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Preface

The deformation of elastic cylinders has been a subject of intensive study.
In the theory of classical elasticity, the deformation of homogeneous elastic
beams has been of interest for many years and has been studied from numer-
ous aspects. In contrast, the case when the material is inhomogeneous has
received relatively little attention. Recently, research activity on functionally
graded materials, that is, materials with continuum varying material prop-
erties designed for specific engineering applications, has stimulated renewed
interest in problems of inhomogeneous elasticity. A major part of this book
is concerned with the study of inhomogeneous beams. Interest in the con-
struction of a theory for the deformation of elastic cylinders dates back to
Coulomb, Navier, and Cauchy. However, only Saint-Venant has been able to
give a solution to the problem.

The importance of Saint-Venant’s celebrated memoirs [291,292] on what
has long since become known as Saint-Venant’s problem requires no empha-
sis. To review the vast literature to which the work contained in Refs. 291 and
292 has given impetus is not our intention. An account of the historical de-
velopments as well as references to various contributions may be found in the
books and some of the works cited. We recall that Saint-Venant’s problem con-
sists of determining the equilibrium of a homogeneous and isotropic linearly
elastic cylinder loaded by surface forces distributed over its plane ends. Saint-
Venant proposed an approximation to the solution of the three-dimensional
problem, which requires only the solution of two-dimensional problems in the
cross section of the cylinder. Saint-Venant’s formulation leads to the four basic
problems of extension, bending, torsion, and flexure. His analysis is founded
on physical intuition and elementary beam theory. Saint-Venant’s approach
to the problem is based on a relaxed statement in which the pointwise assign-
ment of the terminal tractions is replaced by prescribing the corresponding
resultant force and resultant moment. Justification of the procedure is twofold.
First, it is difficult, in practice, to determine the actual distribution of applied
stresses on the ends, although the resultant force and moment can be mea-
sured accurately. Second, one invokes Saint-Venant’s principle. This principle
states, roughly speaking, that if two sets of loadings are statically equivalent
at each end, then the difference in stress fields and strain fields is negligible,
except possibly near the ends. The precise meaning of Saint-Venant’s hypoth-
esis and its justification has been the subject of many studies, almost from
the time of the original Saint-Venant’s papers. References to some of the early
investigations of the question can be found in [211, 313, and 315]. The classic

ix
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X Preface

work on linear elasticity is given by Toupin [329] (see also Refs. 90, 91, 182,
and 282 for further important developments). For the history of the problem
and the detailed analysis of various results on Saint-Venant’s principle, we
refer to the works of Gurtin [119], Fichera [89], Horgan and Knowles [129],
and Horgan [130,131]. Saint-Venant’s problem continues to attract attention
from both mathematical and technical points of view. Recently, elastic rods
have been used as continuum-type model of DNA.

The relaxed statement of the problem fails to characterize the solution
uniquely. This fact led various authors to establish characterizations of Saint-
Venant’s solution. Clebsch [52] proved that Saint-Venant’s solution can be
derived from the assumption that the stress vector on any plane normal to
the cross sections of the cylinder is parallel to its generators. Voigt [342] re-
discovered Saint-Venant’s solution by using another assumption regarding the
structure of the stress field. Thus, Saint-Venant’s extension, bending, and tor-
sion solutions are derived from the hypothesis that the stress field is indepen-
dent of the axial coordinate, and Saint-Venant’s flexure solution is obtained
if the stress field depends on the axial coordinate at most linearly.

Sternberg and Knowles [322] characterized Saint-Venant’s solutions in terms
of certain associated minimum strain-energy properties. Other intrinsic cri-
teria that distinguish Saint-Venant’s solutions from all the solutions of the
relaxed problem were established in the work [159]. The work [159] presents
a new method of deriving Saint-Venant’s solutions. The advantage of this
method is that it does not involve artificial a priori assumptions. The method
permits construction of a solution of the relaxed Saint-Venant’s problem for
other kinds of constitutive equations (anisotropic media, Cosserat continua,
etc.) where the physical intuition or semi-inverse method cannot be used. The
work [159] points out the importance of the plane strain problem in solving
Saint-Venant’s problem.

Truesdell [331,334,336] proposed a problem which, roughly speaking, con-
sists of the generalization of Saint-Venant’s notion of twist which could be
applied to any solution of the torsion problem. An elegant solution of Trues-
dell’s problem has been established by Day [62].

A generalization of Saint-Venant’s problem consists of determining the equi-
librium of an elastic cylinder which, in the presence of body forces, is subjected
to surface tractions arbitrarily prescribed over the lateral boundary and to ap-
propriate stress resultants over its ends. Study of this problem was initiated
by Almansi [6] and Michell [221] and was developed in various later works
[68,163,175,313]. Saint-Venant’s results were established within the equilib-
rium theory of homogeneous and isotropic elastic bodies. A large number of
works are concerned with the relaxed Saint-Venant’s problem for other kinds
of elastic materials [32,85,204,209].

This book attempts to present several results established in the theory of
deformation of elastic cylinders from a unified point of view. An effort is made
to provide a systematic treatment of the subject. The theory of prestressed
cylinders and the case of finite deformations are not considered here. The

© 2009 by Taylor & Francis Group, LLC



Preface xi

reader interested in these subjects will find an account in Refs. 7, 108, 164,
217, 222, and 280.

Chapter 1 is concerned mainly with results with which Saint-Venant’s so-
lutions are involved. We give a method of construction of these solutions and
then we characterize them in terms of certain associated minimum strain-
energy properties. A study of Truesdell’s problem is presented. This chapter
also includes a proof of Saint-Venant’s principle and a study of the plane strain
problem.

Chapter 2 deals with the generalization of Saint-Venant’s problem to the
case when the cylinder is subject to body forces and surface tractions on the
lateral boundary. We study the problems of Almansi and Michell and present
a scheme for deriving a solution of Almansi—-Michell problem.

Chapter 3 is concerned with the deformation of nonhomogeneous and iso-
tropic cylinders, where the elastic coefficients are independent of the axial
coordinate. First, the plane strain problem is investigated. Then, the Saint-
Venant’s problem is reduced to the study of certain plane strain problems.
The method is used to study the deformation of elastic cylinders composed of
different materials. The problems of Almansi and Michell are also investigated.

Chapter 4 is devoted to anisotropic elastic bodies. We first establish a solu-
tion of Saint-Venant’s problem. The method does not involve artificial a priori
assumptions and permits a treatment of the problem even for nonhomogeneous
bodies. Then, the problem of loaded anisotropic elastic cylinders is studied.
The deformation of cylinders composed of different anisotropic materials is
also investigated. The results are specialized for orthotropic elastic cylinders.

In Chapter 5, we study the deformation of cylinders within the linearized
theory of homogeneous Cosserat elastic solids. We first present some results
concerning the plane strain problem. Then, a solution of Saint-Venant’s prob-
lem is established. A generalization of the problems of Almansi and Michell
is also investigated.

Chapter 6 is concerned with the deformation of nonhomogeneous Cosserat
cylinders. Saint-Venant’s problem and the problem of loaded cylinders are
studied.

Chapter 7 is devoted to the study of porous elastic cylinders. In the first
part of the chapter, we study the plane strain problem. Then, the solution
to the problem of extension, bending, and torsion is expressed in terms of
solutions of certain plane strain problems.

The applications included are problems considered relevant to the purpose
of the text. By no means can any claim be made with regard to completeness
of the coverage. We have tried to maintain the level of rigor now customary in
applied mathematics. However, to ease the burden of the reader, many results
are stated with hypotheses that are more stringent than necessary. No attempt
is made to provide a complete list of works on Saint-Venant’s problem. Neither
the list of works cited nor the contents is exhaustive. Nevertheless, it is hoped
that the developments presented reflect the state of knowledge in the study
of the problem.

© 2009 by Taylor & Francis Group, LLC



Chapter 1

Saint- Venant’s Problem

1.1 Preliminaries

We consider a body that at some instant occupies the region B of
Euclidean three-dimensional space E3. In what follows, unless specified to
the contrary, B will denote a bounded regular region [119]. We let B denote
the closure of B, call 9B the boundary of B, and designate by n the outward
unit normal of dB. The deformation of the body is referred to the reference
configuration B and a fixed cartesian coordinate frame. The cartesian coor-
dinate frame consists of the orthonormal basis {e1, es,e3} and the origin O.
We identify a typical particle x of the body B with its position x in the ref-
erence configuration. Letters in boldface stand for tensors of an order p > 1,
and if v has the order p, we write v;;  (p subscripts) for the rectangular
cartesian components of v. We shall employ the usual summation and dif-
ferentiation conventions: Greek subscripts are understood to range over the
integers (1,2), whereas Latin subscripts, unless otherwise specified, are con-
fined to the range (1,2, 3); summation over repeated subscripts is implied and
subscripts preceded by a comma denote partial differentiation with respect to
the corresponding cartesian coordinate. The inner product of two vectors a
and b will be designated by a-b. We denote the vector product of the vectors
aand b by a x b.

We assume that the body occupying B is a linearly elastic material. In what
follows, we restrict our attention to the equilibrium theory of elastic bodies.
Let u be a displacement field over B,

u=u(ry,r2,23), (v1,22,23) € B

The strain field associated with u is given by

1
cij(w) = 5 (i +uji) (1.1.1)

The stress—strain relations for an anisotropic medium are
tij(u) = Cijrsers () (1.1.2)

Here t(u) is the stress field associated with u, whereas C stands for the elas-
ticity field. We assume that C is positive-definite, smooth on B, and satisfies

© 2009 by Taylor & Francis Group, LLC



2 Classical and Generalized Models of FElastic Rods

the symmetry relations
Cijrs = Cjirs = Crsij (113)

If the body is homogeneous, then C is independent of x. For the particular case
of an isotropic elastic medium, the tensor field C admits the representation

Cijrs = Nij0rs + p1(0ir0js + 0i50j7)

where A and p are the Lamé moduli and d;; is the Kronecker delta. In this
case, the constitutive equations 1.1.2 reduce to

tij (u) = /\67.7.(11)51‘3' + 2/,661']' (u) (1.1.4)
If the material is isotropic, then the positive definiteness of C is equivalent to
3A+2>0, p>0 (1.1.5)

The stress—strain relations 1.1.4 may be inverted to give

eij(u) = %[(1 + V)t (u) — véijtss(u)] (1.1.6)
where ( )
 u(BA+2u _ A
E_ﬁ’ V_72(/\+H) (1.1.7)

The constitutive coefficient E is known as Young’s modulus and v is known
as Poisson’s ratio.
The equations of equilibrium, in the absence of body forces, are

on B. In view of Equations 1.1.1 and 1.1.3, the constitutive equations 1.1.2
can be written in the form

tij(w) = Cijrstir,s (1.1.9)
Equation 1.1.8 imply the displacement equations of equilibrium
(Cijrstir,s),j =0 (1.1.10)
on B. We call a vector field u an equilibrium displacement field for B if u €
C?(B) N CY(B) and u satisfies Equations 1.1.10 on B.
Let s(u) be the surface traction at regular points of 9B belonging to the
stress field t(u) defined on B, that is,

sl(u) thi(u)nj (1111)

© 2009 by Taylor & Francis Group, LLC



Saint- Venant’s Problem 3

The strain energy U(u) corresponding to a smooth displacement u on B is

U(u) = %/BC’ijrseij(u)ers(u)dv (1.1.12)

In what follows, two displacement fields differing by an infinitesimal rigid
displacement will be regarded identical.
The functional U(-) generates the bilinear functional

U(u,v) = %/BCijrseij(u)eTs(v)dv (1.1.13)

The set of smooth vector fields over B can be made into a real vector space
with the inner product
(u,v) = 2U(u,v) (1.1.14)

This inner product generates the energy norm
[ul|2 = (u,v) (1.1.15)

Let u and v be any equilibrium displacement fields. It follows from Equa-
tions 1.1.10 and the divergence theorem that

(u,v) = /33u -s(v)da (1.1.16)

In view of Equations 1.1.3, 1.1.13, 1.1.14, and 1.1.16, we get the reciprocity
relation

/aBu-s(V)da: /aBV-s(u)da (1.1.17)

We note that the strain field e(u) associated with a class C® displacement
field over B satisfies the following equations of compatibility

EipgEjrs€prgs = 0 (1.1.18)

where €51, is the three-dimensional alternator. Conversely, let B be simply-
connected, and let e be a class C? symmetric tensor field on B that satisfies
the Equations 1.1.18. Then there exists a displacement field u of class C® on
B such that e and u satisfy the strain—displacement relations 1.1.1 [119,241].

1.2 Formulation of Saint-Venant’s Problem

We assume that the region B from here on refers to the interior of a right
cylinder of length h, with open cross section ¥ and the lateral boundary II.
The rectangular cartesian frame is supposed to be chosen in such a way that
the x3-axis is parallel to the generators of B and the x10Oxy plane contains
one of the terminal cross sections. We denote by 31 and s, respectively, the
cross section located at 3 = 0 and x5 = h (Figure 1.1).

© 2009 by Taylor & Francis Group, LLC



4 Classical and Generalized Models of FElastic Rods

FIGURE 1.1 A prismatic bar.

We assume that the generic cross section X is a simply-connected regular
region. We denote by I' the boundary of ¥;. In view of the foregoing agree-
ments, we have

B={z:(x1,22) €3, 0 < z3 < h},
II={z:(z1,22) € L,0<z3 <h}

Y1 =A{x:(r1,22) € X, 23 =0}, Yo=A{x:(z1,22) € L,x3 = h}

We consider the equilibrium problem of the cylinder which, in the absence
of body forces, is subjected to surface tractions prescribed over its ends and
is free from lateral loading. Thus, the problem consists in the determination
of an equilibrium displacement field u on B subjected to the requirements

s(uy=00onI, s(u)=s®on%,, (a=1,2) (1.2.1)

where s(®) is a vector-valued function preassigned to ¥,. Necessary conditions
for the existence of a solution to this problem are given by

/ sWda +/ s@da = 0, / x x sMda —l—/ xxsPda=0 (1.2.2)
o1 ) 21 2

where x is the position vector of a point with respect to O.

Under suitable smoothness hypotheses on I' and on the given forces, a
solution of the problem exists [88].

The importance of Saint-Venant’s celebrated memoirs [291,292] in the study
of this problem requires no emphasis. Saint-Venant’s approach of the prob-
lem is based on a relaxed statement in which the pointwise assignment of the
terminal tractions is replaced by prescribing the corresponding resultant force
and resultant moment. Justification of the procedure is twofold. First, it is
difficult in practice to determine the actual distribution of applied stresses
on the ends, although the resultant force and moment can be measured ac-
curately. Second, one invokes Saint-Venant’s principle. This states, roughly
speaking, that if two sets of loadings are statically equivalent at each end,
then the difference in stress fields and strain fields are negligible, except pos-
sibly near the ends. The precise meaning of Saint-Venant’s hypothesis and its
justification has been the subject of many studies, almost from the time of the
original Saint-Venant’s works. A proof of Saint-Venant’s principle is presented
in Section 1.10.
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Saint- Venant’s Problem 5

In the formulation of Saint-Venant, the conditions 1.2.1 are replaced by
s(u) = 0 on II, R(u) =F, H(u) =M (1.2.3)

where F and M are prescribed vectors representing the resultant force and
the resultant moment about O of the tractions acting on ;. Accordingly,
R(-) and H(-) are the vector-valued linear functionals defined by

R(u) :/zs(u)da, H(u) :Ax x s(u)da (1.2.4)

Saint-Venant’s problem consists in the determination of an equilibrium dis-
placement field u on B subject to the conditions 1.2.3.
If e, is the two-dimensional alternator, Equations 1.2.4 appear as

Rz(u) = 7/Et3i(u)da
! (1.2.5)

P

Hy(u) = 7/ €apTptsz(u)da, Hs = 7/28(15%&153[}(11)(&1
1

The necessary conditions 1.2.2 for the existence of a solution to Saint-
Venant’s problem lead to the following relations, which are needed subse-
quently

/ tzi(u)da = —R;(u), / EapTatzg(u)da = —Hs(u)
e s (1.2.6)
/E tatss(Wda = —hRo () + s Hs(w)

It is obvious that the relaxed statement of the problem fails to characterize
the solution uniquely.

By a solution of Saint-Venant’s problem, we mean any equilibrium displace-
ment field that satisfies Equations 1.2.3.

Saint-Venant’s formulation leads to the four basic problems of extension,
bending, torsion, and flexure, characterized by

1. Extension: F,=0,M; =0

2. Bending : F;, =0, M3=0

3. Torsion : F,=0, M,=0

4. Flexure : F3=0, M; =0

In the next section, we shall study the problems listed above by using the
Saint-Venant’s semi-inverse method of solution. This consists in making cer-
tain assumptions about the components of stress or displacement and leav-
ing enough freedom to satisfy the basic equations and boundary conditions.
Saint-Venant’s results were established within the equilibrium theory of ho-

mogeneous and isotropic cylinders. In Section 1.7, we shall present a rational
method of deriving Saint-Venant’s solutions.
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6 Classical and Generalized Models of FElastic Rods

1.3 Saint-Venant’s Solutions

Let B be occupied by an isotropic and homogeneous material. In this case,
Saint-Venant’s problem consists in the determination of a solution of the Equa-
tions 1.1.1, 1.1.4, and 1.1.8 on B which satisfies the boundary conditions 1.2.3.
For convenience, in what follows, unless otherwise specified, we shall write e;;
for e;;(u) and ¢;; for ¢;;(u). It follows from Equations 1.1.11 and 1.2.3 that
the conditions on the lateral boundary can be written in the form

taiNa = 0on II (1.3.1)

1.3.1 Extension

In this case, the conditions on the ends reduce to

/ tsada =0, / €aplatszpda =0 (1.3.2)
21 21
/ t33da = —F3 (133)
P
/ Totzzda =0 (1.3.4)
Pt

The extension problem consists in the determination of the functions u; €
C?(B) N CY(B) that satisfy the Equations 1.1.1, 1.1.4, and 1.1.8 on B and
the boundary conditions 1.3.1, 1.3.2, 1.3.3, and 1.3.4, where F3 is a given
constant.

Let us suppose that the rectangular cartesian coordinate frame is chosen in
such a way that the origin O coincides with the centroid of ¥;. Thus, we have

/ ZToda =0 (1.3.5)
PN

Following Saint-Venant, we try to solve the extension problem assuming that
tag =0, tss = C, taz =0 (1.3.6)

where C' is an unknown constant. Clearly, the equilibrium equations 1.1.8 are
satisfied. From the constitutive equations 1.1.6, we find that

1

EC, €30 — 0 (137)
The equations of compatibility are identically satisfied. From Equations 1.1.1
and 1.3.7, we obtain

14
€ap = _EC(Saﬁa €33 =

2v 1
U8 T UBa = _50611,37 U3,q + Ua,3 = 0, Uu3,3 = EC
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Saint-Venant’s Problem 7
A simple calculation gives
v 1
Uq = _Ecxaa uz = Ecxl’n ($17$2,Z‘3) €B (138)

modulo an infinitesimal rigid displacement. We eliminate the rigid displace-
ment by assuming that u and curlu vanish at origin.

The conditions on the lateral boundary 1.3.1 and the conditions 1.3.2 are
satisfied on the basis of the relations 1.3.6. It follows from Equations 1.3.5 that
the conditions 1.3.4 are identically satisfied. By Equations 1.3.3 and 1.3.6 we
conclude that

1
C VR (1.3.9)

where A is the area of the cross section.

Thus, the solution of the extension problem is given by the relations 1.3.8,
where C' is determined by Equation 1.3.9.

