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Preface

During the past few decades, there have been major innovation and paradigm shifts 
in product development methodologies and strategies. The current R&D trend is 
towards the development of collaborative design and manufacturing systems. The 
research theme is in line with the growing demand for global cooperative design 
and outsourcing in product development to gain better competitive advantage. 
Using the collaborative systems, designers and manufacturers can participate in 
global design chains and collaborate with partners locally and overseas to pursue 
competitive advantages. Furthermore, collaborative systems allow designers to 
work closely with suppliers, manufacturing partners and customers across 
enterprises’ firewalls to obtain valuable inputs for their design and manufacturing 
activities.

From the early 1990s, some major R&D works have been reported, including 
the CyberCut system by the University of California at Berkeley; the FIPER 
(Federated Intelligent Product EnviRonment) system (FIPER Project, 
www.fiperproject.com/fiperindex.htm) funded by NIST; the Web-DPR system by 
the Georgia Institute of Technology), etc. Commercial systems include SolidWorks 
eDrawing™, Autodesk Streamline™, Impactxoft IX Design™, Onespace™, 
SmarTeam™, PTC ProjectLink™ and Windchill™, UGS TeamCentre™, etc.
However, the developed strategies, methodologies and solutions still fall short of 
the expectation of the practical needs. They have not been generally accepted due 
to the weaknesses and limitations in collaboration management, interactive 
capabilities, security of data, real-time and ease of collaboration, etc. Different 
culture, educational background, or design habit of people also make it difficult to 
organize optimal collaborative design and outsourcing activities. To address the 
issues and make collaborative engineering more realistic and applicable, more 
efforts are being made. 

The aim of this book is to update the relevant and recent research and 
development in this field. In this book, thirteen original and innovative chapters 
have been included to address the major challenges of developing collaborative 
design and manufacturing systems and techniques, with scientific and rigorous 
foundations as well as application values. The covered topics include: collaborative 
methodologies and strategies between humans, and between systems and humans 
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to facilitate collaborative design and manufacture; cooperation across domains for 
multi-disciplinary design and manufacture; distributed system and service 
architectures for collaborative design and manufacture; interoperability of 
collaborative systems; new feature- and assembly-based methodologies for 
facilitating collaborative design and manufacture; workflow and conflict 
resolution/management in collaborative design and manufacture; design process 
and design change management in collaborative development, etc.

This book can be used as reference for mechanical/manufacturing/computer 
engineering graduate students and researchers in the fields of concurrent 
engineering and collaborative engineering for the efficient utilization, deployment 
and development of collaborative product design and manufacturing. 

During the development of this book, we have received invaluable input and 
support from the chapter authors. We are also grateful to the editors of Springer-
Verlag for their patience and professionalism during the editing process. 

W.D. Li                                  (Cranfield University) 

S.K. Ong            (National University of Singapore) 
A.Y.C. Nee         (National University of Singapore)  

C.A. McMahon                              (Bath University) 

 January 2007 
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An Adaptable Service-based Framework for 

Distributed Product Realization 

Jitesh H. Panchal, Hae-Jin Choi, Janet K. Allen, David Rosen and Farrokh Mistree 

Systems Realization Laboratory  

G.W. Woodruff School of Mechanical Engineering  
Georgia Institute of Technology, USA

In this chapter, we propose a service-based engineering framework to support 
distributed product realization. Adaptability is the key strength of this framework, 
which arises from an appropriate balance between the ease of use of the framework 
and the flexibility for reconfiguration. Standardization of the interfaces between 
services permits communication between diverse software agents and relieves 
users from having to handle routine operations, resulting in the ease of use of the 
framework. Flexibility of the framework’s configuration allows users to rapidly 
reconfigure the framework to changing design processes, and reduces the burden of 
customization. The capabilities for this adaptable distributed product realization 
framework are developed based on the Open Engineering Systems paradigm. 
Various existing distributed frameworks are evaluated against the requirements and 
missing features are identified. Our efforts towards the development of such a 
framework – the eXtensible Distributed Product Realization (X-DPR) environment 
are discussed. X-DPR is flexible and applicable to general industrial product 
realization processes.  It is used to integrate distributed, collaborative product 
realization activities over the Internet. We trace the development of the framework 
based on design requirements. Features of X-DPR are implemented to satisfy the 
requirements. X-DPR is compared to existing engineering frameworks based on 
the required features. The key words and phrases used in this chapter are defined 
below.

Agent – Software component that can be invoked remotely to perform tasks in 
a product realization process. 

Client – A software component that requests services from remote agents. 
Framework – A computational backbone that facilitates deployment and 

utilization of agents. 
Open Engineering Systems – Systems of industrial products, services, and/or 

processes that are readily adaptable to changes in their environment which enable 



2 Collaborative Product Design and Manufacturing Methodologies and Applications 

producers to remain competitive in a global marketplace through continuous 
improvement and indefinite growth of an existing technological base. 

Service – An activity that an agent can perform based upon a client’s request. 

1.1 Introduction 

1.1.1 Need for an Adaptable Framework 

Competition, globalization, a decreasing half-life of information, and greater 
product complexity necessitate the effective utilization of distributed resources and 
the management of the derived information.  A distributed product realization 
process consists of a philosophy, a systematic approach and implementation 
methods to organizing product development activities.  This process must be able 
to incorporate information from all parts of the product lifecycle.  It is intended to 
support collaborative, concurrent decision making by geographically dispersed 
engineers who have different goals, knowledge, experiences, tools and resources.  
Software frameworks that facilitate globally distributed design and manufacturing 
activities are becoming more and more important, and many universities and 
industries have developed specific frameworks to complete specific tasks.  
However, in these frameworks, there is often a trade-off between agility, flexibility 
and implementation/customization effort. 

If an engineering framework is implemented as middleware, it may be flexible 
enough to be useful for various product realization processes, but requires a 
significant effort to particularize it for a specific process. Middleware tools free 
users from having to write their own routines to handle reliable data transfer 
between applications or from having to worry about complexities when multiple 
systems are integrated. However, users still must write codes to integrate 
application functionalities. Examples of middleware toolkits include OMG’s 
CORBA (Common Object Request Broker Architecture) [1] and Microsoft’s 
DCOM (Distributed Component Object Model) [2]. On the other hand, if an 
engineering framework is developed as end-user software, the user must only put 
forth minimal effort but, in general, these frameworks are inflexible and cannot be 
modified easily when new situations arise, such as, when the company’s design 
processes change. In other words, middleware tools provide standardization of 
communication protocols and leave a lot of integration work to the users whereas 
engineering frameworks (end-user software) provide easier integration capabilities 
but are not flexible. Hence, choosing between the flexibility and ease-of-use of 
engineering frameworks is one of the primary challenges.

Using a simple example, we demonstrate why an adaptable engineering 
framework is necessary. Imagine an engineering designer developing a simulation 
program and wanting to deploy it to a network so that it is available remotely for 
other engineers.  To do this, a designer needs to do the following:  

1. Implement a message and data construct to convey specifications (input 
and output) and data to and from the simulation program,  
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2. On the server side, a designer needs to develop a separate wrapper (a small 
main procedure to be called from other software) in addition to his or her 
simulation program because, in most cases, it is not possible for a 
framework to access directly the simulation program,  

3. Develop a service description file (or documents) containing input and 
output specifications and related information about the deployment of the 
simulation program to let other engineers know how to use the service,  

4. Notify the framework system that a new simulation service is available by 
registering the service on a registry server, and  

5. On the client side, a designer needs to develop a user interface to get input 
parameters from a client and show output. 

In this case, we assume that a pre-existing framework is configured and the 
deployment of the program is simple; however, the type of work to be done is not 
so simple.  The effort for deploying these software applications is enormous and is 
discouraging if we think about the number of applications (e.g., analysis, 
simulation, optimization, decision support, etc.) required in a general engineering 
design scenario. The problem is further complicated if a) the applications need to 
be changed and updated frequently, or b) the design processes in which these 
applications are used are changed.  For example, in the case of changing design 
processes, the interfaces between different applications should be changed, which 
requires significant effort. These are some of the main obstacles preventing 
distributed engineering frameworks from being useful for distributed collaborative 
product realization in global industry.  Therefore, we propose an adaptable 
engineering framework for distributed product realization, which has both 

flexibility and usability in application for industrial product realization. 
Scope and Focus: We realize that there is a plethora of challenges related to the 

collaborative engineering frameworks including the development of standards for 
information representation, communication between heterogeneous resources, 
seamless flow of information between humans and computers, methods for 
efficient collaboration between designers, strategies for conflict resolution, 
engineering repositories, coordination and transaction management [3]. However, 
due to the extensive scope of this topic, and to limit the scope of this chapter, we

focus on addressing the challenge of balancing flexibility and ease-of-use through 
the appropriate standardization in engineering frameworks, thereby making the 

framework more adaptable. The focus is on a framework where multiple software 
applications are deployed as agents, providing services to human designers. The 
design processes discussed in this chapter are limited to simulation-based design 
processes. The processes involving communication between humans will be 
considered in future publications. 

1.1.2 An Open Engineering Systems Approach 

Our approach to developing an adaptable distributed computing framework is 
based on the Open Engineering Systems (OESs) paradigm. We base our discussion 
on the following definition of OESs provided by Simpson, et al. [4]: “OESs are 
systems of industrial products, services, and/or processes that are readily 
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adaptable to changes in their environment which enable producers to remain 
competitive in a global marketplace through continuous improvement and 

indefinite growth of an existing technological base” [4].   The basic OES premise 
is that a quality product should be brought to market as quickly as possible and 
then that a product line is continuously developed in an effort to remain 
competitive.  Thus, OESs must be adaptable to changes in the market, technology, 
the supply/resource chain, the system environment, and government/legislation 
changes.  As only some of these changes can be predicted, as much flexibility as 
possible must be maintained as long as possible to ensure product adaptability. 
Flexibility is achieved by incorporating the following characteristics: 

1. Modularity: the relationship between the functional and physical structures 
of products, so that there is a one-to-one correspondence between physical 
structures and a minimization of unintended interactions [4]. 

2. Mutability: the capability of a system to be contorted or reshaped in 
response to changing requirements or environmental conditions [4]. 

3. Robustness: the capability of a system to function properly despite small 
environmental changes or noise [5]. 

A distributed computing framework also must satisfy the OESs paradigm. From 
a software framework perspective, modularity refers to the modularity of various 
components of the framework so that changes in any component do not require 
major changes in other components. Mutability refers to the capability of the 
framework to be reconfigured easily when there is a change in the requirements. 
Robustness refers to the capability of the framework to function properly despite 
the noise factors like network failures, unexpected usage, etc.  In the design of an 
adaptable framework, each of these three characteristics provides requirements that 
influence the framework’s form and function. It is important to realize that the 
word “Open” as used in this chapter is different from the “open source” software 
applications where the source code is freely available. In this chapter, openness 

refers to the ability of a system to be readily adaptable to changes either inside or 
outside it. 

These requirements and desirable features of an adaptable framework are 
discussed in Section 1.2. A literature review of distributed computing frameworks 
is presented in Section 1.3 and these frameworks are evaluated based on OESs 
requirements. In Section 1.4, we provide a motivating design scenario of Linear 
Cellular Alloys design. In Section 1.5, we discuss the development of an open, 
adaptable framework, the eXtensible Distributed Product Realization (X-DPR) 
environment, X-DPR. Finally, in Section 1.6, we close the chapter with 
suggestions for future developments and a summary of our achievements. 

1.2 Requirements and Features of an Adaptable Framework 

From the OESs perspective, in this section, we discuss the requirements for an 
adaptable framework.  There are many additional requirements if the framework is 
also to be distributed, but in this chapter, we emphasize only the requirements for 
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an adaptable framework in Table 1.1. These requirements are discussed more 
completely following Table 1.1. 

1. Adaptability to network architecture changes or malfunction (framework 

modularity)

To reduce the impact of network environment changes or malfunction, it is 
essential to reduce interdependence of communication components.  The server-
client communication protocol is dependent on the server.  Therefore, server 
changes or malfunction can cause serious communication problems.  Thus, the 
communication protocol must support highly independent communication.

Table 1.1. Requirements and associated features for an adaptable framework 

Requirements of an adaptable 

framework to support distributed 

product realization 

Necessary features of the framework 

which will satisfy the requirements 

1. Adaptability to network architecture 
changes or malfunction (modularity)

Mutually independent communication 
protocols

2. Usability on heterogeneous platforms 
with heterogeneous operating systems 
(robustness)

Computing platform independence 

3. Adaptability in the face of 
heterogeneous programming languages 
for different agents (robustness)

Interoperability interface independent of 
the programming language 

4. Capability to transmit message and 
data changes (robustness)

Generalized construct of message and 
data

5. Rapid reconfiguration of the product 
realization environment (mutability)

Process editing capability 
Ease of re-assigning a task in a process 
to an agent service 
Mapping of information between tasks  
Maintaining consistency between the 
agent services’ description and the 
client’s user interface 
Having a standard for the description of 
engineering services 
Managements agents’ services 

6. Minimizing the impact of agent service 
changes (modularity)

Process task decomposition capability 

7. Readiness for future expansion
(robustness)

Compatibility with standard Web 
service frameworks 

8. Readiness for discrepancy of process 
information (robustness)

Sharing common process workspace 
Real-time management of process 
information

2. Usability on heterogeneous platforms with heterogeneous operating systems 

(framework robustness) 

Software agents (either service providers or clients) reside on different kinds of 
machines, e.g., desktops, mainframes, laptops or PDAs.  They can be located 
anywhere on the globe, run with various operating systems, and can be connected 
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through the Internet.  In a general design-manufacture environment, examples of 
agents might include analysis codes, CAD (Computer-Aided Design) modelers, 
optimization routines, etc. These agents can also be manufacturing equipments or 
even human engineers providing some kinds of services.  A service provider (or a 
client) on any platform must be able to deploy (or access) other services using 
framework components (server- or client-side applications) without having to 
implement a version of framework components, which is compatible with his or 
her platform. An adaptable framework must be able to support the engineering 
activity independent of the computing platform. 

3. Adaptability in the face of heterogeneous programming languages for 

different agents (framework robustness) 

Most engineering frameworks use individual wrappers for each agent’s service. 
These wrappers must be deployed because of incompatibility between third party 
software programming languages and the framework’s programming languages. 
The implementation of separate wrappers is not only tedious but also limits 
accessibility to some details about the service.  Therefore, a programming 

language independent interoperability interface is important for a framework that 
is to be adaptable. 

4. Capability to transmit message and data changes (framework robustness) 

One of the most important issues in developing an adaptable framework is 
formulating standard message and data streams so that they are product and 
process independent.  For example, a design specification of a gear needs three 
variables: number of teeth, gear module, and tooth thickness.  When an engineer 
also wants to include manufacturing information in the specification, it is desirable 
if the framework administrator does not have to form a different message construct 
to convey the new gear design variables.  This is impossible without a generalized 
message and data construct.  This problem occurs whenever design specifications 
change and it becomes even worse when the product or process changes. The types 
of information transmitted are general information (such as message headers), 
parameters (input and output), and engineering data (such as CAD files).  Ideally 
either this information should be encapsulated separately and attached together 
with the message, or, the message itself should be flexible enough to capture 
information about different kinds of inputs and outputs. A generalized construct 
for transmitting message and data, valid for any engineering task, is necessary. 

5. Rapid reconfiguration of a product realization environment (framework 

mutability)

Reconfiguration of a product realization environment includes remodeling the 
product realization process, reassigning a task to another agent, and modifying 
(adding, removing, or changing) agents.  An adaptable framework should support 
users rapidly reconfiguring their environment without modifying code or 
recompiling the framework. 

When a new product realization project begins, it is necessary to model the 
process rapidly and efficiently.  Even in the middle of a product realization process, 
it may be necessary to change the process.  Therefore, a convenient product 
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realization process modeling capability is necessary.  An adaptable framework 
should be able to easily assign a task to an agent service using a process 
representation User Interface (UI).  

In a generic framework where different applications may provide vastly 
different functionalities, it is very likely that the outputs of one service are not 
identical to the required inputs of another agent.  In other words, it is reasonable to 
assume that the interfaces between agents are not standardized; therefore, it is 
important to develop a specification mapping capability to connect the output of 
one task to the input of another task.  

Various tasks in a process can be assigned to agents and can be executed by the 
agents.  If an agent does not require any input from the user, it can be executed 
directly in the predefined process without interacting with the user.  However, if 
the agent needs user input, a graphical user interface must be developed. As the 
interactions of the service with the user are different from case to case, different 
graphical user interfaces are required for different agents.  If large numbers of 
agent services are incorporated within a product realization process, it becomes 
nearly impossible to create the required number of client-side user interfaces, also, 
agents for tasks change or are upgraded from time to time.  Therefore, the 
capability of maintaining consistency between agent service description and 
client’s user interface is very important. 

To support rapid reconfiguration, a user of the framework should be able to 
search for, collect, index and archive information about available agent services 
inside a framework.  This is not a direct requirement for an adaptable framework, 
but it is an essential feature, which supports the mutability of a framework. The 
first step in searching for appropriate available agents anywhere in the world is the 
definition, characterization, and standardized description of engineering services.  
A Web services definition language (Web Service Description Language –WSDL 
[6]) for e-commerce in our domain of application has already been developed.  
Definitions and standards of services in WSDL, however, are quite different from 
those required in the engineering domain and are therefore inappropriate for 
describing engineering Web services.  Consequently, there is a need for developing 
engineering service description standards to make remote parsing of available 
agents possible. Contingent upon the development of an engineering service 
description language, further research might focus on archiving, searching and 

selecting engineering agents’ services.

6. Minimizing the impact of agent service changes (framework modularity) 

An adaptable framework should be capable of minimizing the impact of agent 
service changes.  For example, while designing an automobile, one group of 
designers can work on the engine and another group of designers can work on the 
structural strength analysis. These groups can further be divided into smaller 
groups who are distributed across the globe. If one of the divided structural 
strength analysis tasks should be replaced by a new task, the user of the framework 
should have the capability of decomposing the tasks into small processes so only a 
small change in the divided task is needed.  However, if the framework doesn’t 
have a task decomposition function, the large upper level task must be modified 
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and deployed again.  Therefore, the framework should have a task decomposition 
capability to minimize the impact of service changes. 

7. Readiness for future expansion (framework robustness) 

The system should be compatible with other standard web services frameworks 
such as MS .NET, and Sun ONE because a product realization process is not a 
stand-alone engineering process but is intimately related to other business 
frameworks such as applications for resource management, supply chain, 
management etc.  Hence, an effort should be made to make the framework to 
conform to industry standards. 

8. Readiness for discrepancy of process information (framework robustness) 

Even if there are no environmental changes, the distributed framework changes due 
to participants’ input as a product realization process proceeds.  Discrepancy about 
process information among users in distributed product realization occurs because 
of the ever-changing framework status during a process.  A designer might want to 
know how other engineers’ work is progressing and when that work will be done.  
Unlike a business framework, an engineering framework may have relatively long 
transaction times between service providers and clients; therefore, it is essential to 
share information about agent service availability.  To facilitate these needs, an 
adaptable framework should be able to share the common process workspace 
displaying real time process and agent service status. This need leads to the 
requirement for real-time management of process information because this 
information is produced globally, and needs to be collected and managed 
systematically.  

Desirable requirements and the appropriate features of an adaptable framework 
are discussed in this section. Although the requirements in this section are 
presented in the context of engineering frameworks, they are valid for any general 
distributed computer framework. These requirements and features are revisited in 
Sections 1.3 and 1.4 to review the capabilities of frameworks presented in the 
literature and to compare them with the X-DPR framework. Now, we move on to 
Section 1.3, where we review the existing frameworks with a mindset of OESs-
based requirements presented in this section.  

1.3 Review of Capabilities Provided by Existing Frameworks 

The approaches for distributed collaborative design can be broadly classified into 
two categories: Web-based systems and agent-based systems [7]. These categories 
are discussed in Sections 1.3.1and 1.3.2 respectively. 

1.3.1 Web-based Systems 

The Web-based systems use the client server architecture with the Internet as a 
backbone for communication. The Web-based architecture supports multiple teams 
to access the central information base and to communicate through a central Web 
server. The collaboration between designers is generally through tools like chat 
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tool, white board, Web cam etc. Most of the currently available Web-based tools 
are developed using Java technologies. These Web-based systems are used for 
remote usage of distributed software applications through applet-servlet pairs [8] or 
through other means like LISP [9], PROLOG [10], ActiveX [11] etc. The Web-
based systems can be categorized further into domain specific software integration 
tools and general distributed computing tools. 

1.  Domain specific integration tools 

The domain specific integration tools are generally CAD-CAE (Computer-Aided 
Engineering) integration tools. Cramer, et al. [12] developed a collaboration 
architecture to allow distributed designers to work on the same CAD model 
concurrently. The architecture incorporates three components: a server, a controller, 
and multiple members. The communication between members is through the 
controller and server by exchanging data packets. The system is developed 
specifically for exchanging information between CAD and CAE applications. The 
system uses CORBA for sharing information between CAD tools and CAE 
applications. In this system, the objects and the communication between objects 
are clearly defined. The system can be used with other CAE applications only if 
the applications provide APIs for interactions. A number of collaborative CAD 
tools are developed using VRML files for remote viewing of CAD models. The 
Virtual Web Plant [13] is developed for distributed access to engineering data at a 
central location. The tool integrates three-dimensional models from various CAD 
plant design tools and to display them interactively. It uses VRML for displaying 
CAD information remotely. The central data repository is an object-oriented 
database. The system also uses Java applets as clients for accessing the central data 
repository. Wang, et al., [14] developed a Web-based virtual environment for 
mobile phone customization (VMPDS) that allows users to collaborate on 
conceptual design of mobile phones. VMPDS is developed using VRML, Java, and 
JavaScript. Lin and Afjeh [15] present an XML-based framework for Web-based 
aircraft engine simulation. The framework allows easier data flow across different 
simulation components. Simpson, et al., [16] present an interactive web-based 
product platform customization framework for enhancing customer interaction and 
reducing design and manufacturing lead time for custom orders. Other similar 
applications for integrating CAD tools over the Internet are discussed in [17], [18], 
[19] and [20].  

2.  General distributed computing applications 

Rezayat [21] introduced the notion of an e-Web portal to illustrate how Web-based 
standards and distributed object technologies can be integrated to provide 
controlled access to any type of information and resource within the extended 
enterprise. The author has argued that out of a number of systems that provide 
client-server services (including CORBA, DCOM, HTTP/CGI, RPC etc.), only 
CORBA and DCOM provide the degree of sophistication needed to implement 
practical object-based client server system at an enterprise level. The authors also 
recognized a need for using standards like XML for formalizing the semantics of 
the information. TeleDM [22] is an e-service test bed for verifying Web-based 
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product design developed with the aid of a prototype-manufacturing environment. 
A client-server infrastructure with Web-based technologies is used in this test bed. 
The clients are Java applets with corresponding servlets on the server side. The 
clients can also be CAD tools (AutoCAD, Pro/E, etc.) or RP (Rapid Prototyping) 
planner tools (ACIS viewer etc.). The process of ‘design for X’ is modeled as a 
design-coordinate-redesign process. Wang, et al., [23] developed a Web-based 
generic distributed mechanical system simulation platform based on gluing 
algorithm approach. The platform allows the integration of distributed simulations 
into a system level simulation. An XML description of individual simulation 
models is provided, which is a key element that links together different parts of the 
system level simulation model. The individual simulation models are integrated 
using a gluing algorithm. The benefits of such an approach include independence 
of subsystem models, and support for collaborative design in a supply chain. Other 
similar distributed computing applications are: Ansys AI workbench [24], 
MSC.Acumen [25], EDS Teamcenter [26], PTC Windchill [27] and Alibre Design 
[28]. 

1.3.2 Agent-based Systems 

Similar to the Web-based design systems, agent-based systems also provide a 
collaborative environment for the sharing of design information, data and 
knowledge among distributed design teams. However, unlike the Web-based 
design systems using the client/server architecture, an agent-based system is a 
loosely coupled network of problem solvers that work together to solve problems 
that are beyond their individual capabilities. The agent-based systems are generally 
based on direct communication between agents instead of a client-server type 
communication that is common to the Web-based systems. The Web-based 
systems are easier to develop using the available technologies. An agent-based 
system is desired when the system is rapidly changing and the process is too 
complex. Agents are suited for ill-structured and modular systems. 

Agent based technologies date back to early nineties when the Web was not 
very popular. The agent-based systems are based on simplified architecture. The 
basic aim of the agent-based systems is software reusability and flexibility in using 
the same software programs for different scenarios. The agents have dynamic 
linking with each other. This dynamic linking between agents can be achieved by 
having common information exchange protocols, syntax and semantics for 
communication. Most agent-based systems (see references [19], [29], [30], [31], 
[32]) have used knowledge-based standards for achieving interoperability between 
agents. Knowledge based standards involve defining common ontologies and/or 
definitions that the agents agree upon. Whenever there is a communication 
between different agents, they use the common ontologies. However, internally, 
these agents may use different software level standards for processing data. Hence, 
this provides flexibility to agents in terms of developing agents. One such 
knowledge based agent framework is PACT [29], which is one of the earliest agent 
based system for engineering design applications. The PACT framework is 
developed with focus towards integrating legacy software tools using knowledge 
interchange languages like KQML (Knowledge Query Modeling Language), KIF 
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(Knowledge Interchange Format), ACL (Agent Communication Language) etc.
The system uses wrappers based on knowledge contained in various systems. A 
common ontology is defined for knowledge interoperability between agents. The 
PACT system provides flexibility in terms of the fact that the agents can use their 
own data models and the tools need to be committed to a single standard for 
defining data models. The SHARE project [33] was concerned with developing 
open systems for concurrent engineering particularly for design information and 
data capturing and sharing. The system provided collaboration services including 
multi-media mail, desktop conferencing, online catalog ordering and fabrication 
services. Rajagopalan, et al., [34] proposed an agent-based infrastructure to 
provide designers with access to multiple layered manufacturing services including 
design, process planning and manufacturing service. Madhusudan [35] presents a 
Web service-based framework to expose intra-organizational information sources. 
In this framework, processes are dynamically composed using artificial intelligence 
planning mechanisms. Wu, et al., [36] integrated Web services and the agent 
technology and developed an information framework for collaborative product 
development. One of the key features of this framework is its flexible client side 
product development environment. The framework has been developed to address 
the need for negotiation while managing conflicts in engineering design processes.  

Four of the most recent frameworks that describe the state-of-art in distributed 
frameworks are DOME [34], NetBuilder [11], Web-DPR [62], and FIPER [15]. 
These four frameworks are selected because they represent agent-based, Web-
based, product-centric, and process-centric frameworks. DOME and NetBuilder 
represent agent-based systems. While DOME is a product centric framework 
where each agent models a sub-system of the artifact, NetBuilder is a process 
centric framework where each agent models an activity in the design process. 
WebDPR is selected because it represents the Web-based systems and is a 
foundation for the X-DPR framework presented in this chapter. FIPER represents 
the current state of commercial distributed design frameworks and is so far the 
most advanced commercial engineering framework. In this remaining part of this 
section, we review these frameworks in details in the context of requirements 
developed in Section 1.2. In Table 1.2, the necessary features of engineering 
frameworks, based on the requirements presented in Section 1.2 are listed and 
existing frameworks evaluated for these features. From this review, we can 
determine what necessary features are missing in these frameworks. DOME, 
NetBuilder, Web-DPR and FIPER are discussed in more detail in Sections 1.3.2.1, 
1.3.2.2, 1.3.2.3 and 1.3.2.4, respectively. 

The capabilities of NetBuilder, Web-DPR and FIPER are summarized in Table 
1.2. Each table entry is marked as  Fully Implemented or  Partially 
Implemented. These three frameworks have many features that an adaptable 
framework should have, but in each case, the information constructs, e.g., service 
description constructs and message constructs, are based on their own protocols 
instead of industry standards and the information constructs do not contain enough 
content to describe complex engineering tasks. The DOME framework is designed 
as product centric and not process centric.  
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Table 1.2. Review of distributed engineering frameworks with respect to desirable 
adaptable framework features 

Necessary

framework features 

to satisfy 

requirements 

DOME

(1998) [37] 

NetBuilder

(1998) [38] 

Web-DPR

(2001) [8] 

FIPER

(2006) [39] 

1. Mutually 

independent 

communication 

protocol

Yes Yes No (Client-
Server)

Yes

2. Computing platform 

independence 

No No Yes (Java) Yes (Java) 

3. Interoperability 

interface independent 

of programming 

language

C++ Wrapper   
(CORBA)

Wrapping 
Toolkit

(CORBA)

Agent
Template 

Java wrapper, 
FIPER SDK 

4. Generalized 

construct for message 

and data 

No Mapping 
protocols /data 

types

Web-DPR 
message 
construct

Not
mentioned 

5. Editing product 

realization process 

No Metaprogram 
NetEditor

Editing
process file 

Workflow 
desktop

6. Assigning a task in 

a process to an agent 

service

Yes Yes Yes Yes 

7. Specification 

mapping between tasks  

No Data type 
mapping 

No Parameter 
Mapping tool 

8. Maintaining 

consistency between 

agent services 

description and client  

user interface 

No No Dynamic 
Web-browser 

UI

Yes

9. Engineering service 

description standard 

MDL source 
file

Metaprogramm
ing model 

No XML 
(FIPER’s 

own standard) 

 10. Management of 

agents services 

No Resource 
Catalogue

Indexing
service

process db 

FIPER
Library 

 11. Process task 

decomposition  

Yes Yes No Yes 

 12. Compatibility with 

other standard web 

services frameworks 

No No No Uses XML, 
SOAP

 13. Sharing common 

process workspace 

Not mentioned No Process Web 
browser

Yes

 14. Real-time 

management of 

process information 

No Yes Coordinator 
stores process 
logs/Process

db

Yes

Our effort towards an adaptable framework called X-DPR is discussed in 
Section 1.1. The X-DPR framework is described with a running example of the 
design of Linear Cellular Alloys. This example is described next. 
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1.3.2.1 Distributed Object-based Modeling and Evaluation (DOME) 
The Distributed Object based Modeling and Evaluation (DOME) framework [37] 
is intended to integrate designer specified mathematical models for multi-
disciplinary and multi-objective design problems.  The focus of the DOME 
framework is to create a modeling scheme that handles the different variable types 
needed in engineering design; integrate multi-objective evaluation and 
optimization with design models; and provide an object based methodology to 
facilitate the integration of design models.  In this framework, a product design 
problem is modeled in terms of interacting objects, called modules, each 
representing a specific aspect of the problem.  One of the key assumptions of the 
framework is that product design problems are decomposable into sub-problems.  
The decomposition reflects both the physical subdivision of the product into 
components or sub-assemblies and the division of analysis expertise.  Each object 
represents a subset of an aspect of the problem and acts as a stand-alone model 
managing the data and services that it can provide. An integrated design model is 
realized by objects representing the different parts of the problem. These objects 
are executed simultaneously. 

In summary, the DOME environment is focused on simulation-based design 
and breaking down the design artifact into sub-systems that can be represented 
mathematically and may be distributed over the network.  The framework is not 
designed with an open system paradigm, but with a product dependent distributed 
objects framework, which is more intuitive from a designer’s point of view.   It is 
platform dependent and, because it uses a CORBA protocol, requires lots of effort 
to create wrappers and the appropriate graphical user interfaces.  DOME does not 
have a supporting tool for the management of objects in the framework and real-
time information handling.  

1.3.2.2 NetBuilder  
NetBuilder [38] provides a mechanism for coordinating collaborative activities in a 
distributed environment.  There are two key aspects to the NetBuilder approach.  
First, NetBuilder provides a compositional framework that allows designers to 
combine individual tools into meta-programs that capture the simulation process. 
These meta-programs can be executed and stored for future use.  Second, 
NetBuilder supports wrapping individual modules so that they can be invoked as 
part of meta-programs in a uniform way.  NetBuilder leverages mechanisms of 
distributed computing such as CORBA to provide a seamless integration of 
networked resources. NetBuilder provides the capability of capturing dependencies 
among simulation subtasks in terms of links connecting meta-program modules.  
When a meta-program is running, the NetBuilder scheduler determines which 
modules may be executed by checking to see whether the appropriate input data is 
ready.  Each analysis tool is wrapped which allows it to accept input and produce 
output in a standard format. NetBuilder also contains a module wrapping toolkit to 
support the encapsulation of existing tools as CORBA-compliant modules. 

NetBuilder has most of the features that are needed for an adaptable framework.  
Real-time management of process information is a valuable feature, as is the 
mapping communication protocol. However, there are some features which are 
only partially implemented, which limits NetBuilder’s usage as an adaptable 
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framework.  CORBA itself requires that separate wrappers must be developed for 
all modules being integrated.  The framework enables interfaces between modules 
on heterogeneous platforms, but components of the framework (such as meta-
programs) cannot run on heterogeneous platforms. The descriptions of service 
assets are clearly defined in the Resource Catalog; however, there is not enough 
information for a user to find an appropriate service asset, and the format of the 
Resource Catalog is not an industry standard.  In summary, NetBuilder enables the 
rapid and dynamic assembly of systems distributed on a large scale, but has 
limitations in serving as an adaptable framework.  However, it represents valuable 
progress toward an adaptable engineering framework. 

1.3.2.3 Web-DPR  
Web-DPR [8] has been developed based on the communication framework of 
PRE-RMI [40]. The major objective of Web-DPR is to make agent services 
accessible with a simple Java enabled Web browser. The essential components of 
the Web-DPR framework are a Web server, framework database, coordinator and 
Agent Template [41].  

The Web-DPR framework database stores information about available agents, 
the event channels they are registered to and other information about the design 
process. A client sends a request to the Web server, and this request is then trans-
ferred to event channels. The event channels then forward the request to agents. 
Information is transferred between various agents either as messages or as 
engineering data. A message is a short note or a command to other engineers, 
which is independent of product design domains.  

Engineering data includes data files, CAD models, etc. This engineering data is 
archived in a central data vault. In Web-DPR, the event is split into message and 
engineering data in order to ensure that an agent’s functions are totally independent 
of the functions of other agents.  

A Java based application, Agent Template, is used to create and deploy agents 
easily into the framework. With the Agent Template, users do not need to have 
much knowledge about the internal implementation details about the framework. 
Web-DPR has features including a general message construct based on Java-RMI, 
dynamic Web-browser UI, standardized wrapper (Agent Template), etc. However, 
it cannot support the detailed access to remote objects since it wraps distributed 
modules using an Agent Template, which only provides abstract access to these 
remote objects. The dynamic Web browser UI cannot take range values, nor select 
alternatives.  The Web-DPR framework does not support parameter mapping 
between tasks or task decomposition.  This framework uses a Web server to 
publish services to the Web so there can be a bottleneck on the Web server.   

1.3.2.4 Federated Intelligent Product EnviRonment (FIPER) 
FIPER (Federated Intelligent Product EnviRonment) [39] is composed of three 
different layers – Core Infrastructure, Core Extensions and Application 
Components.  The Core Infrastructure provides the foundation for the environment 
and is comprised of a collection of services for handling process management and 
data communication and storage [42]. The Core Extension contains modules that 
can be plugged into the Core Infrastructure and allow organizations to use the 
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existing IT infrastructure. The Application Components provide the functionality 
desired by the users and can be published to the environment. FIPER uses a 
standard Java-based wrapping mechanism to allow easy creation of components for 
the environment. The FIPER Standard Development Kit (SDK) is provided to help 
write necessary Java code and execute it. The FIPER library is a virtually 
centralized and physically distributed repository for publishing, searching for and 
retrieving components. It facilitates collaboration by sharing the services offered 
by the Application Components.  It also allows an engineer to assemble 
components into a workflow model of his/her design process. Kao, et al., [43] 
present the use of FIPER framework for aircraft engine combustor design. FIPER 
enables real-time business to business collaboration at GE and Parker.  

In terms of the desirable features listed in Section 2, the FIPER framework is 
the most advanced. However, it still has some restrictions. Although the processes 
in FIPER can be stored as templates and reused for designing the same product 
with different specifications, the main restriction is the reusability of processes for 
designing different products even if the tasks and distributed applications involved 
remain the same. Currently, the processes in FIPER and other similar commercial 
frameworks (such as iSIGHT [44] and ModelCenter [45]) are inherently defined as 
a series of tasks with flow of product parameters between these tasks. Hence, the 
processes defined at a computational level in frameworks such as FIPER cannot be 
used to design different products, whose parameter sets are different. The 
reusability of processes for different products is addressed by Panchal, et al., in 
[46]. Further, FIPER does not support product information modeling. 

1.4 Motivating Example: Design of Linear Cellular Alloys 

(LCAs)

LCAs are honeycomb materials (see Figure 1.1) which are processed through a 
formation and compounding of a slurry (binder phase mixed with metal powder 
oxides) which are then extruded under pressure through a multi-stage die and 
subjected to drying and reduction into the metallic phase in a hydrogen rich 
environment followed by sintering to achieve nearly fully dense metal composites 
[47, 48]. A wide range of cell sizes and shapes can be achieved including 
functionally graded structures, which provides multi-functional structural and 
thermal performance. Cell sizes on the order of half a millimeter and up and cell 
wall thicknesses on the order of 50-100 micrometer can be achieved resulting in 
very fine as well as very coarse structures. These metallic structures can be 
produced with any arbitrary two-dimensional cross-sections. These materials are 
suitable for multi-functional applications that involve not only good structural 
properties but also good thermal properties [48]. One of the main advantages of 
these LCAs is that any desired property can be obtained by suitably designing 
these materials. Some of the applications of these materials include heat sink for 
microprocessors, combustor liners, etc.
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Figure 1.2. Design process for multi-functional LCAs 

The process of design of LCAs is shown in Figure 1.2. It involves six steps 
starting from the requirements gathering phase to the final geometry of LCAs. The 
first step is to capture the requirements for designing these LCAs. These 
requirements are in terms of the expected behavior of the Linear Cellular Alloys. 
These requirements are used to create LCAs’ geometry in a CAD modeling tool. 
Based on the experience, the designer starts with a cell geometry, which is 
modified later to match the expected behavior with a simulated behavior. The 
geometry and material information along with the expected behavior are used to 
analyze the performance of LCAs. Since this is a multi-functional application, the 
analysis is carried out for structural and thermal requirements. These analyses 
provide information about the simulated behavior for given loading (both thermal 
and structural). This simulated behavior is compared against the expected behavior. 
If these two do not match, appropriate changes are made to the geometric 
parameters to obtain the desired performance. Some of these steps in the design 
process like thermal and structural analysis are carried out using automated 
software applications, whereas other steps like capturing requirements require 
manual inputs. 
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In the next section, we discuss our effort towards an adaptable framework - X-
DPR and show the features and capabilities of X-DPR through distributed design 
of LCAs following the design process shown in Figure 1.2. The features of the X-
DPR framework are evaluated against the requirements discussed in Section 1.2.  

1.5 X-DPR (eXtensible Distributed Product Realization) 

Environment

 In this section, we provide an overview of the framework (Section 1.5.1), discuss 
the main features of the framework (Section 1.5.2), use the framework for LCAs 
design (Section 1.5.3), and finally, show how the framework can be characterized 
as an adaptable framework (Section 1.5.4).  

The capabilities of X-DPR framework with respect to requirements discussed 
in Section 0 are summarized in Table 1.3. The framework is developed based on 
industry standards. The models for capturing and passing information are also 
based on various standards. 

1.5.1 Overview of X-DPR 

The X-DPR framework is designed with peer-to-peer communication between 
agents, where each agent is an independent entity communicating with other agents. 
A peer-to-peer communication framework enables independent communication 
between different agents (see #1 in Table 1.3). X-DPR is an open system in which 
different modules can be easily integrated into the system for enhancing the 
functionality of the overall system. Engineers can integrate their own applications 
residing on their machines with X-DPR, which will help to create a global library 
of engineering tools over the Internet.  This library can then be integrated with 
tools from other areas such as marketing, sales or other business services to realize 
a global enterprise. The X-DPR framework uses the Decision Support Problem 
Technique [49, 50] to support meta-design, a process of designing systems that 
includes partitioning the system for function, partitioning the design process into a 
set of decisions and planning the sequence in which these decisions will be made.   

The system is designed so that a designer can easily model his/her design 
process using visual tools. This capability for meta-design is unique in X-DPR. 
Engineers can then connect process models with services available in the global 
library using the Internet and execute complete design processes online. X-DPR 
provides flexibility at a design process level. It enables designers to design a 
process and replace entities of process with other entities later. The framework 
allows engineers to develop and execute process models collaboratively. Thus 
multiple designers distributed around the globe can work together as a team on 
product realization projects. A detailed discussion about each element of the 
framework is presented in Section 1.5.2. 
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Table 1.3. Capabilities of X-DPR with respect to adaptable framework features 

No. Necessary framework features to satisfy 

the requirements 

X-DPR  (2002) 

1. Mutually independent communication 
protocol

Peer-to-peer

2. Computing platform independence Yes (Java) 

3. Interoperability interface independent of 
programming language 

Language Independent / SOAP 

4. Generalized construct of message and data XML based 

5. Editing product realization processes Client application process 
diagram

6. Assigning a task in a process to an agent 
service

Task assigning tool bar and 
searching for available assets 
using tool bar 

7. Specification mapping between tasks  Interface Mapping Tool 

8. Maintaining consistency between agent 
service descriptions and a client’s user 
interface 

Dynamic UI based on WSDL 

9. Engineering service description standard Partially implemented using 
WSDL 

10. Management of agents services SOAP agent service database 

11. Process task decomposition Process diagram construction 
toolbar

12. Compatibility with other standard web 
services frameworks 

Compatible with other SOAP 
servers

13. Sharing common process workspace Process diagram white-board and 
    central process database 

14. Real-time management of process 
information

No

1.5.2 Elements of the Framework 

In this section, we describe the elements of the X-DPR framework in further detail 
and show how these elements fulfill the requirements presented in Section 1.2. The 
elements of the X-DPR framework are shown in Figure 1.3 and the capabilities of 
the framework are shown in Table 1.3. In Figure 1.3, two agents are shown along 
with the client application. The exchange of information between various elements 
of the framework is also shown. In the X-DPR framework, an agent is defined as a 
software component that can be invoked remotely to perform tasks in a product 
realization process. Agents can be invoked by the client application or by other 
agents by sending XML messages. On receiving these messages, the agent 
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processes the input information and replies back with XML messages. Agents in 
X-DPR are associated with a) an associated input message template in XML 
format, b) a processing mechanism in the form of a software, c) output message 
template in XML format, d) a WSDL description file that provides information 
about the location of service and way to invoke this agent and e) an XML-based UI 
description file (optional) that is used by the client application to generate a custom 
user interface. The details of these elements are discussed in Sections 1.5.2.1 
through 1.5.2.7.  
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Figure 1.3. Block diagram of the X-DPR framework 

The client application used to create process diagrams, manage the flow of 
information and access agents remotely has four elements – a process diagram tool, 
a dynamic UI generation tool, an XML data viewer tool and an XML mapping 
application. With the process diagram tool, users can create their own networks of 
tasks. These tasks can be assigned to agents available over the Internet. The user 
can search for available agents with a search service that is essentially a database 
containing the location and description of the agents. Once a task in the process 
diagram is assigned to an agent, it can be executed from the process diagram tool. 
The dynamic UI generation tool extracts information from the description file 
(WSDL) of an agent and creates a UI for the client-based on the inputs taken by the 
agent. The XML mapping tool maps the XML-based input-output UIs between 
different agents. It facilitates the smooth and seamless flow of information from 
one agent to another. The information generated throughout a process is archived 
in a data repository. One of the most important capabilities of the client application 
is its flexibility to execute any agent remotely by dynamically creating SOAP 
messages from the WSDL file and the XML-based agent input template. The 
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Java .class files in client application responsible for dynamic agent execution are 
packaged as a Java .jar file and deployed with the remote agents so that these 
agents can invoke other agents directly.  

1.5.2.1 Data Repository 

The data repository is a database of all the information processed during the design 
process. The data repository in the X-DPR framework is developed using STEP 
[51] (STandard for the Exchange of Product data) and the XML standards. STEP is 
an international standard for engineering information models. STEP standards have 
various predefined schemas that can be reused directly for application specific 
information models. STEP standards are used in the X-DPR framework in order to 
make the data repository standards based. The Express language [52], which is a 
part of the ISO standard (ISO 10303-11) is used for developing the information 
model for the product that is being designed. The highest-level schema for the 
LCAs product information is shown in Figure 1.4.  

Figure 1.4. LCAs information model in Express-G form 

In the LCAs design example presented in Section 1.4, the information model 
contains:

1. Expected Behavior (i.e., the requirements) (LCA_Expected_Behavior

entity)
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2. Form, which consists of 

- Topology (Extruded_Cellular_Geometry entity) 

- Material used to manufacture the LCAs (LCA_Material entity) 

3. Simulated Behavior, which consists of: 

- Thermal behavior (Thermal_Behavior entity)

- Structural Behavior (Structural_Behavior entity) 

The details of these entities are not presented in this chapter. While developing 
the information model supporting LCA design, the following STEP parts are used: 
Part 42 (for geometry and topology representation), Part 104 (for finite element 
analysis information), Part 45 (for materials information), Part 50 (for 
mathematical constructs), and part 47 (for tolerances). The schema is written in an 
Express file and an instance is a Part 21 file. The data access from Part 21 file is 
carried out using JSDAI toolkit developed by LKSoft [53] The JSDAI Express 
Compiler creates Java APIs from STEP Express schemas. These Java APIs are 
used to extract information required by different agents from Part 21 files. This 
extracted information is formatted as XML files and sent as inputs to agents. This 
method facilitates capturing the engineering information in the object-oriented 
STEP database and also allows information transfer through standardized, platform 
independent XML standard. Although the data repository is an integral component 
of the X-DPR framework, its functionality is similar to other agents. It accepts 
XML messages from agents that are stored in the repository, and sends back XML 
messages when requested by other agents. A user can also implement custom data 
repositories as agents in the X-DPR framework. However, these custom data 
repositories have to be explicitly instantiated as tasks in design processes using the 
process diagram tool discussed next in Section 1.5.2.2. 

1.5.2.2 Process Diagram Tool 

The process diagram tool, shown in Figure 1.5, is used to model a product 
realization process, and then it can be used to invoke the available agents 
integrated into the framework. The tool is coded in Java and hence is platform 
independent (see #2 in Table 1.3). This tool contains a white-board on which the 
process diagram can be created by simple drag and drop operations.  The process 
diagram construction toolbar aids in this process of creating flow diagrams with 
blocks and connecting lines. These blocks represent various tasks in a design 
process and the connecting lines indicate the flow of information from task to task. 
The tasks can be assigned to any of the Web services available over the network 
(see #6 and #10 in Table 1.3). Using the process diagram tool, we can define 
process templates that can be edited for specific design problems (see #5 in Table 
1.3). 
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Figure 1.5. Process diagram tool in the X-DPR framework 

The search toolbar is used to search for available services. The Decision 
Support Problem Technique (DSPT) [49] toolbar is used to model a design process 
in terms of phases, events and tasks and it also contains links to decision support 
tools for the design process. The file transfer tool is used for sending and receiving 
files (for example, CAD files) to various agents. The process diagram tool supports 
a hierarchical process development decomposing a task into sub-tasks (see #11 in 
Table 1.3). This means that a designer can move from a higher level in the process 
and then design a particular task as a network of sub-tasks.  These processes are 
then saved in a central database such that they can be accessed by distributed team 
members and software agents (see #13 in Table 1.3). This process database 
contains information about the tasks in the process, flow of information between 
these tasks, agents assigned to these tasks, the tasks that are currently completed, in 
progress, or un-initiated. In the current implementation of X-DPR, the agents are 
executed automatically in a sequential fashion. All the tasks that require the 
outputs from finished tasks as their inputs are activated as soon as these inputs are 
available. Currently, complex and conditional sequencing is not available in the X-
DPR framework. 

Implementation of the process diagram tool – The process diagram tool is 

implemented using the Swing library in Java. The Java application extends the 

JFrame class in javax.swing package. The Java classes used to implement 

the process diagram whiteboard are: a) frmInternal.class, which extends the 

javax.swing.JinternalFrame class, b) pnlInternal.class, which extends 

javax.swing.JPanel class., and c) block.class which extends the 

javax.swing.JButton class. The file transfer toolbar contains two buttons to 
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upload and download files. These files can be any file that the agent needs for 
execution or any file as a result of the execution of the agent. This toolbar is 
especially useful when the agents require processing of binary files like CAD files. 
The implementation of this file transfer tool is carried out using the following 

classes: FileUpload.class, ClientPut.class, and 

ServerFileTransfer.class. The file transfer is achieved by sending 

SOAP attachments between ClientPut.class and 

ServerFileTransfer.class.

1.5.2.3 Dynamic UI Generation 
If an agent requires user input, a graphical UI must be developed for this purpose. 
The kind of interaction of an agent with the user varies from case to case and 
different graphical UIs are required for different agents. Since it is not possible to 
create a separate UI and code it into the client, a dynamic graphical UI is created 
based on the number and types of input that the agent requires.  

Implementation of the dynamic UI generation - Two types of dynamic 
generation of UI generation are developed in X-DPR. The first type corresponds to 
a situation in which the inputs required from the user are very simple – for example, 
a few different parameters must be specified in a function. In this case, the 
description of the required inputs to the agent can be extracted directly from the 
Web service description (WSDL) file. Inputs from the user are generally taken 
with simple text boxes. The process of customized UI generation can be 
accomplished as follows: (i) the client looks for the WSDL document published by 
the service, (ii) from the WSDL document, the client extracts inputs and the 
corresponding data types, and (iii) the client generates a graphical UI for the user 
inputs. Based on the data entered by the user, the agent is executed. 

The second type of UI generation corresponds to a situation where the inputs of 
an agent are complex XML tree structures. For example, the input to a design of 
experiments agent implemented in iSIGHT [54] is in the form of an XML file 
which requires complex interactions with the user. For example, the user must 
enter all the DOE parameters and their ranges. The user also needs to enter the type 
of Design of Experiment (DOE) to be performed. In this case, the complete 
description of the inputs and how the user inputs will be taken are not available in 
the Web service description (WSDL) file. In this case, a single XML file 
describing the user interface must to created at the agent and deployed with the 
agent itself. This XML file contains nodes for individual entities in the UI to be 
created such as text box, label, combo box, table, checkbox, radio button, etc. For 
each element, an XML tree representation is provided which contains the 
information required to generate the UI component. For example, for a label, the 
information required to generate is its location on the form, its size and the text of 
the label. The XML schemas for some of these elements are standardized in X-
DPR. The client application accesses this description file remotely and a UI is 
created automatically at the client for that agent. The process is shown in Figure 
1.6. 
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Figure 1.6. Dynamic UI generation using the UI description XML file (see Figure 1.3)

In the LCAs example scenario, the inputs to various agents are complex XML 
tree structures containing geometry information, boundary conditions, analysis 
results etc. The second type of the UI generation technique is used where a 
separate XML file describing the UI is created. This UI description XML file is 
used by the client application to generate the UI remotely. The dynamic UI 
generation tool helps in maintaining consistency between agent service 
descriptions and the client’s UI (see #8 in Table 1.3). 

1.5.2.4 Interface Mapping Tool 
In a generic framework where different applications provide vastly different 
functionalities, it is very likely that the output of one agent will not be exactly that 
which is required as the input to another agent. To achieve a seamless flow of 
information between agents, the outputs need to be converted into a format 
compatible with the inputs to other agent. In general, if there are n agents, the 
number of conversions required will be n*(n-1). For example, in the LCAs design 
example, structural designer creates a response surface to investigate the effect of 
design variables (thickness of ribs, overall height of LCAs, etc.) on the overall 
strength. The first step in the process is to carry out a design of experiments in the 
design space. The design of experiments is performed using a commercial 
application – iSIGHT. The result of the DOE is a set of points in the design space 
at which the analysis is carried out. The analysis of the component at these points 
is carried out in an in-house code or an Finite Element Method (FEM) program 
such as ANSYS [55]. The output of the design of experiments from iSIGHT is in 
iSIGHT’s own ASCII file format and the input to the ANSYS FEM solver requires 
the ANSYS ASCII file format.  

For automatic transfer of information from iSIGHT to ANSYS, a designer must 
write a parser to convert one file format into another. To overcome this problem of 
developing separate converter applications, an interface-mapping tool is created 
that can be used to map information output from one agent to the inputs of another 
(see #7 in Table 1.3). Here, the term interface refers to the structure of information 
input and output by agents. This tool has the capability of mapping the XML 
structure from the output of one agent to the XML input of another agent (see 
Figure 1.7). The mapping tool shows the tree structures of the output XML file of 
one agent and the input XML file of another agent on two sides of a window. The 
user selects corresponding information entities (i.e., XML nodes) on the input and 
output sides and maps them. Once the mapping is established between two agents, 
the mapping rules are saved in a separate XML file for future use. Hence, the users 
need to establish the mapping between two file formats only once. It is important 
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to note here that the mapping tool implemented in X-DPR can only be used with 
XML inputs and outputs. In the case of applications such as iSIGHT and ANSYS, 
where the inputs/outputs are simple text files, the applications need to be wrapped 
(i.e., text files converted into XML files) such that the agents have XML inputs and 
outputs. This is also illustrated in the block diagram of X-DPR (see Figure 1.3) 
where agents are shown with XML inputs and outputs.  

XML XML

Inputs Outputs

XMLXML XMLXML

Inputs Outputs
XMLXML

Inputs Outputs

XMLXMLXMLXML

Inputs Outputs

Agent Agent

Figure 1.7. Mapping of interfaces between two agents 

Implementation of interface mapping tool – The implementation of this tool is 
done using X-Path, which is a language for specifying the path of an element in an 
XML document. The tool consists of the following two components encode in Java 

- a) mapping definition UI (XMLMapper.class) and b) mapping execution 

class (XMLMapperFromRelations.class). The XML mapping definition 

UI is shown in Figure 1.7. The form has two tree elements corresponding to the 
XML output of the first agent and the XML input of the second agent. The XML 
structures are shown in the tree elements. The user selects an element from either 
side and creates the mapping between these elements using the “Map” button. Two 
text boxes show the source element path and the destination element path 
respectively. These paths correspond to the XPath of the selected elements. The 
information about mapping between all the elements is stored in an XML mapping 
information file that it can be later used to extract information from the outputs of 
the first agent and populate the XML input file of the second agent. The mapping 
execution class reads the mapping information file and extracts information from 
the XML output file of the first agent and fills up the XML input of the second 
agent.

The current implementation of the mapping tool does not support algebraic 
manipulation of XML nodes. For example, if we have data about variables ‘a’ and 
‘b’ inside two different XML nodes, it is not possible to assign ‘a+b’ or ‘a-b’ etc.
to a node of another XML file. This kind of a facility of algebraic manipulations is 
important and planned in the future versions of the framework. Further, the 
mapping tool currently supports information mapping only between XML files. 
The capabilities of the tool would immensely increase by providing support for 
mapping different types of schemas like mapping information from Express 
schema to an XML schema. 
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1.5.2.5 Messaging and Agent Description in X-DPR 
The transfer of information between different software applications in X-DPR is 
through XML based standards such as the Simple Object Access Protocol (SOAP) 
[56]. SOAP standard for interfacing different software applications is programming 
language independent. XML is a platform- and language-neutral standard for 
representing information. The benefit of XML is that it separates data from meta-
data (i.e., information about the data). XML is also being adopted as a universal 
standard for representing information in distributed computing frameworks. SOAP 
is a communication mechanism based on XML. It is also a platform and language 
independent standard. Previous communication protocols, such as CORBA, 
DCOM, EJB (Enterprise Java Beans) and Java-RMI, share the common problem 
that they are incompatible with each other and that the applications deployed with 
these protocols cannot be accessed through a firewall. The SOAP protocol 
addresses this problem. SOAP uses a simple HTTP request/response-based 
communication, allowing it to pass through corporate firewalls [57]. A SOAP 
message typically contains an XML message along with an HTTP header.   

In X-DPR, we use XML to define interfaces between different design activities 
(see #4 in Table 1.3), SOAP for message transfer between distributed applications 
over different platforms (see #3 in Table 1.3), and WSDL to describe different 
Web services (see #9 in Table 1.3). Since we are using standards common to all 
web services based frameworks, X-DPR is compatible with other similar 
frameworks (see #12 in Table 1.3). 

1.5.2.6 Publishing a Service 
The agents are published in the X-DPR framework simply by creating a description 
file based on the WSDL standard. The client retrieves the information from the 
WSDL description and creates a UI for the agent.  WSDL documents can either be 
created manually or can be created automatically using commercially available 
toolkits. The Microsoft SOAP toolkit [58] can be used to create WSDL document 
for COM objects and Systinet Server for Java [59] can be used for creating WSDL 
for Java classes. 

1.5.2.7 Asset Search Service 
The task of searching for agents appropriate for a particular task is implemented as 
a Web service in itself.  This Web service is called the Search Service.  The Search 
Service maintains a database of links to WSDL files with a description of the 
service. Currently, the new agents in the database are populated manually and the 
database is created in the Microsoft Access. However, it is planned that the Search 
Service will perform a running search on the Web for WSDL description files.  

