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ABSTRACT 

The numerical simulation of mu1tiphase, mu1ticomponent flows in 

porous media requires effective discrete techniques for solving the 

nonlinear partial differential equations governing transport of molec­

ular species. Numerical models also demand reliable algorithms for 

computing the effects of interphase mass transfer on fluid properties. 

This investigation introduces a finite-element collocation method for 

solving the transport equations of compositional flows and advances a 

novel approach for improving phase-behavior calculations. 

The collocation technique relies on a new method, called upstream 

collocation, to furnish convergent approximations to the equations of 

mass conservation. Through this method it is possible to construct 

collocation approximations analogous to the upwind finite-difference 

schemes dominating the literature on compositional modeling. A series 

of examples demonstrates the effectiveness of upstream collocation in 

related but more tractable flow problems. 

The proposed thermodynamic algorithms use standard equation-of-state 

methods to compute geometric representations of the Maxwell sets of 

fluid mixtures. This approach replaces the solution of sensitive 

systems of nonlinear algebraic equations by a simple interpolation 

scheme during execution time. Since it is based on equation-of-state 

calculations, the interpolation scheme preserves thermodynamic consis­

tency. Moreover, the new method mitigates the expense and convergence 

difficulties associated with the standard approach when more than one 

hydrocarbon phase is present. 



FOREWORD 

This investigation is an outgrowth of my doctoral dissertation at 

Princeton University. I am particularly grateful to Professors George 

F. Pinder and William G. Gray of Princeton for their advice during both 

my research and my writing. 

I believe that finite-element collocation holds promise as a numer­

ical scheme for modeling complicated flows in porous media. However, 

there seems to be a "conventional wisdom" maintaining that collocation 

is hopelessly beset by oscillations and is, in some way, fundamentally 

inappropriate for multiphase flows. I hope to dispel these objections, 

realizing that others will remain for further work. 
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CHAPTER ONE 

THE PHYSICAL SYSTEM 

1 . 1 . I ntrod uction . 

Long before the oil price shocks of the past decade engineers recog­

nized a need for improved methods of exploiting petroleum resources. 

Conventional production practices including waterflooding are so ineffi­

cient that, of all the oil discovered in the United States as of 1980, 

less than 35 percent is identified as either having been recovered or 

remaining as proved reserves (Doscher, 1980). By this count, about two 

thirds of the nation's known original petroleum resources cannot be 

produced using standard primary and secondary methods. Miscible gas 

flooding, especially with CO2 as the injected fluid, is one of the more 

promising technologies for enhancing oil recovery and thus for shrinking 

the gap between discovered resources and crude reserves (Holm, 1982). 

Engineers designing miscible gas floods rely on mathematical models to 

compare possible operating strategies and to estimate the amount and 

timing of additional production. We shall examine new techniques appli­

cable to the numerical simulation of miscible gas floods and similar 

compositional flows in porous media. 

How miscible gas flooding works. 

The basic idea behind a miscible gas flood is to inject a relatively 

cheap fluid, often CO2 or propane-enriched natural gas, into a perme­

able, oil-bearing rock formation with the aim of driving the resident 

oil toward producing wells. The most obvious principle by which 

miscible gas flooding enhances recovery is a purely mechanical one: 

injecting fluid into the porous reservoir causes an increase in pressure 

drops between injection wells and production wells, resulting in greater 

fluid velocities toward producers. This mechanical displacement is 

common to all fluid injection schemes for enhanced oil recovery. 
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Miscible gas flooding offers additional mechanisms for improving oil 

production. In a well designed flood, the injected fluid mixes with the 

oil in place to form a zone in which the displacing fluid and the 

displaced fluid have very low interfacial tension. As this zone sweeps 

through the formation it moves oil that was previously trapped by the 

capillary forces present in the porous rock matrix. Because of its 

effects on capillarity, miscible gas flooding leaves less oil in the 

swept portions of the reservoir than recovery technologies, such as 

waterflooding, based on immiscible displacement. 

The key to miscible displacement is the transfer of mass between the 

displacing and displaced fluid phases. As the fluids move with 

different velocities through the rock there is an exchange of molecular 

species in accordance with laws governing the compositions of coexisting 

phases. Thus, while the injected fluid initially may not be miscible 

with the reservoir oil, the interaction of the flow field and the 

fluid-phase thermodynamics leads to "developed" or "multiple-contact" 

miscibility. Holm (1976), Stalkup (1978), and Holm (1982) summarize the 

large body of literature describing this class of mechanisms. 

An overview of mathematical modeling. 

There are two essentially different approaches to modeling miscible 

gas floods. One of these is to forgo explicit simulation of interphase 

mass transfer, using as a surrogate any of several phenomenological 

mixing models coupled with a standard immiscible flow simulator (Lantz, 

1970; Todd and Longstaff, 1972; Watkins, 1982). While this route is 

inexpensive and therefore quite popular, its success depends as much ~n 

felicitous choices of various fitting parameters as on the correct 

mathematical description of physical processes. 

Here we shall be concerned with the second approach, namely, modeling 

both the flow field and the effects of interphase mass transfer. 
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Compositional reservoir simulators attempt to capture the complex inter­

actions between flow and thermodynamics in miscible gas floods, and 

hence these models must cope with strongly nonlinear phenomena. The 

first truly compositional simulators appeared in the American petroleum 

engineering literature in the late 1960's and early 1970's (Price and 

Donohue, 1967; Roebuck et al., 1969; Nolen, 1973; Van Quy et al., 1973). 

Among the most recent and sophisticated of the reported compositional 

simulators for miscible gas flooding are those of Kazemi et al. (1978), 

Fussell and Fussell (1979), Coats (1980), Nghiem et al. (1981), and 

Young and Stephenson (1982). Chapter Four of this investigation reviews 

details of these models' structures. For now let us briefly note 

current trends in the two major issues confronting designers of composi­

tional simulators: the discretization of the differential equations 

governing fluid motions and the numerical representation of fluid-phase 

thermodynamics. 

All of the simulators mentioned above use finite differences to 

discretize both the space and time dimensions. While the use of finite 

elements in petroleum reservoir simulation has shown steady progress 

over the last decade, their application to compositional miscible gas 

flood simulators has been sparse: It is particularly interesting that 

finite-element collocation has received little attention in the petro­

leum industry compared to Galerkin finite-element techniques, despite 

certain attractive features of the method. Chapter Three discusses 

these matters more thoroughly. 

Regarding the thermodynamic part of the problem, there appears to be 

a trend toward the exclusive use of cubic equations of state to predict 

fluid densities and compositions. All of the aforementioned simulators 

reported since 1979 use equation-of-state methods. These methods have 

the advantages of thermodynamic consistency and somewhat greater gener­

ality over the tabulated correlations used in earlier compositional 

models. On the other hand, equation-of-state methods as commonly 
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implemented are expensive and exhibit poor convergence near critical 

points of fluid mixtures, and these facts give cause for dissatisfaction 

with the available techniques. Chapter Two treats these issues in some 

detail. 

Scope of the investigation. 

The present study proposes new techniques for solving both the 

thermodynamic constraints and the flow equations in the compositional 

simulation of miscible gas floods. For the thermodynamic calculations 

we shall construct a method for computing the compositions and satura­

tions of coexisting fluid phases using an interpolation scheme in 

conjunction with a cubic equation of state. This method, motivated by a 

geometric view of equilibria in thermodynamic systems, furnishes a 

simple and computationally reliable remedy to the expense and conver­

gence difficulties associated with standard equation-of-state methods. 

For the flow equations, we shall develop a new variant of finite-element 

collocation that offers a viable alternative to finite-difference 

methods. The collocation schemes presented in this study are novel in 

that, unlike earlier methods, they give good results when applied to the 

types of nonlinear, convect inn-dominated flows encountered in oil reser­

voirs. 

This study has five chapters. The remainder of Chapter One estab­

lishes the physics governing miscible gas floods and notes some implica­

tions for the numerics that follow. Chapter Two reviews the thermody­

namics of miscible gas floods in detail and presents the new 

interpolation technique. Chapter Three introduces the collocation 

method and demonstrates its applicability to equations governing flow 

and transport in porous media. Chapter Four discusses the design of a 

compositional simulator for miscible gas floods. Finally, Chapter Five 

summarizes the results of the investigation and outlines possible direc­

tions for further work. 
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1.2. The reservoir and its contents. 

This section briefly defines a petroleum reservoir in mathematical 

terms suitable for use in the mechanical description that follows. The 

definition is sufficiently broad to encompass fluid displacements 

observed at the laboratory, pilot, and field scales, provided certain 

underlying assumptions hold. The discussion that follows, including the 

remainder of this chapter, is essentially a compilation of relevant 

porous-media physics developed by many other researchers. There is no 

essential any novelty in this review except perhaps in the attempt to 

gather results and methods from a large and varied body of literature 

into a consistent picture of miscible gas flood mechanics. While cited 

references appear where the justification of facts or lines of reasoning 

is not explicit, we shall not undertake an exhaustive literature review 

on all of the topics discussed here. 

Our point of view on porous-media physics is a macroscopic one. All 

of the kinematic and dynamic quantities mentioned in this chapter there­

fore refer to a level of observation where a fluid-saturated porous 

medium appears as a collection of superposed continua. Atkin and Craine 

(1976) review the theory and history of this viewpoint, and their treat­

ment and the work of Bowen (1980, 1982) guide much of the framework 

outlined in this section and the next. 

Let us assume that the reservoir consists of a body of homogeneous 

porous matrix occupied by at most two fluids, a vapor and a liquid, to 

which the matrix is permeable. Let us allow the compositions and densi­

ties of the fluids to vary in space and time. In practical terms these 

assumptions exclude fractured porous media and such multi-fluid systems 

as oil-gas-water reservoirs and liquid-liquid-vapor mixtures having more 

than two fluid phases. Let us assume further that the reservoir is 

isothermal, so that there is no need to account for material transfers 

of energy through an energy balance equation. 
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In mathematical language, a reservoir is the closure Q of a simply 

connected open subset of the Euclidean space Rd, where d = 1, 2, or 3 

depending on the dimensionality of the problem to be solved. Each 

neighborhood of any spatial point ~ E Q is occupied by matter from each 

element in a set E of constituents. This set E admits a decomposition E 

= {1,2, ... ,N+1} x {V,L,R}, where {1,2, ... ,N+1} is the set of components 

or molecular species and {V,L,R} is the set of phases, namely vapor, 

liquid, and rock. Thus a constituent is an ordered pair (i,a), identi­

fied as component i occurring in phase a. 

Associated with each constituent (i,a) is a measure p. , defined on 
~a 

the field of Lebesgue-measurable subsets of Q and absolutely continuous 

with respect to Lebesgue measure. The measure Pia is called the bulk 

molar density of species i in phase a, and its physical dimensions are 

[moles of (i,a) / volume]. 

p = I I p. mix . ~a 
~ a 

In terms of p. , the mixture density is 
~a 

(1.2-1) 

and the bulk density of phase a is 

P = I p a . ia 
~ 

(1.2-2) 

Also, associated with each phase a E {V,L,R} is a continuous 

function ~ : Q ~ [0,1], the volume fraction of a, having physical dimen-
a 

sions [volume of a / volume]. The set {~V'~L'~R} satisfies ~V + ~L + ~R 
= 1. Using the volume fractions and densities, it is possible to define 

several useful quantities as shown in Table 1-1. 
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For the rock-fluid system under consideration it is convenient to 

treat the rock phase separately, since its response to applied loads 

will be less important than the responses of the fluid phases. Call 

(1.2-3) 

the porosity, and define 

(1. 2-4) 

to be the saturations of vapor and liquid, respectively. Several useful 

quantities defined in terms of the saturations, ¢, and previously 

defined variables also appear in Table 1-1. From the definitions and 

the fact that volume fractions sum to unity follow four restrictive 

equations: 

I w. = 1 
i l. 

I w~ = 1 
i l. 

L 
I wl.. = 1 
i 

(1.2-5a) 

(1.2-5b) 

(1.2-5c) 

(1.2-5d) 
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1.3. Reservoir mechanics. 

Kinematics 

At each time t there is associated with every spatial point ! E Q a 
. I . X~ f h . (.) ~ Th . ~ mater1a P01nt -i 0 eac const1tuent 1,~ E:. e mapp1ng ~i: 

(X~,t) ~ x is the (i,~)-th motion, which we shall assume to be continu-
N1 

ously differentiable with nonzero Jacobian determinant. Thus x~ is at 
-1 

I I 11 bl h ( a)-1 ( ) ~ Xa .. east oca y inverti e, wit inverse x. : x_,t ~ 
-1 -1 

Given the motions of all of the constituents, it is possible to 

define various velocities that are useful in describing the behavior of 

the system: 

v~(x~,t) 
-1 .... 1 

a a 
= atx. (X . , t) 

~1 -1 

(1.3-1a) 

is the velocity of constituent (i,~), 

(1.3-1b) 

is the mean velocity of phase a, 

~ ~ a 
~i = ~i - Y 

(1.3-1c) 

is the diffusion velocity of species i in phase ~, 

(1.3-1d) 



is the barycentric velocity, and 

V. = 
~l. 
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(1.3-1e) 

is the mean velocity of species i in the fluids. From the definitions 

of pa and va there follows 

a a 
~ Pi ~i = 0 

(1.3-2) 

Mass balance 

Let us assume that the reservoir and its contents obey the mass 

balance. That is, for a given material volume r c Q, 

a 
J Pi dv) 
r 

o 

(1.3-3) 

A standard argument (Eringen and Ingram, 1965) reduces this equation to 

I I J a + V·(p~ v~)] dv 
i a r\I 

[atP i l. ~l. 

I I J [ 0: a ]. ds 0 + Pi (v. - u I ) n = 
i a I 

"'l. ~ ,.. 

(1.3-4) 

In this equation, I is any surface in r, EI is the velocity of I, ~ is a 

unit vector normal to I, and [el signifies the jump in the quantity C·) 
across I. The surface integral will contribute to the left side of 
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(1.3-4) when I is a surface on which some of the densities P~ are 

discontinuous. 

If (1.3-4) is valid for arbitrary material volumes r, no matter how 

small, then the following point balances hold: 

on S2 \ t 

(1.3-5a) 

I I [ P~ (~~ - ~I) ] • n = 0 
i a 

on t. 

(1.3-5b) 

This system is equivalent to the following constituent balance equations 

for all (i,a) E 

~a 
R. to obey 

1 

(1. 3-6a) 

on I 

(1.3-6b) 

"a w, provided we restrict the mass exchange terms Pi and 

= I I R~ = 0 
i a 1 

(1.3-7) 

Equations (1.3-6a) are partial differential equations governing the 

movement of matter in parts of the reservoir where the variables P~ 
1 
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(and v~) are smooth. Where jumps in densities occur, the conditions 
-l. 

(1.3-6b) apply. From the mathematical viewpoint, we shall be concerned 

with solving (1.3-6a) numerically, but we shall admit solutions that 

satisfy these equations only in the weak sense. Hence the functions 

p~(x,t) that we accept as solutions to the constituent balances may be 
l. 

discontinuous. However, we shall require such weak solutions to satisfy 

(1.3-6b) at their discontinuities. 

Let us limit attention to a system in which the movements of matter 

obey a special set of simplifying assumptions. To begin with, the 

system undergoes no homogeneous chemical reactions; in other words, 

there is no exchange of mass among species within any phase. Thus, 

i = 1, ... ,N+1 

(1. 3-8) 

Moreover, the rock phase shares no species with the fluid phases, so 

that 

i=l, ... ,N 

(1.3-9) 

(1.3-10) 

f\ V "L This assumption implies that Pi + Pi = O. However, the fluids can 

exchange matter between themselves, so that in general 



N I\a: 
I Pi f 0, 

i=l 

13 

a: = V,L 

(1.3-11) 

Thus the system to be modeled admits mass transfer between fluids but 

excludes adsorption, rock dissolution, and intraphase chemical 

.reactions. 

Since fluid-phase velocities in porous media are typically more 

accessible to measurement than constituent velocities, it is convenient 

to rewrite the constituent balance equations for fluid constituents in 

terms of va:: 

i=l, ... ,N 

a: = V,L 

(1.3-12) 

H J.a:. = & S a: a: a:. h d' . f . . . h ere, _~ ~ a: P wi ~i ~s t e ~spers~o~ 0 spec~es ~ w~t respect 

to the mean velocity of a:. Summing (1.3-12) over the fluid phases and 
a: ~a: 

using the constraints on wi and Pi gives the species balance 

equations, 

,\(pW i ) + ve[¢(sV V V V 
SL P 

L L L 
P w. v + w. v ) 1 

~ ~ -
+ V· (j ~ + .L) = 0, i 1, ... ,N J. 

-~ -~ 
(1.3-13) 

This leaves the rock balance equation, 
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(1. 3-14) 

"a An analogous set of assumptions regarding the mass exchanges Ri at 

"V .. L 
included surfaces leads to the relationship R. + R. = O. Thus, 

1. 1. 

summing equations (1.3-6b) furnishes a jump condition corresponding to 

(1.3-13) : 

i=I, ... ,N 

(1. 3-15) 

or 

= 0, i = 1, ... ,N 

(1.3-16) 

Velocity field equations. 

To avoid some of the complexities associated with modeling porous­

media flows, let us assume that only the fluids move and that the 

density of the rock stays constant. Hence the rock is completely 
R R immobile, with v = 0 and both p and ~ constant. Strictly speaking, 

this assumption is unrealistic, since in practical oilfield operations 

the pressure changes associated with pumping can cause detectable 

changes in porosity. These changes, however, often have small effects 

on fll1id motions, and rock compressibilities for typical sandstones are 
-10 -1 frequently quite small ( - 10 Pa, Collins, 1961, Chapter 1). The 
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assumptions that the rock is both chemically and mechanically inert 

eliminate the need for solving the rock balance equation (1.3-14). 

The fluid velocities pose greater difficulties. There now appears to 

be no universally accepted, rigorous mechanical theory of multiphase 

flows in porous media with interphase mass transfer. The only widely 

used approach to this problem is to assume that the field equations for 

simultaneously flowing fluid phases in porous media are extensions of 

Darcy's law for single phase flow. Bowen (1980, 1982) develops this 

theory for the case when no interphase mass transfer occurs. 

The general law governing fluid-phase velocities in porous media is 

the momentum balance, the local differential form of which is 

(1.3-17) 

Here t a is the stress tensor of phase a, ba is the body force acting on - -- ~a phase a, and £ is the net exchange of momentum into phase a from other 

phases, subject to the restriction 

(1.3-18) 

Equation (1.3-17) holds for all phases, V, L, and R, even though only 

the fluid phases are of interest here. A fairly simple set of assump­

tions reduces (1.3-17) to a multiphase version of Darcy's law for 

isotropic media (Prevost, 1980; Hassanizadeh and Gray, 1980; Bowen, 

1980, 1982). Without appealing to the generality of constitutive theory 

(Ingram and Eringen, 1967), let us review these assumptions briefly. 
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First, assume that the fluids obey linear stress laws of the form 

a = V,L 

(1.3-19) 

where ~ ranges over all phases, p is the pressure of the fluid phase a, 
a 

~ is the unit tensor, and ~a = Vva + (V~a)T. The coefficients Aaa , paa 

are intrinsic Lam~ moduli for the fluid phase a, and coefficients of the 

form Aa~, pa~, a ; ~, represent the effects of interphase tractions. 

Second, assume that the last two terms in (1.3-19) contribute negligibly 

to the fluid motions on the grounds that viscous effects are dominated 

by the effects of momentum exchanges with the rock matrix. This assump­

tion reduces (1.3-19) to 

- P I a~' 
a = V,L 

Third, assume that gravity is the only body force: 

a = V,L 

(1.3-20) 

(1.3-21) 

where g is the magnitude of acceleration due to gravity (9.80 m/s), and 

D signifies the depth below some datum. Fourth, assume that the 

momentum exchanges take the form of isotropic Stokes drags: 

a = V,L 

(1.3-22) 
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Thus the effects of interfluid momentum exchanges are negligible 

compared with those of fluid-solid exchanges. Finally, assume that the 

inertial terms are negligible in the fluids, so that 

a = V,L 

(1.3-23) 

Substituting assumptions (1.3-20) through (1.3-23) into the momentum 

balance (1.3-17) gives 

a = V,L 

(1.3-24) 

The reciprocal of the Stokes drag coefficient is the mobility A of 
a 

fluid phase a. The most common treatment of this parameter is to factor 

il~ 

A = k I a a a ~ 
(1.3-25) 

where k is the effective permeability of the rock matrix to phase a, 
a 

having dimensions [L2), and ~a is the dynamic viscosity of phase a. 

With this identification and the definition S =. I., equation (1.3-22) a a 
becomes 

(1.3-16) 

which is the multiphase extension of Darcy's law for isotropic media. 
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1.4. Supplementary constraints. 

Certain functional relationships hold among the variables describing 

the reservoir and its contents. These relationships supplement those 

given by the species balances, restrictive equations, and velocity field 

equations, providing information necessary to close the transport 

problem. Such relationships fall into two categories: thermodynamic 

constraints and constitutive laws. 

Thermodynamic constraints. 

The thermodynamic constraints govern the densities and compositions 

of the fluid phases as well as the relative amounts of the phases 

present at each point in the reservoir. In an isothermal system, these 

quantities depend on the overall composition of the fluid mixture at the 

given point and on the local pressures. Thus for example the molar 

density of a fluid phase a obeys a constraint of the form 

a 
p 

a a a 
p (w., ... ,wN l' P ), 

~ - a 
a = V,L 

(1.4-1) 

Similarly, the fluid-phase molar compositions satisfy constraints of the 

form (Nikolaevskii and Somov, 1978) 

(1.4-2) 

In miscible gas floods relationships (1.4-1) and (1.4-2) for 

different fluid phases are not independent, since under appropriate 

conditions the densities and compositions of the fluids may become 
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locally indistinguishable. When these conditions occur the interface 

between the phases vanishes and the fluids flow miscibly, allowing very 

efficient displacement of the liquid initially present. Indeed, the 

formation of a zone of such miscibly flowing fluids is the principal 

trait of a successful miscible gas flood. To model this phenomenon, the 

phase densities and compositions must satisfy 

(1.4-3a) 

lim (w~ cr 1 

L 
Wi) = 0, i = 1, ... ,N-l 

(1. 4-3b) 

Here "limcr" signifies the limit as (w1, ... ,wN-1,PV) approaches a 

critical point, where phases become indistinguishable, from thermody­

namic states inside the two-phase regime. 

The relative amounts of phases present at any given point obey a 

constraint on the fluid saturations Sa' For computational purposes 

discussed in Chapter Two, however, this constraint is more conveniently 

expressed in terms of the mole fractions of the fluid mixture occuring 

as vapor or liquid. These quantities stand in direct correspondence to 

the saturations through the definition 

y 
a a = V,L. 

The phase mole fractions satisfy the restrictive equation 

(1.4-4) 

(1.4-5) 
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and obey a thermodynamic constraint of the form 

(1.4-6) 

The specific forms of the thermodynamic constraints (1.4-1), (1.4-2), 

and (1.4-6) depend on the choice of thermodynamic data. We shall use 

constraints derived from standard equation-of-state methods, which 

Chapter Two discusses in more detail. For the present it suffices to 

note that in the usual equation-of-state approach the thermodynamic 

constraints assume the mathematical form of a collection of nonlinear 

algebraic equations that are equivalent to the explicit forms stated 

above but are implicit in the densities, fluid-phase compositions, and 

phase mole fractions. 

Constitutive laws. 

The constitutive laws govern the behavior of certain parameters of 

the transport problem which may vary as the flow field evolves. These 

parameters are dispersion, capillary pressure, effective permeabilities, 

and fluid viscosities. 

