video. In the particular tests
mentioned hereafter, a video conferencing application [9] was used
involving two users exchanging video streams between each other.

• 1 CISCO 1700 router serving also as an auxiliary site support represented as
CE_3 in the figure.

The IP 7200 routers were connected to the WDM equipment through Avaya
Cajun switches. The Avaya Cajun switches provide Gigabit Ethernet (GbE)
interfaces with Gigabit Interface Converters (GBICs), operating at specific
wavelengths. This way, the signal provided by the A vaya Cajun switch is adapted to
the wavelength needed by the OADM.

Functional Evaluation of an IP/WDM Management Solution 685

In the opposite direction, the wavelength that is dropped at the switch is directly
passed to the client receiving interface. Therefore, the transport stack IP/GbEIWDM
at 1.25 Gbitls is used. The GbE-switches in the test-bed are equipped with WDM
lasers, which allow them to interface directly with the WDM layer.

CE_3 (Optional)

Q
SITE#3

Fast Ethemet over wDM7iOWast herneloverWDM

CE_ 1 Serial /.. I Serial ..-..==iC:=:.

FaslElherneloverWDM

Q L
SITE#1 SITE#2

Figure 3. The IP validation test-bed

3.3 Adaptation of the technology dependent EMSs to the
WINMAN southbound interface

Once the requirements are met and the test-bed has been set-up, the network
management systems under test have to be connected to it through a DCN. This set
up is based on existing NEs, which may have proprietary management interfaces
towards the DCN. Consequently, EMSs responsible for those elements are equipped
with their native Application Programming Interfaces (APIs) implemented in a
proprietary way. Those APls are incompatible with each other and with the
southbound interface of the WINMAN IP and WDM NMSs. Therefore, an
adaptation layer between native test-bed APls and the WINMAN southbound
interface is needed. Although the context of this section is tailored to the WINMAN
solution, the methodology can be easily applied to any other NMS solution. This
methodology consists of the specification and design of an adaptation component on
top of each EMS (IP and WDM). These adaptation components appear as a top layer
of the test-bed infrastructure and they are the only test-bed entities visible from the
WINMAN perspective.

686 Serrat, J. et al.

Further down there are different possibilities for the adaptation of the EMS for
the IP or WDM technologies. The objective is to adapt through the corresponding
EMS either for the WDM network or for the IP network or directly to the
management interface of the NEs (e.g. by means of SNMP).

3.3.1 Adaptation ofthe WDM EMS

Adaptation of the WDM-EMS is based on the TMF-MTNM [8] interface for the
WDM-EMS to NMS interconnection.

The corresponding Information Model (1M) describes the configuration of the
subnetwork managed by the EMS. This model gives the objects that can be present
in the subnetwork, and their relationships. Instances of these objects are contained in
the database of the EMS. This database has a static and a dynamic part. In the static
part, the physical configuration like the NEs, their physical ports and the links
between those ports is represented. The dynamic configuration contains the
connections that are sustained by the NEs, together with their connection
termination points. If a new optical NE is added, the static configuration changes; if
a new sub network connection is created, the dynamic configuration is altered.

3.3.2 Adaptation of the IP EMS

The adaptation between the WINMAN Management System and the EMSs is
also based on the MTNM specification. The IP-EMS is. conceived more as a
mediation device than a stand-alone EMS. The IP NMS to EMS adaptation ensures
the establishment of IP Connectivity Services through configuration of LSPs with
bandwidth constraints. Hence, the IP-EMS performs this basic functionality,
provided that the basic IP and MPLS configuration is already set-up. The interface
between the IP-EMS and the routers is through CLI commands with additional
SNMP support for monitoring purposes. In fact, The IP-MPLS configuration of
routing devices can be accomplished by different means; basic SNMP "Set"
commands and CLI commands. As the IP equipment in the test-bed is composed by
Cisco routers that currently do not support SNMP "Set" commands for MPLS, the
configuration was done by CLI commands.

The initial idea was to have the IP devices pre-configured with basic
connectivity (Layer-3) and the MPLS enabled. WINMAN performs the
configuration of LSPs with bandwidth assurance, in response to ICS establishment
requests. The routing computation for such LSPs will be done by the IP-NMS, while
the set-up will be done using the control plane through the RSVP-TE signalling
protocol; the Control Plane can also provide dynamic backup for these LSPs in case
of failure.

Functional Evaluation of an IP/WDM Management Solution 687

4. INTEGRATED SCENARIO FOR VALIDATION OF
THE WINMAN FUNCTIONALITY

The WINMAN functionality has been validated using an integrated network
provisioning scenario. The main purpose of this scenario is to establish an ICS
between routers 720o_2 and 720o_1 using the 720o_3 intermediate node appearing
in Figure 3 and shown again here in Figure 4, which is a complete picture
representing all the layers involved in the testing scenario.

The IP link between R2 and R3 is configured but not operational because there is
no physical (WDM) connectivity. In order to provide an ICS between the RI and the
R2 through R3, the management system has to establish first the physical link
between R2 and R3 and then create a bi-directional LSP (720o_2-7200_3-720o_1
and 720o_1-720o_3-720o_2). The business case behind this scenario is that the
WINMAN system is capable to find the resources and provide an ICS with QoS
constraints, in a case where the default shortest path cannot accommodate the
request due to shortage of resources (e.g. lack of bandwidth).

This scenario involves multiple provisioning requests and all the scenario steps
along with the start-up conditions are listed below.

4.1 Initial set-up

There are two customers, namely IXIA and DEMO as shown in Figure 4:
• IXIA: Consists of two traffic generators connected to Rl and R2.
• DEMO: Two multimedia clients connected also to Rl and R2.

There is pure Layer-3 (IP) connectivity between routers RI-R3 and between
routers RI-R2. The IP link between R2-R3 is configured but not operational because
there is not physical (WDM) connectivity, so communication between R2 and R3 is
only feasible through Rl.

The 10/100 Ethernet ports between the core routers are configured at 10 Mbps,
so the link RI-R2 can be easily saturated. This kind of configuration also limits the
bandwidth available in each WDM A to 10Mbps. But this does not reduce the
functionality of the network; it will only decrease its bandwidth to values that are
more suitable for testing purposes.

The WINMAN system has the following policies activated:

• A positive authorisation policy at IP-MPLS level allows the establishment
oflinks with guaranteed bandwidth between Rl and R2.

• A negative authorisation policy at IP-MPLS level is not enabling the
routing of traffic between routers R3 and Rl.

688

Application
La er

IP Layer

Serrat, J et al.

Inter-domaln Unl<s

Figure 4. Integrated functional validation scenario

4.2 Scenario Steps

4.2.1 Creation of an ICS for the IXIA customer

The IXIA generators belong to a WINMAN customer that needs to exchange
information between its two sites. Therefore, one ofthe clients requests a WINMAN
service between RI and R2 asking for 9.5 Mbps always available. The WINMAN
system creates the ICS making the necessary bandwidth reservation and establishing
two unidirectional LSPs between the involved routers. The two generators start
working and they really use all the bandwidth requested to the WINMAN system.

Under these network conditions, the DEMO customer requests a connection
between the same locations specifying 1.5 Mbps bandwidth. Clearly, the request
can't be satisfied through the same path.

Functional Evaluation of an IP/WDM Management Solution 689

4.2.2 Creation of an optical path

The WINMAN system will be aware of the lack of bandwidth in the shortest
path between RI and R2 and therefore will look at the WDM network and conclude
that there is a possibility to create an additional optical trail connecting R2 to R3.
The request for the creation of the optical trail is forwarded by the WINMAN
system to the WDM-EMS.

4.2.3 Synchronisation of the network inventory

The new optical trail is created and a new IP link is discovered by the IP-EMS
between R2 and R3. The WINMAN network inventory is hp1:lated with the new
WDM and IP links, and the GUI is displaying the actual network configuration.

The bi-directional SNC creation R2-R3-RI and RI-R3-R2 is not yet possible
because the routing policy Disable IP link between R3 and RI for routing is applied.
Then the WO manually changes the disable policy for a positive authorisation one.

4.2.4 Creation of the ICS for the DEMO customer

Once the new optical path has been created, the new IP link is detected and the
applicable policies allow it, WINMAN will create a new ICS through RI <-> R3 <
> R2. The shortest path was excluded because it didn't have enough bandwidth. The
traffic generated by the DEMO multimedia clients is now forwarded through the
new ICS and the video service reaches its SLA.

5. RESULTS EVALUATION

The integrated scenario defined in the previous section was completed
successfully.

The GUI always presents the most up-to-date status of the managed network to
the WINMAN operator. The policy user interface is launched directly from the main
GUI window for additional convenience. There was no situation of having
misalignments between network status and network map. This proves the good
functioning of the southbound interface and the network inventory manager
functionality. End-to-end routing triggered by the provisioning functionality exhibits
sophisticated router-based methods speeding discovery of available or potential
routes.

690 Serrat, J. et al.

Nevertheless, some of the nodes and termination points are not easily
distinguishable, and in case of many depicted elements the screen should be adjusted
to higher resolutions to have a better view of the underlying network. All nodes
(termination points, devices) in the views can be dragged on the screen so that they
can be allocated in a manner that is ''readable'' to the operator.

The views are not automatically refreshed when a change takes place in the
system. It is only updated with the changes when it interrogates the system using a
refresh function. That is why there is a refresh button by means of which the GUI
retrieves all the newly available information.

The experiments referenced were performed using the WINMAN GUI and not
sending requests by an SMS system. To test that WINMAN is open to other high
level management systems we sent some SMS commands using Tclltk scripts
emulating the whole process. The outcome was as expected.

The waiting time to see a connection displayed in the GUI since the moment of
issuing the connectivity request is quite long. However this is not considered a
drawback because the project was more oriented to a proof of concept than to a
precompetitive product. In fact, this was assumed since the early beginning when,
for instance, the use of two platforms with a mediation gateway in between was
adopted; no special adoption of protocols or operative systems was considered in
regards to efficiency, etc. For this reason we haven't provided numerical data of
performance measures in the different steps involved in the management processes
because they wouldn't be representative of an operative system. Nevertheless to
give an example we have estimated that with a single platform type, making use of
high performance hardware and with an optimised software implementation, the
total process described in the scenario would take around 1 minute.

The experiments validated that WINMAN exhibits and leverages network
relationships. The WINMAN system succeeded in carrying out the provisioning of
IP connectivity services with guaranteed QoS (in terms of guaranteed end-to-end
bandwidth provisioning) in an automatic way by making the appropriate changes to
the IP and WDM networks. Having knowledge of both network layers, network
resources are exploited in an easy and· consistent way under the supervision of
policies. System installation is rather complex but as we said before WINMAN is a
just an experimentation prototype.