Let z; be the coordinates of the point Py in the reference configuration,
and let y; be the coordinates of the corresponding point P in the deformed
configuration. Then we have y; = z; + u;. From Equations 1.3.8 and 1.3.9,

we get
- (1+ Y F) ~(1-Lr
Ya = EA3$O” Ys = A3 3
Let F3 = —p, p > 0. In this case the resultant force of the tractions acting

on the end located at x3 = h is pe3 and the point O is fixed. The point Ny
which, prior to deformation, had the coordinates (0,0, k) goes into point N
with the coordinates (0,0, k'), where

1
W=[14+—=—p|h
( * EAp)
A tensile test on an elastic specimen could be utilized to obtain the material
constants.

1.3.2 Bending by Terminal Couples
We assume that F = 0 and M = M;je;. The conditions on »; become

/ t3ada = 0, / €aplatzgda =0 (1.3.10)
21 21
/ $2t33da = —M1 (1311)
P
/ t33da = O, / .131t33da =0 (1.3.12)
31 P

The bending problem consists in the determination of a solution of the
Equations 1.1.1, 1.1.4, and 1.1.8 on B which satisfies the conditions 1.3.1,
1.3.10, 1.3.11, and 1.3.12.
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8 Classical and Generalized Models of FElastic Rods

We choose the cartesian coordinate frame in such a way that the z,-axes
are principal centroidal axes of the cross section Xy, that is,

/ roda =0, / r1xoda =0 (1.3.13)
21 21

We seek the solution of the bending problem assuming that
taﬂ = 0, t33 = Cl.’EQ, tga =0 (1314)

where (' is an unknown constant. It is obvious that the equations of equilib-
rium 1.1.8 are satisfied. The conditions 1.3.1 and 1.3.10 are satisfied on the
basis of the assumptions 1.3.14. It follows from Equations 1.3.13 and 1.3.14
that the conditions 1.3.12 are also satisfied. By Equations 1.3.11 and 1.3.14
we obtain

1
C1=—7M (1.3.15)

where I is the moment of inertia of the cross section about the x1-axis,

I:/ rada
P

From Equations 1.1.6 and 1.3.14, we get
v 1
eag = —Ecll’g(sag, €33 — EClmg, €3q — 0 (1.3.16)
Thus, in view of Equations 1.1.1, we obtain the following equations for the

functions u;

2v
Ua,f T UB,a = *fclffzfsag
. (1.3.17)
U3, + U3 = 07 u3 3 = EClxg

The equations of compatibility are satisfied. We assume that there is no rigid
displacement at the origin. The integration of Equations 1.3.17 yields

Miv M
Uy = T}Z1I2, Uy = ﬁ [Ig +v(a3 — xf)]
(1.3.18)
U Y (x1,22,23) € B
us = EI$2$3» 1,L2,T3

The coordinates of a generic point in the deformed configuration are

v
—(1+ XM )
Y1 ( + El 1T2 | T1

1
Yo = w3+ o M2 + v (2 — a7)] (1.3.19)

1
Y3z = (1 — E'IMlx2> s, (x17x27x3) € B
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Saint- Venant’s Problem 9

Since the displacements are infinitesimal we can see that My /(ET) is infinites-
imal. Then we can write

1
Y3 = (1 - EIMlyQ) T3

It follows that the points located at the plane 3 = const. remain in a plane
after deformation. By the relations 1.3.19, we see that the points on the x3-axis
go into the parabola

1
y1 =0, Z/2:E 195%7 Ys = T3
The curvature of this curve is My /(ET). This result is known as Bernoulli—
Euler law.
Similarly, we can study the case when M = Mses.

1.3.3 Torsion

We now suppose that F = 0 and M = Mj3es. Thus, the conditions for
z3 = 0 reduce to

/ tsada =0 (1.3.20)
3
/ tggda = 0, / .’Eat;),gd(l =0 (1.3.21)
3 P
/ (Iltgg — Jigtgl)da = 7M3 (1322)
3

The torsion problem consists in the determination of the vector field u €
C?(B) N CY(B) that satisfies the Equations 1.1.1, 1.1.4, and 1.1.8 on B and
the boundary conditions 1.3.1, 1.3.20, 1.3.21, and 1.3.22.

We seek the solution of the torsion problem in the form

Uy = —TT2T3, Uz = TL1X3, uz = 79(T1,72) (1.3.23)

where ¢ is an unknown function of z; and z2, p € C%(X1) N CY(X,), and T is
an unknown constant. From Equations 1.1.1 and 1.3.23, we obtain

eap =0, es33 =0, 2e13 =7(p1 — 2), 2e03 =T(p2 + 1)
so that Equation 1.1.4 implies that
tap =0, t33 =0, tis = pr(p1 — 2), tog = ut(p2+2x1) (1.3.24)
The equations of equilibrium 1.1.8 reduce to

t13,1 +t232 =10 (1.3.25)
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10 Classical and Generalized Models of Elastic Rods

It follows from Equations 1.3.24 and 1.3.25 that the equilibrium equations will
be satisfied if ¢ satisfies the equation

Agp =0on 3, (1.3.26)

where A is the two-dimensional Laplacian. Since t,g = 0, the conditions 1.3.1
reduce to

tlg’ﬂl + tggng =0onTl (1327)
In view of Equations 1.3.24, the condition 1.3.27 becomes

0

% =x9n; —x1ngon (1.3.28)
where d¢/0n = ¢ ono. Thus, the torsion function p satisfies the Neumann
problem 1.3.26 and 1.3.28.

Let us consider the boundary-value problem

0
Aw = fon X, g _ gonT (1.3.29)
on
It is known that a necessary condition for the existence of a solution of this
problem is

fda — /gds =0 (1.3.30)
p%Y T

If T is a regular curve [119, Section 5], f is continuous on X, and g is piecewise
continuous on T, then the condition 1.3.30 is sufficient [55] for the existence
of a solution of the boundary-value problem 1.3.29.

We note that

/(xznl —xing)ds = /xldm + xodre =0
r r

Thus, in the case of the boundary-value problem 1.3.26 and 1.3.28, the con-
dition 1.3.30 is satisfied. The function ¢ is determined to within a constant.
This constant is nonessential since it generates a rigid body translation.

The conditions 1.3.20 are satisfied on the basis of the equilibrium equa-
tions and the conditions on the lateral boundary. Thus, with the aid of Equa-
tions 1.3.25, 1.3.27, and the divergence theorem, we have

/ t3ada = / (tsa + xTatps,p)da = / (xatps) gda = /xat,gg,ngds =0
3 P T

1

Since t33 = 0, it follows that the conditions 1.3.21 are satisfied. By Equa-
tions 1.3.22 and 1.3.24, we obtain

7D = —M; (1.3.31)
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Saint- Venant’s Problem 11
where the constant D is defined by
D= M/ (27 + 235 + 2101 — 22901 ) da (1.3.32)
P

Let us show that D is different from zero. If we take into account Equa-
tions 1.3.26, 1.3.28, and the divergence theorem, then we get

/El(xup,z ~asp)da = [ [(wr9)2— (@0)alda = [ plosms = am)ds

1 r
= —/Fgog—zds = —/Zlcp’ago,ada
Thus, we have
/2(33190,2 —T2p1 + Qap.a)da =0 (1.3.33)
It follows from Equations 1.3.32 and 1.3.33 that
D= M/E[(@,z +21)% + (p1 — 22)%]da (1.3.34)

If we take into account the relations 1.1.5 and the fact that ¢ is of class C?,
then we conclude from Equation 1.3.34 that

D >0 (1.3.35)

Thus, the constant 7 is determined by Equation 1.3.31. The constant D is
called the torsional rigidity of the cylinder.

The solution of the torsion problem is given by the relations 1.3.23, where
 satisfies the boundary-value problem 1.3.26 and 1.3.28, and 7 is given by
Equation 1.3.31.

Let us show that the Neumann problem 1.3.26 and 1.3.28 can be reduced
to a Dirichlet problem. Since ¢ is harmonic, there exists an analytic function
q such that ¢ is the real part of g,

q(z) = p(x1, 2) +iv0(21,72),  (21,72) € 51
where z = z1 + ixg, and ¥ is related to ¢ by Cauchy—Riemann equations
Y1 =—@.a, o= (1.3.36)
The function ) satisfies the equation
A =0o0n 3, (1.3.37)

We assume that the curve I is a piecewise smooth curve parametrized by its
arc length s,
To = Ta(Ss), s €084 (1.3.38)
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12 Classical and Generalized Models of Elastic Rods

Then, we have
deQ dl’l

= — = —— 1.3.39
m ds’ 2 ds ( )
so that the condition 1.3.28 becomes
dyp 1d
The above condition can be written in the form
L, 2
Y= 5(gal +z3)+konT (1.3.40)

where k is an arbitrary constant. From Equations 1.3.36, we see that the
replacement of ¢ by ¥ + ¢, where c¢ is an arbitrary constant, does not change
the function . Since the domain ¥; is simply-connected, we can replace the
above condition by

1
) = 5(a;% +23)onT (1.3.41)

In the case of a multiply-connected domain, the constant k& in Equation 1.3.40
may have a different value on each contour forming the boundary of ¥; and
only on one of these contours it can be fixed arbitrarily. For the study of the
torsion problem in this case, we refer to the works of Mushelishvili [241] and
Solomon [315].

We note that the function v satisfies the Dirichlet problem 1.3.37 and 1.3.41.
We introduce the stress function of Prandtl by

1
U= w(.’ﬂl,xg) — 5(1’? + x%), ((El,.’EQ) €3 (1342)

It follows from Equations 1.3.37, 1.3.41, and 1.3.42 that the function W satisfies
the equation
AV =—-20n3; (1.3.43)

and the boundary condition
¥U=0onl (1.3.44)

In view of Equations 1.3.24, 1.3.36, and 1.3.42, we find that
t13 = /,LT\I/’Q, t23 = —MT\I/J (1345)

Moreover, by Equations 1.3.34, 1.3.36, 1.3.42, 1.3.44, and the divergence the-
orem we obtain

D= —/,L/ (.’El\I{l + 1'2\]:1,2)(1(1
PN

= - / [(210) 1 + (220) 2 — 2¥]da = 2u/ Uda (1.3.46)
Y N
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Saint- Venant’s Problem 13

Thus, instead of solving the boundary-value problem 1.3.37 and 1.3.41, we
can solve the Dirichlet problem 1.3.43 and 1.3.44.
We denote by P the magnitude of the stress vector

ts = tize; + tazeq
It follows from Equations 1.3.45 that

P? = 12 7[(01)? + (0 2)%) = p*T° 0 50 5

s

Let f be a function of class C? on X; that satisfies the inequality
Af>0on X,

Then f is either identically a constant or else it attains its maximum on the
boundary of ;. Clearly,

AP? = (P?) no = 21777V 5,7 5) o

= 20°7*(¥ pa ¥ pa + ¥ paa ¥ 5) = 20°7°W 5o ¥ 5o > 0

We conclude that in the case of torsion, the maximum of the shear stress
occurs on the boundary of 3.

1.3.4 Flexure
Let us suppose that F = Fie; and M = 0. In this case, the conditions on

Y1 become
/ t31da = 7F1, / t32da =0 (1347)
21 21
/ tggda = 0, / .’L‘aﬁggda =0 (1348)
21 z:1
/ (thgg - xgtgl)da =0 (1349)
PN

where Fj is a given constant.

The flexure problem consists in the determination of a solution of the Equa-
tions 1.1.1, 1.1.4, and 1.1.8 on B which satisfies the conditions 1.3.1, 1.3.47,
1.3.48, and 1.3.49. We suppose that the cartesian coordinate frame is chosen
in such a way that the relations 1.3.13 hold.

We try to solve the problem assuming that

tag =0o0n B (1.3.50)
Then, the equations of equilibrium become

31,3 =0, t32,3 =0, tj3,; =0 (1.3.51)
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14 Classical and Generalized Models of Elastic Rods

By Equations 1.1.6 and 1.3.50,

12
€11 = €2 = —Et33, €33 = Et33
14y (1.3.52)
a3 = —p— ta3, e =0

It follows from Equations 1.3.51 that t,3 are independent of x3 and that
ts3 is a linear function of x3. Thus, in view of Equations 1.3.52, the equations
of compatibility 1.1.18 reduce to

t3311 =0, 33,22 = 0, 33,12 =0 (1.3.53)
(tog1 — t132)1 = t33,23
b+ (1.3.54)
tos1 —ti2)2 = — t.
(taz1 — t13,2) 2 11813

Since t33 depends on the axial coordinate at most linearly, from Equa-
tions 1.3.53, we obtain

t33 = E[(Al.fﬁl + Bizo + 01)563 + Asxy + Boxo + 02] (1355)

where A, B, and C,, are arbitrary constants. By Equations 1.3.13 and 1.3.48,
we find that Ay = By, = Cy = 0, so that

t33 = E(Alfﬂl + Bll‘g + 01)933 (1356)

We note that on the basis of equations of equilibrium 1.1.8 and the boundary
conditions 1.3.1, we can write

/ t3ada = / [tas + Za(t131 + ta3 2 + t33,3)]da
o D

1
= /xatggngds +/ xat3373da = / xat3373da (1357)
T ¥ 31
Thus, the conditions 1.3.47 reduce to
/ I1t3373 = 7F1, / :c2t33,3da =0 (1358)
21 z:1
From Equations 1.3.56 and 1.3.58, we obtain

—F, Bi=0 (1.3.59)
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I*:/ r2da
¥

In view of Equation 1.3.56, the relations 1.3.54 become

where

v
1+v

(t231 —ti32)1 =0, (t2s1 —t132) 2= — EA;

so that

toz1 —t132 = (1 — Ajvas) (1.3.60)

1+v

where 7 is an arbitrary constant. The relation 1.3.60 can be written in the
form

E E
lag — 7561] ) = [t13 - m(Aleg — T)

2(1+v) 2

We conclude that there exists a function G € C?(2;) N C1(X;) such that

E
toz = W(GQ + 7'1‘1)
(1.3.61)

ti3 = (G + Azl —7a2),  (21,22) € 5

2(1+v)

The stress tensor satisfies the equations of equilibrium 1.3.51 if the function
G satisfies the equation

AG = —2(1 + V)(A1$1 + Cl) (1.3.62)

The first two conditions of Equations 1.3.1 are satisfied on the basis of
the relation 1.3.50. From the last relation of Equations 1.3.1, we obtain the
following condition for the function G,

G
on

= —VA1x§n1 + 7(z9ny — x1n2) on T’ (1.3.63)

If we take into account the relations 1.3.30 and 1.3.13, then the necessary
and sufficient condition to solve the boundary-value problem 1.3.62 and 1.3.63
implies that

Ci=0 (1.3.64)

We introduce the function ® by
G=d+71p (1.3.65)

where ¢ is the torsion function. It follows from Equations 1.3.26, 1.3.28, 1.3.62,
1.3.63, and 1.3.64 that the function ® satisfies the equation

AP = —-2(1+v)Ajzq on X (1.3.66)
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16 Classical and Generalized Models of Elastic Rods

and the boundary condition

o
on
The necessary and sufficient condition for the existence of a solution to the
boundary-value problem 1.3.66 and 1.3.67 is satisfied. In what follows we

assume that the functions ¢ and ® are known.
From the relations 1.3.61 and 1.3.65, we get

= —vAz2n; onT (1.3.67)

toz = p[® 2+ 7(p2 + 21)], tis =p[®1 4+ 7(p1 — 32) + vA23]
The condition 1.3.49 reduces to
™D = -M* (1.3.68)

where D is the torsional rigidity and M™ is given by

M= u/ (1B 5 — 22 1)da (1.3.69)
b))

1

Since D # 0, the relation 1.3.68 determines the constants 7.

The equations of compatibility 1.1.18 are satisfied so that we can determine
the displacement field. From Equations 1.1.1, 1.3.52, 1.3.56, 1.3.59, 1.3.61, and
1.3.64, we obtain the following system of equations

up = —vAiT23, ug g = —vAj T3, uz 3 = AjT123
U2 +ug =0, Uz +uge = Ga+ 721
U1,3 + usz;1 = Gﬁl + Z/All'% — TXQ
The integration of the above equations yields
T —éAlxg — %I/Alxg(x% —22) — Taox3
Uy = —VvA1T12023 + TT123 (1.3.70)

1 1 1
ug = §A1$1x§ —+ iyAlxl <3SU% + x%) +7—90 + @, ($1,$2,$3) €B

In a similar manner we can study the case in which F = Fye; and M = 0.

1.4 Unified Treatment

In Ref. 52, Clebsch proved that Saint-Venant’s solution can be derived from
the assumption that the stress vector on any plane normal to the cross sections
of the cylinder is parallel to its generators. In this section, we present a unified
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Saint- Venant’s Problem 17

treatment of Saint-Venant’s problem which rests only on the hypotheses 1.3.50.
The solution is established without any special choice of the cartesian coordi-
nate frame.

We consider the general problem in which the conditions for x3 = 0 are

/ tgada = —Fa (141)
P
/ t33da, = —F3 (142)
P
/ Tatzzda = eqpMp (1.4.3)
P
/ €apTatspda = —Ms; (1.4.4)
P

where Fj and M are prescribed constants. In this case, the problem consists
in the determination of the displacement field u which satisfies the Equa-
tions 1.1.1, 1.1.4, and 1.1.8 on B and the boundary conditions 1.3.1 and
the conditions for x5 = 0. We try to solve the problem assuming that Equa-
tions 1.3.50 holds. Then, the equilibrium equations reduce to Equations 1.3.51,
and the constitutive equations can be written in the form 1.3.52. The compat-
ibility equations 1.1.18 reduce to Equations 1.3.53 and 1.3.54. We conclude,
as in the preceding section, that Equation 1.3.55 holds.
Now, from Equations 1.3.54 and 1.3.55 we obtain

23,1 — t132 = (Bivzy — Aqvzg + 1)

14+v

where 7 is an arbitrary constant. The above relation can be expressed as

E
a3 — (vBixy + T)I1} = |:t13 — o (vA129 — T)2o
1

2(1+v) ) 1+v) 2

Thus, there exists a function S of class C? on 3, such that

E
tog = — (S B x?
23 2(1+1/)( o+ vByz] + T11)
n (1.4.5)
tig = ——(S Az —
13 2(1+1/)( 1+ vAixs — Txg)

From the equations of equilibrium, we find that S satisfies the following
equation

AS =-2(1+v)(A1x1 + Byza + Cy) on ¥y (1.4.6)
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18 Classical and Generalized Models of Elastic Rods

The first two conditions on the lateral boundary are identically satisfied.
The third condition of the relations 1.3.1 becomes

05 _
on

In view of Equation 1.3.30, the necessary and sufficient condition for the

existence of a solution to the boundary-value problem 1.4.6 and 1.4.7 is

—V(A1x§n1 + lefng) + 7(zony — x1n2) on T (1.4.7)

Cl = —All'(l) - AQ!,Cg (148)

0

where x,,

are the coordinates of the centroid of 3,

Axg:/xada, A:/da (1.4.9)
21 E1

It follows from the relations 1.4.2 and 1.3.55 that

1
Cy = —ﬂFg — A2 — Boa (1.4.10)

In view of the relations 1.4.8 and 1.4.10,
t33 = E{ [A1 (xl — a:(l)) + By (arg — xg)]xg
+ Az (z1 — 2Y) + Ba(z2 — 29)} — %Fg (1.4.11)
If we use Equations 1.3.57 and 1.4.11, then the conditions 1.4.1 reduce to the
following system for the constants A; and Bj,
Ja1A1 + Ja2B1 = —%Fa (1.4.12)

where
Jap = / (xa — xg) (xg — x%)da
¥

Since Jy1J22 — JZ # 0, from Equations 1.4.12, we can determine the constants
A; and B;. By Equations 1.4.11 and 1.4.3, we obtain the system

1
Jo1 Az + Jo2 By = E(gcwMﬁ + 20 F3) (1.4.13)

which determines the constants Ay and By. In what follows we assume that
A, and B, are known.
Let us introduce the function x by

S=x+T71p (1.4.14)

where ¢ is the solution of the boundary-value problem 1.3.26 and 1.3.28. By
Equations 1.4.6, 1.4.7, 1.4.14, 1.3.26, and 1.3.28 we find that x satisfies the
equation

AX = —2(1 + l/)(Al.Z‘l + Bixo + Cl) on X (1415)
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and the boundary condition

ox _

B = —v(Ax3ny + Bizing) on T (1.4.16)

We note that A; and B; are given by Equations 1.4.12, and that the neces-
sary and sufficient condition for the existence of a solution to the boundary-
value problem 1.4.15 and 1.4.16 is satisfied. By Equations 1.4.5 and 1.4.14,
we get

t23 = /,LI:X)Q + ’7'((,0’2 =+ xl) + I/Bl.’Eﬂ
t13 = /L[X,l —+ T((p71 — 11?2) —+ I/All’g]

so that the condition 1.4.4 reduces to

o~

D =—M;—M (1.4.17)

where D is given by Equation 1.3.34 and M is defined by

—~

M = —u/ [21(x,2 +vBiat) — 22 (x1 + vAia3)]da
P

In view of the relation 1.3.35, we can determine 7 by Equation 1.4.17.
Since the equations of compatibility are satisfied, we can find the displace-
ment field. It follows from Equations 1.1.1, 1.3.52, 1.4.5, and 1.4.11 that

Uy, = —V{ [Al (xl — a:(l)) + By (1‘2 - ﬂ?g)]l“?)