Dispersion. 

Dispersion is arguably the most poorly understood macroscopic phenom­

enon in porous media physics, and and there exists a correspondingly 

large literature on the subject (see Perkins and Johnson, 1963; Green­

korn and Kessler, 1969; Nunge and Gill, 1969, Fried and Combarnous, 

1971, and Fried, 1975, Chapter 2, for reviews). Recent studies have 

shown some emphasis on relating the macrocsopic features of dispersion 
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to the microscopic structure of fluid-saturated porous media (see, for 

examples, Carbonell and Whitaker, 1982; Mohanty and Salter, 1982; Smith 

and Schwartz, 1980). There is fair agreement that for flows of a single 

fluid phase at a fixed scale dispersion obeys a phenomenological consti­

tutive law of Fick's type (Van Quy et. aI, 1972), 

(1.4-7) 

N -1 
where Mi is the molar mass of species i and M = (r j =1 Wj/Mj) is the 

molar mass of fluid. However, no simple choice of functional dependence 

for the dispersion tensor D. has escaped criticism on both experimental 
~ 

and theoretical grounds. Moreover, there has been no empirically tested 

extension of (1.4-7) to mUltiphase flows. Since the dispersion tensor 

must account for such disparate microscopic phenomena as molecular 

diffusion, Taylor diffusion (Taylor, 1953), stream splitting, and 

tortuosity of the matrix, it is perhaps no wonder that the most appro­

priate functional form remains a mystery. 

The most common treatment of dispersion in compositional models of 

miscible gas floods to date has been to ignore it. Of the major compo­

sitional simulators reported in the American petroleum engineering 

literature, only that of Van Quy et al. (1972) reports the use of 

dispersion coefficients. Although data quantifying dispersion in multi­

phase, multicomponent flows are scarce, some experiments suggest that 

this class of phenomena can have measurable effects in laboratory- and 

field-scale floods (Watkins, 1978; Yellig and Baker, 1981). The most 

straightforward extension of the single-phase law (1.4-7) is 

.a 
J. = 
~1 

(1.4-8) 
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However attractive equation (1.4-8) may be on theoretical grounds, it 

remains untested. It is worth noting that in many applications the 

effects of dispersion may be quite small (Collins, 1961, Chapter 8), and 

in fact the fully compositional model developed in Chapter Four neglects 

the phenomenon entirely. 

Capillary pressure. 

The capillary pressure relates the macroscopic pressure in the liquid 

to that in the vapor: 

(1.4-9) 

This difference owes its existence to the interfacial tension between 

the fluid phases, a molecular phenomenon (Gubbins and Haile, 1977; Davis 

and Scriven, 1980), and to the microscopic geometry of the fluid inter­

face in the interstices of the porous matrix (Morrow, 1969). Thus the 

actual physics of capillarity are quite complicated, and its details are 

not wholly accessible to the macroscopic level of observation to which 

the equations of this chapter pertain. 

In bench- or field-scale studies it is most practical to measure 

capillary pressures as functions of macroscopic flow parameters, using 

the experimental values to define empirical capillary pressure functions 

applicable in the velocity field equations. There is general agreement 

that for two fluids of fixed compositions the capillary pressure depends 

on the local values and history of the saturations (Morrow, 1969). For 

flows in which saturations change monotonically, as in strict imbibition 

or strict drainage, the capillary pressure of fixed-composition fluids 

is a unique function of saturation for each initial state of the porous 
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medium. In miscible gas floods, however, the fluid compositions vary in 

time and space. To account for these changes, it is convenient to 

quantify the interfacial tension of the fluid mixture as a function of 

thermodynamic variables: 

(1.4-10) 

2 This quantity has the dimensions [energy/area], or [M/T]. The capil-

lary pressure then has the functional form 

(1.4-11) 

As a ~ 0 the interface between vapor and liquid disappears and the 

displacement occurs miscibly; this happens at critical points. From 

this consideration it is clear that 

lim PCVL = 0 
a~O 

(1.4-12) 

a condition that parallels equations (1.4-3). In the absence of experi­

mental data we shall compute interfacial tensions using the Sugden­

Macleod correlation (Reid et al., 1977, Chapter 12). 

Effective permeabilities. 

Like capillary pressure, effective permeabi1ities are also macro­

scopic manifestations of the effects of interstitial geometry and inter­

facial tension on fluid flows in porous media, and the caveats regarding 
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measurements at the bench or field scale hold here as well. It is 

customary to factor the effective permeability of each fluid phase a as 

ka = kkra , where k is the absolute permeability, a characteristic of the 

rock, and k is the relative permeability, a phenomenological factor 
ra 

accounting for the influence of the other fluid phase on the flow of a 

and obeying 0 ~ k ~ 1. I shall assume that k is a uniform, constant ra 
scalar, thereby disregarding the possible effects of anisotropy or 

pressure-induced matrix deformations on the permeability as well as the 

Klinkenberg effect, an enhancement of permeability to vapor attributed 

to slipping at the walls of the matrix (Collins, 1961, Chapter 3). 

For relative permeabilities the appropriate constitutive laws are not 

so simple. The influence of one fluid phase, say ~, on the other, say 

a, in general comprises a complicated set of microscopic phenomena. 

Under the assumption that fluid-fluid tractions are small, we may 

consider the main effect to be the obstruction of channels to the flow 

of a owing to their occupation by ~ in a configuration depending on the 

interfacial tension. While relative permeabilities have been thoroughly 

studied for immiscible displacements without interphase mass transfer 

(see Scheidegger, 1974, Chapter 10 for a review), there is little exper­

imental information on relative permeabilities applicable to miscible 

gas floods. Noteworthy exceptions are the studies of Bardon and 

Longeron (1980), who examined gas-oil systems, and Amaefule and Handy 

(1982), who used aqueous solutions of surfactants to displace refined 

hydrocarbon mixtures. These investigations show that, for systems in 

which interphase mass transfer changes the compositions of the fluids, 

the relative permeabilities for monotonic displacements depend on 

saturations and interfacial tensions: 

k = k (SV,a), ra ra a = L,V. 

(1.4-13) 
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To be consistent with the theory of single-phase flow in porous media, 

these functions must satisfy 0 S krV + krL S 1. Moreover, as a ~ 0 the 

vapor-liquid interface disappears, and the single-phase version of 

Darcy's law applies: 

v = - (k/~p)(Vp - pg VD) ...-
0.4-14) 

Therefore, as a ~ 0, krV + krL ~ 1 for any saturation. Bardon and 

Longeron report that as a becomes very small the relative permeability 

curves approach straight lines with positive and negative unit slope on 

the saturation interval [0,1]. This behavior occurs near critical 

points in miscible gas floods. 

Viscosities. 

Let us assume that viscosities are functions of pressure and phase 

composition: 

(1.4-15) 

In the absence of experimental data a correlation developed by Lohrenz, 

Bray, and Clark (1964) gives fairly accurate predictions of mixture 

viscosities. 
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1.5. Governing equations. 

The balance laws together with the restrictive equations and supple­

mentary constraints combine to form a system of equations that must be 

solved to predict the performance of miscible gas floods. Since this 

system is nonlinear and usually quite complicated, numerical approxima­

tion offers the only hope for producing solutions in a practical 

fashion. To motivate the choices of numerical procedures in the 

following chapters, let us close this chapter with a formal assembly of 

the equation set to be solved and a discussion of some of its mathemat­

ical aspects. 

Form of the system. 

The basic transport equation governing the distribution of any 

fluid-phase component i in the reservoir is the mass balance augmented 

by the velocity field equations and constitutive laws. Thus, substi­

tuting (1.3-26) and (1.4-8) into (1.3-13) gives 

v 
p g VD) 

i=1, ... ,N 

Using the capillary pressure PCVL = Pv - PL and calling lit 

+ AL w~ pL)g reduces these equations to 

(1.5-1) 

v V 
= (AV wi P 
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i=1, ... ,N 

(1.5-2) 

Henceforth let us assume that the flow is one-dimensional, that is, that 

all variables are uniform along two Cartesian axes and vary only along 

x. Integrating (1.5-2) across the directions of uniformity and denoting 

the cross-sectional area by A(x) then yields 

i=1, ... ,N 

(1.5-3) 

where 

a = V,L 

(1.5-4a) 

is the transmissibility of phase a and 

t.=At.' 
1 1 

(1.5-4b) 

In addition to the N equations (1.5-3) we have the four restrictive 

equations 
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N V N 
L 

N 
I w. = I w. = I w. = 5V + 5L 1 

i=1 l. i=1 l. i=1 l. 

(1.5-5) 

the 2N + 1 thermodynamic constraints 

a = V,L 

(1.4-1) 

i = 1, ... ,N-1, a = V,L 

(1.4-2) 

(1.5-6) 

(the last being equivalent to (1.4-6) through the definition (1.4-4», 

the definitions of p and g, and constitutive laws sufficient to deter-

. T T . V d' L . 1 N G . th b 1 ml.ne V' L' PCVL' J i an J i , l. = , ... ,. l.ven e pro em geometry 

(A(x) and D(x» and appropriate boundary and initial data, equations 

(1.5-3), (1.5-5), (1.4-1), (1.4-2), and (1.5-6) constitute a set of 3N + 

5 equations in the 3N + 5 un~owns {w1, ... ,wN, wi, ... ,w~, w~, ... ,w~, 
V L PV,5V,5L,p ,p}. Finally, to accommodate the event that spatially 

discontinuous solutions may arise, we have the jump conditions (1.3-16). 

Weak solutions. 

The possibility of discontinuous solutions raises the issue of weak 

solutions to the governing partial differential equations (1.5-3), since 

functions satisfying these equations in the literal sense cannot be 

discontinuous. For a function w(x,t) to be a weak soluticn of a conser­

vation law 3t f 1(w) + 3xf 2 (w) = 0 on an (x,t)-domain Q x 0, the following 

integral equation must hold for any function g e C~(Q x 0) having 
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compact support in Q x e (Chorin and Marsden, 1979, Chapter 3; Birkhoff, 

1983): 

(1.5-7) 

This criterion admits discontinuous functions w(x,t) but reduces to the 

original partial differential equation when w is sufficiently smooth to 

satisfy the latter. 

Equations (1.5-3) are fairly complex, and it is not at all clear on 

inspection whether one can reasonably expect discontinuous solutions to 

arise. There are, however, several simplified versions of these 

equations which have been shown to exhibit discontinuous solutions. Let 

us review two such simplifications: the Buckley-Leverett saturation 

equation and a generalization of the Buckley-Leverett theory due to 

Helfferich (1981, 1982). 

The Buckley-Leverett problem 

The Buckley-Leverett saturation equation (Buckley and Leverett, 1942) 

models the incompressible flow of two immiscible fluid phases in a 

homogeneous porous medium. The equation arises from a set of species 

balances of the form (1.5-3) under the further assumptions that N = 2 

and neither species is shared between phases. Letting w~ = w~ = 0, 

then, we have from (1.5-3) 

(1.5-8a) 
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Assuming also that gravity and capillarity have negligible effects, that 

variations in pV and pL are negligible, and that A is constant and 

uniform allows us to rewrite (1.5-8) as 

(1.5-9a) 

(1.5-9b) 

where q = - A a Pv is the flow rate of phase a, a = V,L. In the case a a x 
where the total flow rate q = qv + qL is constant we need only solve one 

of these equations, say the first. Since qv = Avq/(AV + AL) this 

reduces to the hyperbolic conservation law 

(1.5-10) 

where the fractional flow function 

(1.5-11) 

denotes the volume fraction of the flowing stream occupied by vapor. 

The nature of the fractional flow function is, of course, crucial to 

the behavior of solutions to equation (1.5-10). Although the precise 

form of fV(SV) depends on the particular rock and fluids studied, there 
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are qualitative features common to most fractional flow functions for 

immiscible displacements, as drawn in Figure 1-1. First, fV vanishes 

for vapor saturations less than an irreducible vapor saturation SVR and 

equals unity for Sv ~ 1 - SLR' SLR being the residual liquid saturation. 

These "endpoints" SVR and 1 - SLR are constants characteristic of the 

given vapor-liquid-rock mixture when phase compositions do not vary. 

Second, fV is often not a convex function over its support [SVR,l]: 

typically it is S-shaped, with an inflection point where its slope has a 

maximum. Finally, fV'(SV) exists throughout [0,1] and vanishes at the 

endpoints SVR and 1 - SLR· 

These peculiarities of fV(SV) can lead to discontinuous solutions 

SV(x,t) for Cauchy problems with initial data of the form 

t ~ ° 

(1.5-12) 

defined on the (x,t)-domain Q x e = [0,-) x [0,-). To see this, observe 

that (1.5-10) has the characteristic equation 

(dx/dt)!S 
V 

(1.5-13) 

which governs loci of constant SV. Since fV is not not convex, dfV/dSV 

is not monotonic, and so there are speeds at which several distinct 

saturations may propagate. Thus it is possible, for example, for the 

locus of some large value of Sv to overtake that of a small value 

initially ahead of it. Depending on the initial data prescribed, then, 

literal application of (1.5-13) may eventually lead to multiple values 
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o~ __ ~~ __________________ ~ __________ .-
o S"R I-SL.~ S" 

Fig. 1-1: A typical fractional flow function fVCSV) and 
its convex hull tCSV)' 

x 

Fig. 1-2: Triple-valued saturation predicted by the Buckley­
Leverett characteristic equation. 
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of vapor saturation at certain points in Q, as shown in Figure 1-2. One 

way to resolve this apparent paradox, as Welge (1952) shows, is to 

replace fV by its convex hull, drawn as the dashed line in Figure 1-1. 

Welge's construction yields the single-valued but discontinuous satura­

tion profile drawn in Figure 1-2. At smooth parts of the solution SV' 

any locus of constant saturation advances with the speed given by 

(1.5-13), while discontinuities move with speeds satisfying the jump 

condition (1.3-16). For the vapor-phase component this reduces to 

(1.5-14) 

or, since vV 

(1.5-15) 

The Buckley-Leverett-Welge solution is a weak solution but not a 

classical solution, since it is discontinuous. Nonetheless, it is the 

physically correct solution to the Buckley-Leverett problem. 

Helfferich' 5 theory. 

Recently, Helfferich (1981, 1982) has presented a unified generaliza­

tion of the Buckley-Leverett theory to multicomponent flows in porous 

media with interphase mass transfer, and this work sheds some light on 

the equations governing miscible gas flopds. Helfferich bases his 

approach on simplified versions of the species balances; we shall derive 

an equivalent set of equations from (1.5-3). 
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Assume, as in the Buckley-Leverett problem, that gravity and capil­

larity have negligible effects, that A does not vary, and further that 

dispersion is negligible for all species. Under these hypotheses 

(1.5-3) becomes 

i = 1, ... ,N 

(1.5-16) 

where now qa = - paAa axPV is the flow rate of phase a, a = V,R, q = qv 

+ qL is the total flow rate, and fa = qa/q is the fractional flow of 

h V L C 11 ' f f V + f L d . h . P ase a, a = ,. a· 1ng i = V wi L wi an assum1ng t at var1a-

tions in molar fluid density in space and time are negligible, we can 

rewrite (1.5-16) as 

i = 1, ... ,N 

(1.5-17) 

N 
Now from the identity fV + fL = 1 it follows that ri=lfi = 1, and 

consequently only N - 1 of the equations (1.5-17) are independent. 

For each species i, equation (1.5-17) is identical in form to the 

Buckley-Leverett saturation equation (1.5-10). By inspection, then, 

loci of constant Wi move at the speed 

(dx/dt)I w. 
1 

-1 
qp (df./dw.), 

1 1 
i = 1, ... ,N-1 

and discontinuities in w. travel at the speed 
1 

Ur . = qp-1 [ fi ]/[ Wi ], i = 1, ... ,N-1 
1 

(1.5-18) 

(1.5-19) 
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By definition, a given composition (w1 ' ... ,wN_1) propagates as a 

coherent wave provided all of the variables wi at a given time and place 

(x,t) in the reservoir move with the same speed; in symbols, 

i = 1, ... ,N-1 

(1.5-20a) 

Similarly, for a discontinuity to be coherent, we must have 

= A, i = 1, ... ,N-l 

(1.5-20b) 

Consider the case when N = 3. -1 Equations (1.5-20) become q pdf. = 
~ 

A dw. for i = 1,2, which by the chain rule can be written as 
1 

[ A I - qp-1 A ] d~ = 0 

(1.5-21) 

where A is the matrix whose elements are af./aw., i,j = 1,2, I is the 
1 J 

identity matrix, and d~ = (dw1,dw2)T. Equation (1.5-21) has nontrivial 

solutions only when the characteristic equation det(A I - q p-1 A) = 0 

holds, that is, when A is a root to the quadratic equation 

(1.5-22) 

In this case, then, there will typically be two characteristic speeds of 

coherence A , A. for a given composition (w1 ,w2) at a given point max m1n 
(x,t). The corresponding solutions of (1.5-21) define the tangents 

(dw1/dw2) , (dw1/dw2) . to the characteristic curves in composition max m1n 
space along which the A - and A . -waves travel, respectively. max m~ 
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In actual problems the fractional flows f i , and hence the matrix A, 

are complicated functions of composition, even under the simplifying 

assumptions used to derive equations (1.5-17). We must therefore allow 

that the qualitative structures of the solutions to this problem may be 

quite different for various choices of thermodynamic and initial data. 

Helfferich (1982), however, adduces simple examples showing that discon­

tinuous solutions can arise for physically reasonable problems in which 

N = 2 or 3, and his reasoning extends to larger numbers of species. 

Implications for numerical solution. 

The analyses of the Buckley-Leverett problem and Helfferich's theory 

have implications regarding the choice of numerical approximations to 

the full system (1.5-3). In particular the behaviors of the simplified 

systems suggest that the full system may possess solutions having steep 

gradients or discontinuities in composition. Indeed, finite-difference 

studies of compositional reservoir flows have borne out this expectation 

(see, for example, solutions plotted in Van Quy et al., 1972; Coats, 

1980; Nghiem et al., 1981). The possibility of such shock-like 

solutions demands special numerical treatment of the governing equations 

to ensure physically correct'approximations. 

The complexity of the full system of species balances hinders 

rigorous analysis of its solutions. There do ilot even exist published 

proofs of existence or uniqueness of solutions to the full compositional 

equations, although Isaacson (1981) and Temple (1981) have produced a 

global existence proof for Cauchy problems on a simplified analog of 

(1.5-3) given initial data of bounded variation. Thus, while solving 

the compositional equations numerically is a problem of considerable 

practical importance, it is also a task lacking somewhat in mathemati­

cally rigorous support. We must therefore limit our discussion of the 
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numerical solution to (1.5-3) to heuristic remarks based on analogies 

with the simpler cases. 

The formation and persistence of steep composition gradients occur in 

problems where the dissipative influences of species dispersion and 

capillary pressure gradients are dominated by convection owing to 

applied pressure gradients. Such conditions are common in oilfield 

practice. When dispersion and capillarity are absent the governing 

equations take the form of hyperbolic conservation laws, and, as the 

simplified analyses show, we should expect discontinuities to form. If 

the dissipative terms are nonzero but very small, then because of their 

functional dependences on composition gradients their influences will be 

detectable only in the very near vicinity of steep portions of the 

solution. A discrete approximation to such terms may miss these influ­

ences altogether when their spatial extent is significantly smaller than 

the mesh of the spatial grid, and poor numerical approximations may 

result. In fact it is possible for consistent, apparently stable numer­

ical schemes to fail to converge when applied to the Buckley-Leverett 

problem (Mercer and Faust, 1977; Allen and Pinder, 1982) or to the 

pressure-saturation equations governing two-phase immiscible displace­

ments (Aziz and Settari, 1979, Chapter 5). 

These convergence difficulties are symptoms of incompletely posed 

problems. The weak form (1.5-7) of a hyperbolic conservation law 

together with its jump condition are not sufficient to determine unique 

discontinuous solutions to otherwise well-posed Cauchy problems (Chorin 

and Marsden, 1979, Chapter 3). There is an additional constraint needed 

to close such problems, and it may be stated in several ways. Among 

them are the following: 
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(i) The solution must depend continuously on the initial data, so 

that characteristics on both sides of any discontinuity must 

intersect the initial curve. 

(ii) The solution must satisfy Oleinik's "condition E" (Oleinik, 

1963b), a geometric constraint for nonconvex flux functions 

that reduces to the Welge construction in the Buckley­

Leverett problem. 

Another equivalent of this additional constraint which is useful for 

discrete approximations is the "vanishing viscosity" condition (Oleinik, 

1963a; Lax, 1957 and 1972): 

(iii) The solution must be the limit of solutions, for the same 

data, to a parabolic equation differing from the hyperbolic 

one by a dissipative second-order term (capillarity or 

dispersion, in our case) of vanishing influence. 

All of the compositional simulators cited above impose the vanishing 

viscosity condition numerically through the use of upstream-weighted 

difference approximations to'the flux term. Chapter Three describes a 

finite-element collocation scheme for (1.5-3) that imposes the vanishing 

viscosity condition in an analogous fashion. 



CHAPTER TWO 
REPRESENTING FLUID-PHASE BEHAVIOR 

The key to the attractiveness of miscible gas flooding compared with 

immiscible flood technologies is interphase mass transfer. Under the 

right conditions of pressure, temperature, and composition, the exchange 

of species across the phase boundary in a miscible gas flood leads to 

the formation of a zone in which the displacing fluid and the displaced 

fluid are very similar. As described in Section 1.1, the rock swept by 

such a zone has very low residual oil saturation, implying more 

efficient oil recovery overall. 

The transfer of mass among fluid phases in a miscible gas flood is a 

complicated set of kinetic phenomena driven by intermolecular forces and 

macroscopic transport phenomena. Mathematical models of such composi­

tional flows typically invoke an assumption of "local thermodynamic 

equilibrium" to warrant the use of equilibrium methods in computing 

fluid-phase densities and compositions. In this approach one neglects 

the kinetics of interphase mass transfer, instead imposing thermostatic 

constraints at each location and instant in the flow field. The 

approach is computationally convenient, especially when one uses an 

equation of state to predict fluid-phase properties. This chapter 

briefly discusses the physical significance of the equilibrium approach 

through a thermodynamic framework that is consistent with established 

thermostatic results. We shall also review the calculations needed to 

apply these results with an equation of state, noting some of the 

undesirable features of the numerics. Finally, we shall examine a 

simple variant of the standard equation-of-state approach that retains 

most of its advantages but avoids its most salient computational short­

comings. 
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2.1. Thermodynamics of the fluid system. 

It is clear that no transient system will obey the assumption of 

thermostatic equilibrium in any strict sense. However, the assumption 

has empirical support (see, for example, Raimondi and Torcaso, 1965) in 

the sense that its predictions agree well with the results of flow 

experiments. It is possible, moreover, to reconcile the notions of 

equilibrium thermostatics with the description of many transient flows 

using a dynamic interpretation of Gibbs' theory developed by Gilmore 

(1981). Appendix B reviews the application of this interpretation to 

the thermodynamics of miscible gas floods. This section summarizes in 

somewhat less technical language the link between the geometry of 

equilibria and the algebraic descriptions that we owe to Gibbs (1876 and 

1878). 

Notions of equilibrium. 

