

Springer Series in Advanced Manufacturing

Series Editor

Professor D. T. Pham
Intelligent Systems Laboratory
WDA Centre of Enterprise in Manufacturing Engineering
University of Wales Cardiff
PO Box 688
Newport Road
Cardiff
CF2 3ET
UK

Other titles in this series

Assembly Line Design
B. Rekiek and A. Delchambre

Advances in Design
H.A. ElMaraghy and W.H. ElMaraghy (Eds.)

Effective Resource Management in Manufacturing Systems:
Optimization Algorithms in Production Planning
M. Caramia and P. Dell’Olmo

Condition Monitoring and Control for Intelligent Manufacturing
L. Wang and R.X. Gao (Eds.)

Optimal Production Planning for PCB Assembly
W. Ho and P. Ji

Trends in Supply Chain Design and Management: Technologies and Methodologies
Hosang Jung, F. Frank Chen and Bongju Jeong (Eds.)

Process Planning and Scheduling for Distributed Manufacturing
Lihui Wang and Weiming Shen (Eds.)

W.D. Li, S.K. Ong, Andrew Y.C. Nee and
Chris McMahon (Eds.)

Collaborative
Product Design
and Manufacturing
Methodologies
and Applications

123

W.D. Li, PhD, Senior Lecturer
Chris McMahon, Professor

Department of Mechanical Engineering
University of Bath
Bath BA2 7AY, UK

S.K. Ong, PhD, Associate Professor
Andrew Y.C. Nee, PhD, DEng, Professor

Department of Mechanical Engineering
National University of Singapore
9 Engineering Drive 1, 117576 Singapore

British Library Cataloguing in Publication Data
Collaborative product design and manufacturing

methodologies and : applications. - (Springer series in
advanced manufacturing)
1. New products - Management 2. Teams in the workplace
I. Li, W. D.
658.5’75

ISBN-13: 9781846288012

Library of Congress Control Number: 2007923195

Springer Series in Advanced Manufacturing ISSN 1860-5168
ISBN 978-1-84628-801-2 e-ISBN 978-1-84628-802-9 Printed on acid-free paper

© Springer-Verlag London Limited 2007

ABAQUS®, CATIA®, Matrix10™ and SMARTEAM® are trademarks and registered trademarks of Dassault Systémes, Suresnes,
France, http://www.3ds.com/

Access™, ActiveX® and Visual Basic® are trademarks or registered trademarks of Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052-6399, USA, http://www.microsoft.com/

ACIS® is a registered trademark of Spatial Corp., 10955 Westmoor Drive, Suite 425, Westminster, Colorado 80021, USA,
http://www.spatial.com/

MSC.Acumen™ and MSC.Nastran™ are trademarks of MSC.Software Corporation, 2 MacArthur Place, Santa Ana, CA 92707,
USA, http://www.mscsoftware.com/

Alibre Design is a trademark of Alibre Inc., 1701 N. Greenville Avenue, Suite 702, Richardson, TX 75081, USA,
http://www.alibre.com/

ANSYS®, and ANSYS Workbench™ are registered trademarks or trademarks of ANSYS, Inc., Southpointe, 275 Technology
Drive, Canonsburg, PA 15317, USA, http://www.ansys.com/

AutoCAD® and Autodesk Steamline® are registered trademarks of Autodesk, Inc., 111 McInnis Parkway, San Rafael, CA 94903,
USA, http://www.autodesk.com/

CORBA® is a registered trademark of The Object Management Group (OMG), 140 Kendrick Street, Building A, Suite 300,
Needham, MA 02494, USA, http://www.omg.org/

DIVISION™ MockUp, Pro/E®, Pro/INTRALINK®, Windchill®, and Windchill ProjectLink™ are trademarks or registered
trademarks ofParametricTechnology Corporation (PTC), 140 Kendrick Street, Needham, MA 02494,USA, http://www.ptc.com/

eDrawings® is a registered trademark of SolidWorks Corporation, 300 Baker Avenue, Concord, MA 01742, USA,
http://www.solidworks.com/

FIPER™ and iSIGHT™ are trademarks of Engineous Software Inc., 2000 CentreGreen Way, Suite 100, Cary, NC 27513, USA,
http://www.engineous.com/

HyperWorks® and Process Manager™ are trademarks or registered trademarks of Altair Engineering, Inc., 1820 E Big Beaver,
Troy, MI 48083-2031, USA, http://www.altair.com/

IXDesign™isatrademarkofImpactXoftCorp.,22AGreatOaksBoulevard,SanJose,CA95119,USA,http://www.impactxoft.com/

Java™, Java 3D™, EJB™, Enterprise JavaBeans™, and Sun ONE™ are trademarks of Sun Microsystems, Inc., 4150 Network
Circle, Santa Clara, CA 95054, USA, http://www.sun.com/

JSDAI™ is a trademark of LKSoftWare GmbH, Steinweg 1, 36093 Kuenzell, Germany, http://www.lksoft.com/

ModelCenter® is a registered trademark of Phoenix Integration, Inc., 1715 Pratt Drive, Suite 2000, Blacksburg, VA 24060, USA,
http://www.phoenix-int.com/

Parasolid™ and Teamcenter® are trademarks or registered trademarks of UGS Corp., 5800 Granite Parkway, Suite 600, Plano,
TX 75024, USA, http://www.ugs.com/

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the
Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by
any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance
with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this
book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Preface

During the past few decades, there have been major innovation and paradigm shifts
in product development methodologies and strategies. The current R&D trend is
towards the development of collaborative design and manufacturing systems. The
research theme is in line with the growing demand for global cooperative design
and outsourcing in product development to gain better competitive advantage.
Using the collaborative systems, designers and manufacturers can participate in
global design chains and collaborate with partners locally and overseas to pursue
competitive advantages. Furthermore, collaborative systems allow designers to
work closely with suppliers, manufacturing partners and customers across
enterprises’ firewalls to obtain valuable inputs for their design and manufacturing
activities.

From the early 1990s, some major R&D works have been reported, including
the CyberCut system by the University of California at Berkeley; the FIPER
(Federated Intelligent Product EnviRonment) system (FIPER Project,
www.fiperproject.com/fiperindex.htm) funded by NIST; the Web-DPR system by
the Georgia Institute of Technology), etc. Commercial systems include SolidWorks
eDrawing™, Autodesk Streamline™, Impactxoft IX Design™, Onespace™,
SmarTeam™, PTC ProjectLink™ and Windchill™, UGS TeamCentre™, etc.
However, the developed strategies, methodologies and solutions still fall short of
the expectation of the practical needs. They have not been generally accepted due
to the weaknesses and limitations in collaboration management, interactive
capabilities, security of data, real-time and ease of collaboration, etc. Different
culture, educational background, or design habit of people also make it difficult to
organize optimal collaborative design and outsourcing activities. To address the
issues and make collaborative engineering more realistic and applicable, more
efforts are being made.

The aim of this book is to update the relevant and recent research and
development in this field. In this book, thirteen original and innovative chapters
have been included to address the major challenges of developing collaborative
design and manufacturing systems and techniques, with scientific and rigorous
foundations as well as application values. The covered topics include: collaborative
methodologies and strategies between humans, and between systems and humans

vi Preface

to facilitate collaborative design and manufacture; cooperation across domains for
multi-disciplinary design and manufacture; distributed system and service
architectures for collaborative design and manufacture; interoperability of
collaborative systems; new feature- and assembly-based methodologies for
facilitating collaborative design and manufacture; workflow and conflict
resolution/management in collaborative design and manufacture; design process
and design change management in collaborative development, etc.

This book can be used as reference for mechanical/manufacturing/computer
engineering graduate students and researchers in the fields of concurrent
engineering and collaborative engineering for the efficient utilization, deployment
and development of collaborative product design and manufacturing.

During the development of this book, we have received invaluable input and
support from the chapter authors. We are also grateful to the editors of Springer-
Verlag for their patience and professionalism during the editing process.

W.D. Li (Cranfield University)

S.K. Ong (National University of Singapore)
A.Y.C. Nee (National University of Singapore)

C.A. McMahon (Bath University)

 January 2007

Contents

1 An Adaptable Service-based Framework for Distributed Product

Realization

 Jitesh H. Panchal, Hae-Jin Choi, Janet K. Allen, David Rosen

and Farrokh Mistree... 1

 1.1 Introduction ... 2
 1.1.1 Need for an Adaptable Framework .. 3
 1.1.2 An Open Engineering Systems Approach...................................... 3
 1.2 Requirements and Features of an Adaptable Framework 4
 1.3 Review of Capabilities Provided by Existing Frameworks 8
 1.3.1 Web-based Systems ... 8
 1.3.2 Agent-based Systems ... 10
 1.3.2.1 Distributed Object-based Modeling and Evaluation

(DOME) .. 13
 1.3.2.2 NetBuilder .. 13
 1.3.3.3 Web-DPR ... 14
 1.3.3.4 Federated Intelligent Product EnviRonment (FIPER).... 14
 1.4 Motivating Example: Design of Linear Cellular Alloys (LCAs)............. 15
 1.5 X-DPR (eXtensible Distributed Product Realization) Environment 17
 1.5.1 Overview of X-DPR... 17
 1.5.2 Elements of the Framework ... 18
 1.5.2.1 Data Repository.. 20
 1.5.2.2 Process Diagram Tool .. 21
 1.5.2.3 Dynamic UI Generation ... 23
 1.5.2.4 Interface Mapping Tool.. 24
 1.5.2.5 Messaging and Agent Description in X-DPR................. 26
 1.5.2.6 Publishing a Service ... 26
 1.5.2.7 Asset Search Service .. 26
 1.5.3 Using the X-DPR framework for LCAs design............................ 27
 1.5.4 X-DPR as an Adaptable Framework .. 28
 1.6 Conclusions ... 30

viii Contents

 1.7 Acknowledgments ... 32
 1.8 References ... 32

2 A Web-based Intelligent Collaborative System for Engineering Design

Xiaoqing (Frank) Liu, Samir Raorane and Ming C. Leu 37

 2.1 Introduction ... 37
 2.2 Related Work... 38
 2.2.1 Current State-of-the-art on Computer-aided Collaborative

Engineering Design Systems .. 38
 2.2.2 Current State-of-the-art on Argumentation-based Conflict

Resolution ... 39
 2.3 A Web-based Intelligent Collaborative Engineering Design

Environment and Its Application Scenarios... 40
 2.4 Argumentation-based Conflict Resolution in the Collaborative

Engineering Design Environment .. 40
 2.4.1 Structured Argumentation Through Dialog Graph 42
 2.4.2 Argument Reduction Through Fuzzy Inference........................... 43
 2.4.2.1 Linguistic Variable Through Fuzzy Membership

Functions... 45
 2.4.2.2 Fuzzy Inference Rules .. 46
 2.4.2.3 Fuzzy System and Defuzzification................................. 47
 2.4.3 Structured Argumentation Through Dialog Graph 49
 2.5 Design and Implementation ... 49
 2.6 An Application Example.. 50
 2.7 Conclusions .. 56
 2.8 Acknowledgements.. 56
 2.9 References ... 57

3 A Shared VE for Collaborative Product Development in

Manufacturing Enterprises

G. Chryssolouris, M. Pappas, V. Karabatsou, D. Mavrikios

and K. Alexopoulos ... 59

 3.1 Introduction ... 59
 3.2 Background ... 60
 3.3 Building the Shared VE... 61
 3.4 Virtual Environment Functionality .. 63
 3.4.1 Virtual Prototyping Function .. 63
 3.4.2 Behavioral Simulation Function ... 63
 3.4.3 Assembly Support Function.. 64
 3.4.4 Collision Detection Function .. 65
 3.5 Pilot Application .. 65
 3.6 Conclusions and Future Research .. 67
 3.7 Acknowledgements.. 68
 3.8 References ... 68

 Contents ix

4 A ‘Plug-and-Play’ Computing Environment for an Extended

Enterprise

F. Mervyn, A. Senthil Kumar and A. Y. C. Nee ... 71

 4.1 Introduction ... 71
 4.2 Related Research ... 72
 4.3 Application Develoment Framework .. 75
 4.3.1 Geometric Modeling Middleware Services 77
 4.3.1.1 Modeling Functions.. 77
 4.3.1.2 Geometric Data XML File ... 79
 4.4.2.3 Application Relationship Manager (ARM) 80
 4.3.2 Process Data Exchange Middleware Services 83
 4.3.3 Reusable Application Classes ... 84
 4.4 Illustrative Case Study... 84
 4.5 Conclusions ... 89
 4.6 References ... 90

5 Cooperative Design in Building Construction

Yuhua Luo... 93

 5.1 Introduction ... 93
 5.2 System Architecture and Components... 95
 5.2.1 The Cooperative 3D Editor... 96
 5.2.2 The Cooperative Support Platform ... 98
 5.2.3 The Integrated Design Project Database....................................... 98
 5.3 Considerations and Implementation for Collaborative Design................ 99
 5.3.1 Interoperative and Multi-disciplinary ... 99
 5.3.2 The On-line Cooperative Working ... 101
 5.3.3 Design Error Detection During Integration 102
 5.4 System Evaluation ... 103
 5.5 Conclusions ... 106
 5.6 Acknowledgements ... 107
 5.7 References ... 107

6 A Fine-grain and Feature-oriented Product Database for

Collaborative Engineering

Y.–S. Ma, S.–H. Tang and G. Chen... 109

 6.1 Introduction ... 109
 6.2 Generic Feature Model .. 112
 6.2.1 Feature Shape Representation... 113
 6.2.2 Constraint Definition .. 113
 6.2.3 Other Feature Properties ... 114
 6.2.4 Member Functions .. 115
 6.2.5 Application-specific Feature Model ... 116
 6.3 Mapping Mechanisms ... 116

x Contents

 6.3.1 Mapping from Extended EXPRESS Model to ACIS
Workform Format ... 117

 6.3.1.1 Geometry Mapping .. 117
 6.3.1.2 Generic Feature Definition Under ACIS Framework... 118
 6.3.2 Database Representation Schema ... 119
 6.4 The Integration of Solid Modeler and Database.................................... 119
 6.4.1 Feature Model Re-evaluation and Constraint Solving 120
 6.4.2 Save Algorithm... 121
 6.4.3 Restore Algorithm .. 122
 6.5 Feature Model Re-evaluation .. 122
 6.5.1 Problems of Historical-dependent System.................................. 122
 6.5.2 Dynamically Maintaining Feature Precedence Order 124
 6.5.3 History-independent Feature Model Re-evaluation 125
 6.5.3.1 Adding a New Feature Instance 125
 6.5.3.2 Deleting a Feature Instance .. 126
 6.5.3.3 Modifying a Feature Instance....................................... 130
 6.5.3.4 B-rep Evaluation .. 130
 6.6 A Case Study ... 130
 6.7 Conclusions ... 133
 6.8 Acknowledgements ... 134
 6.9 References ... 134

7 A Web-based Framework for Distributed and Collaborative

Manufacturing

M. Mahesh, S. K. Ong and A. Y. C. Nee ... 137

 7.1 Introduction ... 137
 7.2 Distributed and Collaborative Manufacturing 139
 7.3 Proposed Framework and Implementation.. 140
 7.4 A Case Study ... 142
 7.5 Conclusions ... 148
 7.6 References ... 148

8 Wise-ShopFloor: A Portal toward Collaborative Manufacturing

Lihui Wang ... 151

 8.1 Introduction ... 151
 8.2 Enabling Technologies .. 152
 8.3 Wise-ShopFloor Framework ... 153
 8.4 Adaptive Process Planning and Scheduling .. 155
 8.4.1 Architecture Design .. 155
 8.4.2 Machining Process Sequencing .. 156
 8.4.3 Function Block Design And Utilization...................................... 158
 8.4.4 Shop Floor Integration .. 163
 8.5 Web-based Real-time Monitoring and Control 164
 8.5.1 System Configuration ... 164
 8.5.2 Sensor Data Collection for Real-Time Monitoring..................... 165

 Contents xi

 8.5.3 Data Packet Format... 167
 8.5.4 Java 3D Enabled Visualization ... 167
 8.5.5 Web-based Remote CNC Control... 169
 8.6 A Case Study ... 169
 8.7 Conclusions ... 172
 8.8 Acronyms .. 173
 8.9 References ... 174

9 Real Time Distributed Shop Floor Scheduling: An Agent-Based

Service-Oriented Framework

Chun Wang, Kewei Li, Hamada Ghenniwa, Weiming Shen
and Ying Wang.. 175

 9.1 Introduction ... 175
 9.2 Scheduling Problems in Multiple Workcell Shop Floor........................ 176
 9.2.1 Workcell Scheduling Problem .. 177
 9.2.2 Dynamic Scheduling Problem .. 179
 9.2.3 Distributed Scheduling Problem... 180
 9.3 Scheduling Algorithms for Multiple Workcell Shop Floor 181
 9.3.1 Workcell Scheduling Algorithm... 182
 9.3.2 Dynamic Scheduling Algorithm ... 183
 9.3.3 Distributed Scheduling Algorithm.. 185
 9.4 Agent-Based Service-Oriented System Integration 187
 9.4.1 System Overview.. 188
 9.4.2 Dynamic Scheduling Algorithm ... 189
 9.4.3 Scheduler Agent Design ... 190
 9.4.4 Coordination between Scheduler Agent and Real Time
 Controller Agent ... 191
 9.4.5 Coordination between Scheduling Services................................ 192
 9.4.6 System Implementation .. 194
 9.5 A Case Study ... 194
 9.6 Conclusions ... 195
 9.7 References ... 197

10 Leveraging Design Process Related Intellectual Capital – A Key to

Enhancing Enterprise Agility

Jitesh H. Panchal, Marco Gero Fernández, Christiaan J. J. Paredis,
Janet K. Allen and Farrokh Mistree ... 201

 10.1 Design Processes – An Enterprise’s Fundamental Intellectual
Capital .. 202

 10.2 Examples of Design Process Scenarios ... 204
 10.2.1 Description of LCAs design problem ... 205
 10.2.2 LCAs design process strategies .. 206
 10.2.2.1 Strategy 1: Sequential Design – Thermal First........... 206
 10.2.2.2 Strategy 2: Sequential Design – Structural First......... 207
 10.2.2.3 Strategy 3: Set-based Design...................................... 207

xii Contents

 10.2.2.4 Strategy 4: Use of Surrogate Models.......................... 207
 10.2.2.5 Strategy 5: Parallel Iterative Design........................... 208
 10.3 Requirements and Critical Issues for Leveraging Design Process

Related Intellectual Capital.. 209
 10.3.1 Support for Design Information Transformations....................... 209
 10.3.2 Support for Design Decision-making ... 210
 10.3.3 Modeling and Representation of Design Processes 210
 10.3.4 Analyzing Design Processes ... 211
 10.3.5 Synthesizing Design Processes ... 211
 10.4 Research Issues and Strategies for Designing Design Processes 212
 10.4.1 Modeling Design Processes .. 214
 10.4.1.1 Research Issue .. 214
 10.4.1.2 Previous Work.. 214
 10.4.1.3 Research Questions .. 214
 10.4.1.4 Strategy: a Decision-centric Approach....................... 214
 10.4.2 Computational Representations for Design Processes................ 216
 10.4.2.1 Research Issue .. 216
 10.4.1.2 Previous Work.. 216
 10.4.1.3 Research Questions .. 217
 10.4.1.4 Strategy: Separating Declarative Information from

Procedural Information .. 217
 10.4.3 Storage of Design Information.. 218
 10.4.3.1 Research Issue .. 218
 10.4.3.2 Previous Work.. 218
 10.4.3.3 Research Questions .. 219
 10.4.3.4 Strategy: Process Templates....................................... 219
 10.4.4 Developing metrics for assessing design processes 220
 10.4.4.1 Research Issue .. 220
 10.4.4.2 Previous Work.. 221
 10.4.3.3 Research Questions .. 221
 10.4.3.4 Strategy: Process Templates....................................... 221
 10.4.5 Configuring Design Processes .. 222
 10.4.5.1 Research Issue .. 222
 10.4.5.2 Previous Work.. 222
 10.4.5.3 Research Questions .. 222
 10.4.5.4 Strategy: Process Families.. 223
 10.4.6 Configuring Design Processes .. 223
 10.4.6.1 Research Issue .. 223
 10.4.6.2 Previous Work.. 224
 10.4.6.3 Research Questions .. 224
 10.4.6.4 Strategy: Identifying Process Decisions 224
 10.4.7 Integrating Design Processes with Other Processes in PLM 225
 10.4.7.1 Research Issue .. 225
 10.4.7.2 Previous Work.. 225
 10.4.7.3 Research Questions .. 226
 10.4.7.4 Strategy: a Decision-centric Approach....................... 226
 10.5 Conclusions.. 227

 Contents xiii

 10.6 Acknowledgments.. 228
 10.7 References ... 228

11 Manufacturing Information Organization in Product Lifecycle

Management

R. I. M. Young, A. G. Gunendran and A. F. Cutting-Decelle 235

 11.1 Introduction ... 235
 11.2 Information and Knowledge Infrastructures for Manufacture............... 236
 11.3 Context Awareness: Its Significance for Information Organization...... 239
 11.3.1 Product Context .. 239
 11.3.2 Life Cycle Context.. 241
 11.3.3 Context Relationships ... 242
 11.4 Exploiting Manufacturing Standards... 246
 11.4.1 STEP for Manufacturing... 246
 11.4.2 Mandate – Resource, Time And Flow Models 247
 11.4.3 Process Specification Language ... 248
 11.5 Exploiting Product and Process Knowledge in Future 249
 11.6 Conclusions ... 251
 11.7 References ... 252

12 Semantic Interoperability to Support Collaborative Product

Development

Q. Z. Yang and Y. Zhang... 255

 12.1 Introduction ... 255
 12.2 Semantic Interoperability Concepts and Technologies.......................... 257
 12.2.1 Data-driven Interoperability Standard .. 258
 12.2.2 Ontologies... 258
 12.2.3 Product Models ... 260
 12.3 Product Semantics Capturing and STEP Extension Modeling 263
 12.3.1 Representing Semantics in Supplementary Information

Models... 263
 12.3.2 Embedding Supplementary Information in CAD Models........... 264
 12.3.3 Modeling STEP Extensions .. 265
 12.3.4 Capturing Semantics in STEP-compliant Product Models 266
 12.4 Taxonomy and Ontology... 267
 12.4.1 Vocabulary Taxonomy ... 267
 12.4.2 OWL Ontology ... 268
 12.5 Semantics-driven Schema Mapping .. 270
 12.6 Software Prototype Development.. 272
 12.6.1 Software System Architecture .. 272
 12.6.2 Client Toolkits .. 273
 12.6.3 Collaboration Server Components and Services......................... 276
 12.7 Collaboration Scenarios... 278
 12.7.1 Support of Collaborative Design Process 278
 12.7.2 Design Objects Modeling and Semantics Capturing 279

xiv Contents

 12.7.3 Semantics Sharing with Heterogeneous Systems 281
 12.8 Conclusions ... 283
 12.9 Acknowledgements ... 284
 12.10Acronyms .. 284
 12.11 References ... 284

13 A Proposal of Distributed Virtual Factory for Collaborative

Production Management

Toshiya Kaihara, Susumu Fujii and Kentaro Sashio...................................... 287

 13.1 Introduction ... 287
 13.2 Distributed Virtual Factory.. 288
 13.2.1 Concept... 288
 13.2.2 Structure.. 289
 13.2.3 Time Bucket Mechanism.. 289
 13.3 Cost Analysis... 291
 13.3.1 Cost Analysis In Manufacturing Systems................................... 291
 13.3.2 Activity Based Costing (ABC) ... 291
 13.3.3 DVF and ABC .. 292
 13.3.4 Manufacturing Model ... 292
 13.3.5 Formulations for Cost ... 292
 13.4 Experimental Results... 297
 13.4.1 Simulation Model ... 297
 13.4.2 Total Factory Management in DVF.. 297
 13.4.3 Cost Analysys ... 300
 13.5 Conclusions ... 301
 13.6 References ... 303

Index.. 305

1

An Adaptable Service-based Framework for

Distributed Product Realization

Jitesh H. Panchal, Hae-Jin Choi, Janet K. Allen, David Rosen and Farrokh Mistree

Systems Realization Laboratory

G.W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology, USA

In this chapter, we propose a service-based engineering framework to support
distributed product realization. Adaptability is the key strength of this framework,
which arises from an appropriate balance between the ease of use of the framework
and the flexibility for reconfiguration. Standardization of the interfaces between
services permits communication between diverse software agents and relieves
users from having to handle routine operations, resulting in the ease of use of the
framework. Flexibility of the framework’s configuration allows users to rapidly
reconfigure the framework to changing design processes, and reduces the burden of
customization. The capabilities for this adaptable distributed product realization
framework are developed based on the Open Engineering Systems paradigm.
Various existing distributed frameworks are evaluated against the requirements and
missing features are identified. Our efforts towards the development of such a
framework – the eXtensible Distributed Product Realization (X-DPR) environment
are discussed. X-DPR is flexible and applicable to general industrial product
realization processes. It is used to integrate distributed, collaborative product
realization activities over the Internet. We trace the development of the framework
based on design requirements. Features of X-DPR are implemented to satisfy the
requirements. X-DPR is compared to existing engineering frameworks based on
the required features. The key words and phrases used in this chapter are defined
below.

Agent – Software component that can be invoked remotely to perform tasks in
a product realization process.

Client – A software component that requests services from remote agents.
Framework – A computational backbone that facilitates deployment and

utilization of agents.
Open Engineering Systems – Systems of industrial products, services, and/or

processes that are readily adaptable to changes in their environment which enable

2 Collaborative Product Design and Manufacturing Methodologies and Applications

producers to remain competitive in a global marketplace through continuous
improvement and indefinite growth of an existing technological base.

Service – An activity that an agent can perform based upon a client’s request.

1.1 Introduction

1.1.1 Need for an Adaptable Framework

Competition, globalization, a decreasing half-life of information, and greater
product complexity necessitate the effective utilization of distributed resources and
the management of the derived information. A distributed product realization
process consists of a philosophy, a systematic approach and implementation
methods to organizing product development activities. This process must be able
to incorporate information from all parts of the product lifecycle. It is intended to
support collaborative, concurrent decision making by geographically dispersed
engineers who have different goals, knowledge, experiences, tools and resources.
Software frameworks that facilitate globally distributed design and manufacturing
activities are becoming more and more important, and many universities and
industries have developed specific frameworks to complete specific tasks.
However, in these frameworks, there is often a trade-off between agility, flexibility
and implementation/customization effort.

If an engineering framework is implemented as middleware, it may be flexible
enough to be useful for various product realization processes, but requires a
significant effort to particularize it for a specific process. Middleware tools free
users from having to write their own routines to handle reliable data transfer
between applications or from having to worry about complexities when multiple
systems are integrated. However, users still must write codes to integrate
application functionalities. Examples of middleware toolkits include OMG’s
CORBA (Common Object Request Broker Architecture) [1] and Microsoft’s
DCOM (Distributed Component Object Model) [2]. On the other hand, if an
engineering framework is developed as end-user software, the user must only put
forth minimal effort but, in general, these frameworks are inflexible and cannot be
modified easily when new situations arise, such as, when the company’s design
processes change. In other words, middleware tools provide standardization of
communication protocols and leave a lot of integration work to the users whereas
engineering frameworks (end-user software) provide easier integration capabilities
but are not flexible. Hence, choosing between the flexibility and ease-of-use of
engineering frameworks is one of the primary challenges.

Using a simple example, we demonstrate why an adaptable engineering
framework is necessary. Imagine an engineering designer developing a simulation
program and wanting to deploy it to a network so that it is available remotely for
other engineers. To do this, a designer needs to do the following:

1. Implement a message and data construct to convey specifications (input
and output) and data to and from the simulation program,

 An Adaptable Service-based Framework for Distributed Product Realization 3

2. On the server side, a designer needs to develop a separate wrapper (a small
main procedure to be called from other software) in addition to his or her
simulation program because, in most cases, it is not possible for a
framework to access directly the simulation program,

3. Develop a service description file (or documents) containing input and
output specifications and related information about the deployment of the
simulation program to let other engineers know how to use the service,

4. Notify the framework system that a new simulation service is available by
registering the service on a registry server, and

5. On the client side, a designer needs to develop a user interface to get input
parameters from a client and show output.

In this case, we assume that a pre-existing framework is configured and the
deployment of the program is simple; however, the type of work to be done is not
so simple. The effort for deploying these software applications is enormous and is
discouraging if we think about the number of applications (e.g., analysis,
simulation, optimization, decision support, etc.) required in a general engineering
design scenario. The problem is further complicated if a) the applications need to
be changed and updated frequently, or b) the design processes in which these
applications are used are changed. For example, in the case of changing design
processes, the interfaces between different applications should be changed, which
requires significant effort. These are some of the main obstacles preventing
distributed engineering frameworks from being useful for distributed collaborative
product realization in global industry. Therefore, we propose an adaptable
engineering framework for distributed product realization, which has both

flexibility and usability in application for industrial product realization.
Scope and Focus: We realize that there is a plethora of challenges related to the

collaborative engineering frameworks including the development of standards for
information representation, communication between heterogeneous resources,
seamless flow of information between humans and computers, methods for
efficient collaboration between designers, strategies for conflict resolution,
engineering repositories, coordination and transaction management [3]. However,
due to the extensive scope of this topic, and to limit the scope of this chapter, we

focus on addressing the challenge of balancing flexibility and ease-of-use through
the appropriate standardization in engineering frameworks, thereby making the

framework more adaptable. The focus is on a framework where multiple software
applications are deployed as agents, providing services to human designers. The
design processes discussed in this chapter are limited to simulation-based design
processes. The processes involving communication between humans will be
considered in future publications.

1.1.2 An Open Engineering Systems Approach

Our approach to developing an adaptable distributed computing framework is
based on the Open Engineering Systems (OESs) paradigm. We base our discussion
on the following definition of OESs provided by Simpson, et al. [4]: “OESs are
systems of industrial products, services, and/or processes that are readily

4 Collaborative Product Design and Manufacturing Methodologies and Applications

adaptable to changes in their environment which enable producers to remain
competitive in a global marketplace through continuous improvement and

indefinite growth of an existing technological base” [4]. The basic OES premise
is that a quality product should be brought to market as quickly as possible and
then that a product line is continuously developed in an effort to remain
competitive. Thus, OESs must be adaptable to changes in the market, technology,
the supply/resource chain, the system environment, and government/legislation
changes. As only some of these changes can be predicted, as much flexibility as
possible must be maintained as long as possible to ensure product adaptability.
Flexibility is achieved by incorporating the following characteristics:

1. Modularity: the relationship between the functional and physical structures
of products, so that there is a one-to-one correspondence between physical
structures and a minimization of unintended interactions [4].

2. Mutability: the capability of a system to be contorted or reshaped in
response to changing requirements or environmental conditions [4].

3. Robustness: the capability of a system to function properly despite small
environmental changes or noise [5].

A distributed computing framework also must satisfy the OESs paradigm. From
a software framework perspective, modularity refers to the modularity of various
components of the framework so that changes in any component do not require
major changes in other components. Mutability refers to the capability of the
framework to be reconfigured easily when there is a change in the requirements.
Robustness refers to the capability of the framework to function properly despite
the noise factors like network failures, unexpected usage, etc. In the design of an
adaptable framework, each of these three characteristics provides requirements that
influence the framework’s form and function. It is important to realize that the
word “Open” as used in this chapter is different from the “open source” software
applications where the source code is freely available. In this chapter, openness

refers to the ability of a system to be readily adaptable to changes either inside or
outside it.

These requirements and desirable features of an adaptable framework are
discussed in Section 1.2. A literature review of distributed computing frameworks
is presented in Section 1.3 and these frameworks are evaluated based on OESs
requirements. In Section 1.4, we provide a motivating design scenario of Linear
Cellular Alloys design. In Section 1.5, we discuss the development of an open,
adaptable framework, the eXtensible Distributed Product Realization (X-DPR)
environment, X-DPR. Finally, in Section 1.6, we close the chapter with
suggestions for future developments and a summary of our achievements.

1.2 Requirements and Features of an Adaptable Framework

From the OESs perspective, in this section, we discuss the requirements for an
adaptable framework. There are many additional requirements if the framework is
also to be distributed, but in this chapter, we emphasize only the requirements for

 An Adaptable Service-based Framework for Distributed Product Realization 5

an adaptable framework in Table 1.1. These requirements are discussed more
completely following Table 1.1.

1. Adaptability to network architecture changes or malfunction (framework

modularity)

To reduce the impact of network environment changes or malfunction, it is
essential to reduce interdependence of communication components. The server-
client communication protocol is dependent on the server. Therefore, server
changes or malfunction can cause serious communication problems. Thus, the
communication protocol must support highly independent communication.

Table 1.1. Requirements and associated features for an adaptable framework

Requirements of an adaptable

framework to support distributed

product realization

Necessary features of the framework

which will satisfy the requirements

1. Adaptability to network architecture
changes or malfunction (modularity)

Mutually independent communication
protocols

2. Usability on heterogeneous platforms
with heterogeneous operating systems
(robustness)

Computing platform independence

3. Adaptability in the face of
heterogeneous programming languages
for different agents (robustness)

Interoperability interface independent of
the programming language

4. Capability to transmit message and
data changes (robustness)

Generalized construct of message and
data

5. Rapid reconfiguration of the product
realization environment (mutability)

Process editing capability
Ease of re-assigning a task in a process
to an agent service
Mapping of information between tasks
Maintaining consistency between the
agent services’ description and the
client’s user interface
Having a standard for the description of
engineering services
Managements agents’ services

6. Minimizing the impact of agent service
changes (modularity)

Process task decomposition capability

7. Readiness for future expansion
(robustness)

Compatibility with standard Web
service frameworks

8. Readiness for discrepancy of process
information (robustness)

Sharing common process workspace
Real-time management of process
information

2. Usability on heterogeneous platforms with heterogeneous operating systems

(framework robustness)

Software agents (either service providers or clients) reside on different kinds of
machines, e.g., desktops, mainframes, laptops or PDAs. They can be located
anywhere on the globe, run with various operating systems, and can be connected

6 Collaborative Product Design and Manufacturing Methodologies and Applications

through the Internet. In a general design-manufacture environment, examples of
agents might include analysis codes, CAD (Computer-Aided Design) modelers,
optimization routines, etc. These agents can also be manufacturing equipments or
even human engineers providing some kinds of services. A service provider (or a
client) on any platform must be able to deploy (or access) other services using
framework components (server- or client-side applications) without having to
implement a version of framework components, which is compatible with his or
her platform. An adaptable framework must be able to support the engineering
activity independent of the computing platform.

3. Adaptability in the face of heterogeneous programming languages for

different agents (framework robustness)

Most engineering frameworks use individual wrappers for each agent’s service.
These wrappers must be deployed because of incompatibility between third party
software programming languages and the framework’s programming languages.
The implementation of separate wrappers is not only tedious but also limits
accessibility to some details about the service. Therefore, a programming

language independent interoperability interface is important for a framework that
is to be adaptable.

4. Capability to transmit message and data changes (framework robustness)

One of the most important issues in developing an adaptable framework is
formulating standard message and data streams so that they are product and
process independent. For example, a design specification of a gear needs three
variables: number of teeth, gear module, and tooth thickness. When an engineer
also wants to include manufacturing information in the specification, it is desirable
if the framework administrator does not have to form a different message construct
to convey the new gear design variables. This is impossible without a generalized
message and data construct. This problem occurs whenever design specifications
change and it becomes even worse when the product or process changes. The types
of information transmitted are general information (such as message headers),
parameters (input and output), and engineering data (such as CAD files). Ideally
either this information should be encapsulated separately and attached together
with the message, or, the message itself should be flexible enough to capture
information about different kinds of inputs and outputs. A generalized construct
for transmitting message and data, valid for any engineering task, is necessary.

5. Rapid reconfiguration of a product realization environment (framework

mutability)

Reconfiguration of a product realization environment includes remodeling the
product realization process, reassigning a task to another agent, and modifying
(adding, removing, or changing) agents. An adaptable framework should support
users rapidly reconfiguring their environment without modifying code or
recompiling the framework.

When a new product realization project begins, it is necessary to model the
process rapidly and efficiently. Even in the middle of a product realization process,
it may be necessary to change the process. Therefore, a convenient product

 An Adaptable Service-based Framework for Distributed Product Realization 7

realization process modeling capability is necessary. An adaptable framework
should be able to easily assign a task to an agent service using a process
representation User Interface (UI).

In a generic framework where different applications may provide vastly
different functionalities, it is very likely that the outputs of one service are not
identical to the required inputs of another agent. In other words, it is reasonable to
assume that the interfaces between agents are not standardized; therefore, it is
important to develop a specification mapping capability to connect the output of
one task to the input of another task.

Various tasks in a process can be assigned to agents and can be executed by the
agents. If an agent does not require any input from the user, it can be executed
directly in the predefined process without interacting with the user. However, if
the agent needs user input, a graphical user interface must be developed. As the
interactions of the service with the user are different from case to case, different
graphical user interfaces are required for different agents. If large numbers of
agent services are incorporated within a product realization process, it becomes
nearly impossible to create the required number of client-side user interfaces, also,
agents for tasks change or are upgraded from time to time. Therefore, the
capability of maintaining consistency between agent service description and
client’s user interface is very important.

To support rapid reconfiguration, a user of the framework should be able to
search for, collect, index and archive information about available agent services
inside a framework. This is not a direct requirement for an adaptable framework,
but it is an essential feature, which supports the mutability of a framework. The
first step in searching for appropriate available agents anywhere in the world is the
definition, characterization, and standardized description of engineering services.
A Web services definition language (Web Service Description Language –WSDL
[6]) for e-commerce in our domain of application has already been developed.
Definitions and standards of services in WSDL, however, are quite different from
those required in the engineering domain and are therefore inappropriate for
describing engineering Web services. Consequently, there is a need for developing
engineering service description standards to make remote parsing of available
agents possible. Contingent upon the development of an engineering service
description language, further research might focus on archiving, searching and

selecting engineering agents’ services.

6. Minimizing the impact of agent service changes (framework modularity)

An adaptable framework should be capable of minimizing the impact of agent
service changes. For example, while designing an automobile, one group of
designers can work on the engine and another group of designers can work on the
structural strength analysis. These groups can further be divided into smaller
groups who are distributed across the globe. If one of the divided structural
strength analysis tasks should be replaced by a new task, the user of the framework
should have the capability of decomposing the tasks into small processes so only a
small change in the divided task is needed. However, if the framework doesn’t
have a task decomposition function, the large upper level task must be modified

8 Collaborative Product Design and Manufacturing Methodologies and Applications

and deployed again. Therefore, the framework should have a task decomposition
capability to minimize the impact of service changes.

7. Readiness for future expansion (framework robustness)

The system should be compatible with other standard web services frameworks
such as MS .NET, and Sun ONE because a product realization process is not a
stand-alone engineering process but is intimately related to other business
frameworks such as applications for resource management, supply chain,
management etc. Hence, an effort should be made to make the framework to
conform to industry standards.

8. Readiness for discrepancy of process information (framework robustness)

Even if there are no environmental changes, the distributed framework changes due
to participants’ input as a product realization process proceeds. Discrepancy about
process information among users in distributed product realization occurs because
of the ever-changing framework status during a process. A designer might want to
know how other engineers’ work is progressing and when that work will be done.
Unlike a business framework, an engineering framework may have relatively long
transaction times between service providers and clients; therefore, it is essential to
share information about agent service availability. To facilitate these needs, an
adaptable framework should be able to share the common process workspace
displaying real time process and agent service status. This need leads to the
requirement for real-time management of process information because this
information is produced globally, and needs to be collected and managed
systematically.

Desirable requirements and the appropriate features of an adaptable framework
are discussed in this section. Although the requirements in this section are
presented in the context of engineering frameworks, they are valid for any general
distributed computer framework. These requirements and features are revisited in
Sections 1.3 and 1.4 to review the capabilities of frameworks presented in the
literature and to compare them with the X-DPR framework. Now, we move on to
Section 1.3, where we review the existing frameworks with a mindset of OESs-
based requirements presented in this section.

1.3 Review of Capabilities Provided by Existing Frameworks

The approaches for distributed collaborative design can be broadly classified into
two categories: Web-based systems and agent-based systems [7]. These categories
are discussed in Sections 1.3.1and 1.3.2 respectively.

1.3.1 Web-based Systems

The Web-based systems use the client server architecture with the Internet as a
backbone for communication. The Web-based architecture supports multiple teams
to access the central information base and to communicate through a central Web
server. The collaboration between designers is generally through tools like chat

 An Adaptable Service-based Framework for Distributed Product Realization 9

tool, white board, Web cam etc. Most of the currently available Web-based tools
are developed using Java technologies. These Web-based systems are used for
remote usage of distributed software applications through applet-servlet pairs [8] or
through other means like LISP [9], PROLOG [10], ActiveX [11] etc. The Web-
based systems can be categorized further into domain specific software integration
tools and general distributed computing tools.

1. Domain specific integration tools

The domain specific integration tools are generally CAD-CAE (Computer-Aided
Engineering) integration tools. Cramer, et al. [12] developed a collaboration
architecture to allow distributed designers to work on the same CAD model
concurrently. The architecture incorporates three components: a server, a controller,
and multiple members. The communication between members is through the
controller and server by exchanging data packets. The system is developed
specifically for exchanging information between CAD and CAE applications. The
system uses CORBA for sharing information between CAD tools and CAE
applications. In this system, the objects and the communication between objects
are clearly defined. The system can be used with other CAE applications only if
the applications provide APIs for interactions. A number of collaborative CAD
tools are developed using VRML files for remote viewing of CAD models. The
Virtual Web Plant [13] is developed for distributed access to engineering data at a
central location. The tool integrates three-dimensional models from various CAD
plant design tools and to display them interactively. It uses VRML for displaying
CAD information remotely. The central data repository is an object-oriented
database. The system also uses Java applets as clients for accessing the central data
repository. Wang, et al., [14] developed a Web-based virtual environment for
mobile phone customization (VMPDS) that allows users to collaborate on
conceptual design of mobile phones. VMPDS is developed using VRML, Java, and
JavaScript. Lin and Afjeh [15] present an XML-based framework for Web-based
aircraft engine simulation. The framework allows easier data flow across different
simulation components. Simpson, et al., [16] present an interactive web-based
product platform customization framework for enhancing customer interaction and
reducing design and manufacturing lead time for custom orders. Other similar
applications for integrating CAD tools over the Internet are discussed in [17], [18],
[19] and [20].

2. General distributed computing applications

Rezayat [21] introduced the notion of an e-Web portal to illustrate how Web-based
standards and distributed object technologies can be integrated to provide
controlled access to any type of information and resource within the extended
enterprise. The author has argued that out of a number of systems that provide
client-server services (including CORBA, DCOM, HTTP/CGI, RPC etc.), only
CORBA and DCOM provide the degree of sophistication needed to implement
practical object-based client server system at an enterprise level. The authors also
recognized a need for using standards like XML for formalizing the semantics of
the information. TeleDM [22] is an e-service test bed for verifying Web-based

10 Collaborative Product Design and Manufacturing Methodologies and Applications

product design developed with the aid of a prototype-manufacturing environment.
A client-server infrastructure with Web-based technologies is used in this test bed.
The clients are Java applets with corresponding servlets on the server side. The
clients can also be CAD tools (AutoCAD, Pro/E, etc.) or RP (Rapid Prototyping)
planner tools (ACIS viewer etc.). The process of ‘design for X’ is modeled as a
design-coordinate-redesign process. Wang, et al., [23] developed a Web-based
generic distributed mechanical system simulation platform based on gluing
algorithm approach. The platform allows the integration of distributed simulations
into a system level simulation. An XML description of individual simulation
models is provided, which is a key element that links together different parts of the
system level simulation model. The individual simulation models are integrated
using a gluing algorithm. The benefits of such an approach include independence
of subsystem models, and support for collaborative design in a supply chain. Other
similar distributed computing applications are: Ansys AI workbench [24],
MSC.Acumen [25], EDS Teamcenter [26], PTC Windchill [27] and Alibre Design
[28].

1.3.2 Agent-based Systems

Similar to the Web-based design systems, agent-based systems also provide a
collaborative environment for the sharing of design information, data and
knowledge among distributed design teams. However, unlike the Web-based
design systems using the client/server architecture, an agent-based system is a
loosely coupled network of problem solvers that work together to solve problems
that are beyond their individual capabilities. The agent-based systems are generally
based on direct communication between agents instead of a client-server type
communication that is common to the Web-based systems. The Web-based
systems are easier to develop using the available technologies. An agent-based
system is desired when the system is rapidly changing and the process is too
complex. Agents are suited for ill-structured and modular systems.

Agent based technologies date back to early nineties when the Web was not
very popular. The agent-based systems are based on simplified architecture. The
basic aim of the agent-based systems is software reusability and flexibility in using
the same software programs for different scenarios. The agents have dynamic
linking with each other. This dynamic linking between agents can be achieved by
having common information exchange protocols, syntax and semantics for
communication. Most agent-based systems (see references [19], [29], [30], [31],
[32]) have used knowledge-based standards for achieving interoperability between
agents. Knowledge based standards involve defining common ontologies and/or
definitions that the agents agree upon. Whenever there is a communication
between different agents, they use the common ontologies. However, internally,
these agents may use different software level standards for processing data. Hence,
this provides flexibility to agents in terms of developing agents. One such
knowledge based agent framework is PACT [29], which is one of the earliest agent
based system for engineering design applications. The PACT framework is
developed with focus towards integrating legacy software tools using knowledge
interchange languages like KQML (Knowledge Query Modeling Language), KIF

 An Adaptable Service-based Framework for Distributed Product Realization 11

(Knowledge Interchange Format), ACL (Agent Communication Language) etc.
The system uses wrappers based on knowledge contained in various systems. A
common ontology is defined for knowledge interoperability between agents. The
PACT system provides flexibility in terms of the fact that the agents can use their
own data models and the tools need to be committed to a single standard for
defining data models. The SHARE project [33] was concerned with developing
open systems for concurrent engineering particularly for design information and
data capturing and sharing. The system provided collaboration services including
multi-media mail, desktop conferencing, online catalog ordering and fabrication
services. Rajagopalan, et al., [34] proposed an agent-based infrastructure to
provide designers with access to multiple layered manufacturing services including
design, process planning and manufacturing service. Madhusudan [35] presents a
Web service-based framework to expose intra-organizational information sources.
In this framework, processes are dynamically composed using artificial intelligence
planning mechanisms. Wu, et al., [36] integrated Web services and the agent
technology and developed an information framework for collaborative product
development. One of the key features of this framework is its flexible client side
product development environment. The framework has been developed to address
the need for negotiation while managing conflicts in engineering design processes.

Four of the most recent frameworks that describe the state-of-art in distributed
frameworks are DOME [34], NetBuilder [11], Web-DPR [62], and FIPER [15].
These four frameworks are selected because they represent agent-based, Web-
based, product-centric, and process-centric frameworks. DOME and NetBuilder
represent agent-based systems. While DOME is a product centric framework
where each agent models a sub-system of the artifact, NetBuilder is a process
centric framework where each agent models an activity in the design process.
WebDPR is selected because it represents the Web-based systems and is a
foundation for the X-DPR framework presented in this chapter. FIPER represents
the current state of commercial distributed design frameworks and is so far the
most advanced commercial engineering framework. In this remaining part of this
section, we review these frameworks in details in the context of requirements
developed in Section 1.2. In Table 1.2, the necessary features of engineering
frameworks, based on the requirements presented in Section 1.2 are listed and
existing frameworks evaluated for these features. From this review, we can
determine what necessary features are missing in these frameworks. DOME,
NetBuilder, Web-DPR and FIPER are discussed in more detail in Sections 1.3.2.1,
1.3.2.2, 1.3.2.3 and 1.3.2.4, respectively.

The capabilities of NetBuilder, Web-DPR and FIPER are summarized in Table
1.2. Each table entry is marked as Fully Implemented or Partially
Implemented. These three frameworks have many features that an adaptable
framework should have, but in each case, the information constructs, e.g., service
description constructs and message constructs, are based on their own protocols
instead of industry standards and the information constructs do not contain enough
content to describe complex engineering tasks. The DOME framework is designed
as product centric and not process centric.

12 Collaborative Product Design and Manufacturing Methodologies and Applications

Table 1.2. Review of distributed engineering frameworks with respect to desirable
adaptable framework features

Necessary

framework features

to satisfy

requirements

DOME

(1998) [37]

NetBuilder

(1998) [38]

Web-DPR

(2001) [8]

FIPER

(2006) [39]

1. Mutually

independent

communication

protocol

Yes Yes No (Client-
Server)

Yes

2. Computing platform

independence

No No Yes (Java) Yes (Java)

3. Interoperability

interface independent

of programming

language

C++ Wrapper
(CORBA)

Wrapping
Toolkit

(CORBA)

Agent
Template

Java wrapper,
FIPER SDK

4. Generalized

construct for message

and data

No Mapping
protocols /data

types

Web-DPR
message
construct

Not
mentioned

5. Editing product

realization process

No Metaprogram
NetEditor

Editing
process file

Workflow
desktop

6. Assigning a task in

a process to an agent

service

Yes Yes Yes Yes

7. Specification

mapping between tasks

No Data type
mapping

No Parameter
Mapping tool

8. Maintaining

consistency between

agent services

description and client

user interface

No No Dynamic
Web-browser

UI

Yes

9. Engineering service

description standard

MDL source
file

Metaprogramm
ing model

No XML
(FIPER’s

own standard)

 10. Management of

agents services

No Resource
Catalogue

Indexing
service

process db

FIPER
Library

 11. Process task

decomposition

Yes Yes No Yes

 12. Compatibility with

other standard web

services frameworks

No No No Uses XML,
SOAP

 13. Sharing common

process workspace

Not mentioned No Process Web
browser

Yes

 14. Real-time

management of

process information

No Yes Coordinator
stores process
logs/Process

db

Yes

Our effort towards an adaptable framework called X-DPR is discussed in
Section 1.1. The X-DPR framework is described with a running example of the
design of Linear Cellular Alloys. This example is described next.

 An Adaptable Service-based Framework for Distributed Product Realization 13

1.3.2.1 Distributed Object-based Modeling and Evaluation (DOME)
The Distributed Object based Modeling and Evaluation (DOME) framework [37]
is intended to integrate designer specified mathematical models for multi-
disciplinary and multi-objective design problems. The focus of the DOME
framework is to create a modeling scheme that handles the different variable types
needed in engineering design; integrate multi-objective evaluation and
optimization with design models; and provide an object based methodology to
facilitate the integration of design models. In this framework, a product design
problem is modeled in terms of interacting objects, called modules, each
representing a specific aspect of the problem. One of the key assumptions of the
framework is that product design problems are decomposable into sub-problems.
The decomposition reflects both the physical subdivision of the product into
components or sub-assemblies and the division of analysis expertise. Each object
represents a subset of an aspect of the problem and acts as a stand-alone model
managing the data and services that it can provide. An integrated design model is
realized by objects representing the different parts of the problem. These objects
are executed simultaneously.

In summary, the DOME environment is focused on simulation-based design
and breaking down the design artifact into sub-systems that can be represented
mathematically and may be distributed over the network. The framework is not
designed with an open system paradigm, but with a product dependent distributed
objects framework, which is more intuitive from a designer’s point of view. It is
platform dependent and, because it uses a CORBA protocol, requires lots of effort
to create wrappers and the appropriate graphical user interfaces. DOME does not
have a supporting tool for the management of objects in the framework and real-
time information handling.

1.3.2.2 NetBuilder
NetBuilder [38] provides a mechanism for coordinating collaborative activities in a
distributed environment. There are two key aspects to the NetBuilder approach.
First, NetBuilder provides a compositional framework that allows designers to
combine individual tools into meta-programs that capture the simulation process.
These meta-programs can be executed and stored for future use. Second,
NetBuilder supports wrapping individual modules so that they can be invoked as
part of meta-programs in a uniform way. NetBuilder leverages mechanisms of
distributed computing such as CORBA to provide a seamless integration of
networked resources. NetBuilder provides the capability of capturing dependencies
among simulation subtasks in terms of links connecting meta-program modules.
When a meta-program is running, the NetBuilder scheduler determines which
modules may be executed by checking to see whether the appropriate input data is
ready. Each analysis tool is wrapped which allows it to accept input and produce
output in a standard format. NetBuilder also contains a module wrapping toolkit to
support the encapsulation of existing tools as CORBA-compliant modules.

NetBuilder has most of the features that are needed for an adaptable framework.
Real-time management of process information is a valuable feature, as is the
mapping communication protocol. However, there are some features which are
only partially implemented, which limits NetBuilder’s usage as an adaptable

14 Collaborative Product Design and Manufacturing Methodologies and Applications

framework. CORBA itself requires that separate wrappers must be developed for
all modules being integrated. The framework enables interfaces between modules
on heterogeneous platforms, but components of the framework (such as meta-
programs) cannot run on heterogeneous platforms. The descriptions of service
assets are clearly defined in the Resource Catalog; however, there is not enough
information for a user to find an appropriate service asset, and the format of the
Resource Catalog is not an industry standard. In summary, NetBuilder enables the
rapid and dynamic assembly of systems distributed on a large scale, but has
limitations in serving as an adaptable framework. However, it represents valuable
progress toward an adaptable engineering framework.

1.3.2.3 Web-DPR
Web-DPR [8] has been developed based on the communication framework of
PRE-RMI [40]. The major objective of Web-DPR is to make agent services
accessible with a simple Java enabled Web browser. The essential components of
the Web-DPR framework are a Web server, framework database, coordinator and
Agent Template [41].

The Web-DPR framework database stores information about available agents,
the event channels they are registered to and other information about the design
process. A client sends a request to the Web server, and this request is then trans-
ferred to event channels. The event channels then forward the request to agents.
Information is transferred between various agents either as messages or as
engineering data. A message is a short note or a command to other engineers,
which is independent of product design domains.

Engineering data includes data files, CAD models, etc. This engineering data is
archived in a central data vault. In Web-DPR, the event is split into message and
engineering data in order to ensure that an agent’s functions are totally independent
of the functions of other agents.

A Java based application, Agent Template, is used to create and deploy agents
easily into the framework. With the Agent Template, users do not need to have
much knowledge about the internal implementation details about the framework.
Web-DPR has features including a general message construct based on Java-RMI,
dynamic Web-browser UI, standardized wrapper (Agent Template), etc. However,
it cannot support the detailed access to remote objects since it wraps distributed
modules using an Agent Template, which only provides abstract access to these
remote objects. The dynamic Web browser UI cannot take range values, nor select
alternatives. The Web-DPR framework does not support parameter mapping
between tasks or task decomposition. This framework uses a Web server to
publish services to the Web so there can be a bottleneck on the Web server.

1.3.2.4 Federated Intelligent Product EnviRonment (FIPER)
FIPER (Federated Intelligent Product EnviRonment) [39] is composed of three
different layers – Core Infrastructure, Core Extensions and Application
Components. The Core Infrastructure provides the foundation for the environment
and is comprised of a collection of services for handling process management and
data communication and storage [42]. The Core Extension contains modules that
can be plugged into the Core Infrastructure and allow organizations to use the

 An Adaptable Service-based Framework for Distributed Product Realization 15

existing IT infrastructure. The Application Components provide the functionality
desired by the users and can be published to the environment. FIPER uses a
standard Java-based wrapping mechanism to allow easy creation of components for
the environment. The FIPER Standard Development Kit (SDK) is provided to help
write necessary Java code and execute it. The FIPER library is a virtually
centralized and physically distributed repository for publishing, searching for and
retrieving components. It facilitates collaboration by sharing the services offered
by the Application Components. It also allows an engineer to assemble
components into a workflow model of his/her design process. Kao, et al., [43]
present the use of FIPER framework for aircraft engine combustor design. FIPER
enables real-time business to business collaboration at GE and Parker.

In terms of the desirable features listed in Section 2, the FIPER framework is
the most advanced. However, it still has some restrictions. Although the processes
in FIPER can be stored as templates and reused for designing the same product
with different specifications, the main restriction is the reusability of processes for
designing different products even if the tasks and distributed applications involved
remain the same. Currently, the processes in FIPER and other similar commercial
frameworks (such as iSIGHT [44] and ModelCenter [45]) are inherently defined as
a series of tasks with flow of product parameters between these tasks. Hence, the
processes defined at a computational level in frameworks such as FIPER cannot be
used to design different products, whose parameter sets are different. The
reusability of processes for different products is addressed by Panchal, et al., in
[46]. Further, FIPER does not support product information modeling.

1.4 Motivating Example: Design of Linear Cellular Alloys

(LCAs)

LCAs are honeycomb materials (see Figure 1.1) which are processed through a
formation and compounding of a slurry (binder phase mixed with metal powder
oxides) which are then extruded under pressure through a multi-stage die and
subjected to drying and reduction into the metallic phase in a hydrogen rich
environment followed by sintering to achieve nearly fully dense metal composites
[47, 48]. A wide range of cell sizes and shapes can be achieved including
functionally graded structures, which provides multi-functional structural and
thermal performance. Cell sizes on the order of half a millimeter and up and cell
wall thicknesses on the order of 50-100 micrometer can be achieved resulting in
very fine as well as very coarse structures. These metallic structures can be
produced with any arbitrary two-dimensional cross-sections. These materials are
suitable for multi-functional applications that involve not only good structural
properties but also good thermal properties [48]. One of the main advantages of
these LCAs is that any desired property can be obtained by suitably designing
these materials. Some of the applications of these materials include heat sink for
microprocessors, combustor liners, etc.

16 Collaborative Product Design and Manufacturing Methodologies and Applications

Heat Source

(Microprocessor)

Cool

Fluid

In

Warm

Fluid

Out

Distributed Forces

Figure 1.1. LCAs with rectangular cells

Requirement

Capture

CAD

Modeling

Thermal

Analysis

Structural

Analysis

Behavior

Evaluation

Update

Geometry

Expected

Behavior

Expected

Behavior +

Geometry

Expected

Behavior +

Geometry +

Simulated

Behavior

Changes in the geometry If the expected behavior is different

than the simulated behavior, the

geometry is changed appropriately

Requirement

Capture

CAD

Modeling

Thermal

Analysis

Structural

Analysis

Behavior

Evaluation

Update

Geometry

Expected

Behavior

Expected

Behavior +

Geometry

Expected

Behavior +

Geometry +

Simulated

Behavior

Changes in the geometry If the expected behavior is different

than the simulated behavior, the

geometry is changed appropriately

Figure 1.2. Design process for multi-functional LCAs

The process of design of LCAs is shown in Figure 1.2. It involves six steps
starting from the requirements gathering phase to the final geometry of LCAs. The
first step is to capture the requirements for designing these LCAs. These
requirements are in terms of the expected behavior of the Linear Cellular Alloys.
These requirements are used to create LCAs’ geometry in a CAD modeling tool.
Based on the experience, the designer starts with a cell geometry, which is
modified later to match the expected behavior with a simulated behavior. The
geometry and material information along with the expected behavior are used to
analyze the performance of LCAs. Since this is a multi-functional application, the
analysis is carried out for structural and thermal requirements. These analyses
provide information about the simulated behavior for given loading (both thermal
and structural). This simulated behavior is compared against the expected behavior.
If these two do not match, appropriate changes are made to the geometric
parameters to obtain the desired performance. Some of these steps in the design
process like thermal and structural analysis are carried out using automated
software applications, whereas other steps like capturing requirements require
manual inputs.

 An Adaptable Service-based Framework for Distributed Product Realization 17

In the next section, we discuss our effort towards an adaptable framework - X-
DPR and show the features and capabilities of X-DPR through distributed design
of LCAs following the design process shown in Figure 1.2. The features of the X-
DPR framework are evaluated against the requirements discussed in Section 1.2.

1.5 X-DPR (eXtensible Distributed Product Realization)

Environment

 In this section, we provide an overview of the framework (Section 1.5.1), discuss
the main features of the framework (Section 1.5.2), use the framework for LCAs
design (Section 1.5.3), and finally, show how the framework can be characterized
as an adaptable framework (Section 1.5.4).

The capabilities of X-DPR framework with respect to requirements discussed
in Section 0 are summarized in Table 1.3. The framework is developed based on
industry standards. The models for capturing and passing information are also
based on various standards.

1.5.1 Overview of X-DPR

The X-DPR framework is designed with peer-to-peer communication between
agents, where each agent is an independent entity communicating with other agents.
A peer-to-peer communication framework enables independent communication
between different agents (see #1 in Table 1.3). X-DPR is an open system in which
different modules can be easily integrated into the system for enhancing the
functionality of the overall system. Engineers can integrate their own applications
residing on their machines with X-DPR, which will help to create a global library
of engineering tools over the Internet. This library can then be integrated with
tools from other areas such as marketing, sales or other business services to realize
a global enterprise. The X-DPR framework uses the Decision Support Problem
Technique [49, 50] to support meta-design, a process of designing systems that
includes partitioning the system for function, partitioning the design process into a
set of decisions and planning the sequence in which these decisions will be made.

The system is designed so that a designer can easily model his/her design
process using visual tools. This capability for meta-design is unique in X-DPR.
Engineers can then connect process models with services available in the global
library using the Internet and execute complete design processes online. X-DPR
provides flexibility at a design process level. It enables designers to design a
process and replace entities of process with other entities later. The framework
allows engineers to develop and execute process models collaboratively. Thus
multiple designers distributed around the globe can work together as a team on
product realization projects. A detailed discussion about each element of the
framework is presented in Section 1.5.2.

18 Collaborative Product Design and Manufacturing Methodologies and Applications

Table 1.3. Capabilities of X-DPR with respect to adaptable framework features

No. Necessary framework features to satisfy

the requirements

X-DPR (2002)

1. Mutually independent communication
protocol

Peer-to-peer

2. Computing platform independence Yes (Java)

3. Interoperability interface independent of
programming language

Language Independent / SOAP

4. Generalized construct of message and data XML based

5. Editing product realization processes Client application process
diagram

6. Assigning a task in a process to an agent
service

Task assigning tool bar and
searching for available assets
using tool bar

7. Specification mapping between tasks Interface Mapping Tool

8. Maintaining consistency between agent
service descriptions and a client’s user
interface

Dynamic UI based on WSDL

9. Engineering service description standard Partially implemented using
WSDL

10. Management of agents services SOAP agent service database

11. Process task decomposition Process diagram construction
toolbar

12. Compatibility with other standard web
services frameworks

Compatible with other SOAP
servers

13. Sharing common process workspace Process diagram white-board and
 central process database

14. Real-time management of process
information

No

1.5.2 Elements of the Framework

In this section, we describe the elements of the X-DPR framework in further detail
and show how these elements fulfill the requirements presented in Section 1.2. The
elements of the X-DPR framework are shown in Figure 1.3 and the capabilities of
the framework are shown in Table 1.3. In Figure 1.3, two agents are shown along
with the client application. The exchange of information between various elements
of the framework is also shown. In the X-DPR framework, an agent is defined as a
software component that can be invoked remotely to perform tasks in a product
realization process. Agents can be invoked by the client application or by other
agents by sending XML messages. On receiving these messages, the agent

 An Adaptable Service-based Framework for Distributed Product Realization 19

processes the input information and replies back with XML messages. Agents in
X-DPR are associated with a) an associated input message template in XML
format, b) a processing mechanism in the form of a software, c) output message
template in XML format, d) a WSDL description file that provides information
about the location of service and way to invoke this agent and e) an XML-based UI
description file (optional) that is used by the client application to generate a custom
user interface. The details of these elements are discussed in Sections 1.5.2.1
through 1.5.2.7.

XML
XML

XMLXML

XML
XML

XMLXML
XMLXMLXML

XMLXML XMLXMLXMLXMLXMLXML

Dat

Archive Archive

Data Repository

ArchiveArchive ArchiveArchive

WSDL
WSDL

WSDLWSDL

Search ServiceSearch Service

SOAPSOAP

Process Diagram Tool

Dynamic UI Generation

Tool

Agent A Input

Output

Agent B

Input

Output

Agent C

Input

Output

Agent D

Input

Output

XML Mapping

Application

Interface Mapping Tool

Data Visualization Tool

Execute

Elements of
Client

Figure 1.3. Block diagram of the X-DPR framework

The client application used to create process diagrams, manage the flow of
information and access agents remotely has four elements – a process diagram tool,
a dynamic UI generation tool, an XML data viewer tool and an XML mapping
application. With the process diagram tool, users can create their own networks of
tasks. These tasks can be assigned to agents available over the Internet. The user
can search for available agents with a search service that is essentially a database
containing the location and description of the agents. Once a task in the process
diagram is assigned to an agent, it can be executed from the process diagram tool.
The dynamic UI generation tool extracts information from the description file
(WSDL) of an agent and creates a UI for the client-based on the inputs taken by the
agent. The XML mapping tool maps the XML-based input-output UIs between
different agents. It facilitates the smooth and seamless flow of information from
one agent to another. The information generated throughout a process is archived
in a data repository. One of the most important capabilities of the client application
is its flexibility to execute any agent remotely by dynamically creating SOAP
messages from the WSDL file and the XML-based agent input template. The

20 Collaborative Product Design and Manufacturing Methodologies and Applications

Java .class files in client application responsible for dynamic agent execution are
packaged as a Java .jar file and deployed with the remote agents so that these
agents can invoke other agents directly.

1.5.2.1 Data Repository

The data repository is a database of all the information processed during the design
process. The data repository in the X-DPR framework is developed using STEP
[51] (STandard for the Exchange of Product data) and the XML standards. STEP is
an international standard for engineering information models. STEP standards have
various predefined schemas that can be reused directly for application specific
information models. STEP standards are used in the X-DPR framework in order to
make the data repository standards based. The Express language [52], which is a
part of the ISO standard (ISO 10303-11) is used for developing the information
model for the product that is being designed. The highest-level schema for the
LCAs product information is shown in Figure 1.4.

Figure 1.4. LCAs information model in Express-G form

In the LCAs design example presented in Section 1.4, the information model
contains:

1. Expected Behavior (i.e., the requirements) (LCA_Expected_Behavior

entity)

 An Adaptable Service-based Framework for Distributed Product Realization 21

2. Form, which consists of

- Topology (Extruded_Cellular_Geometry entity)

- Material used to manufacture the LCAs (LCA_Material entity)

3. Simulated Behavior, which consists of:

- Thermal behavior (Thermal_Behavior entity)

- Structural Behavior (Structural_Behavior entity)

The details of these entities are not presented in this chapter. While developing
the information model supporting LCA design, the following STEP parts are used:
Part 42 (for geometry and topology representation), Part 104 (for finite element
analysis information), Part 45 (for materials information), Part 50 (for
mathematical constructs), and part 47 (for tolerances). The schema is written in an
Express file and an instance is a Part 21 file. The data access from Part 21 file is
carried out using JSDAI toolkit developed by LKSoft [53] The JSDAI Express
Compiler creates Java APIs from STEP Express schemas. These Java APIs are
used to extract information required by different agents from Part 21 files. This
extracted information is formatted as XML files and sent as inputs to agents. This
method facilitates capturing the engineering information in the object-oriented
STEP database and also allows information transfer through standardized, platform
independent XML standard. Although the data repository is an integral component
of the X-DPR framework, its functionality is similar to other agents. It accepts
XML messages from agents that are stored in the repository, and sends back XML
messages when requested by other agents. A user can also implement custom data
repositories as agents in the X-DPR framework. However, these custom data
repositories have to be explicitly instantiated as tasks in design processes using the
process diagram tool discussed next in Section 1.5.2.2.

1.5.2.2 Process Diagram Tool

The process diagram tool, shown in Figure 1.5, is used to model a product
realization process, and then it can be used to invoke the available agents
integrated into the framework. The tool is coded in Java and hence is platform
independent (see #2 in Table 1.3). This tool contains a white-board on which the
process diagram can be created by simple drag and drop operations. The process
diagram construction toolbar aids in this process of creating flow diagrams with
blocks and connecting lines. These blocks represent various tasks in a design
process and the connecting lines indicate the flow of information from task to task.
The tasks can be assigned to any of the Web services available over the network
(see #6 and #10 in Table 1.3). Using the process diagram tool, we can define
process templates that can be edited for specific design problems (see #5 in Table
1.3).

22 Collaborative Product Design and Manufacturing Methodologies and Applications

Task

Process diagram

whiteboard

File transfer toolbarSearch toolbar

Process diagram

construction toolbar
DSP Technique toolbar

Figure 1.5. Process diagram tool in the X-DPR framework

The search toolbar is used to search for available services. The Decision
Support Problem Technique (DSPT) [49] toolbar is used to model a design process
in terms of phases, events and tasks and it also contains links to decision support
tools for the design process. The file transfer tool is used for sending and receiving
files (for example, CAD files) to various agents. The process diagram tool supports
a hierarchical process development decomposing a task into sub-tasks (see #11 in
Table 1.3). This means that a designer can move from a higher level in the process
and then design a particular task as a network of sub-tasks. These processes are
then saved in a central database such that they can be accessed by distributed team
members and software agents (see #13 in Table 1.3). This process database
contains information about the tasks in the process, flow of information between
these tasks, agents assigned to these tasks, the tasks that are currently completed, in
progress, or un-initiated. In the current implementation of X-DPR, the agents are
executed automatically in a sequential fashion. All the tasks that require the
outputs from finished tasks as their inputs are activated as soon as these inputs are
available. Currently, complex and conditional sequencing is not available in the X-
DPR framework.

Implementation of the process diagram tool – The process diagram tool is

implemented using the Swing library in Java. The Java application extends the

JFrame class in javax.swing package. The Java classes used to implement

the process diagram whiteboard are: a) frmInternal.class, which extends the

javax.swing.JinternalFrame class, b) pnlInternal.class, which extends

javax.swing.JPanel class., and c) block.class which extends the

javax.swing.JButton class. The file transfer toolbar contains two buttons to

 An Adaptable Service-based Framework for Distributed Product Realization 23

upload and download files. These files can be any file that the agent needs for
execution or any file as a result of the execution of the agent. This toolbar is
especially useful when the agents require processing of binary files like CAD files.
The implementation of this file transfer tool is carried out using the following

classes: FileUpload.class, ClientPut.class, and

ServerFileTransfer.class. The file transfer is achieved by sending

SOAP attachments between ClientPut.class and

ServerFileTransfer.class.

1.5.2.3 Dynamic UI Generation
If an agent requires user input, a graphical UI must be developed for this purpose.
The kind of interaction of an agent with the user varies from case to case and
different graphical UIs are required for different agents. Since it is not possible to
create a separate UI and code it into the client, a dynamic graphical UI is created
based on the number and types of input that the agent requires.

Implementation of the dynamic UI generation - Two types of dynamic
generation of UI generation are developed in X-DPR. The first type corresponds to
a situation in which the inputs required from the user are very simple – for example,
a few different parameters must be specified in a function. In this case, the
description of the required inputs to the agent can be extracted directly from the
Web service description (WSDL) file. Inputs from the user are generally taken
with simple text boxes. The process of customized UI generation can be
accomplished as follows: (i) the client looks for the WSDL document published by
the service, (ii) from the WSDL document, the client extracts inputs and the
corresponding data types, and (iii) the client generates a graphical UI for the user
inputs. Based on the data entered by the user, the agent is executed.

The second type of UI generation corresponds to a situation where the inputs of
an agent are complex XML tree structures. For example, the input to a design of
experiments agent implemented in iSIGHT [54] is in the form of an XML file
which requires complex interactions with the user. For example, the user must
enter all the DOE parameters and their ranges. The user also needs to enter the type
of Design of Experiment (DOE) to be performed. In this case, the complete
description of the inputs and how the user inputs will be taken are not available in
the Web service description (WSDL) file. In this case, a single XML file
describing the user interface must to created at the agent and deployed with the
agent itself. This XML file contains nodes for individual entities in the UI to be
created such as text box, label, combo box, table, checkbox, radio button, etc. For
each element, an XML tree representation is provided which contains the
information required to generate the UI component. For example, for a label, the
information required to generate is its location on the form, its size and the text of
the label. The XML schemas for some of these elements are standardized in X-
DPR. The client application accesses this description file remotely and a UI is
created automatically at the client for that agent. The process is shown in Figure
1.6.