The agent search service also maintains information about whether the service 
is currently in use or not. In the X-DPR framework, an agent’s lifecycle is 
described by three states – available, busy, and unavailable. In the available state,
the agent can receive requests for execution from clients or other agents. When the 
agent is being executed by the client or another agent, it shifts into the busy state.
The agent shifts between the available and busy state automatically. An agent is 
unavailable when it is registered in the database but cannot execute. This may 
happen when the agent is physically disconnected from the network. In the current 
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implementation, the agent developer has to manually set the state to unavailable.
Whenever a user searches for an agent, the search service automatically gives a list 
of available and busy agents. Keeping the Search Service as a separate module is 
helpful because it can be developed independently of the framework and thus 
replaced with a different service at a later date.  This also leaves the possibility that 
if commercial Web service search engines are developed in the future, they may be 
integrated into the framework. The agent search service can be extended in future 
by using the standard Universal Description, Discovery, and Integration (UDDI) 
protocol. UDDI describes a standard method for publishing, managing, discovering 
web based services [60]. UDDI is also based on other XML-based standards such 
as SOAP, WSDL, and XML Schema. 

Implementation of Asset Search Service - The search service is implemented as 

a Java class (SearchDB.class). The Java class performs SQL queries on the 

database that contains the following information – a) Agent Name, b) Agent 
Description, c) Location of description file (WSDL file), d) Input file template (if 
any), e) Output template (if any), f) Location of the user interface description file 
(if any) and g) an entry, that specifies the current state of the agent. The interface-
mapping tool described in Section 1.5.5 uses the input and output template files to 
map the outputs and inputs of different agents. From the process diagram tool, the 
search toolbar can be used to perform a keyword search on agents available for use. 
The process diagram tool sends a request to the search service and the search 
service returns a list of available agents matching the keywords. The user can 
select any of the agents from the list and assign it to the blocks in the process 
diagram. 

1.5.3 Using the X-DPR Framework for LCAs Design 

In the LCAs design example, seven distributed software applications are involved. 
These include applications for a) requirements capturing (in-house Java 
application), b) problem definition c) design of experiments (iSIGHT), d) thermal 
analysis (in-house Matlab code), e) structural analysis (in-house Matlab code), f) 
Response Surface Model (iSIGHT), g) updating the geometric parameters (in-
house Java code). These applications are deployed as agents. In order to explain 
the use of the X-DPR framework in the context of LCAs design, we revisit the five 
tasks listed in Section 1.1 that are performed by an agent developer. The first task 
is to specify input and output data constructs for each application. The inputs and 
outputs for all the seven applications are described as individual XML files. The 
second step is to develop a wrapper for each of these applications. The wrapper 
development involves converting the input XML file into the applications native 
input format and converting the output from the native format into the XML format 
described in the previous step. The wrapper for iSIGHT has been developed in 
Visual Basic, and for other applications, it has been developed in Java. The third 
step is to develop a service description file for each application to be published as 
an agent. This step is performed automatically by the use of applications such as 
the Microsoft SOAP toolkit for Visual Basic-based wrappers and using the Systinet 
Server for Java-based wrappers. The fourth step is to notify the framework of the 
newly available service. This step is performed by adding individual entries to the 
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agent database described in Section 1.5.8. The fifth step is to create a UI for the 
user interaction with agents if required. The UI for each agent is described for each 
agent using the UI description file (WSDL). These UIs are created at the client side 
only of the user wants to interact with the agent. Although all of the five steps 
described in Section 1.1 are required in the X-DPR framework, the prime 
advantage of using an adaptable framework such as X-DPR is its openness that 
reduces rework if there is a change in either the design process or the agents 
themselves. The features that provide this flexibility to the framework are 
discussed in Section 1.7. 

Having discussed the activities performed by agent developers in deploying the 
applications, we now move on to the steps that the user follows for executing the 
LCAs design process remotely. Using the process diagram tool, the user creates a 
design process as a network of tasks where each task corresponds to an agent to be 
executed remotely. For the LCAs design process, these tasks are – capturing 
customer goals in terms of target heat transfer and stiffness of the LCAs, defining 
design variables, responses and associated ranges, which are mapped to a design of 
experiments task. The design of experiments task outputs a list of points in the 
design space where the analyses (thermal and structural) are executed. The output 
of the design of experiments task is mapped to the inputs of both thermal and 
structural analysis tasks. The outputs of analysis tasks are inputs for the response 
surface modeling task where an approximate surface is fit between the input 
variables and output variables. The output of the response surface modeling task is 
input to a task that updates the LCAs geometry. At this time, these tasks are not 
tied to any software agent. The user then performs keyword searches 
corresponding to each agent using the search toolbar, which results in a list of 
available agents. For example, when the user searches for “Design of Experiments”, 
two agents are shown in the list – “iSIGHT” and “Minitab”. Both of these agents 
have the similar functionality. The user then selects the suitable agents and assigns 
them to tasks defined in the process diagram using the search toolbar. Through this 
assignment, the task associated with an agent is linked with the corresponding 
WSDL file and also sets up a link with its input and output file template. The user 
then maps the outputs and inputs of agents that are linked in the process diagram 
using the process diagram tool. For example, the output XML template file of the 
design of experiments agent is mapped to the input XML template files for 
structural and thermal analyses. After the inputs and outputs are mapped, the 
process is executed from the process diagram tool. This initiates an execution chain 
of agents wherein the agents are executed sequentially until all the agents have 
executed once. Loops of execution are not supported in the current implementation 
of X-DPR. 

1.5.4 X-DPR as an Adaptable Framework 

We have discussed the elements of X-DPR, implemented as an adaptable 
framework. The requirements of the framework and associated capabilities of X-
DPR are summarized in Table 1.3. The main features of X-DPR as a standardized 
yet flexible framework are: 
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1. Flexible mapping of information interfaces between agents using the XML 

mapping tool 

In X-DPR, the Web is used as a backbone along with the associated technologies 
(Java, Web browsers, etc.) and standards (XML, SOAP, WSDL, etc.) for 
communication. In X-DPR, XML is used because it formalizes the semantics of the 
contents of information and facilitates electronic data exchange. As we have seen 
previously, most of the earlier frameworks focused on standardizing the structure 
of data models and information exchange between agents. This caused problems 
while integrating new tools into the framework. Any new tool to be integrated to 
the framework must abide by the standardized schemas in which information is 
communicated between agents, which limit the flexibility of agents to implement 
their own input/output schemas.  

The interface-mapping tool helps to achieve flexibility in defining data 
structures for storing and passing information. Hence, the agents have flexibility in 
defining the structure of information flowing in and out and by using the XML 
standard in the X-DPR framework, and therefore, the system is more flexible, 
easily configurable and open (see Table 1.1). This provides the required 
adaptability when the inputs/outputs of the agents change or when there is a 

process change resulting in changes in the agents that interface with each other
(see Section 0). The use of interface mapping tool can also be used for mapping 
different domain ontologies. Information schemas from various domains can be 
mapped to each other to accomplish an enterprise level transfer of information 
rather than just information transfer between software applications. 

2. Standardized means of describing UIs  

Another important issue while developing distributed agent-based systems is the 
way in which users interact with remote agents. Most of the frameworks developed 
until now have assumed that a fixed set of agents are deployed into the system and 
fixed UIs have been created for each type of agent. However, in an open 
engineering system in which it is not known what kinds of agents will be deployed 
on the framework and what kinds of interaction will be required by the system, it is 
difficult to create individual UIs for each agent. This problem is amplified when 
each agent is configured differently for different processes. In X-DPR, dynamic 
user interface generation at the client side is used to overcome this problem. This 
feature ensures that the UIs can be reused on heterogeneous platforms and for 
different programming languages (see Table 1.1). It provides both the adaptability 
to changes in UIs without changing the framework, and the ease of use because 
changing the UIs only requires changing the associated XML file. 

3. Standardized means of representing process information (using the Decision 

Support Problem Technique) 

In the X-DPR framework, the capability for meta-design is provided using the 
Decision Support Problem (DSP) Technique (see Section 1.5.3). It helps designers 
rapidly configure design processes and use distributed resources execute the 
processes. This capability fulfils the requirement of rapid configuration of the 
product realization environment (see Table 1.1). 
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4. XML standards-based messaging protocols  

The use of the platform and language independent XML-based standards ensures 
that the framework is usable on heterogeneous platforms and heterogeneous 
programming languages (see Table 1.1). 

5. Standardized description of assets using WSDL 

Some of the frameworks such as Web-DPR describe some information about an 
agent such as the location of the agent and whether it is currently available. 
However, there is no information about what kinds of tasks that the agent can 
perform so that a remote user can determine the applicability of the agent for the 
task at hand. In the X-DPR framework, we use the XML-based standard WSDL to 
describe the capabilities of agents and ways that they can be invoked. This 
provides the adaptability to changes in agents and their services. This fulfils the 
requirement of an adaptable framework to adapt to agent services changes (see 
Table 1.1). Whenever there is a change in the services provided by an agent, these 
changes are automatically reflected in the corresponding WSDL files. Other 
features of the X-DPR framework related to the adaptability requirements are 
outlined the Table 1.3. In the next section, we close the chapter by providing future 
research directions and summary of our efforts. 

1.6 Conclusions

The integration of the communication infrastructure for industry is essential.   
Industry and academia have tried to standardize data formats, which are platform 
and application independent. There has been a substantial effort to construct 
computational communication frameworks to integrate distributed resources 
(software, hardware, and human experts); however, those tend to be domain 
specific solutions or hard to reconfigure. 

We have designed and implemented an adaptable engineering framework for 
distributed product realization, X-DPR, which balances the need for flexibility and 
standardization. The Open Engineering Systems paradigm, which includes 
modularity, mutability, and robustness, is the reference concept for the formulation 
of requirements for an adaptable framework (see Section 1.2). These are: 

Adaptability to network architecture changes or malfunction 

Usability on heterogeneous platform with heterogeneous operating systems 

Adaptability in the face of heterogeneous programming languages for 
different agents 

Ability to transmit message and data changes 

Rapid reconfiguration of the product realization environment  

Minimizing the impact of agent service changes 

Readiness for future expansion 

Management of process information to avoid discrepancies 

These requirements help us to identify the features an adaptable framework 
should have. Four distributed engineering frameworks are reviewed in this chapter.  
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However, from the literature survey, we conclude that existing frameworks have 
some desirable features, but these frameworks do not fully satisfy the necessary 
requirements.   

The X-DPR framework has been designed as an adaptable framework as 
discussed in Section 1.3. The features that balance the requirements discussed in 
Section 1.2: flexible mapping of information between agents, a standardized means 
for describing user interfaces, a standardized means for representing process 
information, a standardized message protocols based on XML and a standardized 
description of assets using WSDL. In X-DPR, the existing communication 
infrastructure is used as a backbone along with the technologies (Java, Web 
browsers, etc.) and standards (XML, SOAP, WSDL, etc.) for communication.  
These provide the flexibility and enable the future expansion of the framework.  
The interface-mapping tool also helps to achieve this flexibility, by easily allowing 
agents to reconfigure information flowing in and out.  The Client application 
supports rapid reconfiguration of engineering task and decision-making activities 
and also task decomposition to formulate hierarchical product realization processes. 
Standardized service description files (represented in WSDL) are used for creating 
graphical UIs and interacting with agents. In the X-DPR framework, an emerging 
industry standard Remote Procedure Call (RPC) protocol, SOAP-based agent 
wrapper provides much more flexibility and ease of implementation than is 
available in the other frameworks. Workflow information is shared among 
distributed users by the Process Diagram Whiteboard in real-time. The most 
important advantage of the X-DPR framework is that it is compatible with other 
business frameworks. We envision the X-DPR framework as a link between an 
engineering framework (that manages design chains) and business framework (that 
manages supply chain). 

X-DPR satisfies most of the features that are needed for an adaptable 
framework; however, there is still a need for further improvement based on the 
requirements addressed in Section 1.2. In the X-DPR framework, Web services are 
described using WSDL files. As mentioned in Section 1.3, these files are used to 
describe functions that can be called remotely in a software program and are used 
to index and search for available agents in an agent service database. These are the 
reference files to form the dynamic UI for remote users.  However, in engineering, 
the amount of information currently conveyed in WSDL is inadequate if there are a 
number of services available, which provide the similar functionality.  Description 
files must provide more information about the services. For example, a design of 
experiments agent should provide information when a specific technique should be 
used.  A simulation program should also provide information about the range of 
values of input variables for which the program is valid. We are developing an 
Extended/Engineering Web Service Description Language (E-WSDL) to meet this 
need.

Co-ordination and conflict management play an important role in distributed 
engineering design frameworks. Brazier, et al., [61] have categorized these 
conflicts into two broad categories: a) conflicts during management of information 
content, and b) coordination between activities. The first category includes 
conflicting design requirements, and conflicts while updating design description, 
whereas the latter category includes design process and agent coordination 
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conflicts. In the X-DPR framework, coordination between agents is achieved by 
capturing the sequence of agent execution and maintaining their status in the 
database (see Section 1.5.8). The X-DPR framework takes advantage of the STEP 
data repository and its Java interface discussed in Section 1.5.2.1 for conflict 
management during design description update. The X-DPR framework does not 
currently implement the conflict management of requirements and the coordination 
issues arising when different designers share the same design variables but have 
conflicting objectives. Various theoretical frameworks, such as negotiation [62, 63], 
game theory [64-68], and Pareto optimality-based methods [69], have been 
developed in the literature for coordination between distributed designers and 
agents. There has also been a recent interest in the academia in applying different 
interaction protocols such as cooperative and non-cooperative game theory-based 
protocols for coordination between design teams in decentralized design processes, 
where different teams with conflicting objectives share a design space. These 
protocols help in the coordination of design decisions in a multi-designer scenario. 
So far, these protocols are studied at a theoretical level but have not been 
implemented in any distributed design framework. We believe that the next phase 
in the evolution of distributed product realization frameworks is in implementing 
these efficient methods for designer interactions. 
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Design of a modern product is often a very complicated process, which involves 
groups of designers, manufacturers, suppliers, and customer representatives. 
Conflicts are unavoidable during collaboration among multiple stakeholders, who 
have different objectives, requirements, and priorities. Current Web-based 
collaborative engineering design systems do not support collaborative conflict 
resolution. In this chapter, we present a Web-based intelligent system that we have 
developed for collaborative engineering design. It extends a collaborative solid 
modeling software system by adding an argumentation-based conflict resolution 
tool, a whiteboard, and a chat utility. We have developed an intelligent 
computational argumentation model to enable the management of a large scale 
argumentation network and resolution of conflicts based on argumentation from 
many participants. A Web-based collaborative engineering design system has been 
developed based on the above model to resolve conflicts over the Internet by 
enabling collaborators to select the most favored design alternative in the design 
argumentation from multiple perspectives. An example of collaborative design of 
latch mechanism for a solar car using the developed system is presented to show its 
effectiveness. 

2.1 Introduction 

Modern products are increasingly designed via collaborations that are distributed 
across people, organizations, and space. Because of the involvement of various 
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disciplinary groups in decision making, numerous conflicts exist at every stage of a 
collaborative engineering design process [1, 2]. Decisions made by different 
groups may not be consistent, components may not physically fit together, and 
system interfaces may not be compatible.  Although different tools and software 
support systems have been developed to facilitate collaborative engineering design 
[3-5], the lack of effective intelligent conflict detection and resolution capabilities 
still hampers effective and efficient collaborative design. 

In this chapter, we present a quantitative argumentation method for 
collaborative engineering design. Based on the method, we have developed an 
intelligent Web-based collaborative engineering design system that links designers 
of engineering systems and facilitates effective and efficient conflict resolution 
among them. This system allows multiple designers to design solid models 
collaboratively, and facilitates resolution of conflicts effectively through 
argumentation. 

The chapter is organized as follows. Section 2.2 reviews related work. Section 
2.3 describes the architecture for a collaborative engineering design environment. 
Section 2.4 explains argumentation-based conflict resolution in collaborative 
engineering design. Section 2.5 describes the design and development of a 
software system implementing the described method. Section 2.6 presents an 
example to illustrate our method and system.  

2.2 Related Work 

2.2.1 Current State-of-the-art on Computer-aided Collaborative 

Engineering Design Systems 

We will briefly review the current state-of-the-art on collaborative engineering 
design systems. A traditional Computer-Aided Design (CAD) system only allows a 
single user to do design while a collaborative CAD system allows multiple 
designers to work on a design together. Early research projects in collaborative 
CAD systems [1, 5-7] have successfully addressed some engineering design issues 
in collaborative environments. They were developed on local area networks, which 
are platform dependent, and they were not Web-enabled. It is hard to use them to 
support designers in locations thousands of miles away from each other to 
collaborate in heterogeneous platforms. There have also been research efforts 
toward enabling traditional CAD systems for collaborative design. For example, a 
Computer Supported Cooperative Work (CSCW) system [7] was developed using 
C++ and AutoCAD for collaborative design. It has a generic model of 
collaborative design. Another such system is DOME [5]. It was built by integrating 
existing single-user CAD systems using CORBA and C++. 

The increasing power of the Internet makes collaborative CAD feasible. 
Recently, several Web-based CAD systems have been developed to allow multiple 
users from geographically distributed locations to share their design models over 
the Internet. They fall into three categories. The first category of Web-based CAD 
systems, including C-DeSS [8] and CDFMP [9], integrates Web-based multimedia 
tools, such as online chat and online meeting, with Web-based solid model displays 
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so that designers from different locations can share their design ideas over the 
Internet. However, users cannot develop and edit their solid models online. The 
second category of Web-based CAD systems, including the Internet design studio 
[10], WCW [11], WebCAD [12], and NetFEATURE [13], allows multiple users to 
share their design over the Internet although multiple users can not develop their 
common models concurrently. The Web-based collaborative system for 
engineering design recently developed by us has the capabilities of both categories 
[14]. The third category of Web-based CAD systems, including CSM [14], 
CollabCAD [15], and Alibre Design [16], focuses on collaborative solid modeling.

All of the existing Web-based collaborative design systems provide very little 
or no support for detecting conflicts among requirements, exploring design 
alternatives, and identifying the best design through argumentation from multiple 
perspectives  to resolve design conflicts. There is a clear need to develop 
fundamental theoretic methodologies of conflict resolution and implement them 

with a Web-based collaborative engineering design system.

2.2.2  Current State-of-the-art on Argumentation-based Conflict Resolution 

Philosopher Stephen Toulmin developed a very influential model of argumentation 
[17] that has guided the development of software tools and systems for supporting 
the detection and resolution of conflicts in many knowledge domains. 
Argumentation is a process of arriving at conclusions through discussions and 
debates. Toulmin’s work has promoted a more informal approach in dealing with 
argumentation than formal logic. In the area of engineering design, several 
argumentation-based conflict resolution methods and systems have been developed 
from Toulmin’s model.  The first of them, gIBIS (graphical IBIS), represents the 
design dialog as a graph [18]. While representing issues, positions, and arguments, 
gIBIS failed to support representation of goals (requirements) and outcomes. IBE 
[3] extended gIBIS by integrating a document editor.  REMAP [19] 
(REpresentation and MAintenance of Process knowledge) extended gIBIS and IBE 
by providing the representation of goals, decisions, and design artifacts. As 
opposed to these systems, Sillince proposed a more general argumentation model 
[20]. His model is a logic model where dialogs are represented as recursive graphs 
and the rules of both rhetoric and logic were used to manage the dialog and to 
determine when the dialog has reached closure. Alexander [21] described the 
incorporation of Toulmin’s approach into a software product (Teleologic DOORS) 
that represents the features of arguments in a visual hierarchy to aid the analysis of 
positions taken by proponents and opponents of particular design requirements. 
The biggest challenge with these systems is that the sizes of their argumentation 
networks are often too large to comprehend and therefore it is very difficult to use 
them to help make design decisions since they are qualitative and not 
computational. In addition, they cannot deal with uncertainties associated with 
argumentation from multiple perspectives. In a preliminary study, we developed a 
computational argumentation method for capturing and analyzing software design 
rationale [22]. Parsons and Jennings [23] proposed a framework, based upon a 
system of argumentation, which permits agents to negotiate to establish acceptable 
ways to solve problems. QuestMap [4] is a Computer Supported Collaborative 
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Argumentation (CSCA) tool developed to support legal argumentation by 
equipping the users with the language needed to construct and analyze arguments. 
The disadvantage of this tool is its lack of decision making capabilities. HERMES 
[24] was developed to aid decision makers reaching a decision, not only by 
efficiently structuring the discussion rationale but also by providing reasoning 
mechanisms that constantly update the discourse status in order to recommend the 
most backed-up alternative. Its disadvantage is that the weighting factor becomes 
very ineffective as it is not related to the entered position.

2.3 A Web-based Intelligent Collaborative Engineering 

Design Environment and Its Application Scenarios 

A prototype Web-based intelligent collaborative system for engineering design has 
been developed by us. It extends a collaborative solid modeling tool from Alibre 
Co. [16] by adding an argumentation-based conflict resolution tool, a whiteboard, 
and a chat utility using a client-server architecture as shown in Figure. 2.1. On the 
client side, the system provides user interfaces for argumentation-based conflict 
resolution, whiteboards for design alternatives, and chat rooms for real-time 
information exchange. On the server side, it manages client communication and 
argumentation networks. Alibre Design is a collaborative solid modeling tool for 
creating 3D designs and 2D drawings. It allows engineering teams to work together 
concurrently over the Internet to create, visualize, review, and modify their designs 
and drawings. 

In the collaborative design process, when a conflict is detected, an 
argumentation-based conflict resolution session will be initiated. A design issue 
concerning the conflict is raised first in the session. After multiple design 
alternatives are generated by the participants, arguments can be proposed by the 
collaborative designers to either support or oppose the design alternatives or 
arguments themselves. Our system can help identify the alternative that is most 
favored by all participants by considering all arguments to resolve the conflicts. 

2.4 Argumentation-based Conflict Resolution in the 

Collaborative Engineering Design Environment 

We have developed a computational argumentation method for collaborative 
engineering design based on our preliminary work on software design rationale 
capturing. The argumentation framework of this conflict resolution system is an 
extension of the informal IBIS model of argumentation using fuzzy logic. It will 
help achieve a consensus among stakeholders and identify the most favorable 
design alternative through argumentation by computing the favorability of 
individual design alternatives from all arguments in the argumentation network in 
an uncertain environment based on fuzzy logic.  
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Figure 2.1. Architecture for a Web-based intelligent collaborative engineering design 
environment

The components of the design argumentation model for collaborative 
engineering design include stakeholders, requirements, conflicts, design issues, 
parts, alternatives, arguments, and decisions, as shown in Figure 2.2. We view 
collaborative design as the process of negotiating the resolution of design issues 
through dialogs between the stakeholders.  A dialog for a given design issue is 
represented by the alternatives that are related to the design issue, and the 
arguments for or against each alternative. The resolution of a design issue is 
represented by a decision that selects an alternative which is most favored. 
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Figure 2.2. Framework for design argumentation 

2.4.1 Structured Argumentation Through Dialog Graph 

A design dialog for a design issue is captured as a weighted directed graph called a 
dialog graph [8], as shown in Figure 2.3. The nodes denoted by circles are 
Positions. A position is a statement or assertion that responds to an issue, which is 
a problem, concern, or question that requires discussion for the problem solving to 
proceed. The nodes denoted by rectangles are Arguments. Arguments are 
statements that support or attack Positions. Each Position may have one or more 
arguments that either support or attack it. Arcs represent a relationship (attack or 
support) from the originating argument node to the terminating argument or 
position node. The position node contains the name of the stakeholder posting the 
position and the text of the position. Each Argument node contains the name of the 
stakeholder posting the argument, the text of the argument and a weight value. The 
weight attached to an argument is the Argument Strength. It is the measure of an 
argument’s degree of attack or support of either a position or another argument in 
the position dialog graph. The weight value is a real number between -1 and 1. A 
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positive number denotes Support and a negative number denotes Attack while zero 
denotes Indecision.  The strength of the argument is viewed as a fuzzy set and 
linguistic labels are used to represent the strength. It is easy to use linguistic labels, 
instead of real numbers, to denote the strength of an argument over another 
argument or a position. By doing so fuzzy inference can be used to evaluate a 
position. Both linguistic labels on arcs (branches) and strengths of arguments are 
given by participants. Since disagreements among participants are inevitable, how 
to objectively determine a position’s overall favorability is a major research issue. 
A position node contains a label associated with it to give a measure of the strength 
of the position based on the strengths of the arguments under it. This measure 
represents the overall favorability of the position. 

Let us use a simple example to illustrate the above concepts. Suppose that 
several designers in multiple locations collaborate to develop a speed reducer. 
They may have an issue of its gear design. Two design alternatives, which are 
represented as their positions, are proposed by participants. One focuses on cam 
and another focuses on linkage. Participants can debate about them by posting their 
arguments about their advantages and disadvantages to resolve their conflict. 
Another example will be given later to demonstrate how to apply the presented 
conflict resolution method. 

2.4.2 Argument Reduction Through Fuzzy Inference 

In Figure 2.3, we can see some arguments attached to other arguments, by a label 
to denote the degree of support or attack on the arc going between arguments, other 
than directly attached to the position. For example, A3 has Medium Attack (MA), 
and A1 and A5 have Strong Support (SS). Argument reduction is used to reduce 
the arguments which are not directly connected to the position, in order to have 
them directly connected to the position. For example, argument A3 which is posted 
as an argument that attacks argument A1, actually attacks the position P after 
argument reduction.  

There are four General Argumentation Heuristic Rules that can be formulated 
as follows [2]. 

General Argumentation Heuristic Rule 1: If argument B supports argument 
A and argument A supports position P, then argument B supports position 
P.

General Argumentation Heuristic Rule 2: If argument B attacks argument 
A and argument A supports position P, then argument B attacks position P. 

General Argumentation Heuristic Rule 3: If argument B supports argument 
A and argument A attacks position P, then argument B attacks position P. 

General Argumentation Heuristic Rule 4: If argument B attacks argument 
A and argument A attacks position P, then argument B supports position P. 

As the linguistic labels used are Strong Support (SS), Medium Support (MS), 
Indecisive (I), Medium Attack (MA) and Strong Attack (SA), the above four 
General Argumentation Heuristic Rules can be extended to obtain twenty-five 
Argumentation Heuristic Rules shown in Figure 2.4. 
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Figure 2.3. Position dialog graph 

SS: Strong Support   MS: Medium Support 

I: Indecisive              MA: Medium Attack 

SA: Strong Attack 

Figure 2.4. Argumentation heuristic rules 

Consider an instance where the strength of the level-1 argument is Strong 
Attack (SA) and that of the level-2 argument is Medium Support (MS), then the 
reduced strength of the level-2 argument will be Medium Attack (MA) as shown 
by the entry in column 3 and row 6 in Figure 2.4. 

MA – Medium Attack 
MS – Medium 
Support 

SS – Strong Support 

A4

A1

0.8

Oi

A2

0.7

Op

A3

-0.5

Ok

A5

0.7 

Oi

0.6 

Og

A6

0

Ol

P

Oi

SS – Strong Support 

I -Indecisive 

SS – Strong Support 



A Web-based Intelligent Collaborative System for Engineering Design 45 

A fuzzy inference engine has been built to infer the reduced strengths of the 
arguments, as discussed later in this section. Using this fuzzy inference engine we 
can reduce a given Position Dialog Graph into one in which all the argument nodes 
are directly attached to the position node. Consider the example in Figure 2.3, 
where we have arguments occurring at level 3. The argument nodes at level 3 can 
be reduced and attached to the argument node at level 1.  Their reduced strengths 
are computed using the fuzzy inference engine, as shown in Figure 2.5. 

Figure 2.5. Position dialog graph after one level reduction 

Now there is one level of arguments which are not directly attached to the 
position. Hence argument reduction has to be performed once again to have the 
reduced position dialog graph with all the arguments directly attached to the 
position. The arguments at level 2 are reduced using the fuzzy inference engine and 
attached directly to the position node, as shown in Figure 2.6. 

In the procedure of argument reduction, the fuzzy inference engine takes in two 
inputs and generates one output. The inputs are the strengths of the argument to be 
reduced and the argument right above it. The output of the fuzzy inference engine 
is the strength of the argument after the argument reduction. 

2.4.2.1 Linguistic Variable Through Fuzzy Membership Functions 

Fuzzy membership functions are used to quantitatively characterize linguistic 
systems represented as fuzzy sets. The fuzzy membership function chosen for the 
system in our study is the piecewise linear trapezoidal function. Membership 
functions are defined by using a,b,c,d to denote the four vertices of the trapezoids. 
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Five membership functions have been defined for five fuzzy sets. The five fuzzy 
sets are Strong Attack (SA: a = -1, b = -1, c = -0.8, d = -0.5), Medium Attack (MA: 
a = -0.8, b = -0.6, c = -0.4, d = -0.2), Indecisive (I: a = -0.3, b = 0, c = 0, d = 0.3), 
Medium Support (MS: a = 0.2, b = 0.4, c = 0.6, d = 0.8) and Strong Support (SS: a 
= 0.5, b = 0.8, c = 1, d = 1). Figure 2.7 shows the five membership functions for 
the above five linguistic terms.  

Figure 2.6. Position dialog graph after complete reduction 

Figure 2.7. Five membership functions 

2.4.2.2 Fuzzy Inference Rules 

Fuzzy inference rules combine two or more input fuzzy sets and associate with 
them an output set. The input sets are combined by means of operators that are 
analogous to the usual logical conjunctives “and”, “or”, etc. The fuzzy rules, also 
known as argumentation rules, are given in Figure 2.4. The fuzzy or argumentation 
rules are stored and represented through the use of the Fuzzy Association Memory 
(FAM) matrix shown in Figure 2.8.  There are two inputs X and Y for each rule. 

P

Oi

A1

0.8 

Oi

A2

0.7

Op

A3

-0.5 

Ok

A5

-0.5

Oi

A6

0.0

Ol

A4

0.67

Og

   -1   -0.8      -0.6     -0.4   -0.2   0.0       0.2      0.4       0.6    

1

0

SA          MA                I               MS               SS



A Web-based Intelligent Collaborative System for Engineering Design 47 

Each input variable is one of five input sets, i.e., “SS”, “MS”, “I”, “MA”, and 
“SA”. The output variable Z is one of  five output sets which are same as the five 
input sets. Each FAM matrix entry is a fuzzy set that is the output of the fuzzy rule. 
For example, the shaded part in Figure 2.8 represents the rule: “If X is Strong 
Support (SS) and Y is Strong Attack (SA), then the output Z is Strong Attack 
(SA).”  

2.4.2.3  Fuzzy System and Defuzzification 
The system associated with the FAM matrix is shown in Figure 2.8. In this case we 
have two input variables, X and Y, each with an associated fuzzy set from SS, MS, 
I, MA and SA. Figure 2.7 shows the membership functions for these sets. 

Figure 2.8. The Fuzzy Association Memory (FAM) matrix I 

The membership functions for the fuzzy sets SS, MS, I, MA and SA are 
denoted by FSS, FMS, FI, FMA and FSA, respectively. A value x of the input variable 
X then has membership degrees FSS(x), FMS(x), FI(x), FMA(x) and FSA(x) in
respective fuzzy sets. For example, with the trapezoidal membership functions 
shown in Figure 2.7 and a value x = -0.7, we would have: 

FSS(-0.7) = 0.0 
FMS(-0.7) = 0.0 
FI(-0.7) = 0.0 
FMA(-0.7) = 0.5 
FSA(-0.7) = 0.67 

Similarly, a value y of the input variable Y has membership degrees FSS(y), 
FMS(y), FI(y), FMA(y) and FSA(y). For example, the value y = 0.6 as shown in Figure 
2.9 would result in 

FSS(0.6) = 0.33  
FMS(0.6) = 1.0 
FI(0.6) = 0.0 
FMA(0.6) = 0.0 
FSA(0.6) = 0.0 
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Figure 2.9. Membership degrees 

Consider x = -0.7 and y = 0.6 as values of the input variables X and Y. A 
weight value for each entry in the FAM matrix is computed by taking the minimum 
value of the membership function associated with that entry. Now consider the 
FAM matrix entry corresponding to X as a member of the fuzzy set MA, and Y as 
a member of the fuzzy set SS. The weight w1 associated with the entry would be 
computed as: 

w1 = min [FMA(-0.7), FSS(0.6)]
     = min [0.5, 0.33] 
     = 0.33 

Only those FAM matrix entries which have nonzero membership-function
values for both X and Y will have nonzero weights associated with them. The 
shaded entries in Figure 2.10 show the four activated rules for the values in the 
example. In addition to w1, there are three more non-zero weights. They are 

w2 = min [FMA(-0.7), FMS(0.6)]
     = min [0.5, 1.0] 
     = 0.5 
w3 = min [FSA(-0.7), FSS(0.6)]
     = min [0.67, 0.33] 
     = 0.33 
w4 = min [FSA(-0.7), FMS(0.6)]
     = min [0.67, 1.0]   
     = 0.67 

The output variable Z also has five fuzzy sets associated with it, i.e. SS, MS, I, 
MA and SA. Specific values are assigned to these fuzzy sets, i.e. SS = 1, MS = 0.5, 
I = 0, MA = -0.5 and SA = -1. The system output is computed as follows: 
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Figure 2.10. The Fuzzy Association Memory(FAM) matrix II 

2.4.3 Conflict Resolution by Computing Favorability of Positions          

(Design Alternatives) 

The favorability of a position is a value indicating the strength of the position. It is 
calculated by taking the sum of the strengths of arguments obtained by performing 
reductions on the ones which are not directly connected to the position. Such a 
measure allows the participants in a design deliberation to compare positions 
objectively and quantitatively based upon the argument strengths.  

To identify a good design concept, multiple design alternatives are usually 
developed and explored. These alternatives are known as positions. The designers 
would argue over each position by giving their arguments and respective weights. 
In order to resolve the conflicts, i.e., to decide which is the best design alternative, 
the favorability is calculated for each position. The position with the highest 
favorability is the best design option.  

At every point in the argumentation process, the designers can view the 
favorability values of various positions and can post their arguments accordingly. 
For example, a designer may observe that the favorability of a given position to 
which he is supporting is low. He may then decide to post a Strong Support (SS) 
on that position or a Strong Attack (SA) on an argument that has a Strong Attack 
(SA) on the position. 

2.5 Design and Implementation 

A Web-based intelligent collaborative engineering design system has been 
developed based on the above described method using Java on a client-server 
structure. Since whiteboard and chat utilities are commonly available for 
collaborative software systems today, we focus on design and implementation of 
intelligent argumentation for conflict resolution for the collaborative system. 
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The elements used for argumentation include Project, Issues, Positions and 
Arguments. The information has to be entered in text format, which can be viewed 
by every design member participating in the argumentation. If a conflicting issue 
has occurred in a new project, the designer has to first create a project and enter a 
detailed description of the project. Then he can add an issue under that project. If 
another conflicting issue occurs on the same project, the designer will need to 
retrieve the old project from the list of projects and then add an issue under the 
same project. Once an issue is created, the participating designers can enter their 
options i.e., the positions to resolve the issue. The designers can then enter their 
opinions in the form of arguments to the positions. 

At every stage in the argumentation process, the designers can view the result 
of the process, i.e., they can view the position, it favorability, and the inputs by the 
other designers on the position. If the position with the highest favorability is the 
one the designer does not favor, he can then post an attack on that position or post 
a support on the position he favors (thus increasing the favorability of the position 
he supports).  

The graphical user interface for the Web-based intelligent argumentation is 
shown in Figure 2.11. The Control Panel has five menu items: Project, Issue, 

Position, Argument and Calculation/Clear. Each menu item has submenus which 
perform unique actions on the respective argumentation elements. 

As we discussed earlier, one of the drawbacks of the current systems developed 
in this field of research is that the sizes of their argumentation networks are often 
too large to comprehend and therefore it is very difficult to use them to help make 
design decisions. Hence in our system, we have represented the argumentation 
network in the form of a tree. 

The basic argumentation elements are project, issues, positions and arguments.
Project forms the root node, followed by issues, i.e., the conflicting design issues 
that occur for a particular project. Under each issue are positions, i.e., the design 
alternatives which address the issue. Arguments are under positions, and every 
argument can have any number of arguments. The tree structure is so designed that 
a designer at any time can work on any sub-tree of the argumentation tree. This 
helps the designer to concentrate on a specific part of the argumentation. The 
argumentation tree is not too large and as the fuzzy inference engine is used to 
resolve the conflicts, design decisions can be made without any difficulty. 

2.6 An Application Example 

UMR’s Solar Car Team, a student design team which won the competitions in the 
American Solar Challenge in 2001 and 2003, is confronted with many challenging 
issues including resolving various design conflicts. One of the tasks of the team is 
to design a reliable latch mechanism that holds the base frame with the body of the 
solar car as shown in Figure 2.12. After the design team came up with two latch 
mechanisms as shown in Figures 2.13 and 2.14, from which the team needs to 
select the better design. Some obvious pros and cons of the two designs have been 
identified. While design 1 (Figure 2.13) is easier to be analyzed at the detail design 
stage and is also easier to be manufactured than design 2 (Figure 2.14), it is harder 



A Web-based Intelligent Collaborative System for Engineering Design 51 

for the components to be assembled and needs extra work for the locking system. 
Solid models for design 1 and design 2 and their argumentation networks have 
been developed collaboratively using our collaborative design system, which 
incorporates Alibre Design, as shown in Figure 2.15 and Figure 2.16. Their 
comparison using the system is shown in Figure 2.17.  An argumentation network 
has been developed to show resolution of conflicts, as shown in Figure 2.18. The 
argumentation network displayed by the system is shown in Figure 2.19. The 
design dialog reduction is done by the inference engine in the system. The reduced 
argumentation tree is shown in Figure 2.20 and the final result on favorability 
calculation is shown in Figure 2.21. It indicates that design 2 is favored by most 
participants based on the argumentation since its favorability is higher than that of 
design 1. This result of argumentation is concurred by the UMR Solar Car Design 
Team. 

Figure 2.11. Conflict Resolution Window 
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Figure 2.12. The solar car 

Figure 2.13. Design 1 

Figure 2.14. Design 2 
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Figure 2.15. Collaborative design 1 for the Latch Mechanism 

Figure 2.16. Collaborative design 2 for the Latch Mechanism 
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Figure 2.17. Comparisons of Design 1 and Design 2 

Figure 2.18. Argumentation tree 

Argument 1 – The pin aligning will be a problem 
Argument 2 – Design 1 is simpler and more cost-effective 

Argument 2
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Argument 7  
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Position1 
Design 1

Position 2 
Design 2

Argument 8 
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Argument 1
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Argument 3 – It is feasible to design an aligning pin and the locking can be 
designed easily 
Argument 4 – The pin aligning is sensitive and will cause a lot of vibration 
Argument 5 – A chamfer at both ends of the mating cylinder will allow smooth 
insertion
Argument 6 – Strength of the cylinders will depend on the material and dimensions 
and it is sensitive 
Argument 7 – Manufacturing will be cost-effective 
Argument 8 – The pin retraction will be a problem when removing the body from 
the frame 
Argument 9 – If the two blocks are mated via a good design, then aligning will not 
be a problem 
Argument 10 – The pin retraction should not be a problem with proper tolerance 

Figure 2.19. Argumentation network 
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Figure 2.20. Reduced argumentation tree 

Figure 2.21. Favorabilty calculation result – solar car 

2.7 Conclusions 

An intelligent Web-based system has been developed using Java to facilitate 
collaborative engineering design by extending an existing collaborative solid 
modeling system to include an intelligent argumentation tool, a whiteboard, and a 
chat utility. It supports conflict resolution and decision making. The reduction of 
an argumentation hierarchy is based on fuzzy logic. The intelligent argumentation 
utility enhances conflict resolution capability in Web-based collaborative 
engineering design systems by capturing design rationale using argumentation 
hierarchies and providing intelligent aids to identify the most favored positions 
(design alternatives).  

2.8 Acknowledgements 

This research is supported by the Intelligent Systems Center (ISC) in the 
University of Missouri-Rolla. Man Zheng, Siddharth Shinde, and Yamini 

Arg
1

-0.7 

Arg
2

0.9 

Arg
3

0.14

Arg
4

-0.59

Arg
7

0.07

Arg
9

0.5

Arg
8

-0.5

Arg
5

  0.8

Arg
6

-0.5

Arg
10
0.5

Issue – 
Latch

Mechanism

Position 1

Design 1

Position 2

Design2



A Web-based Intelligent Collaborative System for Engineering Design 57 

Natarajan participated in and have contributed to this research project. Yan Sun has 
helped to edit the chapter. 

2.9 References 

[1] Sriram, R., 2002, Distributed and Integrated Collaborative Engineering 
Design, Sarven Publishers. 

[2] Klein, M., 2003, “The dynamics of collaborative design: insights from 
complex systems and negotiation research,” Concurrent Engineering 

Research and Applications Journal, 12(3). 
[3] Lease, M., Lively, M. and Leggett, J., 1990, “Using an issue-based 

hypertext system to capture software life-cycle process,” Hypermedia, 2(1). 
[4] Morge, M., 2004, “Computer-supported collaborative argumentation,” 

CMNA IV. 4th Workshop on Computational Models of Natural Argument,
ECAI 2004, pp. 69–72. 

[5] Pahng, G.-D. F., Seockhoon, B. and Wallace, D., 1998, “A Web-based 
collaborative design modeling environment,” Proceedings of the 7th IEEE 

International Workshops on Enabling Technologies: Infrastructure for 
Collaborative Enterprises (WET ICE '98), 17–19 June, pp. 161–167. 

[6] Reddy, R., Srinivas, K., Jagannathan, V. and Karinthi, R., 1993, “Computer 

Support for concurrent engineering  guest editors’ introduction,” IEEE 
Computer, 26(1), pp. 12–16. 

[7] Zhou, J. and Lin, G., 1999, “Implementation of collaborative design 
environment based on single user CAD systems,” Proceedings of the 3rd

International Conference Knowledge-Based Intelligent Information 
Engineering Systems, 31 Aug.–1 Sept., pp. 78–83. 

[8] Klein, M., 1997, “Capturing geometry rationale for collaborative design 
enabling technologies,” Proceedings the 6th IEEE Workshops on 

Collaborative Enterprises, 18–20 June, pp. 24–28. 

[9] Zhang, H., Wu, H., Lu, J. and Chen, D., 2000, “Collaborative design system 
for performance,” Proceedings of Academia/Industry Working Conference 

on Research Challenges, 27–29 April, pp. 59–63. 

[10] Siddique, Z., 2004, “Internet design studio,” Proceedings of ASME 2004 

Design Engineering Technical Conferences and Computers and 
Information in Engineering Conference, Sept, 2004, Salt Lake City, Utah. 

[11] Wang, L., Wong, B., Shen, W. and Lang, S., 2001, “A Web-based 
collaborative workspace using Java 3D,” Proceedings of the 6th 

International Conference on Computer Supported Cooperative Work in 

Design, July, pp. 77–82.

[12] Peng, S., Tang, M. and Dong, J., 2001, “Collaborative model for concurrent 
product design,” Proceedings of the 6th International Conference on 

Computer Supported Cooperative Work in Design, 12–14 July, pp. 212–
217. 



58 Collaborative Product Design and Manufacturing Methodologies and Applications 

[13] Lee, J. Y., Han, S. B., Kim, H. and Park, S. B., 1999, “Network-centric 
feature-based modeling,” Proceedings of the 7th Pacific Conference on 

Computer Graphics and Applications, 5–7 Oct. 
[14] Chan, S., Ng, C. and Ng, V., 1999, “Real-time collaborative design of 

complex objects on the Web,” Proceedings of the 1999 IEEE International 
Conference on Systems, Man, and Cybernetics, 2, pp. 120–125. 

[15] CollabCAD, 2005, “CollabCAD software,” http://www.collabcad.com. 
[16] Alibre, 2005, http://www.alibre.com. 
[17] Toulmin, S. E., 1958, The Uses of Argument. Cambridge, UK: University 

Press. 
[18] Conklin, J. and Begeman, M. L., 1988, “gIBIS: A hypertext tool for 

exploratory policy discussion,” ACM Transactions on Information Systems 

(TOIS), 6(4), pp. 303–331. 
[19] Ramesh, B. and Dhar, V., 1992, “Supporting systems development by 

capturing deliberations during requirements engineering,” IEEE
Transactions on Software Engineering, 18(6), pp. 498–510. 

[20] Sillence, J., 1997, “Intelligent argumentation systems: requirements, models, 
research agenda, and applications,” in Encyclopedia of Library and 

Information Science (Allen Kent, Editor), Marcel Dekker, New York, pp. 
176–217.

[21] Alexander, I., 2003, “Modeling argumentation: toulmin-style,” Retrieved 
April 15, 2005. http://easyweb.easynet.co.uk/~iany/consultancy/papers.htm. 

[22] Sigman, S. and Liu, X. F., 2003, “A computational argumentation 
methodology for capturing and analyzing design rationale arising from 
multiple perspectives,” Information and Software Technology, 45, pp. 113– 
122. 

[23] Parsons, S. and Jennings, N. R., 1996, “Negotiation through argumentation 

 a preliminary report,” Proceedings of the 2nd International Conference on 
Multi Agent Systems, pp. 267–274. 

[24] Karacapilidis, N. and Papadias, D., 1998, “HERMES: supporting 
argumentative discourse in multi-agent decision making,” Proceedings of 

the 15th National Conference on Artificial Intelligence (AAAI-98), Madison, 
WI, AAAI/MIT Press, pp. 827–832. 



3

A Shared VE for Collaborative Product Development 

in Manufacturing Enterprises 

G. Chryssolouris, M. Pappas, V. Karabatsou, D. Mavrikios and K. Alexopoulos 

Laboratory for Manufacturing Systems and Automation 

Department of Mechanical Engineering and Aeronautics 
University of Patras, Greece 

This chapter describes the development of an integrated Virtual Environment (VE) 
for collaborative product design.  The objective of this approach is to enable real-
time collaboration among multiple users, at different sites, in the same VE.  The 
concept includes the use of Virtual Reality (VR) technology for the development of 
a working display environment that provides all collaborative users with navigation, 
immersion and interaction capabilities in real time.  The scope of this work is to 
provide an efficient, robust collaboration tool for the real time validation of a 
manufacturing product, from the early stages of the conceptual design up to the 
latest stages of the production chain.  In order to demonstrate the benefits of virtual 
collaboration that a shared environment can offer to manufacturing, a pilot 
application, based on the requirements of a “real life” manufacturing company, has 
been developed and presented.   

3.1 Introduction 

Today’s global business environment in the manufacturing industry is 
characterized by competitive pressures and sophisticated customers, who demand 
innovative and speedy solutions.  Understanding and optimizing design processes 
is the cornerstone of success in these fast-changing environments.  Short time to 
market, while maintaining a high product quality, has become the main success 
factors.   

Manufacturing companies need to innovate, both by designing new products 
and by enhancing the quality of the existing ones [1].  Usually, during product 
design, all the persons involved share a great number of drawings-files and 
assembly models.  Often, different components or sub-assemblies of the product 
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are designed by different groups of designers at geographically different locations.  
Companies are frequently out-sourcing engineering activities, performed internally, 
in order to accelerate the design and the product development process [2].  
Nowadays 50–80% of all the components manufactured by original equipment 
manufacturers are out-sourced to external suppliers [3].  This often creates 
problems due to the lack of distributed and collaborative design and manufacturing 
systems, which would effectively disseminate product design knowledge.  These 
problems are typically resolved through meetings or via e-mails and phone 
discussions.  Colleagues are not capable of collaborating and exchanging their 
ideas easily, if they work in different places or particularly in different countries.  
An operating shared VE could solve this problem by eliminating unnecessary 
meetings, repetitive e-mails and costly product mistakes and delays.  The use of 
such a system aims at identifying, quickly and efficiently, both feasible and 
optimal designs through collaboration among product development partners at 
different locations.   

The main goal of the present work is the conceptualization, design and 
development of a shared VE for supporting real-time collaboration onto the same 
virtual product.  The proposed shared VE not only does provide collaboration 
capabilities among multiple users, but also immersion and interaction with 
products under evaluation.  Collaboration features related to users, roles, events, 
projects and files management have also been developed into a Web-based 
platform in order to support the simulation features, which are provided by the 
shared environment and which are related to product design verification.   

3.2 Background 

In the past decade many research approaches and applications focused on the use 
of VR for overcoming the complexity of product design and manufacture [4].  A 
lot of them also included human simulations in order to perform ergonomic 
analysis of virtual products or assembly processes [5–7].  On the other hand, 
various Web-based manufacturing systems have been developed for supporting 
collaborative activities, in different life-cycle phases of product development.  
These include marketing, design, process planning, production, distribution, 
service, etc.  Distributed product development life-cycle activities in a globally 
integrated environment are associated with the use of internet as well as Web 
technologies.  Many product development software systems, such as Computer-
Aided Design (CAD), Computer-Aided Manufacturing (CAM), database 
management and intelligent knowledge-based, have also been integrated, through 
Web technologies, into these Web-based collaboration systems [8].   

An asynchronous collaborative system has been presented [9], called 
Immersive Discussion Tool (IDT), which emphasizes on the elaboration and 
transformations of a problem space and underlines the role that unstructured verbal 
and graphic communication can play in design processes.  A prototyped system 
called cPAD has been developed [10, 11] to enable designers to visualize product 
assembly models and to perform real time geometric modifications, based on 
polygonized representations of assembly models.  The Detailed Virtual Design 
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System (DVDS) for shape modeling in a multi-modal, multi-sensory VE has been 
presented [12], enabling collaborative design and design among multiple designers, 
both in the same site and in remote site VEs.  An Internet-based VR collaborative 
environment, called Virtual-based Collaborative Environment (VRCE) developed 
with the use of Vnet, Java and VRML [13], demonstrates the feasibility of 
collaborative design for small to medium size companies that focus on a narrow 
range of low cost products.  A Web-enabled Product Data Management (PDM) 
system which facilitates various collaborative design activities [14] has been 
developed providing 3D visualization capabilities as well.  Another tool for 
dynamic data sharing in collaborative design, has been developed [15], ensuring 
that experts use it as a common space to define and share design entities.   

Further to the research approaches to the field of a Web-based collaborative 
product design, a few commercial tools are available to support such functionalities.  
OneSpace.net (http://www.cocreate.com/) is a lightweight Web collaboration tool 
that supports online team collaboration for project development.  It combines 
architecture for Web services with popular concepts, such as organized projects, 
secure messaging, presence awareness and real time online meetings.  IBM’s 
Product Lifecycle Management (PLM) Express Portfolio has been designed 
specifically for medium-sized companies that design or manufacture products.  
This system mainly focuses on business processes and also allows design engineers 
to share 3D data, created with diverse authoring tools and thus, product 
development can be managed.  It includes CATIA Version 5 collaborative product 
design software and SMARTEAM for product data and release management 
(http://www.ibm.com/).  Matrix10 is designed to support deployments of all sizes.  
It includes PLM business process applications that cover a wide range of processes, 
namely product planning, development and sourcing and program management.  
Moreover, it allows diverse design disciplines to be synchronized around design 
activities and changes, by reducing the critical errors and cost associated ones with 
poor collaboration (http://www.matrixone.com/).  eDrawings Professional 
(http://www.solidworks.com/) is an email-enabled communication tool that eases 
the review of 2D and 3D product design data across extended product development 
teams.   

Despite the investment made in the last years, both in research and in industrial 
applications, the global market still lacks in collaboration tools, capable of 
providing VR techniques with the possibility of product design evaluation.  Most 
collaborative tools are more related to a PLM and less to shared VEs.  Thus, the 
development of a lightweight collaborative VE, supporting the validation and 
dissemination of product designs as well as the immersive interaction of multiple 
users with the virtual prototypes, comprises the goals of this research work.   

3.3 Building the Shared VE 

The widespread commercial VR software tool Division MockUp2000i2 
(dV/MockUp), which is provided by PTC (http://www.ptc.com/), was used as a 
basis of building up the distributed and collaborative VE of the present work.  The 
dV/MockUp is a high performance digital mock-up tool used for visualizing, 
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analysing, and interacting with 3D CAD models in real-time, in an immersive and 
interactive way, by providing functionalities for geometry input and graphics 
rendering, interfaces to VR peripheral devises, and digital humans (mannequins) 
library.  The software tool includes:  

a Database, which stores the entities of the virtual world together with their 
attributes

Actors that manipulate the entities present in the Database and constitute 
the VR engine of the platform  

a Core Application, which provides functionality for loading, processing 
and saving the objects of the virtual world, and  

a Virtual Product Manager that provides the user with a desktop GUI for 
the control of the VE.   

The tool is event-based, allowing users to create and edit real-time behaviors, 
constraints, animations and part assembly/disassembly sequences.  Ergonomics 
evaluation of a product’s design can also be performed into the VE, by using 
Division Safework mannequin tool, which is added-on to the dV/MockUp.   

The backbone of the proposed framework is the functionalities that have been 
implemented into the pilot VE, which enable distributed users to visualize, 
simulate, modify and analyze (in terms of ergonomics) the virtual prototype 
(product), during a collaborative design evaluation scenario.  The users are able to 
create new VE as well as to open and modify the existing ones.  All the required 
materials for the synthesis of the VE (geometries, materials, textures, etc.) should 
be stored locally in each distributed station before joining a collaborative session.  
All collaborative distributed users can work simultaneously on the same 
environment, through a master-client interface, either in desktop mode (Figure 3.1) 
or in immersive mode, by using VR peripheral devices.   

Figure 3.1. Collaborative design using the proposed shared VE 
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3.4 Virtual Environment Functionality 

The key features of the shared VE have been implemented so as for the 
requirements of a typical industrial virtual collaborative scenario to be covered.  
These functions have been implemented into the dV/MockUp to allow the 
visualization and functional simulation of products as well as the users’ immersion 
and interaction within the VE.  The basic functions that have been implemented in 
the VE are described in the following sections. 

3.4.1 Virtual Prototyping Function 

In order to create a realistic VE, several functions, related to the appearance of the 
product, as well as to its environment, have been implemented in order to enable 
users to change the material or the texture of a part, the transparency level of a part 
or a sub-assembly, or even the lighting of the environment (Figures 3.2 and 3.3).   

Figure 3.2. Visualization of the virtual prototyping function related to the transition of one’s 
part transparency level 

Figure 3.3. Visualization of the virtual prototyping function related to the mutation of the 
environmental lighting 

3.4.2 Behavioral Simulation Function 

The behavioral simulation controls the functional characteristics of the virtual 
systems, involved in the process performance.  Based on the Event/Action 
mechanism of dV/MockUp, developers can model complex behaviors in the VE 
(assembly joint constraints, part movement restrictions, etc.), in order for the 
virtual objects to ‘behave’ in a real-life like manner.  The Event/Action mechanism 
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is the dV/MockUp’s way of modeling the real world.  When an event, such a 
collision occurs, the actions defined by the user, can be spawned.  An example of 
modeling the real-life functionality of the refrigerator’s door is presented in Figure 
3.4.  The result of this modeling is the opening (or closing) of the door, once the 
user has picked the handle of the door.   

Figure 3.4. Visualization of the behavioral simulation function related to the assembly joint 
constraints

3.4.3  Assembly Support Function 

This function allows for the accurate assembly execution within the VE.  During an 
assembly process, the part to be assembled is released from the user's hand, so as to 
be assembled in its final position, as soon as a good positional and rotational 
orientation has been achieved (magnet concept).  This orientation is very close to 
the exact final mounting position.  The field of the ‘magnet’ can be adjusted to 
account for the various levels of fitting precision and is enabled while the part to be 
assembled is approaching its corresponding sub-assembly.  A red transparent cube 
appears once the ‘magnet’ field has been enabled (Figure 3.5).  The size of this 
cube determines the sensitivity of this function as well.  

Figure 3.5. Assembly support function (magnet concept) in desktop and immersive mode 
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3.4.4 Collision Detection Function 

Dynamic clash detection is provided within the simulation environment among 
static parts and either moving parts or the user's hands.  In this way, visual and 
acoustic alerts enable the user to verify the feasibility of a process, in terms of 
reachability of picking and mounting locations and handlability of parts.  Based on 
the collision detection function, an advanced mechanism has been implemented to 
support the manipulation of objects, enabling the immersive interaction with 
components and tools, in a way similar to that in the real world [16].  The case 
specific gesture modeling enables the realistic handling of objects in accordance 
with their shape and function (Figure 3.6). 

Figure 3.6. Visualization of the assembly support function (magnet concept) 

3.5 Pilot Application 

In order to demonstrate the benefits of incorporating VR technology in 
collaborative manufacturing, a pilot VE has been developed based on the needs 
and requirements of a manufacturing industry that produces commercial 
refrigerators.  The aim of this pilot environment was to help a customer (mini-
market owner) to decide, with the help of the product designer, which products 
should be the most suitable for his needs, having also taken into account the mini-
market’s layout.  Thus, a virtual representation of the mini-market has been created, 
into which three different types of refrigerators were included (Figure 3.7).  
Several functionalities were implemented in this pilot VE, in order to support the 
collaboration between the designer and the customer, during the evaluation of 
several alternative product designs and layouts.  A number of combinations of 
different colors and textures of these three refrigerator types, have been evaluated 
in order for the customer to make the final decision.  Moreover, the refrigerators 
were evaluated both in terms of their capacity and their ergonomics (i.e.,
reachability tests, kids/adults field of view, etc.), in order for the position of the 
goods (i.e., refreshments) on the refrigerators’ shelves to be decided (Figure 3.8).  
Another requirement of the customer to be enabled to test alternative designs of the 
refrigerators’ door handle.  This requirement was taken into account during the 
development of the pilot VE.  Thus, the option of introducing several 3D objects to 
the VE by selecting them, from a virtual database, was also incorporated into the 
pilot VE.  Finally, the functional simulation of the refrigerators’ door 
opening/closing was of great importance during the evaluation of several layouts.  
Many alternative layouts were rejected due to the collision of one refrigerator’s 
door, while being opened, with other contiguous space objects (i.e., another 
refrigerator).   
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Figure 3.7. The mini-market layout, including the three different type of refrigerators 

Several other collaborative sessions, of different scenarios, have also been  
performed in order for all the implemented functionalities of the collaborative VE 
to be evaluated.  These scenarios fulfiled the major needs for collaboration in 
design phase of several types of users (i.e., designers, managers, marketists, 
suppliers, customers, etc.).  Immersion capability is also available for realistic 
human interaction. 