The principal thermodynamic variables in an isothermal multicomponent 

flow belong to two sets. The first, which we shall identify as the set 

of control variables, is {w1 ' ... ,wN_1 ' V}, where Wi is the mole fraction 

of species i in the fluid mixture and V is the molar fluid volume, that 

is, the reciprocal of molar fluid density p. The second set of 

variables, which we shall designate the state variables, is 

{n 1,···,nN_1 , -p}, where ni is the modified chemical potential of 

species i and p is the pressure. The variables n. are different from 
1 

the customary chemical potentials ~i' the two sets being related at 

equilibrium by the equation ni = ~i - ~N. While Appendix B derives 

results in terms of the ni for technical reasons, one can readily trans­

late the derived relationships to equations in terms of the more 

familiar ~. (Reid and Beegle, 1971). For our purposes the 2N control 
1 

and state variables suffice for the definition of the thermodynamic 

state at any point in the flow field. 
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There is very little that one can say about general relationships 

among the control variables and the state variables in systems removed 

from equilibrium. In some flows, however, the time scales character­

istic of changes governed by the transport equations may be much longer 

than those characteristic of relaxation to thermodynamic equilibrium. 

For these systems it may be reasonable to approximate the behavior of 

thermodynamic quantities using established equilibrium relationships. 

Yet, as Appendix B explains, more than one concept of equilibrium may 

apply. In a gradient-dynamic system, for example, there are at least 

two meaningful notions of equilibrium. One is that of stable equilib­

rium, in which the thermodynamic variables yield a local minimum in some 

postulated potential. The other is that of thermostatic equilibrium, in 

which the thermodynamic variables correspond to a global minimum in the 

potential. Hence thermostatic equilibria form a subclass of stable 

equilibria. Let us assume that the reservoir fluids in miscible gas 

floods behave very nearly as if they were locally in thermostatic 

equilibrium at each point in time and space. 

This assumption justifies the use of classical thermostatics to model 

fluid-phase behavior. The mathematical conditions for stable equilib­

rium in a gradient-dynamic system imply an equation of state giving each 

point Cnl, ... ,nN_l , -p) in equilibrium as a function of (wl' ... ,wN_l ' 

V). At stable equilibria that are also thermostatic equilibria this 

equation of state renders a complete description of the thermodynamic 

system. However, for stable equilibria at which the global minimum in 

potential shifts from one local minimum to another several thermostatic 

equilibria coexist. Here the equation of state underdetermines the 

system. If there are two equiminima in potential, say, then there are 

two coexisting phases, V and L in our case. While both obey the 

equation of state, the equation alone yields no clue regarding their 

precise loci. The extra conditions determining the coexisting phases 
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are, from Appendix B, 

Pv = PL 
(2.1-1a) 

V L 
i 1, ... ,N-1 Tl i = Tl i ' = 

(2.1-1b) 

In terms of the customary chemical potentials, (2.1-1b) is 

V L 
Pi = Pi' i = 1, ... ,N-1 

(2.1-1c) 

These are the standard equations of equilibrium as stated by Gibbs. 

Strictly speaking, the pressures of coexisting phases in a porous 

medium at thermostatic equilibrium differ owing to capillarity. 

Equations (2.1-1) fail to account for this phenomenon because the 

geometry of fluid phase boundaries does not appear as a control 

variable. In principle one can extend the present thermodynamics to 

include such effects using Gibbs' theory of capillarity (Gibbs, 1876 and 

1878). However, there exist experimental data (Sigmund et al., 1973) 

indicating that capillary effects exert negligible influence on the 

distribution of species between coexisting fluids in typical 

hydrocarbon-saturated reservoir rocks. On the strength of this finding 

it appears reasonable to use equation (2.1-1) to define thermostatic 

equilibrium in the systems of interest here. In practice we shall use 

the pressure Pv in the vapor phase to compute equilibrium properties. 

Geometry of equilibria. 

This description of equilibria admits a geometric interpretation that 

has some heuristic value in the remainder of the chapter. Equations 
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(2.1-1) define the set of single-phase thermodynamic states that lie at 

the limit of thermostatic equilibrium. This set is called the Maxwell 

set ~ of the thermodynamic system. If a single-phase system confined 

to thermostatic equilibrium crosses the Maxwell set, it bifurcates, 

becoming a system of coexisting phases each of which lies on the Maxwell 

set. Therefore in miscible gas floods the Maxwell set provides informa­

tion, not only about when the fluids change from a single-phase regime 

to a two-phase regime and vice versa, but also about the values of the 

thermodynamic variables associated with each coexisting phase. 

A similar demarcation exists for stability: the set of thermodynamic 

states that lie at the limit of stable equilibrium is called the 

spinodal set KS of the system. Thermodynamic states that are stable 

equilibria but are not thermostatic equilibria are metastable, meaning 

that they may be observed under special circumstances but are labile. 

Unstable points lying beyond the spinodal set are not observed. Arthur 

S. Wightman, in his introduction to a monograph by Israel (1979), 

reviews these physics more thoroughly. The primary object of this 

chapter is to present schemes for computing the Maxwell set in simula­

tors of miscible gas floods. 

Critical points. 

In miscible gas floods the critical points of the fluid mixtures play 

an important role: they are points in the Maxwell set where coexisting 

phases become indistinguishable. Therefore, mixtures in the critical 

region flow very nearly as if the fluids were completely miscible. 

Critical points are noteworthy, too, because in their vicinity standard 

equation-of-state computations often perform poorly. For these reasons 

it is useful to be able to compute critical points explicitly. Gibbs 

(1876 and 1878, pp. 129-133) deduces two algebraic criteria for this 

purpose. Appendix B reviews their derivation from the gradient-dynamic 
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viewpoint. 

The first criterion for a point in thermostatic equilibrium to be a 

critical point is that it lie at the limit of convexity of the Helmholtz 

free energy with respect to the control variables. This is equivalent 

to requiring 

det U = 0 

(2.1-2) 

The second criterion is that the critical point be a limit of points 

satisfying (2.1-2) for which isothermal variations in the control param­

eters can produce unstable phases. A necessary condit-ion for this is 

det = 0 

(2.1-3) 

Equations (2.1-1) through (2.1-3) provide a complete description of the 

Maxwell set, provided we have a computable equation of state from which 

to calculate the chemical potentials. 
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2.2. Standard equation-of-state methods. 

The theory summarized in the previous section provides both a geome­

tric view and the equivalent algebraic conditions of local thermostatic 

equilibrium. Numerical simulation requires some computable form for 

this theory. Recent contributions to compositional reservoir simulation 

have shown a trend toward increasing reliance on equation-of-state 

methods to model fluid phase compositions and densities. These methods 

stand in contrast to approaches based on tabulated ratios K. = w~/w~ 
1. 1. 1. 

of phase compositions for each species as functions of pressure and 

compositions. 

The main advantage of equation-of-state methods is their thermody­

namic consistency: the equations used to predict phase compositions are 

based on those used to predict phase densities, and thus the compati­

bility conditions (1.4-3) hold. Such consistency is necessary for the 

behavior of the thermodynamic system near critical points to vary 

smoothly with changes in pressure and mixture composition (Coats, 1980). 

This advantage is noteworthy, since, as Nolen (1973) explains, the 

convergence of the transport calculations near the miscible regions of 

gas floods is at stake. 

However, the standard equation-of-state approaches have at least two 

disadvantages. First, the methods call for relatively powerful itera­

tive techniques to solve for the fluid-phase characteristics that they 

predict. This mathematical machinery adds substantially to the cost of 

running compositional computer codes. Second, and more serious, the 

iterative techniques commonly used are rather sensitive to starting 

guesses near critical loci. This lack of reliability poses obstacles to 

the practical simulation of miscible gas floods. We shall elaborate on 

these observations in this section, saving Section 2.3 for the presenta­

tion of a simple approach to avoiding both difficulties. 
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The Peng-Robinson equation of state. 

Peng and Robinson (1976) propose an equation of state for hydrocar­

bons that is cubic in molar volume V and is applicable to petroleum 

reservoir fluids through the use of mixing rules. Their work follows a 

long tradition of cubic equations of state beginning with that presented 

by van der Waals in 1873 and including the popular Redlich-Kwong 

equation (Redlich and Kwong, 1949). We shall use the Peng-Robinson 

equation in this investigation, although the general methodology we 

discuss applies to any similar cubic equation of state, including the 

Redlich-Kwong equation. 

The Peng-Robinson equation is 

p ~ RT/(V - b) - a(T)/[V(V + b) + b(V - b)] 

(2.2-1) 

where T is the temperature (K) and R is the gas constant, 8.31434 

J/mol·K. The parameters aCT) and b are empirical factors calculated for 

pure substances according to rules that Peng and Robinson specify. 

Equation (2.2-1) is equivalent to 

322 Z - (1 - B)Z + (A - 3B - 2B)Z 
2 3 - (AB - B - B ) = 0 

(2.2-2) 

where 
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(2.2-3a) 

B = bp/RT 

(2.2-3b) 

~d 

Z = pV/RT 

(2.2-3c) 

is the compressibility factor. When one solves equation (2.2-2) for a 

particular fluid phase, one may find three real roots. In this case the 

choice among roots is as follows: if the phase in question is a vapor, 

select the largest root; if the phase is a liquid, pick the smallest 

positive root. In practice we c~ solve equation (2.2-2) for all of its 

roots using a Laguerre iteration method (Smith, 1967) available in code 

as the IMSL subroutine ZPOLR. 

Although Peng ~d Robinson introduce their equation for pure 

subst~ces, for which the parameters a ~d b depend on thermodynamic 

properties of the individual molecular species, the equation extends to 

single-phase mixtures through mixing rules. These rules give the values 

of a and b for a mixed phase a in terms of their pure-substance values 

~d the composition of the phase as follows: 

N N 
a 

a = a a .; I I wi wJ. (1 - 6iJ·) (aiaJ.) 
i=l j=l 

(2.2-4a) 

(2.2-4b) 
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Here a. and b. are values of the parameters a and b for species i, and 
l. l. 

6 .. is a "binary interaction parameter" determined by fitting the 
l.J 

mixture equation to experimental data. Oellrich et al. (1981) have 

published an extensive collection of values for 6 ... 
l.J 

Peng and Robinson also present the equation for species fugacity in a 

single-phase mixture. This equation is an essential ingredient in 

phase-behavior predictions. The equation gives the fugacity f~ of 
l. 

species i in phase a as 

f~ = P w~ ¢~ 
l. l. l. 

where ¢~ is the dimensionless fugacity coefficient given by 
l. 

¢~ = (Z 
l. a 

a -1 a 
- B) exp [B.(Z - 1)/B ] 

l. a 

a 
x {[Z + (1 + 12)Ba ]/[Z - (1 - 12)Ba ]}-ni 

a a 

with 

(2.2-5a) 

(2.2-5b) 

(2.2-Sc) 

Hence f~ has the dimensions of pressure. In these formulas Aa and Ba 
l. 

are gotten by substituting aa and ba into equations (2.2-3a) and 

(2.2-3b), respectively. The determination of phase equilibria requires 

finding zeros of systems of algebraic equations, each of which is a 

combination of fugacities computed from equations (2.1-5). Let us 

discuss two such calculations used in standard equation-of-state reser­

voir simulators. 
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Saturation pressure calculations. 

The problem of determinifig saturation pressures in a mu1ticomponent 

fluid mixture is the following: given a single-phase fluid of 

prescribed temperature T and molar composition (w1 , ... ,wN_1), determine 

a pressure psat at which a second, nascent phase begins to appear. If 

the existing phase, denoted by t, is a vapor and the nascent phase, say 

v, is a liquid, then psat = pdew, the dew pressure. If t is a liquid 
. sat bub and v 1S a vapor, then p = p , the bubble pressure. Figure 2-1 

. bub dew dep1cts p and p as functions of composition for a typical binary 

mixture. 

The utility of saturation press~re calculations in compositional 

modeling consists in discriminating between the one-phase and two-phase 

regions in the space of thermodynamic states. In many petroleum reser­

voirs amenable to miscible gas flooding the practically attainable 
sat one-phase region corresponds to pressures greater than p For these 

sat systems determining p amounts to locating points on a dome-like 

surface lying above the composition space. Figure 2-2 shows such a dome 

for a hypothetical ternary mixture. Simulator-predicted N-tup1es 

(w1 , ... ,wN_1, p) lying under the saturation-pressure dome represent 

two-phase states, and for these it is necessary to calculate vapor­

liquid equilibria to determine the properties of the two coexisting 

phases. Since the set of all points (w1, ... ,wN_1 , psat) lying on the 

dome is the Maxwell set of the fluid mixture, coexisting vapors and 

liquids for two-phase states lie on this dome. 

Mathematically, the saturation pressure problem for an N-component 

mixture is a nonlinear set of N + 1 algebraic equations. N of these are 

the conditions on chemical potentials that characterize the Maxwell set: 
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t:. .. MEASURED (OLDS ET AL., 1949) 
o z COMPUTED USING PENG-ROBINSON 

EQUATION OF STATE 
CRITlCAL 
POINT 

O~ ____ ~ ____ ~~ __ ~~ ____ ~~ __ ~ 
o 0.2 0.4 0.6 LO 

MOLE FRACTION CO2 

Figure 2-1. Saturation pressures for CO2 + n-butane at 

310.93K. 
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---- ISOBAR 
-..- CRITICAL CURVE 

Figure 2-2. Saturation-pressure dome for a hypothetical ternary 
fluid mixture. Points under the dome belong to the 
two-phase region; points over the dome lie in the 
one-phase region. Coexisting phases lie on the dome. 
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£ v 
Pi = Pi' i = l •.•.• N 

The last is the condition that mole fractions in the 

nascent phase sum to unity: 

N 
v 

I wi = 1 
i=l 

(2.2-6a) 

(2.2-6b) 

Equations (2.2-6) assume a form that is more convenient computation­

ally if we express them in terms of fugacities. The defining equation 

for the fugacity f~ of species i in a single-phase fluid a is 
1 

p~ = RT in f~ + pref 
1 1 i 

(2.2-7) 

where p~ef is the chemical potential in some reference state. Now we 

can express the conditions (2.2-6) defining the Maxwell set in terms 

that we can compute from the equations (2.2-5) for fugacities: 

f~ - f~ = O. 
1 1 

i = l •...• N 

sat 
p 

N 
I f~/;~ = 0 

i=l 

(2.2-8a) 

(2.2-8b) 

Here ;~ is the fugacity coefficient defined in equation (2.2-5a). For 
1 

the problem at hand. the composition of the existing phase is known and 
. v v sat the var1ables (wl •...• wN• p ) are unknown. Therefore the system 

(2.2-8) has the following dependencies on the unknowns: 
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f v( v v sat) f£.(psat) = 0 
i w1,···,wN' P - 1 

(2.2-9a) 

for i = 1, ... ,N, and 

sat N l (psat) v v v sat 
p I / ¢i(w1"",wN-1,P ) = 0 

i=l 1 

(2.2-9b) 

Solving this system numerically requires an iterative method. The 

Newton-Raphson method is attractive except for the unwieldy computations 

needed to evaluate the derivatives of f~ appearing in the Jacobian 
1 

matrix. To avoid these computations, we can solve (2.2-9) using a 

quasi-Newton or secant method based on the use of finite differences. 

For brevity, let us denote the algebraic system (2.2-9) by R(t) = 0, 

where R: RN+1 ~ RN+1 is the nonlinear function whose roots we seek. 

G· ~. ~k - ( k k sat,k) h h d 1ven an 1terate ~ - w1"",wN' P , t e secant met 0 computes 

a correction ~tk+1 = t k+1 - t k according to the rule 

(2.2-10) 

Here J is a finite-difference approximation to the Jacobian matrix 

a"R/at: 
~ ,.., 

k 
J .. (t ) 

1J '" 

e. being the j-th unit basis vector. 
"'J 

(2.2-11) 

To start the algorithm, set h~ = 
J 

o ct. for some 
J 

k k small factor c < 1, and thereafter choose h. = ~t .. 
J J 

This choice yields an iterative procedure with a theoretical asymptotic 
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convergence rate (Ortega and Rheinboldt, 1970) of (1 + /5)/2 = 1.618. 

However, plotting 2n Ililk+111 versus 2n Iliik II does not always give a line 

with slope 1.618 in practice, although Figure 2-3 suggests that the 

convergence rate is at least superlinear. The scheme requires N + 2 

evaluations of the residual !, or (N + 1)2 + 1 evaluations of fugacity 

differences, at each iteration. 

A simple damping routine increases the likelihood that the algorithm 

will converge for poor initial guesses. This routine consists of 

halving the correction vector repeatedly, if necessary, until -0.1 ~ 

(w~)k ~ 1.1, i = 1, ... ,N, aborting the iteration if a reasonable number 
l. 

of halvings (say, 15) fails to give acceptable corrections. 

The coded version of this algorithm performs well except near the 

critical points of fluid mixtures, where the method is very sensitive to 
o initial guesses,! This sensitivity reflects the proximity of true 

roots of the system to "trivial roots", namely v = E. Figure 2-4 plots 

the progress of near-critical calculations for the binary mixture CO2 + 

n-butane at 310.93 K. Increasing sensitivity to initial guesses in the 

critical region is a difficulty characteristic of standard equation-of­

state methods for computing 'saturation pressures and other phase 

equilibria, and a considerable amount of research has focussed on 

mitigating this sensitivity (see, for examples, Asselineau et al., 1979; 

Baker and Luks, 1980; Gundersen, 1982; Nghiem and Aziz, 1979; Poling et 

al., 1981; Risnes et al., 1981; Varotsis et al., 1981). 

Table 2-1 compares saturation pressures for the binary mixture CO2 + 
n-butane as predicted by the Peng-Robinson equation with those measured 

by Olds et al. (1949). In most cases the two sets of data agree fairly 

well, although there are several exceptional points. Table 2-2 lists 

the starting values and number of iterations required to achieve a 
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Figure 2-3. Plot of inll~k+111 vs. R,nll~kll for several saturation 

pressure calculations. The slopes for the lines of 1east­
squares fit average 1.49. 
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Figure 2-4. Convergence of saturation pressure calculations to 
a trivial root for CO2 + n-balance at 3l0.93K using 
the Peng-Robinson equation of state. 
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residual whose Euclidean norm 

N 
{ I 

i=l 

59 

(2.2-12) 

is less than 0.01 Pa for the runs reported in Table 2-1. Figure 2-5 

shows plots of predicted and measured saturation pressures versus compo­

sition for the binary mixtures CO2 + n-butane and CO2 + n-decane at 

344.26 K using experimental data from Olds et al. (1949) and Reamer and 

Sage (1963). Figure 2-6 is a perspective plot of predicted saturation 

pressures versus composition for the ternary mixture CO2 + n-butane + 

n-decane at 344.26 K. 

Flash calculations of vapor-liquid equilibrium. 

Given an isothermal fluid mixture (w1 ' ... 'wN_1 ' p) lying in the 

two-phase region, it is necessary to determine the compositions 

(wi, ... ,W~) and (wi, ... ,W~) of the coexisting phases and the mole 

fractions YV and YL that they occupy in the mixture. In geometric 

terms, this means locating the points on the Maxwell set that represent 

coexisting states for the given feed (w1 ' ... ,wN_1' p) and calculating 

their relative distances from the Maxwell set, as drawn in Figure 2-7. 

Mathematically, this "flash" calculation amounts to solving a set of 
a a algebraic equations for the 2N + 2 unknowns {w1 , ... ,wN,Ya , a = V,L}. 

The first three equations are the restrictions 

(2.2-13a) 



14 
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2 

Figure 2-5. 
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cr 

-0- C02+ n-DECANE 
-0- CO +n-BUTANE 

~--DEW----'" 
POINTS 

02 0.4 Q.6 0.8 1.0 
MOLE FRACTION CO2 

Saturation pressures for CO + Hydrocarbon binaries 
2 

at 344.26K (=160F), computed using Peng-Robinson 
equation of state. 
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GI, •• 

I. 
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I 
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1 COMPOSITION 
: SPACE 
1 
I 

Figure 2-7. Geometry of vapor-liquid equilibria for a 
hypothetical ternary mixture. The coexisting 

phases ~v and ~L lying on the saturation dome 
correspond to intersections of the tie line 
passing through the feed composition w with the dome. 



N 
I 

i=1 

a w. = 1, 
1 

a = V,L 

Next, we have N - 1 mole balances 

63 

(2.2-13b) 

(2.2-13c) 

Finally, there are N conditions of local thermostatic equilibrium, 

i=l, ... ,N 

(2.2-13d) 

The observation that equations (2.2-13a) through (2.2-13c) are fairly 

simple, while the conditions (2.2-13d) are complicated, motivates the 

following overall solution scheme, first described by Fussell and 

Yanosik (1978): 

(i) L L Select N principal iteration variables, {wi '···'wN_1' YL} 
v V 

or {w i '···'wN_1 ' YV} 

(ii) Solve equations (2.2-13a) through (2.2-13c). 

(iii) Compute the fugacity residuals R~ = (f~ - f~)k, i = 
111 

1, ... ,N, where the values of a and ~ depend on the choice in 

step (i). 

(iv) If the residuals are sufficiently small, stop. 

(v) Correct the iteration variables using a quasi-Newton step. 

(vi) Go to step (ii). 

We shall discuss the implementation of these computations individually. 
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Step (i) poses the choice between two sets of principal iteration 

variables. These variables serve as the unknowns ~ in the quasi-Newton 

iteration of step (v). Let us choose 

I 
L L L 

if YV ~ 0.5 ("'1""''''N-1'Y) 
~ = 
~ 

V V V 
("'1""''''N-1'Y) if YV < 0.5 

(2.2-14) 

Fussell and Yanosik (1978) report that this choice leads to more 

reliable convergence of the scheme than arbitrary selection of one set 

of variables for~. For the rest of this section let us identify the 

phase chosen for the iteration variables by the index a. 

Step (ii) calls for the solution of equations (2.2-13a) through 

(2.2-13c). This is a straightforward matter given the iterates 
a a {wi ,···,wN_1 , Ya }: from equations (2.2-13), 

tI,k = "'. 1. 

wa,k = 1 _ 
N 

wtl,k = 1 -
N 

i=l, ... ,N 

(2.2-13a') 

(2.2-13c') 

(2.2-13b') 

(2.2-13b") 
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Once these values are available, one can compute the fugacity residuals 

(step (iii» as functions of the principal iteration variables by the 

definition of the R. implied in equation (2.2-13d). To check the 
l. 

residuals, as prescribed in step (iv), we can compute their Euclidean 

norm and test it against a numerical convergence criterion, usually no 

smaller than 0.01 Pa. 

The quasi-Newton iteration required in step (v) is similar to that 

used in the saturation pressure calculations. To solve the nonlinear 

system R(t) = 0, let us compute a correction vector ~tk+1 = t k+1 t k at - -
each iteration k by solving the linear system 

(2.2-15) 

Here, as in equation (2.2-10), the matrix elements J .. are finite­
l.J 

difference approximations to elements aR./at. of the Jacobian matrix: 
l. J 

k 
J i . (t ) 

J ~ 
(2.2-16) 

After picking initial values for h~ we choose the subsequent increments 
J 

h~ according to the secant rule, 

h~ = max {~t~, hO
J.}, k > O. 

J J 
(2.2-17) 

Putting a lower bound on the increments in this way guards against 

division by zero in case one component is absent and the corresponding 

correction vanishes. 
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Just as the saturation pressure scheme described earlier, this algor­

ithm has an asymptotic convergence rate of about 1.618, although the 
-k+l -k 

caveats regarding plots of in Illl II versus tn IIll II apply here as well. 

Table 2-3 summarizes some results of flash calculations for the ternary 

mixture CO2 + n-butane + n-decane at 344.26 K. 

This algorithm requires N2 + 1 evaluations of fugacity differences 

per iteration. It also exhibits the same sorts of difficulties as that 

for the saturation pressures: it becomes increasingly sensitive to 

initial guesses near critical points, where the compositions of the 

coexisting phases become identical. In addition to the investigators 

cited for saturation pressure calculations, Kao (1978), Li and Nghiem 

(1982), Mehra et a1. (1982), and Michelsen (1980) have discussed various 

strategies aimed at improving starting guesses and narrowing the regions 

of poor convergence. 