24 Collaborative Product Design and Manufacturing Methodologies and Applications

Data File (XML)

UI Description

file (XML)

Graphical User

Interface

User Interface

Generator

Application

Client

Agent

Figure 1.6. Dynamic UI generation using the UI description XML file (see Figure 1.3)

In the LCAs example scenario, the inputs to various agents are complex XML
tree structures containing geometry information, boundary conditions, analysis
results etc. The second type of the UI generation technique is used where a
separate XML file describing the UI is created. This UI description XML file is
used by the client application to generate the UI remotely. The dynamic UI
generation tool helps in maintaining consistency between agent service
descriptions and the client’s UI (see #8 in Table 1.3).

1.5.2.4 Interface Mapping Tool
In a generic framework where different applications provide vastly different
functionalities, it is very likely that the output of one agent will not be exactly that
which is required as the input to another agent. To achieve a seamless flow of
information between agents, the outputs need to be converted into a format
compatible with the inputs to other agent. In general, if there are n agents, the
number of conversions required will be n*(n-1). For example, in the LCAs design
example, structural designer creates a response surface to investigate the effect of
design variables (thickness of ribs, overall height of LCAs, etc.) on the overall
strength. The first step in the process is to carry out a design of experiments in the
design space. The design of experiments is performed using a commercial
application – iSIGHT. The result of the DOE is a set of points in the design space
at which the analysis is carried out. The analysis of the component at these points
is carried out in an in-house code or an Finite Element Method (FEM) program
such as ANSYS [55]. The output of the design of experiments from iSIGHT is in
iSIGHT’s own ASCII file format and the input to the ANSYS FEM solver requires
the ANSYS ASCII file format.

For automatic transfer of information from iSIGHT to ANSYS, a designer must
write a parser to convert one file format into another. To overcome this problem of
developing separate converter applications, an interface-mapping tool is created
that can be used to map information output from one agent to the inputs of another
(see #7 in Table 1.3). Here, the term interface refers to the structure of information
input and output by agents. This tool has the capability of mapping the XML
structure from the output of one agent to the XML input of another agent (see
Figure 1.7). The mapping tool shows the tree structures of the output XML file of
one agent and the input XML file of another agent on two sides of a window. The
user selects corresponding information entities (i.e., XML nodes) on the input and
output sides and maps them. Once the mapping is established between two agents,
the mapping rules are saved in a separate XML file for future use. Hence, the users
need to establish the mapping between two file formats only once. It is important

 An Adaptable Service-based Framework for Distributed Product Realization 25

to note here that the mapping tool implemented in X-DPR can only be used with
XML inputs and outputs. In the case of applications such as iSIGHT and ANSYS,
where the inputs/outputs are simple text files, the applications need to be wrapped
(i.e., text files converted into XML files) such that the agents have XML inputs and
outputs. This is also illustrated in the block diagram of X-DPR (see Figure 1.3)
where agents are shown with XML inputs and outputs.

XML XML

Inputs Outputs

XMLXML XMLXML

Inputs Outputs
XMLXML

Inputs Outputs

XMLXMLXMLXML

Inputs Outputs

Agent Agent

Figure 1.7. Mapping of interfaces between two agents

Implementation of interface mapping tool – The implementation of this tool is
done using X-Path, which is a language for specifying the path of an element in an
XML document. The tool consists of the following two components encode in Java

- a) mapping definition UI (XMLMapper.class) and b) mapping execution

class (XMLMapperFromRelations.class). The XML mapping definition

UI is shown in Figure 1.7. The form has two tree elements corresponding to the
XML output of the first agent and the XML input of the second agent. The XML
structures are shown in the tree elements. The user selects an element from either
side and creates the mapping between these elements using the “Map” button. Two
text boxes show the source element path and the destination element path
respectively. These paths correspond to the XPath of the selected elements. The
information about mapping between all the elements is stored in an XML mapping
information file that it can be later used to extract information from the outputs of
the first agent and populate the XML input file of the second agent. The mapping
execution class reads the mapping information file and extracts information from
the XML output file of the first agent and fills up the XML input of the second
agent.

The current implementation of the mapping tool does not support algebraic
manipulation of XML nodes. For example, if we have data about variables ‘a’ and
‘b’ inside two different XML nodes, it is not possible to assign ‘a+b’ or ‘a-b’ etc.
to a node of another XML file. This kind of a facility of algebraic manipulations is
important and planned in the future versions of the framework. Further, the
mapping tool currently supports information mapping only between XML files.
The capabilities of the tool would immensely increase by providing support for
mapping different types of schemas like mapping information from Express
schema to an XML schema.

26 Collaborative Product Design and Manufacturing Methodologies and Applications

1.5.2.5 Messaging and Agent Description in X-DPR
The transfer of information between different software applications in X-DPR is
through XML based standards such as the Simple Object Access Protocol (SOAP)
[56]. SOAP standard for interfacing different software applications is programming
language independent. XML is a platform- and language-neutral standard for
representing information. The benefit of XML is that it separates data from meta-
data (i.e., information about the data). XML is also being adopted as a universal
standard for representing information in distributed computing frameworks. SOAP
is a communication mechanism based on XML. It is also a platform and language
independent standard. Previous communication protocols, such as CORBA,
DCOM, EJB (Enterprise Java Beans) and Java-RMI, share the common problem
that they are incompatible with each other and that the applications deployed with
these protocols cannot be accessed through a firewall. The SOAP protocol
addresses this problem. SOAP uses a simple HTTP request/response-based
communication, allowing it to pass through corporate firewalls [57]. A SOAP
message typically contains an XML message along with an HTTP header.

In X-DPR, we use XML to define interfaces between different design activities
(see #4 in Table 1.3), SOAP for message transfer between distributed applications
over different platforms (see #3 in Table 1.3), and WSDL to describe different
Web services (see #9 in Table 1.3). Since we are using standards common to all
web services based frameworks, X-DPR is compatible with other similar
frameworks (see #12 in Table 1.3).

1.5.2.6 Publishing a Service
The agents are published in the X-DPR framework simply by creating a description
file based on the WSDL standard. The client retrieves the information from the
WSDL description and creates a UI for the agent. WSDL documents can either be
created manually or can be created automatically using commercially available
toolkits. The Microsoft SOAP toolkit [58] can be used to create WSDL document
for COM objects and Systinet Server for Java [59] can be used for creating WSDL
for Java classes.

1.5.2.7 Asset Search Service
The task of searching for agents appropriate for a particular task is implemented as
a Web service in itself. This Web service is called the Search Service. The Search
Service maintains a database of links to WSDL files with a description of the
service. Currently, the new agents in the database are populated manually and the
database is created in the Microsoft Access. However, it is planned that the Search
Service will perform a running search on the Web for WSDL description files.

The agent search service also maintains information about whether the service
is currently in use or not. In the X-DPR framework, an agent’s lifecycle is
described by three states – available, busy, and unavailable. In the available state,
the agent can receive requests for execution from clients or other agents. When the
agent is being executed by the client or another agent, it shifts into the busy state.
The agent shifts between the available and busy state automatically. An agent is
unavailable when it is registered in the database but cannot execute. This may
happen when the agent is physically disconnected from the network. In the current

 An Adaptable Service-based Framework for Distributed Product Realization 27

implementation, the agent developer has to manually set the state to unavailable.
Whenever a user searches for an agent, the search service automatically gives a list
of available and busy agents. Keeping the Search Service as a separate module is
helpful because it can be developed independently of the framework and thus
replaced with a different service at a later date. This also leaves the possibility that
if commercial Web service search engines are developed in the future, they may be
integrated into the framework. The agent search service can be extended in future
by using the standard Universal Description, Discovery, and Integration (UDDI)
protocol. UDDI describes a standard method for publishing, managing, discovering
web based services [60]. UDDI is also based on other XML-based standards such
as SOAP, WSDL, and XML Schema.

Implementation of Asset Search Service - The search service is implemented as

a Java class (SearchDB.class). The Java class performs SQL queries on the

database that contains the following information – a) Agent Name, b) Agent
Description, c) Location of description file (WSDL file), d) Input file template (if
any), e) Output template (if any), f) Location of the user interface description file
(if any) and g) an entry, that specifies the current state of the agent. The interface-
mapping tool described in Section 1.5.5 uses the input and output template files to
map the outputs and inputs of different agents. From the process diagram tool, the
search toolbar can be used to perform a keyword search on agents available for use.
The process diagram tool sends a request to the search service and the search
service returns a list of available agents matching the keywords. The user can
select any of the agents from the list and assign it to the blocks in the process
diagram.

1.5.3 Using the X-DPR Framework for LCAs Design

In the LCAs design example, seven distributed software applications are involved.
These include applications for a) requirements capturing (in-house Java
application), b) problem definition c) design of experiments (iSIGHT), d) thermal
analysis (in-house Matlab code), e) structural analysis (in-house Matlab code), f)
Response Surface Model (iSIGHT), g) updating the geometric parameters (in-
house Java code). These applications are deployed as agents. In order to explain
the use of the X-DPR framework in the context of LCAs design, we revisit the five
tasks listed in Section 1.1 that are performed by an agent developer. The first task
is to specify input and output data constructs for each application. The inputs and
outputs for all the seven applications are described as individual XML files. The
second step is to develop a wrapper for each of these applications. The wrapper
development involves converting the input XML file into the applications native
input format and converting the output from the native format into the XML format
described in the previous step. The wrapper for iSIGHT has been developed in
Visual Basic, and for other applications, it has been developed in Java. The third
step is to develop a service description file for each application to be published as
an agent. This step is performed automatically by the use of applications such as
the Microsoft SOAP toolkit for Visual Basic-based wrappers and using the Systinet
Server for Java-based wrappers. The fourth step is to notify the framework of the
newly available service. This step is performed by adding individual entries to the

28 Collaborative Product Design and Manufacturing Methodologies and Applications

agent database described in Section 1.5.8. The fifth step is to create a UI for the
user interaction with agents if required. The UI for each agent is described for each
agent using the UI description file (WSDL). These UIs are created at the client side
only of the user wants to interact with the agent. Although all of the five steps
described in Section 1.1 are required in the X-DPR framework, the prime
advantage of using an adaptable framework such as X-DPR is its openness that
reduces rework if there is a change in either the design process or the agents
themselves. The features that provide this flexibility to the framework are
discussed in Section 1.7.

Having discussed the activities performed by agent developers in deploying the
applications, we now move on to the steps that the user follows for executing the
LCAs design process remotely. Using the process diagram tool, the user creates a
design process as a network of tasks where each task corresponds to an agent to be
executed remotely. For the LCAs design process, these tasks are – capturing
customer goals in terms of target heat transfer and stiffness of the LCAs, defining
design variables, responses and associated ranges, which are mapped to a design of
experiments task. The design of experiments task outputs a list of points in the
design space where the analyses (thermal and structural) are executed. The output
of the design of experiments task is mapped to the inputs of both thermal and
structural analysis tasks. The outputs of analysis tasks are inputs for the response
surface modeling task where an approximate surface is fit between the input
variables and output variables. The output of the response surface modeling task is
input to a task that updates the LCAs geometry. At this time, these tasks are not
tied to any software agent. The user then performs keyword searches
corresponding to each agent using the search toolbar, which results in a list of
available agents. For example, when the user searches for “Design of Experiments”,
two agents are shown in the list – “iSIGHT” and “Minitab”. Both of these agents
have the similar functionality. The user then selects the suitable agents and assigns
them to tasks defined in the process diagram using the search toolbar. Through this
assignment, the task associated with an agent is linked with the corresponding
WSDL file and also sets up a link with its input and output file template. The user
then maps the outputs and inputs of agents that are linked in the process diagram
using the process diagram tool. For example, the output XML template file of the
design of experiments agent is mapped to the input XML template files for
structural and thermal analyses. After the inputs and outputs are mapped, the
process is executed from the process diagram tool. This initiates an execution chain
of agents wherein the agents are executed sequentially until all the agents have
executed once. Loops of execution are not supported in the current implementation
of X-DPR.

1.5.4 X-DPR as an Adaptable Framework

We have discussed the elements of X-DPR, implemented as an adaptable
framework. The requirements of the framework and associated capabilities of X-
DPR are summarized in Table 1.3. The main features of X-DPR as a standardized
yet flexible framework are:

 An Adaptable Service-based Framework for Distributed Product Realization 29

1. Flexible mapping of information interfaces between agents using the XML

mapping tool

In X-DPR, the Web is used as a backbone along with the associated technologies
(Java, Web browsers, etc.) and standards (XML, SOAP, WSDL, etc.) for
communication. In X-DPR, XML is used because it formalizes the semantics of the
contents of information and facilitates electronic data exchange. As we have seen
previously, most of the earlier frameworks focused on standardizing the structure
of data models and information exchange between agents. This caused problems
while integrating new tools into the framework. Any new tool to be integrated to
the framework must abide by the standardized schemas in which information is
communicated between agents, which limit the flexibility of agents to implement
their own input/output schemas.

The interface-mapping tool helps to achieve flexibility in defining data
structures for storing and passing information. Hence, the agents have flexibility in
defining the structure of information flowing in and out and by using the XML
standard in the X-DPR framework, and therefore, the system is more flexible,
easily configurable and open (see Table 1.1). This provides the required
adaptability when the inputs/outputs of the agents change or when there is a

process change resulting in changes in the agents that interface with each other
(see Section 0). The use of interface mapping tool can also be used for mapping
different domain ontologies. Information schemas from various domains can be
mapped to each other to accomplish an enterprise level transfer of information
rather than just information transfer between software applications.

2. Standardized means of describing UIs

Another important issue while developing distributed agent-based systems is the
way in which users interact with remote agents. Most of the frameworks developed
until now have assumed that a fixed set of agents are deployed into the system and
fixed UIs have been created for each type of agent. However, in an open
engineering system in which it is not known what kinds of agents will be deployed
on the framework and what kinds of interaction will be required by the system, it is
difficult to create individual UIs for each agent. This problem is amplified when
each agent is configured differently for different processes. In X-DPR, dynamic
user interface generation at the client side is used to overcome this problem. This
feature ensures that the UIs can be reused on heterogeneous platforms and for
different programming languages (see Table 1.1). It provides both the adaptability
to changes in UIs without changing the framework, and the ease of use because
changing the UIs only requires changing the associated XML file.

3. Standardized means of representing process information (using the Decision

Support Problem Technique)

In the X-DPR framework, the capability for meta-design is provided using the
Decision Support Problem (DSP) Technique (see Section 1.5.3). It helps designers
rapidly configure design processes and use distributed resources execute the
processes. This capability fulfils the requirement of rapid configuration of the
product realization environment (see Table 1.1).

30 Collaborative Product Design and Manufacturing Methodologies and Applications

4. XML standards-based messaging protocols

The use of the platform and language independent XML-based standards ensures
that the framework is usable on heterogeneous platforms and heterogeneous
programming languages (see Table 1.1).

5. Standardized description of assets using WSDL

Some of the frameworks such as Web-DPR describe some information about an
agent such as the location of the agent and whether it is currently available.
However, there is no information about what kinds of tasks that the agent can
perform so that a remote user can determine the applicability of the agent for the
task at hand. In the X-DPR framework, we use the XML-based standard WSDL to
describe the capabilities of agents and ways that they can be invoked. This
provides the adaptability to changes in agents and their services. This fulfils the
requirement of an adaptable framework to adapt to agent services changes (see
Table 1.1). Whenever there is a change in the services provided by an agent, these
changes are automatically reflected in the corresponding WSDL files. Other
features of the X-DPR framework related to the adaptability requirements are
outlined the Table 1.3. In the next section, we close the chapter by providing future
research directions and summary of our efforts.

1.6 Conclusions

The integration of the communication infrastructure for industry is essential.
Industry and academia have tried to standardize data formats, which are platform
and application independent. There has been a substantial effort to construct
computational communication frameworks to integrate distributed resources
(software, hardware, and human experts); however, those tend to be domain
specific solutions or hard to reconfigure.

We have designed and implemented an adaptable engineering framework for
distributed product realization, X-DPR, which balances the need for flexibility and
standardization. The Open Engineering Systems paradigm, which includes
modularity, mutability, and robustness, is the reference concept for the formulation
of requirements for an adaptable framework (see Section 1.2). These are:

Adaptability to network architecture changes or malfunction

Usability on heterogeneous platform with heterogeneous operating systems

Adaptability in the face of heterogeneous programming languages for
different agents

Ability to transmit message and data changes

Rapid reconfiguration of the product realization environment

Minimizing the impact of agent service changes

Readiness for future expansion

Management of process information to avoid discrepancies

These requirements help us to identify the features an adaptable framework
should have. Four distributed engineering frameworks are reviewed in this chapter.

 An Adaptable Service-based Framework for Distributed Product Realization 31

However, from the literature survey, we conclude that existing frameworks have
some desirable features, but these frameworks do not fully satisfy the necessary
requirements.

The X-DPR framework has been designed as an adaptable framework as
discussed in Section 1.3. The features that balance the requirements discussed in
Section 1.2: flexible mapping of information between agents, a standardized means
for describing user interfaces, a standardized means for representing process
information, a standardized message protocols based on XML and a standardized
description of assets using WSDL. In X-DPR, the existing communication
infrastructure is used as a backbone along with the technologies (Java, Web
browsers, etc.) and standards (XML, SOAP, WSDL, etc.) for communication.
These provide the flexibility and enable the future expansion of the framework.
The interface-mapping tool also helps to achieve this flexibility, by easily allowing
agents to reconfigure information flowing in and out. The Client application
supports rapid reconfiguration of engineering task and decision-making activities
and also task decomposition to formulate hierarchical product realization processes.
Standardized service description files (represented in WSDL) are used for creating
graphical UIs and interacting with agents. In the X-DPR framework, an emerging
industry standard Remote Procedure Call (RPC) protocol, SOAP-based agent
wrapper provides much more flexibility and ease of implementation than is
available in the other frameworks. Workflow information is shared among
distributed users by the Process Diagram Whiteboard in real-time. The most
important advantage of the X-DPR framework is that it is compatible with other
business frameworks. We envision the X-DPR framework as a link between an
engineering framework (that manages design chains) and business framework (that
manages supply chain).

X-DPR satisfies most of the features that are needed for an adaptable
framework; however, there is still a need for further improvement based on the
requirements addressed in Section 1.2. In the X-DPR framework, Web services are
described using WSDL files. As mentioned in Section 1.3, these files are used to
describe functions that can be called remotely in a software program and are used
to index and search for available agents in an agent service database. These are the
reference files to form the dynamic UI for remote users. However, in engineering,
the amount of information currently conveyed in WSDL is inadequate if there are a
number of services available, which provide the similar functionality. Description
files must provide more information about the services. For example, a design of
experiments agent should provide information when a specific technique should be
used. A simulation program should also provide information about the range of
values of input variables for which the program is valid. We are developing an
Extended/Engineering Web Service Description Language (E-WSDL) to meet this
need.

Co-ordination and conflict management play an important role in distributed
engineering design frameworks. Brazier, et al., [61] have categorized these
conflicts into two broad categories: a) conflicts during management of information
content, and b) coordination between activities. The first category includes
conflicting design requirements, and conflicts while updating design description,
whereas the latter category includes design process and agent coordination

32 Collaborative Product Design and Manufacturing Methodologies and Applications

conflicts. In the X-DPR framework, coordination between agents is achieved by
capturing the sequence of agent execution and maintaining their status in the
database (see Section 1.5.8). The X-DPR framework takes advantage of the STEP
data repository and its Java interface discussed in Section 1.5.2.1 for conflict
management during design description update. The X-DPR framework does not
currently implement the conflict management of requirements and the coordination
issues arising when different designers share the same design variables but have
conflicting objectives. Various theoretical frameworks, such as negotiation [62, 63],
game theory [64-68], and Pareto optimality-based methods [69], have been
developed in the literature for coordination between distributed designers and
agents. There has also been a recent interest in the academia in applying different
interaction protocols such as cooperative and non-cooperative game theory-based
protocols for coordination between design teams in decentralized design processes,
where different teams with conflicting objectives share a design space. These
protocols help in the coordination of design decisions in a multi-designer scenario.
So far, these protocols are studied at a theoretical level but have not been
implemented in any distributed design framework. We believe that the next phase
in the evolution of distributed product realization frameworks is in implementing
these efficient methods for designer interactions.

1.7 Acknowledgments

We gratefully acknowledge the support of the National Science Foundation grants
NSF- 0100123, and DMI-0085136.

1.8 References

[1] Schmidt, D. C., 2002, Distributed Object Computing with CORBA
Middleware, http://www.cs.wustl.edu/~schmidt/corba.html

[2] Microsoft, 1996, DCOM Technical Overview, http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomtec.asp

[3] Sriram, R. D., Szykman S. and Durham, D., 2006, “Guest editorial – special
issue on collaborative engineering,” Journal of Computing and Information

Science in Engineering: Special Issue on Collaborative Engineering, 6(2),
pp. 93–95.

[4] Simpson, T. W., Lanutenschlager U. and Mistree, F., 1998, “Mass
customization in the age of information: the case for open engineering
systems,” The Information Revolution: Present and Future Consequences
(W. H. Read and A. L. Porter, Eds.), Ablex Publishing Co., Greenwich, CT,

pp. 49–71.
[5] Rosen, D. W., 1998, “Progress towards a distributed product realization

studio: the rapid tooling testbed,” 3rd IFIP WG 5.2 Workshop, Proceedings
of Workshop on Knowledge Intensive CAD (KIC-3), Tokyo, Japan, pp. 167–
196.

 An Adaptable Service-based Framework for Distributed Product Realization 33

[6] Christensen, E., Curbera, F., Meredith G. and Weerawarana, S., 2001, Web
Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl

[7] Wang, L., Shen, W., Xie, H., Neelamkavil J. and Pardasani, A., 2001,
“Collaborative conceptual design - state of the art and future trends,”
Computer Aided Design, 34(13), pp. 981–996.

[8] Xiao, A. H., Kulkarni, R., Allen, J., Rosen, D. W., Mistree F. and Feng, S.
C., 2001, “A Web based distributed product realization environment,”
ASME Computers in Engineering, Pittsburgh, Pennsylvania. Paper Number:
DETC2001/CIE-21766.

[9] Chalfan, K. M., 1986, “A knowledge system which integrates
heterogeneous software for a design application,” Application of Artificial
Intelligence to Engineering Problems, Southhampton, England.

[10] Rodgers, P. A., Huxor, A. P. and Caldwell, N. H. M., 1999, “Design support
using distributed web based AI tools,” Research in Engineering Design,

11(1), pp. 31–44.
[11] Huang, G. Q., Lee, S. W. and Mak, K. L., 1999, “Web based product and

process data modeling in concurrent 'design for X',” Robotics and Computer
Integrated Manufacturing, 15(1), pp. 53–63.

[12] Cramer, D., Jayaram, U. and Jayaram, S., 2002, “A collaborative
architecture for multiple computer aided engineering applications,” ASME

2002 Design Engineering Technical Conferences, Montreal, Canada. Paper
Number: DETC2002/CIE-34498.

[13] Ebbesmeyer, P., Gausemeier, J., Krumm, H. and Molt, T., 2001, “Virtual
Web plant: an Internet-based plant engineering information system,”
Journal of Computing and Information Science in Engineering, 1(2), pp.
257–260.

[14] Wang, P., Bjarnemo, R. and Motte, D., 2005, “A Web-based interactive
virtual environment for mobile phone customization,” Journal of

Computing and Information Science in Engineering, 5(1), pp. 67–70.
[15] Lin, R. and Afjeh, A. A., 2004, “Development of XML data binding

integration for Web-enabled aircraft engine simulation,” Journal of
Computing and Information Science in Engineering, 4(3), pp. 186–196.

[16] Simpson, T. W., Umapathy, K., Nanda, J., Halbe, S. and Hodge, B., 2003,
“Development of a framework for Web-based product platform
customization,” Journal of Computing and Information Science in
Engineering, 3(2), pp. 119–129.

[17] Wang, F. and Wright, P., 1998, “Internet-based design and manufacturing
on an open architecture machine center,” Japan-USA Symposium on

Flexible Automation, Otsu, Japan, pp. 221–228.
[18] Kim, C. S., Kim, N., Kim, Y., Kang, S. and O'Gardy, P., 1998, “Internet-

based concurrent engineering: an interactive 3d system with markup,”
Proceedings of Concurrent Engineering, Tokyo, Japan, pp. 555–563.

[19] Gupta, S. K., Lin, E., Lo, A. J. and Xu, C., 2002, “Web-based innovation
alert services to support product design evolution,” ASME 2002 Design

Engineering Technical Conferences, Montreal, Canada. Paper Number:
DETC2002/CIE-34462.

34 Collaborative Product Design and Manufacturing Methodologies and Applications

[20] Shyamsundar, N., Dani, T., Sonthi, R. and Gadh, R., 1998, “Shape
abstractions and representations to enable Internet-based collaborative
CAD,” Japan-USA Symposium on Flexible Automation, Otsu, Japan, pp.
229–236.

[21] Rezayat, M., 2000, “The enterprise-Web portal for life-cycle support,”
Computer Aided Design, 32(2), pp. 85–96.

[22] Jiang, P., Fukuda, S. and Raper, S. A., 2002, “TeleDM: an Internet Web
service testbed for fast product design supported by prototype
manufacturing,” Journal of Computing and Information Science in
Engineering, 2(2), pp. 125–131.

[23] Wang, J., Ma, Z.-D. and Hulbert, G. M., 2005, “A distributed mechanical
system simulation platform based on a "gluing algorithm",” Journal of

Computing and Information Science in Engineering, 5(1), pp. 71–76.
[24] ANSYS, 2006, ANSYS Workbench™,

http://www.ansys.com/products/workbench.asp
[25] MSC Software, 2006, MSC.Acumen,

http://www.mscsoftware.com.my/products/software/msc/acumen/index.htm
[26] UGS, 2006, Teamcenter 2005, http://www.ugs.com/products/teamcenter/
[27] PTC, 2003, PTC Windchill, http://www.ptc.com/products/windchill/
[28] Alibre, 2006, Alibre Design 9.1, http://www.alibre.com/products/
[29] Cutkosky, M., Engelmore, R., Fikes, R., Genesereth, M., Gruber, T., Mark,

W., Tenenbaum, J. and Weber, J., 1993, “PACT: an experiment in
integrating concurrent engineering systems,” IEEE Computer, 26(1), pp.
28–37.

[30] Ray, S. R., 2002, “Interoperability standards in the semantic Web,” Journal
of Computing and Information Science in Engineering, 2(1), pp. 65–71.

[31] Rezayat, M., 2000, “Knowledge-based product development using XML
and KC's,” Computer Aided Design, 32(5-6), pp. 299–309.

[32] Olsen, G. R., Cutkosky, M., Tenenbaum, J. andGruber, T. R., 1995,
“Collaborative engineering based on knowledge sharing agreements,”
Concurrent Engineering Research and Applications, 3(2), pp. 145–159.

[33] Toye, G., Cutkosky, M., Leifer, L., Tenenbaum, J. and Glicksman, J., 1994,
“SHARE: a methodology and environment for collaborative product
development,” International Journal of Intelligent and Cooperative

Information Systems, 3(2), pp. 129–153.
[34] Rajagopalan, S., Pinilla, J. M., Losleben, P., Tian, Q. and Gupta, S. K.,

1998, “Integrated design and rapid manufacturing over the Internet,” ASME
1998 Design Engineering Technical Conferences, Atlanta, G.A. Paper
Number: DETC98/CIE-5519.

[35] Madhusudan, T., 2004, “An intelligent mediator-based framework for
enterprise application integration,” Journal of Computing and Information
Science in Engineering, 4(4), pp. 294–304.

[36] Wu, T., Xie, N. and Blackhurst, J., 2004, “Design and implementation of a
distributed information system for collaborative product development,”
Journal of Computing and Information Science in Engineering, 4(4), pp.
281–293.

 An Adaptable Service-based Framework for Distributed Product Realization 35

[37] Pahng, F., Senin, N. and Wallace, D., 1998, “Distribution modeling and
evaluation of product design problems,” Computer Aided Design, 30(6), pp.
411–423.

[38] Dabke, P., Cox, A. and Johnson, D., 1998, “NetBuilder: an environment for
integrating tools and people,” Computer Aided Design, 30(6), pp. 465–472.

[39] Engineous Inc., 2005, FIPER Infrastructure,

http://www.engineous.com/product_FIPERInfrastructure.htm
[40] Gerhard, F. J., Rosen, D. W., Allen, J. and Mistree, F., 2001, “A distributed

product realization environment for design and manufacturing,” Journal of
Computing and Information Science in Engineering, 1(3), pp. 235–244.

[41] Choi, H.-J., 2001, A Framework for Distributed Product Realization, M.S.
Thesis, Woodruff School of Mechanical Engineering, Georgia Institute of
Technology, Atlanta.

[42] Wujek, B. A., Koch, P. N., McMillan, M. and Chiang, W.-S., 2002, “A
distributed component based integration environment for multidisciplinary
optimal and quality design,” 9th AIAA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, Atlanta, GA. Paper Number:
AIAA2002-5476.

[43] Kao, K. J., Seeley, C. E., Yin, S., Kolonay, R. M., Rus, T. and Paradis, M.,
2004, “Business-to-business virtual collaboration of aircraft engine
combustor design,” Journal of Computing and Information Science in
Engineering, 4(4), pp. 365–371.

[44] Engineous Inc., 2004, iSIGHT, Version 8.0,
http://www.engineous.com/product_iSIGHT.htm

[45] Phoenix Integration Inc., 2004, ModelCenter®, Version 5.0,
http://www.phoenix-int.com/products/ModelCenter.html

[46] Panchal, J. H., Fernández, M. G., Paredis, C. J. J. and Mistree, F., 2004,
“Reusable design processes via. modular, executable, decision-centric
templates,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Albany, New York. Paper Number: AIAA-2004-4601.

[47] Hayes, A. M., Wang, A., Dempsey, B. M. and McDowell, D. L., 2001,
“Mechanics of linear cellular alloys,” Proceedings of IMECE, International

Mechanical Engineering Congress and Exposition, New York, NY.
[48] Seepersad, C. C., Dempsey, B. M., Allen, J. K., Mistree, F. and McDowell,

D. L., 2002, “Design of multifunctional honeycomb materials,” 9th
AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Atlanta, GA. Paper Number: Paper No. AIAA-2002-5626.

[49] Bras, B. A. and Mistree, F., 1991, “Designing design process in decision-
based concurrent engineering,” SAE Transactions, Journal of Materials and
Manufacturing, 100, pp. 451–458.

[50] Muster, D. and Mistree, F., 1988, “The decision support problem technique
in engineering design,” International Journal of Applied Engineering

Education, 4(1), pp. 23–33.
[51] Nell, J., 2003, STEP on a Page (ISO 10303), http://www.nist.gov/sc5/soap/
[52] Schenck, D. A. and Wilson, P. R., 1994, Information Modeling: The

EXPRESS Way, Oxford University Press.
[53] LKSoft, 2006, JSDAI, http://www.jsdai.net/

36 Collaborative Product Design and Manufacturing Methodologies and Applications

[54] Engineous Inc., 2001, Product Overview: iSIGHT,
http://www.engineous.com/overview.html

[55] Ansys Inc., 2003, Ansys Products, http://www.ansys.com/ansys/index.htm
[56] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,

Nielsen, H. F., Thatte, S. and Winer, D., 2000, Simple Object Access
Protocol (SOAP) 1.1, http://www.w3.org/TR/SOAP/

[57] Marcato, D., 2002, Distributed Computing With SOAP,
http://www.devx.com/upload/free/features/vcdj/2000/04apr00/dm0400/dm0
400.asp

[58] Microsoft, 2003, SOAP Toolkit 3.0,

http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample
.asp?url=/msdn-files/027/001/948/msdncompositedoc.xml

[59] Systinet Corporation, 2004, Systinet Server for Java,
http://www.systinet.com/products/ssj/overview

[60] OASIS, 2004, Introduction to UDDI: Important Features and Functional
Concepts, http://uddi.org/pubs/uddi-tech-wp.pdf

[61] Brazier, F. M. T., Langen, P. H. G. v. and Treur, J., 1995, “Modeling
conflict management in design: an explicit approach,” Artificial Intelligence

for Engineering Design, Analysis, and Manufacturing, 9(4), pp. 353–366.
[62] Scott, M. J., 1999, Formalizing Negotiation in Engineering Design, PhD

Dissertation, Mechanical Engineering, California Institute of Technology,
Pasadena, CA, USA.

[63] Scott, M. J. and Antonsson, E. K., 1996, “Formalisms for negotiation in
engineering design,” ASME Design Theory and Methodology Conference,
Irvine, CA. Paper Number: 96-DETC/DTM-1525.

[64] Badhrinath, K. and Rao, J. R. J., 1996, “Modeling for concurrent design
using game theory formulations,” Concurrent Engineering: Research and
Applications, 4(4), pp. 389–399.

[65] Lewis, K. and Mistree, F., 1997, “Modeling interaction in multidisciplinary
design: a game theoretic approach,” AIAA Journal, 35(8), pp. 1387-1392.

[66] Lewis, K. and Mistree, F., 1998, “Collaborative, Sequential and Isolated
Decisions in Design,” ASME Journal of Mechanical Design, 120(4), pp.
643–652.

[67] Marston, M., 2000, Game Based Design: A Game Theory Based Approach

to Engineering Design, PhD Dissertation, G. W. Woodruff School of
Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

[68] Rao, S. S. and Freihet, T. I., 1991, “A modified game theory approach to
multiobjective optimization,” Journal of Mechanical Design, 113(3), pp.
286–291.

[69] Petrie, C. J., Webster, T. A. and Cutkosky, M. R., 1995, “Using Pareto
optimality to coordinate distributed agents,” Artificial Intelligence for
Engineering Design, Analysis, and Manufacturing, 9(4), pp. 313–323.

2

A Web-based Intelligent Collaborative System

for Engineering Design

Xiaoqing (Frank) Liu and Samir Raorane

Department of Computer Science, University of Missouri-Rolla, USA

Ming C. Leu

Department of Mechanical and Aerospace Engineering

University of Missouri-Rolla, USA

Design of a modern product is often a very complicated process, which involves
groups of designers, manufacturers, suppliers, and customer representatives.
Conflicts are unavoidable during collaboration among multiple stakeholders, who
have different objectives, requirements, and priorities. Current Web-based
collaborative engineering design systems do not support collaborative conflict
resolution. In this chapter, we present a Web-based intelligent system that we have
developed for collaborative engineering design. It extends a collaborative solid
modeling software system by adding an argumentation-based conflict resolution
tool, a whiteboard, and a chat utility. We have developed an intelligent
computational argumentation model to enable the management of a large scale
argumentation network and resolution of conflicts based on argumentation from
many participants. A Web-based collaborative engineering design system has been
developed based on the above model to resolve conflicts over the Internet by
enabling collaborators to select the most favored design alternative in the design
argumentation from multiple perspectives. An example of collaborative design of
latch mechanism for a solar car using the developed system is presented to show its
effectiveness.

2.1 Introduction

Modern products are increasingly designed via collaborations that are distributed
across people, organizations, and space. Because of the involvement of various

38 Collaborative Product Design and Manufacturing Methodologies and Applications

disciplinary groups in decision making, numerous conflicts exist at every stage of a
collaborative engineering design process [1, 2]. Decisions made by different
groups may not be consistent, components may not physically fit together, and
system interfaces may not be compatible. Although different tools and software
support systems have been developed to facilitate collaborative engineering design
[3-5], the lack of effective intelligent conflict detection and resolution capabilities
still hampers effective and efficient collaborative design.

In this chapter, we present a quantitative argumentation method for
collaborative engineering design. Based on the method, we have developed an
intelligent Web-based collaborative engineering design system that links designers
of engineering systems and facilitates effective and efficient conflict resolution
among them. This system allows multiple designers to design solid models
collaboratively, and facilitates resolution of conflicts effectively through
argumentation.

The chapter is organized as follows. Section 2.2 reviews related work. Section
2.3 describes the architecture for a collaborative engineering design environment.
Section 2.4 explains argumentation-based conflict resolution in collaborative
engineering design. Section 2.5 describes the design and development of a
software system implementing the described method. Section 2.6 presents an
example to illustrate our method and system.

2.2 Related Work

2.2.1 Current State-of-the-art on Computer-aided Collaborative

Engineering Design Systems

We will briefly review the current state-of-the-art on collaborative engineering
design systems. A traditional Computer-Aided Design (CAD) system only allows a
single user to do design while a collaborative CAD system allows multiple
designers to work on a design together. Early research projects in collaborative
CAD systems [1, 5-7] have successfully addressed some engineering design issues
in collaborative environments. They were developed on local area networks, which
are platform dependent, and they were not Web-enabled. It is hard to use them to
support designers in locations thousands of miles away from each other to
collaborate in heterogeneous platforms. There have also been research efforts
toward enabling traditional CAD systems for collaborative design. For example, a
Computer Supported Cooperative Work (CSCW) system [7] was developed using
C++ and AutoCAD for collaborative design. It has a generic model of
collaborative design. Another such system is DOME [5]. It was built by integrating
existing single-user CAD systems using CORBA and C++.

The increasing power of the Internet makes collaborative CAD feasible.
Recently, several Web-based CAD systems have been developed to allow multiple
users from geographically distributed locations to share their design models over
the Internet. They fall into three categories. The first category of Web-based CAD
systems, including C-DeSS [8] and CDFMP [9], integrates Web-based multimedia
tools, such as online chat and online meeting, with Web-based solid model displays

A Web-based Intelligent Collaborative System for Engineering Design 39

so that designers from different locations can share their design ideas over the
Internet. However, users cannot develop and edit their solid models online. The
second category of Web-based CAD systems, including the Internet design studio
[10], WCW [11], WebCAD [12], and NetFEATURE [13], allows multiple users to
share their design over the Internet although multiple users can not develop their
common models concurrently. The Web-based collaborative system for
engineering design recently developed by us has the capabilities of both categories
[14]. The third category of Web-based CAD systems, including CSM [14],
CollabCAD [15], and Alibre Design [16], focuses on collaborative solid modeling.

All of the existing Web-based collaborative design systems provide very little
or no support for detecting conflicts among requirements, exploring design
alternatives, and identifying the best design through argumentation from multiple
perspectives to resolve design conflicts. There is a clear need to develop
fundamental theoretic methodologies of conflict resolution and implement them

with a Web-based collaborative engineering design system.

2.2.2 Current State-of-the-art on Argumentation-based Conflict Resolution

Philosopher Stephen Toulmin developed a very influential model of argumentation
[17] that has guided the development of software tools and systems for supporting
the detection and resolution of conflicts in many knowledge domains.
Argumentation is a process of arriving at conclusions through discussions and
debates. Toulmin’s work has promoted a more informal approach in dealing with
argumentation than formal logic. In the area of engineering design, several
argumentation-based conflict resolution methods and systems have been developed
from Toulmin’s model. The first of them, gIBIS (graphical IBIS), represents the
design dialog as a graph [18]. While representing issues, positions, and arguments,
gIBIS failed to support representation of goals (requirements) and outcomes. IBE
[3] extended gIBIS by integrating a document editor. REMAP [19]
(REpresentation and MAintenance of Process knowledge) extended gIBIS and IBE
by providing the representation of goals, decisions, and design artifacts. As
opposed to these systems, Sillince proposed a more general argumentation model
[20]. His model is a logic model where dialogs are represented as recursive graphs
and the rules of both rhetoric and logic were used to manage the dialog and to
determine when the dialog has reached closure. Alexander [21] described the
incorporation of Toulmin’s approach into a software product (Teleologic DOORS)
that represents the features of arguments in a visual hierarchy to aid the analysis of
positions taken by proponents and opponents of particular design requirements.
The biggest challenge with these systems is that the sizes of their argumentation
networks are often too large to comprehend and therefore it is very difficult to use
them to help make design decisions since they are qualitative and not
computational. In addition, they cannot deal with uncertainties associated with
argumentation from multiple perspectives. In a preliminary study, we developed a
computational argumentation method for capturing and analyzing software design
rationale [22]. Parsons and Jennings [23] proposed a framework, based upon a
system of argumentation, which permits agents to negotiate to establish acceptable
ways to solve problems. QuestMap [4] is a Computer Supported Collaborative

40 Collaborative Product Design and Manufacturing Methodologies and Applications

Argumentation (CSCA) tool developed to support legal argumentation by
equipping the users with the language needed to construct and analyze arguments.
The disadvantage of this tool is its lack of decision making capabilities. HERMES
[24] was developed to aid decision makers reaching a decision, not only by
efficiently structuring the discussion rationale but also by providing reasoning
mechanisms that constantly update the discourse status in order to recommend the
most backed-up alternative. Its disadvantage is that the weighting factor becomes
very ineffective as it is not related to the entered position.

2.3 A Web-based Intelligent Collaborative Engineering

Design Environment and Its Application Scenarios

A prototype Web-based intelligent collaborative system for engineering design has
been developed by us. It extends a collaborative solid modeling tool from Alibre
Co. [16] by adding an argumentation-based conflict resolution tool, a whiteboard,
and a chat utility using a client-server architecture as shown in Figure. 2.1. On the
client side, the system provides user interfaces for argumentation-based conflict
resolution, whiteboards for design alternatives, and chat rooms for real-time
information exchange. On the server side, it manages client communication and
argumentation networks. Alibre Design is a collaborative solid modeling tool for
creating 3D designs and 2D drawings. It allows engineering teams to work together
concurrently over the Internet to create, visualize, review, and modify their designs
and drawings.

In the collaborative design process, when a conflict is detected, an
argumentation-based conflict resolution session will be initiated. A design issue
concerning the conflict is raised first in the session. After multiple design
alternatives are generated by the participants, arguments can be proposed by the
collaborative designers to either support or oppose the design alternatives or
arguments themselves. Our system can help identify the alternative that is most
favored by all participants by considering all arguments to resolve the conflicts.

2.4 Argumentation-based Conflict Resolution in the

Collaborative Engineering Design Environment

We have developed a computational argumentation method for collaborative
engineering design based on our preliminary work on software design rationale
capturing. The argumentation framework of this conflict resolution system is an
extension of the informal IBIS model of argumentation using fuzzy logic. It will
help achieve a consensus among stakeholders and identify the most favorable
design alternative through argumentation by computing the favorability of
individual design alternatives from all arguments in the argumentation network in
an uncertain environment based on fuzzy logic.

A Web-based Intelligent Collaborative System for Engineering Design 41

Figure 2.1. Architecture for a Web-based intelligent collaborative engineering design
environment

The components of the design argumentation model for collaborative
engineering design include stakeholders, requirements, conflicts, design issues,
parts, alternatives, arguments, and decisions, as shown in Figure 2.2. We view
collaborative design as the process of negotiating the resolution of design issues
through dialogs between the stakeholders. A dialog for a given design issue is
represented by the alternatives that are related to the design issue, and the
arguments for or against each alternative. The resolution of a design issue is
represented by a decision that selects an alternative which is most favored.

http http

Whiteboard

Chat area

Argumentation-based
conflict detection and
resolution interface

Communication

management

Argumentation Network
(Web Server)

 Argumentation Network
(Database Server)

Server

…….

Client 1 Client n

Whiteboard

Chat area

Argumentation-based
conflict detection and
resolution interface

Collaborative Solid Modeling

(Alibre Design)

42 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 2.2. Framework for design argumentation

2.4.1 Structured Argumentation Through Dialog Graph

A design dialog for a design issue is captured as a weighted directed graph called a
dialog graph [8], as shown in Figure 2.3. The nodes denoted by circles are
Positions. A position is a statement or assertion that responds to an issue, which is
a problem, concern, or question that requires discussion for the problem solving to
proceed. The nodes denoted by rectangles are Arguments. Arguments are
statements that support or attack Positions. Each Position may have one or more
arguments that either support or attack it. Arcs represent a relationship (attack or
support) from the originating argument node to the terminating argument or
position node. The position node contains the name of the stakeholder posting the
position and the text of the position. Each Argument node contains the name of the
stakeholder posting the argument, the text of the argument and a weight value. The
weight attached to an argument is the Argument Strength. It is the measure of an
argument’s degree of attack or support of either a position or another argument in
the position dialog graph. The weight value is a real number between -1 and 1. A

Stakeholders and their

priorities

Requirements and their

priorities

Design Issues

Alternatives

Design
decision

Arguments
attack/

support

attack/support

refine

Conflict

Parts (Primitives)

A Web-based Intelligent Collaborative System for Engineering Design 43

positive number denotes Support and a negative number denotes Attack while zero
denotes Indecision. The strength of the argument is viewed as a fuzzy set and
linguistic labels are used to represent the strength. It is easy to use linguistic labels,
instead of real numbers, to denote the strength of an argument over another
argument or a position. By doing so fuzzy inference can be used to evaluate a
position. Both linguistic labels on arcs (branches) and strengths of arguments are
given by participants. Since disagreements among participants are inevitable, how
to objectively determine a position’s overall favorability is a major research issue.
A position node contains a label associated with it to give a measure of the strength
of the position based on the strengths of the arguments under it. This measure
represents the overall favorability of the position.

Let us use a simple example to illustrate the above concepts. Suppose that
several designers in multiple locations collaborate to develop a speed reducer.
They may have an issue of its gear design. Two design alternatives, which are
represented as their positions, are proposed by participants. One focuses on cam
and another focuses on linkage. Participants can debate about them by posting their
arguments about their advantages and disadvantages to resolve their conflict.
Another example will be given later to demonstrate how to apply the presented
conflict resolution method.

2.4.2 Argument Reduction Through Fuzzy Inference

In Figure 2.3, we can see some arguments attached to other arguments, by a label
to denote the degree of support or attack on the arc going between arguments, other
than directly attached to the position. For example, A3 has Medium Attack (MA),
and A1 and A5 have Strong Support (SS). Argument reduction is used to reduce
the arguments which are not directly connected to the position, in order to have
them directly connected to the position. For example, argument A3 which is posted
as an argument that attacks argument A1, actually attacks the position P after
argument reduction.

There are four General Argumentation Heuristic Rules that can be formulated
as follows [2].

General Argumentation Heuristic Rule 1: If argument B supports argument
A and argument A supports position P, then argument B supports position
P.

General Argumentation Heuristic Rule 2: If argument B attacks argument
A and argument A supports position P, then argument B attacks position P.

General Argumentation Heuristic Rule 3: If argument B supports argument
A and argument A attacks position P, then argument B attacks position P.

General Argumentation Heuristic Rule 4: If argument B attacks argument
A and argument A attacks position P, then argument B supports position P.

As the linguistic labels used are Strong Support (SS), Medium Support (MS),
Indecisive (I), Medium Attack (MA) and Strong Attack (SA), the above four
General Argumentation Heuristic Rules can be extended to obtain twenty-five
Argumentation Heuristic Rules shown in Figure 2.4.

44 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 2.3. Position dialog graph

SS: Strong Support MS: Medium Support

I: Indecisive MA: Medium Attack

SA: Strong Attack

Figure 2.4. Argumentation heuristic rules

Consider an instance where the strength of the level-1 argument is Strong
Attack (SA) and that of the level-2 argument is Medium Support (MS), then the
reduced strength of the level-2 argument will be Medium Attack (MA) as shown
by the entry in column 3 and row 6 in Figure 2.4.

MA – Medium Attack
MS – Medium
Support

SS – Strong Support

A4

A1

0.8

Oi

A2

0.7

Op

A3

-0.5

Ok

A5

0.7

Oi

0.6

Og

A6

0

Ol

P

Oi

SS – Strong Support

I -Indecisive

SS – Strong Support

A Web-based Intelligent Collaborative System for Engineering Design 45

A fuzzy inference engine has been built to infer the reduced strengths of the
arguments, as discussed later in this section. Using this fuzzy inference engine we
can reduce a given Position Dialog Graph into one in which all the argument nodes
are directly attached to the position node. Consider the example in Figure 2.3,
where we have arguments occurring at level 3. The argument nodes at level 3 can
be reduced and attached to the argument node at level 1. Their reduced strengths
are computed using the fuzzy inference engine, as shown in Figure 2.5.

Figure 2.5. Position dialog graph after one level reduction

Now there is one level of arguments which are not directly attached to the
position. Hence argument reduction has to be performed once again to have the
reduced position dialog graph with all the arguments directly attached to the
position. The arguments at level 2 are reduced using the fuzzy inference engine and
attached directly to the position node, as shown in Figure 2.6.

In the procedure of argument reduction, the fuzzy inference engine takes in two
inputs and generates one output. The inputs are the strengths of the argument to be
reduced and the argument right above it. The output of the fuzzy inference engine
is the strength of the argument after the argument reduction.

2.4.2.1 Linguistic Variable Through Fuzzy Membership Functions

Fuzzy membership functions are used to quantitatively characterize linguistic
systems represented as fuzzy sets. The fuzzy membership function chosen for the
system in our study is the piecewise linear trapezoidal function. Membership
functions are defined by using a,b,c,d to denote the four vertices of the trapezoids.

SS SS

P

A1 A2

0.8

Oi

0.7

Op

A5

-0.5

Oi

A6

0.0

Ol

A4

0.6

Og

A3

-0.5

Ok

MA
MS

I MA

MS

46 Collaborative Product Design and Manufacturing Methodologies and Applications

Five membership functions have been defined for five fuzzy sets. The five fuzzy
sets are Strong Attack (SA: a = -1, b = -1, c = -0.8, d = -0.5), Medium Attack (MA:
a = -0.8, b = -0.6, c = -0.4, d = -0.2), Indecisive (I: a = -0.3, b = 0, c = 0, d = 0.3),
Medium Support (MS: a = 0.2, b = 0.4, c = 0.6, d = 0.8) and Strong Support (SS: a
= 0.5, b = 0.8, c = 1, d = 1). Figure 2.7 shows the five membership functions for
the above five linguistic terms.

Figure 2.6. Position dialog graph after complete reduction

Figure 2.7. Five membership functions

2.4.2.2 Fuzzy Inference Rules

Fuzzy inference rules combine two or more input fuzzy sets and associate with
them an output set. The input sets are combined by means of operators that are
analogous to the usual logical conjunctives “and”, “or”, etc. The fuzzy rules, also
known as argumentation rules, are given in Figure 2.4. The fuzzy or argumentation
rules are stored and represented through the use of the Fuzzy Association Memory
(FAM) matrix shown in Figure 2.8. There are two inputs X and Y for each rule.

P

Oi

A1

0.8

Oi

A2

0.7

Op

A3

-0.5

Ok

A5

-0.5

Oi

A6

0.0

Ol

A4

0.67

Og

 -1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1

0

SA MA I MS SS

A Web-based Intelligent Collaborative System for Engineering Design 47

Each input variable is one of five input sets, i.e., “SS”, “MS”, “I”, “MA”, and
“SA”. The output variable Z is one of five output sets which are same as the five
input sets. Each FAM matrix entry is a fuzzy set that is the output of the fuzzy rule.
For example, the shaded part in Figure 2.8 represents the rule: “If X is Strong
Support (SS) and Y is Strong Attack (SA), then the output Z is Strong Attack
(SA).”

2.4.2.3 Fuzzy System and Defuzzification
The system associated with the FAM matrix is shown in Figure 2.8. In this case we
have two input variables, X and Y, each with an associated fuzzy set from SS, MS,
I, MA and SA. Figure 2.7 shows the membership functions for these sets.

Figure 2.8. The Fuzzy Association Memory (FAM) matrix I

The membership functions for the fuzzy sets SS, MS, I, MA and SA are
denoted by FSS, FMS, FI, FMA and FSA, respectively. A value x of the input variable
X then has membership degrees FSS(x), FMS(x), FI(x), FMA(x) and FSA(x) in
respective fuzzy sets. For example, with the trapezoidal membership functions
shown in Figure 2.7 and a value x = -0.7, we would have:

FSS(-0.7) = 0.0
FMS(-0.7) = 0.0
FI(-0.7) = 0.0
FMA(-0.7) = 0.5
FSA(-0.7) = 0.67

Similarly, a value y of the input variable Y has membership degrees FSS(y),
FMS(y), FI(y), FMA(y) and FSA(y). For example, the value y = 0.6 as shown in Figure
2.9 would result in

FSS(0.6) = 0.33
FMS(0.6) = 1.0
FI(0.6) = 0.0
FMA(0.6) = 0.0
FSA(0.6) = 0.0

48 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 2.9. Membership degrees

Consider x = -0.7 and y = 0.6 as values of the input variables X and Y. A
weight value for each entry in the FAM matrix is computed by taking the minimum
value of the membership function associated with that entry. Now consider the
FAM matrix entry corresponding to X as a member of the fuzzy set MA, and Y as
a member of the fuzzy set SS. The weight w1 associated with the entry would be
computed as:

w1 = min [FMA(-0.7), FSS(0.6)]
 = min [0.5, 0.33]
 = 0.33

Only those FAM matrix entries which have nonzero membership-function
values for both X and Y will have nonzero weights associated with them. The
shaded entries in Figure 2.10 show the four activated rules for the values in the
example. In addition to w1, there are three more non-zero weights. They are

w2 = min [FMA(-0.7), FMS(0.6)]
 = min [0.5, 1.0]
 = 0.5
w3 = min [FSA(-0.7), FSS(0.6)]
 = min [0.67, 0.33]
 = 0.33
w4 = min [FSA(-0.7), FMS(0.6)]
 = min [0.67, 1.0]
 = 0.67

The output variable Z also has five fuzzy sets associated with it, i.e. SS, MS, I,
MA and SA. Specific values are assigned to these fuzzy sets, i.e. SS = 1, MS = 0.5,
I = 0, MA = -0.5 and SA = -1. The system output is computed as follows:

Output =
4321

).4.3.2.1(

wwww

MAwSAwMAwMAw
 = -0.59

1

0

-0.7 0.6

SA MA I MS SS

1

0.33

0.67

0.5

A Web-based Intelligent Collaborative System for Engineering Design 49

Figure 2.10. The Fuzzy Association Memory(FAM) matrix II

2.4.3 Conflict Resolution by Computing Favorability of Positions

(Design Alternatives)

The favorability of a position is a value indicating the strength of the position. It is
calculated by taking the sum of the strengths of arguments obtained by performing
reductions on the ones which are not directly connected to the position. Such a
measure allows the participants in a design deliberation to compare positions
objectively and quantitatively based upon the argument strengths.

To identify a good design concept, multiple design alternatives are usually
developed and explored. These alternatives are known as positions. The designers
would argue over each position by giving their arguments and respective weights.
In order to resolve the conflicts, i.e., to decide which is the best design alternative,
the favorability is calculated for each position. The position with the highest
favorability is the best design option.

At every point in the argumentation process, the designers can view the
favorability values of various positions and can post their arguments accordingly.
For example, a designer may observe that the favorability of a given position to
which he is supporting is low. He may then decide to post a Strong Support (SS)
on that position or a Strong Attack (SA) on an argument that has a Strong Attack
(SA) on the position.

2.5 Design and Implementation

A Web-based intelligent collaborative engineering design system has been
developed based on the above described method using Java on a client-server
structure. Since whiteboard and chat utilities are commonly available for
collaborative software systems today, we focus on design and implementation of
intelligent argumentation for conflict resolution for the collaborative system.

50 Collaborative Product Design and Manufacturing Methodologies and Applications

The elements used for argumentation include Project, Issues, Positions and
Arguments. The information has to be entered in text format, which can be viewed
by every design member participating in the argumentation. If a conflicting issue
has occurred in a new project, the designer has to first create a project and enter a
detailed description of the project. Then he can add an issue under that project. If
another conflicting issue occurs on the same project, the designer will need to
retrieve the old project from the list of projects and then add an issue under the
same project. Once an issue is created, the participating designers can enter their
options i.e., the positions to resolve the issue. The designers can then enter their
opinions in the form of arguments to the positions.

At every stage in the argumentation process, the designers can view the result
of the process, i.e., they can view the position, it favorability, and the inputs by the
other designers on the position. If the position with the highest favorability is the
one the designer does not favor, he can then post an attack on that position or post
a support on the position he favors (thus increasing the favorability of the position
he supports).

The graphical user interface for the Web-based intelligent argumentation is
shown in Figure 2.11. The Control Panel has five menu items: Project, Issue,

Position, Argument and Calculation/Clear. Each menu item has submenus which
perform unique actions on the respective argumentation elements.

As we discussed earlier, one of the drawbacks of the current systems developed
in this field of research is that the sizes of their argumentation networks are often
too large to comprehend and therefore it is very difficult to use them to help make
design decisions. Hence in our system, we have represented the argumentation
network in the form of a tree.

The basic argumentation elements are project, issues, positions and arguments.
Project forms the root node, followed by issues, i.e., the conflicting design issues
that occur for a particular project. Under each issue are positions, i.e., the design
alternatives which address the issue. Arguments are under positions, and every
argument can have any number of arguments. The tree structure is so designed that
a designer at any time can work on any sub-tree of the argumentation tree. This
helps the designer to concentrate on a specific part of the argumentation. The
argumentation tree is not too large and as the fuzzy inference engine is used to
resolve the conflicts, design decisions can be made without any difficulty.

2.6 An Application Example

UMR’s Solar Car Team, a student design team which won the competitions in the
American Solar Challenge in 2001 and 2003, is confronted with many challenging
issues including resolving various design conflicts. One of the tasks of the team is
to design a reliable latch mechanism that holds the base frame with the body of the
solar car as shown in Figure 2.12. After the design team came up with two latch
mechanisms as shown in Figures 2.13 and 2.14, from which the team needs to
select the better design. Some obvious pros and cons of the two designs have been
identified. While design 1 (Figure 2.13) is easier to be analyzed at the detail design
stage and is also easier to be manufactured than design 2 (Figure 2.14), it is harder

A Web-based Intelligent Collaborative System for Engineering Design 51

for the components to be assembled and needs extra work for the locking system.
Solid models for design 1 and design 2 and their argumentation networks have
been developed collaboratively using our collaborative design system, which
incorporates Alibre Design, as shown in Figure 2.15 and Figure 2.16. Their
comparison using the system is shown in Figure 2.17. An argumentation network
has been developed to show resolution of conflicts, as shown in Figure 2.18. The
argumentation network displayed by the system is shown in Figure 2.19. The
design dialog reduction is done by the inference engine in the system. The reduced
argumentation tree is shown in Figure 2.20 and the final result on favorability
calculation is shown in Figure 2.21. It indicates that design 2 is favored by most
participants based on the argumentation since its favorability is higher than that of
design 1. This result of argumentation is concurred by the UMR Solar Car Design
Team.

Figure 2.11. Conflict Resolution Window

52 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 2.12. The solar car

Figure 2.13. Design 1

Figure 2.14. Design 2

A Web-based Intelligent Collaborative System for Engineering Design 53

Figure 2.15. Collaborative design 1 for the Latch Mechanism

Figure 2.16. Collaborative design 2 for the Latch Mechanism

54 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 2.17. Comparisons of Design 1 and Design 2

Figure 2.18. Argumentation tree

Argument 1 – The pin aligning will be a problem
Argument 2 – Design 1 is simpler and more cost-effective

Argument 2

Weight 0.9

Argument 7

Weight 0.8

Issue – Latch

Mechanism

Position1
Design 1

Position 2
Design 2

Argument 8

Weight 0.6

Argument 1

Weight -0.7

Argument 3

Weight -0.2

Argument 4

Weight 0.6

Argument 9

Weight -0.5

Argument 5

Weight 0.8

Argument 6

Weight -0.5

Argument 10

Weight -0.6

A Web-based Intelligent Collaborative System for Engineering Design 55

Argument 3 – It is feasible to design an aligning pin and the locking can be
designed easily
Argument 4 – The pin aligning is sensitive and will cause a lot of vibration
Argument 5 – A chamfer at both ends of the mating cylinder will allow smooth
insertion
Argument 6 – Strength of the cylinders will depend on the material and dimensions
and it is sensitive
Argument 7 – Manufacturing will be cost-effective
Argument 8 – The pin retraction will be a problem when removing the body from
the frame
Argument 9 – If the two blocks are mated via a good design, then aligning will not
be a problem
Argument 10 – The pin retraction should not be a problem with proper tolerance

Figure 2.19. Argumentation network

56 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 2.20. Reduced argumentation tree

Figure 2.21. Favorabilty calculation result – solar car

2.7 Conclusions

An intelligent Web-based system has been developed using Java to facilitate
collaborative engineering design by extending an existing collaborative solid
modeling system to include an intelligent argumentation tool, a whiteboard, and a
chat utility. It supports conflict resolution and decision making. The reduction of
an argumentation hierarchy is based on fuzzy logic. The intelligent argumentation
utility enhances conflict resolution capability in Web-based collaborative
engineering design systems by capturing design rationale using argumentation
hierarchies and providing intelligent aids to identify the most favored positions
(design alternatives).

2.8 Acknowledgements

This research is supported by the Intelligent Systems Center (ISC) in the
University of Missouri-Rolla. Man Zheng, Siddharth Shinde, and Yamini

Arg
1

-0.7

Arg
2

0.9

Arg
3

0.14

Arg
4

-0.59

Arg
7

0.07

Arg
9

0.5

Arg
8

-0.5

Arg
5

 0.8

Arg
6

-0.5

Arg
10
0.5

Issue –
Latch

Mechanism

Position 1

Design 1

Position 2

Design2

A Web-based Intelligent Collaborative System for Engineering Design 57

Natarajan participated in and have contributed to this research project. Yan Sun has
helped to edit the chapter.

2.9 References

[1] Sriram, R., 2002, Distributed and Integrated Collaborative Engineering
Design, Sarven Publishers.

[2] Klein, M., 2003, “The dynamics of collaborative design: insights from
complex systems and negotiation research,” Concurrent Engineering

Research and Applications Journal, 12(3).
[3] Lease, M., Lively, M. and Leggett, J., 1990, “Using an issue-based

hypertext system to capture software life-cycle process,” Hypermedia, 2(1).
[4] Morge, M., 2004, “Computer-supported collaborative argumentation,”

CMNA IV. 4th Workshop on Computational Models of Natural Argument,
ECAI 2004, pp. 69–72.

[5] Pahng, G.-D. F., Seockhoon, B. and Wallace, D., 1998, “A Web-based
collaborative design modeling environment,” Proceedings of the 7th IEEE

International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE '98), 17–19 June, pp. 161–167.

[6] Reddy, R., Srinivas, K., Jagannathan, V. and Karinthi, R., 1993, “Computer

Support for concurrent engineering guest editors’ introduction,” IEEE
Computer, 26(1), pp. 12–16.

[7] Zhou, J. and Lin, G., 1999, “Implementation of collaborative design
environment based on single user CAD systems,” Proceedings of the 3rd

International Conference Knowledge-Based Intelligent Information
Engineering Systems, 31 Aug.–1 Sept., pp. 78–83.

[8] Klein, M., 1997, “Capturing geometry rationale for collaborative design
enabling technologies,” Proceedings the 6th IEEE Workshops on

Collaborative Enterprises, 18–20 June, pp. 24–28.

[9] Zhang, H., Wu, H., Lu, J. and Chen, D., 2000, “Collaborative design system
for performance,” Proceedings of Academia/Industry Working Conference

on Research Challenges, 27–29 April, pp. 59–63.

[10] Siddique, Z., 2004, “Internet design studio,” Proceedings of ASME 2004

Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Sept, 2004, Salt Lake City, Utah.

[11] Wang, L., Wong, B., Shen, W. and Lang, S., 2001, “A Web-based
collaborative workspace using Java 3D,” Proceedings of the 6th

International Conference on Computer Supported Cooperative Work in

Design, July, pp. 77–82.

[12] Peng, S., Tang, M. and Dong, J., 2001, “Collaborative model for concurrent
product design,” Proceedings of the 6th International Conference on

Computer Supported Cooperative Work in Design, 12–14 July, pp. 212–
217.

58 Collaborative Product Design and Manufacturing Methodologies and Applications

[13] Lee, J. Y., Han, S. B., Kim, H. and Park, S. B., 1999, “Network-centric
feature-based modeling,” Proceedings of the 7th Pacific Conference on

Computer Graphics and Applications, 5–7 Oct.
[14] Chan, S., Ng, C. and Ng, V., 1999, “Real-time collaborative design of

complex objects on the Web,” Proceedings of the 1999 IEEE International
Conference on Systems, Man, and Cybernetics, 2, pp. 120–125.

[15] CollabCAD, 2005, “CollabCAD software,” http://www.collabcad.com.
[16] Alibre, 2005, http://www.alibre.com.
[17] Toulmin, S. E., 1958, The Uses of Argument. Cambridge, UK: University

Press.
[18] Conklin, J. and Begeman, M. L., 1988, “gIBIS: A hypertext tool for

exploratory policy discussion,” ACM Transactions on Information Systems

(TOIS), 6(4), pp. 303–331.
[19] Ramesh, B. and Dhar, V., 1992, “Supporting systems development by

capturing deliberations during requirements engineering,” IEEE
Transactions on Software Engineering, 18(6), pp. 498–510.

[20] Sillence, J., 1997, “Intelligent argumentation systems: requirements, models,
research agenda, and applications,” in Encyclopedia of Library and

Information Science (Allen Kent, Editor), Marcel Dekker, New York, pp.
176–217.

[21] Alexander, I., 2003, “Modeling argumentation: toulmin-style,” Retrieved
April 15, 2005. http://easyweb.easynet.co.uk/~iany/consultancy/papers.htm.

[22] Sigman, S. and Liu, X. F., 2003, “A computational argumentation
methodology for capturing and analyzing design rationale arising from
multiple perspectives,” Information and Software Technology, 45, pp. 113–
122.

[23] Parsons, S. and Jennings, N. R., 1996, “Negotiation through argumentation

 a preliminary report,” Proceedings of the 2nd International Conference on
Multi Agent Systems, pp. 267–274.

[24] Karacapilidis, N. and Papadias, D., 1998, “HERMES: supporting
argumentative discourse in multi-agent decision making,” Proceedings of

the 15th National Conference on Artificial Intelligence (AAAI-98), Madison,
WI, AAAI/MIT Press, pp. 827–832.

3

A Shared VE for Collaborative Product Development

in Manufacturing Enterprises

G. Chryssolouris, M. Pappas, V. Karabatsou, D. Mavrikios and K. Alexopoulos

Laboratory for Manufacturing Systems and Automation

Department of Mechanical Engineering and Aeronautics
University of Patras, Greece

This chapter describes the development of an integrated Virtual Environment (VE)
for collaborative product design. The objective of this approach is to enable real-
time collaboration among multiple users, at different sites, in the same VE. The
concept includes the use of Virtual Reality (VR) technology for the development of
a working display environment that provides all collaborative users with navigation,
immersion and interaction capabilities in real time. The scope of this work is to
provide an efficient, robust collaboration tool for the real time validation of a
manufacturing product, from the early stages of the conceptual design up to the
latest stages of the production chain. In order to demonstrate the benefits of virtual
collaboration that a shared environment can offer to manufacturing, a pilot
application, based on the requirements of a “real life” manufacturing company, has
been developed and presented.

3.1 Introduction

Today’s global business environment in the manufacturing industry is
characterized by competitive pressures and sophisticated customers, who demand
innovative and speedy solutions. Understanding and optimizing design processes
is the cornerstone of success in these fast-changing environments. Short time to
market, while maintaining a high product quality, has become the main success
factors.

Manufacturing companies need to innovate, both by designing new products
and by enhancing the quality of the existing ones [1]. Usually, during product
design, all the persons involved share a great number of drawings-files and
assembly models. Often, different components or sub-assemblies of the product

60 Collaborative Product Design and Manufacturing Methodologies and Applications

are designed by different groups of designers at geographically different locations.
Companies are frequently out-sourcing engineering activities, performed internally,
in order to accelerate the design and the product development process [2].
Nowadays 50–80% of all the components manufactured by original equipment
manufacturers are out-sourced to external suppliers [3]. This often creates
problems due to the lack of distributed and collaborative design and manufacturing
systems, which would effectively disseminate product design knowledge. These
problems are typically resolved through meetings or via e-mails and phone
discussions. Colleagues are not capable of collaborating and exchanging their
ideas easily, if they work in different places or particularly in different countries.
An operating shared VE could solve this problem by eliminating unnecessary
meetings, repetitive e-mails and costly product mistakes and delays. The use of
such a system aims at identifying, quickly and efficiently, both feasible and
optimal designs through collaboration among product development partners at
different locations.

The main goal of the present work is the conceptualization, design and
development of a shared VE for supporting real-time collaboration onto the same
virtual product. The proposed shared VE not only does provide collaboration
capabilities among multiple users, but also immersion and interaction with
products under evaluation. Collaboration features related to users, roles, events,
projects and files management have also been developed into a Web-based
platform in order to support the simulation features, which are provided by the
shared environment and which are related to product design verification.

3.2 Background

In the past decade many research approaches and applications focused on the use
of VR for overcoming the complexity of product design and manufacture [4]. A
lot of them also included human simulations in order to perform ergonomic
analysis of virtual products or assembly processes [5–7]. On the other hand,
various Web-based manufacturing systems have been developed for supporting
collaborative activities, in different life-cycle phases of product development.
These include marketing, design, process planning, production, distribution,
service, etc. Distributed product development life-cycle activities in a globally
integrated environment are associated with the use of internet as well as Web
technologies. Many product development software systems, such as Computer-
Aided Design (CAD), Computer-Aided Manufacturing (CAM), database
management and intelligent knowledge-based, have also been integrated, through
Web technologies, into these Web-based collaboration systems [8].

An asynchronous collaborative system has been presented [9], called
Immersive Discussion Tool (IDT), which emphasizes on the elaboration and
transformations of a problem space and underlines the role that unstructured verbal
and graphic communication can play in design processes. A prototyped system
called cPAD has been developed [10, 11] to enable designers to visualize product
assembly models and to perform real time geometric modifications, based on
polygonized representations of assembly models. The Detailed Virtual Design

 A Shared VE for Collaborative Product Development in Manufacturing Enterprises 61

System (DVDS) for shape modeling in a multi-modal, multi-sensory VE has been
presented [12], enabling collaborative design and design among multiple designers,
both in the same site and in remote site VEs. An Internet-based VR collaborative
environment, called Virtual-based Collaborative Environment (VRCE) developed
with the use of Vnet, Java and VRML [13], demonstrates the feasibility of
collaborative design for small to medium size companies that focus on a narrow
range of low cost products. A Web-enabled Product Data Management (PDM)
system which facilitates various collaborative design activities [14] has been
developed providing 3D visualization capabilities as well. Another tool for
dynamic data sharing in collaborative design, has been developed [15], ensuring
that experts use it as a common space to define and share design entities.

Further to the research approaches to the field of a Web-based collaborative
product design, a few commercial tools are available to support such functionalities.
OneSpace.net (http://www.cocreate.com/) is a lightweight Web collaboration tool
that supports online team collaboration for project development. It combines
architecture for Web services with popular concepts, such as organized projects,
secure messaging, presence awareness and real time online meetings. IBM’s
Product Lifecycle Management (PLM) Express Portfolio has been designed
specifically for medium-sized companies that design or manufacture products.
This system mainly focuses on business processes and also allows design engineers
to share 3D data, created with diverse authoring tools and thus, product
development can be managed. It includes CATIA Version 5 collaborative product
design software and SMARTEAM for product data and release management
(http://www.ibm.com/). Matrix10 is designed to support deployments of all sizes.
It includes PLM business process applications that cover a wide range of processes,
namely product planning, development and sourcing and program management.
Moreover, it allows diverse design disciplines to be synchronized around design
activities and changes, by reducing the critical errors and cost associated ones with
poor collaboration (http://www.matrixone.com/). eDrawings Professional
(http://www.solidworks.com/) is an email-enabled communication tool that eases
the review of 2D and 3D product design data across extended product development
teams.

Despite the investment made in the last years, both in research and in industrial
applications, the global market still lacks in collaboration tools, capable of
providing VR techniques with the possibility of product design evaluation. Most
collaborative tools are more related to a PLM and less to shared VEs. Thus, the
development of a lightweight collaborative VE, supporting the validation and
dissemination of product designs as well as the immersive interaction of multiple
users with the virtual prototypes, comprises the goals of this research work.