Figure 3.8. Ergonomic analysis of the final product 

During a multi-user collaborative session, each user has his/her own copy of the 
Graphical User Interface (GUI), which provides a rendered 3D view of the virtual 
product (Figure 3.1).  All users can interact with the virtual product at any time, 
without any restrictions to the number of simultaneous interactions.  Any change 
prerformed by a user is immediately visible by all the others.  Real-time chat 
capability supports the users’ communication during a collaborative session 
(Figure 3.9).  Moreover, a user can be optionally represented by an animated 
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digital figure, called avatar, in case of making use of VR peripheral devices.  Any 
number of users can join a collaborative session by using Transmission Control 
Protocol/Internet Protocol (TCP/IP) over Local or Wide Area Network (LAN or 
WAN).  In order for one to make use of the developed shared environment there is 
no enforcement on the use of specific Operational System or VR peripherals.   

Figure 3.9. Real-time collaboration capability of the shared VE 

The present shared VE provides an advanced environment in the network, as a 
common virtual design space, in which people can simultaneously work during the 
product life cycle.  The developed pilot environment enables: 

The cooperation among distributed designers and manufactures during the 
refrigerator’s designing stage.   

The real-time multi-user interaction in the same virtual prototype/design 

The effective and efficient sharing and evaluation of design and 
manufacturing data through internet.   

The ergonomic evaluation of the products with the use of mannequins that 
represent different user populations.   

Activities in many a session within a common virtual space (e.g., 
conceptual design, assembly execution, ergonomic analysis, etc.).

The advanced product demonstration by using VR (a virtual showroom).   

3.6 Conclusions and Future Research 

A shared virtual collaborative environment for the evaluation of a manufacturing 
product design has been developed and presented in this chapter.  Providing a 
multi-user real-time collaboration as well as VR-based product verification, this 
environment could be used as an efficient tool by designers, engineers and 
managers.   

The shared VE allows multiple users to work in a collaborative and distributed 
way, by decreasing considerably the time required for the designing phase to be 
completed.  This work focuses on improving team productivity, providing the 
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infrastructure necessary to make the engineering teams efficient, even if they are 
dispersed over different sites, without changing the existing design environment.  
The benefits of using the proposed shared VE include: 

Multi-user visualization, immersion and interaction.

Real-time collaboration on the same virtual design.   

Simultaneous review and maintenance of alternative virtual designs.   

Evaluation of ergonomics by using digital human simulation.   

Future research will focus on elaborating current functionality of the VE with 
tools for collaborative decision making support.  The aim is to develop 
functionality for a systematic quantified assessment of alternative designs and 
plans.  Thus, metrics and techniques for getting measures out of collaborative 
product simulation sessions should be identified.  Intelligent reasoning, based on 
the quantified performance measures, the decision policy and the estimation 
weights, will be provided as output to support decision making, by taking under 
consideration the special conditions and requirements of team work.  Thus, any 
future work will focus mainly on two directions: 

Quantified validation of design / plans.   

Intelligent reasoning on alternative solutions.   

In this way, the VE for collaborative design, will be capable not only of team 
reviewing designs and plans, but also of “suggesting” proper solutions on design or 
re-conceptualization problems, based on collaborative interactions and testing, 
which can happen in VEs.  Moreover, in terms of user-to-system interactions, 
Augmented Reality interfaces will be further investigated in order for the potential 
of running the simulation “on-top” of already set-up real working environments to 
be identified.   
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With the emergence of the extended enterprise where different companies are 
involved in the product development process, the successful implementation of 
collaborative product design and manufacturing across the extended enterprise has 
become a difficult task. This chapter deals with the issue of developing an 
integrated computing environment for facilitating collaborative product design and 
manufacturing across the extended enterprise. An application development 
framework is presented that is geared towards a ‘plug-and-play’ computing 
environment. The framework describes how design and manufacturing applications 
can be developed independently, yet be seamlessly integrated simply by plugging 
the application into common computing environments.  

4.1 Introduction 

Faced with a rapidly changing global environment, product development 
enterprises today are reformulating their strategies to be globally competitive. One 
strategy that enterprises have adopted is to concentrate on their core competencies 
and build closer relationships with their partners. The resulting organization of 
geographically distributed companies working together to realize a product is 
known as the extended enterprise and is the new unit of business competition [1]. 
Facilitating collaborative product design and manufacturing across an extended 
enterprise is a difficult task that requires various cultural and technical issues to be 
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resolved. The aim of this chapter is to address one such technical issue – the 
development of an integrated computing environment to support the collaboration 
across an extended enterprise, by facilitating information exchange between 
product designers and manufacturing process designers, and coordinating their 
activities. The necessary information is critical to make rapid trade-off decisions 
and collaboratively arrive at the optimal design and manufacturing processes of the 
product.

The rest of this chapter is organized as follows. Section 4.2 discusses the 
related research in developing integrated computing environments. Section 4.3 
proposes an approach to develop design and manufacturing applications that is 
geared towards a ‘plug-and-play’ capability. Section 4.4 presents an illustrative 
example and Section 4.5 concludes the chapter. 

4.2 Related Research 

An integrated computing environment enables collaborative product design and 
manufacturing by providing the necessary mechanisms for exchanging information 
and coordinating information flow.  

Early efforts in developing integrated computing environments concentrated on 
the integration of the various standalone computer-aided systems used in the 
design and manufacture of a product. Standalone systems are applications in which 
the entire functionality of the application is hosted on a single computer. Cutkosky, 
et al., [2] presented a notable work in this regard based on an agent approach. 
Agents were used to encapsulate the standalone applications and agent interaction 
was based on shared concepts and terminology for communicating knowledge 
across disciplines. Sriram, et al., [3] proposed the use of the blackboard 
architecture for facilitating communication and coordination between different 
standalone computer-aided systems. The blackboard was implemented as an object 
oriented database. The use of a central repository as a product master model was 
another approach described by Hoffman and Joan-Arinyo [4] to create an 
integrated computing environment. The clients of the master model are domain-
specific standalone applications that can deposit and retrieve information from the 
master model. The master model repository provides mechanisms for maintaining 
the consistency of the deposited information structures.  

Another approach is the use of standard file formats such as STEP and IGES 
located at central databases. Roy and Kodkani [5] proposed the use of a translator 
to convert CAD models into VRML-based models, which can then be viewed over 
the WWW. The VRML models are stored in an existing product data repository. 
The translator resides on a main central server and can be accessed remotely by a 
designer. Xie, et al., [6] developed an integrated CAD (Computer-Aided Design) / 
CAPP (Computer-Aided Process Planning) / CAM (Computer-Aided 
Manufacturing) system for sheet metal product development platform based on an 
information integration framework where the geometry of the product was 
represented in STEP files. The information integration framework was developed 
using Pro/INTRALINK.   
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As seen from the literature, various external communication and coordination 
mechanisms need to be developed to integrate the standalone computer-aided 
systems. Therefore, before a company collaborates with a new partner these 
interfaces to the external mechanisms have to be developed. Companies normally 
employ the services of systems integrators to develop the mechanisms and the 
required interfaces to the mechanisms. While this is a feasible solution, it is an 
expensive solution, as each pair of systems requires a dedicated solution [7]. 
Further it is time consuming and delays the effective exchange of information 
between new partners.  

Another problem with the integration of standalone systems to support 
collaborative design and manufacturing is the loss of associated information under 
design changes. This problem can be illustrated with the following example. In this 
example, we assume two systems as part of an integrated computing environment, 
a CAD system and a CAPP system. The part shown in Figure 4.1(a) has been 
created using the CAD system and sent to the CAPP system as a STEP file. When 
the part is loaded into the CAPP system, it creates an internal representation of the 
model to carry out machining operations on the model. In this internal 
representation, each geometric entity is identified by a tag. The CAPP system then 
identifies the three faces with the face tags, 38, 42 and 52 as shown in Figure 4.1(a) 
as a machining feature and determines the tools required to machine the feature. If 
the product designer then changes the part as shown in Figure 4.1(b), the CAPP 
system has to retrieve a new STEP file. When the CAPP system loads the new 
STEP file, the system will not be able to recognize this as a modified part and will 
create new tags for the geometric entities of the altered part. As can be seen in 
Figure 4.1(b), the three faces of the machining feature are now referred to by the 
tags, 372, 456 and 516. This new reference to the geometric entities results in a 
need for the CAPP system to recognize the three faces again as a machining feature. 
In collaborative product design and manufacturing, various design changes occur 
to accommodate the requirements of the different domains involved in product 
development. Such a problem results in inefficient systems that need to restart their 
tasks each time a change occurs.  

To solve the problems associated with integrating standalone systems, research 
efforts progressed towards developing distributed collaborative systems. As 
opposed to standalone applications, in distributed systems, the functionalities of the 
system are hosted on different computers. Several researchers have proposed 
developing distributed collaborative systems based on the use of a central 
geometric modeling server. Han and Requicha [8] discussed an approach that 
provides product and process design applications with a transparent access to 
diverse solid modelers located at a central server. A feature-based design system, 
an automatic feature recognizer and a graphics rendering system were developed 
around the modeling server.  The central geometric modeling server stores the 
boundary representation model of a designed part. When a design change occurs, 
the design system communicates the change to the feature recognition system, 
which can then access the new data from the modeling server. Shyamsundar and 
Gadh [9-10] proposed a client-server based architecture for collaborative virtual 
prototyping of product assemblies over the Internet. A polygonized representation 
of the part was used for visualization and an Internet-centric, compact assembly 
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representation was also developed. In their system, design changes are not 
automatically transmitted to users working on the model. However, assembly 
features are tagged and if a designer attempts to modify that face, the designer 
receives a warning. Bidarra, et al., [11] developed a web-based collaborative 
feature modeling system known as webSPIFF. It is based on a client-server 
architecture where the server coordinates the collaborative session, maintains the 
shared model and makes use of a multiple-view feature modeling kernel [12]. The 
multiple-view feature modeling kernel provides different users with different views 
of the product model. All views are kept consistent by feature conversion. 

Figure 4.1. Loss of associated information under design changes 

  The efforts in developing distributed collaborative systems have solved 
several important problems. The use of Web-based or simple application clients to 
access functions hosted on a server removes the need for enterprises to maintain 
expensive standalone systems at their sites. This allows enterprises to collaborate 
with one another without purchasing compatible systems and without the need for 
customized communication and coordination mechanism to be developed. Users 
can just use a Web browser or download a simple application client to carry out 
their tasks, exchange information and coordinate their activities. Further, the use of 
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a central geometric modeling kernel ensures that references to geometric entities 
are consistent under design changes, solving the problem of associated information 
loss under design changes. However, present efforts in developing collaborative 
systems have mainly concentrated on collaborative part and assembly modeling. 
Several important issues in an overall computing environment for collaborative 
product design and manufacturing have yet to be addressed. One such issue is the 
integration of new applications into the overall distributed collaborative computing 
environment. The problem to be addressed here is, “If a new application is 
developed, how can it be seamlessly integrated into the overall computing 
environment without developing new communication and coordination 
mechanisms?” This requires the development of collaborative systems that are 
geared towards ‘plug-and-play’ capability. The computing environment should 
allow advanced domain-specific applications to be developed independently, yet be 
integrated simply by plugging the application into computing environments. This 
chapter presents such an approach.  

4.3 Application Develoment Framework 

The proposed framework for developing an integrated computing environment for 
collaborative product design and manufacturing is based on the architecture as 
shown in Figure 4.2. Central to this architecture is the use of a common 
manufacturing application middleware. Middleware is systems software that 
resides between applications and the underlying operating systems, network 
protocols and hardware [13]. The essential role of middleware is to manage the 
complexity and heterogeneity of distributed infrastructures and thereby provide a 
simpler programming environment for distributed application developers [14].  

Early efforts in middleware development dealt mainly with connectivity issues, 
i.e., how programs on different computers can connect to one another. These 
middleware technologies that deal with connectivity are referred to as distribution 
middleware [13]. Examples of distribution middleware include OMG’s CORBA 
(Common Object Request Broker Architecture), Sun’s Java RMI (Remote Method 
Invocation) and Microsoft’s DCOM (Distributed Component Object Model). 
Distribution middleware technologies are at a mature stage today. Middleware 
technologies have since progressed to dealing with other issues in developing 
distributed systems. One such group of middleware technologies deals with 
domain specific issues. These middleware technologies, referred to as domain 
specific middleware, concentrate on providing domain specific services that 
applications can access in a transparent and integrated manner. This chapter 
envisions that domain specific middleware technologies will be instrumental in the 
future development of product and process design applications. 

The architecture shown in Figure 4.2 presents a paradigm where product and 
process design applications access various services provided by the manufacturing 
application middleware to exchange information and be coordinated in a seamless 
manner. The current implementation of the framework proposes the use of two 
middleware services, geometric modeling services and process data exchange 
services.  
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Figure 4.2. Architecture for developing an integrated computing environment for 
collaborative product design and manufacturing 

Geometric modeling services refer to the ability to create and manipulate 
geometric models, and access geometric data. Geometric modeling services are 
proposed for three reasons. Firstly, many of the currently developed CAD, CAPP 
and CAM applications do not develop their own geometric modeling capabilities. 
Many of these applications are developed based on external geometric modeling 
kernels. These external geometric modeling kernels provide functionality to build, 
manipulate, view and interrogate geometric models. It is therefore sensible to 
provide geometric modeling services as a common service. Secondly, many 
applications use geometric modeling kernels only to extract necessary information 
from product data to carry out their own tasks. Providing the ability to access 
geometric data from a common service would remove the reliance of these 
applications on geometric modeling kernels just for information extraction. Thirdly, 
providing a common geometric modeling service where applications create and 
access geometric data provides a unique opportunity to manage the concurrent 
authoring and processing of geometric data by product and process design 
applications. In the proposed architecture, the geometric modeling services are 
deployed on a central geometric modeling server. 

Process data is data generated by the process design applications. This includes 
feedback to upstream applications and data for downstream applications to carry 
out their tasks. A data exchange service that facilitates the exchange of process 
data ensuring applications receive data in a timely manner is an important service 
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for effective collaboration. The process data exchange services are deployed on a 
central messaging server.  

The product and process design applications that access the middleware 
services are not the conventional CAD, CAPP and CAM systems currently used by 
enterprises. These are new applications that are developed to conform to the 
middleware-based architecture. In order to facilitate the development of these 
applications, the framework provides various reusable application development 
classes. These reusable application development classes make application 
development easier by already implementing object-oriented classes for interfacing 
with the middleware services, storing of data and visualization of geometric 
models. The following sections discuss the implementation of the middleware 
services.   

4.3.1 Geometric Modeling Middleware Services 

The geometric modeling middleware services are hosted on a central geometric 
modeling server. The geometric modeling server, shown in Figure 4.3, was 
implemented in Java and consists of the following components: (i) Java RMI 
interfaces, (ii) Implementation classes, (iii) Java Native Interface (JNI), (iv) 
Parasolid Modeling Kernel and (v) Apache HTTP Server. Application clients 
access the services offered by the geometric modeling server through Java RMI. In 
the present system, two main RMI interfaces have been implemented: Modeling 
Functions and the Applications Relationship Manager (ARM). The Modeling 
Functions interface allows application clients to create and manipulate geometric 
models. The ARM interface allows applications to build relationships with the 
geometric models. The ARM serves as the mechanism for synchronising all the 
different product and process applications when a design change is made. 

4.3.1.1 Modeling Functions 

The Modeling Functions Interface declares the methods that application clients can 
invoke to make function calls to a geometric modeling kernel. In the developed 
system, the Parasolid modeling kernel has been utilized to perform the modeling 
operations. As the Parasolid modeling kernel is written in the C programming 
language, a Java Native Interface (JNI) is needed to utilize the modeling functions 
of Parasolid. The result of an application client invoking one of these methods is 
the creation or modification of a geometric model. Data of the created or modified 
geometric model is then written to a geometric data XML file and stored in the 
Apache HTTP server for application clients to access.  

The details of the sequence of activities when any of the methods is invoked are 
as follows: 

1. An application client invokes one of the methods of the Modeling 
Functions RMI interface. 

2. The Modeling Functions Implementation classes invoke the necessary 
Parasolid functions, resulting in the creation or modification of a 
geometric model. 
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3. Parasolid generates the necessary information to describe the geometric 
model based on a boundary representation. A boundary representation 
describes a geometric model by defining the model’s boundary as a set of 
geometric entities including faces, edges and vertices. An example of a 
boundary representation is shown in Figure 4.4. The geometric model and 
the constituent geometric entities are identified by tags. 

4.  As the boundary representation data is not sufficient for application 
clients to view a solid model of the created part, the Modeling Function 
Implementation classes invoke the Parasolid function to tessellate the 
model into triangles. The tessellated triangles can then be rendered on the 
application client’s screen to provide a solid view of the geometric model. 
An example of a tessellated model is shown in Figure 4.5. 

5. The information on the tessellated triangles and the geometric entities are 
then written to a Geometric Data XML file and stored in the Apache 
HTTP server. Application clients can then access this data easily from the 
Apache HTTP server, visualize the geometric model and carry out further 
operations. Section 4.3.1.2 discusses the geometric data XML file in 
greater detail. 

Figure 4.3. Architecture of geometric modeling server 
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Figure 4.4. A cube represented by its boundary 

Figure 4.5. Example of a tessellated model 

4.3.1.2 Geometric Data XML File 
XML is an industry standard markup language used for representing data in a 
platform independent manner. When representing data using XML, a Document 
Type Definition (DTD) has to be specified first. This would govern the data 
structure contained in the XML file. The structure of the DTD of the Geometric 
Data XML file is shown in Figure 4.6. 

Tags in XML follow a hierarchical structure. The root tag of an XML file is 
always <DOCUMENT>. In the geometric data DTD, each body, identified by a 
<BODYTAG>, is divided into faces. A <FACETAG> is present to identify the 
various faces of the body. <FACETYPE> provides information on the type of the 
face, for example, cylindrical, plane and spherical. <SNAPPOINT> refers to the 
vertices of each face. Each face is further divided into elemental triangles known as 
facets. The <FACET> tag contains the coordinates of the vertices of each triangle. 

Figure 4.7 shows a solid model of a cube and a portion of the corresponding 
Geometric Data XML file. From the data, it can be seen that the <BODYTAG> of 
the part is 119. The highlighted face has a <FACETAG> of 179 and a 
<FACETYPE> of plane. The face has been divided into two facets and the 
corresponding vertices of the first facet can be seen in the figure. In Ref [15], we 
provide an alternative representation where facet information is compressed using 
the Edgebreaker algorithm [16]. 
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Figure 4.6. Document Type Definition (DTD) of the geometric data XML file 

4.3.1.3 Application Relationship Manager (ARM) 
The ARM serves two main roles. Firstly, it serves as the mechanism for 
synchronization by propagating design changes to all affected applications. 
Secondly, it aids collaborative decision-making by creating relationships between 
the requirements of the different domains involved in collaborative product design 
and manufacturing. The ARM works by allowing downstream applications to 
create relationships with the geometric entities of a geometric model. For example, 
if an assembly modeling system uses a face of the geometric model as a mating 
face with another model, it creates a relationship with that face. The use of 
geometric entities provides a general means to link downstream decisions to the 
product model. When a design change is made, all applications that have created 
relationships with the model are notified. In this way, the ARM serves as the 
synchronisation mechanism. However, before a design change can be implemented, 
the ARM allows the part designer to determine which applications will be affected 
by implementing the change simply by viewing all the different applications that 
created relationships with the model. In an interactive environment, product and 
process designers can discuss the design change before it is implemented. For 
example, if the product designer wants to make a change to a face, which the 
assembly modeling system created a relationship with, he/she can discuss with the 
engineer who created the relationship without involving the other people. In an 
automated environment, the downstream applications that are affected can be 
notified of the change and the affected application can then deal with the change 
automatically. If the change cannot be dealt with, then the proposed change is not 
acceptable. In this way, the ARM aids collaborative decision-making. 

In order to facilitate the creation of relationships and notification of changes, 
the ARM RMI Interface declares the following methods. 
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Figure 4.7. Example of a geometric data XML file 

public void deposit_model ( int bodytag ): This method is to be called by 
an application to make a geometric model ready for creating relationships. 
The method is normally called by a design client. The input to the method 
is the body tag of the geometric model. The method subsequently 
retrieves data from the appropriate geometric data XML file and updates 
data structures created for managing relationships. The data structure for 
managing relationships was implemented in an object-oriented manner 
and is as shown in Figure 4.8. 
The ARM_Models class contains a list of the various geometric models 
that relationships can be built on. The information on the geometric 
models is stored in a Geometric_Model class. In this class, each model is 
identified by its body tag. The Geometric_Model class in turn contains a 
list of the different faces that make up the geometric model. It is on these 
faces that relationships are created. The information on each face is stored 
in a Face class. The Face class contains information of the tag used to 
identify the face and the status of the face. The status of the face could 
either be “changed” or “unchanged”. The Face class also contains 
information on the different relationships that have been created on that 
face. The information on relationship is stored in a Client_Relationship 

<BODY>

  <BODYTAG>119</BODYTAG>

- <FACE> 

  <FACETAG>179</FACETAG>  

  <FACETYPE>PLANE</FACETYPE>  

+ <NORMAL> 

+ <SNAPPOINT> 

+ <SNAPPOINT> 

+ <SNAPPOINT> 

+ <SNAPPOINT> 

- <FACET> 

  <X1>-0.25</X1>  

  <Y1>0.25</Y1>  

  <Z1>0.5</Z1>  

  <X2>-0.25</X2>  

  <Y2>-0.25</Y2>  

  <Z2>0.5</Z2>  

  <X3>0.25</X3>  
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  <Z3>0.5</Z3>  

  </FACET> 

+ <FACET> 
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class. The Client_Relationship class stores information on the URL of the 
client that made the relationship, the client type, the type of relationship 
and any comments that an application client would like other applications 
to take note of. The ARM uses the URL of the client to notify design 
changes. Restrictions are not made on application clients to specify certain 
values for client type and type of relationship. Typical values of client 
type could be ‘process planning client’ or ‘assembly modeling client’. 
Type of relationship refers to how the application relates to the face. For 
example, an assembly modeling client could describe the type of 
relationship as a ‘mating face’.      

ARM_Models

Geometric_Model

bodyTag : Integer

Client_Relationship

clientURL : String

clientType : String

typeOfRelationship : String

comments : String

Face

faceTag : Integer

faceStatus

Figure 4.8. Data structure for managing relationships 

public boolean create_relationship ( RelationshipInfo info) and public 

boolean delete_relationship ( RelationshipInfo info ): These methods are 
called by application clients to create and delete relationships with faces 
of the geometric model. The input to this method is a class 
RelationshipInfo, which contains the information required to create a 
relationship. The RelationshipInfo class is shown in Figure 4.9. 
When the method is called, it subsequently checks if the model has been 
deposited for creating relationships. If so, it will update the ARM data 
structure for managing relationships with the information from the 
RelationshipInfo class. If a relationship is created successfully, the 
method returns a TRUE Boolean value to the calling method. If a 
relationship could not be made, it returns FALSE. 
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public RelationshipInfo[ ] query_relationship ( int facetag ): This method 
allows an application client to query information on the client 
relationships that have been made on a face. This will allow application 
clients to know which domains will be affected by a design change on a 
face. In the comments attribute in the RelationshipInfo class, clients could 
restrict other domains from suggesting changes to be made to that face. 
The method returns an array of RelationshipInfo objects to the calling 
method.

public void transmit_design_change ( int bodytag ): This method is called 
when a change is made to the geometric model. The method subsequently 
determines the faces that have been affected and notifies clients that 
created relationships with affected faces. 

RelationshipInfo

bodyTag :  Integer

faceTag : Integer

clientType : String

clientURL :  String

typeOfRelationship :  String
comments : St ring

Figure 4.9. RelationshipInfo class 

4.3.2 Process Data Exchange Middleware Services 

The key role of the process data exchange middleware services is to facilitate the 
exchange of data from a process design application to all related applications. 
While the geometric modeling middleware services integrate product design with 
downstream domains, the process data exchange middleware services aim to 
integrate the different process design domains. An example would be the ability for 
a process planning system to send information to a shop floor execution system. 
The process data exchange middleware services also allow process design 
applications to send feedback information to the product design domain.  

In the current system, a messaging approach has been adopted for the exchange 
of process data. Messages provide a dynamic means to exchange information. 
When a process design application completes its tasks and generates the necessary 
information, it can immediately send the information to the related applications. 
This provides a triggering mechanism for other applications to react to this 
information, either by beginning the application’s tasks or by evaluating previous 
decisions based on the new information. Further, through the use of messages, only 
necessary information has to be sent to the related applications. This provides a 
means to decouple private data from data to be shared. The process data exchange 
services were developed based on the Java Message Service (JMS) specification. 
The JMS specification allows Java applications to create, send, receive and read 
messages. JMS prescribes a set of rules and semantics that govern messaging, 
including a programming model, a message structure and an Application 
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Programming Interface (API). In the JMS programming model, JMS clients 
exchange messages through the use of a JMS message service. Clients that produce 
messages send the messages to the message service, which then sends the message 
to the message consumer. Although JMS describes a message structure, the 
message structure adopted in this work is based on the Simple Object Access 
Protocol (SOAP). SOAP is an XML-based protocol that facilitates the exchange of 
structured data. The information from process design applications is therefore to be 
structured using XML files. An example of fixture design information models 
being exchanged using this approach is presented in [17].  

The framework proposed in this section also provides classes at the client end 
to deal with the incoming messages. These are implemented as part of the reusable 
application development classes and will be discussed in the next section.  

4.3.3 Reusable Application Classes  

The reusable application development classes facilitate the development of 
applications that conform to the overall architecture proposed in the framework by 
providing the necessary interfaces to communicate with the manufacturing 
application middleware services. Application developers develop their applications 
using these classes as a basis. In the present implementation, three groups of 
reusable Java classes have been developed: (i) XML data parsing and storage 
classes (ii) Geometric model visualization classes and (iii) Middleware interface 
classes.

There are two groups of XML data parsing and storage classes. One group 
deals with parsing the Geometric Data XML file stored in the Apache HTTP server 
of the geometric modeling middleware services and storing the parsed data in 
developed data structures. The other deals with parsing incoming XML messages 
from the process data exchange middleware services and storing the data in 
developed data structures. Application developers use these classes to retrieve and 
store data in their applications. They can then develop the application logic using 
these data structures.  

The geometric model visualization classes are used to visualize the geometric 
model using Java 3D. The middleware interface classes facilitate communication 
with the geometric modeling server and the messaging server. The necessary 
classes for invoking the Modeling Functions remote methods and the ARM remote 
methods are provided for in this group of classes. 

4.4 Illustrative Case Study 

This section describes how the proposed framework achieves the ‘plug-and-play’ 
capability for collaborative product design and manufacturing based on a scenario 
where several companies collaborate to design and manufacture a product. Four 
companies are involved in this scenario. Company A produces product A, which is 
made up of three parts. Company A designs Part 1, but outsources the 
manufacturing to Company B. Company A purchases Part 2 from Company C and 
Part 3 from Company D. This scenario is depicted in Figure 4.10. 
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Figure 4.10. Example Scenario 

In such a scenario, if every company creates its own legacy system for product 
and process design, huge compatibility problems would arise. Synchronised 
integration of activities would be a difficult task.  

However, using the proposed framework, it is shown how companies can 
develop their own customised applications, yet exchange information seamlessly 
with the other companies. It is assumed that all companies have developed 
applications based on the reusable application development classes and the logic of 
the applications is also based on the middleware services. In this scenario, 
company A has created a product design client [18], company B a fixture design 
client [19] and companies C and D have created assembly evaluation clients [20]. 
The overall integrated computing environment for the design of Part 1 and the 
required manufacturing processes is shown in Figure 4.11. Company A, as the 
designer of Part 1, hosts the geometric modeling server and the messaging server at 
its site.

As the product designer designs Part 1 using the developed product design 
client, the evolving data of the geometric model is written to the Geometric Data 
XML file and stored in the Apache HTTP server. When the product design is 
complete, the product designer deposits the model in the ARM. The designed part 
and the corresponding information model set up for relationship management are 
shown in Figure 4.12. 



86 Collaborative Product Design and Manufacturing Methodologies and Applications 

Figure 4.11. Integrated computing environment for collaborative product design and 
manufacturing 

Figure 4.12. Designed part and corresponding information model 

Company B manufactures Part 1 by first casting and then machining the 
different features. The fixture designer of Company B can now easily access the 
geometric model data of Part 1 by using the developed fixture design client. The 
fixture design client can be plugged into the geometric modeling server simply by 
providing the URL for the Apache HTTP server and the name of the part. The 
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reusable application development classes would then obtain the geometric model 
data and visualize the part. If Company B works with another company, all that is 
needed to plug into their geometric modeling server is to specify the new URL for 
the Apache HTTP server. This allows different companies to work with one 
another without purchasing systems from the same vendor and building customised 
point-to-point communication mechanisms. However, it should be noted that 
security mechanisms have to be in place to prevent unauthorised usage of the data. 
Security mechanisms are beyond the scope of this chapter. Figure 4.13 shows the 
fixture design application being used to design a fixture. The fixture designer 
decides to use faces with the tags ‘68’, ‘78’ and ‘88’ as locating faces and creates 
relationships with these faces. An example relationship is as follows: 

Client Type = “Fixture Design Client”; 
Type of Relationship = “Locating Face”; 
Comments = “Face used to locate workpiece”; 

The fixture design application can also generate the necessary information to 
provide feedback to the product designer. The fixture design application can be 
plugged into the messaging server by simply providing the URL of the messaging 
server. The information can then be sent to the product designer who can then take 
the necessary action to deal with the incoming message. 

Concurrently, Company C can also access the geometric model data of Part 1 to 
check the assemblability of Part 1 with Part 2 based on their assembly evaluation 
application. It is assumed that Company C deems the assembly as feasible and 
creates relationships with the geometric model of Part 1. The relationship is created 
with the following information: 

Client Type = “Assembly Evaluation Client”; 
Type of Association = “Assembly”; 
Comments = “Face part of a feature used for assembly. Do not change”; 

Company D also loads Part 1 into their assembly evaluation client (Figure 14) 
to check the assembly of Part 3 with Part 1. It deems that assembly is not feasible 
and requires a slot to be included as shown in Figure 4.15. Company D can 
immediately determine which companies or domains would be affected if the 
change is suggested by querying the ARM for a list of relationships that were 
created with the affected faces. In this case, the fixture design of Company B 
would be affected. We assume that the design change is critical and Company A 
makes the change to the product model. The ARM then determines all clients that 
made relationships with the affected faces and propagates the change. The affected 
applications can then retrieve the geometric data of the modified part and deal with 
the changes. A point to note there is that the tags used to reference the geometric 
entities are consistent throughout the modifications. Necessary action can then be 
taken by the applications to deal with the change. An example of the fixture design 
system adaptively dealing with design changes can be found in [21-23].  

In this scenario, it was assumed that the application clients were developed by 
the companies. These applications could also have been developed by commercial 
vendors.  
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Figure 4.13. Fixture design client of Company B 

Figure 4.14. Assembly evaluation client of Company D 
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Figure 4.15. Company D’s suggestion to include slot A 

4.5 Conclusions 

In today’s business environment where companies collaborate with an array of 
different partners, developing applications to be integrated is a tall order, as the 
required interfaces with other applications are not known during the development 
of the application. An attempt has been made in this chapter to solve this problem 
by developing a ‘plug-and-play’ computing environment for collaborative design 
and manufacturing. An application development framework has been proposed to 
achieve this goal. Applications developed using the framework can be plugged into 
common computing environments and seamlessly exchange information. The 
framework is based on the use of a common manufacturing application middleware. 
The design of the middleware has further solved important problems faced in the 
development of integrated computing environments for collaborative design and 
manufacturing. 

Firstly, it has solved the problem of losing associated information under design 
changes when standard file formats are used as an information exchange 
mechanism. The loss of associated information under design changes is a big 
hindrance to product and process design applications concurrently performing 
activities. In the proposed middleware approach, all applications have a consistent 
reference to geometric entities as data is obtained from a central modeling server. 
This consistent reference to geometric entities will allow applications to deal with 
changes in an intelligent manner without having to redo the process design. 

Another problem in implementing collaborative design and manufacturing is 
how to consider the different requirements of the different domains involved in 
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product development during the design of a product. The ARM has proposed a 
solution to this problem by allowing applications to create relationships with the 
geometric model and notifying all affected applications when a change is made. As 
the different applications carry out tasks concurrently and create relationships with 
the model, it becomes easy to see how design decisions affect the different 
domains. Through this way a product design can be made to be optimal taking into 
account the requirements of different domains. 
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The chapter describes a state-of-the-art information technology system for 
cooperative design in building construction. The system is a high level cooperative 
tool for an architectural design team without geographic limitation on their 
locations. It provides on-line, real time interaction between long distance 
participants for their multi-discipline design projects. The team members can edit, 
modify and verify the design on-line or off-line cooperatively. Advanced 
concurrent control guarantees the mutual exclusion in the cooperative design 
process. The system has the capability to handle the design in 3D down to any 
level of details for construction design projects. 

5.1 Introduction 

The design phase in construction process is critical for the quality and cost of the 
constructed building. A substantial amount of cost waste in building construction is 
due to the errors in the design. The design phase is a complex process shared by 
many specialists, such as architects, structural engineers, air conditioning engineers, 
energy supply designers, etc. Different specialists usually use different CAD tools 
that produce very different design results. The whole design process is an iteration 
of decomposing and integrating designs of different specialist teams at different 
levels of scales and details. This iteration process has a very high possibility of 
error occurance. It is extremely costly to correct the errors after going to the site 
construction operations. There were no sophisticated information technology tools 
that could support this iteration process to produce error free global designs 
cooperatively [19]. The computer supported cooperative work in many industrial 
areas is limited to cooperative visualization via communication networks where the 
user interaction is kept to minimum. The existing CSCW (Computer-Supported 
Collaborative Work) solutions are very far from what demands in the building 
construction design. 
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A cooperative working system to support this multiple design iteration became 
an obvious solution. Targeting at developing an innovative system towards a 
complete solution, a European project was launched.  At In addition to supporting 
the multiple iterations in design, the system was developed to support many other 
cooperative working tasks towards a new way of working in AEC (Architecture, 
Engineering and Construction) industry.   

To have a solid base for the system development, a deep investigation on the 
actual situation in the design phase in Portugal, Spain, Italy and the UK was 
performed. Some key lacking elements for cooperative design were identified. At 
the same time, a close insight into the field of 3D computer graphics, database 
technology, telecommunication, and computer supported cooperative work was 
carried out. This allowed the developers to see the possibility and at what degree 
the current ICT technology could provide a solution to the needs in AEC practice. 
A team of computer scientists, architects and engineers started to work closely 
together in the project. The strategy is to find a solution to bridge the gap between 
the current situation and the future way of working. They believed that not all the 
problems in this traditional industry could be solved at once. But certainly some 
key elements for the most critical cooperative working scenarios can be developed. 
This leads to the birth of a cooperative design system which is the first time 
attempt to provide a high level cooperative working tool for an architectural design 
team geographically spread. The developed system, for the first time, can support 
real time, long distance, multiple location simultaneous interaction cooperative 
work.

One of the major objectives of the system is to make early integration to 
explore design conflicts, errors at early stages long before the construction begins. 
Another objective is to let different CAD tools from all the disciplines talk together 
towards an error-free design. A neutral 3D data format [7]: VRML is selected for 
the system. It can accept designs from any architectural or engineering design tools 
that can output VRML. For user convenience, DXF or 3DS format are also 
accepted. The system is called M3D which stands for Multi-site cooperative 3D 
design for architecture [4]. 

The system provides the on-line and off-line cooperative working capability 
and information sharing to a group of long distance participants. The team 
members can integrate their own design to form a global design by on-line 
cooperative working sessions or off-line individual work. They can use a rich set of 
editing and integration operations to verify the design and make modification on 
3D design objects together. They work in a virtual design room together despite of 
the geographic distance. The concurrent control guarantees the mutual exclusion in 
the cooperative design process. The system also facilitates the decomposition and 
reorganization of the design for any number of iterations during the whole design 
phase.  

M3D differs from simple application sharing which does not provide 
concurrent control and authorization of the cooperative design object. Application 
sharing requires all the partners use exactly the same CAD tool. In contrary, M3D 
aims at providing communication among a wide range of CAD tools [7]. M3D has 
a Web-based database [6, 8, 9] storing all the project information of all the phases 
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along the building lifetime.  It has a direct interface with the integration tool – the 
M3D Editor [5].  

There have been efforts in the society to use virtual reality for visualization of 
architectural design. However, in these applications the 3D models are roughly 
made for visualization purpose only. Making these models itself is an extra work, 
not a natural product of the design phase. Therefore, due to the lack of detail of the 
3D models, the communication support to transmit large scale design models, the 
design objects in these applications often look too simple and too naive to reach the 
real need of the industry. It is not acceptable for the design projects without extra 
cost to create these models. 

M3D applies virtual reality technique to the architectural design at a higher 
level. M3D system [16, 17] introduces the 3D design technology for the whole 
design process from early conceptual design until detail design. Therefore, it 
overcomes the problems of the existing VR application for the AEC industry. The 
designs are in 3D by nature with all the details necessary for conflict and error 
detection and construction. The visualization is only a by-product since the 
buildings and their supporting elements are already constructed virtually from the 
very early beginning of the design. As a solution to identified problems in the 
architectural production, M3D proposes the re-engineering of current business 
processes towards a new business model in the AEC industry. The system supports 
the cooperative design and integration in the following aspect: 

Accepting design in 3D from all the multi-disciplinary specialties in the 
project

Providing the capability of holding on-line cooperative working meetings  

Automatic verification for 3D design  

Integration with outputs from other CAD tools 

Information storage and retrieval for AEC projects. 

5.2 System Architecture and Components 

The major function of the system is for cooperative work for an architecture design 
team including on-line and off-line working. To provide all the team members the 
capability of initializing an on-line cooperative working meeting, a peer to peer 
and layered structure has been designed. 

Figure 5.1 shows the M3D system architecture. Each column in the figure 
represents one cooperative member’s site in the global system. All the sites have 
the same resources and same right. Therefore, any of the members can initiate a 
cooperative working session if necessary using their own set of applications. The 
number of members of the system is flexible. Any number of the members can join 
a cooperative working session if necessary. 

The  system contains three major components 

The cooperative 3D editor

The cooperative support platform  

The integrated design project database 



96 Collaborative Product Design and Manufacturing Methodologies and Applications 

Application 

Cooperative 

Support 

Network 

SMI 

SM 

GC

3D Editor 

Communication Network 

SMI 

SM 

GC

3D Editor 

SMI 

SM 

GC

3D Editor 

SMI Protocol

SM Protocol 

GC Protocol 

SMI Protocol

SM Protocol 

GC Protocol 

Figure 5.1. The system architecture of the M3D system 

The cooperative 3D Editor is where all the on-line and off-line cooperative 
work happens. It supports cooperative editing in three dimension and real time. 
Individual components modification or the integration of the design can be realized 
by a cooperative working session. The cooperative support platform governs all the 
on-line working sessions and group operations. The project database is where all 
the project information is stored. All the members can access to the database in the 
on-line working session or off-line independent design works. 

5.2.1  The Cooperative 3D Editor 

The cooperative 3D Editor is the central tool for on-line cooperative design 
working sessions. It can also be a stand-alone single user tool. The editor has to 
satisfy a highest requirement than the normal visualization tool because it has to 
support the on-line cooperative modification from long distance locations.  

The Editor supports on-line modification of the design. The changes of the 
design will immediately appear to all the participants in the session. Modifying the 
position, orientation and scale for an object can be realized by interactive 
manipulation or exact numerical specification. The shape of any single object can 
also be modified. Common functions in a single interactive system, such as undo 
and clipboard operations, can be performed in the cooperative 3D Editor. Undo can 
be performed on modification, insertion and deletion.  

The major cooperative editing operations are: scene tree editing; geometric 
transformations; object editing; light management and material editing.  

The design is organized as a VRML scene tree inside the cooperative editor. 
There is a window specially showing the current design tree by names of the 
components. This graphical textual tree can be edited by dragging its nodes around. 
This makes the decomposition of the design easier. The objects can be selected 
from the tree using their names. This is proved to be very useful since there are 
usually large amount of objects in one design scene. Furthermore, it allows the user 
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to select a group of objects by selecting their parent node on the tree. See the left 
side of the screen on Figure 5.2. 

Figure 5.2. A snapshot of an on-line cooperative working session 

Geometric transformations of any object in the design can be performed 
interactively or numerically. A group of manipulators are provided for the 
interactive transformation. Dialog box is provided for numerical specifications. 
The object editing option in the editor allows the user to isolate a particular part of 
the design and make modifications on its geometry other than applying 
transformations. It can also produce 2D drawings from the projection of the 3D 
structure.

The object editing option in the editor allows the user to isolate a particular part 
of the design and make modifications on its geometry other than applying 
transformations. It can also produce 2D drawings from the projection of the 3D 
structure.

The editor includes an important module for error detection in the AEC design 
called Automatic Design Verifier (ADV). It is particularly developed for the error 
checking and design verification of the architecture and building construction 
projects.

The module integrates the 3D design of all the specialties, such as architectural, 
structural, water and sewage, etc. within the same project to check for possible 
geo-metrical and topological inconsistencies. “Inconsistency” here means an 
undesired geometric and/or topological condition. For example, a sewage pipe run 
intersects a pile foundation is a case of inconsistency. 
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Figure 5.3. The automatic design verifier 

5.2.2  The Cooperative Support Platform 

The 3D Editor tool is layered on top of an IP compatible cooperative support 
platform, as shown in Figure 5.1.  The cooperative support platform adopted a 
distributed architecture and a peer-to-peer network model. This module has two 
layers one on top of the other, the Group Communication (GC) and Session 
Management (SM). This platform provides a set of necessary communication 
services. The layer structure hides the point-to-multipoint con-figuration from the 
applications – the 3D Editor and others. An important task of the platform is to 
ensure a source ordering delivery of multicast messages over TCP/IP. The session 
control mechanisms keep the applications free from specific functions necessary 
for their inclusion into cooperative working environments. These specific functions 
include: communication services multiplexing, support of quality of service, 
consistency control, admission of new members into a running session, managing 
early members leave, invocation of new distributed applications, handling of 
exception events or failures and definition of roles within the group. 

5.2.3  The Integrated Design Project Database 

As a complete solution to the problem we identified in the architectural design and 
production process, M3D provides an integrated architectural information storage 
and retrieval system - an integrated design project database.  

The database uses a client/server architecture. The database architecture 
supports multi-site access. The database users can connect to the database server 
by any communication network. There are two ways to access the database: via the 
3D Editor and via a usual Web browser. The editor uses the data access 
Application Programming Interface (API) to access the database server. It connects 
to the client network library. The client network library uses a networked inter-
process communication method to communicate with the server network libraries 
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on the server system. The browser application uses a similar method to 
communicate with the database server. 

With the integrated design project database, all the teams can work with a 
unique version of the same design document. All the results of an individual design 
or the decision of a collaborative design working meeting will be stored in the 
database. All the authorized users can access to the design project data any time 
and anywhere which is essential for cooperative working teams spreading 
geographically and may cross different time zones. 

5.3 Considerations and Implementation for              

Collaborative Design 

To develop an innovative cooperative working system, substantial amount of 
studies have been made to include all the important considerations for a 
multidiciplinary design team. The system has to be interoperative and multi-
disciplinary. The on-line cooperative working meetings are the most important 
form of cooperation. It is technically very demanding and difficult to reach. It has 
to have a rich set of tools for on-line cooperative working, easy to manage, but 
powerful to include all the basic operations. It has to support design error detection 
in all the stages of the design particularly at early design stage. The following 
sections will explain the basic considerations and the results of implementation 

5.3.1 Interoperative and Multi-disciplinary 

The architecture design is a complicated process involving design from multi-
disciplinary specialists. As a high priority in system design, the system has to be 
interoperative and multi-dsciplinary. To provide interoperability and cross-
disciplinary interaction, the M3D system has been designed based on four 
conditions. First condition is the adoption of data inputs from a wide range of 
specialists independent of the CAD tools they use [1, 5, 6, 7]. The only 
requirement for all the design from the M3D system is that they have to be in 3D 
and they can generate the acceptable formats of the system such as: VRML, 3DS, 
DXF[7]. The second condition is a harmonic organization of design data from 
different disciplines. To satisfy this condition, M3D uses a hierarchy – a tree 
structure to store and manipulate designs from multi-disciplines. Each specialty is a 
branch of the whole design tree. The whole tree is a harmonic body of the global 
design project. There is no limit in space or subbranches for the growing of the 
whole design or a particular design specialty. The third condition is the 
accessibility of the global design. M3D stores all the project information in a Web 
accessible database. Any specialty team can access to the global design from 
anywhere and any time with secutiry control. The fouth condition is using the 3D 
geometry as a common base for integration and error detection. Independent of the 
discipline, an air-conditioning engineer or a structure engineer has its own way of 
design, its own CAD tool. But they have one thing in common, all designed objects 
are in 3D and can occupy space. 3D has been chosen as the basic format to 
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integrate designs from different specialties which is intuitive, good for 
visualization and design error checking.

Figures 5.3 and 5.4 show some of the examples from live projects of 
cooperative design using the M3D system [18]. Multi-disciplinary design teams are 
located in different cities. During the system development trial, the architecture, 
structure, and water, sewage teams are in different locations in Lisbon, Portugal 
while the electricity design team is at Barcelona, and the air conditioning designer 
is located in Palma de Mallorca, Spain. The architect of the projects located in 
Lisbon started by designing the architecture part in 3D. After the 3D architecture 
design was finished, the geometry was stored into the project database. Other 
specialists groups in other cities can obtain the most recent version of the design by 
accessing the project database. In a conventional design project, they would take 
the final drawings of the paper project and interpret them, and insert their specialist 
geometry into the paper drawings. This would demand a series of steps. They have 
to spend a substantial time to study the architecture project and digest it in detail, 
since the majority of the participants and specialists do not know the project. In 
addition, a supplementary drawing work has to be done since in the original project 
there were only paper drawings. Furthermore, an interpretation of the 
representations of the original project, by technicians from several countries has to 
be done. This usually involves different rules in different countries. Successive 
steps are drawing, checking, changing, redrawing, re-checking, etc. for each 
specialist team. The process can be very time consuming and errors, misuse of 
design versions can occur.  

Using the M3D system, the situation is completely different. The users used 
their own CAD design tools and input their designs to the M3D system. By using 
the M3D Editor [5] and M3D database the architecture project becomes very 
intuitive and easier for other cooperative teams to understand since it is already in 
3D format.  

The M3D Editor provides many ways of viewing the 3D design including 
navigating into the building itself, separating a part from the whole building to 
view it in detail etc. The supplementary drawing is not necessary since it is easy to 
have any clipping plane with arbitrary orientation to see the architecture. The 
interpretation is no longer difficult since the 3D architectural design is already 
there with all the material, lighting available for any kind of interpretation. If there 
is any doubt about any part, the team member can just go into it and look at it in 
detail in 3D. The M3D Editor can provide convenient navigation, show and hide 
any part, and even make a direct measure to find the physical distance between 
elements in the design.  

Coordination of a building and construction design project including all the 
specialties is usually a very complicated task due to the incompatibility of the 
design tools each team uses, the geographic distance between them, and a 
tremendous number of iterations necessary during different phases of the design.  
The M3D system [16, 17] makes the coordination of all the individual specialty 
design and integration work a lot easier. All the teams design their special part 
using their own CAD design tools, the outputs are presented in VRML format. 
During the integration phase, all the teams use the M3D Editor to insert their own 
design into the global design either on-line or off-line. Obvious errors are easily 
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visible and the correction of them becomes straightforward. The tool supports 
integration and decomposition of the design. It involves only the dragging of the 
sub-trees in the global design tree. In addition, the database in the system stores all 
the design data with version control support. The most obvious advantage is that 
for the first time, we have a common 3D working space for all the cooperative 
specialties without the constraint of geography and time. 

5.3.2 The on-line Cooperative Working 

The M3D system supports both off-line and on-line integration [3, 11, 12, 16, 17]. 
A multi-operator conference through the long distance network between several 
participants in the project can be held regardless where they are in the world. 
Figure 5.4 shows the network connection configuration of such on-line conference 
[14, 15]. The project was divided into a developer group and a user group. The 
developer group consisted of computer scientists, software engineers who designed 
and developed the system. The user group was formed by architects, structure 
engineers, air conditioning, power supply, sewage engineers who are the 
representatives of the users that will use the M3D system.  The system is new and 
innovative. The developer group has to take the opinions of the user group 
seriously to design, develop and improve the system. All the components were 
tested by the user group during its development. After the components integrated, 
the project undertook a final testing phase. The user group in the project made 
intensive international connectivity tests and on-line co-operative design work 
using the system as a new design tool. The trials were held among three locations: 
Lisbon, Palma and Barcelona. 

Architecture 
design team

LAN

Communication 
Network

ISDN, INTERNET

LAN...

LAN

Energy supply
engineer

Water & sewage
engineer

Structure 
design team

Figure 5.4. Network connection among cooperative participants 

During the cooperative working session [11, 12, 13], the system was tested in 
different aspects. For example, the cooperative on-line viewing and organization of 
the designs were tested intensively. The partners inserted their new specialty 
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design into the system from their own locations while others could see them 
immediately. The geometry of the air conditioning, structure, water sewage was 
inserted to the global design one by one. Each inserted part becomes a part of the 
global design tree. Each part can be shown or hidden.  The regrouping of the 
design is very easy. The tool supports operations not only on one design project. 
The participants can load different design projects onto the common virtual 
working space by opening new windows. Within the design, any element can be 
selected for manipulation and modification.  An annotation can be attached to any 
object for future reference or other off-line users. The annotation can have 
hyperlinks linking to any further documents. The on-line interaction seems not be 
affected by the distance unless a completely new project has to be loaded from the 
long distance database. The system has been designed to minimize the data traffic 
during the working session. Voice and text communication is also provided which 
are very useful for supplementing the on-line editing tool. See Figure 5.2 for a 
snapshot of the user interface. 

The on-line cooperative working is a strong support for a design team. Many 
conflicts, errors, misunderstandings can be discovered and resolved. The tool is 
effective for the integration of different specialties in a design project. The 3D 
display, simultaneous multiple user viewing and manipulation provide a very 
intuitive way for common discussion and decision making to support the 
cooperative design work. The possibility to manipulate the geometry such as 
dividing them into elements, making changes to the geometry and display of the 
clipping sections in real time and many more other features show that the system is 
an innovative tool for the architecture design sector. The experiments also showed 
that the strong support of the database during and after the cooperative on-line 
working session is essential. A new concept of the architecture design business 
process is being formed by using the M3D system. 

5.3.3 Design Error Detection During Integration 

Because of the complexity of the architecture, the occurrence of conflicts, errors or 
omissions during the design is high. These errors are mostly detected only in the 
construction phase, which is far too late and has an enormous impact in terms of 
costs and deadlines. One of the major purposes of the M3D system is to detect any 
possible error in the design especially the incompatibility among different 
specialties. In addition to using M3D Editor to integrate the specialist design, 
obvious error can show up visibly. As mentioned above, the system also provides a 
detector that automatically checks incompatibilities of the geometry, according to 
the settings of the users [10]. 

The M3D ADV [10] supports the operations of intersection, subtraction, 
addition, bounding, growing between building elements. The system can check if 
the geometries of different specialties fulfill the rules established by the designers, 
or if within the same specialty the legislative, geometric or use rules are fulfilled. 
The possibility of debating and checking in group and real time makes it a very 
good way to validate the integration. Throughout the design verification process, it 
is possible to use the ADV to find out some hidden errors in a design project even 
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it is in its final stage. Figure 5.3 is a scenario of using the ADV for design 
verification to find out the inconsistency during the integration.  

The following presents a typical on-line cooperative design verification session. 
All the team members are connected for an on-line working session according to 
their previous communication. The architect opens a design file of the architecture 
from his local machine and shows to other participants. He can use voice 
communication or text description in the text chat window to explain his design. 
All the team members in other locations can see the design in 3D immediately. The 
structure engineer inserts the structure design from his own machine located in 
another city. His structure design will be integrated into the global design. Other 
team members can see the two designs identified by different colors in their own 
Editor window. The sewage designer does the same, loading his sewage design 
from his own file system located in the third location. A global design is formed 
and appears on all the participants’ screen. The structure engineer then starts the 
ADV [10] from his M3D system by clicking on one of the menus. The architect 
types in a sentence: “Growing the interior wall by 3 meters, where do they intersect 
the roof outline?” The ADV system forms a statement in IDL through analyzing 
the sentence and performing the necessary operation [10]. After the calculation, the 
result shows up from the engineer’s machine. At the same time, the architect and 
the sewage designer from long distance can see the result from their own location. 
The possible error parts are shown with distinguished color. Many errors appear 
which could not be discovered only by human eyes. The team members led by the 
architect can then discuss with the errors and make some decisions or on-line 
corrections. The concluded design will be stored into the project database for the 
next scale design or for final construction. If important modification has to be 
made, the corresponding designers of the related parts may go back to their own 
CAD tools to modify the design formally. The new version of the designs with 
modification and error correction will be stored into the project database. 

5.4 System Evaluation 

A series of five real life design projects [18] have been performed using the system 
for the evaluation during the system development. Figures 5.5-5.9 show some of 
them. All the projects required different specialties and the design teams were 
located in the three European cities. With conventional design model, the teams 
would have to travel a lot and caused a lot of communication time using email, fax 
or telephone. Using the M3D system, the users had regular on-line cooperative 
working sessions weekly. They have successfully finished these projects. All the 
connection time, user interactions, and system performance were recorded to 
provide to the developers further improvement. The users are satisfactory to have 
the cooperative working tool. They appreciate very much the M3D Editor, the 
ADV and the database. They found the tool very useful in their daily practice and 
have been using it from then on for other design projects. They do not find current 
tools that have the same functionality as M3D. 
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Figure 5.5. A historical house for reconstruction 

Figure 5.6. Live project 1 
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Figure 5.7. Live project 2 

Figure 5.8. Live project 2 with 3D real time clipping planes 



106 Collaborative Product Design and Manufacturing Methodologies and Applications 

Figure 5.9. Live project 3, a residential building on complicated terrain 

5.5 Conclusions 

The M3D system supports a new business model in AEC industry. It has the 
capability to integrate the complete architectural production processes:  design, 
construction, monitoring and maintenance. The key element in this new business 
model is the integration of multi-discipline 3D design for early error detection and 
correction. This can solve a substantial amount of problems in current practical 
business model. 

The system provides the capacity of on-line cooperative work of the whole 
design team among several locations. It resolves conflicts, reduces errors, 
misunderstanding, and redundant work and therefore the project time and cost. The 
construction phase will be the most benefited. We can predict that by using the 
M3D technology, there will be a great reduction of errors caused by poor 
coordination and poor integration of multi-disciplinary design. The principal 
proposed by M3D can be applied to other industries for their cooperative work 
such as mechanical engineering, aerospace engineering, etc. 
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Traditionally, product databases are either purely geometric or meta-linked to 
Computer-Aided Design (CAD) files. The first type lacks feature semantics and 
hence is too rigid for collaborative engineering. The second type is dependent on 
CAD files which are system sensitive and has too large information grain size that 
makes information sharing and engineering collaboration difficult. This chapter 
introduces a fine-grain and feature-oriented product database design. It is ideal to 
support Web-enabled collaborative engineering services. For this purpose, a four-
layer information integration infrastructure is proposed. A solid modeler is 
incorporated to provide low-level geometrical modeling services. The novelty of 
this research includes three aspects: (1) a generic feature definition for different 
applications in the form of EXPRESS-schemas; (2) the integration of a solid 
modeler with feature-oriented database by mapping from EXPRESS-defined 
feature model to the runtime solid modeler data structure as well as to the targeted 
database schema; and (3) modeler-based generic algorithms for feature validation 
and manipulation via the database. A modeler-supported history-independent 
approach is developed for feature model re-evaluation.  

6.1 Introduction 

Due to the stiff competition and rapid changes of globalization, shortening time-to-
market has become the critical success factor for many companies [1, 2]. As a 
result, Concurrent and Collaborative Engineering (CCE) has become a norm. CCE 
has been recognized as the systematic approach to achieve the integrated, 
concurrent design of products and their related processes, including manufacturing 
and support [3], via collaborations across virtual project teams of different business 
partners.  
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In a CCE environment, many engineers with diverse skills, expertise, 
temperament and personalities are responsible for different tasks. The vast amount 
of knowledge and information involved in product development is certainly more 
than any individual can manage. Many computer-aided software tools have been 
incorporated into the product development process, which include Computer-Aided 
Design (CAD), Computer-Aided Process Planning (CAPP), Computer-Aided 
Engineering (CAE), and Computer-Aided Manufacturing (CAM) tools. However, 
information sharing among these applications has not been very well handled so far. 
Currently, almost all the existing CAx applications, which include individual 
installations, project Web portals, groupware tools and PDM (Product Data 
Management) systems, are based on files as their repositories. File-based approach 
has large information grain-size that results in data redundancy, storage space 
waste and potential conflicts [4]. Therefore, such design is no longer adequate for 
web-based CCE environment. It can be appreciated that, instead of managing the 
information via each application system in the separated data formats, a database 
management system (DBMS - Database Management System) can be used to 
manage all the product information concurrently, and at the same time in a 
consistent manner in order to eliminate the duplicated data. A DBMS can also 
provide shared user-access to databases and the mechanisms to ensure the security 
and integrity of the stored data.  