Traditionally, each layer of hybrid transport networks is independently managed
having its own requirements, problems and unique operational characteristics.
WINMAN is the first system that can deal with the integrated management of IP and
WDM technologies providing increased flexibility, services and utilisation of
resources.

The results on the adaptation of the network infrastructure to the WINMAN
southbound interface, executed for the IP network and the WDM network, were also

Functional Evaluation of an IP/WDM Management Solution 691

successful both in terms of functionality and also satisfactory in respect to the
system overhead. The diversity of interfaces between EMSs and their managed NEs
and also the interfaces offered to the NMSs is really high. Nevertheless from the
WINMAN perspective all that is required is an adaptation to a TMF interface. This
adaptation will adopt the shape of a Q-adaptor, IDL mediation or any other. Of
course this is valid under the assumption that the northbound interfaces presented by
the NE managers are open.

6. CONCLUSIONS

Experimental test scenarios were designed and executed for the functional
evaluation and demonstration of the WINMAN integrated management solution.
These experiments were done in an integrated scenario in the context of the first
release of the WINMAN solution (that covers Configuration Management only).
Clearly, providing an integrated IP and WDM Configuration Management is only
halfway towards an integrated solution for managing IP and WDM networks. Fault
and Performance management and especially alarm monitoring, network restoration,
in conjunction with SLA and QoS monitoring are challenging and are currently
being addressed. But the execution of experiments in the currently available version
has proven that WINMAN provides a feasible solution with increased flexibility and
utilisation of resources. As the same design concepts and tools are used for the
extended functionality system we believe that the results will be also satisfactory.
Therefore we conclude that WINMAN is an integrated and automated provisioning
solution of IP-based network services over an Optical Transport Network that
empowers service providers to quickly bring new differentiated services to market.
In addition, WINMAN is paving the way for flow-through automation in
conjunction with other operations support system (OSS) applications, by means of
standardised interfaces.

The main outcome of the WINMAN evaluation is that not only it provides the
design guidelines for an integrated management system based in a 3-tier concept that
makes it extensible to manage any connection-oriented technology, but also and the
most important perhaps is that it provides the means for a smooth evolution path
towards the full integration of IP/MPLS and WDM. This is important because the
peer integration based on the control plane will be for sure delayed especially due to
the telecom crisis-slowdown; so intermediate solutions having the management
plane as a basis and possibly supported by the control plane features (especially of
the mature IP layer) should be promoted. This paper shows that these solutions are
viable.

The WINMAN solution proves that the design, implementation and integration
of such a complex system is feasible and can actually work if: a) state of the art
software technology like component-based frameworks and distributed architectures
like COREA are used; b) standardised interfaces between the main sub-systems (IP
NMS, WDM-NMS, INMS) are adopted and the appropriate extensions are proposed

692 Serrat, J. et al.

in order to cover the managed networks (i.e. MTNM extensions to cover IPIMPLS);
c) a systematic and well-defined methodology (RUP-like) is applied for the whole
life-cycle of the system (design, implementation, integration).

7. ACKNOWLEDGMENTS

This paper describes part of the work undertaken and in progress in the context
of the WINMAN-IST 13305, a two and a half years research and development
project during 2000-2003. The 1ST program is partially funded by the Commission
of the European Union.

8. REFERENCES

[1] Aboul-Magd, O. et. al., "Automatic Switched Optical Network (ASON) Architecture
and Its Related Protocols", draft-ietf-ipo-ason-OO.txt, work in progress, July 2001.

[2] Ashwood-Smith, P. et. al., "Generalized MPLS- Signalling Functional Description", draft
ietf-mpls-generalized-signaling-05.txt, work in progress, December 2002.

[3] Project 1ST -1999-13305 WINMAN http://www.telecom.ntua.gr/winman/.

[4] Serrat, J. et aI., "Integrated Management for IP end-to-end Transport Services over
WDM Networks" IFIPIIEEE International Symposium on Integrated Network
Management 1M 2001,14-18 May 2001, Seattle, USA.

[5] Karayannis, F. et aI. "Management vs. Control Plane approaches for integration oflP and
WDM layers- A synergy paradigm", 8th IFIPIIEEE Network Operations and Management
Symposium NOMS 2002,15-19 April 2002, Florence, Italy.

[6] Enhanced Telecom Operations Map (eTOM): The Business Process Framework for the
Information and Communication Services Industry - GB921 v3.0.

[7] Raptis, L. et aI, "Integrated Management ofIP over Optical Transport Networks", IEEE
International Conference on Telecommunications ICT 2001, 4-7 June 2001, Bucharest,
Romania.

[8] TMF 608 Multi-Technology Network Management Information Agreement NML-EML
Interface. Version 2.0. October 2001.

[9] Meeuwissen, H.B., H. J. Batteram, and lL. Bakker, "The FRIENDS Platform- A
Software Platform for Advanced Services and Applications", Bell Labs Tech. J., Vol.5,
No.3, Jul.-Sep. 2000, pp. 59 -75.

A NETWORK-ORIENTED POWER
MANAGEMENT ARCHITECTURE

LUIS F. POLLO and INGRID JANSCH-p6RTO
Universidade Federal do Rio Grande do Sul-Instituto de Informatica
P.O. Box 15064, 91501-970-PortoAlegre, RS, Brazil
{pollo, ingridJ@infufrgs.br

Abstract: This paper presents the proposal and implementation of a power management
architecture for local area network environments. Our main goal is to
contribute to more efficient use of electricity, reducing energy waste by
facilitating the configuration of power policies and providing a means to
automate their execution.

The architecture we propose is based on the SNMP (Simple Network
Management Protocol) framework. The management process is coordinated by
a central element, which applies configurable power policies to computers and
other electronic devices connected to the network, either in accordance to
consumption preferences defined by the network administrator, or in response
to changes in the supply of electricity, detected through monitoring of UPS
(Uninterruptible Power Supply) devices. In the latter case, applying the pre
configured power policies allows the UPS to sustain power to essential parts of
the network (e.g. servers) for a longer period of time. Alternatively, the
definition of power policies can be based exclusively on administrative
preferences, in which case the goal is to minimize consumption of electricity
during non-business hours by shutting down inactive equipment or putting it in
low-power modes.

We have measured UPS autonomy during utility power outages and found that
it can increase by a factor of 7 in a small network setup, by using the
management system to automatically power off 90% of the computers.
Potential economy resulting from the decrease in consumption during non
business hours alone is estimated to be as high as US$ 36 per computer during
the period of a year.

Key words: power management, energy efficiency, network management, SNMP, ACPI,
APM.

http://dx.doi.org/10.1007/978-0-387-35674-7_66

694 Luis F. Polio and Ingrid lansch-Porto

1. INTRODUCTION

Electric power consumption is increasingly becoming an essential aspect of
computing. The wide-spread use of mobile computing devices, such as personal
digital assistl,lnts (PDAs) and notebooks, has boosted research in the area of power
management, where several contributions have been made, most of which focused
on reducing consumption in order to allow longer battery-powered operation.
However, the impact of energy consumption extends far beyond this category of
devices. In the United States, recent studies have shown that the electricity used by
office and network equipment corresponds to a considerable percentage of the total
amount consumed, with a high estimate of energy waste due to poor use of existing
power management mechanisms [1]. Those findings only reinforce the importance
of power management for all sorts of computing equipment, from the smallest
pocket device to the largest corporate server.

Another recent trend in the computer industry that is likely to have a very
significant impact on energy consumption is that of the "appliance-PC" - a personal
computer that is always ready to use at the push of a button, the same way a TV or
another home appliance would be. Industry giants such as Intel and Microsoft have
been working on hardware manufacturing guidelines for the so-called "instantly
available computer", as well as on software architectures that allow the PC to be put
into different low-power modes according to the level of system activity, instead of
turning it off completely. Their early work resulted in the Advanced Power
Management (APM) specification [2], in 1992, which has evolved into a much
broader, more complex specification called ACPI (Advanced Configuration and
Power Interface), presented in conjunction with other industry leaders in 1996 [3].
Both the APM and ACPI specifications define a set of interfaces between power
manageable hardware and power-aware software. While the "appliance-PC" does
not become a reality, these power management mechanisms are being used to help
lower energy consumption on existing PCs.

But the power consumption of each computer viewed as a single, stand-alone
entity is only the beginning of a much larger problem. With the ever-growing need
for interconnection of devices over networks, more and more computers are being
left on after regular office-hours, in an attempt to prevent disruptions in network
services and inaccessibility to shared resources, or to allow administrative tasks (e.g.
backups) to be performed during periods of inactivity. Network operating systems
have clearly not been able to keep up with the advances in power management
technology, and commonly still require that a host maintains its network connections
in order to respond to periodic server queries. That leads to two immediate
problems: first, depending on the network hardware installed on a PC, these periodic
queries can cause enough activity to keep the computer awake, defeating power
management; second, if the PC succeeds in entering a low-power mode, it might be
unable to respond to the server, which will then assume the PC is off and terminate
network services to it [4]. Certain newer network adaptors are equipped with a
technology called "wake on LAN", which allows the computer to be turned on
remotely upon reception of a special message (a "magic packet") [5], thus
eliminating part of that problem. But the fact still remains that a large portion of

A Network-oriented Power Management Architecture 695

networked equipment is unnecessarily left on during non-business hours, whether to
comply with corporate guidelines or as result of simple misuse. A study conducted
by Lawrence Berkeley National Laboratory (University of California), at two major
metropolitan areas of the U.S. showed that only 44% of computers, 32% of monitors
and 25 % of printers in office environments are turned off at night [6].

Our goal is to investigate and explore exactly the network-related aspects of
power management. We believe that energy, as much as any other shared network
resource, should be managed from a global perspective of the entire LAN, and not
only from the isolated view of each device. In this paper, we propose centralizing
the configuration of power policies at a management station in order to minimize
energy waste due to badly configured devices. The possibility of configuring power
policies for several devices from a single point can be a valuable asset to network
administrators, who are in the best position to decide which parts of the network are
required to stay on during non-business hours, tailoring energy consumption down
to the absolutely necessary. Furthermore, we believe that this capability to oversee
and configure power consumption by networked devices should seamlessly integrate
into existing network management platforms. Our approach is to utilize the Simple
Network Management Protocol (SNMP [7]), the de facto standard management
framework, and the existing power management capabilities of computer hardware,
as the basis for a simple, yet efficient, network-oriented power management
architecture.

This paper is organized as follows. Section 2 discusses pertinent related work.
Section 3 presents our proposed architecture. Section 4 gives details of the
implemented prototype environment. Section 5 presents a few experimental results.
Section 6 concludes the paper.

