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ABSTRACT

The numerical simulation of multiphase, multicomponent flows in
porous media requires effective discrete techniques for solving the
nonlinear partial differential equations governing transport of molec-
ular species. Numerical models also demand reliable algorithms for
computing the effects of interphase mass transfer on fluid properties.
This investigation introduces a finite-element collocation method for
solving the transport equations of compositional flows and advances a

novel approach for improving phase-behavior calculatioms.

The collocation technique relies on a new method, called upstream
collocation, to furnish convergert approximations to the equations of
mass conservation. Through this method it is possible to construct
collocation approximations analogous to the upwind finite-difference
schemes dominating the literature on compositional modeling. A series
of examples demonstrates the effectiveness of upstream collocation in

related but more tractable flow problems.

The proposed thermodynamic algorithms use standard equation-of-state
methods to compute geometric representations of the Maxwell sets of
fluid mixtures. This approach replaces the solution of sensitive
systems of nonlinear algebraic equations by a simple interpolation
scheme during execution time. Since it is based on equation-of-state
calculations, the interpolation scheme preserves thermodynamic consis-
tency. Moreover, the new method mitigates the expense and convergence
difficulties associated with the standard approach when more than one

hydrocarbon phase is present.



FOREWORD

This investigation is an outgrowth of my doctoral dissertation at
Princeton University. 1 am particularly grateful to Professors George
F. Pinder and William G. Gray of Princeton for their advice during both

my research and my writing.

I believe that finite-element collocation holds promise as a numer-
ical scheme for modeling complicated flows in porous media. However,
there seems to be a "conventional wisdom'" maintaining that collocation
is hopelessly beset by oscillations and is, in some way, fundamentally
inappropriate for multiphase flows. I hope to dispel these objectionms,

realizing that others will remain for further work.
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CHAPTER ONE
THE PHYSICAL SYSTEM

1.1. Introduction.

Long before the oil price shocks of the past decade engineers recog-
nized a need for improved methods of exploiting petroleum resources.
Conventional production practices including waterflooding are so ineffi-
cient that, of all the oil discovered in the United States as of 1980,
less than 35 percent is identified as either having been recovered or
remaining as proved reserves (Doscher, 1980). By this count, about two
thirds of the nation's known original petroleum resources cannot be
produced using standard primary and secondary methods. Miscible gas
flooding, especially with CO2 as the injected fluid, is one of the more
promising technologies for enhancing oil recovery and thus for shrinking
the gap between discovered resources and crude reserves (Holm, 1982).
Engineers designing miscible gas floods rely on mathematical models to
compare possible operating strategies and to estimate the amount and
timing of additional production. We shall examine new techniques appli-
cable to the numerical simulation of miscible gas floods and similar

compositional flows in porous media.
How miscible gas flooding works.

The basic idea behind a miscible gas flood is to inject a relatively
cheap fluid, often CO2 or propane-enriched natural gas, into a perme-
able, oil-bearing rock formation with the aim of driving the resident
oil toward producing wells. The most obvious principle by which
miscible gas flooding enhances recovery is a purely mechanical one:
injecting fluid into the porous reservoir causes an increase in pressure
drops between injection wells and production wells, resulting in greater
fluid velocities toward producers. This mechanical displacement is

common to all fluid injection schemes for enhanced oil recovery.



Miscible gas flooding offers additional mechanisms for improving oil
production. In a well designed flood, the injected fluid mixes with the
o0il in place to form a zome in which the displacing fluid and the
displaced fluid have very low interfacial tension. As this zone sweeps
through the formation it moves o0il that was previously trapped by the
capillary forces present in the porous rock matrix. Because of its
effects on capillarity, miscible gas flooding leaves less oil in the
swept portions of the reservoir than recovery technologies, such as

waterflooding, based on immiscible displacement.

The key to miscible displacement is the transfer of mass between the
displacing and displaced fluid phases. As the fluids move with
different velocities through the rock there is an exchange of molecular
species in accordance with laws governing the compositions of coexisting
phases. Thus, while the injected fluid initially may not be miscible
with the reservoir oil, the interaction of the flow.field and the
fluid-phase thermodynamics leads to "developed" or "multiple-contact"
miscibility. Holm (1976), Stalkup (1978), and Holm (1982) summarize the

large body of literature describing this class of mechanisms.
An overview of mathematical modeling.

There are two essentially different approaches to modeling miscible
gas floods. One of these is to forgo explicit simulation of interphase
mass transfer, using as a surrogate any of several phenomenological
mixing models coupled with a standard immiscible flow simulator (Lantz,
1970; Todd and Longstaff, 1972; Watkins, 1982). While this route is
inexpensive and therefore quite popular, its success depends as much on
felicitous choices of various fitting parameters as on the correct

mathematical description of physical processes.

Here we shall be concerned with the second approach, namely, modeling

both the flow field and the effects of interphase mass transfer.



Compositional reservoir simulators attempt to capture the complex inter-
actions between flow and thermodynamics in miscible gas floods, and
hence these models must cope with strongly nonlinear phenomena. The
first truly compositional simulators appeared in the American petroleum
engineering literature in the late 1960's and early 1970's (Price and
Donohue, 1967; Roebuck et al., 1969; Nolen, 1973; Van Quy et al., 1973).
Among the most recent and sophisticated of the reported compositional
simulators for miscible gas flooding are those of Kazemi et al. (1978),
Fussell and Fussell (1979), Coats (1980), Nghiem et al. (1981), and
Young and Stephenson (1982). Chapter Four of this investigation reviews
details of these models' structures. For now let us briefly note
current trends in the two major issues confronting designers of composi-
tional simulators: the discretization of the differential eduations
governing fluid motions and the numerical representation of fluid-phase

thermodynamics.

All of the simulators mentioned above use finite differences to
discretize both the space and time dimensions. While the use of finite
elements in petroleum reservoir simulation has shown steady progress
over the last decade, their application to compositional miscible gas
flood simulators has been sparse. It is particularly interesting that
finite-element collocation has received little attention in the petro-
leum industry compared to Galerkin finite-element techniques, despite
certain attractive features of the method. Chapter Three discusses

these matters more thoroughly.

Regarding the thermodynamic part of the problem, there appears to be
a trend toward the exclusive use of cubic equations of state to predict
fluid densities and compositions. All of the aforementioned simulators
reported since 1979 use equation-of-state methods. These methods have
the advantages of thermodynamic consistency and somewhat greater gener-
ality over the tabulated correlations used in earlier compositional

models. On the other hand, equation-of-state methods as commonly



implemented are expensive and exhibit poor convergence near critical
points of fluid mixtures, and these facts give cause for dissatisfaction
with the available techniques. Chapter Two treats these issues in some

detail.

Scope of the investigation.

The present study proposes new techniques for solving both the
thermodynamic constraints and the flow equations in the compositional
simulation of miscible gas floods. For the thermodynamic calculations
we shall construct a method for computing the compositions and satura-
tions of coexisting fluid phases using an interpolation scheme in
conjunction with a cubic equation of state. This method, motivated by a
geometric view of equilibria in thermodynamic systems, furnishes a
simple and computationally reliable remedy to the expense and conver-
gence difficulties associated with standard equation-of-state methods.
For the flow equations, we shall develop a new variant of finite-element
collocation that offers a viable alternative to finite-difference
methods. The collocation schemes presented in this study are novel in
that, unlike earlier methods, they give good results when applied to the
types of nonlinear, convection-dominated flows encountered in oil reser-

voirs.

This study has five chapters. The remainder of Chapter One estab-
lishes the physics governing miscible gas floods and notes some implica-
tions for the numerics that follow. Chapter Two reviews the thermody-
namics of miscible gas floods in detail and presents the new
interpolation technique. Chapter Three introduces the collocation
method and demonstrates its applicability to equations governing flow
and transport in porous media. Chapter Four discusses the design of a
compositional simulator for miscible gas floods. Finally, Chapter Five
summarizes the results of the investigation and outlines possible direc-

tions for further work.



1.2. The reservoir and its contents.

This section briefly defines a petroleum reservoir in mathematical
terms suitable for use in the mechanical description that follows. The
definition is sufficiently broad to encompass fluid displacements
observed at the laboratory, pilot, and field scales, provided certain
underlying assumptions hold. The discussion that follows, including the
remainder of this chapter, is essentially a compilation of relevant
porous-media physics developed by many other researchers. There is no
essential any novelty in this review except perhaps in the attempt to
gather results and methods from a large and varied body of literature
into a consistent picture of miscible gas flood mechanics. While cited
references appear where the justification of facts or lines of reasoning
is not explicit, we shall not undertake an exhaustive literature review

on all of the topics discussed here.

Our point of view on porous-media physics is a macroscopic one. All
of the kinematic and dynamic quantities mentioned in this chapter there-
fore refer to a level of observation where a fluid-saturated porous
medium appears as a collection of superposed continua. Atkin and Craine
(1976) review the theory and hisfory of this viewpoint, and their treat-
ment and the work of Bowen (1980, 1982) guide much of the framework

outlined in this section and the next.

Let us assume that the reservoir consists of a body of homogeneous
porous matrix occupied by at most two fluids, a vapor and a liquid, to
which the matrix is permeable. Let us allow the compositions and densi-
ties of the fluids to vary in space and time. In practical terms these
assumptions exclude fractured porous media and such multi-fluid systems
as oil-gas-water reservoirs and liquid-liquid-vapor mixtures having more
than two fluid phases. Let us assume further that the reservoir is
isothermal, so that there is no need to account for material transfers

of energy through an energy balance equation.



In mathematical language, a reservoir is the closure Q of a simply
connected open subset of the Euclidean space Rd, where d = 1, 2, or 3
depending on the dimensionality of the problem to be solved. Each
neighborhood of any spatial point x € 2 is occupied by matter from each
element in a set Z of constituents. This set £ admits a decomposition Z
= {1,2,...,N+1} x {V,L,R}, where {1,2,...,N+1} is the set of components
or molecular species and {V,L,R} is the set of phases, namely vapor,
liquid, and rock. Thus a constituent is an ordered pair (i,e), identi-

fied as component i occurring in phase a.

Associated with each constituent (i,a) is a measure Pia’ defined on
the field of Lebesgue-measurable subsets of Q and absolutely continuous
with respect to Lebesgue measure. The measure Pia is called the bulk
molar density of species i in phase «, and its physical dimensions are

[moles of (i,a) / volume]. In terms of Pia’ the mixture density is

Pmix — ? k Pia
ia
(1.2-1)
and the bulk density of phase o is
Pa = ? Pia
i
(1.2-2)

Also, associated with each phase « € {V,L,R} is a continuous
function ¢u: Q + [0,1], the volume fraction of «, having physical dimen-
sions [volume of a« / volume]. The set {¢V,¢L,¢R) satisfies ¢V + ¢L + ¢R
= 1. Using the volume fractions and densities, it is possible to define

several useful quantities as shown in Table 1-1.
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For the rock-fluid system under consideration it is convenient to
treat the rock phase separately, since its response to applied loads

will be less important than the responses of the fluid phases. Call

o=¢,+ 0 =1~ ¢,
(1.2-3)

the porosity, and define

Sy = 6y/%, Sp = 6./¢
(1.2-4)

to be the saturations of vapor and liquid, respectively. Several useful
quantities defined in terms of the saturations, ¢, and previously
defined variables also appear in Table 1-1. From the definitions and

the fact that volume fractions sum to unity follow four restrictive

equations:
w, =1
P |
i
(1.2-5a)
z wY =1
. i
i
(1.2-5b)
z w? =1
i
(1.2-5¢)
SV + SL =1

(1.2-5d)



1.3. Reservoir mechanics.

Kinematics

At each time t there is associated with every spatial point x € Q a

material point gz of each constituent (i,a) € E.

The mapping 5?:

(g;,t) # x is the (i,a)-th motion, which we shall assume to be continu-

ously differentiable with nonzero Jacobian determinant. Thus §Z is at

least locally invertible, with inverse (§:)°1'

o
(x,) » X

Given the motions of all of the constituents, it is possible to

define various velocities that are useful in describing the behavior of

the system:

a0 - Q. Q
viEpt) = 3% (X4,

is the velocity of constituent (i,a),

o _ (.4 o
v ipizi/p

is the mean velocity of phase a,

(1.3-1a)

(1.3-1b)

(1.3-1c¢)

(1.3-14d)
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is the barycentric velocity, and

a _a
v,= L ¢ p. v, /p
~i o gg @i~

(1.3-1e)

is the mean velocity of species i in the fluids. From the definitions

of pa and Za there follows

(1.3-2)

Mass balance

Let us assume that the reservoir and its contents obey the mass

balance. That is, for a given material volume I' © Q,

(1.3-3)
A standard argument (Eringen and Ingram, 1965) reduces this equation to

o of B G
; T J [atpi +V (pi Xi)] dv
ia T\I

+I: 5 p: (XZ - ug) ]J*nds =0
ia I -
(1.3-4)

In this equation, I is any surface ih T, Uy is the velocity of I, n is a
unit vector normal to I, and [*] signifies the jump in the quantity (*)

across I. The surface integral will contribute to the left side of
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(1.3-4) when I is a surface on which some of the densities p: are

discontinuous.

If (1.3-4) is valid for arbitrary material volumes T, no matter how

small, then the following point balances hold:

£E [atpz + v-(ngZ)] =0 onQ\Z
1
(1.3-5a)

¢, « _
? [ p; (vy - up) ] - n=0 onE.
ia

(1.3-5b)
This system is equivalent to the following constituent balance equétions

a a o, _Aa
atpi + V'(pi Xi) =p; on Q\NZ

(1.3-6a)

[+3

[ Pai (v,

v, - ug) Jon = R, on )3

(1.3-6b)

for all (i,a) € Z, provided we restrict the mass exchange terms S: and

ﬁi to obey

(1.3-7)

Equations (1.3-6a) are partial differential equations governing the

. . , o
movement of matter in parts of the reservoir where the variables Py
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(and x;) are smooth. Where jumps in densities occur, the conditions
(1.3-6b) apply. From the mathematical viewpoint, we shall be concerned
with solving (1.3-6a) numerically, but we shall admit solutions that
satisfy these equations only in the weak sense. Hence the functions
p:(x,t) that we accept as solutions to the constituent balances may be
discontinuous. However, we shall require such weak solutions to satisfy

(1.3-6b) at their discontinuities.

Let us limit attention to a system in which the movements of matter
obey a special set of simplifying assumptions. To begin with, the
system undergoes no homogeneous chemical reactions; in other words,

there is no exchange of mass among species within any phase. Thus,

z %: =0, i=1,...,N+1
[+

(1.3-8)

Moreover, the rock phase shares no species with the fluid phases, so

that
2? =0, i=1,...,N
(1.3-9)
INY =AL =0
PN+l T PN+l
(1.3-10)

V , AL _
P, =

A
This assumption implies that Py + 0. However, the fluids can

exchange matter between themselves, so that in general
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(1.3-11)

Thus the system to be modeled admits mass transfer between fluids but
excludes adsorption, rock dissolution, and intraphase chemical

reactions.

Since fluid-phase velocities in porous media are typically more
accessible to measurement than constituent velocities, it is convenient
to rewrite the constituent balance equations for fluid constituents in

a
terms of v :

¢ o ¢ o o e _MNa
S i, =
at(¢ S, P w) ¥ Ve(p S p w; V) + V‘gi Py
i=1,...,N
a =V,L

(1.3-12)

N3 o
Here, ;= ] Su p

w: g: is the dispersion of species i with respect

to the mean velocity of a. Summing (1.3-12) over the fluid phases and
: . [ . .

using the constraints on wz and PZ gives the species balance

equations,
v v .V L L L
3. (pw,) + Ve[o(S; p w; v +8 i
.V Ly _ .
+ V'(gi + gi) =0, i=1,...,N

(1.3-13)

This leaves the rock balance equation,
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2,11 - 036%) + V{1 - ) " ¥'] =0
(1.3-14)

L
. . o
An analogous set of assumptions regarding the mass exchanges Ri at

P = 0. Thus,
1

summing equations (1.3-6b) furnishes a jump condition corresponding to
(1.3-13):

A [
included surfaces leads to the relationship RZ + R

VvV V, L L vV, L _ o
le; vi+p) ¥y - (py +pdusln =0, i=1,....,8
(1.3-15)
or
VV, LL v L V, L. 1.
o vy + oy vy + (3;/95) + (3;/951) = (p; + e duslen
=0, i=1,...,N
(1.3-16)

Velocity field equations.