+ Ay(xy — 17?) + BQ(JL‘Q — 56(2))} + EfI/AFS
ua = v [As(or ) + B o - )
14
+A2($1 7(13(1)) +B2(£172 *ajg)} —+ ﬂFB
Uusz,3 = [Al (-Tl - I?) + By (1‘2 — l‘g)]l‘g —+ A2 (;z:l — z(lj) (1418)
1
+ By (z2 — xg) — ﬂF3

U2 +uz1 =0
2
U2,3 + U32 = 572 + Z/Bl.’L‘l + T

2
U173 + U371 = 571 + I/A1932 — TX9
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The first three equations of 1.4.18 imply that
1 0
u; = —vris | A xl - xl + B; (:rg - xg) T3
1 0 0
+ Ay 51— +B2(x2—x ) EAF3$1+f1($2,$3)
0 1 0
Uy = —vT9s |A; (xl — xl) + B3 §x2 — x4 | |3

1
+A2(5E1 - CE?) + By <2£U2 0)} EAFB"TQ + fa(z1,3)

(1.4.19)

1
uz = {2 [Al (1‘1 — 1‘(1)) + Bl ({E2 — xg)}xg

1
+A2(l‘1 - 1‘(1)) + Bg (2132 - $g) }1‘3 - ﬂFzﬂﬁg + f3(.731,$2)

where fj, are arbitrary functions. Substituting the functions 1.4.19 into the
last three equations of 1.4.18, we find

fie + fo1 = vas(Arze + Biz1) + v(Asxs + Bax)
1
fag+Ja2 =52+ V[Al (1 —a%) + B (2332 - xg)]xz

1
+ vBya} + 721 — Bows — §B1$§ (1.4.20)

1
fsa+ fiz=S1+v |:A1 (2951 - 33?) + Bi (22 — 95(2))] Z1
2 1 2
+ vAjxs — T — Asxg — §A1z3
It follows from Equations 1.4.20 that

J1,20 = v(Ajz3 + Aj), fi33 = —Ajz3 — Aj, fios =vAjzy — 7
fa,11 = v(Bizs + Ba), fo.33 = —Bixs — Bo, foizs=vBix1+71
faa1 = Sa1 4+ v[Ar (21 — ab) + By (22 — 29)] (1.4.21)
f3.220 = S0+ v[A1(z1 — 2Y) + By (22 — 29)]

fa12 = S12 +v(Biz1 + A1z2)

It is easy to find the functions fj from Equations 1.4.21. These functions
must be so determined as to satisfy Equation 1.4.20. Finally, from the
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relations 1.4.19 we obtain

1 1
U1 —gAlxg 51421’%
1 0 1 2
—x3qvxy | Aq 23:1 — xl + B; (xg - x2) — §I/A1m2 — TTox3
1 0 1 1 9
—vxy|Ag 2x1 —xl —|—B2( 1’2) ﬂFg + §Z/A2x2
U = _éleg — 5321‘%

_ xs{mz Ay (21— 22) + By (w3 — a3)] — ;ygle} F—_—
— vy [AQ (21 —29) + BQ(;m — a:g) EAFg] + 1Vng1
us = La3[Ar (2 — 49) + By (e — 29)] + 23 [AQ (21— 2)
© By(wy — ) — EAFg] I [Al (;xl - x1> T Bi(ea - xg)]
+%1/x§ [Al(xl —a9) +Bl(;x2 —$2>:| +71o+x (1.4.22)

modulo an infinitesimal rigid displacement.

Thus, the solution of the problem is given by the relations 1.4.22, where
Aq, Be, and C,, are given by Equations 1.4.12, 1.4.13, 1.4.8, and 1.4.10, ¢ is
the torsion function, y is characterized by Equations 1.4.15 and 1.4.16, and 7
is defined by Equation 1.4.17.

1.5 Plane Deformation

In this section, we present some results concerning the plane strain prob-
lem of homogeneous and isotropic elastic cylinders. The relationship between
the plane strain problem and Saint-Venant’s problem will be discussed in
Section 1.7.

1.5.1 Statement of Problem

Throughout this section, we assume that the body occupying the cylinder
B is a homogeneous and isotropic elastic material, and that a continuous
body force f is prescribed on B. We consider that on the lateral boundary is
prescribed the surface displacement u or the surface force t. We suppose that
the surface displacement U, the surface traction t, and the body force f are
all independent of x3 and parallel to the x, zo-plane.

© 2009 by Taylor & Francis Group, LLC



22 Classical and Generalized Models of Elastic Rods

The state of plane strain, parallel to the x1, xo-plane, of the cylinder B is
characterized by

Ug = Ua(T1, T2), uz =0, (z1,22) €%y (1.5.1)

The above restrictions, in conjunction with the strain—displacement rela-
tions 1.1.1 and the stress—strain relations 1.1.4, imply that e;; and t;; are
all independent of x3.

The nonzero components of the strain tensor are given by

1
Cap = 5 (Ua,p + Up,a) (1.5.2)

The constitutive equations show that the nonzero components of the stress
tensor are to3 and t33. Further,

tap = Aeppdag + 2ueas (1.5.3)
and £33 = Ap, ,. The equilibrium equations reduce to
t3a,8 + fo =0o0n 3 (1.5.4)

If the displacement field is prescribed on the lateral boundary, then we have
the boundary conditions
Uy = Uy on T (1.5.5)

where u,, are continuous functions. The associated problem is called the first
boundary-value problem (or the displacement problem).
If the stress vector is prescribed on II, then the boundary conditions reduce
to
tgang =taonT (1.5.6)

where t,, are piecewise regular functions. In this case we refer to the resulting
problem as the second boundary-value problem (or the traction problem).
In view of Equations 1.5.2, the relation 1.5.3 becomes

tap = Aup,pbap + p(tia,s + Ug,q) (1.5.7)

Thus, Equations 1.5.4 imply the following displacement equations of equilib-
rium for plane strain

pAua + (A + p)ug pa + fo = 0on¥y (1.5.8)

The first boundary-value problem consists in the determination of the func-
tions u, € C?%(X1) N C%X;) that satisfy Equations 1.5.8 on X; and the
boundary conditions 1.5.5.

In view of Equations 1.5.7, the boundary conditions 1.5.6 can be expressed as

Aup p0ap + p(Ua,p + uga)ng = toonl (1.5.9)
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The second boundary-value problem consists in finding of the functions
Uy € C?(X1)NCL(X,) which satisfy Equations 1.5.8 on 3; and the boundary
conditions 1.5.9 on T.

The component t33 can be determined after the displacements u,, are found.
Thus, we can calculate the surface tractions over the ends, which maintain
the cylinder in equilibrium. If the ends of the cylinder are free, the solution
can be found by superposing, on the solution of the plane strain problem, the
solution of a Saint-Venant’s problem.

1.5.2 Uniqueness Results

The elastic potential associated with u, in the case of the plane strain, is
defined by

W, (u) = %/\epp(u)ew(u) + peas(Weas(u) (1.5.10)
To avoid repeated regularity assumptions, we suppose that
(i) f. are continuous on X
(i1) g, are continuous on T’
(ii1) to are piecewise regular on T
)

(iv) T is a piecewise smooth curve

Theorem 1.5.1 Assume that the elastic potential W, is a positive definite
quadratic form. Then

(a) the first boundary-value problem has at most one solution;

(8) any two solutions of the second boundary-value problem are equal, mod-
ulo a plane rigid displacement.

Proof. It follows from Equations 1.5.3 and 1.5.10 that
tapeap = 2W, (1.5.11)
On the other hand, by Equations 1.5.2, 1.5.3, and 1.5.4, we find
tapas = tagla,s = (Ualga) g + falla (1.5.12)
From the relations 1.5.11 and 1.5.12, we get
2W, = (uatsa) g + fala

If we integrate this relation over X;, we conclude, with the aid of divergence
theorem, that

2 [ Wyda = /uatgangds + | fauada (1.5.13)
N r P
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Suppose that there are two solutions of a boundary-value problem. Then their
difference u is a solution of a plane strain problem corresponding to null
external data. From Equation 1.5.13, we obtain

W, (u)da =0 (1.5.14)
¥

Since the elastic potential is positive definite, from Equation 1.5.14, we find
eap(u’) = 0 and therefore

u(l) = a1 — (329, ug = ag + (311 (1515)

where «, and 3 are arbitrary constants. In the case of the first boundary-
value problem, we get o, = 0,33 = 0. O

The functions u?, given by Equations 1.5.15 are the components of a plane
rigid displacement.
Let us note that W, is positive definite if and only if

>0, A+p>0 (1.5.16)

We record the following existence results [194,241].

Theorem 1.5.2 Assume that the hypotheses (i)—(iv) hold and that W, is
positive definite. Then

(a1) the first boundary-value problem has solution;

(B1) the second boundary-value problem has solution if and only if £ and t
satisfy the conditions

fada + / tads =0, / EapTafada + /EagxatNgds =0 (1.5.17)
o r o r

The conditions 1.5.17 demand that the external forces be in equilibrium.

1.5.3 Airy Function

In what follows we assume that Equation 1.5.16 hold. Let us suppose that
the body forces vanish. Then, the equilibrium equations become

t3a,3 =0 (1.5.18)
Let x be a scalar field of class C* on ¥, and let
tap = 0apAX = X,a8 (1.5.19)

Then, the stresses t,3 given by the relations 1.5.19 satisfy Equations 1.5.18.
The representation 1.5.19 is due to G. Airy (1863). Since

tpp = 2(A + p)eaa
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from Equations 1.5.3 and 1.5.19, we get
2peqs =tag — Vtppdag = (1 — V)0apAX — X, (1.5.20)

where v is defined by Equations 1.1.7. In the case of a plane strain, the com-
patibility equations 1.1.18 reduce to

€11,22 + €22,11 = 2€12,12 (1.5.21)

It follows from Equations 1.5.20 and 1.5.21 that the function x satisfies the
equation
AAx =0o0nX; (1.5.22)

The relations 1.5.19 can be written in the form
tap = EarEBrX AT (1.5.23)

The function x is called the Airy function. We note that any two Airy functions
x and X generating the same stresses differ by a linear function,

X(w1,72) = X(21,22) + Caa + Co (1.5.24)

where C,, and Cj are arbitrary constants.
In the case of the second boundary-value problem, the conditions 1.5.6
become
EapEiyX.pyNp = ta on T (1.5.25)

Thus, if the body forces are absent, then the second boundary-value prob-
lem reduces to finding a biharmonic function y that satisfies the boundary
conditions 1.5.25.

The boundary conditions 1.5.25 can be presented in another form. Thus, in
view of Equations 1.3.39 and 1.5.19, we find that

d d
-2 = —— 1.5.2
toing = —-(x2),  teanp = ——-(x1) (1.5.26)
on I'. It follows from Equations 1.5.6 and 1.5.26 that
X.o = Jgatcaonl (1.5.27)
where ¢, are constants of integration, and g, are given by
Jga(s) = — / captp(o)do, s €0,s.] (1.5.28)
0
By Equation 1.5.27, we get

x = G1 + caxqo + o, —= =Go+c;— —ce—onT  (1.5.29)
n s s
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where ¢g is an arbitrary constant, and G, are defined by

Gi(s) = /Sga(a)d;—:(a)da
° ) . (1.5.30)
6a26) = [ ) 52(0) - () S 0)] o s € 0.5

In view of Equation 1.5.24, we can choose the constants C, and Cy such that
X satisfies the boundary conditions
Ix

—=GyonTl 1.5.31
on 2on ( )

Thus, the second boundary-value problem reduces to finding a biharmonic
function x that satisfies the boundary conditions 1.5.31. If ¥; is multiply-
connected, then its boundary is the union of a finite number of closed curves
'y, To,...,Tp. In this case the relations 1.5.29 will hold on each I'y, the
constants of integration will, in general, be different on each curve forming
the boundary of ¥,

X:G17

x=G1 + c((f)a:a + cék)

i i (1.5.32)

on ds 2 ds

The constants cgk) and c(()k) can be set equal to zero on one of the curves

Ty, (k=1,2,..., M), while the other constants can be determined from the
conditions that the displacements be single-valued (see, e.g., [113,119,241]).

Remark. From Equations 1.5.22, 1.5.23, and 1.5.31, we conclude that the
stresses corresponding to a solution of the second boundary-value problem for
a simply-connected domain Y, are independent of the elastic constants. This
result is due to M. Lévi (1898).

1.5.4 Complex Potentials

For the remainder of this section we continue to assume that the body forces
are zero and that the relations 1.5.16 hold. We now establish a representation
of the displacements in terms of a pair of complex analytic functions of the
complex variable z = x1 4 ix5. The boundary-value problems can be reduced
to the determination of these functions from prescribed values of certain com-
binations of these functions on the boundary of ¥;. We introduce the complex
coordinates z and Z on ¥ by

z = x1 + 1T, Z =12 —iTsy (1.5.33)
We define the complex displacement w by
W= Uy + tus (1.5.34)
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The constitutive equations 1.5.7 can be expressed in the form

t1n +tag = 2(A + 1), ,

. . (1.5.35)
t11 — tog + 2it12 = 2pfur 1 — ugo + i(u1,2 + uz,1)]
We note that
O Sl i )
92 9 Up,1 T U222 T2 U2,1 — UL 2
ow 1
(3% = §[U1,1 + ug 2 — i(u271 — ul)g)] (1.5.36)
ow 1[ i N 1
gz 2 Up,1 —U2,2 T2 UL2 T U211

where a bar over a letter designates the complex conjugate. Thus, the consti-
tutive equations 1.5.35 can be written in the form

0 ow
tin +ta2 =2(A + p) ((;; + al;})
(1.5.37)
. ow
t11 — tog + 2it12 = 4dp—
0z
‘We note that
ow Ow 0?
= —_— —_— A = 47 ].. .
R 9207 (1:5.38)

In complex coordinates, the system of equations of equilibrium 1.5.8, with
zero body forces, can be expressed in the form

2
LY g2 (aw+%) =0 (1.5.39)

0207 02\ 0z ' 0z
Equation 1.5.39 may be integrated to give the result

ow ow 0w\ _ 200+2p)
2ﬂaz+()\+ﬂ)<az+az> N Q' (2) (1.5.40)

where (2 is an arbitrary analytic complex function on z, and ' (z) = dQ(z)/dz.
The conjugate of this relation is
ow ow  dw 20N+ 1) =1
2u— A — +—= ) =——=0 1.5.41
wm oG ) =2 0w asay
It follows from Equations 1.5.40 and 1.5.41 that
ow Ow 1

9: " 9E  A+n
In view of Equation 1.5.42, Equation 1.5.40 becomes

[ (2) + Q' (2)] (1.5.42)
8w —

2;;5 =k (2) - Q(2) (1.5.43)
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where
k=3—4v (1.5.44)

Equation 1.5.43 may be integrated to give
2w = KQ(z) — 2 (2) — @(2) (1.5.45)

where w is an arbitrary analytic complex function on z. The relation 1.5.45
gives a representation of complex displacement in terms of the complex ana-
lytic functions © and w.

A simple calculation shows that the constitutive equations 1.5.37 may be

written as -,
t11 4 tag = 2[Y(2) + Q0 (Z)]
- (1.5.46)
t11 — tag + 2it1o = —2[2Q (Z) + @' (2)]

The functions 2 and w are called the complex potentials. The representations
1.5.45 and 1.5.46 were deduced by Kolosov [186] (see also Refs. 113, 119, 313,
315, 324).

It follows from Equations 1.1.11 that

In view of the relations 1.3.39 and 1.5.33, we obtain

1. /dz dz 1 /dz dz
megi(E-%) moa(ZeE)  asw

By Equations 1.5.47 and 1.5.48,

d dz
2(81 + 282) = —i(tll + tgg)i + i(tll — t22 + 2Zt12)i (1549)
ds ds
From Equations 1.5.46 and 1.5.49, we get
d _
s1+ sy = —io-[Q(2) + 2 (2) +@(2)] (1.5.50)

Let R, be the components of the resultant vector associated to the contour
C. It follows from Equation 1.5.50 that

Ry + iRy = / (51 + iso)ds = —i{Q2) + 20(2) +BE)NE (1551
C

where {g}5 denotes the change in value of the function g on passing once

round the contour C in the conventional sense.

Let us investigate the arbitrariness and the structure of complex potentials
for several domains of interest. First, we investigate what is the difference in
the forms of two sets of potentials (2, w) and (., w,) that correspond to the
same stresses. The relations 1.5.46 demand that

Re [ ()] = Re [Q.(2)], zZ(2) +W'(2) =200 (2) + Wli(2) (1.5.52)
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where Re [f] denotes the real part of f. From Equation 1.5.52, we conclude
that

O(z) = Qu(2) +icz + w(z) =w«(z)+ (1.5.53)

where ¢ is a real constant, and « and 3 are complex constants. If the origin
O is taken within ¥, the functions Q and w will be determined uniquely if
¢, a, and (3 are chosen so that

0, SmQ0)]=0, w(0)=0 (1.5.54)

Here, Sm [f] denotes the imaginary part of f.

Consider now the situation in which the two sets of potentials correspond
to the same displacements. In this case the extent of arbitrariness in choosing
the potentials cannot be greater than that indicated in Equation 1.5.53. From
Equation 1.5.45, the equality of displacements requires that

c=0, ko= (1.5.55)
In this case we can choose « so that
Q(0)=0 (1.5.56)

We note that in a bounded simply-connected region, {2 and w are single-valued
analytic functions. Let us consider the case when the domain ¥y is multiply-
connected and bounded.

We assume that the boundary of ¥, consists of m + 1 simple closed con-
tours I'y, such that the exterior contour I';,11 contains within it the contours
Ik, (E=1,2,...,m) (Figure 1.2).

In what follows we assume that the functions u, and t,g are single-valued.
From Equation 1.5.46; we see that the real part of Q' is single-valued, but,
in describing once each interior contour I'y, the imaginary part of Q' acquires
a constant increment denoted by 2wAj. Since the function ' acquires the

I

m+l

FIGURE 1.2 A multiply-connected domain.
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increment 27wi Ay, then the function
G(z) = (2) = Y Alog(z — z) (1.5.57)

where zj is a point in the simply-connected region Sy, bounded by T, is
single-valued and analytic in ;. By integration of Equation 1.5.57 we get

m m

O(z) =2 Arlog(z — ) + Y log(z — z) + Q(z)  (1.5.58)
k=1 k=1

where 7y, are complex constants, and () is an analytic and single-valued func-
tion on Y. Since Q" is a single-valued function and the left-hand members of
Equations 1.5.46 are single-valued, it follows that w’ is also single-valued on
>1. Thus, we have

z) = Z Crlog(z — zi) + wo(2) (1.5.59)
k=1

where C} are complex constants, and wy is analytic and single-valued on ;.
If we assume that u, are single-valued functions, then from Equations 1.5.45,
1.5.58, and 1.5.59, we find that

2mi[(1 + k) Az + kv + Cr] =0

so that o
A, =0, ke +Cr=0, (k=1,2,...,m) (1.5.60)

In the case of the second boundary-value problem we denote by (X, Y%)
the resultant vector of external forces applied to the contour I'y,

X+ iV = / (t1 +ity)ds, (k=1,2,...,m) (1.5.61)
Ly

It follows from Equations 1.5.51, 1.5.58, 1.5.59, and 1.5.60 that
Xk + 1Y = —27(y, — ék) (1.5.62)

By Equations 1.5.60 and 1.5.62, we find

1 K

m(xkﬂyk), ok:m(xriyk) (1.5.63)

Tk = —

Thus, in this case the complex potentials have the forms

Q(z) Z Xk—i-’LYk log(Z—Zk)+QO( )
= (1.5.64)

1—1—11 ; (X — 1Y) log(z — 2z) + wo(2)
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We suppose now that the domain 3; is unbounded, with certain contours
I'y,Ts,..., T, as internal boundaries. We assume that the origin of coordi-
nates is taken outside X1, and that the stresses are bounded in the neighbor-
hood of the point at infinity. We consider the circle Cr of equation |z| = R,
and suppose that R is so large that Cr contains within it the contours I', (k =
1,2,...,m). Then, for any z such that |z| > R, we have |z| > |z|, so that

z 1 /2\2
log(z—zk)zlogz—?k—g(?k> —---=logz+ h(z)
where h is a single-valued analytic function in the region |z| > R. It follows

from Equations 1.5.64 that

Qz) = ——— (X +iY)log z + Q*(2)
2”21 ) (1.5.65)
w(z) = m(X —iY)logz 4+ w*(2)
where . .
X=)Xi,, Y=>Y% (1.5.66)
k=1 k=1

and Q* and w* are single-valued analytic functions for |z| > R. For sufficiently
large |z|, the functions Q* and w* can be represented in the forms

Q*(2) = Z anz", w'(z) = Z bp2"
Since the stresses are bounded at infinity, then
ReV'(2) and zQ"(2) +u'(2)

must be bounded at infinity. It follows that

an = a, =0, b,=0 forn>2
Thus, we find
Qz) = —————(X +iY)]1 B +iC) +Q
(2) = ~grg g (X +¥)logz + (B +i0) + ()
. (1.5.67)
w(z) = ——— (X —iY)logz+ (B1 +iC1)z + w(z)

2n(1+ k)
where  and & are single-valued analytic functions on ¥; including the point

at infinity, . .
Q=32 G(z)= bn (1.5.68)

)
omn
n=0 n=0
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Let ¢(>) be the limiting value of g(P) as the point P tends to infinity. Tt
follows from Equations 1.5.46 that

2B-B, =17, 2B+B, =Y, 0 =£ (1569

The constant C' is related to the rigid rotation at infinity. We introduce the
notation

1
€= 5(“2,1 —u1,2) (1.5.70)
It follows from Equations 1.5.36 and 1.5.45 that
oD 1+ & —
=S — | = A=) -9z 1.5.71
e=am (G2) =0 - 93 (15.71)
By Equations 1.5.67, 1.5.68, and 1.5.71, we get
1
o) — 2R (1.5.72)
2p

In view of the relations 1.5.67 and 1.5.68, from Equation 1.5.45 we find that

2uw = — (X +iY) log(2%)

2 (1 + k)
+[(k —1)B+i(l1 4+ k)Clz — (By —iC1)Z + g(2)

where ¢ is bounded at infinity. If the displacements are to be bounded at
infinity, then
X=Y=0, B=C=B1=01=0

We note that the requirement for the displacements to be bounded at infinity
imply that the stresses vanish at infinity.