2. RELATED WORK

It is important to point out that the existing power management features of
computer hardware already make a significant contribution to energy savings. Since
the creation of the Energy Star program by the United States Environmental
Protection Agency (EPA), in 1992, a long way has been covered, and the vast
majority of PCs manufactured today ships with some sort of power management
capability. According to estimates made by the Energy Analysis Department of the
Environmental Energy Technologies Division, at LBNL, based on data for 1999,
power management saves about 23 TWh per year in the United States [1], which
would to US$ 1.95 billion at an average price of 8.5 cents per KWh. To
give a clearer picture of just how much electricity that is, it would be enough to
serve over 2 million average American households for an entire year [8].

The availability of power management features in computer hardware has
allowed researchers to concentrate on the conception of mechanisms through which
the low-level physical components can be driven to achieve the greatest possible
savings [9, 10, 11, 12]. Others have explored the collaboration between different
levels of software (e.g. operating system, device drivers and applications) to allow
more efficient power management [13, 14, 15, 16]. But, even though those areas

696 Luis F. Polio and Ingrid lansch-Porto

have been extensively investigated, there appears to be little work concentrating on
ways to overcome the obstacles that network environments pose to power
management.

There is, however, a research area where the paths of network and power
management do cross. For many years, the UPS (Uninterruptible Power Supply)
industry has been providing their customers with data protection systems that can
trigger the unattended shutdown of computers in the event of utility power failures.
These systems all share a common event-driven structure and have an inherent
notion of power policies, even though those policies are based on a simplistic on-or
off approach. Their configuration typically associates the occurrence of energy
related events, detected through UPS monitoring, to the execution of a set of
predefined actions, such as remotely shutting down specified computers or notifying
a network administrator via e-mail. Communication between the monitoring station
and the client computers is typically done via a proprietary protocol.

3. OVERVIEW OF THE POWER MANAGEMENT
ARCHITECTURE

What we have done is to identify the potential of this industry-standard data
protection architecture for adaptations that would make it suitable to perform power
management tasks in a network environment. If we could extend the event
association capabilities of the original architecture to allow the execution of
predefined actions at specified times (e.g. "after 6 P.M., everyday"), we would be
able to use the same communication infrastructure to perform coarse-grained (on-or
off based) remote power management of the computers in the network, reducing
consumption during periods of inactivity. Additionally, if we could map this
communication infrastructure to a standard network management protocol (such as
SNMP), we would guarantee compatibility with existing management platforms and
tools. Finally, if we could extend the set of possible actions to include intermediate
low-power states for the remote hosts, we would have fairly flexible, fine-grained
control over the overall use of energy in the network, which could have a positive
effect not only on reducing energy waste but also on extending backup-power
autonomy during utility power outages.

Those are the basic characteristics of the power management architecture we
propose. We have been able to validate the feasibility of the model by implementing
it in a prototype environment, which will be discussed in detail in Section 4. For
now, it is enough to define the elements of the architecture, which can be seen as a
specialized derivation of the traditional SNMP model, with agents residing on every
manageable electronic device of the network and a manager that oversees their
operation and determines when to apply changes in their power consumption,
according to the pre-defined policies mentioned before. The agents hold the specific
knowledge about the energy consumption characteristics of the devices they control,
and communicate with the manager through SNMP, exchanging information as

A Network-oriented Power Management Architecture 691

defined in a management information base (MIB) designed specifically for power
management. Figure 1 depicts the main elements of the architecture.

- Commu"luItlon
ISNW)

- - - Energy

M.naglM'nent
ItMlon

, " ------------------':: :
.---------jr----'-----, : I :

I _ ••

Figure 1. SNMP-based power management

In theory, any electronic device connected to the network can be managed, as
long as it fulfills two basic requirements: first, it must be accessible via the TCP/IP
network (either directly or through a proxy); second, it must provide some sort of
power management capability that can be controlled by the agent (even if it is as
simple as turning the device on or off, for example).

3.1 Power policies and the event-driven operation model

The basis for the operation of our proposed power management system is an
event-driven model that is inspired in the reactive operation model of data protection
systems. As we mentioned before, those systems act upon the occurrence of special
conditions in the supply of energy to guarantee data integrity across the network. We
call those conditions energy events. Energy events have intrinsic associated
semantics. For example: "the external power has been disrupted" or "the level of the
UPS batteries is low". We extend that model by defining programmed events, which
can trigger the execution of actions at specified times. A programmed event does not
have an inherent "type" like an energy event, but instead allows us to use an "alarm
clock" abstraction to initiate the execution of actions based on time criteria (e.g.
"turn off the displays of all computers at 6:30 PM, everyday"). By adapting this
abstraction to the original model, we are able to use a single configuration structure
for both purposes. In other words, we can specify power policies that are applied in
a reactive fashion either in response to energy'events (to improve data protection) or
according to predefined time criteria (to reduce energy waste).

Having a uniform association paradigm for both purposes also facilitates the
dispatch of actions to the remote hosts, which can be implemented in a single
component that handles the conversion of configured actions to their corresponding
SNMP requests and transmits them to the appropriate destinations.

698 Luis F. Pollo and Ingrid Jansch-Porto

In our approach, power policies are specified as lists of actions that can be
associated to either energy or programmed events. Five different types of actions are
supported, as indicated in Table 1. Each action in a power policy is destined to a
specific target - a device or group of devices where the action must be executed).
Except for the WAKEUP action, all others are mapped to an SNMP Set request
intended to alter a specific object in the remote agent's MIB. The remote agent is
responsible for interpreting the received value and executing the appropriate action,
which is why we say the operation model is based on the association of events to
remote actions.

Table 1. Supported action types and parameters
Action type Parameters
SHUTDOWN

WAKEUP

component, state

command

Meaning
Turn the device off
Tum the device on
Change the power state of the
specified component to the
specified state

Execute the specified
command

SHOW_MESSAGE message Show the specified message

to the user(s)
WAKEUP actions are used to remotely power on a device or bring it to an active

state if it had been "sleeping". In those cases, the remote agent will not be running,
therefore the correspondence with an SNMP message does not exist. Instead, a
Wake-on-LAN magic packet is used to wake up the corresponding host. Obviously,
only hosts that have a compatible network adapter will be able to detect the packet.
Wake-on-LAN enabled adapters remain powered when the computer is turned off or
put in a low-power state, and continually scan incoming network packets for a
special data pattern. When that pattern is detected, the adapter triggers a boot
sequence in the BIOS.

SET_POWER_STATE actions also deserve a little more attention. This category
of actions was designed with flexibility in mind. Instead of defining a large fixed
(and thus limited) set of state-changing actions for all possible components of a
computer (e.g. one to turn off the monitor, another to spin down the hard disk, and
so on), we chose to define a single, configurable type of action that can be used to
request changes to the state of any component in a flexible manner. For each
SET_POWER_STATE action, a hardware component name and the desired state must
be specified. This approach allows the system to be universally compatible with
different types of power management standards, such as APM or ACPI, for which
specific agents could be implemented. There is no constraint on the names of
components or states used in the configuration, except that every agent must support
at least one component named "global", which represents the entire device. That
means that the successful execution of an action depends on the correct

) We use the term "device" to refer to each networked device (e.g. a computer or another
manageable electronic device), and "component" to refer to hardware components that
may be individually controlled within a device.

A Network-oriented Power Management Architecture 699

interpretation of the messages by the agent, and on the semantic equivalence
between the actions configured in the NMS and those supported by the agent.

3.2 Manager-agent communication

In typical SNMP applications, the network management station (NMS) is
responsible for initiating communication with the remote agents to update its view
of the network. In order to monitor the status of the network, the NMS is usually
configured to perform periodic queries of every host's agent to determine its current
state, including possible error conditions. This procedure is commonly referred to as
polling.

However, this strategy would not be appropriate in our power management
architecture, since the agents might frequently be umesponsive due to their hosts
entering low-power states. On the other hand, as we have mentioned before,
intensive incoming traffic could prevent the network hosts from entering such low
power states, which is another reason why polling is not an adequate approach.
Instead, we use the alternative method: agent-initiated notification. In other words,
whenever a relevant change in a computer's power state occurs, the agent must send
an unsolicited notification to the manager. This avoids interference with the local
execution of power management on each computer, and also reduces SNMP traffic
considerably. The agents of those devices that are in an active state are also required
to send periodic "I'm alive" notifications so that the manager can update its network
map.

This passive behavior of the manager is only used for monitoring purposes, of
course. Actual power management of the remote hosts requires that the NMS sends
an SNMP Set request to the corresponding agents, which triggers the remote
execution of the desired state change.

A thorough description of the Power Management MIB, which must be
implemented by the agents, is included in [19].

3.3 Security

Unauthorized access to the power management agent on a host must be
prevented, since it allows the requesting entity to perform operations that could
result in unavailability of services provided by that host or to execute other
potentially harmful actions. Luckily, version 3 of the Simple Network Management
Protocol [17] provides both authentication and confidentiality, thus guaranteeing
that only authorized requestors can access objects on an agent. Therefore, as long as
an agent accepts only valid SNMPv3 requests, its presence in the system is no more
of a threat than any other secure remote operation service (e.g. an SSH server).

After authorization, further processing of a request is entirely up to each agent's
implementation. For example, an agent could make sure that only harmless
commands are allowed to execute in response to a RUN_COMMAND action, preventing
the management station to delete files, stop network services, and so forth.

700 Luis F. Polio and Ingrid lansch-Porto

4. PROTOTYPE ENVIRONMENT

Given the prohibitive cost of commercial network management software and the
additional complexity of integrating a customized solution into such a platform, our
approach was to develop a stand-alone management application, entirely in Java,
using publicly available libraries. Additionally, a prototype agent has been
developed for the Microsoft Windows 2000 platform, which provides one of the
richest power management APIs amongst all PC operating systems. This section
details the implementation of the prototype manager and agent.

4.1 The manager

The manager we have implemented performs the following basic tasks:
monitoring of energy events reported by UPS devices;
generation of programmed events at specified times;
dispatch of remote actions in response to energy or programmed events
according to the configuration;
monitoring of power management agents for network map update.
Each of these tasks is delegated to a specialized component of the manager, as

depicted in Figure 2. We will discuss the manager's components next.