To avoid some of the complexities associated with modeling porous-
media flows, let us assume that only the fluids move and that the
density of the rock stays constant. Hence the rock is completely
immobile, with XF = 0 and both pR and ¢ constant. Strictly speaking,
this assumption is unrealistic, since in practical oilfield operations
the pressure changes associated with pumping can cause detectable
changes in porosity. These changes, however, often have small effects
on fluid motions, and rock compressibilities for typical sandstones are

frequently quite small ( ~ 10.10 Pa-l, Collins, 1961, Chapter 1). The
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assumptions that the rock is both chemically and mechanically inert

eliminate the need for solving the rock balance equation (1.3-14).

The fluid velocities pose greater difficulties. There now appears to
be no universally accepted, rigorous mechanical theory of multiphase
flows in porous media with interphase mass transfer. The only widely
used approach to this problem is to assume that the field equations for
simultaneously flowing fluid phases in porous media are extensions of
Darcy's law for single phase flow. Bowen (1980, 1982) develops this

theory for the case when no interphase mass transfer occurs.

The general law governing fluid-phase velocities in porous media is
the momentum balance, the local differential form of which is
o o a (1 a aa Ao
+ = +
¢ p By +veVy) V'% $p b *+P

~

(1.3-17)

Here E? is the stress tensor of phase «, Eﬁ is the body force acting on
-~ A
phase a, and pa is the net exchange of momentum into phase a« from other
-t
phases, subject to the restriction

Ep* =0
ar-/

(1.3-18)

Equation (1.3-17) holds for all phases, V, L, and R, even though only
the fluid phases are of interest here. A fairly simple set of assump-
tions reduces (1.3-17) to a multiphase version of Darcy's law for
isotropic media (Prevost, 1980; Hassanizadeh and Gray, 1980; Bowen,
1980, 1982). Without appealing to the generality of constitutive theory

(Ingram and Eringen, 1967), let us review these assumptions briefly.
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First, assume that the fluids obey linear stress laws of the form

trace(gf) 1

~

(1.3-19)

where B ranges over all phases, P, is the pressure of the fluid phase a,

. : a ..
5 is the unit tensor, and d~ = Vzu + (Vgu)T. The coefficients Xaa, uaa

Zre intrinsic Lame moduli E;r the fluid phase a, and coefficients of the
form XGB, uas, a # B, represent the effects of interphase tractions.
Second, assume that the last two terms in (1.3-19) contribute negligibly
to the fluid motions on the grounds that viscous effects are dominated
by the effects of momentum exchanges with the rock matrix. This assump-

tion reduces (1.3-19) to

t = - pui, a =V,L
- (1.3-20)
Third, assume that gravity is the only body force:
b* =gV, a=V,L
~
(1.3-21)

where g is the magnitude of acceleration due to gravity (9.80 m/s), and
D signifies the depth below some datum. Fourth, assume that the

momentum exchanges take the form of isotropic Stokes drags:

(1.3-22)
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Thus the effects of interfluid momentum exchanges are negligible
compared with those of fluid-solid exchanges. Finally, assume that the

inertial terms are negligible in the fluids, so that
(1.3-23)

Substituting assumptions (1.3-20) through (1.3-23) into the momentum
balance (1.3-17) gives
- _ 3 _ -1 «a =
0= Vpu +p g VD ¢a Au v, a =V,L
(1.3-24)

The reciprocal of the Stokes drag coefficient is the mobility Au of
fluid phase a. The most common treatment of this parameter is to factor

it as

a o
(1.3-25)

where ka is the effective permeability of the rock metrix to phase «,

having dimensions [Lz], and uu is the dynamic viscosity of phase a.
With this identification and the definition Sa = ¢u/¢, equation (1.3-22)

becomes
a _ _ a, -1 _a
v =-k@s uw) (p, -psg VD)
(1.3-16)

which is the multiphase extension of Darcy's law for isotropic media.
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1.4. Supplementary constraints.

Certain functional relationships hold among the variables describing
the reservoir and its contents. These relationships supplement those
given by the species balances, restrictive equations, and velocity field
equations, providing information necessary to close the transport
problem. Such relationships fall into two categories: thermodynamic

constraints and constitutive laws.
Thermodynamic constraints.

The thermodynamic constraints govern the densities and compositions
of the fluid phases as well as the relative amounts of the phases
present at each point in the reservoir. In an isothermal system, these
quantities depend on the overall composition of the fluid mixture at the
given point and on the local pressures. Thus for example the molar
density of & fluid phase a obeys a constraint of the form
pu = pa(wz,...,w;_l, Pa)’ a =V,L

(1.4-1)

Similarly, the fluid-phase molar compositions satisfy constraints of the

form (Nikolaevskii and Somov, 1978)

¢ _ a . _ -
w, = wi(wl”"’wN-l’pa)’ i=1,...,§-1, « = V,L.
(1.4-2)

In miscible gas floods relationships (1.4-~1) and (1.4-2) for
different fluid phases are not independent, since under appropriate

conditions the densities and compositions of the fluids may become



19

locally indistinguishable. When these conditions occur the interface
between the phases vanishes and the fluids flow miscibly, allowing very
efficient displacement of the liquid initially present. Indeed, the
formation of a zone of such miscibly flowing fluids is the principal
trait of a successful miscible gas flood. To model this phenomenon, the

phase densities and compositions must satisfy

\ L, _
lim (p p)=0
(1.4-3a)
\} -
lim (w, - w,) =0, i =1, ,N-1
ri
(1.4-3b)
1" . 7" ) : ) . .
Here 11mcr signifies the limit as (wl,...,wN_l,pV) approaches a

critical point, where phases become indistinguishable, from thermody-

namic states inside the two-phase regime.

The relative amounts of phases present at any given point obey a
constraint on the fluid saturations Sa' For computational purposes
discussed in Chapter Two, however, this constraint is more conveniently
expressed in terms of the mole fractions of the fluid mixture occuring
as vapor or liquid. These quantities stand in direct correspondence to
the saturations through the definition

Y = paSa/(PVSV + ols

L), a = V,L.

(1.4-4)

The phase mole fractions satisfy the restrictive equation

(1.4-5)
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and obey a thermodynamic constraint of the form

Y, = YV(wl,..

v -,wN_l,pV)

(1.4-6)

The specific forms of the thermodynamic constraints (1.4-1), (1.4-2),
and (1.4-6) depend on the choice of thermodynamic data. We shall use
constraints derived from standard equation-of-state methods, which
Chapter Two discusses in more detail. For the present it suffices to
note that in the usual equation-of-state approach the thermodynamic
constraints assume the mathematical form of a collection of nonlinear
algebraic equations that are equivalent to the explicit forms stated
above but are implicit in the densities, fluid-phase compositions, and

phase mole fractions.
Constitutive laws.

The constitutive laws govern the behavior of certain parameters of
the transport problem which may vary as the flow field evolves. These
parameters are dispersion, capillary pressure, effective permeabilities,

and fluid viscosities.
Dispersion.

Dispersion is arguably the most poorly understood macroscopic phenom-
enon in porous media physics, and and there exists a correspondingly
large literature on the subject (see Perkins and Johnson, 1963; Green-
korn and Kessler, 1969; Nunge and Gill, 1969, Fried and Combarmnous,
1971, and Fried, 1975, Chapter 2, for reviews). Recent studies have

shown some emphasis on relating the macrocsopic features of dispersion
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to the microscopic structure of fluid-saturated porous media (see, for

examples, Carbonell and Whitaker, 1982; Mohanty and Salter, 1982; Smith
and Schwartz, 1980). There is fair agreement that for flows of a single
fluid phase at a fixed scale dispersion obeys a phenomenological consti-

tutive law of Fick's type (Van Quy et. al, 1972),

j;,=-9¢p M

i D; * V010,10

(1.4-7)

where Mi is the molar mass of species i and M = (2?=1 wj/Mj)_1 is the
molar mass of fluid. However, no simple choice of functional dependence
for the dispersion tensor 21 has escaped criticism on both experimental
and theoretical grounds. Moreover, there has been no empirically tested
extension of (1.4-7) to multiphase flows. Since the dispersion tensor
must account for such disparate microscopic phenomena as molecular
diffusion, Taylor diffusion (Taylor, 1953), stream splitting, and
tortuosity of the matrix, it is perhaps no wonder that the most appro-

priate functional form remains a mystery.

The most common treatment of dispersion in compositional models of
miscible gas floods to date has been to ignore it. Of the major compo-
sitional simulators reported in the American petroleum engineering
literature, only that of Van Quy et al. (1972) reports the use of
dispersion coefficients. Although data quantifying dispersion in multi-
phase, multicomponent flows are scarce, some experiments suggest that
this class of phenomena can have measurable effects in laboratory- and
field-scale floods (Watkins, 1978; Yellig and Baker, 1981). The most
straightforward extension of the single-phase law (1.4-7) is

- 65, 0" M D ¢ VO
(1.4-8)
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However attractive equation (1.4-8) may be on theoretical grounds, it
remains untested. It is worth noting that in many applications the
effects of dispersion may be quite small (Collins, 1961, Chapter 8), and
in fact the fully compositional model developed in Chapter Four neglects

the phenomenon entirely.
Capillary pressure.

The capillary pressure relates the macroscopic pressure in the liquid

to that in the vapor:

Pey, “ Py ~ P,
(1.4-9)

This difference owes its existence to the interfacial temnsion between
the fluid phases, a molecular phenomenon (Gubbins and Haile, 1977; Davis
and Scriven, 1980), and to the microscopic geometry of the fluid inter-
face in the interstices of the porous matrix (Morrow, 1969). Thus the
actual physics of capillarity are quite complicated, and its details are
not wholly accessible to the macroscopic level of observation to which

the equations of this chapter pertain.

In bench- or field-scale studies it is most practical to measure
capillary pressures as functions of macroscopic flow parameters, using
the experimental values to define empirical capillary pressure functions
applicable in the velocity field equations. There is general agreement
that for two fluids of fixed compositions the capillary pressure depends
on the local values and history of the saturations (Morrow, 1969). TFor
flows in which saturations change monotonically, as in strict imbibition
or strict drainage, the capillary pressure of fixed-composition fluids

is a unique function of saturation for each initial state of the porous
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medium. In miscible gas floods, however, the fluid compositions vary in
time and space. To account for these changes, it is convenient to
quantify the interfacial tension of the fluid mixture as a function of

thermodynamic variables:
- vV v V L L L
c = o(p S ERRRF U NI ’wl”"’wN-l)
(1.4-10)

This quantity has the dimensions [energy/area], or [M/TZ]. The capil-

lary pressure then has the functional form

PeyL, = Peyr(Sy»9)
(1.4-11)

As o » 0 the interface between vapor and liquid disappears and the
displacement occurs miscibly; this happens at critical points. From

this consideration it is clear that

lim Pov, = 0
o0

(1.4-12)

a condition that parallels equations (1.4-3). In the absence of experi-
mental data we shall compute interfacial tensions using the Sugden-

Macleod correlation (Reid et al., 1977, Chapter 12).
Effective permeabilities.
Like capillary pressure, effective permeabilities are also macro-

scopic manifestations of the effects of interstitial geometry and inter-

facial tension on fluid flows in porous media, and the caveats regarding
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measurements at the bench or field scale hold here as well. It is
customary to factor the effective permeability of each fluid phase a as
ku = kkra’ where k is the absolute permeability, a characteristic of the
rock, and kra is the relative permeability, a phenomenological factor
accounting for the influence of the other fluid phase on the flow of o
and obeying 0 < kru < 1. 1 shall assume that k is a uniform, constant
scalar, thereby disregarding the possible effects of anisotropy or
pressure-induced matrix deformations on the permeability as well as the
Klinkenberg effect, an enhancement of permeability to vapor attributed

to slipping at the walls of the matrix (Collins, 1961, Chapter 3).

For relative permeabilities the appropriate constitutive laws are not
so simple. The influence of one fluid phase, say B, on the other, say
o, in general comprises a complicated set of microscopic phenomena.
Under the assumption that fluid-fluid tractions are small, we may
consider the main effect to be the obstruction of channels to the flow
of a owing to their occupation by B in a configuration depending on the
interfacial tension. While relative permeabilities have been thoroughly
studied for immiscible displacements without interphase mass transfer
(see Scheidegger, 1974, Chapter 10 for a review), there is little exper-
imental information on relative permeabilities applicable to miscible
gas floods. Noteworthy exceptions are the studies of Bardon and
Longeron (1980), who examined gas-oil systems, and Amaefule and Handy
(1982), who used aqueous solutions of surfactants to displace refined
hydrocarbon mixtures. These investigations show that, for systems in
which interphase mass transfer changes the compositions of the fluids,
the relative permeabilities for monotonic displacements depend on

saturations and interfacial tensions:

k., =k (5,0, as=LV.

(1.4-13)
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To be consistent with the theory of single-phase flow in porous media,
these functions must satisfy 0 < krV + er < 1. Moreover, as ¢ + 0 the
vapor-liquid interface disappears, and the single-phase version of

Darcy's law applies:

v =- (k/¢u)(Vp - pg VD)
(1.4-14)

Therefore, as ¢ -+ 0, krV

Longeron report that as o becomes very small the relative permeability

+ er + 1 for any saturation. Bardon and

curves approach straight lines with positive and negative unit slope on
the saturation interval [0,1]. This behavior occurs near critical

points in miscible gas floods.
Viscosities.

Let us assume that viscosities are functions of pressure and phase
composition:
® o ¥ o L0l W )
u W (P s®ys e sBy
(1.4-15)

In the absence of experimental data a correlation developed by Lohrenz,
Bray, and Clark (1964) gives fairly accurate predictions of mixture

viscosities.
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1.5. Governing equations.

The balance laws together with the restrictive equations and supple-
mentary constraints combine to form a system of equations that must be
solved to predict the performance of miscible gas floods. Since this
system is nonlinear and usually quite complicated, numerical approxima-
tion offers the only hope for producing solutions in a practical
fashion. To motivate the choices of numerical procedures in the
following chapters, let us close this chapter with a formal assembly of
the equation set to be solved and a discussion of some of its mathemat-

ical aspects.
Form of the system.

The basic transport equation governing the distribution of any
fluid-phase component i in the reservoir is the mass balance augmented
by the velocity field equations and constitutive laws. Thus, substi-

tuting (1.3-26) and (1.4-8) into (1.3-13) gives

\

. \ A
3. (pw.) - Vo[Ay p" w, (Vpy - p'g VD)

L L L or:V Ly _
+ AL N (VpL p g VD) v (gi + ii) =0

(1.5-1)

Using the capillary pressure Poyr, = Py " P, and calling Xi' = (AV wz pv

+ AL w? pL)g reduces these equations to
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vV V L L '
3t(pwi) V'[(AV CRCH + AL p wi) VpV + Xi vD

]
o

L L V. .L
- Ap et ey Vpoy) - VRt 1))

(1.5-2)

Henceforth let us assume that the flow is one-dimensional, that is, that
all variables are uniform along two Cartesian axes and vary only along
x. Integrating (1.5-2) across the directions of uniformity and denoting

the cross-sectional area by A(x) then yields

\/ L
A3 (pu,) - 3 [(Ty wy + Ty w) 3 py+ ¥, 30D

L .V Ly =
- TL wi aXpCVL] - ax[A(Ji + Ji)] = 0)
i=1,...,N
(1.5-3)
where
T =AA ¢, w=V,L
(1.5-4a)
is the transmissibility of phase a« and
¥, =A%,
i i
(1.5-4b)

In addition to the N equations (1.5-3) we have the four restrictive

equations
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N N N
3 wY = 1 w? = I w, = SV + SL =1
i=1 ' i=1 i=1
(1.5-5)
the 2N + 1 thermodynamic constraints
o _ o o ] -
p =p (wl,...,wN_l,pu), a =V,L
(1.4-1)
c_ a . _ -
W, o= W (wl""’wN-l’pa)’ i=1,...,N-1, «a = V,L
(1.4-2)
SV = Sv(wl,...,wN_l,pV)
(1.5-6)

(the last being equivalent to (1.4-6) through the definition (1.4-4)),
the definitions of p and g, and constitutive laws sufficient to deter-
T

mine T L* Povye jz and j?, i=1,...,N. Given the problem geometry

V’
(A(x) and D(x)) and appropriate boundary and initial data, equations

(1.5-3), (1.5-5), (1.4-1), (1.4-2), and (1.5-6) constitute a set of 3N +

V L L

5 equations in the 3N + 5 unknowns {wl,...,wN, Wiseeslyns Wohee., 0,

pV,SV,SL,pV,pL). Finally, to accommodate the event that spatially

discontinuous solutions may arise, we have the jump conditions (1.3-16).
Weak solutions.