3.3 Building the Shared VE

The widespread commercial VR software tool Division MockUp2000i2
(dV/MockUp), which is provided by PTC (http://www.ptc.com/), was used as a
basis of building up the distributed and collaborative VE of the present work. The
dV/MockUp is a high performance digital mock-up tool used for visualizing,

62 Collaborative Product Design and Manufacturing Methodologies and Applications

analysing, and interacting with 3D CAD models in real-time, in an immersive and
interactive way, by providing functionalities for geometry input and graphics
rendering, interfaces to VR peripheral devises, and digital humans (mannequins)
library. The software tool includes:

a Database, which stores the entities of the virtual world together with their
attributes

Actors that manipulate the entities present in the Database and constitute
the VR engine of the platform

a Core Application, which provides functionality for loading, processing
and saving the objects of the virtual world, and

a Virtual Product Manager that provides the user with a desktop GUI for
the control of the VE.

The tool is event-based, allowing users to create and edit real-time behaviors,
constraints, animations and part assembly/disassembly sequences. Ergonomics
evaluation of a product’s design can also be performed into the VE, by using
Division Safework mannequin tool, which is added-on to the dV/MockUp.

The backbone of the proposed framework is the functionalities that have been
implemented into the pilot VE, which enable distributed users to visualize,
simulate, modify and analyze (in terms of ergonomics) the virtual prototype
(product), during a collaborative design evaluation scenario. The users are able to
create new VE as well as to open and modify the existing ones. All the required
materials for the synthesis of the VE (geometries, materials, textures, etc.) should
be stored locally in each distributed station before joining a collaborative session.
All collaborative distributed users can work simultaneously on the same
environment, through a master-client interface, either in desktop mode (Figure 3.1)
or in immersive mode, by using VR peripheral devices.

Figure 3.1. Collaborative design using the proposed shared VE

 A Shared VE for Collaborative Product Development in Manufacturing Enterprises 63

3.4 Virtual Environment Functionality

The key features of the shared VE have been implemented so as for the
requirements of a typical industrial virtual collaborative scenario to be covered.
These functions have been implemented into the dV/MockUp to allow the
visualization and functional simulation of products as well as the users’ immersion
and interaction within the VE. The basic functions that have been implemented in
the VE are described in the following sections.

3.4.1 Virtual Prototyping Function

In order to create a realistic VE, several functions, related to the appearance of the
product, as well as to its environment, have been implemented in order to enable
users to change the material or the texture of a part, the transparency level of a part
or a sub-assembly, or even the lighting of the environment (Figures 3.2 and 3.3).

Figure 3.2. Visualization of the virtual prototyping function related to the transition of one’s
part transparency level

Figure 3.3. Visualization of the virtual prototyping function related to the mutation of the
environmental lighting

3.4.2 Behavioral Simulation Function

The behavioral simulation controls the functional characteristics of the virtual
systems, involved in the process performance. Based on the Event/Action
mechanism of dV/MockUp, developers can model complex behaviors in the VE
(assembly joint constraints, part movement restrictions, etc.), in order for the
virtual objects to ‘behave’ in a real-life like manner. The Event/Action mechanism

64 Collaborative Product Design and Manufacturing Methodologies and Applications

is the dV/MockUp’s way of modeling the real world. When an event, such a
collision occurs, the actions defined by the user, can be spawned. An example of
modeling the real-life functionality of the refrigerator’s door is presented in Figure
3.4. The result of this modeling is the opening (or closing) of the door, once the
user has picked the handle of the door.

Figure 3.4. Visualization of the behavioral simulation function related to the assembly joint
constraints

3.4.3 Assembly Support Function

This function allows for the accurate assembly execution within the VE. During an
assembly process, the part to be assembled is released from the user's hand, so as to
be assembled in its final position, as soon as a good positional and rotational
orientation has been achieved (magnet concept). This orientation is very close to
the exact final mounting position. The field of the ‘magnet’ can be adjusted to
account for the various levels of fitting precision and is enabled while the part to be
assembled is approaching its corresponding sub-assembly. A red transparent cube
appears once the ‘magnet’ field has been enabled (Figure 3.5). The size of this
cube determines the sensitivity of this function as well.

Figure 3.5. Assembly support function (magnet concept) in desktop and immersive mode

 A Shared VE for Collaborative Product Development in Manufacturing Enterprises 65

3.4.4 Collision Detection Function

Dynamic clash detection is provided within the simulation environment among
static parts and either moving parts or the user's hands. In this way, visual and
acoustic alerts enable the user to verify the feasibility of a process, in terms of
reachability of picking and mounting locations and handlability of parts. Based on
the collision detection function, an advanced mechanism has been implemented to
support the manipulation of objects, enabling the immersive interaction with
components and tools, in a way similar to that in the real world [16]. The case
specific gesture modeling enables the realistic handling of objects in accordance
with their shape and function (Figure 3.6).

Figure 3.6. Visualization of the assembly support function (magnet concept)

3.5 Pilot Application

In order to demonstrate the benefits of incorporating VR technology in
collaborative manufacturing, a pilot VE has been developed based on the needs
and requirements of a manufacturing industry that produces commercial
refrigerators. The aim of this pilot environment was to help a customer (mini-
market owner) to decide, with the help of the product designer, which products
should be the most suitable for his needs, having also taken into account the mini-
market’s layout. Thus, a virtual representation of the mini-market has been created,
into which three different types of refrigerators were included (Figure 3.7).
Several functionalities were implemented in this pilot VE, in order to support the
collaboration between the designer and the customer, during the evaluation of
several alternative product designs and layouts. A number of combinations of
different colors and textures of these three refrigerator types, have been evaluated
in order for the customer to make the final decision. Moreover, the refrigerators
were evaluated both in terms of their capacity and their ergonomics (i.e.,
reachability tests, kids/adults field of view, etc.), in order for the position of the
goods (i.e., refreshments) on the refrigerators’ shelves to be decided (Figure 3.8).
Another requirement of the customer to be enabled to test alternative designs of the
refrigerators’ door handle. This requirement was taken into account during the
development of the pilot VE. Thus, the option of introducing several 3D objects to
the VE by selecting them, from a virtual database, was also incorporated into the
pilot VE. Finally, the functional simulation of the refrigerators’ door
opening/closing was of great importance during the evaluation of several layouts.
Many alternative layouts were rejected due to the collision of one refrigerator’s
door, while being opened, with other contiguous space objects (i.e., another
refrigerator).

66 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 3.7. The mini-market layout, including the three different type of refrigerators

Several other collaborative sessions, of different scenarios, have also been
performed in order for all the implemented functionalities of the collaborative VE
to be evaluated. These scenarios fulfiled the major needs for collaboration in
design phase of several types of users (i.e., designers, managers, marketists,
suppliers, customers, etc.). Immersion capability is also available for realistic
human interaction.

Figure 3.8. Ergonomic analysis of the final product

During a multi-user collaborative session, each user has his/her own copy of the
Graphical User Interface (GUI), which provides a rendered 3D view of the virtual
product (Figure 3.1). All users can interact with the virtual product at any time,
without any restrictions to the number of simultaneous interactions. Any change
prerformed by a user is immediately visible by all the others. Real-time chat
capability supports the users’ communication during a collaborative session
(Figure 3.9). Moreover, a user can be optionally represented by an animated

 A Shared VE for Collaborative Product Development in Manufacturing Enterprises 67

digital figure, called avatar, in case of making use of VR peripheral devices. Any
number of users can join a collaborative session by using Transmission Control
Protocol/Internet Protocol (TCP/IP) over Local or Wide Area Network (LAN or
WAN). In order for one to make use of the developed shared environment there is
no enforcement on the use of specific Operational System or VR peripherals.

Figure 3.9. Real-time collaboration capability of the shared VE

The present shared VE provides an advanced environment in the network, as a
common virtual design space, in which people can simultaneously work during the
product life cycle. The developed pilot environment enables:

The cooperation among distributed designers and manufactures during the
refrigerator’s designing stage.

The real-time multi-user interaction in the same virtual prototype/design

The effective and efficient sharing and evaluation of design and
manufacturing data through internet.

The ergonomic evaluation of the products with the use of mannequins that
represent different user populations.

Activities in many a session within a common virtual space (e.g.,
conceptual design, assembly execution, ergonomic analysis, etc.).

The advanced product demonstration by using VR (a virtual showroom).

3.6 Conclusions and Future Research

A shared virtual collaborative environment for the evaluation of a manufacturing
product design has been developed and presented in this chapter. Providing a
multi-user real-time collaboration as well as VR-based product verification, this
environment could be used as an efficient tool by designers, engineers and
managers.

The shared VE allows multiple users to work in a collaborative and distributed
way, by decreasing considerably the time required for the designing phase to be
completed. This work focuses on improving team productivity, providing the

68 Collaborative Product Design and Manufacturing Methodologies and Applications

infrastructure necessary to make the engineering teams efficient, even if they are
dispersed over different sites, without changing the existing design environment.
The benefits of using the proposed shared VE include:

Multi-user visualization, immersion and interaction.

Real-time collaboration on the same virtual design.

Simultaneous review and maintenance of alternative virtual designs.

Evaluation of ergonomics by using digital human simulation.

Future research will focus on elaborating current functionality of the VE with
tools for collaborative decision making support. The aim is to develop
functionality for a systematic quantified assessment of alternative designs and
plans. Thus, metrics and techniques for getting measures out of collaborative
product simulation sessions should be identified. Intelligent reasoning, based on
the quantified performance measures, the decision policy and the estimation
weights, will be provided as output to support decision making, by taking under
consideration the special conditions and requirements of team work. Thus, any
future work will focus mainly on two directions:

Quantified validation of design / plans.

Intelligent reasoning on alternative solutions.

In this way, the VE for collaborative design, will be capable not only of team
reviewing designs and plans, but also of “suggesting” proper solutions on design or
re-conceptualization problems, based on collaborative interactions and testing,
which can happen in VEs. Moreover, in terms of user-to-system interactions,
Augmented Reality interfaces will be further investigated in order for the potential
of running the simulation “on-top” of already set-up real working environments to
be identified.

3.7 Acknowledgements

This work was partially supported by the Greek National research project e-
MERIT/EB-26, funded by the General Secretariat of Research and Technology
(GSRT).

3.8 References

[1] Chryssolouris, G., 2006, Manufacturing Systems: Theory and Practice, 2nd
Edition. (Springer-Verlag: New York).

[2] Park, H. and Cutkosky, M. R., 1999, “Framework for modeling
dependencies in collaborative engineering processes,” Research in
Engineering Design - Theory, Applications, and Concurrent Engineering,
11, pp. 84–102.

[3] Rezayat, M., 2000, “The enterprise - Web portal for life cycle support,”
Computer Aided Design, 32(2), pp. 85–96.

 A Shared VE for Collaborative Product Development in Manufacturing Enterprises 69

[4] Chryssolouris, G., Mavrikios, D., Fragos, D., Karabatsou, V. and Pistiolis,
K., 2002, “A novel virtual experimentation approach to planning and
training for manufacturing processes-the virtual machine shop,”
International Journal of Computer Integrated Manufacturing, 15(3), pp.
214–221.

[5] Chryssolouris, G., Karabatsou, V. and Kapetanaki, G., 2001, “Virtual
Reality and Human Simulation for Manufacturing,” Proceedings of the 34th
International CIRP Seminar on Manufacturing Systems, Athens, Greece, pp.
393–398.

[6] Chryssolouris, G., Mavrikios, D., Fragos, D., Karabatsou, V. and
Alexopoulos, K., 2004, “A hybrid approach to the verification and analysis
of assembly and maintenance processes using virtual reality and digital
mannequin technologies,” Virtual Reality and Augmented Reality
Applications in Manufacturing, Nee A. Y. C. and Ong S. K. (Eds.),
Springer-Verlag, London, pp. 97–110.

[7] Chryssolouris, G., Mavrikios, D., Fragos, D. and Karabatsou, V., 2004,
“Verification of human factors in manufacturing process design. A virtual
experimentation approach,” Methods and Tools for Co-operative and

Integrated Design, Tichkiewitch S. and Brissaud D. (Eds.), Kluwer
Academic Publishers, pp. 463–474.

[8] Yang, H. and Xue, D., 2003, “Recent research on developing Web-based
manufacturing systems: a review,” International Journal of Product

Research, 41(15), pp. 3601–3629.
[9] Craig, D. L. and Craig, Z., 2002, “Support for collaborative design

reasoning in shared virtual spaces,” Automation in Construction, 11(2), pp.
249–259.

[10] Shyamsundar, N. and Gadh, R., 2001, “Internet-based collaborative product
design with assembly features and virtual designspaces,” Computer Aided

Design, 33, pp. 637–651.
[11] Shyamsundar, N. and Gadh, R., 2002, “Collaborative virtual prototyping of

product assemblies over the Internet,” Computer Aided Design, 34, pp. 755–
768.

[12] Arangarasan, R. and Gadh, R., 2000, “Geometric modeling and
collaborative design in a multi-modal multi-sensory virtual environment,”
Proceeding of the ASME 2000 Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, Baltimore,
Maryland, pp. 10–13.

[13] Kan, H. Y., Duffy, V. G. and Su, C. J., 2001, “An internet virtual reality
collaborative environment for effective product design,” Computers in
Industry, 45, pp. 197–213.

[14] Xu, X. W. and Liu, T., 2003, “A web-enabled PDM system in a
collaborative design environment,” Robotics and Computer-Integrated

Manufacturing, 19(4), pp. 315–328.

70 Collaborative Product Design and Manufacturing Methodologies and Applications

[15] Noel, F. and Brissaud, D., 2003, “Dynamic data sharing in a collaborative
design environment,” International Journal of Computer Integrated

Manufacturing, 16(7–8), pp. 546–556.
[16] Pappas, M., Fragos, D., Alexopoulos, K. and Karabatsou, V., 2003,

“Development of a three-finger grasping technique on a VR glove,”
Proceedings of the 2nd Virtual Concept Conference, Biarritz, France, pp.
279–283.

4

A ‘Plug-and-Play’ Computing Environment for an

Extended Enterprise

F. Mervyn

G. W. Woodruff School of Mechanical Engineering, Georgia Institute of

Technology, USA

A. Senthil Kumar and A. Y. C. Nee

Department of Mechanical Engineering, National University of Singapore,
Singapore

With the emergence of the extended enterprise where different companies are
involved in the product development process, the successful implementation of
collaborative product design and manufacturing across the extended enterprise has
become a difficult task. This chapter deals with the issue of developing an
integrated computing environment for facilitating collaborative product design and
manufacturing across the extended enterprise. An application development
framework is presented that is geared towards a ‘plug-and-play’ computing
environment. The framework describes how design and manufacturing applications
can be developed independently, yet be seamlessly integrated simply by plugging
the application into common computing environments.

4.1 Introduction

Faced with a rapidly changing global environment, product development
enterprises today are reformulating their strategies to be globally competitive. One
strategy that enterprises have adopted is to concentrate on their core competencies
and build closer relationships with their partners. The resulting organization of
geographically distributed companies working together to realize a product is
known as the extended enterprise and is the new unit of business competition [1].
Facilitating collaborative product design and manufacturing across an extended
enterprise is a difficult task that requires various cultural and technical issues to be

72 Collaborative Product Design and Manufacturing Methodologies and Applications

resolved. The aim of this chapter is to address one such technical issue – the
development of an integrated computing environment to support the collaboration
across an extended enterprise, by facilitating information exchange between
product designers and manufacturing process designers, and coordinating their
activities. The necessary information is critical to make rapid trade-off decisions
and collaboratively arrive at the optimal design and manufacturing processes of the
product.

The rest of this chapter is organized as follows. Section 4.2 discusses the
related research in developing integrated computing environments. Section 4.3
proposes an approach to develop design and manufacturing applications that is
geared towards a ‘plug-and-play’ capability. Section 4.4 presents an illustrative
example and Section 4.5 concludes the chapter.

4.2 Related Research

An integrated computing environment enables collaborative product design and
manufacturing by providing the necessary mechanisms for exchanging information
and coordinating information flow.

Early efforts in developing integrated computing environments concentrated on
the integration of the various standalone computer-aided systems used in the
design and manufacture of a product. Standalone systems are applications in which
the entire functionality of the application is hosted on a single computer. Cutkosky,
et al., [2] presented a notable work in this regard based on an agent approach.
Agents were used to encapsulate the standalone applications and agent interaction
was based on shared concepts and terminology for communicating knowledge
across disciplines. Sriram, et al., [3] proposed the use of the blackboard
architecture for facilitating communication and coordination between different
standalone computer-aided systems. The blackboard was implemented as an object
oriented database. The use of a central repository as a product master model was
another approach described by Hoffman and Joan-Arinyo [4] to create an
integrated computing environment. The clients of the master model are domain-
specific standalone applications that can deposit and retrieve information from the
master model. The master model repository provides mechanisms for maintaining
the consistency of the deposited information structures.

Another approach is the use of standard file formats such as STEP and IGES
located at central databases. Roy and Kodkani [5] proposed the use of a translator
to convert CAD models into VRML-based models, which can then be viewed over
the WWW. The VRML models are stored in an existing product data repository.
The translator resides on a main central server and can be accessed remotely by a
designer. Xie, et al., [6] developed an integrated CAD (Computer-Aided Design) /
CAPP (Computer-Aided Process Planning) / CAM (Computer-Aided
Manufacturing) system for sheet metal product development platform based on an
information integration framework where the geometry of the product was
represented in STEP files. The information integration framework was developed
using Pro/INTRALINK.

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 73

As seen from the literature, various external communication and coordination
mechanisms need to be developed to integrate the standalone computer-aided
systems. Therefore, before a company collaborates with a new partner these
interfaces to the external mechanisms have to be developed. Companies normally
employ the services of systems integrators to develop the mechanisms and the
required interfaces to the mechanisms. While this is a feasible solution, it is an
expensive solution, as each pair of systems requires a dedicated solution [7].
Further it is time consuming and delays the effective exchange of information
between new partners.

Another problem with the integration of standalone systems to support
collaborative design and manufacturing is the loss of associated information under
design changes. This problem can be illustrated with the following example. In this
example, we assume two systems as part of an integrated computing environment,
a CAD system and a CAPP system. The part shown in Figure 4.1(a) has been
created using the CAD system and sent to the CAPP system as a STEP file. When
the part is loaded into the CAPP system, it creates an internal representation of the
model to carry out machining operations on the model. In this internal
representation, each geometric entity is identified by a tag. The CAPP system then
identifies the three faces with the face tags, 38, 42 and 52 as shown in Figure 4.1(a)
as a machining feature and determines the tools required to machine the feature. If
the product designer then changes the part as shown in Figure 4.1(b), the CAPP
system has to retrieve a new STEP file. When the CAPP system loads the new
STEP file, the system will not be able to recognize this as a modified part and will
create new tags for the geometric entities of the altered part. As can be seen in
Figure 4.1(b), the three faces of the machining feature are now referred to by the
tags, 372, 456 and 516. This new reference to the geometric entities results in a
need for the CAPP system to recognize the three faces again as a machining feature.
In collaborative product design and manufacturing, various design changes occur
to accommodate the requirements of the different domains involved in product
development. Such a problem results in inefficient systems that need to restart their
tasks each time a change occurs.

To solve the problems associated with integrating standalone systems, research
efforts progressed towards developing distributed collaborative systems. As
opposed to standalone applications, in distributed systems, the functionalities of the
system are hosted on different computers. Several researchers have proposed
developing distributed collaborative systems based on the use of a central
geometric modeling server. Han and Requicha [8] discussed an approach that
provides product and process design applications with a transparent access to
diverse solid modelers located at a central server. A feature-based design system,
an automatic feature recognizer and a graphics rendering system were developed
around the modeling server. The central geometric modeling server stores the
boundary representation model of a designed part. When a design change occurs,
the design system communicates the change to the feature recognition system,
which can then access the new data from the modeling server. Shyamsundar and
Gadh [9-10] proposed a client-server based architecture for collaborative virtual
prototyping of product assemblies over the Internet. A polygonized representation
of the part was used for visualization and an Internet-centric, compact assembly

74 Collaborative Product Design and Manufacturing Methodologies and Applications

representation was also developed. In their system, design changes are not
automatically transmitted to users working on the model. However, assembly
features are tagged and if a designer attempts to modify that face, the designer
receives a warning. Bidarra, et al., [11] developed a web-based collaborative
feature modeling system known as webSPIFF. It is based on a client-server
architecture where the server coordinates the collaborative session, maintains the
shared model and makes use of a multiple-view feature modeling kernel [12]. The
multiple-view feature modeling kernel provides different users with different views
of the product model. All views are kept consistent by feature conversion.

Figure 4.1. Loss of associated information under design changes

 The efforts in developing distributed collaborative systems have solved
several important problems. The use of Web-based or simple application clients to
access functions hosted on a server removes the need for enterprises to maintain
expensive standalone systems at their sites. This allows enterprises to collaborate
with one another without purchasing compatible systems and without the need for
customized communication and coordination mechanism to be developed. Users
can just use a Web browser or download a simple application client to carry out
their tasks, exchange information and coordinate their activities. Further, the use of

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 75

a central geometric modeling kernel ensures that references to geometric entities
are consistent under design changes, solving the problem of associated information
loss under design changes. However, present efforts in developing collaborative
systems have mainly concentrated on collaborative part and assembly modeling.
Several important issues in an overall computing environment for collaborative
product design and manufacturing have yet to be addressed. One such issue is the
integration of new applications into the overall distributed collaborative computing
environment. The problem to be addressed here is, “If a new application is
developed, how can it be seamlessly integrated into the overall computing
environment without developing new communication and coordination
mechanisms?” This requires the development of collaborative systems that are
geared towards ‘plug-and-play’ capability. The computing environment should
allow advanced domain-specific applications to be developed independently, yet be
integrated simply by plugging the application into computing environments. This
chapter presents such an approach.

4.3 Application Develoment Framework

The proposed framework for developing an integrated computing environment for
collaborative product design and manufacturing is based on the architecture as
shown in Figure 4.2. Central to this architecture is the use of a common
manufacturing application middleware. Middleware is systems software that
resides between applications and the underlying operating systems, network
protocols and hardware [13]. The essential role of middleware is to manage the
complexity and heterogeneity of distributed infrastructures and thereby provide a
simpler programming environment for distributed application developers [14].

Early efforts in middleware development dealt mainly with connectivity issues,
i.e., how programs on different computers can connect to one another. These
middleware technologies that deal with connectivity are referred to as distribution
middleware [13]. Examples of distribution middleware include OMG’s CORBA
(Common Object Request Broker Architecture), Sun’s Java RMI (Remote Method
Invocation) and Microsoft’s DCOM (Distributed Component Object Model).
Distribution middleware technologies are at a mature stage today. Middleware
technologies have since progressed to dealing with other issues in developing
distributed systems. One such group of middleware technologies deals with
domain specific issues. These middleware technologies, referred to as domain
specific middleware, concentrate on providing domain specific services that
applications can access in a transparent and integrated manner. This chapter
envisions that domain specific middleware technologies will be instrumental in the
future development of product and process design applications.

The architecture shown in Figure 4.2 presents a paradigm where product and
process design applications access various services provided by the manufacturing
application middleware to exchange information and be coordinated in a seamless
manner. The current implementation of the framework proposes the use of two
middleware services, geometric modeling services and process data exchange
services.

76 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 4.2. Architecture for developing an integrated computing environment for
collaborative product design and manufacturing

Geometric modeling services refer to the ability to create and manipulate
geometric models, and access geometric data. Geometric modeling services are
proposed for three reasons. Firstly, many of the currently developed CAD, CAPP
and CAM applications do not develop their own geometric modeling capabilities.
Many of these applications are developed based on external geometric modeling
kernels. These external geometric modeling kernels provide functionality to build,
manipulate, view and interrogate geometric models. It is therefore sensible to
provide geometric modeling services as a common service. Secondly, many
applications use geometric modeling kernels only to extract necessary information
from product data to carry out their own tasks. Providing the ability to access
geometric data from a common service would remove the reliance of these
applications on geometric modeling kernels just for information extraction. Thirdly,
providing a common geometric modeling service where applications create and
access geometric data provides a unique opportunity to manage the concurrent
authoring and processing of geometric data by product and process design
applications. In the proposed architecture, the geometric modeling services are
deployed on a central geometric modeling server.

Process data is data generated by the process design applications. This includes
feedback to upstream applications and data for downstream applications to carry
out their tasks. A data exchange service that facilitates the exchange of process
data ensuring applications receive data in a timely manner is an important service

Java Message

Service

Java RMI

Application

n

Application

2

Application

1

Reusable Application Classes

Process Data

Exchange Service

Geometric

Modelling Service

Messaging Server Modeling Server

Applications

Manufacturing

Application

Middleware

Hardware

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 77

for effective collaboration. The process data exchange services are deployed on a
central messaging server.

The product and process design applications that access the middleware
services are not the conventional CAD, CAPP and CAM systems currently used by
enterprises. These are new applications that are developed to conform to the
middleware-based architecture. In order to facilitate the development of these
applications, the framework provides various reusable application development
classes. These reusable application development classes make application
development easier by already implementing object-oriented classes for interfacing
with the middleware services, storing of data and visualization of geometric
models. The following sections discuss the implementation of the middleware
services.

4.3.1 Geometric Modeling Middleware Services

The geometric modeling middleware services are hosted on a central geometric
modeling server. The geometric modeling server, shown in Figure 4.3, was
implemented in Java and consists of the following components: (i) Java RMI
interfaces, (ii) Implementation classes, (iii) Java Native Interface (JNI), (iv)
Parasolid Modeling Kernel and (v) Apache HTTP Server. Application clients
access the services offered by the geometric modeling server through Java RMI. In
the present system, two main RMI interfaces have been implemented: Modeling
Functions and the Applications Relationship Manager (ARM). The Modeling
Functions interface allows application clients to create and manipulate geometric
models. The ARM interface allows applications to build relationships with the
geometric models. The ARM serves as the mechanism for synchronising all the
different product and process applications when a design change is made.

4.3.1.1 Modeling Functions

The Modeling Functions Interface declares the methods that application clients can
invoke to make function calls to a geometric modeling kernel. In the developed
system, the Parasolid modeling kernel has been utilized to perform the modeling
operations. As the Parasolid modeling kernel is written in the C programming
language, a Java Native Interface (JNI) is needed to utilize the modeling functions
of Parasolid. The result of an application client invoking one of these methods is
the creation or modification of a geometric model. Data of the created or modified
geometric model is then written to a geometric data XML file and stored in the
Apache HTTP server for application clients to access.

The details of the sequence of activities when any of the methods is invoked are
as follows:

1. An application client invokes one of the methods of the Modeling
Functions RMI interface.

2. The Modeling Functions Implementation classes invoke the necessary
Parasolid functions, resulting in the creation or modification of a
geometric model.

78 Collaborative Product Design and Manufacturing Methodologies and Applications

3. Parasolid generates the necessary information to describe the geometric
model based on a boundary representation. A boundary representation
describes a geometric model by defining the model’s boundary as a set of
geometric entities including faces, edges and vertices. An example of a
boundary representation is shown in Figure 4.4. The geometric model and
the constituent geometric entities are identified by tags.

4. As the boundary representation data is not sufficient for application
clients to view a solid model of the created part, the Modeling Function
Implementation classes invoke the Parasolid function to tessellate the
model into triangles. The tessellated triangles can then be rendered on the
application client’s screen to provide a solid view of the geometric model.
An example of a tessellated model is shown in Figure 4.5.

5. The information on the tessellated triangles and the geometric entities are
then written to a Geometric Data XML file and stored in the Apache
HTTP server. Application clients can then access this data easily from the
Apache HTTP server, visualize the geometric model and carry out further
operations. Section 4.3.1.2 discusses the geometric data XML file in
greater detail.

Figure 4.3. Architecture of geometric modeling server

 A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 79

Figure 4.4. A cube represented by its boundary

Figure 4.5. Example of a tessellated model

4.3.1.2 Geometric Data XML File
XML is an industry standard markup language used for representing data in a
platform independent manner. When representing data using XML, a Document
Type Definition (DTD) has to be specified first. This would govern the data
structure contained in the XML file. The structure of the DTD of the Geometric
Data XML file is shown in Figure 4.6.

Tags in XML follow a hierarchical structure. The root tag of an XML file is
always <DOCUMENT>. In the geometric data DTD, each body, identified by a
<BODYTAG>, is divided into faces. A <FACETAG> is present to identify the
various faces of the body. <FACETYPE> provides information on the type of the
face, for example, cylindrical, plane and spherical. <SNAPPOINT> refers to the
vertices of each face. Each face is further divided into elemental triangles known as
facets. The <FACET> tag contains the coordinates of the vertices of each triangle.

Figure 4.7 shows a solid model of a cube and a portion of the corresponding
Geometric Data XML file. From the data, it can be seen that the <BODYTAG> of
the part is 119. The highlighted face has a <FACETAG> of 179 and a
<FACETYPE> of plane. The face has been divided into two facets and the
corresponding vertices of the first facet can be seen in the figure. In Ref [15], we
provide an alternative representation where facet information is compressed using
the Edgebreaker algorithm [16].

80 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 4.6. Document Type Definition (DTD) of the geometric data XML file

4.3.1.3 Application Relationship Manager (ARM)
The ARM serves two main roles. Firstly, it serves as the mechanism for
synchronization by propagating design changes to all affected applications.
Secondly, it aids collaborative decision-making by creating relationships between
the requirements of the different domains involved in collaborative product design
and manufacturing. The ARM works by allowing downstream applications to
create relationships with the geometric entities of a geometric model. For example,
if an assembly modeling system uses a face of the geometric model as a mating
face with another model, it creates a relationship with that face. The use of
geometric entities provides a general means to link downstream decisions to the
product model. When a design change is made, all applications that have created
relationships with the model are notified. In this way, the ARM serves as the
synchronisation mechanism. However, before a design change can be implemented,
the ARM allows the part designer to determine which applications will be affected
by implementing the change simply by viewing all the different applications that
created relationships with the model. In an interactive environment, product and
process designers can discuss the design change before it is implemented. For
example, if the product designer wants to make a change to a face, which the
assembly modeling system created a relationship with, he/she can discuss with the
engineer who created the relationship without involving the other people. In an
automated environment, the downstream applications that are affected can be
notified of the change and the affected application can then deal with the change
automatically. If the change cannot be dealt with, then the proposed change is not
acceptable. In this way, the ARM aids collaborative decision-making.

In order to facilitate the creation of relationships and notification of changes,
the ARM RMI Interface declares the following methods.

Document

Body Body Tag

Face Face Tag, Face Type

Face Normal

X, Y, Z
directional

vectors

Facet

X, Y, Z
coordinates of
vertices

Snap Points

X, Y, Z
coordinates of

points

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 81

Figure 4.7. Example of a geometric data XML file

public void deposit_model (int bodytag): This method is to be called by
an application to make a geometric model ready for creating relationships.
The method is normally called by a design client. The input to the method
is the body tag of the geometric model. The method subsequently
retrieves data from the appropriate geometric data XML file and updates
data structures created for managing relationships. The data structure for
managing relationships was implemented in an object-oriented manner
and is as shown in Figure 4.8.
The ARM_Models class contains a list of the various geometric models
that relationships can be built on. The information on the geometric
models is stored in a Geometric_Model class. In this class, each model is
identified by its body tag. The Geometric_Model class in turn contains a
list of the different faces that make up the geometric model. It is on these
faces that relationships are created. The information on each face is stored
in a Face class. The Face class contains information of the tag used to
identify the face and the status of the face. The status of the face could
either be “changed” or “unchanged”. The Face class also contains
information on the different relationships that have been created on that
face. The information on relationship is stored in a Client_Relationship

<BODY>

 <BODYTAG>119</BODYTAG>

- <FACE>

 <FACETAG>179</FACETAG>

 <FACETYPE>PLANE</FACETYPE>

+ <NORMAL>

+ <SNAPPOINT>

+ <SNAPPOINT>

+ <SNAPPOINT>

+ <SNAPPOINT>

- <FACET>

 <X1>-0.25</X1>

 <Y1>0.25</Y1>

 <Z1>0.5</Z1>

 <X2>-0.25</X2>

 <Y2>-0.25</Y2>

 <Z2>0.5</Z2>

 <X3>0.25</X3>

 <Y3>-0.25</Y3>

 <Z3>0.5</Z3>

 </FACET>

+ <FACET>

 </FACE>

Highlighted

Face

82 Collaborative Product Design and Manufacturing Methodologies and Applications

class. The Client_Relationship class stores information on the URL of the
client that made the relationship, the client type, the type of relationship
and any comments that an application client would like other applications
to take note of. The ARM uses the URL of the client to notify design
changes. Restrictions are not made on application clients to specify certain
values for client type and type of relationship. Typical values of client
type could be ‘process planning client’ or ‘assembly modeling client’.
Type of relationship refers to how the application relates to the face. For
example, an assembly modeling client could describe the type of
relationship as a ‘mating face’.

ARM_Models

Geometric_Model

bodyTag : Integer

Client_Relationship

clientURL : String

clientType : String

typeOfRelationship : String

comments : String

Face

faceTag : Integer

faceStatus

Figure 4.8. Data structure for managing relationships

public boolean create_relationship (RelationshipInfo info) and public

boolean delete_relationship (RelationshipInfo info): These methods are
called by application clients to create and delete relationships with faces
of the geometric model. The input to this method is a class
RelationshipInfo, which contains the information required to create a
relationship. The RelationshipInfo class is shown in Figure 4.9.
When the method is called, it subsequently checks if the model has been
deposited for creating relationships. If so, it will update the ARM data
structure for managing relationships with the information from the
RelationshipInfo class. If a relationship is created successfully, the
method returns a TRUE Boolean value to the calling method. If a
relationship could not be made, it returns FALSE.

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 83

public RelationshipInfo[] query_relationship (int facetag): This method
allows an application client to query information on the client
relationships that have been made on a face. This will allow application
clients to know which domains will be affected by a design change on a
face. In the comments attribute in the RelationshipInfo class, clients could
restrict other domains from suggesting changes to be made to that face.
The method returns an array of RelationshipInfo objects to the calling
method.

public void transmit_design_change (int bodytag): This method is called
when a change is made to the geometric model. The method subsequently
determines the faces that have been affected and notifies clients that
created relationships with affected faces.

RelationshipInfo

bodyTag : Integer

faceTag : Integer

clientType : String

clientURL : String

typeOfRelationship : String
comments : St ring

Figure 4.9. RelationshipInfo class

4.3.2 Process Data Exchange Middleware Services

The key role of the process data exchange middleware services is to facilitate the
exchange of data from a process design application to all related applications.
While the geometric modeling middleware services integrate product design with
downstream domains, the process data exchange middleware services aim to
integrate the different process design domains. An example would be the ability for
a process planning system to send information to a shop floor execution system.
The process data exchange middleware services also allow process design
applications to send feedback information to the product design domain.

In the current system, a messaging approach has been adopted for the exchange
of process data. Messages provide a dynamic means to exchange information.
When a process design application completes its tasks and generates the necessary
information, it can immediately send the information to the related applications.
This provides a triggering mechanism for other applications to react to this
information, either by beginning the application’s tasks or by evaluating previous
decisions based on the new information. Further, through the use of messages, only
necessary information has to be sent to the related applications. This provides a
means to decouple private data from data to be shared. The process data exchange
services were developed based on the Java Message Service (JMS) specification.
The JMS specification allows Java applications to create, send, receive and read
messages. JMS prescribes a set of rules and semantics that govern messaging,
including a programming model, a message structure and an Application

84 Collaborative Product Design and Manufacturing Methodologies and Applications

Programming Interface (API). In the JMS programming model, JMS clients
exchange messages through the use of a JMS message service. Clients that produce
messages send the messages to the message service, which then sends the message
to the message consumer. Although JMS describes a message structure, the
message structure adopted in this work is based on the Simple Object Access
Protocol (SOAP). SOAP is an XML-based protocol that facilitates the exchange of
structured data. The information from process design applications is therefore to be
structured using XML files. An example of fixture design information models
being exchanged using this approach is presented in [17].

The framework proposed in this section also provides classes at the client end
to deal with the incoming messages. These are implemented as part of the reusable
application development classes and will be discussed in the next section.

4.3.3 Reusable Application Classes

The reusable application development classes facilitate the development of
applications that conform to the overall architecture proposed in the framework by
providing the necessary interfaces to communicate with the manufacturing
application middleware services. Application developers develop their applications
using these classes as a basis. In the present implementation, three groups of
reusable Java classes have been developed: (i) XML data parsing and storage
classes (ii) Geometric model visualization classes and (iii) Middleware interface
classes.

There are two groups of XML data parsing and storage classes. One group
deals with parsing the Geometric Data XML file stored in the Apache HTTP server
of the geometric modeling middleware services and storing the parsed data in
developed data structures. The other deals with parsing incoming XML messages
from the process data exchange middleware services and storing the data in
developed data structures. Application developers use these classes to retrieve and
store data in their applications. They can then develop the application logic using
these data structures.

The geometric model visualization classes are used to visualize the geometric
model using Java 3D. The middleware interface classes facilitate communication
with the geometric modeling server and the messaging server. The necessary
classes for invoking the Modeling Functions remote methods and the ARM remote
methods are provided for in this group of classes.

4.4 Illustrative Case Study

This section describes how the proposed framework achieves the ‘plug-and-play’
capability for collaborative product design and manufacturing based on a scenario
where several companies collaborate to design and manufacture a product. Four
companies are involved in this scenario. Company A produces product A, which is
made up of three parts. Company A designs Part 1, but outsources the
manufacturing to Company B. Company A purchases Part 2 from Company C and
Part 3 from Company D. This scenario is depicted in Figure 4.10.

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 85

Figure 4.10. Example Scenario

In such a scenario, if every company creates its own legacy system for product
and process design, huge compatibility problems would arise. Synchronised
integration of activities would be a difficult task.

However, using the proposed framework, it is shown how companies can
develop their own customised applications, yet exchange information seamlessly
with the other companies. It is assumed that all companies have developed
applications based on the reusable application development classes and the logic of
the applications is also based on the middleware services. In this scenario,
company A has created a product design client [18], company B a fixture design
client [19] and companies C and D have created assembly evaluation clients [20].
The overall integrated computing environment for the design of Part 1 and the
required manufacturing processes is shown in Figure 4.11. Company A, as the
designer of Part 1, hosts the geometric modeling server and the messaging server at
its site.

As the product designer designs Part 1 using the developed product design
client, the evolving data of the geometric model is written to the Geometric Data
XML file and stored in the Apache HTTP server. When the product design is
complete, the product designer deposits the model in the ARM. The designed part
and the corresponding information model set up for relationship management are
shown in Figure 4.12.

86 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 4.11. Integrated computing environment for collaborative product design and
manufacturing

Figure 4.12. Designed part and corresponding information model

Company B manufactures Part 1 by first casting and then machining the
different features. The fixture designer of Company B can now easily access the
geometric model data of Part 1 by using the developed fixture design client. The
fixture design client can be plugged into the geometric modeling server simply by
providing the URL for the Apache HTTP server and the name of the part. The

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 87

reusable application development classes would then obtain the geometric model
data and visualize the part. If Company B works with another company, all that is
needed to plug into their geometric modeling server is to specify the new URL for
the Apache HTTP server. This allows different companies to work with one
another without purchasing systems from the same vendor and building customised
point-to-point communication mechanisms. However, it should be noted that
security mechanisms have to be in place to prevent unauthorised usage of the data.
Security mechanisms are beyond the scope of this chapter. Figure 4.13 shows the
fixture design application being used to design a fixture. The fixture designer
decides to use faces with the tags ‘68’, ‘78’ and ‘88’ as locating faces and creates
relationships with these faces. An example relationship is as follows:

Client Type = “Fixture Design Client”;
Type of Relationship = “Locating Face”;
Comments = “Face used to locate workpiece”;

The fixture design application can also generate the necessary information to
provide feedback to the product designer. The fixture design application can be
plugged into the messaging server by simply providing the URL of the messaging
server. The information can then be sent to the product designer who can then take
the necessary action to deal with the incoming message.

Concurrently, Company C can also access the geometric model data of Part 1 to
check the assemblability of Part 1 with Part 2 based on their assembly evaluation
application. It is assumed that Company C deems the assembly as feasible and
creates relationships with the geometric model of Part 1. The relationship is created
with the following information:

Client Type = “Assembly Evaluation Client”;
Type of Association = “Assembly”;
Comments = “Face part of a feature used for assembly. Do not change”;

Company D also loads Part 1 into their assembly evaluation client (Figure 14)
to check the assembly of Part 3 with Part 1. It deems that assembly is not feasible
and requires a slot to be included as shown in Figure 4.15. Company D can
immediately determine which companies or domains would be affected if the
change is suggested by querying the ARM for a list of relationships that were
created with the affected faces. In this case, the fixture design of Company B
would be affected. We assume that the design change is critical and Company A
makes the change to the product model. The ARM then determines all clients that
made relationships with the affected faces and propagates the change. The affected
applications can then retrieve the geometric data of the modified part and deal with
the changes. A point to note there is that the tags used to reference the geometric
entities are consistent throughout the modifications. Necessary action can then be
taken by the applications to deal with the change. An example of the fixture design
system adaptively dealing with design changes can be found in [21-23].

In this scenario, it was assumed that the application clients were developed by
the companies. These applications could also have been developed by commercial
vendors.

88 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 4.13. Fixture design client of Company B

Figure 4.14. Assembly evaluation client of Company D

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 89

Figure 4.15. Company D’s suggestion to include slot A

4.5 Conclusions

In today’s business environment where companies collaborate with an array of
different partners, developing applications to be integrated is a tall order, as the
required interfaces with other applications are not known during the development
of the application. An attempt has been made in this chapter to solve this problem
by developing a ‘plug-and-play’ computing environment for collaborative design
and manufacturing. An application development framework has been proposed to
achieve this goal. Applications developed using the framework can be plugged into
common computing environments and seamlessly exchange information. The
framework is based on the use of a common manufacturing application middleware.
The design of the middleware has further solved important problems faced in the
development of integrated computing environments for collaborative design and
manufacturing.

Firstly, it has solved the problem of losing associated information under design
changes when standard file formats are used as an information exchange
mechanism. The loss of associated information under design changes is a big
hindrance to product and process design applications concurrently performing
activities. In the proposed middleware approach, all applications have a consistent
reference to geometric entities as data is obtained from a central modeling server.
This consistent reference to geometric entities will allow applications to deal with
changes in an intelligent manner without having to redo the process design.

Another problem in implementing collaborative design and manufacturing is
how to consider the different requirements of the different domains involved in

90 Collaborative Product Design and Manufacturing Methodologies and Applications

product development during the design of a product. The ARM has proposed a
solution to this problem by allowing applications to create relationships with the
geometric model and notifying all affected applications when a change is made. As
the different applications carry out tasks concurrently and create relationships with
the model, it becomes easy to see how design decisions affect the different
domains. Through this way a product design can be made to be optimal taking into
account the requirements of different domains.

4.6 References

[1] Dyer, J. H., 2000, Collaborative Advantage: Winning Through Extended

Enterprise Supplier Networks, Oxford University Press.
[2] Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth, M. R., Gruber,

T. R., Mark, W. S., Tenenbaum, J.M. and Weber, J.C., 1993, “PACT: an
experiment in integrating concurrent engineering systems,” Computer, 26,
pp. 28–37.

[3] Sriram, D., Logcher, R., Wong, A. and Ahmed, S., 1990, “An object-
oriented framework for collaborative engineering design,” Computer-Aided
Cooperative Product Development, (Edited by Sriram, D., Logcher, R. and
Fukuda, S.), pp. 51–92.

[4] Hoffman, C. M. and Joan-Arinyo, R., 1998, “CAD and the product master
model,” Computer Aided Design, 30, pp. 905–919.

[5] Roy, U. and Kodkani, S. S., 1999, “Product modeling within the framework
of the World Wide Web,” IIE Transactions, 31, pp. 667–677.

[6] Xie, S. Q., Tu, P. L., Aitchison, D., Dunlop, R. and Zhou, Z. D., 2001, “A
WWW-based integrated product development platform for sheet metal parts
intelligent concurrent design and manufacturing,” International Journal of

Production Research, 39, pp. 3829–3852.
[7] Ray, S. R. and Jones, A. T., 2003, “Manufacturing interoperability,”

Proceedings of the International Conference on Concurrent Engineering:
Research and Applications, Portugal, July.

[8] Han, J. H. and Requicha, A. A. G., 1998, “Modeler-independent feature
recognition in a distributed environment,” Computer Aided Design, 30, pp.
453–463.

[9] Shyamsundar, N. and Gadh, R., 2001, “Internet-based collaborative product
design with assembly features and virtual design spaces,” Computer Aided
Design, 33, pp. 637–651.

[10] Shyamsundar, N. and Gadh, R., 2002, “Collaborative virtual prototyping of
product assemblies over the Internet,” Computer Aided Design, 34, pp. 755–
768.

[11] Bidarra, R., van den Berg, E. and Bronsvoort, W.F, 2001, “Collaborative
Modeling with Features,” CD-ROM Proceedings of the ASME Computers
and Information in Engineering Conference, 9-12 September, Pittsburgh,
PA, ASME, N.Y.

A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise 91

[12] de Kraker, K. J., Dohmen, M. and Bronsvoort, W. F., 1997, “Maintaining
multiple views in feature modeling,” Proceedings of the 4th Symposium on

Solid Modeling and Applications, ACM Press, pp. 123–130.
[13] Schantz, R. E. and Schmidt, D. C., 2001, “Middleware for distributed

systems: evolving the common structure for network-centric applications,”
Encyclopedia of Software Engineering, (Edited by Marciniak, J. and Telecki,
G.), Wiley and Sons.

[14] Campbell, A. T., Coulson, G. and Kounavis, M., 1999, “Managing
complexity: middleware explained,” IEEE IT Professional, October.

[15] Mervyn, F., Senthil kumar, A., Bok, S. H., Nee, A. Y. C., 2004,
“Developing distributed applications for integrated product and process
design,” Computer Aided Design, 36, pp. 679–689.

[16] Rossignac, J., 1999, “Edgebreaker: Connectivity compression for triangle
meshes,” IEEE Transactions on Visualization and Computer Graphics, 5(1),
pp. 47–61.

[17] Mervyn, F., Senthil kumar, A., Nee, A. Y. C., “Fixture design information
support for integrated product and process design,” to be appeared in
International Journal of Production Research.

[18] Ratnapu, K. K., 2001, Web Based CAD System, M.Eng. Thesis, National
University of Singapore.

[19] Mervyn, F., Senthil kumar, A., Bok, S. H. and Nee, A. Y. C., 2003,
“Development of an Internet-enabled interactive fixture design system,”
Computer Aided Design, 35, pp. 945–957.

[20] Mervyn, F., 2001, Development of a Virtual Assembly Evaluation

Environment, B.Eng Thesis, National University of Singapore.
[21] Mervyn, F., Senthil kumar, A., Nee, A. Y. C., 2004, “Design change

synchronization in a distributed environment for integrated product and
process design,” Computer-Aided Design and Applications, 1(1–4), pp. 43–
53.

[22] Mervyn, F., Senthil kumar, A. and Nee, A. Y. C., 2005, “An adaptive
modular fixture design system for integrated product and process design,”
Proceedings of the 2005 IEEE Conference on Automation Science and

Engineering, August 1–2, Edmonton, Canada.
[23] Mervyn, F., 2004, Integrated Product and Process Design across a Global

Extended Enterprise: An Implementation in Fixture Design, PhD
Dissertation, Department of Mechanical Engineering, National University
of Singapore.

5

Cooperative Design in Building Construction

Yuhua Luo

Department of Mathematics and Computer Science, University of Balearic Islands,

Spain

The chapter describes a state-of-the-art information technology system for
cooperative design in building construction. The system is a high level cooperative
tool for an architectural design team without geographic limitation on their
locations. It provides on-line, real time interaction between long distance
participants for their multi-discipline design projects. The team members can edit,
modify and verify the design on-line or off-line cooperatively. Advanced
concurrent control guarantees the mutual exclusion in the cooperative design
process. The system has the capability to handle the design in 3D down to any
level of details for construction design projects.

5.1 Introduction

The design phase in construction process is critical for the quality and cost of the
constructed building. A substantial amount of cost waste in building construction is
due to the errors in the design. The design phase is a complex process shared by
many specialists, such as architects, structural engineers, air conditioning engineers,
energy supply designers, etc. Different specialists usually use different CAD tools
that produce very different design results. The whole design process is an iteration
of decomposing and integrating designs of different specialist teams at different
levels of scales and details. This iteration process has a very high possibility of
error occurance. It is extremely costly to correct the errors after going to the site
construction operations. There were no sophisticated information technology tools
that could support this iteration process to produce error free global designs
cooperatively [19]. The computer supported cooperative work in many industrial
areas is limited to cooperative visualization via communication networks where the
user interaction is kept to minimum. The existing CSCW (Computer-Supported
Collaborative Work) solutions are very far from what demands in the building
construction design.

94 Collaborative Product Design and Manufacturing Methodologies and Applications

A cooperative working system to support this multiple design iteration became
an obvious solution. Targeting at developing an innovative system towards a
complete solution, a European project was launched. At In addition to supporting
the multiple iterations in design, the system was developed to support many other
cooperative working tasks towards a new way of working in AEC (Architecture,
Engineering and Construction) industry.

To have a solid base for the system development, a deep investigation on the
actual situation in the design phase in Portugal, Spain, Italy and the UK was
performed. Some key lacking elements for cooperative design were identified. At
the same time, a close insight into the field of 3D computer graphics, database
technology, telecommunication, and computer supported cooperative work was
carried out. This allowed the developers to see the possibility and at what degree
the current ICT technology could provide a solution to the needs in AEC practice.
A team of computer scientists, architects and engineers started to work closely
together in the project. The strategy is to find a solution to bridge the gap between
the current situation and the future way of working. They believed that not all the
problems in this traditional industry could be solved at once. But certainly some
key elements for the most critical cooperative working scenarios can be developed.
This leads to the birth of a cooperative design system which is the first time
attempt to provide a high level cooperative working tool for an architectural design
team geographically spread. The developed system, for the first time, can support
real time, long distance, multiple location simultaneous interaction cooperative
work.

One of the major objectives of the system is to make early integration to
explore design conflicts, errors at early stages long before the construction begins.
Another objective is to let different CAD tools from all the disciplines talk together
towards an error-free design. A neutral 3D data format [7]: VRML is selected for
the system. It can accept designs from any architectural or engineering design tools
that can output VRML. For user convenience, DXF or 3DS format are also
accepted. The system is called M3D which stands for Multi-site cooperative 3D
design for architecture [4].

The system provides the on-line and off-line cooperative working capability
and information sharing to a group of long distance participants. The team
members can integrate their own design to form a global design by on-line
cooperative working sessions or off-line individual work. They can use a rich set of
editing and integration operations to verify the design and make modification on
3D design objects together. They work in a virtual design room together despite of
the geographic distance. The concurrent control guarantees the mutual exclusion in
the cooperative design process. The system also facilitates the decomposition and
reorganization of the design for any number of iterations during the whole design
phase.

M3D differs from simple application sharing which does not provide
concurrent control and authorization of the cooperative design object. Application
sharing requires all the partners use exactly the same CAD tool. In contrary, M3D
aims at providing communication among a wide range of CAD tools [7]. M3D has
a Web-based database [6, 8, 9] storing all the project information of all the phases

Cooperative Design in Building Construction 95

along the building lifetime. It has a direct interface with the integration tool – the
M3D Editor [5].

There have been efforts in the society to use virtual reality for visualization of
architectural design. However, in these applications the 3D models are roughly
made for visualization purpose only. Making these models itself is an extra work,
not a natural product of the design phase. Therefore, due to the lack of detail of the
3D models, the communication support to transmit large scale design models, the
design objects in these applications often look too simple and too naive to reach the
real need of the industry. It is not acceptable for the design projects without extra
cost to create these models.

M3D applies virtual reality technique to the architectural design at a higher
level. M3D system [16, 17] introduces the 3D design technology for the whole
design process from early conceptual design until detail design. Therefore, it
overcomes the problems of the existing VR application for the AEC industry. The
designs are in 3D by nature with all the details necessary for conflict and error
detection and construction. The visualization is only a by-product since the
buildings and their supporting elements are already constructed virtually from the
very early beginning of the design. As a solution to identified problems in the
architectural production, M3D proposes the re-engineering of current business
processes towards a new business model in the AEC industry. The system supports
the cooperative design and integration in the following aspect:

Accepting design in 3D from all the multi-disciplinary specialties in the
project

Providing the capability of holding on-line cooperative working meetings

Automatic verification for 3D design

Integration with outputs from other CAD tools

Information storage and retrieval for AEC projects.

5.2 System Architecture and Components

The major function of the system is for cooperative work for an architecture design
team including on-line and off-line working. To provide all the team members the
capability of initializing an on-line cooperative working meeting, a peer to peer
and layered structure has been designed.

Figure 5.1 shows the M3D system architecture. Each column in the figure
represents one cooperative member’s site in the global system. All the sites have
the same resources and same right. Therefore, any of the members can initiate a
cooperative working session if necessary using their own set of applications. The
number of members of the system is flexible. Any number of the members can join
a cooperative working session if necessary.

The system contains three major components

The cooperative 3D editor

The cooperative support platform

The integrated design project database

96 Collaborative Product Design and Manufacturing Methodologies and Applications

Application

Cooperative

Support

Network

SMI

SM

GC

3D Editor

Communication Network

SMI

SM

GC

3D Editor

SMI

SM

GC

3D Editor

SMI Protocol

SM Protocol

GC Protocol

SMI Protocol

SM Protocol

GC Protocol

Figure 5.1. The system architecture of the M3D system

The cooperative 3D Editor is where all the on-line and off-line cooperative
work happens. It supports cooperative editing in three dimension and real time.
Individual components modification or the integration of the design can be realized
by a cooperative working session. The cooperative support platform governs all the
on-line working sessions and group operations. The project database is where all
the project information is stored. All the members can access to the database in the
on-line working session or off-line independent design works.

5.2.1 The Cooperative 3D Editor

The cooperative 3D Editor is the central tool for on-line cooperative design
working sessions. It can also be a stand-alone single user tool. The editor has to
satisfy a highest requirement than the normal visualization tool because it has to
support the on-line cooperative modification from long distance locations.

The Editor supports on-line modification of the design. The changes of the
design will immediately appear to all the participants in the session. Modifying the
position, orientation and scale for an object can be realized by interactive
manipulation or exact numerical specification. The shape of any single object can
also be modified. Common functions in a single interactive system, such as undo
and clipboard operations, can be performed in the cooperative 3D Editor. Undo can
be performed on modification, insertion and deletion.

The major cooperative editing operations are: scene tree editing; geometric
transformations; object editing; light management and material editing.

The design is organized as a VRML scene tree inside the cooperative editor.
There is a window specially showing the current design tree by names of the
components. This graphical textual tree can be edited by dragging its nodes around.
This makes the decomposition of the design easier. The objects can be selected
from the tree using their names. This is proved to be very useful since there are
usually large amount of objects in one design scene. Furthermore, it allows the user

Cooperative Design in Building Construction 97

to select a group of objects by selecting their parent node on the tree. See the left
side of the screen on Figure 5.2.

Figure 5.2. A snapshot of an on-line cooperative working session

Geometric transformations of any object in the design can be performed
interactively or numerically. A group of manipulators are provided for the
interactive transformation. Dialog box is provided for numerical specifications.
The object editing option in the editor allows the user to isolate a particular part of
the design and make modifications on its geometry other than applying
transformations. It can also produce 2D drawings from the projection of the 3D
structure.

The object editing option in the editor allows the user to isolate a particular part
of the design and make modifications on its geometry other than applying
transformations. It can also produce 2D drawings from the projection of the 3D
structure.

The editor includes an important module for error detection in the AEC design
called Automatic Design Verifier (ADV). It is particularly developed for the error
checking and design verification of the architecture and building construction
projects.

The module integrates the 3D design of all the specialties, such as architectural,
structural, water and sewage, etc. within the same project to check for possible
geo-metrical and topological inconsistencies. “Inconsistency” here means an
undesired geometric and/or topological condition. For example, a sewage pipe run
intersects a pile foundation is a case of inconsistency.

98 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 5.3. The automatic design verifier

5.2.2 The Cooperative Support Platform

The 3D Editor tool is layered on top of an IP compatible cooperative support
platform, as shown in Figure 5.1. The cooperative support platform adopted a
distributed architecture and a peer-to-peer network model. This module has two
layers one on top of the other, the Group Communication (GC) and Session
Management (SM). This platform provides a set of necessary communication
services. The layer structure hides the point-to-multipoint con-figuration from the
applications – the 3D Editor and others. An important task of the platform is to
ensure a source ordering delivery of multicast messages over TCP/IP. The session
control mechanisms keep the applications free from specific functions necessary
for their inclusion into cooperative working environments. These specific functions
include: communication services multiplexing, support of quality of service,
consistency control, admission of new members into a running session, managing
early members leave, invocation of new distributed applications, handling of
exception events or failures and definition of roles within the group.

5.2.3 The Integrated Design Project Database

As a complete solution to the problem we identified in the architectural design and
production process, M3D provides an integrated architectural information storage
and retrieval system - an integrated design project database.

The database uses a client/server architecture. The database architecture
supports multi-site access. The database users can connect to the database server
by any communication network. There are two ways to access the database: via the
3D Editor and via a usual Web browser. The editor uses the data access
Application Programming Interface (API) to access the database server. It connects
to the client network library. The client network library uses a networked inter-
process communication method to communicate with the server network libraries

Cooperative Design in Building Construction 99

on the server system. The browser application uses a similar method to
communicate with the database server.

With the integrated design project database, all the teams can work with a
unique version of the same design document. All the results of an individual design
or the decision of a collaborative design working meeting will be stored in the
database. All the authorized users can access to the design project data any time
and anywhere which is essential for cooperative working teams spreading
geographically and may cross different time zones.

5.3 Considerations and Implementation for

Collaborative Design

To develop an innovative cooperative working system, substantial amount of
studies have been made to include all the important considerations for a
multidiciplinary design team. The system has to be interoperative and multi-
disciplinary. The on-line cooperative working meetings are the most important
form of cooperation. It is technically very demanding and difficult to reach. It has
to have a rich set of tools for on-line cooperative working, easy to manage, but
powerful to include all the basic operations. It has to support design error detection
in all the stages of the design particularly at early design stage. The following
sections will explain the basic considerations and the results of implementation

5.3.1 Interoperative and Multi-disciplinary

The architecture design is a complicated process involving design from multi-
disciplinary specialists. As a high priority in system design, the system has to be
interoperative and multi-dsciplinary. To provide interoperability and cross-
disciplinary interaction, the M3D system has been designed based on four
conditions. First condition is the adoption of data inputs from a wide range of
specialists independent of the CAD tools they use [1, 5, 6, 7]. The only
requirement for all the design from the M3D system is that they have to be in 3D
and they can generate the acceptable formats of the system such as: VRML, 3DS,
DXF[7]. The second condition is a harmonic organization of design data from
different disciplines. To satisfy this condition, M3D uses a hierarchy – a tree
structure to store and manipulate designs from multi-disciplines. Each specialty is a
branch of the whole design tree. The whole tree is a harmonic body of the global
design project. There is no limit in space or subbranches for the growing of the
whole design or a particular design specialty. The third condition is the
accessibility of the global design. M3D stores all the project information in a Web
accessible database. Any specialty team can access to the global design from
anywhere and any time with secutiry control. The fouth condition is using the 3D
geometry as a common base for integration and error detection. Independent of the
discipline, an air-conditioning engineer or a structure engineer has its own way of
design, its own CAD tool. But they have one thing in common, all designed objects
are in 3D and can occupy space. 3D has been chosen as the basic format to

100 Collaborative Product Design and Manufacturing Methodologies and Applications

integrate designs from different specialties which is intuitive, good for
visualization and design error checking.

Figures 5.3 and 5.4 show some of the examples from live projects of
cooperative design using the M3D system [18]. Multi-disciplinary design teams are
located in different cities. During the system development trial, the architecture,
structure, and water, sewage teams are in different locations in Lisbon, Portugal
while the electricity design team is at Barcelona, and the air conditioning designer
is located in Palma de Mallorca, Spain. The architect of the projects located in
Lisbon started by designing the architecture part in 3D. After the 3D architecture
design was finished, the geometry was stored into the project database. Other
specialists groups in other cities can obtain the most recent version of the design by
accessing the project database. In a conventional design project, they would take
the final drawings of the paper project and interpret them, and insert their specialist
geometry into the paper drawings. This would demand a series of steps. They have
to spend a substantial time to study the architecture project and digest it in detail,
since the majority of the participants and specialists do not know the project. In
addition, a supplementary drawing work has to be done since in the original project
there were only paper drawings. Furthermore, an interpretation of the
representations of the original project, by technicians from several countries has to
be done. This usually involves different rules in different countries. Successive
steps are drawing, checking, changing, redrawing, re-checking, etc. for each
specialist team. The process can be very time consuming and errors, misuse of
design versions can occur.

Using the M3D system, the situation is completely different. The users used
their own CAD design tools and input their designs to the M3D system. By using
the M3D Editor [5] and M3D database the architecture project becomes very
intuitive and easier for other cooperative teams to understand since it is already in
3D format.

The M3D Editor provides many ways of viewing the 3D design including
navigating into the building itself, separating a part from the whole building to
view it in detail etc. The supplementary drawing is not necessary since it is easy to
have any clipping plane with arbitrary orientation to see the architecture. The
interpretation is no longer difficult since the 3D architectural design is already
there with all the material, lighting available for any kind of interpretation. If there
is any doubt about any part, the team member can just go into it and look at it in
detail in 3D. The M3D Editor can provide convenient navigation, show and hide
any part, and even make a direct measure to find the physical distance between
elements in the design.

Coordination of a building and construction design project including all the
specialties is usually a very complicated task due to the incompatibility of the
design tools each team uses, the geographic distance between them, and a
tremendous number of iterations necessary during different phases of the design.
The M3D system [16, 17] makes the coordination of all the individual specialty
design and integration work a lot easier. All the teams design their special part
using their own CAD design tools, the outputs are presented in VRML format.
During the integration phase, all the teams use the M3D Editor to insert their own
design into the global design either on-line or off-line. Obvious errors are easily

Cooperative Design in Building Construction 101

visible and the correction of them becomes straightforward. The tool supports
integration and decomposition of the design. It involves only the dragging of the
sub-trees in the global design tree. In addition, the database in the system stores all
the design data with version control support. The most obvious advantage is that
for the first time, we have a common 3D working space for all the cooperative
specialties without the constraint of geography and time.

5.3.2 The on-line Cooperative Working

The M3D system supports both off-line and on-line integration [3, 11, 12, 16, 17].
A multi-operator conference through the long distance network between several
participants in the project can be held regardless where they are in the world.
Figure 5.4 shows the network connection configuration of such on-line conference
[14, 15]. The project was divided into a developer group and a user group. The
developer group consisted of computer scientists, software engineers who designed
and developed the system. The user group was formed by architects, structure
engineers, air conditioning, power supply, sewage engineers who are the
representatives of the users that will use the M3D system. The system is new and
innovative. The developer group has to take the opinions of the user group
seriously to design, develop and improve the system. All the components were
tested by the user group during its development. After the components integrated,
the project undertook a final testing phase. The user group in the project made
intensive international connectivity tests and on-line co-operative design work
using the system as a new design tool. The trials were held among three locations:
Lisbon, Palma and Barcelona.

Architecture
design team

LAN

Communication
Network

ISDN, INTERNET

LAN...

LAN

Energy supply
engineer

Water & sewage
engineer

Structure
design team

Figure 5.4. Network connection among cooperative participants

During the cooperative working session [11, 12, 13], the system was tested in
different aspects. For example, the cooperative on-line viewing and organization of
the designs were tested intensively. The partners inserted their new specialty

102 Collaborative Product Design and Manufacturing Methodologies and Applications

design into the system from their own locations while others could see them
immediately. The geometry of the air conditioning, structure, water sewage was
inserted to the global design one by one. Each inserted part becomes a part of the
global design tree. Each part can be shown or hidden. The regrouping of the
design is very easy. The tool supports operations not only on one design project.
The participants can load different design projects onto the common virtual
working space by opening new windows. Within the design, any element can be
selected for manipulation and modification. An annotation can be attached to any
object for future reference or other off-line users. The annotation can have
hyperlinks linking to any further documents. The on-line interaction seems not be
affected by the distance unless a completely new project has to be loaded from the
long distance database. The system has been designed to minimize the data traffic
during the working session. Voice and text communication is also provided which
are very useful for supplementing the on-line editing tool. See Figure 5.2 for a
snapshot of the user interface.

The on-line cooperative working is a strong support for a design team. Many
conflicts, errors, misunderstandings can be discovered and resolved. The tool is
effective for the integration of different specialties in a design project. The 3D
display, simultaneous multiple user viewing and manipulation provide a very
intuitive way for common discussion and decision making to support the
cooperative design work. The possibility to manipulate the geometry such as
dividing them into elements, making changes to the geometry and display of the
clipping sections in real time and many more other features show that the system is
an innovative tool for the architecture design sector. The experiments also showed
that the strong support of the database during and after the cooperative on-line
working session is essential. A new concept of the architecture design business
process is being formed by using the M3D system.

5.3.3 Design Error Detection During Integration

Because of the complexity of the architecture, the occurrence of conflicts, errors or
omissions during the design is high. These errors are mostly detected only in the
construction phase, which is far too late and has an enormous impact in terms of
costs and deadlines. One of the major purposes of the M3D system is to detect any
possible error in the design especially the incompatibility among different
specialties. In addition to using M3D Editor to integrate the specialist design,
obvious error can show up visibly. As mentioned above, the system also provides a
detector that automatically checks incompatibilities of the geometry, according to
the settings of the users [10].

The M3D ADV [10] supports the operations of intersection, subtraction,
addition, bounding, growing between building elements. The system can check if
the geometries of different specialties fulfill the rules established by the designers,
or if within the same specialty the legislative, geometric or use rules are fulfilled.
The possibility of debating and checking in group and real time makes it a very
good way to validate the integration. Throughout the design verification process, it
is possible to use the ADV to find out some hidden errors in a design project even

Cooperative Design in Building Construction 103

it is in its final stage. Figure 5.3 is a scenario of using the ADV for design
verification to find out the inconsistency during the integration.

The following presents a typical on-line cooperative design verification session.
All the team members are connected for an on-line working session according to
their previous communication. The architect opens a design file of the architecture
from his local machine and shows to other participants. He can use voice
communication or text description in the text chat window to explain his design.
All the team members in other locations can see the design in 3D immediately. The
structure engineer inserts the structure design from his own machine located in
another city. His structure design will be integrated into the global design. Other
team members can see the two designs identified by different colors in their own
Editor window. The sewage designer does the same, loading his sewage design
from his own file system located in the third location. A global design is formed
and appears on all the participants’ screen. The structure engineer then starts the
ADV [10] from his M3D system by clicking on one of the menus. The architect
types in a sentence: “Growing the interior wall by 3 meters, where do they intersect
the roof outline?” The ADV system forms a statement in IDL through analyzing
the sentence and performing the necessary operation [10]. After the calculation, the
result shows up from the engineer’s machine. At the same time, the architect and
the sewage designer from long distance can see the result from their own location.
The possible error parts are shown with distinguished color. Many errors appear
which could not be discovered only by human eyes. The team members led by the
architect can then discuss with the errors and make some decisions or on-line
corrections. The concluded design will be stored into the project database for the
next scale design or for final construction. If important modification has to be
made, the corresponding designers of the related parts may go back to their own
CAD tools to modify the design formally. The new version of the designs with
modification and error correction will be stored into the project database.

5.4 System Evaluation

A series of five real life design projects [18] have been performed using the system
for the evaluation during the system development. Figures 5.5-5.9 show some of
them. All the projects required different specialties and the design teams were
located in the three European cities. With conventional design model, the teams
would have to travel a lot and caused a lot of communication time using email, fax
or telephone. Using the M3D system, the users had regular on-line cooperative
working sessions weekly. They have successfully finished these projects. All the
connection time, user interactions, and system performance were recorded to
provide to the developers further improvement. The users are satisfactory to have
the cooperative working tool. They appreciate very much the M3D Editor, the
ADV and the database. They found the tool very useful in their daily practice and
have been using it from then on for other design projects. They do not find current
tools that have the same functionality as M3D.

104 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 5.5. A historical house for reconstruction

Figure 5.6. Live project 1

Cooperative Design in Building Construction 105

Figure 5.7. Live project 2

Figure 5.8. Live project 2 with 3D real time clipping planes

106 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 5.9. Live project 3, a residential building on complicated terrain

5.5 Conclusions

The M3D system supports a new business model in AEC industry. It has the
capability to integrate the complete architectural production processes: design,
construction, monitoring and maintenance. The key element in this new business
model is the integration of multi-discipline 3D design for early error detection and
correction. This can solve a substantial amount of problems in current practical
business model.

The system provides the capacity of on-line cooperative work of the whole
design team among several locations. It resolves conflicts, reduces errors,
misunderstanding, and redundant work and therefore the project time and cost. The
construction phase will be the most benefited. We can predict that by using the
M3D technology, there will be a great reduction of errors caused by poor
coordination and poor integration of multi-disciplinary design. The principal
proposed by M3D can be applied to other industries for their cooperative work
such as mechanical engineering, aerospace engineering, etc.

Cooperative Design in Building Construction 107

5.6 Acknowledgements

This work was directed by the author of this chapter, funded by the European
Union, the Spanish CICYT, and each individual partner. The author would like to
thank all the members in the project whose names are shown in the project
deliverables listed in the references.

5.7 References

[1] Luo, Y., Sánchez, D., Alves, S., Dias, M., Marques, R., Almeida, A., Silva,
J., Manuel, J., Tummers. B. and Galli, Ed. R., 1999, “M3D technical
specifications,” ESPRIT Project No. 26287 M3D, Deliverable 1.2.

[2] Tummers, B., Josquin, M., Galli, R., Dias, M., Almeida, A., Pons, B. and
Silva, J., 1999, “Definition of database access, data structure and data
exchange tools,” ESPRIT Project No. 26287 M3D, Deliverable 1.3.

[3] Almeida, A., Dias, M., Marques, R., Estevens, F., Silva, J., Fonseca, M.,
Galli, R., Luo, Y., Pons, B. and Gonzàlez, A., 1999, “Definition, test and
management of network model,” ESPRIT Project No. 26287 M3D,
Deliverable 1.4.

[4] Moat, M., Laves, S., Marques, R., Gamito, M., Silva, J., Fonseca, J. M.,
Vilar, M., Galli, R., Sanchez, D. and Luo, Y., 1999, “M3D prototype,”
ESPRIT Project No. 26287 M3D, Deliverable 1.5. April.

[5] Sánchez, D., Bennasar, T., Fornés, J., Galli, R., Huéscar, J., Serra, J. C., Luo,
Y., Gamito, M., Dias, M., Albiol, M. and Arias, J., 2000, “The multi-site 3d
editing tool for architectural production integration,” ESPRIT Project No.
26287 M3D, Deliverable 2.1. April.

[6] Tummers, B., Smulders, A., Josquin, M., Galli, R., Huéscar, J., Luo, Y.,
Serra, J. C., Pons, B. and Ramos, R., 1999, “Report on database access
modules,” ESPRIT Project No. 26287 M3D, Deliverable 2.2. October.

[7] Dias, M., Bastos, R., Santos, R., Coelho, D., Bennasar, A., Fornés, J., Galli,
R., Huescar, J. and Tummers, B., 2000, “Report on data exchange tool,”
ESPRIT Project No. 26287 M3D, Deliverable 2.3. April.

[8] Tummers, B., Smulders, A., Josquin, M., Serra, J. C., Huéscar, J., Galli, R.,
Luo, Y., Pons, B. and Ramos, R., 1999, “Report on the development of
M3D database part 1,” ESPRIT Project No. 26287 M3D, Deliverable 3.1.1.
October.

[9] Tummers, B., Smulders, A., Galli, R., Huéscar, J., Serra, J. C., Luo, Y. and
Ramos, R., 2000, “Report on the development of M3D database part 2.”
ESPRIT Project No. 26287 M3D, Deliverable 3.1.2. April.

[10] Gamito, M., Dias, M., Lope, A., Santos, P. and Lopes, P., 2000, “Report on
development of interference detection and basic complexity reduction,”
ESPRIT Project No. 26287 M3D, Deliverable 3.2.2. April.

[11] Almeida, A., Dias, M., Alves, S. and Galli, R., 2000, “Cooperative support
report and prototype,” ESPRIT Project No. 26287 M3D, Deliverable 4.1.
April.