Some research work has been carried out in product DBMS. CAD*I, a research 
project by ESPRIT (European Strategic Program for Research and development in 
Information Technology) was among the first to use DBMS to realize the data 
exchange among different CAD systems [5]. Similar research work includes [6], [7] 
and [8]. However, in these product databases, only geometric data can be managed. 
This means high-level feature information (semantic information) is lost. Therefore, 
it cannot support complete information integration.  

Currently, most of the CAx systems are feature-based because features are a 
very useful data structure that associates engineering semantics with tedious 
geometrical data entities. Therefore, feature information must be represented such 
that engineering meaning is fully shared among CAx applications. To represent 
high-level feature information in database, Hoffman et al., [9]proposed the concept 
of product master model to integrate CAD systems with downstream applications 
for different feature views in the product life cycle. Wang, et al., [10, 11] put 
forward a collaborative feature-based design system to integrate different CAx 
systems with database support. However, these proposed databases lack 
geometrical engine to support model validation.  

A geometrical modeling kernel, which is also referred to as a modeling engine, 
provides lower-level geometrical modeling service. Therefore, it can be integrated 
with database to support feature management operations, such as saving, restoring 
and updating, and hence product model integrity and consistency can be 
maintained. In the previous work [12, 13], a four-layer information integration 
infrastructure is proposed based on the architecture of a feature-oriented database. 
Ideally, it will enable information sharing among CAx applications by using the 
unified feature model [14] in the EPM (Entire Product Model), and allows the 
manipulation of application-specific information with sub-models. However, the 
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method to provide low-level geometrical modeling services remains as a major 
question for research. 

Martino et al. [15] proposed an intermediate geometry modeler to integrate 
design and other engineering processes with a combined approach of “design-by-
feature” and “feature recognition”. Bidarra [16, 17] and Bronsvoort [18, 19] 
proposed a semantic feature model by incorporating ACIS into webSPIFF, a web-
based collaborative system. However, the above-mentioned research has little 
discussion on the integration of solid modeler with database, and it is not clear 
whether they have managed product data in files or with a database. Kim et al., [20] 
described an interface (OpenDIS) for the integration of a geometrical modeling 
kernel (OpenCascade) and a STEP database (ObjectStore). However, their work 
cannot ensure full information integration because STEP cannot cover feature 
information for different feature-based CAx applications.  

Traditionally, feature information cannot be exchanged among different 
applications. More recently, researchers, such as Bhandarkar et al., [21], Dereli et 
al., [22] and Fu et al., [23], proposed different algorithms to identify useful feature 
information from the exchanged part models. Although feature extraction [24] and 
identification can partially recognize some feature information, information loss 
still occurs because these approaches depend on pure geometric data. For example, 
feature relationships (constraints) cannot be recovered from the geometric data 
model. 

In order to enable higher-level feature information sharing among different 
applications, many researchers [25-27] proposed to use design information as the 
input and derive downstream application feature models by feature conversion. 
However, their works support only one-way link which means they can only 
convert from design features to other application features. In [28, 29], a multi-view 
feature modeling approach that can support multi-way feature conversion by 
feature links, is proposed. Separately, an “associative feature” definition was 
developed in [30, 31] for establishing built-in links among related geometric 
entities of an application-specific and multi-facet feature while self-validation 
methods were defined for keeping feature validation and consistency. Compared 
with one-way feature conversion approach, these multi-facet feature 
representations are promising for supporting multi-view product modeling. 

The concept of unified feature model was first proposed by Geelink, et al., [32]. 
The interactive definitions for design and process planning features were focused. 
However, the constraints defined were limited within one application feature model. 
Therefore, different application views could not be integrated in their model. Chen 
et al., [14] proposed a new unified feature modeling scheme by introducing inter-
application links for higher-level feature information sharing among different CAx 
applications. The unified feature model is essentially a generic semantic feature 
model for different CAx applications covering three-level relations among 
geometric and non-geometric entities. The unified feature model includes a 
knowledge-based model by incorporating rules and the necessary reasoning 
functions [33, 34]. 

This chapter focuses on the investigation of mechanisms to integrate a solid 
modeler with a feature-oriented database, such that multi-application information 
sharing can be realized over the Web. This chapter consists of seven sections. After 
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this introduction, Section 6.2 gives a generic definition of features with the 
consideration of unification of applications. Section 6.3 investigates the mapping 
mechanisms between the proposed feature type, consisting of properties and 
methods, and a solid modeler data structures. Section 6.4 explores the integration 
of the solid modeler and database with key algorithms, e.g., feature validation, 
constraint solving. Section 6.5 describes the method for solid modeler-supported 
feature model evaluation. A case study is presented in Section 6.6. Section 6.7 
gives the conclusions. 

6.2 Generic Feature Model 

To consider integrating a solid modeler with the feature-oriented database, the 
mapping method between the database schemas and the feature definitions based 
on the solid modeler entities is critical. A unified feature model allows different 
applications to define different features with a set of well-defined generic types 
[14]. It is essential that each feature type has well-defined semantics [16]. The 
semantic attributes specified in each feature definition have to be associated with 
the structured elements of the given feature type. Such elements include feature 
shape representation with parameters, constraints that all feature instances should 
satisfy, and the non-geometric attributes to be used for embedded semantic 
properties, such as classifications, names, labels, and relations. All types of 
constraints are used for capturing design intent in the context of a product model. A 
generic feature representation schema is described in Figure 6.1. Note that the 
original information model is described in EXPRESS-G. Details for the convention 
of EXPRESS-G are shown in Figure 6.2 [35]. 

Generic feature

#, #,

Numeric_parameter

#, #,

Numeric_parameter

#, #,

Descriptive_parameter

feature_name feature_id

depended_feature_id

constraint L[0:?]

Domain Nature

domain_specification feature_nature

#, #, Label

feature_label L[1:?]
element L[0:?] Feature_shape_schema

Generic_constraint_schema
#, #,

Descriptive_parameter

feature_type

Figure 6.1. Generic feature representation schema 
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#, #,

: Schema

: Defined type

: Referenced entity

: Page reference

: Entity

.

: Enumerated data type

: Used entity

: Relationship with direction

A                B represents entity A has
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: Inheritance relationship line

: Normal relationship line

Figure 6.2. Convention of EXPRESS-G 

6.2.1  Feature Shape Representation 

To represent the shape of a feature means defining feature geometrical and 
topological constraints or relations with parameters and associating these 
parameters with feature manipulation (creation, modification and deletion) 
functions. The parameters are used to provide user interfaces to create and modify 
features in the modeling operations.  

6.2.2  Constraint Definition 

Constraints must be explicitly defined in the feature model to specify relationships 
among features, geometric or topological entities. Such constrints provide invariant 
characteristics of a feature type in the product model. Constraints may have various 
types (e.g., geometric constraints, tolerance constraints and others). In generic 
feature definition, constraints are regarded as attributes attached to a set of 
associated entities, e.g., geometric and non-geometric entities or even features. 
Although different types of constraints may have different attributes, they fall into 
a few common types, which can be generalized as shown in Figure 6.3. 

Constraint_ID: It is the identifier of a constraint instance. 
Constraint_name: It specifies the name of a constraint instance. 
Owner_ID:  It uniquely identifies which feature a constraint belongs to. 
Constraint_expression: It represents the relationship between the constrained 

elements and reference elements. 
Constrained_entity_ID list: It is used to specify a list of constrained entities 

with reference to the referenced entities. 
Referenced_entity_ID list: It can be used to uniquely identify other related 

reference entities.
Constraint_strength: It has an enumeration data type, which may include 

several levels, such as required, strong, medium or weak. It represents the extent 
that the constraint needs to be imposed when constraints conflict with each other. 

Constraint_sense: It is used to specify the direction between constrained 
entities and referenced entities. It has the select data type which maybe directed
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and undirected. A constraint is directed if all members of a set or list of constrained 
entities are constrained with respect to one or more referenced entities. A constraint 
is undirected if there are no referenced entities and the constraint is required to 
hold between all possible pairs of a set of constrained entities. Stated differently, in 
the undirected constraint, there is no difference between constrained entities and 
referenced entities. For example, if a directed constraint is applied to two lines 
(line1 and line2), which requires line2 to be parallel with reference to line1, it 
implies that line1 existed in the model before line2 was created. The corresponding 
undirected constraint would simply assert that line1 and line2 are parallel, with no 
implied precedence in their order of creation.  

constraint

#, #, numeric_parameter

owner_idreferenced_entity_id L[0:?]

constraint_strength constraint_sense

strength sense

#, #, Descriptive_parameter

constraint_type

constraint expression

#, #,

numeric_parameter

general_feature_schema.

model.element

general_feature_schema.

model.element

constraint_entity_id

#, #, Descriptive_parameter

id

name

ISO13584_expressions_schema

.expression

geometric

constraint

algebraic

constraint

semantic

constraint

dimension

constraint

coincident

constraint

parallel

constraint

coplanar

constraint
... angledistance ...

...

Figure 6.3. Constraint representation schema 

Constraint solving functions: They are responsible for solving constraint 
according to constraint types. 

Other manipulation functions: These functions may include attributes access 
functions, behavior control functions, etc.

6.2.3  Other Feature Properties 

Other feature properties can be defined as follows: 
General feature attributes- Feature_name and feature_id

General feature attributes such as feature_name and feature_id shall be realized 
with the instantiation of a specific feature according to the application_specific
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feature definition. These attributes are necessary when searching for the relevant 
feature properties during feature modeling operations. 

Depended_feature_id_list
To maintain feature relationship, depended_feature shall be explicitly defined 

in feature definition. Feature dependency relation definition is described by 
Biddara [16, 17] as “feature f1 directly depends on feature f2 whenever f1 is 
attached, positioned or, in some other way, constrained relative to f2”.
Depended_feature_id_list plays an important role in maintaining feature 
dependency graph, and furthermore, feature relations during feature modeling 
operations. 

Feature label
A feature label is attached as an attribute to every face of a particular feature 

instance. In a feature, its member face labels are defined as a list of strings in the 
definition, to record feature face elements. Then the face corresponding to the label 
is referred to as the owner. 

Domain specification

Domain specification has the ENUMERATION data type, which represents the 
application scope such as design, manufacturing, assembly and others. By 
specifying the different domains, multi-views can be supported with certain 
filtering and synchronizing mechanisms. 

Nature
The nature of a feature also has ENUMERATION data type. It could be either 

positive or negative. A positive value means the instances of the feature are created 
by adding material. A negative value means forming a feature instance is realized 
by subtracting material. 

6.2.4  Member Functions 

Four groups of member functions are required to support the generic feature class. 
Attribute access functions shall be defined to manage a feature’s attributes. Some 
functions are common to all types of features, e.g., backup(). Others are feature-
specific such as findOwner(), findConstraint(), getParameter(), setParameter(), etc.
Object technology with a proper polymorphism design can be applied well here. 

Modeling operation functions (e.g., splitOwner(), mergeOwner()) are used to 
control the behaviors of feature during a modeling operation, e.g., splitting, 
merging, or translation. 

Feature evaluation and validation functions are responsible for feature model 
modification. Feature validation functions are used to validate feature geometry 
and solving constraints after each feature modeling operation. These functions will 
be discussed in detail in Section 6.4.  

In order to persistently manage product and process information, which 
includes feature information, geometrical data and other information, saving and 

restoring functions of the database, which are the interactions between the run-time 
feature model and the database, must be defined in individual feature classes 
because these functions have to organize information for different applications 
according to the functional requirements. Details will be explained in Section 6.4. 
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Figure 6.4. Design feature representation schema 

6.2.5  Application-specific Feature Model 

Application-specific feature model can be defined on the basis of generic feature 
model. As shown in Figure 6.4, the design feature type has three subtypes: 
primitive feature, transition feature and compound feature. The primitive feature 
type is separated into two subtypes, additive and subtractive features. Additive 
feature is represented as “pad”, which covers all instance features formed by 
adding material such as cylinder, taper, sphere, boss, block, torus and so on. 
Subtractive feature type represents all features such as hole, pocket, and slot that 
are formed by subtracting material. The transition feature type includes chamfer, 
edge_round and fillet, which are always associated with other primitive features. 
The compound feature type is a union of several primitive features. For each 
specific design feature type, it has predefined explicit geometry, topology, 
parameterization and constraints specifications. For example, a design feature slot 
can be defined as shown in Figure 6.5. 

6.3  Mapping Mechanisms 

To provide lower-level geometrical modeling services, a geometrical modeling 
kernel is required. In this work, ACIS, a commercial package, is incorporated into 
the proposed system. An EXPRESS-defined and extended STEP feature model, 
which includes geometrical and generic feature representation schemas, is mapped 
to the data representation schemas in ACIS such that the proposed system will have 
the required fine grain functionality. On the other hand, this feature model would 
also need to be mapped to the target database schema so that it can be interfaced 
with a consistent repository. 



 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 117 

Slot

#, #, Open_profile

#, #, path

Slot_end_type

end_conditions [2:2]

Open_slot_end_type Radiused_slot_end_type Woodruff_slot_end_type

Flat_slot_end_type

1

#, #,

Numeric_parameter

#, #,

Numeric_parameter

first_radius

second_radius

#, #,

Numeric_parameter

radius

#, #, axis_placement_3d

position

Generic feature

#, #,

Numeric_parameter

#, #,

Numeric_parameter

#, #,

Descriptive_parameter

feature_name feature_id

depended_feature_id

constraint L[0:?]

Domain Nature

domain_specification feature_nature

#, #, Label

feature_label L[1:?]
element L[0:?] Feature_shape_schema

Generic_constraint_schema

feature_type

first_or_second

#, #,

Descriptive_parameter

#, #,

Descriptive_parameter

design
subtractive

#, #,

Descriptive_parameter

Design feature

Primitive feature

Subtractive feature

Slot_shape

course_of_travel

swept_shape

Figure 6.5. Slot feature definition in EXPRESS-G 

6.3.1  Mapping from Extended EXPRESS Model                                            

to ACIS Workform Format 

6.3.1.1  Geometry Mapping 

In this research, in order to explicitly maintain feature shape and associative 
relations in the product model, a cellular model is adopted. Cellular model 
represents a part as a connected set of volumetric quasi-disjoint cells [36]. By 
cellular decomposition of space, cells are never volumetrically overlapped. As each 
cell lies either entirely inside or outside a shape volume, a feature shape can be 
represented explicitly as one cell or a set of connected cells in the part. The cellular 
model-based geometrical representation schema adopted in this research is shown 
in Figure 6.6. Basically, there are three types of topological entities for cellular 
topology, which are CELL, CSHELL and CFACE. CELL has two subtypes, namely 
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CELL2D and CELL3D. A CELL2D contains a list of CFACEs, each of which 
points to faces that are double-sided and both-outside. A CELL3D contains a list of 
CSHELLs. A CSHELL represents a connected set of CFACEs that bound the 3D 
region of the cell. A CELL is attached to the normal ACIS topology in the LUMP

level (which represents a bounded, connected region in space, whether the set is 3D, 
2D, 1D, or a combination of dimensions). Each CFACE has a pointer to a face in 
the lump and use it in FORWARD or REVERSE sense.  

As cellular model is directly supported in an ACIS, cellular husk is adopted. 
Therefore, geometry mapping is one-to-one straight forward. 

BODY

LUMP

EDGE

APOINT

CURVE

SURFACE

SHELL

LOOP

SUBSHELL

WIREFACE

VERTEX

COEDGE

CFACE

CSHELL

CELL

Figure 6.6. Partial geometrical representation schema according to cellular topology [36] 

6.3.1.2  Generic Feature Definition under ACIS Framework 
ACIS provides ENTITY-ATTRIBUTE architecture [36], under which we can 
specify user-defined attributes (features, constraints or others). The following rules 
are developed and used by the authors for defining features, constraints and other 
attributes in ACIS: 

Use simple attributes to represent properties such as the material of a body or 
color of a face. 

Use complex attributes to represent properties such as features, dimensions, 
tolerance, or constraints.  

Use bridging attributes to link an ENTITY with some application-specific and 
parametric variables, such as dimensions. 

Use instruction attributes placed on entities to force certain behavior. 
Attributes of features and constraints may have various data types, e.g., string, 

integer or ENTITY pointer. 
Aggregating data type has been defined as ENTITY_LIST. The ENTITY_LIST 

is a variable length associative array of ENTITY pointers and provides common 
functions for the manipulation of itsmembers, e.g., add ENTITY, look up ENTITY 
and [] operator for accessing list member by position. 
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Enumeration data type can be simulated by defining a string as the enumeration 
member or simply using an integer data type. 

Selecting data type which can be simulated by using an abstract class and 
defining specific types of the abstract class. 

On the basis of the above proposed mapping rules, a generic feature definition 
is created as shown in Figure 6.7. 

Generic Feature Definition

Attribute:
Domain: string;

Feature_name: string;

Nature: string;

Owner ID: ENTITY*;

Feature_ID: ENTITY*;

Depend_feature_ID list:ENTITY_LIST;

Parameter list:

  Parameter1;

  Parameter2;

  ...

Constraint list: ENTITY_LIST;

Feature element list: ENTITY_LIST;

  Cell list: ENTITY_LIST;

  Face list: ENTITY_LIST;

  Edge list: ENTITY_LIST;

  Vertex list: ENTITY_LIST;

Member functions:

Attribute acess:

getAttribute(),setAttribute()...

Modeling operation:

splitOwner(), mergeOwner()...

Feature validation:

geometryValidation(),

constraintSolving(),

Save and restore:

Save(),

Restore()

Entity
Entity ID: ENTITY*;

Feature_ID: ENTITY*;

Functions:

geometryValidation();

Constraint:

Attribute:
Owner_ID: ENTITY*;

Constraint_ID: ENTITY*;

Constraint_content;

Constraint_strength: int;

Constraint_sense: string;

Constrained_entity:

ENTITY_LIST;

Reference_entity_list:

ENTITY_LIST;

Other attribute:

...

Member function:
getAttribute();

setAttribute();

solveConstraint();

Other function:
...

Feature_label
Label_ID: ENTITY*;

Feature_name: string;

Element_name: string;

Reference_entity_ID: ENTITY*

Functions:

splitOwner(); mergeOwner();

Figure 6.7. Generic feature definition with ACIS entities 

6.3.2  Database Representation Schema 

According to the mapping mechanisms proposed in [12], a geometrical 
representation schema as well as generic feature representation schema in the 
database has been developed. For details, please refer to [12]. 

6.4  The Integration of Solid Modeler and Database 

The solid modeler has been tightly integrated in four layers in order to manage 
product and process information (see Figure 6.8). First, its API functions are called 
constantly which are encapsulated within the feature manipulation methods during 
the collaboration sessions between the end users and the application server. Second, 
all the geometrical entities are manipulated and their run-time consistency 
maintained through the solid modeler’s implicit runtime data structure module. 
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Third, it also provides runtime functional support directly to the end users via 
commands dynamically. Fourth, the solid modeler has also to support the 
repository operations via the DB manager. 

Figure 6.8. Partial integration diagram of a solid modeler and the feature-oriented database 

This chapter focuses on the forth layer. In the proposed architecture of the web-
based feature modeling system [12], database (DB) manager is responsible for 
managing the geometrical entities via the solid modeler runtime model and 
manipulating the data elements to be stored and extracted in the database for 
different applications. With the support of a solid modeler, the database manager 
can provide data manipulation functions such as save, restore and validate

functions. These functions are fundamental to support different applications. In the 
following sub-sections, feature validation methods together with the generic save

and restore algorithms are explained. In order to manage the connection between 
the DB manager and the database during saving and restoring processes, OCCI 
(Oracle C++ Call Interface) [37] is adopted as the bridge (see Figure 6.8). 

6.4.1  Feature Model Re-evaluation and Constraint Solving 

Once feature operations are specified via User Interfaces (UIs), the product model 
needs to be modified and updated. This process is achieved through feature 
evaluation. The geometrical model has to be managed to ensure the consistency. 
Here, the run-time product model should be generated via the integrated solid 
modeler and managed based on the database records. All feature evaluation 
operations call solid modeler APIs to realize the geometrical procedures while the 
rest of the functions are implemented separately. In this way, the bottom-level 
geometrical operations are readily looked after by the solid modeler; hence, the 
development effort is significantly reduced. Details of feature model re-evaluation 
will be explained in Section 6.5. 

Theoretically, feature validation functions include two kinds: those dealing with 
the geometry, and those dealing with constraints. With the incorporation of a solid 
modeler, geometry validation functions are not really necessary under the proposed 
design because the solid modeler is responsible for manipulating and validating 
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feature geometry. On the other hand, constraint-solving functions need to call 
specific algorithms defined in the individual constraint sub-classes to solve 
different kinds of constraints according to their types. Globally, all the constraints 
are maintained by the Constraint Manager in a constraint graph for EPM (Entire 
Product Model), which contains sub-graphs for specific application views. 
Constraint manager solves constraints by calling the corresponding solvers 
according to different constraint types. For example, SkyBlue algorithm [38] can 
be used to solve local algebraic constraints in design domain; Degrees of Freedom 
analysis algorithm [39] can be used to solve geometrical constraints in design 
domain. If conflict of intra-application constraints occurs, local constraints solver 
can determine automatically which constraint should be satisfy first according to 
the value of constraint_strengh, which is an attribute of constraint defined in 
Section 6.2. Inter-application constraints can also be solved under the control of 
constraint manager according to the value of domain_strength. For the definition of 
domain_strength, also refer to Section 6.2. The value of domain_strength, which 
regulates priority sequence of different domains, can be predefined, or is set by an 
authorized user. Any conflict of inter-application constraints will be detected by 
constraint manager after which the constraints solver can trigger the corresponding 
applications to reevaluate the product model according to domain_strength. Only 
when all constraints are checked and feature geometry is validated, does feature 
validation finish. 

6.4.2  Save Algorithm

To elaborate, during the saving process, the solid modeler has to extract all the 
information from its runtime data structure and then save them into the database 
after a format conversion according to the mapping relations and the database 
mapping schema described in [12]. The Save algorithm can be expressed in the 
steps as follows (see Figure 6.9): 

Initiate algorithm 
by  selecting the 
part & creating an 
empty entity_list 

Cycle the 
part to get 

all entities 

Create/update 
the entity 
graph and get 
OIDs  

Save entities 
with OIDs 

into the DB 

Figure 6.9. Save algorithm 

Select the part to be saved. Create an empty entity list and add the part 
attributes to be saved to the list;  

Cycle all entities (features, topological entities, such as solids, shells, faces, 
and geometrical entities, such as lines, planes, curves, and surfaces) from 
the part and add them to a graph map so that object pointers can be fixed as 
unique database Object Identifiers (OID). ACIS API functions, e.g., 
api_get_xxxx(), are used to get all saved ENTITIES; 
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Use such object pointers to call save functions of the specific class (e.g. 
point.save(), vertex.save() or feature.save()) to save part data to the 
database. 

6.4.3 Restore Algorithm 

In a reverse way, the uploading process is triggered when the product model is 
being established during the session initiation from the database. 

Restore algorithm has the following steps (see Figure 6.10):

Get all 
entities of the 

part from DB 

Reconstruct 
entity  objects 
& add them to 
the graph 

Traverse OIDs 
and create 
entities  

Add them 
into  a 
entity_list 

& form a part 

Figure 6.10. Restore algorithm 

All the entities of a part are retrieved from the database by searching their 
linked Object Identifiers (OIDs);

Reconstruct new objects, e.g., features, geometrical entities, topological 
entities.  Upon reconstruction, all the objects will be validated;  

Add all the entities to a newly generated object graph map;  

Convert these OIDs to genuine pointers;  

Create an entity list and add all the entities to the list to form the part. 
Validation, e.g., geometry and feature validation will be carried out during 
this procedure. 

6.5  Feature Model Re-evaluation 

6.5.1  Problems of Historical-dependent System 

For most parametric and history-based modeling systems, feature model is re-
evaluated by re-executing whole or part of the model history. The disadvantages of 
this method are the high computational cost and the considerable amount of storage 
space [16]. Moreover, history-based model re-evaluation causes ambiguous feature 
semantics due to the static chronological feature creation order in the model history. 
This is illustrated in the example shown in Figure 6.11(a). The simple part consists 
of a base block and a through hole. Later on, the designer wants to modify the part 
by adding another block and extending the depth of hole so that he can get the 
expected part model as shown in Figure 6.11(b). However, sometimes unexpected 
modeling results as shown in Figure 6.11(c) can be generated by the history-based 
reevaluation, because the feature creation order is baseblock->hole->block. In 
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order to get the expected part model, the precedence order, in this example, should 
be changed to baseblock->block->hole. This semantic problem is caused by the 
static precedence order in the model history on which model re-evaluation is based. 
From this example, it is clear that the precedence relation among features should be 
dynamically maintained and updated after each modeling operation. 

(a)

(b)

(c)

Figure 6.11. Semantic problem for historical-dependent system (a) example part at the 
initial state; (b) expected result after modification; (c) result of history-based re-evaluation 
after modification 
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6.5.2  Dynamically Maintaining Feature Precedence Order 

In this work, feature precedence order is maintained dynamically based on a 
feature dependency graph. Relations between independent features can be 
determined by feature overlapping detection. Feature dependency relations are 
explicitly defined in the feature definition as explained in Section 6.2. The 
following rules are proposed for feature precedence determination. Note that, 
explicit rules always overrule implicit rules during dynamic maintenance of the 
global precedence order of all features. Stated differently, the explicit rules will be 
first used to determine the precedence relation; while if the global precedence order 
cannot be uniquely generated, implicit rules will be then considered to get a unique 
one. 

Rule 1 (explicit rule) 
For two dependent features, if feature f2 depends on feature f1, then f1 precedes 

f2 [16]. 

     It is easy for us to derive from rule 1 that: 
For n dependent features, if: 

                   f1  f2   f3  …  fn

     Then, there exist: 

                  O1 < O2 < O3 < … < On

     where: 

     fi fj : represents feature dependency relation( e.g. f1  f2 means f2 depends 
on f1); 

Oi : represents the precedence order of feature fi . 
Oi <Oj : represents the jth feature is ordered after the ith feature. 

Rule 2 (explicit rule) 
For a feature in the feature dependency graph, if it depends on two or more 

features, the precedence order of this feature comes after the latest feature it 
depends on (we call it latest depended feature or LDF). 

Note that in the feature dependency graph, LDF is always the feature that has 
the longest length of path (LLP) from the root node of the graph among all 
depended features of a particular feature. 

Path: a path in a graph is a walk whose nodes are all distinct; 

Walk: a walk in a graph is a finite alternating sequence of nodes and edges 
between its starting node and ending node; 

Length of path: the length of a path is the number of edges that form the path. 
Rule 3 (implicit rule) 
For a group of features that have random precedence order, the feature 

creation sequence will be used to determine their precedence relations. 

The feature creation sequence is defined as an attribute attached to the feature 
instance to record the sequence of the feature among all features in the part. 

Rule 4 (implicit rule) 
For two independent features, if they do not overlap with each other, the 

precedence relation between them is determined by LLP of these two features. 
There exists: 

O1 < O2 if LLP1 < LLP2

In the case of LLP1 = LLP2, the precedence order can be determined by rule 3. 
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Rule 5 (implicit rule) 
For two independent features with same natures (both negative or both 

additive), if they overlap with each other, the precedence relation between them is 
random and should be determined by LLP of these two features. There exists: 

O1 < O2 if LLP1 < LLP2

In the case of LLP1 = LLP2, the precedence order can be determined by rule 3.

Rule 6 (explicit rule) 
For two independent features (f1 and f2) with different natures, if the overlap of 

these two features is caused by some modeling operation of f2, then feature f1

precedes feature  f2 [16]. 

Based on the above rules for feature precedence determination, after each 
modeling operation, the following algorithm shown below is used to dynamically 
maintain feature precedence relations. 

Find all the features of the part and add them to a graph map (unsorted). 

Partially sort the graph map according to the existing feature dependency 
graph. This is done by using the algorithm shown in Figure 6.12 on the 
basis of rules 1 ~ 3. 

Sort the partially sorted graph with reference to the overlapping detection 
result based on rules 4 ~ 6. 

In this way, a global feature precedence order can be updated dynamically. 

Here:

X
i
 represents any feature in the feature set;

X
j
represents depended feature of X

i
;

Px
i
represents the position of feature X

i
 in the

feature map;

Figure 6.12. Algorithm for precedence order generation [40] 

6.5.3  History-independent Feature Model Re-evaluation 

First of all, re-evaluating the feature model requires that feature elements (cells, 
faces, edges and vertices) are correctly identified in the cellular model. This can be 
achieved by cellular entity owner list control. 

6.5.3.1  Adding a New Feature Instance 
This is carried out as follows: 
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Create the shape of the new feature (one cell shape); 

Attach labels of the feature to each face of the feature instance; and 

Carry out Boolean operation (with the ‘non-regular’ option).  

During non-regular Boolean Union, intersection detection will be carried 
out for each cell (Ci) in the cellular model and the newly added feature cell 
(C). Upon cellular decomposition, the owner list of each cell and cell face 
should be controlled by the following rules [41]: 

The new cells that are in the intersection of C and Ci are assigned with an 
owner list that is the union of the owner lists of C and Ci;

Other non-intersecting cells resulting from the decomposition get their 
owner lists which are the same as the original cells (either C or Ci);

The new cell faces lying on the boundary of both C and Ci get the owner 
list that is the union of the owner lists of the overlapping cell faces from 
which it originates; 

The new cell faces lying on the boundary of either C or Ci inherit the owner 
list from their respective original cell faces; 

The remaining new cell faces get an empty owner list. 
Figure 6.13(a) illustrates the creation of a slot feature on the base_block. The 

shape of the slot is first created as a one-cell shape. Then non-regular-Boolean 
Union is carried out to create the cellular model of the part. During the operation, 
upon intersection analysis, cell decomposition is performed. On the basis of above 
rules for cell and cell face owner list control, the result of the modeling operation is 
shown in Figure 6.13(b). Note that there are two cells in the cellular model. One is 
the original base_block cell (has block feature in its owner list). The other is a new 
cell generated by cell decomposition, namely the slot cell (which has block and slot
in its owner list). Three double-side faces separate these two cells. Each double-
side face has two corresponding cell faces (e.g., CF8 and CF9); one (CF8) is for the 
block cell boundary, the other (CF9) is for the slot cell boundary. 

Note that CFi represents ith cell face; S represents slot feature; B indicates block
feature; and ( ) indicates the labeled entity’s owner list. 

6.5.3.2  Deleting a Feature Instance 
This is carried out as follows (assume no other feature depends on the feature to be 
deleted) [16]: 

Traverse through all the cells and cell faces to remove from their owner list 
the feature to be deleted; 

Remove all the cells which has empty owner list. This can be realized by 
removing all one-side faces bounding the cell; 

Merge adjacent cells which have the same owner list. This can be realized 
by removing all double-side faces that separate the two cells; 
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Clean up the model by merging the adjacent faces that have the same 
geometry and whose cell faces have the same owner list. 
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Figure 6.13. Creation of slot feature on the base block (a) base block and slot shape; (b) 
result of modeling operation 
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As shown in Figure 6.14, to delete the slot feature from the cellular model, all 
cells and cell faces in the cellular model are traversed through to remove from their 
owner list the slot feature.  
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Figure 6.14. Feature deletion (a) remove slot from owner list of cell and cell face; (b) merge 
two cells 

The result is shown in Figure 6.14(a). Then as two cells have the same owner 
list, the block feature, these two cells are merged by removing three double-side 
faces (the underlying faces of CF8 and CF9, CF11 and CF12, CF13 and CF14) that 
separate them. The result is shown in Figure 6.14(b). Finally, adjacent faces that 
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have the same geometry and same owner list are merged. This option carries out 
the merging of the underlying faces of CF5 and CF16, CF7 and CF15, as well as 
CF1, CF2 and CF10. The result is the same as block feature shown in Figure 6.14(a) 
before creating the slot. 
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Figure 6.15. B-Rep evaluation (a) boundary detection; (b) boundary evaluation 
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6.5.3.3  Modifying a Feature Instance 
To modify a feature instance, we shall first check which features are really 
involved in the modeling operation. This checking is based on the feature 
dependency graph and the global feature precedence order. Next, features involved 
will be removed from the part model. Finally, features with modified properties 
will be added to the model. 

6.5.3.4  B-rep Evaluation 
As the cellular model of a part contains much more information than only the 
boundary of the final part, which means it also contains faces that are not on the 
boundary. Therefore, the B-rep evaluation of the cellular model requires boundary 
detection of every face in the cellular model. The following rules are used to carry 
out the boundary detection of faces in the cellular model: 

For each single-side face of a cell, the nature of the cell determines whether 
it is on-boundary or not. Additive nature of the cell means the face is on-

boundary; subtractive nature of the cell means the face is not-on-boundary.

For each double-side face of a cell, if the cell has a different nature with the 
partner cell that shares the same face, this double-side face is on-boundary;
otherwise, it is not-on-boundary.

Note that the nature of a cell is determined by the nature of its last owner in the 
cell owner list. The sequence of cell owner list is dynamically maintained 
according to the unique feature precedence order, see Section 6.5.2. On the basis of 
boundary detection of each face in the cellular model, the B-rep evaluation of the 
cellular model can be carried out in steps as follows: 

Walk through all the faces and find all the faces that are not-on-boundary;

Remove all the cells and the faces that are not-on-boundary;

Merge adjacent faces that have the same geometry. 
Also taking the part shown in Figure 6.13(b) as an example, on the basis of 

rules for boundary detection, the result of boundary detection is shown in Figure 
6.15(a). Then, the B-Rep evaluation of the cellular model can easily be realized by 
removing three faces (F9, F12 and F13) that are not-on-boundary. The result is 
shown in Figure 6.15(b). Note that in Figure 6.15, O represents on-boundary; N 
represents not-on-boundary.

6.6 A Case Study 

The proposed feature-oriented database has been implemented coupled with a 
geometrical modeling kernel, ACIS. Design features and constraints have been 
defined and some example parts have been tested. Figure 6.16 illustrates the 
creation of an example part which is made up of a base_block, a vertical_support, 

a rib, a cylinder and two through_hole features.
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(a)

Baseblock

Through_hole1

Rib

Vertical

support

Through_hole2

Cylinder

Baseblock

RibCylinder

Vertical_support

Through_hole 1 Through_hole 2

                       (b)                          (c) 

Figure 6.16. A case part (a) creation of the case part; (b) modeling result; (c) feature 
dependency graph 

All the parameters and constraints are listed in Table 6.1. The precedence order 
of the part can be generated according to the rules described in Section 6.5.2 as 
follows: Base_block vertical_support cylinder rib through_hole 1

through_hole 2.
If the designer wishes to add a cylinder_boss feature on the top of cylinder

overlapping with the hole2 as shown in Figure 6.15, feature overlapping detection 
and semantic constraint checking (semantic constraints here refer to through_hole2

must have both top and bottom face not_on_boundary) will be carried out. In this 
case, constraint conflict happens because the semantic constraint of the 
through_hole2 cannot be satisfied if the current precedence relation is kept. 
Therefore, a message will be generated by the system to prompt the user on how to 
solve such problems (via changing the precedence order of those two features as 
shown in Table 6.2).  

After modification, the feature precedence order of the part will be changed 
from: base_block  vertical_support  cylinder  rib  through_hole1
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through_hole2  boss to: base_block  vertical_support  cylinder  rib 
through_hole1  boss  through_hole2.

Table 6.1. Features, constraints and parameters in the example part 

Feature Constraints and parameters 

Baseblock   Determined by two position points (0,0,0) and (100,100,10). length of 
baseblock = 100; width of baseblock = 100; height of baseblock = 10 

Vertical_

support

Geometric constraints: verticalsupport_start coplane with baseblock_left; 
Radius of arc C2 , R1 =16; Center of arc C2 determined by two distance 
constraints: D1=50; D2=60; C1  tangent to C2 ; C3 tangent to C2; Extrusion 
length W2=10

Cylinder  Geometric constraint: Cylinder_top coplane with baseblock_left; Center 
of cylinder_top concentric to arc C2 ; Height of cylinder H = 85 

Rib Distance constraint: distance between C5 and C7, 

2 2
3 2 1 1 1( ( / 2) )D D R R W ; Extrusion length W1=10

Through_h
ole1

Geometric constraints: Through_hole1_top coplane with cylinder_top; 
Through_hole1_bottom coplane with cylinder_bottom; Center of 
through_hole1 concentric to the center of cylinder; Radius  of 
through_hole1 = 8 

Through_h
ole2

Radius of through_hole2 R3 =3; Through_hole2_topcenter  determined by 
three distance constraints: D1, D2+R1, and D4 ; Height of through_hole2 

2 2
2 1 2 3H R R R

Table 6.2. Redefining two features 

Feature Constraints and parameters 

Cylinder 
boss

Radius of cylinder boss R4 = 6; 

The top center of cylinder boss determined by three distance constraints: 
D1, D4 and D5 (distance between top center of cylinder boss and top of 
base block in Z axis; Height of cylinder boss 

2 2
2 5 2 1 4H D D R R

Through_h
ole2

Radius of through_hole2 R3 =3; Top center of through_hole2 coplane 
with top center of cylinder boss ; Top center of through_hole2 concentric 
with top center of cylinder boss; Height of through_hole2 

2 2
2 5 2 3H D R R

Therefore, the result part model after modification can be generated as shown 
in Figure 6.17(a). The dependency graph of the modified part can be expressed as 
shown in Figure 6.17(b).  

Subsequently, the designer wishes to remove the boss feature. According to the 
feature dependency graph shown in Figure 6.17(b) and the latest feature 



 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering 133 

precedence order, the removal of the boss feature can be done by removing the 
boss as well as the hole feature that depends on the boss feature. The final part after 
removing the boss is shown in Figure 6.18. 

Baseblock

Through_hole1
Vertical

support

Through_hole2

Cylinder

Rib

Cylinder_

boss

     
Baseblock

RibCylinder

Vertical_support

Through_hole 1 Cylinder boss

Through_hole 2

                   (a)     (b) 

Figure 6.17. Feature model after adding (a) boss a. modeling result; (b) feature dependency 
graph after adding a boss 

Baseblock

Through_hole1

Rib

Vertical

support

Cylinder

Baseblock

RibCylinder

Vertical_support

Through_hole 1

(a)                 (b)

Figure 6.18. Feature model after removing the boss feature (a) modeling result after 
removing the boss feature; (b) feature dependency graph 

6.7  Conclusions 

In this chapter, the integration of a fine-grain, feature-oriented database and a solid 
modeler, is presented. The mapping mechanisms, from EXPRESS-defined generic 
feature model entities to ACIS workform format, and the integration with the 
repository database schema are described. Generic algorithms for feature 
manipulation with the solid molder and database methods are illustrated. Finally, a 
modeler-supported, history-independent feature model re-evaluation approach is 
described in detail. Based on the working prototype system, it can be concluded 
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that solid modeler can be effectively integrated with the feature-oriented database 
to provide low-level geometrical modeling services. This kind of integration can 
further enable information sharing among different applications and Web enabled 
engineering collaboration.  
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To develop a distributed and collaborative manufacturing system at an enterprise 
level, different domains like manufacturability evaluation, resource coordination, 
process planning, scheduling, fabrication, and logistics, have to be seamlessly 
integrated for product and process development. This integration necessitates a 
need to formalize, encode and share manufacturing related knowledge. 
Collaborative manufacturing provides a mechanism for  information sharing and 
decision making between the various domains. Further, with the introduction of 
software agents, individual manufacturing elements are able to cooperate to 
promote collaborative manufacturing. This chapter addresses the development of a 
web-based framework for distributed and collaborative manufacturing. 

7.1 Introduction 

Decisions in integrated product development involve a number of independent 
elements like part design, evaluation, process planning, scheduling, production, 
etc., to final delivery of the manufactured part. While considering the development 
of distributive manufacturing at an enterprise level, different domains like 
manufacturability evaluation, resource coordination, process planning, scheduling, 
fabrication and logistics play important roles in integrated product and process 
development. This necessitates a need to formalize, encode and share 
manufacturing related knowledge between various domains. With the advent of 
collaborative manufacturing, the ease of information sharing for decision making 
between the participating elements has become very useful. Furthermore, with the 
introduction of software agents, individual manufacturing elements are able to 
cooperate to promote collaborative manufacturing. This research addresses the 
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development of a web-based framework for distributed and collaborative 
manufacturing of engineering parts. In essence, a Multi-Agent System (MAS) is 
proposed where different domains in manufacturing are represented as functional 
modules. The implementation of the agent system is accomplished using the Java 
programming language. A case study is presented considering an engineering 
company with distributed facilities.   

Generally, designers, process engineers and machine operators are all capable 
of individually handling complexities in decision making involved in their 
respective domains of manufacturing. However, in a distributed scenario, it is 
crucial for the different domains to cooperate to handle complexities. For example, 
a designer must evaluate the manufacturability of his designed part, a process 
engineer must evaluate and plan the job scheduling depending on the availability of 
machine-tools, and the machine operator must evaluate whether the part could be 
fabricated meeting deadlines, machine breakdown and so on. To conduct such 
evaluations it is essential for the distributed domains to cooperate, advertise, 
interact and advise each other to complete a job task.  Such cooperation and 
collaboration ensures a successful job completion. 

In this chapter we aim to address a framework for distributed and collaborative 
manufacturing of engineering parts.  Apart from addressing a framework we 
further encapsulate the various manufacturing related elements into functional 
agents [1] for implementing a distributed MAS for manufacturing.  Numerous 
researchers have applied agent technologies to perform tasks like part production 
control on either the shop floor level or in a distributed manner. Notably among 
them, Lin and Solberg [2] proposed a framework to realize integrated shop floor 
manufacturing, Tan, et al., [3] proposed to integrate design, manufacturing and 
shop-floor control, Francisco and Douglas [4] developed a framework for 
distributed task planning and manufacturing, Sikora and Shaw [5] presented a 
coordination mechanism in a multi-agent scheduling system. Howley, et al., [6] 
presented a compromising model in an agent-based environment, Klein and Lu [7] 
proposed a model for cooperative design, Lander, et al., [8] also proposed a 
cooperating expert framework to support cooperative problem-solving, Werkman, 
et al., [9] developed a Design Fabricator Interpreter system and so on. More 
recently, Odrey and Mejia [10] proposed an approach addressing the issue of 
combining the discipline of hierarchical systems with the agility of MASs. Blecker 
and Graf [11] discussed a coordinated application for mass customization using 
multi-agent systems in internet based production environments for production 
planning and control. Ong and Sun [12] have proposed a Web-based distributed 
architecture for developing a platform-independent real-time monitoring system 
through mobile agents. Shin and Jung [13] proposed a negotiation mechanism, 
called a Mobile Agent-based Negotiation Process (MANPro), which applies a 
mobile agent system to the process of information exchange. Boonserm, et al., [14] 
described a framework to facilitate the collaboration of engineering tasks, 
particularly process planning and analysis for globalized manufacturing activities. 
Liu and Young [15] presented an approach which utilizes a combination of 
information and knowledge models to support global manufacturing coordination 
decision-making. Jiao, et al., [16] applied the multi-agent system paradigm for 
collaborative negotiation in a global manufacturing supply chain network. Nahm 
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and Ishikawa [17] discussed a MAS framework for integrated product design in a 
computer network-oriented Concurrent Engineering (CE) environment. 

All the earlier proposed systems have in different ways addressed specific 
issues like using multiple-way and multiple-step negotiation, using black boards, 
sub-contracts, conflict resolution, etc. However, in this chapter we propose a 
framework to incorporate a flexible system for multiple coordinated tasks starting 
from part design to final scheduling.  

7.2 Distributed and Collaborative Manufacturing

Figure 7.1 presents the various manufacturing elements involved in decision 
making in a distributed and collaborative manufacturing environment. However, 
considering its implementation as a distributed agent-based manufacturing system, 
there exist certain constraints while encoding and sharing of manufacturing related 
knowledge and information, between the participating agents. In this research we 
address the implementation of the manufacturing elements for decision making in a 
distributed fashion while taking advantage of the Internet and Web-based 
computing facilities. The goal of implementing a distributed system is to aid 
designers to send design data, perform evaluation and obtain reliable results 
pertaining to a manufacturing job, a mold fabrication for example. 

In such a collaborative environment, it is advantageous for designers, process-
engineers or machinists with insufficient experience to follow certain structured 
approaches to reason out critical design parameters affecting manufacturability. 
Hence during implementation, a proper rule-based knowledge repository for 
manufacturability evaluation and planning plays a crucial role in integrated product 
and process development. 

Figure 7.1. Elements involving a decision in manufacturing 
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Manufacturability evaluation focuses on product design and verification, to 
suggest modifications or redesign alternatives that are functionally acceptable and 
compatible with the selected manufacturing processes.  Such evaluations are 
certainly skill-intensive activities demanding a wide variety of design expertise and 
knowledge of the manufacturing processes that are available. Decision-making 
processes in manufacturability evaluation are generally based on product geometry. 
In the proposed system such expertise information sharing is achieved through 
interaction between the various agents.

The rest of the chapter is organized as follows: the next section presents the 
proposed framework with implementation aspects for a distributed manufacturing 
system. The participating functional manufacturing agents are also briefly 
discussed. The subsequent section discusses a case study considering an 
engineering company with distributed facilities. Finally, the chapter is concluded 
with suggestions and scope for future related research work.  

7.3 Proposed Framework and Implementation 

Figure 7.2 presents an integrated framework comprising of a Designer Computer-
Aided Design (CAD) interface communicating with a MAS. The MAS interface 
may comprise and include any number of manufacturing related functional agents, 
like Design Mediator Agent (DMA), Manufacturability Evaluation Agent (MEA), 
Manufacturing Capability Agent (MCA), Process Planning Agent (PPA), 
Manufacturing Scheduling Agent (MSA), etc.  Figure 7.3 presents a more detailed 
framework of the agent interaction and communication as part of the multi-agent 
system interface.  All manufacturing agents in the framework, although distributed 
physically, can connect, communicate and share information with each other 
through the Web. 

In the proposed framework all manufacturing agents communicate over the 
Internet via a bundle of Knowledge Query and Manipulation Language (KQML) 
messages to transfer data and information among each other. KQML [18] is a 
common communication protocol used for negotiation and interaction between 
agents. Developed on JATLite [19] (Stanford University) each agent understands 
the message it receives and executes specific tasks. A performative header at the 
beginning of a message defines the implied message for the recipient agent to 
understand and act. Performatives developed as part of the Agent Language 
include instructions for manufacturing like: ‘tell’, ‘evaluation’, ‘re-evaluation’, 
‘find_model’, ‘need_model’, ‘process_planning’, ‘scheduling’, ‘job_schedule’, etc.

There exists a Router [18] in JATLite, which is a specialized application that 
receives messages from the registered agents and routes the messages to the 
appropriate receivers. To coordinate the activities of the functional agents, a central 
coordination agent exists, namely, the Facilitator or Manufacturing Managing 
Agent (MMA). Unlike most agents in previously reported systems that were 
intentionally designed with a compact all-in-one structure to obtain beneficial 
characteristics, such as prompt responsiveness, integrated control, etc., a 
modularized structure is used in this research to implement the agents to acquire 
adaptiveness and upgradeability in these agents. Though these agents are dispersed, 
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this modularized structure is wrapped and connected using the JATLite template. 
Thus the internal structure of each agent [20, 21] is composed of components that 
include the JATLite template, I/O modifier, work engine, and knowledge-based 
pool. Thus, all the separate components form a close entity and still maintain the 
desirable characteristics of agents with integrated structures.  With limited types of 
manufacturing agents with knowledge of their specific stages/functions in a 
product development, a centralized control mechanism is adopted. The MMA 
assumes the role of central control and is responsible for solving conflicts relating 
to the coordination among agents, while the other agents by themselves are 
responsible for solving specific problems, such as manufacturability, process 
planning, etc.

Figure 7.2. An integrated framework (the Designer CAD interface communicating with the 
multi-agent system interface) 

In a distributed framework, each participating functional agent receives data 
input from the MMA, carries out its operation, and sends the data output back to 
the MMA. When a message is transmitted among the agents, it is wrapped by the 
KQML in a standard format. The destination agent can de-compose the KQML and 
retrieve the embedded message. Such architecture allows each functional agent to 
be independent in its task execution and the breakdown or malfunction of any 
functional agent will not affect the operation of other agents as long as the MMA is 
functioning. Table 7.1 presents a brief description of the work engine of each 
functional agent currently constituting the developed distributed network. The 
JATLite template and Java-based programming are very useful when developing 
newer agents to be part of the web based system. It is sufficient only to concentrate 
on developing the functional part of an agent since the basic structure already 
exists.
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Figure 7.3. Distributed MAS interface 

Table 7.1. Agents’ work engine 

Agent Description 

MEA This work engine is an inference-reasoning engine connected with two rule-based 
knowledge pools: rules on the manufacturing principles and machining processes 
for individual features. 

MCA This work engine is a forward searching engine that compares the available 
factories with the required resources to identify eligible factories. 

PPA The PPA employs a genetic algorithm-based engine to perform process planning 
for a feature-based part. 

MSA The MSA work engine uses an integrated genetic algorithm and Gantt chart 
approach to determine an optimal production schedule in a selected factory.  

7.4 A Case Study 

A case study is given here considers an engineering company A with distributed 
facilities for fabricating engineering parts through machining. Generally 
information/data flow in a typical engineering company from design through 
manufacturing is in line with Figure 7.4. The designer does the part design 
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followed by design evaluation after which the process engineer is responsible for 
resource coordination, planning and the final job scheduling. 

Figure 7.4. Information Flow in Manufacturing 

In this example of a distributed scenario, the engineering and manufacturing 
facilities are assumed to be distributed over Asia, where all the distributed facilities 
are represented as different functional manufacturing agents responsible to process 
the tasks required of the engineering company A. Figure 7.5 illustrates such 
distributed engineering facilities.  The distributed facilities may include an 
engineering design agent, manufacturability evaluation agent, process planning 
agent, scheduling agent and factories, all controlled by a manufacturing managing 
agent.  A designed part as shown in Figure 7.6 is used to demonstrate the 
developed system. The designed part information in terms of individual geometric 
features, dimensions and location are presented in Table 7.2. The precedence 
information is presented in Table 7.3. 

The Designer designs the engineering part using the Designer CAD interface 
(Figure 7.2), after which he submits the part information (geometric features, 
design dimensions, operation precedence) to the Design Mediator Agent (DMA as 
a message under the performative ‘part_features’. The DMA in turn forwards this 
message to the MMA, which routes the message to the MEA and PPA under a 
performative header ‘evaluation’. On receiving the message, MEA interprets the 
message from the performative header and performs the manufacturability 
evaluation [22]. Figure 7.7 presents a snap shot of the manufacturability evaluation 
and its inference process by MEA. During the manufacturability evaluation process, 
if a discrepancy arises, for example, an improperly defined geometric feature or 
design, an inappropriate error (conflict resolution) is triggered for a corrective 
action.
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Figure 7.5. Web-based distributed engineering facilities 

Figure 7.6. An engineering part 

On successful evaluation however, the results with a performative header, 
‘need_model’ is automatically sent to the MMA. Once the MMA receives the 
message, it routes the message to MCA with a performative ‘find_model’. Figure 
7.8 presents a snap shot of the MCA agent for resource selection.  After the 
inference process, the results are sent back once again to the MEA by the MMA 
under the performance header ‘evaluation_again’ for re-evaluation of the inferred 
results. MEA re-evaluates the capabilities of the manufacturing resources selected 
for processing the individual features. On successful re-evaluation, the results are 
forwarded to MMA for the next step of process planning. If a conflict occurs and 
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an unsuitable resource is encountered even after re-evaluation, an appropriate 
message is triggered to indicate unsuitable resources or alternatively requesting a 
correct model. 

The successful re-evaluation results sent to MMA will be dispatched to the 
PPA agent (Figure 7.9) under the performance header ‘process_planning’. The 
PPA agent having received the required messages performs the process planning 
task [23].

Table 7.2. Design data of the engineering part 

Geometric Features Location Parameters Dimensions Parameters 

Rect-Pocket (1) 0.0,25.0,20.0 50.0,10.0,20.0 

Rect-Pocket (2) 80.0,10.0,10.0 20.0,30.0,30.0 

Rect-Pocket (3) 5.0,50.0,20.0 20.0,10.0,10.0 

Rect-Slot (4) 50.0,20.0,30.0 10.0,20.0,10.0 

Rect-Slot (5) 40.0,0.0,20.0 20.0,10.0,10.0 

Rect-Slot (6) 40.0,60.0,20.0 20.0,10.0,10.0 

Single-Hole (7) 90.0,0.0,30.0 15.0,10.0D 

Single-Hole (8) 90.0,45.0,30.0 15.0,10.0D 

Fillet (9) 0.0,25.0,20.0 50.0,2.0D 

Fillet (10) 0.0,35.0,20.0 50.0,2.0D 

Table 7.3. Precedence information of the engineering part 

Operation ID Predecessor Successor 

Op1 -- Op4, Op9, Op10

Op2 -- Op7, Op8

Op3 -- -- 

Op4 Op1 -- 

Op5 -- -- 

Op6 -- -- 

Op7 Op2 -- 

Op8 Op2 -- 

Op9 Op1 -- 

Op10 Op1 -- 
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Figure 7.7. Manufacturing evaluation agent 

Figure 7.8. Manufacturing capability agent 
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Figure 7.9. Process planning agent 

Figure 7.10. Manufacturing scheduling agent 
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On successful completion of the process planning task, the results are 
dispatched for manufacturing scheduling to the MSA (Figure 7.10) agent by the 
MMA agent [20, 21]. The scheduling results could be later dispatched to the shop 
floor for actual fabrication. In such engineering manufacturing applications the 
information/data flow follows a logical sequence to ensure the completeness of the 
job task as discussed above. The developed system offers the flexibility of adding 
newer functional agents.  For example a new fault diagnosis agent can become a 
part of the system by registering its functionalities with the MMA. Thus the system 
allows for further expansion, improvement and customization according to the 
functional requirements. 

7.5 Conclusions 

Considering the development of distributive manufacturing at the enterprise level, 
this chapter presents a generic web-based framework for collaborative 
manufacturing for engineering parts. The proposed framework is implemented as 
an agent-based distributed manufacturing system based on JATLite and Java 
programming. The proposed framework and system offer the flexibility to be used 
for distributed and collaborative manufacturing of engineering parts. To envisage 
the implementation a case study is also presented in this chapter. Future works 
include real-time industrial implementation and testing besides exploring 
management, organizational limitations, and standards. Possible extension of the 
framework to other areas like integrated virtual manufacturing, rapid prototyping, 
etc., can also be explored. 

7.6 References 

[1] Caglayan, A. and Harrison, C., 1997, Agent Sourcebook, John Wiley & 
Sons Inc., New York, NY, USA. 

[2] Lin, G. and Solberg, J., 1992, “Integrated shop floor control using 
autonomous agents,” IIE Transactions, 24(3), pp. 57–71.   

[3] Tan, G. W., Hayes, C. C. and Shaw, M., 1996, “An intelligent-agent 
framework for concurrent product design and planning,” IEEE Transactions 

on Engineering Manufacturing Management, 43(3), pp. 297–306. 
[4] Francisco, P. M. and Douglas, H. N., 1996, “Multi-agent mediator 

architecture for distributed manufacturing,” Journal of Intelligent 
Manufacturing, 7(4), pp. 257–270. 

[5] Sikora, R. and Shaw, M. J., 1998, “A multi-agent framework for the 
coordination and integration of information systems,” Management Science,
44(11), pp. 65–78. 

[6] Howley, B., Cutkosky, M. and Biswas, G., 1999, “Compromising and 
sharing dynamic models in an agent-based concurrent engineering 
environment,” Proceedings of the American Control Conference, California, 
USA, pp. 3147–3153. 



 A Web-based Framework for Distributed and Collaborative Manufacturing 149 

[7] Klein, M. and Lu, S. C. Y., 1990, “Conflict resolution in cooperative 
design,” Artificial Intelligence in Engineering, 4(4), pp. 168–180. 

[8] Lander, S., Lesser, V. R. and Connell, M. E., 1991, “Conflict resolution 
strategies for cooperating expert agents,” In Deen S. M. (Eds.), CKBS-90 - 

Proceedings of the International Working Conference on Cooperating 
Knowledge Based Systems, Springer-Verlag: Heidelberg, Germany, pp. 
183–200.

[9] Werkman, K. J., Wagaman, S. J., Hillman, D. J.,  Barone, M. and Wilson, J. 
L., 1990, “Design and fabrication problem solving through cooperative 
agents: designer fabricator interpreter system,” NSF-ERC-ATLSS Technical 

Report No. 90-05, Lehigh University Bethlehem. 
[10] Odrey, N. G. and Mejia, G., 2003, “A re-configurable multi-agent system 

architecture for error recovery in production systems,” International 
Journal of Robotics and Computer Integrated Manufacturing, 19(1-2), pp. 
35–43.