Let us show that the boundary-value problems can be reduced to the deter-
mination of the functions €2 and w from prescribed values of certain combina-
tions of these functions on I'. We consider a generic point P € I', and denote
by Z,(s) the cartesian coordinates of P. Let

o =71(s) +iZT2(s), s€][0,s4] (1.5.73)

In the case of the second boundary-value problem, the boundary conditions
1.5.6 can be written in the form

51+ 182 :gl—l-igg onI
In view of Equation 1.5.50, these conditions reduce to
Qo)+ 09 @) +@(@) =T(0c) +don T (1.5.74)

where

T(o) =Ti(o) +iTx(0) = i/os[ﬁ(s’) +ila(s))]ds’, s € 0,s] (1.5.75)
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and d is an arbitrary complex constant. We saw that the replacement of 2
by Q + icz + « and of w by w + (8 does not change the state of stress. The
relation 1.5.74 becomes

Qo)+ 00 @)+ (@) +a+B=T()+donT

We can choose o and 3 so that a + 3 = d. With this choice we can impose only
two conditions: Im {€'(0)} = 0 and one of the conditions 2(0) = 0, w(0) = 0.
If the domain 3; is multiply-connected, the constant d can be set equal to
zero on one of the curves forming the boundary of ;. On the remaining
curves, the integration constants can be evaluated using the requirement that
the displacement be single-valued [113,119,241].

In the case of the first boundary-value problem, from Equations 1.5.5 and
1.5.45, we obtain the following form of the boundary conditions

kQ(0) — o (5) — @(F) = 2u(Ty + itis) on T (1.5.76)

Thus, the first boundary-value problem is reduced to the finding of the com-
plex analytic functions 2 and w on ¥; which satisfy the boundary condi-
tion 1.5.76.

The boundary conditions 1.5.74 and 1.5.76 can be used to obtain Fredholm
integral equations for determination of the complex potentials. The existence
of the functions ) and w which satisfy the above boundary conditions has
been investigated in many studies (see, e.g., [241]). Existence theorems for
the boundary-value problems of the plane strain problem follow directly from
the results presented in Section 4.9.

We now investigate how the relations 1.5.74 and 1.5.76 transform under
conformal representation. We suppose that ¥ is simply-connected. Let

2 =9(C) (1.5.77)

be the function that maps ¥; on the unit circle || < 1. Clearly, d9(¢)/d¢ # 0.
We introduce the notations

() =) wi(¢) =w[d(C)] (1.5.78)

Since

IO = = —
2uw = k1 (() — == (¢) — w1
0 (€) 70 (€) (©)
= 4 () = = 51 (
s1+isy = —i Ql(<)+5/(z)ﬂl(C)+ 1(Q)], ¢l <1
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The conditions 1.5.74 and 1.5.76 become

Q) + 2, @) + 2 7) = M) on ] = 1
) (1.5.79)
D) = oy | — o
k() + == (M) +w1() = Na(n) on |n| =1
v (1)

respectively, where N, are uniquely determined by the prescribed data. From
the relations 1.5.75 and 1.5.77, we get

Ni(n) = T[9(n)]

If X1 is a bounded simply-connected region, then ; and w; have the rep-
resentations

Q) =) anC",  wi() =D buC", [[<T (1580
n=0 n=0

The substitution of Q7 and w; from Equations 1.5.80 into 1.5.79 leads to a
system of equations for the coefficients a,, and b,.

An account of the historical development of the complex variable technique
as well as references to various contributions may be found in the works of
Muskhelishvili [241], Green and Zerna [113], and Gurtin [119].

1.6 Properties of Solutions
to Saint-Venant’s Problem

In what follows we denote by (P) the Saint-Venant’s problem corresponding
to the resultants F and M. Let K(F, M) denote the class of solutions to the
problem (P). The classification of the problem rests on various assumptions
concerning the resultants F and M. Throughout this section it is convenient
to use the decomposition of the problem into problems (P;) and (P;) charac-
terized by

(P1) (extension-bending-torsion): F, =0
(P2) (flexure): F5=M; =0

For further economy it is helpful to denote by Kj(Fs, My, My, M3) the class of
solutions to the problem (P;) and by K;(F}, F») the class of solutions to the
problem (P;). We assume for the remainder of this chapter that the material
is homogeneous and isotropic.

We denote by Z the set of all equilibrium displacement fields u that satisfy
the condition s(u) = 0 on the lateral boundary. Theorem 1.6.1 will be of
future use.
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Theorem 1.6.1 ([159]). Ifu e 2 andu sz € C*(B), thenus € Z and
R(u3) =0, Hy(u3) =¢eqpRs(u), Hs(uz)=0 (1.6.1)

Proof. We note that the first assertion follows at once from the fact that
t(u3) = 0t(u)/0xs and the proposition: if u is an elastic displacement field
corresponding to null body forces, then so also is u , = du/dxy, (cf. [119], Sec-
tion 42). Next, with the aid of the equations of equilibrium 1.1.8 we find that

tzi(uz) = (tzi(0)) 3 = —(t,(0))
eapTptszs(03) = —€aprp(tp3(u)) , = —capl(Tptos(u)),, — tps(u)]
Eaplalzp(W3) = —€apTaltys(0)) ) = —cap(Tatps(1)) ) + captas(n)

In view of Equations 1.2.5, the divergence theorem, and the symmetry of S,
we find

R(us) = /Fs(u)ds
Hy(ugs) = /Feaﬁxgs?,(u)ds + eapRp(u) (1.6.2)

Hs(us) = /EangSB(u)ds
r
The desired result follows from Equations 1.6.2 and hypothesis. (]

Since u is an equilibrium displacement field, u is analytic (cf. [119], Sec-
tion 42). Theorem 1.6.1 has the following immediate consequences.

Corollary 1.6.1 Ifu € K (Fs, My, M2, M3) anduz € C*(B), thenuz € 9
and
R(u’g) = 0, H(Ll’g) =0
Corollary 1.6.2 Ifu€ K;(Fy,F») and us € C*(B), then
us € K;(0, F», —F1,0)

Corollary 1.6.3 Ifu € 2 and 0"u/0z% € C*(B), then 9"u/0x% € 9 and

R(au):o, R:H(au>:0 for n > 2
oxh oy

1.7 New Method of Solving Saint-Venant’s Problem

In this section, we shall prove that Corollary 1.6.1 allows us to establish a
simple method of deriving Saint-Venant’s solution to the problem (P;). We
denote by @ the class of solutions to the Saint-Venant’s problem corresponding
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to F = 0 and M = 0. We note that if u € K;(Fs, My, M2, M3) and ug €
C1(B), then by Corollary 1.6.1, u 3 € Q. Let us note that a rigid displacement
field belongs to Q. It is natural to enquire whether there exists a solution v
of the problem (P;) such that v 3 is a rigid displacement field. This question
is settled in Theorem 1.7.1.

Theorem 1.7.1 Let v € C*(B) N C?(B) be a vector field such that v 3 is a
rigid displacement field. Then v is a solution of the problem (P1) if and only
if v is Saint- Venant’s solution.

Proof. We suppose that v € C1(B) N C%(B) is a vector field such that
vi=a+fxx (1.7.1)
where @ and B are constant vectors. Then,
1

2
Vo = — QT3 — Q4€a3T3T3 + Wa(T1, T2)

2 (1.7.2)
vy = (a121 + asxs + az)xs + ws (1, x2)

except for an additive rigid displacement field. In Equations 1.7.2 w is an
arbitrary vector field independent of x3, and we have used the notations a, =
€palp, a3 = a3, a4 = (3. Let us prove that the functions w; and the constants
as, (s = 1,2,3,4) can be determined so that v € K(F3, My, Mo, M3). The
stress—displacement relations imply that

ta,@(v) = )\(apwp + ag)éag + Tag(w)
t30¢(v) = /’L(w&a - a/45ap-rp) (173)
t33(v) = (A4 2p)(ap, + a3) + Awp,p

where
Top(W) = p(Wa, + Wg,a) + Map,,, (1.7.4)

The equations of equilibrium and the conditions on the lateral boundary
reduce to

(Tag(W)),g + fa =0on X4, Tag(W)ng =poonl (175)

0
Awz =0on Xq, % = @4€apNarg on I’ (1.7.6)
n
where
fa = Aaq, Pa = —A(apz, + asz)ng (1.7.7)
Clearly, Equations 1.7.4, 1.7.5, and 1.7.7 constitute a two-dimensional
boundary-value problem (cf. Section 1.6). The necessary and sufficient condi-
tions to solve this problem are

fada + /pads =0, / €apfTafada + /sagmapgds =0 (1.7.8)
bl r R r
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From Equations 1.7.7 and the divergence theorem, we see that the conditions
1.7.8 are satisfied. We note that the boundary-value problem 1.7.5 is satisfied
if one chooses

Top(w) = —A(apz, + a3)das
The above stresses satisfy the compatibility condition. It follows from Equa-

tions 1.7.4 that

wi] = W2 = — (apx, + as), w12 +wa1 =0

20+ 4)
The integration of these equations yields

Wq = alwg}) -+ angf) —+ (13’11)((13)
where

1
w((f) =V <2xpxpaaﬁ - mozxﬁ) ’ ’w&?’) = Vla (1.7.9)

modulo a plane rigid displacement. Here v designates Poisson’s ratio defined
in Equations 1.1.7. It follows from Equations 1.7.6 that w3 = a4, where ¢ is
the torsion function, characterized by

% = eapnars on T (1.7.10)

The vector field v can be written in the form

Ap =0on X,

v=" a;v\? 1.7.11
> a,

j=1

where the vectors v(9), (j = 1,2,3,4), are defined by

1
Uéﬁ) = _7‘%35@[5 + w((lﬁ), U:gﬁ) = xpTs, (6 = ]-7 2)

2 (1.7.12)
'ngg) - w&S)a v§3) = T3, Uz(l4) = €BalpB3, Ui(’)4) =

It is easy to see that v\¥) € 2,(j = 1,2,3,4). The conditions on the end ¥
furnish the following system for the unknown constants

E(Iagag + Al‘gag) = EagM@

(1.7.13)
EA(alz(l) + agxg +as) = —F3, Day = —M3

where A is the area of the cross section, 20 are the coordinates of the centroid
of X1, F designates Young’s modulus, D is the torsional rigidity defined by
Equation 1.3.32, and

Iag:/ TaTgda (1.7.14)
¥
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If the rectangular cartesian coordinate frame is chosen in such a way that
the z,-axes are principal centroidal axes of the cross section ¥, then
Equations 1.7.11 and 1.7.13 lead to the Saint-Venant’s solutions presented
in Section 1.3. ]

We present Saint-Venant’s solution which are needed subsequently.

1. Saint-Venant’s extension solution:

v=av®, o) =—vaa, o) =3 (1.7.15)
tag(V) = 0, tga(V) = 0, t33(V) = E(Lg
where
F3 = —EAG,g (1716)

The relation 1.7.16 is known as Saint-Venant’s formula for extension.

2. Saint-Venant’s bending solution:

1
v=a v, vgl) = i(mcg — vat — a3)
’Uél) = —Vr1Z29, ’Uél) = 13 (1717)

tag(V) = 0, tga (V) = 0, t33(V) = Ealxl

where

M2 = EIHal (1718)
The relation 1.7.18 is called Saint-Venant’s formula for bending.

3. Saint-Venant’s torsion solution:

v=aw®, o —eparpry, v = (1.7.19)
tag(v) =0, taz(v) =0, t30(V) = pas(,a — €apTp)
where
M3 = —Da4 (1720)

The relation 1.7.20 is known as Saint- Venant’s formula for torsion.

We note that the vectors v\9), (j = 1,2,3,4), defined by the relations 1.7.12
depend only on the cross section and the elasticity field. Let @ be the four-
dimensional vector (ai,as,as,as). We will write v{a} for the displacement
vector v defined by Equations 1.7.11 and 1.7.12, indicating thus its dependence
on the constants as, (s = 1,2, 3,4).

On the basis of Corollaries 1.6.1 and 1.6.2 and Theorem 1.7.1, it is natural
to seek a solution of the problem (P») in the form

T3 Y
u’ = / v{b}drs + v{c} + w’ (1.7.21)
0
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where b= (b1,b2,b3,b4) and ¢=(cy,co,c3,c4) are two constant four-
dimensional vectors, and w? is a vector field independent of x3 such that
w? S 01(21) N 02(21).

Theorem 1.7.2 The vector field u® defined by 1.7.21 is a solution of the
problem (Py) if and only if u® is Saint-Venant’s solution.

Proof. We have to prove that the vector field w® and the constants by, cs, (s =
1,2,3,4), can be determined so that u® € K;;(Fy, Fy). It is interesting to
note that the determination of b from the condition u® € Ki1(Fy, Fy) can be
made in a simple way. Thus, if u’ € K;;(Fy, F»), then by Corollary 1.6.2 and
Equation 1.7.21 R

v{b} € K,(0, Fy, —F\,0) (1.7.22)

With the help of Equations 1.7.13 and 1.7.22, we get
E(I,pbg + azlbs) = —F,, bpx) 4 bs =0, by=0 (1.7.23)
From Equations 1.7.11, 1.7.12, 1.7.21, and 1.7.23, we obtain

3
1 1 .
ud = —gbaxg - icamg — C4€aBTaT3 + g (c; + x3b;)w) + w?

j=1

1
uz = §(bp$p +b3)25 + (cpm, + c3)23 + Cagp + ¥

where we have used the notation w) = 9. The stress—displacement relations
imply that
tap(u’) = Top(w’)
1
taS(uo) = p|ca(p,a — €ap®p) — VTa(bpr, + b3) + §bo‘yzpzp +va
t3z(u’) = E[(byx, + b3)xs + cpz, + c3] + )\wg’p

where
Taﬁ(wo) = :u(wg,ﬁ + w%,a) + )‘6a5w2,p (1724)

The equations of equilibrium and the conditions on the lateral boundary
reduce to

(Top(w°)) 5 =0o0n %, Top(w%)ng=0onT (1.7.25)
Ay = —=2(byx, + bs) on g

0 1 1.7.26
a—;/: = bavz, (xanp - 2naxp> + bsvzang on I ( )

We see from Equations 1.7.24 and 1.7.25 that w® and T, 3(w) characterize a
plane elastic state corresponding to zero body forces and null boundary data.
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We conclude that w? = 0 (modulo a plane rigid displacement). Thus, the equa-

tions of equilibrium and the conditions on the lateral boundary are satisfied

if and only if the function 1 is characterized by Equations 1.7.26 and w? = 0.

The necessary and sufficient condition to solve the boundary-value prob-

lem 1.7.26 is satisfied on the basis of the second relation of Equation 1.7.23.
The conditions R3(u’) = 0 and H(u") = 0 are satisfied if

Iogcg + Axlcs3 =0, cpxg +c3=0

1 (1.7.27)

Dey = —pf eapzal ¥+ ibﬁyxpxp da
P}

Since H,(u?,3) = e45R3(u’) and u?g = v{/b\} € K;(0,Fy,—F1,0), it follows
that R, (u®) = F,. We conclude that b is determined by Equations 1.7.23, 1) is
characterized by Equations 1.7.26, ¢; = 0, and ¢4 is given by Equations 1.7.27.
If the rectangular cartesian coordinate frame is chosen in such a way that z-
axes are principal centroidal axes of the cross section ¥;, then u® reduces to

Saint-Venant’s solution. O
We have established Equations 1.7.27 from the conditions Rz(u’) = 0 and
H(u") = 0. If we replace these conditions by R3(u’) = F3 and H(u) = M,
then we arrive at
E(Iygcs + Azles) = eapMg, AE(cpz, +c3) = —F3
(1.7.28)

1
Dey = —M3 — N/ €apla <1/),ﬂ + 2%”%%) da

31

If b is given by Equations 1.7.23, v is characterized by Equations 1.7.26, and
¢ is determined by Equations 1.7.28, then u’ € K(F,M). Thus, we have the
following result.

Theorem 1.7.3 The vector field u® defined by Equation 1.7.21 is a solution
of the problem (P) if and only if u® is Saint-Venant’s solution.
Theorem 1.7.4 presents a property of solutions of the problem of flexure.

Theorem 1.7.4 Let u be a solution of the problem (Ps). Then u admits the
decomposition
u=u +u"” (1.7.29)

where v’ € 2, 'y € K1(0, Fy, —F1,0) and

u’ € K[(—Rg(u/), _Hl(u/)> _HQ(u/)’ _HS(U‘I))

Proof. We suppose that u' € Z,u’; € K(0, F2,—F1,0). In view of Theo-
rem 1.6.1, we find

Ra(u/) = 55aHﬁ(u:3) = Fy
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We consider u € Kj;(Fy, Fy). If we define u” by u” = u — u’, then u” € 2

and
Ro(u") = Ry(u) — Ry(u') =0

R3(u”) = —R3(u’), H")=-H(u')
We conclude that the decomposition 1.7.29 holds. g

We assume for the remainder of this chapter that the z,-axes are principal
centroidal axes of 3. In this case, from u’ € K;;(F,0) and Equations 1.7.23,
it follows that by = b,by = b3 = by = 0, where b is given by

F=—EI;b (1.7.30)

This is Saint- Venant’s formula for flezure.
This method of deriving Saint-Venant’s solutions has been established in
Ref. 159.

1.8 Minimum Energy Characterizations of Solutions

In Ref. 322, Sternberg and Knowles have characterized Saint-Venant’s
solutions in terms of certain associated minimum strain-energy properties.
Thus, the extension and bending solutions are uniquely determined by the
fact that they render the total strain energy an absolute minimum over that
subset of the solutions to the respective relaxed problem which results from
holding the resultant load or bending couple fixed and from requiring the
shearing tractions to vanish pointwise on the ends of the cylinder. Similarly,
among all solutions of the torsion problem that correspond to a fixed torque
and to vanishing normal tractions on the ends of the cylinder, Saint-Venant’s
solution is uniquely distinguished by the fact that it furnishes the absolute
minimum of the total strain energy. Other results concerning the status of
Saint-Venant’s solutions as minimizers of energy have been established by
Maisonneuve [213] and Ericksen [80]. In this section, we present the result of
Sternberg and Knowles [322] concerning the minimum strain-energy charac-
terizations of Saint-Venant’s extension, bending, and torsion solutions.

Let Yg denote the set of all equilibrium displacement fields u that satisfy
the conditions

s(u) =0onII, tsp(u) =0on X,, R3(u) =F (1.8.1)
Theorem 1.8.1 Let v be Saint-Venant’s extension solution corresponding

to a scalar load F. Then
U(v) < U(u)

for everyu € Yg, and equality holds only if u = v modulo a rigid displacement.
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Proof. We consider u € Yg and define
u=u-v (1.8.2)
Then u’ is an equilibrium displacement field that satisfies
s(u’) =0onTI, tsp(u’) = 0on X,, R3(u') =0 (1.8.3)
From Equations 1.1.12, 1.1.14, and 1.8.2, we get
U)=U)+U(v)+ u,v)

It follows from Equations 1.1.16, 1.1.17, 1.2.6, 1.7.15, and 1.8.3 that

(u',v) = / t3i(u')v;da —/ tsi(u')v;da = —aghRs(u') =0
Yo 1

Thus U(u) > U(v) and U(u) = U(v) only if u’ is a rigid displacement. O

We denote by Yp the set of all equilibrium displacement fields u that satisfy
the conditions

s(u) =0 onII, tzp(u) =0 on X, Hy(u) = Mo (1.8.4)

Theorem 1.8.2 Let v be Saint-Venant’s bending solution corresponding to
a couple of scalar moment Ms. Then

U(v) <U(u)
for everyu € Yg, and equality holds only if u = v modulo a rigid displacement.
Proof. We consider u € Yg. Since v € Y5y it follows that the field
u=u—-v
is an equilibrium displacement field that satisfies
s(u’) =0onTI, t3p(u’) =0 on Xy, Hy(1')=0 (1.8.5)

With the help of Equations 1.1.16, 1.1.17, 1.2.6, 1.7.17, and 1.8.5, we find

<11,,V> = / t33(u’)v3da - / t33(u’)vgda = hang(u’) =0
22 E1

Thus,

The conclusion is immediate. O
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It is a simple matter to verify that the above minimum strain-energy char-
acterizations also hold if the conditions

tgg(u) =0on X,
which appear in Equations 1.8.1 and 1.8.4 are replaced by

Ra(u) =0, [tgg(ll)}(:l)l,xg,h) = [t35(u)](m1’x270)’ (Ila‘TQ) €4

We denote by Y7 the set of all equilibrium displacement fields u that satisfy
the conditions

s(u) =0 on II, tsz(u) = 0on X, Hs(u) = M3 (1.8.6)

Theorem 1.8.3 Let v be Saint-Venant’s torsion solution corresponding to
the scalar torque Ms. Then

U(v) <U(u)

for everyu € Yp, and equality holds only if u = v modulo a rigid displacement.

Proof. Clearly, v € Y. We consider u € Yr, and define u’ by u’ = u — v.
Then u’ is an equilibrium displacement field such that

s(u’) =0onTI, ta3(u’) = 0on X, Hi(u') =0 (1.8.7)
If we apply Equations 1.1.16 and 1.1.17, we conclude, with the aid of Equa-
tions 1.8.7 and 1.7.19, that
(u',v) = fa4h/ capTatsa(u’)da = —agshHs(u') =0
Yo
Thus,
Uu—-v)=U(u)—U(v) (1.8.8)
The proof follows from Equation 1.8.8. ]
If we replace in Equations 1.8.6 the conditions

tss(u) =0on X,

[t33(u)}(‘rlax27h) = [tgg(u)]($1,$2,0), ($1,332) €

the above theorem also remains valid.
We denote by Yr the set of all equilibrium displacement fields u that satisfy
the conditions

uj € CY(B), s(u) =0onII, R,(u) = F,

(1.8.9)
[tag(u3)](z1,22,h) = [tap(us)|(z1,22,0), (1,72) € ¥
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Theorem 1.8.4 Let u® be Saint- Venant’s flexure solution corresponding to
the scalar loads Fy and F5. Then

U(uy) <U(us)

for every u € Yr, and equality holds only if uz = u?3.