108 Collaborative Product Design and Manufacturing Methodologies and Applications

[12] Dias, M., Alves, S., Almeida, A., Monteiro, L., Pinela, P., Silvestre, R. and
Salas, A., 2000, “Conference management for 3D editing,” ESPRIT Project

No. 26287 M3D, Deliverable 4.3. April.
[13] Almeida, A., Marques, R., Silva, J., Fonseca, M., Galli, R., Luo, Y. and

Pons, B., 1999, “Report on National connectivity.” ESPRIT Project No.
26287 M3D, Deliverable 5.1.1. April.

[14] Dias, M., Alves, S., Moita, M., Galli, R., Pons, B. and Tummers, B., 1999,
“Report on international connectivity,” ESPRIT Project No. 26287 M3D,
Deliverable 5.1.2. September.

[15] Dias, M., Ramos, R., Gayá, J., Galli, R., Josquin, M., Smulders, A.,
Tummers, B., Silva, J., Henriques, B., Fonseca, J. M. and Pons, B., 2000,
“User trial plan and protocol,” ESPRIT Project No. 26287 M3D,
Deliverable 5.1.3. April.

[16] Luo, Y., Galli, R., Sánchez, D., Bennasar, A., Fornés, J., Serra, J.C.,
Huéscar, J. M., Gayà, J., Dias, M., Gamito, M. A., Tummer, B., Smulders,
A., Silva, J., Fonseca, J. M. and Villar, M., 2000, “Alpha release of M3D
application,” ESPRIT Project No. 26287 (M3D), Deliverable 5.2.1,
November.

[17] Luo, Y., Galli, R., Sánchez, D., Bennasar, A., Fornés, J., Serra, J. C.,
Huéscar, J., Gayà, J., Dias, M., Gamito, M. A., Tummer, B., Smulders, A.,
Silva, J., Fonseca, J. M., Villar, M., Albiol, M., Arias, J., Pons, B. and
Castañeda, D., 2001, “Beta release of M3D application,” ESPRIT Project

No. 26287 (M3D), Deliverable 5.2.2, March.
[18] Castañeda, D., Silva, J., Fonseca, J. M., Torres, I., Villar, M. and Albiol, M.,

2001, “Report on the user trial evaluation,” ESPRIT Project No. 26287
(M3D), Deliverable 5.3. March.

[19] Luo, Y. and Dias, J. M., 2004, “Development of a cooperative integration
system for AEC design,” In Cooperative Design, Visualization, and

Engineering, Luo, Y. (Eds.), LNCS 3190, Springer-Verlag, Berlin
Heidelberg, pp. 1–11.

6

A Fine-grain and Feature-oriented Product Database

for Collaborative Engineering

Y.–S. Ma, S.–H. Tang and G. Chen

School of Mechanical and Aerospace Engineering
Nanyang Technical University, Singapore

Traditionally, product databases are either purely geometric or meta-linked to
Computer-Aided Design (CAD) files. The first type lacks feature semantics and
hence is too rigid for collaborative engineering. The second type is dependent on
CAD files which are system sensitive and has too large information grain size that
makes information sharing and engineering collaboration difficult. This chapter
introduces a fine-grain and feature-oriented product database design. It is ideal to
support Web-enabled collaborative engineering services. For this purpose, a four-
layer information integration infrastructure is proposed. A solid modeler is
incorporated to provide low-level geometrical modeling services. The novelty of
this research includes three aspects: (1) a generic feature definition for different
applications in the form of EXPRESS-schemas; (2) the integration of a solid
modeler with feature-oriented database by mapping from EXPRESS-defined
feature model to the runtime solid modeler data structure as well as to the targeted
database schema; and (3) modeler-based generic algorithms for feature validation
and manipulation via the database. A modeler-supported history-independent
approach is developed for feature model re-evaluation.

6.1 Introduction

Due to the stiff competition and rapid changes of globalization, shortening time-to-
market has become the critical success factor for many companies [1, 2]. As a
result, Concurrent and Collaborative Engineering (CCE) has become a norm. CCE
has been recognized as the systematic approach to achieve the integrated,
concurrent design of products and their related processes, including manufacturing
and support [3], via collaborations across virtual project teams of different business
partners.

110 Collaborative Product Design and Manufacturing Methodologies and Applications

In a CCE environment, many engineers with diverse skills, expertise,
temperament and personalities are responsible for different tasks. The vast amount
of knowledge and information involved in product development is certainly more
than any individual can manage. Many computer-aided software tools have been
incorporated into the product development process, which include Computer-Aided
Design (CAD), Computer-Aided Process Planning (CAPP), Computer-Aided
Engineering (CAE), and Computer-Aided Manufacturing (CAM) tools. However,
information sharing among these applications has not been very well handled so far.
Currently, almost all the existing CAx applications, which include individual
installations, project Web portals, groupware tools and PDM (Product Data
Management) systems, are based on files as their repositories. File-based approach
has large information grain-size that results in data redundancy, storage space
waste and potential conflicts [4]. Therefore, such design is no longer adequate for
web-based CCE environment. It can be appreciated that, instead of managing the
information via each application system in the separated data formats, a database
management system (DBMS - Database Management System) can be used to
manage all the product information concurrently, and at the same time in a
consistent manner in order to eliminate the duplicated data. A DBMS can also
provide shared user-access to databases and the mechanisms to ensure the security
and integrity of the stored data.

Some research work has been carried out in product DBMS. CAD*I, a research
project by ESPRIT (European Strategic Program for Research and development in
Information Technology) was among the first to use DBMS to realize the data
exchange among different CAD systems [5]. Similar research work includes [6], [7]
and [8]. However, in these product databases, only geometric data can be managed.
This means high-level feature information (semantic information) is lost. Therefore,
it cannot support complete information integration.

Currently, most of the CAx systems are feature-based because features are a
very useful data structure that associates engineering semantics with tedious
geometrical data entities. Therefore, feature information must be represented such
that engineering meaning is fully shared among CAx applications. To represent
high-level feature information in database, Hoffman et al., [9]proposed the concept
of product master model to integrate CAD systems with downstream applications
for different feature views in the product life cycle. Wang, et al., [10, 11] put
forward a collaborative feature-based design system to integrate different CAx
systems with database support. However, these proposed databases lack
geometrical engine to support model validation.

A geometrical modeling kernel, which is also referred to as a modeling engine,
provides lower-level geometrical modeling service. Therefore, it can be integrated
with database to support feature management operations, such as saving, restoring
and updating, and hence product model integrity and consistency can be
maintained. In the previous work [12, 13], a four-layer information integration
infrastructure is proposed based on the architecture of a feature-oriented database.
Ideally, it will enable information sharing among CAx applications by using the
unified feature model [14] in the EPM (Entire Product Model), and allows the
manipulation of application-specific information with sub-models. However, the

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 111

method to provide low-level geometrical modeling services remains as a major
question for research.

Martino et al. [15] proposed an intermediate geometry modeler to integrate
design and other engineering processes with a combined approach of “design-by-
feature” and “feature recognition”. Bidarra [16, 17] and Bronsvoort [18, 19]
proposed a semantic feature model by incorporating ACIS into webSPIFF, a web-
based collaborative system. However, the above-mentioned research has little
discussion on the integration of solid modeler with database, and it is not clear
whether they have managed product data in files or with a database. Kim et al., [20]
described an interface (OpenDIS) for the integration of a geometrical modeling
kernel (OpenCascade) and a STEP database (ObjectStore). However, their work
cannot ensure full information integration because STEP cannot cover feature
information for different feature-based CAx applications.

Traditionally, feature information cannot be exchanged among different
applications. More recently, researchers, such as Bhandarkar et al., [21], Dereli et
al., [22] and Fu et al., [23], proposed different algorithms to identify useful feature
information from the exchanged part models. Although feature extraction [24] and
identification can partially recognize some feature information, information loss
still occurs because these approaches depend on pure geometric data. For example,
feature relationships (constraints) cannot be recovered from the geometric data
model.

In order to enable higher-level feature information sharing among different
applications, many researchers [25-27] proposed to use design information as the
input and derive downstream application feature models by feature conversion.
However, their works support only one-way link which means they can only
convert from design features to other application features. In [28, 29], a multi-view
feature modeling approach that can support multi-way feature conversion by
feature links, is proposed. Separately, an “associative feature” definition was
developed in [30, 31] for establishing built-in links among related geometric
entities of an application-specific and multi-facet feature while self-validation
methods were defined for keeping feature validation and consistency. Compared
with one-way feature conversion approach, these multi-facet feature
representations are promising for supporting multi-view product modeling.

The concept of unified feature model was first proposed by Geelink, et al., [32].
The interactive definitions for design and process planning features were focused.
However, the constraints defined were limited within one application feature model.
Therefore, different application views could not be integrated in their model. Chen
et al., [14] proposed a new unified feature modeling scheme by introducing inter-
application links for higher-level feature information sharing among different CAx
applications. The unified feature model is essentially a generic semantic feature
model for different CAx applications covering three-level relations among
geometric and non-geometric entities. The unified feature model includes a
knowledge-based model by incorporating rules and the necessary reasoning
functions [33, 34].

This chapter focuses on the investigation of mechanisms to integrate a solid
modeler with a feature-oriented database, such that multi-application information
sharing can be realized over the Web. This chapter consists of seven sections. After

112 Collaborative Product Design and Manufacturing Methodologies and Applications

this introduction, Section 6.2 gives a generic definition of features with the
consideration of unification of applications. Section 6.3 investigates the mapping
mechanisms between the proposed feature type, consisting of properties and
methods, and a solid modeler data structures. Section 6.4 explores the integration
of the solid modeler and database with key algorithms, e.g., feature validation,
constraint solving. Section 6.5 describes the method for solid modeler-supported
feature model evaluation. A case study is presented in Section 6.6. Section 6.7
gives the conclusions.

6.2 Generic Feature Model

To consider integrating a solid modeler with the feature-oriented database, the
mapping method between the database schemas and the feature definitions based
on the solid modeler entities is critical. A unified feature model allows different
applications to define different features with a set of well-defined generic types
[14]. It is essential that each feature type has well-defined semantics [16]. The
semantic attributes specified in each feature definition have to be associated with
the structured elements of the given feature type. Such elements include feature
shape representation with parameters, constraints that all feature instances should
satisfy, and the non-geometric attributes to be used for embedded semantic
properties, such as classifications, names, labels, and relations. All types of
constraints are used for capturing design intent in the context of a product model. A
generic feature representation schema is described in Figure 6.1. Note that the
original information model is described in EXPRESS-G. Details for the convention
of EXPRESS-G are shown in Figure 6.2 [35].

Generic feature

#, #,

Numeric_parameter

#, #,

Numeric_parameter

#, #,

Descriptive_parameter

feature_name feature_id

depended_feature_id

constraint L[0:?]

Domain Nature

domain_specification feature_nature

#, #, Label

feature_label L[1:?]
element L[0:?] Feature_shape_schema

Generic_constraint_schema
#, #,

Descriptive_parameter

feature_type

Figure 6.1. Generic feature representation schema

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 113

#, #,

: Schema

: Defined type

: Referenced entity

: Page reference

: Entity

.

: Enumerated data type

: Used entity

: Relationship with direction

A B represents entity A has

entity B as its explicit attribute

: Inheritance relationship line

: Normal relationship line

Figure 6.2. Convention of EXPRESS-G

6.2.1 Feature Shape Representation

To represent the shape of a feature means defining feature geometrical and
topological constraints or relations with parameters and associating these
parameters with feature manipulation (creation, modification and deletion)
functions. The parameters are used to provide user interfaces to create and modify
features in the modeling operations.

6.2.2 Constraint Definition

Constraints must be explicitly defined in the feature model to specify relationships
among features, geometric or topological entities. Such constrints provide invariant
characteristics of a feature type in the product model. Constraints may have various
types (e.g., geometric constraints, tolerance constraints and others). In generic
feature definition, constraints are regarded as attributes attached to a set of
associated entities, e.g., geometric and non-geometric entities or even features.
Although different types of constraints may have different attributes, they fall into
a few common types, which can be generalized as shown in Figure 6.3.

Constraint_ID: It is the identifier of a constraint instance.
Constraint_name: It specifies the name of a constraint instance.
Owner_ID: It uniquely identifies which feature a constraint belongs to.
Constraint_expression: It represents the relationship between the constrained

elements and reference elements.
Constrained_entity_ID list: It is used to specify a list of constrained entities

with reference to the referenced entities.
Referenced_entity_ID list: It can be used to uniquely identify other related

reference entities.
Constraint_strength: It has an enumeration data type, which may include

several levels, such as required, strong, medium or weak. It represents the extent
that the constraint needs to be imposed when constraints conflict with each other.

Constraint_sense: It is used to specify the direction between constrained
entities and referenced entities. It has the select data type which maybe directed

114 Collaborative Product Design and Manufacturing Methodologies and Applications

and undirected. A constraint is directed if all members of a set or list of constrained
entities are constrained with respect to one or more referenced entities. A constraint
is undirected if there are no referenced entities and the constraint is required to
hold between all possible pairs of a set of constrained entities. Stated differently, in
the undirected constraint, there is no difference between constrained entities and
referenced entities. For example, if a directed constraint is applied to two lines
(line1 and line2), which requires line2 to be parallel with reference to line1, it
implies that line1 existed in the model before line2 was created. The corresponding
undirected constraint would simply assert that line1 and line2 are parallel, with no
implied precedence in their order of creation.

constraint

#, #, numeric_parameter

owner_idreferenced_entity_id L[0:?]

constraint_strength constraint_sense

strength sense

#, #, Descriptive_parameter

constraint_type

constraint expression

#, #,

numeric_parameter

general_feature_schema.

model.element

general_feature_schema.

model.element

constraint_entity_id

#, #, Descriptive_parameter

id

name

ISO13584_expressions_schema

.expression

geometric

constraint

algebraic

constraint

semantic

constraint

dimension

constraint

coincident

constraint

parallel

constraint

coplanar

constraint
... angledistance ...

...

Figure 6.3. Constraint representation schema

Constraint solving functions: They are responsible for solving constraint
according to constraint types.

Other manipulation functions: These functions may include attributes access
functions, behavior control functions, etc.

6.2.3 Other Feature Properties

Other feature properties can be defined as follows:
General feature attributes- Feature_name and feature_id

General feature attributes such as feature_name and feature_id shall be realized
with the instantiation of a specific feature according to the application_specific

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 115

feature definition. These attributes are necessary when searching for the relevant
feature properties during feature modeling operations.

Depended_feature_id_list
To maintain feature relationship, depended_feature shall be explicitly defined

in feature definition. Feature dependency relation definition is described by
Biddara [16, 17] as “feature f1 directly depends on feature f2 whenever f1 is
attached, positioned or, in some other way, constrained relative to f2”.
Depended_feature_id_list plays an important role in maintaining feature
dependency graph, and furthermore, feature relations during feature modeling
operations.

Feature label
A feature label is attached as an attribute to every face of a particular feature

instance. In a feature, its member face labels are defined as a list of strings in the
definition, to record feature face elements. Then the face corresponding to the label
is referred to as the owner.

Domain specification

Domain specification has the ENUMERATION data type, which represents the
application scope such as design, manufacturing, assembly and others. By
specifying the different domains, multi-views can be supported with certain
filtering and synchronizing mechanisms.

Nature
The nature of a feature also has ENUMERATION data type. It could be either

positive or negative. A positive value means the instances of the feature are created
by adding material. A negative value means forming a feature instance is realized
by subtracting material.

6.2.4 Member Functions

Four groups of member functions are required to support the generic feature class.
Attribute access functions shall be defined to manage a feature’s attributes. Some
functions are common to all types of features, e.g., backup(). Others are feature-
specific such as findOwner(), findConstraint(), getParameter(), setParameter(), etc.
Object technology with a proper polymorphism design can be applied well here.

Modeling operation functions (e.g., splitOwner(), mergeOwner()) are used to
control the behaviors of feature during a modeling operation, e.g., splitting,
merging, or translation.

Feature evaluation and validation functions are responsible for feature model
modification. Feature validation functions are used to validate feature geometry
and solving constraints after each feature modeling operation. These functions will
be discussed in detail in Section 6.4.

In order to persistently manage product and process information, which
includes feature information, geometrical data and other information, saving and

restoring functions of the database, which are the interactions between the run-time
feature model and the database, must be defined in individual feature classes
because these functions have to organize information for different applications
according to the functional requirements. Details will be explained in Section 6.4.

116 Collaborative Product Design and Manufacturing Methodologies and Applications

(ABS)Design_F

eature

(ABS)Primitive_Feature

(ABS)Transition_Feature

(ABS)Compound_Feature

Hole

Planar_Face

Step

Pocket

Slot

(ABS)Subtractive_Feature

(ABS)Additive_Feature Pad

Chamfer

Edge_Round

Fillet

Block

Boss

Cylinder

Sphere

Torus

Taper

...

...

...

...

Figure 6.4. Design feature representation schema

6.2.5 Application-specific Feature Model

Application-specific feature model can be defined on the basis of generic feature
model. As shown in Figure 6.4, the design feature type has three subtypes:
primitive feature, transition feature and compound feature. The primitive feature
type is separated into two subtypes, additive and subtractive features. Additive
feature is represented as “pad”, which covers all instance features formed by
adding material such as cylinder, taper, sphere, boss, block, torus and so on.
Subtractive feature type represents all features such as hole, pocket, and slot that
are formed by subtracting material. The transition feature type includes chamfer,
edge_round and fillet, which are always associated with other primitive features.
The compound feature type is a union of several primitive features. For each
specific design feature type, it has predefined explicit geometry, topology,
parameterization and constraints specifications. For example, a design feature slot
can be defined as shown in Figure 6.5.

6.3 Mapping Mechanisms

To provide lower-level geometrical modeling services, a geometrical modeling
kernel is required. In this work, ACIS, a commercial package, is incorporated into
the proposed system. An EXPRESS-defined and extended STEP feature model,
which includes geometrical and generic feature representation schemas, is mapped
to the data representation schemas in ACIS such that the proposed system will have
the required fine grain functionality. On the other hand, this feature model would
also need to be mapped to the target database schema so that it can be interfaced
with a consistent repository.

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 117

Slot

#, #, Open_profile

#, #, path

Slot_end_type

end_conditions [2:2]

Open_slot_end_type Radiused_slot_end_type Woodruff_slot_end_type

Flat_slot_end_type

1

#, #,

Numeric_parameter

#, #,

Numeric_parameter

first_radius

second_radius

#, #,

Numeric_parameter

radius

#, #, axis_placement_3d

position

Generic feature

#, #,

Numeric_parameter

#, #,

Numeric_parameter

#, #,

Descriptive_parameter

feature_name feature_id

depended_feature_id

constraint L[0:?]

Domain Nature

domain_specification feature_nature

#, #, Label

feature_label L[1:?]
element L[0:?] Feature_shape_schema

Generic_constraint_schema

feature_type

first_or_second

#, #,

Descriptive_parameter

#, #,

Descriptive_parameter

design
subtractive

#, #,

Descriptive_parameter

Design feature

Primitive feature

Subtractive feature

Slot_shape

course_of_travel

swept_shape

Figure 6.5. Slot feature definition in EXPRESS-G

6.3.1 Mapping from Extended EXPRESS Model

to ACIS Workform Format

6.3.1.1 Geometry Mapping

In this research, in order to explicitly maintain feature shape and associative
relations in the product model, a cellular model is adopted. Cellular model
represents a part as a connected set of volumetric quasi-disjoint cells [36]. By
cellular decomposition of space, cells are never volumetrically overlapped. As each
cell lies either entirely inside or outside a shape volume, a feature shape can be
represented explicitly as one cell or a set of connected cells in the part. The cellular
model-based geometrical representation schema adopted in this research is shown
in Figure 6.6. Basically, there are three types of topological entities for cellular
topology, which are CELL, CSHELL and CFACE. CELL has two subtypes, namely

118 Collaborative Product Design and Manufacturing Methodologies and Applications

CELL2D and CELL3D. A CELL2D contains a list of CFACEs, each of which
points to faces that are double-sided and both-outside. A CELL3D contains a list of
CSHELLs. A CSHELL represents a connected set of CFACEs that bound the 3D
region of the cell. A CELL is attached to the normal ACIS topology in the LUMP

level (which represents a bounded, connected region in space, whether the set is 3D,
2D, 1D, or a combination of dimensions). Each CFACE has a pointer to a face in
the lump and use it in FORWARD or REVERSE sense.

As cellular model is directly supported in an ACIS, cellular husk is adopted.
Therefore, geometry mapping is one-to-one straight forward.

BODY

LUMP

EDGE

APOINT

CURVE

SURFACE

SHELL

LOOP

SUBSHELL

WIREFACE

VERTEX

COEDGE

CFACE

CSHELL

CELL

Figure 6.6. Partial geometrical representation schema according to cellular topology [36]

6.3.1.2 Generic Feature Definition under ACIS Framework
ACIS provides ENTITY-ATTRIBUTE architecture [36], under which we can
specify user-defined attributes (features, constraints or others). The following rules
are developed and used by the authors for defining features, constraints and other
attributes in ACIS:

Use simple attributes to represent properties such as the material of a body or
color of a face.

Use complex attributes to represent properties such as features, dimensions,
tolerance, or constraints.

Use bridging attributes to link an ENTITY with some application-specific and
parametric variables, such as dimensions.

Use instruction attributes placed on entities to force certain behavior.
Attributes of features and constraints may have various data types, e.g., string,

integer or ENTITY pointer.
Aggregating data type has been defined as ENTITY_LIST. The ENTITY_LIST

is a variable length associative array of ENTITY pointers and provides common
functions for the manipulation of itsmembers, e.g., add ENTITY, look up ENTITY
and [] operator for accessing list member by position.

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 119

Enumeration data type can be simulated by defining a string as the enumeration
member or simply using an integer data type.

Selecting data type which can be simulated by using an abstract class and
defining specific types of the abstract class.

On the basis of the above proposed mapping rules, a generic feature definition
is created as shown in Figure 6.7.

Generic Feature Definition

Attribute:
Domain: string;

Feature_name: string;

Nature: string;

Owner ID: ENTITY*;

Feature_ID: ENTITY*;

Depend_feature_ID list:ENTITY_LIST;

Parameter list:

 Parameter1;

 Parameter2;

 ...

Constraint list: ENTITY_LIST;

Feature element list: ENTITY_LIST;

 Cell list: ENTITY_LIST;

 Face list: ENTITY_LIST;

 Edge list: ENTITY_LIST;

 Vertex list: ENTITY_LIST;

Member functions:

Attribute acess:

getAttribute(),setAttribute()...

Modeling operation:

splitOwner(), mergeOwner()...

Feature validation:

geometryValidation(),

constraintSolving(),

Save and restore:

Save(),

Restore()

Entity
Entity ID: ENTITY*;

Feature_ID: ENTITY*;

Functions:

geometryValidation();

Constraint:

Attribute:
Owner_ID: ENTITY*;

Constraint_ID: ENTITY*;

Constraint_content;

Constraint_strength: int;

Constraint_sense: string;

Constrained_entity:

ENTITY_LIST;

Reference_entity_list:

ENTITY_LIST;

Other attribute:

...

Member function:
getAttribute();

setAttribute();

solveConstraint();

Other function:
...

Feature_label
Label_ID: ENTITY*;

Feature_name: string;

Element_name: string;

Reference_entity_ID: ENTITY*

Functions:

splitOwner(); mergeOwner();

Figure 6.7. Generic feature definition with ACIS entities

6.3.2 Database Representation Schema

According to the mapping mechanisms proposed in [12], a geometrical
representation schema as well as generic feature representation schema in the
database has been developed. For details, please refer to [12].

6.4 The Integration of Solid Modeler and Database

The solid modeler has been tightly integrated in four layers in order to manage
product and process information (see Figure 6.8). First, its API functions are called
constantly which are encapsulated within the feature manipulation methods during
the collaboration sessions between the end users and the application server. Second,
all the geometrical entities are manipulated and their run-time consistency
maintained through the solid modeler’s implicit runtime data structure module.

120 Collaborative Product Design and Manufacturing Methodologies and Applications

Third, it also provides runtime functional support directly to the end users via
commands dynamically. Fourth, the solid modeler has also to support the
repository operations via the DB manager.

Figure 6.8. Partial integration diagram of a solid modeler and the feature-oriented database

This chapter focuses on the forth layer. In the proposed architecture of the web-
based feature modeling system [12], database (DB) manager is responsible for
managing the geometrical entities via the solid modeler runtime model and
manipulating the data elements to be stored and extracted in the database for
different applications. With the support of a solid modeler, the database manager
can provide data manipulation functions such as save, restore and validate

functions. These functions are fundamental to support different applications. In the
following sub-sections, feature validation methods together with the generic save

and restore algorithms are explained. In order to manage the connection between
the DB manager and the database during saving and restoring processes, OCCI
(Oracle C++ Call Interface) [37] is adopted as the bridge (see Figure 6.8).

6.4.1 Feature Model Re-evaluation and Constraint Solving

Once feature operations are specified via User Interfaces (UIs), the product model
needs to be modified and updated. This process is achieved through feature
evaluation. The geometrical model has to be managed to ensure the consistency.
Here, the run-time product model should be generated via the integrated solid
modeler and managed based on the database records. All feature evaluation
operations call solid modeler APIs to realize the geometrical procedures while the
rest of the functions are implemented separately. In this way, the bottom-level
geometrical operations are readily looked after by the solid modeler; hence, the
development effort is significantly reduced. Details of feature model re-evaluation
will be explained in Section 6.5.

Theoretically, feature validation functions include two kinds: those dealing with
the geometry, and those dealing with constraints. With the incorporation of a solid
modeler, geometry validation functions are not really necessary under the proposed
design because the solid modeler is responsible for manipulating and validating

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 121

feature geometry. On the other hand, constraint-solving functions need to call
specific algorithms defined in the individual constraint sub-classes to solve
different kinds of constraints according to their types. Globally, all the constraints
are maintained by the Constraint Manager in a constraint graph for EPM (Entire
Product Model), which contains sub-graphs for specific application views.
Constraint manager solves constraints by calling the corresponding solvers
according to different constraint types. For example, SkyBlue algorithm [38] can
be used to solve local algebraic constraints in design domain; Degrees of Freedom
analysis algorithm [39] can be used to solve geometrical constraints in design
domain. If conflict of intra-application constraints occurs, local constraints solver
can determine automatically which constraint should be satisfy first according to
the value of constraint_strengh, which is an attribute of constraint defined in
Section 6.2. Inter-application constraints can also be solved under the control of
constraint manager according to the value of domain_strength. For the definition of
domain_strength, also refer to Section 6.2. The value of domain_strength, which
regulates priority sequence of different domains, can be predefined, or is set by an
authorized user. Any conflict of inter-application constraints will be detected by
constraint manager after which the constraints solver can trigger the corresponding
applications to reevaluate the product model according to domain_strength. Only
when all constraints are checked and feature geometry is validated, does feature
validation finish.

6.4.2 Save Algorithm

To elaborate, during the saving process, the solid modeler has to extract all the
information from its runtime data structure and then save them into the database
after a format conversion according to the mapping relations and the database
mapping schema described in [12]. The Save algorithm can be expressed in the
steps as follows (see Figure 6.9):

Initiate algorithm
by selecting the
part & creating an
empty entity_list

Cycle the
part to get

all entities

Create/update
the entity
graph and get
OIDs

Save entities
with OIDs

into the DB

Figure 6.9. Save algorithm

Select the part to be saved. Create an empty entity list and add the part
attributes to be saved to the list;

Cycle all entities (features, topological entities, such as solids, shells, faces,
and geometrical entities, such as lines, planes, curves, and surfaces) from
the part and add them to a graph map so that object pointers can be fixed as
unique database Object Identifiers (OID). ACIS API functions, e.g.,
api_get_xxxx(), are used to get all saved ENTITIES;

122 Collaborative Product Design and Manufacturing Methodologies and Applications

Use such object pointers to call save functions of the specific class (e.g.
point.save(), vertex.save() or feature.save()) to save part data to the
database.

6.4.3 Restore Algorithm

In a reverse way, the uploading process is triggered when the product model is
being established during the session initiation from the database.

Restore algorithm has the following steps (see Figure 6.10):

Get all
entities of the

part from DB

Reconstruct
entity objects
& add them to
the graph

Traverse OIDs
and create
entities

Add them
into a
entity_list

& form a part

Figure 6.10. Restore algorithm

All the entities of a part are retrieved from the database by searching their
linked Object Identifiers (OIDs);

Reconstruct new objects, e.g., features, geometrical entities, topological
entities. Upon reconstruction, all the objects will be validated;

Add all the entities to a newly generated object graph map;

Convert these OIDs to genuine pointers;

Create an entity list and add all the entities to the list to form the part.
Validation, e.g., geometry and feature validation will be carried out during
this procedure.

6.5 Feature Model Re-evaluation

6.5.1 Problems of Historical-dependent System

For most parametric and history-based modeling systems, feature model is re-
evaluated by re-executing whole or part of the model history. The disadvantages of
this method are the high computational cost and the considerable amount of storage
space [16]. Moreover, history-based model re-evaluation causes ambiguous feature
semantics due to the static chronological feature creation order in the model history.
This is illustrated in the example shown in Figure 6.11(a). The simple part consists
of a base block and a through hole. Later on, the designer wants to modify the part
by adding another block and extending the depth of hole so that he can get the
expected part model as shown in Figure 6.11(b). However, sometimes unexpected
modeling results as shown in Figure 6.11(c) can be generated by the history-based
reevaluation, because the feature creation order is baseblock->hole->block. In

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 123

order to get the expected part model, the precedence order, in this example, should
be changed to baseblock->block->hole. This semantic problem is caused by the
static precedence order in the model history on which model re-evaluation is based.
From this example, it is clear that the precedence relation among features should be
dynamically maintained and updated after each modeling operation.

(a)

(b)

(c)

Figure 6.11. Semantic problem for historical-dependent system (a) example part at the
initial state; (b) expected result after modification; (c) result of history-based re-evaluation
after modification

124 Collaborative Product Design and Manufacturing Methodologies and Applications

6.5.2 Dynamically Maintaining Feature Precedence Order

In this work, feature precedence order is maintained dynamically based on a
feature dependency graph. Relations between independent features can be
determined by feature overlapping detection. Feature dependency relations are
explicitly defined in the feature definition as explained in Section 6.2. The
following rules are proposed for feature precedence determination. Note that,
explicit rules always overrule implicit rules during dynamic maintenance of the
global precedence order of all features. Stated differently, the explicit rules will be
first used to determine the precedence relation; while if the global precedence order
cannot be uniquely generated, implicit rules will be then considered to get a unique
one.

Rule 1 (explicit rule)
For two dependent features, if feature f2 depends on feature f1, then f1 precedes

f2 [16].

 It is easy for us to derive from rule 1 that:
For n dependent features, if:

 f1 f2 f3 … fn

 Then, there exist:

 O1 < O2 < O3 < … < On

 where:

 fi fj : represents feature dependency relation(e.g. f1 f2 means f2 depends
on f1);

Oi : represents the precedence order of feature fi .
Oi <Oj : represents the jth feature is ordered after the ith feature.

Rule 2 (explicit rule)
For a feature in the feature dependency graph, if it depends on two or more

features, the precedence order of this feature comes after the latest feature it
depends on (we call it latest depended feature or LDF).

Note that in the feature dependency graph, LDF is always the feature that has
the longest length of path (LLP) from the root node of the graph among all
depended features of a particular feature.

Path: a path in a graph is a walk whose nodes are all distinct;

Walk: a walk in a graph is a finite alternating sequence of nodes and edges
between its starting node and ending node;

Length of path: the length of a path is the number of edges that form the path.
Rule 3 (implicit rule)
For a group of features that have random precedence order, the feature

creation sequence will be used to determine their precedence relations.

The feature creation sequence is defined as an attribute attached to the feature
instance to record the sequence of the feature among all features in the part.

Rule 4 (implicit rule)
For two independent features, if they do not overlap with each other, the

precedence relation between them is determined by LLP of these two features.
There exists:

O1 < O2 if LLP1 < LLP2

In the case of LLP1 = LLP2, the precedence order can be determined by rule 3.

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 125

Rule 5 (implicit rule)
For two independent features with same natures (both negative or both

additive), if they overlap with each other, the precedence relation between them is
random and should be determined by LLP of these two features. There exists:

O1 < O2 if LLP1 < LLP2

In the case of LLP1 = LLP2, the precedence order can be determined by rule 3.

Rule 6 (explicit rule)
For two independent features (f1 and f2) with different natures, if the overlap of

these two features is caused by some modeling operation of f2, then feature f1

precedes feature f2 [16].

Based on the above rules for feature precedence determination, after each
modeling operation, the following algorithm shown below is used to dynamically
maintain feature precedence relations.

Find all the features of the part and add them to a graph map (unsorted).

Partially sort the graph map according to the existing feature dependency
graph. This is done by using the algorithm shown in Figure 6.12 on the
basis of rules 1 ~ 3.

Sort the partially sorted graph with reference to the overlapping detection
result based on rules 4 ~ 6.

In this way, a global feature precedence order can be updated dynamically.

Here:

X
i
 represents any feature in the feature set;

X
j
represents depended feature of X

i
;

Px
i
represents the position of feature X

i
 in the

feature map;

Figure 6.12. Algorithm for precedence order generation [40]

6.5.3 History-independent Feature Model Re-evaluation

First of all, re-evaluating the feature model requires that feature elements (cells,
faces, edges and vertices) are correctly identified in the cellular model. This can be
achieved by cellular entity owner list control.

6.5.3.1 Adding a New Feature Instance
This is carried out as follows:

126 Collaborative Product Design and Manufacturing Methodologies and Applications

Create the shape of the new feature (one cell shape);

Attach labels of the feature to each face of the feature instance; and

Carry out Boolean operation (with the ‘non-regular’ option).

During non-regular Boolean Union, intersection detection will be carried
out for each cell (Ci) in the cellular model and the newly added feature cell
(C). Upon cellular decomposition, the owner list of each cell and cell face
should be controlled by the following rules [41]:

The new cells that are in the intersection of C and Ci are assigned with an
owner list that is the union of the owner lists of C and Ci;

Other non-intersecting cells resulting from the decomposition get their
owner lists which are the same as the original cells (either C or Ci);

The new cell faces lying on the boundary of both C and Ci get the owner
list that is the union of the owner lists of the overlapping cell faces from
which it originates;

The new cell faces lying on the boundary of either C or Ci inherit the owner
list from their respective original cell faces;

The remaining new cell faces get an empty owner list.
Figure 6.13(a) illustrates the creation of a slot feature on the base_block. The

shape of the slot is first created as a one-cell shape. Then non-regular-Boolean
Union is carried out to create the cellular model of the part. During the operation,
upon intersection analysis, cell decomposition is performed. On the basis of above
rules for cell and cell face owner list control, the result of the modeling operation is
shown in Figure 6.13(b). Note that there are two cells in the cellular model. One is
the original base_block cell (has block feature in its owner list). The other is a new
cell generated by cell decomposition, namely the slot cell (which has block and slot
in its owner list). Three double-side faces separate these two cells. Each double-
side face has two corresponding cell faces (e.g., CF8 and CF9); one (CF8) is for the
block cell boundary, the other (CF9) is for the slot cell boundary.

Note that CFi represents ith cell face; S represents slot feature; B indicates block
feature; and () indicates the labeled entity’s owner list.

6.5.3.2 Deleting a Feature Instance
This is carried out as follows (assume no other feature depends on the feature to be
deleted) [16]:

Traverse through all the cells and cell faces to remove from their owner list
the feature to be deleted;

Remove all the cells which has empty owner list. This can be realized by
removing all one-side faces bounding the cell;

Merge adjacent cells which have the same owner list. This can be realized
by removing all double-side faces that separate the two cells;

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 127

Clean up the model by merging the adjacent faces that have the same
geometry and whose cell faces have the same owner list.

CF
5
 (S)

CF
4
 (S)

CF
1
(S)

CF
2
(S)

CF
3
 (S)

CF
6
 (S)

CF
1
 (B)

CF
2
 (B)

CF
3
 (B)

CF
4

(B)

CF
5
(B)

CF
6

(B)

Cell_Slot

Cell_block

(a)

CF
4
 (B)

CF
10

 (B, S)

CF
8
 (), CF

9
(S)

CF
7
 (B)

CF
2

(B)

CF
6
 (B)

CF
13

 (), CF
14

(S)

CF
3
 (B)

CF
5

(B)

CF
1
(B)

CF
16

 (B, S)

CF
15

 (B, S)
Cell (B, S)

Cell (B)

CF
11

 (), CF
12

(S)

(b)

Figure 6.13. Creation of slot feature on the base block (a) base block and slot shape; (b)
result of modeling operation

128 Collaborative Product Design and Manufacturing Methodologies and Applications

As shown in Figure 6.14, to delete the slot feature from the cellular model, all
cells and cell faces in the cellular model are traversed through to remove from their
owner list the slot feature.

CF
4
 (B)

CF
10

 (B)

CF
8
 (), CF

9
()

CF
7
 (B)

CF
2

(B)

CF
6
 (B)

CF
13

 (), CF
14

()

CF
3
 (B)

CF
5
(B)

CF
1
(B)

CF
16

 (B)

CF
15

 (B)
Cell (B)

Cell (B)

CF
11

 (), CF
12

()

(a)

CF
4
 (B)

CF
10

 (B)

CF
7
 (B)

CF
2
(B)

CF
6
 (B)

CF
3
 (B)

CF
5
(B)

CF
1
(B)

CF
16

 (B)

CF
15

 (B)
Cell (B)

Cell (B)

Cell (B)

(b)

Figure 6.14. Feature deletion (a) remove slot from owner list of cell and cell face; (b) merge
two cells

The result is shown in Figure 6.14(a). Then as two cells have the same owner
list, the block feature, these two cells are merged by removing three double-side
faces (the underlying faces of CF8 and CF9, CF11 and CF12, CF13 and CF14) that
separate them. The result is shown in Figure 6.14(b). Finally, adjacent faces that

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 129

have the same geometry and same owner list are merged. This option carries out
the merging of the underlying faces of CF5 and CF16, CF7 and CF15, as well as
CF1, CF2 and CF10. The result is the same as block feature shown in Figure 6.14(a)
before creating the slot.

F
4
 (O)

F
9
 (N)

F
8
 (O)

F
7
 (O)

F
2

(O)

F
6
 (O)

F
11

 (O)

F
3
 (O)

F
5
(O)

F
1
(O)

F
13

 (N)

F
12

 (N)
Cell (S)

Cell (B)

F
10

 (O)

(a)

F
4
 (O)

F
8
 (O)

F
7
 (O)

F
2

(O)

F
6
 (O)

F
9
 (O)

F
3
 (O)

F
5
(O)

F
1
(O)

F
10

 (O)

(b)

Figure 6.15. B-Rep evaluation (a) boundary detection; (b) boundary evaluation

130 Collaborative Product Design and Manufacturing Methodologies and Applications

6.5.3.3 Modifying a Feature Instance
To modify a feature instance, we shall first check which features are really
involved in the modeling operation. This checking is based on the feature
dependency graph and the global feature precedence order. Next, features involved
will be removed from the part model. Finally, features with modified properties
will be added to the model.

6.5.3.4 B-rep Evaluation
As the cellular model of a part contains much more information than only the
boundary of the final part, which means it also contains faces that are not on the
boundary. Therefore, the B-rep evaluation of the cellular model requires boundary
detection of every face in the cellular model. The following rules are used to carry
out the boundary detection of faces in the cellular model:

For each single-side face of a cell, the nature of the cell determines whether
it is on-boundary or not. Additive nature of the cell means the face is on-

boundary; subtractive nature of the cell means the face is not-on-boundary.

For each double-side face of a cell, if the cell has a different nature with the
partner cell that shares the same face, this double-side face is on-boundary;
otherwise, it is not-on-boundary.

Note that the nature of a cell is determined by the nature of its last owner in the
cell owner list. The sequence of cell owner list is dynamically maintained
according to the unique feature precedence order, see Section 6.5.2. On the basis of
boundary detection of each face in the cellular model, the B-rep evaluation of the
cellular model can be carried out in steps as follows:

Walk through all the faces and find all the faces that are not-on-boundary;

Remove all the cells and the faces that are not-on-boundary;

Merge adjacent faces that have the same geometry.
Also taking the part shown in Figure 6.13(b) as an example, on the basis of

rules for boundary detection, the result of boundary detection is shown in Figure
6.15(a). Then, the B-Rep evaluation of the cellular model can easily be realized by
removing three faces (F9, F12 and F13) that are not-on-boundary. The result is
shown in Figure 6.15(b). Note that in Figure 6.15, O represents on-boundary; N
represents not-on-boundary.

6.6 A Case Study

The proposed feature-oriented database has been implemented coupled with a
geometrical modeling kernel, ACIS. Design features and constraints have been
defined and some example parts have been tested. Figure 6.16 illustrates the
creation of an example part which is made up of a base_block, a vertical_support,

a rib, a cylinder and two through_hole features.

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 131

(a)

Baseblock

Through_hole1

Rib

Vertical

support

Through_hole2

Cylinder

Baseblock

RibCylinder

Vertical_support

Through_hole 1 Through_hole 2

 (b) (c)

Figure 6.16. A case part (a) creation of the case part; (b) modeling result; (c) feature
dependency graph

All the parameters and constraints are listed in Table 6.1. The precedence order
of the part can be generated according to the rules described in Section 6.5.2 as
follows: Base_block vertical_support cylinder rib through_hole 1

through_hole 2.
If the designer wishes to add a cylinder_boss feature on the top of cylinder

overlapping with the hole2 as shown in Figure 6.15, feature overlapping detection
and semantic constraint checking (semantic constraints here refer to through_hole2

must have both top and bottom face not_on_boundary) will be carried out. In this
case, constraint conflict happens because the semantic constraint of the
through_hole2 cannot be satisfied if the current precedence relation is kept.
Therefore, a message will be generated by the system to prompt the user on how to
solve such problems (via changing the precedence order of those two features as
shown in Table 6.2).

After modification, the feature precedence order of the part will be changed
from: base_block vertical_support cylinder rib through_hole1

132 Collaborative Product Design and Manufacturing Methodologies and Applications

through_hole2 boss to: base_block vertical_support cylinder rib
through_hole1 boss through_hole2.

Table 6.1. Features, constraints and parameters in the example part

Feature Constraints and parameters

Baseblock Determined by two position points (0,0,0) and (100,100,10). length of
baseblock = 100; width of baseblock = 100; height of baseblock = 10

Vertical_

support

Geometric constraints: verticalsupport_start coplane with baseblock_left;
Radius of arc C2 , R1 =16; Center of arc C2 determined by two distance
constraints: D1=50; D2=60; C1 tangent to C2 ; C3 tangent to C2; Extrusion
length W2=10

Cylinder Geometric constraint: Cylinder_top coplane with baseblock_left; Center
of cylinder_top concentric to arc C2 ; Height of cylinder H = 85

Rib Distance constraint: distance between C5 and C7,

2 2
3 2 1 1 1((/ 2))D D R R W ; Extrusion length W1=10

Through_h
ole1

Geometric constraints: Through_hole1_top coplane with cylinder_top;
Through_hole1_bottom coplane with cylinder_bottom; Center of
through_hole1 concentric to the center of cylinder; Radius of
through_hole1 = 8

Through_h
ole2

Radius of through_hole2 R3 =3; Through_hole2_topcenter determined by
three distance constraints: D1, D2+R1, and D4 ; Height of through_hole2

2 2
2 1 2 3H R R R

Table 6.2. Redefining two features

Feature Constraints and parameters

Cylinder
boss

Radius of cylinder boss R4 = 6;

The top center of cylinder boss determined by three distance constraints:
D1, D4 and D5 (distance between top center of cylinder boss and top of
base block in Z axis; Height of cylinder boss

2 2
2 5 2 1 4H D D R R

Through_h
ole2

Radius of through_hole2 R3 =3; Top center of through_hole2 coplane
with top center of cylinder boss ; Top center of through_hole2 concentric
with top center of cylinder boss; Height of through_hole2

2 2
2 5 2 3H D R R

Therefore, the result part model after modification can be generated as shown
in Figure 6.17(a). The dependency graph of the modified part can be expressed as
shown in Figure 6.17(b).

Subsequently, the designer wishes to remove the boss feature. According to the
feature dependency graph shown in Figure 6.17(b) and the latest feature

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 133

precedence order, the removal of the boss feature can be done by removing the
boss as well as the hole feature that depends on the boss feature. The final part after
removing the boss is shown in Figure 6.18.

Baseblock

Through_hole1
Vertical

support

Through_hole2

Cylinder

Rib

Cylinder_

boss

Baseblock

RibCylinder

Vertical_support

Through_hole 1 Cylinder boss

Through_hole 2

 (a) (b)

Figure 6.17. Feature model after adding (a) boss a. modeling result; (b) feature dependency
graph after adding a boss

Baseblock

Through_hole1

Rib

Vertical

support

Cylinder

Baseblock

RibCylinder

Vertical_support

Through_hole 1

(a) (b)

Figure 6.18. Feature model after removing the boss feature (a) modeling result after
removing the boss feature; (b) feature dependency graph

6.7 Conclusions

In this chapter, the integration of a fine-grain, feature-oriented database and a solid
modeler, is presented. The mapping mechanisms, from EXPRESS-defined generic
feature model entities to ACIS workform format, and the integration with the
repository database schema are described. Generic algorithms for feature
manipulation with the solid molder and database methods are illustrated. Finally, a
modeler-supported, history-independent feature model re-evaluation approach is
described in detail. Based on the working prototype system, it can be concluded

134 Collaborative Product Design and Manufacturing Methodologies and Applications

that solid modeler can be effectively integrated with the feature-oriented database
to provide low-level geometrical modeling services. This kind of integration can
further enable information sharing among different applications and Web enabled
engineering collaboration.

6.8 Acknowledgements

The authors gratefully acknowledge the support of technical staff in Design
Research Center and CAD/CAM lab of Nanyang Technological University.

6.9 References

[1] Nwagboso, C., Georgakis, P. and Dyke, D., 2004, “Time compression
design with decision support for intelligent transport systems deployment,”
Computers in Industry, 54, pp. 291–306.

[2] Terwiesch, C. and Loch, C. H., 1999, “Measuring the effectiveness of
overlapping development activities,” Management Science, 26, pp. 44–59.

[3] Prasad, B., 1996, Concurrent Engineering Fundamentals: Integrated

Product and Process Organization, Prentice Hall.
[4] Mittra, S. S., 1991, Principles of Relational Database Systems, Prentice

Hall.
[5] Raflik, M., 1990, CAD*I Database-An Approach to an Engineering

Database, ECSC-EEC-EAEC.
[6] Regli, W. C. and Gaines, D. M., 1997, “A repository for design, process

planning and assembly,” Computer Aided Design, 29, pp. 895–905.
[7] Kang, S. H., Kim, N., Kim, C. Y., Kim, Y. and O’Grady, P., 1997,

“Collaborative design using the world wide Web,” Technical Report, Dept.
Industrial Engineering, Seoul National University, Korea.

[8] Loffredo, D., 1998, Efficient Database Implementation of EXPRESS
Information Models, PhD Thesis, Rensselaer Polytechnic Institute, New
York.

[9] Hoffmann, C. M. and Arinyo, R. J., 1998, “CAD and the product master
model,” Computer Aided Design, 30(11), pp. 905–918.

[10] Wang, H. F. and Zhang, Y. L., 2002, “CAD/CAM integrated system in
collaborative development environment,” Robotics and Computer
Integrated Manufacturing, 18, pp. 135–145.

[11] Wang, H. F., Zhang, Y. L., Cao, J., Lee, S. K. and Kwong, W. C., 2003,
“Feature-based collaborative design,” Journal of Material Processing

Technology, 139, pp. 613–618.
[12] Tang S. H., Ma Y. S. and Chen, G., 2004, “A feature-oriented database

framework for web-based CAx applications,” Computer-Aided Design &
Applications, 1(1–4), pp. 117–125.

 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 135

[13] Tang, S. H., Ma, Y. S. and Chen, G., 2004, “A Web-based collaborative
feature modeling system framework,” Proceedings of the 34th International

MATADOR conference, pp. 31–36.
[14] Chen, G., Ma, Y. S., Thimm, G. and Tang, S. H., 2004, “Unified feature

modeling scheme for the integration of CAD and CAx,” Computer-Aided
Design & Applications, 1(1–4), pp. 595–602.

[15] Martino, T. D., Falcidieno, B. and Habinger, S., 1998, Design and
engineering process integration through a multiple view intermediate
modeler in a distributed object-oriented system environment,” Computer
Aided Design, 30(6), pp. 437–452.

[16] Bidarra, R. and Bronsvoort, W. F., 2000, “Semantic feature modeling,”
Computer Aided Design, 32, pp. 201–225.

[17] Bidarra, R., van den Berg, E. and Bronsvoort, W. F., 2001, “Collaborative
modeling with features,” Proceedings of DETC’01 ASME Design

Engineering Technical Conferences, Pittsburgh, Pennsylvania.
[18] Bronsvoort, W. F., Bidarra, R., Dohmen, M., van Holland, W. and de

Kraker, K. J., 1997, “Multiple-view feature modeling and conversion,” In:
Strasser, W., Klein, R., and Rau, R. (Eds.), Geometric Modeling: Theory

and Practice - The State of the Art, Springer, Berlin, 159–174.
[19] Bronsvoort, W. F., Bidarra, R. and Noort, A., 2001, “Semantic and

multiple-view feature modeling: towards more meaningful product
modeling,” In: Kimura F, (Eds.) Geometric Modeling - Theoretical and

Computational Basis towards Advanced CAD Applications, Kluwer
Academic Publishers, 69–84.

[20] Kim, J. and Han, S., 2003, “Encapsulation of geometric functions for ship
structural CAD using a STEP database as native storage,” Computer Aided

Design, 35, pp. 1161–1170.
[21] Bhandarkar, M. P., 2000, “STEP-based feature extraction from STEP

geometry for agile manufacturing,” Computers in Industry, 41, pp. 3–24.
[22] Dereli, T. and Filiz, H., 2002, “A note on the use of STEP for interfacing

design to process planning,” Computer Aided Design, 34, pp. 1075–1085.
[23] Fu, M. W., Ong, S. K., Lu, W. F., Lee, I. B. H. and Nee, A. Y. C., 2003,

“An approach to identify design and manufacturing features from a data
exchanged part model,” Computer Aided Design, 35, pp. 979–993.

[24] Holland, P., Standring, P. M, Long, H. and Mynors, D. J., 2002, “Feature
extraction from STEP (ISO10303) CAD drawing files for metal-forming
process selection in an integrated design system,” Journal of Materials
Processing Technology, 125–126, pp. 446–455.

[25] Suh, Y. S. and Wozny, M. J., (1997) “Interactive feature extraction for a
form feature conversion system,” In: Hoffmann, C. M. and Bronsvoort, W.
F. (Eds.), Solid Modeling ’97, Fourth Symposium on Solid Modeling and
Applications, 11–122, New York, ACM Press.

[26] Li, W. D., Ong, S. K. and Nee, A. Y. C., 2002, “Recognizing manufacturing
features from a design-by-feature model,” Computer Aided Design, 34, pp.
849–868.

136 Collaborative Product Design and Manufacturing Methodologies and Applications

[27] Gao, J., Zheng, D. T., and Gindy, N., 2004, “Extraction of machining
features for CAD/CAM integration,” International Journal of Advanced

Manufacturing Technology, 24, pp. 573–581.
[28] Noort, A., Hoek, G. F. M. and Bronsvoort, W. F., 2002, “Integrating part

and assembly modeling,” Computer Aided Design, 34, pp. 899–912.
[29] Bronsvoort, W. F. and Noort, A., 2004, “Multiple-view feature modeling for

integral product development,” Computer Aided Design, 36, pp. 929–946.
[30] Ma, Y. S. and Tong, T., 2003, “Associative feature modeling for concurrent

engineering integration,” Computers in Industry, 51, pp. 51–71.
[31] Ma, Y. S., Britton, G. A., Tor, S. B., Jin, L. Y., Chen, G. and Tang, S. H.,

2004, “Design of an feature-object-based mechanical assembly library,”
Computer-Aided Design & Applications, 1(1–4), pp. 379–403.

[32] Geelink, R., Salomons, O. W., Van Slooten, F., Van Houten, F. J. A. M. and
Kals, H. J. J., 1995, “Unified feature definition for feature based design and
feature based manufacturing,” Proceedings of the 15th Annual International
Computers in Engineering Conference and the 9th Annual ASME

Engineering Database Symposium, pp. 517–533.
[33] Chen, G., Ma, Y. S., Thimm, G. and Tang, S. H., 2005, “Knowledge-based

reasoning in a unified feature modeling scheme,” Computer-Aided Design
& Applications, 2(1-4), pp. 173–182.

[34] Chen, G., Ma, Y. S., Ming, X. G., Thimm, G., Lee, S. S. G., Khoo, L. P.,
Tang, S. H. and Lu, W. F., 2005, “A unified feature modeling scheme for
multi-applications in PLM,” Proceedings of The 12th ISPE International
Conference on Concurrent Engineering (CE2005): Research and

Applications -Next Generation Concurrent Engineering, Sobolewski M and
Ghodous P (Eds.), ISPE, Dallas, pp. 343–348.

[35] ISO, 1994, Industrial Automation Systems and Integration — Product Data
Representation and Exchange — Part 11: Description Methods: The

EXPRESS Language Reference Manual, ISO 10303-11, Geneva.
[36] ACIS Online Help User’s Guide. Available at http://www.spatial.com.
[37] ORACLE online documentation. Available at http://www.oracle.com.
[38] Sannella, M., 1993, “The SkyBlue constraint solver and its applications,”

First Workshop on Principles and Practice of Constraint Programming.
[39] Kramer, G. A., 1992, Solving Geometric Constraints Systems: A Case Study

in Kinematics, MIT Press, USA.
[40] Wirth, N., 1976, Algorithms + Data Structure = Programs, Prentice-Hall.
[41] Bidarra, R., Madeira, J., Neels, W. J. and Bronsvoort, W. F., 2005,

“Efficiency of boundary evaluation for a cellular model,” Computer Aided

Design, 37, pp. 1266–1284.

7

A Web-based Framework for Distributed and

Collaborative Manufacturing

M. Mahesh, S. K. Ong and A. Y. C. Nee

Department of Mechanical Engineering

National University of Singapore, Singapore

To develop a distributed and collaborative manufacturing system at an enterprise
level, different domains like manufacturability evaluation, resource coordination,
process planning, scheduling, fabrication, and logistics, have to be seamlessly
integrated for product and process development. This integration necessitates a
need to formalize, encode and share manufacturing related knowledge.
Collaborative manufacturing provides a mechanism for information sharing and
decision making between the various domains. Further, with the introduction of
software agents, individual manufacturing elements are able to cooperate to
promote collaborative manufacturing. This chapter addresses the development of a
web-based framework for distributed and collaborative manufacturing.

7.1 Introduction

Decisions in integrated product development involve a number of independent
elements like part design, evaluation, process planning, scheduling, production,
etc., to final delivery of the manufactured part. While considering the development
of distributive manufacturing at an enterprise level, different domains like
manufacturability evaluation, resource coordination, process planning, scheduling,
fabrication and logistics play important roles in integrated product and process
development. This necessitates a need to formalize, encode and share
manufacturing related knowledge between various domains. With the advent of
collaborative manufacturing, the ease of information sharing for decision making
between the participating elements has become very useful. Furthermore, with the
introduction of software agents, individual manufacturing elements are able to
cooperate to promote collaborative manufacturing. This research addresses the

138 Collaborative Product Design and Manufacturing Methodologies and Applications

development of a web-based framework for distributed and collaborative
manufacturing of engineering parts. In essence, a Multi-Agent System (MAS) is
proposed where different domains in manufacturing are represented as functional
modules. The implementation of the agent system is accomplished using the Java
programming language. A case study is presented considering an engineering
company with distributed facilities.

Generally, designers, process engineers and machine operators are all capable
of individually handling complexities in decision making involved in their
respective domains of manufacturing. However, in a distributed scenario, it is
crucial for the different domains to cooperate to handle complexities. For example,
a designer must evaluate the manufacturability of his designed part, a process
engineer must evaluate and plan the job scheduling depending on the availability of
machine-tools, and the machine operator must evaluate whether the part could be
fabricated meeting deadlines, machine breakdown and so on. To conduct such
evaluations it is essential for the distributed domains to cooperate, advertise,
interact and advise each other to complete a job task. Such cooperation and
collaboration ensures a successful job completion.

In this chapter we aim to address a framework for distributed and collaborative
manufacturing of engineering parts. Apart from addressing a framework we
further encapsulate the various manufacturing related elements into functional
agents [1] for implementing a distributed MAS for manufacturing. Numerous
researchers have applied agent technologies to perform tasks like part production
control on either the shop floor level or in a distributed manner. Notably among
them, Lin and Solberg [2] proposed a framework to realize integrated shop floor
manufacturing, Tan, et al., [3] proposed to integrate design, manufacturing and
shop-floor control, Francisco and Douglas [4] developed a framework for
distributed task planning and manufacturing, Sikora and Shaw [5] presented a
coordination mechanism in a multi-agent scheduling system. Howley, et al., [6]
presented a compromising model in an agent-based environment, Klein and Lu [7]
proposed a model for cooperative design, Lander, et al., [8] also proposed a
cooperating expert framework to support cooperative problem-solving, Werkman,
et al., [9] developed a Design Fabricator Interpreter system and so on. More
recently, Odrey and Mejia [10] proposed an approach addressing the issue of
combining the discipline of hierarchical systems with the agility of MASs. Blecker
and Graf [11] discussed a coordinated application for mass customization using
multi-agent systems in internet based production environments for production
planning and control. Ong and Sun [12] have proposed a Web-based distributed
architecture for developing a platform-independent real-time monitoring system
through mobile agents. Shin and Jung [13] proposed a negotiation mechanism,
called a Mobile Agent-based Negotiation Process (MANPro), which applies a
mobile agent system to the process of information exchange. Boonserm, et al., [14]
described a framework to facilitate the collaboration of engineering tasks,
particularly process planning and analysis for globalized manufacturing activities.
Liu and Young [15] presented an approach which utilizes a combination of
information and knowledge models to support global manufacturing coordination
decision-making. Jiao, et al., [16] applied the multi-agent system paradigm for
collaborative negotiation in a global manufacturing supply chain network. Nahm

 A Web-based Framework for Distributed and Collaborative Manufacturing 139

and Ishikawa [17] discussed a MAS framework for integrated product design in a
computer network-oriented Concurrent Engineering (CE) environment.

All the earlier proposed systems have in different ways addressed specific
issues like using multiple-way and multiple-step negotiation, using black boards,
sub-contracts, conflict resolution, etc. However, in this chapter we propose a
framework to incorporate a flexible system for multiple coordinated tasks starting
from part design to final scheduling.

7.2 Distributed and Collaborative Manufacturing

Figure 7.1 presents the various manufacturing elements involved in decision
making in a distributed and collaborative manufacturing environment. However,
considering its implementation as a distributed agent-based manufacturing system,
there exist certain constraints while encoding and sharing of manufacturing related
knowledge and information, between the participating agents. In this research we
address the implementation of the manufacturing elements for decision making in a
distributed fashion while taking advantage of the Internet and Web-based
computing facilities. The goal of implementing a distributed system is to aid
designers to send design data, perform evaluation and obtain reliable results
pertaining to a manufacturing job, a mold fabrication for example.

In such a collaborative environment, it is advantageous for designers, process-
engineers or machinists with insufficient experience to follow certain structured
approaches to reason out critical design parameters affecting manufacturability.
Hence during implementation, a proper rule-based knowledge repository for
manufacturability evaluation and planning plays a crucial role in integrated product
and process development.

Figure 7.1. Elements involving a decision in manufacturing

140 Collaborative Product Design and Manufacturing Methodologies and Applications

Manufacturability evaluation focuses on product design and verification, to
suggest modifications or redesign alternatives that are functionally acceptable and
compatible with the selected manufacturing processes. Such evaluations are
certainly skill-intensive activities demanding a wide variety of design expertise and
knowledge of the manufacturing processes that are available. Decision-making
processes in manufacturability evaluation are generally based on product geometry.
In the proposed system such expertise information sharing is achieved through
interaction between the various agents.

The rest of the chapter is organized as follows: the next section presents the
proposed framework with implementation aspects for a distributed manufacturing
system. The participating functional manufacturing agents are also briefly
discussed. The subsequent section discusses a case study considering an
engineering company with distributed facilities. Finally, the chapter is concluded
with suggestions and scope for future related research work.

7.3 Proposed Framework and Implementation

Figure 7.2 presents an integrated framework comprising of a Designer Computer-
Aided Design (CAD) interface communicating with a MAS. The MAS interface
may comprise and include any number of manufacturing related functional agents,
like Design Mediator Agent (DMA), Manufacturability Evaluation Agent (MEA),
Manufacturing Capability Agent (MCA), Process Planning Agent (PPA),
Manufacturing Scheduling Agent (MSA), etc. Figure 7.3 presents a more detailed
framework of the agent interaction and communication as part of the multi-agent
system interface. All manufacturing agents in the framework, although distributed
physically, can connect, communicate and share information with each other
through the Web.

In the proposed framework all manufacturing agents communicate over the
Internet via a bundle of Knowledge Query and Manipulation Language (KQML)
messages to transfer data and information among each other. KQML [18] is a
common communication protocol used for negotiation and interaction between
agents. Developed on JATLite [19] (Stanford University) each agent understands
the message it receives and executes specific tasks. A performative header at the
beginning of a message defines the implied message for the recipient agent to
understand and act. Performatives developed as part of the Agent Language
include instructions for manufacturing like: ‘tell’, ‘evaluation’, ‘re-evaluation’,
‘find_model’, ‘need_model’, ‘process_planning’, ‘scheduling’, ‘job_schedule’, etc.

There exists a Router [18] in JATLite, which is a specialized application that
receives messages from the registered agents and routes the messages to the
appropriate receivers. To coordinate the activities of the functional agents, a central
coordination agent exists, namely, the Facilitator or Manufacturing Managing
Agent (MMA). Unlike most agents in previously reported systems that were
intentionally designed with a compact all-in-one structure to obtain beneficial
characteristics, such as prompt responsiveness, integrated control, etc., a
modularized structure is used in this research to implement the agents to acquire
adaptiveness and upgradeability in these agents. Though these agents are dispersed,

 A Web-based Framework for Distributed and Collaborative Manufacturing 141

this modularized structure is wrapped and connected using the JATLite template.
Thus the internal structure of each agent [20, 21] is composed of components that
include the JATLite template, I/O modifier, work engine, and knowledge-based
pool. Thus, all the separate components form a close entity and still maintain the
desirable characteristics of agents with integrated structures. With limited types of
manufacturing agents with knowledge of their specific stages/functions in a
product development, a centralized control mechanism is adopted. The MMA
assumes the role of central control and is responsible for solving conflicts relating
to the coordination among agents, while the other agents by themselves are
responsible for solving specific problems, such as manufacturability, process
planning, etc.

Figure 7.2. An integrated framework (the Designer CAD interface communicating with the
multi-agent system interface)

In a distributed framework, each participating functional agent receives data
input from the MMA, carries out its operation, and sends the data output back to
the MMA. When a message is transmitted among the agents, it is wrapped by the
KQML in a standard format. The destination agent can de-compose the KQML and
retrieve the embedded message. Such architecture allows each functional agent to
be independent in its task execution and the breakdown or malfunction of any
functional agent will not affect the operation of other agents as long as the MMA is
functioning. Table 7.1 presents a brief description of the work engine of each
functional agent currently constituting the developed distributed network. The
JATLite template and Java-based programming are very useful when developing
newer agents to be part of the web based system. It is sufficient only to concentrate
on developing the functional part of an agent since the basic structure already
exists.

142 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 7.3. Distributed MAS interface

Table 7.1. Agents’ work engine

Agent Description

MEA This work engine is an inference-reasoning engine connected with two rule-based
knowledge pools: rules on the manufacturing principles and machining processes
for individual features.

MCA This work engine is a forward searching engine that compares the available
factories with the required resources to identify eligible factories.

PPA The PPA employs a genetic algorithm-based engine to perform process planning
for a feature-based part.

MSA The MSA work engine uses an integrated genetic algorithm and Gantt chart
approach to determine an optimal production schedule in a selected factory.

7.4 A Case Study

A case study is given here considers an engineering company A with distributed
facilities for fabricating engineering parts through machining. Generally
information/data flow in a typical engineering company from design through
manufacturing is in line with Figure 7.4. The designer does the part design

 A Web-based Framework for Distributed and Collaborative Manufacturing 143

followed by design evaluation after which the process engineer is responsible for
resource coordination, planning and the final job scheduling.

Figure 7.4. Information Flow in Manufacturing

In this example of a distributed scenario, the engineering and manufacturing
facilities are assumed to be distributed over Asia, where all the distributed facilities
are represented as different functional manufacturing agents responsible to process
the tasks required of the engineering company A. Figure 7.5 illustrates such
distributed engineering facilities. The distributed facilities may include an
engineering design agent, manufacturability evaluation agent, process planning
agent, scheduling agent and factories, all controlled by a manufacturing managing
agent. A designed part as shown in Figure 7.6 is used to demonstrate the
developed system. The designed part information in terms of individual geometric
features, dimensions and location are presented in Table 7.2. The precedence
information is presented in Table 7.3.

The Designer designs the engineering part using the Designer CAD interface
(Figure 7.2), after which he submits the part information (geometric features,
design dimensions, operation precedence) to the Design Mediator Agent (DMA as
a message under the performative ‘part_features’. The DMA in turn forwards this
message to the MMA, which routes the message to the MEA and PPA under a
performative header ‘evaluation’. On receiving the message, MEA interprets the
message from the performative header and performs the manufacturability
evaluation [22]. Figure 7.7 presents a snap shot of the manufacturability evaluation
and its inference process by MEA. During the manufacturability evaluation process,
if a discrepancy arises, for example, an improperly defined geometric feature or
design, an inappropriate error (conflict resolution) is triggered for a corrective
action.

144 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 7.5. Web-based distributed engineering facilities

Figure 7.6. An engineering part

On successful evaluation however, the results with a performative header,
‘need_model’ is automatically sent to the MMA. Once the MMA receives the
message, it routes the message to MCA with a performative ‘find_model’. Figure
7.8 presents a snap shot of the MCA agent for resource selection. After the
inference process, the results are sent back once again to the MEA by the MMA
under the performance header ‘evaluation_again’ for re-evaluation of the inferred
results. MEA re-evaluates the capabilities of the manufacturing resources selected
for processing the individual features. On successful re-evaluation, the results are
forwarded to MMA for the next step of process planning. If a conflict occurs and

1

2

3

4

5

6

7

8

9

10

 A Web-based Framework for Distributed and Collaborative Manufacturing 145

an unsuitable resource is encountered even after re-evaluation, an appropriate
message is triggered to indicate unsuitable resources or alternatively requesting a
correct model.

The successful re-evaluation results sent to MMA will be dispatched to the
PPA agent (Figure 7.9) under the performance header ‘process_planning’. The
PPA agent having received the required messages performs the process planning
task [23].

Table 7.2. Design data of the engineering part

Geometric Features Location Parameters Dimensions Parameters

Rect-Pocket (1) 0.0,25.0,20.0 50.0,10.0,20.0

Rect-Pocket (2) 80.0,10.0,10.0 20.0,30.0,30.0

Rect-Pocket (3) 5.0,50.0,20.0 20.0,10.0,10.0

Rect-Slot (4) 50.0,20.0,30.0 10.0,20.0,10.0

Rect-Slot (5) 40.0,0.0,20.0 20.0,10.0,10.0

Rect-Slot (6) 40.0,60.0,20.0 20.0,10.0,10.0

Single-Hole (7) 90.0,0.0,30.0 15.0,10.0D

Single-Hole (8) 90.0,45.0,30.0 15.0,10.0D

Fillet (9) 0.0,25.0,20.0 50.0,2.0D

Fillet (10) 0.0,35.0,20.0 50.0,2.0D

Table 7.3. Precedence information of the engineering part

Operation ID Predecessor Successor

Op1 -- Op4, Op9, Op10

Op2 -- Op7, Op8

Op3 -- --

Op4 Op1 --

Op5 -- --

Op6 -- --

Op7 Op2 --

Op8 Op2 --

Op9 Op1 --

Op10 Op1 --

146 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 7.7. Manufacturing evaluation agent

Figure 7.8. Manufacturing capability agent

 A Web-based Framework for Distributed and Collaborative Manufacturing 147

Figure 7.9. Process planning agent

Figure 7.10. Manufacturing scheduling agent

148 Collaborative Product Design and Manufacturing Methodologies and Applications

On successful completion of the process planning task, the results are
dispatched for manufacturing scheduling to the MSA (Figure 7.10) agent by the
MMA agent [20, 21]. The scheduling results could be later dispatched to the shop
floor for actual fabrication. In such engineering manufacturing applications the
information/data flow follows a logical sequence to ensure the completeness of the
job task as discussed above. The developed system offers the flexibility of adding
newer functional agents. For example a new fault diagnosis agent can become a
part of the system by registering its functionalities with the MMA. Thus the system
allows for further expansion, improvement and customization according to the
functional requirements.

7.5 Conclusions

Considering the development of distributive manufacturing at the enterprise level,
this chapter presents a generic web-based framework for collaborative
manufacturing for engineering parts. The proposed framework is implemented as
an agent-based distributed manufacturing system based on JATLite and Java
programming. The proposed framework and system offer the flexibility to be used
for distributed and collaborative manufacturing of engineering parts. To envisage
the implementation a case study is also presented in this chapter. Future works
include real-time industrial implementation and testing besides exploring
management, organizational limitations, and standards. Possible extension of the
framework to other areas like integrated virtual manufacturing, rapid prototyping,
etc., can also be explored.

7.6 References

[1] Caglayan, A. and Harrison, C., 1997, Agent Sourcebook, John Wiley &
Sons Inc., New York, NY, USA.

[2] Lin, G. and Solberg, J., 1992, “Integrated shop floor control using
autonomous agents,” IIE Transactions, 24(3), pp. 57–71.

[3] Tan, G. W., Hayes, C. C. and Shaw, M., 1996, “An intelligent-agent
framework for concurrent product design and planning,” IEEE Transactions

on Engineering Manufacturing Management, 43(3), pp. 297–306.
[4] Francisco, P. M. and Douglas, H. N., 1996, “Multi-agent mediator

architecture for distributed manufacturing,” Journal of Intelligent
Manufacturing, 7(4), pp. 257–270.

[5] Sikora, R. and Shaw, M. J., 1998, “A multi-agent framework for the
coordination and integration of information systems,” Management Science,
44(11), pp. 65–78.

[6] Howley, B., Cutkosky, M. and Biswas, G., 1999, “Compromising and
sharing dynamic models in an agent-based concurrent engineering
environment,” Proceedings of the American Control Conference, California,
USA, pp. 3147–3153.

 A Web-based Framework for Distributed and Collaborative Manufacturing 149

[7] Klein, M. and Lu, S. C. Y., 1990, “Conflict resolution in cooperative
design,” Artificial Intelligence in Engineering, 4(4), pp. 168–180.

[8] Lander, S., Lesser, V. R. and Connell, M. E., 1991, “Conflict resolution
strategies for cooperating expert agents,” In Deen S. M. (Eds.), CKBS-90 -

Proceedings of the International Working Conference on Cooperating
Knowledge Based Systems, Springer-Verlag: Heidelberg, Germany, pp.
183–200.

[9] Werkman, K. J., Wagaman, S. J., Hillman, D. J., Barone, M. and Wilson, J.
L., 1990, “Design and fabrication problem solving through cooperative
agents: designer fabricator interpreter system,” NSF-ERC-ATLSS Technical

Report No. 90-05, Lehigh University Bethlehem.
[10] Odrey, N. G. and Mejia, G., 2003, “A re-configurable multi-agent system

architecture for error recovery in production systems,” International
Journal of Robotics and Computer Integrated Manufacturing, 19(1-2), pp.
35–43.

[11] Blecker, T. and Graf, G., 2003, “Multi agent systems in internet based
production environments- an enabling infrastructure for mass
customization,” Proceedings of the Second Interdisciplinary World

Congress on Mass Customization and Personalization, Munich, Germany,
pp. 1–27.