The possibility of discontinuous solutions raises the issue of weak
solutions to the governing partial differential equations (1.5-3), since
functions satisfying these equations in the literal sense cannot be
discontinuous. For a function w(x,t) to be a weak soluticn of a conser-

vation law atfl(w) + axfz(w) = 0 on an (x,t)-domain Q x O, the following

integral equation must hold for any function g € c™(Q x 8) having
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compact support in Q x 0 (Chorin and Marsden, 1979, Chapter 3; Birkhoff,
1983):

I [fl(w) atg + fz(w) axg] dxdt = 0
Qx0
(1.5-7)

This criterion admits discontinuous functions w(x,t) but reduces to the
original partial differential equation when w is sufficiently smooth to

satisfy the latter.

Equations (1.5-3) are fairly complex, and it is not at all clear on
inspection whether one can reasonably expect discontinuous solutions to
arise. There are, however, several simplified versions of these
equations which have been shown to exhibit discontinuous solutions. Let
us review two such simplifications: the Buckley-Leverett saturation
equation and a generalization of the Buckley-Leverett theory due to
Helfferich (1981, 1982).

The Buckley-Leverett problem

The Buckley-Leverett saturation equation (Buckley and Leverett, 1942)
models the incompressible flow of two immiscible fluid phases in a
homogeneous porous medium. The equation arises from a set of species
balances of the form (1.5-3) under the further assumptions that N = 2
and neither species is shared between phases. Letting wL =w, =0,

1 2
then, we have from (1.5-3)

\'
A3 (¢p Sy -3 (T, 3 p, +T

v
vyt Tyr &30 =0

(1.5-8a)
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L L _

(1.5-8b)

3 PovL

Assuming also that gravity and capillarity have negligible effects, that
variations in pv and pL are negligible, and that A is constant and

uniform allows us to rewrite (1.5-8) as

¢ 9.5, + 3 qy =0

(1.5-9a)
[} at(l - SV) + aqu =0
(1.5-9b)
where q = - A 3 _p,, is the flow rate of phase a, o« = V,L. In the case
o axV

where the total flow rate q = qy + qy, is constant we need only solve one
of these equations, say the first. Since qy = Avq/(Av + AL) this

reduces to the hyperbolic conservation law

_1 _
3,5, + 8, (aq ¢ £) =0
(1.5-10)

where the fractional flow function

fV = AV/(AV + AL) = fV(SV)

(1.5-11)
denotes the volume fraction of the flowing stream occupied by vapor.

The nature of the fractional flow function is, of course, crucial to
the behavior of solutions to equation (1.5-10). Although the precise
form of fV(SV) depends on the particular rock and fluids studied, there



31

are qualitative features common to most fractional flow functions for
immiscible displacements, as drawn in Figure 1-1. First, fV vanishes
for vapor saturations less than an irreducible vapor saturation SVR and
equals unity for SV 21 - SLR’ SLR being the residual liquid saturation.
These "endpoints" SVR and 1 - S_ are constants characteristic of the

LR
given vapor-liquid-rock mixture when phase compositions do not vary.
Second, fV is often not a convex function over its support [SVR,I]:
typically it is S-shaped, with an inflection point where its slope has a
maximum. Finally, fv'(SV) exists throughout [0,1] and vanishes at the
endpoints SVR and 1 - SLR'
These peculiarities of fV(SV) can lead to discontinuous solutions

SV(x,t) for Cauchy problems with initial data of the form

S

Sv(O,t) t20

1,
Sv(x,O) = Sz(x), x>0
(1.5-12)

defined on the (x,t)-domain  x © = [0,») x [0,«). To see this, observe

that (1.5-10) has the characteristic equation

(dx/dt) g = ap” ' (dE/dS,)
v

(1.5-13)

which governs loci of constant SV. Since fV is not not convex, dfv/dSV
is not monotonic, and so there are speeds at which several distinct
saturations may propagate. Thus it is possible, for example, for the
locus of some large value of SV to overtake that of a small value
initially ahead of it. Depending on the initial data prescribed, then,

literal application of (1.5-13) may eventually lead to multiple values
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Fig. 1-1: A typical fractional flow function fV(SV) and
its convex hull ?(SV).

SATURATION SHOCK
s T —

N

Fig. 1-2: Triple-valued saturation predicted by the Buckley-
Leverett characteristic equation.
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of vapor saturation at certain points in @, as shown in Figure 1-2. One
way to resolve this apparent paradox, as Welge (1952) shows, is to
replace fv by its convex hull, drawn as the dashed line in Figure 1-1.
Welge's construction yields the single-valued but discontinuous satura-
tion profile drawn in Figure 1-2. At smooth parts of the solution SV’
any locus of constant saturation advances with the speed given by
(1.5-13), while discontinuities move with speeds satisfying the jump

condition (1.3-16). For the vapor-phase component this reduces to

v =
[s,v -s;u;1=0
(1.5-14)

. \'s
or, since v qfv/¢Sv,

4
i}

g = a8 [£1/0s]
(1.5-15)

The Buckley-Leverett-Welge solution is a weak solution but not a
classical solution, since it is discontinuous. Nonetheless, it is the

physically correct solution to the Buckley-Leverett problem.
Helfferich's theory.

Recently, Helfferich (1981, 1982) has presented a unified generaliza-
tion of the Buckley-Leverett theory to multicomponent flows in porous
media with interphase mass transfer, and this work sheds some light on
the equations governing miscible gas floods. Helfferich bases his
approach on simplified versions of the species balances; we shall derive

an equivalent set of equations from (1.5-3).
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Assume, as in the Buckley-Leverett problem, that gravity and capil-
larity have negligible effects, that A does not vary, and further that
dispersion is negligible for all species. Under these hypotheses
(1.5-3) becomes

\J L., _
at(pwi) + ax[q(fvwi + fLwi)] =0,

"
i}
—
-
-
z

(1.5-16)

_- - a s = =
where now q, = - ° Aa axpv is the flow rate of phase a, « = V,R, g qy
+ qr, is the total flow rate, and fa = qu/q is the fractional flow of

V

phase a, o« = V,L. Calling fi =f w, + fL w? and assuming that varia-

\Y
tions in molar fluid density in space and time are negligible, we can

rewrite (1.5-16) as

-1 _ .
atwi + ax(q ¢ fi) =0, i=1,...,N
(1.5-17)

Now from the identity fV + fL = 1 it follows that 2§=1fi =1, and

consequently only N - 1 of the equations (1.5-17) are independent.

For each species i, equafion (1.5-17) is identical in form to the
Buckley-Leverett saturation equation (1.5-10). By inspection, then,

loci of constant w, move at the speed

]
—
M
.
Z
]
-

(dx/de)|, = ap '(4f/dw), i
. i

(1.5-18)

and discontinuities in w, travel at the speed

uzi = Qp-l [ £, 171 wy 1, i=1,...,N1
(1.5-19)
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By definition, a given composition (wl,...,wN_l) propagates as a
coherent wave provided all of the variables w, at a given time and place

(x,t) in the reservoir move with the same speed; in symbols,

@ T(E /dw) = X, 4= 1, N1
(1.5-20a)

Similarly, for a discontinuity to be coherent, we must have

el LE Vo] =4 i=1,...81
(1.5-20b)

Consider the case when N = 3. Equations (1.5-20) become g p-ldfi =

X dwi for i = 1,2, which by the chain rule can be written as

(A1 -g tAJdu=0
(1.5-21)

where A is the matrix whose elements are afi/awj, i,j = 1,2, | is the
identity matrix, and dw = (dwl,dwz)T. Equation (1.5-21) has nontrivial

solutions only when the characteristic equation det(} | - ¢ p.1 Ay =0

holds, that is, when X is a root to the quadratic equation

G q p-1 trace A + qu-z det A =0
(1.5-22)

In this case, then, there will typically be two characteristic speeds of

X AL T i iti i i
coherence max’ “min for a given composition (wl,wz) at a given point

(x,t). The corresponding solutions of (1.5-21) define the tangents

(dwl/dwz)max, (dwl/dwz)min to the characteristic curves in composition

space along which the X - and A, -waves travel, respectively.
max min
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In actual problems the fractional flows fi’ and hence the matrix A,
are complicated functions of composition, even under the simplifying
assumptions used to derive equations (1.5-17). We must therefore allow
that the qualitative structures of the solutions to this problem may be
quite different for various choices of thermodynamic and initial data.
Helfferich (1982), however, adduces simple examples showing that discon-
tinuous solutions can arise for physically reasonable problems in which

N = 2 or 3, and his reasoning extends to larger numbers of species.
Implications for numerical solution.

The analyses of the Buckley-Leverett problem and Helfferich's theory
have implications regarding the choice of numerical approximations to
the full system (1.5-3). In particular the behaviors of the simplified
systems suggest that the full system may possess solutions having steep
gradients or discontinuities in composition. Indeed, finite-difference
studies of compositional reservoir flows have borne out this expectation
(see, for example, solutions plotted in Van Quy et al., 1972; Coats,
1980; Nghiem et al., 1981). The possibility of such shock-like
solutions demands special numerical treatment of the governing equations

to ensure physically correct approximations.

The complexity of the full system of species balances hinders
rigorous analysis of its solutions. There do not even exist published
proofs of existence or uniqueness of solutions to the full compositional
equations, although Isaacson (1981) and Temple (1981) have produced a
global existence proof for Cauchy problems on a simplified analog of
(1.5-3) given initial data of bounded variation. Thus, while solving
the compositional equations numerically is a problem of considerable
practical importance, it is also a task lacking somewhat in mathemati-

cally rigorous support. We must therefore limit our discussion of the
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numerical solution to (1.5-3) to heuristic remarks based on analogies

with the simpler cases.

The formation and persistence of steep composition gradients occur in
problems where the dissipative influences of species dispersion and
capillary pressure gradients are dominated by convection owing to
applied pressure gradients. Such conditions are common in oilfield
practice. When dispersion and capillarity are absent the governing
equations take the form of hyperbolic conservation laws, and, as the
simplified analyses show, we should expect discontinuities to form. If
the dissipative terms are nonzero but very small, then because of their
functional dependences on composition gradients their influences will be
detectable only in the very near vicinity of steep portions of the
solution. A discrete approximation to such terms may miss these influ-
ences altogether when their spatial extent is significantly smaller than
the mesh of the spatial grid, and poor numerical approximations may
result. In fact it is possible for consistent, apparently stable numer-
ical schemes to fail to converge when applied to the Buckley-Leverett
problem (Mercer and Faust, 1977; Allen and Pinder, 1982) or to the
pressure-saturation equations governing two-phase immiscible displace-

ments (Aziz and Settari, 1979, Cﬁapter 5).

These convergence difficulties are symptoms of incompletely posed
problems. The weak form (1.5-7) of a hyperbolic conservation law
together with its jump condition are not sufficient to determine unique
discontinuous solutions to otherwise well-posed Cauchy problems (Chorin
and Marsden, 1979, Chapter 3). There is an additional constraint needed
to close such problems, and it may be stated in several ways. Among

them are the following:
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(i) The solution must depend continuously on the initial data, so
that characteristics on both sides of any discontinuity must

intersect the initial curve.

(ii) The solution must satisfy Oleinik's "condition E" (Oleinik,
1963b), a geometric constraint for nonconvex flux functions
that reduces to the Welge construction in the Buckley-

Leverett problem.

Another equivalent of this additional constraint which is useful for
discrete approximations is the "vanishing viscosity" condition (Oleinik,
1963a; Lax, 1957 and 1972):

(iii) The solution must be the limit of solutions, for the same
data, to a parabolic equation differing from the hyperbolic
one by a dissipative second-order term (capillarity or

dispersion, in our case) of vanishing influence.

All of the compositional simulators cited above impose the vanishing
viscosity condition numerically through the use of upstream-weighted
difference approximations to the flux term. Chapter Three describes a
finite-element collocation scheme for (1.5-3) that imposes the vanishing

viscosity condition in an analogous fashion.



CHAPTER TWO
REPRESENTING FLUID-PHASE BEHAVIOR

The key to the attractiveness of miscible gas flooding compared with
immiscible flood technologies is interphase mass transfer. Under the
right conditions of pressure, temperature, and composition, the exchange
of species across the phase boundary in a miscible gas flood leads to
the formation of a zone in which the displacing fluid and the displaced
fluid are very similar. As described in Section 1.1, the rock swept by
such a zone has very low residual oil saturation, implying more

efficient 0il recovery overall.

The transfer of mass among fluid phases in a miscible gas flood is a
complicated set of kinetic phenomena driven by intermolecular forces and
macroscopic transport phenomena. Mathematical models of such composi-
tional flows typically invoke an assumption of "local thermodynamic
equilibrium" to warrant the use of equilibrium methods in computing
fluid-phase densities and compositions. In this approach one neglects
the kinetics of interphase mass transfer, instead imposing thermostatic
constraints at each location and instant in the flow field. The
approach is computationally convenient, especially when one uses an
equation of state to predict fluid-phase properties. This chapter
briefly discusses the physical significance of the equilibrium approach
through a thermodynamic framework that is consistent with established
thermostatic results. We shall also review the calculations needed to
apply these results with an equation of state, noting some of the
undesirable features of the numerics. Finally, we shall examine a
simple variant of the standard equation-of-state approach that retains
most of its advantages but avoids its most salient computational short-

comings.



40

2.1. Thermodynamics of the fluid system.

It is clear that no transient system will obey the assumption of
thermostatic equilibrium in any strict sense. However, the assumption
has empirical support (see, for example, Raimondi and Torcaso, 1965) in
the sense that its predictions agree well with the results of flow
experiments. It is possible, moreover, to reconcile the notions of
equilibrium thermostatics with the description of many transient flows
using a dynamic interpretation of Gibbs' theory developed by Gilmore
(1981). Appendix B reviews the application of this interpretation to
the thermodynamics of miscible gas floods. This section summarizes in
somewhat less technical language the link between the geometry of
equilibria and the algebraic descriptions that we owe to Gibbs (1876 and
1878).

Notions of equilibrium.

The principal thermodynamic variables in an isothermal multicomponent
flow belong to two sets. The first, which we shall identify as the set
of control variables, is {wl""’wN-l’ V}, where w, is the mole fraction
of species i in the fluid mixture and V is the molar fluid volume, that
is, the reciprocal of molar fluid density p. The second set of
variables, which we shall designate the state variables, is
{nl,...,nN_l, -p}, where n, is the modified chemical potential of
species i and p is the pressure. The variables n, are different from
the customary chemical potentials LPp the two sets being related at
equilibrium by the equation LR PR g While Appendix B derives
results in terms of the n, for technical reasons, one can readily trans-
late the derived relationships to equations in terms of the more
familiar ui (Reid and Beegle, 1971). For our purposes the 2N control
and state variables suffice for the definition of the thermodynamic

state at any point in the flow field.
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There is very little that one can say about general relationships
among the control variables and the state variables in systems removed
from equilibrium. In some flows, however, the time scales character-
istic of changes governed by the transport equations may be much longer
than those characteristic of relaxation to thermodynamic equilibrium.
For these systems it may be reasonable to approximate the behavior of

thermodynamic quantities using established equilibrium relationships.

Yet, as Appendix B explains, more than one concept of equilibrium may
apply. In a gradient-dynamic system, for example, there are at least
two meaningful notions of equilibrium. One is that of stable equilib-
rium, in which the thermodynamic variables yield a local minimum in some
postulated potential. The other is that of thermostatic equilibrium, in
which the thermodynamic variables correspond to a global minimum in the
potential. Hence thermostatic equilibria form a subclass of stable
equilibria. Let us assume that the reservoir fluids in miscible gas
floods behave very nearly as if they were locally in thermostatic

equilibrium at each point in time and space.

This assumption justifies the use of classical thermostatics to model
fluid-phase behavior. The mathematical conditions for stable equilib-
rium in a gradient-dynamic system imply an equation of state giving each
point (nl,...,nN_l, -p) in equilibrium as a function of (wl""’wN-l’
V). At stable equilibria that are also thermostatic equilibria this
equation of state renders a complete description of the thermodynamic
system. However, for stable equilibria at which the global minimum in
potential shifts from one local minimum to another several thermostatic
equilibria coexist. Here the equation of state underdetermines the
system. If there are two equiminima in potential, say, then there are
two coexisting phases, V and L in our case. While both obey the
equation of state, the equation alone yields no clue regarding their

precise loci. The extra conditions determining the coexisting phases
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are, from Appendix B,

Py = P,
(2.1-1a)
\Y L .
nEay, = 1,008
(2.1-1b)
In terms of the customary chemical potentials, (2.1-1b) is
\' L .
WU, 1= 1,000 N
(2.1-1c)

These are the standard equations of equilibrium as stated by Gibbs.