[11] Blecker, T. and Graf, G., 2003, “Multi agent systems in internet based 
production environments- an enabling infrastructure for mass 
customization,” Proceedings of the Second Interdisciplinary World 

Congress on Mass Customization and Personalization, Munich, Germany, 
pp. 1–27. 

[12] Ong, S. K. and Sun, W. W., 2003, “Application of mobile agents in a Web-
based real-time monitoring system,” International Journal of Advanced 

Manufacturing Technology, 22(1–2), pp. 33–40. 
[13] Shin, M. and Jung, M., 2004, “MANPro: mobile agent-based negotiation 

process for distributed intelligent manufacturing,” International Journal of 
Production Research, 42(2), pp. 303–320. 

[14] Boonserm, K., Richard, A. W., Hyunbo, C. and Albert, J., 2004, 
“Integration framework of process planning based on resource independent 
operation summary to support collaborative manufacturing,” International 
Journal of Computer Integrated Manufacturing, 17(5), pp. 377–393. 

[15] Liu, S. and Young,  R. I. M., 2004, “Utilizing information and knowledge 
models to support global manufacturing co-ordination decisions,” 
International Journal of Computer Integrated Manufacturing, 17(6), pp. 
479–492.

[16] Jiao, J. R., You, X. and Kumar, A., 2006, “An agent-based framework for 
collaborative negotiation in the global manufacturing supply chain 
network,” Robotics and Computer Integrated Manufacturing, 22(3), pp. 
239–255.

[17] Nahm, Y. E. and Ishikawa, H., 2005, “A hybrid multi-agent system 
architecture for enterprise integration using computer networks,” 
International Journal of Robotics and Computer-Integrated Manufacturing,
21(3), pp. 217–234. 

[18] Finin, T., Fritzon, R., Mckay, D. and McEntire, R., 1994, “KQML as an 
agent communication language,” Proceedings of the 3rd International 

Conference on Information and Knowledge Management, Gaithersburg, 
MD, USA, ACM Press, pp. 456–463.  



150 Collaborative Product Design and Manufacturing Methodologies and Applications 

[19] JATLite Home Page at Stanford: http://java.stanford.edu. Last Access 16 
October 2005. 

[20] Jia, H. Z., Ong, S. K., Fuh, J. Y. H., Zhang, Y. F. and Nee, A. Y. C., 2004, 
“An adaptive upgradable agent- based system for collaborative product 
design and manufacture,” Robotics and Computer-Integrated 
Manufacturing, 20(2), pp. 79–90. 

[21] Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C. and Zhang, Y. F., 2002, “Web-based 
multi-functional scheduling system for a distributed manufacturing 
environment,” International Journal of Concurrent Engineering: Research 
and Application, 10(1), pp. 27–39. 

[22] Zhang, Y. F., Fuh, J. Y. H. and Wang, G. J., 2002, “Agent-based 
manufacturing resource planning,” Proceedings of the International 

Manufacturing Leaders Forum, Adelaide, Australia, pp. 136–141. 
[23] Lin, G. and Solberg, J., 1992, “Integrated shop floor control using 

autonomous agents,” IIE Transactions, 24(3), pp. 57–71. 



8

Wise-ShopFloor: A Portal toward Collaborative 

Manufacturing

Lihui Wang 

Integrated Manufacturing Technologies Institute  

National Research Council of Canada, Canada 

This chapter presents the principles of a Web portal system named Wise-
ShopFloor, including system architecture, information flow, and a proof-of-
concept prototype enabled by Web and Java technologies. It is designed to use the 
popular client-server architecture, VCM (View-Control-Model) and publish-
subscribe design patterns for effective data sharing during collaboration. A case 
study of Distributed Process Planning (DPP) linking to Web-based rapid 
machining is carried out to demonstrate the effectiveness of this approach toward 
Web-based collaboration. 

8.1  Introduction 

Recently, collaborative manufacturing has emerged as the norm of manufacturing 
in a distributed environment. This is largely due to the global business 
decentralization and manufacturing outsourcing. To stay competitive in the 
dynamic global market, companies with distributed factories or divisions are 
demanding a new way of effective collaborations among themselves and even 
between their suppliers and outsourced service providers. Among many other 
factors, flexibility, timeliness and adaptability are identified in this research as the 
major characteristics to bring dynamism to collaborative manufacturing. 
Distributed manufacturing processes are complex, especially at machining shop 
floors where a large variety of products, usually in small batch sizes, are handled 
dynamically. The dynamic environment requires an adaptive system architecture 
that enables distributed planning, dynamic scheduling, real-time monitoring, and 
remote control. It should be responsive to both varying collaboration needs and 
unpredictable changes of distributed production capacity and functionality. An 
ideal shop floor should be the one that uses real-time manufacturing intelligence to 
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achieve the best overall performance with the least unscheduled downtime. 
However, traditional methods are based on off-line advance processing and thus 
are impractical if applied directly to this dynamic collaborative environment. In 
response to the requirements and to coordinate the dynamic activities in 
collaborative manufacturing, a sensor-driven and Web-based planning and control 
approach is needed to achieve the dynamism in the distributed manufacturing 
environment. 

The objective of this research is to develop methodologies and a Wise-

ShopFloor (Web-based integrated sensor-driven e-ShopFloor) framework for 
distributed planning, dynamic scheduling, real-time monitoring, and remote control 
supported by sensors, Java technologies and the Web infrastructure. The Wise-
ShopFloor is designed to use the popular client-server architecture, VCM (View-
Control-Model) and publish-subscribe design patterns for effective information 
sharing during collaborative planning and control. 

This chapter is organized as follows. In Section 8.2, enabling technologies 
including Web, Internet, Java 3D and Java servlets are introduced. It is followed by 
a brief description of the Wise-ShopFloor framework in Section 8.3. Details on 
adaptive and distributed process planning are presented in Section 8.4, which leads 
to a Web-based real-time monitoring and control documented in Section 8.5. A 
case study using planning results for Web-based remote machining are described in 
Section 8.6. Finally, our contributions are summarized in Section 8.7. 

8.2  Enabling Technologies 

With the growing manufacturing decentralization, products and services might be 
distributed everywhere and sourced anywhere along supply chains. Product design 
and fabrication have shifted rapidly from intra-corporation to global networks. 
How to coordinate manufacturing activities and keep them under control is a 
challenging issue. Flexibility, timeliness and adaptability of manufacturing 
operations are the essential requirements for collaborative manufacturing in such a 
dynamic environment. Fortunately, the Web infrastructure today is mature enough 
to form a distributed manufacturing network through client-server interconnections. 
During the past decade, the Web has been widely used for development of 
collaborative applications to support dispersed working groups and organizations 
because of its platform, network and operating system transparency, and its easy-
to-use user interface – the Web browser. In addition to the Web technology, Java 
has brought about a fundamental change in the way that applications are designed 
and deployed. Java’s “write once, run anywhere” model has reduced the 
complexity and cost traditionally associated with producing software solutions on 
multiple distinct hardware platforms. With Java, the browser paradigm has 
emerged as a compelling way to produce collaborative applications over the Web. 
Examples include WebCADET [1] for collaborative design and CyberCut [2] for 
rapid machining. In terms of technologies used in the existing systems, HTML, 
Java applets, ActiveX, and VRML are widely adopted for developing client-side 
user interfaces. At the server side, technologies including JSP (JavaServer Pages), 
Java Servlets, and XML are quickly obtaining attentions for new system 
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development. To facilitate a viable collaborative system, its application server must 
engage users in a 3D graphical interaction in addition to the dialog-like data 
sharing, because remote users need active and visual aids to coordinate their efforts 
in a distributed environment. Web and Java technologies are adopted in our 
research as the enabling technologies for collaborative manufacturing realization. 
In the current implementation, a thin-client user interface has been developed as a 
Java applet that runs inside a Web browser. Java 3D has been used to model a 
physical device that can replace or supplement cameras in providing visual help 
during remote planning, monitoring and control. A set of decision-making logics 
have been designed as server-side components for multi-client collaborations. For 
example, a Java 3D model can communicate with server-side Java servlets for real-
time monitoring. Details on how the different technologies can work together are 
explained below in the Wise-ShopFloor Framework. 

8.3  Wise-ShopFloor Framework 

The Wise-ShopFloor framework [3] has been designed to provide users with a 
Web-based and sensor-driven intuitive environment where distributed process 
planning, dynamic scheduling, real-time monitoring and remote control are 
undertaken. Within the framework, each machine should become an information 
node and be a valuable resource in the information network. A direct connection to 
sensors and machine controllers is used to continuously monitor, track, compare, 
and analyze production parameters. Instead of camera images (usually large in data 
size), a physical device of interest (e.g., a milling machine) can be represented by a 
Java 3D scene graph model with behavioral control nodes embedded. Once 
downloaded from its application server, the 3D model is rendered by the local CPU 
and can work on behalf of its remote counterpart showing real behavior for 
visualization at a client side. It remains alive by connecting with the physical 
device (via servlets) through low-volume message passing (sensor data). As the 3D 
model is entirely driven by the sensor data and rendered locally for visualization, 
there is no need of transmitting camera images over the Internet. The largely 
reduced network traffic makes real-time monitoring and remote control practical 
for dispersed users connected through the Web. It also enables engineers to make 
accurate decisions in a timely manner, and to ensure that machines are operating 
within the defined expectations. Being able to plan and control dynamic shop floor 
operations from anywhere at any time collaboratively is what this research is 
aiming at. Figure 8.1 illustrates the scope of the Wise-ShopFloor. 

As a constituent component in manufacturing supply chain, the Wise-
ShopFloor links physical shop floors with the upper manufacturing systems. 
Similar to the e-manufacturing and e-business, the four major Wise-ShopFloor 
activities shown in Figure 8.1 are conducted in a collaborative cyber workspace. 

In more detail, the interactions among the modules are illustrated in Figure 8.2, 
where the framework has been designed into a client-server architecture using 
VCM design pattern with built-in secure session control. The mid-tier application 
server handles major security concerns, such as session control, session registration, 
sensor data collection/distribution, planning and scheduling, as well as real device 
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manipulation. A central Session Manager has been designed to look after the issues 
of user authentication, session synchronization, and sensitive data logging. All 
initial transactions need to go through the Session Manager for access 
authorization. In a multi-client environment, different users may require different 
sets of data or logic for different tasks. For example, in the case of monitoring, it is 
not efficient to have multiple users who share the same model talking with the 
same device at the same time. Publish-subscribe design pattern is adopted to 
collect and distribute sensor data at the right time to the right user, efficiently. As a 
server-side module, the Signal Collector is responsible for sensor data collection 
from networked physical devices. The collected data are then passed to another 
server-side module Signal Publisher who in turn multicasts the sensor data to the 
registered subscribers (clients) through applet-servlet communication. A Registrar 
has been designed to maintain a list of subscribers with the requested sensor data. 
A Java 3D model thus can communicate indirectly with sensors no matter where 
the client is, inside a firewall or outside. HTTP streaming is chosen as the 
communication protocol between server and clients. 

Although the global behaviors of a Java 3D model are controlled by the server 
based on real-time sensor signals, users still have the flexibility of viewing the 
model from different perspectives (zooming, orbiting, panning and tilting, etc.) at a 
client side. In order to control a device, an authorized user can send control 
commands to the application server which in turn manipulates the physical device. 
Although the Wise-ShopFloor framework provides an alternative of camera-based 
monitoring through Java 3D models, an off-the-shelf Web-ready camera can easily 
be switched on remotely to capture unpredictable (un-modeled) scenes for 
diagnostic purposes. 
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8.4 Adaptive Process Planning and Scheduling 

The four business modules shown in Figure 8.1 are interrelated, that is, the output 
of one module may be the input of another. For dynamic scheduling, real-time 
information from the monitoring module plays an important role. For the sake of 
page limitation, only the process planning is presented, leaving an interface to the 
scheduling open. 

8.4.1 Architecture Design 

Figure 8.3 shows the detailed architecture of our adaptive process planning. 
Within the Wise-ShopFloor, our approach to adaptive process planning is 

realized by a two-layer structure of shop-level Supervisory Planning and machine-
level Operation Planning. A process plan generally consists of two parts: generic 
data (machining method, machining sequence, and machining strategy) and 
machine-specific data (tool data, cutting parameters, and tool paths). Such a two-
layer structure is, therefore, considered suitable to separate the generic data from 
those machine-specific ones. Since the resources, knowledge/database, and 
decision-making are logically and geographically distributed, such an adaptive 
process planning approach is also named Distributed Process Planning (DPP) [4]. 
The Supervisory Planning focuses on product data analysis, machining feature (m-
feature) parsing, setup planning, machining process sequencing, and machine 
selection, while the Operation Planning considers jig/fixture selection and the 
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detailed working steps for each machining operations, including cutting tool 
selection, cutting parameters assignment, tool path planning, and control code 
generation. Optimization is only performed at the latter stage, when specific 
resources (machine, tool and fixture) are known, and within a relatively small 
search space. 
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8.4.2 Machining Process Sequencing 

One critical task in process planning is machining sequence generation. Since a 
part design can be decomposed into basic m-features (such as hole, slot, pocket, 
etc.) either through feature-based design or via a third-party feature recognition 
solution, the task of machining process sequencing is literally treated as the task of 
putting m-features into proper setups and in proper sequence, which is called m-
sequencing in DPP. A high-level process plan as a result of m-sequencing only 
consists of machine-neutral information in the form of generic machining 
sequences, including both critical and non-critical machining operations. Some of 
the non-critical ones are presented in a parallel order, whose sequence will be 
determined by a CNC controller during low-level operation planning. Before an m-
feature can be machined, it must be grouped into a setup for the ease of fixturing. 
The basic idea of feature grouping is to determine a primary locating direction of a 
setup, and group the appropriate m-features into the setup according to their pre-
defined tool access directions. This process is repeated for a secondary locating 
direction and so on until all the m-features are properly grouped. 

Here, a primary locating direction is the surface normal V  of the primary 

locating surface (LS). It can be determined by the following equations: 
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where, *A  and *T  are the surface area and the generalized accuracy grade of an LS;

AW  is the weight factor of *A ;
TW  is the weight factor of *T ;

maxA  and 
maxT  are the 

maximum values of *A  and *T  of all candidate locating surfaces. A generalized 
accuracy grade T can be obtained by applying the algorithms described in [5-7]. 
Based on the primary locating direction V , those m-features whose tool access 

directions
EMFT  are opposite to V  are grouped into setup 

V
ST , as denoted below. 

VTEMFST EMFV
 (8.3) 

To be generic, the setups at this stage are planned for 3-axis machines only. A 
setup merging is handled by the Execution Control module for 4-axis or 5-axis 
machines, if needed, after a specific CNC machine is selected. 

In order to further sequence m-features in each setup, we proposed a geometry 
reasoning algorithm using IMV (intermediate machining volume) [8]. An IMV of 
an m-feature is the intersection of its maximum machining volume (MMV) and the 
current workpiece. Figure 8.4 schematically shows the concept of IMV through a 
hole, where the IMV of the hole varies between its MMV and its actual machining 
volume (AMV) during the machining. 

Raw material

(a) A Hole in a part 

(d) MMV of Hole

Step1 

H
o
le

Step2 

(b) Current workpiece

(e) IMV of Hole

(c) Final workpiece

(f) AMV of Hole

Figure 8.4. Intermediate machining volume of a hole feature 

Based on the concept of IMV, five reasoning rules are defined below for m-
sequencing. 

Rule-1: If the IMV of an m-feature equals to the AMV of the m-feature, or 

IMV=AMV, it is the time to machine the m-feature.
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Rule-2: If the IMV of m-feature A is to be divided into more than one piece 
as a result of the machining operation of m-feature B, m-feature A 

should be cut first.
Rule-3: If an m-feature is to be changed to another m-feature type as a result 

of its own machining operation, this m-feature should be cut later.
Rule-4: A bigger machining volume is to be cut first.

Rule-5: In a setup, the m-features sharing the same tool types are grouped 
into clusters.

The above five reasoning rules are used effectively for m-sequencing as 
demonstrated in the case study in Section 8.6. The sequenced m-features are then 
embedded in a set of function blocks with built-in decision-making functions of 
cutting parameters selection, tool path generation, and G-code generation at the 
individual m-feature level. The function blocks can be dispatched to a selected 
machine where detailed operation planning is accomplished before part fabrication. 
The built-in functions of each function block are resource- and event-driven, and 
can be called at runtime upon request so as to adapt to any environmental changes. 
Details on function block design and its utilization are explained in the next section. 

8.4.3 Function Block Design and Utilization 

“Function blocks” (or IEC 61499-1) [9] is an IEC standard for distributed process 
measurement and control, particularly for PLC control. A function block is a 
reusable functional module based on an explicit event-driven model, and provides 
for data flow and finite state automata based control. It is relevant to CNC control 
in machining data encapsulation and process plan execution. In the DPP, we use 
function blocks to address the manufacturing uncertainty through resource-driven 
algorithms embedded in each function block. The event-driven model (or resource-
driven algorithms) of a function block gives a CNC machine more intelligence and 
autonomy to make decisions on how to adapt a generic process plan to match the 
actual machine capacity and dynamics. It also enables dynamic task scheduling, 
execution control, and process monitoring. 

Three basic function block types are defined in the DPP: (1) machining feature 
function block (MF-FB), (2) event switch function block (ES-FB), and (3) service

interface function block (SI-FB). Figure 8.5(a) depicts a typical 4-Side Pocket MF-
FB. A basic function block like this can have multiple outputs and can maintain its 
unique internal state, meaning that it can generate different outputs even if the 
same inputs are applied. The fact is of vital importance for adaptive cutting 
condition modification, after the function block has been dispatched to a machine, 
by changing the internal hidden state of the function block. For example, the same 
4-Side Pocket MF-FB can be used for roughing and/or finishing at the same 
machine (or at a different machine) with different cutting parameters and tool paths, 
by adjusting the internal state of the function block to fine-tune the algorithms in 
use. Such a behavior is controlled by a finite state machine, whose operation is 
represented by an ECC (execution control chart) as shown in Figure 8.5(b). 

The START state is an initial idle state ready for receiving event inputs. EI_INI 
(an incoming event requesting initialization) triggers the state transition from 
START to INI for function block initialization, and when the state INI is active, the 
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algorithm ALG_INI is being executed for the initialization. Upon its completion, 
ALG_INI will trigger an event output EO_INI indicating the success of the 
initialization. 

Similarly, for other state transitions to RUN, UPDATE and MON (execution 
monitoring), different algorithms ALG_RUN (MF-FB execution), ALG_UPDATE 
(cutting condition update), and ALG_MON (MF-FB monitoring) are triggered, 
correspondingly. An event “1” means a state transition is always true. That is to 
say, the state will transit back to the START state and be ready for receiving the 
next event input. 
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(a) Structure design of a 4-Side Pocket MF-FB 
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Figure 8.5. A basic machining feature function block 

While basic MF-FBs define the functional relationships of events, data and 
algorithms for individual machining features fabrication, their combination can 
form a composite function block representing a setup. A composite function block 
may consist of several basic and/or composite function blocks with partially 
sequenced connections via events and data. The event flow among MF-FBs 
determines their machining sequence. Figure 8.6(a) shows a composite function 
block, where the event flow (or sequence) among three MF-FBs is facilitated at 
run-time by an Event Switch Function Block (ES-FB). For instance, if a sequence 
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of “342” is given, the ES-FB will fire events accordingly to appropriate MF-FBs 
for feature fabrications in the order of 3 4 2. It thus adds flexibility to the 
composite function block. Figure 8.6(b) illustrates the graphical definition of the 
ES-FB, where ROUTE is the only data input to the function block. It is used as a 
reserved port for controller-level operation planning to do the local optimization of 
machining sequence. 

Once the final sequence becomes explicit for those parallel MF-FBs, a string of 
integer numbers indicating the sequence is applied to the port. Event switching is 
realized by the internal algorithm ALG_SWITCH, which parses the data string and 
triggers one execution event at a time until the entire string is exhausted. 
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Figure 8.6. Event switch function block for parallel m-features sequencing 

In addition to MF-FBs and ES-FB, a Service Interface Function Block (SI-FB) 
is defined, as shown in Figure 8.7(a), to facilitate the execution control of MF-FBs. 
It also enables machining process monitoring during function block execution. In 
DPP, all MF-FBs are grouped in setups before being dispatched to appropriate 
machines. Each setup is a Composite Function Block (CFB). An SI-FB is plugged 
to each setup with the following assigned duties: (1) collects runtime execution 

status of an MF-FB including FB id, cutting parameters, and job completion rate; 
(2) collects machining status (cutting force, cutting heat, and vibration, etc.) if 
made available; and (3) reports any unexpected situations to DPP, e.g., security 
alarm and tool breakage, etc.
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Similar to other function block types, an SI-FB has been designed with five 
embedded algorithms for requesting and reporting execution status (ES), 
machining status (MS), and Unexpected Situation (US) from MF-FBs and to the 
Execution Control module (see Figure 8.3), respectively. Figure 8.7(b) is such an 
example. In order to monitor the machining process during execution, an SI-FB is 
plugged to the composite function block. Per the request from the Execution 
Control module, the SI-FB will pass the request (EI_ESR, execution status request) 
to the composite function block, which will then return an array of FB_EXE 
containing runtime execution status back to the SI-FB and finally to the Execution 
Control module. The SI-FB is of vital importance for machining process 
monitoring and dynamic re-scheduling in case of machine failure. 
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Figure 8.7. Service interface function block for execution control and monitoring 
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The DPP prototype has been implemented in Java, including a module 
dedicated to function block design (see Figure 8.3). This function block designer 
consists of a Basic FB Designer, a Composite FB Designer, and an FB Network 
Designer. As the name suggests, each FB designer performs a specific function. 
Figure 8.8(a) illustrates a 4-side pocket MF-FB being designed using the Basic FB 
Designer, whereas Figure 8.8(b) depicts the result of a composite function block (a 
setup). In the DPP, a set of sequenced machining features can be mapped to a 
network of composite function blocks easily using this design tool. An example for 
a test part machining is explained in detail in Section 8.6. 

(a) Designing a basic function block 

(b) Designing a composite function block 

Figure 8.8. Function block design in DPP 
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8.4.4  Shop Floor Integration 

Enabled by the Wise-ShopFloor, true shop floor integration can be realized by 
combining the following three systems: 1) the DPP system, 2) an agent-based 
scheduling system, and 3) a Web-based monitoring and control system, where DPP 
is treated as the main thread (Figure 8.9). The scheduling system is relatively 
standalone, to which the integration is loosely coupled. More details on dynamic 
scheduling can be found in [10]. 
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Figure 8.9. Shop floor integration enabled by Wise-ShopFloor 

In DPP, a generic process plan is embedded in a set of function blocks that are 
portable to different machines. The machine-specific data, however, is determined 
at runtime by the function block embedded algorithms that are adaptive to 
unpredictable situations. For example, an alternative resource (cutter or machine 
tool) has to be used due to tool shortage or machine breakdown. In this case, the 
function blocks can apply appropriate algorithms to dynamically figure out the best 
cutter parameters and tool path for the alternative resource without re-doing the 
entire process planning. A snapshot of the adaptive process planning and its 
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integration with Web-based remote machining is demonstrated in Section 8.6 
through a simple case study. 

8.5 Web-based Real-time Monitoring and Control 

Obtaining real-time monitoring, control, and inspection data for a machine is 
limited by the available bandwidth for the data transfer. Broadcasting data about all 
machines to all clients would require sending more messages than necessary, 
slowing down the transfer of each message, and reducing the application’s ability 
to display data and images in real time. Polling initiated by a client requires two-
way communication, while only the information sent to the server from the client is 
of any use. The best solution to reducing network congestion and ensuring quick 
transfers is to have data multicast to only the clients requiring that data, with an 
open connection established for data streaming, and sending data whenever the 
data is changed. This section presents in detail the system configuration, sensor 
data collection and distribution, and Java 3D-based visualization. 

8.5.1  System Configuration 

Figure 8.10 illustrates a typical configuration for Web-based rapid machining, 
where a 5-axis horizontal milling machine is hooked up to the network for remote 
monitoring and CNC machining. The milling machine is equipped with a PC-based 
open architecture controller that serves as a gateway between itself and the 
application server. For security reason, TCP (Transmission Control Protocol) has 
been adopted for data communication between the machine and the application 
server, whereas HTTP streaming is used for data sharing from the server to the 
remote users. While the former is better for hardware protection with handshaking, 
the latter is firewall-transparent and suitable for Web-based application. Based on 
this configuration, it allows a remote user to monitor the absolute and relative 
motions of all axes as well as to control the spindle speed and feed rate for CNC 
machining.
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Figure 8.10. Configuration of Web-based rapid machining 
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8.5.2 Sensor Data Collection for Real-time Monitoring 

To this end, the Wise-ShopFloor implements a Publish-Subscribe design pattern. A 
client (end user) subscribes to information pertaining to a specific machine, leaving 
an open connection to receive events. When a new event for that machine is posted, 
it is published only to those clients who have subscribed to it. In the Wise-
ShopFloor, this communication is handled by a modification of the Pushlet [11]. 
Figure 8.11 shows the communication pathway for events to and from clients and a 
real machine. 
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Figure 8.12. Streaming based applet-servlet communication 

The client-side applet of the Wise-ShopFloor communicates with the Pushlet, 
an HTTP servlet. Invoking the Pushlet with an HTTP “Get” request with a 
“subject” parameter allows a client to subscribe to that subject. When receiving a 
subscription request, the Pushlet leaves the connection to the client open, allowing 
data to be streamed in without reopening a connection for each event. On the 
client-side of the Pushlet package is the JavaPushletClient. The JavaPushletClient 
sends the request for the Pushlet subscription, and opens an input stream from the 
socket. The Pushlet client then loops continuously and checks for data in the data 
stream. If the publisher has written new data to the stream, the Pushlet client 
overwrites the next most recent data with the new data, ensuring that only the most 
recent information is used to update a Java 3D image. The actual update of the 
image, however, comes from a different loop. Java 3D provides an interface, the 
InputDevice, which can be registered to the Java 3D Physical Environment. Once 
registered, a schedule is created to call a Polling and Processing method from the 
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InputDevice. In the Wise-ShopFloor, this schedule is designed such that the 
method is called each time a frame is rendered, so that each frame renders a 
machine with only the most recent information about the machine. Figure 8.12 
shows the pathway of applet-servlet communication. 

The Publisher sends information through the connection established by the 
Pushlet. This data is found by the JavaPushletClient loop, and is pushed into a 
client-side storage location. On a different thread, the Java3D rendering loop 
retrieves the data and updates the on-screen image for monitoring. 

The Pushlet also provides a Postlet servlet, used by clients to “Post” events to 
the Publisher. When a client wishes to control a machine, he/she needs to seek 
permission from the application server and then enters into the control mode. At 
any given time, only one client can be granted the control authority for 
manipulating a given machine. The client-side applet then connects to the Postlet, 
sending an HTTP “Get” request with the desired instructions as a parameter. When 
the Postlet passes the data to the Publisher, the connection is closed, while the 
Publisher sends the data to all clients who subscribe to the indicated subject. 

On the real machine side, data collection is slightly different. There are many 
different types of machines and robots that usually have different types of 
controllers. The Pushlet package provides an adapter, the Event Pull Source (see 
Figure 8.11), which can be extended to obtain data from a required source (real 
device). Events are “pulled” from an Event Pull Source at a regular interval, which 
can be set to a desired increment to approximately replicate real-time monitoring. 
A comprehensive data flow is shown in Figure 8.13, where the needed sensory data 
are directed to the right users using the HTTP streaming. 

Shop Floor 

App Server 

SignalPublisher

SignalCollector

S
e
n
s
o
r-1

S
e
n
s
o
r-2

S
e
n
s
o
r-x

…

Clients

S
ubscriber

S
ubscriber

Web 
Browser

Web 
Browser

Subscribe() 
StartFlow() 
PauseFlow()
StopFlow() 

Streaming Control

AddUser() 
RemoveUser()

CollectData()
PublishData()
RecordData()
FlowControl()

SelectSensor()
Start()

Pause()
Stop()

HTTP Streaming 

Figure 8.13. Streaming based applet-servlet communication 

In the collection of sensor data from real machines, the server containing the 
Pushlet actually acts as a client of the machine controllers, establishing a socket 
connection and working with the provided interface of each machine controller. 
The concrete implementation of the Event Pull Source is one adapter between the 
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interface of a machine controller and the interface required by the Pushlet. 
However, the communication to the real machine must be in both directions to 
achieve control, although the Event Pull Source communicates in only a single 
direction – from the machine to the application server. A machine controller is not 
able to interpret the Pushlet event, and thus will not be a client of the Pushlet. 
Another Pushlet adapter, the Machine Adaptor, is required to take information 
from the Postlet (i.e., from the client), and send it to a machine controller in the 
required format. As the Pushlet does not provide this functionality, the Wise-
ShopFloor uses a wrapper for the Postlet, which determines whether data is 
destined for the publisher or the machine, and thus directs it appropriately. 

8.5.3  Data Packet Format 

As shown in Figure 8.10, runtime sensory data collection from the milling machine 
is accomplished over the TCP connection using a series of 12 floating numbers and 
one long integer that form one data packet. In the current implementation, a typical 
data packet is defined as follows, 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Relative position of 5 axes Absolute position of 5 axes FR SS CW 

where, FR, SS and CW denote feed rate, spindle speed and NC control word, 
respectively. A control word is a reserved long integer indicating the status of the 
machine, including operation mode, such as manual (0x0001), auto (0x0002), or 
jogging (0x0040), coordinate system, axis status, etc. Same as the real machine 
controller, the data packet provides both relative and absolute positions of the five 
motion axes that are used for joints transformation and Java 3D model rendering 
for the ease of off-site monitoring and CNC control. 

8.5.4  Java 3D Enabled Visualization 

For the sake of network bandwidth conservation, Java 3D is chosen for geometric 
modeling of the CNC machine, as an alternative of camera-based solutions. Java 
3D is designed to be a fourth-generation 3D API [12]. What sets a fourth-
generation API apart from its predecessors is the use of scene-graph architecture 
for organizing 3D objects in the virtual world. Enabled by the scene-graph 
architecture, Java 3D provides an abstract, interactive imaging model for behavior 
control of 3D objects. Different from other scene graph-based systems, a Java 3D 
scene graph is a directed acyclic graph. The individual connections between Java 
3D nodes are always forming a direct relationship: parent to child. 

The 5-axis milling machine requires linear motion control of X, Y, and Z axes, 
as well as rotary motion control of B and C (around Y and Z axes, respectively). A 
combined rotary stage having two rotary motions is mounted on top of an X-table, 
whereas the spindle head of the machine provides the other two linear motions 
along Y and Z axes. Figure 8.14 illustrates the Java 3D scene graph model of the 
machine.
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Figure 8.14. Java 3D scene graph model of a 5-axis milling machine 

The scene graph contains a complete description of the entire scene. It includes 
the geometries, the attributes, and the viewing information needed to render the 
scene from a particular point of view. All Java 3D scene graphs must connect to a 
Virtual Universe object to be displayed. The Virtual Universe object provides 
grounding for the entire scene. A scene graph itself, however, starts with 
BranchGroup (BG) nodes (although only one BG node in this case). A 
BranchGroup node serves as the root of a sub-graph, or branch graph, of the scene 
graph. The TransformGroup nodes inside of a branch graph specify the position, 
the orientation, and the scale of the geometric objects in the virtual universe. Each 
geometric object consists of a Geometry object, an Appearance object, or both. The 
Geometry object describes the geometric shape of a 3D object. The Appearance
object describes the appearance of the geometry (color, texture, material reflection 
characteristics, etc.). The behavior of the machine is controlled by Behavior nodes, 
which is subject to sensor data and is implementation-specific. The results of 
sensor data processing can be embedded into the codes for remote monitoring. 
Once applied to a TransformGroup node, the so-defined behavior control affects 
all the descending nodes. In our case, the 5-axis motions (X-Table, Rotary Stage-1, 
Rotary Stage-2, Spindle Head, and Spindle) are controlled by their corresponding 
behavior control nodes, for both on-line monitoring/control and off-line simulation. 
As the Java 3D model is connected with its physical counterpart through the 
control nodes by low-volume message passing (real-time sensor signals and control 
commands), it becomes possible to remotely machine a part on the real machine 
through the Wise-ShopFloor, where the physical security is addressed separately. 

Behavior Node 
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8.5.5  Web-based Remote CNC Control 

Web-based CNC control is possible by sending proper NC commands through the 
applet-servlet (or CyberController-ControlCommander-Machine) communication 
as shown in Figure 8.2. In order to remotely machine a part, user authentication 
and authorization must be accomplished for the client who demands this operation. 
Control right authorization is done by setting a bit in the control word in a data 
packet that is sent to the client. If the client has requested the control right and the 
bit is set, a message will appear on the screen notifying the user that he/she is now 
in control of the machine. For the purpose of remote machining, a control word, 
similar to CW in the monitoring data packet, is sent back to the machine controller, 
augmented by a text string containing lines of an NC program. Thus not just 
manual control can be exercised off-site, but a complete NC program generated by 
the DPP can be remotely executed. For example, the following NC line tells the 
machine controller to proceed from the current position to the next, incrementally 
by (20, -30, 10) in linear rapid traverse mode. At the same time, the controller sets 
the spindle speed to 3,000 rpm and turns the flood coolant on. 

G0 X+20 Y-30 Z+10 S3000 M8 

Most existing Web-based systems rely on camera-based monitoring to guide 
remote operations. Compared with one 8-bit VGA camera image of 640×480 
(307,200 bytes), our data packet size is only 52 bytes – a significant size reduction 
suitable for Web-based real-time applications. 

8.6  A Case Study 

A test part shown in Figure 8.15(a) is chosen for the case study. After applying the 
five feature-based reasoning rules defined in Section 8.4.2, the 14 m-features are 
grouped into two setups, each of which consists of two or more partially sequenced 
m-features as shown in Figure 8.15(b). While each m-feature can be mapped to a 
function block, a setup forms a composite function block. Figure 8.16 shows the 
composite function block for Setup-2. 

In the Wise-ShopFloor, the adaptive process plan shown in Figure 8.16 can be 
dispatched to a milling machine for rapid fabrication utilizing the real-time 
monitoring and control functions discussed in Section 8.5. The motions of the five 
axes of this machine are driven by either sensor data for client-side monitoring or 
user commands for remote control. As the 3D model is connected with its physical 
counterpart through the message passing, it becomes possible to remotely 
manipulate the real machine through its Java 3D model. For example, the jogging 
control is with the use of the individual control buttons as labeled in Figure 8.17, 
whereas feature machining can be remotely achieved through NC Control mode. 

The data packet format and the current implementation provide all information 
needed by the Java 3D model and its physical counterpart, the milling machine, for 
process plan execution. The 3D model ignores the first five numbers, while the 
machine controller ignores the second five numbers. 



170 Collaborative Product Design and Manufacturing Methodologies and Applications 

F1

F3 

F4

F5

F6 

F7
F8 

F9 

F11

F10
F14

F12

F2

F13

//

(a) Test part design 

F1 F3 F2 

F11

F5 

F12

F13

F14

F10 F4 

F6 F7 

F8 F9 

Setup-1 

Setup-2

// 

(b) Sequenced m-features 
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Figure 8.17. User interface for Web-based remote machining 

As mentioned in Section 8.3, although the Wise-ShopFloor provides an 
alternative of camera-based monitoring, an off-the-shelf Web-ready camera can 
easily be switched on remotely to capture unmodeled scenes for trouble-shooting. 
Figure 8.18 illustrates one snapshot of a real scene of CNC machining during the 
case study. 

Figure 8.18. A snapshot of Web-based remote machining 
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The Wise-ShopFloor prototype system provides users with a Web-based 
collaborative environment for real-time monitoring and control of manufacturing 
devices in the shop floor. It utilizes the latest technologies, including Java 3D and 
Servlets, for system design and implementation. Figure 8.19 shows the modular 
user interfaces that form the integrated system. 

Web-based Monitoring and Execution Control 

Function Block Design in Distributed Process Planning 

Dynamic Scheduling

Figure 8.19. An integrated system for collaborative manufacturing 

8.7  Conclusions 

This chapter presents a novel approach toward Web-based collaborative 
manufacturing, including adaptive process planning, dynamic scheduling, real-time 
monitoring and remote control. On top of a Wise-ShopFloor framework, our 
prototype system has been designed into view-control-model architecture and 
developed using publish-subscribe design pattern for sensor data collection and 
distribution. In terms of adaptive process planning, our approach is to separate 
machine-specific data from generic ones using two-layer Supervisory Planning and 
Operation Planning. A generic process plan has been embedded into function 
blocks with built-in algorithms for machine level adaptive decision-making. A 
planning-machining case study demonstrates its feasibility and shows promise of 
this approach in a distributed manufacturing environment. As decentralization of 
business grows, a large application potential of this research is anticipated, such as 
control simulation, operator training, facility touring, off-site trouble-shooting and 
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collaborative design verification, in addition to remote real-time monitoring and 
control. 

8.8 Acronyms

AMV actual machining volume 
API application programming interface 
CC_UPD updated cutting condition 
CFB composite function block 
CNC computer numerical control 
CW control word 
DPP distributed process planning 
ECC execution control chart 
EI_x event input x 
EMT estimated machining time 
EO_y event output y 
ES-FB event switch function block 
FB function block 
FB_EXE execution status of function block 
FR feed rate 
HTTP hypertext transfer protocol 
IMV intermediate machining volume 
MAC_ID machine ID 
MF-FB machining feature function block 
MMV maximum machining volume 
MS machining status 
MT machining time 
OPER operator’s input 
PLC programmable logic controller 
SI-FB service interface function block 
SS spindle speed 
TCP transmission control protocol 
US unexpected situation 
VCM view-control-model 
_ESR execution status request 
_ESS execution status sent 
_INI initialization 
_MSR machining status request 
_MSS machining status sent 
_RUN function block execution 
_RUNRDY execution completed 
_UPD cutting parameter update 
_USS unexpected status sent 
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This chapter presents a distributed manufacturing scheduling framework at the 
shop floor level. The shop floor is modeled as a collection of multiple workcells. 
Each workcell is modeled as a flexible manufacturing system. The framework 
consists of a distributed shop floor control structure, dynamic distributed 
scheduling algorithms, multi-agent system modeling of workcells, and service-
oriented integration of the shop floor. At the workcell level, a designated scheduler 
allocates jobs to resources and deals with any dynamic events locally, if possible. 
Otherwise, it collaborates with other workcells’ schedulers. Workcells are modeled 
as multi-agent systems. Local dynamic scheduling is achieved by the cooperation 
among the scheduler agent, the real time control agent and resource agents. 
Distributed scheduling is conducted through Web services facilitated by the 
service-oriented shop floor integration. The proposed distributed control structure, 
dynamic distributed scheduling algorithms, and system integration have been 
designed and implemented using an agent-based service-oriented approach. Our 
experiments have shown promising results in enhancing shop floor flexibility and 
agility. The possible application of the proposed framework to other levels of 
manufacturing scheduling is discussed as well. 

9.1 Introduction 

Globalization of markets has driven manufacturing enterprises to shed the security 
of mass production and shift to a new paradigm, mass customization. An essential 
goal of this transformation is to respond to market changes in a timely and cost 
effective manner. As an integral component of manufacturing manangement, 
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scheduling needs to be effectively integrated with other components of 
manufacturing systems such as supply chain management, ERP (Enterprise 
Resource Planning), and shop floor control. Dynamic changes can derive from 
either outside parties in the market, such as the supply side (representing suppliers), 
demand side (representing customers) or within the enterprise, such as real-time 
events from the shop floor. In a real world shop floor environment, it is rarely the 
case to execute exactly as planned. Operation durations tend to vary, machines 
break down, raw materials fail to arrive on time, new customer orders appear, 
others get cancelled, etc. Such disrupted execution incurs higher costs due to 
missed customer delivery dates, higher work-in-process inventory, and lower 
resource utilization. To deal with these issues, practical scheduling systems need to 
be able to effectively reorganize the shop floor production plan and repair or redo 
the production schedule accordingly. Scheduling systems with the capability of 
revising or re-optimizing a schedule in response to unexpected events become a 
key for companies to sustain their productivity.  

This research is concerned with developing real time distributed scheduling 
systems at the shop floor level.  The shop floor is modeled as a collection of 
workcells. The workcells, in turn, are modeled as Flexible Manufacturing Systems 
(FMS). The scheduling is performed cooperatively and collectively by the group of 
schedulers, each delegated to a specific workcell. Dynamic scheduling in this 
environment requires real time scheduling algorithms and their effective 
integration with the distributed shop floor control structure. Dynamic scheduling 
has been extensively studied in the literature [1, 2]. There have been research 
efforts focusing on distributed scheduling as well [3-5]. In this chapter, we study 
dynamic and distributed scheduling algorithms in the multi-workcell shop floor 
setting. In addition to the individual algorithms, we investigate how to integrate 
them in a way that the overall shop floor scheduling agility and solution quality are 
enhanced.  

9.2  Scheduling Problems in Multiple Workcell Shop Floor 

The shop floor considered here consists of a collection of workcells (as illustrated 
in Figure 9.1). Each of them is modeled as a flexible manufacturing system. Within 
a workcell, jobs need to be scheduled on resources. The scheduling problem at this 
level is a dynamic FMS scheduling problem, which is handled by a designated 
scheduler of the workcell. At the shop floor level, due to workcell capability 
limitation or unexpected events, some workcells may have jobs to be assigned to 
other workcells. From this point of view, it is a dynamic distributed scheduling 
problem, which needs to be solved collectively by a group of schedulers through 
cooperation. In this chapter, we only consider the type of reactive dynamic 
scheduling algorithms [6]. Thus it is not necessary to capture the randomness 
caused by dynamic events in the models of the scheduling problems. 
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9.2.1 Workcell Scheduling Problem 

In our workcell scheduling problem, workcells are implemented by FMS systems. 
Among many FMS scheduling models, we focus on a class of problems in which 
machines have Partially Overlapping capabilities [7]. As illustrated in Figure 9.2, a 
workcell consists of various types of resources, such as computer numerical 
controlled machines, Automated Guided Vehicles (AGV), workpiece storage 
system. These resources are controlled by resource controllers and the whole 
workcell is controlled by a real time controller. An operator can program the 
processing of the workcell by interacting with the real time controller. At the 
workcell level, we are interested in the impacts of partially overlapped 
characteristics of resources. Therefore, we have simplified the workcell scheduling 
model by assuming that the transportation times of jobs between machines are 
equal and have been modeled in machine processing times. Therefore, there is no 
need to explicitly model the AGV. At the same time, storage and port are treated as 
independent resources, like machines.  This allows us to differentiate the resources 
only by their capability sets, not by the relationships among them. For some 
resources, e.g., machines, their capability sets may be partially overlapped.   

Figure 9.1. Multiple Workcell Shop Floor environment 

Figure 9.2. Workcell resources and the control structure 
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Formally, an instance of the class of scheduling problems in partially 

overlapping systems consists of a set of n jobs, denoted by
n

JJJJ ,...,
2

,
1

, to 

be processed by a set of m resources, denoted by mMMM ,...,1 . Each job 

jJ ( nj ,...,1 ) requires the processing of a sequence operations ,j ko jnk ,...,1 ,

where jn is the number of operations belong to jJ . An operation ,j ko  corresponds 

to an uninterrupted physical process which has to be performed on a resource. Each 

resource miM i ,...,1  is defined by a set of operations, which represent its 

capability. If ikj Mo , , k,jo  can be processed by resource iM . For any two 

resources li M,M M , li MM may not be empty, which means that resources 

have overlapping capabilities. If a resource iM mi1 is capable of processing 

an operation kjo , njnk j 1;1 , a processing time Rp k,j,i is given. 

k,j,ip  may not be equal to k,j,lp , for m,...,l,i,li 1 , which means the same 

operation may have different processing times on different resources. In the 
workcell scheduling problem, we do not model the resource eligibility constraints. 

Instead, we assign processing time kjip ,, , if iM cannot process k,jo . In 

addition, with each job njJ j ,...,1  we associate two values: release time of a 

job jj rJ , due date for the completion of a job jJ - jd . There are precedence 

constraints among operations of each job. The objective is to minimize makespan 
of the solution schedule. Using the following variables,

k,jS , the starting time of the operation k  of job j ,
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k̂,ĵ,k,j

the partially overlapping scheduling problem can be formulated as a mixed integer 
programming as follows. 
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m

i

k,j,ik,j,ik,j

nk̂,nk,ĵj,ĵ,j
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The objective function (9.1) is to minimize the makespan of the solution 
schedule. The set of constraints (9.2) ensure that a job does not start before its 
release time. The set of constraints (9.3) ensure that an operation does not start 
before the previous operation of the same job has completed. The set of constraints 
(9.4) and (9.5) ensure that at most one job can be processed by a resource at a time. 
In (9.4) H is a large finite positive number. Constraints (9.6) say one operation can 
and only can be processed by one resource. Constraints (9.7), (9.8), and (9.9) are 
non-negative and integer constraints.  

9.2.2  Dynamic Scheduling Problem 

Manufacturing is a process often fraught with contingencies. It is rarely the case to 
execute exactly as planned. Small disruptions such as minor deviations in operation 
durations often do not warrant major modifications to the schedule. However, as 
the impact of small disruptions accumulate or as more sever disruptions occur, 
such as long machine breakdowns, it is sometimes desirable to re-optimize the 
schedule from a more global perspective [6]. In many cases, this re-optimization 
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means re-schedule all operations that have not been processed by the time of 
disruption. We distinguish two types of dynamic scheduling situations, namely 
minor disruption and severe disruption. In the case of minor disruption, a schedule 
repair procedure which minimizes the perturbation to the original schedule is 
appropriate. On the other hand, if the disruption is severe (caused either by the 
accumulation of small disruptions or a major resource malfunction), a re-
optimization from a more global perspective is usually desirable. An obvious issue 
is how to decide the severity of a dynamic disruption. The threshold of 
distinguishing minor and severe disruptions should be set by the workcell operator 
as it involves the trade-off, depending on the conditions within which a breakdown 
occurs, between the overall solution quality and the perturbation to the original 
schedule. Frequent schedule re-optimization can result in instability and lack of 
continuity in detailed shop floor plans, resulting in increased costs attributable to 
what has been termed “shop floor nervousness” [8]. 

9.2.3  Distributed Scheduling Problem 

At the shop floor level, scheduling is to coordinate the local schedules of workcells 
in a way that the good solution quality of the shop floor schedule is achieved. In 
this context, individual workcell scheduling problems are tied together by two 
elements: shop floor level objective and inter-workcell constraints. Because each 
workcell tries to minimize/maximize its own objective function, at the shop floor 
level, the scheduling problem can be modeled as a multi-objective optimization 
problem. The overall solution quality can be measured by Pareto efficiency or 
some forms of aggregation of the individual objectives. In the workcell scheduling 
problem formulated in the previous section, the objective of each workcell 
scheduler is to minimize the makespan. Accordingly, we define the objective of the 
shop floor scheduling problem as weighted sum of makespans over all workcells.  

The inter-workcell constraints in the distributed shop floor scheduling problems 
are derived from the machine capacity dependency among workcells. Solving the 
constraints is to achieve coordination among schedulers of workcells. The process 
of solving the inter-workcell constraints is to find a value assignment to some 
shared variables that satisfies all local constraints of workcells involved. 
Specifically, when solving the local scheduling problem, each scheduler has some 
variables and tries to determine their values. However, because of the capacity 
dependency there exist inter-workcell constraints, and the value assignment must 

satisfy these constraints. Formally, there exist l workcells l,...,2,1 . hX ( lh ,...,1 )

is the set that contains all variables the scheduler h needs to assign values to in 

order to determine a schedule for workcell h . Because of the inter-workcell 

constraints, some schedulers need to share a subset of their variables. However, 
such a case can be formalized as these schedulers having different variables, and 
there exist constraints that these variables must have the same value. We say that 
the constraints of a distributed shop floor scheduling problem are satisfied, if and 
only if 
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1. for any scheduler h and hXx , the value of x is assigned to d , any 

constraints in hL is satisfied under the assignment dx , where hL is the 

set of local constraints of workcell h ;

2. if x is a shared variable between workcell h and workcell q  , hdx in 

workcell h , qdx in workcell l , then qh dd .

Let I
qhS , denote the set of schedules which satisfy inter-workcell constraints 

between workcell h and q ; let L
hS denote the set of schedules which satisfy local 

constraints of workcell h . The distributed shop floor scheduling problem can be 

formulated as follows: 
l

h

hh SMwmin

1

     

s.t.   lhSS L
h ,...,1, ,

I
qhSS , , lh ,...,1 , lq ,...,1 , qh .

where hw is the weight of workcell h , SM h is the latest completion time of all 

jobs belong to workcell h , the allocations of jobs of all workcells form an overall 

shop floor schedule S .

9.3  Scheduling Algorithms for Multiple Workcell Shop Floor 

This section presents three algorithms for the scheduling problems formulated. 
Workcell scheduling algorithm is the fundamental job allocation procedure at the 
workcell level. This algorithm is used as a component of dynamic scheduling 
algorithm and distributed scheduling algorithm. The relationship among these three 
algorithms in the context of real time distributed shop floor scheduling can be 
depicted in terms of UML use case diagram as shown in Figure 9.3. 

Figure 9.3. Relationship of the three scheduling algorithms 
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9.3.1  Workcell Scheduling Algorithm 

The workcell scheduling problem modeled in Section 9.2.1 is a class of FMS 
scheduling problems. The majority of the approaches developed for these problems 
are heuristic oriented [e.g., 9-11] and artificial intelligence-based [e.g., 6, 12, 13]. 
Some Genetic Algorithm-based approaches [e.g., 14, 15] can be considered as 
meta-heuristic methods. Most of these methods use simulation to generate or 
evaluate schedules. A comprehensive survey on simulation approaches in FMS 
scheduling can be found in [16]. Basnet and Mize [17] reviewed the literature 
concerning the operational aspects of FMSs. Zweben and Fox [18] provided a 
comprehensive reference for artificial intelligence based scheduling approaches. 
The problem we are focusing on is a class of FMS scheduling problems with 
partially overlapping system structure, which has been proved to be NP-hard [19]. 
Exact methods which find optimal schedules are not practical because of the 
prohibitive computation demanded. While many approaches proposed in the 
literature focus on other aspects of the FMS scheduling problems, we propose a 
dispatching rule based heuristic algorithm leveraging the partially overlapping 
characteristics of the problem.  

The heuristic algorithm combines a set of dispatching rules. The basic ideas are 
to: (1) effectively utilize the flexibility provided by the partially overlapping 
characteristics of the system to balance the work loads, and at the same time, (2) 
assign operations to resources which can finish them faster. Based on the above 
heuristics, we propose two dispatching rules, Flexible Operation Last (FOL) and 
Earliest Finishing Time First (EFT). FOL is a composite of two elementary 
dispatching rules, Longest Processing Time first (LPT) [20] and Least Flexible Job 
first (LFJ). As a composite dispatching rule, FOL is modeled as a ranking 
expression that combines LPT and LFJ. This combination can be implemented as 
the following function: 

,

,

,

exp
j k

j k

j k

n

Q
f

l

where kjf , is the ranking index of FOL, defined as the Flexibility of kjo , ;

kjn , is the number of resources in the workcell that can perform kjo , ; kjl , is the 

average processing time of the operation, which is calculated based on historical 
data. Q  is the scaling parameter that can be determined empirically. If Q is very 

large, the FOL rule reduces to the LPT rule. If Q is very small, the rule reduces to 

the LFJ rule. FOL selects operations to be scheduled according to their Flexibilities. 
Operations with higher Flexibilities (short average processing time and more 
eligible resources) are placed towards the end of the schedule, where they can be 
used to balance loads more effectively. Once the operation to be scheduled has 
been selected by FOL, EFT finds a resource for the operation based on its 
completion time. The resource with earliest completion time is chosen.  

The algorithm consists of two steps. Before scheduling an operation to a 
resource, the FOL rule is used to select an operation from Eligible Operation Set 
(EOS, which contains operations for which the job release time and operation 
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preceding constraints are satisfied).  Then the EFT rule is used to designate the 
selected operation to a resource based on the current partial schedule. The 
algorithm implements the EFT rule by considering two factors, the workload of a 
resource in the current partial schedule which has been established by previous 
operations and the processing speed of this resource for the selected operation. The 
resource which can finish the operation first is chosen. Briefly, the algorithm can 
be described as shown in Figure 9.4.  

Figure 9.4. The workcell scheduling algorithm 

9.3.2  Dynamic Scheduling Algorithm 

In Section 9.2.2 dynamic scheduling problems are classified based on the severity 
of the disruption happened in workcells. In the cases of minor disruption, schedule 
repair procedures are appropriate to provide a fast response and small permutation. 
In the cases of severe disruption, re-optimization algorithms need to be considered.  
While the workcell scheduling algorithm proposed in the previous section can be 
applied directly to the severe disruptions as a re-optimization algorithm, this 
section presents a scheduling repair procedure.  

In repairing a schedule, the schedule repair algorithm first identifies a number 
of operations that are affected by the disruption and need to be unscheduled, then, 
allocates them to available resources using the workcell scheduling algorithm. 
Once a dynamic disruption happens in a workcell, some operations are affected by 
the event directly. At the same time, others may be affected indirectly by the 
conflict propagation caused by various constraints. For example, if 

resource m breaks down at time mt , an operation k,jo  scheduled on m  which has 

not started the processing or has not been finished, mk,j tc , can no longer be 

processed on m (where k,jc is the completion time of k,jo  and assume m cannot be 

recovered before the end time of the schedule’s execution). We call k,jo a directly 

affected operation. All directly affected operations form a set, denoted by DAO ,

DAk,j Oo . Operations belong to DAO  have to be rescheduled on other capable 
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resources. In addition to operations in DAO , an operation 
k̂,ĵ

o  scheduled on other 

resources which have precedence constraints with an operation in DAO , say k,jo ,

and has been scheduled after k,jo , k,jk̂,ĵ
cs , may need to be rescheduled as well 

because k,jc may change too much after its rescheduling such that k,jk̂,ĵ
cs is no 

longer true. We call
k̂,ĵ

o an indirectly affected operation. All indirectly affected 

operations form a set, denoted by IAO , IAkj
Oo ˆ,ˆ . Clearly, not all operations in 

IAO need to be rescheduled in order to generate a valid schedule repair. To 

minimize the perturbation to the original schedule, we propose a two-step 
scheduling repair procedure: (1) a schedule repair first un-schedules operations 

in DAO ; (2) if these operations are not sufficient to enable a new solution to be 

generated, the unscheduled operations are expanded incrementally to operations in 

IAO  until a solution is found. Based on the modeling and analysis mentioned above, 

we propose a dynamic scheduling repair algorithm described in Figure 9.5. We 

assume that resource m breaks down at time mt and cannot be recovered within the 

time period to be scheduled in a workcell. 

Figure 9.5. The scheduling repair algorithm 

The workcell states keep changing in dynamic scheduling situations. These 
changes can be modeled as a Finite State Machine as shown in Figure 9.6. The 
workcell scheduling system has six states. Among them, Monitoring, Scheduling, 
and Deploying are of importance. After Initialization, the schedule has been 
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calculated and deployed to the workcell. The system will be in the state of 
Monitoring. Dynamic events, which represent the changes from a workcell can 
trigger the transition from Monitoring state to Scheduling state at which repairing 
or rescheduling algorithms respond to the events occurred and work out a new 
schedule. If dynamic events happened in the state of Scheduling, rescheduling 
procedure may be restarted to accommodate the newly happened events. Once new 
schedule is ready, the system changes to Deploying state where the new schedule is 
deployed to the workcell. If deploying failed because of unexpected changes in the 
workcell, system backs to Scheduling state, and rescheduling will be restarted 
again.

Initialization Scheduling

Monitoring

Deploying
Processing started

Dynamic events

Dynamic Events

Processing finished

Deployment finished

Dynamic events or Deploying failed

New Schedule Ready

Figure 9.6. Finite State Machine model of the real time scheduling system 

9.3.3  Distributed Scheduling Algorithm 

The scheduling problem at the shop floor level contains multiple distributed 
workcells. Thus, it is actually a distributed scheduling problem. In a workcell, 
some dynamic events, such as a resource malfunction, may happen. If this 
disruption cannot be contained inside the workcell, in other words, some disrupted 
jobs can no longer be scheduled in the same workcell because of the lack of 
processing capabilities caused by the resource breakdown, the scheduler of this 
workcell needs to outsource the unscheduled operations to other workcells. Agent-
based approach has been proposed as a new paradigm for developing distributed 
scheduling algorithms. Examples can be found in [21-25]. An extensive survey 
regarding multi-agent systems for manufacturing can be found in [26]. We design a 
distributed scheduling algorithm for the multi-workcell shop floor scheduling. The 
algorithm uses the Contract Net [13] as its interaction protocol. We will implement 
the algorithm in an agent-based service-oriented system framework in the next 
section. Briefly, the algorithm can be described as follows: 

1. Dynamic events at a workcell (called an initiator in terms of the Contract 
Net protocol) cause some operations no longer being able to be processed 
in the workcell. The scheduler of the workcell finds eligible workcells 
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(called responders) which can process the unscheduled operations through 
a resource discovery mechanism (e.g., UDDI in the case of Web service-
based implementation). Note that, one responder does not have to be able 
to process all unscheduled operations of the initiator. The definition of an 
eligible workcell requires that the workcell can process at least one of the 
unscheduled operations. 

2. The initiator sends out a call for proposal (CFP) to all responders. The 
CFP contains unscheduled operations and their associated constrains, such 
as precedence and release dates. 