Critical point calculations. 

Given an equation of state it is possible to compute critical points 

of fluid mixtures. Although such calculations are not always necessary 

in the standard equation-of-state approach to reservoir simulation, they 

are important in constructing the Maxwell set interpolation scheme 

described in Section 2.3. The problem of computing critical points for 

an isothermal mixture may be simply stated as follows: given values 

(w3 ' ••. ,wN_1 ' p), determine the point (w1 ,w2) along the critical curve, 

that is, along the locus of points at which the critical conditions 

(2.1-15) and (2.1-16) hold. Although Gibbs (1876 and 1878, pp. 129-133) 

formulated this problem over a century ago, reports of actual computa­

tional experience have been relatively recent (Peng and Robinson, 1977; 

Baker and Luks, 1980; Heideman and Khalil, 1980; Peng and Robinson, 

1980). 
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The equations to be solved in critical point calculations are 

equations (2.1-15) and (2.1-16), which by the definition (2.2-7) of 

fugacity are equivalent to 

U = RT det 

(a f 1)/f1 
CIIN- 1 

= 0 

(2.2-18a) 

and a similiar equation gotten from (2.2-18a) by replacing the first row 

in the matrix with the vector 

(a U)/RT, 
CII 1 

a •• , (a U)/RT ) CIIN_1 

(2.2-18b) 

as stipulated in Appendix B. For a three-component system these reduce 

to 

In this case, the derivatives of U with respect to CII. are 
~ 

(2.2-19a) 

(2.2-19b) 
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(2.2-20) 

for i = 1 or 2. 

Although one could in principle compute by analytic formulas the 

various derivatives of fugacity appearing in these equations, the task 

is tedious at best for first derivatives and worse for second deriva­

tives. Moreover, from a numerical standpoint the resulting analytic 

expressions are complicated combinations of transcendental functions, 

and control over the truncation and roundoff errors associated with 

their literal transcription to Fortran is uncertain. One alternative is 

to use simple centered finite-difference approximations to these terms, 

for example, 

(2.2-21) 

In practice, successively smaller values of Aw lead to estimates of a 

given derivative that appear to converge quickly to a single value, 

until Aw becomes so small that the resulting differences in f. are 
1 

comparable to the machine's limits on precision. For double-precision 

calculations on an IBM 3081 the value Aw = 10-5 works well. 

Using these finite-difference approximations, we can solve for the 

roots of the system (2.2-18) using the secant quasi-Newton algorithm 

published by Wolfe (1959) and available in coded version from IMSL as 
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the subroutine ZSCNT. Figure 2-8 shows points along the critical curve 

computed for the ternary mixture CO2 + n-butane + n-decane at 344.26 K. 

Computational considerations. 

As this section has suggested, the equation-of-state approach to 

compositional reservoir simulation, at least as commonly implemented, 

has some undesirable traits. To begin with, methods based on solving 

equal-fugacity constraints pointwise require a fair degree of computa­

tional sophistication, and one effect of this fact is to divorce the 

numerics from much of the global geometric picture of miscible gas flood 

thermodynamics. This criticism is more esthetic than damning, but it 

has some significance. Much of the current understanding of the design 

principles for miscible gas floods rests on geometric pictures using the 

Maxwell set; papers by Hutchinson and Braun (1961), Metcalfe et al. 

(1973), Metcalfe and Yarborough (1979), and Orr and Jensen (1982) are 

four among many examples of such work. 

A second, more salient consequence of the computational sophistica­

tion required in the standard approaches is their cost. These 

approaches entail saturation pressure calculations or flash calculations 

or both for each time step, for each spatial node, and for each itera­

tion in a transport code. This overhead is expensive, and it hinders 

the application of compositional simulation to large-scale studies. 

Moreover, the expense of solving equal-fugacity constraints repeatedly 

during simulation is incommensurate with the quality of the results they 

predict. Cubic equations of state are inherently limited in the 

accuracy with which they model fluid-phase behavior (Abbott, 1979). A 

cheaper prediction method giving results of comparable veracity and 

thermodynamic consistency would be more appropriate for use in simula­

tors. 
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"---8.5 MPa 

50%00 
50°!. n-DECANE 

Figure 2-8. Projection of the critical curve onto composition 
space for CO2 + n-butane + n-decane at 344.26K, 
computed using the Peng-Robinson equation of state. 
Computed pOints lie at 0.5 MPa increments between the 
binary endpoints. 
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The most serious difficulty with the standard equation-of-state 

methods is their unreliability. In the most naive applications the 

failure of thermodynamic calculations owing to inadequate starting 

guesses can cause a simulator to abort. One tactic for avoiding this is 

to identify the region of starting-guess sensitivity with the region of 

very low interfacial tensions, using failure to converge as prima facie 

evidence, as it were, for miscibility. This approach, while entirely 

practicable, lacks sound justification and carries the risk of thermody­

namic inconsistency if ineffective starting guesses occur outside the 

critical region. Calculations in the critical region would be more 

believable if they converged. 
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2.3. Maxwell-set interpolation. 

The shortcomings of the standard equation-of-state methods arise when 

the unknown properties of the fluid mixture lie on the Maxwell set, for 

which we have only an implicit representation. This observation 

suggests circumventing the difficulties by developing an explicit repre­

sentation of the Maxwell set whose numerical evaluation is cheaper and 

less likely to fail. So long as this representation is reasonably 

accurate and preserves thermodynamic consistency, we can avoid solving 

for equal fugacities during the course of transport calculations while 

still imposing equation-of-state constraints to compute fluid-phase 

thermodynamics. 

This section describes such an approach. Specifically, let us 

consider calculating the saturation-pressure dome by interpolation, 

using data generated by the standard methods of Section 2.2. In this 

approach we can represent vapor-liquid equilibria by a set of tie lines 

also based on the results of the standard methods. The data supporting 

this scheme are computed prior to any flow simulation. One therefore 

encounters difficulties associated with the standard techniques only in 

the construction of a database, not in the midst of transport calcula­

tions. The interpolation technique affords order-of-magnitude or 

greater reductions in the time required to execute two-phase calcula­

tions and virtually eliminates sensitivity to starting guesses. We 

shall develop the interpolation scheme for a three-component system; 

however, as Chapter Five discusses, the construction extends to larger 

numbers of components. 
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The saturation-pressure dome. 

One simple and easily generalized method for interpolating a real­

valued function of two variables given data at discrete points of its 

domain is the method of plates. For the saturation-pressure dome of a 

three-component system, the domain is the triangular subset of R2 
2 defined by Q2 = {(w 1 ,w2 ) E R I WI + w2 = I}. Let K be a collection 

K 
{(wI k,w2 k)}k=1 of knots in this domain, and consider a proper trian-, , 
gulation Q2 generated by taking vertices from K (see Prenter, 1975, 

Section 5.4). sat 
Given nodal values Pk 

sat the method of plates interpolates p as 

(2.3-1) 

K sat where {Tk}k=1 is the basis giving p as a plane over each subset of 

Q2 belonging to the triangularization. In practice one computes (2.3-1) 

for a given triangular region using area coordinates (Pinder and Gray, 

1976, Section 4.8). 

The triangular linear interpolation scheme (2.3-1) is easy to 

compute, and it extends readily to functions of several variables. In 

addition, if psat E C2 (Q2) the interpolation error is subject to 

control, obeying 

(2.3-2) 

where h denotes the mesh of the triangularization and M2 is a bound on 

I 2 sat a p law.aw.1 over Q2' i,j ~ 2 (Prenter, 1975, Section 5.4). 
~ J 
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Several practical rules promote the construction of good interpola­

tion schemes for the saturation pressure dome. Two of these are fairly 

obvious. First, the dome need only be computed in regions of Q2 where 

sat p exceeds the pressures expected to be encountered in the transport 

problem. We can therefore confine the interpolation scheme to these 

regions when we know in advance the operating pressure range of 

interest. Second, to facilitate the mechanical search for the grid 

element containing specific arguments (w 1 ,w2 ), it is helpful to choose 

knots along lines of constant WI and w2 . 

Furthermore, to retain the advantages of the equation-of-state 

method, the interpolation scheme ideally should preserve thermodynamic 

consistency. This implies in particular that the scheme should not give 

interpolates of the Maxwell set that are thermodynamically unstable. In 

the geometric terms of Section 2.1, the scheme should not produce values 

that lie on the wrong side of the spinodal set KS' This restriction 

typically causes no concern except near critical loci, where the Maxwell 

set ~ and the spinodal set KS intersect as drawn in Figure 2-9. Here 

an approximation psat that is satisfactory in terms of its absolute 
sat " sat error Ip - p I can be inadmissible on thermodynamic grounds. One 

way to avoid such anomalies is to force a more accurate representation 

of the critical region by choosing points along the critical locus as 

knots. This tactic calls for the critical-point calculations described 

in Section 2.2. 

Finally, in some cases interpolation using artificial data may 

improve the scheme. In nature saturation pressure domes often have 

regions of high curvature near one or more of the boundaries w. = 0 of 
1 

the composition domain. For such surfaces the constant M2 in the error 

estimate (2.3-2) is large, and thus the interpolation error may also be 

large. Figure 2-10 shows schematically how judicious choices of artifi-



, , , 
I 

, " A , 

, 
_Ks 
I 
I 
I 

, , 
I , , 

, , 

77 
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Figure 2-9. Thermodynamically inadmissible (a) and admissible (b) 
interpolation schemes for the Maxwell set. The segment 
AB in (a) is thermodynamically unstable. 
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Figure 2-10. A cross-section of a hypothetical saturation 
pressure dome showing how an artificial knot 
w. can yield better interpolated values than 
the true knot at O. 



79 

cial knots can lead to better estimates of psat over the operating 

pressure range in these cases. The figure depicts, in cross section, 
sat part of a hypothetical p dome, the horizontal axis being a line in 

the composition domain Q2 and PLB representing a lower bound on 

pressures encountered during transport simulation. Given a knot at wA 

with saturation pressure p~at, a "real" knot at the composition value 0 

. "sat sat w1th p = PO leads to poor interpolated values on the composition 

interval (O,WA) owing to the large curvature in psat there. In this 

hypothetical case, choosing an artificial (in fact, non-physical) knot 

d .. "sat () . b . 1 d 1 at w* an ass1gn1ng p w* = p* g1ves etter 1nterpo ate va ues so 

1 ,,-sat> f "sat < ong as p - PLB. The larger errors occuring or p PLB are not 

.A sat 
important, since we compute the Maxwell set only when p > PLB. The 

addition of artificial knots may change the interpolation domain Q2 to a 

somewhat different subset Q; of R2 

Consider this scheme as implemented for the system CO2 + n-butane + 

n-decane at 344.26 K. This fluid mixture exhibits many of the qualita­

tive features associated with the phase behavior of CO2 - reservoir oil 

mixtures, although the latter are vastly more complex in composition. 

The CO2 + n-butane + n-decane system also has the advantage of having 

been studied as a model for CO2 displacement mechanisms in miscible gas 

flooding (Metcalfe and Yarborough, 1979; Orr and Jensen, 1982). Let the 

species indices 1, 2, and 3 refer to CO2 , n-butane, and n-decane, 

respectively. 

Figure 2-11 shows the interpolation grid for the saturation-pressure 

dome of this system. The grid exemplifies all four of the observations 

discussed above. First, the grid covers only a portion of Q2· Since no 

CO2 flood of this system operating at pressures below the lowest 

critical pressure can be miscible, there is no need to compute the 

Maxwell set at values lying very far below this pressure. The lowest 
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Figure 2-11. Interpolation grid for saturation pressures 
of CO2 + n-C4H10 + n-C10H22 at 344.26K. 
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pressure on the critical curve in this case is 8.030 MPa, occurring at 

wI = 0.71889, w2 = 0.28111. Thus the interpolation scheme exists on a 

+ sat region Q2' excluding a large zone where p < 6.0 MPa by including 

only knots where w1 > 0.45. In keeping with our second observation, the 

knots of the interpolation scheme lie along lines of constant w1 and w2 • 

Third, several critical points appear as knots, including the critical 

points for the binary mixtures CO2 + n-butane and CO2 + n-decane. In 

Figure 2-11 the critical knots appear as circles. Finally, the triangu­

lation extends beyond Q2 to accommodate the artificial knots mentioned 

above. A service routine for triangular meshes (see, for example, Page, 

1982) is handy in assigning values of psat to these knots by trial and 

error. 

Using this interpolation scheme, computing saturation pressures is a 

simple matter. For a given composition (W~'W~) the algorithm requires 

a search through a list of grid elements, followed by evaluation of the 

basis functions associated with the vertices of the element to which 
o 0 (w 1 ,w2 ) belongs. If the K knots lie along lines of constant w1 and 

w2' then the search need only be O(/K) in length. The interpolation 

itself requires less than 50 floating-point operations using area 

coordinates. 

Vapor-liquid equilibria. 

Given a geometric representation of the Maxwell set, it is possible 

to develop a geometric method for computing vapor-liquid equilibria. In 

particular, it is possible to construct a family of tie lines connecting 

points on the saturation-pressure dome that represent coexisting fluid 

phases. Then the fluid phases corresponding to a point (w 1,w2 ,p) lying 

sat V V L L under the p dome are just the points (w1 ,w2,P), (w1,w2 ,P) at 

which the appropriate tie line intersects the dome, as drawn in Figure 
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2-7. The mole fractions occupied by the phases vary linearly with 

distance from the dome: 

[L 2 L 2 
(wI - wI) + (w2 - w ) 2 

Y = V 
L V 2 L _ WV)2 

(wI - wI) + (w2 2 1 (2.3-3) 

Hence the tie lines and the representation of the Maxwell set give all 

of the information necessary to determine vapor-liquid equilibria. 

Suppose we represent the tie lines for the model system CO2 + 

n-butane + n-decane at 344.26 K by interpolating data generated using 

the methods of Section 2.2. At a given pressure p, each tie line has 

the form 

(2.3-4) 

where w* is the intercept with the axis WI = O. According to a rule of 

thumb called Hand's rule (Hand, 1930; Van Quy et al., 1972), w* is a 

constant for each pressure. However, this rule can be unreliable for 

some systems, and it is better instead to assume that at each pressure ~ 

and w* vary with p but obey the approximate rule 

h 

~ = ~ = a(p) w* + ~(p) 
(2.3-5) 

Figure 2-12 plots these lines for various pressures. We can compute a 

and ~ at discrete pressures by linear least-squares fit, using linear 

interpolation to compute a and ~ at other pressures. The least-squares 
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TIE-LINE INTERCEPT w·WITH w.-O 

1.10 1.15 1.20 
i , 
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Figure 2-12. Approximate straigh~-line relationships 
between tie-line slopes and intercepts at 
various pressures for the ternary mixture 
CO2 + n-butane + n-decane at 344.26K. 
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" approximation in this case gives a maximum relative error II! - ;tllz/lltliz 
~ 0.013. Figure Z-13 displays a and ~ as functions of pressure. 

These representations furnish the following procedure for calculating 

vapor-liquid equilibria for a point (w1,wZ,p) lying in the two-phase 

region: 

(i) Compute the values a(p), ~(p) by linear interpolation 

(ii) Find the tie-line intercept w* by solving the equation wz = 

(aw* + ~)(w1 - w*) requiring that the tie line pass through 

(w1,wZ)· 

(iii) Compute the tie-line slopes from equation (Z.3-5). 

(iv) Find the intersections of the tie line with the Maxwell set. 

Steps (ii) and (iv) deserve some comment. 

The equation for w* in step (ii) is quadratic and hence may have two 

distinct roots. The choice between roots will generally be clear from 

the construction of the tie lines. In the present case the data force a 

> 0, so the slope of the tie line increases as w* decreases. This 

implies that the quadratic equation may hold for some value of w* less 

than the physically correct value, so we choose the largest root. 

Step (iv) calls for the solution of two pairs of equations, each pair 

having the form 

(Z.3-6a) 

(Z.3-6b) 
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One simple way to solve these equations numerically is to use the method 

of bisection (Dahlquist et al., 1974, Section 6.2), choosing starting 

guesses (W~,W~)O that lie above the psat dome for the given pressure. 

When the bisection method has reduced the search interval to a single 
+ 

grid element of Q2' switching to the Newton-Raphson method gives the 

exact answer in one additional step since psat has uniform slope there. 

Because the individual phase compositions (w~,w~) in this scheme 

lie on an approximation to the Maxwell set, their values differ slightly 

from those predicted by the methods of Section 2.2. These differences 

lead to differences in the phase mole fractions Y. A comparison of 
a 

results of the interpolation scheme to those of standard equation-of-

state methods for 25 arbitrary points in the two-phase region of the 

model system shows an average root-mean-square difference in predictions 

for species mole fractions of RMS(~w~) ~ 0.003. A similar comparison 
1 

for phase mole fractions yields RMS(~YV) ~ 0.025. These errors are 

comparable with convergence criteria for the iterative solution to the 

transport problem; Coats(1980) , for example, uses I~wl = 0.002. What is 

perhaps more relevant, the differences in predictions between the inter­

polation and the standard method compare favorably with the differences 

between predictions of the standard method and values measured in the 

laboratory. For example, Oellrich et al. (1981) report average devia­

tions I~wil = 0.009 for the system CO2 + n-butane (Olds et al., 1949) 

V and I~wil = 0.006 for the system CO2 + n-decane (Reamer and Sage, 

1963). Therefore, the interpolation scheme does not significantly 

degrade the quality of predicted vapor-liquid equilibria. 
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Efficiency of the scheme. 

There seems to be no wholly adequate method for comparing the 

efficiency of the interpolation scheme to that of the standard approach. 

However, several simple measures indicate that the interpolation scheme 

is computationally much faster. The standard equal-fugacity approach 

uses arithmetic operations intensively, especially in evaluating 

fugacity differences and inverting the full matrices that approximate 

the Jacobians at each iteration. By contrast, the interpolation scheme 

requires few arithmetic operations per iteration. Thus while the bisec­

tion algorithm of the interpolation scheme has a lower convergence rate 

(roughly one binary digit of accuracy per iteration) than the secant 

method of the standard scheme, the difference in operation counts 

overwhelms the latter's advantage in this regard. 

We can try to compare the two methods on the basis of CPU time 

required for vapor-liquid equilibrium calculations. In addition to 

obvious questions concerning the efficiency of the author's coding 

techniques, this comparison faces the further difficulty that the CPU 

time required to compute a vapor-liquid equilibrium using the interpola­

tion scheme is very small -- usually a few thousandths of a second on 

the IBM 3081. This time is comparable to the time spent in calling the 

CPU clock. Moreover, starting guesses for the standard method must be 

fairly close to the unknown solution, while the interpolation method 

starts with sure initial guesses outside the two-phase region. Still, a 

sample of 25 vapor-liquid equilibria, using the final answers from the 

interpolation routine as starting guesses for the standard algorithm, 

gave ratios of runtime for the latter to that for the former ranging 

from 15.8 to 83.4 and averaging 36.0. 
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These comparisons take no account of convergence failures in the 

standard method; which do not afflict the interpolation scheme. Perhaps 

the greatest improvement offered by Maxwell-set interpolation is its 

sure convergence. 



CHAPTER THREE 

SOLVING TRANSPORT EQUATIONS BY COLLOCATION 

The transport equations developed in Chapter One are partial differ­

ential equations whose solutions vary in space and time. The petroleum 

industry has traditionally relied on the method of finite differences to 

produce discrete analogs of these equations for numerical solution. 

However, some investigators have proposed finite-element Galerkin 

schemes, citing the possibility of greater accuracy at comparable cost 

to finite-difference methods. This chapter examines a third option, 

finite-element collocation. This technique is closely related to 

Galerkin methods but offers significant savings in computation. In 

particular, the chapter presents a new technique, called upstream collo­

cation, that is suitable for use in convection-dominated problems. 

Numerical solution schemes for partial differential equations arising 

in physics raise the thorny issue of verification. Actually there are 

at least two separate problems here. First, does the discrete scheme 

generate answers that are good approximations to the exact solution of 

the continuous problem? Second, does any class of realizations of the 

discrete scheme serve as a veracious model for an identifiable class of 

observed physical events? This second problem is a discipline in 

itself, and we shall not try to answer formally whether any numerical 

approximation to the transport equations of Chapter One faithfully 

models experiments. We shall be concerned instead with grounds for 

believing that the proposed collocation scheme gives approximate 

solutions to the transport equations, presuming that these equations are 

adequate models. 
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Even within this limited scope difficulties arise. When the problem 

to be solved has a known exact solution, we can compare it with the 

approximate solution to judge the latter's acceptability. For the fully 

compositional equations of miscible gas flooding, however, we do not 

know an exact solution, and such a comparison is impossible. Neverthe­

less, it is perhaps reasonable to infer that a scheme gives good approx­

imations in a complicated problem if it gives good approximations in 

mathematically related but analytically more tractable ones. We shall 

examine three such problems in this chapter, treating the fully composi­

tional case in Chapter Four. 

3.1 Orthogonal collocation on finite elements. 

Orthogonal collocation is a fairly old method, due apparently to 

Lanczos (1938). Its adaptation to finite elements, however, is more 

recent (Russell and Shampine, 1972; de Boor and Swartz, 1973). There 

are several ways to introduce the technique; let us review it as a 

method of weighted residuals on a linear equation, drawing connections 

with the variational form of the problem. 

Description of the method. 

Consider a partial differential equation of the form 

on S2 )( e 
(3.1-1) 

where S2 = [O,x ] is the spatial domain of the problem and e = [O,t ] 
max max 

is its temporal domain. For the purpose of illustration, let E stand 

for a linear, second-order elliptic operator: 
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C3.1-2) 

where aI' a2 E C-cn). A typical initial boundary-value problem for 

equation C3.1-1) is to find a function u satisfying C3.1-1) along with 

auxiliary data of the form 

u(x,O) = uO(x), X E (O,x ) max 

~1 uCO,t) + ~2 8xuCO,t) = ~3 

~4 u(x ,t) + ~5 a uCx ,t) = ~6 max x max 

C3.1-3a) 

C3.1-3b) 

tEe 

C3.1-3c) 

2 Taken literally, this problem requires that uC·,t) E C cn) for all t E , 
e and uCx,·) E C~ce) for all x E n. 

In the context of finite-element methods it is common to replace the 

literal interpretation of this problem by its variational version. In 

this form we relax the requirements on uC·,t), demanding only that it 

lie in the Sobolev space H1cn), which contains functions f: n ~ R such 

that f, d f E L2CQ). Then u is a solution to the variational problem 
x 

if (1) uC.,t) E H1cn) for all tEe, (2) uCx,·) e C1ce) for all x E n, 

(3) u satisfies the auxiliary conditions C3.1-3), and (4) 

C3.1-4) 
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for any "test function" v e H1(Q) that vanishes on the boundary aQ 

(Oden and Reddy, 1976, Section 9.2). 

Solving such a problem numerically requires analogs of the continuous 

operators that are discrete in both space and time. The appropriate 

spatial discretization in this case is a finite-element representation. 