Proof. We consider u € Yy and define u’ = u—u®. Then u’ is an equilibrium
displacement field that satisfies

v/, € CY(B), s(u’) =0on I, Ro(u')=0
’ (1.8.10)
[tap(u/3)|(z1, 2, h) = [tap(u'y)] (21, 22,0), (21,22) € X1

With the help of Equations 1.1.12 and 1.7.21 and Theorem 1.7.1, we find
Ulus) = Uz +u%) = Uu's + v{b}) = UWs) + U(u®) + (u's, v{b}).

On the basis of Theorem 1.6.1 and Equations 1.2.6 and 1.8.10, we get

~ 1
(ufB,v{b}> = _§bah2Ra(uf3) + h[b1H2(uf3) - b2H1(U-f3)] =0

Thus, N
U(us) = Uul) = Uluz — v{b})

The desired conclusion is immediate. O

The above results concerning the minimum strain-energy characterizations
of Saint-Venant’s solutions are based on a comparison with a subset rather
than with the complete class of solutions to the corresponding problem. It is
natural to seek also those members of the class of solutions to each of the four
problems that minimize the strain energy over the complete class of solutions
to the corresponding problem.

1.9 Truesdell’s Problem

It is well-known that in the Saint-Venant’s solution of the torsion problem,
corresponding to a couple of scalar moment Ms, the specific angle of twist
a4 is given by Equation 1.7.20. We denote by Kr the set of all displacement
fields that correspond to the solutions of the foregoing torsion problem. In
Refs. 331, 334, and 336, Truesdell proposed the following problem: to define
the functional 7(-) on Kp such that

M3 = —D7(u), foreachue€ Kr

Following Day [62], 7(u) is called the generalized twist at u. In Ref. 62, Day
established a solution of Truesdell’s problem. A study of Truesdell’s problem
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rephrased for extension and bending is presented in Ref. 271. Solution of
Truesdell’s problem for flexure has been established in Ref. 159. In this section
we present these results.

We denote by Qr the set of all equilibrium displacement fields u that satisfy
the conditions

s(u) =0 onII, tss(u) = 0on X, R,(u) =0, Hs(u) = M;
(1.9.1)
If u € Qr, then R3(u) = 0, Hy(u) = 0, so that u € Kr. Day [62] considered
the real function
a— |u—av®|? (1.9.2)

where u € Q7 and v(® is the displacement field given by the relations 1.7.19.
The field av® is called the torsion field with twist a.
The function 1.9.2 attains its minimum at

u,v®
v(u) = <|V(4)||2> (1.9.3)

Thus, v(u) is the twist of that torsion field which approximates u most closely.
Let us prove that
v(u) = 7(u), foreveryu€ Qr

With the help of Equations 1.1.16, 1.1.17, 1.2.6, 1.7.19, and 1.9.1, we find

(u,v®) = / s(u) - vWda = / [he gatatza(0) + ptsz(u)]da
OB PP
= /sﬂaxﬂtga(u)da = —hH;s(u) (1.9.4)
Yo
[v®]2 = h/ epatatsa(vY)da = hD
Yo
From Equations 1.9.3 and 1.9.4, we get
Hs(u) = —Dv(u)
for any u € Q. Clearly, y(u) = 7(u) for each u € Qr. Thus, Saint-Venant’s

formula 1.7.20 applies to the displacement fields u which belong to Q.
By Equations 1.1.16 and 1.7.19, we find

(u,v(4)> =1 [/ Ua (@0 — EapZp)da —/ Ua(P,q — €apxp)da} (1.9.5)
22 E1

We conclude from Equations 1.9.3, 1.9.4, and 1.9.5 that the generalized twist
7(u) associated with any u € Qr is given by

1
7(u) = ) [/z Ua(P,0 — EapTp)da — /2 Ua Q0 — sapxp)da}
2 1
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Since divv® = 0, it follows that

<muw>:u/@Aw&ﬂ¢“MU
B

Thus, the energy norm which appears in the relation 1.9.2 can be replaced by
the strain norm.

We consider now Saint-Venant’s formula 1.7.16. Truesdell’s problem can be
set also for the extension problem. Let Qg denote the set of all equilibrium
displacement fields u that satisfy the conditions

s(u) =0 on II, tsp(u) = 0on 3, H,(u) =0, Rs3(u) = F3
(1.9.6)

Clearly, if u € Qg, then R,(u) = 0 and Hs(u) = 0, so that u € K;(F3,0,0,0).
Following Ref. 62, we consider the function

B — flu—Bv®|? (1.9.7)

where u € Qg and v(® is the displacement field given by Equations 1.7.15.
The field fv® is called the extension field with axial strain 5. The function
1.9.7 attains its minimum at

_ {u,v®)
E@)_IW@WE (1.9.8)
From Equations 1.1.16, 1.1.17, 1.2.6, 1.7.15, and 1.9.6, we get
(u,v®)y = / s(u) - v®da = h / tsz(u)da = —hR3(u)
aB o (1.9.9)

V@2 = hEA
In view of the relations 1.9.8 and 1.9.9,
R3(u) = —EAe(u)

for each u € Qg. Thus, Saint-Venant’s formula 1.7.16 applies to any displace-
ment field u € Qg. We call £(u) the generalized axial strain associated with
the displacement field u. From the relations 1.1.16 and 1.7.15, we have

(u,v®) :/ s(v®) . uda = E(/ ugda—/ u?,da) (1.9.10)
OB o 2

In view of Equations 1.9.8 and 1.9.9, we conclude that the generalized axial
strain e(u) associated with any u € Qg is given by

e(u) = hlA< /2 s~ /2 IU3da)
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Let us consider the bending problem. We denote by @ p the set of all equi-
librium displacement fields u that satisfy the conditions

s(u) =0onII, tsg(u) = 0on 3,
R3(u) =0, Hi(u) =0, Hs(u) = M,

If u € Qp, then u € K;(0,0,M>,0). In the same manner, we are led to
generalized axial curvature k(u), associated with any u € Qp,

1
k(u) = th</22x1u3da — /Elx1U3da>

Moreover, the formula of Saint-Venant’s type
HQ(U.) = EIHFL(II)

applies for each u € @p.
Next, we study Truesdell’s problem for flexure. Let QQ p denote the set of all
equilibrium displacement fields u that satisfy the conditions

us e CY(B), tsg(uz) =0on X,
s€CUB),  typlug) o)

s(u) =0 onII, Ri(u) = F, Rs(u) =0, R3(u) =0, H(u)=0

Clearly, if u € Qp, then u € K;;(F,0). Moreover, if u € Qp, then by Corol-
lary 1.6.2, us € K;(0,0,—F,0) and t3,(u3) = 0 on X,. In view of Theo-
rem 1.8.4 we are led to consider the function

€= Jluz — v ? (1.9.12)

where u € Qp and v(1) is the displacement field defined by Equations 1.7.17.
The function 1.9.12 attains its minimum at

<u,37 V(1)>

=12/ 1.9.13
From Equations 1.1.16, 1.1.17, 1.2.6, 1.7.17, and 1.9.11, we find that
(ugz, vy = / s(us) - vWWda = hHy(us) — h®Ry(u3)
oB
With the help of Theorem 1.6.1, we get
(uz, vy = —hR; (u) (1.9.14)
A simple calculation using t3;(v()) = Ex1d;3 yields
|vV|2 = hEI, (1.9.15)
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From the relations 1.9.13 and 1.9.14, we get
Rl(u) = —Ellln(u)
for every u € Qp. Thus, we have obtained a formula of Saint-Venant’s type

applicable to any displacement field u € Qp.
In view of Equation 1.1.16 we find

(u’37v(1)> :/ s(v(l)) ‘ugda = E(/ xlu&gda—/ $1U373da> (1.9.16)
OB 2 D3]

We conclude from Equations 1.9.13, 1.9.15, and 1.9.16 that

1
n(u) = (/ z1us 3da —/ :51U373da>
hIll 22 El

and interpret the right-hand side as the global measure of strain appropriate
to flexure, associated with the displacement field u € Qp.

1.10 Saint-Venant’s Principle

In this section we present a study of Saint-Venant’s principle. The broader
significance of Saint-Venant’s solutions to the problem for load distributions
that are statically equivalent to, but distinct from those implied by Saint-
Venant’s results, depends on the validity of the principle bearing his name.
Saint-Venant’s principle was originally enunciated in order to justify the use
of Saint-Venant’s solutions. This principle is usually taken to mean that a
system of loads having zero resultant force and moment at each end produces
a strain field that is negligible away from the ends. The first general statement
of Saint-Venant’s principle was given by Boussinesq [29]. Mises [232] pointed
out that the formulation presented in Ref. 29 is ambiguous, and suggested an
amended version of the principle.

The first precise general treatment of any version of Saint-Venant’s principle
was that of Sternberg [321], who formulated and proved the version suggested
by Mises. Two alternative versions of Saint-Venant’s principle were established
by Toupin [329] and Knowles [182]. These authors arrived at estimates for the
strain energy U, contained in that portion of the body which lies beyond a
distance z from the load region. The idea of using U, in the formulation of
Saint-Venant’s principle is due to Zanaboni [343,344]. Knowles’ results are
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confined to the case of the two-dimensional problems. Toupin considered the
problem of an anisotropic elastic cylinder of arbitrary length subject to self-
equilibrated surface tractions on one of its ends, and free of surface tractions
on the remainder of its boundary. In Ref. 90, Fichera extended Toupin’s result
to the case of an elastic cylinder subject to self-equilibrated surface tractions
on each of its ends, and free of surface traction on the lateral boundary. This
is the case involved by Saint-Venant’s conjecture.

Various authors have studied a nonlinear version of Saint-Venant’s principle.
We mention the works by Roseman [283], Breuer and Roseman [31], Muncaster
[236], Horgan and Knowles [128], and Knops and Payne [180]. For the history
of the problem and the detailed analysis of various results on Saint-Venant’s
principle, we refer to the works of Gurtin [119], Djanelidze [68], Fichera [89],
Horgan and Knowles [129], and Horgan [130].

In what follows, we present the results due to Toupin [329] and Fichera
[90], which provide the mathematical formulation and proof of Saint-Venant’s
principle in the context for which it was originally intended.

Let u’ be Saint-Venant’s solution of the relaxed Saint-Venant’s problem,
and let u” be the solution of Saint-Venant’s problem with the pointwise as-
signment of the terminal tractions. We define the displacement field u on B by
u = u” — u/. Then, u is an equilibrium displacement field that satisfies the
conditions

s(u) =0onlII
/Eas(u)da =0, /Eax x s(u)da=0, (a=1,2)

We conclude that u is a displacement field corresponding to null body forces
and to surface tractions which vanish on the lateral boundary and are self-
equilibrated at each end.

We denote by B, the cylinder defined by

(1.10.1)

h
B, ={x:(x1,22) € X1, 2 < x3 < h—2z}, (0§z<2) (1.10.2)

We denote by U,(u) the strain energy corresponding to the equilibrium
displacement field u on B,,

U.(u) = %/B Cijrseij(u)e,s(u)dv (1.10.3)

The positive-definiteness of C implies that U, (u) is a nonincreasing function
of z.

Theorem 1.10.1 Assume that B is homogeneous and anisotropic, and as-
sume that the elasticity tensor is symmetric and positive definite. Let u be
an equilibrium displacement field that satisfies the conditions 1.10.1. Then the
strain energy U, (u) satisfies the inequality

U.(u) < Up(u)e=E=0/kE (5> ¢) (1.10.4)
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for any € > 0, where
k(0) = (par /A(0)'?

war s the mazimum elastic modulus, and A(¢) is the lowest nonzero charac-
teristic value of free vibration for a slice of the cylinder, of thickness ¢, taken
normal to its generators and that has its boundary traction-free.

Proof. From Equations 1.1.12, 1.1.14, 1.1.16, and 1.10.1, we get

U,(u) = ;/C?st(u) -uda = % {/Shzuitgi(u)da - /SZUitBi(u)da} (1.10.5)

Here S, denotes the cross section located at x3 = z.

The resultant force and resultant moment on every part of the cylinder
must vanish in equilibrium. We denote by B(t1,t2), (0 < t1 < ta < h), the
cylinder

B(tl,tg) = {.13 : (1‘1,1‘2) S Zl,tl <r3 < tg}

The conditions of equilibrium for the parts B(0,z) and B(h — z, h) of the
cylinder, and the conditions 1.10.1 imply that

/st(u)da =0, /Szx x s(u)da =0

(1.10.6)
/ s(u)da = 0, / x x s(u)da =0
Shfz Sh,fz
We introduce the vector fields u(®), (o = 1,2), defined by
u® =u+a® +b@xx (a=1,2) (1.10.7)

where a(® and b(® are arbitrary constant vectors. Clearly, the vector fields
u(® differ from u by a rigid displacement. In view of Equations 1.10.6, the
displacement field u which appears in the integrands of Equation 1.10.5 may
be replaced by u(® such that

U.(u) = ;{ /S hizugl)tgi(u)da— / u§2)t3i(u)da} (1.10.8)

z

If we apply the Schwartz inequality, we find that

U (u) < ;{ ( / o / h_z't(“"Qd“)l/Q
(e foors))

(1.10.9)
where [t| = (t - t)/2.
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We shall use the geometric-arithmetic mean inequality
1 b
vab < = <aa + )
2 o

for all nonnegative scalars a, b, and «, with « > 0. If we apply this inequality
to Equation 1.10.9, we obtain

U. (u) < i{a/Sth(u)Fda—&-;/

Shfz
1
—|——/ |u(2)2da}
@ Js

z

(1)2 2
u da+a/ t(u)|“da
| | SJ (w) (1.10.10)

where « is an arbitrary positive constant.

Since C is symmetric and positive definite, the characteristic values of C
(considered as a linear transformation on the six-dimensional space of all
symmetric tensors) are all strictly positive. Following Toupin [329], we call
the largest characteristic value the maximum elastic modulus, the smallest
the minimum elastic modulus. We denote the maximum and minimum elastic
moduli by pps and p,, respectively. It follows that

tm|A* < A - C[A] < pu|A? (1.10.11)

for any symmetric tensor A. The elastic potential associated with the dis-
placement field u is defined by

W) = 1 Cijraeis (u)ers(w) (110.12)

It follows from Equations 1.1.11 and 1.1.3 that
1
W(u) = §Vu - C[Vu]
where Vu denotes the displacement gradient.

Since the characteristic values of C? are the square of the characteristic
values of C, we have

[t(u)]* = C[Vu] - C[Vu] = Vu - C*[Vu] < upVu- C[Vu] = 2 W (u)

(1.10.13)
From the relations 1.10.5 and 1.10.13, we get
1 1 1))2
U.(u) < =< 2aupy W(u)da + — [u'|“da
4 S}L,z «a Sh—z
1
+2auM/ W(u)da+—/ |u(2)|2da} (1.10.14)
s, @ Js.
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We choose ¢ such that 0 < ¢ < h/2 and let

Q(z,0) = % /ZMUt(u)dt (1.10.15)

If we integrate the inequality 1.10.14 between the limits z and z + ¢, then
we find that

1 1
Q0 <+ {muM Wdo+ - [ [u® P
4 i & Jy,

1
+ 2apy [ W(n)dv 4+ = |u(2)|2dv} (1.10.16)
V2 «Q Vl

where
Vi=Bh—2z—4h—2), Vo =B(z,z+¢)

We denote by A(¢) the lowest nonzero characteristic value of free vibration
for the portion V' = B(0,¢) of B. According to the minimum principle from
the theory of free vibrations (cf. [119], Section 76),

N / Vidy < 2 /V W (v)du

v

for every v € C1(V) N C?(V) that satisfies

/vzdv#(), /vdv:O, /xxvdv:O
1% v 1%

The constant vectors a(® and b(®), ( 1,2), can be chosen so that

o =

/ uMdy = 0, / xxuMdv =0
V1 Vl
J.

/ u®@dv =0, xxu®dv=0
Va

\%

We can write

2
OPgy < — [ W(u)d lu®2dv < —
u (VAR u)av, u (S
vl‘ | A Jv, ) Va | A0 Jv,

By using the relations 1.10.16 and 1.10.17, we find

W (u)dv
(1.10.17)

0Q(2,0) < % (WM + 04)\1(€)>{ VlW(u)da + W(u)dv} (1.10.18)

Va
With the help of the relations 1.10.3, 1.10.12, and 1.10.15, we obtain
0

(-Q(,0) = Use(w) = Us(w) = = [ W(wydo— [ W(wdo  (1.10.19)
z %1 Va
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From inequality 1.10.18 and 1.10.19, we get

g(a,ﬁ)%@(z,f) +Q(z,0) <0 (1.10.20)

where

1 1
) = - —
ot = Hom + 1)
From the geometric-arithmetic mean inequality, we have
gl €) = [par /A2 = k(£)

for any « > 0. The inequality 1.10.20 implies that

k(Z)%Q(z,f) + Q@0 <0

Therefore, one has

%(62/1@(4)@(2,5)) <0 (1.10.21)

The relation 1.10.21 implies that
Q(ta,0) < e E2=1)/RO Q¢ 0) (1.10.22)

for to > t;. Since U,(u) is a nonincreasing function of z, and Q(z,¢) is the
mean value of U,(u) in the interval [z, z + ¢], we have

U,e(u) < Q(z,0) <U,(u) (1.10.23)
From the inequalities 1.10.22 and 1.10.23, we obtain
Up,pe(u) < e~ (t2mt)/kO7, () (1.10.24)

The inequality 1.10.24 implies the relation 1.10.4. |

According to Toupin, the parameter ¢ > 0 is to be chosen in a manner
which will provide a small value for k(¢). From the inequality 1.10.4, we see
that, given € > 0, we have

U.(u)
Uo(u)

<e

provided
1
2> L+ k(0)In -

In Ref. 329, Toupin employs a mean value theorem due to Diaz and Payne
[67], to obtain a pointwise estimate for the magnitude of the strain tensor at
interior points of the cylinder. A similar estimate was established by Fichera
[90] for an isotropic cylinder. We present here the estimate obtained in Ref. 90.
Let Dy be a bounded regular region.
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Lemma 1.10.1 Let f be a biharmonic scalar field on Dy, and suppose that
f € L?(Dy). Let d be the distance of the point x of Do from ODy. Then, the
following estimate holds

1/2
|f(x)| <1.9144d73/2 < f|2dv> (1.10.25)
Do

Proof. We denote by €2 the ball of center x and unit radius. For each y € Dy
we set y = x + ¢, where { € 09Q2. With the help of spherical coordinates, the
Laplacian operator

82
A —
y;0y;
appears as
0 0
A=A A, Ng=r2=—(r2=
0+ B =" or <r 3r>
_ L 9,0 L1 9?
* = sinoag \" 99 sin? 6 Op?
On the basis of the relation
A f(y)da =0
o0
the equation
AAf=0

yields
A()AO f da=0
o0

Thus we obtain,
f(y)da = cir™' + co + car + cqr?
oQ

where ¢1, ca, c3, and ¢4 are real constants. Since

lim f(y) = f(x),  limrAof(y) =0

r—0

uniformly with respect to ¢, we obtain ¢; = c3 = 0, and c2 = 47 f(x). Thus,
we find

f(y)da = 4x f(x) + rley
a0

If y* =x+ arl, with 0 < a < 1, then

f(y*)da = 4mf(x) + a*r?cs
a0
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Thus, we obtain

1 * _ 0[2 a
f(x) = m ( aszf(y )da an(Y)d >

Multiplying the last equality by r? and integrating with respect to r from
r=0tor =d, we find

1 3 _ 1 i 2
gd fx) = 47(1 — a?) <a3 S(ad)fdv “ /S(d)fdv>

where S(p) is the ball with radius p and center at x. If we apply the Schwartz
inequality, we obtain

1/2
() < gla)d="? ( [ |f|2dv)

where
(@) V3 1+a7/?
a) = ,
g 2/ (1 — a?)ad/?
The function g attains an absolute minimum which is less that 1.9144. The
last inequality implies the estimate 1.10.25. O

O<axl

The proof of the inequality 1.10.25 can be obtained by the mean value
theorem of Nicolesco [250]. The derivation used here follows that in Ref. 90.

If u is an equilibrium displacement field for a homogeneous and isotropic
body, then the strain tensor e(u) is biharmonic (cf. [119], Section 42).

If we use Lemma 1.10.1 for the function e(u) on B,, we obtain

1/2
{e(u)}(x)| < 1.9144d—3/2[/3 |e(u)|2dv] (1.10.26)

From the relations 1.10.11 and 1.10.26, we get

1/2
e} (o)l < 1.9144[3Uz<u>}
Hmd

When combined with energy inequality 1.10.4, the above inequality yields
pointwise exponential decay for the magnitude of the strain tensor at interior
points of the cylinder.