Manager

_--J----,
I Intet'lk,1 •
: represent.ltlon of :
I managed devkes r

1QQ···gj
' ... _---------,

Figure 2. Composition of the manager

4.1.1 UPS monitoring
UPS devices can be monitored in several different ways, but the most typical are

either via a serial line or via SNMP. Many vendors support the standard UPS-MIB
[21] for SNMP management; others support their own specialized MIBs. We have
implemented SNMPvl-based UPS monitors for the standard MIB and for two other
vendor-specific MIBs that are used for supervision of UPS models available in our
laboratories. In order to organize shared access to a common UDP port used for trap
reception, we have implemented a single trap handling component that analyses
incoming traps, identifies the source UPS agent, and forwards them to the

A Network-oriented Power Management Architecture 101

appropriate monitor. This is easily accomplished by having all monitor classes
implement a common interface - each monitor class "understands" a certain type of
MIB, and is responsible for creating one or more monitor instances to handle several
UPSs that can be managed through that MIB, at its own discretion. Using this
approach, we can dynamically install and uninstall UPS monitors as small software
plug-ins, without having to recompile the manager.

4.1.2 Programmed events
The other component capable of triggering the dispatch of actions is the

programmed event timer. This timer is initialized from information in the manager's
configuration file that describes the dates and times when specified actions should
be automatically executed. Besides a scheduled execution time, a repetition rate can
be specified for each programmed event. An event can be scheduled to repeat daily,
weekly or monthly at the same time, which facilitates the configuration of typical
power saving policies such as "automatically turn off all computer monitors after
work, everyday".

4.1.3 Dispatch of remote actions
The remote action dispatcher is the central point for event processing in the

manager. As we have briefly described before, it operates in response to either
energy events reported by UPS monitors or programmed events generated by a
timer. The basic task of the dispatcher, upon detection of an event, is to identify the
actions associated with that event, convert them to the appropriate SNMP
commands, and send them out to their respective targets. Since actions might be
configured for delayed execution, the dispatcher also handles possible conflicts
between pending actions and those scheduled for immediate execution.

4.1.4 Network monitoring
As we have mentioned before, the process of updating the network map in the

manager is based on the reception of agent notification. The network monitor is the
component responsible for processing incoming notifications in order to maintain an
updated view of the network. Depending on the type of notification received and the
current state of the originating device, the network monitor executes a full SNMP
query of the agent's MIB to fill in relevant information about the device. The work
performed by this monitor is important because the internal representation of the
devices instruments the decision making process in the action dispatcher.
Maintaining a faithful view of all power-managed devices also facilitates graphical
representation of the network for administrative purposes.

4.1.5 Configuration
Configuration of the manager is done via the Extensible Markup Language

(XML), which has become a widely used format for this purpose because of its
hierarchical structure and broad support in all major programming languages.
Besides providing a relatively large set of application options (e.g. UDP ports,
timeout limits, logging options, etc.), the main goal of the configuration file is to
describe the elements of the network and the associations between events and action

702 Luis F. Polio and Ingrid lansch-Porto

lists (i.e. power policies). A group metaphor is provided to facilitate the
configuration process - devices can be arranged according to arbitrary logical
criteria, such as hardware similarity, common power management features, etc.
Figure 3 shows sample sections of the configuration file illustrating the general
process for defining a time-based power policy.

<device name="pc1" address="10.0.0.5"/>
<device name="pc2" address="10.0.0.6"/>
<device name="pc3" address="10.0.0.7"/>

<group name="pcsGroup">
<group-member ref="pc1"/>
<group-member ref="pc2"/>
<group-member ref="pc3"/>

</group>

<programmed-event name="Automatic monitor night turn-off"
startTime="07/01/2002 19:00:00"
repeat="DAILY">

<action target="pcsGroup" type="SET POWER STATE">
<param name="component" value="display" />
<param name="state" value="off"/>

<faction>
</programmed-event>

Figure 3. Sample manager configuration

4.1.6 Graphical operation
Besides operating in the unattended mode described so far, the manager can also

be controlled through a graphical tool, via RMI (Java's Remote Method Invocation
API). This allows the administrator to visualize the network map and execute remote
actions on demand.

4.2 The agent

In order to test and evaluate the power management architecture, we have also
implemented a prototype agent for the Microsoft Windows 2000 operating system.
This agent can perform the following basic functions:

detection of power management-related system messages;
notification of the manager upon system power-on, transition to low-power
states, and resumption from low-power states (wake-up);
processing of SNMP Set requests that allow the manager to command the
host's transition to three different states: power-off, standby, and hibernation.
Starting with Windows 2000, Microsoft's operating systems have vast support

for power management operations. Applications are notified of changes in the power
status of the computer through a specific system message, WM_POWERBROADCAST,
which can indicate several different events (e.g. "system entering low-power mode",

A Network-oriented Power Management Architecture 103

"system resuming from low-power mode", etc.). Our prototype agent simply
interprets these messages as they are received from the OS, sending out the
appropriate SNMP notifications when necessary.

The agent understands three different values for the global state of the computer:
"off'; "standby" (also referred to in the literature as "suspend to RAM", a state in
which memory contents might be lost due to abrupt loss of power); and "hibernate"
(or "suspend to disk", when memory contents are safely transferred to non-volatile
storage and the PC is completely powered down).

We have also tested the ability to remotely power on the machine by sending it a
"magic packet" from the management station, and ensured proper agent behavior
upon successful remote wake-up.

5. EXPERIMENTAL RESULTS

A series of experiments allowed us to validate the feasibility of the proposed
architecture and to estimate the potential economy that may result from effectively
deploying the system. The most important results are summarized in the following
sections.

5.1 Estimates of energy savings during non-business
hours

Perhaps the most appealing reason for a power management system that can be
integrated into and take advantage of existing network management platforms is the
enormous potential for power savings during non-business hours. As we have
mentioned previously, an LBNL study released in 2001 estimates nightly turn-off
rates for office equipment to be considerably low (44% for PCs and 32% for
monitors) [6]. That same study estimates that only 3 to 8% of computers and 38% of
monitors are put into low-power states after office-hours, leaving 30% of monitors
and over 50% of computers that are potential candidates for power management, not
to mention other equipment such as printers, copiers, fax machines and so forth, all
of which could potentially be power-managed remotely.

Considering a typical 9-to-5 workdal, an average of 250 workdays per year,
and an average price for electricity of 8.5 cents per KWh, we can make the
following (quite obvious, yet frequently overlooked) additional observations:

each desktop PC station (CPU and monitor) consumes about 1.2 KWh during a
typical workday, if it is permanently active3; that amount of energy equals a cost
of US$ 25.50 per year;

2 We consider the actual length of a "9-to-5 workday" to be 9.5 hours for more realistic
estimates.

3 We consider the following average consumption values in active, low-power, and off modes
for a common desktop and a 15 inch monitor, respectively: 50175 Watts; 25/5 Watts; and
1.5/0.5 Watts.

704 Luis F. Polio and Ingrid lansch-Porto

if each PC is kept completely active during non-business hours, it consumes an
additional 1.8 KWh of electricity per day - an unnecessary expense of US$ 38
per year;
ifthe monitor alone is put into a low-power state after office-hours, US$ 21.50
can be saved each year, per PC;
if the entire PC is put into a low-power state at the end of a workday, a total of
US$ 29 can be saved per PC each year;
turning off the PC completely allows even further savings: U$ 36.50 a year.

5.2 Increase in UPS autonomy during power outages

We have conducted measurements in a typical network setup in order to
determine the potential increase in UPS autonomy during utility power outages. Our
experimental environment consisted of a small Ethernet LAN of 10 PCs (one of
which acted as a server, running the manager), all drawing power from a 2 kV A
UPS equipped with 12 batteries that can supply 9Ah each.

These measurements correspond to backup power autonomy during a blackout,
in three different scenarios. In the first scenario, the manager was not configured to
react to the start of battery-powered operation, and all 10 PCs remained active until
the batteries were depleted. In the second scenario, the manager was instructed to
put the 9 client PCs in standby mode. In the third and last scenario, the manager was
configured to power down the same 9 PCs. The average measured consumption per
PC is 125 Watts in active mode, 30 Watts in standby mode, and 6.5 Watts in soft-off
mode.

The results of those three rounds of measurements are presented in Figure 4. The
graphic shows that autonomy increases by a factor of 3.5 between scenarios a and b,
and by a factor of 7 between a and c. It should be noted that we have omitted
possible user intervention in the process of altering the power state of client PCs in
this experiment. In other words, the picture represents an ideal case, in which no
users were present at the time of the power failure, or in which all users peacefully
accepted the power management agent's request to power off the PC or put it in
standby mode. It is likely that, in a real-life situation, most stations would be in use
and would have to remain active for some time so that users could finish pending
tasks. Nevertheless, it is clear that the potential for reduced consumption during a
power failure exists, and could be better explored through the use of an automated
solution, such as the one we have presented. Assuming a power failure during
regular business-hours, the increase in autonomy would most probably appear in
intermediate ranges of the graphic, but would still help amplify the chances of utility
power returning before UPS batteries were depleted, avoiding a complete network
shutdown. We have yet to conduct measurements in such circumstances to obtain
precise numbers.

A Network-oriented Power Management Architecture

E
o
c::
o
:;
«

Consumption scenarios

o (a) All PCs active

• (b) 90% of PCs in
5 tandby roode

o (c) 90% of PCs in
soft-off mode

Figure 4. UPS autonomy in different consumption scenarios

6. CONCLUSION

705

This paper described the design and implementation of a power management
architecture for local area networks. The architecture is based on the SNMP
management framework, relying on agents that reside on each power-manageable
device of the network, and whose operation is supervised by a central element, the
manager. Manager and agents communicate via SNMPv3, a standard protocol
which provides the required security characteristics, and exchange information
according to a management information base specifically designed for power
management.

Our main goal is to facilitate power management in network environments,
where many factors might interfere with successful execution of power management
on each device, particularly poor configuration and operation patterns of network
systems and services. We believe that the network administrator is in a privileged
position to determine which devices are best suited for power management, given
his knowledge of the services that run on the network and their requirements, and
would be in an even better position to define power consumption policies for the
various devices if it could be done from a central point, which provides a global
view of the entire LAN.

We do not intend to replace local power management (i.e. power management
that is executed on each device independently of the influence of the manager). In
fact, we encourage power management features to be enabled and functional on all
electronic devices of the network to obtain the greatest possible energy savings. Our
goal is simply to aid in the configuration of power policies in the network
environment, possibly acting on those devices that have not been correctly set up for
local power management. The architecture is designed so as to prevent interference
with local execution of power management.

There are several possible areas for further exploration within the context of this
research. The most prominent ones are probably the development of full-featured
agents for a wider variety of operating systems and integration of the stand-alone
management application with an existing network management platform, such as
Hewlett-Packard's OpenView, for example.

706 Luis F. Pallo and Ingrid lansch-Porto

REFERENCES

[1] K. Kawamoto et al. Electricity Used by Office Equipment and Network Equipment in the
U.S.: Detailed Report and Appendices. LBNL-45917. Lawrence Berkeley National
Laboratory, University of California. February 2001.