To construct one, let AM: ° = Xl < ... < xM = xmax be a uniform parti­

tion of Q with mesh Ax = Xl - Xl-I) and denote each element [x1 ,x1+1] = 

Q1. Associated with the partition AM is the following finite­

dimensional subspace of H1(Q): 

H3 (AM) = {v e H1(Q)1 v is a cubic polynomial over 

each Q1' 1 = 1, ... ,M} 

(3.1-5) 

This space is the span of the Hermite cubic interpolation basis 
M 

{Ho,l(x), H1,1(x)}1=1' whose elements are the piecewise polynomials 

I H1 l(x) = , 

(x - X1_1)2[2(X1 - x) + Ax]/ Ax3, x e [X1_1,x1] 

(X1+1 - x)2[3Ax - 2(X1+1 - x)]/Ax3 , x e [x1 ,X1+1] 

0, x ¢ [X1_1,XH1 ] 

(3.1-6a) 

(x - X1_1)2(x - X1)/Ax2 , x e [x1_1,x1] 

(x - X(1)2(x - X1)/Ax2 , x e [x£,xH1 ] 

0, x ¢ [x1- 1 ,xH1 ] 

(3.1-6b) 

Thus every function v e H3 (AM) is a finite linear combination 
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(3.1-7) 

where the unique coefficients v1 and v'l are the nodal values of v and 

its gradient dxv, respectively, at the node xl. Moreover, as ax ~ 0, 

H3 (aM) is dense as a subspace of H1(Q) in the Sobolev norm 11-11 2 1 , 
defined by IIf ll ;,l = IIfll~2.(S2) + IIdxf"~2.(Q). This fact guarantees that 

finite-element approximations in H3(aM) will be consistent (Oden and 

Reddy, 1976, Section 8.3). Finally, there is an interpolation operator 

associated with H3 (aM) , namely, the projection 1M: C1(Q) ~ H3 (aM) 

mapping functions f E C1 (Q) onto their continuously differentiable 

Hermite interpolates: 

M 
I [f(x1) HO,l(x) + dxf(x1) HI ,l(x)] 

1=1 
(3.1-8) 

In terms of this finite-element formalism, the spatially discrete 

analog to the initial boundary-v~lue problem (3.1-1) and (3.1-3) is to 

find a trial function uCe,t) E H3(aM) that best approximates u in the 

sense of weighted residuals, that is, 

J [at~Cx,t) + E u(x,t)] 6k Cx) dx = 0, 
Q 

X E (O,x ), 
max 

k = 1, ... 2M-2 

(3.1-9) 

(3.1-10) 

along with the boundary data (3.1-3a) and C3.1-3b), for a collection of 

weight functions 6k (x). In orthogonal collocation the weight functions 
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are the Dirac distributions 6k (x) = 6(x - xk), where the collocation 

points xk are the Kc = 2(M - 1) Gauss points x£ + 1 ~x ± ~x/'3, £ = 

1, ... ,M-1. _This method leads to a set of ordinary differential 

equations for the evolution of the approximating function u: 

k = 1, ... ,Kc 

(3.1-11) 

with the initial condition (3.1-10). As we shall review below, choOSing 

the Gauss points as collocation points leads to the highest possible 

order of spatial accuracy. 

It is worth observing briefly that the method of weighted residuals 

is, in a sense, a generalized discrete form of the variational problem 

(3.1-4) (Strang and Fix, 1973, Section 2.3). In the case where the 

weight functions are basis functions we recover Galerkin's method, which 

is a direct finite-dimensional analog of (3.1-4). The connection 

between this particular case and weighted-residual techniques involving 

other weight functions depends in general on the choice of weight 

functions. For collocation, however, there is a well defined correspon­

dence with Galerkin's method and hence with the variational formulation. 

Appendix C explains this correspondence. 

To discretize equations (3.1-11) in time let us use one of three 

finite-difference schemes. Call ~n(x) = ti(n ~t,x), where ~t is a time 

increment. The explicit Euler scheme for (3.1-11) is 

/I. n+ 1 ( ) "n ( ) + At E "n ( ) = 0 u xk - u xk U u xk ' k=l, ... ,Kc ' 

(3.1-12) 

the implicit Euler scheme is 



95 

and the Crank-Nicolson scheme is 

+ 

k=l, ... ,Kc ' 

(3.1-13) 

k=l, ... ,Kc · 

(3.1-14) 

The two Euler schemes have temporal truncation error O(At), while the 

Crank-Nicolson scheme has truncation error O(At2). 

Performance of the scheme. 

Like other finite-element methods, discrete-time schemes such as 

(3.1-12) through (3.1-14) convert a continuous problem to a set of 

algebraic equations at each time level. If the original problem is 

linear, or if we linearize a nonlinear problem and iterate, the discrete 

problem reduces to the inversion of matrices that are sparse owing to 

the limited support of the basis functions. For the Hermite cubic basis 

in one dimension the matrices have a bandwidth of five as drawn in 

Figure 3-1. This sparsity is attractive since it allows the use of 

efficient inversion algorithms. 

Orthogonal collocation on finite elements offers the further advan­

tage of high-order spatial accuracy. Douglas and Dupont (1973), for 

example, investigate the semidiscrete method (3.1-11) for quasilinear 

parabolic equations in one spatial dimension. Their analysis rests on 

the fact that finite-element collocation at the Gauss points is algebra­

ically equivalent to an approximate Galerkin method in which the 
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Figure 3-1. Structure of the coefficient matrix for finite­
element collocation on Hermite cubics in one space 
dimension. The symbol "x" represents a nonzero 
entry; M is the number of nodes. 
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2 
integrals in H .. Hk n dx, in (d H .. ) It.. n dx, in (d H .. ) Hk • dx " ~ , J , .. "x ~,J -lc , .. ., X ~,J , .. 
contributing to the matrix elements are replaced by two-point Gauss 

quadratures on each element (see Appendix C). Douglas and Dupont show 

that orthogonal collocation yields approximations u to the exact 

solution u that satisfy 

,.. 4 
~u - u~ = O(6x ) .. 

(3.1-15) 

uniformly on II x e, provided certain smoothness conditions hold. This 

error is optimal in the sense that its order is the same as that of the 

interpolation errror Ilu - 1M ull... In particular it is the same order of 

accuracy as that offered by Galerkin's method on Hermite cubics. 

Indeed, the possibility of greater accuracy has attracted interest in 

C1 Galerkin techniques in oilfield problems for over a decade. Several 

studies suggest that Ga1erkin methods on Hermite cubic spaces require 

less computational cost for a given degree of accuracy than standard 

finite-difference methods. Among these are papers by Cavendish et a1. 

(1969), who solve the elliptic equation for single-phase steady reser­

voir flow; Culham and Varga (1971), who treat a nonlinear gas-flow 

equation; Settari et a1. (1977), who solve a parabolic equation 

governing miscible displacement, and Spivak et a1. (1977), who investi­

gate the coupled elliptic and parabolic equations modeling immiscible 

two-phase flows in porous media. 

Though offering similar advantages in accuracy, orthogonal colloca­

tion requires less computational effort than the related Ga1erkin 

scheme. To begin with, collocation obviates the integrations needed to 

compute the Ga1erkin element matrices. Collocation also bypasses the 

formal, e1ement-by-e1ement assembly of the global Ga1erkin matrix. This 
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promise of greater efficiency has led to scattered applications of 

orthogonal collocation in engineering (see, for examples, Chawla et al., 

1975; Banjia et al., 1978, and Pinder et al., 1978). Sincovec (1977) 

applied orthogonal collocation to several problems in petroleum 

engineering, confirming collocation's efficiency in two parabolic 

examples. However, his formulation failed to solve the hyperbolic 

Buckley-Leverett problem. This result may have discouraged broader 

application of collocation to oilfield problems. 
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3.2. The convection-dispersion equation. 

The convection-dispersion equation is one of the simplest linear 

equations featuring the time dependence and convective dominance charac­

teristic of many porous-media flows. Discrete methods with high-order 

spatial accuracy often yield qualitatively flawed solutions to such 

problems when convection is strong. As we shall see, orthogonal collo­

cation is no exception to this rule. 

Physical setting. 

The convection-dispersion equation is a special case of the species 

transport equation (1.5-3) when (1) only one fluid phase is present; (2) 

the fluid velocity is known and constant; (3) the effects of density 

changes and gravity are negligible, and (4) dispersion is Fickian with a 

constant dispersion coefficient. Under these assumptions, the concen­

tration w. of a species dissolved in the fluid obeys the parabolic 
1 

equation 

(3.2-1) 

over some space-time domain [O,x ] x [O,t ]. This equation reduces max max 
to a dimensionless form 

(3.2-2) 

where 



x= x / x max 

'[ = v t / t max 

100 

(3.2-3a) 

(3.2-3b) 

and Pe = v x / Di is the Peclet number. In this form it is apparent max 
that the convection-dispersion equation is a singular perturbation of a 

first-order hyperbolic equation corresponding to the limit Pe ~ -. For 

many applications Pe is quite large, and numerical solutions exhibit the 

types of errors associated with the hyperbolic limit. In such 

convection-dominated problems large gradients in the exact solution tend 

to persist, and a spatial discretization too coarse to resolve steep 

portions of the initial data will fail to propagate them correctly (Gray 

and Pinder, 1976). 

Solution using orthogonal collocation. 

To illustrate the difficulty with steep initial data, let us apply 

orthogonal collocation to equation (3.2-1) with the auxiliary data 

III. (x,O) = 0, x e (O,x ) 
l. . max 

(3.2-4a) 

1II.(O,t) = 1, t ~ ° l. 

(3.2-4b) 

a III. (x ,t) = 0, t ~ ° X l. max 
(3.2-4c) 

The Hermite cubic trial function for this problem has the form 

(3.2-5) 
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where the coefficients W1(t), W'l(t) represent the time-dependent values 

of w, 0xw, respectively, at the node xl. Substituting ~ into (3.2-1) 

and collocating gives a set of ordinary differential equations for 

{Wl,W'1}~=1: 
M 
I {dt W1(t) HO,l(~) + dt W'l(t) H1,1(~) 

1=1 

k = 1, ... ,2M-2 

~ 

(3.2-6) 

~ 

The boundary data imply w(O,t) = W1(t) = 1 and 0 w(x ,t) = W' = 0, so x m~ M 
we have 2M equations in 2M variables. 

However, the initial data (3.2-4a) are not differentiable at x = 0, 

so strictly speaking the interpolate IMwi(x,O) is undefined. We can 

circumvent this snag by assigning W1(t) = 1 and W'l(O) = W1(0) = W'l(O) 

= 0 for 1 = 2, ... ,M, reasoning that this choice preserves monotonicity 

and is consistent with the true initial data as Ax ~ o. Approximating 

the discontinuous initial data in this way adds artificial mass 
~ 

iQ w(x,O) dx = iQ HO l(x) dx = O(Ax) to the solution. , 

Figure 3-2 shows an approximate solution to the boundary-value 

problem defined by (3.2-1) and (3.2-4) using orthogonal collocation for 

the spatial approximation and a Crank-Nicolson scheme in time. Here v = 
2 0.369 m/s, Di = 0.000345 m /s, Ax = 0.25 m, and At = 0.5 s. These 

values for v and D. are common in the literature on the convection-
1 

dispersion equation; see for example Pinder and Gray (1977, Section 

5.3). The figure also displays an approximation 
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(3.2-7) 

to the exact solution, where the choice of to ensures that 
1\ In wi(x,tO) dx = In w(x,O) dx to help check that the numerical scheme 

correctly propagates the sharp front. For these parameters Pe ~ 1070, a 

value indicating strongly convective flow. Upstream of the steep front 

the collocation solution exhibits wiggles that contradict both physical 

sense and the maximum principle for parabolic equations (John, 1981, 

Section 7.1). Such wiggles are typical of high-order spatial approxima­

tions to nearly hyperbolic equations. The wiggles arise when the grid 

Peclet number PeA = v Ax / D. ( ~ 250 in Figure 3-2) exceeds a critical .. x l. 

value generally of order unity (Jensen and Finlayson, 1980). 

Wiggles: pro and con. 

There is some controversy regarding the desirability of suppressing 

these wiggles by choice of numerical approximations. Gresho and Lee 

(1979), for instance, argue again~t suppressing the wiggles with 

low-order discretization, claiming that they should be viewed as 

symptoms of overly coarse spatial grids. While there is much merit in 

this argument, there are applications in which the choice between 

wiggles and a sufficiently fine grid is too confining. One example in 

computational physics is the gasdynamic shock, where the appropriate 

grid Peclet number is comparable to the mean free path of the gas 

molecules (Ames, 1977, Section 5-2). Less dramatic examples arise in 

porous-media flows, where the dissipative influences of hydrodynamic 

dispersion or capillarity are often genuinely small compared to convec­

tive effects. In these cases suppressing the wiggles may give accep­

table answers on affordable grids, with quantifiable errors, even when 

the equations to be solved are highly nonlinear. By contrast, insisting 

on high-order spatial accuracy at all points of the flow field may force 
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a choice between exorbitantly fine grids and instability, as the wiggles 

associated with coarse grids may cause associated thermodynamic calcula­

tions to fail. 

Furthermore, as Section 3.4 discusses, globally high-order methods 

may converge to solutions that are altogether incorrect. Such anomalies 

arise in nonlinear convection-dominated problems in which the dissipa­

tive effects, while numerically small, exert physically important influ­

ences near sharp fronts, as reviewed in Section 1.5. In these cases the 

failure to converge is arguably a more serious shortcoming than the 

propagation of wiggles. Therefore, while several investigators have 

advanced schemes to correct the wiggles without dissipation (see, for 

example, Van Genuchten and Gray, 1978; Chaudhari, 1971; Boris and Book, 

1976), we shall be interested specifically in a scheme that adds dissi­

pation in the form of a low-order spatial error. 

What is wanted in many cases is a method that has locally low-order 

spatial accuracy. In other words, we seek a scheme whose low-order 

error terms, while present globally, have small coefficients except in 

the spatial zones where they are needed. Such schemes retain many of 

the advantages of high-order. schemes while adding dissipation near sharp 

fronts. For the convection-dispersion equation, for example, a lowest­

order error term proportional to v Ax a2w would be appropriate. In 
x 

finite-difference theory locally low-order schemes are available through 

the use of upstream-weighted differences. We shall discuss an analogous 

finite-element method, upstream collocation. 



105 

3.3. Upstream collocation. 

Consider the following mcdification to equation (3.2-6): 

k 1, ... ,2M-2 

(3.3-1) 

Here xk* = xk - , ~x, with, > 0 chosen so that ~* lies in the same 

interval Q1 of the partition ~M as xk . The difference between equations 

(3.3-1) and (3.2-6) is that in the latter the collocation points for the 

convective terms lie upstream of the Gauss points. The heuristic for 

choosing the xk* in this way is an analogy with finite differences, 

where upstream-weighted differences offer one approach to suppressing 

wiggles at the expense of smearing in highly convective problems 

(Peaceman, 1977, Chapter 4). 

Figure 3-3 shows solutions of the same convection-dispersion problem 

plotted in Figure 3-2 except for the upstream choices of xk*. The 

figure specifies the collocation points in terms of the local space 

coordinate t, defined on any element [x1 ,x1+1] as 

(3.3-2) 
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so that t: [x1 ,x1+1] 4 [-1,1]. In local terms, the orthogonal colloca­

tion points are tk = ± 1/13 in each element, and the upstream points are 

tk* = t(~*) < t k · The solutions in Figure 3-3 confirm the heuristic 

for upstream collocation: by emphasizing upstream values in the convec­

tive terms we have suppressed the wiggles generated by orthogonal collo­

cation, the cost being a diffusion-like smearing of the steep front. 

This smearing reflects the nature of the error induced by upstream 

collocation. By Taylor's theorem, 

2 d H. 4(~*) = d H. 4(~) - , ~x d H. 4(Xk ) x J,~ K X J,~ K X J,~ 

223 + i , ~ d H .• (~), x J, .. K 
j = 0,1 

(3.3-3) 

exactly, since each basis function H .• is cubic. Therefore upstream 
J,~ 

collocation for the convection-dispersion equation is equivalent to the 

following scheme: 

2 2 
- (Di + 'v~x) [W1(t) dxHO,t(~) + W'l(t) dxH1,1(~)1} 

2 = O(~x ), k = 1, ... ,2M-2 

(3.3-4) 

In other words, upstream collocation augments the physical dissipation 

by an amount proportional to ~x, which is precisely the effect of 

upstream-weighted differencing (Lantz, 1971). The author has verified 
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this error estimate through a numerical example, finding good agreement 

between the value of D. + ~ v ~x and the observed level of dissipation 
1 

in a numerical solution (Allen, 1983). 

The error introduced in upstream collocation is closely analogous to 

that of some Galerkin schemes. Most notable among these are the upwind 

quadrature techniques developed by Hughes (1978), Hughes and Brooks 

(1979), and Dalen (1979), who approximate the Galerkin integrals arising 

from convective terms by finite sums emphasizing upstream values of the 

integrands. There is a well defined correspondence between these 

quadrature methods and upstream collocation through the algebraic equiv­

alence with approximate Galerkin schemes exhibited in Appendix C. Less 

exact analogies stand between upstream collocation and finite-element 

techniques based on the use of asymmetric basis functions for convective 

.terms. Huyakorn (1977), Heinrich and Zienkiewicz (1977), and Christie 

and Mitchell (1978) have proposed such schemes for CO and C1 Galerkin 

approximations, and Shapiro and Pinder (1981, 1982) have examined a 

related approach using collocation. These asymmetric basis methods have 

similar effects in solving convection-dominated flows, but their 

algebraic relationship to upstream collocation is not straightforward. 
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3.4. The Buckley-Leverett problem. 

While our discussion of collocation has so far concentrated on linear 

parabolic problems, the problems in miscible gas flood engineering are 

more frequently nonlinear. Moreover, as we have discussed, problems of 

practical interest in this field are often highly convective singular 

perturbations of hyperbolic problems. The Buckley-Leverett problem is a 

simple, analytically solvable paradigm of a nonlinear hyperbolic conser­

vation law arising in porous-media physics. While solving the problem 

numerically is of little practical interest per se, it is a reasonable 

test of whether a candidate numerical method is appropriate for more 

complicated reservoir flows. We shall demonstrate that upstream collo­

cation corrects a tendency of orthogonal collocation to converge to 

incorrect solutions in this problem. The key to the improvement offered 

by upstream collocation is its lowest-order error term, which acts in a 

manner paralleling the artificial viscosity method of finite differences 

(Allen and Pinder, 1982). 

Physics of the problem. 

The Buckley-Leverett saturation equation governs the flow of two 

immiscible, incompressible fluids, say a vapor and a liquid, in a 

homogeneous porous medium. The derivation given in Section 1.5 can be 

extended to include the effects of gradients in capillary pressure PCVL' 

the result being the hyperbolic equation (1.5-10) for the vapor satura­

tion Sv augmented by a second-order term: 

(3.4-1) 

where, as in equation (1.5-11), fV = AV/(AV + AL) = fV(SV) is the 

fractional flow function, A is the mobility of phase a, and Q is the 
a 
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constant total flow rate divided by the porosity of the rock. The 

first-order form arises when the capillary gradient (dPCVL/dSV) axsV 
contributes negligibly to the fluid motions, a situation occurring in 

practice when applied pressure gradients give rise to high Darcy veloci­

ties. In this case we recover the hyperbolic conservation law 

(3.4-2) 

As Section 1.5 reviews, the fact that fV(SV) is not convex over its 

support leads to the formation of discontinuities in SV(x,t) given steep 

initial data. Therefore we must accept weak solutions to (3.4-2), 

guaranteeing uniqueness only by imposing in addition some form of the 

shock condition. The form that we shall discuss is the demand that the 

solution to (3.4-2) be the limit as n ~ 0 of solutions to the parabolic 

extension 

a (n a SV) x x 
(3.4-3) 

with n > o. Viewed from the standpoint of mechanics, the term on the 

right side of (3.4-3) is analogous to a capillary influence of the type 

appearing in the full equation (3.2-1), except for spatial variations in 

the coefficient fV AL (dPCVL/dSV). Heuristically, the shock condition 

"restores" the problem-closing effects of capillarity in models of 

physical flows where its action, while profound, is limited to a practi­

cally infinitesimal zone where axsV is virtually infinite. 

Discretization. 

Consider the Cauchy problem for equation (3.4-2) on Q x 0 = [0,-) x 

[0,-) with the initial data 
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S(O,t) = 1 - SLR' t ~ 0 

(3.4-4a) 

S(x,O) = SVR' x > 0 

(3.4-4b) 

Here, as in Chapter One, SVR and SLR are the residual vapor and liquid 

saturations, respectively. Let us assume an S-shaped fractional flow 

function fV determined by the mobilities 

(3.4-5a) 

(3.4-5b) 

-4 
with SVR = 0.16, SLR = 0.20, and a flow rate Q = 2.134 x 10 m/s. 

Discretizing (3.4-2) in time gives 

(3.4-6) 

where ~tSV(x,t) = SV(x,t+~t) - SV(x,t). Then, representing ~tSV by a 

Hermite trial function, we have 

" M 
:< ~tS(x,t) = I [~t(t) HO,t(x) + ~'t(t) H1,t(x)] 

t=1 
(3.4-7) 

This representation furnishes a Hermite approximation to the saturation, 

f\. 
SV(x,t) :< S(x,t) = 

M 
I [ft(t) HO,t(x) + f't(t) H1,t(x)] 

t=1 
(3.4-8) 



112 

via the updating rules 

(3.4-9a) 

(3.4-9b) 

For the flux term in (3.4-6) let us use an approximation of the form 

A 

f(x,t+~t) = 
M 
L [fV(Y~(t)) HO,~(x) + fV'(Y~(t)) Y'~(t) H1,~(x)1 

~=l 

A 

+ [fV' ~tSV1(x,t) 

(3.4-10) 

where the last term is a linear projection to time t + ~t represented by 

the product expansion 

+ [fV'(Y~(t)) ~'~(t+~t) + fV"(Y~(t)) Y'~(t) ~~(t+~t)l H1 ~(x)} , 

(3.4-11) 

The Hermite gradient coefficients in (3.4-11) are x-derivatives devel­

oped formally using the chain rule. This linearized implicit treatment 

is equivalent to one Newton-Raphson iteration per time step. Substi­

tuting the Hermite representations (3.4-7), (3.4-8), and (3.4-10) and 

collocating reduces equation (3.4-6) to the following set of algebraic 

equations: 
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(3.4-12) 

k = 1, ... ,2M-2 

where ~* signifies an upstream collocation point. These equations, 

together with the Cauchy data, must give a closed linear system for the 

unknowns {~!'~'l}~=1 at each time step. 

The initial data (3.4-4) pose two difficulties in this regard. One 

of these is similar to that encountered in interpolating the initial 

conditions (3.2-4a) for the convection-dispersion equation: SV(x,O) ¢ 

Cl(Q), so its interpolate IMSV is not strictly defined. As in the 

convection-dispersion problem, we can impose consistent initial condi­

tions in H3 (AM) by prescribing fl(t) = 1 - SLR' f'l(t) = f l (O) = f'l(O) 

= SVR for 1 = 2, ... ,M. Again, this prescription adds artificial mass to 

the numerical solution. 

The second problem with the initial data is somewhat more subtle. 

Digital computations require a finite number of unknowns, while (3.4-4b) 

specifies a semi-infinite spatial domain. The only compromise available 

with a uniform grid is to solve the problem on a finite spatial domain 

[O,x 1 at any given time step, either increasing x as t increases 
m~ m~ 

or stopping the calculations before the influence of the spurious right 

boundary contaminates the results. There then arises the issue of 

boundary data at x = x Any such data will necessarily be artificial 
m~ 

for the first-order Cauchy problem, but they are indispensable in 

defining an algebraically closed discrete analog with 2M - 2 collocation 

points. Bearing in mind that the hyperbolic problem is really an 

extreme test of a method intended for solving parabolic equations, let 

us impose the artificial condition axsV = ° at x = x As an alterna-max 
tive one might use an additional collocation point in the element 

abutting the endpoint x = x , thereby increasing the number of 
m~ 

algebraic equations and obviating the artificial condition. 
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Numerical solutions. 