Pointwise estimates near the boundary have been obtained by Roseman
[282] and Fichera [90]. Roseman established a pointwise estimate for the stress
in a homogeneous and isotropic cylinder. When combined with Toupin’s en-
ergy inequality, this gives pointwise exponential decay for the stress through-

out the cylinder.
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1.11
1.11.1

1.11.2

1.11.3

1.11.4

1.11.5

1.11.6

1.11.7

1.11.8

1.11.9

Exercises

Study the torsion of a homogeneous and isotropic elastic cylinder
which occupies the domain

1'2 1’2
B{z:a;+b§<1, O<a:3<h}, (a>0,b>0)

Investigate the torsion problem for a homogeneous and isotropic
right cylinder whose cross section ¥; is bounded by the circles Cy
and Cy defined by

(C1): 23423 —2aw2=0
(C2): 23+4+23=0>, (0<b<2a)

Study the flexure of an elliptical right cylinder made of a homoge-
neous and isotropic material.

A homogeneous and isotropic elastic material occupies a right hol-
low cylinder B with the cross section ¥y = {z : R? < 2? + 23 < R3,
x3 = 0}. The body is in equilibrium in the absence of body forces. In-
vestigate the plane strain of the cylinder when the lateral boundaries
are subjected to constant pressures.

Show that

1 1 1 1 1
X = mqwg - 8?61:13%333 T a3 (m + gQGQ - 2qh2>$§

+ 3 gy 4 tga?

—qxire + —qu

gg T2 T 1M

where a,q,h, and m are constants, is suitable for use as an Airy
stress function and investigate the stress state in the plane domain
Y ={(z1,22) : —h <z1 < h,—a < z2 < a}.

Determine, with the use of the complex potentials, the solution of
the plane strain traction problem for a circular region in the absence
of the body forces.

Investigate, with the use of the complex potentials, the solution of
the plane strain traction problem for a circular ring.

A homogeneous and isotropic elastic right cylinder with the cross
section ¥y = {z : 2?/a® + 23/b®> < 1,23 = 0}, (a > 0,b > 0), is
subjected to extension and bending by terminal couples. Determine
the displacement field and the stress tensor.

Investigate the torsion of a homogeneous and isotropic right cylinder
whose cross section is an equilateral triangle.
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1.11.10 Study the flexure of a homogeneous and isotropic right cylinder with
rectangular cross section.

1.11.11 A homogeneous and isotropic elastic material occupies the domain
B={r:a3 <z?+2%<a?0<z3<h}, (a1 > az > 0). Investigate
the torsion of the tube.

1.11.12 Investigate the flexure of a homogeneous and isotropic right cylinder
whose cross section is bounded by two confocal ellipses.
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Chapter 2

Theory of Loaded Cylinders

2.1 Problems of Almansi and Michell

This chapter is concerned with the generalization of Saint-Venant’s problem
to the case when the cylinder is subjected to body forces and surface tractions
on the lateral boundary. This problem was initiated by Almansi [6] and Michell
[221] and was developed in various later works [28,163,175,313].

We assume that a continuous body force field f is prescribed on B. By an
equilibrium displacement field on B, corresponding to the body force field f,
we mean a vector field ue C%(B) N C(B) that satisfies the displacement
equations of equilibrium

tji(ll)’j + fz =0 (211)

on B. We assume that the boundary conditions 1.2.3 are replaced by
s(uy=tonll, R(w=F, Hu=M (2.1.2)

where t is a vector-valued function preassigned on II, and F and M are pre-
scribed vectors. Suppose that t is piecewise regular on II.

When f and t are independent of the axial coordinate, the problem was
first considered by Almansi [6] and Michell [221]. This particular case defines
what is nowadays known in the literature as the Almansi—Michell problem.

In Ref. 6, Almansi also studied the case when the prescribed forces are
polynomials in the axial coordinate. This problem is known as the Almansi
problem.

We assume that the body is homogeneous and isotropic. Let us suppose that

T
fi= ZFz’k(xlax2)$§’ (z1,22,23) € B
k=1
- (2.1.3)
t; = Zpik(xlamZ)mlgﬂ (21,2, 23) € 11
k=1

where F;;, and p;. are prescribed functions.

Almansi problem consists in finding an equilibrium displacement filed on B
that corresponds to the body force field f and satisfies the boundary condi-
tions 2.1.2, when f and t have the form 2.1.3.

59
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Let (A) denote the problem of determination of the functions u, € C*(B)N
C'(B) that satisfy the Equations 1.1.1,1.1.4, and 2.1.1 on B and the boundary
conditions 2.1.2, when f and t have the form

fi = Fin(z1,22)2%, (x1,22,23) € B

(2.1.4)
ti = pin(x1,22)28, (21,22,23) €11

where n is a positive integer or zero, and F;, and p;, are prescribed functions.
Obviously, if we know the solution of the problem (A) for any n, then, accord-
ing to the linearity of the theory, we can determine the solution of Almansi
problem.

We denote by (Ag) the problem (A) for n = 0, and by (B*)) the problem
(A) when n = s, (s = 1,2,...,7), and F = 0,M = 0. Let U©® be a solu-
tion of the problem (Ag), and let U®) be a solution of the problem (B()),
(s=1,2,...,7). Then, the solution u of Almansi’s problem is given by

u= i um
m=0

To solve Almansi problem, we use the method of induction. In Section 2.2,
we shall solve the Almansi-Michell problem (Ag). Then, in Section 2.3, we
shall establish the solution of the problem (B*1)) once a solution of the
problem (B (”)) is known. Throughout this chapter, we assume that the cylin-
der is occupied by an isotropic and homogeneous material. Moreover, we sup-
pose that the elastic potential is a positive definite quadratic form in the
components of the strain tensor.

The researches devoted to the theory of loaded cylinders are based on the
semi-inverse method. Generally, the authors used various assumptions regard-
ing the structure of the stress field. In Ref. 145, the solution was presented, for
the first time, in terms of displacement vector field. In Section 2.4, we shall
present a generalization of the results from Section 1.7 to provide a ratio-
nal tool to solve Almansi problem. The method offers a systematic approach
which avoids artificial a priori assumptions.

2.2 Almansi—Michell Problem

We assume that
fi = Gi(x1,12), (21,22) € Xy, ti = pi(z1,22), (v1,22) €T (2.2.1)

The Almansi-Michell problem consists in the determination of the vector
field u € C?(B) N C'(B) that satisfies Equations 1.1.1, 1.1.4, and 2.1.1 on B
and the boundary conditions 2.1.2, when f and t have the form 2.2.1.
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Following Ref. 161, we seek the solution of Almansi—Michell problem in the
form

1 1 . 1 1
Uy = —§aax§ — gbaxg — ﬂcaxg + €8a <7'1:r3 + 2Tgx§) g
2 1
+Z <ak + brxs + 2%95%)10&’“) + va (21, 22) (2.2.2)
k=1

1
6 ~(cpzp + 03)93%

+ (1 + 72553)90@17%2) +(x1,22) + w3x(21,22), (21,22,23)€EB

where w& ) are defined by the relations 1.7.9, ¢ is the torsion function defined

by Equations 1.3.26 and 1.3.28, ay, by, cx, and 7, are unknown constants, and
Va, ¥, X € C?(21) N C(T1) are unknown functions. Justification of the form
2.2.2 of solution is presented in Section 2.4.

It follows from Equations 2.2.2, 1.1.1, 1.1.4, and 1.7.9 that

ug = (apx, +ag)rs + = (b T, + bs)zs +

tap = MX + T2¢)00p + Sap

D) (cpzp+ 03)m§

+ (A +20) (X + 720) + Mpp (2.2.3)

1
t33 =F {apxp + as =+ (bpl'p + bg)xg + =

taz = p[(11 + 7273) (0 + €8aT8) + T3X,a + V0l
+ HZ ,+ csx3)w )

where
SaB = /\’Yppdaﬁ + 2UYap
(2.2.4)

1
g(va,ﬁ +vg,a)

The first two equations of equilibrium 2.1.1 and the first two conditions on
the lateral boundary become

Yap =

Sa8,8 + ga = 0on 3y (2.2.5)
58aM3 = gq on I’ o

where

o = Ga + MX + 720).0 + 1lr2(P.0 + €50p) + Xal + 1Y csw’

pet (2.2.6)

do = Pa — A(X + T29)Nq

Thus, from Equations 2.2.4 and 2.2.5, we conclude that v, are the displace-
ments in a plane strain problem corresponding to the body forces g, and
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to the surface forces q,. The necessary and sufficient conditions to solve the
boundary-value problem 2.2.4 and 2.2.5 are

/gada+/qads=O, /awzaggda—k/sag:caqus:() (2.2.7)
) r bl r

By the divergence theorem, and the relations 2.2.3 and 2.2.6, we get

/gada—l—/qads: Gada—l—/pads—i—/ ta3,3da
p35 r P r 31

/ €apTagpda + /Eagxaqus (2.2.8)
pI5Y r

:/ sagxanga+/5a[;xapgds+/ €aBTatzpg zda
P T 1

In view of equations of equilibrium, we have

ta3,3 = [tas + Ta(tjs,; + G3)]l3 = (Tatps) g3 + Tatsz sz (2.2.9)

Thus, by using the divergence theorem and the conditions on the lateral
boundary, we obtain

/tag,sdGZ/ Tals3 ssda (2.2.10)
31 poRt

In view of the relations 2.2.3 and 2.2.10, the first two conditions from 2.2.7
reduce to

E(Iapcp + Azdes) = — | Goda — /pads (2.2.11)
b r

where I,5 are defined in the relations 1.7.14, and 2% and A are given by
Equation 1.4.9. It follows from the relations 2.2.3, 2.2.8, and 1.7.9 that the
third condition from Equations 2.2.7 can be written in the form

D1y = —/ €aptaGpda — / EapTapgda
N r

1
_ ,U/ €afla (X,B + 21/Cgmpmp) da (2.2.12)
3

The third equation of equilibrium implies that i and y must satisfy the
following equations

uAp = —Gs — 2u(byxz, + bz) on Xy (2.2.13)

Ax = —2(cpx, + c3) on Xy (2.2.14)
In view of Equations 2.2.3 and 1.3.28, the last condition on the lateral bound-
ary implies that

9y

1
u% = ps + pwnaxa(bpx, + b3) — gbauvnaxpxp onT (2.2.15)
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0 1
% = CalT, (xanp - Qnaxp> + csvzong on I’ (2.2.16)

The necessary and sufficient condition to solve the boundary-value problem
2.2.13 and 2.2.15 is

AE(bpﬂfg + bg) = —/

nga—/pgds (2.2.17)
DN r

Let us consider now the boundary-value problem 2.2.14 and 2.2.16. The neces-
sary and sufficient condition to solve this boundary-value problem reduces to

o) +c3 =0 (2.2.18)

The system 2.2.11 and 2.2.18 can always be solved for ¢y, co, and c3. Thus,
from Equations 2.2.14 and 2.2.16, we can determine the function y. Then, the
relation 2.2.12 determines the constant 7.

We consider now the conditions 1.4.1. Let us note that

/ t13da = /[tlg + CCl(tjg,j + Gg)]da
PN r

:/ [(xltoz?)),a + x1t3z3 + 21Gslda
3

(2.2.19)
= / CL’ngd(L + / CClpgdS +/ x1t33,3da
Y I P
/ tosda = / zoGsda + / Top3ds +/ x2t33’3da
>N 3] r 2
In view of Equations 2.2.19 and 2.2.3, the conditions 1.4.1 reduce to
E(Iogbs + Azdbs) = —Fy — | x,Gsda — / ZTapsds (2.2.20)
o r

In what follows, we consider that the constants by are determined by the
system 2.2.17 and 2.2.20. We can assume that the functions ¥ and v, are
known.

In view of relations 2.2.3, the conditions 1.4.2 and 1.4.3 become

EA(a,x) + as) = —F3 — / (A +2u) (X + T20) + Aypplda
= (2.2.21)

E(lapap + Azdas) = eapMp — / Ta (A +20) (X + T2p) + My,plda
p35

The system 2.2.21 determines the constants a;. From Equations 2.2.3 and
1.4.4, we obtain

3
D = —M; — ,u/ €apla <Xﬁ + Z bswés)>da (2.2.22)
2]

s=1

The relation 2.2.22 determines the constant 7.
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Thus, the displacement field 2.2.2 is a solution of Almansi—Michell problem
if the constants a;, b;, ¢;, and 7, are given by Equations 2.2.21, 2.2.17, 2.2.20,
2.2.11, 2.2.18, 2.2.22, and 2.2.12, the functions ¥ and x are characterized
by the boundary-value problems 2.2.13, 2.2.15, 2.2.14, and 2.2.10, and the
functions v, are the displacements in the plane strain problem defined by
Equations 2.2.4 and 2.2.5.

We call the displacement vector field 2.2.2 the Almansi—Michell solution.

2.3 Almansi Problem

In the case of Almansi’s problem, the body forces f; and the tractions #;
have the form 2.1.3. In the previous section, we obtained a solution of the
problem (Ag). Our task is to establish a solution of the problem (B(+1)
once a solution of the problem (B(™) is known.

By induction hypothesis, we know to derive a solution of the problem in
which

Ji = Fitng1) (w1, 22) 27, ti = Di(n+1)(T1,22)75, F; =0, M;=0

Thus, the problem can be presented as follows: to find the functions uy €
C?(B) N C'(B) which satisfy the equations

2e;; () = w; j + uj, ti;(u) = Aepr(u)d;; + 2pe;j(u)

2.3.1
(tji(ll))d‘ + Ai<.’1?1, l‘Q)l’ngl =0on B ( )
and the boundary conditions
/ tgi(u)da = O, / sijko:jtgk(u)da =0 (232)
21 21
tai(W)ng = Ui($1,$2>$g+1, (21,29, 23) € I (2.3.3)
when we know the solution of the equations
2¢;j(0*) = uj; +uj,,  tig(u) = Aepp(W)di; + 2pe(u”) (2.3.4)
(tji(u")),; + Ai(x1, z2)2y =0 -
on B, with the boundary conditions
/ tgi(ll*)da = 0, / €ijkl'jt3k(ll*)da =0 (235)
21 E1
tai(W)ng = oi(x1,22)28, (21, 20,23) €11 (2.3.6)

In the above relations, A; and o; are prescribed functions. We assume that A;
are continuous on Y7 and that o; are piecewise regular on I'.
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Following Ref. 6, we seek the solution in the form
T3
u; = (n+1) [/ uidrs + wl} (2.3.7)
0

where w; € C%(B) N C1(B) are unknown functions. It follows from Equa-
tions 2.3.7 and 2.3.1 that

tij(u)=(n+1) {/0033 ti;(u*)dzs + 7 (W) + k:i]} (2.3.8)
where
715 (W) = MY (W) 335 + 20735 (W), 745(W) = %(m’j +w;:)  (2.3.9)

and

kap = Mapus(z1, 22,0), kss = (A + 2p)uz (21, 22, 0)
(2.3.10)
kas = kza = pul(z1,22,0), (21,22) € 34

With the help of Equations 2.3.4 and 2.3.8, the equations of equilibrium
reduce to
7;i(W),; + P; =0on B (2.3.11)
where

Pi = kai,a + [tgi(u*)](ifhl'g,()) (2312)

We note that the functions P; are independent of x3. In view of Equations 2.3.6
and 2.3.8, the conditions 2.3.3 become

T8i(W)ng = n; on II (2.3.13)
where
i = —kqing

The functions 7); are independent of the axial coordinate. By Equations 2.3.8
and 2.3.5, the conditions 2.3.2 reduce to

/ 73i(W)da = —F;, / €ijk;Tap(W)da = =M, (2.3.14)
P DN

where

Fi = / kSidav Mz = 5irsxrk35da
1 31
We conclude that the functions w; satisfy Equations 2.3.9 and 2.3.11 on B
and the boundary conditions 2.3.13 and 2.3.14. Thus, w; satisfy an Almansi—
Michell problem. The solution of this problem was studied in the previous
section. The justification of the form 2.3.7 of the solution is presented in the
next section.
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2.4 Characterization of Solutions

Since the Almansi problem fails to characterize the solution uniquely, it is
natural to ask for intrinsic criteria that distinguish the above solutions among
all solutions of the problem. In the first part of this section, we present a
relation between the solutions of the Saint-Venant’s problem and the solution
of the Almansi-Michell problem. Then, a characterization of the Almansi—
Michell solution is established. A justification of the solution 2.3.7 is also
presented. The results we give here have been established in Ref. 161.

Let Ky (F,M, G, p) denote the class of solutions to the Almansi—Michell
problem (Ap). Theorem 2.4.1 will be of future use.

Theorem 2.4.1 Ifue C*(B)NCY(B), then

Rifug) = [ swds = [ [t(u)] o

Ho(u3) =/F6a5$583(U)d8—/E6aﬁ$ﬁ[tj3(u)},jda+€aﬁRﬁ(U) (2.4.1)

Hs(uzs) :/5a5xasﬂ(u)dsf/ €apaltip(u)] jda
T PN

Proof. Let us note that t;;(u3) = [¢;;(u)] 3. Thus, we have
tzi(uz) = [Li(W]; = [tai(W)],a
apTptss(03) = €aprpltjs(u)]; — caplratps(u)], +eaptps(u)  (2.4.2)

€aplalszp(U3) = Eaptaltip(W)]j — caplzatpp(w)],
By Equations 1.2.5 and 2.4.2, the divergence theorem, and Equation 1.1.11,
we obtain the desired result. O

Recall that K(F,M) denotes the class of solutions to the Saint-Venant’s
problem corresponding to the resultants F and M.

Theorem 2.4.2 Ifu € K;;;(F,M,G,p) and uz € C?(B) N C'(B), then
usz € K(P,Q), where

P= Gda+/pds
21 r
Qo = / capraGada + / €apTaP3ds + capFp (2.4.3)
1 r

Q3 :/Eagl‘aGﬁda—f—/&aﬁxapﬂdS
o r

Theorem 2.4.2 is a direct consequence of Theorem 2.4.1.
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The preceding theorem allows us to establish a simple method of deriv-
ing Almansi-Michell’s solution. Let u® € K (P, Q) be Saint-Venant’s solution
corresponding to the resultant force P and the resultant moment Q of the
tractions acting on 1. Theorem 2.4.2 asserts that the partial derivative with
respect to x3 of any solution u € C3(B) N C?(B) of the problem (Ag) belongs
to K(P, Q). It is natural to enquire whether there exists a solution w of the
problem (Ap) such that w3 and u® are equal modulo a rigid displacement.
This question is settled in Theorem 2.4.3. We assume that the material is
homogeneous and isotropic.

Theorem 2.4.3 Let u’ € K(P,Q) be Saint-Venant’s solution. Let w €
C3(B) N C?(B) be a displacement vector field such that w3 and u° are equal
modulo a rigid displacement. Then w € K1 (F,M, G,p) if and only if w is
the Almansi—Michell solution.

Proof. Let u® be Saint-Venant’s solution in the class K (P, Q). Following
Equation 1.7.21, the vector u® has the form

u = / v{ctdzs + v{b} + w* (2.4.4)
0

where b= (b1,b2,b3,bs) and ¢=(c1,ca,c3,c4) are two constant four-
dimensional vectors, and w* is a vector field independent of x3 such that
w* e C?(2)NCLH(Ey).

In view of Theorem 1.7.3, Equations 1.7.23, 1.7.27, and 2.4.3, we conclude
that

E(Iopcs + Axles) = — | Goda — /pads
r

1 (245)

caxg—i—c?,:O, cy =0

and w}, = 0, w3 = x, where x is characterized by Equations 2.2.14 and 2.2.16.
Moreover, from Equations 1.7.28 and 2.4.3, we obtain Equations 2.2.17, 2.2.20,
and

1
Dby = — / €aBTs |:Gﬁ + ,LL<X75 + 2V051;px,,>} da — / €apTappds
o r
Let w be a vector field such that

wiy=u'+ta+pBxx (2.4.6)
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where u° is defined by Equation 2.4.4, and a and B are constant vectors.
Then, it follows from Equations 1.7.11, 1.7.12, 2.4.5, and 2.4.6 that

1 1 1 1
Wo = —§aax§ — ébaajg — ﬂcaxg + §b4agax§mg
> 1
— T1EaBT3T3 + Z (ak + brxs + chxg) w,(lk) + v (1, 22)
k=1

1 1
w3 = (apz, + az)xs + §(bpmp + bS)fE% + g(cpxp + CB)“@

+ bawzp 4+ 110 + 23X + P (21, 72)

where v,, and ¥ are arbitrary functions independent of z3, and we have used
the notations ao = €qpBp, a3 = 3,71 = [B3. For convenience, on the basis
of the arbitrariness of the functions v, and v, we have introduced the terms
Zzzl akw((,ék) and 71¢. In Section 2.2, we have shown that we can determine the
functions v, and the constants ay and 71, such that w € K71 (F, M, G, p).
The proof is complete. O

Let us present now a justification of the form 2.3.7 of the solution.