[12] Ong, S. K. and Sun, W. W., 2003, “Application of mobile agents in a Web-
based real-time monitoring system,” International Journal of Advanced

Manufacturing Technology, 22(1–2), pp. 33–40.
[13] Shin, M. and Jung, M., 2004, “MANPro: mobile agent-based negotiation

process for distributed intelligent manufacturing,” International Journal of
Production Research, 42(2), pp. 303–320.

[14] Boonserm, K., Richard, A. W., Hyunbo, C. and Albert, J., 2004,
“Integration framework of process planning based on resource independent
operation summary to support collaborative manufacturing,” International
Journal of Computer Integrated Manufacturing, 17(5), pp. 377–393.

[15] Liu, S. and Young, R. I. M., 2004, “Utilizing information and knowledge
models to support global manufacturing co-ordination decisions,”
International Journal of Computer Integrated Manufacturing, 17(6), pp.
479–492.

[16] Jiao, J. R., You, X. and Kumar, A., 2006, “An agent-based framework for
collaborative negotiation in the global manufacturing supply chain
network,” Robotics and Computer Integrated Manufacturing, 22(3), pp.
239–255.

[17] Nahm, Y. E. and Ishikawa, H., 2005, “A hybrid multi-agent system
architecture for enterprise integration using computer networks,”
International Journal of Robotics and Computer-Integrated Manufacturing,
21(3), pp. 217–234.

[18] Finin, T., Fritzon, R., Mckay, D. and McEntire, R., 1994, “KQML as an
agent communication language,” Proceedings of the 3rd International

Conference on Information and Knowledge Management, Gaithersburg,
MD, USA, ACM Press, pp. 456–463.

150 Collaborative Product Design and Manufacturing Methodologies and Applications

[19] JATLite Home Page at Stanford: http://java.stanford.edu. Last Access 16
October 2005.

[20] Jia, H. Z., Ong, S. K., Fuh, J. Y. H., Zhang, Y. F. and Nee, A. Y. C., 2004,
“An adaptive upgradable agent- based system for collaborative product
design and manufacture,” Robotics and Computer-Integrated
Manufacturing, 20(2), pp. 79–90.

[21] Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C. and Zhang, Y. F., 2002, “Web-based
multi-functional scheduling system for a distributed manufacturing
environment,” International Journal of Concurrent Engineering: Research
and Application, 10(1), pp. 27–39.

[22] Zhang, Y. F., Fuh, J. Y. H. and Wang, G. J., 2002, “Agent-based
manufacturing resource planning,” Proceedings of the International

Manufacturing Leaders Forum, Adelaide, Australia, pp. 136–141.
[23] Lin, G. and Solberg, J., 1992, “Integrated shop floor control using

autonomous agents,” IIE Transactions, 24(3), pp. 57–71.

8

Wise-ShopFloor: A Portal toward Collaborative

Manufacturing

Lihui Wang

Integrated Manufacturing Technologies Institute

National Research Council of Canada, Canada

This chapter presents the principles of a Web portal system named Wise-
ShopFloor, including system architecture, information flow, and a proof-of-
concept prototype enabled by Web and Java technologies. It is designed to use the
popular client-server architecture, VCM (View-Control-Model) and publish-
subscribe design patterns for effective data sharing during collaboration. A case
study of Distributed Process Planning (DPP) linking to Web-based rapid
machining is carried out to demonstrate the effectiveness of this approach toward
Web-based collaboration.

8.1 Introduction

Recently, collaborative manufacturing has emerged as the norm of manufacturing
in a distributed environment. This is largely due to the global business
decentralization and manufacturing outsourcing. To stay competitive in the
dynamic global market, companies with distributed factories or divisions are
demanding a new way of effective collaborations among themselves and even
between their suppliers and outsourced service providers. Among many other
factors, flexibility, timeliness and adaptability are identified in this research as the
major characteristics to bring dynamism to collaborative manufacturing.
Distributed manufacturing processes are complex, especially at machining shop
floors where a large variety of products, usually in small batch sizes, are handled
dynamically. The dynamic environment requires an adaptive system architecture
that enables distributed planning, dynamic scheduling, real-time monitoring, and
remote control. It should be responsive to both varying collaboration needs and
unpredictable changes of distributed production capacity and functionality. An
ideal shop floor should be the one that uses real-time manufacturing intelligence to

152 Collaborative Product Design and Manufacturing Methodologies and Applications

achieve the best overall performance with the least unscheduled downtime.
However, traditional methods are based on off-line advance processing and thus
are impractical if applied directly to this dynamic collaborative environment. In
response to the requirements and to coordinate the dynamic activities in
collaborative manufacturing, a sensor-driven and Web-based planning and control
approach is needed to achieve the dynamism in the distributed manufacturing
environment.

The objective of this research is to develop methodologies and a Wise-

ShopFloor (Web-based integrated sensor-driven e-ShopFloor) framework for
distributed planning, dynamic scheduling, real-time monitoring, and remote control
supported by sensors, Java technologies and the Web infrastructure. The Wise-
ShopFloor is designed to use the popular client-server architecture, VCM (View-
Control-Model) and publish-subscribe design patterns for effective information
sharing during collaborative planning and control.

This chapter is organized as follows. In Section 8.2, enabling technologies
including Web, Internet, Java 3D and Java servlets are introduced. It is followed by
a brief description of the Wise-ShopFloor framework in Section 8.3. Details on
adaptive and distributed process planning are presented in Section 8.4, which leads
to a Web-based real-time monitoring and control documented in Section 8.5. A
case study using planning results for Web-based remote machining are described in
Section 8.6. Finally, our contributions are summarized in Section 8.7.

8.2 Enabling Technologies

With the growing manufacturing decentralization, products and services might be
distributed everywhere and sourced anywhere along supply chains. Product design
and fabrication have shifted rapidly from intra-corporation to global networks.
How to coordinate manufacturing activities and keep them under control is a
challenging issue. Flexibility, timeliness and adaptability of manufacturing
operations are the essential requirements for collaborative manufacturing in such a
dynamic environment. Fortunately, the Web infrastructure today is mature enough
to form a distributed manufacturing network through client-server interconnections.
During the past decade, the Web has been widely used for development of
collaborative applications to support dispersed working groups and organizations
because of its platform, network and operating system transparency, and its easy-
to-use user interface – the Web browser. In addition to the Web technology, Java
has brought about a fundamental change in the way that applications are designed
and deployed. Java’s “write once, run anywhere” model has reduced the
complexity and cost traditionally associated with producing software solutions on
multiple distinct hardware platforms. With Java, the browser paradigm has
emerged as a compelling way to produce collaborative applications over the Web.
Examples include WebCADET [1] for collaborative design and CyberCut [2] for
rapid machining. In terms of technologies used in the existing systems, HTML,
Java applets, ActiveX, and VRML are widely adopted for developing client-side
user interfaces. At the server side, technologies including JSP (JavaServer Pages),
Java Servlets, and XML are quickly obtaining attentions for new system

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 153

development. To facilitate a viable collaborative system, its application server must
engage users in a 3D graphical interaction in addition to the dialog-like data
sharing, because remote users need active and visual aids to coordinate their efforts
in a distributed environment. Web and Java technologies are adopted in our
research as the enabling technologies for collaborative manufacturing realization.
In the current implementation, a thin-client user interface has been developed as a
Java applet that runs inside a Web browser. Java 3D has been used to model a
physical device that can replace or supplement cameras in providing visual help
during remote planning, monitoring and control. A set of decision-making logics
have been designed as server-side components for multi-client collaborations. For
example, a Java 3D model can communicate with server-side Java servlets for real-
time monitoring. Details on how the different technologies can work together are
explained below in the Wise-ShopFloor Framework.

8.3 Wise-ShopFloor Framework

The Wise-ShopFloor framework [3] has been designed to provide users with a
Web-based and sensor-driven intuitive environment where distributed process
planning, dynamic scheduling, real-time monitoring and remote control are
undertaken. Within the framework, each machine should become an information
node and be a valuable resource in the information network. A direct connection to
sensors and machine controllers is used to continuously monitor, track, compare,
and analyze production parameters. Instead of camera images (usually large in data
size), a physical device of interest (e.g., a milling machine) can be represented by a
Java 3D scene graph model with behavioral control nodes embedded. Once
downloaded from its application server, the 3D model is rendered by the local CPU
and can work on behalf of its remote counterpart showing real behavior for
visualization at a client side. It remains alive by connecting with the physical
device (via servlets) through low-volume message passing (sensor data). As the 3D
model is entirely driven by the sensor data and rendered locally for visualization,
there is no need of transmitting camera images over the Internet. The largely
reduced network traffic makes real-time monitoring and remote control practical
for dispersed users connected through the Web. It also enables engineers to make
accurate decisions in a timely manner, and to ensure that machines are operating
within the defined expectations. Being able to plan and control dynamic shop floor
operations from anywhere at any time collaboratively is what this research is
aiming at. Figure 8.1 illustrates the scope of the Wise-ShopFloor.

As a constituent component in manufacturing supply chain, the Wise-
ShopFloor links physical shop floors with the upper manufacturing systems.
Similar to the e-manufacturing and e-business, the four major Wise-ShopFloor
activities shown in Figure 8.1 are conducted in a collaborative cyber workspace.

In more detail, the interactions among the modules are illustrated in Figure 8.2,
where the framework has been designed into a client-server architecture using
VCM design pattern with built-in secure session control. The mid-tier application
server handles major security concerns, such as session control, session registration,
sensor data collection/distribution, planning and scheduling, as well as real device

154 Collaborative Product Design and Manufacturing Methodologies and Applications

manipulation. A central Session Manager has been designed to look after the issues
of user authentication, session synchronization, and sensitive data logging. All
initial transactions need to go through the Session Manager for access
authorization. In a multi-client environment, different users may require different
sets of data or logic for different tasks. For example, in the case of monitoring, it is
not efficient to have multiple users who share the same model talking with the
same device at the same time. Publish-subscribe design pattern is adopted to
collect and distribute sensor data at the right time to the right user, efficiently. As a
server-side module, the Signal Collector is responsible for sensor data collection
from networked physical devices. The collected data are then passed to another
server-side module Signal Publisher who in turn multicasts the sensor data to the
registered subscribers (clients) through applet-servlet communication. A Registrar
has been designed to maintain a list of subscribers with the requested sensor data.
A Java 3D model thus can communicate indirectly with sensors no matter where
the client is, inside a firewall or outside. HTTP streaming is chosen as the
communication protocol between server and clients.

Although the global behaviors of a Java 3D model are controlled by the server
based on real-time sensor signals, users still have the flexibility of viewing the
model from different perspectives (zooming, orbiting, panning and tilting, etc.) at a
client side. In order to control a device, an authorized user can send control
commands to the application server which in turn manipulates the physical device.
Although the Wise-ShopFloor framework provides an alternative of camera-based
monitoring through Java 3D models, an off-the-shelf Web-ready camera can easily
be switched on remotely to capture unpredictable (un-modeled) scenes for
diagnostic purposes.

1Cyber Workspace

Physical

Shop Floor

e-Business

e-Manufacturing

Wise-ShopFloor

23
Dynamic
Resource

Scheduling

4
Distributed

Process

Planning

Real-Time
Process

Monitoring

Remote
Device

Control

Figure 8.1. Scope of Wise-ShopFloor

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 155

Application Server Web Browser

(View) (Model) (Control)

Meeting Room

J3D Model

Shop Floor Monitor

Machine 2 Machine 1

S/W Layer

H/W Layer

Control
Commander

Data Server

W
e
b

 S
e

rv
e

r

Signal

Collector

D
ata A

ccessor

Shop Floor

Java 3D Models

Internet

Factory Network

M

Intelligent Sensors
& Controllers

Assembly
Line

……Robot

Process Planner

Scheduler

Cyber Controller

Resource

Database

Manufacturing

Strategy

Production

Knowledge

Dynamic
Resource

Scheduling

Remote

Control

Real-Time

Monitoring

Distributed
Process

Planning

Signal
Publisher

R

Manufacturing Logic Container

Session Manager

R
egistrar

Figure 8.2. Wise-ShopFloor framework

8.4 Adaptive Process Planning and Scheduling

The four business modules shown in Figure 8.1 are interrelated, that is, the output
of one module may be the input of another. For dynamic scheduling, real-time
information from the monitoring module plays an important role. For the sake of
page limitation, only the process planning is presented, leaving an interface to the
scheduling open.

8.4.1 Architecture Design

Figure 8.3 shows the detailed architecture of our adaptive process planning.
Within the Wise-ShopFloor, our approach to adaptive process planning is

realized by a two-layer structure of shop-level Supervisory Planning and machine-
level Operation Planning. A process plan generally consists of two parts: generic
data (machining method, machining sequence, and machining strategy) and
machine-specific data (tool data, cutting parameters, and tool paths). Such a two-
layer structure is, therefore, considered suitable to separate the generic data from
those machine-specific ones. Since the resources, knowledge/database, and
decision-making are logically and geographically distributed, such an adaptive
process planning approach is also named Distributed Process Planning (DPP) [4].
The Supervisory Planning focuses on product data analysis, machining feature (m-
feature) parsing, setup planning, machining process sequencing, and machine
selection, while the Operation Planning considers jig/fixture selection and the

156 Collaborative Product Design and Manufacturing Methodologies and Applications

detailed working steps for each machining operations, including cutting tool
selection, cutting parameters assignment, tool path planning, and control code
generation. Optimization is only performed at the latter stage, when specific
resources (machine, tool and fixture) are known, and within a relatively small
search space.

Part Feature

GD&T

Product Data Supervisory Planning

Function Block Designer

Operation Planning

E
x
e
c
u
tio

n
 C

o
n
tro

l
(E

x
e
c
u
tio

n
 &

 M
o
n
ito

rin
g
)

M-Sequence Generator
(Feature-based reasoning))

Machining
Features

Resource
Database

Cutting
Strategy

Cutting
Techno.

Scheduling Info

Fixturing Information

M
-F

e
a

tu
re

 P
a
rs

e
r

FB Processor

Pocket

Roughing

ECC

C
u
ttin

g
 T

o
o
l S

e
le

c
tio

n

C
. P

a
ra

m
e
te

rs
 S

e
le

c
tio

n

T
o
o
l P

a
th

 G
e
n
e
ra

tio
n

Tool
Database

Manufacturing
Knowledge Base

Open CNC Controller Factory Shop Floor Design Office

Fieldbus Corporate Network Gateway

F
e
a
tu

re
 R

e
c
o
g
n
itio

n

Monitoring Info

Figure 8.3. Architecture for adaptive process planning

8.4.2 Machining Process Sequencing

One critical task in process planning is machining sequence generation. Since a
part design can be decomposed into basic m-features (such as hole, slot, pocket,
etc.) either through feature-based design or via a third-party feature recognition
solution, the task of machining process sequencing is literally treated as the task of
putting m-features into proper setups and in proper sequence, which is called m-
sequencing in DPP. A high-level process plan as a result of m-sequencing only
consists of machine-neutral information in the form of generic machining
sequences, including both critical and non-critical machining operations. Some of
the non-critical ones are presented in a parallel order, whose sequence will be
determined by a CNC controller during low-level operation planning. Before an m-
feature can be machined, it must be grouped into a setup for the ease of fixturing.
The basic idea of feature grouping is to determine a primary locating direction of a
setup, and group the appropriate m-features into the setup according to their pre-
defined tool access directions. This process is repeated for a secondary locating
direction and so on until all the m-features are properly grouped.

Here, a primary locating direction is the surface normal V of the primary

locating surface (LS). It can be determined by the following equations:

max

*

max

*
** ,

T

T
W

A

A
WTAfLS TA

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 157

maxmax

max
T

T
W

A

A
W TA

 (8.1)

z

f

y

f

x

f
V ,,

 (8.2)

where, *A and *T are the surface area and the generalized accuracy grade of an LS;

AW is the weight factor of *A ;
TW is the weight factor of *T ;

maxA and
maxT are the

maximum values of *A and *T of all candidate locating surfaces. A generalized
accuracy grade T can be obtained by applying the algorithms described in [5-7].
Based on the primary locating direction V , those m-features whose tool access

directions
EMFT are opposite to V are grouped into setup

V
ST , as denoted below.

VTEMFST EMFV
 (8.3)

To be generic, the setups at this stage are planned for 3-axis machines only. A
setup merging is handled by the Execution Control module for 4-axis or 5-axis
machines, if needed, after a specific CNC machine is selected.

In order to further sequence m-features in each setup, we proposed a geometry
reasoning algorithm using IMV (intermediate machining volume) [8]. An IMV of
an m-feature is the intersection of its maximum machining volume (MMV) and the
current workpiece. Figure 8.4 schematically shows the concept of IMV through a
hole, where the IMV of the hole varies between its MMV and its actual machining
volume (AMV) during the machining.

Raw material

(a) A Hole in a part

(d) MMV of Hole

Step1

H
o
le

Step2

(b) Current workpiece

(e) IMV of Hole

(c) Final workpiece

(f) AMV of Hole

Figure 8.4. Intermediate machining volume of a hole feature

Based on the concept of IMV, five reasoning rules are defined below for m-
sequencing.

Rule-1: If the IMV of an m-feature equals to the AMV of the m-feature, or

IMV=AMV, it is the time to machine the m-feature.

158 Collaborative Product Design and Manufacturing Methodologies and Applications

Rule-2: If the IMV of m-feature A is to be divided into more than one piece
as a result of the machining operation of m-feature B, m-feature A

should be cut first.
Rule-3: If an m-feature is to be changed to another m-feature type as a result

of its own machining operation, this m-feature should be cut later.
Rule-4: A bigger machining volume is to be cut first.

Rule-5: In a setup, the m-features sharing the same tool types are grouped
into clusters.

The above five reasoning rules are used effectively for m-sequencing as
demonstrated in the case study in Section 8.6. The sequenced m-features are then
embedded in a set of function blocks with built-in decision-making functions of
cutting parameters selection, tool path generation, and G-code generation at the
individual m-feature level. The function blocks can be dispatched to a selected
machine where detailed operation planning is accomplished before part fabrication.
The built-in functions of each function block are resource- and event-driven, and
can be called at runtime upon request so as to adapt to any environmental changes.
Details on function block design and its utilization are explained in the next section.

8.4.3 Function Block Design and Utilization

“Function blocks” (or IEC 61499-1) [9] is an IEC standard for distributed process
measurement and control, particularly for PLC control. A function block is a
reusable functional module based on an explicit event-driven model, and provides
for data flow and finite state automata based control. It is relevant to CNC control
in machining data encapsulation and process plan execution. In the DPP, we use
function blocks to address the manufacturing uncertainty through resource-driven
algorithms embedded in each function block. The event-driven model (or resource-
driven algorithms) of a function block gives a CNC machine more intelligence and
autonomy to make decisions on how to adapt a generic process plan to match the
actual machine capacity and dynamics. It also enables dynamic task scheduling,
execution control, and process monitoring.

Three basic function block types are defined in the DPP: (1) machining feature
function block (MF-FB), (2) event switch function block (ES-FB), and (3) service

interface function block (SI-FB). Figure 8.5(a) depicts a typical 4-Side Pocket MF-
FB. A basic function block like this can have multiple outputs and can maintain its
unique internal state, meaning that it can generate different outputs even if the
same inputs are applied. The fact is of vital importance for adaptive cutting
condition modification, after the function block has been dispatched to a machine,
by changing the internal hidden state of the function block. For example, the same
4-Side Pocket MF-FB can be used for roughing and/or finishing at the same
machine (or at a different machine) with different cutting parameters and tool paths,
by adjusting the internal state of the function block to fine-tune the algorithms in
use. Such a behavior is controlled by a finite state machine, whose operation is
represented by an ECC (execution control chart) as shown in Figure 8.5(b).

The START state is an initial idle state ready for receiving event inputs. EI_INI
(an incoming event requesting initialization) triggers the state transition from
START to INI for function block initialization, and when the state INI is active, the

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 159

algorithm ALG_INI is being executed for the initialization. Upon its completion,
ALG_INI will trigger an event output EO_INI indicating the success of the
initialization.

Similarly, for other state transitions to RUN, UPDATE and MON (execution
monitoring), different algorithms ALG_RUN (MF-FB execution), ALG_UPDATE
(cutting condition update), and ALG_MON (MF-FB monitoring) are triggered,
correspondingly. An event “1” means a state transition is always true. That is to
say, the state will transit back to the START state and be ready for receiving the
next event input.

EO_INI

EO_RUNRDY

EI_UPD

EI_RUN

EI_INI

4-Side Pocket EMT

Internal Algorithm

ALG_INI
ALG_RUN

ALG_UPDATE

ALG_MON

Internal
Variables

EO_ESS

EMT

MT

MAC_ID

EI_ESR

MT

FB_EXE

OPER

CC_UPD

ECC

E
v
e
n
t

In
p

u
ts

E
v
e

n
t

O
u

tp
u

ts

D
a
ta

In
p

u
ts

D
a
ta

O
u

tp
u

ts

(a) Structure design of a 4-Side Pocket MF-FB

EO_RUNRDY
1

EI_RUN

EI_UPD

INI ALG_INI EO_INI

EI_INI

1

ALG_RUN

ALG_UPDATE

START

1

MON ALG_MON

1

EI_ESR

EO_ESS

RUN

UPDATE

(b) Execution control of embedded algorithms

Figure 8.5. A basic machining feature function block

While basic MF-FBs define the functional relationships of events, data and
algorithms for individual machining features fabrication, their combination can
form a composite function block representing a setup. A composite function block
may consist of several basic and/or composite function blocks with partially
sequenced connections via events and data. The event flow among MF-FBs
determines their machining sequence. Figure 8.6(a) shows a composite function
block, where the event flow (or sequence) among three MF-FBs is facilitated at
run-time by an Event Switch Function Block (ES-FB). For instance, if a sequence

160 Collaborative Product Design and Manufacturing Methodologies and Applications

of “342” is given, the ES-FB will fire events accordingly to appropriate MF-FBs
for feature fabrications in the order of 3 4 2. It thus adds flexibility to the
composite function block. Figure 8.6(b) illustrates the graphical definition of the
ES-FB, where ROUTE is the only data input to the function block. It is used as a
reserved port for controller-level operation planning to do the local optimization of
machining sequence.

Once the final sequence becomes explicit for those parallel MF-FBs, a string of
integer numbers indicating the sequence is applied to the port. Event switching is
realized by the internal algorithm ALG_SWITCH, which parses the data string and
triggers one execution event at a time until the entire string is exhausted.

Feature

1

Feature

2

Feature
4

Feature

5

ES-FB

342

Feature

3

(a) An ES-FB in a composite function block

EO_INI

EO_P1EI_P

EI_INI

Event
Switch

FB

Internal Algorithm

ALG_INI

ALG_SWITCH

EO_Pn

……

ROUTE

EO_DONE

EO_P2

(b) Structure design of an ES-FB

Figure 8.6. Event switch function block for parallel m-features sequencing

In addition to MF-FBs and ES-FB, a Service Interface Function Block (SI-FB)
is defined, as shown in Figure 8.7(a), to facilitate the execution control of MF-FBs.
It also enables machining process monitoring during function block execution. In
DPP, all MF-FBs are grouped in setups before being dispatched to appropriate
machines. Each setup is a Composite Function Block (CFB). An SI-FB is plugged
to each setup with the following assigned duties: (1) collects runtime execution

status of an MF-FB including FB id, cutting parameters, and job completion rate;
(2) collects machining status (cutting force, cutting heat, and vibration, etc.) if
made available; and (3) reports any unexpected situations to DPP, e.g., security
alarm and tool breakage, etc.

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 161

Similar to other function block types, an SI-FB has been designed with five
embedded algorithms for requesting and reporting execution status (ES),
machining status (MS), and Unexpected Situation (US) from MF-FBs and to the
Execution Control module (see Figure 8.3), respectively. Figure 8.7(b) is such an
example. In order to monitor the machining process during execution, an SI-FB is
plugged to the composite function block. Per the request from the Execution
Control module, the SI-FB will pass the request (EI_ESR, execution status request)
to the composite function block, which will then return an array of FB_EXE
containing runtime execution status back to the SI-FB and finally to the Execution
Control module. The SI-FB is of vital importance for machining process
monitoring and dynamic re-scheduling in case of machine failure.

EO_ESR

EO_ESS

EI_MSR

EI_ESS

EI_ESR

Service
Interface

FB

FB_EXE
Internal Algorithm

ALG_ES_REQ
ALG_ES_SEND
ALG_MS_REQ

ALG_MS_SEND

ALG_US_SEND

EO_MSS

US

MS

US

EI_MSS

MS

FB_EXE

EO_MSR

EI_USS EO_USS

(a) Structure design of an SI-FB

FB_EXE

EI_ESR

MT

EMT

EI_INI

EI_UPD

EI_RUN

EO_INI

EO_RUNRDY

EO_ESS

FB_EXE

EMT

MT

Step
MF-FB

F25

EO_INI

EO_P1EI_P

EI_INI

ES-FB

ROUTE

EO_DONE

EO_P2

Chamfer
MF-FB

F23

Sunk Hole
MF-FB

F26

EI_ESR

MAC_ID

OPER

CC_UPD

ROUTE

F24

EO_ESS

EI_MSR

EI_ESS SI-FB

FB_EXE
ALG_ES_REQ
ALG_ES_SEND
ALG_MS_REQ
ALG_MS_SEND
ALG_US_SEND

EO_MSS

US

MS

US

EI_MSS

MS

FB_EXE

EO_MSR

EI_USS EO_USS

Execution
Control

Machining Selection

FB Dispatching

Process Monitoring

(b) SI-FB for process monitoring

Figure 8.7. Service interface function block for execution control and monitoring

162 Collaborative Product Design and Manufacturing Methodologies and Applications

The DPP prototype has been implemented in Java, including a module
dedicated to function block design (see Figure 8.3). This function block designer
consists of a Basic FB Designer, a Composite FB Designer, and an FB Network
Designer. As the name suggests, each FB designer performs a specific function.
Figure 8.8(a) illustrates a 4-side pocket MF-FB being designed using the Basic FB
Designer, whereas Figure 8.8(b) depicts the result of a composite function block (a
setup). In the DPP, a set of sequenced machining features can be mapped to a
network of composite function blocks easily using this design tool. An example for
a test part machining is explained in detail in Section 8.6.

(a) Designing a basic function block

(b) Designing a composite function block

Figure 8.8. Function block design in DPP

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 163

8.4.4 Shop Floor Integration

Enabled by the Wise-ShopFloor, true shop floor integration can be realized by
combining the following three systems: 1) the DPP system, 2) an agent-based
scheduling system, and 3) a Web-based monitoring and control system, where DPP
is treated as the main thread (Figure 8.9). The scheduling system is relatively
standalone, to which the integration is loosely coupled. More details on dynamic
scheduling can be found in [10].

FB DESIGNER

MERGER
EVENT

HANDLER

EXECUTOR

DISPATCHER

Schedules

FB

Execution

Events

EC

Events

Machining Sequence Plan

Shop

Floor

CFB

CFB

SI-FB
CNC

Controller

Agent-

based

Scheduling

MF-FB

Remote

Monitoring

& Control

Machining

Events

Re-scheduling and updated tasksTasks

DPP

Figure 8.9. Shop floor integration enabled by Wise-ShopFloor

In DPP, a generic process plan is embedded in a set of function blocks that are
portable to different machines. The machine-specific data, however, is determined
at runtime by the function block embedded algorithms that are adaptive to
unpredictable situations. For example, an alternative resource (cutter or machine
tool) has to be used due to tool shortage or machine breakdown. In this case, the
function blocks can apply appropriate algorithms to dynamically figure out the best
cutter parameters and tool path for the alternative resource without re-doing the
entire process planning. A snapshot of the adaptive process planning and its

164 Collaborative Product Design and Manufacturing Methodologies and Applications

integration with Web-based remote machining is demonstrated in Section 8.6
through a simple case study.

8.5 Web-based Real-time Monitoring and Control

Obtaining real-time monitoring, control, and inspection data for a machine is
limited by the available bandwidth for the data transfer. Broadcasting data about all
machines to all clients would require sending more messages than necessary,
slowing down the transfer of each message, and reducing the application’s ability
to display data and images in real time. Polling initiated by a client requires two-
way communication, while only the information sent to the server from the client is
of any use. The best solution to reducing network congestion and ensuring quick
transfers is to have data multicast to only the clients requiring that data, with an
open connection established for data streaming, and sending data whenever the
data is changed. This section presents in detail the system configuration, sensor
data collection and distribution, and Java 3D-based visualization.

8.5.1 System Configuration

Figure 8.10 illustrates a typical configuration for Web-based rapid machining,
where a 5-axis horizontal milling machine is hooked up to the network for remote
monitoring and CNC machining. The milling machine is equipped with a PC-based
open architecture controller that serves as a gateway between itself and the
application server. For security reason, TCP (Transmission Control Protocol) has
been adopted for data communication between the machine and the application
server, whereas HTTP streaming is used for data sharing from the server to the
remote users. While the former is better for hardware protection with handshaking,
the latter is firewall-transparent and suitable for Web-based application. Based on
this configuration, it allows a remote user to monitor the absolute and relative
motions of all axes as well as to control the spindle speed and feed rate for CNC
machining.

Internet

Real-Time Monitoring

Remote Control

Real Machine

TCP
HTTP Streaming

W
B

-2

App Server

Database

View

Control

Model

W
B

-1

Figure 8.10. Configuration of Web-based rapid machining

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 165

8.5.2 Sensor Data Collection for Real-time Monitoring

To this end, the Wise-ShopFloor implements a Publish-Subscribe design pattern. A
client (end user) subscribes to information pertaining to a specific machine, leaving
an open connection to receive events. When a new event for that machine is posted,
it is published only to those clients who have subscribed to it. In the Wise-
ShopFloor, this communication is handled by a modification of the Pushlet [11].
Figure 8.11 shows the communication pathway for events to and from clients and a
real machine.

Pushlet

P
u
b

lis
h

e
r

E
v
e
n
t P

u
ll

S
o
u
rc

e

Machine Adapter

D
e
v
ic

e

C
o
n
tro

lle
r

M
a
c
h
in

e
-1

Application Server

Postlet

Postlet Wrapper

Client-1

Client-2

Client-n

D
e
v
ic

e

C
o
n
tro

lle
r

M
a
c
h
in

e
-2

Internet Factory Network

Figure 8.11. Event and data flow between clients and devices

J
a
v
a
 3

D

R
e
n
d
e
rin

g
 L

o
o
p

Client-Side
Applet

Machine
State Info

Input Stream

Pushlet

Publisher

J
a
v
a
P

u
s
h
le

tC
lie

n
t

Server-Side
Servlet

Figure 8.12. Streaming based applet-servlet communication

The client-side applet of the Wise-ShopFloor communicates with the Pushlet,
an HTTP servlet. Invoking the Pushlet with an HTTP “Get” request with a
“subject” parameter allows a client to subscribe to that subject. When receiving a
subscription request, the Pushlet leaves the connection to the client open, allowing
data to be streamed in without reopening a connection for each event. On the
client-side of the Pushlet package is the JavaPushletClient. The JavaPushletClient
sends the request for the Pushlet subscription, and opens an input stream from the
socket. The Pushlet client then loops continuously and checks for data in the data
stream. If the publisher has written new data to the stream, the Pushlet client
overwrites the next most recent data with the new data, ensuring that only the most
recent information is used to update a Java 3D image. The actual update of the
image, however, comes from a different loop. Java 3D provides an interface, the
InputDevice, which can be registered to the Java 3D Physical Environment. Once
registered, a schedule is created to call a Polling and Processing method from the

166 Collaborative Product Design and Manufacturing Methodologies and Applications

InputDevice. In the Wise-ShopFloor, this schedule is designed such that the
method is called each time a frame is rendered, so that each frame renders a
machine with only the most recent information about the machine. Figure 8.12
shows the pathway of applet-servlet communication.

The Publisher sends information through the connection established by the
Pushlet. This data is found by the JavaPushletClient loop, and is pushed into a
client-side storage location. On a different thread, the Java3D rendering loop
retrieves the data and updates the on-screen image for monitoring.

The Pushlet also provides a Postlet servlet, used by clients to “Post” events to
the Publisher. When a client wishes to control a machine, he/she needs to seek
permission from the application server and then enters into the control mode. At
any given time, only one client can be granted the control authority for
manipulating a given machine. The client-side applet then connects to the Postlet,
sending an HTTP “Get” request with the desired instructions as a parameter. When
the Postlet passes the data to the Publisher, the connection is closed, while the
Publisher sends the data to all clients who subscribe to the indicated subject.

On the real machine side, data collection is slightly different. There are many
different types of machines and robots that usually have different types of
controllers. The Pushlet package provides an adapter, the Event Pull Source (see
Figure 8.11), which can be extended to obtain data from a required source (real
device). Events are “pulled” from an Event Pull Source at a regular interval, which
can be set to a desired increment to approximately replicate real-time monitoring.
A comprehensive data flow is shown in Figure 8.13, where the needed sensory data
are directed to the right users using the HTTP streaming.

Shop Floor

App Server

SignalPublisher

SignalCollector

S
e
n
s
o
r-1

S
e
n
s
o
r-2

S
e
n
s
o
r-x

…

Clients

S
ubscriber

S
ubscriber

Web
Browser

Web
Browser

Subscribe()
StartFlow()
PauseFlow()
StopFlow()

Streaming Control

AddUser()
RemoveUser()

CollectData()
PublishData()
RecordData()
FlowControl()

SelectSensor()
Start()

Pause()
Stop()

HTTP Streaming

Figure 8.13. Streaming based applet-servlet communication

In the collection of sensor data from real machines, the server containing the
Pushlet actually acts as a client of the machine controllers, establishing a socket
connection and working with the provided interface of each machine controller.
The concrete implementation of the Event Pull Source is one adapter between the

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 167

interface of a machine controller and the interface required by the Pushlet.
However, the communication to the real machine must be in both directions to
achieve control, although the Event Pull Source communicates in only a single
direction – from the machine to the application server. A machine controller is not
able to interpret the Pushlet event, and thus will not be a client of the Pushlet.
Another Pushlet adapter, the Machine Adaptor, is required to take information
from the Postlet (i.e., from the client), and send it to a machine controller in the
required format. As the Pushlet does not provide this functionality, the Wise-
ShopFloor uses a wrapper for the Postlet, which determines whether data is
destined for the publisher or the machine, and thus directs it appropriately.

8.5.3 Data Packet Format

As shown in Figure 8.10, runtime sensory data collection from the milling machine
is accomplished over the TCP connection using a series of 12 floating numbers and
one long integer that form one data packet. In the current implementation, a typical
data packet is defined as follows,

1 2 3 4 5 6 7 8 9 10 11 12 13

Relative position of 5 axes Absolute position of 5 axes FR SS CW

where, FR, SS and CW denote feed rate, spindle speed and NC control word,
respectively. A control word is a reserved long integer indicating the status of the
machine, including operation mode, such as manual (0x0001), auto (0x0002), or
jogging (0x0040), coordinate system, axis status, etc. Same as the real machine
controller, the data packet provides both relative and absolute positions of the five
motion axes that are used for joints transformation and Java 3D model rendering
for the ease of off-site monitoring and CNC control.

8.5.4 Java 3D Enabled Visualization

For the sake of network bandwidth conservation, Java 3D is chosen for geometric
modeling of the CNC machine, as an alternative of camera-based solutions. Java
3D is designed to be a fourth-generation 3D API [12]. What sets a fourth-
generation API apart from its predecessors is the use of scene-graph architecture
for organizing 3D objects in the virtual world. Enabled by the scene-graph
architecture, Java 3D provides an abstract, interactive imaging model for behavior
control of 3D objects. Different from other scene graph-based systems, a Java 3D
scene graph is a directed acyclic graph. The individual connections between Java
3D nodes are always forming a direct relationship: parent to child.

The 5-axis milling machine requires linear motion control of X, Y, and Z axes,
as well as rotary motion control of B and C (around Y and Z axes, respectively). A
combined rotary stage having two rotary motions is mounted on top of an X-table,
whereas the spindle head of the machine provides the other two linear motions
along Y and Z axes. Figure 8.14 illustrates the Java 3D scene graph model of the
machine.

168 Collaborative Product Design and Manufacturing Methodologies and Applications

Virtual Universe

BackgroundLights

TB

BG

Viewpoint

Control

T Base T

B

Spindle Head

X-Axis

Control

Rotary Stage-1

AA

G A

TransformGroup Node T

B Behaviour Node

A AppearanceG Geometry

BG BranchGroup Node

User Defined Codes

B

Bed

G A
Column

AG

T T

X-Table
G A AG

T

Spindle

T

T

Y-Axis

Control

Rotary Stage-2

B

Z-Axis

Control

B

Cutting Speed

Control

B

B-Axis

Control

B

C-Axis

Control

G A

G A

G A

Figure 8.14. Java 3D scene graph model of a 5-axis milling machine

The scene graph contains a complete description of the entire scene. It includes
the geometries, the attributes, and the viewing information needed to render the
scene from a particular point of view. All Java 3D scene graphs must connect to a
Virtual Universe object to be displayed. The Virtual Universe object provides
grounding for the entire scene. A scene graph itself, however, starts with
BranchGroup (BG) nodes (although only one BG node in this case). A
BranchGroup node serves as the root of a sub-graph, or branch graph, of the scene
graph. The TransformGroup nodes inside of a branch graph specify the position,
the orientation, and the scale of the geometric objects in the virtual universe. Each
geometric object consists of a Geometry object, an Appearance object, or both. The
Geometry object describes the geometric shape of a 3D object. The Appearance
object describes the appearance of the geometry (color, texture, material reflection
characteristics, etc.). The behavior of the machine is controlled by Behavior nodes,
which is subject to sensor data and is implementation-specific. The results of
sensor data processing can be embedded into the codes for remote monitoring.
Once applied to a TransformGroup node, the so-defined behavior control affects
all the descending nodes. In our case, the 5-axis motions (X-Table, Rotary Stage-1,
Rotary Stage-2, Spindle Head, and Spindle) are controlled by their corresponding
behavior control nodes, for both on-line monitoring/control and off-line simulation.
As the Java 3D model is connected with its physical counterpart through the
control nodes by low-volume message passing (real-time sensor signals and control
commands), it becomes possible to remotely machine a part on the real machine
through the Wise-ShopFloor, where the physical security is addressed separately.

Behavior Node

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 169

8.5.5 Web-based Remote CNC Control

Web-based CNC control is possible by sending proper NC commands through the
applet-servlet (or CyberController-ControlCommander-Machine) communication
as shown in Figure 8.2. In order to remotely machine a part, user authentication
and authorization must be accomplished for the client who demands this operation.
Control right authorization is done by setting a bit in the control word in a data
packet that is sent to the client. If the client has requested the control right and the
bit is set, a message will appear on the screen notifying the user that he/she is now
in control of the machine. For the purpose of remote machining, a control word,
similar to CW in the monitoring data packet, is sent back to the machine controller,
augmented by a text string containing lines of an NC program. Thus not just
manual control can be exercised off-site, but a complete NC program generated by
the DPP can be remotely executed. For example, the following NC line tells the
machine controller to proceed from the current position to the next, incrementally
by (20, -30, 10) in linear rapid traverse mode. At the same time, the controller sets
the spindle speed to 3,000 rpm and turns the flood coolant on.

G0 X+20 Y-30 Z+10 S3000 M8

Most existing Web-based systems rely on camera-based monitoring to guide
remote operations. Compared with one 8-bit VGA camera image of 640×480
(307,200 bytes), our data packet size is only 52 bytes – a significant size reduction
suitable for Web-based real-time applications.

8.6 A Case Study

A test part shown in Figure 8.15(a) is chosen for the case study. After applying the
five feature-based reasoning rules defined in Section 8.4.2, the 14 m-features are
grouped into two setups, each of which consists of two or more partially sequenced
m-features as shown in Figure 8.15(b). While each m-feature can be mapped to a
function block, a setup forms a composite function block. Figure 8.16 shows the
composite function block for Setup-2.

In the Wise-ShopFloor, the adaptive process plan shown in Figure 8.16 can be
dispatched to a milling machine for rapid fabrication utilizing the real-time
monitoring and control functions discussed in Section 8.5. The motions of the five
axes of this machine are driven by either sensor data for client-side monitoring or
user commands for remote control. As the 3D model is connected with its physical
counterpart through the message passing, it becomes possible to remotely
manipulate the real machine through its Java 3D model. For example, the jogging
control is with the use of the individual control buttons as labeled in Figure 8.17,
whereas feature machining can be remotely achieved through NC Control mode.

The data packet format and the current implementation provide all information
needed by the Java 3D model and its physical counterpart, the milling machine, for
process plan execution. The 3D model ignores the first five numbers, while the
machine controller ignores the second five numbers.

170 Collaborative Product Design and Manufacturing Methodologies and Applications

F1

F3

F4

F5

F6

F7
F8

F9

F11

F10
F14

F12

F2

F13

//

(a) Test part design

F1 F3 F2

F11

F5

F12

F13

F14

F10 F4

F6 F7

F8 F9

Setup-1

Setup-2

//

(b) Sequenced m-features

Figure 8.15. A test part and its machining sequence

MT

EMT

EI_INI

EI_UPD

EI_RUN

EO_INI

EO_RUNRDY

EO_ESS

FB_EXE

EMT

MT

Face

MF-FB

F2

EO_INI

EO_P1EI_P

EI_INI

ES-FB

EO_P3

ROUTE

EO_DONE

EO_P2

4-Side
Pocket
MF-FB

F10

Step

MF-FB

F5

Blind Hole

MF-FB

F11 F12

F13 F14

3-Side
Pocket
MF-FB

F4

Semi-Blind
Slot

MF-FB

F6 F8

Thru Hole

MF-FB

F7 F9

EI_ESR

MAC_ID

OPER

CC_UPD

ROUTE

Figure 8.16. An adaptive process plan embedded in a composite function block

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 171

R
u

n
tim

e
 S

ta
tu

s

Button Control NC Control

Viewpoint Control

C
h

a
ttin

g
 A

re
a

J
a

v
a

 3
D

 M
o
d

e
l V

ie
w

in
g

 A
re

a

Machine Selection

Figure 8.17. User interface for Web-based remote machining

As mentioned in Section 8.3, although the Wise-ShopFloor provides an
alternative of camera-based monitoring, an off-the-shelf Web-ready camera can
easily be switched on remotely to capture unmodeled scenes for trouble-shooting.
Figure 8.18 illustrates one snapshot of a real scene of CNC machining during the
case study.

Figure 8.18. A snapshot of Web-based remote machining

172 Collaborative Product Design and Manufacturing Methodologies and Applications

The Wise-ShopFloor prototype system provides users with a Web-based
collaborative environment for real-time monitoring and control of manufacturing
devices in the shop floor. It utilizes the latest technologies, including Java 3D and
Servlets, for system design and implementation. Figure 8.19 shows the modular
user interfaces that form the integrated system.

Web-based Monitoring and Execution Control

Function Block Design in Distributed Process Planning

Dynamic Scheduling

Figure 8.19. An integrated system for collaborative manufacturing

8.7 Conclusions

This chapter presents a novel approach toward Web-based collaborative
manufacturing, including adaptive process planning, dynamic scheduling, real-time
monitoring and remote control. On top of a Wise-ShopFloor framework, our
prototype system has been designed into view-control-model architecture and
developed using publish-subscribe design pattern for sensor data collection and
distribution. In terms of adaptive process planning, our approach is to separate
machine-specific data from generic ones using two-layer Supervisory Planning and
Operation Planning. A generic process plan has been embedded into function
blocks with built-in algorithms for machine level adaptive decision-making. A
planning-machining case study demonstrates its feasibility and shows promise of
this approach in a distributed manufacturing environment. As decentralization of
business grows, a large application potential of this research is anticipated, such as
control simulation, operator training, facility touring, off-site trouble-shooting and

Wise-ShopFloor: A Portal toward Collaborative Manufacturing 173

collaborative design verification, in addition to remote real-time monitoring and
control.

8.8 Acronyms

AMV actual machining volume
API application programming interface
CC_UPD updated cutting condition
CFB composite function block
CNC computer numerical control
CW control word
DPP distributed process planning
ECC execution control chart
EI_x event input x
EMT estimated machining time
EO_y event output y
ES-FB event switch function block
FB function block
FB_EXE execution status of function block
FR feed rate
HTTP hypertext transfer protocol
IMV intermediate machining volume
MAC_ID machine ID
MF-FB machining feature function block
MMV maximum machining volume
MS machining status
MT machining time
OPER operator’s input
PLC programmable logic controller
SI-FB service interface function block
SS spindle speed
TCP transmission control protocol
US unexpected situation
VCM view-control-model
_ESR execution status request
_ESS execution status sent
_INI initialization
_MSR machining status request
_MSS machining status sent
_RUN function block execution
_RUNRDY execution completed
_UPD cutting parameter update
_USS unexpected status sent

174 Collaborative Product Design and Manufacturing Methodologies and Applications

8.9 References

[42] Caldwell, N. H. M. and Rodgers, P. A., 1998, “WebCADET: Facilitating
Distributed Design Support,” IEE Colloquium on Web-based Knowledge

Servers, U.K., pp. 9/1–9/4.
[43] Smith, C. S. and Wright, P. K., 1996, “CyberCut: a world wide Web based

design-to-fabrication tool,” Journal of Manufacturing Systems, 15(6), pp.
432–442.

[44] Wang, L., Shen, W. and Lang, S., 2004, “Wise-ShopFloor: A Web-based
and sensor-driven e-shop floor,” ASME Journal of Computing and

Information Science in Engineering, 4(1), pp. 56–60.
[45] Wang, L., Feng, H.-Y. and Cai, N., 2003, “Architecture design for

distributed process planning,” Journal of Manufacturing Systems, 22(2), pp.
99–115.

[46] Boerma, J. R. and Kals, H. J. J., 1989, “Fixture design with FIXES: the
automated selection of positioning, clamping and support features for
prismatic parts,” Annals of CIRP, 38, pp.399–402.

[47] Rong, Y., Liu, X., Zhou, J. and Wen, A., 1997, “Computer-aided setup
planning and fixture design,” International Journal of Intelligent
Automation and Soft Computing, 3(3), pp.191–206.

[48] Ma, W., Li, J. and Rong, Y., 1999, “Development of automated fixture
planning systems,” International Journal of Advanced Manufacturing

Technology, 15, pp. 171–181.
[49] Wang, L., Cai, N. and Feng, H.-Y., 2004, “Generic machining sequence

generation using enriched machining features,” Transactions of
NAMRI/SME, 32, pp. 55–62.

[50] IEC 61499-1, 2005, Function Blocks – Part 1: Architecture, International
Electrotechnical Commission, Switzerland.

[51] Shen, W., Lang, S. and Wang, L., 2005, “iShopFloor: An Internet-enabled
agent-based intelligent shop floor,” IEEE Transactions on Systems, Man,

and Cybernetics, Part C, 35(3), pp. 371–381.
[52] van den Broecke, J., 2000, “Pushlets, part 1: send events from servlets to

dhtml client browsers,” JavaWorld, March.
[53] Barrilleaux, J., 2001, 3D User Interfaces with Java 3D, Manning

Publications Co., Greenwich, CT, USA.

9

Real Time Distributed Shop Floor Scheduling:

An Agent-based Service-oriented Framework

Chun Wang1, Kewei Li1, Hamada Ghenniwa1, Weiming Shen1,2, Ying Wang1

1Dept. of Electrical & Computer Engineering

University of Western Ontario, Canada
2Integrated Manufacturing Technologies Institute

National Research Council, Canada

This chapter presents a distributed manufacturing scheduling framework at the
shop floor level. The shop floor is modeled as a collection of multiple workcells.
Each workcell is modeled as a flexible manufacturing system. The framework
consists of a distributed shop floor control structure, dynamic distributed
scheduling algorithms, multi-agent system modeling of workcells, and service-
oriented integration of the shop floor. At the workcell level, a designated scheduler
allocates jobs to resources and deals with any dynamic events locally, if possible.
Otherwise, it collaborates with other workcells’ schedulers. Workcells are modeled
as multi-agent systems. Local dynamic scheduling is achieved by the cooperation
among the scheduler agent, the real time control agent and resource agents.
Distributed scheduling is conducted through Web services facilitated by the
service-oriented shop floor integration. The proposed distributed control structure,
dynamic distributed scheduling algorithms, and system integration have been
designed and implemented using an agent-based service-oriented approach. Our
experiments have shown promising results in enhancing shop floor flexibility and
agility. The possible application of the proposed framework to other levels of
manufacturing scheduling is discussed as well.

9.1 Introduction

Globalization of markets has driven manufacturing enterprises to shed the security
of mass production and shift to a new paradigm, mass customization. An essential
goal of this transformation is to respond to market changes in a timely and cost
effective manner. As an integral component of manufacturing manangement,

176 Collaborative Product Design and Manufacturing Methodologies and Applications

scheduling needs to be effectively integrated with other components of
manufacturing systems such as supply chain management, ERP (Enterprise
Resource Planning), and shop floor control. Dynamic changes can derive from
either outside parties in the market, such as the supply side (representing suppliers),
demand side (representing customers) or within the enterprise, such as real-time
events from the shop floor. In a real world shop floor environment, it is rarely the
case to execute exactly as planned. Operation durations tend to vary, machines
break down, raw materials fail to arrive on time, new customer orders appear,
others get cancelled, etc. Such disrupted execution incurs higher costs due to
missed customer delivery dates, higher work-in-process inventory, and lower
resource utilization. To deal with these issues, practical scheduling systems need to
be able to effectively reorganize the shop floor production plan and repair or redo
the production schedule accordingly. Scheduling systems with the capability of
revising or re-optimizing a schedule in response to unexpected events become a
key for companies to sustain their productivity.

This research is concerned with developing real time distributed scheduling
systems at the shop floor level. The shop floor is modeled as a collection of
workcells. The workcells, in turn, are modeled as Flexible Manufacturing Systems
(FMS). The scheduling is performed cooperatively and collectively by the group of
schedulers, each delegated to a specific workcell. Dynamic scheduling in this
environment requires real time scheduling algorithms and their effective
integration with the distributed shop floor control structure. Dynamic scheduling
has been extensively studied in the literature [1, 2]. There have been research
efforts focusing on distributed scheduling as well [3-5]. In this chapter, we study
dynamic and distributed scheduling algorithms in the multi-workcell shop floor
setting. In addition to the individual algorithms, we investigate how to integrate
them in a way that the overall shop floor scheduling agility and solution quality are
enhanced.

9.2 Scheduling Problems in Multiple Workcell Shop Floor

The shop floor considered here consists of a collection of workcells (as illustrated
in Figure 9.1). Each of them is modeled as a flexible manufacturing system. Within
a workcell, jobs need to be scheduled on resources. The scheduling problem at this
level is a dynamic FMS scheduling problem, which is handled by a designated
scheduler of the workcell. At the shop floor level, due to workcell capability
limitation or unexpected events, some workcells may have jobs to be assigned to
other workcells. From this point of view, it is a dynamic distributed scheduling
problem, which needs to be solved collectively by a group of schedulers through
cooperation. In this chapter, we only consider the type of reactive dynamic
scheduling algorithms [6]. Thus it is not necessary to capture the randomness
caused by dynamic events in the models of the scheduling problems.

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 177

9.2.1 Workcell Scheduling Problem

In our workcell scheduling problem, workcells are implemented by FMS systems.
Among many FMS scheduling models, we focus on a class of problems in which
machines have Partially Overlapping capabilities [7]. As illustrated in Figure 9.2, a
workcell consists of various types of resources, such as computer numerical
controlled machines, Automated Guided Vehicles (AGV), workpiece storage
system. These resources are controlled by resource controllers and the whole
workcell is controlled by a real time controller. An operator can program the
processing of the workcell by interacting with the real time controller. At the
workcell level, we are interested in the impacts of partially overlapped
characteristics of resources. Therefore, we have simplified the workcell scheduling
model by assuming that the transportation times of jobs between machines are
equal and have been modeled in machine processing times. Therefore, there is no
need to explicitly model the AGV. At the same time, storage and port are treated as
independent resources, like machines. This allows us to differentiate the resources
only by their capability sets, not by the relationships among them. For some
resources, e.g., machines, their capability sets may be partially overlapped.

Figure 9.1. Multiple Workcell Shop Floor environment

Figure 9.2. Workcell resources and the control structure

178 Collaborative Product Design and Manufacturing Methodologies and Applications

Formally, an instance of the class of scheduling problems in partially

overlapping systems consists of a set of n jobs, denoted by
n

JJJJ ,...,
2

,
1

, to

be processed by a set of m resources, denoted by mMMM ,...,1 . Each job

jJ (nj ,...,1) requires the processing of a sequence operations ,j ko jnk ,...,1 ,

where jn is the number of operations belong to jJ . An operation ,j ko corresponds

to an uninterrupted physical process which has to be performed on a resource. Each

resource miM i ,...,1 is defined by a set of operations, which represent its

capability. If ikj Mo , , k,jo can be processed by resource iM . For any two

resources li M,M M , li MM may not be empty, which means that resources

have overlapping capabilities. If a resource iM mi1 is capable of processing

an operation kjo , njnk j 1;1 , a processing time Rp k,j,i is given.

k,j,ip may not be equal to k,j,lp , for m,...,l,i,li 1 , which means the same

operation may have different processing times on different resources. In the
workcell scheduling problem, we do not model the resource eligibility constraints.

Instead, we assign processing time kjip ,, , if iM cannot process k,jo . In

addition, with each job njJ j ,...,1 we associate two values: release time of a

job jj rJ , due date for the completion of a job jJ - jd . There are precedence

constraints among operations of each job. The objective is to minimize makespan
of the solution schedule. Using the following variables,

k,jS , the starting time of the operation k of job j ,

, ,

1 if machine ischosen toperformoperation of job

0 otherwise.
i j k

i k j
X

.machine;sameon thejobof

operationafterperformedisjobofoperationif0

machine;sameon thejobof

operationbeforeperformedisjobofoperationif1

ĵjĵk̂

jk

ĵk̂

jk

Y
k̂,ĵ,k,j

the partially overlapping scheduling problem can be formulated as a mixed integer
programming as follows.

m

i
njinjinj

JJ jjj
j

XpS
1

,,,,,maxmin (9.1)

Subject to

,1j jS r , JJ j (9.2)

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 179

0

1

11 k,j

m

i

k,j,ik,j SpS , jnk,j 1 (9.3)

ĵj

k̂,ĵ,k,jk̂,ĵ,ik,j,ik̂,ĵ

m

i

k,j,ik,j,ik,j

nk̂,nk,ĵj,ĵ,j

,HHYHXHXSXpS

11

3

1 (9.4)

jjkjkjkjkj
nknkjjjjYY ˆ,,ˆ,ˆˆ,ˆ,,

ˆ1,1,ˆ,ˆ,,1 (9.5)

m

i

k,j,iX

1

1 , jnkj 1, (9.6)

, , 0,1i j kX , jnkji 1,, (9.7)

ˆˆ, , ,
0,1

j k j k
Y ,

jj nknkjjjj ˆ
ˆ1,1,ˆ,ˆ, (9.8)

, 0j kS , jnkj 1, (9.9)

The objective function (9.1) is to minimize the makespan of the solution
schedule. The set of constraints (9.2) ensure that a job does not start before its
release time. The set of constraints (9.3) ensure that an operation does not start
before the previous operation of the same job has completed. The set of constraints
(9.4) and (9.5) ensure that at most one job can be processed by a resource at a time.
In (9.4) H is a large finite positive number. Constraints (9.6) say one operation can
and only can be processed by one resource. Constraints (9.7), (9.8), and (9.9) are
non-negative and integer constraints.

9.2.2 Dynamic Scheduling Problem

Manufacturing is a process often fraught with contingencies. It is rarely the case to
execute exactly as planned. Small disruptions such as minor deviations in operation
durations often do not warrant major modifications to the schedule. However, as
the impact of small disruptions accumulate or as more sever disruptions occur,
such as long machine breakdowns, it is sometimes desirable to re-optimize the
schedule from a more global perspective [6]. In many cases, this re-optimization

180 Collaborative Product Design and Manufacturing Methodologies and Applications

means re-schedule all operations that have not been processed by the time of
disruption. We distinguish two types of dynamic scheduling situations, namely
minor disruption and severe disruption. In the case of minor disruption, a schedule
repair procedure which minimizes the perturbation to the original schedule is
appropriate. On the other hand, if the disruption is severe (caused either by the
accumulation of small disruptions or a major resource malfunction), a re-
optimization from a more global perspective is usually desirable. An obvious issue
is how to decide the severity of a dynamic disruption. The threshold of
distinguishing minor and severe disruptions should be set by the workcell operator
as it involves the trade-off, depending on the conditions within which a breakdown
occurs, between the overall solution quality and the perturbation to the original
schedule. Frequent schedule re-optimization can result in instability and lack of
continuity in detailed shop floor plans, resulting in increased costs attributable to
what has been termed “shop floor nervousness” [8].

9.2.3 Distributed Scheduling Problem

At the shop floor level, scheduling is to coordinate the local schedules of workcells
in a way that the good solution quality of the shop floor schedule is achieved. In
this context, individual workcell scheduling problems are tied together by two
elements: shop floor level objective and inter-workcell constraints. Because each
workcell tries to minimize/maximize its own objective function, at the shop floor
level, the scheduling problem can be modeled as a multi-objective optimization
problem. The overall solution quality can be measured by Pareto efficiency or
some forms of aggregation of the individual objectives. In the workcell scheduling
problem formulated in the previous section, the objective of each workcell
scheduler is to minimize the makespan. Accordingly, we define the objective of the
shop floor scheduling problem as weighted sum of makespans over all workcells.

The inter-workcell constraints in the distributed shop floor scheduling problems
are derived from the machine capacity dependency among workcells. Solving the
constraints is to achieve coordination among schedulers of workcells. The process
of solving the inter-workcell constraints is to find a value assignment to some
shared variables that satisfies all local constraints of workcells involved.
Specifically, when solving the local scheduling problem, each scheduler has some
variables and tries to determine their values. However, because of the capacity
dependency there exist inter-workcell constraints, and the value assignment must

satisfy these constraints. Formally, there exist l workcells l,...,2,1 . hX (lh ,...,1)

is the set that contains all variables the scheduler h needs to assign values to in

order to determine a schedule for workcell h . Because of the inter-workcell

constraints, some schedulers need to share a subset of their variables. However,
such a case can be formalized as these schedulers having different variables, and
there exist constraints that these variables must have the same value. We say that
the constraints of a distributed shop floor scheduling problem are satisfied, if and
only if

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 181

1. for any scheduler h and hXx , the value of x is assigned to d , any

constraints in hL is satisfied under the assignment dx , where hL is the

set of local constraints of workcell h ;

2. if x is a shared variable between workcell h and workcell q , hdx in

workcell h , qdx in workcell l , then qh dd .

Let I
qhS , denote the set of schedules which satisfy inter-workcell constraints

between workcell h and q ; let L
hS denote the set of schedules which satisfy local

constraints of workcell h . The distributed shop floor scheduling problem can be

formulated as follows:
l

h

hh SMwmin

1

s.t. lhSS L
h ,...,1, ,

I
qhSS , , lh ,...,1 , lq ,...,1 , qh .

where hw is the weight of workcell h , SM h is the latest completion time of all

jobs belong to workcell h , the allocations of jobs of all workcells form an overall

shop floor schedule S .

9.3 Scheduling Algorithms for Multiple Workcell Shop Floor

This section presents three algorithms for the scheduling problems formulated.
Workcell scheduling algorithm is the fundamental job allocation procedure at the
workcell level. This algorithm is used as a component of dynamic scheduling
algorithm and distributed scheduling algorithm. The relationship among these three
algorithms in the context of real time distributed shop floor scheduling can be
depicted in terms of UML use case diagram as shown in Figure 9.3.

Figure 9.3. Relationship of the three scheduling algorithms

182 Collaborative Product Design and Manufacturing Methodologies and Applications

9.3.1 Workcell Scheduling Algorithm

The workcell scheduling problem modeled in Section 9.2.1 is a class of FMS
scheduling problems. The majority of the approaches developed for these problems
are heuristic oriented [e.g., 9-11] and artificial intelligence-based [e.g., 6, 12, 13].
Some Genetic Algorithm-based approaches [e.g., 14, 15] can be considered as
meta-heuristic methods. Most of these methods use simulation to generate or
evaluate schedules. A comprehensive survey on simulation approaches in FMS
scheduling can be found in [16]. Basnet and Mize [17] reviewed the literature
concerning the operational aspects of FMSs. Zweben and Fox [18] provided a
comprehensive reference for artificial intelligence based scheduling approaches.
The problem we are focusing on is a class of FMS scheduling problems with
partially overlapping system structure, which has been proved to be NP-hard [19].
Exact methods which find optimal schedules are not practical because of the
prohibitive computation demanded. While many approaches proposed in the
literature focus on other aspects of the FMS scheduling problems, we propose a
dispatching rule based heuristic algorithm leveraging the partially overlapping
characteristics of the problem.

The heuristic algorithm combines a set of dispatching rules. The basic ideas are
to: (1) effectively utilize the flexibility provided by the partially overlapping
characteristics of the system to balance the work loads, and at the same time, (2)
assign operations to resources which can finish them faster. Based on the above
heuristics, we propose two dispatching rules, Flexible Operation Last (FOL) and
Earliest Finishing Time First (EFT). FOL is a composite of two elementary
dispatching rules, Longest Processing Time first (LPT) [20] and Least Flexible Job
first (LFJ). As a composite dispatching rule, FOL is modeled as a ranking
expression that combines LPT and LFJ. This combination can be implemented as
the following function:

,

,

,

exp
j k

j k

j k

n

Q
f

l

where kjf , is the ranking index of FOL, defined as the Flexibility of kjo , ;

kjn , is the number of resources in the workcell that can perform kjo , ; kjl , is the

average processing time of the operation, which is calculated based on historical
data. Q is the scaling parameter that can be determined empirically. If Q is very

large, the FOL rule reduces to the LPT rule. If Q is very small, the rule reduces to

the LFJ rule. FOL selects operations to be scheduled according to their Flexibilities.
Operations with higher Flexibilities (short average processing time and more
eligible resources) are placed towards the end of the schedule, where they can be
used to balance loads more effectively. Once the operation to be scheduled has
been selected by FOL, EFT finds a resource for the operation based on its
completion time. The resource with earliest completion time is chosen.

The algorithm consists of two steps. Before scheduling an operation to a
resource, the FOL rule is used to select an operation from Eligible Operation Set
(EOS, which contains operations for which the job release time and operation

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 183

preceding constraints are satisfied). Then the EFT rule is used to designate the
selected operation to a resource based on the current partial schedule. The
algorithm implements the EFT rule by considering two factors, the workload of a
resource in the current partial schedule which has been established by previous
operations and the processing speed of this resource for the selected operation. The
resource which can finish the operation first is chosen. Briefly, the algorithm can
be described as shown in Figure 9.4.

Figure 9.4. The workcell scheduling algorithm

9.3.2 Dynamic Scheduling Algorithm

In Section 9.2.2 dynamic scheduling problems are classified based on the severity
of the disruption happened in workcells. In the cases of minor disruption, schedule
repair procedures are appropriate to provide a fast response and small permutation.
In the cases of severe disruption, re-optimization algorithms need to be considered.
While the workcell scheduling algorithm proposed in the previous section can be
applied directly to the severe disruptions as a re-optimization algorithm, this
section presents a scheduling repair procedure.

In repairing a schedule, the schedule repair algorithm first identifies a number
of operations that are affected by the disruption and need to be unscheduled, then,
allocates them to available resources using the workcell scheduling algorithm.
Once a dynamic disruption happens in a workcell, some operations are affected by
the event directly. At the same time, others may be affected indirectly by the
conflict propagation caused by various constraints. For example, if

resource m breaks down at time mt , an operation k,jo scheduled on m which has

not started the processing or has not been finished, mk,j tc , can no longer be

processed on m (where k,jc is the completion time of k,jo and assume m cannot be

recovered before the end time of the schedule’s execution). We call k,jo a directly

affected operation. All directly affected operations form a set, denoted by DAO ,

DAk,j Oo . Operations belong to DAO have to be rescheduled on other capable

184 Collaborative Product Design and Manufacturing Methodologies and Applications

resources. In addition to operations in DAO , an operation
k̂,ĵ

o scheduled on other

resources which have precedence constraints with an operation in DAO , say k,jo ,

and has been scheduled after k,jo , k,jk̂,ĵ
cs , may need to be rescheduled as well

because k,jc may change too much after its rescheduling such that k,jk̂,ĵ
cs is no

longer true. We call
k̂,ĵ

o an indirectly affected operation. All indirectly affected

operations form a set, denoted by IAO , IAkj
Oo ˆ,ˆ . Clearly, not all operations in

IAO need to be rescheduled in order to generate a valid schedule repair. To

minimize the perturbation to the original schedule, we propose a two-step
scheduling repair procedure: (1) a schedule repair first un-schedules operations

in DAO ; (2) if these operations are not sufficient to enable a new solution to be

generated, the unscheduled operations are expanded incrementally to operations in

IAO until a solution is found. Based on the modeling and analysis mentioned above,

we propose a dynamic scheduling repair algorithm described in Figure 9.5. We

assume that resource m breaks down at time mt and cannot be recovered within the

time period to be scheduled in a workcell.

Figure 9.5. The scheduling repair algorithm

The workcell states keep changing in dynamic scheduling situations. These
changes can be modeled as a Finite State Machine as shown in Figure 9.6. The
workcell scheduling system has six states. Among them, Monitoring, Scheduling,
and Deploying are of importance. After Initialization, the schedule has been

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 185

calculated and deployed to the workcell. The system will be in the state of
Monitoring. Dynamic events, which represent the changes from a workcell can
trigger the transition from Monitoring state to Scheduling state at which repairing
or rescheduling algorithms respond to the events occurred and work out a new
schedule. If dynamic events happened in the state of Scheduling, rescheduling
procedure may be restarted to accommodate the newly happened events. Once new
schedule is ready, the system changes to Deploying state where the new schedule is
deployed to the workcell. If deploying failed because of unexpected changes in the
workcell, system backs to Scheduling state, and rescheduling will be restarted
again.

Initialization Scheduling

Monitoring

Deploying
Processing started

Dynamic events

Dynamic Events

Processing finished

Deployment finished

Dynamic events or Deploying failed

New Schedule Ready

Figure 9.6. Finite State Machine model of the real time scheduling system

9.3.3 Distributed Scheduling Algorithm

The scheduling problem at the shop floor level contains multiple distributed
workcells. Thus, it is actually a distributed scheduling problem. In a workcell,
some dynamic events, such as a resource malfunction, may happen. If this
disruption cannot be contained inside the workcell, in other words, some disrupted
jobs can no longer be scheduled in the same workcell because of the lack of
processing capabilities caused by the resource breakdown, the scheduler of this
workcell needs to outsource the unscheduled operations to other workcells. Agent-
based approach has been proposed as a new paradigm for developing distributed
scheduling algorithms. Examples can be found in [21-25]. An extensive survey
regarding multi-agent systems for manufacturing can be found in [26]. We design a
distributed scheduling algorithm for the multi-workcell shop floor scheduling. The
algorithm uses the Contract Net [13] as its interaction protocol. We will implement
the algorithm in an agent-based service-oriented system framework in the next
section. Briefly, the algorithm can be described as follows:

1. Dynamic events at a workcell (called an initiator in terms of the Contract
Net protocol) cause some operations no longer being able to be processed
in the workcell. The scheduler of the workcell finds eligible workcells

186 Collaborative Product Design and Manufacturing Methodologies and Applications

(called responders) which can process the unscheduled operations through
a resource discovery mechanism (e.g., UDDI in the case of Web service-
based implementation). Note that, one responder does not have to be able
to process all unscheduled operations of the initiator. The definition of an
eligible workcell requires that the workcell can process at least one of the
unscheduled operations.

2. The initiator sends out a call for proposal (CFP) to all responders. The
CFP contains unscheduled operations and their associated constrains, such
as precedence and release dates.

3. The responders try to accommodate the unscheduled operations from the
initiator into their own local schedules based on their scheduling
objectives respectively. Once the scheduling on the responders is finished,
the responders send proposals back to the initiator. Each of the proposals
contains a solution schedule for the unscheduled operations of the initiator.
Note that, the schedule solution from a responder may not contain all
unscheduled operations. Therefore, for some responders, they can just
provide schedules for some of the unscheduled operations due to their
capability constrains or the availability of the resources.

4. Upon receiving the proposals from the responders, the initiator selects one
or a combination of them based on its scheduling objectives to form a
final schedule for the unscheduled operations and inform the responders
which are included in the final schedule by sending Award messages.

The coordination structure of the distributed scheduling algorithm is actually a
negotiation process that can be depicted using a sequence diagram as shown in
Figure 9.7.

Figure 9.7. Negotiation process of the distributed scheduling algorithm

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 187

9.4 Agent-based Service-oriented System Integration

The distributed shop floor control, the scheduling algorithms and their integration
have been implemented using an agent-based Web service integration framework
(AWS) [27]. Agent-orientation is an appropriate design paradigm to enable
automatic and dynamic collaborations. It is a natural system design and
implementation choice in capturing the distributed and dynamic natures of the
distributed real time shop floor scheduling. In addition, software agent paradigm
has attained technical advantages in software modularization, legacy systems
integration, distributed problem solving, and semantics-based interaction with
complex and distributed transactions. Established technologies in these areas
provide necessary foundation for the design and implementation of distributed real
time scheduling systems. On the other hand, service-orientation is suitable in
designing system integration at the shop floor level. Web Services paradigm is fast
evolving and has been supported by several industrial leaders. This led to the
development of various supporting technologies for Web Services that enable
deploying, publishing, discovering, invoking and composing services in a standard
and consistent way. This enables an open, flexible, standardized integration of
manufacturing control at the shop floor, enterprise, and supply chain levels.

The merging of service-oriented and agent-based approaches has been a hot
topic of research in recent years. Petrie, et al., [28] discussed the shortcomings of
Web services standards and how logical AI techniques like declarative commands,
agents, and AI planning techniques can be used to address some of these
shortcomings. They proposed an FX-Agent approach to address Web services
discovery and composition of Web services. Matskin, et al., [29] identified Web
services composition as an important issue for efficient selection and integration of
inter-organizational and heterogeneous services on the Web and they believed that
software agents can help make Web services “pro-active”. In their system,
provider’s Web services are wrapped into individual Providers’ Agents on an
agent-based marketplace providing services for Customers’ Agents. Maamar, et al.,
[30] presented an agent-based and context-oriented approach that supports the
composition of Web services. During service composition process, software agents
engage in conversations with their peers to agree on the Web services that
participate in this process. Liu, et al., [31] proposed a conceptual model of agent-
mediated Web services for intelligent service matchmaking. In fact, most of
research efforts in the literature like above mentioned approaches can be roughly
categorized in to “agentification” of Web services into an agent community. We
proposed a different approach for agent and Web services integration [32]. In our
AWS framework, an agent core is built into each Web service, so that a Web
service is itself an agent. No matter the agentification of Web services as agents in
a multi-agent system [30] or encapsulation of agents as Web services over the
Internet [32], both approaches share the common goal that, by taking the
advantages of Web services and agents, the resultant integrated solution will
produce a sophisticated paradigm for Internet computing.

188 Collaborative Product Design and Manufacturing Methodologies and Applications

9.4.1 System Overview

Figure 9.8 illustrates an agent-based Web service integration for the distributed real
time shop floor scheduling system. The proposed system integration is composed
of two levels. At the shop floor level, communication among schedulers is based
on Web Services standards; at the workcell level, an agent-based scheduling
system is implemented. The functionalities of agents and other software entities are
described as follows:

1. Resource agents represent resources in a workcell. Each resource agent is
on behalf of one resource. Resource agents receive job assignments from
the Real Time Controller agent and report the working status of their
resources to the Real Time Controller agent. The status information
including routine data of processing and unexpected disruptions

2. Directory Facilitator (DF) has the registration service functionalities for
other agents in a multi-agent system, keeps up-to-date agent registration,
informs all registered agents with updated registry, and provides lookup
and matchmaking services to the multi-agent system.