Figure 3-4 shows a numerical solution to the Buckley-Leverett problem 

at t = 1500 s using orthogonal collocation (xk* = ~) on a grid of mesh 

Ax = 0.05 m with At = 5.0 s. The figure also shows the exact solution, 

computed using the method of characteristics and Welge's tangent 

construction as described in Section 1.5. The most glaring fact in this 

plot is the difference between the numerical and exact predictions for 

the saturation shock: the numerical shock occurs upstream of the 

correct shock and is too strong. 

Similar errors occur in spatially centered finite-difference (Aziz 

and Settari, 1979, Section 5.5.1) and Galerkin (Spivak et al., 1977) 

approximations to capillarity-free two-phase flow. These erroneous 

predictions reflect the failure of globally high-order spatial approxi­

mations to accommodate the shock condition needed to specify the unique, 

physically correct weak solution to the problem. Finite-difference 

models in the petroleum industry have traditionally used upstream­

weighted differences to rectify this failing (Aziz and Settari, 1979, 

Section 5.5.1; Peaceman, 1977, Chapter 6). Galerkin models have often 

resorted to the explicit addition of artificial capillarity (Douglas et 

al., 1979; Spivak et al., 1977; Chase, 1979; Mercer and Faust, 1976), 

although some investigators have used various upstreaming techniques 

(Dalen, 1979; Chavent and Salzano, 1982). 

Figure 3-5 shows approximate solutions to the same Cauchy problem 

using various choices of upstream collocation points xk*. Although 

these solutions vary in quality, they give much better predictions of 

the strength and location of the saturation shock than does orthogonal 

collocation. Figure 3-6 displays solutions to the Buckley-Leverett 

problem with the upstream collocation points ~l* = -2/3, ~2* = 1/3 in 

local element coordinates for different values of the spatial mesh Ax. 
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This plot suggests that the resolution of the correct saturation shock 

improves on refinement of the grid. All of these solutions consistently 

exhibit artificial mass manifested as a saturation "toe" downstream of 

the shock. To check for material balance errors we can compare this 

additional mass numerically with the quantity J Q Ho,l(x) dx attributable 

to interpolation of the initial data. Such a comparison shows agreement 

to within half a percent of the latter integral in the worst case (Allen 

and Pinder, 1983). 

These results deserve some discussion. We can expect finite-element 

collocation to converge to a weak solution to the Buckley-Leverett 

solution because of the method's relationship with the variational form 

of the problem. Consider the corresponding Galerkin scheme: 

" ,. 
J ratS + a (Qf)] H. g, dx 
Q x J, 

" " = J (ats) H. g, dx + J Q f d H. g, dx = 0 
Q J, Q x J, 

(3.4-13) 

This is a spatially discrete analog of the variational form of equation 

(3.4-2), which is also the weak form for the spatial part of the problem 

(Strang and Fix, 1973, Section 2.3). By the algebraic correspondence 

described in Appendix C, collocation will converge to solutions of this 

weak form. The difference between the shock predicted by orthogonal 

collocation and that given by upstream collocation reflects the lack of 

uniqueness among weak solutions: the schemes find different weak 

solutions to the same equation. 

Upstream collocation forces convergence to the correct weak solution 

because it imposes a numerical version of the artificial viscosity 

condition. Specifically, evaluating the explicit part of the flux term 

at upstream collocation points xk* = ~ - , ~x induces an error 
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" " axf(~,t) - axf(xk*,t) = 

(3.4-14) 

since the second derivatives of Hermite cubic interpolates are O(6x2) 

approximations (Prenter, 1975, Section 3.4). Thus, to within O(6x2), 

the collocation scheme (3.4-12) corresponds to a parabolic extension 

including dissipative effects. It is clear in this case that the dissi­

pation vanishes as 6x ~ 0, guaranteeing the shock condition in a numeri­

cally consistent fashion. 

These results demonstrate the applicability of collocation to multi­

phase flows in porous media. In particular, upstream collocation as 

implemented in this section offers an easily coded approach to 

overcoming the difficulties that Sincovec (1977) reported in solving the 

purely hyperbolic Buckley-Leverett saturation equation. For this reason 

the technique should also prove useful in solving the types of near­

hyperbolic equations encountered in more complicated models of porous­

media flows. 
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3.5. A gas-flow equation. 

The last problem that we shall examine in this chapter is a nonlinear 

equation governing the flow of ideal gases in porous media. This 

equation is a simple parabolic analog of the balance law for total fluid 

mass in a miscible gas flood. The latter equation arises when we sum 

the species transport equation (1.5-3) over all species i, getting an 

equation of the form 

(3.5-1) 

V where TT = TV + TL is the total fluid transmissibility, l = (TVp + 

TLPL)g, and D is depth below some datum. If we assume that the cross­

sectional area A is uniform, that only the vapor phase is present, and 

that gravitational effects are absent, we find 

(3.5-2) 

V 
where AV = TV/ p A is the vapor mobility. If the vapor is an ideal gas, 

h · b h . f V t en 1t 0 eys t e equat10n 0 state p = PV/RT, where RT is uniform and 

constant in an isothermal flow field. Using this law and defining a 

scaled time t = Avt/~ reduces equation (3.5-2) to 

where p 

a (p a p) 
x x 

ref = PV/PV is a dimensionless, scaled pressure. 

(3.5-3) 
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Aronofsky and Jenkins (1951) treated this problem numerically before 

electronic digital computers were widely available. They used explicit, 

spatially centered differences to solve several initial boundary-value 

problems on punch card machines, comparing their results with those of 

an electric analog device. Let us discuss approximate solutions to 

equation (3.5-3) on Q x e = [0,1] x [0,-) using orthogonal and upstream 

collocation along with the auxiliary data 

p(O,t) = 5, t ~ ° (3.5-4a) 

p(l,t) = 1, t ~ ° (3.5-4b) 

p(x,O) = 1, x E (0,1) 

(3.5-4c) 

To discretize (3.5-3) in time let us use the following iterative 

Euler scheme: 

(3.5-5) 

n n+1 m Here p (x) = p(x,nAt) and p , stands for the m-th iterate of the 
n+1 unknown pressure p For the spatial discretization let us use the 

Hermite representation 

(3.5-6) 

Substituting (3.5-6) into (3.5-5) and collocating gives 
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I'n+1,m+1( ) "n( ) _ • [a An+1,m( .... ) a "n+1,m+1( .... ) 
p '1t - p '1t -.,t xP '1t" xP XkO. 

(3.5-7) 

As before, the arguments '1t* stand for upstream collocation points. 

These points appear in the term that looks "convective" by analogy with 

the convection-dispersion equation in Section 3.2. The rationale for 

upstreaming this term is to augment the second-order space derivative by 

an error O(Ax). Huyakorn and Pinder (to appear, Chapter 9) show that, 

in finite differences, weighting the first-order term in this way is 

precisely equivalent to using upstream-weighted transmissibilities, a 

common practice in the petroleum industry. While there is apparently no 

need for upstream weighting in the single equation (3.5-3), for mu1ti­

phase flows an equation having this form is coupled to one or more 

hyperbolic or nearly hyperbolic transport equations. In these cases 

upstream weighting is necessary to ensure that the system converges to 

the physically correct solution. 

Figure 3-7 shows the nodal values of the solution to (3.5-3) with 

auxiliary data (3.5-4) using orthogonal collocation (xk* = xk) with Ax = 

0.1 m, At 
-4 3 2 = 10 m s /kg. The figure also displays curves showing a 

solution to the same equation using an implicit version of the finite­

difference scheme presented by Aronofsky and Jenkins. The difference 

scheme uses Ax = 0.025 m, At = 10-4 m3s 2/kg, values for which further 

mesh refinement yields improvements of less than 0.1 percent in the 

numerical solution. In this case orthogonal collocation using a 

slightly coarser partition gives results that agree quite well with the 

finite-difference solution. 
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Figure 3-7. Solutions to the gas-flow problem using 
orthogonal collocation. The smooth curves 
represent finite-difference solutions on a fine 
grid. 
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Figure 3-8 is a similar plot for upstream collocation with the 

upstream points ;k* = ;k - 0.4 in local element coordinates. The 

solution shows slight smearing in the early profile, with accuracy 

comparable to that of orthogonal collocation at later times. Upstream 

collocation in this problem does not effect the kinds of qualitative 

differences in solution structure observed in the steep-front problems 

discussed earlier. This fact may be attributed to the absence, except 

at very early times, of steep gradients that would drive the artifi­

cially dissipative error term. It seems fair to expect, therefore, that 

upstream collocation is a suitable technique for solving nonlinear 

parabolic equations of the type that govern pressure distributions in 

multiphase flows. 
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Figure 3-8. Solutions to the gas-flow problem using 
upstream collocation. The smooth curves 
represent finite difference solutions on 
a fine grid. 



CHAPTER FOUR 

MODELING COMPOSITIONAL FLOWS 

Porous-media flows that are strongly influenced by the effects of 

changing fluid compositions are considerably more complicated than the 

flows examined in Chapter Three, and solving the equations governing 

such compositional flows is a correspondingly complex task. There are 

two main reasons for this increase in difficulty. To begin with, the 

transport laws for a system of N components give rise to a system of N 

coupled partial differential equations, which require more effort simply 

because of the larger number of unknowns to be solved for. In addition, 

the flow coefficients and fluid densities in the equations vary in 

response to pressure and composition in complicated ways governed by the 

thermodynamic constraints, as Chapter Two discusses. Thus the nonli­

nearity of the system imposes another level of hardship. Indeed, the 

complexity of compositional flows is the prime motivation for modeling 

them numerically. 

This chapter introduces a one-dimensional simulator of compositional 

reservoir flows using the collocation methods developed in Chapter Three 

and the thermodynamic algorithms presented in Chapter Two. After devel­

oping the numerical techniques used in the simulator, we shall compare 

the formulation of the collocation-based code with several major compo­

sitional simulators reported in the petroleum engineering literature. 

Section 4.3 examines a set of sample problems using the collocation 

method. The scheme described below treats one-dimensional flows, and 

the sample problems involve fluid systems with three or fewer compo­

nents. While these simplifications would hinder the application of this 

particular code in actual oilfield operations, the efficacy of the 

methods in the cases examined here demonstrates the applicability of the 

overall approach to more ambitious, industrial-scale codes. 
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4.1. Formulation of the model. 

The model uses an implicit pressure - explicit composition scheme to 

solve the transport equations. This formulation entails solving an 

overall fluid balance coupled with N - 1 species balance equations. For 

simplicity let us assume that gravity has no effect on the flow, 

although this restriction is not essential, and following common 

practice in compositional modeling let us neglect hydrodynamic disper-

sion. 

Summing the species transport equations (1.5-3) over all N components 

and using the constraints (1.5-5) gives an overall fluid balance 

equation: 

(4.1-1) 

where, as in Section 3.5, TT = TV + TL is the total fluid transmissi­

bility. This leaves N - 1 independent species balance equations, 

where T. 
1 

pressure 

i=1, ... ,N-1 

(4.1-2) 

V L = TVWi + TLwi . We can regard (4.1-1) as an equation for the 

PV' using (4.1-2) to solve for the species mole fractions 

N-1 
{wi )i=1. The restrictions (1.5-5) on mole fractions and saturations, 

the thermodynamic constraints, and the constitutive laws close the 

system except for auxiliary data and geometry, as discussed in Section 

1.5. 
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The system of equations comprising (4.1-1) and (4.1-2) is nonlinear, 

since the coefficients depend rather strongly on the pressure and 

overall composition of the system. Cast in the implicit pressure -

explicit composition form, the equations appear as a parabolic equation 

in PV' paralleling the gas-flow equation of Section 3.5, coupled to N -

1 hyperbolic equations in w1 ' ... ,wN_1 ' each paralleling the Buckley­

Leverett equation. The coupling through the thermodynamic and constitu­

tive relationships is pronounced in many practical problems, and under 

these circumstances it is essential to guarantee consistency among all 

dependent variables and coefficients at every instant. This observation 

motivates a solution scheme that iterates over all of the transport 

equations at each time step in the discrete analog. 

Temporal discretization. 

To discretize equation (4.1-1) in time let us use an implicit 

finite-difference scheme having the following Newton-like iterative 

structure: 

= t a (~+l,m a ( n+1,m + 6 n+1,m+1) 
x T x Pv Pv 

_ ~+l,m a n+1,m) 
L xPCVL 

(4.1-3) 

where t = ~t/A. In this equation, the notation (.)n stands for the 

value of the quantity (.) at the known time level n ~t after numerical 

convergence of the iterations, and (.)n+1,m stands for the most recently 

computed iterate of (-) at the unknown time level (n + l)~t. The 
• r n+1,m+1. h . h h kn quant1ty u PV 1S t e correct1on to t e pressure at t e un own 

n+1,m+1 
iteration level m + 1, giving PV n+1,m + 6 n+1,m+1 The Pv Pv . 
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factor (~p/~pv)n+1,m is an approximation to the derivative of fluid 

density p with respect to PV' determined by a difference quotient 

(4.1-4) 

2 In practice, using ~PV ~ 10 Pa gives adequate results. 

As Section 4.2 explains, the formulation (4.1-3) parallels that 

presented by Nghiem et al. (1981) in their finite-difference simulator, 

the most salient difference being the approximation used for ~p/~PV. 

The temporal approximation resembles a Newton-Raphson iterative scheme, 

except that the right side of (4.1-3) neglects derivatives of the flow 

coefficients and capillary term with respect to pressure. Although the 

resulting matrix multiplying the unknowns 6p~+1,m+1 is only an approxi­

mation of the true Jacobian matrix, experience shows that the scheme 

converges well while avoiding much of the expense required to compute 

the true Jacobian. 

G·· n+1,m+1 f the . d 1ven 1terates Pv rom pressure equat10n, we can up ate 

each mole fraction w1, ... ,wN_1 using the Euler-like scheme 

~ ( )n+1,m+1 _ a [T~+l,m a n+1,m+1 
t pWi - t x 1 xPv 

i = 1, ... ,N-1 

(4.1-5) 

This becomes an equation for the time increment ~tW~+1,m+1 = w~+1,m+1 
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- w~ if we expand the left side of (4.1-5) and rearrange: 
1. 

(TLW~)n+1,m+1 axp~~i,m] - w~ Atpn+1,m+1}/pn+1,m+1 

(4.1-6) 

n+1 m+1 . Equation (4.1-6) calls for the values of p , , whl.ch are available 

from the latest iteration of the pressure equation as 

n+1,m+1 a (-n+1,m+1 a n+1,m+1 _ -n+1,m a n+1,m) 
p = t x IT xPV lL xPCVL 

(4.1-7) 

Spatial disc·retization. 

n+1 m+1 Let us approximate the spatial variations in the unknowns 6PV' , 

AtW~+l,m+1, i = 1, ... ,N-1, ~sing Hermite cubic trial functions like 

those defined in Chapter Three. Thus, given a uniform partition AM: 0 

= x < 
1 

and 

..• < xM = x of the spatial domain ~ = [O,x ], 
m~ m~ 

6 n+1,m+1 = 6p~n+1,m+1 
PV 

M = I [~n+1,m+1 H () + ,n+1,m+1 H ()] 
1=1 1 0,1 x ~ 1 1,1 x 

(4.1-8) 



A n+1,m+1 
tCili 

M 
= I 

t=l 

= A "n+1,m+1 
tCili 
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[ n+1,m+1 H () + ,n+1,m+1 H ()] 
Wi,t O,t x W i,t 1,t x 

(4.1-9) 

To these polynomial representations for the increments correspond 

similar expressions for the total pressure and compositions: 

n+1,m+1 I' n+1,m+1 
pV = P 

M 
= I [n~+1,m+1 HO n(x) + n,n+1,m+1 H ()] 

t=l ~ ,~ t 1,t x 

n+1,m+1 ~ I' n+1,m+1 
Cil. - Cil. 

l. l. 

according to the updating rules 

nn+1,m+1 
t 

~ nn+1,m + n+1,m+1 
t 1f t 

n,n+1,m+1 
t 

= n,n+1,m + ,n+1,m+1 
t 1f t 

~+1,m+1 = ~+l,m + n+1,m+1 
i,t i,t Wi,t 

w,n+1,m+1 
i,t 

= W,n+1,m + ,n+1,m+1 
i,t W i,t 

(4.1-10) 

(4.1-11) 

(4.1-12a) 

(4.1-12b) 

(4.1-12c) 

(4.1-12d) 
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For such dependent variables as densities and flow coefficients there 

are several possible spatial approximations. Since we intend to force 

the finite-element approximations of the governing equations to hold at 

the 2M - 2 collocation points xk ' perhaps the most naive approximation 

for a given dependent variable X is one of the form X(xk ) = X(W 1(xk ), 

... , wN_1(xk), p(xk)). There are two disadvantages to using interpo­

lated values of the principal unknowns in this fashion. First, it 

requires 2M - 2 evaluations of each dependent variable at each itera­

tion, and for densities, especially, each evaluation can involve expen­

sive thermodynamic calculations. Second, and more important, the inter­

polated values of the variables (wI' .. . ,wN_1 ' PV) often behave worse 

than the nodal values as approximations to the physical solution. In 

fact, a Hermite representation of a monotonic function may have 

monotonic nodal values without being monotonic over the element 

interiors (Jensen and Finlayson, 1980). One finds that interpolatory 

oscillations can give especially troublesome approximations to the fluid 

mixture density p, to which the solution of the pressure equation is 

rather sensitive. 

One way to avoid these oscillations is to interpolate the nodal 

values of the dependent variables. This approach requires only M evalu­

ations of a given dependent variable at any iteration. For density and 

its derivatives and the transmissibilities let us use CO interpolation 
M 

in the Lagrange interpolating basis {L£}£=l' where 

(x - x£_l)/~x, x e [x£_l,x£l 

(~£+1 - x)/~x, x e [i£,x£+11 

0, x ¢ [x£_1,x£+1 1 

Thus, for example, given nodal values 

(4.1-13) 
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of the fluid mixture density, its interpolate takes the form 

M 
p(x) = p(x) = I p(xt ) Lt(x) 

t=l 

(4.1-14) 

(4.1-15) 

Linear interpolation is not appropriate for the capillary pressure, 

since equations (4.1-3) and (4.1-6) require its second derivative. For 

example, the pressure equation (4.1-3) contains the term 

(4.1-16) 

A piecewise linear representation for PCVL would give zero for the 

second term on the right, an approximation lacking physical justifica­

tion. Instead, on each element [xt ,Xt +1] we can represent PCVL by a 

Lagrange quadratic polynomial 

(4.1-17) 
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(4.1-18a) 

(4.1-18b) 

(4.1-18c) 

This piecewise quadratic representation can have nonzero first and 

second derivatives over the interior of each element. To compute 

PCVL(x~+t), we can simply use linear interpolation to estimate its 

arguments SV(x~+t) and O(x~+t) based on their nodal values. 

Auxiliary conditions. 

The N coupled pressure and composition equations require N initial 

conditions, specified numerically as follows: 

" p(x,O) = PO(x), 

" wi(x,O) = IN. 0 (x), 
~, 

x e (O,x ), i = 
max 

1, ... ,N-l 

(4.1-19a) 

(4.1-19b) 

where the functions on the right sides of these equations lie in the 

Hermite cubic space H3(~M). The restrictive equations and the thermody­

namic constraints then determine the initial phase compositions, densi­

ties, and saturations (Lake et al., 1981; Pope et al., 1982). 

For boundary data, the model admits either specified injection rate 

or specified pressure at x = 0 and specified pressure at the producing 

end, x = x max Also, the model assumes that the composition of the 

injected mixture is known. These conditions translate to 
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" = - q(t) or p(O,t) = 

t ~ 0 

" 

p (t), t ~ 0 
q 

w.(O,t) = w (t), t ~ 0, i = 1, ... ,N-1 
1. q 

(4.1-20a) 

(4.1-20b) 

(4.1-20c) 

(Price and Donohue, 1967). To ensure that the discrete problem is 

algebraically closed, let us also impose the artificial conditions 

" a w.(x ,t) = 0, t ~ 0, i = 1, ... ,N-1 x 1. max 
(4.1-20d) 

at the producing end of the reservoir. These last conditions correspond 

to the prohibition of dispersive flux at x = xmax ' a stipulation that 

would be correct were hydrodynamic dispersion included in the species 

transport equations (Lake et al., 1981). As with the Buckley-Leverett 

problem of Section 3.4, one could circumvent this artificial condition 

by adding another collocation point in the rightmost element. 

Solving the system. 

Substituting the spatial approximations defined above into the time­

differenced equations (4.1-3) and (4.1-6) and collocating gives a set of 

linear algebraic equations at each iteration level. For the pressure 

equation, we get 
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_ t{a ~+l,m(x *) a [6p(x *)]n+1,m+1 
x T k x k 

{"n+1,m( ) An( ) t[a ~+l,m(x ..... ) a An+1,m( ... ) = - P xk - P ~ - xlT k xP ~ .. 

k = 1, ... ,2M-2 

(4.1-21) 

where, as in Chapter Three, xk* represents an upstream collocation 

point, assigned to the appropriate terms by analogy with the gas flow 

equation examined in Section 3.5. Similarly, the composition equations 

yield algebraic analogs of the form 

+ T~+l,m(xk) a;pn+1,m+1(Xk) 

- ax(T~~)n+1,m(Xk) a';p~~i,m(xk 

_ "n ( ) A " n+ 1, m+ 1 ( )} / ,. n+ 1, m+ 1 ( ) 
wi xk t P xk P xk ' i=l, ... ,N-l. 

(4.1-22) 

where the assignment of upstream terms follows analogies with the 

convection-dispersion equation equation of Section 3.3 and the Buckley­

Leverett equation of Section 3.4. 
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The flowchart drawn in Figure 4-1 illustrates the model's overall 

logic. This scheme calls for the solution of the pressure equation 

(4.1-21) at each iteration level, a task requiring the inversion of a 

linear system 

Mn+1,m lIn+1,m+l = _ ~n+l,m 

(4.1-23) 

where lIn+1 ,m+l signifies the column vector containing the increments 

{ n+l,~l ,n+l,m+l}M Mn+1,m. h J ~. l'k . lI t ,11 t t=l' 1S t e aCOu1an- 1 e matr1x 

. -n+l m containing the coefficients of the left s1de of (4.1-21), and ~ , is 

the vector of residuals at the most recently computed iteTation level, 

given by the right side of (4.1-:1). The code solves equation (4.1-23) 

directly using a direct solution algorithm for asymmetric banded 

matrices. 

After updating the pressure iterates, the model solves the composi­

tion equations (4.1-22). These equations have the form 

B n+l,m+l = w. 
..... 1 

n+l,m 
!:i ' i=l, ... ,N-l 

(4.1-24) 

where !~+l,m+l is the column vector of unknown increments {w~:!,m+l, 

w,~:!,m+l}~=l' B is the matrix of Hermite cubic interpolation 

coefficients giving the values of At~i(~)' k = 1, ... ,2M-2, in terms of 

n+l m . nodal values, and ~i ' 1S the column vector of right sides from 

equation (4.1-22). Since B is constant we need only invert it once, 

during initialization, reducing (4.1-24) to the matrix multiplications 
w~+l,m+l = B-lr~+l,m at each iteration . 
....,1 ...... 1 

After computing the iterates pn+l,m+l and C~+l,m+l, i = 1, ... ,N-l, 

the model performs the thermodynamic calculations, using the methods of 
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lPDATE COEFFICIENTS 
AND COMPUTE RESIDUAL 
FOR PRESSURE EQUATION 

NO 

NO 

YES YES 

Figure 4-1. Flowchart of the overall structure of the 
compositional simulator. 
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Section 2.3 to calculate vapor-liquid equilibria, and evaluates the 

constitutive variables. To test for numerical convergence at each 

iteration, the code checks criteria of the form 

(4.1-25a) 

(4.1-25b) 

In practice, £ = 5.0 kPa and £ = 0.001, values comparable to those 
p w 

imposed by Coats (1980). 