Let Qn{Fnz%, pnzh}, (n = 1,2,...,r), be the class of solutions to the
problem (B(™). By induction hypothesis, we know to derive a solution 1 €
QniF, 2y, pyoy }. It follows that we also know a solution u* € Qn{F ,,+1)2%,
Pn+1)25 }. Thus we are led to the following problem: to find a vector field
u’ e QnH{F(nH)a:gH,p(nﬂ)mgﬂ} when u* € Qn{F(,41)7%, p(ni1)@y} is
given. We refer to this problem as the problem (K). To solve this problem, we
need the following result.

Lemma 2.4.1 Ifu € Qn+1{F(n+1)x§f+1,p(n+1)xg+1} and uz € C?*(B) N
CY(B), then
(n+1)""us € Qu{F(nin2h, Pintn@h }

Proof. Letu € QnH{F(nH)x;}H, p(nﬂ)mgﬂ} such that u 3 € C?(B)NCY(B).
It follows from Equations 2.1.1 and 2.1.2 that

tji(u,3)7j + (n + 1)Fi(n+1)$§ =0on B
s(us) = (n+ 1)p(nynyzz on Il
Since the theory under consideration is linear, the vector field u’ =
(n +1)"'u 3 is an equilibrium displacement field on B that corresponds to
the body force field F,,1)z% and satisfies the condition s(u’) = p(,41)75 on

II. In view of Theorem 2.4.1, we find R(u’) = 0, H(u') = 0. This completes
the proof of the lemma. O

Lemma 2.4.1 allows us to solve the problem (K). Thus, in view of this
lemma, we are led to seek the vector field u” such that (n +1)~'u’y = u*
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modulo a rigid displacement, that is,
(n+1)Mus=u"+a+Bxx (2.4.7)

where a and B are constant vectors. Then it follows that

xs3 1
ul = (n+1) [/ uldrs — iaamg — A4€08TpT3 + w2($1,$2):|
. (2.4.8)
uy = (n+1) [/ ujdrs + (a,z, + asz)rs + wi(x, xg)}
0

except for an additive rigid displacement. Here w* is an arbitrary vector field
independent of x3, and we have used the notations a, =€, 3y, a3 = a3, ag = 33.

Theorem 2.4.4 Let u* € Qu{F(,41)2, P(n+1)Z5 }, and let Y be the set of
all vector fields of the form 2.4.8. Then there exists a vector field u” € Y such

that u”’ € Q(n—&-l){F(n—i-l)ngrlv p(n_,_l):cngl}.

Proof. Let us prove that the functions w; and the constants as ( 1,2,3,4),
can be determined so that u” € QnH{F n+1)m3 »P(n+1 xyt .

We introduce the vector field w’ by
S SR

where the functions wgf ) have the form 1.7.9, and the function ¢ is the torsion
function.

From Equations 2.4.8, we obtain

s 1 1
uf =(n+1) [/ ujdrs — ialxg — A4Tox3 — iall/(m% — z3)
0

/
— QVT1T2 — A3VT1 + wl}

I )
uy =(n+1) / usdrs — 5(121‘% 4 ayr1T3 — VT To (2.4.9)
LJo

1
— 5@1/(58% —27) —azvas + wg]

——
uf = (n+1) / uides + (apz, + a3)rs + asp + wé}
LJo
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The stress—displacement relations imply
x3
tag(u”) = (n+1) [/ tag(W)dzs + Tog(W) + Aapus(z1, 22,0)
0
T3
tzz(u”) = (n +1) [/ tss(u®)dzs + E(ayz, + as) + )‘w;,p
0

+ (A + 2p)uz (w1, 22, 0)} (2.4.10)

T3
taz(u”) = (n+1) {/ taz(u*)drs + pas(,0 — €aps)
0
i+ g o0
We have

(i) = (1) [ (a0 s+ (T8 5]

(2.4.11)

c\c\

(asa)s = (41| [

where

Ja = [tBOé(u*)](xlﬂ T2, 0) + )‘uz’:,a(‘rlvx%o)
(2.4.12)
g = [t33(11*)](],‘1, L2, 0) + /’Lug,a(xlv T2, O)

Since u* € Qn{F (n+1)25, P(nt+1)75 }, the equations of equilibrium and the
conditions on the lateral boundary reduce to

[Top(W')] g + ga = 0o0n ¥y, Top(W)ng =gaonT (2.4.13)
w/
pAwh + g =0on X, 1 3 —gonT (2.4.14)
n
where
Ja = —Anquz(r1,z2,0), q = —pnquy(z1,r2,0)

We conclude from Equations 2.4.13 that {w),,Tas(w’)} is a plane elastic
state corresponding to the body forces g, and to the surface forces q,. It is a
simple matter to see that the necessary and sufficient conditions to solve the
plane strain problem 2.4.13 are satisfied.

The function w} is characterized by the boundary-value problem 2.4.14. On
the basis of Theorem 2.4.1, we find that R, (u”) =egoHg((n+1)u*) =0. The
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conditions R3(u”) = 0, H(u”) = 0 reduce to

E(I,pap + Azlaz) = —/ o[ w, p + (A + 2p)us (21, 22,0)]da
D3]

AE(ap:L’g +az) = 7/2 [Aw;, , 4+ (A4 2p)uz(x1, 22,0)]da (2.4.15)
1
Day = — / awa:a[wéﬁ +ug(z1,2,0)]da
P}
The system 2.4.15 determines a1, as, a3, and ay. O

Remark. It follows from Equations 1.7.11, 1.7.12, 2.4.8, and 2.4.9 that the
solution u” may be written in the form

3
v =(n+1) [/ u*das + v{a} + w’ (2.4.16)
0

Here w!, are the components of the displacement filed in the plane strain
problem 2.4.13, wj is characterized by the problem 2.4.14 and @ is determined
by Equations 2.4.15.

The above results yield a rational scheme to derive a solution to the Almansi
problem.

2.5 Direct Method

In this section, we present another method of solving Almansi problem. The
advantage of this method is that it does not involve the method of induction
and avoids the use of some auxiliary functions and constants. For convenience,
we assume that the body forces and the tractions applied on the lateral surface
are given in the form

m 1 . ~ m 1 X
ZE F® gk, ti:ZHPi( Jak (2.5.1)

where Fi(k) and Pi(k) are prescribed functions independent of the axial coor-
dinate.

The problem consists in the determination of a solution u € C?(B)NC*(B)
of Equations 1.1.1, 1.1.4, and 2.1.1 on B that satisfies the boundary conditions
on Y and

toile = t; on II (2.5.2)

when the body forces and the lateral loading have the form 2.5.1.
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The recurrence process presented in Section 2.3 lead us to seek the solution
in the form

m—+2 3
Z (k) k+2 Z (J)

m 1 m—42 1
+ Y e+ epamp Y | HTWak
k=0 k=1
(2.5.3)
X1 (k) (
k k k)Y, k41
Uz = ——(C; 1+ C5V e+ O3 )
3 I;J (k+1)!( 1 N 2 L2 3 ) 3
m—+1 1
k+1 E+1)\, .k
k=0
where C(k) (k 0’1k2 ,m +2), and T®), (s = 1,2,...,m + 2), are
unknown constants, va (k 0,1,2,...,m) are unknown functions of class
C?(¥1) N CY(Xy), independent of the axial coordinate, wi) are defined by
relations 1.7.9, and ("), (r = 1,2,...,m + 2), are unknown functions of class

C?(%1) N CL(X;) which depend only on z; and 5. Let us prove that the
functions v and ¥(") and the constants C’j(.k) and T can be determined so
that u be a solution of Almansi problem.

We introduce the notations

18 =2 (240, k=0,12..m) (2.5.4)
It follows from Equations 1.1.1, 1.1.4, 1.7.9, and 2.5.3 that
1
tap = Y 7 NTE Do+ D)5 + s3]
k=0

m—+2
1 k k k
= )\Z kﬂé’;)xéf +E Z E(Cf D + Cé Vo + Cg() ))x’§
k=0

1
A+ 20) 3 (T2 90 (2.5.5)
k=0

m4+1
=3 g [T+ ) 0

3 m—1
k+1) (4 1
+ ZC’]( w0 2k + > va’““)x’;
j=1 k=0
where
s = W60 + 20, (k=0,1,2,...,m) (2.5.6)
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It follows from Equation 2.5.5 that the first two equations of equilibrium
2.1.1 and the first two conditions on the lateral surface 2.5.2 reduce to

s(ﬁka)ﬁ + G(ak) =0on X, s(ﬁka)nﬁ = q((f) onT, (k=0,1,2,...,m) (2.5.7)
where

G&k) — Fo(ék) + )\(T(k+2)g07a -+ 1/}’(5"’_2)) + ng)

Tk = [1/}55*2) + oD L TR (o | 4 e pamp)

j=

3 .

Yy C](.’““)wg])] (2.5.8)
=1

q((lk) _ p&k) _ )\(T(k+2)<p + w(k+2))na
k=0,1,2,...,m, oi""P =0, p=1,2

The last equation of equilibrium and the last condition on the lateral bound-
ary become

k)

o =AM onT, (k=1,2,...,m+2)

(2.5.9)

pAY® = g™ on sy, p

where
g®) = —FF D 2 (CW ey + P zy + )

k
— (4 2p) (TF Do 4 *+2) — (A4 ol
3
AW =Y g — png > D, (k=1,2,...,m+2)

j=1

Fm =0, gm0 =g 72 =0, p=12  (2.5.10)

)

The necessary and sufficient conditions to solve the boundary-value prob-
lems 2.5.9 are

/g(k)da:/A(k)ds, (k=1,2,...,m+2) (2.5.11)
31 N

By using Equations 2.5.10, 1.7.9, and the divergence theorem, the conditions
2.5.11 reduce to

EA(CV2) + 2§+ V) = - /

Fék_l)da—/pgk_l)ds
i r

7/2 [/\fyf(,];) + (A +2w) (T(kﬁ)cp + w(k+2))]da, (k=1,2,...,m+2)
1
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From Equations 2.5.4, 2.5.6, and 2.5.7, we conclude that the functions vék),

(k=0,1,2,...,m), are the displacements in the plane strain problems corre-

sponding to the body forces G,(lk) and the tractions qék). The necessary and

sufficient conditions for the existence of the functions v((xk) are

G da + / ¢Wds=0

p3 r

(2.5.13)
capraGYd Wds =0, (k=
aptaGyda+ [ €aptaqy ds=0, (k=0,1,2,...,m)
DN r

It follows from Equations 2.5.8 and the divergence theorem that

/G&k)da+/q&k)d52/ F(gk)daJr/pgc)der/ r®) dq (2.5.14)
21 T 21 r E1

By use of the same procedure as that used to prove Equations 2.2.9, we obtain

tass = (Tatps,3) g + Taltssss + f33)

Thus, by using the divergence theorem and Equations 2.5.2, we find that

d ~
/ ta373da = — / Iatgds + / I’a(t33733 + f373)da (2515)
bR} dxs Jr bl

In view of the relations 2.5.5 and 2.5.8, from Equations 2.5.14, we get

/Fg’“)da:/xaFgka)da—l—/xapékH)ds
P4 P r

+ E(Ia1 O+ IO 4 4200+
+ / To [)x’yl(];“) + (A 42w (T(k+4)go + 1/J(k+4))}da
P
k=0,1,2,...,m, TP =0, ") =0, p=3,4 (2.5.16)

By Equations 2.5.14 and 2.5.16, the first two conditions from Equations 2.5.13
reduce to

E(IOAOYC-‘FQ) + I@QOék-‘rQ) + Ang’g(k+2)) _ {Fo(jc)
¥

+ 2o P g DB (4 20) (TR o 4 3 49) | L da

—/ [P + zapy ™ ]ds,  (k=0,1,2,...,m) (2.5.17)
I
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In view of the relations 2.5.8, the remaining condition from Equations 2.5.13
reduces to

DT*+2) — —/ZlgaﬁxaF[gk)da — /Psag:vapék)ds — u/zlaa,gma [1#%”2)

3
k+2 k+2 j
+of ey o )w(ﬁ])]da, (k=0,1,2,...,m) (2.5.18)
i=1

where D is the torsional rigidity. Let us study now the conditions on ;. We
note that in the presence of body forces the relations 1.3.57 become

/t3ada:/ IatggngdS—F/$a(t3373+f3)da
> (o) b

Thus, for 3 = 0, we obtain

/tgada:/xapgo)ds—&—/ xaFéo)da
N r N

+ /2 T [)\7;(,})) + (X +2u) (T(?’)ga + 1/1(3))}da
+ E(}alel) + IO + A0 CSM) (2.5.19)
In view of Equation 2.5.19, the conditions 1.4.1 reduce to
E(IaC + I,C + A0C8Y) = —F, — /E 2o F\"da
1
— /1‘ a:apgo)ds — /Elxa [/\’y,()},) + (A +2p) (T(3)g0 + ¢(3))]da (2.5.20)
From the condition 1.4.2 and 2.5.5, we obtain

EA(CV2) + V2 + V)

:_F3—/ M9+ A+ 2u) (TP +y®)]da  (2.5.21)
b

The conditions 1.4.3 reduce to

E(IaC” + 1,505 + A20C) = ensMj

- /E To [)@,()g) + A+ 2u) (TP + w@))]da (2.5.22)
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It follows from the condition 1.4.4 and 2.5.5 that

3
DTMW = — M, — ,u/zlsagxa {wfg) +og) + 3 C](l)w(ﬁj)] da (2.5.23)
j=1
First, we determine the torsion function ¢ and calculate the torsional rigid-
ity D from Equation 1.3.32. Since 'yézH_Q) =0,7m+4) =0, ™+ =0, we see
that from Equations 2.5.12, with k=m + 2, and 2.5.17, with k=m, we can
determine the constants C'J(»m”) in terms of the body forces and lateral trac-
tions. Then, from Equations 2.5.9, for k=m + 2, we determine the function
(™ +2) We note that in the relations 2.5.10, we have T("+4) =0, )(m+4) =0,
v&mﬂ) = 0. Next, from Equation 2.5.18, we can determine 7(™*2)_ Since C§m+2),
T(m+2) and ¥(™*2) are known, from the plane strain problem 2.5.4, 2.5.6,
and 2.5.7, for k=m, we can obtain the functions v&m). Then, from Equations
2.5.12, with k=m + 1, and 2.5.17, with k=m — 1, we determine the con-
stants Ci(mH). From Equations 2.5.9, we determine the function ¢+ The
constant 7™ *1 is given by Equation 2.5.18. The plane strain problem 2.5.4,
2.5.6, and 2.5.7, with k=m — 1, determines the functions v((lmfl), and so on.
The constants C’j(l) are determined by Equations 2.5.12 and 2.5.20. The func-
tion (M) is given by Equations 2.5.9 and the constant ") can be found from
Equations 2.5.23. Finally, from Equations 2.5.11 and 2.5.22, we obtain the
constants Cj(-o). Thus, we conclude that the displacement vector field defined
by Equations 2.5.3 is a solution of Almansi problem.
In the case of uniformly loaded cylinders, we have

fi=F"Y i =p”

From Equations 2.5.3, for m = 0, we obtain the following solution of
Almansi—Michell problem

2 3
1 1 ,
— _ (k) k+2 =k (k),,(4)
Ug = kE:O { C 2)!Ca x5+ s E Ciwy ]

1
+ €apTp <T(1)as3 + 2T(2)x§) + ol

(2.5.24)
2
1 k k k
uz = ];) Gt 1) (C’f Joq + C’Q( Vg + C’?E ))x§+1
+ T(l)tp + 1/)(1) + x5 (T(Q)QO + w(Q))

From Equations 2.5.12 and 2.5.17, we find the following system for the

constants CJ(-Q)

cPa) + cPag+ o =0

(2.5.25)
E(Ip1C + 1,0 + Azd ) = f/

p&o)dsf/ F(go)da
r o
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The function ¢ is characterized by

A = —2(CPay + Py + CFY) on 3y
(2.5.26)

(@ 5@ G
= —ng E CPwd) on T
on = J

It follows from Equation 2.5.18 that the constant 7?) is given by

DT® = —/ sagmap(ﬁo)ds —/ Eagl‘aFﬁ(O)da
r b

1

3

/eaﬂx Z w§ + 4 da (2.5.27)

The constants C'J(»l) are determined from Equations 2.5.12 and 2.5.20, so that
EA(C(I) + C'(l) 9+ C’ ) /Fpgo)ds — /E F?Eo)da
1

E(IoiCM + Lo + A2CV) = —F, — /

xapgo)dsf/ xaFéO)da
T 3

(2.5.28)
From Equations 1.7.9 and 2.5.9, we obtain the following boundary-value prob-
lem for ¢

qup(l) = —F3(0) — 2/1(09);101 + Cél).lﬁg + C?(,l)) on X,

@ 3 , (2.5.29)
Magn = pgo) — Ung Z C}l)wgf) onT
j=1
In this case, the constant 7(") is given by
DTM = — My — / Eapla 20“) "+ ) |da (2.5.30)

It follows from Equations 2.5.4, 2.5.6, and 2.5.7 that v((xo) are the components
of the displacement vector in the plane strain problem characterized by the
geometrical equations

1
79 = 5 (Ve v+ i) (2.5.31)
the constitutive equations

sty = M dag + 2075 (2.5.32)
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the equilibrium equations

3
S&OA,@ +FY + (A +p) (TP + w,(o%)) + M(T(z)fﬁal‘g + Z C’J@)wﬁj)) =0

j=1
(2.5.33)

on ¥; and the boundary conditions
sy =19 = AT+ 4P on T 2534

The constants C'J(»O) are determined from the system 2.5.21 and 2.5.22.

If f; = 0 and #; = 0, then the solution 2.5.24 reduces to Saint-Venant’s
solution to the relaxed Saint-Venant’s problem.

2.6 Applications

2.6.1 Deformation of a Circular Cylinder Subject
to Uniform Load

Let us study the deformation of a homogeneous and isotropic circular cylin-
der that occupies the region B= {z : 23 + 23 < a®,0 < x3 < h}, (a > 0), and
is subjected to a uniform load. We assume that the lateral surface is subjected
to a constant pressure and that the body force is axial. Thus, we have

Ea:Pnou 53:07 fazoa f3:Q (261)

where P and @ are given constants. Clearly, n, = z,/a so that we can take
¢ = 0. From Equation 1.3.32, we obtain
1

D= §7TQ4/1 (2.6.2)

By using Equations 1.7.14 and 2.6.1, and taking into account that p((xo) = Png,

p:(go) =0, Féo) =0, and F?fo) = (@, we have

1
Iop = 1043, I= Zﬂa4, 2 =0, /Fp,(lo)ds =0

so that the system 2.5.25 implies that
(2 _
;7 =0 (2.6.3)

From Equation 2.5.26, we conclude that ¢/?)=0 on X;. Clearly, Equa-
tions 2.5.27 and 2.6.2 imply that T?=0. It follows from Equation 2.5.28

that 1 )
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The boundary-value problem 2.5.29 reduces to

1
At == Q = 2(C{Var + €z + CV) on X

oM 1 1 1 1
e §ya(0§ Vo) + CQ( Vg + 209() )) onT
The solution of this problem is given by
1
1 2 3 2
P = ~ 157 (A [a®(3+42v) 2y — (2F + 2123)]

+ F [a2(3 +2)xg — (xg + x%l"?)”

—%Q (m% + x%) , (x1,m0) €34 (2.6.5)
In view of the relations 2.6.1, the equilibrium equations 2.5.33 reduce to
s 5 =000 (2.6.6)
The boundary conditions 2.5.34 become
sg)ﬂ)ng =Pn,onTl (2.6.7)

The solution of the boundary-value problem 2.5.31, 2.5.32, 2.6.6, and 2.6.7 is
given by

1
O=-_—— _p ) 2.6.8
vy, ST ) To ON X ( )
In view of Equations 1.7.9 and 2.6.5, from Equation 2.5.30, we obtain
DTW = —Mj (2.6.9)

It follows from Equations 2.5.21, 2.5.22, and 2.6.8 that the constants C](O) are
given by
1 ) _ 1 2v

We conclude that the solution of the problem has the form

1 3
1 1 .
Uq = E {— O gh+2 4 Em’?f E C](-k)w((j)} + eapTWVagzs + v
P e

cV =

' «@
2 |2
1
1
us =3 gy (O O O )l p

k=0

Here, the constants Cj(k), (k=0,1), are given by Equations 2.6.4 and 2.6.10,

T and D are given by Equations 2.6.2 and 2.6.9, the function 1) is defined
in Equations 2.6.5, v&o) are given by Equation 2.6.8, and the functions w((f)
have the expressions 1.7.9. If Q = 0 and P = 0, then we obtain the solution

of Saint-Venant’s problem.
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2.6.2 Thermoelastic Deformation of Cylinders

Let us use the results presented in Sections 2.2 and 2.3 to study the problem
of thermal stresses in homogeneous and isotropic cylinders within the linear
theory of thermoelastostatics.

Let T be the absolute temperature measured from the constant absolute
temperature in the reference configuration. In the equilibrium theory of lin-
ear thermoelasticity, the temperature field 7' can be found by solving the heat
boundary-value problem associated with the heat conduction and energy equa-
tions. In this section, we shall treat the temperature field T" as having already
been so determined.

As is usual in thermoelastostatics, we assume that the mechanical loads are
absent. Thus, the principal attention is devoted to the deformation due to the
temperature field.

We consider a formulation of the problem in which the detailed assign-
ment of the terminal tractions is abandoned in favor of prescribing merely the
appropriate stress resultants.