3. Real Time Controller is an agent that represents the overall control of a
workcell. It accepts production schedules from the workcell scheduler and
distributes them to resources in the workcell. At the same time it monitors
the processing status of resources, analyzes and aggregates the raw
resource processing data. If unexpected changes in the workcell affect the
execution of the schedule, it will report to the scheduler with high level
scheduling related processing information.

4. Scheduler performs the scheduling functionality in the system. At the
workcell level it works with the Real Time Controller to implement the
dynamic scheduling within the workcell. At the shop floor level it
cooperatively works with other peer schedulers in achieving distributed

Figure 9.8. Agent-based Web service integration

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 189

shop floor scheduling. As shown in Figure 9.8, the scheduler has two
identities, scheduling service and scheduling agent. When working with
Real Time Controllers, it is exposed as an agent communicating using
ACL. On the other hand, it is exposed as a Web service when working
with its peer schedulers at the shop floor level.

5. UDDI is a static repository that provides schedulers’ information with
standard terms that contains workcell’s capabilities and constraints.

9.4.2 Agent Architecture

The architecture adopted for the agents in our distributed shop floor scheduling
system is Coordinated, Intelligent Rational Agent (CIR-Agent) architecture [33].
Detailed and logical architectures of CIR agent are shown in Figure 9.9.

(a) Detailed Architecture of CIR Agent

(b) Logical Architecture of CIR Agent

Figure 9.9. Detailed and logical CIR-Agent architecture

190 Collaborative Product Design and Manufacturing Methodologies and Applications

In the CIR-Agent model, an agent is an individual collection of primitive
components. Each component is associated with a particular functionality that
supports a specific agent's mental state as related to its goal. The agent’s mental
state regarding the reasoning about achieving a goal, in the CIR model, can be in
one of the following:

1. Problem solving: determines the possible solutions for achieving a goal.
2. Pre-interaction: determines the number and the type of

interdependencies as well as the next appropriate domain action.
3. Interaction: resolves the problems associated with the corresponding

type of interdependencies. The mechanisms used in the interaction are
called interactive devices.

4. Execution: affects the world.

Based on these mental states, the CIR-Agent’s architecture can be considered as
a composition of four components: problem solver, pre-interaction, interaction, and
execution. As an example, we describe the scheduler agent design based on the
CIR-Agent architecture in the next section.

9.4.3 Scheduler Agent Design

In a distributed shop floor scheduling system, workcells are modeled as multi-
agent systems. However, at the shop floor level, these multi-agent systems are
integrated through Web services. The coexistence of these two different
environments poses challenges in systems integration. Because all interactions
between the two environments are facilitated by the scheduler, it is not really
necessary to implement a general Web services agent gateway between agent and
Web service environments. Our approach is to encapsulate the gateway
functionality into the scheduler agent, such that it can communicate with both
environments concurrently. Based on the CIR-Agent architecture, we design
problem solver, interaction and communication components in the scheduler agent.
However, in order to communicate to different environments, both the interaction
and communication components in the scheduler agent are split into two parts. As
shown in Figure 9.10, the workcell scheduling interaction and ACL
communication are used by the local controller of the problem solver to interact
with the real time controller agent in the workcell; the scheduling service
interaction and SOAP communication are used by the remote controller of the
problem solver to interact with scheduling services provided by other workcells.
The problem solver component consists of the local controller, remote controller
and scheduling algorithms designed for the scheduling at different levels of the
shop floor.

Other agents in the system, such as resource agents and real time controller
agents are also designed based on the CIR-Agent architecture. Because they only
exist in agent environment, they are not equipped with SOAP communication and
Service interaction components.

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 191

Figure 9.10. Design of scheduler agent

9.4.4 Coordination Between Scheduler Agent and Real Time

 Controller Agent

Coordination between the scheduler agent and real time controller agent
implements the monitoring and control functionalities required by the dynamic
scheduling. Through the control, the scheduler passes the generated schedules to
the real time controller agent to be executed in the workcell. Workcell resource
statuses can be reported to the scheduler through the monitoring. The protocol
adopted for the coordination between the scheduler agent and the real time
controller agent is FIPA Query Protocol (http://www.fipa.org). The protocol has
been implemented in different ways to fulfill different functional requirements of
the coordination.

Figure 9.11 depicts the schedule deployment protocol between the scheduler
agent and the real time control agent. Once a new schedule is calculated, scheduler
agent deploys the schedule to the workcell by sending a Deploy message. Real
time control agent receives the updated schedule and passes it to the workcell
resources to be deployed. Depending on different deploying results it may reply
with Inform-done (deployment finished), Failure (deployment failed) or Not-
understood if part of the schedule is not understandable to it.

Figure 9.12 shows the disturbance reporting protocol between the scheduler
agent and the real time control agent. Once a disturbance happens in the workcell,
the real time controller agent reports it to the scheduler agent by sending a Request
message. The scheduler agent receives the disturbance report and replies with an
Inform-done message. If the reported message is not understandable, it will ask the
real time control agent to re-send the request by sending a Not-understood message.

192 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 9.11. Schedule deployment protocol

Figure 9.12. Disturbance reporting protocol

9.4.5 Coordination Between Scheduling Services

The coordination between scheduling services is required by the distributed
scheduling algorithm in assigning jobs among workcells. We have implemented
the coordination mechanism using FIPA Contract Net Protocol. Note that the
messages between the initiator and responders defined in FIPA Contract Net are in
the format of Agent Communication Language (ACL) which cannot be used
directly in our Web services integration of multiple workcells. In this particular
integration, ACL messages are encoded to their XML representation based on

FIPA00071 specification (http://www.fipa.org) before they are sent to other

scheduling services through SOAP. Upon receiving the SOAP message, a
scheduling service decodes the XML and recovers the ACL message. Through this
mechanism, the ACL based coordination protocol can be used in the Web services
integration. Figure 9.13 depicts the Contract Net protocol between two schedulers,
one as the initiator and the other one as the responder. The initiator has a set of
incompletely scheduled jobs (it could be the case that some operations of a job
have been scheduled in the initiator’s workcell. However, some operations remain

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 193

unscheduled). It sends a CFP message to the responder. Upon receiving the CFP,
the responder tries to accommodate the jobs assigned to it into its local schedule. If
it is not feasible for the responder to schedule the assigned jobs or the responder is
not interested in the job assignment, it will send back a Refuse message. Otherwise,
it sends back a proposal to the initiator with the contingent schedule. If the initiator
is satisfied with the contingent schedule, it will send the responder an Award
message: Accept-Proposal. Otherwise, it will reject the proposal. If the proposal is
accepted by the initiator, the responder deploys the contingent schedule and sends
the initiator a message indicating the result of deployment. If no dynamic events
happen during the negotiation process, the responder should be able to successfully
deploy the schedule and send the initiator an Inform-done message. If some
dynamic events happened during the negotiation process make the contingent
schedule impossible to be deployed, a Failure or Inform-Result message will be
sent to the responder indicating how the contingent schedule is impacted.

Figure 9.13. Contract Net Protocol for distributed scheduling

194 Collaborative Product Design and Manufacturing Methodologies and Applications

9.4.6 System Implementation

The Real Time Distributed Shop Floor Scheduling system has been implemented
in Java on the JADE agent development platform (http://jade.tilab.com) and Java
Web Services tools (http://java.sun.com/webservices). Figure 9.14 illustrates a
two-workcell deployment of the system. The scheduling system for a workcell
contains a scheduler agent, a real time controller agent, several resource agents and
a scheduling service. All agents sit on a distributed JADE platform across several
hosts. Java Web Service environment is installed on the same host that the
scheduler agent sits on, which allows the scheduling service of a workcell to be
connected with the scheduling services of other workcells. Together, the
scheduling service and the scheduler agent fulfill the functionality of the scheduler
of a workcell.

Figure 9.14. Deployment of the real time distributed scheduling system

9.5 A Case Study

This section presents a case study which demonstrates how the proposed
scheduling algorithms at different levels of the multiple workcell shop floor are
integrated in providing robust scheduling under the proposed Agent-based Web
service integration framework.

Consider a shop floor with two workcells (Workcell A and Workcell B). Each
of them has a set of jobs to be scheduled. The experimental scenario goes as
follows.

Workcell Scheduling. The schedulers of Workcells A and B perform scheduling
using the workcell scheduling algorithm described in Section 9.3.1. At this stage
we assume that all jobs can be scheduled in local workcells. The generated
schedules are passed to the Real Time Controllers of Workcells A and B
respectively. Figure 9.15(a) shows the assigned schedule for Workcell A and

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 195

Figure 9.15(b) shows the assigned schedule for Workcell B in the form of Gantt
chart. Workcell A and Workcell B have the same workcell configuration (only
include three machines). The two job sets that need to be allocated have the same
configuration as well (however, different job names are used). In the chart, the
horizontal bars indicate the length of time allocated to each operation. The x-axis
of the chart is subdivided into equal units of time (say hours in our case). The y-
axis, on the other hand, lists all the resources in the workcell.

Dynamic Scheduling. For dynamic scheduling, we demonstrate how a machine
down event is accommodated by the dynamic scheduling algorithm proposed in
Section 9.3.2. Say Machine 3 of Workcell A breaks down at hour 25. This
disruption is passed to the Scheduler through the Real Time Controller. The
schedule repair algorithm first identifies operations (job13-op6, job13-op7, and
job11-op8 in this case) are affected by the disruption and need to be re-scheduled,
then, allocates them to available machines using the workcell scheduling algorithm.
The repaired schedule is passed to the Real Time Controller and executed in
Workcell A. As illustrated in Figure 9.15(c), job13-op6 is rescheduled on machine
2. To accommodate job13-op6, job13-op7 is shuffled two hours towards the end of
the schedule. However, job11-op8 can no longer be processed by Workcell A
because Machine 3 is the only one eligible in Workcell A. It needs to be assigned
to other workcells on the shop floor by the distributed scheduling algorithm

Distributed scheduling. To assign job11-op8 to other workcells, the scheduler
of Workcell A first tries to find all eligible workcells on the shop floor that can
process the operation through the lookup service provided by the UDDI (Workcell
B turns out to be the only eligible one). The scheduler A sends out a service
request which contains a call for proposal to Scheduler B including the operation
name (job11-op8) and the operation release time (at hour 18 because its precedent
operation job11-op5 ends at hour 18). Upon receiving the request from Scheduler
A, Scheduler B calculates a solution for job11-op8 and sends back a bid indicating
when the operation will be processed. Scheduler A awards this operation to
scheduler B. Scheduler B passes the modified schedule (including the assignment
of job11-op8) to the Real Time Controller of Workcell B for execution. As shown
in Figure 9.15(d), the operation is added to the end of Machine3’s schedule in
Workcell B.

To demonstrate the integration of scheduling algorithms more clearly and
intuitively, we have intentionallly used a simple scenario in this case study. The
performance of the algorithms has been tested using more complicated problem
sets. Interested readers may refer to [34].

9.6 Conclusions

Generally speaking, any manufacturing enterprise is distributed. Distribution can
be geographical, logical, temporal, or spatial. In manufacturing domain, it is not
uncommon for production to be distributed geographically, sometimes on a
continental scale (the automobile industry is a prime example).

196 Collaborative Product Design and Manufacturing Methodologies and Applications

(a) Original schedule of workcell A.

(b) Original schedule of workcell B.

(c) Repaired schedule of workcell A.

(d) Refined schedule of workcell B accomodating the op8 of job 11 from workcell A.

Figure 9.15. Gantt chart of the schedules

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 197

An enterprise can logically be distributed, reflecting its organizational structure.
Organizational structuring can be a necessity in order to decompose the
enterprise’s problems into manageable chunks and to better exploit available
expertise. Scheduling is an essential functionality required by manufacturing
control and management at various levels of manufacturing. We have proposed a
real time distributed scheduling framework for multi-workcell shop floors. Since
distributed environments exist at other levels of manufacturing management, in
many cases, it is justified to apply the proposed distributed control structure and
even some algorithms (e.g., the distributed scheduling algorithm) to inter-
enterprise, enterprise and plant environments as well. For example, at the
enterprise level, if a set of customer orders need the cooperation of several
divisions of an enterprise, in a dynamic market environment, the scheduling
problem involved is a real time distributed one. Currently, most of the enterprise
planning and scheduling as in ERP/MRP systems are conducted in a centralized
way. One of the criticisms on these systems is the fact that they are complex and
inflexible. As a result, there has been interest in the development of decentralized
strategies for enterprise systems. We see this as a potential application domain of
real time distributed scheduling systems.

In many real world environments, scheduling exhibits decentralized nature and
is conducted through negotiation processes. This observation triggers one of our
important future research directions, which is the application of economic based
resource allocation mechanisms, such as various auctions, to real time distributed
manufacturing scheduling. In many business to business transactions, production
scheduling parameters (e.g., due dates) are set through a negotiation process
between the customer and the service or product provider. In some cases, a firm
may consider the possibility of “outsourcing” some time-sensitive orders through a
negotiation mechanism if the system is highly congested and completing all the
orders in-house would lead to very high tardiness penalties. As many
manufacturing management applications require scheduling functionality in
decentralized environments, we see that economic based scheduling mechanisms
are good candidates in such environments.

9.7 References

[1] Kocjan, W., 2002, “Dynamic scheduling: state of the art report,” Technical

Report, T2002:28, SICS.
[2] Shanker, K., Tzen, Y. J., 1985, “A loading and dispatching problem in a

random flexible manufacturing system,” International Journal of
Production Research, 23, pp. 579–559.

[3] Baker, A. D., (1998) A Survey of Factory Control Algorithms which Can be
Implemented in a Multi-Agent Heterarchy: Dispatching, Scheduling, and
Pull. Journal of Manufacturing Systems, 17(4), pp. 297–320.

[4] Neiman, D., Hildum, D., Lesser, V. and Sandholm, T., 1994, “Exploiting
meta-level information in a distributed scheduling system,” Proceeding of
Twelfth National Conference on Artificial Intelligence (AAAI-94).

198 Collaborative Product Design and Manufacturing Methodologies and Applications

[5] Sycara, K., Roth, S., Sadeh, N. and Fox, M., 1991, “Distributed constrained
heuristic search,” IEEE Transactions on Systems, Man, and Cybernetics,
21(6), pp. 1446–1461.

[6] Sadeh, N., 1991, Look-Ahead Techniques for Micro-Opportunistic Job Shop

Scheduling, PhD Thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA.

[7] Kamel, M. and Ghenniwa, H., 1995, “Partially-overlapped systems: the
scheduling problem,” In Design and Implementation of Intelligent

Manufacturing Systems, Parsaei, H. and Jamshidi, M. (Eds.), Prentice-Hall,
pp. 241–274.

[8] McKay, K. N., Safayeni, F. R. and Buzacott, J. A., 1998, “Job shop
scheduling theory: what is relevant?” Interfaces, 18(4), pp. 84–90.

[9] Nof, S., Barash, M. and Solberg, J., 1979, “Operational control of item
flow in versatile manufacturing systems,” International Journal of

Production Research, 17(5), pp. 479–489.
[10] Stecke, K. E. and Solberg, J., 1981, “Loading and control policies for

flexible manufacturing systems,” International Journal of Production
Research, 19(5), pp. 481–490.

[11] Chang, Y. L., Sullivan, R. S., Bagchi, U. and Wilson, J. R., 1985,
“Experimental investigation of real-time scheduling in flexible
manufacturing systems,” Annals of Operations Research, 3, pp. 355–377.

[12] Fox, M. S. and Smith, S. F., 1984, “ISIS: a knowledge-based system for
factory scheduling,” Expert Systems, 1(1), pp. 25–49.

[13] Smith, R. G., 1980, “The contract net protocol: high-level communication
and control in a distributed problem solver,” IEEE Transactions on
Computers, C-29(12), pp. 1104–1113.

[14] Fang, J. and Xi, Y., 1997, “A rolling horizon job ship rescheduling strategy
in the dynamic environment,” International Journal of Advanced

Manufacturing Technology, 13, pp. 227–232.
[15] Qi, J. G., Burns, G. R. and Harrison, D. K., 2000, “The application of

parallel multipopulation genetic algorithms to dynamic job-shop
scheduling,” International Journal of Advanced Manufacturing Technology,
16, pp. 609–615.

[16] Chan, F. T. S., Chan, H. K., Lau, H. C. W., 2002, “The state of the art in
simulation study on fms scheduling: a comprehensive survey,”
International Journal on Advanced Manufacturing Technologies, 19, pp.
830–849.

[17] Basnet, C. and Mize, J., 1994, “Scheduling and control of flexible
manufacturing systems: a critical review,” International Journal of
Computer Integrated Manufacturing, 7 (6), pp. 340–355.

[18] Zweben, M. and Fox, M. S., (Eds.), 1994, Intelligent Scheduling, Morgan
Kaufman Publishers, San Francisco, CA.

[19] Wang, C., Ghenniwa, H. and Shen, W., 2006, “Scheduling multi-operation
jobs in partially overlapping systems,” International Journal of Computer

Integrated Manufacturing, 19(5), pp. 453–462.
[20] Panwalkar, S. and Iskander, W., 1977, “A survey of scheduling rules,”

Operations Research, 25(1), pp. 45–61.

 Real Time Distributed Scheduling: An Agent-based Service-oriented Framework 199

[21] Shaw, M. J. and Whinston, A. B., 1983, “Distributed planning in cellular
flexible manufacturing systems,” Management Information Research

Center Technical Report, Purdue University, West Lafayette, IN.
[22] Duffie, N. A., Piper, R., SHumphrey, B. J., et al., 1986, “Hierarchical and

non-hierarchical manufacturing cell control with dynamic part-oriented
scheduling,” Proceedings of NAMRC, North American Manufacturing

Research Conference, Minneapolis, MN, pp. 504–507.
[23] Lin, G. Y–J. and Solberg, J. J., 1989, “Flexible routing control and

scheduling,” Proceedings of the Third ORSA/TIMS Conference on Flexible
Manufacturing Systems, Stecke, K. E. and Suri, R. (Eds.), Elsevier,
Amsterdam, pp. 155–160.

[24] Ramaswamy, S. E. and Joshi, S., 1995, “Distributed control of automated
manufacturing systems,” Proceedings of 27th CIRP International Seminar
on Manufacturing Systems, Ann Arbor, MI.

[25] Baker, A. D. and Merchant, M. E., 1993, “Automatic factories: how will
they be controlled,” IEEE Potentials, 12(4), pp. 15–20.

[26] Shen, W. and Norrie, D. H., 1999, “Agent-based systems for intelligent
manufacturing: a state-of-the-art survey,” Knowledge and Information

Systems, 1(2), pp. 129–156.
[27] Shen, W., Li, Y., Hao, Q., Wang, S. and Ghenniwa, H., 2006, “A service

oriented integration framework for collaborative intelligent manufacturing,”
Robotics and Computer-Integrated Manufacturing, (in press).

[28] Petrie, C. and Bussler, C., 2003, “Service agents and virtual enterprises: A
survey,” IEEE Internet Computing, 7(4), pp. 68–78.

[29] Matskin, M., Küngas, P., Rao, J., Sampson, J. and Peterson, S. A., 2005,
“Enabling Web services composition with software agents,” Proceedings of

the Ninth IASTED International Conference on Internet and Multimedia
Systems, and Applications (IMSA 2005 #477-122), Honolulu, Hawaii, USA.

[30] Maamar, Z., Mostéfaoui, S. K. and Yahyaoui, H., 2005, “Toward an agent-
based and context-oriented approach for Web services composition,” IEEE

Transactions on Knowledge and Data Engineering, 17(5), pp. 686–697.
[31] Liu, F., Yao, L., Zhang, W., Liu, H. and Zhang, H., 2004, “A conceptual

model of agent mediated Web service,” Proceedings of IEEE International
Conference on Services Computing (SCC 2004), Shanghai, China, pp. 638–
642.

[32] Li, Y., Ghenniwa, H. H., Shen, W., 2003, “Integrated description for Agent-
based Web Services in eMarketplaces,” Proceedings of the Business Agents
and the Semantic Web Workshop, Halifax, Nova Scotia, Canada. pp. 11–17.

[33] Ghenniwa, H. and Kamel, M., 2000, “Interaction devices for coordinating
cooperative distributed system,” Automation and Soft Computing, 6(2), pp.
173–184.

[34] Wang, C., Ghenniwa, H. and Shen, W, 2005, “Heuristic scheduling
algorithm for flexible manufacturing systems with partially overlapping
machine capabilities,” Proceedings of IEEE ICMA 2005, Niagara Falls,
Canada, pp. 1139–1144.

10

Leveraging Design Process Related Intellectual Capital

– A Key to Enhancing Enterprise Agility

Jitesh H. Panchal, Marco Gero Fernández, Christiaan J. J. Paredis, Janet K. Allen
and Farrokh Mistree

Systems Realization Laboratory
G.W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology, USA

The sustained improvement of Product Development Processes (PDPs) has long
been the focus of research in manufacturing and more recently that of research in
design as well. This is due in part to the key realization that a PDP constitutes not
only a central component of the engineering effort but also a core business process.
During the last decade, a strategic business approach for the effective management
and use of corporate intellectual capital has emerged. This approach has come to be
known as Product Lifecycle Management (PLM) and promises to further a holistic
consideration of product design, emphasizing integration, interoperability, and
sustainability throughout a product’s lifecycle in order for an engineering
enterprise to remain agile with respect to the constantly evolving demands of a
global market. Intellectual capital, thus far, has been comprised mainly of product
related knowledge and exploited mostly via the reusability and scalability of
existing products through product platform and product family design. However,
we strongly believe that focusing solely on product knowledge is not sufficient and
limits agility to variant design (and adaptive design, to a limited extent). In order to
effectively support the generation of entire portfolios of products (via derivative
and original design), we believe that the design process should also be considered
to constitute a crucial component of an engineering enterprise’s intellectual capital.
Hence, we propose a paradigm shift that is centered on leveraging design process

knowledge derived from previous designs towards the design of entirely new
products.

Rather than proposing new technologies or standards under the ‘PLM umbrella’,
in this chapter our objectives are: (1) to highlight design processes as key elements
of an engineering enterprise’s intellectual capital, and (2) to motivate fundamental
research directions. In this chapter, an overview of the requirements and research
challenges inherent in leveraging previously expended resources and designing

202 Collaborative Product Design and Manufacturing Methodologies and Applications

design processes is provided. These challenges are illustrated in the context of
designing Linear Cellular Alloys (LCAs). Finally, we assert the importance of
including the lifecycle considerations of design processes in PLM, thereby
motivating Design Process Lifecycle Management (DPLM).

10.1 Design Processes – An Enterprise’s Fundamental

Intellectual Capital

The sustained improvement of Product Development Processes (PDPs) has long
been the focus of manufacturing and more recently that of design as well. This is
due in part to the key realization that a PDP constitutes not only a central
component of the engineering effort but also a core business process [1]. As
pointed out by Wheelwright and Clark [61], it is those firms that are able to
develop and bring their products to market the fastest that are able to create a
significant competitive advantage for themselves. Efforts aimed at reducing
product development times, however, are faced with several challenges, identified
by Lu [24] as pertaining to (1) increases in product complexity, (2) increases in
time-to-market (TTM) pressure, (3) globalization and segmentation, and (4)
increasing customer demands. While a number of recent research activities focus
on addressing the needs, underlying these challenges, a majority are aimed at
meeting the intensive information requirements posed. One of the most notable
recent efforts along these lines is Product Lifecycle Management (PLM). PLM is
taken to be a strategic business approach for the effective management and use of
corporate intellectual capital [9, 16, 21]. PLM involves activities from the initial
conception to retirement of a product and is aimed at improving the product
development process. The goal in PLM is to integrate all the product realization
activities including market planning, concept development, design, production,
sales, marketing, etc. Considering the field’s extensive scope there are numerous
interpretations, each highlighting different facets of import. Examples include a)
interoperability issues and standardization in CAD/CAM/CAE (Computer-Aided
Design/Computer-Aided Manufacturing/Computer-Aided Engineering), b)
overarching management considerations, c) collaboration, d) product information
management and sharing, and e) integration of tools. In Figure 10.1, we present
three key components of an enterprise’s intellectual capital – process information
(top-left corner), product information (top-right corner) and the supporting PLM
infrastructure (bottom) that consists of various software tools. Arrows between
tools are used to represent flow of information among them. Dashed and solid lines
are implemented to illustrate the fact that some of the links are more developed
than others. As indicated in Figure 10.1, most of the elements of an engineering
enterprise’s intellectual capital relate to the acquisition of information pertaining to
either product or process and the tools for transforming this information. The
infrastructure of PLM, as defined currently, centers on the integration of various
software and associated hardware tools, ranging from CAD and analysis packages
to PDM systems, etc., used for capturing and processing product information. To
some extent, these tools are also employed for capturing information relating to the
underlying design processes.

Leveraging Design Process Related Intellectual Capital 203

In our opinion, PLM efforts thus far have been focused on integration and the
improvement of interoperability. Although some of the relationships depicted by
dashed and solid lines in Figure 10.1 have been implemented successfully, it is our
belief that the effective management of a product’s lifecycle extends beyond
ensuring the seamless flow of information between tools and requires a system-
based perspective of the entire engineering enterprise. Consequently we assert the
importance of designing the design process alongside the product in PLM.
Although design processes play a crucial role in PLM, integrating the design of
“design processes” with the product has received little attention. Systematic
methods for designing design processes have not been formalized. Additionally,
while it is true that the potential of leveraging the components of existing products
towards developing new products has been exploited, the possibility of leveraging
PLM sub-processes in new product realization scenarios is substantial. Thus, as an
engineering enterprise becomes increasingly concerned with meeting the dynamic
requirements of a global marketplace, a closer attention must be paid to the mecha-
nisms underlying the product development. Perhaps the most crucial of these
mechanisms is the design process. In terms of the engineering enterprise, this
translates to the need for a systematic means of development for original, adaptive,
variant, and derivative products. Although much attention has been paid to
addressing this issue from a product-centric perspective by exploiting the
reusability and scalability of products through product platform and product family
design, not much attention has been paid to an engineering enterprise’s primary
resource commitment – the design process and its design.

PLM Infrastructure

CAD

Requirements

Management

Process

Planning
Analysis

Market

Analysis

Grid

Computing

Distributed Design

Framework

PDM

System

CRM

Knowledge Based

Engineering

…

Environmental

Impact Assessment

Process Information Product Information

Entities,

Relationships
Activities,

Sequence

PLM Infrastructure

Figure 10.1. Integrating sources of intellectual capital in an engineering enterprise (product
information, process information, and PLM tools)

Many emerging approaches to PLM are concerned solely with lifecycle
considerations as they relate to a single product. Considering that most engineering
enterprises strive to maximize product portfolio diversity, a perspective of PLM,
focusing on the accommodation of the diverse and constantly changing needs of a

204 Collaborative Product Design and Manufacturing Methodologies and Applications

global consumer base, may be appropriate. Taking a step back, the question
becomes: “How can a company ensure the effective use of resources across the

entirety of its product portfolio, especially as markets evolve with time?” To be
successful in such continuously changing marketplaces, it is essential to not only
address current customer requirements, but also accommodate impending changes.
With this in mind, we emphasize that design processes should be viewed as
constituting the strategy for developing a product, given a set of requirements.
Satisfying changing customer requirements is thus subject to one’s ability to adapt
the underlying design processes. This is true whether referring to a single original
design or an adaptive, variant, or derivative design, emanating there from. This is
supported by the assertion of Herbert Simon that “… design process strategies can
affect not only the efficiency with which resources for designing are used, but also
the nature of final design as well” [53]. The design of design processes thus
constitutes a fundamental prerequisite for the strategic deployment of products and
the effective consideration of their respective lifecycle considerations. While the
currently available methods and tools enable designers to effectively model,
analyze and synthesize products, the means for applying the methods and tools to
design the underlying design processes are non-existent. With this in mind, we
believe that the following are important requirements in enabling the design of
design processes:

1. Support for design information transformations
2. Support for design decision-making
3. Modeling and representation of design processes
4. Analysis of design processes
5. Synthesis of design processes

These considerations are addressed further in Section 10.2 through an
illustrative example involving the design of LCAs, and mapped to the requirements
for leveraging design process related intellectual capital and their design in Section
10.3. Research issues, emanating from these requirements and our strategy for
addressing them are discussed in Section 10.4. Finally, we pose a number of
questions regarding the future of lifecycle management as we expand our focus
from products to processes and securing the intellectual capital associated with
both. We assert that addressing these research issues would increase the
adaptability of both products and design processes, thereby enhancing the
enterprise agility with respect to changes in consumer demands.

10.2 Examples of Design Process Scenarios

In this section, we underscore the need for designing design processes by
illustrating the effect of differing design processes on both the final design and the
effectiveness with which the design goals are achieved. Specifically, design
process related decisions are identified for each of the underlying scenarios. The
chosen example is the multifunctional design of LCAs, where we identify different
types of design process decisions, process goals, etc. involved in the achievement
of the overarching objective pursued in the particular design scenario at hand.

Leveraging Design Process Related Intellectual Capital 205

10.2.1 Description of LCAs Design Problem

In this chapter, we rely on the design of LCAs [6, 20] in order to (1) emphasize the
importance of leveraging existing intellectual capital for effectively designing
design processes and (2) demonstrate the implementation of the design process
models currently under development. LCAs are honeycomb materials (see Figure
10.2) that are processed through the extrusion of slurry through a multistage die.
The slurry is composed of a binder, mixed with metal oxide powders. The structure
resulting from extrusion is first dried and reduced into the metallic phase in a
hydrogen-rich environment and then sintered to achieve nearly fully dense metal
composites. A wide range of cell sizes and shapes, including functionally graded
structures, can be achieved using this manufacturing process. These materials are
suitable for multifunctional applications that require both strength and heat transfer
capabilities [48]. Applications of these materials include heat sinks for
microprocessors and combustor liners for aircraft engines. One of the main
advantages of these LCAs is that desired structural and thermal properties can be
obtained by designing shape, cell arrangement, cell wall thicknesses, and
dimensions.

Heat Source

(Microprocessor)

Cool

Fluid

In

Warm

Fluid

Out

Distributed Forces

Figure 10.2. LCAs with rectangular cells

Although LCAs pertain to an emerging class of multifunctional structure-
material systems, the underlying design process is clearly decomposable. It is
because of this capability to clearly separate the different perspectives involved in
the process that LCAs have been chosen as the illustrative medium. Each aspect of
the multifunctional design is considered to be represented by different design
experts. The problem is comprehensive enough to include various different
activities involved in parametric design to illustrate the advantages of the proposed
novel approach.

In this chapter, we model the design process of a LCA requiring high heat
transfer rate and high stiffness. The design variables considered are: cell shape,
total height of the LCA, thickness of the cell walls and fluid velocity. In order to
further simplify the problem, we assume that the designers are restricted to use
either triangular or rectangular cells. The design problem is summarized in Table
10.1 using the Compromise DSP word formulation [32].

The process of designing LCAs involves various steps such as cell shape
selection, structural analysis, thermal analysis, design space exploration, geometry
refinement, etc. The process can be structured quite differently depending on the

206 Collaborative Product Design and Manufacturing Methodologies and Applications

designers’ specific needs. Some example scenarios of LCAs design processes are
discussed next.

Table 10.1. LCAs design problem

Given:

FEM based thermal and structural models , boundary conditions, and
design Requirements

Find:

Design variables: cell shape, total height, thickness, fluid velocity,
and deviation variables
Satisfy:

Constraints and bounds on design variables, and goals
Minimize:

Deviations from targets

10.2.2 LCAs Design Process Strategies

Many different strategies can be adopted for designing LCAs; four different design
process approaches, each corresponding to differences in a) sequence of
information transformations (see Strategy 1 and 2), b) information type (see
Strategy 3), and c) model accuracy (see Strategy 4), are discussed repectively. It is
the nature and configuration of the required information transformations that make
up the design process. With this in mind, sequential design processes with 1)
thermal considerations preceding structural considerations and 2) structural
considerations preceding thermal considerations are illustrated in Section 10.2.2.1
and Section 10.2.2.2, respectively. A set-based design process is described in
Section 10.2.2.3 and reliance on surrogate models in attaining required analysis re-
sults is discussed in Section 10.2.2.4.

10.2.2.1 Strategy 1: Sequential Design – Thermal First

In this scenario, the thermal goal assumes priority over the structural goal. Hence,
the thermal designer fixes some variables in the design space and passes on the
design to the structural designer. Given the choice between rectangular cell shape
and triangular cell shape, the thermal designer chooses a rectangular cell shape
because of superior forced conjugate (conduction and convection) heat transfer
performance.

Capture

Customer

Requirements

Thermal Design
Structural

Design

Desired

Thermal

Behavior

Rectangular LCA

Geometry,

Dimensions

Iterate

Final LCA

Geometry,

Dimensions

Desired Structural Behavior

FEM Based Thermal

Analysis Model

FEM Based Structural

Analysis Model

Figure 10.3. LCAs design scenario 1: thermal first sequential design

Leveraging Design Process Related Intellectual Capital 207

10.2.2.2 Strategy 2: Sequential Design – Structural First
In this scenario, the structural goal is more important than the thermal goal. The
structural designer determines the structure and then passes the resulting geometry
to the thermal designer for modification. In this case, the structural designer selects
triangular cells in lieu of less stiff rectangular cells.

Capture

Customer

Requirements

Structural

Design
Thermal Design

Desired

Structural

Behavior

Triangular LCA

Geometry,

Dimensions

Iterate

Final LCA

Geometry,

Dimensions

Desired Thermal Behavior

FEM Based Structural

Analysis Model

FEM Based Thermal

Analysis Model

Figure 10.4. LCAs design scenario 2: structural first sequential design

10.2.2.3 Strategy 3: Set-based Design
In the set-based design scenario, designers consider sets of design alternatives
rather than pursuing one alternative directly. The philosophy is to gradually narrow
down the design space until a final solution is achieved.

In the LCAs design scenario, this may be implemented as one designer (thermal
or structural) synthesizing a range of design parameters and then passing on this
range to another designer to select the best value in that range. Since the designers
do not pick a single alternative, the designers develop both cell topologies –
triangular and rectangular. Although this approach is more likely to result in
designs that show superior performance with regard to both thermal and structural
considerations, the design effort involved in developing all alternatives is higher.

Capture

Customer

Requirements

Structural

Design
Thermal Design

Desired

Structural

Behavior

Set of LCA

Geometry (Triangular,

Rectangular),

Range of Dimensions

Final LCA

Geometry,

Dimensions

Desired Thermal Behavior

FEM Based Structural

Analysis Model

FEM Based Thermal

Analysis Model

Figure 10.5. LCAs design scenario 3: set-based design

10.2.2.4 Strategy 4: Use of Surrogate Models

The computational intensity of analysis models associated with design is often
substantial. In these instances, it becomes necessary to develop surrogate models to
replace expensive computational runs. These surrogate models, however, are not
exact and may introduce additional error. In the LCAs design example, simple
response surface models can replace computationally intensive FEM analysis codes.
The choice of appropriate models also depends upon progress made along the
design process. In the earlier stages, it is not possible to use high fidelity analysis
models because of limited knowledge regarding the design. However, in the latter

208 Collaborative Product Design and Manufacturing Methodologies and Applications

stages of design, when the design specifications have been determined, high
fidelity analysis models are usually more appropriate.

Capture

Customer

Requirements

Structural

Design
Thermal Design

Desired

Structural

Behavior

Triangular LCA

Geometry,

Dimensions

Iterate

Final LCA

Geometry,

Dimensions

Desired Thermal Behavior

FEM Based Structural

Analysis Model

Develop Simplified

Surrogate Models

FEM Based Thermal

Analysis Model

Develop Simplified

Surrogate Models

Figure 10.6. LCAs design scenario 4: use of surrogate models

10.2.2.5 Strategy 5: Parallel Iterative Design
Another design process option can involve performing design activities in parallel.
In a parallel iterative design process for multifunctional applications, concurrent,
point-based analysis is carried out for structural and thermal requirements. These
analyses provide information about the simulated behavior for a given loading
(both thermal and structural). This simulated behavior is compared to expected
behavior. If these do not match, appropriate changes must be made to the
geometric parameters to obtain the desired performance. The process is continued
until the designers converge on a mutually acceptable solution.

In the design process scenarios discussed above, even though the product is the
same, the design process is quite different. Needless to say, the results expected
from these design processes are also different. Scenarios 1 and 2 highlight the fact
that the design process has an effect on the final design (artifact). Scenario 3
highlights that the design process has an effect on the design effort. Finally,
Scenario 4 underscores that the design of appropriate design processes is also
dependent on the progress along a design process and affects both the efficiency
and effectiveness of this design process.

In order to achieve the fast configuration of an appropriate process and to
facilitate design process exploration, the elements of design processes should be
modeled in a modular fashion with clearly defined interfaces. This idea is
analogous to defining port-based models for design process elements. The input
and output ports in design process elements are information- and knowledge-based.
Reliance on modular design process building blocks will facilitate computer-based
analysis of design processes in order to select the best design process option with
regard to the context at hand. Modularity in design processes will also support
synthesis of new processes from existing ones. The requirements for designing
design processes are discussed in further detail in Section 10.3. Specifically,
various considerations for a foundational framework for designing design
processes are posed. The main factors are supporting synthesis and decision-
making with respect to the product under consideration, as well as modeling
representing, analyzing, and synthesizing the overarching design process, used to
arrive at the final design.

Leveraging Design Process Related Intellectual Capital 209

10.3 Requirements and Critical Issues for Leveraging Design

Process Related Intellectual Capital

Each of the five requirements established in Section 10.1 spurs a number of
research issues that must be investigated in order to effectively manage and
leverage an engineering enterprise’s intellectual capital. The relationship among
these requirements and the underlying research issues is summarized in Figure 10.7
and explored throughout this section. Specifically, i) support for design
information transformations is discussed in Section 0, ii) support for design
decision-making in Section 10.3.2, iii) modeling and representation of design
processes in Section 10.3.3, iv) analyzing design processes in Section 10.3.4, and v)

synthesizing design processes in Section 10.3.5.

10.3.1 Support for Design Information Transformations

1. Design processes should be decomposable into individual information
transformations (design process building blocks) along with associated
information flows such that the reuse of design processes (either in part or
in their entirety) is facilitated.

2. Design process building blocks should guide designers by both the
provision of structure and relevant information content.

3. The framework should facilitate capturing information flow constraints on
design process elements.

Requirements List for

Designing Design Processes

Research Issues in

Designing Design Processes

Support for Design Information

Transformations (Section 3.1)

Support for Design Decision

Making (Section 3.2)

Modeling and Representation of

Design Processes (Section 3.3)

Analyzing Design Processes

(Section 3.4)

Synthesizing Design Processes

(Section 3.5)

Modeling Design Processes

(Section 4.1)

Computational Representations for

Design Processes (Section 4.2)

Storage of Design Information

(Section 4.3)

Developing Metrics for Assessing

Design Processes (Section 4.4)

Configuring Design Processes

(Section 4.5)

Integrated Design of Products and

Design Processes (Section 4.6)

Integrating Design Processes with

Other Processes in PLM (Section 4.7)

Figure 10.7. Mapping requirements list to research issues for designing design processes

The research issues involved in providing support for design synthesis include
the development of computational models for information transformations in a

210 Collaborative Product Design and Manufacturing Methodologies and Applications

manner that supports the integration of information about the product and the
associated design processes. In the case of our LCAs example, this translates to
supporting not only the activities associated with determining the cross sectional
topology of the design, but also the sequence in which these considerations are
taken into account.

10.3.2 Support for Design Decision-making

1. The framework should facilitate the identification of individual design
decisions and any interactions.

2. The framework should support capturing stakeholders’ perspectives in a
consistent form and provide the structure for design processes to account
for relevant information.

3. The framework should facilitate stakeholder interactions pertaining to the
solution of independent, dependent, and interdependent decisions.

The research issues associated with providing support for decision-making
include the development of generic and consistent computational models for
engineering design decisions and modeling the interactions of different
stakeholders involved in the product realization process. In terms of our LCAs
example, it is vital to represent individual information transformations, such as the
design decisions made by the structural and thermal experts, so that they can serve
as self standing models that lend themselves to the integration in each of the
myriad design process scenarios depicted in Figures 10.2 through 10.5.

10.3.3 Modeling and Representation of Design Processes

1. The design process elements must have clearly defined inputs, outputs and
execution mechanisms. The framework should facilitate modeling
information flows, dependencies and interactions. The framework should
also support modeling design processes at various levels of abstractions.

2. The design process models should be computer interpretable, archivable,
and reusable. The models should also support design process analysis.

3. The process elements should be domain independent and sufficiently
generic to model complex design processes.

4. The design process modeling architecture must remain open to future
extension and customization.

The research issues involved in modeling and representing design processes
include the identification of key design process elements, formalization of the
associated computational models and development of quantitative metrics for
assessing the impact of these individual design process building blocks on the
overarching design process. These models of design process elements should
incorporate both product- and process-centric information. Recalling our LCAs
design example, the key process elements are the various analyses and decisions
required in each of the proposed design strategies (see Sections 10.2.2.1 through
10.2.2.4). Specifically, computational models are used to determine structural and

Leveraging Design Process Related Intellectual Capital 211

thermal performance of the resulting design. These analyses are also used to
support decisions regarding design variables and parameter values. The resulting
sequence of design process elements can then be used to characterize the chosen
design strategy comprehensively. Finally, appropriate metrics may be employed to
gauge the adaptability of the resulting strategy to producing a range of products
aimed at meeting myriad, differing functional requirements.

10.3.4 Analyzing Design Processes

1. In the framework of designing design processes, an important
consideration is the development of metrics for analyzing the impact of
constituent design process elements on the overarching design process.

2. The framework should support the composition of multiple evaluation
criteria, as pertaining to constituent design process building blocks, to
quantify the impact of the design process as a whole.

The research issues associated with analyzing design processes include the
development of metrics for quantifying the impact of design processes on both the
process goals and the final design. Returning to our LCAs design example, robust
designs, for example, will accommodate a range of functional requirements (see
[38]). Robust design processes should not be affected by these variations. The
notion of design freedom [54, 55] is particularly important due to the quasi-
uncorrelated relationships between functional requirements and topology. Design
Freedom is defined as the extent to which a system can be adjusted while still
meeting its design requirements [54]. Whether structural considerations precede
thermal considerations or vice versa, will greatly affect the resulting structure.
While triangular cells are more likely to be favored in the former sequence,
rectangular cells favor the latter. The respective design problems (thermal and
structural) must be designed so that their information flows are easily reversed.
These considerations are addressed in Section 10.4.4.

10.3.5 Synthesizing Design Processes

1. The process elements must be modular in order to compose design
processes from existing design process building blocks, as proposed in
Requirements 1 and 2 of Section 0, so that a) existing design processes and
b) design knowledge can be modeled and reused in a computer
interpretable manner.

2. The configuration of the design processes from existing building blocks
should be guided by product and design process related goals as defined by
the engineering enterprise’s strategy.

The research issues involved in synthesizing design processes include the
identification of design process goals, development of metrics for evaluating the
process performance against these goals, configuring the design processes
appropriately to satisfy these goals and finally facilitate future adaptation as
identified by the engineering enterprise’s strategy. With regard to our LCAs
design example, these concepts translate to determining relevant design drivers

212 Collaborative Product Design and Manufacturing Methodologies and Applications

(e.g., stiffness, compliance, and total heat transfer), reliance on measures of the
resulting design freedom of the product (e.g., robustness of the resulting topology
to changes in boundary conditions), and determination of the more suitable
sequence of required decisions to meet desired targets (e.g., thermal design,
followed by structural design, or vice versa).

Taking each of these needs into consideration, a mapping between the
requirements for designing design processes and research issues is possible, as
depicted in Figure 10.7. Having identified the underlying research issues involved
in satisfying the requirements for designing design processes, we now turn our
attention to each of these in detail.

10.4 Research Issues and Strategies for Designing

Design Processes

Referring back to our motivating example in Section 10.2, the importance of PLM
is evident when one considers the wide range of potential applications ranging
from microprocessor heat sinks to aircraft engine combustor liners (see Figure
10.8). LCAs constitute an emerging family of complex material structure systems
which are designed to uniquely satisfy a particular set of operational requirements.
Hence, the traditional means of generating a product portfolio as suggested by
Meyer [30], involving the development of product platforms and leveraging of
modular components, are not suitable for generating a product variety. In other
words, there are no product components that can be directly reused or scaled and
product architectures cannot be taken advantage of. Hence, the following question
arises:

How can designers leverage design knowledge so as to facilitate effective and
efficient development of new products?

The answer lies in recognizing that the design process underlying the range of
achievable products is common and thus, constitutes the primary resource for the
extended design enterprise. Whether one focuses on product or process variety, the
basic consideration remains the same – maximize external variety while
minimizing internal variety [59]. The means of achieving this goal for design

process variety lies in designing design processes as open systems [54]. According
to Simpson and co-authors, the key to flexibility in open systems lies in modularity,
mutability, and robustness. With this in mind, we focus on designing open design
processes based on these assertions. The assumption here is that principles of open
systems apply to both products and processes. In particular, we focus on
developing baseline design processes that are easily adapted and reconfigured. The
goals for ensuring the required flexibility include simple relationships, minimal
interdependencies, clear and concise interactions, and generic process constructs
that can be used to compose the processes. The expected result is the ability to
model, capture, and analyze design processes both in part and in their entirety.

Leveraging Design Process Related Intellectual Capital 213

Segment A Segment B Segment C

Low Cost

Low Performance

High Cost

High Performance

Mid Range Microprocessor

Heat Sink

Airline

Combustor

Liner

Heat

Exchanger

Figure 10.8. Market segmentation grid – leveraging design process knowledge across
product variants

Considering the importance of design processes in determining a company’s
competitiveness, we discuss seven research areas in Sections 10.4.1 through 10.4.7
as outlined in Figure 10.7. These research areas and associated research objectives
are summarized in Table 10.2. In each of the following sub-sections, we consider
the underlying research issues, previous related work, open research questions and
our strategy for addressing these.

Table 10.2. Research issues and objectives for leveraging design process related intellectual
capital

 Research Issue Objective

Section

10.4.1

Modeling Design

Processes

Modeling the design processes in a modular
fashion using generic process elements
(transformations) that can be composed to form
higher level design processes.

Section

10.4.2

Computational

Representations of

Design Processes

Representation of design processes in a manner
that they can be reused either partially or in their
entirety for either the same product or for
different products.

Section

10.4.3

Storage of Design

Information

Capturing information by successfully separating
product and process information at various levels
of abstraction.

Section

10.4.4

Developing Metrics for

Assessing Design

Processes

Developing metrics for analyzing the
effectiveness of design processes.

Section

10.4.5

Configuring Design

Processes

Developing methodology for synthesizing new
design processes from existing design process
elements.

Section

10.4.6

Integrated Design of

Products and Design

Processes

Developing methodology for designing products
in conjunction with the underlying design
processes.

Section

10.4.7

Integrating Design

Processes with Other

Processes in PLM

Integrating process related intellectual capital
pertaining to all aspects of engineering enterprise
throughout a product’s lifecycle.

214 Collaborative Product Design and Manufacturing Methodologies and Applications

10.4.1 Modeling Design Processes

10.4.1.1 Research Issue

In order to leverage knowledge about design processes, there is a need to devise a
means of modeling these consistently and succinctly. Modularity of components is
an additional requirement so that (1) component interfaces are clear, (2) component
interactions are concise, and (3) both complete and partial reuse of design process
components is facilitated. Design process components should also be computer
interpretable, enabling analysis as well as execution. Finally, design process
components should span all the hierarchical levels of a design process, ranging
from planning at the organizational design process level to executing tasks at the
computational level. In order to design the design process, the modeling technique
should thus ensure that the impact of design processes on products is clearly
determined, modularity of design processes is ensured, and process elements are
generic (see Figure 10.7).

10.4.1.2 Previous Work
Design processes have been modeled from many different perspectives such as the
activity based perspective [13, 14], the functional evolution perspective [52], the
evolution of product states [58], the manipulation of knowledge [25, 26], and the
decision based perspective [39]. Clearly, there is no single design process model
that encompasses all required aspects of design. Some of the methods are focused
on capturing processes to make organizational decisions (e.g., [13, 14]), others
towards understanding and capturing designers’ intentions and rationale (e.g., [39,
50, 51, 58]), while even others are focused towards artificial intelligence with the
eventual intent of automating the process (e.g., [25, 26]). These efforts thus far
have been limited in terms of their reusability mainly because:

There is a lack of consistency with regard to a single, domain independent
set of design process building blocks that span all required levels of
abstraction.

Current design process modeling efforts do not support modularity either
architectures or interfaces, both of which are essential for reuse at the sub-
process level.

10.4.1.3 Research Questions

Considering the limitations of the methods listed in Section 10.4.1.2, a number of
pertinent research questions related to modeling design processes arise:

What are the key information transformations in design processes?

How can design processes be modeled as hierarchical systems?

How can interfaces between design process elements be defined?

10.4.1.4 Strategy: A Decision-centric Approach

Our approach to modeling design processes, aimed at addressing the research
questions posed in Section 10.4.1.3, is rooted in the Decision Support Problem
Technique, developed by Mistree and co-authors [31, 34-37, 39]. A fundamental

Leveraging Design Process Related Intellectual Capital 215

assumption, from which many advantages with regard to addressing hierarchical
interoperability are addressed, is that design processes are decision-centric. This is
advantageous because decisions offer a consistent means of modeling processes
regardless of domain, level of abstraction, perspective and discipline of the process
considered. Bras and Mistree [4], in an extension of the DSP Technique, model
design processes using a set of fundamental entities – Phase, Event, Task, Decision,
and System Support Problems.

In our approach, design processes are defined as networks of transformations of

information from one state to another. The state of information refers to the
amount and form of that information that is available for design decision-making.
For example, analysis is a transformation that maps the product form to behavior,
whereas, synthesis is a mapping from expected behavior to the product form. An
information model to support the design processes modeled in this fashion is
shown in Figure 10.9. This information model is adapted from the CORE product
model proposed by Fenves [15]. Analogous to the CORE product model, the
process model shown is hierarchical and the entities are derived from a single Core

Design Process Entity. The key entities in this process model represent the basic
building blocks of design processes. There are different types of information
Transformations, Information, and Interfaces. Transformations can be either
Decisions or Tasks. It is important to realize that transformations themselves
hierarchical and can be composed of other transformations. Design decisions are
categorized as being either selection [17, 33] or compromise [32, 49] (see Figure
10.9). The former constitutes choosing among a set of feasible alternatives, the
latter refining a given alternative. Tasks are categorized into abstraction,
concretization, composition, decomposition, mapping, and evaluation (not shown
in Figure 10.9). Transformations are defined by their function (intended role),
structure (architecture), and behavior (actual performance). Information can be of
two types – Flow-Information and Meta-Information. Flow-Information refers to
the information processed by transformations (i.e., Inputs and Outputs), whereas
Meta-Information (Process Specification, Process Attributes) describes the
characteristics of transformations. Interfaces connect transformations by
processing the information shared among them.

With regard to the LCAs design example, described in Section 10.2, relevant
decisions relate to the determination of topology based on structural and thermal
considerations. To support these decisions, a number of tasks are required. Exam-
ples include the overall decomposition of the design problem, mapping of structure
to behavior using analysis, and evaluation based on a comparison of simulated
behavior with design requirements.

216 Collaborative Product Design and Manufacturing Methodologies and Applications

Core Design
Process Entity

Information

Transformation

Input Information

Process Behavior

Output Information

Process AttributeProcess Function

Interface

Process Specification

Process Structure

Process ArchitectureTask Mechanism

Flow-Information Meta-Information

ask

ecision

Figure 10.9. Design process information model

10.4.2 Computational Representations for Design Processes

10.4.2.1 Research Issue

In order to promote the reusability of design processes (see Figure 10.7), it is
important to develop reusable computational constructs for design process building
blocks that capture all relevant information content. These constructs for process
building blocks can then be combined using appropriate interfaces to represent
complete design processes and capture relationships among components as well as
with the overall system. There is a lack of formal computational models for
representing and reusing existing knowledge about design processes. The design
process models currently used are either narrative or symbolic in nature [29].

10.4.2.2 Previous Work
Design processes are represented at a computational level in commercial software
applications like ModelCenter® [42], FIPER [11], iSIGHT [12] and Hyperworks
Process ManagerTM [22]. The basic process element is a simulation code. The
information captured using this process element in modeling processes with these
applications is strictly related to the inputs, outputs, code to be executed, and the

Leveraging Design Process Related Intellectual Capital 217

relationships between parameters. The design process is defined exclusively by the
flow of parameter values between various software applications. This in effect
links the declarative (i.e., problem specific) information to the procedural (i.e.,
design process specific) information. Consequently, reusability is limited to
parametric design where the set of parameters and their relationships remain the
same. A mere addition or deletion of a parameter requires reformulation of the
underlying process. The design process descriptions cannot be reused even if the
process remains the same and the parameters change.

10.4.2.3 Research Questions
Taking the drawbacks of current methods into consideration, the following
pertinent research questions related to modeling design processes arise:

How can information relevant to design process building blocks be
captured as computational templates?

How can these templates be combined to model complete design processes?

How can the problem-specific (declarative) information be separated from
the design process-specific (procedural) information?

104.2.4 Strategy: Separating Declarative Information from Procedural
Information

Our strategy for modeling design processes is based on considering design
processes as networks of information transformations (see Section 10.4.1.4). The
architecture of our process modeling approach consists of three levels, namely a
process specification layer, a declarative layer, and an execution layer. Their
relationship is illustrated in Figure 10.10.

1. Process Specification Layer: In this layer, a) required information
transformations are identified and b) required information flows are
specified accordingly. In order to ensure that declarative information is
separated from procedural information, information flows are clearly sepa-
rated from information content. In other words, we capture only the
mechanics of information transfer at this level, while problem specific
information is defined separately at the declarative level. This results in a
process map that remains the same irrespective of the application in which
the process is used.

2. Declarative Layer: In this layer, problem formulation related information
is captured. Consequently, the independence of information from process
mechanics is guaranteed. Use of a standardized format ensures that the
problem specific declarative information can be reused in different
processes. Reliance on XML offers a convenient means of capturing
information at this level.

3. Execution Level: In this layer, the details of code execution are captured.
This level is specific to the design scenario and problem for which the
process is used. Execution level codes interface only with the declarative
problem formulation level. Thus, there is no direct link between the process

218 Collaborative Product Design and Manufacturing Methodologies and Applications

specification level and execution level. This preserves the modularity of
processes.

Problem Definition

Information
Analysis Information

Declarative Level

(Problem

Formulation)

Process Integration Tool (e.g., Model Center, iSIGHT, etc.)

Problem

Definition
Analysis

Process

Specification Level

Problem 2 Analysis

W = f (L, R, T, density)

V = g (L, R, T)

Problem 1 Analysis

V = f (d, D, N, …)

K = g (d, D, N, …)

Problem 2

Design Variables: R, L, T

Problem 1

Design Variables: d, N Execution Level

Problem Definition

Information
Analysis Information

Declarative Level

(Problem

Formulation)

Problem Definition

Information
Analysis Information

Declarative Level

(Problem

Formulation)

Process Integration Tool (e.g., Model Center, iSIGHT, etc.)

Problem

Definition
Analysis

Process

Specification Level

Problem 2 Analysis

W = f (L, R, T, density)

V = g (L, R, T)

Problem 1 Analysis

V = f (d, D, N, …)

K = g (d, D, N, …)

Problem 2

Design Variables: R, L, T

Problem 1

Design Variables: d, N Execution Level

Figure 10.10. Architecture of process modeling framework

10.4.3 Storage of Design Information

10.4.3.1 Research Issue
It can thus be established that the design process is intimately linked to the product
being designed. Many design process decisions can be identified only after some
product related decisions have already been made. Hence, it is essential to consider
the design of both the product and underlying design process simultaneously (see
Figure 10.7). Neither aspect should be modeled in isolation. To enable the storage
of product and process information separately, there is a clear need for a consistent
information model that addresses both product- and process-centric concerns.
There are numerous ways of evaluating the quality of a design process. While
some focus on process dependent attributes such as individual activities and their
sequence, as well as the underlying information flows, others focus on product spe-
cific attributes relating to the quality of the resulting design. Both perspectives are
crucial. The challenge lies in reconciling these concerns with respect to the
overarching design drivers.

10.4.3.2 Previous Work
There has been a significant amount of research with regard to modeling both
products and processes. While some efforts have been concerned mainly with
focusing on either product or process related aspects separately, others have pur-
sued a more integrated perspective. On the product modeling side, notable efforts
include the CORE product model by Fenves and co-authors [15]. On the process
side, relevant endeavors include the proposition of a Process Specification
Language (PSL) by Schlenoff [46, 47] and ISO 10303 STEP Standard AP 231 for
Process-Engineering Data [40]. There are also a number of efforts that seek to
reconcile product and process-centric perspectives. Examples include the Georgia
Tech Process to Product Modeling Tool (GTPPM) developed by Lee, Eastman, and

Leveraging Design Process Related Intellectual Capital 219

Sacks [8, 45] and the Object-Oriented Modeling of Products and Processes,
proposed by Gorti and co-authors [19].

As stated in Section 10.4.3.1, there is a definite need for an integrated product
and process model in order to facilitate both partial and complete reuse of
engineering design processes. Current instantiations of such models are limited in
so far that they consider processes mainly with regard to components and their
dependencies in terms of respective inputs and outputs. Design process execution,
however, has not been a central concern thus far. Further, current design
information models capture information in a manner that supports archiving
existing processes and design rationale. Only information immediately relevant to
the storage of a particular decision is captured. Since no additional information is
available for future reference, the synthesis of new processes based on the existing
sub-processes is not supported in current information models.

10.4.3.3 Research Questions

Considering the challenge posed in Section 10.4.3.1 and the limitations of current
efforts, considered in Section 10.4.3.2, the following research issues arise:

How can process information be separated successfully from product
information?

How can the structure and content of engineering design processes be
captured effectively so that modular reuse of process components becomes
feasible?

How can design processes be stored so that their structure remains
consistent throughout all levels of a process hierarchy?

10.4.3.4 Strategy: Process Templates

Our approach to storing design information is necessarily two pronged, focusing on
a reconciliation of product with process-centric aspects of a design process.
Necessarily, these must be separated clearly. Our current instantiation of this is an
extension of the CORE product model [15] from solely modeling products to
modeling design processes as well. In this extension, information transformations
are modeled as hierarchical objects. A key feature of these information trans-
formations is that they are derived based on a decision-centric perspective. Since
decisions can be considered to constitute central elements of almost any process,
regardless of domain and level of abstraction pursued within, a common means of
modeling a process at all levels of a design effort results.

Constituent design process elements are synthesized to serve as reusable
template to model the design process under consideration, either in part or in its
entirety. Design Process Construct Templates1 are computational objects that can
be parsed, analyzed and/or executed on a computer [31]. Process Templates
constitute compositions of interfaced design sub-process templates, as illustrated in
Figure 10.11. It is important to note that the partial and complete templates shown

1 Design Process Construct Templates are defined as computer based representations of design process
elements, having well-defined inputs and outputs.

220 Collaborative Product Design and Manufacturing Methodologies and Applications

in Figure 10.11 share the common underlying architecture presented in Figure
10.10.

P
ro

d
u

c
t

In
fo

rm
a

ti
o

n

S
ta

te
 A

P
ro

d
u

c
t

In
fo

rm
a

ti
o

n

S
ta

te
 B

Template

T1

Template

T2

Template

T3

Design Process

Complete Template

Partial

Template

P
ro

d
u

c
t

In
fo

rm
a

ti
o

n

S
ta

te
 A

P
ro

d
u

c
t

In
fo

rm
a

ti
o

n

S
ta

te
 B

Template

T1

Template

T1

Template

T2

Template

T3

Design Process

Complete Template

Partial

Template

Figure 10.11. Modeling design processes using process templates

The design process in this figure involves three design process element
templates: T1, T2 and T3. In the case of the LCAs example, this translates to
series of decisions and supporting tasks. In progressing along the design process,
these elements convert the information about a product from one state to another
(e.g., from State A to State B in Figure 10.11). In the case of analysis, for example,
the first state (i.e., State A) represents geometry and loading conditions considered
in isolation and the second state (i.e., State B) would represent their combination
and the resultant behavior. The lines connecting these process elements represent
flows of information. Process Templates can be partial or complete. Complete
templates contain all the information required for carrying out a transformation and
can be executed. Partial templates do not have sufficient information for executing
a transformation. This point is illustrated in Figure 10.11. All the information
required for performing T1 is available at information state A. Hence, the template
associated with T1 is a complete template. Some of the information required for T2
is not available until T1 is executed, however. Hence, T2 is a partial template.
Design processes using such a notation can be viewed as networks of Process
Templates, connected by the information flowing between them.

10.4.4 Developing Metrics for Assessing Design Processes

10.4.4.1 Research Issue
In order to accurately evaluate alternative design processes, their analysis is
required (see Figure 10.7). Design process alternatives result from changes in
parameter values, information flows, and sequence. With regard to our LCAs
example, these correspond to differences in design requirements, parameter form,
and stakeholder succession, respectively, as shown in Section 0. This implies that

Leveraging Design Process Related Intellectual Capital 221

design process options have to be explored and information required for making a
design process decision has to be generated before the design process decision can
be made.

In order to aid in the analysis, evaluation, and configuration of design processes
with regard to differing design process goals, appropriate metrics are required.
Additional considerations to those discussed in Section 10.4.1, may include
reliability, reconfigurability, minimization of cost, minimization of risk, available
resources, etc. As stated previously, we come from the perspective of designing
products as well as design processes as open engineering systems. The key to
designing open engineering systems is adaptability to changes in the environment.
The environment for a product is the set of conditions under which it is being used.
Hence, a product is open if it is adaptable to changes under the conditions in which
it is used. The environment for a design process includes the product which is
being designed, the considerations used to design the product (e.g., robustness,
reliability, etc.), and the environment in which the product is to be used. This
implies that if a similar product is being designed or the same product is being
designed with added considerations, the underlying process need not change.
Hence, a process is open if it can be used to design both similar products and the
same products with different design considerations. We conduct our analysis of
design processes accordingly.

10.4.4.2 Previous Work
Cost, time and interdependencies are generally encountered metrics for design
processes [5]. Braha and Maimon [2] have considered complexity for analyzing
design process effectiveness. Rogers and Christine [44] have considered coupling
strength as an indicator of design process effectiveness. The drawback of these
process analysis metrics is that they do not quantify the effect of information
transformations on the product.

10.4.4.3 Research Questions

Based on the points made in Sections 10.4.4.1 and 10.4.4.2, a number of research
questions arise.

How can design process components be characterized sufficiently to allow
for their adaptation in the case of derivative and adaptive design processes?

How can the effectiveness of design processes be quantified?

How can the impact of design processes on products be measured?

How can process effectiveness metrics be employed for synthesizing
original, adaptive, variant, and derivative design processes?

10.4.4.4 Strategy: Open Systems Perspective
Our strategy is to model and analyze processes from an open systems perspective.
Various techniques like robustness, modularity, maintaining design freedom,
adaptability, etc. have been proposed for achieving openness in a system [54].
Hence, openness of systems can be measured by developing quantitative metrics
for these. The quantitative measures related to openness of a product are: design

freedom [23, 55, 60, 62, 63], robustness, complexity [2, 10, 43, 53] , modularity [41]

222 Collaborative Product Design and Manufacturing Methodologies and Applications

(which is closely linked to complexity) and coupling [27, 28]. Previous research
efforts are mainly focused on quantifying the openness of products but openness of
design processes has not been addressed in the literature. It is here where we make
our contribution towards metrics for design processes.

10.4.5 Configuring Design Processes

10.4.5.1 Research Issue

During the NSF Simulation Based Engineering Science (SBES) workshop [64], the
need for designing complex products in a hierarchical fashion at multiple scales
was surveyed, and the potential for the new field of SBES explored. It was noted
that by integrating knowledge from different scales, we would be able to design
products considered extremely difficult today. Most complex products are designed
by their hierarchical decomposition into interacting components. This results in
hierarchical products as well as processes. The possible ranges in scope and detail
of the resulting design processes are illustrated in Figure 10.12. As the scope
increases from involving a single designer, to teams and multiple organizations, the
relevant detail of the design process changes from involving interactions among
design variables to inter-organizational interactions. In cases such as the design of
aircraft, processes can even extend to the multi-organizational level. In the design
of systems of this complexity both top-down and bottom-up approaches are often
combined. The research issue in configuring design processes from both top-down
and bottom-up approaches is the ability to define processes as modular patterns
that can be reused in different scenarios (see Figure 10.7).

10.4.5.2 Previous Work
The concept of modularity has been extensively studied in the product design
domain. The role of product architectures has been established by Ulrich in [59].
Various methods have been developed to design families of products [7, 18]. The
application of modularity, patterns and families to design processes has not been
addressed to the best of our knowledge.

10.4.5.3 Research Questions
Relevant research questions emanating from the considerations brought forth in
Sections 10.4.5.1 and 10.4.5.2 are:

How can top-down design processes be captured for reuse?

How can lower level design processes be leveraged to facilitate bottom up
design of design processes?

Leveraging Design Process Related Intellectual Capital 223

Scope

P
ro

c
e
s
s
 D

e
ta

il

Single

designer

Multiple

Organizations

Single

Organization

Design

Team

Multiple

Teams

Botto
m

Up

Top Down

Inter-

organizational

interactions

Interactions

between teams

Design

variables

Managerial level

design process

Designer level

design process

Scope

P
ro

c
e
s
s
 D

e
ta

il

Single

designer

Multiple

Organizations

Single

Organization

Design

Team

Multiple

Teams

Botto
m

Up

Top Down

Inter-

organizational

interactions

Interactions

between teams

Design

variables

Managerial level

design process

Designer level

design process

Figure 10.12. Processes represented at various levels of detail

10.4.5.4 Strategy: Process Families
In our approach we focus on developing a “baseline” process that can be extended
to serve a number of different products, as identified in the engineering enterprise’s
strategy. We thus consider entire families of processes. Akin to the reliance on
product families, there is an underlying emphasis on leveraging a common
platform to the utmost extent possible – maximizing external variety, while
minimizing internal variety. Often this is achieved through reliance on modularity
and open architectures. This translates to a need for modeling and representing
different products and the underlying process variants used to make them
accordingly – in an openly extensible, standardized, modular, and adaptable
manner.

Once such a baseline design process has been designed as envisioned here,
arriving at process variants for designing new products is greatly facilitated,
thereby significantly reducing the associated time and cost. This stands in marked
contrast to designing processes to support the realization of products on a 1-to-1
basis. The engineering enterprise becomes significantly more agile in adapting to
changes in consumer tastes and is better prepared to meet the challenges of
compressed product lifecycles. Furthermore the management of Product Lifecycle
considerations is greatly facilitated. Additional benefits are related to the fact that
design chains can be designed in a manner reflecting the modularity of the
underlying design processes. Consequently, interacting design chain stakeholders
can be interfaced in a modular fashion, moving towards plug-and-play operation of
processes across design chains.

224 Collaborative Product Design and Manufacturing Methodologies and Applications

10.4.6 Integrated Design of Products and Design Processes

10.4.6.1 Research Issue

Traditionally, design methodologies mainly focused on systematic design of
products. The focus of the design community has expanded from the design of
products to include considerations of manufacturing, maintenance, re-cyclability,
etc. Integrated product and process design methods (IPPD) are mainly centered on
designing both product and required manufacturing process simultaneously. In
other words, design of products is carried out with consideration of additional
factors that affect the product life cycle. Design of processes is limited to the de-
sign and simulation of manufacturing processes by industrial engineers. Integrating
the design of design processes with the products has received little attention,
however. A systematic method for designing design processes along with the
product has yet to be formalized in the design literature.

10.4.6.2 Previous Work

Previous efforts aimed at addressing the need for a systematic concretization of
design efforts are evident in the work of Bras and Mistree [3]. Specifically, they
focus on devising a means of consistently modeling design processes from a deci-
sion based perspective. In doing so, they instantiate a set of primitives for modeling
design process components. In their model, process components are connected by
the information, energy and material flows between them. The technique involves
two phases: Meta-design and design. Meta-design involves laying out the design
process and the design phase involves executing the design process. The main
drawback of this approach is that these two phases are interlinked and should
ideally be carried out concurrently. The technique is also limited to mapping out
the process of designing a product in terms of the required decisions. No
considerations are given to the process related goals and the architecture of the
design processes.

10.4.6.3 Research Questions

Relevant research questions emanating from the considerations brought forth in
Sections 10.4.5.1 and 10.4.5.2 are:

How can products and their associated design processes be designed in an
integrated fashion?

How can hierarchical considerations of products and processes be modeled
consistently with regard to the required levels of abstraction?

How can the evolution of products and processes be modeled along a
design timeline?

How can the various sources of uncertainty (e.g., as pertaining to the
environment, design variables, models, etc.) be accounted for as the quality
and quantity of available information changes to reflect the current state of
knowledge about (1) the product being designed and (2) the underlying
process?

Leveraging Design Process Related Intellectual Capital 225

10.4.6.4 Strategy: Identifying Process Decisions
Decisions made during a design process are of two types: decisions about the
product, discussed in Section 10.4.1.4, and decisions about the process through
which the product is designed, as considered in this section. Such design process
decisions can be divided into three main categories: a) concerning the architecture
of the design process, b) the manner in which individual design activities are
carried out, and c) the parameters of the design process. With regard to our LCAs
design example, the sub-sections of Section 0 represent different architectures of
the design process underlying LCAs development. The design process decisions
form a three-tiered structure. More details about the nature of design process re-
lated decisions follow.

1. Architecture of the Process: The architecture of a design process refers to
the network of design activities and associated information flows. The
architecture of design processes can affect both the final product and
process outcomes like time, cost, etc. Design processes can be partitioned
in a variety of ways into individual activities and tasks. Partitioning a
design process involves identifying activities and the information transfers
between them. Some of the activities in a design process are coupled and
others are uncoupled. It is preferable to have uncoupled tasks in a design
process so as to reduce the number of costly iterations between tasks.
Coupling can be categorized as being strong or weak depending on the
amount of information dependencies between tasks. Decisions about design
process architectures also include time sequencing of the tasks. Decisions
such as which tasks need to be performed sequentially and which tasks can
be performed concurrently are important when more than one design team
is taking part in a given design process.

2. Individual Design Activities: Moving from process architecture decisions
down to individual design tasks, decisions include the manner in which
each activity is performed. One example of such design task level process
decisions is the analysis task where the objective is to map form to
behavior. Behavioral models can be developed at various levels of fidelity.
Appropriate behavioral models needs to be selected depending on the
information available, accuracy required and the progress along the design
timeline. Mocko and co-authors [38] have shown that behavioral models
can be organized hierarchically in a tree structure based on idealizations of
the actual model. Another example of design task level design process
decisions is synthesis.

3. Design Process Parameters: This is the lowest level of design process
decision where designers are concerned with setting values of design
process parameters like weights assigned to individual goals, optimization
parameters, design of experiments parameters, etc.

226 Collaborative Product Design and Manufacturing Methodologies and Applications

10.4.7 Integrating Design Processes with Other Processes in PLM

10.4.7.1 Research Issue

A main aspect of Product Lifecycle Management (PLM) is the integration of
processes and information throughout the value chain, including supply chains,
design chains, demand chains, etc. In order to extend the value proposition of the
effort of designing design processes (see Figure 10.7) presented in Sections 10.4.1
through 10.4.6, it is essential that design processes be integrated with other
processes in the value chain. The underlying challenge lies in mapping the design
processes with other processes.

10.4.7.2 Previous Work

A major thrust in PLM is the integration of the value chain throughout the
extended enterprise. Design chains and supply chains form two essential
components of the value chain. A significant amount of work is currently being
undertaken by the Supply Chain Council2 with regard to describing supply chains.
For example, the SCOR model [57] is developed to represent and measure supply
chains in a standardized manner to enable improvements in supply chain operations
through analysis of current processes and best practice emulation. Along these
lines, numerous case studies have been conducted. For example, SCOR model is
currently being extended to the Enterprise Transaction Model by Streamline SCM
[56].

10.4.7.3 Research Questions
Relevant research questions emanating from the considerations brought forth in
Sections 10.4.7.1 and 10.4.7.2 are:

How can decision-centric design process models be mapped into other
processes within the value chain (e.g., supply chain processes)?

How can flexible interfaces be developed for enabling effective
interactions among stakeholders in an enterprise?