Stability and iterative convergence. 

There appears to be no simple a priori way to compute the stability 

limits of this coupled system. Taken alone, the pressure equation 

should admit large time steps owing to its implicitness. The composi­

tion equations, being explicit, should be vulnerable to instability when 

the time steps allow the injection of more fluid than can fit in an 

element at the prevailing local pressure. This criterion parallels the 

Courant-number condition for explicit finite-difference schemes. In 

practice, however, large changes in overall fluid compressibility accom­

panying changes in composition and pressure can make the system unstable 

at smaller time steps. This sensitivity typically arises when the vapor 

and liquid differ greatly in density and exchange little mass. 

The code allows for the possibility that the size of stable time 

steps will increase with time, a phenomenon that manifests itself 

through convergence of the iterative scheme in progressively fewer 

iterations. When the system converges in one iteration, the model 

automatically doubles its time step, leading to more efficient use of 

the computational effort. Occasionally the opposite happens. As the 
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pressure decreases below a bubble point, for example, the scheme demands 

a reduction in time step. The code therefore allows up to five halvings 

of the time step before aborting the calculations. In most examples the 

code regains stability after at most two such halvings in any single 

time step. 

As the coupled system converges during each time step the residual 

from the pressure equation decreases at a roughly linear rate. This 

rate accords with results plotted by Mansoori (1982) for a finite­

difference simulator of similar design. Figure 4-2 shows a plot of the 

logarithms of successive residual norms for the collocation code, corro­

borating the approximately linear asymptotic rate. In theory, an exact 

Newton-Raphson scheme for the pressure equation solved alone should 

exhibit a quadratic asymptotic rate. Apparently the convergence for the 

approximate Newton-Raphson scheme in equation (4.1-21) is slower when 

this equation is coupled to other balance equations solved explicitly. 

Material balance. 

The fact that the transport equations for compositional flows are 

essentially statements of mass conservation is a compelling reason to 

provide independent checks on material balance. In a Newton-like scheme 

such as that used for the pressure equation (4.1-21), norms of the 
-n residual vector ~ provide useful checks on the pointwise conservation 

of total fluid mass. Since the elements of Rn are residuals at the 

collcation points, 

(2A/.t.x) 
Kc -n 
IRk' 

k=l 
(4.1-26) 

where Kc = 2M - 2, renders a Gauss-quadrature approximation to the 

global fluid mass conservation during any time step. In terms of this 
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Figure 4-2. Logarithms of successive residual norms 
from iterates of the pressure equation for a 
three-component flow. 
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approximate measure, the model typically conserves mass to within a 

fraction of one percent of the mass present in the system. 

Similar approximate measures of global conservation exist for each 

fluid component i. Rewriting the species balance (4.1-5) using the 

finite-element representations of its terms gives an equation of the 

form 

(4.1-27) 

"n+1 where F. is an abbreviation for the flux terms. Integrating this 
1 

expression over the spatial domain Q yields 

J "n+1"n+1 dx - J "nAn dx - t[F~+1(x ) - F~+1(0)1 = 0 
Q P wi Q P wi 1 max 1 

(4.1-28) 

We can compute the mass integrals in this equation using three-point 

Gauss quadratures: 

J pW i dx = 
Q 

M-1 
I J pw. dx 

2.=1 Q 1 

M-1 3 
= I I m. p(x. l)~·(x. 1) 

2.=1 j=1 J J, 1 J, 
(4.1-29) 

where the numbers m. are weights and the values x .• are the three-point 
J J , It. 

Gauss points in the element [x2.,x2.+1 1. The model typically conserves 

the masses of individual species to within errors, measured in this way, 

of a fraction of a percent of the mass of the species present. 
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4.2. Connections to other compositional models. 

The compositional simulator described in the previous section is 

related in structure to other implicit pressure - explicit composition 

models. Nolen (1973) and Kazemi et al. (1978), for example, used this 

general approach in models in which tabulated correlations provide the 

basis for vapor-liquid equilibrium calculations. Nghiem et al. (1981) 

extend this formulation to include equation-of-state techniques for 

imposing thermodynamic constraints. In approximating the Jacobian to 

the pressure equaticn, Nghiem et al. neglect the responses of satura­

tions and phase compositions to pressure changes, setting 

(4.2-1) 

where a ranges over all fluid phases. Their approximate Jacobian, 

unlike the matrix M in equation (4.1-23), is symmetric and diagonally 

dominant, allowing some computational savings over asymmetric approxima­

tions. There seems to be no physically motivated contrivance that will 

bestow these properties on the approximate Jacobian M arising in collo­

cation. Mansoori (1982) proposes an improvement to (4.2-1) including 

density-driven saturation changes but still ignoring the responses of 

phase compositions. This modification enhances the diagonal dominance 

of the approximate Jacobian for many hydrocarbon fluid systems, but its 

implications in systems exhibiting retrograde condensation are unclear. 

The finite-difference approximation (4.1-4) includes the full effects of 

pressure changes on phase compositions as well as saturations and phase 

densities, but it is only fair to note that it also requires an 

additional suite of thermodynamic calculations at each iteration. 
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The collocation model breaks with tradition in that, in contrast to 

other implicit pressure - explicit composition simulators, the code uses 

implicit transmissibilities and capillary terms. However, the transmis­

sibilities and other flux-related dependent variables are lagged by one 

iteration, so their derivatives with respect to pressure do not 

contribute to the approximate Jacobian. Using implicit transmissibili­

ties improves the internal consistency of the numerical soutions at each 

time step. 

There is another important approach to compositional simulation, 

namely, the fully implicit formulation. Models based on this approach 

solve the flow equations and the thermodynamic constraints simultane­

ously and implicitly, a strategy yielding codes that are stable for 

large time steps at the expense of considerable computation. Fussell 

and Fussell (1979), for example, present a "minimum-variable Newton­

Raphson" (MVNR) technique for choosing the principal iteration variables 

in such a code. Their model, based on the Redlich-Kwong equation of 

state, assumes explicit flow coefficients and the absence of capillary 

effects. The MVNR approach requires the simulator to determine at the 

beginning of each time step how many fluid phases exist in each zone of 

the spatial grid. This deperidence on what is essentially an explicit 

saturation pressure imposes some limitations on time steps. Coats 

(1980) develops another fully implicit equation-of-state simulator 

including implicit flow coefficients and gravitational and capillary 

effects. This simulator uses a fixed set of principal iteration 

variables and solves the standard saturation-pressure equations at each 

iteration, thus avoiding the time-step limitations of the MVNR construc­

tion. As Coats discusses, the fully implicit formulation exacts a 

penalty in return for its stability: as th~ number of components grows, 

the size of the matrix to be inverted at each iteration grows as well, 

demanding rapid increases in computational effort. 
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Other solution schemes have appeared. Price and Donohue (1967), 

Roebuck et al. (1969), and Van Quy et al. (1973) all use formulations 

in which all N mixture compositions {wi}~=l are principal unknowns. 

P . d D h d V Q l' h t" !N r1ce an ono ue an an uy et a . 1mpose teres r1ct10n i=l wi = 

1 to compute the pressure gradient at each node, integrating the 

gradient from a boundary point having prescribed pressure to calculate 

interior pressures. Roebuck et al. solve iteratively for pressures 

consistent with the other thermodynamic properties of the phases. 

Schemes such as these appear to have found few adherents in the recent 

literature. 

The collocation simulator follows a recent trend in incorporating the 

effects of phase compositions on relative permeabilities and capillary 

pressure through the interfacial tension of the fluids. Coats (1980) 

and Nghiem et al. (1981) propose analytic formulas to model these 

effects, and Bardon and Longeron (1980) and Amaefule and Handy (1981) 

have published similar empirical correlations. For relative permeabili­

ties, let us use the equation 

kmax[R 82 + (1 - R )5 ], S ~ SaR ra a a a a a 
k = ra 

for a = V or L, where 

(4.2-2) 

(4.2-3) 

measures the effect of changes in interfacial tension from a reference 

state and SaR stands for the residual saturation of phase a, a = V or L. 

Equation (4.2-2) uses a normalized saturation, 
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(4.2-4) 

with the residual saturation scaled from its value at the reference 

state: 

S = R Sref 
aR a aR 

(4.2-5) 

For capillary pressure, let us assume a drainage curve of the form 

(4.2-6) 

choosing the coefficients c j of the polynomial to force it to pass 

through a specified value at SL = SLR and to have a specified value with 

zero slope at either SL = 1 - SVR or SL = 1. Equations (4.2-2) through 

(4.2-6) exhibit the generic properties discussed in Section 1.4. In 

actual applications these curves would be based on experimental data. 



147 

4.3. Examples of compositional flows. 

We shall examine three representative problems using the composi­

tional model described above. These problems demonstrate the perform­

ance of the simulator and numerically corroborate several design princi­

ples based on qualitative features of gas floods. The examples include 

an immiscible solution-gas drive, a condensing gas drive, and a vapor­

izing gas drive. 

Example 1: solution-gas drive. 

In this example, the reservoir fluids consist of two species, "gas" 

and "oil", whose properties we shall compute by using the equation-of­

state parameters for CO2 and n-decane at 344.26 K for the "gas" and 

"oil", respectively. Under the typical assumptions for modeling 

solution-gas drives, these species obey a set of thermodynamic 

constraints allowing limited mass transfer between the vapor and liquid 

phases, namely, 

(4.3-1a) 

(4.3-1b) 

(4.3-1c) 

(4.3-ld) 
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where the index 1 stands for "gas" (C02) and 2 for "oil" (n-decane). In 

. (4 3 1) ref . . f . h 1 d . f . . equat10n . - c , Pi s1gn1 1es t e mo ar ens1ty 0 speC1es 1 at 

some reference state, and R is the dimensionless solution gas-oil 
s 

ratio, defined as the volume of species 1 at reference conditions 

dissolved per unit volume of species 2 at reference conditions: 

(4.3-2) 

ref ref Let us use (p ,T ) = (5 MPa, 344.26 K) as the reference state, 

although in oilfield practice it is more common to choose a pressure and 

temperature typical of the surface separation facilities. 

For isothermal reservoirs it is often reasonable to assume that R 
s 

varies only with pressure. In most cases Rs increases monotonically 

bub with pressure up to p , the bubble pressure of the oil, above which Rs 

remains constant (Collins, 1963, Chapter 10). Figure 4-3 shows the 

simple curve of solution gas-oil ratios used in this example. 

Table 4-1 lists parameters characterizing the sample problem. The 

problem includes capillarity with a drainage capillary pressure curve, 

but no account is made of compositional effects on the capillary 

pressure or the relative permeabilities. 

Figure 4-4 displays model-predicted profiles of pressure, "gas" 

composition, and vapor saturation for various times. As expected, the 

saturation curves in Figure 4-4c indicate that this flood is completely 

immiscible. There is no displacement of oil beyond the original 

residual saturation SLR because composition has no effect on interfacial 

tension. What is worse, the solution-gas drive is quite inefficient in 

moving the originally mobile oil toward the producing end of the reser-
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TABLE 4-1 

PARAMETERS USED IN MODELING SOLUTION-GAS DRIVE 

Permeability 

Porosity 

Cross-section 

Reservoir length (x ) 
max 

Inj ection rate 

wl(O.t) 

wl(x.O) 0 < x S Xmax 

SVR 

SLR 

kmax a=V.L rat 

PCVL (SL=SLR) 

PCVL (SL=l-SVR) 

ax 
Initial At 

* ~l 

* ~2 

Initial reservoir pressure 

1.0 x 10-12 m2 (= 1 darcy) 

0.2 
2 l.Om 

10 m 

2.0 molls 

0.7 

0.4 

0.25 

0.20 

l.0 

50 kPa 

5.0 kPa 

l.Om 

30 s 

- 0.8773503 

- 0.2773503 

5.0 MPa 
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TIME (HOURS) 
0 0'00 
A 0'17'30 

7.0 (a) 0 1'09'30 
.-. v 2'49'30 :. • 4'13'30 
:E 

~ 6.0 
:::) 
fI) 

f3 a:: 
CL 

5J 

.. 
0 

(b) 
0 

~ 
~ 0.3 

(c) 

~ 
fi a:: 

~ 
~ 
~ 0.3 

2 4 6 8 

DISTANCE (METERS) 

Figure 4-4. Numerical solution to the solution-gas 
drive problem. 

10 
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voir. This inefficiency is a result of the greater mobility of free 

"gas" compared with the "oil". The vapor phase bypasses the less mobile 

"oil", inhibiting the buildup of a displacing front and leading to slow 

recovery of the liquid. 

The vapor saturation profile in Figure 4-4c drops below the initial 

vapor saturation at early times in zones distant from the injection end. 

This phenomenon reflects the fact that the saturation disturbance lags 

behind the pressure disturbance early in the flood, so that in the far 

field the pressure increase forces "gas" into solution before the wave 

of injected fluid can compensate. The phenomenon can occur in more 

complicated compositional flows as well. 

The pressure profiles in Figure 4-4a follow a characteristic pattern, 

the total pressure drop over the reservoir increasing quickly at first 

to a maximum at about 0:17:30 h and then slowly decreasing thereafter. 

This behavior reflects changes in the total mobility TT = TV + TL of the 

fluids during the course of the flood, as drawn in Figure 4-5. At early 

times the controlling value ~in = minx{TT(x)} drops as the advancing 

vapor lags behind the pressure response. When the injected vapor 

finally breaks through the outlet at x = xmax ' ~in begins to rise and 

the overall pressure drop falls. This change in the pressure response 

at breakthrough is typical of floods in which the injected fluid is more 

mobile than the displaced fluid (Smith, 1966, Chapter 4). 

Example 2: condensing gas drive. 

In a condensing gas drive the injected fluid is relatively rich in 

species having intermediate molecular weights. As the flood progresses, 

components of the injected vapor condense into the liquid phase through 

continual vapor-liquid contacts, leading to the establishment of a zone 
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o 0:00:00 
+ 0:07:30 
A 0:17:30 
c 1:09:30 

10-4 - - - - - - - - - - - - - v 2: 49: 30 - - - -

"6 
E 

• 4:13:30 

5XIO-G~ ____ ~~ ____ ~ ______ ~ ______ ~ ______ -J 

o 2 4 6 8 

DISTANCE (m) 

Figure 4-5. Total fluid mobility versus distance 
for various times in the solution-gas 
drive. 

10 



154 

in which the composition of the liquid approaches the critical 

composition for the local value of the pressure. The displacing fluid 

and the displaced fluid exhibit low interfacial tensions in this zone, 

and as a result the displacement is very efficient. The present example 

serves as a model of this mechanism. 

Table 4-2 lists the parameters defining this example. The reservoir 

has an initial pressure of 10 MPa, and the injection rate is 2.0 mol/so 

The injected fluid is 85 mole percent CO2 with 12.5 mole percent 

n-butane and 2.5 mole percent n-decane as enriching components, while 

the resident liquid is a saturated mixture of CO2 , n-butane, and 

n-decane at 344.26 K. Figure 4-6 shows the loci of injected and 

resident fluids in composition space. Although the actual composition 

of the resident liquid is not especially typical of petroleum reservoir 

fluids, the geometry of the ternary composition diagram in this case is 

reasonable as a simple representation of the kinds of phase behavior 

exhibited by more complicated reservoir fluid mixtures. 

Figure 4-7 shows the history of the pressure response to this injec­

tion scheme. As in the immiscible gas drive, the pressure in the reser­

voir rises at early times, giving a drop of about 300 kPa between the 

injection end and the outlet at t 1:30 h. Afterward the pressure 

decreases as the vapor saturation throughout the system increases, 

lowering the reservoir's impedance to flow. 

Figure 4-S displays the progress of the vapor saturation Sv as the 

flood proceeds. Except in the early solutions, the saturation fronts 

rise to values significantly larger than the initial maximum vapor 

saturation 1 - S~ = O.SO. Downstream of the saturation peak is a 

transition zone over which the fluid system varies continuously in 

composition, changing in space from a predominantly vapor system to a 
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TABLE 4-2 

PARAMETERS USED IN MODELING CONDENSING GAS DRIVE 

Permeability 

Porosity 

Cros s-sect ion 

Reservoir length (x ) 
max 

Injection rate 

wl(O,t) 

w2(O,t) 

wl(x,o). 0 < x ~ Xmax 

w2(x.0). 0 < x ~ Xmax 

SO 
VR 
o 

SLR 

kmax • a. = V.L ra. 

I:lx 

Initital At 

* ;1 

* ;2 
Initial reservoir pressure 

1.0 x 10-2 m2 (= 1 darcy) 

0.2 
2 l.Om 

10 m 

2.0 molls 

0.85 

0.125 

0.73 

0.05 

0.25 

0.20 

l.0 

0.0 kPa 

l.Om 

4:00 min 

-0.8773503 

0.2773503 

10 MFa 
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-0- CRITICAL CURVE 
~ INJECTED FLUID, EXAMPlE 2 
• INITIAL RESERVOIR FWID, EXAMPlE 2 
o INJECTED FWID, EXAMPLE 3 
II INITIAL RESERVOIR FWID,EXAMPLE 3 

0.2 

0.1 

Figure 4-6. Loci of injected fluids and initial reservoir 
fluids for examples 2 and 3. The isobars are level 
sets of the saturation pressure dome. 
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Figure 4-7. History of the pressure response for the 
condensing-gas drive. 
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predominantly liquid system. This behavior indicates an increase in 

displacement efficiency over completely immiscible floods, in which no 

significant lowering of residual liquid saturation occurs. Behind the 

transition zone the reservoir contains fluid whose composition is close 

to that of the injected fluid, and therefore the fluid saturations in 

the tail reflect in large measure the vapor-liquid equilibria of this 

fluid at the locally prevailing pressures. In particular, as the 

transition zone passes any point in the reservoir the vapor saturation 

decreases as the rich injection fluid, relatively unaltered by contact 

with the original reservoir fluids, occupies the rock's effective pore 

volume. 

The relatively efficient displacement in the transition zone is a 

consequence of the low interfacial tension in that zone. As Figure 4-9 

shows, a wave of depressed interfacial tension traverses the reservoir, 

the lowest point in the leading edge of the depression corresponding 

approximately to a point slightly downstream of the peak in vapor 

saturation. One can account for the lowering of interfacial tension by 

plotting the early composition history of a spatial point. Figure 4-10 

is such a plot for the location x = 2 m. From this figure it is 

apparent that the liquid composition grows progressively richer in the 

injected fluid, so that the vapor and liquid in contact become more 

similar in composition. As a result, the zone of low interfacial 

tension develops and propagates through the reservoir. 

Continuous injection of enriched gas leaves a relatively rich fluid 

mixture in the swept zones of the reservoir. The dip in Sv behind the 

transition zone is a symptom of this phenomenon. In actual field 

projects it is common to displace the enriched injection fluid with a 

relatively cheap chase gas, often nitrogen or methane, thus lowering 

both the total cost of the injected fluids and the amount of liquid left 
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Figure 4-9. Interfacial-tension profile at various times 
for the condensing gas drive. 



161 

-0- CRITICAL CURVE 
• INJECTED FLUID 
• LIQUIDS 
A VAPORS 

0.4 • MIXTURES 

0.3 

0.2 

0.1 INCREASING I 
TIME 

Figure 4-10. Behavior of the fluid mixture composition with 
time at x=2 m in the condensing gas flood. 
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in the reservoir (Mungan and Johansen, 1974). Therefore successful 

condensing gas drives in practice leave fairly low non-aqueous liquid 

saturations in their wake. The flood simulated in the present example 

does not include the injection of a chase gas. 

Example 3: vaporizing gas drive. 

In a vaporizing gas drive the injected fluid consists of fairly light 

molecular species. As the injected vapor contacts the reservoir liquid 

some of the heavier species evaporate, enriching the injected fluid. 

Continual contacts in this way lead to a progressively richer bank of 

driving fluid which eventually acts as a miscible transition zone, 

displacing the resident liquid efficiently and leaving behind very low 

liquid saturations. Vaporization is the dominant thermodynamic mecha­

nism in many CO2 floods and is important in high-pressure dry-gas floods 

as well (Sandrea and Nielsen, 1974, Section 4.3). One of the attractive 

features of vaporizing gas drives is the fact that the injected fluids, 

being relatively lean in composition, are less expensive than those used 

in enriched gas drives. As a consequence, the economic success of a 

vaporizing gas drive tends to be less sensitive to the design of an 

optimally sized injection slug than that of the rich-gas process. 

The parameter values defining this example appear in Table 4-3. The 

injected fluid is 88 mole percent CO2 , two mole percent n-butane, and 10 

mole percent n-decane, and, as in Example 2, the reservoir initially 

contains a saturated mixture of CO2 , n-butane, and n-decane at 344.26 K. 

The loci of these fluids in composition space appear in Figure 4-6. The 

initial reservoir pressure is 10 MPa, and the injection rate is 2.0 

mol/so 
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TABLE 4-3 

PARAMETERS USED IN MODELING VAPORIZING GAS DRIVE 

Permeability 

Porosity 

Cross-section 

Reservoir length (x ) 
max 

Inj ection rate 

1Il1(0.t) 

~(O.t) 

IIll (x.O). 

~(x.O) • 

o 
SVR 

o 
SLR 

O<x.sx max 

o < x < x 
- max 

k:X. a" V.L 
PCVL (SL .. SLR) 

PCVL (SL .. 1 - SVR) 

bx 

Initial llt 

* tl 

* t2 

Initial reservoir pressure 

-12 2 1.0 x 10 m (= 1 darcy) 

0.2 
2 

1.0 m 

12 m 

2.0 molls 

0.88 

0.02 

0.74 

0.14 

0.25 

0.20 

1.0 

5.0 ItPa 

5.0 kPa 

1.0 m 

2:00 min 

-0.8773503 

0.2773503 

10 MPa 



1M 

Figure 4-11 displays the response of the pressure at various times 

during the flood. Figure 4-12 shows the history of the vapor saturation 

front. As with the condensing gas flood, the vapor saturation eventu­

ally rises above its initial maximum value 1 - S~ = 0.80, resulting in 

very efficient mobilization of the resident liquid. In contrast to the 

condensing gas flood modeled in Example 2, the vaporizing gas flood does 

not leave a dip in vapor saturation in its wake. This fact may be 

attributed to the leanness of the injection fluid. The persistence of 

low liquid saturations behind the displacing front is attractive for 

economic and technical reasons, since the vaporizing gas slug is 

amenable to displacement by a very cheap chase fluid such as water. 

As with the condensing gas drive, the displacement front of the 

vaporizing gas drive is associated with a wave of low interfacial 

tension. Figure 4-13 plots this wave for various times. Unlike the 

low-tension wave shown in Figure 4-9, however, the interfacial-tension 

trough in this example deepens as the flood progresses, suggesting the 

continued development of a miscible bank. So long as the vaporizing gas 

slug is sufficiently large, we may expect this process to continue 

generating its own miscible bank as the flood proceeds. 

It is interesting to compare this solution, using upstream colloca­

tion, with the numerical solution produced by orthogonal collocation. 

No such comparison arises in the finite-difference compositional simula­

tors cited above, since all assume upstream weighted transmissibilities. 