Strictly speaking, the pressures of coexisting phases in a porous
medium at thermostatic equilibrium differ owing to capillarity.
Equations (2.1-1) fail to account for this phenomenon because the
geometry of fluid phase boundaries does not appear as a control
variable. In principle one can extend the present thermodynamics to
include such effects using Gibbs' theory of capillarity (Gibbs, 1876 and
1878). However, there exist experimental data (Sigmund et al., 1973)
indicating that capillary effects exert negligible influence on the
distribution of species between coexisting fluids in typical
hydrocarbon-saturated reservoir rocks. On the strength of this finding
it appears reasonable to use equation (2.1-1) to define thermostatic
equilibrium in the systems of interest here. In practice we shall use

the pressure Py in the vapor phase to compute equilibrium properties.

Geometry of equilibria.

This description of equilibria admits a geometric interpretation that

has some heuristic value in the remainder of the chapter. Equations
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(2.1-1) define the set of single-phase thermodynamic states that lie at
the limit of thermostatic equilibrium. This set is called the Maxwell
set KM of the thermodynamic system. If a single-phase system confined
to thermostatic equilibrium crosses the Maxwell set, it bifurcates,
becoming a system of coexisting phases each of which lies on the Maxwell
set. Therefore in miscible gas floods the Maxwell set provides informa-
tion, not only about when the fluids change from a single-phase regime
to a two-phase regime and vice versa, but also about the values of the

thermodynamic variables associated with each coexisting phase.

A similar demarcation exists for stability: the set of thermodynamic
states that lie at the limit of stable equilibrium is called the
spinodal set KS of the system. Thermodynamic states that are stable
equilibria but are not thermostatic equilibria are metastable, meaning
that they may be observed under special circumstances but are labile.
Unstable points lying beyond the spinodal set are not observed. Arthur
S. Wightman, in his introduction to a monograph by Israel (1979),
reviews these physics more thoroughly. The primary object of this
chapter is to present schemes for computing the Maxwell set in simula-

tors of miscible gas floods.
Critical points.

In miscible gas floods the critical points of the fluid mixtures play
an important role: they are points in the Maxwell set where coexisting
phases become indistinguishable. Therefore, mixtures in the critical
region flow very nearly as if the fluids were completely miscible.
Critical points are noteworthy, too, because in their vicinity standard
equation-of-state computations often perform poorly. For these reasons
it is useful to be able to compute critical points explicitly. Gibbs
(1876 and 1878, pp. 129-133) deduces two algebraic criteria for this

purpose. Appendix B reviews their derivation from the gradient-dynamic
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viewpoint.

The first criterion for a point in thermostatic equilibrium to be a
critical point is that it lie at the limit of convexity of the Helmholtz

free energy with respect to the control variables. This is equivalent

to requiring

det . =U=0

awluN-l ... aw

HN-
N-1 N1

- (2.1-2)

The second criterion is that the critical point be a limit of points
satisfying (2.1-2) for which isothermal variations in the control param-

eters can produce unstable phases. A necessary condition for this is

aw U ce. aw U W
1 N-1

3 u ? u

wl 2 wN-l 2

det . =0
8 U, ] Uy
W, N-1 WN-1 N-1
L 4 (2.1-3)

Equations (2.1-1) through (2.1-3) provide a complete description of the
Maxwell set, provided we have a computable equation of state from which

to calculate the chemical potentials.
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2.2. Standard equation-of-state methods.

The theory summarized in the previous section provides both a geome-
tric view and the equivalent algebraic conditions of local thermostatic
equilibrium. Numerical simulation requires some computable form for
this theory. Recent contributions to compositional reservoir simulation
have shown a trend toward increasing reliance on equation-of-state
methods to model fluid phase compositions and densities. These methods
stand in contrast to approaches based on tabulated ratios Ki = wZ/w?
of phase compositions for each species as functions of pressure and

compositions.

The main advantage of equation-of-state methods is their thermody-
namic consistency: the equations used to predict phase compositions are
based on those used to predict phase densities, and thus the compati-
bility conditions (1.4-3) hold. Such consistency is necessary for the
behavior of the thermodynamic system near critical points to vary
smoothly with changes in pressure and mixture composition (Coats, 1980).
This advantage is noteworthy, since, as Nolen (1973) explains, the
convergence of the transport calculations near the miscible regions of

gas floods is at stake.

However, the standard equation-of-state approaches have at least two
disadvantages. First, the methods call for relatively powerful itera-
tive techniques to solve for the fluid-phase characteristics that they
predict. This mathematical machinery adds substantially to the cost of
running compositional computer codes. Second, and more serious, the
iterative techniques commonly used are rather sensitive to starting
guesses near critical loci. This lack of reliability poses obstacles to
the practical simulation of miscible gas floods. We shall elaborate on
these observations in this section, saving Section 2.3 for the presenta-

tion of a simple approach to avoiding both difficulties.
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The Peng-Robinson equation of state.

Peng and Robinson (1976) propose an equation of state for hydrocar-
bons that is cubic in molar volume V and is applicable to petroleum
reservoir fluids through the use of mixing rules. Their work follows a
long tradition of cubic equations of state beginning with that presented
by van der Waals in 1873 and including the popular Redlich-Kwong
equation (Redlich and Kwong, 1949). We shall use the Peng-Robinson
equation in this investigation, although the general methodology we

discuss applies to any similar cubic equation of state, including the

Redlich-Kwong equation.
The Peng-Robinson equation is

p = RT/(V - b) - a(T)/[V(V + b) + b(V - b)]
(2.2-1)

where T is the temperature (K) and R is the gas constant, 8.31434
J/mol-K. The parameters a(T) and b are empirical factors calculated for
pure substances according to rules that Peng and Robinson specify.

Equation (2.2-1) is equivalent to

23 - -mz2+ (a - 382 - 28)z
- B -82 -8 =0
(2.2-2)

where



47

A= ap/R2T2
(2.2-3a)
B = bp/RT
(2.2-3b)
and
Z = pV/RT
(2.2-3c)

is the compressibility factor. When one solves equation (2.2-2) for a
particular fluid phase, one may find three real roots. In this case the
choice among roots is as follows: if the phase in question is a vapor,
select the largest root; if the phase is a liquid, pick the smallest
positive root. In practice we can solve equation (2.2-2) for all of its
roots using a Laguerre iteration method (Smith, 1967) available in code

as the IMSL subroutine ZPOLR.

Although Peng and Robinson introduce their equation for pure
substances, for which the parameters a and b depend on thermodynamic
properties of the individual molecular species, the equation extends to
single-phase mixtures through mixing rules. These rules give the values
of a and b for a mixed phase & in terms of their pure-substance values

and the composition of the phase as follows:

[+ N N o Q
a = ! I w,w, (1-26,,) Y(a.a,
A i % ( 1J) ( i J)
(2.2-4a)
o N o
b = I w, b.
i=1 1 1

(2.2-4b)
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Here a; and bi are values of the parameters a and b for species i, and
aij is a "binary interaction parameter" determined by fitting the
mixture equation to experimental data. Oellrich et al. (1981) have

published an extensive collection of values for 5ij'

Peng and Robinson also present the equation for species fugacity in a
single-phase mixture. This equation is an essential ingredient in
phase-behavior predictions. The equation gives the fugacity f: of

species i in phase a as

o _ a o
fi =P wi ¢1
(2.2-5a)
where ¢: is the dimensionless fugacity coefficient given by
o _ NI | _ o
¢, = (2, -B) " exp [B,(Z - 1)/B7]
o . -n%
x {[Za + (1 + vV2)B ]/[Za - (1 -v2)B]} i
(2.2-5b)
with
o a, o a N a o
ng = [A"/(B"V8)] [(2/a) jil wj a - Gij) /(aiaj) - bi/b |
(2.2-5¢)

Hence f: has the dimensions of pressure. In these formulas A% and B%

are gotten by substituting a® and b® into equations (2.2-3a) and
(2.2-3b), respectively. The determination of phase equilibria requires
finding zeros of systems of algebraic equations, each of which is a
combination of fugacities computed from equations (2.1-5). Let us
discuss two such calculations used in standard equation-of-state reser-

voir simulators.
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Saturation pressure calculations.

The problem of determining saturation pressures in a multicomponent
fluid mixture is the following: given a single-phase fluid of

prescribed temperature T and molar composition (wl,...,u determine

N_l) b
a pressure psat at which a second, nascent phase begins to appear. If
the existing phase, denoted by e, is a vapor and the nascent phase, say

v, is a liquid, then psat = pdew’ the dew pressure. If £ is a liquid

and v is a vapor, then psat = pbub, the bubble pressure. Figure 2-1

dew
14

depicts pbub and as functions of composition for a typical binary

mixture.

The utility of saturation pressure calculations in compositional
modeling consists in discriminating between the one-phase and two-phase
regions in the space of thermodynamic states. 1In many petroleum reser-
voirs amenable to miscible gas flooding the practically attainable
one-phase region corresponds to pressures greater than psat. For these
systems determining psat amounts to locating points on a dome-like
surface lying above the composition space. Figure 2-2 shows such a dome
for a hypothetical ternary mixture. Simulator-predicted N-tuples
(ul,...,uN_l, p) lying under the saturation-pressure dome represent
two-phase states, and for these it is necessary to calculate vapor-
liquid equilibria to determine the properties of the two coexisting
phases. Since the set of all points (wl,...,wN_l, psat) lying on the
dome is the Maxwell set of the fluid mixture, coexisting vapors and

liquids for two-phase states lie on this dome.

Mathematically, the saturation pressure problem for an N-component
mixture is a nonlinear set of N + 1 algebraic equations. N of these are

the conditions on chemical potentials that characterize the Maxwell set:
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& = MEASURED (OLDS ET AL,,1949)

O = COMPUTED USING PENG-ROBINSON £ CRITICAL
EQUATION OF STATE POINT

PRESSURE (MPa)

] 1 ] 1
o 0.2 04 0.6 0.8 10
MOLE FRACTION CO,

Figure 2-1. Saturation pressures for 002 + n-butane at
310.93K.
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Saturation-pressure dome for a hypothetical ternary

fluid mixture.

Points under the dome belong to the

two-phase region; points over the dome lie in the

one-phase region.

Coexisting phases lie on the dome.
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£ v .
Uy = My i=1,...,N
(2.2-6a)
The last is the condition that mole fractions in the
nascent phase sum to unity:
N v
I w, = 1
i=1
(2.2-6b)

Equations (2.2-6) assume a form that is more convenient computation-
ally if we express them in terms of fugacities. The defining equation
for the fugacity fz of species i in a single-phase fluid « is

® = RT tn £ + Tef
¥y it W
(2.2-7)
where uief is the chemical potential in some reference state. Now we

can express the conditions (2.2-6) defining the Maxwell set in terms

that we can compute from the equations (2.2-5) for fugacities:

- =0, i=1,...,N
1 1
(2.2-8a)
sat N 4 v
P - I f /¢.=0
. 1 1
i=1
(2.2-8b)

Here ¢Z is the fugacity coefficient defined in equation (2.2-5a). For
the problem at hand, the composition of the existing phase is known and
the variables (w:,...,w;, psat) are unknown. Therefore the system

(2.2-8) has the following dependencies on the unknowns:



vV, Vv sat €, sat, _

fi(wly- ’wN’ P ) fi(P ) =0
(2.2-9a)

for i = 1,...,N, and
sat N €, sat v, Vv v sat
P - L f.p )/ b (ug, el ug s, ) =0
j=1 1 i1 N-1

(2.2-9b)

Solving this system numerically requires an iterative method. The
Newton-Raphson method is attractive except for the unwieldy computations
needed to evaluate the derivatives of f; appearing in the Jacobian
matrix. To avoid these computations, we can solve (2.2-9) using a

quasi-Newton or secant method based on the use of finite differences.

For brevity, let us denote the algebraic system (2.2-%) by R(%) = 0,

where R: RN+1 -+ RN+1 is the nonlinear function whose roots we seek.
Given an iterate g} = (w%,...,wg, psat,k), the secant method computes
a correction Azk+1 = §k+1 - 2} according to the rule

J(éF) A§k+1 = . §ﬂ2¥) = _-Ek

(2.2-10)

Here J is a finite-difference approximation to the Jacobian matrix
Qg/ag:

Ky _ k , .k A Ky, k
3@ = [Ry3° + by e) - R(ED]/hy
(2.2-11)

Ej being the j-th unit basis vector. To start the algorithm, set hg =

c§2 for some small factor ¢ < 1, and thereafter choose h? = A§?.

This choice yields an iterative procedure with a theoretical asymptotic
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convergence rate (Ortega and Rheinboldt, 1970) of (1 + V5)/2 = 1.618.
However, plotting fn ”EF+1H versus 2n HE}H does not always give a line
with slope 1.618 in practice, although Figure 2-3 suggests that the
convergence rate is at least superlinear. The scheme requires N + 2
evaluations of the residual E, or (N + 1)2 + 1 evaluations of fugacity

differences, at each iteration.

A simple damping routine increases the likelihood that the algorithm
will converge for poor initial guesses. This routine consists of
halving the correction vector repeatedly, if necessary, until -0.1 <
(w:)k <1.1, i=1,...,N, aborting the iteration if a reasonable number

of halvings (say, 15) fails to give acceptable corrections.

The coded version of this algorithm performs well except near the
critical points of fluid mixtures, where the method is very sensitive to
initial guesses, go. This sensitivity reflects the proximity of true
roots of the system to "trivial roots", namely v = €. Figure 2-4 plots
the progress of near-critical calculations for the binary mixture CO2 +
n-butane at 310.93 K. Increasing sensitivity to initial guesses in the
critical region is a difficulty characteristic of standard equation-of-
state methods for computing saturation pressures and other phase
equilibria, and a considerable amount of research has focussed on
mitigating this sensitivity (see, for examples, Asselineau et al., 1979;
Baker and Luks, 1980; Gundersen, 1982; Nghiem and Aziz, 1979; Poling et
al., 1981; Risnes et al., 1981; Varotsis et al., 1981).

Table 2-1 compares saturation pressures for the binary mixture COZ'+
n-butane as predicted by the Peng-Robinson equation with those measured
by Olds et al. (1949). In most cases the two sets of data agree fairly
well, although there are several exceptional points. Table 2-2 lists

the starting values and number of iterations required to achieve a
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residual whose Euclidean norm

N
IR, = ¢ 2

R, )% 1
i=1

(2.2-12)

is less than 0.01 Pa for the runs reported in Table 2-1. Figure 2-5
shows plots of predicted and measured saturation pressures versus compo-

sition for the binary mixtures CO, + n-butane and CO, + n-decane at

2 2

344,26 K using experimental data from Olds et al. (1949) and Reamer and
Sage (1963). Figure 2-6 is a perspective plot of predicted saturation
pressures versus composition for the ternary mixture CO2 + n-butane +

n-decane at 344.26 K.
Flash calculations of vapor-liquid equilibrium.

Given an isothermal fluid mixture (wl,...,wN_l, p) lying in the
two-phase region, it is necessary to determine the compositions
(wz,...,ux) and (w?,...,w;) of the coexisting phases and the mole
fractions YV and YL that they occupy in the mixture. In geometric
terms, this means locating the points on the Maxwell set that represent
coexisting states for the given feed (wl""’uN-l’ P) and calculating

their relative distances from the Maxwell set, as drawn in Figure 2-7.

Mathematically, this "flash" calculation amounts to solving a set of
algebraic equations for the 2N + 2 unknowns (w?,...,w;,Ya, a=V,L}.

The first three equations are the restrictions

(2.2-13a)
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Figure 2-5. Saturation pressures for CO2 + Hydrocarbon binaries

at 344.26K (=160F), computed using Peng-Robinson
equation of state.
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N o
I w, =1, a =V,L
. i
i=1
(2.2-13b)
Next, we have N - 1 mole balances
\ L _ . ——
YV w, + YL w, =u, i= 1,...,N-1
(2.2-13c)

Finally, there are N conditions of local thermostatic equilibrium,

_ V.V v L L L _
Ri = fi(wl,..., wN_l,p) fi(wl,..., wN_l,p) =0

(2.2-13d)

The observation that equations (2.2-13a) through (2.2-13c) are fairly
simple, while the conditions (2.2-13d) are complicated, motivates the
following overall solution scheme, first described by Fussell and
Yanosik (1978):

(i) Select N principal iteration variables, (w?,...,wﬁ_l, YL}
V V
or {wi""’wN-l’ YV}
(ii) Solve equations (2.2-13a) through (2.2-13c).
(iii) Compute the fugacity residuals i? = (f: - f?)k, i=

1,...,N, where the values of o and B depend on the choice in
step (1).

(iv) If the residuals are sufficiently small, stop.

(v) Correct the iteration variables using a quasi-Newton step.

(vi) Go to step (ii).