10.4.7.4 Strategy: A Decision-centric Approach

Since the strategy outlined throughout this chapter is decision-centric, it is
sufficiently generic to allow for adaptation to each of these contexts. Our research
is focused on modeling design chains at various levels of scope and detail, ensuring
domain independence and interoperability among the various stakeholders
involved in a product realization process. Consequently, models and methods are
being developed to address emerging design process needs on various levels of
abstraction, so that the resulting hierarchy effectively supports the design activities
of the enterprise.

Our approach to integrating design chains with the supply chains involve (a)
identifying the decisions and information transformations involved in each of the
level 3 elements in SCOR model, (b) modeling those decisions using the DSP

2 www.supply-chain.org

Leveraging Design Process Related Intellectual Capital 227

Technique Palette [3], (c) using the decision elements, and d) developing object-
oriented templates for elements in the SCOR models.

The research tasks involved in developing flexible interfaces between
stakeholders are (a) modeling interactions between the design process elements
and associated information flows, (b) modeling stakeholder relationships,
commonly encountered throughout the value chain, (c) capturing design process
interactions using object oriented templates that can serve as a springboard for
knowledge capture, and (d) establishing communications protocols to represent the
underlying interactions for enabling the required information transfers.

As a summary, throughout Section 10.4, we highlight seven key research areas
(see Table 10.) that we believe are important in order to address the requirements
(see Figure 10.7) posed by leveraging design processes as an important element of
the intellectual capital. These research areas were explored in the light of existing
literature to identify open research questions in Sections 10.4.1 to 10.4.7. We also
outline some of our strategies for addressing these research questions. These
strategies are focused on both decision-centric and systems-based view of design
processes.

10.5 Conclusions

The future basis for competition is likely to rest on an enterprise’s ability to
anticipate and quickly respond to market shifts and changes. This requires the
effective leveraging of resources. Considering that the bulk of the effort involved
in product development lies in perfecting the underlying processes, these should be
considered to constitute an enterprise’s primary intellectual capital. Consequently,
more attention must be paid to the manner in which these processes are designed.

Our starting premise, in this chapter, is that design processes are an integral part
of its intellectual capital. Accordingly, we establish the design of design processes
(together with product design) as a critical factor in addressing lifecycle
considerations of an evolving product portfolio. Five key requirements for enabling
the design of design processes are established and subsequently tied to underlying
research issues – (1) identification of design process goals, (2) process related
decisions, information transformations, and computational models thereof, (3)
design process configuration, (4) quantification of design process impact, and (5)
the integration of product and process-centric perspectives. We thus consider that
attaining and retaining a competitive edge is likely to be a function of a company’s
agility in adapting existing design processes to the realization of adaptive, variant,
derivative, and even original products. With this in mind, we provide a conceptual
framework for addressing the underlying research issues involved in the
development of a means to leverage design processes through composable,
computer interpretable modeling techniques, facilitating their analysis, archival,
and reuse. The proposed strategy is anchored in a decision-centric perspective of
design processes; modular, computational template-based representation of design
processes and their building blocks; utilization of existing standards for archiving
of process information; metrics for assessment of design process performance;
configuration-based techniques for design of design processes alongside products;

228 Collaborative Product Design and Manufacturing Methodologies and Applications

and integration with other processes in the value chain. Rather than proposing new
technologies or standards under the PLM umbrella, it is our overarching objective
to highlight design processes as key elements of an engineering enterprise’s
intellectual capital and to motivate fundamental research directions. We note that
the vision articulated in this chapter is not meant to replace current efforts in the
PLM arena. Instead, our aim is to augment these efforts via the inclusion of design
process related intellectual capital, thereby enhancing the overall agility of the
engineering enterprise.

We assert that managing the lifecycle of a design process will have much
greater impact than merely considering the design of products in isolation. Hence,
we believe that the vision and direction provided in this chapter are fundamental to
the success of next generation agility in global enterprises. Considering the current
scope of PLM, this thrust is extremely important. We thus envision extending the
focus of PLM to include the lifecycle considerations of the design process, moving
towards Design Process Lifecycle Management (DPLM). Considering the
comprehensive nature of design processes, the underlying research problem is to
manage and reuse process knowledge as a prime component of the intellectual
capital. We must thus ask ourselves:

To what extent can families of processes be modeled, captured, and reused?

How can top-down design of engineering design processes be reconciled
with bottom-up design of process components?

How can all processes factoring into the value chain be designed

systematically (e.g., engineering design processes, supply chain processes,
etc.)?

How can product information be reconciled with processes at various
levels of abstraction in an entire global enterprise?

In closing, we leave you with the following thought -
“Vision without action is merely a dream. Action without vision just passes the

time. Vision with action can change the world.” -- Joel A. Barker.
We have shared with you our vision – which is undoubtedly limited. We invite

you, the members, visionaries, and practitioners of Collaborative Product Design
and Manufacture, to enhance this vision and act so that we may collectively
achieve our dream.

10.6 Acknowledgments

We acknowledge support from the National Science Foundation grants DMI-
0085136 and DMI-0100123, as well as, Air Force Office of Scientific Research
grants F49620-03-1-0348, and MURI 1606U81. Marco Gero Fernández was
sponsored by a National Science Foundation IGERT Fellowship through the
TI:GER Program (NSF IGERT-0221600) at the Georgia Tech College of Manage-
ment and a President’s Fellowship from the Georgia Institute of Technology.

Leveraging Design Process Related Intellectual Capital 229

10.7 References

[1] Berden, T. P. J., Brombacher, A. C. and Sander, P. C., 2000, “The building
bricks of product quality: an overview of some basic concepts and
principles,” International Journal of Production Economics, 67, pp. 3–15.

[2] Braha, D. and Maimon, O., 1998, A Mathematical Theory of Design:

Foundations, Algorithms, and Applications, Kluwer, Boston, pp. 241–278.
[3] Bras, B., Mistree, F., 1991, “Designing Design Processes in Decision-Based

Concurrent Engineering,” SAE Transactions Journal of Materials &
Manufacturing, pp. 451–458.

[4] Bras, B. A. and Mistree, F., 1991, “Designing design processes in decision-
based concurrent engineering,” SAE Transactions, Journal of Materials &

Manufacturing (SAE Paper 912209), SAE International, Warrendale,
Pennsylvania, 100, pp. 451–458.

[5] Browning, T. R. and Eppinger, S. D., 2002, “Modeling impacts of process
architecture on cost and schedule risk in product development,” IEEE

TRansactions on Engineering Management, 49(4), pp. 428–442.
[6] Cochran, J. K., Lee, K. J., McDowell, D. L. and Sanders, T. H., 2002,

“Multifunctional metallic honeycombs by thermal chemical processing,”
Processing and Properties of Lightweight Cellular Metals and Structures,

pp. 127–136.
[7] Conner (Seepersad), C. G., DeKroon, J. P. and Mistree, F., 1999, “A product

variety tradeoff evaluation method for a family of cordless drill
transmissions,” ASME Advances in Design Automation Conference, Las
Vegas, NV. Paper Number: DETC99/DAC-8625.

[8] Eastman, C. M., Lee, G. and Sacks, R., 2002, “Deriving a product model
from process models,” ISPE/CE2002 Conference, Cranfield University,
United Kingdom.

[9] Edwards, J. D., 2002, Product Life Cycle Mangement: A White Paper.
[10] Elmaghraby, S. E., 1995, “Activity nets: a guided tour through some recent

developments,” European Journal of Operational Research, 82(3), pp. 383–
408.

[11] Engenious Inc., 2004, FIPER,
http://www.engineous.com/product_FIPER.htm

[12] Engineous Inc., 2004, iSIGHT, Version 8.0,
http://www.engineous.com/product_iSIGHT.htm

[13] Eppinger, S., Whitney, D. E., Smith, R. P. and Gebala, D. A., 1994, “A
model-based method for organizing tasks in product development,”
Research in Engineering Design, 6(1), pp. 1–13.

[14] Federal Information Processing Standards Publication 183, 1993, Integrated

Definition for Functional Modeling (IDEF 0),
http://www.idef.com/Downloads/pdf/idef0.pdf

[15] Fenves, S. J., 2001, A Core Product Model for Representing Design
Information. Gaithersburg, MD, National Institute of Standards and
Technology.

[16] Fenves, S. J., Sriram, D., Sudarsan, R. and Wang, F., 2003, “A product
information modeling framework for product lifecycle management,”

230 Collaborative Product Design and Manufacturing Methodologies and Applications

International Symposium on Product Lifecycle Management, Bangalore,
India.

[17] Fernández, M. G., Seepersad, C. C., Rosen, D. W., Allen, J. K. and Mistree,
F., 2001, “Utility-based decision, support for selection in engineering
design,” 13th Internation Conference on Design Theory and Methodology,
Pittsburgh, PA. Paper Number: DETC2001/DAC-21106.

[18] Gonzalez-Zugasti, J. P. and Otto, K. N., 2000, “Modular platform-based
product family design,” ASME Advances in Design Automation Conference,
Baltimore, MD.

[19] Gorti, S. R., Gupta, A., Kim, G. J., Sriram, R. D. and Wong, A., 1998, “An
object-oriented representation for product and design process,” Computer
Aided Design, 30(7), pp. 489–501.

[20] Hayes, A. M., Wang, A., Dempsey, B. M. and McDowell, D. L., 2004,
“Mechanics of linear cellular alloys,” Mechanics of Materials, 36(8), pp.
691–713.

[21] IBM, 2004, IBM Solutions, http://www-
1.ibm.com/businesscenter/us/solutions/solutionarea.jsp?id=9351

[22] Inc., A., 2004, HyperWorks Process Manager™ 6.0,

http://www.uk.altair.com/software/procman.htm
[23] Liker, J., Sobek, D., Ward, A. and Cristiano, J., 1996, “Involving suppliers

in product development in the US and Japan: evidence for set-based
concurrent engineering,” IEEE Transactions on Engineering Management,

43(2), pp. 165–178.
[24] Lu, Y., 2002, Analyzing Reliability Problems in Concurrent Fast Product

Development Processes, PhD Dissertation, Mechanical Engineering,
Technische Unversiteit Eindhoven, Eindhoven, Netherlands.

[25] Maher, M. L., 1990, Process Models for Design Synthesis. AI Magazine.
Winter, pp. 49–58.

[26] Maimon, O. and Braha, D., 1996, “On the complexity of the design
synthesis problem,” IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans, 26(1), pp. 142–151.
[27] Martin, M. V. and Ishii, K., 1997, “Design for variety: development of

complexity indices and design charts,” ASME Design for Manufacturing
Conference, Sacramento, CA. Paper Number: DETC97/DFM-4359.

[28] Martin, M. V. and Ishii, K., 2000, “Design for variety: a methodology for
developing product platform architectures,” ASME Design for

Manufacturing Conference, Baltimore, MD. Paper Number:
DETC2000/DFM-14021.

[29] McGinnis, L. F., 1999, “BPR and logistics: the role of computational
models,” 1999 Winter Simulation Conference Proceedings (WSC), Dec 5-

Dec 8 1999, Phoenix, AZ, USA, pp. 1365–1370.
[30] Meyer, M. H., 1997, “Revitalize your product lines through continuous

platform renewal,” Research Technology Management, 40(2), pp. 17–28.
[31] Mistree, F., Bras, B. A., Smith, W. F. and Allen, J. K., 1996, “Modeling

design processes: a conceptual, decision-based perspective,” International
Journal of Engineering Design and Automation, 1(4), pp. 209–221.

Leveraging Design Process Related Intellectual Capital 231

[32] Mistree, F., Hughes, O. F. and Bras, B. A., 1993, “The compromise decision
support problem and the adaptive linear programming algorithm,” Structural

Optimization: Status and Promise (M. P. Kamat, Eds.), AIAA, Washington,
D.C., pp. 247–286.

[33] Mistree, F., Lewis, K. andStonis, L., 1994, “Selection in the conceptual
design of aircraft,” 5th AIAA/USAF/NASA/ISSMO Symposium on Recent

Advances in Multidisciplinary Analysis and Optimization, Panama City, FL,

pp. 1153–1166.
[34] Mistree, F., Muster, D., Shupe, J. A. and Allen, J. K., 1989, “A decision-

based perspective for the design of methods for systems design,” Recent

Experiences in Multidisciplinary Analysis and Optimization, Hampton,
Virginia. Paper Number: NASA CP 3031.

[35] Mistree, F., Smith, W. F., Bras, B., Allen, J. K. and Muster, D., 1990,
“Decision-based design: a contemporary paradigm for ship design,”
Transactions, Society of Naval Architects and Marine Engineers, Jersey
City, New Jersey, 98, pp. 565–597.

[36] Mistree, F., Smith, W. F. and Bras, B. A., 1993, “A decision-based approach
to concurrent engineering,” Handbook of Concurrent Engineering (H. R.
Paresai and W. Sullivan, Eds.), Chapman & Hall, New York, pp. 127–158.

[37] Mistree, F., Smith, W. F., Kamal, S. Z. and Bras, B. A., 1991, “Designing
decisions: axioms, models and marine applications,” Fourth International
Marine Systems Design Conference, Kobe, Japan, pp. 1–24.

[38] Mocko, G. M., Panchal, J. H., Fernández, M. G., Peak, R. and Mistree, F.,
2004, “Towards reusable knowledge-based idealizations for rapid design
and analysis,” 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics & Materials Conference, Palm Springs, CA. Paper Number:
AIAA-2004-2009.

[39] Muster, D. and Mistree, F., 1988, “The decision support problem technique
in engineering design,” International Journal of Applied Engineering
Education, 4(1), pp. 23–33.

[40] Nell, J., 2003, STEP on a Page (ISO 10303), http://www.nist.gov/sc5/soap/
[41] Newcomb, P. J., Bras, B. A. and Rosen, D. W., 1996, “Implications of

modularity on product design for the life cycle,” 1996 ASME Design Theory
and Methodology Conference, ASME Design Engineering Technical

Conferences and Computers in Engineering Conference, Irvine, California.
Paper Number: DETC-96/DTM-1516.

[42] Phoenix Integration Inc., 2004, ModelCenter®, Version 5.0,
http://www.phoenix-int.com/products/ModelCenter.html

[43] Rechtin, E. and Maier, M. W., 1997, “The art of systems architecting,”
Systems Engineering Series, Boca Raton: CRC Press, pp. 119–136.

[44] Rogers, J. L. and Christine, B., 1994, “Ordering design tasks based on
coupling strengths,” 5th AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, Panama City, Florida. Paper
Number: AIAA-94-4326.

[45] Sacks, R., Eastman, C. M. and Lee, G., 2004, “Process model perspectives
on management and engineering procedures in the north American precast /

232 Collaborative Product Design and Manufacturing Methodologies and Applications

prestressed concrete industry,” ASCE Journal of Construction Engineering
and Management, 130(2), pp. 206–215.

[46] Schlenoff, C., Knutilla, A. and Ray, S., 1996, Unified Process Specification
Language: Requirements for Modeling Process. Gaithersburg, MD, National
Institute of Standards and Technology.

[47] Schlenoff, C., Tissot, F., Valois, J., Lubell, J. and Lee, J., 2000, The Process

Specification Language (PSL): Overview and Version 1.0 Specification.
Gaithersburg, MD, National Institute of Standards and Technology.

[48] Seepersad, C. C., Dempsey, B. M., Allen, J. K., Mistree, F. and McDowell,
D. L., 2002, “Design of multifunctional honeycomb materials,” 9th

AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Atlanta, GA. Paper Number: AIAA-2002-5626.

[49] Seepersad, C. C., Mistree, F. and Allen, J. K., 2002, “A quantitative
approach for designing multiple product platforms for an evolving portfolio
of products,” ASME Design Engineering Technical Conferences, Advances
in Design Automation, Montreal, Canada. Paper Number: DETC2002/DAC-
34096.

[50] Shah, J. J., Rangaswamy, S., Qureshi, S. and Urban, S. D., 1998, “Formal
ontologies and representation of design processes and rationale,” IFIP
WG5.2 CAD Conference, Tokyo, Japan, pp. 161–193.

[51] Shah, J. J., Rangaswamy, S., Qureshi, S. and Urban, S. D., 1999, “Design
history system: data models and prototype implementation,” Knowledge

Intensive CAD (M. Tomiyama, Finger, Ed.), Kluwer, pp. 91–114.
[52] Shimomura, Y., Yoshioka, M., Takeda, H., Umeda, Y. and Tomiyama, T.,

1998, “Representation of design object based on the functional evolution
process model,” Journal of Mechanical Design, 120(2), pp. 221–229.

[53] Simon, H. A., 1996, The Sciences of the Artificial, MIT Press, Cambridge,
Mass.

[54] Simpson, T., Lautenschlager, U., Mistree, F., 1998, “Mass customization in
the age of information: the case for open engineering systems,” The

Information Revolution Current and Future Consequences (Alan, W. H. R.
and Porter, L. Eds.), Ablex Publishing Corporation, Greenwhich
Connecticut, pp. 49–74.

[55] Simpson, T. W., Rosen, D., Allen, J. K. and Mistree, F., 1998, “Metrics for
assessing design freedom and information certainty in the early stages of
design,” Journal of Mechanical Design, 120(4), pp. 628–635.

[56] StreamlineSCM, 2004, Enterprise Transaction Model,
http://www.streamlinescm.com/

[57] Supply Chain Council, 2004, Supply Chain Operations Reference (SCOR)
Model, http://www.supply-hain.org/slides/SCOR5.0OverviewBooklet.pdf

[58] Ullman, D. G., 1992, “A taxonomy for mechanical design,” Research in
Engineering Design, 3(3), pp. 179–189.

[59] Ulrich, K., 1995, “The role of product architecture in the manufacturing
firm,” Research Policy, 24(3), pp. 419–440.

[60] Ward, A., Liker, J., Cristiano, J. and Sobek, D., 1995, “The second Toyota
paradox: how delaying decisions can make better cars faster,” Sloan

Management Review, 36(3), pp. 43–61.

Leveraging Design Process Related Intellectual Capital 233

[61] Wheelwright, S. C. and Clark, K. B., 1992, Revolutionizing Product
Development: Quantum Leaps in Speed, Efficiency, and Quality, Free Press,
New York.

[62] Wood, W. H., 2000, “Quantifying design freedom in decision based
conceptual design,” ASME Design Engineering Technical Conferences,
Baltimore, Maryland. Paper Number: DETC2000/DTM-14577.

[63] Wood, W. H., 2001, “A view of design theory and methodology from the
standpoint of design freedom,” ASME Design Engineering Technical

Conference, Pittsburgh, Pennsylvania. Paper Number: DETC2001/DTM-
21717.

[64] Workshop Report, 2004, Simulation-Based Engineering Science. Arlington,
VA, USA, National Science Foundation: pp. 1–18.

11

Manufacturing Information Organization in Product

Lifecycle Management

R. I. M. Young and A. G. Gunendran

Wolfson School of Mechanical and Manufacturing Engineering
Loughborough University, U.K.

A. F. Cutting-Decelle

Ecole Centrale de Paris, Laboratoire de Genie Industriel, France

Progressive improvements in information systems offer the potential for radical
improvements in manufacturing decision support systems as is evident by the
uptake of modern Product Lifecycle Management approaches. However, drawing
real value from these tools requires a clear understanding of how to organize
information and configure systems to best advantage. This chapter discusses
progress in the development of information frameworks, the importance of context
awareness, the exploitation of manufacturing standards and future research
requirements for the exploitation of product and process knowledge.

11.1 Introduction

Business competition means that the need for better, faster cheaper production is a
never ending requirement. The identification of methods by which manufacturing
improvements can be achieved is ongoing and has led to a range of approaches in
recent years including Concurrent Engineering, Lean Manufacture and Agile
Manufacture. In addition, the progressive improvements to information system
capabilities continues to offer the belief that higher and higher levels of support for
effective decision making can be achieved [1, 2].

Tools that can offer more effective breadth of information support are
beginning to be developed in Enterprise Resource Planning (ERP) Product
Lifecycle Management (PLM), and Customer Relationship Management (CRM).
PLM, the focus of this chapter, offers the potential to provide sources of

Collaborative Product Design and Manufacturing Methodologies and Applications 236

information that engineers can draw upon to offer rapid and effective support to
their decision making [3, 4]. However to be fully effective these tools must be able
to support the broad range of information needed to meet the needs of diverse
teams of engineers working on problems in dynamically changing manufacturing
environments.

While it is clear that the potential benefits of PLM are high, tapping these
benefits is fraught with both short term and long term issues. Given the overhead
involved in constructing an effective PLM environment it is particularly important
for businesses to consider carefully the following challenges:

What organization of information is needed to offer effective decision
support?

What range of views of the information is needed?

What methods for integrated system design should be used?

How can the level of information support be flexibly updated, maintained
and extended?

Can information be effectively shared across competitive software tools?
For example, through the supply chain.

This chapter reflects on these challenges following a range of recent industry
driven research projects at Loughborough University which have focused on the
manufacturing information structures and methods needed to provide integrated
life cycle support.

11.2 Information and Knowledge Infrastructures

for Manufacture

It is clear that effective decision making in manufacturing businesses is influenced
by a broad range of information and knowledge including knowledge of markets,
existing products, design knowledge, manufacturing capability, product service
and disposal. The majority of research in this area focuses on product information
[5], while the work described in this chapter extends this to include a focus on
manufacturing capability within an ICT environment and targets how
infrastructures for manufacturing information and knowledge can be defined to
support decision making. This is illustrated simply in Figure 11.1, which also
shows the main target business areas of product development and manufacturing
and procurement against which the research has been focused.

Manufacturing knowledge can be seen as being a significant part of a
businesses capability. If we can identify computational methods by which key
areas of manufacturing information and knowledge can be held within an
infrastructure then we have the potential to speed up and improve the quality of
decisions. It is important to note that manufacturing knowledge, however it is
structured, is not static and has many facets. It is used during product introduction
to aid design decisions, to plan manufacturing methods and to identify effective
supply chain configurations. Once we start to manufacture actual parts and use

Manufacturing Information Organization in Product Lifecycle Management 237

products in service then we have the potential to learn and continuously improve
our knowledge of what we have made and how well we can make things. It is this
process which enables us to improve our knowledge and understanding of
manufacture and therefore enhance our competitiveness as we continue through the
product development lifecycle. An illustration of this lifecycle is provided in
Figure 11.2.

Manufacturing knowledge is therefore not independent of products, although it
can be applied to a broad range of products. It needs to be used in combination
with the other key areas of business knowledge to support decision making. In
considering the product lifecycle, rather than the development lifecycle, it can be
seen that at each stage of the lifecycle it is important to have knowledge through
the lifecycle. For example during design, design knowledge is of critical
importance but manufacturing, service and disposal knowledge can and should
have a significant influence on design decisions. It is therefore important that
knowledge infrastructures should be able to support this type of interaction and not
just provide isolated pockets of knowledge [6].

The concept which we have pursued in our research has been to look for a
conceptual framework of information and knowledge which sits at the heart of the
product lifecycle and therefore can support any area of decision with the lifecycle.
This general view is illustrated in Figure 11.3.

Figure 11.1. Target areas for manufacturing information & knowledge infrastructures

Key research areas:

Product Lifecycle
Management

Modeling Manufacturing
Capability

Knowledge Reuse

Sharing, Integration and
Interoperability

Collaborative Product Design and Manufacturing Methodologies and Applications 238

Figure 11.2. Manufacturing knowledge in the context of the product development lifecycle

Figure 11.3. Information and knowledge at the heart of the product lifecycle

Manufacturing Information Organization in Product Lifecycle Management 239

The effective structure of any information and knowledge infrastructure will be
dependent on the use cases for the resulting system. We have taken the view that
key two points provide the basis for the high level structure implied by the central
part of Figure 11.3. These are firstly that product information is central to all
decisions and secondly that each stage of the lifecycle has a core set of specific
information and knowledge which reflect a business capability which is non
product specific. For example businesses have design knowledge, manufacturing
knowledge etc. which they use to improve their new product development and
product support processes. This can be seen as a top level view of the lifecycle
context within which an information and knowledge infrastructure should be
defined. This, taken from a manufacturing perspective, along with more detailed
views of product context is the subject of the next section.

Informally the use of the terms data, information and knowledge are often used
ambiguously. It is worth noting that formally in our work we use definitions as
follows: Data are simply symbols with no context and no relationships;
information is data within a specific context; knowledge is information
relationships within and across contexts [7].

11.3 Context Awareness: Its Significance for Information

Organization

This section considers manufacturing information in relation to design for
manufacture and in relation to process planning. It considers this information
firstly from a product perspective and then from a life cycle perspective.

11.3.1 Product Context

Product development is typically a team-based exercise where members of the
team all require similar but different sets of information in order to meet their
specific tasks. The interpretation of product information in a form suitable for
manufacturing decision making has typically been pursued through the use of
features technology and part family variants. The results of manufacturing
planning can then be captured in process plans for a product.

Features approaches are problematic in that they capture only a single context
of information, e.g., a machining feature is specific only to machining, it will not
relate to assembly or to casting. Figure 4 illustrates a view of some simple features
for machining, inspection and assembly which shows how, from each specific
context the information of interest is different. The machining features identify
shapes which have particular machining methods linked to them; the inspection
features also relate to particular geometries, but in this case geometries which
relate to inspection routines; the inspection features relate to methods of assembly
and are not linked to a single component geometry but rather the geometric and
tolerance relationships between components. It is possible in some cases where a
dominant context can be defined that features can useful where they provide a
focused and practical set of shapes which a design team can use. This is also the
case where common features can be used to support multiple contexts. Hole

Collaborative Product Design and Manufacturing Methodologies and Applications 240

features are probably the best examples of this as they can be used to represent
multiple contexts such as function, casting, machining and assembly.

Figure 11.4. Examples of features in a process context

An alternative to dealing with shapes which link to an individual process is to
consider complete parts which have an overall manufacturing method related to
them i.e., part families. Here the start point is to identify a part family where each
product in the family has a similar set of functional requirements and each is made
by a similar set of manufacturing processes. We illustrate this in Figure 11.5 with
an example of a simple casing part which has two main functions; to withstand an
internal pressure and to assemble with other components in the product. The
flanges provide assembly relationships to other parts and the rings provide a wall
strength capability to withstand the internal pressure. The overall manufacturing
method for each complete part is similar but may change in detail, dependent on
the allowable changes to the size of the specific rings and flanges. Changes to the
flanges and rings are only allowed which stay within the context of the specified
manufacturing method. If changes to the features are required which require a new
method of manufacture then the product feature set are no longer relevant. Hence
the product context has changed and the part family relationships are no longer
valid.

In most cases there is a need for PLM systems to be able to support multiple
contexts of information and the relationships between these contexts [9]. For
example, a major step forward in potential functionality for manufacturing
engineers would be achieved if part functional requirements could be linked to the
relevant manufacturing views such as assembly, casting, forging, machining, heat
treatment, grinding, etc. Our recent findings in this area as explained in Section
11.3.3. As well as developing an understanding of the relationship between views
of a product it is also important to recognize that there should be clear relationships
between manufacturing views of a product and the manufacturing capability of the
business. This should provide links from features in a product model to
manufacturing capability in a manufacturing model and also from resources and
processes in a manufacturing model to the representation of process plans in a
product model.

Machining features

Boss Chamfer protrusion Outer diameter Hole Slot Other

Assembly features: Handling,

Feeding, positioning,

insertion, location, joining

Inspection features:

Point, line, circle, 2D

plane, 3D plane

Manufacturing Information Organization in Product Lifecycle Management 241

Figure 11.5. Example features in a product context

11.3.2 Life Cycle Context

Most PLM work appears, for historical reasons, to focus on a design perspective
with at best the association of manufacturing documents for component parts.
However, it is important to note that businesses have core information and
knowledge on each aspect of the product lifecycle i.e., the have information and
knowledge on how to design products, information and knowledge on how to make
products, information and knowledge on how to service products, and information
and knowledge on how to dispose of products. Here we focus on the manufacturing
context of the lifecycle and identify the need to represent manufacturing capability,
independent of any specific product, as illustrated simply in Figure 11.6.

Figure 11.6. Manufacturing capability modeling

Left Flange
Ring 1 Ring 2 Right Flange

Part

Collaborative Product Design and Manufacturing Methodologies and Applications 242

A Manufacturing Model, representing this core manufacturing capability is just
as important as a product model from the manufacturing perspective of the life
cycle. A manufacturing model should identify process and resource specifications,
potential methods of manufacture and best practice for manufacturing [8]. These
provide the manufacturing knowledge within the “capability” aspect of Figure 11.2,
which can be used to support the new product introduction process. This
manufacturing knowledge provides the basis by which the business controls the
use of its processes and resources.

The importance of a manufacturing model is that it not only provides a
common source of information to support design decisions, but it focuses the core
competencies of the business so that as new understanding is generated during
product manufacture, the model can be updated for future benefit. It therefore
provides a clear integration link between PLM as a provider of manufacturing
information and shop floor manufacturing systems in terms of data collection and
feedback. This cycle and link between PLM and Manufacturing Systems is
illustrated in Figure 11.7. Figure 11.7 also shows how information and knowledge
models, through Product models, Manufacturing Models and Process Control Sets,
support the product development lifecycle illustrated in Figure 11.2. The Product
Model concept is well understood, the Manufacturing Model provides a
manufacturing capability representation and the Process Control Sets provide a
repository for shop floor data as it is collected and analyzed through the continuous
improvement process. This last set of data is collected on a real time basis and is
therefore considered to be the concern of manufacturing systems but outside the
PLM scope. The relationship is driven through the understanding of manufacturing
capability which is enhanced by analyzing the process control sets in order to
update the knowledge contained in a manufacturing model.

11.3.3 Context Relationships

Sections 11.3.1 and 11.3.2 highlighted issues in relation to specific product and
lifecycle contexts. This section uses an example product to explore some of the
requirements for multiple contexts to be considered and goes on to propose an
approach to integrate information across multiple contexts. Figure 11.8 illustrates a
number of distinct, but related, contexts for a cylindrical part and a location rod.

The following list captures the main functions of the cylindrical part:

1) withstand high pressure
2) mount with other parts via the flanges
3) facilitate the attachment of other key parts through the attachment ring
4) facilitate the location of rods through the location ring

Manufacturing Information Organization in Product Lifecycle Management 243

Figure 11.7. Information models in the context of PLM and manufacturing systems

Figure 11.8. Multiple contexts of cylindrical part and location rod

Collaborative Product Design and Manufacturing Methodologies and Applications 244

The list of functions relate to a set of functional features on the component.
However, the product needs to be considered from a number of different contexts
to ensure an effective design. In this example we consider machining and assembly
contexts alongside the functional context. Figure 11.8 also illustrates simple
requirements for machining and assembly. The location ring facilitates the location
of the location rod, which due to the high pressure requirement needs to be
assembled with an interference fit. The interference fit between cylindrical part and
location rod can be considered in the manufacturing process context as tolerances
of the rod and the hole diameters of the cylinder. The parts then need to be
machined to these required tolerances. While each of the function, assembly and
machining contexts could be considered independently, it is important if effective
design decisions are to be made that the relationships between them are maintained.
Hence the transformation of information from one context to another is important
for the support of all lifecycle activities of products.

It is important to have a core context to relate all others if relationships are to
be maintained. In our work we have taken the functional context as the core
context and explored the relationships from it to all other contexts of interest. This
still requires knowledge of the relationships between all the contexts under
consideration. The methodology followed to capture the product information and
the transformation knowledge has been to use a two layer approach, where
information contexts, like the normal features approaches, are held and a second
knowledge layer, where knowledge of relationships between contexts as well as
context specific knowledge is maintained [9, 10]. This is illustrated in Figure 11.9,
again using the same example.

The required fit type can be identified from the functional requirements of the
assembly of parts. In the particular example, the required fit is interference fit. The
nominal diameter of the assembly of cylindrical part hole and the location rod can
be used to identify the required tolerance set for the interference fit from the fits
and tolerance table [11].The diameter and tolerance information can then be used
to define the machining process requirements. The nominal diameter is a kind of
common sharable information while the tolerance information is a kind of
transformed information.

The transformation of information itself is not sufficient for the flexible
integration of multiple contexts, because the transformed information may cause a
problem for other context requirements. In the example, the required tolerance for
the fit is derived from the fits and tolerance table, which is a kind of transformation
knowledge, which transfers the fit function into a tolerance range. The tolerance
range can then be used to define the manufacturing process. In the particular
example, the machining process is considered as a manufacturing process. Hence,
the tolerance information, which has been transformed from the functional
information, can be considered as machining context information. However, the
transformed information has not been verified for machineability. If the required
tolerances cannot be manufactured with machining process, alternative
manufacturing methods need to be identified. Therefore, the transformed
information needs to be validated against the capabilities of each particular context.
Hence, the transformed information is of limited value until the information is
validated against the context requirements.

Manufacturing Information Organization in Product Lifecycle Management 245

Figure 11.9. Information interaction of multiple contexts by utilizing transformation and
context specific knowledge

Flexible integration between multiple contexts can be performed in two stages:
firstly information transformation between the contexts and secondly the validation
of the transformed information against each context. The validation of information
against the context capabilities required the knowledge of the context capabilities.
Therefore, two kinds of knowledge as transformation knowledge and context
specific knowledge are required for the flexible information integration between
multiple contexts.

In exploring multiple contexts there is a further issue which is critical to
successful information sharing and that is the sharing of meaning. Within a
common work environment it is reasonable to assume that the semantics are
understood and shared. However, as we start to work across contexts and
especially across businesses this assumption becomes less and less acceptable.
Within software systems which are to support cross context and across business
communication, there is therefore a fundamental need to provide a clear basis for

72

105

140

160
180

200
205

220

Machining

context

Assembly

context

Machining

knowledge

Assembly

knowledge

Core context

Information

Layer

Knowledge

Layer

Transformation

knowledge

72

105

140

160
180

200
205

220

Machining

context

Assembly

context

Machining

knowledge

Assembly

knowledge

Core context

Information

Layer

Knowledge

Layer

Transformation

knowledge

Collaborative Product Design and Manufacturing Methodologies and Applications 246

sharing meaning [12]. This area of ontological engineering is now receiving

substantial research attention [13].

11.4 Exploiting Manufacturing Standards

Where two similar systems have been configured it is unlikely that they will easily
be able to interoperate and share information as the methods of information
organization are likely to have been developed independently.

Problems in interoperation between software tools has led a number of large
OEMs to insist that all their suppliers use the same tools in order to avoid this
problem. However this simply moves the interoperability problem down the supply
chain. The problem of interoperability is still a major problem as evident from a
recent survey of the US automotive industry which suggests that such problems
still cost in the order of $1 billion per annum [14].

International standards can be used to offer some flexibility as systems can
interoperate, as long as they use standards to provide the basis for information
sharing. As far as information sharing is concerned there are a number of ISO
standards available which can aid this, especially in terms of resource information,
but also in terms of process information. There are many standards that provide
some level of information support for manufacture. Examples of these are ISO
10303, commonly known as STEP which focuses on product data; ISO 15531
(MANDATE) which offers data structures to capture views of manufacturing
management data; ISO 13399 which provides a detailed representation of tooling
systems; ISO 18629 (PSL) which offers a new approach to providing a
semantically rich standard for process description.

11.4.1 STEP for Manufacturing

STEP product data representation

The biggest success of the ISO 10303 STEP standard started in 1996 with a data
exchange standard for 3D product geometry, based on the Application Protocol AP
203. Today more then 2 million CAD stations contain STEP translators and for
some industry segments it is fairly routine for an Original Equipment Manufacturer
(OEM) to send a model to a machine shop and for that machine shop to process the
geometry and make the part on its milling and turning machines [15]. The standard
currently proposes more than 40 Application Protocols dealing with different
aspects of product information or product manufacturing.

To increase the application of the standard to the domain of manufacturing, the
STEP community set up a working group, called “STEP manufacturing”, focused
on the provision of standard information structures, related to products, with a
manufacturing context e.g., manufacturing features and process plan structures.

The manufacturing features aspect of their work has been captured in ISO
10303-224. This provides a useful and comprehensive set of over eighty feature
definitions. However these are targeted at machining features only and therefore do
not address any of the multiple manufacturing context issues raised in section 3.

Manufacturing Information Organization in Product Lifecycle Management 247

The provision of standard data structures to represent process planning data is
beginning to be developed, with ISO 10303-240 now available to capture
machining process plans. Other standards for casting and inspection are under
development as ISO 10303-223 and ISO 10303-119, respectively.

STEP-NC

STEP-NC supports the transfer of the required product and manufacturing
information for NC code generation and is being developed within ISO 14649.
This is planned to replace ISO 6983 “G-code” approach by specifying machining
process rather than machine tool motion. The G-code approach is limited to specify
the position and feed rate of axes and excluding valuable information such as part
geometry and process plan. Therefore, the G-code approach is a low level
programming approach and not portable from one NC controller to another. On the
other hand, the STEP-NC is not only capable of representing full part description,
but the manufacturing processes as well as the CAD design data with
manufacturing information such as stock, cutting characteristics, and tool
requirements [16].

11.4.2 Mandate – Resource, Time and Flow Models

ISO 15531 MANDATE is an International Standard for the computer-interpretable
representation and exchange of industrial manufacturing management data. The
objective is to provide a neutral mechanism capable of describing industrial
manufacturing management data throughout the production process within the
same industrial company and with its external environment, independent from any
particular system. The nature of this description makes it suitable not only for
neutral file exchange, but also as a basis for implementing and sharing
manufacturing management databases and archiving.

This International Standard is organized as a series of parts, each published
separately. The parts of ISO 15531 fall into the following series: resources usage
management data, time model and manufacturing flow management data. All the
parts of the MANDATE standard are written using the EXPRESS language to
ensure better compatibility with ISO 10303.

ISO IS 15531-32 is the part which provides a representation for resources usage
management data. Manufacturing resources form the basis and long-term potential
of any company. The efficient use of these resources is one of the main goals in
industrial management. Comprehensive information about available manufacturing
resources is required in order to take the necessary decisions for efficient resource
usage. Since many different enterprise functions and therefore also different IT-
systems are dealing with manufacturing resources, a common, standardized model
for resource description is necessary and provided by ISO 15531-32. This
standardized model enables a company to communicate internally and externally
about manufacturing resources and furthermore enables them to build up an
industrial company’s resource database.

A complete description of manufacturing resources is out of scope of the
information model provided by the part 32 of the standard. Only data relevant for
decisions concerning the usage of manufacturing resources (e.g., within process

Collaborative Product Design and Manufacturing Methodologies and Applications 248

planning or job scheduling) are considered. Therefore only data describing
manufacturing resources in terms of their static and dynamic capabilities and
capacities to perform manufacturing tasks are within the scope of this information
model.

ISO IS 15531-42 is the part which provides a time model. Software
applications related to factory or enterprise production, such as scheduling
software, manufacturing management software, cost evaluation software,
maintenance management, purchasing software, delivery software, etc. strongly
require a reference to time related features such as point in time (date) and duration
(interval of time). These references are needed to ensure the necessary time related
relationships between the events dealt with by the applications. The availability of
standardized time related references is particularly important for complex
applications with multi-process environments, what is an environment commonly
met in manufacturing.

In most of the standards, the time features are not independent from the events
and the manufacturing management data they address. This leads to some
difficulties in the way to handle time related relationships between events or data
that include their own time relation and representation. In some of them the time
related features may depend on events or objects addressed and their representation
may change depending on the context, without any simple tool to identify the
relation between them. This may be crucial in an environment where various
processes are performed simultaneously or where many closely related software
tools are used at the same time.

Developed in compliance with the system theory approach this part of
MANDATE identifies the time as a constraint of the system environment and
provides time related features included in a time model fully independent from the
events handled by the manufacturing system. This time model is also fully
independent from any manufacturing management data used by the manufacturing
applications.

ISO IS 15531-43 is a data model for manufacturing flow management. A
manufacturing management system manages the flow of information and materials
through the whole production chain, from suppliers, through to manufacturers,
assemblers, distributors, and sometimes customers. This part addresses the
modeling of data for the management of manufacturing flows as well as flow
control in a shop floor or factory. This manufacturing flow model is provided in
the context of various processes that run simultaneously and/or sequentially,
providing one or more products and/or components and involving numerous
resources.

11.4.3 Process Specification Language

There are many standards available and these do not necessarily form a coherent
set to support the needs of manufacturing. While these offer the best options
available today, they also have limitations in the definitions of the concepts which
they use. They provide very clear syntactic definitions but very basic semantic
definitions. PSL is a standard which brings semantic rigor to manufacturing

Manufacturing Information Organization in Product Lifecycle Management 249

process modeling and has huge potential to offer improved information sharing
across future manufacturing systems.

The Process Specification Language (PSL) project, whose development started
at the National Institute of Standards and Technology (NIST, US), is a formal
language aimed at creating a neutral, standard language for process specification to
serve as a neutral representation to integrate multiple process-related applications
throughout the manufacturing life cycle. ISO 18629 provides a generic language
for process specifications applicable to a broad range of specific process
representations in manufacturing applications.

ISO 18629 provides semantics to the computer-interpretable exchange of
information related to manufacturing processes. Taken together, all the parts
contained in the standard form a language for describing a manufacturing process
throughout the entire production process within the same industrial company or
across several industrial sectors or companies, independently from any particular
representation model. The nature of this language should make it suitable for
sharing process information related to manufacturing during all the stages of a
production process.

The primary component of PSL is its terminology for classes of processes and
relations for processes and resources, along with definitions of these classes and
relations. Such a lexicon of terminology along with some specification of the
meaning of terms in the lexicon constitutes what is known as an ontology. Within
the ISO 18629 standard, the ontology is the PSL ontology for processes. The
specification of models of PSL provides a rigorous mathematical characterization
of the semantics of the terminology of PSL.

The current components of ISO 18629 are grouped into the following parts:
- Part 1: Overview and basic principles;
- Part 11: PSL-Core;
- Part 12: Outer Core;
- Part 13: Duration and ordering theories;
- Part 14: Resource theories;
- Part 41: Activity extensions;
- Part 42: Temporal and state extensions;
- Part 43: Activity ordering and duration extensions;
- Part 44: Resource extensions;

Additional extensions may be developed later according to industry needs by
any standardization committee. All the parts of the standards listed have now
reached the International Standard level.

11.5 Exploiting Product and Process Knowledge in Future

We propose that there are three major requirements to be set against information
systems research in order for manufacturing businesses to exploit product and
process knowledge in the future. These are:

1. Improved access to knowledge
2. Learning from manufacture

Collaborative Product Design and Manufacturing Methodologies and Applications 250

3. Tapping supply chain capability knowledge

Improved access to knowledge is a key requirement for manufacturing
information systems in the future as continued improvement in support for people
in their decision making will be necessary. The improvements from today are
likely to be in terms of the quality of the information, the relevance of the
information, the speed and ease of access to the information.

New systems are emerging in the area of shop floor data collection which not
only support the immediate process control requirements of manufacture but also
offer the potential to improve the understanding of how manufacturing processes
can be optimized. Figure 11.10 illustrates how shop floor data collection can be
used not only for product control but also process control. The combination of
these and the ability to analyze both product and process data simultaneously offers
an ideal route to building and enhancing manufacturing knowledge and feeding
this back into a capability model as discussed in Section 11.2.

Figure 11.10. Learning from manufacture

As businesses strive to be more responsive there is a further need to tap and
understand the capability of their supply chains and to be able to reconfigure their
supply chains in a rapid, responsive and effective way. This leads to a requirement
which is to understand the process capability of their suppliers as well as the
product capability. In this way effective networks of collaboration can be
introduced as illustrated in Figure 11.11.

Manufacturing Information Organization in Product Lifecycle Management 251

Figure 11.11. Collaborative capability networks

11.6 Conclusions

It is important that PLM configuration is undertaken with a clear view of the
manufacturing aspect of the life cycle in mind. With current technology it is
possible to construct manufacturing capability models, link these to product part
families or features and to use these to support process plan generation and offer
manufacturing support during design.

We have shown some early ideas on how to integrate multiple context
approaches to support decision making. However there is a need for substantial
research in this area to better support teams of engineers working together through
a common PLM system. Similarly there will be a need to include higher levels of
knowledge within PLM and provide mechanisms for the maintenance of that
knowledge.

International standards play an important role in providing independent
approaches to information sharing although the current standards have had limited
uptake. In looking forward, there are substantial benefits to be gained once
interoperation between PLM systems can be achieved. This needs to be based on
flexible, rigorous methods which support shared meaning between systems.

Information organization is critical to decision support. Substantial progress
has been made in terms of lifecycle models and product structure. However, for
future advances to tap higher benefits for business there is a need for greater
understanding of how to manage context relationships, knowledge maintenance
and supply chain capability.

Collaborative Product Design and Manufacturing Methodologies and Applications 252

11.7 References

[1] Maropoulos, P. G., 2003, “Digital enterprise technology – defining
perspectives and research priorities,” International Journal of Computer

Integrated Manufacturing, 16(7–8), pp. 467–478.
[2] Young R. I. M., 2003, “Informing decision makers in product design and

manufacture,” International Journal of Computer Integrated Manufacturing,
16(6), pp. 428–438.

[3] Abramovici, M. and Sieg, O., 2002, “Status and future trends of product
lifecycle management (PLM) technology,” Proceedings of IPPD’2002

Conference, Wroclaw, Poland, 21–22, Nov.
[4] Srinivasan V., 2005, “Open standards for product lifecycle management,”

In: Product Lifecycle Management: Emerging Solutions and Challenges for

Global Networked Enterprises, Bouras, A., Gurumoorthy, B. and Sudarsan,
R. (Eds.), pp. 475-484, (Inderscience Enterprises Ltd.).

[5] Sudarsan, R., Fenves, S. J., Sriram, R. D. and Wang F., 2005, “A product
information modeling framewrok for product lifecycle management,”
Computer Aided Design, 37, pp 1399–1411.

[6] Young, R. I. M., Guerra, D., Gunendran, G., Das, B., Cochrane, S. and
Cutting-Decelle A.F., 2005, “Sharing manufacturing information and
knowledge in design decision support,” In: Advances in Integrated Design

and Manufacturing in Mechanical Engineering, Bramley, A., Brissaud, D.,
D. Coutellier, and C. McMahon (Eds.), pp. 173–188, (Springer).

[7] Mills, J. J. and Goossenaerts, J. 2001, “Towards information and knowledge
in product realisation infrastructures,” Proceedings of Global Engineering,
Manufacturing and Enterprise Networks, Melbourne, Australia, pp. 245–
254.

[8] Liu, S. and Young, R. I. M., 2004, “Utilising information and knowledge
models to support global manufacturing co-ordination decisions,”
International Journal of Computer Integrated Manufacturing, 17(6), pp.
479–492.

[9] Gunendran, A. G., 2004, An Information and Knowledge Framework to

Support Multiple Viewpoints in the Design for Manufacture of Injection

Moulded Products, PhD Research Thesis, Loughborough University, U.K.
[10] Gunendran, A. G. and Young, R. I. M, 2006, “An information and

knowledge framework for multi-perspective design and manufacture,”
International Journal of Computer Integrated Manufacturing, 19(4), pp.
326– 338.

[11] BS EN 20286-2, 1993, “ISO system of limits and fits, tables of standard
tolerance grades and limit deviations for holes and shafts,” British
Standard/ European Standard, ISBN: 058018062 X.

[12] Young, R. I. M, Gunendran, A. G., Cutting-Decelle, A. F. and Gruninger,
M., 2006, “Manufacturing knowledge sharing in PLM: a progression
towards the use of heavy weight ontologies,” accepted for publication in the
International Journal of Production Research.

[13] Gomez-Perez, A., Fernandez-Lopez, M. and Corcho, O. (Eds.), 2004,
Ontological Engineering, (Springer-Verlag).

Manufacturing Information Organization in Product Lifecycle Management 253

[14] Ray, S. R. and Jones, A. T., 2003, “Manufacturing interoperability,
concurrent engineering: enhanced interoperable system,” Proceedings of the

10th ISPE international Conference, Madeira Island - Portugal, 26–30 July,
pp. 535-540.

[15] Hardwick, M., 2004, “Experience with developing product, process and
equipment models for manufacturing operations,” Proceedings of 2nd RTAS

Workshop on Model-Driven Embedded Systems (MoDES '04), Toronto,
Ontario, Canada, 25–28, May.
http://www.cse.wustl.edu/~cdgill/RTAS04/mdes_program.html

[16] Sääski, J., Salonen, T. and Paro, J., 2005, “Integration of CAD, CAM and
NC with Step-NC,” Espoo, VTT. 23 p. VTT Working Papers; 28, ISBN
951-38-6580-0, http://virtual.vtt.fi/inf/pdf/workingpapers/2005/W28.pdf

12

Semantic Interoperability to Support Collaborative

Product Development

Q. Z. Yang and Y. Zhang

Singapore Institute of Manufacturing Technology, Singapore

Semantic interoperability is a measure of the ability for heterogeneous processes
and systems to understand, utilize, and transform meanings of product data in
collaborative product development. Lack of formal and explicit semantics in digital
product representations has imposed increasing difficulties in achieving semantic
interoperability. This chapter presents a method to capture data semantics with
product representations and to formalize data meanings with ontologies to support
semantic interoperability. Both the object-based CAD modeling and STEP-
compliant data modeling approaches are integrated with the OWL (Web Ontology
Language) description framework. Common vocabularies, domain ontologies, and
semantic schema mappings are defined to represent, interpret, map, and share the
semantically interoperable product information across collaborating applications.
Based on this method, a software prototype has been implemented and tested with
collaboration scenarios in cross-disciplinary CAD, quality and reliability control,
and product development process management.

12.1 Introduction

In Collaborative Product Development (CPD), a network of multi-functional
disciplines (such as mechanical, electrical, optical and software engineering,
quality assurance, and manufacturing) with their partners and suppliers works
together to achieve common goals for competitive products. Numerous CPD
processes and computer-supported applications are used in this collaboration
environment, which is very heterogeneous because multi-disciplinary systems,
proprietary product models, various data representation formats, and different
domain terminologies and concepts are involved. A major challenge in achieving
effective collaboration in such a heterogeneous environment is the lack of formal
and explicit semantics in digital content to enable semantic interoperability.

256 Collaborative Product Design and Manufacturing Methodologies and Applications

According to Pollock [1], data semantics are the meaning of data. Meaning is
subjective, and the interpretation of data semantics is constrained by context [1].
When contexts change, semantics also change. Product semantics issues have
caused substantial difficulties in understanding and interpreting data meanings
from one engineering application to the other. For example, ambiguous or implicit
semantic content of geometric models (2D, 3D, solid, or shell) from a CAD
application would cause different interpretations from a CAE application (e.g.,
Ansys, Nastran, or Abaqus), which could lead to the failure of a design
collaboration effort.

Over the years, a wide range of researches on product information exchange
and data semantics integration has been conducted [2-5]. There have been widely
accepted methodologies and frameworks that support neutral product/process
information representation and exchange, such as the STEP [6] and ebXML [7]
standards. The recent developments in grid technologies and middleware solutions
have proposed new approaches and tools to semantically integrate the digital
content and manipulate it over a network [4, 5]. The other advanced technologies,
including Semantic Web and Web Services, have also been applied to engineering
information management and knowledge sharing, innovative product design and
engineering, design search and optimization, etc. [8, 9]. Among others, the product
data model standardization and ontology engineering are widely recognized as an
effective way to tackle the interoperability issues in multi-disciplinary applications.

In the standardization approach, all applications involved in a CPD project will
adhere to standard product data specifications, such as STEP [6] Application
Protocols or PSL XML [10] schemas. As the standards have specified meanings
and structures for their data and terminologies, all collaborating parties and
applications have to use the same sets of terms, labels, data schemas, and
communication mechanisms. By agreeing on the use of the fixed interpretations,
these applications could achieve disambiguity of data semantics in the context of
the standards. However, the engineering meaning of standards is often implicitly
encoded in the structures of their syntax, in the schemas of their data models, or in
the priori agreements about interpretations of their terminologies. As lacking of
formal and explicit semantic definitions in these standard specifications, they
cannot ensure the consistent interpretation, understanding, and implementation of
application semantics across disciplines. Furthermore, as the contexts of semantics
in standards are fixed, the standardization approach is not flexible enough to
resolve the semantic heterogeneity of multi-disciplinary applications. The approach
may only be useful in restricted domains and relatively homogeneous
environments [11].

Another approach to semantic interoperability is based on domain specific
ontologies, in which semantics of terminology systems are specified in a well-
defined and unambiguous manner [12]. Local vocabularies rather standardized
global vocabularies are established to formally and explicitly capture, infer, and
map the data semantics in particular product development contexts. Meanings of
terminologies are encoded in formal languages such as OWL (Web Ontology
Language) [13] and RDF (Resource Description Framework) [14]. Compared with
the standard-based approach, the ontology-based approach is more suitable for use
in non-restricted domains and heterogeneous environments [11]. Obviously this is

Semantic Interoperability to Support Collaborative Product Development 257

an important development in semantic interoperability of heterogeneous systems,
which has inspired our research reported in this chapter.

This chapter presents a method to capture data semantics with product
representations and to formalize data meanings with ontologies to support semantic
interoperability of CPD systems. The method integrates both the object-based
CAD modeling and STEP-compliant data modeling approaches with OWL to
represent, understand, interpret, and share the semantically interoperable product
information across collaborating systems. It involves three areas: ontology
engineering, object-based CAD, and product model standardization:

Ontologies represent formal, explicit and shared understanding about
application semantics, domain concepts and their relationships. They allow
classification and precise description of the concepts/terminologies used in
a domain and enable semantic mappings between them.

Object-based CAD modeling captures both geometric and non-geometric
data and their semantics as product properties, behaviors, inter-part
relationships or constraints, and associates them with CAD objects to
present more comprehensive multi-views to a wide range of CPD
applications.

Product data model standards serve as a common foundation for
interoperating multi-disciplinary applications. In particular, the STEP and
XML standards address the information sharability by classifying and
defining the standardized information elements and their relationships, and
facilitate the data communication between applications by the use of open
and neutral file formats and databases.

The following sections focus on how these three areas can be integrated to
resolve semantic interoperability issues in CPD processes and applications. The
specific discussion includes: semantic interoperability concepts and enabling
technologies in Section 12.2; product semantics capturing and STEP extension
modeling in Section 12.3; vocabulary taxonomy and OWL ontology in Section
12.4; semantics-driven schema mapping in Section 12.5; software implementation
of the approach in Section 12.6; collaboration scenarios in Section 12.7; and a
conclusion remark in Section 12.8.

12.2 Semantic Interoperability Concepts and Technologies

Semantic interoperability is defined as a measure of the ability for heterogeneous
processes and systems to understand, utilize, and transform meanings of product
data in collaborative product development. Semantic interoperability mainly
involves the issues of specifying, understanding/interpreting, and interoperating the
heterogeneous product information in a semantically consistent manner. To address
these issues, three key technologies are identified and used in this research: STEP
standard for product information exchange, sharing, and interoperation; ontologies
for explicitly specifying, understanding, and interpreting product semantics and
their contextual constraints; and object-based product models for capturing product
data semantics.

258 Collaborative Product Design and Manufacturing Methodologies and Applications

12.2.1 Data-driven Interoperability Standard

STEP is one of the most important product model standards for data-driven
interoperation and integration of heterogeneous systems. STEP aims to provide an
open, neutral product information representation and exchange mechanism for
products throughout their lifecycles. Using the Express [15] information modeling
language and the STEP integrated resources, the STEP community has developed
more than 40 STEP Application Protocols (AP) to date for different lifecycle
applications in mechanical, electronic, ship, and building design, engineering
analysis, process planning, manufacturing, product lifecycle support, etc. Table
12.1 shows some of these APs.

STEP addresses the product information exchange, sharing, and interoperability
issues by:

Classifying and defining the standard information entities, rule
relationships, and data inheritance models to capture the product
information in individual application domains;

Mapping the captured information into product lifecycle entities (defined in
the STEP integrated resources) to be shared by all STEP APs, such as those
shown in Table 12.1;

Facilitating the exchange and sharing of the product lifecycle information
across multi-disciplinary applications by standard data exchange formats
(Part 21 and Part 28) and the Standard Data Access Interfaces (Part 22).

Some STEP APs, such as AP203 and AP214, have been implemented in
commercial CAD systems to provide the capabilities for importing and exporting
STEP Part 21 files. The downstream STEP-compliant applications will then use the
neutral STEP files for CAD model data exchange and sharing. However, the
downstream lifecycle applications are increasingly demanding more additional
product information from CAD models, while advanced CAD systems can really
generate models containing these additional information contents. The problem is
that capturing the additional product data and their meanings in semantically-sound
extensions of STEP models is very challenging. This has hampered the
implementation and utilization of the STEP-based interoperability approaches in
multi-disciplinary CPD systems.

12.2.2 Ontologies

Ontologies specify the semantics of terminology systems of product models
and the meanings of product data formally and explicitly. In particular, OWL [13]
provides rich ontological constructs including the OWL formal definitions and
axioms to enable representation of and reasoning over the given concepts in an
ontology for deriving their logical consequences.

Semantic Interoperability to Support Collaborative Product Development 259

Table 12.1. STEP application protocols

Part 201 Explicit drafting Part 221 Functional data and schematic
representation for process plans

Part 202 Associative drafting Part 222 Design engineering to mfg. for
composite structures

Part 203 Configuration controlled design Part 223 Exchange of design and mfg.
DPD for composites

Part 204 Mechanical design using
boundary representation

Part 224 Mechanical product definition for
process planning

Part 205 Mechanical design using surface
representation

Part 225 Structural building elements using
explicit shape representation

Part 206 Mechanical design using
wireframe representation

Part 226 Shipbuilding mechanical systems

Part 207 Sheet metal dies and blocks Part 227 Plant spatial configuration

Part 208 Life cycle product change
process

Part 228 Building services

Part 209 Design through analysis of
composite and metallic structures

Part 229 Design and manufacturing
information for forged parts

Part 210 Electronic printed circuit
assembly, design and mfg.

Part 231 Process engineering data

Part 211 Electronics test diagnostics and
remanufacture

Part 232 Technical data packaging

Part 212 Electrotechnical plants Part 233 Systems engineering data
representation

Part 213 Numerical control process plans
for machined parts

Part 234 Ship operational logs, records
and messages

Part 214 Core data for automotive
mechanical design process

Part 235 Material information for products

Part 215 Ship arrangement Part 236 Furniture product and project

Part 216 Ship molded forms Part 237 Computational fluid dynamics

Part 217 Ship piping Part 238 Integrated CNC machining

Part 218 Ship structures Part 239 Product life cycle support

Part 220 Printed circuit assembly
manufacturing planning

Part 240 Process planning

Ontologies can be distinguished into two categories [16]: logic-based and non-
logic-based, depending on whether logical axioms and definitions are used in
ontologies or not. Typically a logic-based ontology explicitly specifies the

260 Collaborative Product Design and Manufacturing Methodologies and Applications

semantics of terminologies through ontological definitions and axioms. The
ontological definitions build a common understanding about terms, concepts and
relations, while the axioms enable reasoning, mapping and matching of these
definitions to admit or reject interpretations of terminologies and concepts. Non-
logic-based ontologies, on the other hand, do not use axioms to specify the
semantics of terminologies. Instead, they define the meanings of terminologies by
reaching priori consensus and by fixing the interpretations with respect to pre-
defined contextual constraints. Product data standards such as STEP specifications
and XML schemas are often considered as non-logical ontologies.

There are two strategies in facilitating semantics interoperability of multi-
disciplinary systems. The first one depends on a logic-based ontology to provide a
reference of the transformation between terminology systems of heterogeneous
applications. The semantics of the more specific terminologies from individual
applications are then mapped to the meanings of the more generic terminologies in
the reference ontology. Hence, the semantics of individual application model data
can be understood and shared on the basis of the reference ontology (see Section
1.5 for an example of using a logic-based reference ontology in semantic schema
mapping). In the second strategy, product data standards are used as shared non-
logical ontologies. By using the same terminology system of a standard in an
unambiguous way, all applications adhered to the standard will achieve
interoperability.

In this research, a hybrid approach integrating both the standard-based and
logic-based strategies is used to establish semantic interoperability among multiple
application domains of CAD, quality and reliability control, and CPD process
management. The STEP specifications are used as common non-logical ontologies
for the representation of applications-specific information beyond standard STEP
datasets, while a logic-based reference ontology and a set of domain ontologies in
OWL are developed for the description, annotation, interpretation, and reuse of
application semantics in these three application domains. To achieve this, the
relevant application data semantics must be captured in CAD models, or more
generally, captured in product models.

12.2.3 Product Models

Product models are the computer interpretable and processible digital
representations of products. Product models formalize the syntax and semantics of
product expressions, such as symbols, terminologies, concepts, or relationships.
During the lifecycle of a product, different models are constructed to satisfy
different information needs from different lifecycle applications. For example,
product data models are often used for formalizing the product design information,
bill of material, shape representation, product configuration, and so on;
CAE/FEA/CFD models used for product functionality analysis or simulation;
product development process models for design activity control, process
information flow, task dependency description, process planning, etc.; and product
performance models for quality, cost, time-to-market management and
improvement. The present research has developed three types of product models
(i.e., product supplementary information models, product performance models, and

Semantic Interoperability to Support Collaborative Product Development 261

CPD process models) either in a STEP-compliant format or in an application-
specific representation format for product semantics capturing and sharing in CAD,
quality and process management applications.

(1) Supplementary Information Model

Supplementary information is defined as the additional product information
described with explicit data semantics and embedded in CAD models. The
supplementary information includes semantic properties (material, cost, quality
criterion, process data, etc.), object behaviors (executable CAD manipulations,
external programs, etc.), reference links to external sources (online product catalog,
regulation standard, classification and specification system, etc.), interdisciplinary
relationships (between design objects/components developed by different
disciplines), and so on.

The STEP technology and object-based CAD modeling techniques are used for
the development of supplementary design information models. The STEP AP203
[17] is used as the common data representation model for the mechanical domain,
and AP210 [18] for the electronic domain in the present study. These two STEP
APs are extended with supporting definitions for richer product semantics on entity
types, object behaviors, relationships, constraints, etc. These supplementary
definitions are modeled as STEP extensions and populated with product datasets
extracted from the object-based CAD models or from user inputs [19]. Two STEP
extension mechanisms are investigated to connect the supplementary definitions in
the extension models to the relevant entities already existed in the standard STEP
product models (details in Section 12.3.3). Semantic mappings are conducted to
match the supplementary definitions with the extended STEP definitions (details in
Section 12.5). In this way, the STEP-compliant product data models are developed
to support semantic interoperation of CAD and other applications.

(2) CPD Process Model
A CPD process model describes the structures of collaborative product
development activities, their dependencies, and interactions of information items
among activities. Different process models in Express-G [15] and ARIS [20] are
developed for modeling the new product introduction (NPI) processes of consumer
products [21]. Through the use of ontologies for meta-data provisioning, the data
meanings of the native NPI process models are annotated and extracted to populate
the semantic definitions of the supplementary information models, so that they are
capable of providing commonly understandable and semantically richer NPI
process information for interoperating with other relevant applications.

(3) Product Performance Model
A performance model explicitly defines the relationships between a set of
performance control variables and a performance measure. Three performance
measures (i.e., quality, time and cost) are identified to evaluate the performance of
the NPI processes. Proprietary performance models, such as a quality matrix, a
design cycle time model, and a relative cost index, are developed to measure,
control and improve the performance of consumer product development [23]. The
semantics of the performance data are classified and described by domain

262 Collaborative Product Design and Manufacturing Methodologies and Applications

ontologies, according to which the native data pertaining to the performance
models are related to the extended STEP models as semantic properties or as
reference-linked performance criteria to be shared with other design applications.

(4) Relationships between Product Models

For these three application domains of CAD, quality/reliability control, and CPD
process management, the information from each is organized in a native product
model, which is either a CAD model, a process model, or a performance model.
The model data from these models can be treated as some kinds of supplementary
information to be organized in a supplementary information model, which will be
mapped to a STEP extension model (details in Sections 12.3 and 12.5 respectively).
The relationships of these product models with the supplementary information
model and the extended STEP data model are illustrated in Figure 12.1.

Native Product
Models

CAD Model Performance
Model

Process
Model

Extensible,
Semantics-Rich,
Supplementary

Information
Model

STEP-Compliant
Product Data
Model with
Semantic

Supplements

Figure 12.1. Product model relationships

The purpose of the supplementary information model in Figure 12.1 is to
capture the data semantics from each product model, by specifying the data
meanings and their contextual constraints in supplementary information definitions
in order to provide interoperability. It is therefore not intended to cover all aspects
of the information pertaining to individual product models, but to ensure that
sufficient data semantics in well-defined collaborative contexts are captured and
can be shared to any collaborating parties. The relationships in Figure 12.1 will be
further described by domain ontologies and used for semantics-driven schema
mapping in Section 12.5.

Semantic Interoperability to Support Collaborative Product Development 263

12.3 Product Semantics Capturing and STEP

Extension Modeling

12.3.1 Representing Semantics in Supplementary Information Models

Semantic interoperation and integration requires that the product information
generated from one application, such as a CAD system or a process management
system, must be made understandable and transferable among other applications.
By using a CAD system, 2D/3D design objects are created. On top of the CAD
data, other product information such as the supplementary information (defined in
Section 1.2.3) needs to be modeled, attached to and updated with the CAD objects,
so that they would be able to support the data semantics needs from other
downstream applications in the product lifecycle. For the supplementary
information, it is essential to ensure the information carrying unambiguous
semantics understandable and interpretable by other software applications. Toward
this end, the following modeling method is developed.

In this method, the traditional CAD models generated from a CAD system are
extended with the supplementary information. Implicit data semantics from CAD
models are made explicit and captured in a set of entity type definitions, including
the entity property and entity behavior definitions, so that the extended CAD
objects can carry not only geometric representations and design characteristics
from the CAD system, but also semantic instantiations from entity type definitions.

The entity types describe the object-based product supplementary data and
precisely represent the intended meaning of these data. An entity type is defined by
attributes and contextual constraints. An attribute has an identifier and a type
indicator. A contextual constraint contains a set of explicit relations and methods to
limit the validity of the attribute meanings, types and values that a hosting CAD
system can support. All the attributes and contextual constraints of an entity type
together describe the supplementary dataset semantics being defined. The entity
types are configurable and may contain any number of attributes and constraints,
depending on the needs for semantic description from particular viewpoints. For
example, the following expression gives a definition for an entity property with
five attributes and two contextual constraints. It is defined for a reliability testing
application of consumer electronic components.

<PropertyName, Description, Value(>= 0), Unit(Enum(hour, min, g,)), RefNo> (12.1)

Expression (1.2) below defines an entity behavior with six attributes without
any context constraints. It is for the use in a new product development application.

<ObjectType, ObjectName, Description, Value, ExeType, RefNo> (12.2)

Using the entity property definition in Expression (12.1) as a template, the
property objects can be instantiated. During instantiation, the contextual constraints
in Expression (1.1) will not be presented in the property objects generated. Instead,
they are implemented as constraint algorithms in the software add-on tools of CAD

264 Collaborative Product Design and Manufacturing Methodologies and Applications

systems. Whenever a property object is instantiated, these constraint algorithms
will be invoked to ensure that the auto-extracted or user-entered attribute values
and types are compliant with the data scopes and types defined in Expression
(12.1). Table 12.2 shows an example for modeling, according to Expression (12.1),
a set of property objects to be used in the reliability testing of electronic
components.

Table 12.2. Example of property objects for reliability testing

Similarly, the behavior objects can be modeled from the entity behavior
definition in Expression (12.2). Table 12.3 lists some behavior objects for the
supplementary information related to new product development in design and
testing. It includes two CAD behavior objects for CAD manipulations of Explode
and Position, two inter-part relationship objects for LocatedOnTop and Enclosing

relations between CAD models, two constraint objects for the upper and lower
time limits of ShelfTime and TransitionTime in the reliability testing, and one
reference link object PartDetail pointing to a supplier’s Website for product
specifications.

Through the use of property objects and behavior objects in Tables 12.2 and
12.3, meanings of the supplementary information are captured in object-based
representations. These semantics-rich objects will be encapsulated in CAD models
for reuse across disciplines.

12.3.2 Embedding Supplementary Information in CAD Models

The supplementary information modeled by property and behavior objects in
Tables 12.2 and 12.3 needs to be embedded into CAD models to make the
information accessible and reusable for other downstream applications. Two
methods are developed by which the property and behavior instances can be
embedded in CAD models. The first method embeds these supplementary objects
through CAD associations. Many commercial CAD packages such as the
AutoCAD system used in this study, provide native facilities for constructing such
associations. They provide facilities to store the CAD associations and their
pointed property and behavior objects, together with the embedding CAD models,
in data structures recognizable and processible by CAD systems. This method is
simple, effective, and suitable for embedding CAD behaviors for use in CAD
systems.

PropertyName Description Value Unit RefNo

Mass Mass of sample component. 15 g Test001

Temperature Test temperature. 50 Test010

ShelfTime
Time from a sample placed in a test
chamber till a stabilized chamber
temperature reached.

10 min Test011

Semantic Interoperability to Support Collaborative Product Development 265

Table 12.3. Example of behavior objects

ObjectType ObjectName Description Value ExeType RefNo

Explode
Auto explosion of an
imported CAD object
into native objects.

Explode dvb B010

CadBehavior

Position
Smart positioning of
an imported object in
a CAD workspace.

Position java B011

LocatedOnTop

Component on every
layer is located one on
top of the other to form
a vertical tower.

(Xij,Yij,Zij) [k]* =
(X0j,Y0j,Z0j) [k]*

k = 1,2, …,
MaxLayer

cc R020

Relationship

Enclosing
Component 1 is
enclosed in
Component 2.

(X1,Y1,Z1) [k]*

(X2,Y2,Z2) [k]*

k = 1, 2, …, 8

cc R021

MaxShelfTime
Upper time limit for a
sample placed in a test
chamber.

30 C030

Constraint

MinTransitionTime
Lower time limit for
temperature exposure
of a sample.

5 C031

RefLink PartDetail
Part specifications at a
supplier’s Website.

http://www.hrent
.com/inv.htm

hyperlink L041

* (Xij,Yij,Zij) [] – a vertex coordinates array for a component at jth position on ith layer.
 (X0j,Y0j,Z0j) [] – a base vertex coordinates array for the jth vertical tower.
 (X,Y,Z) [] – a vertex coordinates array of the enclosing or enclosed cube of a component.

The second method is used to embed complex behavior instances in CAD
models, such as the Explode CAD manipulation and the LocatedOnTop

relationship in Table 12.3. These instances are generated with complicated
behavior information even external application programs. They are assigned to the
relating CAD models by object links. A CAD add-on tool is needed to instantiate
such object links on a hosting CAD platform. In the current research, a design
Object Creation Wizard (details in Section 12.6.2) has been implemented as a CAD
add-on tool for the AutoCAD system. When an object link between a behavior
object and a CAD model is instantiated, this linkage relationship, rather the
behavior object itself, will be embedded into the CAD model, retrievable and
editable from the CAD modeling environment. The second method is suitable for
embedding inter-part or inter-discipline relationships, constraints, and reference
links needed for use in CAD and non-CAD systems, such as in CPD process
management and quality assurance systems.

12.3.3 Modeling STEP extensions

To make the supplementary information STEP-compliant, the following STEP
extension mechanisms, i.e., property relationship extension and subtyping
extension, are used.

266 Collaborative Product Design and Manufacturing Methodologies and Applications

(1) Property Relationship Extension Mechanism
Figure 12.2 illustrates the concept of the property relationship extension
mechanism. In this method, the property and behavior objects defined in Section
12.3.1 are categorized into property sets (Pset), such as the reliability testing Pset
or 3D representation maps Pset. The relationship entities are then specified to
assign the relating Psets to the related entities in an existing STEP model. These
relationship entities may be the subtypes extended from the standard STEP
relationship entities by using the subtyping extension mechanism discussed in the
next section.

Property
Set

STEP

Entity 1

Relating

Property Set

Related

Object

Related

Object

...
STEP

Entity N Properties Has
Properties

STEP

Entity 2
Relationship

Entities

Figure 12.2. Property relationship extension mechanism

(2) Subtyping Extension Mechanism
In the subtyping extension, new entity definitions are created as subtypes of an
existing STEP entity. Figure 12.3 describes this extension mechanism in Express-G
[15] notation.