[2] Intel Corp. and Microsoft Corp. Advanced Power Management (APM) BIOS Interface
Specification. Rev. 1.2. 1996.
http://www.microsoft.comlhwdev/archive/BUSBIOS/amp_12.asp

[3] Compaq Computer Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd.,
Toshiba Corp. Advanced Configuration and Power Interface specification. 1996.
http://www.acpi.info/index.html

[4] B. Nordman et al. User guide to power management for PCs and monitors. LBNL-
39466/uC-1600. Lawrence Berkeley National Laboratory, University of California.
January 1997.

[5] ADVANCED MICRO DEVICES, INC. Magic Packet technology white paper. 1995.
http://www.amd.comlus-enlassets/contenuype/white_papers_and_tech_docs120213 .pdf

[6] C. A. Webber et al. Field surveys of office equipment operating patterns. LBNL-46930.
Lawrence Berkeley National Laboratory, University of California. September 2001.

[7] J. Case et al. A Simple Network Management Protocol (SNMP). RFC 1157.
[8] Energy Information Agency, United States Department of Energy. A Look at Residential

Energy Consumption in 1997. DOElEIA-0632 (97), p.17. November 1999.
[9] F. Douglis, P. Krishnan and B. Marsh. Thwarting the Power Hungry Disk. In Proceedings

of the 1994 WinterUSENIX Conference, pp.293-306, January 1994.
[10] R. Kravets and P. Krishnan. Power Management Techniques for Mobile Communication.

In Proceedings of the 4th International Conference on Mobile Computing and Networking
(MOBICOM98), pp.157-168, October 1998.

[11] J. Lorch and A. J. Smith. Reducing processor power consumption by improving
processor time management in a single-user operating system. In Proceedings of the 2nd
ACM International Conference on Mobile Computing (MOBICOM96), pp.143-154,
November 1996.

[12] M. Stemm and R. Katz. Measuring and Reducing energy consumption of network
interfaces in hand-held devices. In Proceedings of the 3rd International Workshop on
Mobile Multimedia Communications (MoMuC-3), September 1996.

[13] C. S. Ellis. The Case for Higher-Level Power Management. In Proceedings of the 7th
Workshop on Hot Topics in Operating Systems, March 1999.

[14] J. Lorch and A. J. Smith. Software Strategies for Portable Computer Energy
Management. IEEE Personal Communications Magazine, v.5, n.3, pp.60-73, June 1998.

[15] Y. Lu, T. Simunic and G. De Micheli. Software controlled power management. In
Proceedings of the 7th International Workshop on Hardware/Software Codesign, pp.l57-
161, Rome, Italy, May 1999.

[16] A. Vahdat, A. R. Lebeck, C. S. Ellis. Every Joule is precious: the case for revisiting
operating system design for energy efficiency, In Proceedings of the 9th ACM SIGOPS
European Workshop, September 2000.

[17] J. Case et al. Introduction to version 3 of the Internet-standard Network Management
Framework. Request for Comments 2570.1999.

[18] J. Case et al. UPS Management Information Base. RFC 1628. 1994.
[19] L. F. PolIo. Power management system for local area networks (in Portuguese). Master's

thesis. PPGC - UFRGS. Porto Alegre, Brazil, 2002.
http://www.inf.ufrgs.br/-pollo/netpower/

Erratum to: Integrated Network
Management VIII

Germán Goldszmidt1 and Jürgen Schönwälder2

1 IBM Research, USA
2 University of Osnabrück, Germany

Erratum to:

G. Goldszmidt and J. Schönwälder (Eds.)

Integrated Network Management VIII

DOI: 10.1007/978-0-387-35674-7

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© IFIP International
Federation for Information Processing. The book has been updated with the
changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-0-387-35674-7

http://dx.doi.org/10.1007/978-0-387-35674-7
http://dx.doi.org/10.1007/978-0-387-35674-7

PANELS

Co-Chairs: Nelson Fonseca
University of Campinas, Brazil

Felix Wu
University of California at Davis, USA

709

Panel 1:

Web-Services for Internet Management: Yet Another Hype?

Chair: Aiko Pras
University ofTwente, The Netherlands

Panel 2:

Overlay Networks and Management: Real Solution or New Hype

Chair: Ehab Al-Shaer
De Paul University Chicago, USA

Panel 3:

Resource Management for Enterprise Application Grids

Chair: Jerry Rolia
Hewlett-Packard Laboratories, USA

Panel 4:

Security and Privacy: How Can We Resolve the Conflicts of Law
Enforcement and Freedom Lovers?

Chair: Rob Kolstad
SAGE, USA

709

710 Nelson Fonseca, Felix Wu

PanelS:

On Skepticism of Intrusion Detection Technologies

Co-Chairs: Marc Dacier
Eurecom, France

Felix Wu
University of California at Davis, USA

A synopsis of these panels will be posted to http://www.im2003.org after the
conference.

Author Index

Sebastian Abeck 579 Alessandro Corrente 201
Maria Janilce Bosquiroli Almeida 481 Tiago Cruz 321
Ehab S. Al-Shaer 17
Jorn Altmann 185 Frederik De Backer 605
Martin Arlitt 549 Marco De Bernardi 201
Juan 1. Asensio 131 Markus Debusmann 563
Alain Azagury 307 Piet Demeester 605

Francis Depuydt 605
Seongbok Baik 117 Thierry Desprats 135
Diego Osorio BaUve 481 Filip De Turck 605
Anil Bansal 365 Satish Devarapalli 147
Mike Becker 579 Bart Dhoedt 605
Kyrre M. Begnum 31 Yixin Diao 157
Yasuyuki Beppu 139 Danny Dolev 263
Julio Berrocal 131 Guillaume Doyen 491
Saroj Biswas 105 Brian Drake 105
Raoul Boutaba 73 Xiaojiang Du 621
David Breitgand 263
Marcus Brunner 665 Mohamed El-Darieby 649
Mark Burgess 31,293 Frank Eskesen 157

Jeffrey J. Evans 117
Ruben Cabello 485
Joao B.D. Cabrera 93 Olivier Festor 45,491
Geoffrey Canright 293 Paris Flegkas 215
James Challenger 89 Grainne Foley 469
Steve J. Chapin 463 Steven Froehlich 157
Taesang Choi 143,477 Zhi (Judy) Fu 231
Dimitris Chronis 679
Hyungseok Chung 143 Nirav Gadhia 147
Alexander Clemm 365 Alex Galis 679
Munir Cochinwala 425 Luciano Paschoal Gaspary 3
Phillip Conrad 105 German Goldszmidt 307

712

Francisco J. Gomez 485 Pasi Lehtimiiki 439
Eduardo Grampin 679 Ron Levy 247
Lisandro Zambenedetti Granville 481 Lundy Lewis 93
William Gropp 117 Wenke Lee 93
Van Gunter 97 Tianshu Li 73
Carlos Gutierrez 93 Koon-Seng Lim 409

Antonio Liotta 215
Hazem H. Hamed 17 Paz L¢kstad 379
Sanjay Hegde 147 Rui Pedro Lopes 395
Joseph L. Hellerstein 157 Jorge E. LOpez de Vergara 131
Gerard Hoekstra 679 Hanan Lutfiyya 151,535
Cynthia S. Hood 117,147
Hiroki Horiuchi 277 Vijay Machiraju 351
Charlotte Hullo 665 NaotoMaeda 139
Junseok Hwang 463 Vikram Mallikarjuna 147

Haci A. Mantar 463
Tomohiro Igakura 139 Antonio E. Martinez 485
Youssef Iraqi 73 Javier Martinez 485
Manabu Isomura 277 MineyoshiMasuda 473

Takeshi Masuda 127
Namon Jackson 425 Oliver Mehl 579
Srinivasan Jagannathan 185 Raman K. Mehra 93
Ingrid Jansch-Porto 693 Edgar Meneghetti 3
Taesoo Jeong 143,477 Jan Mischke 337
Ajita John 455 Paul Mueller 59
Tore E.Jr/mvik 379 Jaiwant Mulik 105

Nathan Muruganantha 535
GautamKar 593
Fotis Karayannis 679 Jayakumar Nagarajarao 247
Harris Katopodis 679 Emmanuel Nataf 491
Seema Kaushal 151 Ricardo Neisse 481
Hilmi Gunes Kayacik 101
Alexander Keller 157,563 Brian O'Connell 89
Changhoon Kim 143 Ibrahim Okumus 463
Yoshiaki Kiriha 139 Jose Luis Oliveira 395
Torsten Klie 505 Fergus O'Reilly 469
Andrzej Kochut 593
Andreas Koppel 579 Giovanni Pacifici 247
Yair Koren 307 Edwin Park 455
Eugene Kozlovski 679 Partho Paul 579
Hari Krishnan 455 George Pavlou 215

Vorina Petriu 649
JaanaLaiho 439 Roney Pignaton 131
Gerd Lanfermann 519 Luis F. Polio 693
Emmanuel Lavinal 135
Byung-Joon Lee 477 Xinzhou Qin 93

Author Index 713

ArniRaghu 455 Arie Tal 307
Kimmo Raivio 439 Asser Tantawi 247
Lampros Raptis 679 Liane M. Rockenbach Tarouco 3,481
Yves Raynaud 135 Toshiaki Tarui 473
DannyRaz 263 Do Van Thanh 379
Bernd Reuther 59 Brian Tierney 97
Lee Rhodes 185 Toshio Tonouchi 139
Roberto Rinaldi 201 Dao Van Tran 379
Benny Rochwerger 307 Panos Trimintzios 215
Gabi Dreo Rodosek 171 Udaya Kiran Tupakula 113
Jerry Rolia 549,649
Willem Romijn 679 Filip Vandermeulen 605

Erik Vanem 379
Akhil Sahai 351 Stefaan Vanhastel 605
Hassen Sallay 45 Aad van Moorsel 351
Bettina Schnor 519 Vijay Varadharajan 113
Edward Seidel 519 Kostas Vaxevanakis 679
Musoke Sendula 105 Victor A. Villagra 131
Roshan Sequiera 455 Koert Vlaeminck 605
Joan Serrat 679 Gerald Vogt 109
Adarsh S. Sethi 635
Shashank Shankar 147 Ajay Wanchoo 455
Gleb Shaviner 263 Karen Witting 89
Mark A. Shayman 621 S. Felix Wu 231
Jun Shen 123
Hyong Sop Shim 425 Yanyan Yang 231
Toru Shonai 473 Yun Yang 123
Eric Sigman 425 SrikanthYoginath 147
Paulo Simoes 321 Kiyohito Yoshihara 277
OUi Simula 439 Yutaka Yoshimura 473
Ronald Skoog 621 Alaa Youssef 247
Lisa F. Spainhower 157
Mike Spreitzer 247 GeZhang 59
Rolf Stadler 409 Xiaoyun Zhu 549
Radu State 459 Daniel Zimmermann 579
Malgorzata Steinder 635 A. Nur Zincir-Heywood 101
Burkhard Stiller 337
Frank Strauj3 505
Mamoru Sugie 473
Binay Sugla 455
Maheswaran Surendra 157