We shall discuss the implementation of these computations individually.
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Step (i) poses the choice between two sets of principal iteration
variables. These variables serve as the unknowns g in the quasi-Newton

iteration of step (v). Let us choose

L L L
i >
(wl,...,wN_l,Y ) if YV 2 0.5
?;:
\ \'} vV, .
(wl,...,wN_l,Y ) if YV < 0.5

(2.2-14)

Fussell and Yanosik (1978) report that this choice leads to more
reliable convergence of the scheme than arbitrary selection of one set
of variables for #. For the rest of this section let us identify the

phase chosen for the iteration variables by the index «a.

Step (ii) calls for the solution of equations (2.2-13a) through

(2.2-13c). This is a straightforward matter given the iterates
o 1

{wi,...,wN_l, Ya}: from equations (2.2-13),
kK _ . _ ok
YB =1 Ya
(2.2-13a")
B,k _ _ a,k, .,k _
wy (wl Yu vy )/Ya’ i=1, ,N
(2.2-13¢")
ka1 g Ok
i<N
(2.2-13b")
wg’k =1- 1 wg’k
i<N

(2.2-13b")
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Once these values are available, one can compute the fugacity residuals
(step (iii)) as functions of the principal iteration variables by the
definition of the Ri implied in equation (2.2-13d). To check the
residuals, as prescribed in step (iv), we can compute their Euclidean
norm and test it against a numerical convergence criterion, usually no

smaller than 0.01 Pa.

The quasi-Newton iteration required in step (v) is similar to that

used in the saturation pressure calculations. To solve the nonlinear

system.g(g) = 0, let us compute a correction vector Aik+1 = §F+1 - gk at
each iteration k by solving the linear system
k k+t1 _ 5 k. _ _ =k
Jij(g ) Aéj = Ri(g ) = Ri
(2.2-15)

Here, as in equation (2.2-10), the matrix elements Ji. are finite-

difference approximations to elements aﬁi/aij of the Jacobian matrix:

k, _ 5 sk k = rak k
3;5@ = [Ry&° + hle) - R, (891/h)
(2.2-16)

After picking initial values for hg we choose the subsequent increments

h? according to the secant rule,

hg = max {A§g, hQ}, k > 0.
J J J
(2.2-17)

Putting a lower bound on the increments in this way guards against
division by zero in case one component is absent and the corresponding

correction vanishes.
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Just as the saturation pressure scheme described earlier, this algor-
ithm has an asymptotic convergence rate of about 1.618, although the
caveats regarding plots of &n HEF+1H versus £n HEFH apply here as well.
Table 2-3 summarizes some results of flash calculations for the ternary
mixture CO2 + n-butane + n-decane at 344.26 K.

This algorithm requires N2 + 1 evaluations of fugacity differences
per iteration. It also exhibits the same sorts of difficulties as that
for the saturation pressures: it becomes increasingly sensitive to
initial guesses near critical points, where the compositions of the
coexisting phases become identical. In addition to the investigators
cited for saturation pressure calculations, Kao (1978), Li and Nghiem
(1982), Mehra et al. (1982), and Michelsen (1980) have discussed various
strategies aimed at improving starting guesses and narrowing the regions

of poor convergence.
Critical point calculations.

Given an equation of state it is possible to compute critical points
of fluid mixtures. Although such calculations are not always necessary
in the standard equation-of-state approach to reservoir simulation, they
are important in constructing the Maxwell set interpolation scheme
described in Section 2.3. The problem of computing critical points for
an isothermal mixture may be simply stated as follows: given values
(w3,...,wN_1, p), determine the point (wl,uz) along the critical curve,
that is, along the locus of points at which the critical conditions
(2.1-15) and (2.1-16) hold. Although Gibbs (1876 and 1878, pp. 129-133)
formulated this problem over a century ago, reports of actual computa-
tional experience have been relatively recent (Peng and Robinson, 1977;
Baker and Luks, 1980; Heideman and Khalil, 1980; Peng and Robinson,
1980).
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The equations to be solved in critical point calculations are
equations (2.1-15) and (2.1-16), which by the definition (2.2-7) of

fugacity are equivalent to

(3 f)/f ces (3 £.)/f
w1 1 ¥N-1 17771

U = RT det . =0

(awlfN_l)/fN_1 s (3

(2.2-18a)

and a similiar equation gotten from (2.2-18a) by replacing the first row
in the matrix with the vector

( (3 U)/RT, ..., (3 U)Y/RT)
Yy “N-1
(2.2-18b)

as stipulated in Appendix B. For a three-component system these reduce
to

U = RT [(3w1f1)(3w2f2) - (awzfl)(awlfz)]/(flfz) =0

(2.2-19a)

RT [(aNIU)(awzfz) - (asz)(awlfz)]/fz =0
(2.2-19b)

In this case, the derivatives of U with respect to w, are
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aw.U ={-U [fz(aw'fl) + fl(aw'fz)] + RT [ (aw aw'fl) (aw.fz)
i i i 1 7i i

+ (aw fl) (aw au.fZ) - (aw aw.fl) (aw fz)
1 2 i 174 1

T8, £ (@ 8, £) 1)/ (55 =0

(2.2-20)

for i =1 or 2.

Although one could in principle compute by analytic formulas the
various derivatives of fugacity appearing in these equations, the task
is tedious at best for first derivatives and worse for second deriva-
tives. Moreover, from a numerical standpoint the resulting analytic
expressions are complicated combinations of transcendental functionms,
and control over the truncation and roundoff errors associated with
their literal transcription to Fortran is uncertain. One alternative is
to use simple centered finite-difference approximations tec these terms,

for example,

3 fi = [fi(w1 + Aw, wz) - fi(w

o) - b, w,)]/(24w)

1
(2.2-21)

In practice, successively smaller values of Aw lead to estimates of a
given derivative that appear to converge quickly to a single value,
until Aw becomes so small that the resulting differences in fi are
comparable to the machine's limits on precision. For double-precision

calculations on an IBM 3081 the value Aw = 10-5 works well.

Using these finite-difference approximations, we can solve for the
roots of the system (2.2-18) using the secant quasi-Newton algorithm

published by Wolfe (1959) and available in coded version from IMSL as
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the subroutine ZSCNT. Figure 2-8 shows points along the critical curve

computed for the ternary mixture CO, + n-butane + n-decane at 344.26 K.

2

Computational considerations.

As this section has suggested, the equation-of-state approach to
compositional reservoir simulation, at least as commonly implemented,
has some undesirable traits. To begin with, methods based on solving
equal-fugacity constraints pointwise require a fair degree of computa-
tional sophistication, and one effect of this fact is to divorce the
numerics from much of the global geometric picture of miscible gas flood
thermodynamics. This criticism is more esthetic than damning, but it
has some significance. Much of the current understanding of the design
principles for miscible gas floods rests on geometric pictures using the
Maxwell set; papers by Hutchinson and Braun (1961), Metcalfe et al.
(1973), Metcalfe and Yarborough (1979), and Orr and Jensen (1982) are

four among many examples of such work.

A second, more salient consequence of the computational sophistica-
tion required in the standard approaches is their cost. These
approaches entail saturation pressure calculations or flash calculations
or both for each time step, for each spatial node, and for each itera-
tion in a transport code. This overhead is expensive, and it hinders
the application of compositional simulation to large-scale studies.
Moreover, the expense of solving equal-fugacity constraints repeatedly
during simulation is incommensurate with the quality of the results they
predict. Cubic equations of state are inherently limited in the
accuracy with which they model fluid-phase behavior (Abbott, 1979). A
cheaper prediction method giving results of comparable veracity and
thermodynamic consistency would be more appropriate for use in simula-

tors.
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100% CO,

14.0363MPa
13.5MPa

N\ o,
50% n-DECANE 50% n-BUTANE

Figure 2-8. Projection of the critical curve onto composition

space for CO, + n-butane + n-decane at 344,26K,
computed usifig the Peng-Robinson equation of state.

Computed points lie at 0.5 MPa increments between the
binary endpoints.
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The most serious difficulty with the standard equation-of-state
methods is their unreliability. In the most naive applications the
failure of thermodynamic calculations owing to inadequate starting
guesses can cause a simulator to abort. One tactic for avoiding this is
to identify the region of starting-guess sensitivity with the region of
very low interfacial tensions, using failure to converge as prima facie
evidence, as it were, for miscibility. This approach, while entirely
practicable, lacks sound justification and carries the risk of thermody-
namic inconsistency if ineffective starting guesses occur outside the
critical region. Calculations in the critical region would be more

believable if they converged.
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2.3. Maxwell-set interpolation.

The shortcomings of the standard equation-of-state methods arise when
the unknown properties of the fluid mixture lie on the Maxwell set, for
which we have only an implicit representation. This observation
suggests circumventing the difficulties by developing an explicit repre-
sentation of the Maxwell set whose numerical evaluation is cheaper and
less likely to fail. So long as this representation is reasonably
accurate and preserves thermodynamic consistency, we can avoid solving
for equal fugacities during the course of transport calculations while
still imposing equation-of-state constraints to compute fluid-phase

thermodynamics.

This section describes such an approach. Specifically, let us
consider calculating the saturation-pressure dome by interpolation,
using data generated by the standard methods of Section 2.2. In this
approach we can represent vapor-liquid equilibria by a set of tie lines
also based on the results of the standard methods. The data supporting
this scheme are computed prior to any flow simulation. One therefore
encounters difficulties associated with the standard techniques only in
the construction of a database, not in the midst of transport calcula-
tions. The interpolation technique affords order-of-magnitude or
greater reductions in the time required to execute two-phase calcula-
tions and virtually eliminates sensitivity to starting guesses. We
shall develop the interpolation scheme for a three-component system;
however, as Chapter Five discusses, the construction extends to larger

numbers of components.
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The saturation-pressure dome.

One simple and easily generalized method for interpolating a real-
valued function of two variables given data at discrete points of its
domain is the method of plates. For the saturation-pressure dome of a
three-component system, the domain is the triangular subset of R2

defined by 92 = {(wl,wz) € R2 | wy + w, = 1}. Let k be a collection

{(wl kY2 k)}§=1 of knots in this domain, and consider a proper trian-
b 3
gulation QZ generated by taking vertices from x (see Prenter, 1975,

Section 5.4). Given nodal values piat = psat(w1 k,wz k) for all knots,
3 s

the method of plates interpolates pSat as

sat sat

(“1’“2) = E Py Tk(”1’”2)
k=1
(2.3-1)

where {Tk}§=1 is the basis giving psat as a plane over each subset of
92 belonging to the triangularization. In practice one computes (2.3-1)
for a given triangular region using area coordinates (Pinder and Gray,
1976, Section 4.8).

The triangular linear interpolation scheme (2.3-1) is easy to

compute, and it extends readily to functions of several variables. 1In

addition, if pSat € CZ(QZ) the interpolation error is subject to

control, obeying

sat sat 2
™" - p" "7l < 4M,h

(2.3-2)

where h denotes the mesh of the triangularization and M, is a bound on

2

sat/awiawjl over 92’ i,j £ 2 (Prenter, 1975, Section 5.4).

|3%p
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Several practical rules promote the construction of good interpola-
tion schemes for the saturation pressure dome. Two of these are fairly
obvious. First, the dome need only be computed in regions of 92 where

pSat exceeds the pressures expected to be encountered in the tramnsport

problem. We can therefore confine the interpolation scheme to these
regions when we know in advance the operating pressure range of
interest. Second, to facilitate the mechanical search for the grid
element containing specific arguments (wl,wz), it is helpful to choose
knots along lines of constant ¥y and W,

Furthermore, to retain the advantages of the equation-of-state
method, the interpolation scheme ideally should preserve thermodynamic
consistency. This implies in particular that the scheme should not give
interpolates of the Maxwell set that are thermodynamically unstable. In
the geometric terms of Section 2.1, the scheme should not produce values
that lie on the wrong side of the spinodal set KS. This restriction
typically causes no concern except near critical loci, where the Maxwell
set KM and the spinodal set KS intersect as drawn in Figure 2-9. Here
an approximation %Sat that is satisfactory in terms of its absolute
error |pSat - %Satl can be inadmissible on thermodynamic grounds. One
way to avoid such anomalies is to force a more accurate representation
of the critical region by choosing points along the critical locus as
knots. This tactic calls for the critical-point calculations described

in Section 2.2.

Finally, in some cases interpolation using artificial data may
improve the scheme. In nature saturation pressure domes often have
regions of high curvature near one or more of the boundaries w, = 0 of
the composition domain. For such surfaces the constant Mz in the error
estimate (2.3-2) is large, and thus the interpolation error may also be

large. Figure 2-10 shows schematically how judicious choices of artifi-
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CRITICAL POINT

{a)

CRITICAL POINT

(b)

Kg = SPINODAL SET
K, = MAXWELL SET

Figure 2-9. Thermodynamically inadmissible (a) and admissible (b)
interpolation schemes for the Maxwell set. The segment
AB in (a) is thermodynamically unstable.
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Figure 2-10.

A cross-section of a hypothetical saturation
pressure dome showing how an artificial kmot
w, can yield better interpolated values than

the true knot at O.
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cial knots can lead to better estimates of Psat over the operating
pressure range in these cases. The figure depicts, in cross section,
part of a hypothetical pSat dome, the horizontal axis being a line in
the composition domain 92 and P1g representing a lower bound on
pressures encountered during transport simulation. Given a knot at Wy

r

with saturation pressure p:at, a "real" knot at the composition value O

A
with psat = pgat leads to poor interpolated values on the composition

interval (O,NA) owing to the large curvature in pSat there. In this
hypothetical case, choosing an artificial (in fact, non-physical) knot
at w, and assigning %Sat(w*) = p, gives better interpolated values so

t

. Asat
long aslbsa 2 Pip- The larger errors occuring for p are not

< Prp
. . Asat
important, since we compute the Maxwell set only when p > Prp- The

addition of artificial knots may change the interpolation domain 92 to a

somewhat different subset Q; of R2

Consider this scheme as implemented for the system CO2 + n-butane +
n-decane at 344.26 K. This fluid mixture exhibits many of the qualita-

tive features associated with the phase behavior of CO_, - reservoir oil

mixtures, although the latter are vastly more complex in composition.
The 002 + n-butane + n-decane system also has the advantage of having
been studied as a model for 002 displacement mechanisms in miscible gas
flooding (Metcalfe and Yarborough, 1979; Orr and Jensen, 1982). Let the

species indices 1, 2, and 3 refer to CO,, n-butane, and n-decane,

2
respectively.

Figure 2-11 shows the interpolation grid for the saturation-pressure
dome of this system. The grid exemplifies all four of the observations
discussed above. First, the grid covers only a portion of 92. Since no
COz flood of this system operating at pressures below the lowest
critical pressure can be miscible, there is no need to compute the

Maxwell set at values lying very far below this pressure. The lowest
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pressure on the critical curve in this case is 8.030 MPa, occurring at
wl = 0.71889, wz = 0.28111. Thus the interpolation scheme exists on a
region Q;, excluding a large zone where pSat < 6.0 MPa by including
only knots where Wy > 0.45. In keeping with our second observation, the

knots of the interpolation scheme lie along lines of constant Wy and W,

Third, several critical points appear as knots, including the critical

2 + n-~butane and 002 + n-decane. In

Figure 2-11 the critical knots appear as circles. Finally, the triangu-

points for the binary mixtures CO

lation extends beyond 92 to accommodate the artificial knots mentioned
above. A service routine for triangular meshes (see, for example, Page,
1982) is handy in assigning values of psat to these knots by trial and

error.

Using this interpolation scheme, computing saturation pressures is a
simple matter. For a given composition (w?,wg) the algorithm requires
a search through a list of grid elements, followed by evaluation of the
basis functions associated with the vertices of the element to which
(wg,wg) belongs. If the K knots lie along lines of comnstant wy and
Wys then the search need only be O(VK) in length. The interpolation
itself requires less than 50 floating-point operations using area

coordinates.
Vapor-liquid equilibria.

Given a geometric representation of the Maxwell set, it is possible
to develop a geometric method for computing vapor-liquid equilibria. 1In
particular, it is possible to construct a family of tie lines connecting
points on the saturation-pressure dome that represent coexisting fluid

phases. Then the fluid phases corresponding to a point (wl,wz,p) lying

under the psat dome are just the points (wX,wZ,p), (w?,wg,p) at

which the appropriate tie line intersects the dome, as drawn in Figure
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2-7. The mole fractions occupied by the phases vary linearly with

distance from the dome:

2, (wg - w 2 :

L
(wl - W) 2)

V.2

L V.2 L
(wl - wl) + (wz wz)

(2.3-3)

Hence the tie lines and the representation of the Maxwell set give all

of the information necessary to determine vapor-liquid equilibria.