Supertype

Existing
Subtype 1

Existing

Subtype 2
Existing

Subtype 3

New

Subtype 4

Existing Subtypes Extended Subtypes

1 Exclusive (ONE OF)

New
Subtype 5

Figure 12.3. Subtyping extension mechanism

By using the exclusive (ONE OF) subtype/supertype constraint of the Express
[15] language, new entities can be exclusively subtyped into the existing supertype
entities. The extended entities are then used for example as relationship entities to
connect the supplementary property set definitions to those entities already existed
in the STEP product models.

12.3.4 Capturing Semantics in STEP-compliant Product Models

Using the information embedment approaches in Section 12.3.2, the product
supplementary information is made available with CAD models in CAD native
formats. The information is, however, only reusable on compatible CAD platforms.

Semantic Interoperability to Support Collaborative Product Development 267

This section discusses issues related to supplementary information capture in
STEP-compliant product data models to make it applicable to STEP based CAD or
non-CAD applications. To do so, the STEP Psets and inclusion properties are
specified. For example, a single valued property, as an extended entity of STEP
AP203, can be defined as follows.

<Name, Description, NominalValue, Unit> (12.3)

And a property set as:

<Name, Description, GlobalId, HasProperties> (12.4)

These extended entity definitions in Expressions (12.3) and (12.4), together
with other STEP extension definitions will be instantiated with the supplementary
information, through semantic mapping (details in Section 12.5), to form a STEP
AP203 compliant product model that not only captures the semantics of the
supplementary information, but also make the captured information interoperable
to other STEP compliant applications.

12.4 Taxonomy and Ontology

12.4.1 Vocabulary Taxonomy

A vocabulary contains a collection of commonly agreed terminologies/concepts in
a domain. Taxonomies characterize and organize complex domain vocabularies
into hierarchical structures. A taxonomy is often used as a kind of semantic
agreements to achieve an explicit naming approach to the shared use of data
semantics, and to remove misunderstanding and misinterpretation of shard
information. A CPD vocabulary taxonomy has been developed to classify and
manage the shared terminologies together with their explicitly defined meanings
used in the development of consumer products. The terminologies are mainly used
for naming properties, CAD behaviors, object relationships and constraints of the
supplementary information. All terminologies in the vocabulary taxonomy are
inter-connected by “is-a” (super-sub) and “part-of” (part-whole) relations. Figure
12.4 depicts an excerpt of the vocabulary taxonomy.

The is-a relation of the vocabulary taxonomy in Figure 12.4 exists between
domain concepts being classified, while the part-of relation between attributes
within a concept. One of the logical properties of the is-a relation is transitive,
which implies that if x is a subclass of y and y is a subclass of z, then x is also a
subclass of z. This axiom can be illustrated by our example in Figure 12.4:
ShelfTime is a subclass of ReliabilityTestProperty that in turn is a subclass of
SemanticProperty. Due to the transitivity of the is-a relation, it can be inferred that
ShelfTime is also a subclass of SemanticProperty, i.e., every instance of ShelfTime

shall be an instance of SemanticProperty. For example, Figure 12.4 characterizes
that the ShelfTime has five attributes for:

<Property Name, Description, Value, Unit, RefNo.>

268 Collaborative Product Design and Manufacturing Methodologies and Applications

Legend

“is-a” relation.
“part-of” relation.

Legend

“is-a” relation.
“part-of” relation.

Semantic Property

Representation

Map Property

Reliability

Test Property

CPD Process
Property

Quality

Management
Property

Temperature

Shelf

Time

Transition

Time

Cycle

Number

Mass

Property
Name

Description

Value

Ref. No.

Object Behavior

Supplementary

Information

CAD
Behavior

Reference

Link

Inter-Part
Relationship

Constraint

Unit

Position

Explode

Max Shelf
Time

Min
Transition

Time

Object
Name

Description

Value

Ref. No.

Unit

Object
Type

Figure 12.4. An excerpt of the vocabulary taxonomy

Suppose there exists a ShelfTime instance for an electronic component:

<ShelfTime_i1, Time from “Component_1” is placed in a test chamber till a
stabilized chamber temperature reached, 10, min, Test011>

It can be inferred that SemanticProperty should also contain such an instance
with exactly the same attribute values. When a reliability testing system searches
for temperature cycling parameters, the query will be based on the semantics of the
instance, rather on the particular terms used by a tester or used in a test parameter
database. The vocabulary with its explicit hierarchical structure, terminology
definitions, and inter-connection relations provides a semantic basis for OWL
domain ontology modeling.

12.4.2 OWL Ontology

Domain ontologies in OWL are developed to make the intended meaning of CPD
domain concepts (terminologies) explicit, through attaching information about the
properties of relations to the terminologies. The domain ontologies are then
organized in a reference ontology used for mapping and sharing the product
supplementary information and semantics across CAD, quality assurance, and CPD
process management applications. The is-a and part-of relations in the vocabulary
taxonomy in Section 12.4.1 are formalized and expanded with the OWL constructs,
which provide rich semantics for the development of domain specific ontologies,
including the logical relations (such as owl:differentFrom, owl:disjointWith,
owl:inverseOf); properties of relations (owl:TransitiveProperty,
owl:SymmetricProperty, owl:FunctionalProperty); restriction types (owl:hasValue,
owl:cardinality); and so on.

Semantic Interoperability to Support Collaborative Product Development 269

Each domain concept in the vocabulary taxonomy in Figure 12.4 is defined by
an OWL class. Attributes of a concept class are formalized with the OWL datatype
properties (owl:DatetypeProperty), while relations between classes are modeled
with the OWL object properties (owl:ObjectProperty) and other relation constructs.
Figure 12.5 shows an OWL class for the definition of the ShelfTime concept.

Figure 12.5. OWL class definition for ShelfTime

The is-a relation between concepts of ShelfTime and ReliabilityTestProperty in

Figure 12.4 is formalized by subClassOf axiom (Class1 Class2) in Figure 12.5.
The other OWL axioms used in Figure 1.5 are equivalentClass (Class1 Class2)

and disjointWith (Class1 ¬Class2). The logical axioms provide mechanisms for
query, matching and reasoning about concepts, their attributes and relations. For
example, the specification of the disjointedness of ShelfTime with other four
classes in Figure 12.5 ensures that an individual cannot be an instance of more than
one class of the five. And the equivalent class, specifying that two classes have
exactly the same instances, is often used to indicate synonyms for the use of
domain concepts across disciplines.

An OWL property, such as ObjectProperty or DatatypeProperty is a binary
relation to relate instances of two OWL classes, or relate an OWL instance to a
RDF [14] literal or an XML Schema datatype [22]. Figure 12.6 shows that the
ShelfTime instances are associated with the DesignComponent instances by an
ObjectProperty, and with the string datatype of XML Schema by a
DatatypeProperty.

Figure 12.6. OWL properties for ShelfTime

Both the object and datatype properties in Figure 12.6 use the domain-range

pairs to restrict the binary relations specified. Besides the domain-range pair, there

<owl:Class rdf:ID="ShelfTime">
 <rdfs:subClassOf rdf:resource="#ReliabilityTestProperty"/>
 <owl:equivalentClass rdf:resource="&onto2;ChamberingTime"/>
 <owl:disjointWith rdf:resource="#Temperature"/>
 <owl:disjointWith rdf:resource="#TransitionTime"/>
 <owl:disjointWith rdf:resource="#CycleNumer"/>
 <owl:disjointWith rdf:resource="#Mass"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="associatedWith">
 <rdfs:domain rdf:resource="#ShelfTime"/>
 <rdfs:range rdf:resource="#DesignComponent"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="propertyName">
 <rdfs:domain rdf:resource="#ShelfTime"/>
 <rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

270 Collaborative Product Design and Manufacturing Methodologies and Applications

are a variety of other OWL restrictions such as cardinality restrictions
(maxCardinality, minCardinality and cardinality) that can be used to constrain the
range of an OWL property in specific contexts. For example, the class definition
for ShelfTime in Figure 12.5 can be further extended with a minCardinality

restriction to constrain that the ShelfTime class has at least one associatedWith
property, as shown in Figure 12.7.

Figure 12.7. OWL restriction on a property of ShelfTime

Described by these formal, explicit and rich semantics shown in Figures 12.5,
12.6 and 12.7, the domain concept of ShelfTime, its properties and relationships
with other concepts can be incorporated into the shared reference ontology to be
queried, reasoned or mapped across disciplines to support the interoperability of
heterogeneous systems.

12.5 Semantics-driven Schema Mapping

Schema mappings from the supplementary information definitions to the extended
STEP Pset definitions are established based on the common vocabulary and the
OWL ontologies developed in the previous section. The difference between
conventional schema mapping and semantics-driven schema mapping is that the
latter uses ontologies to capture the relationships and contexts of maps. The scope
of the semantic assertions in the semantics-driven approach is also constrained by
ontologies. Figure 12.8 shows our semantics-driven schema mapping approach.

In the semantics-driven approach, ontology can be used either as a global
schema or as a semantic transformation reference in schema mapping. In the
former case, the ontology, either a standard-based or a logic-based, should be more
abstract than any of the application schemas being mapped to it. During the
mapping process, maps between the vocabulary of each application and the
vocabulary of the global ontology are defined in order to transform the data
semantics. By interpreting the underlying ontology and applying the semantic
definitions, relationships, and axioms described in the ontology to the translation
process, the semantic maps transform the data semantics from application to
application, or from local schemas to the global one.

<owl:Class rdf:about="#ShelfTime">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#associatedWith"/>
 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">
 1
 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>

</owl:Class>

Semantic Interoperability to Support Collaborative Product Development 271

is-a

Name

BehaviorName

PropertyName

Step.Property.Name

MeasureValue

SimpleValue

DerivedValue

Value

Real

String

Boolean

Integer
EntityProperty.Value

EntityBehavior.Value

Extended STEP Property
Definitions

 Step.Property.NominalValue

EntityProperty.PropertyName

EntityBehavior.ObjectName

NameStringRefNo

part-of

EntityBehavior.RefNo

EntityProperty.RefNo

Supplementary Information
Definitions

part-of

 Legend

 Data entity Ontological relationship

 Ontological component Mapping knowledge

Expression

Hyperlink

is-a
S

e
m

a
n
ti
c

M
a

p
p
in

g

part-of

Figure 12.8. Semantics-driven schema mapping

In our approach in Figure 12.8, the product supplementary information
definitions are mapped to the extended STEP property definitions via domain
ontologies. However, the ontologies themselves are not used as the global schema.
Instead, they are used as a reference to provide a pivot point for the reinterpretation
of the data meanings in different schemas from different applications. Our
approach uses the STEP model as a global schema in semantic mapping. The maps
from the supplementary information definitions in Expressions (12.1) and (12.2) to
the extended STEP property definitions in Expressions (12.3) and (12.4) are
established based on the ontological relations in domain ontologies. These
ontologies are defined by drawing terminologies from the common vocabulary. In
the mapping process, semantically equivalent components in the expressions above
are identified and compared based on the semantic descriptive definitions of
terms/concepts, and the semantic relationships and rules in the domain ontologies.
The semantic mapping knowledge is then established at both the entity and
attribute levels.

Based on the mapping knowledge, semantically equivalent concepts in both the
supplementary and the STEP extension definitions are mapped to each other. A
few semantic maps between the STEP extension in Expression (12.3) and the
entity property definition in Expression (12.1) and the entity behavior definition in
Expression (12.2) are shown in Figure 12.8.

Figure 12.9 below presents an excerpt of the reference ontology used in Figure
12.8 to define the semantic maps. It specifies the relations between the domain
concepts of Name, RefNo, NameString, PropertyName and BehaviorName in
Figure 12.8. There are is-a and part-of relations among these concepts. The is-a
relation is specified by subClassOf. The part-of relation is defined using one of the
OWL axioms for transitivity (owl:TransitiveProperty). The properties of the part-
of relation are restricted by owl:onProperty and owl:allValueFrom. These
ontological definitions and relations in Figure 12.9 are used to detect whether
semantic conflicts exist during the mapping process.

272 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 12.9. An excerpt of the reference ontology

12.6 Software Prototype Development

12.6.1 Software System Architecture

The semantic interoperability approach described in the previous sections has been
implemented in a Web-enabled prototype system. It is mainly used to support the
product semantics definition, capturing in product models, and sharing cross CPD
applications of multiple platform CAD systems, quality and reliability control, and
CPD process management. The prototype uses a multi-tier architecture consisting
of a collaboration server and a set of client-side CAD add-ons and interfacing
software tools. Figure 12.10 shows the architecture of the prototype.

<owl:Class rdf:ID="Name">
 <!-- Other definitions for the class -->
</owl:Class>
<owl:Class rdf:ID="NameString">
 <rdfs:subClassOf>

<owl:Restriction>
 <owl:onProperty rdf:resource="#part-of"/>
 <owl:allValueFrom rdf:resource ="#Name"/>

</owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="RefNo">
 <rdfs:subClassOf>

<owl:Restriction>
 <owl:onProperty rdf:resource="#part-of"/>
 <owl:allValueFrom rdf:resource ="#Name"/>

</owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="PropertyName">
 <rdfs:subClassOf rdf:resource="#NameString"/>
 <owl:disjointWith rdf:resource="#BehaviorName"/>
</owl:Class>
<owl:Class rdf:ID="BehaviorName">
 <rdfs:subClassOf rdf:resource="#NameString"/>
 <owl:disjointWith rdf:resource="#PropertyName"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="part-of">
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

</owl:ObjectProperty>

Semantic Interoperability to Support Collaborative Product Development 273

User Interface

HTML JSP

CAD Add-on

Object Creation Wizard

Other Applications Interface

CAD Integration

Model-View-Controller Component

Model Controller View Command

Domain Logic Component

Server Classes XML Classes Voc.

Data Access Component

Broker Connection

Database/File
Repository

…

…

Quality/Process Sys Interfacing

Internet

Client Tier

Web Tier

Application Logic Tier

Data Source Tier

Server

Components

Figure 12.10. Prototype architecture

The client applications in Figure 12.10 include three toolkits: a design Object
Creation Wizard and a CAD Integration Toolkit, both being used with CAD
systems as add-on tools; and a Quality and Process Systems Interfacing Tool. The
collaboration server includes several functional modules for Web-based
presentations and communications, domain application services, and data access
control. Both the client toolkits and server components work together to provide
online services in supplementary information definition and embedment in CAD
objects, semantics capturing in product models, common vocabulary and ontology
library maintenance, management of design objects with semantic supplements,
and semantics reusing in CAD and non-CAD applications through sharing of the
semantic supplements and other product data in neutral formats (STEP and XML).
The software development of the prototype is detailed in the following two
sections for the client and the server respectively.

12.6.2 Client Toolkits

(1) Object Creation Wizard
An Object Creation Wizard is designed as a CAD add-on tool for use with the
AutoCAD system. It mainly provides functions for: defining the semantics of
entity properties for CAD models; instantiating the entity property and entity
behavior definitions with design parameters extracted automatically from
AutoCAD models or supplemented by users; validating the supplementary
information elements against the implemented contextual constraints in the wizard;
linking property objects with CAD models or styles; and semantically mapping the
CAD and STEP entity definitions. Functional modules are developed with the
wizard to implement these capabilities. Figure 12.11 shows one of the UML [24]
sequence diagrams to depict how the Pset Definition Module works. Figure 12.12
shows the implemented Pset Definition Module with an illustration on how the
vocabulary library is used to support the unified naming of properties.

274 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 12.11. UML sequence diagram for Pset definition

Vocabulary

Library

Property

Names

Property Definition GUI

Pset Definition GUI

Figure 12.12. Defining Pset and inclusion properties

(2) CAD Integration Toolkit
The CAD Integration Toolkit is another CAD add-on to provide more value-added
functions to the CAD users who are using semantics of supplementary information
in their native CAD systems. The main functionality of the toolkit include:
identifying and retrieving the supplementary information semantics from the CAD
representation maps, inter-part relationships, CAD behaviors, etc., in the
downloaded CAD models for their reuse in a CAD system; interpreting the
retrieved information semantics according to the common vocabulary and
reference ontology and linking them back to the corresponding CAD

Design Object

Creator

InitPset PsetDefinition Property

Database

CAD Object

Invoke PsetDefinition GUI

Open CAD model

Check Pset availability

Retrieve CAD object names

Get object names

Return CAD object names

If yes, get inclusion properties from database

If no, create a new Pset and save its inclusion properties

Select required Pset name from existing Pset list

Semantic Interoperability to Support Collaborative Product Development 275

objects/symbols when they reside within the native CAD system; and providing
interfaces for CAD users to access external digital information sources and for
them to invoke the built-in object behaviors directly from within a CAD design
environment. The accessing and invoking capabilities of the toolkit are depicted in
Figure 12.13.

Figure 12.13. Invoking object behavior and external link in CAD environment

(3) Quality and Process Systems Interfacing Tool
This tool uses a Java3D-enabled Web browser to render geometries of design
objects. Quality Assurance (QA) engineers and project managers can use it to view
the 3D CAD models without using a CAD system. The tool provides facilities for
editing and populating the Pset definitions with the data extracted from a set of
quality tools and from a CPD process management system. It also supports the
product development activity coordination and design negotiation through CPD
process configuration and XML messaging between designers, QA professionals,
and product development managers. Figure 12.14 shows one of the GUIs of the
tool for extracting/adding CPD process attribute values from a process
configuration to populate a CPD process Pset definition.

276 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 12.14. Extracting/adding CPD process data for a process Pset definition

12.6.3 Collaboration Server Components and Services

(1) Model-View-Controller component
This component is responsible for the client and server communication, including
to route incoming client requests to the Controller Servlets for generating
Command objects required for the requests; to instantiate the Model objects for
execution of domain logics (functions) of the prototype system; to present the
processing results to client browsers through View objects; and to map the client
next action from View to Model for new responses of the server. A UML class
diagram in Figure 12.15 shows the relationships between a ControllerServlet class,
a CommandManager bean, and other related classes for generation of Command
objects to process client requests.

Figure 12.15. UML class diagram for Controller and Command

Semantic Interoperability to Support Collaborative Product Development 277

(2) Domain logic component
The domain logic component establishes the basic structure of domain objects (i.e.,
the extended design objects with semantic supplements, vocabulary objects,
property and behavior objects, etc.). For example, each domain object must have at
least one broker to process client requests for accessing the semantic
interoperability services and the server database or file repositories. Use cases are
designed to analyze the manipulation scenarios of domain objects for realization of
various domain application logics. Figure 12.16 is a UML use case diagram to
illustrate the scenarios of defining, editing and maintaining the vocabulary objects
with this component.

Edit vocabulary item

(from Use Cases)

Define vocabulary item

(from Use Cases)

Extension of the
existing thesaurus

(from Use Cases)

Edit Ignore list

(from Use Cases)

Check for key words

(from Use Cases)

Administrator

(from Actor)

Figure 12.16. UML use case for vocabulary management

(3) Data access component
The component is used for database connection and brokers management, such as
to help a domain object to get a database connection; to release the database
connection; to retrieve the appropriate broker; and to manage the number of
brokers to be instantiated. Any domain objects can only manipulate the server
database objects through brokers. For example, in order to edit a vocabulary item
in the server vocabulary database, a database connection object, a
VocabularyObjectBroker and a VocabularyObjectAttributeBroker need to be
instantiated for interacting with the database and conducting the find() and update()
operations to the existing vocabulary item.

(4) Portal services
The implementation of the server portal provides the following services:

Uploading, downloading, searching, and updating design objects with the
semantic supplementary information, based on users’ roles and access
rights assigned;

Definition, editing, search and validation of common vocabulary;

Design object viewing and dragging-dropping in multiple CAD formats
and using neutral data structures (STEP and XML);

278 Collaborative Product Design and Manufacturing Methodologies and Applications

Object profile management, such as browsing the design objects in the
server repositories, online visualizing CAD models, retrieving vocabulary
definitions, etc.;

Message broadcasting and conflict logs to facilitate conflict detection,
negotiation, and collaboration in product development; and

Design team setting and activity coordination through member profile
management, role and task assignment, access privilege control to the
shared information, online collaboration information query.

Figure 12.17 is a screenshot of a portal page for one of the above services:
object profile management.

Figure 12.17. Portal service for object profile management

12.7 Collaboration Scenarios

Supporting and enhancing product development collaboration is the major
objective of this research. This is illustrated by the following collaboration
scenarios through the use of the semantic interoperability method and the prototype
system developed in the previous sections. These scenarios concern the
collaboration in multi-disciplinary design of consumer products, such as CD and
DVD players. Mechanical, electrical, optical design disciplines, quality assurance,
and product development process management are involved in the scenarios for
collaborative design of a DVD Optical Pick-up System (OPS) in a networked
heterogeneous environment.

12.7.1 Support of Collaborative Design Process

This scenario focuses on the collaborative OPS design processes and interactions
between collaborating participants. Table 12.4 lists the involved participants, their
responsibilities and individual software systems used in this collaboration.

Semantic Interoperability to Support Collaborative Product Development 279

Table 12.4. A collaborative design environment

Collaboration

Participant
Responsibility

Native Client-Side

Software System Used

Access Right to the

Collaboration Server

Project Manager A
Project coordinator &
design process planner.

A design process
management system.

Use design objects;
“Read” access only.

Mech. Designer B
Mechanical design &
OPS model integrator.

AutoCAD
Create/use design objects;
“Full” access to all objects.

Ele. Designer C
Electrical & electronic
component design.

Mentor
Create/use design objects;
“Full” access to electrical
components.

Optical Designer D
Optical system design
and analysis.

OptiCAD
Create/use design objects;
“Full” access to optical
components.

Quality Engineer E
Reliability testing &
quality assurance.

A set of testing &
quality tools.

Use design objects;
“Read” access to all
objects.

Project Manager A, as the CPD coordinator, defines the collaborative design
processes, the owner of tasks, the responsibility of each team member, and the
participants’ access privileges to the collaboration server (as shown in Table 1.4).
The native design process information from a process management system is
annotated according to a domain ontology for the CPD process. The process
ontology instances are kept in an XML instance file and uploaded to the
collaboration server. The server manages updates of the XML instance files for any
design process changes.

Each participant is working on his/her design issues in a distributed private
workspace at the client side with preferred domain-specific tools as indicated in
Table 12.4. However they can access and share the same resources for design task
assignments, design constraints, design objects with the embedded semantic
supplements, and design support services from the collaboration server, if they join
in a collaborative design session. Once logging in a project workspace of the server,
online notification presents the updated design process progress and new design
requirements. The mechanical, electrical, and optical design objects with rich
semantics can be shared via the server, but each design discipline has to follow the
common vocabulary to name their supplementary information elements in order to
make the semantics understandable to other disciplines. The vocabulary library of
the server provides facilities to support this requirement. The design disciplines
interact with each other through the server, which provides the messaging and
online viewing mechanisms to facilitate design communication, negotiation and
visualization. Hence, the individual’s design work can be evaluated/commented
and their activities coordinated.

12.7.2 Design Objects Modeling and Semantics Capturing

This scenario involves the use of the design Object Creation Wizard (details in
Section 12.6.2) for product semantics capture in design models of the OPS.

280 Collaborative Product Design and Manufacturing Methodologies and Applications

Mechanical Designer B performs mechanical part design and acts as the OPS
model integrator. According to OPS studies on its functional requirements, design
constraints and previous product structures, B creates a preliminary OPS assembly
drawing in which the OPS configuration is defined. The OPS assembly includes
mechanical, electrical and optical components, such as the base of OPS, laser diode,
photo diode, beam splitter, and grating lens, etc.

The CAD representations of the OPS assembly are modeled by the AutoCAD
system. The mechanical parts of the assembly will be further modeled by
AutoCAD during the detailed design stage. However, the electrical and optical
components only have symbolic representations in the OPS assembly drawing. As
such, the additional information required for the electrical and optical detailed
design, and for the component reliability testing, etc., needs to be embedded into
the preliminary OPS assembly drawing and continually updated with the progress
in design and analysis of its components.

By right-mouse click on the assembly drawing in the AutoCAD modeling space,
the Object Creation Wizard is invoked. Figure 12.18 illustrates how the wizard
specifies and captures the native geometric information from the AutoCAD system
to define the supplementary data semantics for Representation Maps of the base

component of the OPS. The selected multi-view blocks from the base CAD model
are aggregated into a representation map called Rmap_3D_Base-A. It has two
inclusion objects for Rmap_3D_Base-A_Default and Rmap_3D_Base-A_Top
respectively.

Figure 12.18. Specifying and capturing supplementary data semantics for a base CAD
model

Besides specifying and capturing supplementary data semantics with design
objects, the wizard also provides standard procedures and facilities to guide the
XML instance file generation for these CAD models. In the current example, the
supplementary information and the XML content of the OPS assembly includes

Semantic Interoperability to Support Collaborative Product Development 281

geometry representation maps, semantic properties, object behaviors, and external
links for its constituent components. The supplementary information is used such
as for:

Specifying and embedding OPS integration requirements and quality
criteria for the OPS multi-disciplinary design components;

Assigning representation maps for the base multi-view blocks using the
terminologies in the common vocabulary library;

Defining semantic properties for the beam splitter and an inter-part
relationship, AdjacentWith, between the beam splitter and the base;

Defining the semantic definitions for the temperature cycling test
constraints of the laser driver IC at the qualification phase of the OPS; and

Embedding external reference links pointing to online sources for suppliers
and products information of the OPS components.

Once the OPS assembly drawing is created with the above supplementary
information embedded, it can be uploaded (together with its XML instance file as
the neutral representation of the attached supplements) to the server for sharing the
information and semantic definitions with other participants in the collaboration.

12.7.3 Semantics Sharing with Heterogeneous Systems

This scenario describes semantics sharing across Electrical CAD (E-CAD), optical
CAD, and reliability testing systems. The semantic content defined with the
supplementary information definitions, captured in the product models, and
delivered through the neutral XML instance files are shared with these
heterogeneous systems. This is done through querying, inferring and matching the
ontological definitions and relations of the domain concepts involved, in order to
allow these computer systems to understand and utilize the meaning of semantic
content embedded in the design objects.

The Optical Designer D visualizes the OPS assembly drawing to understand the
OPS configuration and downloads its XML instance file. D selects the symbolic
representation of the beam splitter to develop it into a detailed design using the
OptiCAD system. The beam splitter has been attached with an inter-part
relationship for AdjacentWith in Section 12.7.2. The term AdjacentWith is retrieved
from the XML instance file. The semantics of the term are interpreted through
querying the ontological relations defined in the shared reference ontology, which
the OptiCAD add-on tool follows. For example, given the following excerpt of an
ontology shown in Figure 12.19, the add-on tool can reason about the instance of
the OWL relation AdjacentWith being an inter-part relationship because the
domain of the OWL object property hasExeType is InterPartRelationship
according to the ontology in Figure 12.19.

282 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 12.19. Ontological definition of AdjacentWith

The tool can further identify and retrieve the hasDescription and hasValue

(both are defined elsewhere in the shared reference ontology) information through
other properties of AdjacentWith in Figure 12.19. The information will then be
executed by the add-on tool to control the multi-disciplinary design relationship
during the modeling of the beam splitter.

Electrical Designer C retrieves the XML instance file of the OPS assembly
together with the relevant integration and quality requirements for the
electrical/electronic component design. C also extracts the semantic definitions of
the testing constraints of the laser driver IC sub-assembly specified in Section
12.7.2. With a “full” access right to the electrical/electronic design objects, C is
able to create or modify these objects. The completed design objects are uploaded
to the server. Based on the design parameters of the laser driver IC from the
Mentor E-CAD system, C instantiates the semantic definitions of the testing
constraints (as shown in Table 12.5) and updates the reliability test property values
in the server database.

Table 12.5. Reliability testing constraints

Mass (M) Shelf Time (T1) Transition Time (T2) CycleNo

M <= 15 g T1 >= 10 min. T2 <= 5 min.

15 g < M <= 150 g T1 >= 30 min. T2 <= 15 min.

150 g < M <= 1500 g T1 >= 60 min. T2 <= 30 min.

10

<owl:ObjectProperty rdf:ID="hasExeType">
 <rdfs:domain rdf:resource="#InterPartRelationship"/>
 <rdfs:range rdf:resource="#exeType"/>
</owl:ObjectProperty>
<owl:Class rdf:ID="exeType">
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#dvb"/>
 <owl:Thing rdf:about="#cc"/>
 <owl:Thing rdf:about="#java"/>
 <owl:Thing rdf:about="#hyperlink"/>
 </owl:oneOf>
</owl:Class>
<owl:Thing rdf:ID="AdjacentWith">
 <hasDescription rdf:datatype="&xsd;string">
 Two multi-disciplinary design objects are adjacent with each other
 </hasDescription>
 <hasValue rdf:datatype="&xsd;string">
 Relatioship_adjacentWith
 </hasValue>
 <hasExeType rdf:resource="#dvb"/>
</owl:Thing>

Semantic Interoperability to Support Collaborative Product Development 283

Quality Engineer E drags and drops the detailed design of the laser driver IC
sub-assembly (submitted by Designer C) from the server to his testing workspace,
together with this model’s XML instance file. Figure 12.20 below shows an
excerpt of the XML file instantiated from the ontological definitions of the concept
ReliabilityTestProperty in Figure 12.4.

Figure 12.20. XML instance file for Mass

The testing application system understands the meaning of terminologies used
in the XML file by referring to the terminology definitions. The logical relations of
the terminologies are queried based on the semantic descriptions of the definitions.
For example, by querying the XML instance in Figure 12.20, the testing system
interprets the semantics of the concept for LaserDriverIC_Mass as: “mass of the
laser driver IC is 80g” set by Electrical Designer C during the design stage. Based
on this interpretation and the constraints in Table 12.5, the testing system conducts
proper settings for the temperature cycling test of the laser driver IC sub-assembly.
In this way, the data semantics from different product models are shared across
heterogeneous systems explicitly and flexibly.

12.8 Conclusions

Collaborative product development needs semantically interoperable product
models and design objects supplemented with formal and explicit engineering
meanings to support semantic interoperability. A new ontology-driven, STEP-
based solution has been developed for specifying, capturing, understanding, and
sharing the product semantics to facilitate heterogeneous information integration
and interoperation among CPD applications in multi-disciplinary CAD, quality and
reliability control, and product development process management. The solution can
enhance the collaborative product development by providing a semantic
interoperability method and a software prototyping system to the cross-functional
CPD participants and systems as illustrated in the collaboration scenarios. Our next
efforts will be focused on the further development of the method and the prototype
to provide the semantic rule modeling and ontology composition services for more
effective collaboration in product development.

<ReliabilityTestProperty rdf:ID="LaserDriverIC_Mass">
 <propertyName rdf:datatype="&xsd;string">Mass</propertyName>
 <description rdf:datatype="&xsd;string">Mass of laser driver IC</description>
 <value rdf:datatype="&xsd;positiveInteger">80</value>
 <refNo rdf:datatype="&xsd;string">Test001</refNo>
 <hasUnit rds:resource="#g"/>
</ReliabilityTestProperty>

284 Collaborative Product Design and Manufacturing Methodologies and Applications

12.9 Acknowledgements

The authors wish to thank Mr. Rajesh Babu, Mr. Xingjian Xu and Mr. Jason Cheng
for their contributions to the software development in this research.

12.10 Acronyms

CPD Collaborative Poduct Dvelopment
STEP STandard for the Exchange of Product model data
PSL Process Specification Language
OWL Web Ontology Language
XML eXtensible Markup Language
RDF Resource Description Framework
NPI New Product Introduction
CAE Computer-Aided Engineering
FEA Finite Element Analysis
CFP Computational Fluid Dynamics
Pset Property Set
OPS Optical Pick-up System

12.11 References

[1] Pollock, J. T., Hodgson, R., 2004, Adaptive Information: Improving

Business through Semantic Interoperability, Grid Computing, and
Enterprise Integration, Wiley-Interscience.

[2] Bruijn, J., Ding, Y., Arroyo, S., Fensel, D., 2004, “Semantic information
integration in the COG project,” Corporate Ontology Grid Project White

Paper, available at http://www.cogproject.org/publications/sii-wp.pdf
[3] Yoshioka, M., Umeda, Y., Takeda, H., Shimomura, Y., Nomaguchi, Y. and

Tomiyama, T., 2004, “Physical concept ontology for the knowledge
intensive engineering framework,” Advanced Engineering Informatics, 18,
pp. 95–113.

[4] Alexiev, V., Breu, M., Bruijn, J., Fensel, D., Lara, R. and Lausen, H, 2005,
Information Integration with Ontologies: Experiences from an Industrial
Showcase, Wiley, West Sussex, U.K.

[5] Tao, F., Chen, L., Cox, S., Shadbolt, N., Puleston, C. and Goble, C., 2003,
“Semantic support for grid-enabled design search in engineering,”
Proceedings of the First GGF Semantic Grid Workshop, the Ninth Global
Grid Forum (GGF9), Chicago IL, USA.

[6] ISO TC184/SC4, ISO 10303, 1994, “Industrial automation systems and
integration – product data representation and exchange,” Geneva.

[7] Gibb, B. and Damodaran, S., 2002, ebXML: Concepts and Application,
Wiley.

Semantic Interoperability to Support Collaborative Product Development 285

[8] Stork, A., Smithers, T. and Koch, B., 2002, “WIDE – semantic Web-based
information management and knowledge sharing for innovative product
design and engineering,” CG Topics, 4, pp 23–24.

[9] Tao, F., Chen, L., Shadbolt, N. R., Pound, G. and Cox, S. J., 2003,
“Towards the semantic grid: putting knowledge to work in design
optimisation”, Proceedings of the 3rd International Conference on

Knowledge Management I-KNOW '03, Austria.
[10] ISO TC184/SC4 and TC184/SC5. “Process Specification Language (PSL),”

available at http://www.nist.gov/psl/
[11] Ciocoiu, M., Gruninger, M. and Nau, D. S., 2001, “Ontologies for

integrating engineering applications,” Journal of Computing and
Information Science in Engineering, 1(1), pp 12-22.

[12] Guarino, N., 1998, “Formal ontology and information systems”, in Guarino,
N., (Eds.), Formal Ontology in Information Systems, IOS Press.

[13] W3C, “OWL Web ontology language overview”, available at
http://www.w3.org/TR/2003/PR-owl-features-20031215/

[14] W3C, “RDF/XML syntax specification”, available at
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

[15] ISO TC184/SC4, ISO 10303 Part 11: “Description methods: The EXPRESS
language reference manual,” Geneva, 1994.

[16] Bittner, T., Donnelly, M. and Winter, S., 2005, “Ontology and semantic
interoperability”, In Prosperi, D. and Zlatanova, S. (Eds.), Large-scale 3D

data integration: Problems and challenges, CRCpress (Tailor & Francis).
[17] ISO TC184/SC4, ISO 10303 Part 203, 1994, “Configuration controlled

design,” Geneva.
[18] STEP AP210 Website, available at http://www.ap210.org/
[19] Yang, Q. Z. and Lu, W. F., 2005, “A Web-enabled engineering object

modeling environment to support interoperability and intelligent services in
collaborative design”, Proceedings of ASME 2005 Design Engineering
Technical Conferences, Paper No: DETC2005-84240.

[20] Scheer A-W, ARIS - Business Process Modeling, 3rd Edition, Springer,
2000.

[21] Yang, Q. Z., Zhu, C. F., Ming, X. G. and Lu, W. F., 2005, “Configurable
product design processes with integrated knowledge maps”, Proceedings of

the 12th ISPE International Conference on Concurrent Engineering:
Research and Applications, pp.161–166.

[22] W3C, “XML schema part 2: datatypes second edition,” available at
http://www.w3.org/TR/xmlschema-2/.

[23] Yang, Q. Z., Li, X., Lu, W. F., Ganesh, N. and Brombacher, A. C., 2005,
“Design quality process management for improvement of engineering
design performance,” Proceedings of the 15th International Conference on
Engineering Design, Melbourne, Australia.

[24] Rational Software Corporation, Rational Rose 2000e, Cupertino, CA, USA,
2000.

13

A Proposal of Distributed Virtual Factory for

Collaborative Production Management

Toshiya Kaihara, Susumu Fujii and Kentaro Sashio

Department of Computer and Systems Engineering, Kobe University, Japan

In this chapter, a Distributed Virtual Factory (DVF) concept has been introduced.
DVF consists of distributed precise manufacturing simulation systems connected
by Time Bucket synchronization mechanisms. Different from the conventional
manufacturing system simulations that deal only with material and information
flow, the DVF concept focuses also on detailed product cost analysis to facilitate
profitable factory management. Meanwhile, the distributed manufacturing
simulation is integrated with Activity-Based Cost (ABC) estimation method to
estimates the precise manufacturing activity cost. It has been confirmed that DVF
integrated with ABC successfully provides effective means to monitor product
costs throughout the entire factory. The experimental results show that the DVF
concept is effective enough to provide the strategic benefits with respect to both
accurate shipping date and detailed product cost in VE environment.

13.1 Introduction

There is a growing recognition that the current manufacturing enterprises must be
agile, that is, capable of operating profitably in a competitive environment of
continuously changing customer demands [1]. Supply Chain Management (SCM)
or Virtual Enterprise (VE) has increasingly become a common idea for enterprises
to survive in the agile environment. However, in the construction of effective SCM
or VE, there exists a lack of methods, tools, and environment to support the
integration of process models from multiple organizations.

Manufacturing system is one of the core business units to form an effective
SCM or VE coalition, and it is crucial to present attractive and collaborative
opportunities to other business units. There are several attractive benefits, such as
cycle time, fulfilment of due date or accurate and quick shipping date, cost, and
quality assurance for volatile ordered products. It is well known that manufacturing

288 Collaborative Product Design and Manufacturing Methodologies and Applications

system simulation is a powerful technique which can provide the above-mentioned
benefits [2, 3]. Distributed simulation model concepts provide practical solutions to
facilitate a globally precise simulation model in a SCM or VE environment,
because it is constructed as the integration of several manufacturing simulation
models of production modules scattered worldwide. The total behavior of the
whole manufacturing system is only attainable using the distributed simulation
concept.

In this chapter, we first introduce a Distributed Virtual Factory (DVF) concept
[4, 5], which consists of several distributed precise simulation models connected
by several synchronization mechanisms called Time Bucket algorithms [6, 7]. DVF
is applied to the precise evaluations of the whole manufacturing system under two
major types of manufacturing operational logics, the PULL and PUSH methods. In
this study, we newly apply Activity Based Costing (ABC) method [8] to the DVF
architecture to estimate the detailed cost analysis of the products. The methodology
facilitates strategic enterprise management to prepare the request for the bids in the
VE environment. The effectiveness of the proposed concept in agile manufacturing
is finally examined using several simulation experiments.

13.2 Distributed Virtual Factory

13.2.1 Concept

As manufacturing systems have become automated, the so-called automation
islands appear in factories. Nowadays, most manufacturing systems consist of
several automation islands, such as Direct Numerical Control systems (DNC),
Flexible Manufacturing Systems (FMS), automated cell systems, Automated
Guided Vehicle (AGV) systems and so on. In this course of development, many
simulation studies have been performed to obtain the effective design of the
automated systems. Some simulation systems developed for those studies have
been extended for use in operational decision making at the shop floor in which the
new system is installed. This results in the advent of simulation islands, each
corresponds to the real automation island in a factory.

Attempts have been made to integrate the automation islands by connecting the
computers in the islands using information network systems for the information
flow and by connecting the storages in the islands with some transportation
systems for the material flow. Presently, however, most of the simulation islands
remain as they were. We consider the integration of simulation islands as a virtual
manufacturing system or a Distributed Virtual Factory (DVF) to utilize the
potential effectiveness of simulation islands for overall improvement of the design
and management of a factory [9, 10]. In this study, we propose the DVF concept
which consists of several distributed precise simulation models implemented in
different CPUs and linked altogether with a computer network.

To be used as an effective tool for evaluation in the circumstances described
above, a DVF needs to satisfy the following features as well as the basic ones for
the conventional simulation languages:

 A Proposal of Distributed Virtual Factory for Collaborative Production Management 289

(1) The system at the factory level is a large-scale system in reality. The
simulation system needs to model the total system with the same details
as of the subsystems.

(2) The scope covered by the system includes most of the factory-wide or
even world-wide activities, consisting of machining and assembly shops,
warehouses, and transportation systems which are referred to as
subsystems in the above and are located at the area level in
ISO/TC184/WG1 CIM reference model of the manufacturing system with
six layers.

(3) The level of automation differs amongst the target factories, the target
shops, and the target machines. The system needs to cope with all such
situations.

(4) To ease the model building of a factory wide simulation system, it is
essential to provide the capability to extend the model gradually in terms
of size and detail. Upgradeability of an old subsystem to a new one is also
essential.

To develop a DVF, we can take two approaches, i.e., to develop a completely
new simulation system from scratch [11] or to construct a system utilizing the
existing simulation systems [4]. The latter can integrate the simulation islands in a
factory and will effectively save the effort of developing a totally new simulation,
because it can utilize the existing standalone simulation systems with minor
modifications.

13.2.2 Structure

A distributed simulation system should mostly satisfy the structural features of a
factory and the requirements for a factory-wide simulation system when it is
developed on a distributed computer system installed as the infrastructure of DVF.

A DVF structure is shown in Figure 13.1. Each subsystem at the area level can
be modeled with a processor and a transportation system. T-Process, connecting
areas are modeled with a processor transferring works. Functions for information
exchange amongst areas are also necessary to model the collection and the dispatch
of information occurring from time to time. One processor can be allocated to
model a global decision making system collecting ordinary status reports of areas
for decision making as the factory level management system in Figure 13.1.

13.2.3 Time Bucket Mechanism

A basic function, termed the synchronization mechanism, is required to
synchronize the timing of event execution amongst simulation processes in a
distributed simulator on multiple processors, since simulation processes of each
area and T-Process have different simulation clocks in their computational contents
at a specific time in the real world.

The authors have proposed a Time Bucket Mechanism for the distributed
manufacturing system simulation by integrating simulators. The time bucket
method has various extensions to fit the DVF environment as follows:

290 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 13.1. A DVF structure

(1) Simple Time Bucket mechanism (TB): In this method, all the simulators
execute simulation processing independently and concurrently at the
interval called Time Bucket, which is not necessarily equal to the time
bucket in MRP (Manufacturing Resource Planning). Each simulator has
its own simulation clock and stops its execution at the interval of one
Time Bucket. When all simulators come to the end of one Time Bucket,
messages on the material flow are exchanged among them, and they
restart the simulation execution. The larger the size of Time Bucket is, the
more efficient the execution will be, since all the simulators execute their
simulation processing independently in a Time Bucket period. This
indicates that the size of Time Bucket should be larger considering the
independency of the different areas.

(2) Single-Phased Bucket mechanism (SPB): In the SPB algorithm, a
simulation processing for one Time Bucket is divided into two phases.
One is an Area simulation processing phase, and the other is a simulation
phase of transportation. They are executed alternately. Since the T-
Process starts its processing of one Time Bucket after all the Area
simulators come to the end of the Time Bucket, it can receive
transportation request messages appropriately.

(3) Double-Phased Bucket mechanism (DPB): DPB requires the status saving
function and loading function in T-Process for roll back operations. The
difference between SPB and DPB is the transportation simulation phase,
i.e., the performance of T-Process. In the DPB algorithm, T-Process that
receives messages from the Area simulators executes its processing for
two Time Bucket periods, and stops. The T-Process then rolls back to its

 A Proposal of Distributed Virtual Factory for Collaborative Production Management 291

status at the end of the first Time bucket, i.e., before the Area simulators
start simulation processing of the second Time Bucket, T-Process predicts
the time when any work arrivals to Area simulators so that the Area
simulators can register the time of arrival events.

Readers can refer to [6, 7] for the details of the mechanisms.

13.3 Cost Analysis

13.3.1 Cost Analysis in Manufacturing Systems

Conventional costing methods are related to cost factors to determine what the total
manufacturing cost is going to be. To make a reasonable estimation of the
manufacturing cost, there are some factors that need to be considered.
Manufacturing costs include costs for material, processing, inventory, labor, R&D,
rent for use of third-party testing facilities, and logistics. A cost model has a very
mathematical nature and the size of this model can grow to tremendous proportions,
if the number of the operations is high.

Some costing methods rely on integer programming methods. Here, a
mathematical model is set up where there is an objective function of the cost. The
aim is to minimize this objective function subject to a set of constraints. These
constraints differ from company to company, but generally consist of the cost
factors stated above.

13.3.2 Activity-based Costing (ABC)

ABC is a method of cost management that identifies business activities performed,
tracks costs associated with these activities, and uses various cost drivers to trace
the costs of those activities to products [8]. The cost drivers reflect the
consumption of activities by the products. ABC provides a far more accurate
portrayal of cost than conventional methods. Given a better understanding of cost,
management can make far better decisions in terms of competitive advantages.
Furthermore, the improved understanding and localization of costs can be used to
eliminate low value but high cost activities and hence reduce cost. It is an aid to
Business Process Reengineering (BPR).

ABC systems focus on activities required to produce each product or provide
each service based on each product or service consumption of the activities. The
fundamental difference between ABC and conventional costing is that
conventional costing assumes that products cause costs, whereas ABC assumes
that activities cause cost and the cost objects create the demand for activities. The
ABC systems encourage significant breakdown of work activities and the proper
allocation of costs, automatically making a number of potentially hidden costs
more visible.

In [9], it is shown that how ABC permits the very important distinction
between resource usage and resource spending. The difference is unused capacity.
Elimination of this unused capacity permits costs to be reduced. ABC deals much

292 Collaborative Product Design and Manufacturing Methodologies and Applications

better with large-scaled and integrated manufacturing systems than basic costing
methods. With ABC, the activities are determined and associated with their
specific costs. The eventual costs depend on the number of activities (each with
their specific costs) which are taken to compete the product.

13.3.3 DVF and ABC

ABC provides an accurate portrayal of costs under current factory conditions. The
integration between the DVF concept and the ABC method realizes an additional
attractive merit in factory management. The integration obviously enables to
estimate detailed product costs in all over the factory, because DVF evaluates all
the manufacturing data in a distributed manner and provides the detailed
manufacturing data throughout the factory into the ABC analysis.

It is sometimes required to estimate the cost analysis in the near future by
observing current data, especially in an agile manufacturing environment. A
strategic operation is executable only by the future estimation including cost
analysis. DVF and ABC are effectively integrated, because simulation can provide
detailed manufacturing activity data, which are required but normally difficult to
estimate, for the ABC analysis. Several issues to discuss on product cost through
the entire factory are provided by the proposed approach. Precise cost analysis
about the whole factory is promptly realised in a VE environment for bidding an
attractive offer in VE.

13.3.4 Manufacturing Model

For easier explanation, we prepare a large-scaled factory, which consists of 7 sub-
modules (Figure 13.2(a)), such as Factory Management, Cooperative Factory,
Processing A, Processing B (Figure 13.2(b)), Material Storage & Parts Storage,
Assembly Line (Figure 13.2(c)), and Distribution Center.

Each sub-module is implemented into different processors and they organize
DVF with the synchronization mechanism as a whole. The factory handles 5 types
of products and 50 types of materials, which consist of 20 types in k-part (k1-k20)
and 30 types in m-part (m1-m30). The bill of materials is described in Table 13.1.
The process flow of each material is shown in Figure 13.3. In this chapter, ABC is
applied to the area covered from the Material Storage to the Parts Storage via two
types of the Processing (A, B) as a basic study.

13.3.5 Formulations for Cost

The following given constants are defined:

Direct cost

Cm : Material cost (m: material)

DCL : Direct labor cost (L: labor)

DCE : Direct energy cost (E: energy)

 A Proposal of Distributed Virtual Factory for Collaborative Production Management 293

Indirect cost

CL : Indirect labor cost

CR : Repair cost (R: repair)

CE : Indirect energy cost

CMA
D : Facility cost (D: Depreciation, MA: machine ID)

CS : Stock cost

Figure 13.2. Target factory

(a) The whole factory

(b) Processing

(c) Assembly

294 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 13.3. Material flow in the process modules

Table 13.1. Bill of materials

 A Proposal of Distributed Virtual Factory for Collaborative Production Management 295

The data which are estimated and acquired by simulation are as follows:

MPMA
P : Total processing time for product type P in machine MA

LPMA
P : Total set-up time for product type P in machine MA

VAR
P : Total transporting time for product type P in area AR

SST
P : Total queuing time for product type P in stock ST

 MFMA : Total breakdown time in machine MA

LFMA : Total maintenance time in machine MA

MMAN
P : Total amount of product P processed in machine MA

VARN
P : Total amount of product P transported in area AR

SSTN
P : Total amount of product P stored in stock ST

MFMAN : Total number of breakdowns in machine MA

Where we have 5 types of machines as follows:

MA: H(HMC), V(VMC), N(NC), C(CLEAN), M(MEASURE)

2 types of parts are as follows:

 P: k, m

3 types of areas at the processing units in our factory model are as follows:

AR: a(Processing A), b(Processing b), out(amongst area)

Generally, ABC consists of two major steps and each step in our approach is

formulated as follows:

STEP 1: Indirect cost allocation to the activities

i) Indirect labor cost (cost driver: operational time)

Total operational time of all the operators is

L= LPH
P + LFH + LPV

P + LFV + LPN
P + LFN + LFC + LFM

(13.1)

Then, indirect labor cost I for the set-up operation in machine MA is

 CLMA
L1 = (LPMA

P / L) CL (13.2)

Indirect labor cost II for machine repair operations in machine MA is

 CLMA
L2 = (LFMA / L) CL (13.3)

ii) Repair cost (cost driver: breakdown time)

Total operational time of all the operators is
MF= MFH + MFV + MFN + MFC + MFM (13.4)

Then, repair cost in machine MA is

296 Collaborative Product Design and Manufacturing Methodologies and Applications

CMA
R = (MFMA / MF) CR (13.5)

iii) Energy cost (cost driver: processing time)

Total processing time in machine MA and transporting time in area AR
are:

 MP= MPH
P + MPV

P + MPN
P + MPC

P + MPM
P

 + Va
P + Vb

P + Vout
P (13.6)

Then, energy cost in machine MA is

CMA
E = (MPMA

P / MP) CE (13.7)

And, energy cost in area AR is

 CAR
E = (VPAR

P / MP) CE (13.8)

STEP 2: Activity cost allocation to the products

In this step, the cost price of each product is calculated using activity cost
allocation. The final cost price in product P is attained as follows:

PP=Cm + ICL1
P + ICL2

P + ICE
P + ICD

P + ICS
P + ICR

P (13.9)

where IC*
P : cost related to activity * in product P

As an example we describe the formulation to attain ICL1
P, which is indirect

labor cost I for set-up operation in product P. At first, from (2) indirect labor cost I
ratio is:

 RMA
L1= CLMA

L1 / LPMA
P (13.10)

And, set-up time per a part in machine MA is
DLPMA

P= LPMA
P /MMAN

P (13.11)

Then, indirect labour cost I per a part in machine MA is obtained as

ICL1MA
P= RMA

L1 * DLPMA
P (13.12)

Finally

ICL1
P= ICL1H

P+ ICL1V
P +ICL1N

P (13.13)

Cost drivers of the cost items at each step are shown in Table 13.2.

 A Proposal of Distributed Virtual Factory for Collaborative Production Management 297

Table 13.2. Cost Drivers

Indirect Cost Cost Driver
STEP 1

Cost Driver
STEP 2

Labour Cost Working Time Working Time
Operating Time

Energy Cost Operating Time
Transporting Time

Operation Time
Transporting Time

Facility Cost Operating Time
Transporting Time

Operating Time
Transporting Time

Stock Cost Time in Stock Time in Stock
Repair Cost Repairing Time Operating Time

13.4 Experimental Results

13.4.1 Simulation Model

A simulation model based on the concept of DVF has been developed in order to
evaluate its effectiveness in a VE environment. The model is precise enough to
provide the offer for VE contracts, and includes a manufacturing management
system for the whole factory. There are two types of major management policies
that are implemented in the simulation model to investigate a practical DVF in a
VE environment. One is the PUSH logic, which is operated by the top-down
strategic plan, such as the MRP system (Figure 13.4), the other is the PULL logic,
in which down stream business processes send their requests to the preceding up
stream ones (Figure 13.5). JIT (Just In Time) system is one of the most popular
systems categorized in the PULL logic.

As we described in the previous Section 13.3.4, the target factory has 7 areas,
including Factory Management, Cooperative Factory, Processing A, Processing B,
Material Storage & Parts Storage, Assembly Line and Distribution Center. These
area models are developed separately with different software and implemented on
different CPUs independently shown in Table 13.3. The precise simulation model
calculates the possible shipping date of the required products in VE from the
current inventory conditions including WIP (Work In Process) under various
management policies. 5 types of products (A, B, C, D, E) are considered to be
manufactured in the simulation model shown in Table 13.1. We assume the part
types of k and m are produced in the factory and the others are purchased. In this
experimental model, we selected TB as the synchronization mechanism.

A product order pattern in the experiment is shown in Figure 13.6. We assume
the order amount ratio in each product type is (A:B:C:D:E)=(6:4:2:1.5:1) . The
daily amount of orders varies drastically between 10 and 50 in the simulation
conditions followed by uniform random distribution.

13.4.2 Total Factory Management in DVF

The distributed simulation of the precise factory model is executed to confirm the
validity of the model in a VE environment. The estimation of the management

298 Collaborative Product Design and Manufacturing Methodologies and Applications

policy influence in the inventory conditions in each manufacturing area is quite
difficult but important to propose strategic offers in VE. Precise estimation of the
dynamical inventory changes facilitates the accurate control of the product
shipping date.

The simulation results of part k01 inventory transition in the part storage under
the PUSH and PULL management policies are shown in Figures 13.7 and 13.8,
respectively.

Figure 13.4. Simulation model in PUSH logic

Figure 13.5. Simulation model in PULL logic

 A Proposal of Distributed Virtual Factory for Collaborative Production Management 299

Table 13.3. Configuration

Area EWS Simulation software

Factory Management Axil: Axil Server 400 C, Microsoft ACCESS 97
Cooperative Factory SUN: Spark Station 4 Smpl, C

Processing A SUN: Spark Station 4 SLAM II, Fortran, C
Processing B SUN: Spark Station 4 SLAM II, Fortran, C

Material & Parts storage SUN: Spark Station 4 Smpl
Assembly Line SUN: Spark Station 4 SLAM II, Fortran, C

Distribution Center SUN: Spark Station 4 Smpl, C

Figure 13.6. An example of product order

Figure 13.7. Part k01 inventory in PUSH management

300 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 13.8. Part k01 inventory in PULL management

It is obvious that the inventory change in the PUSH logic fluctuates more than
the change in the PULL logic, because PUSH logic easily suffers from unexpected
dynamical demand changes. On the other hand, the inventory in PULL logic is
stable even in a volatile situation. However, in the other simulation experiments,
the PUSH logic has been proven to be effective, if we can accurately grasp and
estimate the product demand, i.e., the dynamical product demand change is
relatively small.

Simulation experiments confirmed that the DVF provides rational materials to
discuss the managerial strategy of the entire factory as a whole. The accurate
possible shipping date of all the products is acquirable by the precise inventory
estimation so as to make an appropriate bid in the VE environment.

13.4.3 Cost Analysis

For bidding an attractive offer in VE, we introduced the ABC approach into the
DVF architecture. As ABC is a procedure that enables the estimation of product
costs more accurately, we think the procedure is essential to realize an effective
enterprise management in agile manufacturing, which is characterized by small
batch sizes and high customer satisfaction.

In this chapter, ABC is applied to the area covered from the Material Storage to
the Parts Storage via two types of the Processing (A, B) shown in Figures 13.2(a)
and 13.2 (b) as a basic study. The distributed simulation of the target factory was
executed to confirm the validity of the ABC approach with the DVF model. It is
essential to simulate the dynamical changes of the inventory conditions in each

 A Proposal of Distributed Virtual Factory for Collaborative Production Management 301

manufacturing area in order to analyze the accurate and precise cost analysis in the
lot level.

Figures 13.9 and 13.10 show the results of conventional cost analysis and ABC
cost analysis of Part k01 ~ k05 (currency is Yen) in the PULL management,
respectively. In the conventional approach, a single cost driver, operating time, is
used to evaluate each product cost. In the experiment, these results are completely
different, and the difference is mainly caused by the stock cost evaluation. The
stock cost is calculated accurately in ABC because it is directly proportional to the
actual stock time. By observing the ABC result, shop floor managers realise that it
is essential to decrease the inventory level of Part k5 to reduce the product cost in
this case.

In the DVF model, it is also possible to estimate and collect all the lot level data
from each discrete-event transaction, such as stock-in, stock-out, process-start,
process-finish, etc. This enables the ABC approach in the lot level as well as in the
part type level as shown in Figure 13.11. This figure shows the lot level cost of
each produced part in type k01. Lot level ABC clarifies a transitional cost analysis
and facilitates subtle management of the entire factory.

Precise lot level cost estimation enables us to operate appropriate price bids for
a product demand in the VE environment.

It has been confirmed that detailed cost analysis of each product through the
whole factory is attainable by the proposed approach. DVF integrated with ABC
successfully provided effective materials to discuss on product cost in the entire
factory. Since the strategic operation is executable only by the future estimation
including cost analysis in agile manufacturing environment, our approach is quite
promising as the factory management in the next VE age.

13.5 Conclusions

In this chapter, we introduce a Distributed Virtual Factory (DVF) concept, which
consists of distributed precise manufacturing simulation systems connected by
Time Bucket synchronization mechanisms. Although conventional manufacturing
system simulations normally deal only with material and information flow, the
proposed concept focuses also on detailed product cost analysis to facilitate
profitable factory management. The integration of distributed manufacturing
simulation and ABC method is quite rational, because the simulation productively
estimates the precise manufacturing activity data, which is required but normally
difficult to estimate for the ABC analysis. It has been confirmed that DVF
integrated with ABC successfully provides effective means to monitor product
costs throughout the entire factory. The experimental results show that the DVF
concept is effective enough to provide the strategic benefits with respect to both
accurate shipping date and detailed product cost in VE environment. The DVF
concept is concluded to play an important role in factory management in the
coming collaborative manufacturing era.

302 Collaborative Product Design and Manufacturing Methodologies and Applications

Figure 13.9. Conventional cost analysis

Figure 13.10. ABC-based cost analysis

Labor

Labor

Repair

Stock

Facility

Energy

Labor

Material

Labor

Repair

Stock

Facility

Energy

Labor

Material

 A Proposal of Distributed Virtual Factory for Collaborative Production Management 303

Figure 13.11. Lot level ABC analysis in Part k01

13.6 References

[1] Iwata, K. and Fujii, S., 1997, “New manufacturing era – adaptation to
environment, culture, intelligence and complexity,” Summary of the
Questionnaire of the 29th CIRP International Seminar on Manufacturing

Systems.
[2] Law, A. M. and Kelton W. D., 1990, Simulation Modeling and Analysis,

McGraw-Hill.
[3] Grant, H. F., 1987, “Simulation and factory control – an overview,”

Proceedings of the IX ICPR, pp. 576–583.
[4] Fujii, S., Kaihara, T. and Tanaka, M., 1998, “Manufacturing system

simulation in virtual enterprise,” Simulators International XV, Simulation
Series, 30(3), The Society for Computer Simulation International, pp. 179–
184.

[5] Sashio, K., Fujii, S. and Kaihara, T., 2005, “A study on data handling
mechanism of a distributed virtual factory,” Knowledge And Skill Chains in
Engineering and Manufacturing, Springer, New York, pp. 293–300.

[6] Fujii S., et al., 1994, “Synchronization Mechanisms for Integration of
Distributed Manufacturing Simulation Systems under CIM Environment,”
Proceedings of Advances in Intelligent Computer Integrated Manufacturing

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Lot Number

P
a
rt

s
C

o
st

 (
Y

e
n
) Repair

Stock

Facility

Indirect Energy

Direct Energy

Indirect Labor

Direct Labor

Material

304 Collaborative Product Design and Manufacturing Methodologies and Applications

System, pp. 268–274.
[7] Fujii, S., Kidani, Y., Ogita, A. and Kaihara, T., 1999, “Synchronization

mechanisms for integration of distributed manufacturing simulation
systems,” International Journal of Simulation, The Society for Computer

Simulation, 71(3), pp. 187–197.
[8] Cooper, R. and Kaplan, R.S., 1992, “Activity-based systems: measuring the

costs of resource usage,” Accounting Horizons, September, pp. 1–13.
[9] Fuii, S., Kaihara, T., Morita, H. and Tanaka, M., 1999, “A distributed

virtual factory in agile manufacturing environment,” Proceedings of the 15th

conference of the IFPR (ICPR-15), 2, pp. 1551–1554.
[10] Sashio, K., Fujii, S. and Kaihara, T., 2004, “Distributed virtual factory

under e-business environment,” Proceedings of 11th International

Conference Simulation in Production and Logistics, pp. 451–460.
[11] Kaihara, T. and Besant, C. B., 1993, “Manufacturing system modeling

structure based on object oriented paradigm,” Proceedings of the 1993
Summer Simulation Conference, pp. 831–836.

Index

Abaqus, 256
ABC, 287, 288, 291, 292, 293, 296, 301,

302, 303, 304
ACL, 11, 190, 191, 193
Activex, 9, 153
Activity-Based Cost, 287
Agent, 1, 10, 11, 12, 15, 28, 29, 60, 138,

140, 141, 143, 144, 149, 151, 175,
186, 187, 188, 189, 190, 191, 192,
193, 195, 199, 200, 201

Agent Communication Language, 11,
193

AGV, 177, 288
Ansys, 10, 38, 256
API, 84, 98, 120, 123, 169, 175
Application Programming Interface, 175
Automated Guided Vehicles, 177
B-Rep, 130, 131
C Programming Language, 77
CAD, 6, 7, 9, 10, 15, 17, 24, 25, 35, 36,

38, 39, 59, 60, 62, 72, 73, 76, 77, 91,
92, 93, 94, 95, 99, 100, 103, 109, 110,
135, 136, 137, 140, 142, 144, 202,
233, 247, 254, 255, 256, 257, 258,
260, 261, 262, 263, 264, 265, 267,
268, 269, 273, 274, 275, 276, 278,
279, 281, 282, 283, 284, 285

CAE, 9, 110, 202, 256, 261, 285
CAM, 60, 72, 76, 77, 110, 135, 137, 202,

254
CAPP, 72, 73, 76, 77, 110
CATIA, 61
CAx, 110, 111, 112, 136
CCE, 109, 110
CGI, 10
Client-Server, 10, 11, 40, 51, 74, 151,

152, 154
Collaborative Design Process, 280

Collaborative Engineering, 3, 37, 38, 39,
41, 42, 51, 58, 69, 91, 109

Collaborative Engineering Design, 37,
38, 58

Collaborative Manufacturing, 137
Collaborative Manufacturing, 151
Collaborative Product Design And

Manufacturing, 71, 72, 73, 75, 76, 81,
85, 87

Collaborative System, 39, 40, 51, 60,
111, 153

Computer Numerical Control, 175
Computer Supported Cooperative Work,

38, 60
Computer-Aided Design, 6, 38, 60, 72,

92, 109, 110, 136, 137, 140, 202
Computer-Aided Engineering, 9, 110,

202, 285
Computer-Aided Manufacturing, 60, 73,

110, 202
Computer-Aided Process Planning, 72,

110
Concurrent And Collaborative

Engineering, 109
Conflict Resolution, 3, 37, 38, 39, 40,

41, 44, 51, 58, 139, 145
CORBA, 2, 9, 10, 12, 14, 15, 28, 35, 39,

75
Cost Analysis, 287, 288, 292, 302, 303
CPD, 255, 256, 257, 258, 260, 261, 262,

266, 268, 269, 273, 276, 277, 280,
285

CRM, 236
CSCW, 39, 93
Customer Relationship Management,

236
Database Management System, 110
DBMS, 110
DCOM, 2, 10, 28, 35, 75

306 Index

Design Process, 12, 15, 16, 18, 21, 23,
24, 30, 34, 38, 40, 93, 94, 95, 201,
203, 204, 205, 206, 208, 209, 210,
211, 212, 213, 214, 215, 216, 217,
218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 259, 280

Design Process Lifecycle Management,
202, 229

Design-by-Feature, 111, 137
Detailed Virtual Design System, 61
Dialog Graph, 43, 46
Direct Cost, 293
Distributed And Collaborative

Manufacturing, 137, 139
Distributed Process Planning, 152, 153,

175, 176
Distributed Process Planning, 151, 156
Distributed Scheduling, 180, 186
Distributed Virtual Factory, 287, 288,

289, 302
Document Type Definition, 80, 81
DOME, 11, 12, 14, 39
DPP, 151, 156, 157, 159, 161, 162, 163,

164, 170, 175
DTD, 80, 81
DVDS, 61
DVF, 287, 288, 289, 290, 292, 298, 301,

302
Dynamic Scheduling, 151, 152, 153,

156, 164, 174, 175, 177, 180, 182,
184, 185, 189, 192, 196

Dynamic Scheduling, 176, 198
E-Commerce, 7
Engineering Design, 35, 38, 39, 37, 38,

40, 41, 59, 69, 230, 231, 232, 234,
287

Enterprise Resource Planning, 176, 235
ERP, 176, 198, 236
EXPRESS, 38, 109, 112, 113, 117, 118,

134, 135, 137, 248, 250, 287
Extended Enterprise, 71, 91, 92
Extensible Distributed Product

Realization, 1, 4, 18
FAM, 48, 49, 50
Feature, 109, 112, 113, 115, 116, 117,

119, 121, 123, 125, 126, 127, 129,
131, 133, 134, 136

Feature Conversion, 74, 111, 137
Feature Model, 109, 111, 112, 113, 116,

117, 121, 123, 126, 135
Feature Recognition, 74, 91, 111, 157
FIPER, 11, 12, 13, 16, 37, 218, 230

Flexible Manufacturing Systems, 176,
200, 288

FMS, 48, 49, 50, 176, 177, 182, 288
Fuzzy Association Memory, 48, 50
Fuzzy Inference, 44, 48
Fuzzy Inference Rules, 48
Fuzzy Logic, 41, 58
Fuzzy Membership Functions, 47
Fuzzy System, 48
G-Code, 158, 247
Generic Feature Model, 117
Geometrical Modeling, 109, 110, 111,

117, 131, 135
Graphical User Interface, 67
GUI, 62, 67
Heterogeneous Platforms, 5, 6, 15, 32,

38
Heterogeneous Programming Languages,

5, 6, 32, 33
Heuristic Rules, 44, 45
HTTP, 10, 28, 77, 78, 85, 86, 87, 155,

165, 167, 175
IDT, 60
Immersive Discussion Tool, 60
Indirect Cost, 293, 296
Intellectual Capital, 201, 202, 210
Internet, 1, 6, 9, 10, 18, 19, 21, 36, 37,

39, 40, 59, 61, 67, 70, 74, 91, 92, 139,
141, 152, 153, 176, 188, 200

JADE, 195
JATLITE, 141, 142, 149, 151
Java, 9, 10, 12, 15, 16, 19, 21, 23, 24, 27,

28, 29, 31, 33, 34, 39, 51, 58, 59, 61,
75, 77, 84, 85, 138, 142, 149, 151,
152, 153, 155, 162, 165, 167, 169,
170, 171, 174, 176, 195

Java 3D, 59, 85, 152, 153, 155, 165, 167,
169, 170, 171, 174, 176

Java Native Interface, 77
JIT, 298
JNI, 77
Just In Time, 298
Knowledge Query And Manipulation

Language, 141
Knowledge Query Modeling Language,

11
KQML, 11, 141, 142, 151
LCAs, 16, 17, 18, 21, 22, 26, 29, 30,

202, 205, 206, 207, 208, 209, 211,
212, 213, 216, 221, 222, 226

Linear Cellular Alloys, 4, 13, 16, 17, 38,
202

Index 307

LISP, 9
M3D, 94, 95, 96, 98, 99, 100, 101, 102,

103, 106, 107, 108
Machining Process Sequencing, 157
Manufacturability, 137, 138, 139, 140,

141, 144
Manufacturability, 140
MAS, 138, 140, 143
Mass, 138
Middleware, 2, 35, 75, 77, 84, 85, 92
Multi-Agent Systems, 138, 175, 186,

191
NASTRAN, 256
NC, 168, 170, 171, 247, 254, 296
Netbuilder, 11, 12, 14, 37
Ontology, 250
Open Engineering Systems, 1, 2, 4, 33,

35, 233
Outer Core, 250
OWL, 255, 256, 257, 258, 260, 269, 270,

271, 272, 283, 285, 286
Parasolid Modeling Kernel, 77
Pdps, 201, 202
PLM, 61, 137, 201, 202, 203, 204, 213,

215, 227, 229, 236, 240, 241, 242,
243, 252, 253

Plug-And-Play, 71, 72, 75, 85, 90, 224
Plug-And-Play, Ix, 71
Process, 249, 250
Process Planning, 11, 60, 82, 84, 111,

135, 136, 137, 139, 141, 143, 144,
146, 149, 150, 156, 157, 165, 174,
239, 247, 248, 258, 259, 261

Process Specification Language, 220,
233, 249, 285, 286

Product Development Processes, 201,
202, 231

Product Lifecycle Management, 61, 201,
202, 227, 231, 235, 236, 253

PROLOG, 9
PSL, 220, 233, 247, 249, 250, 256, 285,

286
PSL-Core, 250
Remote Procedure Call, 33
RPC, 10, 33
Scheduling, 137, 138, 139, 141, 144,

149, 151, 154, 156, 159, 162, 164,
175, 176, 177, 178, 179, 180, 181,
182, 183, 184, 185, 186, 187, 188,
189, 190, 191, 193, 194, 195, 196,
198, 199, 200, 201, 248

SCM, 227, 287, 288

SDK, 12, 16
Shop Floor, 164, 175, 176, 177, 182, 195
SMARTEAM, 61
SOAP, 13, 19, 21, 25, 28, 29, 30, 31, 33,

38, 84, 191, 192, 193
Standard Development Kit, 16
STEP, 21, 22, 34, 38, 72, 73, 111, 117,

136, 220, 232, 246, 247, 255, 256,
257, 258, 259, 260, 261, 262, 263,
266, 267, 271, 272, 274, 278, 285,
287, 296, 297

STEP-NC, 247
Supply Chain, 8, 10, 34, 139, 150, 154,

176, 188, 227, 229, 236, 237, 246,
250, 252

Supply Chain Management, 287
UDDI, 29, 39, 186, 190, 196
Universal Description, Discovery, And

Integration, 29
VCM, 151, 152, 154, 175
VE, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,

69, 287, 288, 292, 298, 301, 302
View-Control-Model, 151, 152
Virtual Enterprise, 287
Virtual Prototyping, 63
VR, 59, 60, 61, 62, 65, 67, 68, 70, 95
VRML, 9, 61, 72, 94, 96, 99, 100, 153
Web, 6, 7, 9, 10, 11, 12, 13, 15, 23, 25,

28, 29, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 42, 51, 58, 59, 60, 61, 69, 70,
91, 92, 95, 98, 99, 109, 110, 112, 135,
136, 137, 138, 139, 141, 145, 150,
151, 152, 153, 155, 164, 165, 166,
170, 171, 173, 174, 176, 175, 186,
187, 188, 189, 190, 191, 193, 195,
200, 201, 255, 256, 273, 274, 276,
285, 286, 287

Web Ontology Language, 255, 257, 285
Web Service Description Language, 7,

34
Web-Based CAD Systems, 39
WIP, 298
Work In Process, 298
Workcell, 175, 176, 177, 178, 180, 181,

182, 183, 184, 185, 186, 189, 190,
191, 192, 194, 195, 196, 197, 198

Workflow, 16
WSDL, 7, 19, 20, 21, 25, 28, 29, 30, 31,

32, 33, 34, 35
X-DPR, 1, 4, 9, 12, 13, 18, 19, 20, 21,

23, 24, 25, 27, 28, 29, 31, 32, 33, 34

308 Index

XML, 10, 13, 19, 20, 21, 23, 25, 26, 27,
28, 29, 30, 31, 32, 33, 37, 78, 80, 81,
82, 84, 85, 86, 153, 193, 219, 256,

257, 260, 270, 274, 276, 278, 280,
282, 283, 284, 285, 286, 287

XML Schema, 29, 270

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