	Contents
	Preface
	Symposium Committees
	ORGANIZING COMMITTEE
	STEERING COMMITTEE
	TECHNICAL PROGRAM COMMITTEE
	REVIEWERS
	Introduction
	Overview
	History
	Future Events
	Acknowledgments
	SESSIONl
	1AN SNMP AGENT FORSTATEFUL INTRUSION INSPECTION
	1. INTRODUCTION
	2. RELATED WORK
	3. REPRESENTATION OF ATTACK SIGNATURESUSINGPTSL
	3.1 Graphical PTSL Notation
	3.2 Textual PTSL Notation

	4. THE INTRUSION DETECTION SNMP AGENT
	4.1 Architecture
	4.2 The Management Information Base
	4.3 Signature-based Intrusion Detection

	5. EVALUATION OF THE AGENT
	5.1 Performance Analysis
	5.2 Alarm Generation Analysis

	6. CONCLUSIONS AND FUTURE WORK
	References

	2FIREWALL POLICY ADVISOR FORANOMALY DISCOVERY AND RULE EDITING
	1. Introduction
	2. Firewall Background
	3. Firewall Policy Modelling
	3.1 Formalization of Firewall Rule Relations
	3.2 Firewall Policy Representation

	4. Firewall Policy Anomaly Discovery
	4.1 Firewall Policy Anomaly Classification
	4.2 Anomaly Discovery Algorithm

	5. Firewall Policy Editor
	5.1 Rule Insertion
	5.2 Rule Removal and Modification

	6. Related Work
	7. Conclusions and Future Work
	Acknowledgments
	References

	3A SCALED, IMMUNOLOGICAL APPROACHTO ANOMALY COUNTERMEASURES
	1. Introduction
	2. Compatibility
	3. Short introduction to pH
	Strategy
	Implementation
	4. Short introduction to cfengine
	5. A cooperative model
	Modifications to pH
	Data storage
	6. Example regulation strategy
	7. Conclusions
	8. Availability
	References

	SESSION 2
	4A HIGHLY DISTRIBUTED DYNAMIC IP MULTICASTACCOUNTING AND MANAGEMENT FRAMEWORK
	1 Introduction
	2 Related work
	3 A highy distributed architecture
	3.1 Design choices
	3.2 Global architecture

	4 AMAM : an active network-based support of thearchitecture
	5 Using AMAM for cost allocation and accountingmanagement
	6 Implementation issues
	7 Conclusion and future work
	References

	5USER ORIENTED IP ACCOUNTING INMULTI-USER SYSTEMS
	1. INTRODUCTION
	2. TRADITIONAL IP ACCOUNTING METHOD
	2.1 IP accounting and IP billing system
	2.2 User Information Processing Method in TraditionalIP Accounting System

	3. THE PRINCIPLE OF USER ORIENTED IPACCOUNTING IN MULTI-USER SYSTEMS
	3.1 User Model
	3.2 User oriented IP Accounting Method
	4. SUMMARY
	5. REFERENCE

	6TARIFF-BASED PRICINGAND ADMISSION CONTROLFOR DIFFSERV NETWORKS
	1. Introduction
	2. Background and Related Work
	3. Pricing Architecture
	3.1 Motivation and Design Choices
	3.2 Price Table Construction

	4. Price Setting Strategy
	5. End-to-End Pricing and Admission Control
	5.1 End-ro-End Pricing
	5.2 Admission Control

	6. Simulation and Results
	6.1 Simulation Model
	6.2 Result Analysis

	7. Conclusion
	References

	SHORT PAPER SESSION 1
	7MONITORING DISTRIBUTED SYSTEMSA Publish/Subscribe Methodology and Architecture
	1. INTRODUCTION
	2. SYSTEM DESCRIPTION AND ARCHITECTURE
	3. EXPERIENCES
	4. FUTURE ENHANCEMENTS
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	8PROACTIVE INTRUSION DETECTION ANDSNMP-BASED SECURITY MANAGEMENT:NEW EXPERIMENTS AND VALIDATION
	1. INTRODUCTION
	2. THE NEW TEST BED AND EXPERIMENTS
	3. EXPERIMENTAL RESULTS
	3.1 Step 1: Determining key variables at the target
	3.2 Step 2: Determining key variables at the attackers
	3.3 Steps 3 and 4: Determining key events at theattacker

	4. SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	9NETLOGGERA Toolkit for Distributed SystemPerformance Tuning and Debugging
	1. INTRODUCTION
	2. NETLOGGER TOOLKIT COMPONENTS
	3. CASE STUDIES
	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	10A CASE STUDY OF THREE OPEN SOURCESECURITY MANAGEMENT TOOLS
	1. INTRODUCTION
	2. TEST SET UP AND PROCEDURES
	3. RESULTS
	4. CONCLUSION
	ACKNOWLEDEGEMENTS
	REFERENCES

	11MTREEDX: A MULTICAST NETWORKDIAGNOSIS TOOL
	1. Introduction
	2. Motivation
	3. Features of MTreeDx
	References

	12MULTIPLE AUTHORIZATIONA Model and Architecture for Increased, Practical Security
	1. INTRODUCTION
	2. MULTIPLE AUTHORIZATION
	3. DISCUSSION & RELATED WORK
	Acknowledgement
	REFERENCES

	13A CONTROLLER AGENT MODEL TOCOUNTERACT DoS ATTACKS IN MULTIPLEDOMAINS
	1. OUR APPROACH
	2. EXTENDED MODEL
	3. CONCLUSION
	REFERENCES1.

	14TOWARD UNDERSTANDINGSOFT FAULTS IN HIGH PERFORMANCECLUSTER NETWORKS
	1. Introduction and Motivation
	2. Related Work
	3. The Problem of Cluster Fault Management
	4. Summary and Ongoing Work
	Acknowledgments
	References

	SHORT PAPER SESSION 2
	15RDF-BASED KNOWLEDGE MODELS FORNETWORK MANAGEMENT
	1. INTRODUCTION
	2. RDF DESCRIPTIONS OF SMING MODULES
	3. IMPLEMENTATION OF KNOWLEDGE BASES
	4. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	16PROCESS MANAGEMENT AND CONTROL FORHETEROGENEOUS DOMAIN MODELS
	1. INTRODUCTION
	2. PROCESSING THE TELECOM-OSS WORKFLOW
	3. IMPLEMENTATION OF STMS
	4. SUMMARY
	REFERENCES

	17SEMANTIC MANAGEMENT: APPLICATION OFONTOLOGIES FOR THE INTEGRATION OFMANAGEMENT INFORMATION MODELS
	1. INTRODUCTION
	2. ONTOLOGIES
	3. APPLYING ONTOLOGIES TO NETWORKMANAGEMENT INTEGRATION
	4. CONCLUSIONS AND FUTURE WORK
	REFERENCES

	18A CONCEPTUAL FRAMEWORK FORBUILDING CIM-BASED ONTOLOGIES
	1. INTRODUCTION
	2. OKBC AND CIM OVERVIEW
	3. THE CONCEPTUAL FRAMEWORK
	4. CONCLUSION AND FUTURE WORKS
	REFERENCES

	19POLICY-BASED COOPERATION OF SERVICESIN UBIQUITOUS ENVIRONMENTS
	1. INTRODUCTION
	2. RELATED WORK
	3. ARCHITECTURE
	4. CONCLUSION
	REFERENCES

	20DESIGN AND IMPLEMENTATION OF ANINFORMATION MODEL FOR INTEGRA TEDCONFIGURATION AND PERFORMANCEMANAGEMENT OF MPLS-TENPN/QOS
	1. INTRODUCTION
	2. DESIGN OF THE INFORMATION MODEL
	2.1 Information Model for MPLS-TE

	3. SUMMARY
	REFERENCES

	21USING THE ACCESS GRID AS A TESTBED FORNETWORK MANAGEMENT RESEARCH
	1. INTRODUCTION
	2. ACCESS GRID
	3. MEASUREMENTS
	4. SIMULATION
	5. SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES

	22AUTOMATING PLACEMENT OF INSTRUMENTATIONIN APPLICATIONS
	1. Introduction
	2. Instrumentation Architecture
	3. Toolset Architecture
	4. Prototype and Initial Evaluation
	5. Related Work
	6. Conclusions
	Acknowledgements
	References

	SESSION 3
	23GENERIC ON-LINE DISCOVERYOF QUANTITATIVE MODELSFOR SERVICE LEVEL MANAGEMENT
	1. Introduction
	2. System Overview
	2.1 Architecture
	2.2 elM-Based Managed Element

	3. The Manager: Constructing Quantitative Models
	3.1 Identifying Important Metrics
	3.2 Estimating Parameters with a Quantitative Model

	4. Prototype Implementation
	4.1 elM Providers for DB2 Performance Metrics
	4.2 Workload Generation and Response Time Probes
	4.3 Implementation of the Manager
	4.4 Interactions between Prototype Components

	5. Conclusions and Outlook
	References

	24A GENERIC MODEL FOR IT SERVICES ANDSERVICE MANAGEMENT
	1. Introduction
	2. Methodology for Service Modeling
	3. Service Template Model
	4. Provider-Centric Service Template Model
	5. Customer-Centric Service Template Model
	6. Example
	7. Assessment and Conclusions
	Acknowledgments
	References

	25A REVENUE-BASED MODEL FOR MAKINGRESOURCE INVESTMENT DECISIONS INIPNETWORKS
	1. Introduction
	2. Capacity Planning
	2.1 State-of-the-Art
	2.2 Improving Capacity Planning

	3. Dynamic Netvalue Analyzer
	4. DNA Decision Making Process for ResourceInvestments
	4.1 Quantifying Loss of Customer Satisfaction
	4.2 Quantifying Return-on-Investment

	5. Discussion
	References

	SESSION 4
	26POLICY PROVISIONING PERFORMANCEEVALUATION USING COPS-PR IN A POLICYBASED NETWORK
	1. INTRODUCTION
	2. BACKGROUND
	2.1 PDPIPEP "configuration provisioning" interaction

	3. THE DEVELOPED PROTOTYPES
	3.1 The two PIBs
	3.2 PDP and PEP
	Start up PDP and PEP
	Decision PDP and PEP

	4. EXPERIMENTAL ENVIRONMENT
	4.1 Measurements

	5. THE PROVISIONED POLICIES, THE RESULTS
	5.1 Policy A, basic complexity
	5.2 Policy B, medium complexity
	5.3 Policy C, high complexity
	5.4 Policy D, very high complexity
	5.5 Results