Suppose we represent the tie lines for the model system CO2 +
n-butane + n-decane at 344.26 K by interpolating data generated using
the methods of Section 2.2. At a given pressure p, each tie line has
the form

w, = v(p) w, + w*(p)
(2.3-4)

where w* is the intercept wiFh the axis w, = 0. According to a rule of
thumb called Hand's rule (Hand, 1930; Van Quy et al., 1972), w* is a
constant for each pressure. However, this rule can be unreliable for
some systems, and it is better instead to assume that at each pressure o

and w* vary with p but obey the approximate rule

Y = $ = a(p) w* + B(p)
(2.3-5)

Figure 2-12 plots these lines for various pressures. We can compute a«
and B at discrete pressures by linear least-squares fit, using linear

interpolation to compute a and B at other pressures. The least-squares
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TIE-LINE INTERCEPT w™®WITH w,*0

Figure 2-12.

.10 115 1.20
L] ¥ ﬂ

Approximate straight-line relationships
between tie-line slopes and intercepts at
various pressures for the ternary mixture

002 + n-butane + n-decane at 344,26K.
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A
approximation in this case gives a maximum relative error [¢ - wﬂz/”wﬂz

= 0.013. Figure 2-13 displays a and P as functions of pressure.

These representations furnish the following procedure for calculating
vapor-liquid equilibria for a point (wl,wz,p) lying in the two-phase

region:

(1) Compute the values a(p), B(p) by linear interpolation

(ii) Find the tie-line intercept w* by solving the equation w, =
(aw® + B)(wl - w*) requiring that the tie line pass through
(wy,0,).

(iii) Compute the tie-line slopes from equation (2.3-5).

(iv) Find the intersections of the tie line with the Maxwell set.
Steps (ii) and (iv) deserve some comment.

The equation for w* in step (ii) is quadratic and hence may have two
distinct roots. The choice between roots will generally be clear from
the construction of the tie lines. 1In the present case the data force «
> 0, so the slope of the tie line increases as w* decreases. This
implies that the quadratic equation may hold for some value of w* less

than the physically correct value, so we choose the largest root.

Step (iv) calls for the solution of two pairs of equations, each pair

having the form

a _ A C I
w, = w(p)(w1 w¥)
(2.3-6a)
Asat, a a, _
(w,w,)) = p
(2.3-6b)
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One simple way to solve these equations numerically is to use the method
of bisection (Dahlquist et al., 1974, Section 6.2), choosing starting
guesses (w:,w;)o that lie above the pSat dome for the given pressure.
When the bisection method has reduced the search interval to a single

+
grid element of 92, switching to the Newton-Raphson method gives the

. cg s . sat .
exact answer in one additional step since % has uniform slope there.

Because the individual phase compositions (w:,w;) in this scheme

lie on an approximation to the Maxwell set, their values differ slightly
from those predicted by the methods of Section 2.2. These differences
lead to differences in the phase mole fractions Ya' A comparison of
results of the interpolation scheme to those of standard equation-of-
state methods for 25 arbitrary points in the two-phase region of the
model system shows an average root-mean-square difference in predictiomns
for species mole fractions of RMS(Aw:) = 0.003. A similar comparison
for phase mole fractions yields RMS(AYV)
comparable with convergence criteria for the iterative solution to the

~ 0.025. These errors are

transport problem; Coats(1980), for example, uses |Aw| = 0.002. What is
perhaps more relevant, the differences in predictions between the inter-
polation and the standard method compare favorably with the differences
between predictions of the standard method and values measured in the
laboratory. For example, Oellrich et al. (1981) report average devia-

tions IAwZI = 0.009 for the system 002 + n-butane (0lds et al., 1949)

and |Aw¥| = 0.006 for the system CO2 + n-decane (Reamer and Sage,
1963). Therefore, the interpolation scheme does not significantly

degrade the quality of predicted vapor-liquid equilibria.
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Efficiency of the scheme.

There seems to be no wholly adequate method for comparing the
efficiency of the interpolation scheme to that of the standard approach.
However, several simple measures indicate that the interpolation scheme
is computationally much faster. The standard equal-fugacity approach
uses arithmetic operations intensively, especially in evaluating
fugacity differences and inverting the full matrices that approximate
the Jacobians at each iteration. By contrast, the interpolation scheme
requires few arithmetic operations per iteration. Thus while the bisec-
tion algorithm of the interpolation scheme has a lower convergence rate
(roughly one binary digit of accuracy per iteration) than the secant
method of the standard scheme, the difference in operation counts

overwhelms the latter's advantage in this regard.

We can try to compare the two methods on the basis of CPU time
required for vapor-liquid equilibrium calculations. In addition to
obvious questions concerning the efficiency of the author's coding
techniques, this comparison faces the further difficulty that the CPU
time required to compute a vapor-liquid equilibrium using the interpola-
tion scheme is very small -- usuélly a few thousandths of a second on
the IBM 3081. This time is comparable to the time spent in calling the
CPU clock. Moreover, starting guesses for the standard method must be
fairly close to the unknown solution, while the interpolation method
starts with sure initial guesses outside the two-phase region. Still, a
sample of 25 vapor-liquid equilibria, using the final answers from the
interpolation routine as starting guesses for the standard algorithm,
gave ratios of runtime for the latter to that for the former ranging

from 15.8 to 83.4 and averaging 36.0.
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These comparisons take no account of convergence failures in the
standard method, which do not afflict the interpolation scheme. Perhaps
the greatest improvement offered by Maxwell-set interpolation is its

sure convergence.



CHAPTER THREE
SOLVING TRANSPORT EQUATIONS BY COLLOCATION

The transport equations developed in Chapter One are partial differ-
ential equations whose solutions vary in space and time. The petroleum
industry has traditionally relied on the method of finite differences to
produce discrete analogs of these equations for numerical solution.
However, some investigators have proposed finite-element Galerkin
schemes, citing the possibility of greater accuracy at comparable cost
to finite-difference methods. This chapter examines a third option,
finite-element collocation. This technique is closely related to
Galerkin methods but offers significant savings in computation. In
particular, the chapter presents a new technique, called upstream collo-

cation, that is suitable for use in convection-dominated problems.

Numerical solution schemes for partial differential equations arising
in physics raise the thorny issue of verification. Actually there are
at least two separate problems here. First, does the discrete scheme
generate answers that are good approximations to the exact solution of
the continuous problem? Second,ldoes any class of realizations of the
discrete scheme serve as a veracious model for an identifiable class of
observed physical events? This second problem is a discipline in
itself, and we shall not try to answer formally whether any numerical
approximation to the transport equations of Chapter One faithfully
models experiments. We shall be concerned instead with grounds for
believing that the proposed collocation scheme gives approximate
solutions to the transport equations, presuming that these equations are

adequate models.
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Even within this limited scope difficulties arise. When the problem
to be solved has a known exact solution, we can compare it with the
approximate solution to judge the latter's acceptability. For the fully
compositional equations of miscible gas flooding, however, we do not
know an exact solution, and such a comparison is impossible. Neverthe-
less, it is perhaps reasonable to infer that a scheme gives good approx-
imations in a complicated problem if it gives good approximations in
mathematically related but analytically more tractable ones. We shall
examine three such problems in this chapter, treating the fully composi-

tional case in Chapter Four.
3.1 Orthogonal collocation on finite elements.

Orthogonal collocation is a fairly old method, due apparently to
Lanczos (1938). 1Its adaptation to finite elements, however, is more
recent (Russell and Shampine, 1972; de Boor and Swartz, 1973). There
are several ways to introduce the technique; let us review it as a
method of weighted residuals on a linear equation, drawing connections

with the variational form of the problem.
Description of the method.
Consider a partial differential equation of the form

atu +Eu=0 on 2 x 0
(3.1-1)

where € = [0,x ] is the spatial domain of the problem and © = [0,t _ ]
max max

is its temporal domain. For the purpose of illustration, let E stand

for a linear, second-order elliptic operator:
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E= - ax[al(x) ax] + az(x) ax
(3.1-2)

where o, o, € C”(Q). A typical initial boundary-value problem for
equation (3.1-1) is to find a function u satisfying (3.1-1) along with

auxiliary data of the form

u(x,0) = uo(x), x € (0,x )

max
(3.1-3a)
B, u(0,t) + B, 3 u(0,t) = B,
(3.1-3b)
t €0
64 u(xmax’t) + B5 axu(xmax’t) = B6
(3.1-3c)

Taken literally, this problem requires that u(®,t) € CZ(Q) for all t €
@ and u(x,*) € C-(0) for all x e Q.

In the context of finite-element methods it is common to replace the
literal interpretation of this problem by its variational version. In
this form we relax the requirements on u(®,t), demanding only that it
lie in the Sobolev space HI(Q), which contains functions f: Q + R such

that f£, dxf € LZ(Q). Then u is a solution to the variational problem

if (1) u(e*,t) € HI(Q) for all t € 0, (2) u(x,*) € Cl(O) for all x € Q,

(3) u satisfies the auxiliary conditions (3.1-3), and (4)

é (atu) vdx + é (al axu + e, u) axv dx = 0
(3.1-4)
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for any "test function"

(Oden and Reddy, 1976, Section 9.2).

v E Hl(ﬂ) that vanishes on the boundary 3R

Solving such a problem numerically requires analogs of the continuous

operators that are discrete in both space and time.

The appropriate

spatial discretization in this case is a finite~element representation.

To construct one, let AM: 0= il < ... < iM
tion of Q with mesh Ax = iz

L

dimensional subspace of HI(Q):

=X be a uniform parti-

max

- 21_1, and denote each element [il

Q,. Associated with the partition AM is the following finite-

H3(AM) ={v e Hl(Q)l v is a cubic polynomial over

each 92, L=1,...,M}

This space is the span of the Hermite cubic interpolation basis

(3.1-5)

{HO 2(x), Hl l(x)}§=1, whose elements are the piecewise polynomials

x - %,_2[2F, - 0 + Mx]/Ax>, xe (%

Hy G0 = | Gy, - x)%[38x - 2(%
0, % ¢ [y y5%p]

2+1

x - %, )2 x - x)/0%,
Hy 00 = { G - %y )2 - R/,
0, x¢ [¥p_1%g4]

2-1

-0/, x e (%,

X € [xl-l’le
X € [iz,ii+1]

Thus every function v € H3(AM) is a finite linear combination

¢

Zpeql

(3.1-6a)

(3.1-6b)
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vix) = L [v2 H

(x) +v', H _(x)]
o1 L 1,0

0,2
(3.1-7)

where the unique coefficients vy and v'2 are the nodal values of v and

its gradient dxv, respectively, at the node X Moreover, as Ax =+ O,

.

HS(AM) is dense as a subspace of Hl(Q) in the Sobolev norm H'ﬂz 1

defined by “f"z = HfH2 + |4 fﬂz This fact guarantees that
2,1 L2(Q) x "L2(Q)°

finite~element approximations in H3(AM) will be consistent (Oden and
Reddy, 1976, Section 8.3). Finally, there is an interpolation operator

associated with H3(AM), namely, the projection I Cl(Q) - H3(A

M M
mapping functions f € Cl(Q) onto their continuously differentiable

Hermite interpolates:

M
(IyH ) = i

TR By p00 4 4 () Hy 00)

1
(3.1-8)

In terms of this finite-element formalism, the spatially discrete
analog to the initial boundary-value problem (3.1-1) and (3.1-3) is to
find a trial function ﬁ(',t) € H3(AM) that best approximates u in the

sense of weighted residuals, that is,

I [atﬁ(x,t) + E 2(x,t)] §,(x) dx =0, k=1,...24-2
Q

u(x,0) = IM uo(x), X € (O,Xmax),

(3.1-10)

along with the boundary data (3.1-3a) and (3.1-3b), for a collection of

weight functions 6k(x). In orthogonal collocation the weight functions
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are the Dirac distributions Gk(x) = 6(x - xk), where the collocation
points x, are the Kc = 2(M - 1) Gauss points il + 4 Ax + 8x/V3, L =
1,...,M-1. This method leads to a set of ordinary differential

equations for the evolution of the approximating function u:

a A
dtu(xk,t) + E u(xk,t) =0, k=1,...,K
(3.1-11)

with the initial condition (3.1-10). As we shall review below, choosing
the Gauss points as collocation points leads to the highest possible

order of spatial accuracy.

It is worth observing briefly that the method of weighted residuals
is, in a sense, a generalized discrete form of the variational problem
(3.1-4) (Strang and Fix, 1973, Section 2.3). In the case where the
weight functions are basis functions we recover Galerkin's method, which
is a direct finite-dimensional analog of (3.1-4). The connection
between this particular case and weighted-residual techniques involving
other weight functions depends in general on the choice of weight
functions. For collocation, however, there is a well defined correspon-
dence with Galerkin's method and hence with the variational formulation.

Appendix C explains this correspondence.

To discretize equations (3.1-11) in time let us use one of three
finite-difference schemes. Call ﬁn(x) = S(n At,x), where At is a time
increment. The explicit Euler scheme for (3.1-11) is

A+ A A
WMoy - W) + AL E RN (x) =0, k=1, K,
(3.1-12)

the implicit Euler scheme is
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A n+1 An An+l _ _
u (xk) -u (xk) + At Eu (xk) =0, k=1,...,K,
(3.1-13)

and the Crank-Nicolson scheme is

An+l An
u (xk) -u (xk)

A n+1

+ At [E'u (xk)+E?1“(xk)]=o, kK=1,...,K.

c
(3.1-14)

The two Euler schemes have temporal truncation error 0(At), while the

Crank-Nicolson scheme has truncation error O(Atz).
Performance of the scheme.

Like other finite-element methods, discrete-time schemes such as
(3.1-12) through (3.1-14) convert a continuous problem to a set of
algebraic equations at each time level. If the original problem is
linear, or if we linearize a nonlinear problem and iterate, the discrete
problem reduces to the inversion of matrices that are sparse owing to
the limited support of the basis functions. For the Hermite cubic basis
in one dimension the matrices have a bandwidth of five as drawn in
Figure 3-1. This sparsity is attractive since it allows the use of

efficient inversion algorithms.

Orthogonal collocation on finite elements offers the further advan-
tage of high-order spatial accuracy. Douglas and Dupont (1973), for
example, investigate the semidiscrete method (3.1-11) for quasilinear
parabolic equations in one spatial dimension. Their analysis rests on
the fact that finite-element collocation at the Gauss points is algebra-

ically equivalent to an approximate Galerkin method in which the
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X X X T A
X X X
X X X X O
X X X X
X X X X
X X X X
X X X X
xxxx. oM-2
..
X XX X
X X X X
X X X X
X X X X
X X X
L X X X | *
- 2M-2 -

Figure 3-1. Structure of the coefficient matrix for finite-
element collocation on Hermite cubics in one space
dimension. The symbol "x" represents a nonzero

entry; M is the number of nodes.
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. 2

integrals JQ Hi,j Hk,l dx, IQ (dxHi,j) Hk,l dx, IQ (dxHi,j) Hk,z dx
contributing to the matrix elements are replaced by two-point Gauss
quadratures on each element (see Appendix C). Douglas and Dupont show
that orthogonal collocation yields approximations u to the exact

solution u that satisfy

ha - 81 = ocax™
(3.1-15)

uniformly on € x 0, provided certain smoothness conditions hold. This
error is optimal in the sense that its order is the same as that of the
interpolation errror [u - Iy uﬂw. In particular it is the same order of

accuracy as that offered by Galerkin's method on Hermite cubics.

Indeed, the possibility of greater accuracy has attracted interest in
C1 Galerkin techniques in oilfield problems for over a decade. Several
studies suggest that Galerkin methods on Hermite cubic spaces require
less computational cost for a given degree of accuracy than standard
finite-difference methods. Among these are papers by Cavendish et al.
(1969), who solve the elliptic equation for single-phase steady reser-
voir flow; Culham and Varga (1971), who treat a nonlinear gas-flow
equation; Settari et al. (1977), who solve a parabolic equation
governing miscible displacement, and Spivak et al. (1977), who investi-
gate the coupled elliptic and parabolic equations modeling immiscible

two-phase flows in porous media.

Though offering similar advantages in accuracy, orthogonal colloca-
tion requires less computational effort than the related Galerkin
scheme. To begin with, collocation obviates the integrations needed to
compute the Galerkin element matrices. Collocation also bypasses the

formal, element-by-element assembly of the global Galerkin matrix. This
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promise of greater efficiency has led to scattered applications of
orthogonal collocation in engineering (see, for examples, Chawla et al.,
1975; Banjia et al., 1978, and Pinder et al., 1978). Sincovec (1977)
applied orthogonal collocation to several problems in petroleum
engineering, confirming collocation's efficiency in two parabolic
examples. However, his formulation failed to solve the hyperbolic
Buckley-Leverett problem. This result may have discouraged broader

application of collocation to oilfield problems.
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3.2. The convection-dispersion equation.