3. The responders try to accommodate the unscheduled operations from the 
initiator into their own local schedules based on their scheduling 
objectives respectively. Once the scheduling on the responders is finished, 
the responders send proposals back to the initiator. Each of the proposals 
contains a solution schedule for the unscheduled operations of the initiator. 
Note that, the schedule solution from a responder may not contain all 
unscheduled operations. Therefore, for some responders, they can just 
provide schedules for some of the unscheduled operations due to their 
capability constrains or the availability of the resources. 

4. Upon receiving the proposals from the responders, the initiator selects one 
or a combination of them based on its scheduling objectives to form a 
final schedule for the unscheduled operations and inform the responders 
which are included in the final schedule by sending Award messages. 

The coordination structure of the distributed scheduling algorithm is actually a 
negotiation process that can be depicted using a sequence diagram as shown in 
Figure 9.7.  

Figure 9.7. Negotiation process of the distributed scheduling algorithm 
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9.4  Agent-based Service-oriented System Integration 

The distributed shop floor control, the scheduling algorithms and their integration 
have been implemented using an agent-based Web service integration framework 
(AWS) [27]. Agent-orientation is an appropriate design paradigm to enable 
automatic and dynamic collaborations. It is a natural system design and 
implementation choice in capturing the distributed and dynamic natures of the 
distributed real time shop floor scheduling.  In addition, software agent paradigm 
has attained technical advantages in software modularization, legacy systems 
integration, distributed problem solving, and semantics-based interaction with 
complex and distributed transactions. Established technologies in these areas 
provide necessary foundation for the design and implementation of distributed real 
time scheduling systems. On the other hand, service-orientation is suitable in 
designing system integration at the shop floor level. Web Services paradigm is fast 
evolving and has been supported by several industrial leaders. This led to the 
development of various supporting technologies for Web Services that enable 
deploying, publishing, discovering, invoking and composing services in a standard 
and consistent way. This enables an open, flexible, standardized integration of 
manufacturing control at the shop floor, enterprise, and supply chain levels. 

The merging of service-oriented and agent-based approaches has been a hot 
topic of research in recent years. Petrie, et al., [28] discussed the shortcomings of 
Web services standards and how logical AI techniques like declarative commands, 
agents, and AI planning techniques can be used to address some of these 
shortcomings. They proposed an FX-Agent approach to address Web services 
discovery and composition of Web services. Matskin, et al., [29] identified Web 
services composition as an important issue for efficient selection and integration of 
inter-organizational and heterogeneous services on the Web and they believed that 
software agents can help make Web services “pro-active”. In their system, 
provider’s Web services are wrapped into individual Providers’ Agents on an 
agent-based marketplace providing services for Customers’ Agents. Maamar, et al., 
[30] presented an agent-based and context-oriented approach that supports the 
composition of Web services. During service composition process, software agents 
engage in conversations with their peers to agree on the Web services that 
participate in this process. Liu, et al., [31] proposed a conceptual model of agent-
mediated Web services for intelligent service matchmaking. In fact, most of 
research efforts in the literature like above mentioned approaches can be roughly 
categorized in to “agentification” of Web services into an agent community. We 
proposed a different approach for agent and Web services integration [32]. In our 
AWS framework, an agent core is built into each Web service, so that a Web 
service is itself an agent. No matter the agentification of Web services as agents in 
a multi-agent system [30] or encapsulation of agents as Web services over the 
Internet [32], both approaches share the common goal that, by taking the 
advantages of Web services and agents, the resultant integrated solution will 
produce a sophisticated paradigm for Internet computing.  
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9.4.1  System Overview 

Figure 9.8 illustrates an agent-based Web service integration for the distributed real 
time shop floor scheduling system. The proposed system integration is composed 
of two levels. At the shop floor level, communication among schedulers is based 
on Web Services standards; at the workcell level, an agent-based scheduling 
system is implemented. The functionalities of agents and other software entities are 
described as follows: 

1. Resource agents represent resources in a workcell. Each resource agent is 
on behalf of one resource. Resource agents receive job assignments from 
the Real Time Controller agent and report the working status of their 
resources to the Real Time Controller agent. The status information 
including routine data of processing and unexpected disruptions 

2. Directory Facilitator (DF) has the registration service functionalities for 
other agents in a multi-agent system, keeps up-to-date agent registration, 
informs all registered agents with updated registry, and provides lookup 
and matchmaking services to the multi-agent system. 

3. Real Time Controller is an agent that represents the overall control of a 
workcell. It accepts production schedules from the workcell scheduler and 
distributes them to resources in the workcell. At the same time it monitors 
the processing status of resources, analyzes and aggregates the raw 
resource processing data. If unexpected changes in the workcell affect the 
execution of the schedule, it will report to the scheduler with high level 
scheduling related processing information. 

4. Scheduler performs the scheduling functionality in the system. At the 
workcell level it works with the Real Time Controller to implement the 
dynamic scheduling within the workcell. At the shop floor level it 
cooperatively works with other peer schedulers in achieving distributed 

Figure 9.8. Agent-based Web service integration 
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shop floor scheduling. As shown in Figure 9.8, the scheduler has two 
identities, scheduling service and scheduling agent. When working with 
Real Time Controllers, it is exposed as an agent communicating using 
ACL. On the other hand, it is exposed as a Web service when working 
with its peer schedulers at the shop floor level. 

5. UDDI is a static repository that provides schedulers’ information with 
standard terms that contains workcell’s capabilities and constraints.  

9.4.2  Agent Architecture 

The architecture adopted for the agents in our distributed shop floor scheduling 
system is Coordinated, Intelligent Rational Agent (CIR-Agent) architecture [33]. 
Detailed and logical architectures of CIR agent are shown in Figure 9.9.  

(a) Detailed Architecture of CIR Agent 

(b) Logical Architecture of CIR Agent

Figure 9.9.  Detailed and logical CIR-Agent architecture 
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In the CIR-Agent model, an agent is an individual collection of primitive 
components. Each component is associated with a particular functionality that 
supports a specific agent's mental state as related to its goal. The agent’s mental 
state regarding the reasoning about achieving a goal, in the CIR model, can be in 
one of the following:  

1. Problem solving: determines the possible solutions for achieving a goal.  
2. Pre-interaction: determines the number and the type of 

interdependencies as well as the next appropriate domain action.  
3. Interaction: resolves the problems associated with the corresponding 

type of interdependencies. The mechanisms used in the interaction are 
called interactive devices.  

4. Execution: affects the world.  

Based on these mental states, the CIR-Agent’s architecture can be considered as 
a composition of four components: problem solver, pre-interaction, interaction, and 
execution. As an example, we describe the scheduler agent design based on the 
CIR-Agent architecture in the next section.  

9.4.3  Scheduler Agent Design 

In a distributed shop floor scheduling system, workcells are modeled as multi-
agent systems. However, at the shop floor level, these multi-agent systems are 
integrated through Web services. The coexistence of these two different 
environments poses challenges in systems integration. Because all interactions 
between the two environments are facilitated by the scheduler, it is not really 
necessary to implement a general Web services agent gateway between agent and 
Web service environments. Our approach is to encapsulate the gateway 
functionality into the scheduler agent, such that it can communicate with both 
environments concurrently. Based on the CIR-Agent architecture, we design 
problem solver, interaction and communication components in the scheduler agent. 
However, in order to communicate to different environments, both the interaction 
and communication components in the scheduler agent are split into two parts. As 
shown in Figure 9.10, the workcell scheduling interaction and ACL 
communication are used by the local controller of the problem solver to interact 
with the real time controller agent in the workcell; the scheduling service 
interaction and SOAP communication are used by the remote controller of the 
problem solver to interact with scheduling services provided by other workcells. 
The problem solver component consists of the local controller, remote controller 
and scheduling algorithms designed for the scheduling at different levels of the 
shop floor. 

Other agents in the system, such as resource agents and real time controller 
agents are also designed based on the CIR-Agent architecture. Because they only 
exist in agent environment, they are not equipped with SOAP communication and 
Service interaction components.  
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Figure 9.10.  Design of scheduler agent 

9.4.4  Coordination Between Scheduler Agent and Real Time

 Controller Agent 

Coordination between the scheduler agent and real time controller agent 
implements the monitoring and control functionalities required by the dynamic 
scheduling. Through the control, the scheduler passes the generated schedules to 
the real time controller agent to be executed in the workcell. Workcell resource 
statuses can be reported to the scheduler through the monitoring. The protocol 
adopted for the coordination between the scheduler agent and the real time 
controller agent is FIPA Query Protocol (http://www.fipa.org). The protocol has 
been implemented in different ways to fulfill different functional requirements of 
the coordination.  

Figure 9.11 depicts the schedule deployment protocol between the scheduler 
agent and the real time control agent. Once a new schedule is calculated, scheduler 
agent deploys the schedule to the workcell by sending a Deploy message. Real 
time control agent receives the updated schedule and passes it to the workcell 
resources to be deployed. Depending on different deploying results it may reply 
with Inform-done (deployment finished), Failure (deployment failed) or Not-
understood if part of the schedule is not understandable to it. 

Figure 9.12 shows the disturbance reporting protocol between the scheduler 
agent and the real time control agent. Once a disturbance happens in the workcell, 
the real time controller agent reports it to the scheduler agent by sending a Request 
message. The scheduler agent receives the disturbance report and replies with an 
Inform-done message. If the reported message is not understandable, it will ask the 
real time control agent to re-send the request by sending a Not-understood message. 
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Figure 9.11.  Schedule deployment protocol 

Figure 9.12.  Disturbance reporting protocol 

9.4.5  Coordination Between Scheduling Services 

The coordination between scheduling services is required by the distributed 
scheduling algorithm in assigning jobs among workcells. We have implemented 
the coordination mechanism using FIPA Contract Net Protocol. Note that the 
messages between the initiator and responders defined in FIPA Contract Net are in 
the format of Agent Communication Language (ACL) which cannot be used 
directly in our Web services integration of multiple workcells. In this particular 
integration, ACL messages are encoded to their XML representation based on 

FIPA00071 specification (http://www.fipa.org) before they are sent to other 

scheduling services through SOAP. Upon receiving the SOAP message, a 
scheduling service decodes the XML and recovers the ACL message. Through this 
mechanism, the ACL based coordination protocol can be used in the Web services 
integration. Figure 9.13 depicts the Contract Net protocol between two schedulers, 
one as the initiator and the other one as the responder. The initiator has a set of 
incompletely scheduled jobs (it could be the case that some operations of a job 
have been scheduled in the initiator’s workcell. However, some operations remain 
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unscheduled). It sends a CFP message to the responder. Upon receiving the CFP, 
the responder tries to accommodate the jobs assigned to it into its local schedule. If 
it is not feasible for the responder to schedule the assigned jobs or the responder is 
not interested in the job assignment, it will send back a Refuse message. Otherwise, 
it sends back a proposal to the initiator with the contingent schedule. If the initiator 
is satisfied with the contingent schedule, it will send the responder an Award 
message: Accept-Proposal. Otherwise, it will reject the proposal. If the proposal is 
accepted by the initiator, the responder deploys the contingent schedule and sends 
the initiator a message indicating the result of deployment. If no dynamic events 
happen during the negotiation process, the responder should be able to successfully 
deploy the schedule and send the initiator an Inform-done message. If some 
dynamic events happened during the negotiation process make the contingent 
schedule impossible to be deployed, a Failure or Inform-Result message will be 
sent to the responder indicating how the contingent schedule is impacted.  

Figure 9.13. Contract Net Protocol for distributed scheduling 
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9.4.6  System Implementation 

The Real Time Distributed Shop Floor Scheduling system has been implemented 
in Java on the JADE agent development platform (http://jade.tilab.com) and Java 
Web Services tools (http://java.sun.com/webservices). Figure 9.14 illustrates a 
two-workcell deployment of the system. The scheduling system for a workcell 
contains a scheduler agent, a real time controller agent, several resource agents and 
a scheduling service. All agents sit on a distributed JADE platform across several 
hosts. Java Web Service environment is installed on the same host that the 
scheduler agent sits on, which allows the scheduling service of a workcell to be 
connected with the scheduling services of other workcells. Together, the 
scheduling service and the scheduler agent fulfill the functionality of the scheduler 
of a workcell.  

Figure 9.14. Deployment of the real time distributed scheduling system  

9.5  A Case Study 

This section presents a case study which demonstrates how the proposed 
scheduling algorithms at different levels of the multiple workcell shop floor are 
integrated in providing robust scheduling under the proposed Agent-based Web 
service integration framework.  

Consider a shop floor with two workcells (Workcell A and Workcell B). Each 
of them has a set of jobs to be scheduled. The experimental scenario goes as 
follows.

Workcell Scheduling. The schedulers of Workcells A and B perform scheduling 
using the workcell scheduling algorithm described in Section 9.3.1. At this stage 
we assume that all jobs can be scheduled in local workcells. The generated 
schedules are passed to the Real Time Controllers of Workcells A and B 
respectively. Figure 9.15(a) shows the assigned schedule for Workcell A and 
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Figure 9.15(b) shows the assigned schedule for Workcell B in the form of Gantt 
chart. Workcell A and Workcell B have the same workcell configuration (only 
include three machines). The two job sets that need to be allocated have the same 
configuration as well (however, different job names are used). In the chart, the 
horizontal bars indicate the length of time allocated to each operation. The x-axis 
of the chart is subdivided into equal units of time (say hours in our case). The y-
axis, on the other hand, lists all the resources in the workcell. 

Dynamic Scheduling. For dynamic scheduling, we demonstrate how a machine 
down event is accommodated by the dynamic scheduling algorithm proposed in 
Section 9.3.2. Say Machine 3 of Workcell A breaks down at hour 25. This 
disruption is passed to the Scheduler through the Real Time Controller. The 
schedule repair algorithm first identifies operations (job13-op6, job13-op7, and 
job11-op8 in this case) are affected by the disruption and need to be re-scheduled, 
then, allocates them to available machines using the workcell scheduling algorithm. 
The repaired schedule is passed to the Real Time Controller and executed in 
Workcell A. As illustrated in Figure 9.15(c), job13-op6 is rescheduled on machine 
2. To accommodate job13-op6, job13-op7 is shuffled two hours towards the end of 
the schedule. However, job11-op8 can no longer be processed by Workcell A 
because Machine 3 is the only one eligible in Workcell A. It needs to be assigned 
to other workcells on the shop floor by the distributed scheduling algorithm 

Distributed scheduling.  To assign job11-op8 to other workcells, the scheduler 
of Workcell A first tries to find all eligible workcells on the shop floor that can 
process the operation through the lookup service provided by the UDDI (Workcell 
B turns out to be the only eligible one). The scheduler A sends out a service 
request which contains a call for proposal to Scheduler B including the operation 
name (job11-op8) and the operation release time (at hour 18 because its precedent 
operation job11-op5 ends at hour 18).  Upon receiving the request from Scheduler 
A, Scheduler B calculates a solution for job11-op8 and sends back a bid indicating 
when the operation will be processed. Scheduler A awards this operation to 
scheduler B. Scheduler B passes the modified schedule (including the assignment 
of job11-op8) to the Real Time Controller of Workcell B for execution. As shown 
in Figure 9.15(d), the operation is added to the end of Machine3’s schedule in 
Workcell B. 

To demonstrate the integration of scheduling algorithms more clearly and 
intuitively, we have intentionallly used a simple scenario in this case study. The 
performance of the algorithms has been tested using more complicated problem 
sets. Interested readers may refer to [34]. 

9.6  Conclusions 

Generally speaking, any manufacturing enterprise is distributed. Distribution can 
be geographical, logical, temporal, or spatial. In manufacturing domain, it is not 
uncommon for production to be distributed geographically, sometimes on a 
continental scale (the automobile industry is a prime example).  
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(a) Original schedule of workcell A. 

(b) Original schedule of workcell B. 

(c) Repaired schedule of workcell A.

(d) Refined schedule of workcell B accomodating the op8 of job 11 from workcell A. 

Figure 9.15.  Gantt chart of the schedules  
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An enterprise can logically be distributed, reflecting its organizational structure. 
Organizational structuring can be a necessity in order to decompose the 
enterprise’s problems into manageable chunks and to better exploit available 
expertise. Scheduling is an essential functionality required by manufacturing 
control and management at various levels of manufacturing. We have proposed a 
real time distributed scheduling framework for multi-workcell shop floors. Since 
distributed environments exist at other levels of manufacturing management, in 
many cases, it is justified to apply the proposed distributed control structure and 
even some algorithms (e.g., the distributed scheduling algorithm) to inter-
enterprise, enterprise and plant environments as well. For example, at the 
enterprise level, if a set of customer orders need the cooperation of several 
divisions of an enterprise, in a dynamic market environment, the scheduling 
problem involved is a real time distributed one. Currently, most of the enterprise 
planning and scheduling as in ERP/MRP systems are conducted in a centralized 
way. One of the criticisms on these systems is the fact that they are complex and 
inflexible. As a result, there has been interest in the development of decentralized 
strategies for enterprise systems. We see this as a potential application domain of 
real time distributed scheduling systems. 

In many real world environments, scheduling exhibits decentralized nature and 
is conducted through negotiation processes. This observation triggers one of our 
important future research directions, which is the application of economic based 
resource allocation mechanisms, such as various auctions, to real time distributed 
manufacturing scheduling. In many business to business transactions, production 
scheduling parameters (e.g., due dates) are set through a negotiation process 
between the customer and the service or product provider. In some cases, a firm 
may consider the possibility of “outsourcing” some time-sensitive orders through a 
negotiation mechanism if the system is highly congested and completing all the 
orders in-house would lead to very high tardiness penalties. As many 
manufacturing management applications require scheduling functionality in 
decentralized environments, we see that economic based scheduling mechanisms 
are good candidates in such environments.  
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The sustained improvement of Product Development Processes (PDPs) has long 
been the focus of research in manufacturing and more recently that of research in 
design as well. This is due in part to the key realization that a PDP constitutes not 
only a central component of the engineering effort but also a core business process. 
During the last decade, a strategic business approach for the effective management 
and use of corporate intellectual capital has emerged. This approach has come to be 
known as Product Lifecycle Management (PLM) and promises to further a holistic 
consideration of product design, emphasizing integration, interoperability, and 
sustainability throughout a product’s lifecycle in order for an engineering 
enterprise to remain agile with respect to the constantly evolving demands of a 
global market. Intellectual capital, thus far, has been comprised mainly of product 
related knowledge and exploited mostly via the reusability and scalability of 
existing products through product platform and product family design. However, 
we strongly believe that focusing solely on product knowledge is not sufficient and 
limits agility to variant design (and adaptive design, to a limited extent). In order to 
effectively support the generation of entire portfolios of products (via derivative 
and original design), we believe that the design process should also be considered 
to constitute a crucial component of an engineering enterprise’s intellectual capital. 
Hence, we propose a paradigm shift that is centered on leveraging design process 

knowledge derived from previous designs towards the design of entirely new 
products.

Rather than proposing new technologies or standards under the ‘PLM umbrella’, 
in this chapter our objectives are: (1) to highlight design processes as key elements 
of an engineering enterprise’s intellectual capital, and (2) to motivate fundamental 
research directions. In this chapter, an overview of the requirements and research 
challenges inherent in leveraging previously expended resources and designing 
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design processes is provided. These challenges are illustrated in the context of 
designing Linear Cellular Alloys (LCAs). Finally, we assert the importance of 
including the lifecycle considerations of design processes in PLM, thereby 
motivating Design Process Lifecycle Management (DPLM). 

10.1 Design Processes – An Enterprise’s Fundamental 

Intellectual Capital 

The sustained improvement of Product Development Processes (PDPs) has long 
been the focus of manufacturing and more recently that of design as well.  This is 
due in part to the key realization that a PDP constitutes not only a central 
component of the engineering effort but also a core business process [1].  As 
pointed out by Wheelwright and Clark [61], it is those firms that are able to 
develop and bring their products to market the fastest that are able to create a 
significant competitive advantage for themselves. Efforts aimed at reducing 
product development times, however, are faced with several challenges, identified 
by Lu [24] as pertaining to (1) increases in product complexity, (2) increases in 
time-to-market (TTM) pressure, (3) globalization and segmentation, and (4) 
increasing customer demands.  While a number of recent research activities focus 
on addressing the needs, underlying these challenges, a majority are aimed at 
meeting the intensive information requirements posed.  One of the most notable 
recent efforts along these lines is Product Lifecycle Management (PLM).  PLM is 
taken to be a strategic business approach for the effective management and use of 
corporate intellectual capital [9, 16, 21]. PLM involves activities from the initial 
conception to retirement of a product and is aimed at improving the product 
development process. The goal in PLM is to integrate all the product realization 
activities including market planning, concept development, design, production, 
sales, marketing, etc. Considering the field’s extensive scope there are numerous 
interpretations, each highlighting different facets of import. Examples include a)
interoperability issues and standardization in CAD/CAM/CAE (Computer-Aided 
Design/Computer-Aided Manufacturing/Computer-Aided Engineering), b)
overarching management considerations, c) collaboration, d) product information 
management and sharing, and e) integration of tools. In Figure 10.1, we present 
three key components of an enterprise’s intellectual capital – process information 
(top-left corner), product information (top-right corner) and the supporting PLM 
infrastructure (bottom) that consists of various software tools. Arrows between 
tools are used to represent flow of information among them. Dashed and solid lines 
are implemented to illustrate the fact that some of the links are more developed 
than others. As indicated in Figure 10.1, most of the elements of an engineering 
enterprise’s intellectual capital relate to the acquisition of information pertaining to 
either product or process and the tools for transforming  this information. The 
infrastructure of PLM, as defined currently, centers on the integration of various 
software and associated hardware tools, ranging from CAD and analysis packages 
to PDM systems, etc., used for capturing and processing product information. To 
some extent, these tools are also employed for capturing information relating to the 
underlying design processes.  
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In our opinion, PLM efforts thus far have been focused on integration and the 
improvement of interoperability.  Although some of the relationships depicted by 
dashed and solid lines in Figure 10.1 have been implemented successfully, it is our 
belief that the effective management of a product’s lifecycle extends beyond 
ensuring the seamless flow of information between tools and requires a system-
based perspective of the entire engineering enterprise.  Consequently we assert the 
importance of designing the design process alongside the product in PLM.  
Although design processes play a crucial role in PLM, integrating the design of 
“design processes” with the product has received little attention. Systematic 
methods for designing design processes have not been formalized. Additionally, 
while it is true that the potential of leveraging the components of existing products 
towards developing new products has been exploited, the possibility of leveraging 
PLM sub-processes in new product realization scenarios is substantial. Thus, as an 
engineering enterprise becomes increasingly concerned with meeting the dynamic 
requirements of a global marketplace, a closer attention must be paid to the mecha-
nisms underlying the product development. Perhaps the most crucial of these 
mechanisms is the design process. In terms of the engineering enterprise, this 
translates to the need for a systematic means of development for original, adaptive, 
variant, and derivative products. Although much attention has been paid to 
addressing this issue from a product-centric perspective by exploiting the 
reusability and scalability of products through product platform and product family 
design, not much attention has been paid to an engineering enterprise’s primary 
resource commitment – the design process and its design.  
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Figure 10.1. Integrating sources of intellectual capital in an engineering enterprise (product 
information, process information, and PLM tools) 

Many emerging approaches to PLM are concerned solely with lifecycle 
considerations as they relate to a single product. Considering that most engineering 
enterprises strive to maximize product portfolio diversity, a perspective of PLM, 
focusing on the accommodation of the diverse and constantly changing needs of a 
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global consumer base, may be appropriate. Taking a step back, the question 
becomes: “How can a company ensure the effective use of resources across the 

entirety of its product portfolio, especially as markets evolve with time?” To be 
successful in such continuously changing marketplaces, it is essential to not only 
address current customer requirements, but also accommodate impending changes. 
With this in mind, we emphasize that design processes should be viewed as 
constituting the strategy for developing a product, given a set of requirements. 
Satisfying changing customer requirements is thus subject to one’s ability to adapt 
the underlying design processes.  This is true whether referring to a single original 
design or an adaptive, variant, or derivative design, emanating there from.  This is 
supported by the assertion of Herbert Simon that “… design process strategies can 
affect not only the efficiency with which resources for designing are used, but also 
the nature of final design as well” [53]. The design of design processes thus 
constitutes a fundamental prerequisite for the strategic deployment of products and 
the effective consideration of their respective lifecycle considerations. While the 
currently available methods and tools enable designers to effectively model, 
analyze and synthesize products, the means for applying the methods and tools to 
design the underlying design processes are non-existent. With this in mind, we 
believe that the following are important requirements in enabling the design of 
design processes: 

1. Support for design information transformations 
2. Support for design decision-making 
3. Modeling and representation of design processes 
4. Analysis of design processes 
5. Synthesis of design processes 

These considerations are addressed further in Section 10.2 through an 
illustrative example involving the design of LCAs, and mapped to the requirements 
for leveraging design process related intellectual capital and their design in Section 
10.3. Research issues, emanating from these requirements and our strategy for 
addressing them are discussed in Section 10.4. Finally, we pose a number of 
questions regarding the future of lifecycle management as we expand our focus 
from products to processes and securing the intellectual capital associated with 
both. We assert that addressing these research issues would increase the 
adaptability of both products and design processes, thereby enhancing the 
enterprise agility with respect to changes in consumer demands. 

10.2 Examples of Design Process Scenarios 

In this section, we underscore the need for designing design processes by 
illustrating the effect of differing design processes on both the final design and the 
effectiveness with which the design goals are achieved.  Specifically, design 
process related decisions are identified for each of the underlying scenarios. The 
chosen example is the multifunctional design of LCAs, where we identify different 
types of design process decisions, process goals, etc. involved in the achievement 
of the overarching objective pursued in the particular design scenario at hand. 
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10.2.1 Description of LCAs Design Problem 

In this chapter, we rely on the design of LCAs [6, 20] in order to (1) emphasize the 
importance of leveraging existing intellectual capital for effectively designing 
design processes and (2) demonstrate the implementation of the design process 
models currently under development. LCAs are honeycomb materials (see Figure 
10.2) that are processed through the extrusion of slurry through a multistage die.  
The slurry is composed of a binder, mixed with metal oxide powders. The structure 
resulting from extrusion is first dried and reduced into the metallic phase in a 
hydrogen-rich environment and then sintered to achieve nearly fully dense metal 
composites. A wide range of cell sizes and shapes, including functionally graded 
structures, can be achieved using this manufacturing process. These materials are 
suitable for multifunctional applications that require both strength and heat transfer 
capabilities [48].  Applications of these materials include heat sinks for 
microprocessors and combustor liners for aircraft engines. One of the main 
advantages of these LCAs is that desired structural and thermal properties can be 
obtained by designing shape, cell arrangement, cell wall thicknesses, and 
dimensions. 
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Figure 10.2. LCAs with rectangular cells 

Although LCAs pertain to an emerging class of multifunctional structure-
material systems, the underlying design process is clearly decomposable.  It is 
because of this capability to clearly separate the different perspectives involved in 
the process that LCAs have been chosen as the illustrative medium.  Each aspect of 
the multifunctional design is considered to be represented by different design 
experts.  The problem is comprehensive enough to include various different 
activities involved in parametric design to illustrate the advantages of the proposed 
novel approach. 

In this chapter, we model the design process of a LCA requiring high heat 
transfer rate and high stiffness. The design variables considered are: cell shape, 
total height of the LCA, thickness of the cell walls and fluid velocity. In order to 
further simplify the problem, we assume that the designers are restricted to use 
either triangular or rectangular cells. The design problem is summarized in Table 
10.1 using the Compromise DSP word formulation [32]. 

The process of designing LCAs involves various steps such as cell shape 
selection, structural analysis, thermal analysis, design space exploration, geometry 
refinement, etc. The process can be structured quite differently depending on the 
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designers’ specific needs. Some example scenarios of LCAs design processes are 
discussed next. 

Table 10.1. LCAs design problem 

Given:

FEM based thermal and structural models , boundary conditions, and 
design Requirements 

Find:

Design variables: cell shape, total height, thickness, fluid velocity, 
and deviation variables 
Satisfy:

Constraints and bounds on design variables, and goals 
Minimize: 

Deviations from targets

10.2.2 LCAs Design Process Strategies 

Many different strategies can be adopted for designing LCAs; four different design 
process approaches, each corresponding to differences in a) sequence of 
information transformations (see Strategy 1 and 2), b) information type (see 
Strategy 3), and c) model accuracy (see Strategy 4), are discussed repectively.  It is 
the nature and configuration of the required information transformations that make 
up the design process.  With this in mind, sequential design processes with 1) 
thermal considerations preceding structural considerations and 2) structural
considerations preceding thermal considerations are illustrated in Section 10.2.2.1 
and Section 10.2.2.2, respectively.  A set-based design process is described in 
Section 10.2.2.3 and reliance on surrogate models in attaining required analysis re-
sults is discussed in Section 10.2.2.4. 

10.2.2.1 Strategy 1: Sequential Design – Thermal First 

In this scenario, the thermal goal assumes priority over the structural goal. Hence, 
the thermal designer fixes some variables in the design space and passes on the 
design to the structural designer. Given the choice between rectangular cell shape 
and triangular cell shape, the thermal designer chooses a rectangular cell shape 
because of superior forced conjugate (conduction and convection) heat transfer 
performance. 
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Figure 10.3. LCAs design scenario 1: thermal first sequential design 
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10.2.2.2 Strategy 2: Sequential Design – Structural First 
In this scenario, the structural goal is more important than the thermal goal. The 
structural designer determines the structure and then passes the resulting geometry 
to the thermal designer for modification. In this case, the structural designer selects 
triangular cells in lieu of less stiff rectangular cells. 
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Figure 10.4. LCAs design scenario 2: structural first sequential design 

10.2.2.3 Strategy 3: Set-based Design 
In the set-based design scenario, designers consider sets of design alternatives 
rather than pursuing one alternative directly. The philosophy is to gradually narrow 
down the design space until a final solution is achieved. 

In the LCAs design scenario, this may be implemented as one designer (thermal 
or structural) synthesizing a range of design parameters and then passing on this 
range to another designer to select the best value in that range. Since the designers 
do not pick a single alternative, the designers develop both cell topologies – 
triangular and rectangular. Although this approach is more likely to result in 
designs that show superior performance with regard to both thermal and structural 
considerations, the design effort involved in developing all alternatives is higher.
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Figure 10.5. LCAs design scenario 3: set-based design 

10.2.2.4 Strategy 4: Use of Surrogate Models 

The computational intensity of analysis models associated with design is often 
substantial. In these instances, it becomes necessary to develop surrogate models to 
replace expensive computational runs. These surrogate models, however, are not 
exact and may introduce additional error. In the LCAs design example, simple 
response surface models can replace computationally intensive FEM analysis codes. 
The choice of appropriate models also depends upon progress made along the 
design process. In the earlier stages, it is not possible to use high fidelity analysis 
models because of limited knowledge regarding the design. However, in the latter 
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stages of design, when the design specifications have been determined, high 
fidelity analysis models are usually more appropriate. 
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Figure 10.6. LCAs design scenario 4: use of surrogate models 

10.2.2.5 Strategy 5: Parallel Iterative Design 
Another design process option can involve performing design activities in parallel. 
In a parallel iterative design process for multifunctional applications, concurrent, 
point-based analysis is carried out for structural and thermal requirements. These 
analyses provide information about the simulated behavior for a given loading 
(both thermal and structural). This simulated behavior is compared to expected 
behavior. If these do not match, appropriate changes must be made to the 
geometric parameters to obtain the desired performance. The process is continued 
until the designers converge on a mutually acceptable solution. 

In the design process scenarios discussed above, even though the product is the 
same, the design process is quite different. Needless to say, the results expected 
from these design processes are also different. Scenarios 1 and 2 highlight the fact 
that the design process has an effect on the final design (artifact). Scenario 3 
highlights that the design process has an effect on the design effort.  Finally, 
Scenario 4 underscores that the design of appropriate design processes is also 
dependent on the progress along a design process and affects both the efficiency 
and effectiveness of this design process. 

In order to achieve the fast configuration of an appropriate process and to 
facilitate design process exploration, the elements of design processes should be 
modeled in a modular fashion with clearly defined interfaces. This idea is 
analogous to defining port-based models for design process elements. The input 
and output ports in design process elements are information- and knowledge-based. 
Reliance on modular design process building blocks will facilitate computer-based 
analysis of design processes in order to select the best design process option with 
regard to the context at hand. Modularity in design processes will also support 
synthesis of new processes from existing ones. The requirements for designing 
design processes are discussed in further detail in Section 10.3. Specifically, 
various considerations for a foundational framework for designing design 
processes are posed. The main factors are supporting synthesis and decision-
making with respect to the product under consideration, as well as modeling 
representing, analyzing, and synthesizing the overarching design process, used to 
arrive at the final design. 
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10.3 Requirements and Critical Issues for Leveraging Design 

Process Related Intellectual Capital 

Each of the five requirements established in Section 10.1 spurs a number of 
research issues that must be investigated in order to effectively manage and 
leverage an engineering enterprise’s intellectual capital. The relationship among 
these requirements and the underlying research issues is summarized in Figure 10.7 
and explored throughout this section. Specifically, i) support for design 
information transformations is discussed in Section 0, ii) support for design 
decision-making in Section 10.3.2, iii) modeling and representation of design 
processes in Section 10.3.3, iv) analyzing design processes in Section 10.3.4, and v)

synthesizing design processes in Section 10.3.5. 

10.3.1 Support for Design Information Transformations 

1. Design processes should be decomposable into individual information 
transformations (design process building blocks) along with associated 
information flows such that the reuse of design processes (either in part or 
in their entirety) is facilitated. 

2. Design process building blocks should guide designers by both the 
provision of structure and relevant information content. 

3. The framework should facilitate capturing information flow constraints on 
design process elements. 
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Designing Design Processes

Research Issues in 

Designing Design Processes
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Transformations (Section 3.1)
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Making (Section 3.2)

Modeling and Representation of 

Design Processes (Section 3.3)

Analyzing Design Processes 

(Section 3.4)

Synthesizing Design Processes 

(Section 3.5)

Modeling Design Processes     

(Section 4.1)

Computational Representations for 

Design Processes (Section 4.2)

Storage of Design Information 

(Section 4.3)

Developing Metrics for Assessing 

Design Processes (Section 4.4)

Configuring Design Processes 

(Section 4.5)

Integrated Design of Products and 

Design Processes (Section 4.6)

Integrating Design Processes with 

Other Processes in PLM (Section 4.7)

Figure 10.7. Mapping requirements list to research issues for designing design processes 

The research issues involved in providing support for design synthesis include 
the development of computational models for information transformations in a 



210 Collaborative Product Design and Manufacturing Methodologies and Applications 

manner that supports the integration of information about the product and the 
associated design processes.  In the case of our LCAs example, this translates to 
supporting not only the activities associated with determining the cross sectional 
topology of the design, but also the sequence in which these considerations are 
taken into account. 

10.3.2 Support for Design Decision-making 

1. The framework should facilitate the identification of individual design 
decisions and any interactions. 

2. The framework should support capturing stakeholders’ perspectives in a 
consistent form and provide the structure for design processes to account 
for relevant information. 

3. The framework should facilitate stakeholder interactions pertaining to the 
solution of independent, dependent, and interdependent decisions. 

The research issues associated with providing support for decision-making 
include the development of generic and consistent computational models for 
engineering design decisions and modeling the interactions of different 
stakeholders involved in the product realization process.  In terms of our LCAs 
example, it is vital to represent individual information transformations, such as the 
design decisions made by the structural and thermal experts, so that they can serve 
as self standing models that lend themselves to the integration in each of the 
myriad design process scenarios depicted in Figures 10.2 through 10.5.

10.3.3 Modeling and Representation of Design Processes 

1. The design process elements must have clearly defined inputs, outputs and 
execution mechanisms. The framework should facilitate modeling 
information flows, dependencies and interactions. The framework should 
also support modeling design processes at various levels of abstractions. 

2. The design process models should be computer interpretable, archivable, 
and reusable.  The models should also support design process analysis. 

3. The process elements should be domain independent and sufficiently 
generic to model complex design processes. 

4. The design process modeling architecture must remain open to future 
extension and customization. 

The research issues involved in modeling and representing design processes 
include the identification of key design process elements, formalization of the 
associated computational models and development of quantitative metrics for 
assessing the impact of these individual design process building blocks on the 
overarching design process. These models of design process elements should 
incorporate both product- and process-centric information.  Recalling our LCAs 
design example, the key process elements are the various analyses and decisions 
required in each of the proposed design strategies (see Sections 10.2.2.1 through 
10.2.2.4). Specifically, computational models are used to determine structural and 
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thermal performance of the resulting design.  These analyses are also used to 
support decisions regarding design variables and parameter values.  The resulting 
sequence of design process elements can then be used to characterize the chosen 
design strategy comprehensively.  Finally, appropriate metrics may be employed to 
gauge the adaptability of the resulting strategy to producing a range of products 
aimed at meeting myriad, differing functional requirements.   

10.3.4 Analyzing Design Processes 

1. In the framework of designing design processes, an important 
consideration is the development of metrics for analyzing the impact of 
constituent design process elements on the overarching design process. 

2. The framework should support the composition of multiple evaluation 
criteria, as pertaining to constituent design process building blocks, to 
quantify the impact of the design process as a whole. 

The research issues associated with analyzing design processes include the 
development of metrics for quantifying the impact of design processes on both the 
process goals and the final design.  Returning to our LCAs design example, robust 
designs, for example, will accommodate a range of functional requirements (see  
[38]). Robust design processes should not be affected by these variations.  The 
notion of design freedom [54, 55] is particularly important due to the quasi-
uncorrelated relationships between functional requirements and topology. Design 
Freedom is defined as the extent to which a system can be adjusted while still 
meeting its design requirements [54]. Whether structural considerations precede 
thermal considerations or vice versa, will greatly affect the resulting structure. 
While triangular cells are more likely to be favored in the former sequence, 
rectangular cells favor the latter. The respective design problems (thermal and 
structural) must be designed so that their information flows are easily reversed. 
These considerations are addressed in Section 10.4.4. 

10.3.5 Synthesizing Design Processes 

1. The process elements must be modular in order to compose design 
processes from existing design process building blocks, as proposed in 
Requirements 1 and 2 of Section 0, so that a) existing design processes and 
b) design knowledge can be modeled and reused in a computer 
interpretable manner. 

2. The configuration of the design processes from existing building blocks 
should be guided by product and design process related goals as defined by 
the engineering enterprise’s strategy. 

The research issues involved in synthesizing design processes include the 
identification of design process goals, development of metrics for evaluating the 
process performance against these goals, configuring the design processes 
appropriately to satisfy these goals and finally facilitate future adaptation as 
identified by the engineering enterprise’s strategy.  With regard to our LCAs 
design example, these concepts translate to determining relevant design drivers 
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(e.g., stiffness, compliance, and total heat transfer), reliance on measures of the 
resulting design freedom of the product (e.g., robustness of the resulting topology 
to changes in boundary conditions), and determination of the more suitable 
sequence of required decisions to meet desired targets (e.g., thermal design, 
followed by structural design, or vice versa). 

Taking each of these needs into consideration, a mapping between the 
requirements for designing design processes and research issues is possible, as 
depicted in Figure 10.7.  Having identified the underlying research issues involved 
in satisfying the requirements for designing design processes, we now turn our 
attention to each of these in detail. 

10.4 Research Issues and Strategies for Designing

Design Processes 

Referring back to our motivating example in Section 10.2, the importance of PLM 
is evident when one considers the wide range of potential applications ranging 
from microprocessor heat sinks to aircraft engine combustor liners (see Figure 
10.8). LCAs constitute an emerging family of complex material structure systems 
which are designed to uniquely satisfy a particular set of operational requirements. 
Hence, the traditional means of generating a product portfolio as suggested by 
Meyer [30], involving the development of product platforms and leveraging of 
modular components, are not suitable for generating a product variety. In other 
words, there are no product components that can be directly reused or scaled and 
product architectures cannot be taken advantage of. Hence, the following question 
arises:

How can designers leverage design knowledge so as to facilitate effective and 
efficient development of new products?  

The answer lies in recognizing that the design process underlying the range of 
achievable products is common and thus, constitutes the primary resource for the 
extended design enterprise. Whether one focuses on product or process variety, the 
basic consideration remains the same – maximize external variety while 
minimizing internal variety [59]. The means of achieving this goal for design 

process variety lies in designing design processes as open systems [54]. According 
to Simpson and co-authors, the key to flexibility in open systems lies in modularity, 
mutability, and robustness. With this in mind, we focus on designing open design 
processes based on these assertions. The assumption here is that principles of open 
systems apply to both products and processes. In particular, we focus on 
developing baseline design processes that are easily adapted and reconfigured. The 
goals for ensuring the required flexibility include simple relationships, minimal 
interdependencies, clear and concise interactions, and generic process constructs 
that can be used to compose the processes. The expected result is the ability to 
model, capture, and analyze design processes both in part and in their entirety. 
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Figure 10.8. Market segmentation grid – leveraging design process knowledge across 
product variants 

Considering the importance of design processes in determining a company’s 
competitiveness, we discuss seven research areas in Sections 10.4.1 through 10.4.7 
as outlined in Figure 10.7. These research areas and associated research objectives 
are summarized in Table 10.2. In each of the following sub-sections, we consider 
the underlying research issues, previous related work, open research questions and 
our strategy for addressing these.  

Table 10.2. Research issues and objectives for leveraging design process related intellectual 
capital 

 Research Issue Objective 

Section 

10.4.1

Modeling Design 

Processes

Modeling the design processes in a modular 
fashion using generic process elements 
(transformations) that can be composed to form 
higher level design processes. 

Section 

10.4.2

Computational

Representations of 

Design Processes 

Representation of design processes in a manner 
that they can be reused either partially or in their 
entirety for either the same product or for 
different products. 

Section 

10.4.3

Storage of Design 

Information

Capturing information by successfully separating 
product and process information at various levels 
of abstraction. 

Section 

10.4.4

Developing Metrics for 

Assessing Design 

Processes

Developing metrics for analyzing the 
effectiveness of design processes. 

Section 

10.4.5

Configuring Design 

Processes

Developing methodology for synthesizing new 
design processes from existing design process 
elements. 

Section 

10.4.6

Integrated Design of 

Products and Design 

Processes

Developing methodology for designing products 
in conjunction with the underlying design 
processes.

Section 

10.4.7

Integrating Design 

Processes with Other 

Processes in PLM 

Integrating process related intellectual capital 
pertaining to all aspects of engineering enterprise 
throughout a product’s lifecycle. 
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10.4.1 Modeling Design Processes  

10.4.1.1 Research Issue 

In order to leverage knowledge about design processes, there is a need to devise a 
means of modeling these consistently and succinctly. Modularity of components is 
an additional requirement so that (1) component interfaces are clear, (2) component 
interactions are concise, and (3) both complete and partial reuse of design process 
components is facilitated.  Design process components should also be computer 
interpretable, enabling analysis as well as execution.  Finally, design process 
components should span all the hierarchical levels of a design process, ranging 
from planning at the organizational design process level to executing tasks at the 
computational level.  In order to design the design process, the modeling technique 
should thus ensure that the impact of design processes on products is clearly 
determined, modularity of design processes is ensured, and process elements are 
generic (see Figure 10.7).  

10.4.1.2 Previous Work 
Design processes have been modeled from many different perspectives such as the 
activity based perspective [13, 14], the functional evolution perspective [52], the 
evolution of product states [58], the manipulation of knowledge [25, 26], and the 
decision based perspective [39]. Clearly, there is no single design process model 
that encompasses all required aspects of design. Some of the methods are focused 
on capturing processes to make organizational decisions (e.g., [13, 14]), others 
towards understanding and capturing designers’ intentions and rationale (e.g., [39, 
50, 51, 58]), while even others are focused towards artificial intelligence with the 
eventual intent of automating the process (e.g., [25, 26]). These efforts thus far 
have been limited in terms of their reusability mainly because: 

There is a lack of consistency with regard to a single, domain independent 
set of design process building blocks that span all required levels of 
abstraction.

Current design process modeling efforts do not support modularity either 
architectures or interfaces, both of which are essential for reuse at the sub-
process level. 

10.4.1.3 Research Questions 

Considering the limitations of the methods listed in Section 10.4.1.2, a number of 
pertinent research questions related to modeling design processes arise: 

What are the key information transformations in design processes? 

How can design processes be modeled as hierarchical systems? 

How can interfaces between design process elements be defined? 

10.4.1.4 Strategy: A Decision-centric Approach 

Our approach to modeling design processes, aimed at addressing the research 
questions posed in Section 10.4.1.3, is rooted in the Decision Support Problem 
Technique, developed by Mistree and co-authors [31, 34-37, 39].  A fundamental 
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assumption, from which many advantages with regard to addressing hierarchical 
interoperability are addressed, is that design processes are decision-centric. This is 
advantageous because decisions offer a consistent means of modeling processes 
regardless of domain, level of abstraction, perspective and discipline of the process 
considered. Bras and Mistree [4], in an extension of the DSP Technique, model 
design processes using a set of fundamental entities – Phase, Event, Task, Decision,
and System Support Problems. 

In our approach, design processes are defined as networks of transformations of 

information from one state to another. The state of information refers to the 
amount and form of that information that is available for design decision-making. 
For example, analysis is a transformation that maps the product form to behavior, 
whereas, synthesis is a mapping from expected behavior to the product form. An 
information model to support the design processes modeled in this fashion is 
shown in Figure 10.9. This information model is adapted from the CORE product 
model proposed by Fenves [15]. Analogous to the CORE product model, the 
process model shown is hierarchical and the entities are derived from a single Core 

Design Process Entity. The key entities in this process model represent the basic 
building blocks of design processes. There are different types of information 
Transformations, Information, and Interfaces. Transformations can be either 
Decisions or Tasks. It is important to realize that transformations themselves 
hierarchical and can be composed of other transformations. Design decisions are 
categorized as being either selection [17, 33] or compromise [32, 49] (see Figure 
10.9).  The former constitutes choosing among a set of feasible alternatives, the 
latter refining a given alternative. Tasks are categorized into abstraction, 
concretization, composition, decomposition, mapping, and evaluation (not shown 
in Figure 10.9). Transformations are defined by their function (intended role), 
structure (architecture), and behavior (actual performance). Information can be of 
two types – Flow-Information and Meta-Information. Flow-Information refers to 
the information processed by transformations (i.e., Inputs and Outputs), whereas 
Meta-Information (Process Specification, Process Attributes) describes the 
characteristics of transformations. Interfaces connect transformations by 
processing the information shared among them. 

With regard to the LCAs design example, described in Section 10.2, relevant 
decisions relate to the determination of topology based on structural and thermal 
considerations.  To support these decisions, a number of tasks are required. Exam-
ples include the overall decomposition of the design problem, mapping of structure 
to behavior using analysis, and evaluation based on a comparison of simulated 
behavior with design requirements. 
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Figure 10.9. Design process information model 

10.4.2 Computational Representations for Design Processes 

10.4.2.1 Research Issue 

In order to promote the reusability of design processes (see Figure 10.7), it is 
important to develop reusable computational constructs for design process building 
blocks that capture all relevant information content. These constructs for process 
building blocks can then be combined using appropriate interfaces to represent 
complete design processes and capture relationships among components as well as 
with the overall system. There is a lack of formal computational models for 
representing and reusing existing knowledge about design processes. The design 
process models currently used are either narrative or symbolic in nature [29]. 

10.4.2.2 Previous Work 
Design processes are represented at a computational level in commercial software 
applications like ModelCenter® [42], FIPER [11], iSIGHT [12] and Hyperworks 
Process ManagerTM [22]. The basic process element is a simulation code. The 
information captured using this process element in modeling processes with these 
applications is strictly related to the inputs, outputs, code to be executed, and the 
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relationships between parameters. The design process is defined exclusively by the 
flow of parameter values between various software applications. This in effect 
links the declarative (i.e., problem specific) information to the procedural (i.e.,
design process specific) information. Consequently, reusability is limited to 
parametric design where the set of parameters and their relationships remain the 
same. A mere addition or deletion of a parameter requires reformulation of the 
underlying process. The design process descriptions cannot be reused even if the 
process remains the same and the parameters change. 

10.4.2.3 Research Questions 
Taking the drawbacks of current methods into consideration, the following 
pertinent research questions related to modeling design processes arise: 

How can information relevant to design process building blocks be 
captured as computational templates?  

How can these templates be combined to model complete design processes?  

How can the problem-specific (declarative) information be separated from 
the design process-specific (procedural) information? 

104.2.4 Strategy: Separating Declarative Information from Procedural 
Information 

Our strategy for modeling design processes is based on considering design 
processes as networks of information transformations (see Section 10.4.1.4). The 
architecture of our process modeling approach consists of three levels, namely a 
process specification layer, a declarative layer, and an execution layer. Their 
relationship is illustrated in Figure 10.10.  

1. Process Specification Layer: In this layer, a) required information 
transformations are identified and b) required information flows are 
specified accordingly. In order to ensure that declarative information is 
separated from procedural information, information flows are clearly sepa-
rated from information content. In other words, we capture only the 
mechanics of information transfer at this level, while problem specific 
information is defined separately at the declarative level. This results in a 
process map that remains the same irrespective of the application in which 
the process is used.  

2. Declarative Layer: In this layer, problem formulation related information 
is captured. Consequently, the independence of information from process 
mechanics is guaranteed. Use of a standardized format ensures that the 
problem specific declarative information can be reused in different 
processes. Reliance on XML offers a convenient means of capturing 
information at this level. 

3. Execution Level: In this layer, the details of code execution are captured. 
This level is specific to the design scenario and problem for which the 
process is used. Execution level codes interface only with the declarative 
problem formulation level. Thus, there is no direct link between the process 
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specification level and execution level. This preserves the modularity of 
processes. 
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Figure 10.10. Architecture of process modeling framework  

10.4.3 Storage of Design Information 

10.4.3.1 Research Issue 
It can thus be established that the design process is intimately linked to the product 
being designed. Many design process decisions can be identified only after some 
product related decisions have already been made. Hence, it is essential to consider 
the design of both the product and underlying design process simultaneously (see 
Figure 10.7). Neither aspect should be modeled in isolation. To enable the storage 
of product and process information separately, there is a clear need for a consistent 
information model that addresses both product- and process-centric concerns.  
There are numerous ways of evaluating the quality of a design process.  While 
some focus on process dependent attributes such as individual activities and their 
sequence, as well as the underlying information flows, others focus on product spe-
cific attributes relating to the quality of the resulting design.  Both perspectives are 
crucial.  The challenge lies in reconciling these concerns with respect to the 
overarching design drivers.   

10.4.3.2 Previous Work 
There has been a significant amount of research with regard to modeling both 
products and processes.  While some efforts have been concerned mainly with 
focusing on either product or process related aspects separately, others have pur-
sued a more integrated perspective. On the product modeling side, notable efforts 
include the CORE product model by Fenves and co-authors [15].  On the process 
side, relevant endeavors include the proposition of a Process Specification 
Language (PSL) by Schlenoff [46, 47] and ISO 10303 STEP Standard AP 231 for 
Process-Engineering Data [40].  There are also a number of efforts that seek to 
reconcile product and process-centric perspectives. Examples include the Georgia 
Tech Process to Product Modeling Tool (GTPPM) developed by Lee, Eastman, and 
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Sacks [8, 45]  and the Object-Oriented Modeling of Products and Processes, 
proposed by Gorti  and co-authors [19].   

As stated in Section 10.4.3.1, there is a definite need for an integrated product 
and process model in order to facilitate both partial and complete reuse of 
engineering design processes. Current instantiations of such models are limited in 
so far that they consider processes mainly with regard to components and their 
dependencies in terms of respective inputs and outputs.  Design process execution, 
however, has not been a central concern thus far. Further, current design 
information models capture information in a manner that supports archiving 
existing processes and design rationale.  Only information immediately relevant to 
the storage of a particular decision is captured.  Since no additional information is 
available for future reference, the synthesis of new processes based on the existing 
sub-processes is not supported in current information models.  

10.4.3.3 Research Questions 

Considering the challenge posed in Section 10.4.3.1 and the limitations of current 
efforts, considered in Section 10.4.3.2, the following research issues arise: 

How can process information be separated successfully from product 
information? 

How can the structure and content of engineering design processes be 
captured effectively so that modular reuse of process components becomes 
feasible? 

How can design processes be stored so that their structure remains 
consistent throughout all levels of a process hierarchy? 

10.4.3.4 Strategy: Process Templates 

Our approach to storing design information is necessarily two pronged, focusing on 
a reconciliation of product with process-centric aspects of a design process.  
Necessarily, these must be separated clearly. Our current instantiation of this is an 
extension of the CORE product model [15] from solely modeling products to 
modeling design processes as well. In this extension, information transformations 
are modeled as hierarchical objects. A key feature of these information trans-
formations is that they are derived based on a decision-centric perspective. Since 
decisions can be considered to constitute central elements of almost any process, 
regardless of domain and level of abstraction pursued within, a common means of 
modeling a process at all levels of a design effort results.   

Constituent design process elements are synthesized to serve as reusable 
template to model the design process under consideration, either in part or in its 
entirety. Design Process Construct Templates1 are computational objects that can 
be parsed, analyzed and/or executed on a computer [31]. Process Templates 
constitute compositions of interfaced design sub-process templates, as illustrated in 
Figure 10.11. It is important to note that the partial and complete templates shown 

1 Design Process Construct Templates are defined as computer based representations of design process 
elements, having well-defined inputs and outputs. 
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in Figure 10.11 share the common underlying architecture presented in Figure 
10.10.
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Figure 10.11. Modeling design processes using process templates 

The design process in this figure involves three design process element 
templates: T1, T2 and T3.  In the case of the LCAs example, this translates to 
series of decisions and supporting tasks.  In progressing along the design process, 
these elements convert the information about a product from one state to another 
(e.g., from State A to State B in Figure 10.11).  In the case of analysis, for example, 
the first state (i.e., State A) represents geometry and loading conditions considered 
in isolation and the second state (i.e., State B) would represent their combination 
and the resultant behavior. The lines connecting these process elements represent 
flows of information.  Process Templates can be partial or complete. Complete
templates contain all the information required for carrying out a transformation and 
can be executed. Partial templates do not have sufficient information for executing 
a transformation.  This point is illustrated in Figure 10.11.  All the information 
required for performing T1 is available at information state A.  Hence, the template 
associated with T1 is a complete template. Some of the information required for T2 
is not available until T1 is executed, however. Hence, T2 is a partial template. 
Design processes using such a notation can be viewed as networks of Process 
Templates, connected by the information flowing between them. 

10.4.4 Developing Metrics for Assessing Design Processes 

10.4.4.1 Research Issue 
In order to accurately evaluate alternative design processes, their analysis is 
required (see Figure 10.7).  Design process alternatives result from changes in 
parameter values, information flows, and sequence.  With regard to our LCAs 
example, these correspond to differences in design requirements, parameter form, 
and stakeholder succession, respectively, as shown in Section 0. This implies that 
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design process options have to be explored and information required for making a 
design process decision has to be generated before the design process decision can 
be made.  

In order to aid in the analysis, evaluation, and configuration of design processes 
with regard to differing design process goals, appropriate metrics are required.  
Additional considerations to those discussed in Section 10.4.1, may include 
reliability, reconfigurability, minimization of cost, minimization of risk, available 
resources, etc.  As stated previously, we come from the perspective of designing 
products as well as design processes as open engineering systems.  The key to 
designing open engineering systems is adaptability to changes in the environment.
The environment for a product is the set of conditions under which it is being used. 
Hence, a product is open if it is adaptable to changes under the conditions in which 
it is used. The environment for a design process includes the product which is 
being designed, the considerations used to design the product (e.g., robustness, 
reliability, etc.), and the environment in which the product is to be used. This 
implies that if a similar product is being designed or the same product is being 
designed with added considerations, the underlying process need not change. 
Hence, a process is open if it can be used to design both similar products and the 
same products with different design considerations.  We conduct our analysis of 
design processes accordingly.   

10.4.4.2 Previous Work 
Cost, time and interdependencies are generally encountered metrics for design 
processes [5]. Braha and Maimon [2] have considered complexity for analyzing 
design process effectiveness. Rogers and Christine [44] have considered coupling 
strength as an indicator of design process effectiveness. The drawback of these 
process analysis metrics is that they do not quantify the effect of information 
transformations on the product. 

10.4.4.3 Research Questions 

Based on the points made in Sections 10.4.4.1 and 10.4.4.2, a number of research 
questions arise. 

How can design process components be characterized sufficiently to allow 
for their adaptation in the case of derivative and adaptive design processes? 

How can the effectiveness of design processes be quantified? 

How can the impact of design processes on products be measured? 

How can process effectiveness metrics be employed for synthesizing 
original, adaptive, variant, and derivative design processes? 

10.4.4.4 Strategy: Open Systems Perspective 
Our strategy is to model and analyze processes from an open systems perspective. 
Various techniques like robustness, modularity, maintaining design freedom, 
adaptability, etc. have been  proposed for achieving openness in a system [54]. 
Hence, openness of systems can be measured by developing quantitative metrics 
for these. The quantitative measures related to openness of a product are: design

freedom [23, 55, 60, 62, 63], robustness, complexity [2, 10, 43, 53] , modularity [41] 
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(which is closely linked to complexity) and coupling [27, 28]. Previous research 
efforts are mainly focused on quantifying the openness of products but openness of 
design processes has not been addressed in the literature. It is here where we make 
our contribution towards metrics for design processes. 