	6. CONCLUSIONS
	7. REFERENCES

	27DESIGN AND IMPLEMENTATION OF APOLICY-BASED RESOURCE MANAGEMENTARCHITECTURE
	1. INTRODUCTION
	2. SYSTEM ARCIDTECTURE
	3. NETWORK DIMENSIONING ALGORITHM
	4. DESIGN AND IMPLEMENTATION OF THEPOLICY COMPONENTS
	4.1 Policy Management Tool
	4.2 Policy Repository
	4.3 Policy Consumer

	5. CONCLUSIONS
	REFERENCES

	28BANDS: AN INTER-DOMAIN INTERNETSECURITY POLICY MANAGEMENT SYSTEMFOR IPSECNPN
	1. INTRODUCTION
	1.1 Security Management for a RemotelMobile Layer-3Network Node
	1.2 IPSecNPN Security Policy Management

	2. TERMINOLOGY AND PROBLEM DEFINITION
	2.1 Security Policy versus Requirement
	2.2 Inter-Domain Security Requirement Engineering

	3. RELATED WORK
	4. BANDS: A SECURITY POLICY MANAGEMENTSYSTEM ARCIDTECTURE
	4.1 Architecture overview
	4.2 Components
	4.3 Interface between Modules
	4.4 AS Route Path Discovery
	4.5 Algorithm: direct approach
	4.6 The Collaborative Negotiation Protocol

	5. EXAMPLE SCENARIO
	6. EVALUATION
	7. CONCLUSIONS
	REFERENCES

	SESSIONS
	29PERFORMANCE MANAGEMENT FORCLUSTER BASED WEB SERVICES
	1. INTRODUCTION
	2. RELATED WORK
	3. PERFORMANCE MANAGEMENT SYSTEMARCHITECTURE AND IMPLEMENTATION
	3.1 Gateway
	3.2 Global Resource Manager
	3.3 Management Console

	4. MODELING AND OPTIMIZATION
	4.1 The Resource Allocation Problem
	4.2 The Structure of Class Utility Functions
	4.3 System Modeling

	5. EXPE~NTALRESULTS
	6. CONCLUSIONS AND FUTURE WORK
	REFERENCES

	30FACILITATING EFFICIENT AND RELIABLEMONITORING THROUGH HAMSA
	1. Introduction and Motivation
	2. Architecture Overview
	2.1 Highly Available Mid-Level Managers (HA-MLMs)
	2.2 HAMSA-compatible Components
	2.3 HAMSA Messaging Service
	2.4 Group Communication Service (GCS)

	3. Monitoring Applications
	3.1 HA-MLM Administration

	4. Performance Evaluation
	5. Background and Related Work
	6. Conclusion and Future Work
	7. Acknowledgments
	References

	31DYNAMIC LOAD BALANCING FORDISTRIBUTED NETWORK MANAGEMENT
	1. Introduction
	2. Overview of Distributed Network Management
	3. Existing Methods and Disadvantages
	3.1 Existing Methods
	3.2 Disadvantages

	4. Proposed Method
	4.1 Design Principle
	4.2 Dynamic Load Balancing by Proposed Method
	4.3 Example

	5. Prototyping
	6. Evaluations
	6.1 Analytical Evaluations
	6.2 Empirical Evaluations

	7. Conclusions
	Acknowledgments
	References

	SESSION 6
	32SCALABILITY OF PEER CONFIGURATIONMANAGEMENT IN PARTIALLY RELIABLE ANDAD HOC NETWORKS
	1. Introduction
	2. Availability of peers in a network
	3. Ad hoc networks
	4. Peer to peer
	s. Configuration management in ad hoc networks
	6. Predictability and scaling
	Star model
	Star model in intermittently connected environment
	Mesh topology with centralized policy and local enforcement
	Mesh topology with partial host autonomy and local enforcement
	Mesh, with partial autonomy and inter-peer policy exchange
	7. Summary and conclusion
	References

	KHNUM - A SCALABLE RAPID APPLICATIONDEPLOYMENT SYSTEM FOR DYNAMIC HOSTINGINFRASTRUCTURES
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Installing and Cloning
	2.2 Distributed File Systems for clusters
	2.3 Cache pre-loading schemes

	3. THE DATA SHARING MODEL
	3.1 System Overview
	3.2 File System Mapping
	3.3 AFS Cache Initialization

	4. EXPERIMENTAL RESULTS
	4.1 Description of the experiments

	s. CONCLUSIONS
	Trademarks
	Acknowledgments
	Notes
	References

	ENABLING PREOS DESKTOP MANAGEMENT
	1. INTRODUCTION
	2. DESKTOP MANAGEMENT
	3. THE OPENDMSAPPROACH
	3.1 PreOS Management and Platform Neutrality
	3.2 Architecture

	4. BUILDING PREOS MANAGEMENT
	5. THE OPENDMS THIN CLIENT APPROACH
	6. DEPLOYMENT SCENARIO
	7. CONCLUSIONS AND FUTURE WORK
	REFERENCES

	SESSION 7
	PEER-TO-PEER OVERLAY NETWORKMANAGEMENT THROUGH AGILE
	1. INTRODUCTION
	2. REQUIREMENTS
	3. RELATED WORK
	4. THE AGILE ALGORITHM
	4.1 ID Space and Arrangement of Nodes and Keys
	4.2 Overlay Network Structure and Request Routing
	4.3 Insertion and Removal of Keys and Nodes
	4.4 Group Management and Adaptiveness
	4.5 Evaluation

	5. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

	WEB SERVICES MANAGEMENT NETWORKAn Overlay Network/or Federated Service Management
	1. INTRODUCTION
	2. WSMN DESIGN CHOICES
	2.1 SLAs as a Management Tool
	2.2 Protocols

	3. MONITORING AT THE INTERMEDIARIES
	3.1 Monitoring Engines
	3.2 Measurement Exchange Protocol

	4. APPLICATION OF WSMN
	5. CONCLUSION
	REFERENCES

	AUTO-DISCOVERY AT THE NETWORK ANDSERVICE MANAGEMENT LA YER
	1. INTRODUCTION
	2. SERVICE LAYER AUTO-DISCOVERY
	3. SERVICE LAYER AUTO-DISCOVERY CHALLENGES
	4. AN APPROACH FOR NETWORK AND SERVICELAYER AUTO-DISCOVERY
	4.1 Initial analysis
	4.2 Steps during runtime

	5. APPLICATION EXAMPLES
	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	MANAGING HETEROGENEOUS SERVICESAND DEVICES WITH THE DEVICE UNIFYINGSERVICE
	1. INTRODUCTION
	2. THE DEVICE UNIFYING CONCEPTS
	2.1 Device unification and coordination
	2.2 Virtual Terminal management
	2.3 Service portability and adaptation
	2.4 A personal secretary

	3. FUNCTIONAL REQUIREMENTS
	4. LOGICAL SYSTEM ARCHITECTURE
	5. Dus COMPONENTS
	6. IMPLEMENTATION OF Dus VERSION 1.0
	7. THE DUS 1.0 MANAGEMENT INTERFACE
	8. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

	SESSIONS
	DELEGATION OF EXPRESSIONS FORDISTRIBUTED SNMP INFORMATIONPROCESSING
	1. INTRODUCTION
	2. MANAGEMENT DISTRIBUTION
	2.1 Distribution under DISMAN
	2.2 Delegation of SNMP Operations

	3. EXPRESSION MIB
	3.1 Implementation issues
	3.2 Comments to the Expression MIB
	3.3 Changes to the Implementation

	4. CONCLUSIONS
	REFERENCES

	WEAVER: REALIZING A SCALABLEMANAGEMENT PARADIGM ONCOMMODITY ROUTERS
	1. INTRODUCTION
	2. THE WEAVER PATTERN-BASEDMANAGEMENT SYSTEM
	2.1 Weaver design aspects
	2.2 Executing a pattern program on Weaver

	3. BENCHMARKING WEAVER
	4. EVALUATING THE SCALABILITY OF WEAVER
	5. DISCUSSION AND CONCLUSIONS
	REFERENCES
	APPENDIX: PATTERN-BASED MANAGEMENT

	ADAPTIVE RESOURCE MANAGEMENT OF AVIRTUAL CALL CENTER USING A PEER-TOPEERAPPROACH
	1. INTRODUCTION
	2. VIRTUAL CALL CENTER: A MOTIVATINGEXAMPLE
	3. ACAP
	4. ACAP AND VCC
	4.1 Architecture
	4.2 ACAP Resource Manager (RM)
	4.3 Handling Incoming Calls

	5. RELATED WORK
	6. FUTURE WORK AND CONCLUSION
	REFERENCES

	ANALYSIS OF MOBILE RADIO ACCESS NETWORKUSING THE SELF-ORGANIZING MAP
	1. Introduction
	2. Mobile network and the data
	3. Self-Organizing Map
	4. Classification of mobile cells using correlations of SOMcomponent planes
	4.1 SOM of one variable
	4.2 Reorganized SOM component planes
	4.3 Classification using several variables

	5. Classification of mobile cells using cluster histograms
	5.1 General mobile cell model

	6. Conclusion
	Acknowledgment
	References

	SHORT PAPER SESSION 3
	AN ARCHITECTURE FOR PROVISIONING IPSERVICES IN AN OPERATIONS SUPPORTSYSTEM
	1. INTRODUCTION
	2. ISSUES IN PROVISIONING
	3. PROVISIONING SYSTEM ARCHITECTURE
	4. CONCLUSIONS
	REFERENCES

	WIRELESS TERMINAL MANAGEMENTARCHITECTURES
	1. INTRODUCTION
	2. CHALLENGES FOR TERMINALMANAGEMENT
	3. MANAGEMENT ARCHITECTURE
	4. REFERENCES

	A SCALABLE AND EFFICIENT INTER-DOMAINQOS ROUTING ARCHITECTURE FOR DIFFSERVNETWORKSl
	1. INTRODUCTION
	2. DIFFSERV ROUTE SERVER ARCHITECTURE
	2.1 Assumptions and Definitions
	2.2 Overview
	2.3 Edge-to-Edge QoS Routing Model
	2.4 eRS Route Selection Algorithm
	2.5 Resource Reservation

	3. CONCLUSION
	References:

	SOFTWARE DISTRIBUTION FOR WIRELESSDEVICESA reconfigurable approach
	1. INTRODUCTION
	2. SERVICES ARCHIVE ARCHITECTURE
	3. WIRELESS DEVICE ARCmTECTURE
	4. WIRELESS DEVICE UPDATES
	5. MEMORY AND PERFORMANCE EVALUATION
	6. CONCLUSIONS
	REFERENCES