The convection-dispersion equation is one of the simplest linear
equations featuring the time dependence and convective dominance charac-
teristic of many porous-media flows. Discrete methods with high-order
spatial accuracy often yield qualitatively flawed solutions to such
problems when convection is strong. As we shall see, orthogonal collo-

cation is no exception to this rule.
Physical setting.

The convection-dispersion equation is a special case of the species
transport equation (1.5-3) when (1) only one fluid phase is present; (2)
the fluid velocity is known and constant; (3) the effects of density
changes and gravity are negligible, and (4) dispersion is Fickian with a
constant dispersion coefficient. Under these assumptions, the concen-
tration w, of a species dissolved in the fluid obeys the parabolic

equation

W, =V 3 W,
X

(3.2-1)

over some space-time domain [o’xmax] x [O,tmax]. This equation reduces

to a dimensionless form

_ -1, .2
atwi = (Pe 7) axwi axwi

(3.2-2)

where
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X=x/ X ax

(3.2-3a)

-
L}

vt/ tmax

(3.2-3b)
and Pe = v X oy / Di is the Peclet number. In this form it is apparent
that the convection-dispersion equation is a singular perturbation of a
first-order hyperbolic equation corresponding to the limit Pe + «. For
many applications Pe is quite large, and numerical solutions exhibit the
types of errors associated with the hyperbolic limit. In such
convection-dominated problems large gradients in the exact solution tend
to persist, and a spatial discretization too coarse to resolve steep
portions of the initial data will fail to propagate them correctly (Gray
and Pinder, 1976).

Solution using orthogonal collocation.

To illustrate the difficulty with steep initial data, let us apply

orthogonal collocation to equation (3.2-1) with the auxiliary data

ui(x,O) = 0, b4 e‘(O,xmax)

(3.2-4a)
wi(O,t) =1, t20

(3.2-4b)
9w, (x ,t) =0, t220
X i max

(3.2-4¢)

The Hermite cubic trial function for this problem has the form

=

(x,t) = I [W,(£) Hy () + W' Hy ,(x)]
£=1 : ’
(3.2-5)
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where the coefficients Wl(t), W'z(t) represent the time-dependent values
of w, axw, respectively, at the node'iz. Substituting % into (3.2-1)

and collocating gives a set of ordinary differential equations for
M

Wy oW g dpmy
M
221 {a W, (e) Hy p () + W, (1) Hy ()
+ v [W(t) dxHO 2(xk) + W'Q(t) dH 2(xk)]
=D, [W,(t) d2H (x,) + W' (£) d2H, ,(x.)]} =0
i Mg x0,8 %k L x1,8 %k
(3.2-6)
kK=1,...,24-2
The boundary data imply @(0,t) = W (t) = 1 and aXQ(xmax,t) = W', =0, so

we have 2M equations in 2M variables.

However, the initial data (3.2-4a) are not differentiable at x = 0,
so strictly speaking the interpolate IMwi(x,O) is undefined. We can
circumvent this snag by assigning Wl(t) =1 and W'l(O) = WQ(O) = W'z(O)
=0 for ¢ = 2,...,M, reasoning that this choice preserves monotonicity
and is consistent with the true initial data as 8x -+ 0. Approximating
the discontinuous initial data in this way adds artificial mass
JQ g(x,O) dx = IQ HO,I(X) dx = 0(Ax) to the solution.

Figure 3-2 shows an approximate solution to the boundary-value
problem defined by (3.2-1) and (3.2-4) using orthogonal collocation for
the spatial approximation and a Crank-Nicolson scheme in time. Here v =
0.369 m/s, Di = 0.000345 mz/s, Ax = 0.25 m, and At = 0.5 s. These
values for v and Di are common in the literature on the convection-
dispersion equation; see for example Pinder and Gray (1977, Section

5.3). The figure also displays an approximation
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wi(x,t + to) = 3 erfc {[x - v(t + to)]//[ADi(t - to)]}
(3.2-7)

to the exact solution, where the choice of t. ensures that

IQ wi(x,to) dx = 19 a(x,O) dx to help check ghat the numerical scheme
correctly propagates the sharp front. For these parameters Pe = 1070, a
value indicating strongly convective flow. Upstream of the steep front
the collocation solution exhibits wiggles that contradict both physical
sense and the maximum principle for parabolic equations (John, 1981,
Section 7.1). Such wiggles are typical of high-order spatial approxima-
tions to nearly hyperbolic equations. The wiggles arise when the grid
Peclet number PeAx =v Ax / Di ( = 250 in Figure 3-2) exceeds a critical

value generally of order unity (Jensen and Finlayson, 1980).
Wiggles: pro and con.

There is some controversy regarding the desirability of suppressing
these wiggles by choice of numerical approximations. Gresho and Lee
(1979), for instance, argue againét suppressing the wiggles with
low-order discretization, claiming that they should be viewed as
symptoms of overly coarse spatial grids. While there is much merit in
this argument, there are applications in which the choice between
wiggles and a sufficiently fine grid is too confining. One example in
computational physics is the gasdynamic shock, where the appropriate
grid Peclet number is comparable to the mean free path of the gas
molecules (Ames, 1977, Section 5-2). Less dramatic examples arise in
porous-media flows, where the dissipative influences of hydrodynamic
dispersion or capillarity are often genuinely small compared to convec-
tive effects. In these cases suppressing the wiggles may give accep-
table answers on affordable grids, with quantifiable errors, even when
the equations to be solved are highly nonlinear. By contrast, insisting

on high-order spatial accuracy at all points of the flow field may force
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a choice between exorbitantly fine grids and instability, as the wiggles
associated with coarse grids may cause associated thermodynamic calcula-

tions to fail.

Furthermore, as Section 3.4 discusses, globally high-order methods
may converge to solutions that are altogether incorrect. Such anomalies
arise in nonlinear convection-dominated problems in which the dissipa-
tive effects, while numerically small, exert physically important influ-
ences near sharp fronts, as reviewed in Section 1.5. In these cases the
failure to converge is arguably a more serious shortcoming than the
propagation of wiggles. Therefore, while several investigators have
advanced schemes to correct the wiggles without dissipation (see, for
example, Van Genuchten and Gray, 1978; Chaudhari, 1971; Boris and Book,
1976), we shall be interested specifically in a scheme that adds dissi-

pation in the form of a low-order spatial error.

What is wanted in many cases is a method that has locally low-order
spatial accuracy. In other words, we seek a scheme whose low-order
error terms, while present globally, have small coefficients except in
the spatial zones where they are needed. Such schemes retain many of
the advantages of high-order.schemes while adding dissipation near sharp
fronts. For the convection-dispersion equation, for example, a lowest-
order error term proportional to v Ax aiw would be appropriate. In
finite-difference theory locally low-order schemes are available through
the use of upstream-weighted differences. We shall discuss an analogous

finite-element method, upstream collocation.
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3.3. Upstream collocation.

Consider the following medification to equation (3.2-6):
M
P2

2 {d Wy (0) Hy ((x) + d W', (t) Hy g (%)

1

+v W () dHy (%) + W' (£) dH g ()]
- D, [W,(t) H o (x ) + W' (1) a%u. ( )1} =0
i Mg x 0,8 %k ') x1,0 %k

k=1,...,2M-2
(3.3-1)

Here xk* = xk - § Ax, with & > 0 chosen so that xk* lies in the same
interval 92 of the partition AM as X . The difference between equations
(3.3-1) and (3.2-6) is that in the latter the collocation points for the
convective terms lie upstream of the Gauss points. The heuristic for
choosing the xk* in this way is an analogy with finite differences,
where upstream-weighted differences offer one approach to suppressing
wiggles at the expense of smearing in highly convective problems

(Peaceman, 1977, Chapter 4).

Figure 3-3 shows solutions of the same convection-dispersion problem
plotted in Figure 3-2 except for the upstream choices of xk*. The
figure specifies the collocation points in terms of the local space

coordinate §, defined on any element [22,§£+1] as

E(x) = [2(x - X)/bx] - 1
(3.3-2)
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so that &: [i£,§2+1] + [-1,1]. In local terms, the orthogonal colloca-
tion points are Ek =+ 1/V3 in each element, and the upstream points are
Ek* = E(xk*) < Zk. The solutions in Figure 3-3 confirm the heuristic
for upstream collocation: by emphasizing upstream values in the convec~
tive terms we have suppressed the wiggles generated by orthogonal collo-

cation, the cost being a diffusion-like smearing of the steep front.

This smearing reflects the nature of the error induced by upstream

collocation. By Taylor's theorem,

") = - 2
dxHj,l(xk ) dxHj,l(xk) 7 Ax dxHj,l(xk)
2,.2.3 .
+ % C Ax dXHj,f.(xk)’ ] = 0,1
(3.3-3)

exactly, since each basis function Hj ¢ is cubic. Therefore upstream
’
collocation for the convection-dispersion equation is equivalent to the
following scheme:
M
1
1:1 {dth(t) Ho,l(xk) + dtw z(t) Hl,l(xk)

+ v [Wl(t) dxHO E(Xk) + W'z(t) dxﬂl,l(xk)]
2 ' 2
- (Di + ¢vAx) [Wz(t) dxHO,l(xk) + W l(t) dxﬂl,l(xk)]}

= 0ax?), k=1,...,24-2
(3.3-4)

In other words, upstream collocation augments the physical dissipation
by an amount proportional to Ax, which is precisely the effect of

upstream-weighted differencing (Lantz, 1971). The author has verified
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this error estimate through a numerical example, finding good agreement
between the value of Di + ¢ v Ax and the observed level of dissipation

in a numerical solution (Allen, 1983).

The error introduced in upstream collocation is closely analogous to
that of some Galerkin schemes. Most notable among these are the upwind
quadrature techniques developed by Hughes (1978), Hughes and Brooks
(1979), and Dalen (1979), who approximate the Galerkin integrals arising
from convective terms by finite sums emphasizing upstream values of the
integrands. There is a well defined correspondence between these
quadrature methods and upstream collocation through the algebraic equiv-
alence with approximate Galerkin schemes exhibited in Appendix C. Less
exact analogies stand between upstream collocation and finite-element
techniques based on the use of asymmetric basis functions for convective

.terms. Huyakorn (1977), Heinrich and Zienkiewicz (1977), and Christie
0 and C1 Galerkin

approximations, and Shapiro and Pinder (1981, 1982) have examined a

and Mitchell (1978) have proposed such schemes for C

related approach using collocation. These asymmetric basis methods have
similar effects in solving convection-dominated flows, but their

algebraic relationship to upstream collocation is not straightforward.
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3.4. The Buckley-Leverett problem.

While our discussion of collocation has so far concentrated on linear
parabolic problems, the problems in miscible gas flood engineering are
more frequently nonlinear. Moreover, as we have discussed, problems of
practical interest in this field are often highly convective singular
perturbations of hyperbolic problems. The Buckley-Leverett problem is a
simple, analytically solvable paradigm of a nonlinear hyperbolic conser-
vation law arising in porous-media physics. While solving the problem
numerically is of little practical interest per se, it is a reasonable
test of whether a candidate numerical method is appropriate for more
complicated reservoir flows. We shall demonstrate that upstream collo-
cation corrects a tendency of orthogonal collocation to converge to
incorrect solutions in this problem. The key to the improvement offered
by upstream collocation is its lowest-order error term, which acts in a
manner paralleling the artificial viscosity method of finite differences
(Allen and Pinder, 1982).

Physics of the problem.

The Buckley-Leverett saturation equation governs the flow of two
immiscible, incompressible fluids, say a vapor and a liquid, in a
homogeneous porous medium. The derivation given in Section 1.5 can be
extended to include the effects of gradients in capillary pressure PoyLe
the result being the hyperbolic equation (1.5-10) for the vapor satura-

tion SV augmented by a second-order term:

3,5y + 3,{Q £, [1 + Ap (dpgy;/dsy) 3.8.1} = 0
(3.4-1)

where, as in equation (1.5-11), fV = AV/(AV + AL) = fV(SV) is the

fractional flow functionm, Aa is the mobility of phase a, and Q is the
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constant total flow rate divided by the porosity of the rock. The
first-order form arises when the capillary gradient (deVL/dSV) axsv
contributes negligibly to the fluid motions, a situation occurring in

practice when applied pressure gradients give rise to high Darcy veloci-

ties. In this case we recover the hyperbolic conservation law

3,5y + 3 (Qf,) =0
(3.4-2)

As Section 1.5 reviews, the fact that fV(SV) is not convex over its
support leads to the formatios of discontimuities in Sv(x,t) given steep
initial data. Therefore we must accept weak solutions to (3.4-2),
guaranteeing uniqueness only by imposing in addition some form of the
shock condition. The form that we shall discuss is the demand that the
solution to (3.4-2) be the limit as n -+ 0 of solutions to the parabolic

extension

3,5y + 3, (Qf) =3 _(n 2 S.)
(3.4-3)

with n > 0. Viewed from the standpoint of mechanics, the term on the
right side of (3.4-3) is analogous to a capillary influence of the type
appearing in the full equation (3.2-1), except for spatial variations in
the coefficient fV AL (deVL/dSv). Heuristically, the shock condition
"restores" the problem-closing effects of capillarity in models of
physical flows where its action, while profound, is limited to a practi-

cally infinitesimal zone where axsv is virtually infinite.
Discretization.

Consider the Cauchy problem for equation (3.4-2) on 2 x 0 = [0,®) x
[0,«) with the initial data
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S(o,t)

"
[y
'
w
ct
v
o

(3.4-4a)

I
w)
»®

v
(=]

S(x,0) =
(3.4-4b)

Here, as in Chapter One, SVR and SLR are the residual vapor and liquid
saturations, respectively. Let us assume an S-shaped fractional flow

function fv determined by the mobilities

_ - 2

hy(Sy) = 8y = Syp)
(3.4-5a)

A(S.) = (1-8, -5 )2

LYV \ LR
(3.4-5b)

. _ _ - -4
with SVR = 0.16, SLR = 0.20, and & flow rate @ = 2.134 x 10 ~ m/s.

Discretizing (3.4-2) in time gives

AtSV + Q At ava =0
(3.4-6)

where AtSV(x’t) = Sv(x,t+At) - Sv(x,t). Then, representing AtSV by a

Hermite trial function, we have

M
B,Sy(x,t) = B5(x,t) = I 10y 6) Hy 00 4 ¥y (0) Ky 0]

(3.4-7)

This representation furnishes a Hermite approximation to the saturation,

M
5,(x,t) = Sx,t) = 121 [¥,(8) Hy ,(x) + ¥ (6) Hy 4]
(3.4-8)
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via the updating rules

Yz(t + At) = Yz(t) + wz(t + At)

(3.4-9a)
‘Y'l(t + At) = ‘f'z(t) + ;p'g(t + At)

(3.4-9b)

For the flux term in (3.4-6) let us use an approximation of the form

~ M
f(x,t+At) = I

B0 By G0+ £ (Hy () ¥y (0) By p60)

1

IaY
1
+ 15, 8,.8,1(x,1)

(3.4-10)

where the last term is a linear projection to time t + At represented by
the product expansion
M

A
[f,' B.S,1Cx,t) = 251 {1£y" (¥ (£)) ¥y (t4A0)] Hy o (x)

IR, (1 (0)) ¥ (ehaE) + £ (Y, (£)) ¥' (1) W, (t+88)] Hy ,C0)
(3.4-11)

The Hermite gradient coefficients in (3.4-11) are x-derivatives devel-
oped formally using the chain rule. This linearized implicit treatment
is equivalent to one Newton-Raphson iteration per time step. Substi-
tuting the Hermite representations (3.4-7), (3.4-8), and (3.4-10) and
collocating reduces equation (3.4-6) to the following set of algebraic

equations:
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L3 =
Q At axf(xk , t + At) + AtS(xk, t + At) =0,
(3.4-12)
k=1,...,2M-2
where xk* signifies an upstream collocation point. These equations,
together with the Cauchy data, must give a closed linear system for the

unknowns {y,,¢’ }M_ at each time step.
2 L7e=1

The initial data (3.4-4) pose two difficulties in this regard. One
of these is similar to that encountered in interpolating the initial

conditions (3.2-4a) for the convection-dispersion equation: SV(x,O) ¢

Cl(Q), so its interpolate IMSV is not strictly defined. As in the
convection-dispersion problem, we can impose consistent initial condi-

. . i1 - - ' = "
tions in HS(AM) by prescribing Yl(t) =1 SLR’ Y 1(t) YE(O) Y 2(0)
= SVR for £ = 2,...,M. Again, this prescription adds artificial mass to

the numerical solution.