10.4.5 Configuring Design Processes 

10.4.5.1 Research Issue 

During the NSF Simulation Based Engineering Science (SBES) workshop [64], the 
need for designing complex products in a hierarchical fashion at multiple scales 
was surveyed, and the potential for the new field of SBES explored. It was noted 
that by integrating knowledge from different scales, we would be able to design 
products considered extremely difficult today. Most complex products are designed 
by their hierarchical decomposition into interacting components.  This results in 
hierarchical products as well as processes.  The possible ranges in scope and detail 
of the resulting design processes are illustrated in Figure 10.12.  As the scope 
increases from involving a single designer, to teams and multiple organizations, the 
relevant detail of the design process changes from involving interactions among 
design variables to inter-organizational interactions. In cases such as the design of 
aircraft, processes can even extend to the multi-organizational level.  In the design 
of systems of this complexity both top-down and bottom-up approaches are often 
combined. The research issue in configuring design processes from both top-down 
and bottom-up approaches is the ability to define processes as modular patterns 
that can be reused in different scenarios (see Figure 10.7).  

10.4.5.2 Previous Work 
The concept of modularity has been extensively studied in the product design 
domain. The role of product architectures has been established by Ulrich in [59]. 
Various methods have been developed to design families of products [7, 18]. The 
application of modularity, patterns and families to design processes has not been 
addressed to the best of our knowledge. 

10.4.5.3 Research Questions 
Relevant research questions emanating from the considerations brought forth in 
Sections 10.4.5.1 and 10.4.5.2 are: 

How can top-down design processes be captured for reuse?  

How can lower level design processes be leveraged to facilitate bottom up 
design of design processes? 
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Figure 10.12. Processes represented at various levels of detail 

10.4.5.4 Strategy: Process Families 
In our approach we focus on developing a “baseline” process that can be extended 
to serve a number of different products, as identified in the engineering enterprise’s 
strategy.  We thus consider entire families of processes.  Akin to the reliance on 
product families, there is an underlying emphasis on leveraging a common 
platform to the utmost extent possible – maximizing external variety, while 
minimizing internal variety.  Often this is achieved through reliance on modularity 
and open architectures.  This translates to a need for modeling and representing 
different products and the underlying process variants used to make them 
accordingly – in an openly extensible, standardized, modular, and adaptable 
manner. 

Once such a baseline design process has been designed as envisioned here, 
arriving at process variants for designing new products is greatly facilitated, 
thereby significantly reducing the associated time and cost.  This stands in marked 
contrast to designing processes to support the realization of products on a 1-to-1 
basis.  The engineering enterprise becomes significantly more agile in adapting to 
changes in consumer tastes and is better prepared to meet the challenges of 
compressed product lifecycles.  Furthermore the management of Product Lifecycle 
considerations is greatly facilitated.  Additional benefits are related to the fact that 
design chains can be designed in a manner reflecting the modularity of the 
underlying design processes.  Consequently, interacting design chain stakeholders 
can be interfaced in a modular fashion, moving towards plug-and-play operation of 
processes across design chains. 
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10.4.6 Integrated Design of Products and Design Processes 

10.4.6.1 Research Issue 

Traditionally, design methodologies mainly focused on systematic design of 
products. The focus of the design community has expanded from the design of 
products to include considerations of manufacturing, maintenance, re-cyclability, 
etc. Integrated product and process design methods (IPPD) are mainly centered on 
designing both product and required manufacturing process simultaneously. In 
other words, design of products is carried out with consideration of additional 
factors that affect the product life cycle. Design of processes is limited to the de-
sign and simulation of manufacturing processes by industrial engineers. Integrating 
the design of design processes with the products has received little attention, 
however. A systematic method for designing design processes along with the 
product has yet to be formalized in the design literature.  

10.4.6.2 Previous Work 

Previous efforts aimed at addressing the need for a systematic concretization of 
design efforts are evident in the work of Bras and Mistree [3]. Specifically, they 
focus on devising a means of consistently modeling design processes from a deci-
sion based perspective. In doing so, they instantiate a set of primitives for modeling 
design process components. In their model, process components are connected by 
the information, energy and material flows between them. The technique involves 
two phases: Meta-design and design. Meta-design involves laying out the design 
process and the design phase involves executing the design process. The main 
drawback of this approach is that these two phases are interlinked and should 
ideally be carried out concurrently. The technique is also limited to mapping out 
the process of designing a product in terms of the required decisions. No 
considerations are given to the process related goals and the architecture of the 
design processes. 

10.4.6.3 Research Questions 

Relevant research questions emanating from the considerations brought forth in 
Sections 10.4.5.1 and 10.4.5.2 are: 

How can products and their associated design processes be designed in an 
integrated fashion? 

How can hierarchical considerations of products and processes be modeled 
consistently with regard to the required levels of abstraction? 

How can the evolution of products and processes be modeled along a 
design timeline? 

How can the various sources of uncertainty (e.g., as pertaining to the 
environment, design variables, models, etc.) be accounted for as the quality 
and quantity of available information changes to reflect the current state of 
knowledge about (1) the product being designed and (2) the underlying 
process? 
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10.4.6.4 Strategy: Identifying Process Decisions 
Decisions made during a design process are of two types: decisions about the 
product, discussed in Section 10.4.1.4, and decisions about the process through 
which the product is designed, as considered in this section.  Such design process 
decisions can be divided into three main categories: a) concerning the architecture 
of the design process, b) the manner in which individual design activities are 
carried out, and c) the parameters of the design process.  With regard to our LCAs 
design example, the sub-sections of Section 0 represent different architectures of 
the design process underlying LCAs development. The design process decisions 
form a three-tiered structure. More details about the nature of design process re-
lated decisions follow. 

1. Architecture of the Process: The architecture of a design process refers to 
the network of design activities and associated information flows. The 
architecture of design processes can affect both the final product and 
process outcomes like time, cost, etc. Design processes can be partitioned 
in a variety of ways into individual activities and tasks. Partitioning a 
design process involves identifying activities and the information transfers 
between them. Some of the activities in a design process are coupled and 
others are uncoupled. It is preferable to have uncoupled tasks in a design 
process so as to reduce the number of costly iterations between tasks. 
Coupling can be categorized as being strong or weak depending on the 
amount of information dependencies between tasks. Decisions about design 
process architectures also include time sequencing of the tasks. Decisions 
such as which tasks need to be performed sequentially and which tasks can 
be performed concurrently are important when more than one design team 
is taking part in a given design process.  

2. Individual Design Activities: Moving from process architecture decisions 
down to individual design tasks, decisions include the manner in which 
each activity is performed. One example of such design task level process 
decisions is the analysis task where the objective is to map form to 
behavior. Behavioral models can be developed at various levels of fidelity. 
Appropriate behavioral models needs to be selected depending on the 
information available, accuracy required and the progress along the design 
timeline. Mocko and co-authors [38] have shown that behavioral models 
can be organized hierarchically in a tree structure based on idealizations of 
the actual model. Another example of design task level design process 
decisions is synthesis.  

3. Design Process Parameters: This is the lowest level of design process 
decision where designers are concerned with setting values of design 
process parameters like weights assigned to individual goals, optimization 
parameters, design of experiments parameters, etc.
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10.4.7 Integrating Design Processes with Other Processes in PLM 

10.4.7.1 Research Issue 

A main aspect of Product Lifecycle Management (PLM) is the integration of 
processes and information throughout the value chain, including supply chains, 
design chains, demand chains, etc. In order to extend the value proposition of the 
effort of designing design processes (see Figure 10.7) presented in Sections 10.4.1 
through 10.4.6, it is essential that design processes be integrated with other 
processes in the value chain. The underlying challenge lies in mapping the design 
processes with other processes.  

10.4.7.2 Previous Work 

A major thrust in PLM is the integration of the value chain throughout the 
extended enterprise. Design chains and supply chains form two essential 
components of the value chain. A significant amount of work is currently being 
undertaken by the Supply Chain Council2 with regard to describing supply chains. 
For example, the SCOR model [57] is developed to represent and measure supply 
chains in a standardized manner to enable improvements in supply chain operations 
through analysis of current processes and best practice emulation.  Along these 
lines, numerous case studies have been conducted. For example, SCOR model is 
currently being extended to the Enterprise Transaction Model by Streamline SCM 
[56].  

10.4.7.3 Research Questions 
Relevant research questions emanating from the considerations brought forth in 
Sections 10.4.7.1 and 10.4.7.2 are: 

How can decision-centric design process models be mapped into other 
processes within the value chain (e.g., supply chain processes)? 

How can flexible interfaces be developed for enabling effective 
interactions among stakeholders in an enterprise? 

10.4.7.4 Strategy: A Decision-centric Approach 

Since the strategy outlined throughout this chapter is decision-centric, it is 
sufficiently generic to allow for adaptation to each of these contexts. Our research 
is focused on modeling design chains at various levels of scope and detail, ensuring 
domain independence and interoperability among the various stakeholders 
involved in a product realization process. Consequently, models and methods are 
being developed to address emerging design process needs on various levels of 
abstraction, so that the resulting hierarchy effectively supports the design activities 
of the enterprise. 

Our approach to integrating design chains with the supply chains involve (a)
identifying the decisions and information transformations involved in each of the 
level 3 elements in SCOR model, (b) modeling those decisions using the DSP 

2 www.supply-chain.org 
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Technique Palette [3], (c) using the decision elements, and d) developing object-
oriented templates for elements in the SCOR models.  

The research tasks involved in developing flexible interfaces between 
stakeholders are (a) modeling interactions between the design process elements 
and associated information flows, (b) modeling stakeholder relationships, 
commonly encountered throughout the value chain, (c) capturing design process 
interactions using object oriented templates that can serve as a springboard for 
knowledge capture, and (d) establishing communications protocols to represent the 
underlying interactions for enabling the required information transfers. 

As a summary, throughout Section 10.4, we highlight seven key research areas 
(see Table 10.) that we believe are important in order to address the requirements 
(see Figure 10.7) posed by leveraging design processes as an important element of 
the intellectual capital. These research areas were explored in the light of existing 
literature to identify open research questions in Sections 10.4.1 to 10.4.7. We also 
outline some of our strategies for addressing these research questions. These 
strategies are focused on both decision-centric and systems-based view of design 
processes. 

10.5 Conclusions

The future basis for competition is likely to rest on an enterprise’s ability to 
anticipate and quickly respond to market shifts and changes.  This requires the 
effective leveraging of resources.  Considering that the bulk of the effort involved 
in product development lies in perfecting the underlying processes, these should be 
considered to constitute an enterprise’s primary intellectual capital. Consequently, 
more attention must be paid to the manner in which these processes are designed. 

Our starting premise, in this chapter, is that design processes are an integral part 
of its intellectual capital.  Accordingly, we establish the design of design processes 
(together with product design) as a critical factor in addressing lifecycle 
considerations of an evolving product portfolio. Five key requirements for enabling 
the design of design processes are established and subsequently tied to underlying 
research issues – (1) identification of design process goals, (2) process related 
decisions, information transformations, and computational models thereof, (3) 
design process configuration, (4) quantification of design process impact, and (5) 
the integration of product and process-centric perspectives. We thus consider that 
attaining and retaining a competitive edge is likely to be a function of a company’s 
agility in adapting existing design processes to the realization of adaptive, variant, 
derivative, and even original products. With this in mind, we provide a conceptual 
framework for addressing the underlying research issues involved in the 
development of a means to leverage design processes through composable, 
computer interpretable modeling techniques, facilitating their analysis, archival, 
and reuse. The proposed strategy is anchored in a decision-centric perspective of 
design processes; modular, computational template-based representation of design 
processes and their building blocks; utilization of existing standards for archiving 
of process information; metrics for assessment of design process performance; 
configuration-based techniques for design of design processes alongside products; 
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and integration with other processes in the value chain. Rather than proposing new 
technologies or standards under the PLM umbrella, it is our overarching objective 
to highlight design processes as key elements of an engineering enterprise’s 
intellectual capital and to motivate fundamental research directions. We note that 
the vision articulated in this chapter is not meant to replace current efforts in the 
PLM arena.  Instead, our aim is to augment these efforts via the inclusion of design 
process related intellectual capital, thereby enhancing the overall agility of the 
engineering enterprise. 

We assert that managing the lifecycle of a design process will have much 
greater impact than merely considering the design of products in isolation. Hence, 
we believe that the vision and direction provided in this chapter are fundamental to 
the success of next generation agility in global enterprises. Considering the current 
scope of PLM, this thrust is extremely important.  We thus envision extending the 
focus of PLM to include the lifecycle considerations of the design process, moving 
towards Design Process Lifecycle Management (DPLM). Considering the 
comprehensive nature of design processes, the underlying research problem is to 
manage and reuse process knowledge as a prime component of the intellectual 
capital. We must thus ask ourselves:  

To what extent can families of processes be modeled, captured, and reused?  

How can top-down design of engineering design processes be reconciled 
with bottom-up design of process components? 

How can all processes factoring into the value chain be designed

systematically (e.g., engineering design processes, supply chain processes, 
etc.)?  

How can product information be reconciled with processes at various 
levels of abstraction in an entire global enterprise?

In closing, we leave you with the following thought -  
“Vision without action is merely a dream. Action without vision just passes the 

time. Vision with action can change the world.”         -- Joel A. Barker.  
We have shared with you our vision – which is undoubtedly limited. We invite 

you, the members, visionaries, and practitioners of Collaborative Product Design 
and Manufacture, to enhance this vision and act so that we may collectively 
achieve our dream. 
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Progressive improvements in information systems offer the potential for radical 
improvements in manufacturing decision support systems as is evident by the 
uptake of modern Product Lifecycle Management approaches. However, drawing 
real value from these tools requires a clear understanding of how to organize 
information and configure systems to best advantage. This chapter discusses 
progress in the development of information frameworks, the importance of context 
awareness, the exploitation of manufacturing standards and future research 
requirements for the exploitation of product and process knowledge. 

11.1 Introduction 

Business competition means that the need for better, faster cheaper production is a 
never ending requirement. The identification of methods by which manufacturing 
improvements can be achieved is ongoing and has led to a range of approaches in 
recent years including Concurrent Engineering, Lean Manufacture and Agile 
Manufacture. In addition, the progressive improvements to information system 
capabilities continues to offer the belief that higher and higher levels of support for 
effective decision making can be achieved [1, 2]. 

Tools that can offer more effective breadth of information support are 
beginning to be developed in Enterprise Resource Planning (ERP) Product 
Lifecycle Management (PLM), and Customer Relationship Management (CRM). 
PLM, the focus of this chapter, offers the potential to provide sources of 
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information that engineers can draw upon to offer rapid and effective support to 
their decision making [3, 4]. However to be fully effective these tools must be able 
to support the broad range of information needed to meet the needs of diverse 
teams of engineers working on problems in dynamically changing manufacturing 
environments.  

While it is clear that the potential benefits of PLM are high, tapping these 
benefits is fraught with both short term and long term issues. Given the overhead 
involved in constructing an effective PLM environment it is particularly important 
for businesses to consider carefully the following challenges: 

What organization of information is needed to offer effective decision 
support? 

What range of views of the information is needed? 

What methods for integrated system design should be used? 

How can the level of information support be flexibly updated, maintained 
and extended? 

Can information be effectively shared across competitive software tools? 
For example, through the supply chain. 

This chapter reflects on these challenges following a range of recent industry 
driven research projects at Loughborough University which have focused on the 
manufacturing information structures and methods needed to provide integrated 
life cycle support. 

11.2 Information and Knowledge Infrastructures 

for Manufacture 

It is clear that effective decision making in manufacturing businesses is influenced 
by a broad range of information and knowledge including knowledge of markets, 
existing products, design knowledge, manufacturing capability, product service 
and disposal. The majority of research in this area focuses on product information 
[5], while the work described in this chapter extends this to include a focus on 
manufacturing capability within an ICT environment and targets how 
infrastructures for manufacturing information and knowledge can be defined to 
support decision making. This is illustrated simply in Figure 11.1, which also 
shows the main target business areas of product development and manufacturing 
and procurement against which the research has been focused.  

Manufacturing knowledge can be seen as being a significant part of a 
businesses capability. If we can identify computational methods by which key 
areas of manufacturing information and knowledge can be held within an 
infrastructure then we have the potential to speed up and improve the quality of 
decisions. It is important to note that manufacturing knowledge, however it is 
structured, is not static and has many facets. It is used during product introduction 
to aid design decisions, to plan manufacturing methods and to identify effective 
supply chain configurations.  Once we start to manufacture actual parts and use 
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products in service then we have the potential to learn and continuously improve 
our knowledge of what we have made and how well we can make things. It is this 
process which enables us to improve our knowledge and understanding of 
manufacture and therefore enhance our competitiveness as we continue through the 
product development lifecycle. An illustration of this lifecycle is provided in 
Figure 11.2. 

Manufacturing knowledge is therefore not independent of products, although it 
can be applied to a broad range of products. It needs to be used in combination 
with the other key areas of business knowledge to support decision making. In 
considering the product lifecycle, rather than the development lifecycle, it can be 
seen that at each stage of the lifecycle it is important to have knowledge through 
the lifecycle. For example during design, design knowledge is of critical 
importance but manufacturing, service and disposal knowledge can and should 
have a significant influence on design decisions. It is therefore important that 
knowledge infrastructures should be able to support this type of interaction and not 
just provide isolated pockets of knowledge [6]. 

The concept which we have pursued in our research has been to look for a 
conceptual framework of information and knowledge which sits at the heart of the 
product lifecycle and therefore can support any area of decision with the lifecycle. 
This general view is illustrated in Figure 11.3. 

Figure 11.1. Target areas for manufacturing information & knowledge infrastructures 

Key research areas: 

Product Lifecycle 
Management 

Modeling Manufacturing 
Capability 

Knowledge Reuse 

Sharing, Integration and 
Interoperability
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Figure 11.2. Manufacturing knowledge in the context of the product development lifecycle 

Figure 11.3. Information and knowledge at the heart of the product lifecycle 
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The effective structure of any information and knowledge infrastructure will be 
dependent on the use cases for the resulting system. We have taken the view that 
key two points provide the basis for the high level structure implied by the central 
part of Figure 11.3. These are firstly that product information is central to all 
decisions and secondly that each stage of the lifecycle has a core set of specific 
information and knowledge which reflect a business capability which is non 
product specific. For example businesses have design knowledge, manufacturing 
knowledge etc. which they use to improve their new product development and 
product support processes. This can be seen as a top level view of the lifecycle 
context within which an information and knowledge infrastructure should be 
defined. This, taken from a manufacturing perspective, along with more detailed 
views of product context is the subject of the next section. 

Informally the use of the terms data, information and knowledge are often used 
ambiguously. It is worth noting that formally in our work we use definitions as 
follows: Data are simply symbols with no context and no relationships; 
information is data within a specific context; knowledge is information 
relationships within and across contexts [7].  

11.3  Context Awareness: Its Significance for Information 

Organization 

This section considers manufacturing information in relation to design for 
manufacture and in relation to process planning. It considers this information 
firstly from a product perspective and then from a life cycle perspective.  

11.3.1 Product Context 

Product development is typically a team-based exercise where members of the 
team all require similar but different sets of information in order to meet their 
specific tasks. The interpretation of product information in a form suitable for 
manufacturing decision making has typically been pursued through the use of 
features technology and part family variants. The results of manufacturing 
planning can then be captured in process plans for a product.  

Features approaches are problematic in that they capture only a single context 
of information, e.g., a machining feature is specific only to machining, it will not 
relate to assembly or to casting.  Figure 4 illustrates a view of some simple features 
for machining, inspection and assembly which shows how, from each specific 
context the information of interest is different. The machining features identify 
shapes which have particular machining methods linked to them; the inspection 
features also relate to particular geometries, but in this case geometries which 
relate to inspection routines; the inspection features relate to methods of assembly 
and are not linked to a single component geometry but rather the geometric and 
tolerance relationships between components. It is possible in some cases where a 
dominant context can be defined that features can useful where they provide a 
focused and practical set of shapes which a design team can use. This is also the 
case where common features can be used to support multiple contexts. Hole 
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features are probably the best examples of this as they can be used to represent 
multiple contexts such as function, casting, machining and assembly.  

Figure 11.4. Examples of features in a process context 

An alternative to dealing with shapes which link to an individual process is to 
consider complete parts which have an overall manufacturing method related to 
them i.e., part families. Here the start point is to identify a part family where each 
product in the family has a similar set of functional requirements and each is made 
by a similar set of manufacturing processes. We illustrate this in Figure 11.5 with 
an example of a simple casing part which has two main functions; to withstand an 
internal pressure and to assemble with other components in the product. The 
flanges provide assembly relationships to other parts and the rings provide a wall 
strength capability to withstand the internal pressure. The overall manufacturing 
method for each complete part is similar but may change in detail, dependent on 
the allowable changes to the size of the specific rings and flanges. Changes to the 
flanges and rings are only allowed which stay within the context of the specified 
manufacturing method. If changes to the features are required which require a new 
method of manufacture then the product feature set are no longer relevant. Hence 
the product context has changed and the part family relationships are no longer 
valid.

In most cases there is a need for PLM systems to be able to support multiple 
contexts of information and the relationships between these contexts [9]. For 
example, a major step forward in potential functionality for manufacturing 
engineers would be achieved if part functional requirements could be linked to the 
relevant manufacturing views such as assembly, casting, forging, machining, heat 
treatment, grinding, etc. Our recent findings in this area as explained in Section 
11.3.3. As well as developing an understanding of the relationship between views 
of a product it is also important to recognize that there should be clear relationships 
between manufacturing views of a product and the manufacturing capability of the 
business. This should provide links from features in a product model to 
manufacturing capability in a manufacturing model and also from resources and 
processes in a manufacturing model to the representation of process plans in a 
product model. 
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Figure 11.5. Example features in a product context 

11.3.2  Life Cycle Context 

Most PLM work appears, for historical reasons, to focus on a design perspective 
with at best the association of manufacturing documents for component parts. 
However, it is important to note that businesses have core information and 
knowledge on each aspect of the product lifecycle i.e., the have information and 
knowledge on how to design products, information and knowledge on how to make 
products, information and knowledge on how to service products, and information 
and knowledge on how to dispose of products. Here we focus on the manufacturing 
context of the lifecycle and identify the need to represent manufacturing capability, 
independent of any specific product, as illustrated simply in Figure 11.6. 

Figure 11.6. Manufacturing capability modeling 
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A Manufacturing Model, representing this core manufacturing capability is just 
as important as a product model from the manufacturing perspective of the life 
cycle. A manufacturing model should identify process and resource specifications, 
potential methods of manufacture and best practice for manufacturing [8]. These 
provide the manufacturing knowledge within the “capability” aspect of Figure 11.2, 
which can be used to support the new product introduction process. This 
manufacturing knowledge provides the basis by which the business controls the 
use of its processes and resources. 

The importance of a manufacturing model is that it not only provides a 
common source of information to support design decisions, but it focuses the core 
competencies of the business so that as new understanding is generated during 
product manufacture, the model can be updated for future benefit.  It therefore 
provides a clear integration link between PLM as a provider of manufacturing 
information and shop floor manufacturing systems in terms of data collection and 
feedback. This cycle and link between PLM and Manufacturing Systems is 
illustrated in Figure 11.7. Figure 11.7 also shows how information and knowledge 
models, through Product models, Manufacturing Models and Process Control Sets, 
support the product development lifecycle illustrated in Figure 11.2. The Product 
Model concept is well understood, the Manufacturing Model provides a 
manufacturing capability representation and the Process Control Sets provide a 
repository for shop floor data as it is collected and analyzed through the continuous 
improvement process. This last set of data is collected on a real time basis and is 
therefore considered to be the concern of manufacturing systems but outside the 
PLM scope. The relationship is driven through the understanding of manufacturing 
capability which is enhanced by analyzing the process control sets in order to 
update the knowledge contained in a manufacturing model. 

11.3.3  Context Relationships 

Sections 11.3.1 and 11.3.2 highlighted issues in relation to specific product and 
lifecycle contexts. This section uses an example product to explore some of the 
requirements for multiple contexts to be considered and goes on to propose an 
approach to integrate information across multiple contexts. Figure 11.8 illustrates a 
number of distinct, but related, contexts for a cylindrical part and a location rod.  

The following list captures the main functions of the cylindrical part: 

1) withstand high pressure 
2) mount with other parts via the flanges 
3) facilitate the attachment of other key parts through the attachment ring 
4) facilitate the location of rods through the location ring 
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Figure 11.7. Information models in the context of PLM and manufacturing systems 

Figure 11.8. Multiple contexts of cylindrical part and location rod 
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The list of functions relate to a set of functional features on the component. 
However, the product needs to be considered from a number of different contexts 
to ensure an effective design. In this example we consider machining and assembly 
contexts alongside the functional context. Figure 11.8 also illustrates simple 
requirements for machining and assembly. The location ring facilitates the location 
of the location rod, which due to the high pressure requirement needs to be 
assembled with an interference fit. The interference fit between cylindrical part and 
location rod can be considered in the manufacturing process context as tolerances 
of the rod and the hole diameters of the cylinder. The parts then need to be 
machined to these required tolerances. While each of the function, assembly and 
machining contexts could be considered independently, it is important if effective 
design decisions are to be made that the relationships between them are maintained. 
Hence the transformation of information from one context to another is important 
for the support of all lifecycle activities of products. 

It is important to have a core context to relate all others if relationships are to 
be maintained. In our work we have taken the functional context as the core 
context and explored the relationships from it to all other contexts of interest.  This 
still requires knowledge of the relationships between all the contexts under 
consideration. The methodology followed to capture the product information and 
the transformation knowledge has been to use a two layer approach, where 
information contexts, like the normal features approaches, are held and a second 
knowledge layer, where knowledge of relationships between contexts as well as 
context specific knowledge is maintained [9, 10]. This is illustrated in Figure 11.9, 
again using the same example.  

The required fit type can be identified from the functional requirements of the 
assembly of parts. In the particular example, the required fit is interference fit. The 
nominal diameter of the assembly of cylindrical part hole and the location rod can 
be used to identify the required tolerance set for the interference fit from the fits 
and tolerance table [11].The diameter and tolerance information can then be used 
to define the machining process requirements. The nominal diameter is a kind of 
common sharable information while the tolerance information is a kind of 
transformed information. 

The transformation of information itself is not sufficient for the flexible 
integration of multiple contexts, because the transformed information may cause a 
problem for other context requirements. In the example, the required tolerance for 
the fit is derived from the fits and tolerance table, which is a kind of transformation 
knowledge, which transfers the fit function into a tolerance range. The tolerance 
range can then be used to define the manufacturing process. In the particular 
example, the machining process is considered as a manufacturing process. Hence, 
the tolerance information, which has been transformed from the functional 
information, can be considered as machining context information. However, the 
transformed information has not been verified for machineability. If the required 
tolerances cannot be manufactured with machining process, alternative 
manufacturing methods need to be identified. Therefore, the transformed 
information needs to be validated against the capabilities of each particular context. 
Hence, the transformed information is of limited value until the information is 
validated against the context requirements. 
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Figure 11.9. Information interaction of multiple contexts by utilizing transformation and 
context specific knowledge 

Flexible integration between multiple contexts can be performed in two stages: 
firstly information transformation between the contexts and secondly the validation 
of the transformed information against each context. The validation of information 
against the context capabilities required the knowledge of the context capabilities. 
Therefore, two kinds of knowledge as transformation knowledge and context 
specific knowledge are required for the flexible information integration between 
multiple contexts.  

In exploring multiple contexts there is a further issue which is critical to 
successful information sharing and that is the sharing of meaning. Within a 
common work environment it is reasonable to assume that the semantics are 
understood and shared. However, as we start to work across contexts and 
especially across businesses this assumption becomes less and less acceptable. 
Within software systems which are to support cross context and across business 
communication, there is therefore a fundamental need to provide a clear basis for 
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sharing meaning [12]. This area of ontological engineering is now receiving 

substantial research attention [13].

11.4  Exploiting Manufacturing Standards 

Where two similar systems have been configured it is unlikely that they will easily 
be able to interoperate and share information as the methods of information 
organization are likely to have  been developed independently. 

Problems in interoperation between software tools has led a number of large 
OEMs to insist that all their suppliers use the same tools in order to avoid this 
problem. However this simply moves the interoperability problem down the supply 
chain. The problem of interoperability is still a major problem as evident from a 
recent survey of the US automotive industry which suggests that such problems 
still cost in the order of $1 billion per annum [14]. 

International standards can be used to offer some flexibility as systems can 
interoperate, as long as they use standards to provide the basis for information 
sharing. As far as information sharing is concerned there are a number of ISO 
standards available which can aid this, especially in terms of resource information, 
but also in terms of process information. There are many standards that provide 
some level of information support for manufacture. Examples of these are ISO 
10303, commonly known as STEP which focuses on product data; ISO 15531  
(MANDATE) which offers data structures to capture views of manufacturing 
management data; ISO 13399 which provides a detailed representation of tooling 
systems;  ISO 18629 (PSL) which offers a new approach to providing a 
semantically rich standard for process description. 

11.4.1  STEP for Manufacturing 

STEP product data representation 

The biggest success of the ISO 10303 STEP standard started in 1996 with a data 
exchange standard for 3D product geometry, based on the Application Protocol AP 
203. Today more then 2 million CAD stations contain STEP translators and for 
some industry segments it is fairly routine for an Original Equipment Manufacturer 
(OEM) to send a model to a machine shop and for that machine shop to process the 
geometry and make the part on its milling and turning machines [15]. The standard 
currently proposes more than 40 Application Protocols dealing with different 
aspects of product information or product manufacturing. 

To increase the application of the standard to the domain of manufacturing, the 
STEP community set up a working group, called “STEP manufacturing”, focused 
on the provision of standard information structures, related to products, with a 
manufacturing context e.g., manufacturing features and process plan structures. 

The manufacturing features aspect of their work has been captured in ISO 
10303-224. This provides a useful and comprehensive set of over eighty feature 
definitions. However these are targeted at machining features only and therefore do 
not address any of the multiple manufacturing context issues raised in section 3. 
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The provision of standard data structures to represent process planning data is 
beginning to be developed, with ISO 10303-240 now available to capture 
machining process plans. Other standards for casting and inspection are under 
development as ISO 10303-223 and ISO 10303-119, respectively. 

STEP-NC

STEP-NC supports the transfer of the required product and manufacturing 
information for NC code generation and is being developed within ISO 14649. 
This is planned to replace ISO 6983 “G-code” approach by specifying machining 
process rather than machine tool motion. The G-code approach is limited to specify 
the position and feed rate of axes and excluding valuable information such as part 
geometry and process plan. Therefore, the G-code approach is a low level 
programming approach and not portable from one NC controller to another. On the 
other hand, the STEP-NC is not only capable of representing full part description, 
but the manufacturing processes as well as the CAD design data with 
manufacturing information such as stock, cutting characteristics, and tool 
requirements [16]. 

11.4.2  Mandate – Resource, Time and Flow Models 

ISO 15531 MANDATE is an International Standard for the computer-interpretable 
representation and exchange of industrial manufacturing management data. The 
objective is to provide a neutral mechanism capable of describing industrial 
manufacturing management data throughout the production process within the 
same industrial company and with its external environment, independent from any 
particular system. The nature of this description makes it suitable not only for 
neutral file exchange, but also as a basis for implementing and sharing 
manufacturing management databases and archiving. 

This International Standard is organized as a series of parts, each published 
separately. The parts of ISO 15531 fall into the following series: resources usage 
management data, time model and manufacturing flow management data. All the 
parts of the MANDATE standard are written using the EXPRESS language to 
ensure better compatibility with ISO 10303. 

ISO IS 15531-32 is the part which provides a representation for resources usage 
management data. Manufacturing resources form the basis and long-term potential 
of any company. The efficient use of these resources is one of the main goals in 
industrial management. Comprehensive information about available manufacturing 
resources is required in order to take the necessary decisions for efficient resource 
usage. Since many different enterprise functions and therefore also different IT-
systems are dealing with manufacturing resources, a common, standardized model 
for resource description is necessary and provided by ISO 15531-32. This 
standardized model enables a company to communicate internally and externally 
about manufacturing resources and furthermore enables them to build up an 
industrial company’s resource database.  

A complete description of manufacturing resources is out of scope of the 
information model provided by the part 32 of the standard. Only data relevant for 
decisions concerning the usage of manufacturing resources (e.g., within process 
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planning or job scheduling) are considered. Therefore only data describing 
manufacturing resources in terms of their static and dynamic capabilities and 
capacities to perform manufacturing tasks are within the scope of this information 
model.  

ISO IS 15531-42 is the part which provides a time model. Software 
applications related to factory or enterprise production, such as scheduling 
software, manufacturing management software, cost evaluation software, 
maintenance management, purchasing software, delivery software, etc. strongly 
require a reference to time related features such as point in time (date) and duration 
(interval of time). These references are needed to ensure the necessary time related 
relationships between the events dealt with by the applications. The availability of 
standardized time related references is particularly important for complex 
applications with multi-process environments, what is an environment commonly 
met in manufacturing. 

In most of the standards, the time features are not independent from the events 
and the manufacturing management data they address. This leads to some 
difficulties in the way to handle time related relationships between events or data 
that include their own time relation and representation. In some of them the time 
related features may depend on events or objects addressed and their representation 
may change depending on the context, without any simple tool to identify the 
relation between them. This may be crucial in an environment where various 
processes are performed simultaneously or where many closely related software 
tools are used at the same time. 

Developed in compliance with the system theory approach this part of 
MANDATE identifies the time as a constraint of the system environment and 
provides time related features included in a time model fully independent from the 
events handled by the manufacturing system. This time model is also fully 
independent from any manufacturing management data used by the manufacturing 
applications.

ISO IS 15531-43 is a data model for manufacturing flow management. A
manufacturing management system manages the flow of information and materials 
through the whole production chain, from suppliers, through to manufacturers, 
assemblers, distributors, and sometimes customers. This part addresses the 
modeling of data for the management of manufacturing flows as well as flow 
control in a shop floor or factory. This manufacturing flow model is provided in 
the context of various processes that run simultaneously and/or sequentially, 
providing one or more products and/or components and involving numerous 
resources.

11.4.3  Process Specification Language 

There are many standards available and these do not necessarily form a coherent 
set to support the needs of manufacturing. While these offer the best options 
available today, they also have limitations in the definitions of the concepts which 
they use. They provide very clear syntactic definitions but very basic semantic 
definitions. PSL is a standard which brings semantic rigor to manufacturing 
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process modeling and has huge potential to offer improved information sharing 
across future manufacturing systems. 

The Process Specification Language (PSL) project, whose development started 
at the National Institute of Standards and Technology (NIST, US), is a formal 
language aimed at creating a neutral, standard language for process specification to 
serve as a neutral representation to integrate multiple process-related applications 
throughout the manufacturing life cycle. ISO 18629 provides a generic language 
for process specifications applicable to a broad range of specific process 
representations in manufacturing applications. 

ISO 18629 provides semantics to the computer-interpretable exchange of 
information related to manufacturing processes. Taken together, all the parts 
contained in the standard form a language for describing a manufacturing process 
throughout the entire production process within the same industrial company or 
across several industrial sectors or companies, independently from any particular 
representation model. The nature of this language should make it suitable for 
sharing process information related to manufacturing during all the stages of a 
production process. 

The primary component of PSL is its terminology for classes of processes and 
relations for processes and resources, along with definitions of these classes and 
relations. Such a lexicon of terminology along with some specification of the 
meaning of terms in the lexicon constitutes what is known as an ontology. Within 
the ISO 18629 standard, the ontology is the PSL ontology for processes. The 
specification of models of PSL provides a rigorous mathematical characterization 
of the semantics of the terminology of PSL.  

The current components of ISO 18629 are grouped into the following parts: 
- Part 1: Overview and basic principles; 
- Part 11: PSL-Core; 
- Part 12: Outer Core; 
- Part 13: Duration and ordering theories; 
- Part 14: Resource theories; 
- Part 41: Activity extensions; 
- Part 42: Temporal and state extensions; 
- Part 43: Activity ordering and duration extensions; 
- Part 44: Resource extensions; 

Additional extensions may be developed later according to industry needs by 
any standardization committee. All the parts of the standards listed have now 
reached the International Standard level.  

11.5 Exploiting Product and Process Knowledge in Future 

We propose that there are three major requirements to be set against information 
systems research in order for manufacturing businesses to exploit product and 
process knowledge in the future. These are: 

1. Improved access to knowledge 
2. Learning from manufacture 
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3. Tapping supply chain capability knowledge 

Improved access to knowledge is a key requirement for manufacturing 
information systems in the future as continued improvement in support for people 
in their decision making will be necessary. The improvements from today are 
likely to be in terms of the quality of the information, the relevance of the 
information, the speed and ease of access to the information.  

New systems are emerging in the area of shop floor data collection which not 
only support the immediate process control requirements of manufacture but also 
offer the potential to improve the understanding of how manufacturing processes 
can be optimized. Figure 11.10 illustrates how shop floor data collection can be 
used not only for product control but also process control. The combination of 
these and the ability to analyze both product and process data simultaneously offers 
an ideal route to building and enhancing manufacturing knowledge and feeding 
this back into a capability model as discussed in Section 11.2. 

Figure 11.10. Learning from manufacture 

As businesses strive to be more responsive there is a further need to tap and 
understand the capability of their supply chains and to be able to reconfigure their 
supply chains in a rapid, responsive and effective way. This leads to a requirement 
which is to understand the process capability of their suppliers as well as the 
product capability. In this way effective networks of collaboration can be 
introduced as illustrated in Figure 11.11. 
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Figure 11.11. Collaborative capability networks 

11.6 Conclusions 

It is important that PLM configuration is undertaken with a clear view of the 
manufacturing aspect of the life cycle in mind. With current technology it is 
possible to construct manufacturing capability models, link these to product part 
families or features and to use these to support process plan generation and offer 
manufacturing support during design. 

We have shown some early ideas on how to integrate multiple context 
approaches to support decision making. However there is a need for substantial 
research in this area to better support teams of engineers working together through 
a common PLM system. Similarly there will be a need to include higher levels of 
knowledge within PLM and provide mechanisms for the maintenance of that 
knowledge.

International standards play an important role in providing independent 
approaches to information sharing although the current standards have had limited 
uptake. In looking forward, there are substantial benefits to be gained once 
interoperation between PLM systems can be achieved. This needs to be based on 
flexible, rigorous methods which support shared meaning between systems. 

Information organization is critical to decision support.  Substantial progress 
has been made in terms of lifecycle models and product structure. However, for 
future advances to tap higher benefits for business there is a need for greater 
understanding of how to manage context relationships, knowledge maintenance 
and supply chain capability. 
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Semantic interoperability is a measure of the ability for heterogeneous processes 
and systems to understand, utilize, and transform meanings of product data in 
collaborative product development. Lack of formal and explicit semantics in digital 
product representations has imposed increasing difficulties in achieving semantic 
interoperability. This chapter presents a method to capture data semantics with 
product representations and to formalize data meanings with ontologies to support 
semantic interoperability. Both the object-based CAD modeling and STEP-
compliant data modeling approaches are integrated with the OWL (Web Ontology 
Language) description framework. Common vocabularies, domain ontologies, and 
semantic schema mappings are defined to represent, interpret, map, and share the 
semantically interoperable product information across collaborating applications. 
Based on this method, a software prototype has been implemented and tested with 
collaboration scenarios in cross-disciplinary CAD, quality and reliability control, 
and product development process management. 

12.1 Introduction 

In Collaborative Product Development (CPD), a network of multi-functional 
disciplines (such as mechanical, electrical, optical and software engineering, 
quality assurance, and manufacturing) with their partners and suppliers works 
together to achieve common goals for competitive products. Numerous CPD 
processes and computer-supported applications are used in this collaboration 
environment, which is very heterogeneous because multi-disciplinary systems, 
proprietary product models, various data representation formats, and different 
domain terminologies and concepts are involved. A major challenge in achieving 
effective collaboration in such a heterogeneous environment is the lack of formal 
and explicit semantics in digital content to enable semantic interoperability. 
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According to Pollock [1], data semantics are the meaning of data. Meaning is 
subjective, and the interpretation of data semantics is constrained by context [1]. 
When contexts change, semantics also change. Product semantics issues have 
caused substantial difficulties in understanding and interpreting data meanings 
from one engineering application to the other. For example, ambiguous or implicit 
semantic content of geometric models (2D, 3D, solid, or shell) from a CAD 
application would cause different interpretations from a CAE application (e.g., 
Ansys, Nastran, or Abaqus), which could lead to the failure of a design 
collaboration effort. 

Over the years, a wide range of researches on product information exchange 
and data semantics integration has been conducted [2-5]. There have been widely 
accepted methodologies and frameworks that support neutral product/process 
information representation and exchange, such as the STEP [6] and ebXML [7] 
standards. The recent developments in grid technologies and middleware solutions 
have proposed new approaches and tools to semantically integrate the digital 
content and manipulate it over a network [4, 5]. The other advanced technologies, 
including Semantic Web and Web Services, have also been applied to engineering 
information management and knowledge sharing, innovative product design and 
engineering, design search and optimization, etc. [8, 9]. Among others, the product 
data model standardization and ontology engineering are widely recognized as an 
effective way to tackle the interoperability issues in multi-disciplinary applications.  

In the standardization approach, all applications involved in a CPD project will 
adhere to standard product data specifications, such as STEP [6] Application 
Protocols or PSL XML [10] schemas. As the standards have specified meanings 
and structures for their data and terminologies, all collaborating parties and 
applications have to use the same sets of terms, labels, data schemas, and 
communication mechanisms. By agreeing on the use of the fixed interpretations, 
these applications could achieve disambiguity of data semantics in the context of 
the standards. However, the engineering meaning of standards is often implicitly 
encoded in the structures of their syntax, in the schemas of their data models, or in 
the priori agreements about interpretations of their terminologies. As lacking of 
formal and explicit semantic definitions in these standard specifications, they 
cannot ensure the consistent interpretation, understanding, and implementation of 
application semantics across disciplines. Furthermore, as the contexts of semantics 
in standards are fixed, the standardization approach is not flexible enough to 
resolve the semantic heterogeneity of multi-disciplinary applications. The approach 
may only be useful in restricted domains and relatively homogeneous 
environments [11]. 

Another approach to semantic interoperability is based on domain specific 
ontologies, in which semantics of terminology systems are specified in a well-
defined and unambiguous manner [12]. Local vocabularies rather standardized 
global vocabularies are established to formally and explicitly capture, infer, and 
map the data semantics in particular product development contexts.  Meanings of 
terminologies are encoded in formal languages such as OWL (Web Ontology 
Language) [13] and RDF (Resource Description Framework) [14]. Compared with 
the standard-based approach, the ontology-based approach is more suitable for use 
in non-restricted domains and heterogeneous environments [11]. Obviously this is 
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an important development in semantic interoperability of heterogeneous systems, 
which has inspired our research reported in this chapter. 

This chapter presents a method to capture data semantics with product 
representations and to formalize data meanings with ontologies to support semantic 
interoperability of CPD systems. The method integrates both the object-based 
CAD modeling and STEP-compliant data modeling approaches with OWL to 
represent, understand, interpret, and share the semantically interoperable product 
information across collaborating systems. It involves three areas: ontology 
engineering, object-based CAD, and product model standardization: 

Ontologies represent formal, explicit and shared understanding about 
application semantics, domain concepts and their relationships. They allow 
classification and precise description of the concepts/terminologies used in 
a domain and enable semantic mappings between them.  

Object-based CAD modeling captures both geometric and non-geometric 
data and their semantics as product properties, behaviors, inter-part 
relationships or constraints, and associates them with CAD objects to 
present more comprehensive multi-views to a wide range of CPD 
applications.

Product data model standards serve as a common foundation for 
interoperating multi-disciplinary applications. In particular, the STEP and 
XML standards address the information sharability by classifying and 
defining the standardized information elements and their relationships, and 
facilitate the data communication between applications by the use of open 
and neutral file formats and databases.  

The following sections focus on how these three areas can be integrated to 
resolve semantic interoperability issues in CPD processes and applications. The 
specific discussion includes: semantic interoperability concepts and enabling 
technologies in Section 12.2; product semantics capturing and STEP extension 
modeling in Section 12.3; vocabulary taxonomy and OWL ontology in Section 
12.4; semantics-driven schema mapping in Section 12.5; software implementation 
of the approach in Section 12.6; collaboration scenarios in Section 12.7; and a 
conclusion remark in Section 12.8. 

12.2 Semantic Interoperability Concepts and Technologies 

Semantic interoperability is defined as a measure of the ability for heterogeneous 
processes and systems to understand, utilize, and transform meanings of product 
data in collaborative product development. Semantic interoperability mainly 
involves the issues of specifying, understanding/interpreting, and interoperating the 
heterogeneous product information in a semantically consistent manner. To address 
these issues, three key technologies are identified and used in this research: STEP 
standard for product information exchange, sharing, and interoperation; ontologies 
for explicitly specifying, understanding, and interpreting product semantics and 
their contextual constraints; and object-based product models for capturing product 
data semantics. 
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12.2.1 Data-driven Interoperability Standard 

STEP is one of the most important product model standards for data-driven 
interoperation and integration of heterogeneous systems. STEP aims to provide an 
open, neutral product information representation and exchange mechanism for 
products throughout their lifecycles. Using the Express [15] information modeling 
language and the STEP integrated resources, the STEP community has developed 
more than 40 STEP Application Protocols (AP) to date for different lifecycle 
applications in mechanical, electronic, ship, and building design, engineering 
analysis, process planning, manufacturing, product lifecycle support, etc. Table 
12.1 shows some of these APs.  

STEP addresses the product information exchange, sharing, and interoperability 
issues by:  

Classifying and defining the standard information entities, rule 
relationships, and data inheritance models to capture the product 
information in individual application domains; 

Mapping the captured information into product lifecycle entities (defined in 
the STEP integrated resources) to be shared by all STEP APs, such as those 
shown in Table 12.1; 

Facilitating the exchange and sharing of the product lifecycle information 
across multi-disciplinary applications by standard data exchange formats 
(Part 21 and Part 28) and the Standard Data Access Interfaces (Part 22). 

Some STEP APs, such as AP203 and AP214, have been implemented in 
commercial CAD systems to provide the capabilities for importing and exporting 
STEP Part 21 files. The downstream STEP-compliant applications will then use the 
neutral STEP files for CAD model data exchange and sharing. However, the 
downstream lifecycle applications are increasingly demanding more additional 
product information from CAD models, while advanced CAD systems can really 
generate models containing these additional information contents. The problem is 
that capturing the additional product data and their meanings in semantically-sound 
extensions of STEP models is very challenging. This has hampered the 
implementation and utilization of the STEP-based interoperability approaches in 
multi-disciplinary CPD systems. 

12.2.2 Ontologies

Ontologies specify the semantics of terminology systems of product models 
and the meanings of product data formally and explicitly. In particular, OWL [13] 
provides rich ontological constructs including the OWL formal definitions and 
axioms to enable representation of and reasoning over the given concepts in an 
ontology for deriving their logical consequences. 
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Table 12.1. STEP application protocols 

Part 201  Explicit drafting Part 221  Functional data and schematic 
representation for process plans 

Part 202  Associative drafting Part 222  Design engineering to mfg. for 
composite structures 

Part 203  Configuration controlled design Part 223  Exchange of design and mfg. 
DPD for composites 

Part 204  Mechanical design using 
boundary representation 

Part 224  Mechanical product definition for 
process planning 

Part 205  Mechanical design using surface 
representation

Part 225  Structural building elements using 
explicit shape representation 

Part 206  Mechanical design using 
wireframe representation 

Part 226  Shipbuilding mechanical systems 

Part 207  Sheet metal dies and blocks Part 227  Plant spatial configuration 

Part 208  Life cycle product change 
process

Part 228  Building services 

Part 209  Design through analysis of 
composite and metallic structures

Part 229  Design and manufacturing 
information for forged parts 

Part 210  Electronic printed circuit 
assembly, design and mfg. 

Part 231  Process engineering data 

Part 211  Electronics test diagnostics and 
remanufacture 

Part 232  Technical data packaging 

Part 212  Electrotechnical plants Part 233  Systems engineering data 
representation

Part 213  Numerical control process plans 
for machined parts 

Part 234  Ship operational logs, records 
and messages 

Part 214  Core data for automotive 
mechanical design process 

Part 235  Material information for products 

Part 215  Ship arrangement Part 236  Furniture product and project 

Part 216  Ship molded forms Part 237  Computational fluid dynamics 

Part 217  Ship piping Part 238  Integrated CNC machining 

Part 218  Ship structures Part 239  Product life cycle support 

Part 220  Printed circuit assembly 
manufacturing planning 

Part 240  Process planning 

Ontologies can be distinguished into two categories [16]: logic-based and non-
logic-based, depending on whether logical axioms and definitions are used in 
ontologies or not. Typically a logic-based ontology explicitly specifies the 
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semantics of terminologies through ontological definitions and axioms. The 
ontological definitions build a common understanding about terms, concepts and 
relations, while the axioms enable reasoning, mapping and matching of these 
definitions to admit or reject interpretations of terminologies and concepts. Non-
logic-based ontologies, on the other hand, do not use axioms to specify the 
semantics of terminologies. Instead, they define the meanings of terminologies by 
reaching priori consensus and by fixing the interpretations with respect to pre-
defined contextual constraints. Product data standards such as STEP specifications 
and XML schemas are often considered as non-logical ontologies. 

There are two strategies in facilitating semantics interoperability of multi-
disciplinary systems. The first one depends on a logic-based ontology to provide a 
reference of the transformation between terminology systems of heterogeneous 
applications. The semantics of the more specific terminologies from individual 
applications are then mapped to the meanings of the more generic terminologies in 
the reference ontology. Hence, the semantics of individual application model data 
can be understood and shared on the basis of the reference ontology (see Section 
1.5 for an example of using a logic-based reference ontology in semantic schema 
mapping). In the second strategy, product data standards are used as shared non-
logical ontologies. By using the same terminology system of a standard in an 
unambiguous way, all applications adhered to the standard will achieve 
interoperability.

In this research, a hybrid approach integrating both the standard-based and 
logic-based strategies is used to establish semantic interoperability among multiple 
application domains of CAD, quality and reliability control, and CPD process 
management. The STEP specifications are used as common non-logical ontologies 
for the representation of applications-specific information beyond standard STEP 
datasets, while a logic-based reference ontology and a set of domain ontologies in 
OWL are developed for the description, annotation, interpretation, and reuse of 
application semantics in these three application domains. To achieve this, the 
relevant application data semantics must be captured in CAD models, or more 
generally, captured in product models. 

12.2.3 Product Models 

Product models are the computer interpretable and processible digital 
representations of products. Product models formalize the syntax and semantics of 
product expressions, such as symbols, terminologies, concepts, or relationships. 
During the lifecycle of a product, different models are constructed to satisfy 
different information needs from different lifecycle applications. For example, 
product data models are often used for formalizing the product design information, 
bill of material, shape representation, product configuration, and so on; 
CAE/FEA/CFD models used for product functionality analysis or simulation; 
product development process models for design activity control, process 
information flow, task dependency description, process planning, etc.; and product 
performance models for quality, cost, time-to-market management and 
improvement. The present research has developed three types of product models 
(i.e., product supplementary information models, product performance models, and 
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CPD process models) either in a STEP-compliant format or in an application-
specific representation format for product semantics capturing and sharing in CAD, 
quality and process management applications. 

(1) Supplementary Information Model 

Supplementary information is defined as the additional product information 
described with explicit data semantics and embedded in CAD models. The 
supplementary information includes semantic properties (material, cost, quality 
criterion, process data, etc.), object behaviors (executable CAD manipulations, 
external programs, etc.), reference links to external sources (online product catalog, 
regulation standard, classification and specification system, etc.), interdisciplinary 
relationships (between design objects/components developed by different 
disciplines), and so on. 

The STEP technology and object-based CAD modeling techniques are used for 
the development of supplementary design information models. The STEP AP203 
[17] is used as the common data representation model for the mechanical domain, 
and AP210 [18] for the electronic domain in the present study. These two STEP 
APs are extended with supporting definitions for richer product semantics on entity 
types, object behaviors, relationships, constraints, etc. These supplementary 
definitions are modeled as STEP extensions and populated with product datasets 
extracted from the object-based CAD models or from user inputs [19]. Two STEP 
extension mechanisms are investigated to connect the supplementary definitions in 
the extension models to the relevant entities already existed in the standard STEP 
product models (details in Section 12.3.3). Semantic mappings are conducted to 
match the supplementary definitions with the extended STEP definitions (details in 
Section 12.5). In this way, the STEP-compliant product data models are developed 
to support semantic interoperation of CAD and other applications. 

(2) CPD Process Model 
A CPD process model describes the structures of collaborative product 
development activities, their dependencies, and interactions of information items 
among activities. Different process models in Express-G [15] and ARIS [20] are 
developed for modeling the new product introduction (NPI) processes of consumer 
products [21]. Through the use of ontologies for meta-data provisioning, the data 
meanings of the native NPI process models are annotated and extracted to populate 
the semantic definitions of the supplementary information models, so that they are 
capable of providing commonly understandable and semantically richer NPI 
process information for interoperating with other relevant applications. 

(3) Product Performance Model 
A performance model explicitly defines the relationships between a set of 
performance control variables and a performance measure. Three performance 
measures (i.e., quality, time and cost) are identified to evaluate the performance of 
the NPI processes. Proprietary performance models, such as a quality matrix, a 
design cycle time model, and a relative cost index, are developed to measure, 
control and improve the performance of consumer product development [23]. The 
semantics of the performance data are classified and described by domain 
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ontologies, according to which the native data pertaining to the performance 
models are related to the extended STEP models as semantic properties or as 
reference-linked performance criteria to be shared with other design applications. 

(4) Relationships between Product Models 

For these three application domains of CAD, quality/reliability control, and CPD 
process management, the information from each is organized in a native product 
model, which is either a CAD model, a process model, or a performance model. 
The model data from these models can be treated as some kinds of supplementary 
information to be organized in a supplementary information model, which will be 
mapped to a STEP extension model (details in Sections 12.3 and 12.5 respectively). 
The relationships of these product models with the supplementary information 
model and the extended STEP data model are illustrated in Figure 12.1. 

Native Product 
Models 

CAD Model Performance 
Model 

Process 
Model 

Extensible, 
Semantics-Rich, 
Supplementary 

Information 
Model

STEP-Compliant 
Product Data 
Model with 
Semantic 

Supplements 

Figure 12.1. Product model relationships 

The purpose of the supplementary information model in Figure 12.1 is to 
capture the data semantics from each product model, by specifying the data 
meanings and their contextual constraints in supplementary information definitions 
in order to provide interoperability. It is therefore not intended to cover all aspects 
of the information pertaining to individual product models, but to ensure that 
sufficient data semantics in well-defined collaborative contexts are captured and 
can be shared to any collaborating parties. The relationships in Figure 12.1 will be 
further described by domain ontologies and used for semantics-driven schema 
mapping in Section 12.5. 
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12.3 Product Semantics Capturing and STEP

Extension Modeling 

12.3.1 Representing Semantics in Supplementary Information Models 

Semantic interoperation and integration requires that the product information 
generated from one application, such as a CAD system or a process management 
system, must be made understandable and transferable among other applications. 
By using a CAD system, 2D/3D design objects are created. On top of the CAD 
data, other product information such as the supplementary information (defined in 
Section 1.2.3) needs to be modeled, attached to and updated with the CAD objects, 
so that they would be able to support the data semantics needs from other 
downstream applications in the product lifecycle. For the supplementary 
information, it is essential to ensure the information carrying unambiguous 
semantics understandable and interpretable by other software applications. Toward 
this end, the following modeling method is developed.  

In this method, the traditional CAD models generated from a CAD system are 
extended with the supplementary information. Implicit data semantics from CAD 
models are made explicit and captured in a set of entity type definitions, including 
the entity property and entity behavior definitions, so that the extended CAD 
objects can carry not only geometric representations and design characteristics 
from the CAD system, but also semantic instantiations from entity type definitions.  

The entity types describe the object-based product supplementary data and 
precisely represent the intended meaning of these data. An entity type is defined by 
attributes and contextual constraints. An attribute has an identifier and a type 
indicator. A contextual constraint contains a set of explicit relations and methods to 
limit the validity of the attribute meanings, types and values that a hosting CAD 
system can support. All the attributes and contextual constraints of an entity type 
together describe the supplementary dataset semantics being defined. The entity 
types are configurable and may contain any number of attributes and constraints, 
depending on the needs for semantic description from particular viewpoints. For 
example, the following expression gives a definition for an entity property with 
five attributes and two contextual constraints. It is defined for a reliability testing 
application of consumer electronic components.  

<PropertyName, Description, Value(>= 0), Unit(Enum(hour, min, g, )), RefNo> (12.1) 

Expression (1.2) below defines an entity behavior with six attributes without 
any context constraints. It is for the use in a new product development application. 

<ObjectType, ObjectName, Description, Value, ExeType, RefNo> (12.2)

Using the entity property definition in Expression (12.1) as a template, the 
property objects can be instantiated. During instantiation, the contextual constraints 
in Expression (1.1) will not be presented in the property objects generated. Instead, 
they are implemented as constraint algorithms in the software add-on tools of CAD 
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systems. Whenever a property object is instantiated, these constraint algorithms 
will be invoked to ensure that the auto-extracted or user-entered attribute values 
and types are compliant with the data scopes and types defined in Expression 
(12.1). Table 12.2 shows an example for modeling, according to Expression (12.1), 
a set of property objects to be used in the reliability testing of electronic 
components.  