	VPDC: VIRTUAL PRIVATE DATA CENTERA Flexible and Rapid Workload-Management System
	1. INTRODUCTION
	2. RAPID SERVER ALLOCATION
	3. EVALUATION
	4. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

	X·CLI : CLI·BASED MANAGEMENTARCHITECTURE USING XML
	1. INTRODUCTION
	2. XML TEMPLATE
	2.1 The Characteristics of CLI commands
	2.2 XML Representation of the CLI Commands

	3. X-CLIAPI
	4. CONCLUSION
	REFERENCES

	ADYNAMIC SNMP TO XML PROXY SOLUTION
	1. INTRODUCTION
	2. ARCHITECTURE AND IMPLEMENTATION
	3. ANALYSIS TOOL
	4. CONCLUSIONS AND FUTURE WORK
	REFERENCES

	INTERACT-DDMA Solution For The Integration Of Domestic Devices OnNetwork Management Platforms
	1. INTRODUCTION
	2. ARCHITECTURE AND DESIGN
	3. EXPERIMENTAL LABORATORY
	4. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

	SESSION 9
	AN SMING-CENTRIC PROXY AGENTFOR INTEGRATED MONITORINGAND PROVISIONING
	1. INTRODUCTION
	2. FLAME MANAGEMENT AND PROVISIONING
	3. SMING
	3.1 Type and class definitions
	3.2 Mapping specification

	4. A SMING-BASED PROXY AGENTARCHITECTURE
	5. IMPLEMENTATION
	5.1 Generation of object instances
	5.2 Naming scheme
	5.3 Notification support
	5.4 Code generation tools

	6. APPLICATION TO FLAME
	7. RELATED WORK
	8. CONCLUSION AND FUTURE WORK
	References

	TOWARDS XML ORIENTEDINTERNET MANAGEMENT
	1. Introduction
	2. XML Technologies in Network Management
	3. Related Work
	3.1 JUNOScript from Juniper Networks
	3.2 Avaya Labs Research on an XML based ManagementInterface for SNMP Enabled Devices
	3.3 POSTECH Research on XML-based Internet Management
	3.4 WlMA
	3.5 SeLl
	3.6 The IETF XMLCONF BOF
	3.7 The OASIS Management Protocol Technical Committee

	4. Converting SMI MIBs to XML Schema Definitions
	5. Applications
	5.1 Configuration Management
	5.2 Notification Processing
	5.3 Agent Validation
	5.4 An SNMP-to-XML Gateway

	6. Conclusions and Outlook
	References

	GRID OBJECT DESCRIPTION: CHARACTERIZINGGRIDS
	Introduction
	1. The Grid Migration Scenario
	2. Related Work
	2.1 Resource Management Systems and Tools
	2.2 Web Services
	2.3 Related Information Models

	3. Grid Objects
	3.1 Grid Object Examples
	3.2 Grid Object Description Language
	3.3 Machine Profiles
	3.4 Resource Profiles
	3.5 Service Profiles
	3.6 File Profiles
	3.7 Grid Objects
	3.8 GODsL Toolkit

	4. Grid Objects Applied: Grid Migration Service
	4.1 Multiple Files on a Single Machine
	4.2 Resource Identification, Evaluation and Request

	5. Conclusions and Future Research
	Acknowledgments
	References

	SESSION 10
	POLICY SPECIFICATION AND ARCHITECTURE FORQUALITY OF SERVICE MANAGEMENT
	1. Introduction
	2. Architecture
	2.1 Expectation Policies
	2.2 Monitoring
	2.3 QoS Management System

	3. Implementation
	4. Discussion
	5. Related Work
	6. Conclusions
	References

	RESOURCE ACCESS MANAGEMENT FOR AUTILITY HOSTING ENTERPRISEAPPLICATIONS
	1. Introduction
	2. Related Work
	3. Resource Access Management
	3.1 Statistical Demand Profiles (SDPs)
	3.2 Policing and Entitlement Profiles (EPs)
	3.3 Classes of Service
	3.4 Resource Access Management Framework

	4. Case study
	4.1 Hypothetical Resource Utility
	4.2 Statistical Demand Profiles and EntitlementProfiles
	4.3 Classes of Service
	4.4 Experimental design
	4.5 Results

	5. Summary
	References

	SLA-DRIVEN MANAGEMENTOF DISTRIBUTED SYSTEMSUSING THE COMMON INFORMATION MODEL
	1. Introduction and Problem Statement
	2. Web Service Level Agreements (WSLA)
	2.1 SLA Lifecycle in the WSLA Architecture
	2.2 Expressing SLAs in the WSLA Language

	3. Integrating the WSLA and elM Environments
	3.1 Representing SLA Definitions in elM
	3.2 Computation and Aggregation of Metric Values

	4. CIM based SLA Measurement Service
	4.1 Active elM Providers
	4.2 Recovery Mechanism
	4.3 Event Forwarding

	5. Prototype Implementation
	6. Conclusions and Outlook
	Acknowledgments
	References

	SESSION 11
	A MANAGEMENT-AWARE SOFTWAREDEVELOPMENT PROCESS USING DESIGNPATTERNS
	1. INTRODUCTION
	2. STATE OF THE ART
	2.1 Management of applications
	2.2 Management infrastructure

	3. AN INTEGRATED MANAGEMENTDEVELOPMENT PROCESS
	3.1 The system analysis phase
	3.2 The software design phase

	4. A MANAGEMENT DESIGN PATTERN CATALOGFOR THE SOFTWARE DESIGN PHASE
	4.1 Management design pattern catalog
	4.2 Pattern examples in detail

	5. USE OF MANAGEMENT DESIGN PATTERNS INTHE CONTEXT OF THE ERP SYSTEM SAP Rl3
	5.1 Management model for the ICMan component

	6. CONCLUSION
	REFERENCES

	MANAGING VIRTUAL STORAGE SYSTEMS:AN APPROACH USING DEPENDENCY ANALYSIS
	1. Introduction
	2. Active Modeling Technique
	2.1 Model of the Virtual Storage System
	2.2 Dependency Discovery Technique
	2.3 Applications of the Method

	3. Method application to Linux Software RAID
	4. Conclusions and Future work
	References

	DESIGN AND IMPLEMENTATION OF AGENERIC SOFTWARE ARCHITECTURE FORTHE MANAGEMENT OF NEXT-GENERATIONRESIDENTIAL SERVICES
	1. Introduction
	2. Key Features of the Architecture
	3. Platform Overview
	4. u-flow Model
	5. Component Description
	6. Access Session Scenario
	7. Database Model
	8. Home Gateway
	9. Conclusion and Further Work
	Acknowledgments
	References

	SESSION 12
	USING NEURAL NETWORKS TO IDENTIFYCONTROL AND MANAGEMENT PLANEPOISON MESSAGES
	1. INTRODUCTION
	1.1 The Poison Message Failure Propagation Problem
	1.2 The Problem Features

	2. PASSIVE DIAGNOSIS
	3. ACTIVE DIAGNOSIS
	4. NEURAL NETWORK SIMULATION RESULTS
	4.1 Neural Network Structure and Training
	4.2 Main Test Results
	4.3 Serial Test
	4.4 Integration With the Sequential Decision Problem
	5. SUMMARY
	ACKNOWLEDGEMENT
	REFERENCES

	PROBABILISTIC EVENT-DRIVEN FAULT DIAGNOSISTHROUGH INCREMENTAL HYPOTHESIS UPDATING
	1. Introduction
	2. Incremental hypothesis updating
	3. The analysis of positive symptoms
	4. Dealing with spurious symptoms
	4.1 Calculating hypothesis size
	4.2 Controlling hypotheses number
	4.3 IHU+ algorithm

	5. Simulation study
	5.1 The impact of including positive symptoms
	5.2 The impact of ignoring symptom loss on the accuracy offault localization
	5.3 The impact of analyzing spurious symptoms
	5.4 The impact of conditional probability estimation errors

	6. Conclusion
	References

	HIERARCHICAL END-TO-END SERVICERECOVERY
	1. INTRODUCTION
	2. IDERARCHICAL SERVICE RECOVERY
	2.1 The Scalable Path Recovery Protocol (SPRP)
	2.2 SPRP with Signaling Aggregation

	3. RELATED WORK
	4. EVALUATION
	5. CONCLUSIONS
	REFERENCES

	SESSION 13
	GMPLS FAULT MANAGEMENT AND ITSIMPACT ON SERVICE RESILIENCEDIFFERENTIATION
	1. INTRODUCTION
	2. GENERALIZED MULTI-PROTOCOL LABELSWITCIDNG (GMPLS)
	3. FAULT MANAGEMENT IN GMPLS
	3.1 Fault Detection
	3.2 Fault Localization
	3.3 Fault Notification
	3.4 Fault Recovery

	4. GMPLS SERVICE MANAGEMENT
	4.1 Service Definition
	4.2 Application to an Optical Label Switch
	4.3 Protection Schemes Used
	4.4 Sharing Schemes

	5. EVALUATION
	5.1 Experiment 1
	S.2 Experiment 2
	5.3 Experiment 3

	6. CONCLUSION
	REFERENCES

	FUNCTIONAL EVALUATION OF ANINTEGRATED IP OVER WDM MANAGEMENTSOLUTION
	1. INTRODUCTION
	2. THE WINMAN MANAGEMENT APPROACH
	3. TEST-BED SET-UP FOR THE EVALUATION OFTHE WINMAN SOLUTION
	3.1 Description of the WDM test-bed infrastructure
	3.2 Description of the IP test-bed infrastructure
	3.3 Adaptation of the technology dependent EMSs to theWINMAN southbound interface

	4. INTEGRATED SCENARIO FOR VALIDATION OFTHE WINMAN FUNCTIONALITY
	4.1 Initial set-up
	4.2 Scenario Steps

	5. RESULTS EVALUATION
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	A NETWORK-ORIENTED POWERMANAGEMENT ARCHITECTURE
	1. INTRODUCTION
	2. RELATED WORK
	3. OVERVIEW OF THE POWER MANAGEMENTARCHITECTURE
	3.1 Power policies and the event-driven operation model
	3.2 Manager-agent communication
	3.3 Security

	4. PROTOTYPE ENVIRONMENT
	4.1 The manager
	4.2 The agent

	5. EXPERIMENTAL RESULTS
	5.1 Estimates of energy savings during non-businesshours
	5.2 Increase in UPS autonomy during power outages

	6. CONCLUSION
	REFERENCES

	Erratum to: Integrated NetworkManagement VIII
	PANELS
	Author Index