The second problem with the initial data is somewhat more subtle.
Digital computations require a finite number of unknowns, while (3.4-4b)
specifies a semi-infinite spatigl domain. The only compromise available
with a uniform grid is to solve the problem on a finite spatial domain
[O’Xmax] at any given time step, either increasing X ax 85 t increases
or stopping the calculations before the influence of the spurious right
boundary contaminates the results. There then arises the issue of
boundary data at x = X ax' Any such data will necessarily be artificial
for the first-order Cauchy problem, but they are indispensable in
defining an algebraically closed discrete analog with 2M - 2 collocation
points. Bearing in mind that the hyperbolic problem is really an
extreme test of a method intended for solving parabolic equations, let
us impose the artificial condition axsv =0 at x = X ax* As an alterna-
tive one might use an additional collocation point in the element
abutting the endpoint x = X oy thereby increasing the number of

algebraic equations and obviating the artificial conditionm.
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Numerical solutions.

Figure 3-4 shows a numerical solution to the Buckley-Leverett problem
at t = 1500 s using orthogonal collocation (xk* = xk) on a grid of mesh
Ax = 0.05 m with At = 5.0 s. The figure also shows the exact solution,
computed using the method of characteristics and Welge's tangent
construction as described in Section 1.5. The most glaring fact in this
plot is the difference between the numerical and exact predictions for
the saturation shock: the numerical shock occurs upstream of the

correct shock and is too strong.

Similar errors occur in spatially centered finite-difference (Aziz
and Settari, 1979, Section 5.5.1) and Galerkin (Spivak et al., 1977)
approximations to capillarity-free two-phase flow. These erroneous
predictions reflect the failure of globally high-order spatial approxi-
mations to accommodate the shock condition needed to specify the unique,
physically correct weak solution to the problem. Finite-difference
models in the petroleum industry have traditionally used upstream-
weighted differences to rectify this failing (Aziz and Settari, 1979,
Section 5.5.1; Peaceman, 1977, Chapter 6). Galerkin models have often
resorted to the explicit addition of artificial capillarity (Douglas et
al., 1979; Spivak et al., 1977; Chase, 1979; Mercer and Faust, 1976),
although some investigators have used various upstreaming techniques

(Dalen, 1979; Chavent and Salzano, 1982).

Figure 3-5 shows approximate solutions to the same Cauchy problem
using various choices of upstream collocation points xk*. Although
these solutions vary in quality, they give much better predictions of
the strength and location of the saturation shock than does orthogonal
collocation. Figure 3-6 displays solutions to the Buckley-Leverett
problem with the upstream collocation points El* = -2/3, 82* = 1/3 in

local element coordinates for different values of the spatial mesh Ax.
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This plot suggests that the resolution of the correct saturation shock
improves on refinement of the grid. All of these solutions consistently
exhibit artificial mass manifested as a saturation "toe" downstream of
the shock. To check for material balance errors we can compare this
additional mass numerically with the quantity IQ HO,l(x) dx attributable
to interpolation of the initial data. Such a comparison shows agreement
to within half a percent of the latter integral in the worst case (Allen
and Pinder, 1983).

These results deserve some discussion. We can expect finite-element
collocation to converge to a weak solution to the Buckley-Leverett
solution because of the method's relationship with the variational form
of the problem. Consider the corresponding Galerkin scheme:

A IS
é (8,8 + 3,(QD)] K, , dx

g (atg) B g dx o+ é Qf N, ) dx=0
(3.4-13)
This is a spatially discrete analog of the variational form of equation
(3.4-2), which is also the wéak form for the spatial part of the problem
(Strang and Fix, 1973, Section 2.3). By the algebraic correspondence
described in Appendix C, collocation will converge to solutions of this
weak form. The difference between the shock predicted by orthogonal
collocation and that given by upstream collocation reflects the lack of
uniqueness among weak solutions: the schemes find different weak

solutions to the same equation.

Upstream collocation forces convergence to the correct weak solution
because it imposes a numerical version of the artificial viscosity
condition. Specifically, evaluating the explicit part of the flux term

at upstream collocation points xk* =% - % Ax induces an error
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A A - _ 2/\ 2
axf(xk,t) - 3xf(xk ,t) = 7 Ax 3xf(xk,t) + 0(Ax7)

= 1y & 2
=7 MAx ax(fv axS)(xk,t) + 0(Ax™)
(3.4-14)

since the second derivatives of Hermite cubic interpolates are O(sz)
approximations (Prenter, 1975, Section 3.4). Thus, to within O(sz),
the collocation scheme (3.4-12) corresponds to a parabolic extension
including dissipative effects. It is clear in this case that the dissi-
pation vanishes as Ax + 0, guaranteeing the shock condition in a numeri-

cally consistent fashion.

These results demonstrate the applicability of collocation to multi-
phase flows in porous media. In particular, upstream collocation as
implemented in this section offers an easily coded approach to
overcoming the difficulties that Sincovec (1977) reported in solving the
purely hyperbolic Buckley-Leverett saturation equation. For this reason
the technique should also prove useful in solving the types of near-

hyperbolic equations encountered in more complicated models of porous-

media flows.
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3.5. A gas-flow equation.

The last problem that we shall examine in this chapter is a nonlinear
equation governing the flow of ideal gases in porous media. This
equation is a simple parabolic analog of the balance law for total fluid
mass in a miscible gas flood. The latter equation arises when we sum
the species transport equation (1.5-3) over all species i, getting an

equation of the form

Adp -3 (T, 3p

<Py + ¥ axD - T

L 3xPevr) = O

(3.5-1)

where TT = TV + TL is the total fluid transmissibility, ¥ = (TVpV +

TLpL)g, and D is depth below some datum. If we assume that the cross-
sectional area A is uniform, that only the vapor phase is present, and

that gravitational effects are absent, we find

\' \' =
(3.5-2)
where AV = TV/pVA is the vabor mobility. If the vapor is an ideal gas,

then it obeys the equation of state pV = pV/RT, where RT is uniform and
constant in an isothermal flow field. Using this law and defining a

scaled time T = Avt/¢ reduces equation (3.5-2) to

a‘[p = ax(p axp)
(3.5-3)

where p = pv/p:',ef is a dimensionless, scaled pressure.
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Aronofsky and Jenkins (1951) treated this problem numerically before
electronic digital computers were widely available. They used explicit,
spatially centered differences to solve several initial boundary-value
problems on punch card machines, comparing their results with those of
an electric analog device. Let us discuss approximate solutiomns to
equation (3.5-3) on @ x ® = [0,1] x [0,«) using orthogonal and upstream
collocation along with the auxiliary data

p(0,t) =5, 120

(3.5-4a)
p(l,1) =1, 120

(3.5-4b)
p(x,0) =1, x e (0,1)

(3.5-4c)

To discretize (3.5-3) in time let us use the following iterative

Euler scheme:

pn+1,m+1(x) _ pn(x) - AT[axpn+1’m(x) axpn+1,m+1(x)
+p n+l, m( ) a2 n+l, m+1( x)]
(3.5-5)
Here pn(x) = p(x,nAt) and pn+1,m stands for the m-th iterate of the
unknown pressure pn+1. For the spatial discretization let us use the
Hermite representation
n M n
- = 1
ACRERORIE [Ty By G + ' Hy G0
(3.5-6)

Substituting (3.5-6) into (3.5-5) and collocating gives
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An+l,m+l Antl, o o Antl,ml,.
P ) - PRk = Ata et Mg 8 et T (x %)
An+l, 2An+1,m+1
+ M) A" (x)]

(3.5-7)

As before, the arguments xk* stand for upstream collocation points.
These points appear in the term that looks '"convective" by analogy with
the convection-dispersion equation in Section 3.2. The rationale for
upstreaming this term is to augment the second-order space derivative by
an error 0(Ax). Huyakorn and Pinder (to appear, Chapter 9) show that,
in finite differences, weighting the first-order term in this way is
precisely equivalent to using upstream-weighted transmissibilities, a
common practice in the petroleum industry. While there is apparently no
need for upstream weighting in the single equation (3.5-3), for multi-
phase flows an equation having this form is coupled to one or more
hyperbolic or nearly hyperbolic transport equations. In these cases
upstream weighting is necessary to ensure that the system converges to

the physically correct solution.

Figure 3-7 shows the nodél values of the solution to (3.5-3) with
auxiliary data (3.5-4) using orthogonal collocation (xk* = xk) with Ax =

0.1 m, At = 10-4 m352/kg. The figure also displays curves showing a

solution to the same equation using an implicit version of the finite-
difference scheme presented by Aronofsky and Jenkins. The difference
scheme uses Ax = 0.025 m, At = 10-4 mssz/kg, values for which further
mesh refinement yields improvements of less than 0.1 percent in the
numerical solution. In this case orthogonal collocation using a
slightly coarser partition gives results that agree quite well with the

finite-difference solution.
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A Ax=0.1
AT=10~4

O
ao
| I ]
&a-'
]
&

Figure 3-7. Solutions to the gas-flow problem using
orthogonal collocation. The smooth curves
represent finite-difference solutions on a fine
grid,
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Figure 3-8 is a similar plot for upstream collocation with the
upstream points Ek* = Ek - 0.4 in local element coordinates. The
solution shows slight smearing in the early profile, with accuracy
comparable to that of orthogonal collocation at later times. Upstream
collocation in this problem does not effect the kinds of qualitative
differences in solution structure observed in the steep-front problems
discussed earlier. This fact may be attributed to the absence, except
at very early times, of steep gradients that would drive the artifi-
cially dissipative error term. It seems fair to expect, therefore, that
upstream collocation is a suitable technique for solving nonlinear
parabolic equations of the type that govern pressure distributions in

multiphase flows.
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Ax=0.1
Ar=10"¢
£* =-09773503=§,-0.4

€y =0.1773503= §,-04

o4

0.2

Figure 3-8. Solutions to the gas-flow prcblem using
upstream collocation. The smooth curves
represent finite difference solutions on
a fine grid.



CHAPTER FOUR
MODELING COMPOSITIONAL FLOWS

Porous-media flows that are strongly influenced by the effects of
changing fluid compositions are considerably more complicated than the
flows examined in Chapter Three, and solving the equations governing
such compositional flows is a correspondingly complex task. There are
two main reasons for this increase in difficulty. To begin with, the
transport laws for a system of N components give rise to a system of N
coupled partial differential equations, which require more effort simply
because of the larger number of unknowns to be solved for. In addition,
the flow coefficients and fluid densities in the equations vary in
response to pressure and composition in complicated ways governed by the
thermodynamic constraints, as Chapter Two discusses. Thus the nonli-
nearity of the system imposes another level of hardship. Indeed, the
complexity of compositional flows is the prime motivation for modeling

them numerically.

This chapter introduces a one-dimensional simulator of compositional
reservoir flows using the collocation methods developed in Chapter Three
and the thermodynamic algorithms presented in Chapter Two. After devel-
oping the numerical techniques used in the simulator, we shall compare
the formulation of the collocation-based code with several major compo-
sitional simulators reported in the petroleum engineering literature.
Section 4.3 examines a set of sample problems using the collocation
method. The scheme described below treats one-dimensional flows, and
the sample problems involve fluid systems with three or fewer compo-
nents. While these simplifications would hinder the application of this
particular code in actual oilfield operations, the efficacy of the
methods in the cases examined here demonstrates the applicability of the

overall approach to more ambitious, industrial-scale codes.
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4.1. Formulation of the model.

The model uses an implicit pressure - explicit composition scheme to
solve the transport equations. This formulation entails solving an
overall fluid balance coupled with N - 1 species balance equations. For
simplicity let us assume that gravity has no effect on the flow,
although this restriction is not essential, and following common
practice in compositional modeling let us neglect hydrodynamic disper-

sion.

Summing the species transport equations (1.5-3) over all N components
and using the constraints (1.5-5) gives an overall fluid balance
equation:

Adp =0 (T3 - T

xPy - T 3%Peyp) =0

(4.1-1)

where, as in Section 3.5, TT = TV + TL is the total fluid transmissi-

bility. This leaves N - 1 independent species balance equations,

— ‘_ L -
A3 (pw;) =3 (T, 3 py - Tow/ 3, pour) =0,

(4.1-2)
- \J L .
where Ti = vai + TLwi. We can regard (4.1-1) as an equation for the

pressure py, using (4.1-2) to solve for the species mole fractions

{wi}g;i. The restrictions (1.5-5) on mole fractions and saturationms,

the thermodynamic constraints, and the constitutive laws close the
system except for auxiliary data and geometry, as discussed in Section
1.5.
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The system of equations comprising (4.1-1) and (4.1-2) is nonlinear,
since the coefficients depend rather strongly on the pressure and
overall composition of the system. Cast in the implicit pressure -
explicit composition form, the equations appear as a parabolic equation
in Py> paralleling the gas-flow equation of Section 3.5, coupled to N -
1 hyperbolic equations in Wysee sty gs each paralleling the Buckley-
Leverett equation. The coupling through the thermodynamic and constitu-
tive relationships is pronounced in many practical problems, and under
these circumstances it is essential to guarantee consistency among all
dependent variables and coefficients at every instant. This observation
motivates a solution scheme that iterates over all of the transport

equations at each time step in the discrete analog.
Temporal discretization.

To discretize equation (4.1-1) in time let us use an implicit
finite-difference scheme having the following Newton-1like iterative

structure:

nt+l,m nt+l,m nt+l,m+1 n
P op -p

+ (8p/bpy) v

_ +1,m n+l,m n+l,m+1
=131, Sy Tt dpy )

(4.1-3)

where 1 = At/A. In this equation, the notation (')n stands for the

value of the quantity (°®) at the known time level n At after numerical

n+l,m

convergence of the iterations, and (*) stands for the most recently

computed iterate of (®) at the unknown time level (n + 1)At. The

X n+l,m+1 , .
quantity BpV ’ is the correction to the pressure at the unknown

n+l,m+l _ pn+1,m

iteration level m + 1, giving Py v + 6p

n+l,m+l
v . The
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,m

+
factor (Ap/ApV)n ! is an approximation to the derivative of fluid

density p with respect to Py determined by a difference quotient
(Ap/ApV) = [p(wysecsuy s Py ¥ Apy)

- Py, suy_ s P 1/BPy
(4.1-4)

In practice, using Apv = 102 Pa gives adequate results.

As Section 4.2 explains, the formulation (4.1-3) parallels that
presented by Nghiem et al. (1981) in their finite-difference simulator,
the most salient difference being the approximation used for Ap/ApV.
The temporal approximation resembles a Newton-Raphson iterative scheme,
except that the right side of (4.1-3) neglects derivatives of the flow

coefficients and capillary term with respect to pressure. Although the
n+l,m+1
v

mation of the true Jacobian matrix, experience shows that the scheme

resulting matrix multiplying the unknowns 8&p is only an approxi=-

converges well while avoiding much of the expense required to compute

the true Jacobian.

Given iterates p3+l’m+1 from the pressure equation, we can update
each mole fraction wl""’wN-l using the Euler-like scheme
n+l,m+l _ n+l,m n+l,m+1
b Cpuy) T (T 3Py
_ L.n+1,m n+l,m
(Tpw;) SPev )
i=1,...,N-1

(4.1-5)

n+1l,m+1 = wn+1,m+1

This becomes an equation for the time increment Atwi i
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- w? if we expand the left side of (4.1-5) and rearrange:

n+l,m+l _ n+l,m n+l,mt+l
Awy (v 3,17y 3Py
_ L.n+1,m+1 ntl,m, @ n n+l,m+1 n+l,m+1
(Tyw)) 3 Poyr, 1 - ¥ Ap e
(4.1-6)
n+l,m+1

Equation (4.1-6) calls for the values of p , which are available

from the latest iteration of the pressure equation as

n+l,mtl _ +1,m+1 n+l,m+l _ +1,m n+l,m
P T, (T 3Py L Apeyn )
+ prl
(4.1-7)

Spatial discretization.

Let us approximate the spatial variations in the unknowns 6p3+1’m+1,
Atw?+1’m+1, i=1,...,N-1, using Hermite cubic trial functions like
those defined in Chapter Three. Thus, given a uniform partition AM: 0
=% < ... < Ry = X oy of the spatial domain Q = [O,Xmax],

tspn+1,m+1 - 6%n+1,m+1
\
M n+l,m+1 n+l,m+1
= I [n, H, (x) + 7' * H, ,(x)]
_ [ 0,8 [ 1,8
2=1
(4.1-8)

and
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+ +

pGNTLmHL Ly ptletl

ti t i
_ g n+l,m+1 H (x) + yn+l,m+l H (x)
e (v o 0,8 %) T ¥ ig 1,81

(4.1-9)

To these polynom