Table 12.2. Example of property objects for reliability testing 

Similarly, the behavior objects can be modeled from the entity behavior 
definition in Expression (12.2). Table 12.3 lists some behavior objects for the 
supplementary information related to new product development in design and 
testing. It includes two CAD behavior objects for CAD manipulations of Explode
and Position, two inter-part relationship objects for LocatedOnTop and Enclosing

relations between CAD models, two constraint objects for the upper and lower 
time limits of ShelfTime and TransitionTime in the reliability testing, and one 
reference link object PartDetail pointing to a supplier’s Website for product 
specifications.

Through the use of property objects and behavior objects in Tables 12.2 and 
12.3, meanings of the supplementary information are captured in object-based 
representations. These semantics-rich objects will be encapsulated in CAD models 
for reuse across disciplines. 

12.3.2 Embedding Supplementary Information in CAD Models 

The supplementary information modeled by property and behavior objects in 
Tables 12.2 and 12.3 needs to be embedded into CAD models to make the 
information accessible and reusable for other downstream applications. Two 
methods are developed by which the property and behavior instances can be 
embedded in CAD models. The first method embeds these supplementary objects 
through CAD associations. Many commercial CAD packages such as the 
AutoCAD system used in this study, provide native facilities for constructing such 
associations. They provide facilities to store the CAD associations and their 
pointed property and behavior objects, together with the embedding CAD models, 
in data structures recognizable and processible by CAD systems. This method is 
simple, effective, and suitable for embedding CAD behaviors for use in CAD 
systems. 

PropertyName Description Value Unit RefNo 

Mass Mass of sample component. 15 g Test001 

Temperature Test temperature. 50 Test010

ShelfTime 
Time from a sample placed in a test 
chamber till a stabilized chamber 
temperature reached. 

10 min Test011 
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Table 12.3. Example of behavior objects 

ObjectType ObjectName Description Value ExeType RefNo 

Explode
Auto explosion of an 
imported CAD object   
into native objects. 

Explode dvb B010 

CadBehavior

Position
Smart positioning of  
an imported object  in  
a CAD workspace. 

Position java B011 

LocatedOnTop

Component on every  
layer is located one on  
top of the other to form 
a  vertical tower. 

(Xij,Yij,Zij) [k]* = 
(X0j,Y0j,Z0j) [k]*

k = 1,2, …, 
MaxLayer 

cc R020 

Relationship

Enclosing
Component 1 is  
enclosed  in 
Component 2. 

(X1,Y1,Z1) [k]* 

(X2,Y2,Z2) [k]*  

k = 1, 2, …, 8 

cc R021 

MaxShelfTime 
Upper time limit for a 
sample placed in a test 
chamber. 

30  C030 

Constraint

MinTransitionTime
Lower time limit for 
temperature exposure 
of   a sample. 

5  C031 

RefLink PartDetail 
Part specifications at a 
supplier’s Website. 

http://www.hrent
.com/inv.htm

hyperlink L041 

* (Xij,Yij,Zij) [ ] – a vertex coordinates array for a component at jth position on ith layer.  
   (X0j,Y0j,Z0j) [ ] – a base vertex coordinates array for the jth vertical tower. 
   (X,Y,Z) [ ] – a vertex coordinates array of the enclosing or enclosed cube of a component.   

The second method is used to embed complex behavior instances in CAD 
models, such as the Explode CAD manipulation and the LocatedOnTop

relationship in Table 12.3. These instances are generated with complicated 
behavior information even external application programs. They are assigned to the 
relating CAD models by object links. A CAD add-on tool is needed to instantiate 
such object links on a hosting CAD platform. In the current research, a design 
Object Creation Wizard (details in Section 12.6.2) has been implemented as a CAD 
add-on tool for the AutoCAD system. When an object link between a behavior 
object and a CAD model is instantiated, this linkage relationship, rather the 
behavior object itself, will be embedded into the CAD model, retrievable and 
editable from the CAD modeling environment. The second method is suitable for 
embedding inter-part or inter-discipline relationships, constraints, and reference 
links needed for use in CAD and non-CAD systems, such as in CPD process 
management and quality assurance systems. 

12.3.3 Modeling STEP extensions 

To make the supplementary information STEP-compliant, the following STEP 
extension mechanisms, i.e., property relationship extension and subtyping 
extension, are used.  
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(1) Property Relationship Extension Mechanism 
Figure 12.2 illustrates the concept of the property relationship extension 
mechanism. In this method, the property and behavior objects defined in Section 
12.3.1 are categorized into property sets (Pset), such as the reliability testing Pset 
or 3D representation maps Pset. The relationship entities are then specified to 
assign the relating Psets to the related entities in an existing STEP model. These 
relationship entities may be the subtypes extended from the standard STEP 
relationship entities by using the subtyping extension mechanism discussed in the 
next section. 

Property 
Set 

STEP  

Entity 1 

Relating 

Property Set

Related 

Object

Related 

Object

...
STEP  

Entity N Properties Has 
Properties 

STEP  

Entity 2 
Relationship 

Entities

Figure 12.2. Property relationship extension mechanism 

(2) Subtyping Extension Mechanism 
In the subtyping extension, new entity definitions are created as subtypes of an 
existing STEP entity. Figure 12.3 describes this extension mechanism in Express-G 
[15] notation. 

Supertype 

Existing 
Subtype 1 

Existing 

Subtype 2 
Existing 

Subtype 3

New 

Subtype 4 

Existing Subtypes Extended Subtypes

1                    Exclusive (ONE OF)

New 
Subtype 5 

Figure 12.3. Subtyping extension mechanism 

By using the exclusive (ONE OF) subtype/supertype constraint of the Express 
[15] language, new entities can be exclusively subtyped into the existing supertype 
entities. The extended entities are then used for example as relationship entities to 
connect the supplementary property set definitions to those entities already existed 
in the STEP product models. 

12.3.4 Capturing Semantics in STEP-compliant Product Models 

Using the information embedment approaches in Section 12.3.2, the product 
supplementary information is made available with CAD models in CAD native 
formats. The information is, however, only reusable on compatible CAD platforms. 
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This section discusses issues related to supplementary information capture in 
STEP-compliant product data models to make it applicable to STEP based CAD or 
non-CAD applications. To do so, the STEP Psets and inclusion properties are 
specified. For example, a single valued property, as an extended entity of STEP 
AP203, can be defined as follows. 

<Name, Description, NominalValue, Unit> (12.3) 

And a property set as: 

<Name, Description, GlobalId, HasProperties> (12.4) 

These extended entity definitions in Expressions (12.3) and (12.4), together 
with other STEP extension definitions will be instantiated with the supplementary 
information, through semantic mapping (details in Section 12.5), to form a STEP 
AP203 compliant product model that not only captures the semantics of the 
supplementary information, but also make the captured information interoperable 
to other STEP compliant applications. 

12.4 Taxonomy and Ontology 

12.4.1 Vocabulary Taxonomy 

A vocabulary contains a collection of commonly agreed terminologies/concepts in 
a domain. Taxonomies characterize and organize complex domain vocabularies 
into hierarchical structures. A taxonomy is often used as a kind of semantic 
agreements to achieve an explicit naming approach to the shared use of data 
semantics, and to remove misunderstanding and misinterpretation of shard 
information. A CPD vocabulary taxonomy has been developed to classify and 
manage the shared terminologies together with their explicitly defined meanings 
used in the development of consumer products. The terminologies are mainly used 
for naming properties, CAD behaviors, object relationships and constraints of the 
supplementary information. All terminologies in the vocabulary taxonomy are 
inter-connected by “is-a” (super-sub) and “part-of” (part-whole) relations. Figure 
12.4 depicts an excerpt of the vocabulary taxonomy. 

The is-a relation of the vocabulary taxonomy in Figure 12.4 exists between 
domain concepts being classified, while the part-of relation between attributes 
within a concept. One of the logical properties of the is-a relation is transitive, 
which implies that if x is a subclass of y and y is a subclass of z, then x is also a 
subclass of z. This axiom can be illustrated by our example in Figure 12.4: 
ShelfTime is a subclass of ReliabilityTestProperty that in turn is a subclass of 
SemanticProperty. Due to the transitivity of the is-a relation, it can be inferred that 
ShelfTime is also a subclass of SemanticProperty, i.e., every instance of ShelfTime

shall be an instance of SemanticProperty. For example, Figure 12.4 characterizes 
that the ShelfTime has five attributes for: 

<Property Name, Description, Value, Unit, RefNo.> 
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Figure 12.4. An excerpt of the vocabulary taxonomy 

Suppose there exists a ShelfTime instance for an electronic component:  

<ShelfTime_i1, Time from “Component_1” is placed in a test chamber till a 
stabilized chamber temperature reached, 10, min, Test011> 

It can be inferred that SemanticProperty should also contain such an instance 
with exactly the same attribute values. When a reliability testing system searches 
for temperature cycling parameters, the query will be based on the semantics of the 
instance, rather on the particular terms used by a tester or used in a test parameter 
database. The vocabulary with its explicit hierarchical structure, terminology 
definitions, and inter-connection relations provides a semantic basis for OWL 
domain ontology modeling. 

12.4.2 OWL Ontology 

Domain ontologies in OWL are developed to make the intended meaning of CPD 
domain concepts (terminologies) explicit, through attaching information about the 
properties of relations to the terminologies. The domain ontologies are then 
organized in a reference ontology used for mapping and sharing the product 
supplementary information and semantics across CAD, quality assurance, and CPD 
process management applications. The is-a and part-of relations in the vocabulary 
taxonomy in Section 12.4.1 are formalized and expanded with the OWL constructs, 
which provide rich semantics for the development of domain specific ontologies, 
including the logical relations (such as owl:differentFrom, owl:disjointWith,
owl:inverseOf); properties of relations (owl:TransitiveProperty,
owl:SymmetricProperty, owl:FunctionalProperty); restriction types (owl:hasValue,
owl:cardinality); and so on.  
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Each domain concept in the vocabulary taxonomy in Figure 12.4 is defined by 
an OWL class. Attributes of a concept class are formalized with the OWL datatype 
properties (owl:DatetypeProperty), while relations between classes are modeled 
with the OWL object properties (owl:ObjectProperty) and other relation constructs. 
Figure 12.5 shows an OWL class for the definition of the ShelfTime concept. 

Figure 12.5. OWL class definition for ShelfTime

The is-a relation between concepts of ShelfTime and ReliabilityTestProperty in 

Figure 12.4 is formalized by subClassOf axiom (Class1  Class2) in Figure 12.5. 
The other OWL axioms used in Figure 1.5 are equivalentClass (Class1  Class2) 

and disjointWith (Class1  ¬Class2). The logical axioms provide mechanisms for 
query, matching and reasoning about concepts, their attributes and relations. For 
example, the specification of the disjointedness of ShelfTime with other four 
classes in Figure 12.5 ensures that an individual cannot be an instance of more than 
one class of the five. And the equivalent class, specifying that two classes have 
exactly the same instances, is often used to indicate synonyms for the use of 
domain concepts across disciplines. 

An OWL property, such as ObjectProperty or DatatypeProperty is a binary 
relation to relate instances of two OWL classes, or relate an OWL instance to a 
RDF [14] literal or an XML Schema datatype [22]. Figure 12.6 shows that the 
ShelfTime instances are associated with the DesignComponent instances by an 
ObjectProperty, and with the string datatype of XML Schema by a 
DatatypeProperty.

Figure 12.6. OWL properties for ShelfTime 

Both the object and datatype properties in Figure 12.6 use the domain-range

pairs to restrict the binary relations specified. Besides the domain-range pair, there 

<owl:Class rdf:ID="ShelfTime">
   <rdfs:subClassOf rdf:resource="#ReliabilityTestProperty"/>
   <owl:equivalentClass rdf:resource="&onto2;ChamberingTime"/>
   <owl:disjointWith rdf:resource="#Temperature"/>
   <owl:disjointWith rdf:resource="#TransitionTime"/>
   <owl:disjointWith rdf:resource="#CycleNumer"/>
   <owl:disjointWith rdf:resource="#Mass"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="associatedWith">
   <rdfs:domain rdf:resource="#ShelfTime"/>
   <rdfs:range rdf:resource="#DesignComponent"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="propertyName">
   <rdfs:domain rdf:resource="#ShelfTime"/>
   <rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
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are a variety of other OWL restrictions such as cardinality restrictions 
(maxCardinality, minCardinality and cardinality) that can be used to constrain the 
range of an OWL property in specific contexts. For example, the class definition 
for ShelfTime in Figure 12.5 can be further extended with a minCardinality

restriction to constrain that the ShelfTime class has at least one associatedWith
property, as shown in Figure 12.7. 

Figure 12.7. OWL restriction on a property of ShelfTime 

Described by these formal, explicit and rich semantics shown in Figures 12.5, 
12.6 and 12.7, the domain concept of ShelfTime, its properties and relationships 
with other concepts can be incorporated into the shared reference ontology to be 
queried, reasoned or mapped across disciplines to support the interoperability of 
heterogeneous systems. 

12.5 Semantics-driven Schema Mapping 

Schema mappings from the supplementary information definitions to the extended 
STEP Pset definitions are established based on the common vocabulary and the 
OWL ontologies developed in the previous section. The difference between 
conventional schema mapping and semantics-driven schema mapping is that the 
latter uses ontologies to capture the relationships and contexts of maps. The scope 
of the semantic assertions in the semantics-driven approach is also constrained by 
ontologies. Figure 12.8 shows our semantics-driven schema mapping approach. 

In the semantics-driven approach, ontology can be used either as a global 
schema or as a semantic transformation reference in schema mapping. In the 
former case, the ontology, either a standard-based or a logic-based, should be more 
abstract than any of the application schemas being mapped to it. During the 
mapping process, maps between the vocabulary of each application and the 
vocabulary of the global ontology are defined in order to transform the data 
semantics. By interpreting the underlying ontology and applying the semantic 
definitions, relationships, and axioms described in the ontology to the translation 
process, the semantic maps transform the data semantics from application to 
application, or from local schemas to the global one. 

<owl:Class rdf:about="#ShelfTime">
   <rdfs:subClassOf>
      <owl:Restriction>
         <owl:onProperty rdf:resource="#associatedWith"/>
         <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">
            1
         </owl:minCardinality>
      </owl:Restriction>
   </rdfs:subClassOf>

</owl:Class>
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Figure 12.8. Semantics-driven schema mapping 

In our approach in Figure 12.8, the product supplementary information 
definitions are mapped to the extended STEP property definitions via domain 
ontologies. However, the ontologies themselves are not used as the global schema. 
Instead, they are used as a reference to provide a pivot point for the reinterpretation 
of the data meanings in different schemas from different applications. Our 
approach uses the STEP model as a global schema in semantic mapping. The maps 
from the supplementary information definitions in Expressions (12.1) and (12.2) to 
the extended STEP property definitions in Expressions (12.3) and (12.4) are 
established based on the ontological relations in domain ontologies. These 
ontologies are defined by drawing terminologies from the common vocabulary. In 
the mapping process, semantically equivalent components in the expressions above 
are identified and compared based on the semantic descriptive definitions of 
terms/concepts, and the semantic relationships and rules in the domain ontologies. 
The semantic mapping knowledge is then established at both the entity and 
attribute levels.

Based on the mapping knowledge, semantically equivalent concepts in both the 
supplementary and the STEP extension definitions are mapped to each other. A 
few semantic maps between the STEP extension in Expression (12.3) and the 
entity property definition in Expression (12.1) and the entity behavior definition in 
Expression (12.2) are shown in Figure 12.8. 

Figure 12.9 below presents an excerpt of the reference ontology used in Figure 
12.8 to define the semantic maps. It specifies the relations between the domain 
concepts of Name, RefNo, NameString, PropertyName and BehaviorName in 
Figure 12.8. There are is-a and part-of relations among these concepts. The is-a
relation is specified by subClassOf. The part-of relation is defined using one of the 
OWL axioms for transitivity (owl:TransitiveProperty). The properties of the part-
of relation are restricted by owl:onProperty and owl:allValueFrom. These 
ontological definitions and relations in Figure 12.9 are used to detect whether 
semantic conflicts exist during the mapping process. 
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Figure 12.9. An excerpt of the reference ontology 

12.6 Software Prototype Development 

12.6.1 Software System Architecture 

The semantic interoperability approach described in the previous sections has been 
implemented in a Web-enabled prototype system. It is mainly used to support the 
product semantics definition, capturing in product models, and sharing cross CPD 
applications of multiple platform CAD systems, quality and reliability control, and 
CPD process management. The prototype uses a multi-tier architecture consisting 
of a collaboration server and a set of client-side CAD add-ons and interfacing 
software tools. Figure 12.10 shows the architecture of the prototype. 

<owl:Class rdf:ID="Name">
   <!-- Other definitions for the class -->
</owl:Class>
<owl:Class rdf:ID="NameString">
   <rdfs:subClassOf>

<owl:Restriction>
    <owl:onProperty rdf:resource="#part-of"/>
    <owl:allValueFrom rdf:resource ="#Name"/>

</owl:Restriction>
   </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="RefNo">
   <rdfs:subClassOf>

<owl:Restriction>
    <owl:onProperty rdf:resource="#part-of"/>
    <owl:allValueFrom rdf:resource ="#Name"/>

</owl:Restriction>
   </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="PropertyName">
   <rdfs:subClassOf rdf:resource="#NameString"/>
   <owl:disjointWith rdf:resource="#BehaviorName"/>
</owl:Class>
<owl:Class rdf:ID="BehaviorName">
   <rdfs:subClassOf rdf:resource="#NameString"/>
   <owl:disjointWith rdf:resource="#PropertyName"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="part-of">
   <rdf:type rdf:resource="&owl;TransitiveProperty"/>

</owl:ObjectProperty>
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Figure 12.10. Prototype architecture 

The client applications in Figure 12.10 include three toolkits: a design Object 
Creation Wizard and a CAD Integration Toolkit, both being used with CAD 
systems as add-on tools; and a Quality and Process Systems Interfacing Tool. The 
collaboration server includes several functional modules for Web-based 
presentations and communications, domain application services, and data access 
control. Both the client toolkits and server components work together to provide 
online services in supplementary information definition and embedment in CAD 
objects, semantics capturing in product models, common vocabulary and ontology 
library maintenance, management of design objects with semantic supplements, 
and semantics reusing in CAD and non-CAD applications through sharing of the 
semantic supplements and other product data in neutral formats (STEP and XML). 
The software development of the prototype is detailed in the following two 
sections for the client and the server respectively. 

12.6.2 Client Toolkits  

(1) Object Creation Wizard 
An Object Creation Wizard is designed as a CAD add-on tool for use with the 
AutoCAD system. It mainly provides functions for: defining the semantics of 
entity properties for CAD models; instantiating the entity property and entity 
behavior definitions with design parameters extracted automatically from 
AutoCAD models or supplemented by users; validating the supplementary 
information elements against the implemented contextual constraints in the wizard; 
linking property objects with CAD models or styles; and semantically mapping the 
CAD and STEP entity definitions. Functional modules are developed with the 
wizard to implement these capabilities. Figure 12.11 shows one of the UML [24] 
sequence diagrams to depict how the Pset Definition Module works. Figure 12.12 
shows the implemented Pset Definition Module with an illustration on how the 
vocabulary library is used to support the unified naming of properties. 
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Figure 12.11. UML sequence diagram for Pset definition 
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(2) CAD Integration Toolkit 
The CAD Integration Toolkit is another CAD add-on to provide more value-added 
functions to the CAD users who are using semantics of supplementary information 
in their native CAD systems. The main functionality of the toolkit include: 
identifying and retrieving the supplementary information semantics from the CAD 
representation maps, inter-part relationships, CAD behaviors, etc., in the 
downloaded CAD models for their reuse in a CAD system; interpreting the 
retrieved information semantics according to the common vocabulary and 
reference ontology and linking them back to the corresponding CAD 
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objects/symbols when they reside within the native CAD system; and providing 
interfaces for CAD users to access external digital information sources and for 
them to invoke the built-in object behaviors directly from within a CAD design 
environment. The accessing and invoking capabilities of the toolkit are depicted in 
Figure 12.13. 

Figure 12.13. Invoking object behavior and external link in CAD environment 

(3) Quality and Process Systems Interfacing Tool 
This tool uses a Java3D-enabled Web browser to render geometries of design 
objects. Quality Assurance (QA) engineers and project managers can use it to view 
the 3D CAD models without using a CAD system. The tool provides facilities for 
editing and populating the Pset definitions with the data extracted from a set of 
quality tools and from a CPD process management system. It also supports the 
product development activity coordination and design negotiation through CPD 
process configuration and XML messaging between designers, QA professionals, 
and product development managers. Figure 12.14 shows one of the GUIs of the 
tool for extracting/adding CPD process attribute values from a process 
configuration to populate a CPD process Pset definition. 
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Figure 12.14. Extracting/adding CPD process data for a process Pset definition 

12.6.3 Collaboration Server Components and Services 

(1) Model-View-Controller component 
This component is responsible for the client and server communication, including 
to route incoming client requests to the Controller Servlets for generating 
Command objects required for the requests; to instantiate the Model objects for 
execution of domain logics (functions) of the prototype system; to present the 
processing results to client browsers through View objects; and to map the client 
next action from View to Model for new responses of the server. A UML class 
diagram in Figure 12.15 shows the relationships between a ControllerServlet class, 
a CommandManager bean, and other related classes for generation of Command
objects to process client requests. 

Figure 12.15. UML class diagram for Controller and Command
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(2) Domain logic component 
The domain logic component establishes the basic structure of domain objects (i.e., 
the extended design objects with semantic supplements, vocabulary objects, 
property and behavior objects, etc.). For example, each domain object must have at 
least one broker to process client requests for accessing the semantic 
interoperability services and the server database or file repositories. Use cases are 
designed to analyze the manipulation scenarios of domain objects for realization of 
various domain application logics. Figure 12.16 is a UML use case diagram to 
illustrate the scenarios of defining, editing and maintaining the vocabulary objects 
with this component. 

Edit vocabulary item

(from Use Cases)

Define vocabulary item

(from Use Cases)

Extension of the 
existing thesaurus

(from Use Cases)

Edit Ignore list

(from Use Cases)

Check for key words

(from Use Cases)

Administrator

(from Actor)

Figure 12.16. UML use case for vocabulary management 

(3) Data access component 
The component is used for database connection and brokers management, such as 
to help a domain object to get a database connection; to release the database 
connection; to retrieve the appropriate broker; and to manage the number of 
brokers to be instantiated. Any domain objects can only manipulate the server 
database objects through brokers. For example, in order to edit a vocabulary item 
in the server vocabulary database, a database connection object, a 
VocabularyObjectBroker and a VocabularyObjectAttributeBroker need to be 
instantiated for interacting with the database and conducting the find() and update()
operations to the existing vocabulary item. 

(4) Portal services 
The implementation of the server portal provides the following services: 

Uploading, downloading, searching, and updating design objects with the 
semantic supplementary information, based on users’ roles and access 
rights assigned; 

Definition, editing, search and validation of common vocabulary; 

Design object viewing and dragging-dropping in multiple CAD formats 
and using neutral data structures (STEP and XML); 
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Object profile management, such as browsing the design objects in the 
server repositories, online visualizing CAD models, retrieving vocabulary 
definitions, etc.;

Message broadcasting and conflict logs to facilitate conflict detection, 
negotiation, and collaboration in product development; and 

Design team setting and activity coordination through member profile 
management, role and task assignment, access privilege control to the 
shared information, online collaboration information query. 

Figure 12.17 is a screenshot of a portal page for one of the above services: 
object profile management. 

Figure 12.17. Portal service for object profile management 

12.7 Collaboration Scenarios 

Supporting and enhancing product development collaboration is the major 
objective of this research. This is illustrated by the following collaboration 
scenarios through the use of the semantic interoperability method and the prototype 
system developed in the previous sections. These scenarios concern the 
collaboration in multi-disciplinary design of consumer products, such as CD and 
DVD players. Mechanical, electrical, optical design disciplines, quality assurance, 
and product development process management are involved in the scenarios for 
collaborative design of a DVD Optical Pick-up System (OPS) in a networked 
heterogeneous environment. 

12.7.1 Support of Collaborative Design Process 

This scenario focuses on the collaborative OPS design processes and interactions 
between collaborating participants. Table 12.4 lists the involved participants, their 
responsibilities and individual software systems used in this collaboration. 
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Table 12.4. A collaborative design environment 

Collaboration

Participant
Responsibility

Native Client-Side 

Software System Used

Access Right to the 

Collaboration Server 

Project Manager A 
Project coordinator & 
design process planner.

A design process 
management system.

Use design objects;                
“Read” access only. 

Mech. Designer B 
Mechanical design & 
OPS model integrator.

AutoCAD
Create/use design objects;      
“Full” access to all objects. 

Ele. Designer C 
Electrical & electronic 
component design. 

Mentor
Create/use design objects;      
“Full” access to electrical  
components. 

Optical Designer D 
Optical system design 
and analysis. 

OptiCAD
Create/use design objects;      
“Full” access to optical 
components. 

Quality Engineer E 
Reliability testing & 
quality assurance. 

A set of testing & 
quality tools. 

Use design objects;                
“Read” access to all 
objects.

Project Manager A, as the CPD coordinator, defines the collaborative design 
processes, the owner of tasks, the responsibility of each team member, and the 
participants’ access privileges to the collaboration server (as shown in Table 1.4). 
The native design process information from a process management system is 
annotated according to a domain ontology for the CPD process. The process 
ontology instances are kept in an XML instance file and uploaded to the 
collaboration server. The server manages updates of the XML instance files for any 
design process changes. 

Each participant is working on his/her design issues in a distributed private 
workspace at the client side with preferred domain-specific tools as indicated in 
Table 12.4. However they can access and share the same resources for design task 
assignments, design constraints, design objects with the embedded semantic 
supplements, and design support services from the collaboration server, if they join 
in a collaborative design session. Once logging in a project workspace of the server, 
online notification presents the updated design process progress and new design 
requirements. The mechanical, electrical, and optical design objects with rich 
semantics can be shared via the server, but each design discipline has to follow the 
common vocabulary to name their supplementary information elements in order to 
make the semantics understandable to other disciplines. The vocabulary library of 
the server provides facilities to support this requirement. The design disciplines 
interact with each other through the server, which provides the messaging and 
online viewing mechanisms to facilitate design communication, negotiation and 
visualization. Hence, the individual’s design work can be evaluated/commented 
and their activities coordinated. 

12.7.2 Design Objects Modeling and Semantics Capturing 

This scenario involves the use of the design Object Creation Wizard (details in 
Section 12.6.2) for product semantics capture in design models of the OPS. 



280 Collaborative Product Design and Manufacturing Methodologies and Applications 

Mechanical Designer B performs mechanical part design and acts as the OPS 
model integrator. According to OPS studies on its functional requirements, design 
constraints and previous product structures, B creates a preliminary OPS assembly 
drawing in which the OPS configuration is defined. The OPS assembly includes 
mechanical, electrical and optical components, such as the base of OPS, laser diode, 
photo diode, beam splitter, and grating lens, etc.

The CAD representations of the OPS assembly are modeled by the AutoCAD 
system. The mechanical parts of the assembly will be further modeled by 
AutoCAD during the detailed design stage. However, the electrical and optical 
components only have symbolic representations in the OPS assembly drawing. As 
such, the additional information required for the electrical and optical detailed 
design, and for the component reliability testing, etc., needs to be embedded into 
the preliminary OPS assembly drawing and continually updated with the progress 
in design and analysis of its components. 

By right-mouse click on the assembly drawing in the AutoCAD modeling space, 
the Object Creation Wizard is invoked.  Figure 12.18 illustrates how the wizard 
specifies and captures the native geometric information from the AutoCAD system 
to define the supplementary data semantics for Representation Maps of the base

component of the OPS. The selected multi-view blocks from the base CAD model 
are aggregated into a representation map called Rmap_3D_Base-A. It has two 
inclusion objects for Rmap_3D_Base-A_Default and Rmap_3D_Base-A_Top
respectively.

Figure 12.18. Specifying and capturing supplementary data semantics for a base CAD 
model  

Besides specifying and capturing supplementary data semantics with design 
objects, the wizard also provides standard procedures and facilities to guide the 
XML instance file generation for these CAD models. In the current example, the 
supplementary information and the XML content of the OPS assembly includes 
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geometry representation maps, semantic properties, object behaviors, and external 
links for its constituent components. The supplementary information is used such 
as for: 

Specifying and embedding OPS integration requirements and quality 
criteria for the OPS multi-disciplinary design components; 

Assigning representation maps for the base multi-view blocks using the 
terminologies in the common vocabulary library; 

Defining semantic properties for the beam splitter and an inter-part 
relationship, AdjacentWith, between the beam splitter and the base;  

Defining the semantic definitions for the temperature cycling test 
constraints of the laser driver IC at the qualification phase of the OPS; and 

Embedding external reference links pointing to online sources for suppliers 
and products information of the OPS components. 

Once the OPS assembly drawing is created with the above supplementary 
information embedded, it can be uploaded (together with its XML instance file as 
the neutral representation of the attached supplements) to the server for sharing the 
information and semantic definitions with other participants in the collaboration. 

12.7.3 Semantics Sharing with Heterogeneous Systems 

This scenario describes semantics sharing across Electrical CAD (E-CAD), optical 
CAD, and reliability testing systems. The semantic content defined with the 
supplementary information definitions, captured in the product models, and 
delivered through the neutral XML instance files are shared with these 
heterogeneous systems. This is done through querying, inferring and matching the 
ontological definitions and relations of the domain concepts involved, in order to 
allow these computer systems to understand and utilize the meaning of semantic 
content embedded in the design objects. 

The Optical Designer D visualizes the OPS assembly drawing to understand the 
OPS configuration and downloads its XML instance file. D selects the symbolic 
representation of the beam splitter to develop it into a detailed design using the 
OptiCAD system. The beam splitter has been attached with an inter-part 
relationship for AdjacentWith in Section 12.7.2. The term AdjacentWith is retrieved 
from the XML instance file. The semantics of the term are interpreted through 
querying the ontological relations defined in the shared reference ontology, which 
the OptiCAD add-on tool follows. For example, given the following excerpt of an 
ontology shown in Figure 12.19, the add-on tool can reason about the instance of 
the OWL relation AdjacentWith being an inter-part relationship because the 
domain of the OWL object property hasExeType is InterPartRelationship
according to the ontology in Figure 12.19. 
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Figure 12.19. Ontological definition of AdjacentWith

The tool can further identify and retrieve the hasDescription and hasValue

(both are defined elsewhere in the shared reference ontology) information through 
other properties of AdjacentWith in Figure 12.19. The information will then be 
executed by the add-on tool to control the multi-disciplinary design relationship 
during the modeling of the beam splitter. 

Electrical Designer C retrieves the XML instance file of the OPS assembly 
together with the relevant integration and quality requirements for the 
electrical/electronic component design. C also extracts the semantic definitions of 
the testing constraints of the laser driver IC sub-assembly specified in Section 
12.7.2. With a “full” access right to the electrical/electronic design objects, C is 
able to create or modify these objects. The completed design objects are uploaded 
to the server. Based on the design parameters of the laser driver IC from the 
Mentor E-CAD system, C instantiates the semantic definitions of the testing 
constraints (as shown in Table 12.5) and updates the reliability test property values 
in the server database. 

Table 12.5. Reliability testing constraints 

Mass (M) Shelf Time (T1) Transition Time (T2) CycleNo 

M <= 15 g T1 >= 10 min. T2 <= 5 min. 

15 g < M <= 150 g T1 >= 30 min. T2 <= 15 min. 

150 g < M <= 1500 g T1 >= 60 min. T2 <= 30 min. 

10

<owl:ObjectProperty rdf:ID="hasExeType">
   <rdfs:domain rdf:resource="#InterPartRelationship"/>
   <rdfs:range rdf:resource="#exeType"/>
</owl:ObjectProperty>
<owl:Class rdf:ID="exeType">
   <owl:oneOf rdf:parseType="Collection">
      <owl:Thing rdf:about="#dvb"/>
      <owl:Thing rdf:about="#cc"/>
      <owl:Thing rdf:about="#java"/>
      <owl:Thing rdf:about="#hyperlink"/>
   </owl:oneOf>
</owl:Class>
<owl:Thing  rdf:ID="AdjacentWith">
   <hasDescription rdf:datatype="&xsd;string">
        Two multi-disciplinary design objects are adjacent with each other 
   </hasDescription>
   <hasValue rdf:datatype="&xsd;string">
         Relatioship_adjacentWith 
   </hasValue>
   <hasExeType rdf:resource="#dvb"/>
</owl:Thing>
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Quality Engineer E drags and drops the detailed design of the laser driver IC
sub-assembly (submitted by Designer C) from the server to his testing workspace, 
together with this model’s XML instance file. Figure 12.20 below shows an 
excerpt of the XML file instantiated from the ontological definitions of the concept 
ReliabilityTestProperty in Figure 12.4. 

Figure 12.20. XML instance file for Mass

The testing application system understands the meaning of terminologies used 
in the XML file by referring to the terminology definitions. The logical relations of 
the terminologies are queried based on the semantic descriptions of the definitions. 
For example, by querying the XML instance in Figure 12.20, the testing system 
interprets the semantics of the concept for LaserDriverIC_Mass as: “mass of the 
laser driver IC is 80g” set by Electrical Designer C during the design stage. Based 
on this interpretation and the constraints in Table 12.5, the testing system conducts 
proper settings for the temperature cycling test of the laser driver IC sub-assembly. 
In this way, the data semantics from different product models are shared across 
heterogeneous systems explicitly and flexibly. 

12.8 Conclusions

Collaborative product development needs semantically interoperable product 
models and design objects supplemented with formal and explicit engineering 
meanings to support semantic interoperability. A new ontology-driven, STEP-
based solution has been developed for specifying, capturing, understanding, and 
sharing the product semantics to facilitate heterogeneous information integration 
and interoperation among CPD applications in multi-disciplinary CAD, quality and 
reliability control, and product development process management. The solution can 
enhance the collaborative product development by providing a semantic 
interoperability method and a software prototyping system to the cross-functional 
CPD participants and systems as illustrated in the collaboration scenarios. Our next 
efforts will be focused on the further development of the method and the prototype 
to provide the semantic rule modeling and ontology composition services for more 
effective collaboration in product development.  

<ReliabilityTestProperty rdf:ID="LaserDriverIC_Mass">
   <propertyName rdf:datatype="&xsd;string">Mass</propertyName>
   <description rdf:datatype="&xsd;string">Mass of laser driver IC</description>
   <value rdf:datatype="&xsd;positiveInteger">80</value>
   <refNo rdf:datatype="&xsd;string">Test001</refNo>
   <hasUnit rds:resource="#g"/>
</ReliabilityTestProperty>
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12.10 Acronyms

CPD Collaborative Poduct Dvelopment 
STEP STandard for the Exchange of Product model data 
PSL Process Specification Language 
OWL Web Ontology Language 
XML eXtensible Markup Language 
RDF Resource Description Framework 
NPI New Product Introduction 
CAE Computer-Aided Engineering 
FEA Finite Element Analysis 
CFP Computational Fluid Dynamics  
Pset Property Set
OPS Optical Pick-up System 
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In this chapter, a Distributed Virtual Factory (DVF) concept has been introduced. 
DVF consists of distributed precise manufacturing simulation systems connected 
by Time Bucket synchronization mechanisms. Different from the conventional 
manufacturing system simulations that deal only with material and information 
flow, the DVF concept focuses also on detailed product cost analysis to facilitate 
profitable factory management. Meanwhile, the distributed manufacturing 
simulation is integrated with Activity-Based Cost (ABC) estimation method to 
estimates the precise manufacturing activity cost. It has been confirmed that DVF 
integrated with ABC successfully provides effective means to monitor product 
costs throughout the entire factory. The experimental results show that the DVF 
concept is effective enough to provide the strategic benefits with respect to both 
accurate shipping date and detailed product cost in VE environment. 

13.1 Introduction 

There is a growing recognition that the current manufacturing enterprises must be 
agile, that is, capable of operating profitably in a competitive environment of 
continuously changing customer demands [1]. Supply Chain Management (SCM) 
or Virtual Enterprise (VE) has increasingly become a common idea for enterprises 
to survive in the agile environment. However, in the construction of effective SCM 
or VE, there exists a lack of methods, tools, and environment to support the 
integration of process models from multiple organizations.  

Manufacturing system is one of the core business units to form an effective 
SCM or VE coalition, and it is crucial to present attractive and collaborative 
opportunities to other business units. There are several attractive benefits, such as 
cycle time, fulfilment of due date or accurate and quick shipping date, cost, and 
quality assurance for volatile ordered products. It is well known that manufacturing 



288 Collaborative Product Design and Manufacturing Methodologies and Applications 

system simulation is a powerful technique which can provide the above-mentioned 
benefits [2, 3]. Distributed simulation model concepts provide practical solutions to 
facilitate a globally precise simulation model in a SCM or VE environment, 
because it is constructed as the integration of several manufacturing simulation 
models of production modules scattered worldwide. The total behavior of the 
whole manufacturing system is only attainable using the distributed simulation 
concept. 

In this chapter, we first introduce a Distributed Virtual Factory (DVF) concept 
[4, 5], which consists of several distributed precise simulation models connected 
by several synchronization mechanisms called Time Bucket algorithms [6, 7]. DVF 
is applied to the precise evaluations of the whole manufacturing system under two 
major types of manufacturing operational logics, the PULL and PUSH methods. In 
this study, we newly apply Activity Based Costing (ABC) method [8] to the DVF 
architecture to estimate the detailed cost analysis of the products. The methodology 
facilitates strategic enterprise management to prepare the request for the bids in the 
VE environment. The effectiveness of the proposed concept in agile manufacturing 
is finally examined using several simulation experiments. 

13.2 Distributed Virtual Factory 

13.2.1 Concept 

As manufacturing systems have become automated, the so-called automation 
islands appear in factories. Nowadays, most manufacturing systems consist of 
several automation islands, such as Direct Numerical Control systems (DNC), 
Flexible Manufacturing Systems (FMS), automated cell systems, Automated 
Guided Vehicle (AGV) systems and so on. In this course of development, many 
simulation studies have been performed to obtain the effective design of the 
automated systems. Some simulation systems developed for those studies have 
been extended for use in operational decision making at the shop floor in which the 
new system is installed. This results in the advent of simulation islands, each 
corresponds to the real automation island in a factory. 

Attempts have been made to integrate the automation islands by connecting the 
computers in the islands using information network systems for the information 
flow and by connecting the storages in the islands with some transportation 
systems for the material flow. Presently, however, most of the simulation islands 
remain as they were. We consider the integration of simulation islands as a virtual 
manufacturing system or a Distributed Virtual Factory (DVF) to utilize the 
potential effectiveness of simulation islands for overall improvement of the design 
and management of a factory [9, 10]. In this study, we propose the DVF concept 
which consists of several distributed precise simulation models implemented in 
different CPUs and linked altogether with a computer network.  

To be used as an effective tool for evaluation in the circumstances described 
above, a DVF needs to satisfy the following features as well as the basic ones for 
the conventional simulation languages: 
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(1) The system at the factory level is a large-scale system in reality. The 
simulation system needs to model the total system with the same details 
as of the subsystems. 

(2) The scope covered by the system includes most of the factory-wide or 
even world-wide activities, consisting of machining and assembly shops, 
warehouses, and transportation systems which are referred to as 
subsystems in the above and are located at the area level in 
ISO/TC184/WG1 CIM reference model of the manufacturing system with 
six layers. 

(3) The level of automation differs amongst the target factories, the target 
shops, and the target machines. The system needs to cope with all such 
situations.

(4) To ease the model building of a factory wide simulation system, it is 
essential to provide the capability to extend the model gradually in terms 
of size and detail. Upgradeability of an old subsystem to a new one is also 
essential.

To develop a DVF, we can take two approaches, i.e., to develop a completely 
new simulation system from scratch [11] or to construct a system utilizing the 
existing simulation systems [4]. The latter can integrate the simulation islands in a 
factory and will effectively save the effort of developing a totally new simulation, 
because it can utilize the existing standalone simulation systems with minor 
modifications. 

13.2.2  Structure 

A distributed simulation system should mostly satisfy the structural features of a 
factory and the requirements for a factory-wide simulation system when it is 
developed on a distributed computer system installed as the infrastructure of DVF.  

A DVF structure is shown in Figure 13.1. Each subsystem at the area level can 
be modeled with a processor and a transportation system. T-Process, connecting 
areas are modeled with a processor transferring works. Functions for information 
exchange amongst areas are also necessary to model the collection and the dispatch 
of information occurring from time to time. One processor can be allocated to 
model a global decision making system collecting ordinary status reports of areas 
for decision making as the factory level management system in Figure 13.1. 

13.2.3 Time Bucket Mechanism 

A basic function, termed the synchronization mechanism, is required to 
synchronize the timing of event execution amongst simulation processes in a 
distributed simulator on multiple processors, since simulation processes of each 
area and T-Process have different simulation clocks in their computational contents 
at a specific time in the real world. 

The authors have proposed a Time Bucket Mechanism for the distributed 
manufacturing system simulation by integrating simulators. The time bucket 
method has various extensions to fit the DVF environment as follows: 
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Figure 13.1. A DVF structure 

(1) Simple Time Bucket mechanism (TB): In this method, all the simulators 
execute simulation processing independently and concurrently at the 
interval called Time Bucket, which is not necessarily equal to the time 
bucket in MRP (Manufacturing Resource Planning). Each simulator has 
its own simulation clock and stops its execution at the interval of one 
Time Bucket. When all simulators come to the end of one Time Bucket, 
messages on the material flow are exchanged among them, and they 
restart the simulation execution. The larger the size of Time Bucket is, the 
more efficient the execution will be, since all the simulators execute their 
simulation processing independently in a Time Bucket period. This 
indicates that the size of Time Bucket should be larger considering the 
independency of the different areas. 

(2) Single-Phased Bucket mechanism (SPB): In the SPB algorithm, a 
simulation processing for one Time Bucket is divided into two phases. 
One is an Area simulation processing phase, and the other is a simulation 
phase of transportation. They are executed alternately. Since the T-
Process starts its processing of one Time Bucket after all the Area 
simulators come to the end of the Time Bucket, it can receive 
transportation request messages appropriately. 

(3) Double-Phased Bucket mechanism (DPB): DPB requires the status saving 
function and loading function in T-Process for roll back operations. The 
difference between SPB and DPB is the transportation simulation phase, 
i.e., the performance of T-Process. In the DPB algorithm, T-Process that 
receives messages from the Area simulators executes its processing for 
two Time Bucket periods, and stops. The T-Process then rolls back to its 
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status at the end of the first Time bucket, i.e., before the Area simulators 
start simulation processing of the second Time Bucket, T-Process predicts 
the time when any work arrivals to Area simulators so that the Area 
simulators can register the time of arrival events. 

Readers can refer to [6, 7] for the details of the mechanisms. 

13.3 Cost Analysis 

13.3.1 Cost Analysis in Manufacturing Systems 

Conventional costing methods are related to cost factors to determine what the total 
manufacturing cost is going to be. To make a reasonable estimation of the 
manufacturing cost, there are some factors that need to be considered. 
Manufacturing costs include costs for material, processing, inventory, labor, R&D, 
rent for use of third-party testing facilities, and logistics. A cost model has a very 
mathematical nature and the size of this model can grow to tremendous proportions, 
if the number of the operations is high.  

Some costing methods rely on integer programming methods. Here, a 
mathematical model is set up where there is an objective function of the cost. The 
aim is to minimize this objective function subject to a set of constraints. These 
constraints differ from company to company, but generally consist of the cost 
factors stated above. 

13.3.2 Activity-based Costing (ABC) 

ABC is a method of cost management that identifies business activities performed, 
tracks costs associated with these activities, and uses various cost drivers to trace 
the costs of those activities to products [8]. The cost drivers reflect the 
consumption of activities by the products. ABC provides a far more accurate 
portrayal of cost than conventional methods. Given a better understanding of cost, 
management can make far better decisions in terms of competitive advantages. 
Furthermore, the improved understanding and localization of costs can be used to 
eliminate low value but high cost activities and hence reduce cost. It is an aid to 
Business Process Reengineering (BPR). 

ABC systems focus on activities required to produce each product or provide 
each service based on each product or service consumption of the activities. The 
fundamental difference between ABC and conventional costing is that 
conventional costing assumes that products cause costs, whereas ABC assumes 
that activities cause cost and the cost objects create the demand for activities. The 
ABC systems encourage significant breakdown of work activities and the proper 
allocation of costs, automatically making a number of potentially hidden costs 
more visible. 

In [9], it is shown that how ABC permits the very important distinction 
between resource usage and resource spending. The difference is unused capacity. 
Elimination of this unused capacity permits costs to be reduced. ABC deals much 
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better with large-scaled and integrated manufacturing systems than basic costing 
methods. With ABC, the activities are determined and associated with their 
specific costs. The eventual costs depend on the number of activities (each with 
their specific costs) which are taken to compete the product. 

13.3.3 DVF and ABC 

ABC provides an accurate portrayal of costs under current factory conditions. The 
integration between the DVF concept and the ABC method realizes an additional 
attractive merit in factory management. The integration obviously enables to 
estimate detailed product costs in all over the factory, because DVF evaluates all 
the manufacturing data in a distributed manner and provides the detailed 
manufacturing data throughout the factory into the ABC analysis. 

It is sometimes required to estimate the cost analysis in the near future by 
observing current data, especially in an agile manufacturing environment. A 
strategic operation is executable only by the future estimation including cost 
analysis. DVF and ABC are effectively integrated, because simulation can provide 
detailed manufacturing activity data, which are required but normally difficult to 
estimate, for the ABC analysis. Several issues to discuss on product cost through 
the entire factory are provided by the proposed approach. Precise cost analysis 
about the whole factory is promptly realised in a VE environment for bidding an 
attractive offer in VE.  

13.3.4 Manufacturing Model 

For easier explanation, we prepare a large-scaled factory, which consists of 7 sub- 
modules (Figure 13.2(a)), such as Factory Management, Cooperative Factory, 
Processing A, Processing B (Figure 13.2(b)), Material Storage & Parts Storage, 
Assembly Line (Figure 13.2(c)), and Distribution Center.  

Each sub-module is implemented into different processors and they organize 
DVF with the synchronization mechanism as a whole. The factory handles 5 types 
of products and 50 types of materials, which consist of 20 types in k-part (k1-k20) 
and 30 types in m-part (m1-m30). The bill of materials is described in Table 13.1. 
The process flow of each material is shown in Figure 13.3. In this chapter, ABC is 
applied to the area covered from the Material Storage to the Parts Storage via two 
types of the Processing (A, B) as a basic study. 

13.3.5 Formulations for Cost 

The following given constants are defined: 

Direct cost 

Cm : Material cost (m: material) 

DCL  : Direct labor cost (L: labor) 

DCE  : Direct energy cost (E: energy) 
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Indirect cost 

CL  : Indirect labor cost 

CR  : Repair cost (R: repair) 

CE  : Indirect energy cost 

CMA
D  : Facility cost (D: Depreciation, MA: machine ID) 

CS  : Stock cost 

Figure 13.2. Target factory 

(a)  The whole factory 

(b)  Processing 

(c)  Assembly 
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Figure 13.3. Material flow in the process modules 

Table 13.1. Bill of materials 
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The data which are estimated and acquired by simulation are as follows: 

MPMA
P : Total processing time for product type P in machine MA

LPMA
P : Total set-up time for product type P in machine MA

VAR
P : Total transporting time for product type P in area AR

SST
P : Total queuing time for product type P in stock ST

  MFMA : Total breakdown time in machine MA

LFMA : Total maintenance time in machine MA

MMAN
P : Total amount of product P processed in machine MA

VARN
P : Total amount of product P transported in area AR

SSTN
P : Total amount of product P stored in stock ST

MFMAN : Total number of breakdowns in machine MA

Where we have 5 types of machines as follows: 

MA: H(HMC), V(VMC), N(NC), C(CLEAN), M(MEASURE) 

2 types of parts are as follows: 

             P: k, m

3 types of areas at the processing units in our factory model are as follows: 

AR: a(Processing A), b(Processing b), out(amongst area) 

Generally, ABC consists of two major steps and each step in our approach is 

formulated as follows: 

STEP 1: Indirect cost allocation to the activities 

i) Indirect labor cost (cost driver: operational time) 

Total operational time of all the operators is 

L=  LPH
P + LFH +  LPV

P + LFV +  LPN
P + LFN + LFC + LFM

(13.1) 

Then, indirect labor cost I for the set-up operation in machine MA is 

 CLMA
L1 = (  LPMA

P / L ) CL     (13.2) 

Indirect labor cost II for machine repair operations in machine MA is 

 CLMA
L2 = (LFMA / L ) CL   (13.3) 

ii) Repair cost (cost driver: breakdown time) 

Total operational time of all the operators is 
MF= MFH + MFV + MFN + MFC + MFM  (13.4) 

Then, repair cost in machine MA is 
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CMA
R = (MFMA / MF ) CR    (13.5) 

iii) Energy cost (cost driver: processing time) 

Total processing time in machine MA and transporting time in area AR 
are:

 MP=  MPH
P +  MPV

P +  MPN
P +  MPC

P +  MPM
P

              + Va
P + Vb

P + Vout
P      (13.6) 

Then, energy cost in machine MA is 

CMA
E = (  MPMA

P / MP ) CE    (13.7) 

And, energy cost in area AR is 

 CAR
E = (  VPAR

P / MP ) CE    (13.8) 

STEP 2: Activity cost allocation to the products 

In this step, the cost price of each product is calculated using activity cost 
allocation. The final cost price in product P is attained as follows: 

PP=Cm + ICL1
P + ICL2

P + ICE
P + ICD

P + ICS
P + ICR

P (13.9) 

where   IC*
P : cost related to activity * in product P

As an example we describe the formulation to attain ICL1
P, which is indirect 

labor cost I for set-up operation in product P. At first, from (2) indirect labor cost I 
ratio is: 

 RMA
L1= CLMA

L1 /  LPMA
P    (13.10) 

And, set-up time per a part in machine MA is 
DLPMA

P= LPMA
P /MMAN

P     (13.11) 

Then, indirect labour cost I per a part in machine MA is obtained as 

ICL1MA
P= RMA

L1 * DLPMA
P     (13.12) 

Finally

ICL1
P= ICL1H

P+ ICL1V
P +ICL1N

P    (13.13) 

Cost drivers of the cost items at each step are shown in Table 13.2. 
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Table 13.2. Cost Drivers 

Indirect Cost Cost Driver 
STEP 1 

Cost Driver 
STEP 2 

Labour Cost Working Time Working Time 
Operating Time 

Energy Cost Operating Time 
Transporting Time 

Operation Time 
Transporting Time 

Facility Cost Operating Time 
Transporting Time 

Operating Time 
Transporting Time 

Stock Cost Time in Stock Time in Stock 
Repair Cost Repairing Time Operating Time 

13.4 Experimental Results 

13.4.1 Simulation Model 

A simulation model based on the concept of DVF has been developed in order to 
evaluate its effectiveness in a VE environment. The model is precise enough to 
provide the offer for VE contracts, and includes a manufacturing management 
system for the whole factory. There are two types of major management policies 
that are implemented in the simulation model to investigate a practical DVF in a 
VE environment. One is the PUSH logic, which is operated by the top-down 
strategic plan, such as the MRP system (Figure 13.4), the other is the PULL logic, 
in which down stream business processes send their requests to the preceding up 
stream ones (Figure 13.5). JIT (Just In Time) system is one of the most popular 
systems categorized in the PULL logic. 

As we described in the previous Section 13.3.4, the target factory has 7 areas, 
including Factory Management, Cooperative Factory, Processing A, Processing B, 
Material Storage & Parts Storage, Assembly Line and Distribution Center. These 
area models are developed separately with different software and implemented on 
different CPUs independently shown in Table 13.3. The precise simulation model 
calculates the possible shipping date of the required products in VE from the 
current inventory conditions including WIP (Work In Process) under various 
management policies. 5 types of products (A, B, C, D, E) are considered to be 
manufactured in the simulation model shown in Table 13.1. We assume the part 
types of k and m are produced in the factory and the others are purchased. In this 
experimental model, we selected TB as the synchronization mechanism. 

A product order pattern in the experiment is shown in Figure 13.6. We assume 
the order amount ratio in each product type is (A:B:C:D:E)=(6:4:2:1.5:1) . The 
daily amount of orders varies drastically between 10 and 50 in the simulation 
conditions followed by uniform random distribution. 

13.4.2 Total Factory Management in DVF 

The distributed simulation of the precise factory model is executed to confirm the 
validity of the model in a VE environment. The estimation of the management 
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policy influence in the inventory conditions in each manufacturing area is quite 
difficult but important to propose strategic offers in VE. Precise estimation of the 
dynamical inventory changes facilitates the accurate control of the product 
shipping date. 

The simulation results of part k01 inventory transition in the part storage under 
the PUSH and PULL management policies are shown in Figures 13.7 and 13.8, 
respectively.

Figure 13.4.  Simulation model in PUSH logic 

Figure 13.5.  Simulation model in PULL logic 
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Table 13.3. Configuration 

Area EWS Simulation software 

Factory Management Axil: Axil Server 400 C,  Microsoft ACCESS 97 
Cooperative Factory SUN: Spark Station 4 Smpl, C 

Processing A SUN: Spark Station 4 SLAM II, Fortran, C 
Processing B SUN: Spark Station 4 SLAM II, Fortran, C 

Material & Parts storage SUN: Spark Station 4 Smpl 
Assembly Line SUN: Spark Station 4 SLAM II, Fortran, C 

Distribution Center SUN: Spark Station 4 Smpl, C 

Figure 13.6. An example of product order 

Figure 13.7. Part k01 inventory in PUSH management 
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Figure 13.8. Part k01 inventory in PULL management 

It is obvious that the inventory change in the PUSH logic fluctuates more than 
the change in the PULL logic, because PUSH logic easily suffers from unexpected 
dynamical demand changes. On the other hand, the inventory in PULL logic is 
stable even in a volatile situation. However, in the other simulation experiments, 
the PUSH logic has been proven to be effective, if we can accurately grasp and 
estimate the product demand, i.e., the dynamical product demand change is 
relatively small. 

Simulation experiments confirmed that the DVF provides rational materials to 
discuss the managerial strategy of the entire factory as a whole. The accurate 
possible shipping date of all the products is acquirable by the precise inventory 
estimation so as to make an appropriate bid in the VE environment. 

13.4.3 Cost Analysis 

For bidding an attractive offer in VE, we introduced the ABC approach into the 
DVF architecture. As ABC is a procedure that enables the estimation of product 
costs more accurately, we think the procedure is essential to realize an effective 
enterprise management in agile manufacturing, which is characterized by small 
batch sizes and high customer satisfaction. 

In this chapter, ABC is applied to the area covered from the Material Storage to 
the Parts Storage via two types of the Processing (A, B) shown in Figures 13.2(a) 
and 13.2 (b) as a basic study. The distributed simulation of the target factory was 
executed to confirm the validity of the ABC approach with the DVF model. It is 
essential to simulate the dynamical changes of the inventory conditions in each 
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manufacturing area in order to analyze the accurate and precise cost analysis in the 
lot level.

Figures 13.9 and 13.10 show the results of conventional cost analysis and ABC 
cost analysis of Part k01 ~ k05 (currency is Yen) in the PULL management, 
respectively. In the conventional approach, a single cost driver, operating time, is 
used to evaluate each product cost. In the experiment, these results are completely 
different, and the difference is mainly caused by the stock cost evaluation. The 
stock cost is calculated accurately in ABC because it is directly proportional to the 
actual stock time. By observing the ABC result, shop floor managers realise that it 
is essential to decrease the inventory level of Part k5 to reduce the product cost in 
this case. 

In the DVF model, it is also possible to estimate and collect all the lot level data 
from each discrete-event transaction, such as stock-in, stock-out, process-start, 
process-finish, etc. This enables the ABC approach in the lot level as well as in the 
part type level as shown in Figure 13.11. This figure shows the lot level cost of 
each produced part in type k01. Lot level ABC clarifies a transitional cost analysis 
and facilitates subtle management of the entire factory.  

Precise lot level cost estimation enables us to operate appropriate price bids for 
a product demand in the VE environment. 

It has been confirmed that detailed cost analysis of each product through the 
whole factory is attainable by the proposed approach. DVF integrated with ABC 
successfully provided effective materials to discuss on product cost in the entire 
factory. Since the strategic operation is executable only by the future estimation 
including cost analysis in agile manufacturing environment, our approach is quite 
promising as the factory management in the next VE age. 

13.5 Conclusions 

In this chapter, we introduce a Distributed Virtual Factory (DVF) concept, which 
consists of distributed precise manufacturing simulation systems connected by 
Time Bucket synchronization mechanisms. Although conventional manufacturing 
system simulations normally deal only with material and information flow, the 
proposed concept focuses also on detailed product cost analysis to facilitate 
profitable factory management. The integration of distributed manufacturing 
simulation and ABC method is quite rational, because the simulation productively 
estimates the precise manufacturing activity data, which is required but normally 
difficult to estimate for the ABC analysis. It has been confirmed that DVF 
integrated with ABC successfully provides effective means to monitor product 
costs throughout the entire factory. The experimental results show that the DVF 
concept is effective enough to provide the strategic benefits with respect to both 
accurate shipping date and detailed product cost in VE environment. The DVF 
concept is concluded to play an important role in factory management in the 
coming collaborative manufacturing era. 
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Figure 13.9. Conventional cost analysis 

Figure 13.10. ABC-based cost analysis 
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Figure 13.11. Lot level ABC analysis in Part k01 
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