Figure 4-14 shows the saturation profiles corresponding to those in 

Figure 4-12, the only difference between the two solutions being the 

choice ~* = ~ of collocation points in the model run generating Figure 

4-14. The solution using orthogonal collocation fails to capture the 

effects of developed miscibility, predicting vapor saturations less than 

1 - S~ throughout the flood. It is worth noting that this difference 
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~igure 4-13. Interfacial-tension profile at various times 
for the vaporizing gas drive. 
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does not accompany any appreciable material balance errors. As in the 

Buckley-Leverett problem examined in Chapter Three, orthogonal colloca­

tion and upstream collocation deliver numerical solutions that are 

qualitatively different in structure. In light of the discussions in 

Sections 1.S and 3.4, the universal adherence to upstream weighting in 

finite difference models, and the failure of orthogonal collocation to 

reproduce the development of a miscibile transition zone, there are good 

grounds here for preferring upstream collocation. 



CHAPTER FIVE 

CONCLUSIONS 

Let us close this investigation with a summary of its main points. 

In doing so, we shall briefly discuss the significance of the work as 

well as some limitations that may be overcome through further research. 

Compositional flows in porous media pose two general problems to the 

modeler. One is the task of representing the thermodynamics of fluid 

phase behavior. The exchange of molecular species among phases in 

contact is an essential feature of such compositional flows as miscible 

gas floods, and methods for calculating this exchange have a great deal 

to do with the overall effectiveness of numerical simulators. The 

second issue confronting modelers is that of solving the partial differ­

ential equations governing multicomponent fluid flows. To date this 

problem has been the nearly exclusive province of finite-difference 

techniques, with finite-element Galerkin methods having made some 

inroads. By comparison, finite-element collocation is a newcomer to the 

scene, despite its potential computational advantages. The preceding 

chapters introduce new approaches for both the thermodynamic calcula­

tions and the collocation solution of species transport equations. 

The thermodynamic interpolation scheme described in Chapter Two 

provides an attractive alternative to the usual equation-of-state calcu­

lations of fluid phase behavior. The new approach essentially moves the 

difficult solution of vapor-liquid equilibrium constraints from the 

coefficient calculations in transport codes to the construction of input 

data sets, replacing expensive nonlinear algebraic algorithms by cheap, 

reliable geometric ones during execution time. Of course, unlike the 

standard equation-of-state methods, the interpolation scheme cannot be 
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used "off the shelf", as the modeler must construct a separate data set 

for each new thermodynamic system. For extended reservoir studies this 

disadvantage should be slight compared to gains in computational 

efficiency and reliability. 

While the particular interpolation scheme constructed in Chapter Two 

applies to three-component systems, it has clear extensions to more 

complex isothermal systems. The method of plates used in Section 2.3 

fits a plane segment of two dimensions through each triple of adjacent 

points over a proper triangulation of the two-dimensional composition 

space. The resulting assemblage of plane segments then forms the 

approximate representation of the Maxwell set, or saturation-pressure 

dome, of the system. With N fluid-phase components (or lumped pseudo­

components) one can fit a hyperplane segment of N - 1 dimensions through 

each N-tuple of adjacent points in a proper division of the (N-1) -

dimensional composition space into N-simplexes (Oden and Reddy, 1976, 

Section 6.6). This interpolation scheme is the logical generalization 

of the method of plates to larger numbers of thermodynamic variables. 

In the construction of such a scheme it will be necessary to account for 

the additional compositional variables in parametrizing the vapor-liquid 

tie lines. 

Of the results presented in the foregoing chapters, the collocation 

techniques perhaps have the broadest potential for application to numer­

ical fluid mechanics. Chapters Three and Four demonstrate the applica­

bility of the method to complicated mUltiphase flows in porous media, 

thus vindicating the method despite early disappointing results 

(Sincovec, 1977). Upstream collocation plays a central role in these 

applications, especially in nonlinear flows where convective forces 

dominate dissipative mechanisms. By collocating convective terms at 

points upstream of the usual Gauss points, one can introduce an artifi-
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cially dissipative spatial error that forces convergence to physically 

correct weak solutions in singular-perturbation problems while 

preserving numerical consistency. This technique should find applica­

tions in the simulation of other petroleum reservoir flows and, indeed, 

in a wide range of convection-dominated problems. 

The compositional simulator developed in Chapter Four models the 

movements of only two fluid phases, with the objective of capturing the 

essential physics of hydrocarbon flow with interphase mass transfer. To 

be applicable to natural petroleum reservoirs, a full-scale composi­

tional model should include a transport equation for brine. One common 

approach to doing this is to treat brine as a separate, aqueous phase 

that does not exchange molecular species with the hydrocarbon liquid and 

vapor phases (see, for examples, Coats, 1980, and Nghiem et al., 1981). 

Thus the behavior of the brine will typically be simpler to model than 

that of the vapor and liquid phases treated in this study. 

The development of collocation-based compositional models for 

practical engineering use will also require the extension of the formu­

lation given in Chapter Four to more than one spatial dimension. 

Perhaps the most promising strategy for doing this is to use finite­

element bases generated by the tensor products of Hermite cubic bases. 

There then remains the technical problem of choosing upstream colloca­

tion points. In contrast to the one-dimensional case, multidimensional 

upstream collocation requires the determination of directions that are 

locally upstream. For porous-media flows this may be accomplished, for 

example, by examining pressure gradients. The details of such a proce­

dure offer a natural avenue for further inquiry. 

In the final analysis the extension of the compositional model to two 

space dimensions may suffice for many design purposes. Multicomponent 
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flows are expensive to simulate, and compositional models typically make 

intensive demands on computer storage. As a consequence, fully three­

dimensional reservoir models of such flows may require spatial discreti­

zations too coarse to capture the development of miscible transition 

zones between injection wells and production wells. When this is the 

case, modelers might be better off using a one- or two-dimensional 

compositional simulator as a near-field model of the development of 

miscibility starting at injection wells, resorting to a simpler miscible 

flood simulator to model the far-field displacements in two or three 

dimensions. 



APPENDIX A 

SUMMARY OF MATHEMATICAL NOTATION 

1. Sets: membership and specification. 

a E A 

{a,b,c} 

{a E AI Pea) } 

A C B 

A u B 

A n B 

A \ B 

a is an element of the set A. 

The set containing elements a, b, and c. 

The set of all elements of A that satisfy the predi­

cate P. 

The set A is a subset of the set B. In other words, 

a E A implies a E B. 

The union of sets A and B. 

The intersection of sets A and B. 

The set of elements of A that are not elements of B. 

2. Ordered pairs, functions, and indexed sets. 

A x B 

f: A -> B 

The collection of all ordered pairs (a,b) such that 

a E A and b E B. 

The function f taking as arguments elements of the 

set A and yielding values in the set B. 



dom(f) 

ran(f) 

3. Real numbers. 
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The domain of the function f; in the previous 

definition, dom(f) = A. 

The range of the function f; in the example above, 

ran(f) is the set of elements of B which are images 

of elements of A under the function f. 

R The set of all real numbers. 

RN The set of ordered N-tuples (rl, ... ,rN) with each r i 
e R. Euclidean N-space. 

sup A 

inf A 

[a,b] 

(a,b) 

(a,b], [a,b) 

The least upper bound of the subset A of R 

(provided it exists). 

The greatest lower bound of the subset A of R 

(provided it exists). 

The closed interval containing all real numbers r 

satisfying a S r S b. 

The open interval containing all real numbers r 

satisfying a < r < b. 

The half-open intervals defined by the conditions a 

< r S b, a S r < b, respectively. 
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4. Differentiation. 

dtf The total derivative of f with respect to t. 

atf The partial derivative of f with respect to t. 

Dtf The material derivative of f. 

5. Miscellaneous. 

MT The transpose of the matrix M. 

trace(T) 

II-II. 

The sum of the diagonal elements of the tensor T. 

The trace of a square matrix is defined similarly. 

The space of all functions f: Q ~ R such that f and 

its derivatives through order k are continuous on Q. 

The L2 norm on functions f: Q ~ R, defined by 

Abbreviated as "-IIL2 , where Q is under-

stood from the context. 

The space of all functions f: Q ~ R such that IIfllL2 

< -. Two such functions f,g E L2(Q) are regarded 

as equivalent if II f - &II L2 = O. 

The boundary of the set Q. 

The maximum norm on functions f: Q ~ R, where Q is 

understood from the context. IIfll .. = sUPQ{f(x)}. 



APPENDIX B 

THERMODYNAMICS OF RESERVOIR FLUIDS 

FROM A GRADIENT-DYNAMIC VIEWPOINT 

This appendix outlines a picture of thermodynamics that is logically 

compatible with the time-varying nature of miscible gas floods but 

yields classical results useful in the calculation of fluid properties 

by equilibrium methods. This picture also furnishes a conceptual link 

between the geometry of thermostatic equilibria and the algebraic 

descriptions derived by Gibbs (1876 and 1878). The dynamic viewpoint 

fo11ws that proposed by Gilmore (1981), and the equilibrium results are 

just the Gibbs conditions for static systems. Thus this appendix 

contains no essentially new results but establishes a foundation for the 

equation-of-state methods presented in Chapter Two. 

Gradient-dynamic postulate. 

For the isothermal fluid system in the reservoir let us identify two 

distinct sets of thermodynamic variables. The first, C, is the control 

set containing ordered N-tup1es (c1,.··,cN) = (w1 ' ... ,wN_1' V) where wi 

is the mole fraction of species i and V is the molar fluid volume, that 

is, the reciprocal of molar fluid density p. The second set, X, is the 

state space containing N-tup1es (sl,···,sN) = (~l""'~N-l' -p) where ~i 

is the (modified) chemical potential of species i and p is the pressure. 

The variables p and V are positive, and the mole fractions must lie in 

[0,1] . 

We shall postulate that the thermodynamic system obeys a gradient­

dynamic law. Specifically, let us assume that there exists an analytic 

function A : X)( C ... R, called the potential and having dimensions 

[ML~/(T~mol)] = [energy/mole], such that 
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d s = - V A (_s. c_) 
t- s 

(B-I) 

where V A is the vector with elements a A las.. This postulate is s 1 

almost surely a simplification of nature; however. it is perhaps a 

plausible approximation for systems not far from stasis. An equation of 

the form (B-I) is in a sense the simplest non-static form of dynamics 

one can assume for the thermodynamic system (Gilmore. 1981. Chapter 1). 

The equilibrium set MA of the system (B-1) is the set of points in X 

x C where dts i = O. i = 1 •..• ,N: 

(B-2) 

A point (!.S) E MA is a stable equilibrium if A has a local minimum 

at (s.c) or. equivalently. if the determinant of Hess [ A (s_.c_») is 
- - s 

positive. where Hess ( A ) denotes the Hessian matrix a2 A las. as.. Let 
s 1 J 

us call (~.~) E MA a thermostatic equilibrium if A has a global 

minimum there. 

These notions of equilibrium correspond to those proposed by Gibbs. 

The thermodynamic system governed by (B-1) exhibits qualitative changes 

in the behavior of stable equilibria at points of C where local minima 

in the potential A disappear. that is. where det[Hess ( A») = O. The 
s 

set 

(B-3) 
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of such points is the spinodal set of A In classical thermostatics, 

KS is the boundary of metastability; in Gibbs' language, KS is the 

boundary of stability against "continuous changes of phase", by which he 

means perturbations not involving the formation of new phases (Gibbs, 

1876 and 1878). 

The thermodynamic system exhibits qualitative changes in the behavior 

of thermostatic equilibria at points of C where the global minimum in 

A shifts from one local minimum to another, so that global equiminima 

occur. The set 

~ = {(~,.s) e MA I (~,S) is a global minimum 

in A and A (~,S) = A (~' ,.s') for some 

(~' 'S') e MA with ~' f s} 

(B-4) 

corresponding to shifts in global minima is the Maxwell set of A . 

Classically, ~ is the boundary between different equilibrium phase 

regimes: on crossing ~ a system in thermostatic equilibrium will 

manifest new phases or the disappearance of previously existing phases. 

In Gibbs' terms, ~ is the boundary of stability against "discontinuous 

changes of phase", that is, perturbations allowing the formation of new 

phases (Gibbs, 1876 and 1878). 

As Gilmore (1981, Chapter 10) shows, it is possible to construct a 

formal identification between the equilibria of the system (B-1) and 

Gibbs' thermostatics. By the implicit function theorem, the conditions 

Vs A = 0 defining MA implicitly define an equation of state ~ = ~(S) at 

all points (~'.s) e MA for which Hesss ( A ) is nonsingular. Let Ic: MA 

~ C be the projection of such points into the control space, so that 

Ic(~(S)'£) = s· The function A: Ic(MA) ~ R defined by 
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(B-5) 

is the molar Helmholtz free energy. 

To complete the correspondence with Gibbs' thermodynamics, identify 

" s = V A(c) .... c-

In particular, the pressure is given by 

- p = ayl 

and the modified chemical potentials are 

A 

11l.' = a A, . W. 
l. 

i=l, ... ,N-l 

(B-6a) 

(B-6b) 

(B-6c) 

It is worth noting that the lli differ from the usual chemical potentials 

P., which are derivatives of A with respect to mole numbers. At stable 
l. 

equilibrium the two stand in the relation 11. = P. - PN, i = 1, ... ,N-l 
l. l. 

(Reid and Beegle, 1971). 

Local thermostatic equilibrium. 

Given the thermodynamic formalism outlined above, it is meaningful to 

ask of a given system whether it evolves with very small departures from 

thermostatic equilibrium. Without examining the detailed experimental 

data needed to answer this question for actual systems, let us briefly 
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discuss some ~onsiderations that lend coherence to the notion of local 

thermostatic equilibrium in miscible gas floods. The gist of the 

argument is that the time scales characteristic of changes governed by 

the transport equations may be much longer than those characteristic of 

the approach to equilibrium governed by (B-1). Hence, to a very good 

approximation the flowing fluids behave as if their thermodynamic 

variables instantaneously attained values corresponding to local 

thermostatic equilibrium. 

The transport equations developed in Chapter One are material 

balances: 

at(pw.) + V-(pw.v.) = 0, 
1 1-1 

i = l, ... ,N 

where 

(B-7) 

(B-8) 

is the mean velocity of species i in the fluids. If we define the mean 
N 

fluid velocity as ~ = I i =1 P wi ~i' sum equation (B-7) over i, and 

denote Dt = at + ~·V, we find 

(B-9) 

where V is the molar volume. In light of this equation and the defini­

tion ui = vi - v, equation (B-7) becomes 



= - V veCw.u./V), 
1~1 
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i = 1, ... ,N-1 

(B-10) 

Therefore the transport equations are equivalent to evolution equations 

for the control variables (wi ' ... ,wN_1 ' V) = c of the thermodynamic 

system. Conceptually, 

(B-11) 

where the ellipsis allows for dependence on other quantities, including 

spatial gradients of control variables. 

For systems in which DtS ; 0 there is no reason to believe that dt~ = 

o exactly. Suppose, though, that the potential A (~,S) and its 

equilibria change in response to (B-11) at a rate comparable to (liT ) = 
c 

max.{(l/c~) Dtc.}, where c~ is some reference value characteristic of 
111 1 

the system. In nature thermodynamic systems exhibit time scales charac-

teristic of the relaxation to equilibrium, governed in this case by 

(B-1). For simple systems such relaxation may obey an exponential decay 

law, while for multispecies systems the behavior can be more complex 

(see Bird et al., 1960, Chapter 21). Let t. be a characteristic time 
1 

for s. to relax to thermostatic equilibrium, and call t = max.{t.}. 
1 max 1 1 

Then the departure of the system from thermostatic equilibrium will be 

small provided T »t (Gilmore, 1981, Chapter 8). In this case a c max 
material point evolves essentially as if it were confined to the 

equilibrium set MA, bifurcating when it intersects the Maxwell set ~. 

In all that follows let us assume that this condition holds. 
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Constraints of multiphase equilibria. 

For single-phase fluids the constraints of local thermostatic 

equilibrium amount to the requirement that A assume its unique global 

minimum for the given values E, and an equilibrium equation of state 

supplies all of the necessary information. In compositional flows, 

however, substantial regions of the reservoir may contain more than one 

fluid phase, each of which corresponds to a distinct global equiminimum 

of A. For such regions the coexisting fluid phases must satisfy not 

only the equation of state but also the criterion that they lie on the 

Maxwell set~. This criterion is equivalent to a well-established set 

of algebraic constraints whose derivation dates from Gibbs' work. We 

shall reproduce the arguments here in language that is consistent with 

the gradient-dynamic postulate. The clear explications of Gibbs (1876 

and 1878), Munster (1970, Chapter 7), and Gilmore (1981, Chapter 5) 

guide the discussions that follow. 

If, at a particular time and place in the reservoir, a vapor and a 

liquid stand in local thermostatic equilibrium, then there must exist 
V V L L V L two global equiminima in A, say (~ 'S ), (~ 'S ) E ~, with ~ ; ~ . 

Consider the response of these minima to changes 6ci in the control 

parameters. By Taylor's theorem, since a A las. = 0 at (sa,ca ) for i = 
l. ., -

1, ... ,N and a = V or L, 

A (~a + 6-:a , ca + 6~) = A a + VcA .6c + O«6~a + 6~)2) 
(B-12) 

where the superscript a indicates evaluation at (~a,~a), a = V or L. 

Thus, to first order in the thermodynamic variables, the response of the 

minima A (sa,ca ) to small changes in the control parameters is 
~ ... 
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(B-l3) 

where a = V or L. 

Using equation (B-13) it is possible to derive conditions defining 

the Maxwell set,~. For a change 6~ applied to points (~V,~V), (~L,£L) 
e ~ to yield perturbed states that also lie in KM, it is necessary 

that 6£ force equal changes in the equal (minimum) values of A , so 

that 6 A V = 6 A L. In symbols, 

(B-14) 

Gilmore (1981, Chapter S) calls this a generalized Clausius-Clapeyron 

equation. 

perturbed points (~v + 6~V, 
C MA allows us to rewrite 

the potential derivatives in terms of the Helmholtz free energy, so by 

equations (B-6), 

a = s 

(B-lS) 

where a = V or L. Since 6c is an arbitrary small perturbation, substi­

tuting (B-1S) into (B-14) for each phase gives 

i = l, ... ,N 

(B-l6a) 

In particular, 
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i=1, ... ,N-1 

(B-16b) 

(B-16c) 

These are precisely Gibbs' conditions. 

Critical point criteria. 

Gibbs (1876 and 1878, pp. 129-133) deduces two algebraic criteria for 

critical points of mUlticomponent systems. The first condition for a 

point (~(~),S) E MA to be a critical point is that it lie at the limit 

of thermostatic equilibria for which two phases coexist, that is, at the 

point where equiminima merge. This requires that the critical point be 

an inflection point of the Helmholtz free energy: 

or, in 

det (a a A) = 0 
c. C. 

1 J 

expanded form, 

a2 A w1 

det 

ava 1 w1 

(B-17a) 

a a.} w1 

= U = 0 

a~ 
(B-17b) 

The second criterion is that (s(c),c) be a limit of points satisfying 

(B-17) for which isothermal variations in the control parameters at 
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equilibrium·can produce unstable phases. Since the system is confined 

to the equilibrium set MA, the condition det(Hesss A) < 0 for insta­

bility reduces through the chain rule to the condition U < O. Thus the 

second criterion for critical points implies that the determinant U does 

not become negative under isothermal perturbations in control parame­

ters, so long as the perturbations leave the system in MA. Under such a 

perturbation 6S, 

(B-18) 

So, to have U(s + 6=) - U(S) ~ 0 for arbitrary isothermal variations 

confined to equilibrium, we must have 

V U(c)e6c = 0 
c - ~ 

(B-19) 

Now for equations (B-17) and (B-19) to have a solution, they must be 

consistent. In particular the null space of the matrix in (B-17) must 

remain invariant when any of the matrix rows is replaced by the vector 

(aU/ac1 , ... , aU/acN). For ~his it is necessary (MUnster, 1970, Chapter 

7) that 

a U avu 
wI 

a a a a~ w2 wI W2 

det = 0 

ava A a~ WI 
(B-20) 
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The critical conditions (B-17) and (B-20) assume a form involving 

lower-order determinants if we apply the Legendre transformation 
h ~ 

A(wl,·.·,wN_l , V) - pV = G(wl, ... ,wN_l , p) defining the Gibbs free 

energy (Reid and Beegle, 1977): 

det = U = 0 

(B-2l) 

a U a U 
wI ,., wN- l 

" a a G a a G 
W2 w2 w2 wN- l 

det = 0 

" a2 " a a G G wN_l wI wN_l 

(B-22) 



APPENDIX C 

THE CORRESPONDENCE BETWEEN ORTHOGONAL 

COLLOCATION AND GALERKIN'S METHOD 

This appendix reviews the algebraic correspondence between orthogonal 

collocation and an approximate Galerkin scheme in one spatial dimension. 

Various investigators, including Douglas and Dupont (1973), Prenter 

(1975, Section 8.8), and Botha and Pinder (1983, Section 4.4) have 

developed this argument as a means of analyzing collocation. Let us 

examine, as a paradigm, the constant-coefficient convection-dispersion 

equation of Section 3.2: 

atw - D. a2w + v a w = 0 
J. X X 

(C-l) 

on a spat.tal domain Q = [O,x ]. To simplify the exposition, let us 
max 

consider the method of lines obtained by discretizing only the spatial 

dimension. 

Given a uniform partition AM of Q with M nodes and mesh Ax, the trial 

function for w(x,t) in the Hermite space H3 (AM) has the form 

~(x,t) W (t) H (x) 
m m 

(C-2) 

Here, K = 2M - 2; wa(x,t) e H3 (AM) satisfies the boundary conditions, 

and the interior basis functions satisfy 
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m = 1, ... ,2M-2 

(C-3) 

Equation (C-2) is just a compact way of writing the Hermite cubic trial 

function without using double subscripts to distinguish the basis 

functions. For the boundary conditions (3.2-4), for example, the 

relationship between the double-subscript notation and the compact 

notation is as follows: 

HU.-2+ j (x), j=O,l, £=l, ... ,M 

(C-4) 

Substituting (C-2) into the left side of (C-1) yields a residual 

R(x,t) = at~ - D. a2~ + v a ~ 
1 X X 

(C-S) 

In terms of this quantity, collocation demands 

R(~,t) = 0, k 1, ... ,2M-2 

(C-6) 

while the Galerkin method requires 

J R(x,t) H (x) dx = 0, 
Q n 

n 1, ... ,2M-2 

(C-7) 
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Consider an approximation to (C-7) in which the integrals are 

replaced by two-point Gauss quadratures on each element [xt ,Xt +I ] of the 

partition ~M: 

K 5 
J R(x,t) H (x) dx = I R(xk,t) Hn(~) + O(~x ) 
Q n m=1 

(C-S) 

Here the values ~ are Gauss points, given by roots of the quadratic 

Legendre polynomials native to each element. These roots x t + t ~x ± 
~x'3 are precisely the orthogonal collocation points. If we neglect the 

5 error O(Ax ), then substituting (C-S) into (C-7) renders the approximate 

Galerkin scheme 

K K 
I I [dtW (t) H (L) - D. W (t) d2H (L) 

k=l m=l m m K 1 m x m K 

(C-9) 

for n = I, ... ,K. 

We can unravel these equations by defining arrays e, E, and W· as 

follows: 

B k = H (xk) n, n 
(C-IOa) 

(C-IOb) 
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(C-I0c) 

where the indices k, m, and n range over 1, ... ,K. In terms of these and 

the vector W = (W1, ... ,W2M _2)T, the approximate Galerkin scheme (C-9) is 

B W· = - B E W 

(C-ll) 

But orthogonal collocation is simply 

W· = - E W 
(C-12) 

Douglas and Dupont (1973) prove that the matrix B is invertible, so 

(C-ll) and (C-12) are equivalent. 
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