According to the body force analogy (cf. [38], Section 11), the thermoelastic
problem reduces to the problem of finding an equilibrium displacement field
u on B that corresponds to the body force field f = —fgrad T and satisfies
the conditions

s(u) =ponll, Ry(u) =0, R3(u) = —/ BTda
o (2.6.11)

H,y(u)=— . Beapz,Tda, H3(u)=0
1

where p = §Tn. Here [ is the stress-temperature modulus. We refer to the

foregoing problem as the problem (7).

2.6.3 Plane Temperature Field

We now consider the case when the temperature field is independent of the
axial coordinate, that is,

T =To(z1,22), (x1,22) €4

where Ty € C%(31) N C1(X;) is a prescribed field.
Clearly, in this case, the problem (Z) reduces to the Almansi—-Michell prob-
lem which consists in finding a vector field u € Ky (F, M, f, p) where

F, =0, F; =—| pTyda, My = —[ Beapz,Toda
X Z (2.6.12)

Ms; =0, fa = _BTO,(u .f3 =0, Pa = 6T0na> p3 =20
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A solution of this problem is given by Equations 2.2.2. In view of the rela-
tions 2.6.12,

fada + / Pads = 0, / €afTafoda + /Eagﬂiapgds =0 (2.6.13)
N r N r

It follows from Equations 2.2.11, 2.2.18, and 2.6.13 that ¢; =0. Clearly,
x = 0 is a solution of the boundary-value problem 2.2.14 and 2.2.16. Then it
follows from Equations 2.2.17, 2.2.20, and 2.6.13 that b; = 0. Now we can see
that ¢ =0 is a solution of the boundary-value problem 2.2.13 and 2.2.15. The
functions v, are characterized by the plane strain problem

(sap(V)), g+ fo =0 on X, Sag(V)ng =pgonT (2.6.14)

where f, and p, are given by the relations 2.6.12. The system 2.2.21 reduces to

E(Iaﬂa,g + Axgag) = Brdoda — X | xqv, pda
h 31
' (2.6.15)
AE(aaxg + a3) = / BToda — )\/ Vp, pda
bl bl
Thus we conclude that a solution of the problem is given by
1
U = 75(111’% — ialy(m% — I%) — AVT1T9 — a3V “+ vy
1 1
Uz = *iazxg —aVT1x2 — §a21/(17% - :17%) — azvTs + v (2.6.16)
uz = (@121 + aswe + az)xs
If T =T*, where T is a given constant, then
p "
Vo = g1 " Ta 2.6.17
2(A + p) ( )

Let us suppose that the coordinate frame is chosen in such a way that the
origin O coincides with the centroid of ;. Then, it follows from Equations
2.6.15 and 2.6.17 that

aq =0, az = BT/ (3X + 2u)
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2.7 Exercises

2.7.1

2.7.2

2.7.3

2.7.4

2.7.5

2.7.6

2.7.7

2.7.8

2.7.9

Study the deformation of an isotropic and homogeneous elastic cylin-
der which is subjected to a temperature field that is a polynomial in
the axial coordinate.

Study the deformation of a homogeneous and isotropic circular cylin-
der which is subjected to the gravity force.

A homogeneous and isotropic material occupies the domain B = {z :
a3 <z? + 22 <a?,0<w3<h},(a;>0,az>0). Investigate the exten-
sion and bending of the cylinder if the lateral surfaces are subjected
to constant pressures.

Investigate the deformation of a circular cylinder when the lateral
boundary is subjected to a pressure which is linear in the axial coor-
dinate.

A homogeneous and isotropic elliptical cylinder is subjected to the
loads f; = 0,tq = Pnq,t3 =0,F3 = Q, F, =0,M; =0, where P and
@ are prescribed constants. Study the deformation of the body.

Investigate the deformation of the right circular cylinder B={z :
2?2 + 2% < a?,0 < 23 < h}, (a > 0) which is subjected on the lateral
surface to the tractions ¢; = —pTals, ty = pxlxg,tNg =0, where p is a
constant.

Investigate the deformation of an isotropic and homogeneous elliptical
cylinder which is subjected to a temperature field that is a polynomial
in the axial coordinate, with constant coefficients.

Study the deformation of an isotropic and homogeneous circular cylin-
der subjected to the external loading {f, =0, f3 =G, ta = (Po+Prxs+
Pyx?)ng, t3=H,Fy = R, Fy = F3 = 0, M; =0}, where G, Py, P, P>, H,
and R are prescribed constants.

An elliptical right cylinder is made of a homogeneous and isotropic
elastic material. Let (71, 72, 0) designate the tangent unit vector along
the boundary of the generic cross section. Study the deformation of
the body which is subjected on the lateral boundary to the tractions
?1 = PTl,%VQ = Py, 53 = 0, where P is a given constant.
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Chapter 3

Deformation of Nonhomogeneous
Cylinders

3.1 Preliminaries

This chapter is devoted to the study of the deformation of nonhomogeneous
and isotropic cylinders. Most of the works concerned with Saint-Venant’s
problem are restricted to homogeneous cylinders. However, some investiga-
tions are devoted to Saint-Venant’s problem for nonhomogeneous cylinders
where the elastic coefficients are independent of the axial coordinate, they
being prescribed functions of the remaining coordinates. This theory is of in-
terest from both the mathematical and technical points of view [3,75,88,130].
According to Toupin [329], the proof of Saint-Venant’s principle presented in
Section 1.10 also remains valid for this kind of nonhomogeneous elastic bodies.
The study of Saint-Venant’s problem for nonhomogeneous cylinders was ini-
tiated by Nowinski and Turski [256] and was developed in various later works
[150,279,303,318]. An account of the historical developments of the theory of
nonhomogeneous elastic bodies as well as references to various contributions
may be found in Refs. 175, 209, 219, and 290. Many works concerned with
Saint-Venant’s problem for nonhomogeneous cylinders are restricted to the
case when the Poisson’s ratio is constant. A method to solve the problem,
which avoids this restriction, was presented in Ref. 149.

The equilibrium problem for heterogeneous elastic bodies was studied in
various works [88,196,241]. Fichera [88] was the first to consider the case of
the bodies compounded of different nonhomogeneous and anisotropic elas-
tic materials. The deformation of cylinders compounded of different homoge-
neous and isotropic materials was first studied by Muskhelishvili [241] and his
treatment was extended in various works [28,175,204,313]. Most of the works
dealing with this problem are restricted to piecewise homogeneous cylinders.
In Refs. 151 and 152, we established a solution of Saint-Venant’s problem for
a cylinder composed of two different nonhomogeneous elastic materials, where
the elastic coefficients are independent of the axial coordinate. The mathe-
matical formulation of the problems of extension, bending, torsion, and flex-
ure of compound cylinders differs from that for homogeneous cylinders only
in added boundary conditions on the interfaces of the media with different
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elastic properties. We shall assume that ; is a C'l-smooth domain ([88],
p- 369). Let 'y and I's be complementary subsets of T and let I’y be a curve
contained in X7 with the property that To UT,, (p = 1,2), is the boundary
of a regular domain A, contained in ¥ such that A; N Ay = (). We denote
by B, the cylinder that is defined by B, = {z : (z1,22) € A,,0 < x3 < h},
(p = 1,2). We assume that B, is occupied by an elastic material with the
elasticity field C®), (p =1, 2), and that C) is symmetric, positive definite,
and smooth on Ep. Let Il denote the surface of separation of the two ma-
terials. Clearly, IIp = {z : (x1,22) € TI'9,0 < z3 < h}. We can consider
that the cylinder B is composed of two materials which are welded together
along Ily. Let II; and Il be the complementary subsets of IT defined by
I, = {z : (x1,22) € T,,0 < 23 < h}. Assume that in the course of defor-
mation, there is no separation of material along I1y. The displacement vector
field and the stress vector field are continuous in passing from one medium to
another. Accordingly, we have the conditions

[ui]1 = [ui]2, [tiﬁ(u)hn% = [tw(u)]gng on Il (3.1.1)

where we have indicated that the expressions in brackets are calculated for the
material corresponding to the regions By and Bs, respectively, and (n{,nJ,0)
are the components of the unit normal n° of Ily, outward to B;.

In the first part of this chapter, we study the deformation of nonhomo-
geneous and isotropic cylinders when the elastic coefficients are independent
of the axial coordinate. Then, the case of elastic cylinders composed of dif-
ferent nonhomogeneous and isotropic materials is investigated. This chapter
points out the importance of the plane strain problem in the treatment of
Saint-Venant’s problem.

3.2 Plane Strain Problem: Auxiliary Plane
Strain Problems

3.2.1 Basic Equations

In Section 1.5, we have studied the plane strain problem for homogeneous
and isotropic elastic cylinders. In this section, we suppose that the cylinder B
is made of a nonhomogeneous and isotropic elastic material for which the
constitutive coeflicients are independent of the axial coordinate, that is,

A= Az, x2), w=p(r1,22), (1,22) €34 (3.2.1)

We suppose that the domain ¥; is C*°-smooth [88], and that the functions
A and p belong to C*° and satisfy the conditions 1.5.16. We restrict our
attention to the second boundary-value problem and assume that f, and ¢,
are independent of x3 and are prescribed functions of class C*°. We consider
only a C'°°-theory but it is possible to get a classical solution of the problem
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for more general domains and more general assumptions of regularity for the
above functions [88]. We have chosen these hypotheses to best emphasize the
method for the solving of Saint-Venant’s problem.

The second boundary-value problem consists in finding of the functions u,
of class C?(X1)NCY(X;) that satisfy Equations 1.5.2, 1.5.3, and 1.5.4 and the
boundary conditions 1.5.6, when A\ and u are prescribed functions of the form
3.2.1. The first boundary-value problem can be introduced as in Section 1.5.

Under the above assumptions of regularity for the domain 3; and the pre-
scribed functions, Fichera [88] established the following result.

Theorem 3.2.1  The second boundary-value problem has solution belonging
to C*(X1) if and only if the conditions 1.5.17 hold.

We note that Theorem 1.5.1 remains valid for the nonhomogeneous bodies
considered in this section.
From the basic equations, we obtain the equations of equilibrium expressed
in terms of the displacement vector field,
o o\ ou Ouy N @ <5‘u1 Ous

A - — +2—
I u1+(>\+#)al+ﬁax1+ Ozy Oxy Oy \ Oz Oy

09 oA dp Ous ou (Ouy  Ous
A A Y— +2— — | =—+ =
pauz * ( + )6 xro * 8332 + 8.132 (9.1?2 + 81‘1 (83:2 + (9.1?1)

+ fo=00n%, (32.2)

>+f1—0

where we have used the notation ¥ =u, ,. Thus, we have an alternative for-
mulation of the second boundary-value problem: to find the functions u, of
class C*°(X) that satisfy Equations 3.2.2 on ¥; and the boundary conditions
1.5.9 on T'. It follows from Equations 1.1.7 that

2vp

)\:
1-—2v

(3.2.3)

Let us assume that the Poisson’s ratio is constant. Then, in view of Equa-
tion 3.2.3, Equations 3.2.2 reduce to

o 6ln,u Oouq Olnp (Ou;  Ous
A — no =0
e 2 o, (a Lt ) D2 (8x2+8x1)+ i
v Olnu [ Ous Olny (Ou;  Ous
A — 22— = ) — 4+ —=
U2 + nal‘g + 8LE2 <8I2 + v ) 8.%1 (8502 + 81’1)
1
+ —fy=00n%,; (3.2.4)
1
where 7 is defined by
1
"1
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3.2.2 Airy Function

If the body forces vanish, then the equations of equilibrium 1.5.4 reduce
to Equations 1.5.18. These equations are satisfied if the stresses t,3 are ex-
pressed by Equation 1.5.19 in terms of the Airy function x. Let us impose
the compatibility equation 1.5.21. As in Ref. 209, we express the constitutive
equations 1.5.3 in the form

€ap = (’7 - Q)tpp(saﬁ + qtaﬁ (325)
where
1—12 1+v
Y= £ q= I

It follows from Equations 1.5.19 and 3.2.5 that

€ap = 0apVAX — 4X,a8 (3.2.6)

In view of Equation 3.2.6, the compatibility equation 1.5.21 reduces to the
following equation [209]

A(YAX) = g22X,11 + ¢,11X,22 — 2¢,12X,12 On X1 (3.2.7)

When the body is homogeneous, Equation 3.2.7 takes the form 1.5.22.

We assume that 3; is a simply-connected domain. Then, in the case of
nonhomogeneous bodies, the second boundary-value problem reduces to find-
ing of the Airy function y that satisfies Equation 3.2.7 on ¥; and the boundary
conditions 1.5.25 on I'.

In contrast with the case of homogeneous bodies, the stresses t,3 depend on
the constitutive coefficients. Other results concerning the plane strain problem
and the solutions of particular problems may be found in the work of Lomakin
[209].

3.2.3 Auxiliary Plane Strain Problems

We will have occasion to use three special problems D*) (k=1,2,3), of
plane strain. The problem D) is characterized by the body forces

fa=(Ar1),q 003
and the following tractions

tNQ = —-Aringonl
In the problem D) the body forces are given by

fa = (Az2),q o0 3

and the tractions are
ta = —Axang on I’
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The problem D) is characterized by the body forces

fa=Aqo0nd,
and the tractions
fa =—-Angonl
(k) () (k) : g
In what follows, we denote by ug *, €0 and togs respectively, the compo

nents of the displacement vector, the components of the strain tensor, and the
components of the stress tensor from the problems D*). The problems D*)
are characterized by the strain—displacement relations

e — 2, F) (k)
€op = 5( ap tug ) (3.2.8)
the constitutive equations
k k
t8) = xeldag + 2uell) (3.2.9)

the equations of equilibrium

M _ ne)

1) 5+ () =0, ) 4 (A2)a =0

’ ﬁ3 : e * (3.2.10)
(5a6+)\a—00n21

and the following boundary conditions

) 42

WNB = —AT1Nq, Bals = —AT2Ng, t(;czng =—-An,onT (3.2.11)
It is easy to prove that the necessary and sufficient conditions 1.5.17 for the
existence of the solution are satisfied for each boundary-value problem D).
We note that the solutions of the problem D*) depend only on the domain
Y1 and the elastic coefficients.
It is easy to see that for homogeneous and isotropic bodies, the solutions of
the problems D*) are

L _ A 2 2 (1 _ _ A
uy) = e (27 — 23), us 500+ )xlxz
@ _ ___ A @ _ A > 2
uy = 2()\_’_’“):171@, Uy = 0T (27 — 23) (3.2.12)
A
® = ex
Uy O+ ) ar  (71,72) 1

Remark. In the case of homogeneous and isotropic elastic bodies, the solu-
tions u&) of the problems D*) are identical with the functions w((y ) defined

in Equations 1.7.9.
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3.3 Extension and Bending of Nonhomogeneous
Cylinders

Let the loading applied on 37 be statically equivalent to a force F = Fjes
and a moment M = M_,e,. Thus, the conditions on ¥, reduce to

/ tsada = 0, / €apTatlapda =0 (3.3.1)
Y 3

/ tzsda = —F3, / Totzzda = eqgMpg (3.3.2)
El E1

The problem consists in the finding of a displacement vector field that
satisfies Equations 1.1.1, 1.1.4, and 1.1.8 on B and the boundary conditions
1.3.1, 3.3.1, and 3.3.2, when A\ and p have the form 3.2.1.

The results presented in this section have been established in Ref. 149. We
seek the solution in the form

3
1
Uq = —iaaﬂcg + Z aku((f), uz = (a1r1 + azxs + az)rs (3.3.3)
k=1

where u((lk) are the components of displacement vector field from the problem

D®) . (k =1,2,3), and ay are unknown constants. From Equations 1.1.1 and
3.3.3, we obtain

3
k
Cap = Zakeiﬁ, €a3 = 0, €33 = 11 + a2%2 + as (3.3.4)
k=1

where e(akﬁ) are given by Equation 3.2.8. By Equations 1.1.4 and 3.3.4, we get

3

tap = Ma1z1 + asz2 + a3)dap + Z aktfj};, ta3 =0

= (3.3.5)

t3z = (A +2u)(arz1 + agwe +az) + A Z arelk)
k=1

where tgcﬁ) are the stresses from the plane strain problem D*). The equations

of equilibrium 1.1.8 and the boundary conditions 1.3.1 are satisfied on the
basis of Equations 3.2.10 and 3.2.11.

The conditions 3.3.1 are identically satisfied on the basis of the relations
3.3.5. By Equations 3.3.2 and 3.3.5, we obtain the following system for the
unknown constants ai, as, and as

Dijaj = Cl (336)
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where
Dop = /E To[(A+2u)zp + )\e%)]da
D3 = /2 T [)\ + 2u + )\eg’)]da
! (3.3.7)
Ds, = /Z (A +2u)z0 + )\eﬁ)]da
1
D = / A+ 2p+ Xl ] da
P
and
Cq = EagMg, Cs = —F; (3.3.8)

Clearly, the constants D;; can be calculated after the displacement u(ak) are

determined. Let us prove that the system 3.3.6 can always be solved for a1, as,
and ag. The relations 3.3.3 and 3.3.5 can be written in the form

3 3
wi=Y awl?, oty = apr (3.3.9)
k=1 k=1
where
1 [e3
w® = —f:c36a5 +ul®, w® =uld®, wé ) = zoxs
WP =as, 7 =hzplap + ), 7Y = Map + 1)

Ty =0, ) =t 2mm, e, T =240l (p=1,2)

(3.3.10)
In view of Equations 1.1.12, 1.1.13, and 3.3.9,
3 . .
u) = Z Uw®,w)a,a, (3.3.11)
i,j=1
By Equations 1.1.14, 1.1.16, and 1.1.17, we get
UwP wi))=Uw®,w®) (3.3.12)
2U(w @, w@) = /BBWJ(;)T;%)”pda (3.3.13)
Since the elastic potential is positive definite, we have
det(U(w @, w ) £ 0 (3.3.14)
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Let us apply the relations 3.3.13 for w") and w®. We note that on 3y we
have

1
wP) = —7h25a5 +u®, (U‘) =zx.h
(3.3.15)
(B)n _T( ) =0, ;g)np —’T?Sg) ()\+2u)xg+/\e(6)
Similarly, on 3¥; we get
mn, =0, W@ =4, WP =0 (3.3.16)
It follows from Equations 1.3.1, 3.3.7, 3.3.13, 3.3.15, and 3.3.16 that
2W(wW,w®) = / w,(cl)rzgi)npda
OB
= h/ z1[(A+ 2p)z1 + Aell]da = hDyy
¥
2U(wM,w®) = hDiy
In a similar way, we find
2U(w D, wW) = hD;; (3.3.17)

We note that Equations 3.3.12 and 3.3.17 imply that D;; = D;;. By Equa-
tions 3.3.14 and 3.3.17,
det(Dij) 75 0 (3318)

so that the system 3.3.6 uniquely determines the constants ax. Thus, we con-
clude that the constants a; can be determined so that the functions 3.3.3 be
a solution of the problem of extension and bending.

If the material is homogeneous and isotropic, then Equations 3.2.12 and
3.3.7 imply

Dos = El,g3, Dgo3 = D3y = EAz?, D33 = EA (3.3.19)

where I,5,2%, and A are defined by Equations 1.4.9 and 1.7.14. It is easy to
see that in thls case we rediscover the Saint-Venant’s solution of the problem.

Remark. The form 3.3.3 of the solution is justified by Theorem 1.7.1, which
holds also when A and p are functions of the variables z,,.

3.4 Torsion

The torsion problem consists in the determination of a displacement vector
field that satisfies Equations 1.1.1, 1.1.4, and 1.1.8 on B and the boundary
conditions 1.3.1 and the condition for z3 = 0, when the elastic coefficients are
functions independent of x3.
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We seek a solution of the torsion problem in the form 1.3.23, where ¢ is an
unknown function of z; and x5, and 7 is an unknown constant. It follows from
Equations 1.1.1, 1.1.4, and 1.3.23 that the components of the stress tensor are
given by Equations 1.3.24. The equations of equilibrium 1.1.8 are satisfied if
the function ¢ satisfies the equation

(U@,a),a = 6/)3([“:5)70 on X (3'4'1)

In view of Equations 1.3.24, the conditions 1.3.1 on the lateral boundary
reduce to

0
a—z = €qpTgng on (3.4.2)

Let us consider the boundary-value problem
(uuﬂ)a = Fon X, HU N = GonT (343)

where p, F', and G are prescribed functions of class C'*°. Necessary and suffi-
cient condition to solve the boundary-value problem 3.4.3 is (cf. [55,88])

Fda:/Gds (3.4.4)
r

DY

It is easy to see that in the case of the boundary-value problem 3.4.1 and
3.4.2, the condition 3.4.4 is satisfied. In what follows, we shall assume that
the function ¢ is known.

In view of Equations 1.3.24 and 1.3.57, the conditions 1.3.20 and 1.3.21 are
identically satisfied. The condition 1.3.22 reduces to

D,7=—M; (3.4.5)

where

D, :/ w(eaprap g + xpx,)da (3.4.6)
P

By using Equations 3.4.1, 3.4.2, and divergence theorem,

/ HEapTatp pda = / HEapTapngds — / ¢(Heapta) pda
21 I 21

= —/uw,anader/ o(pp,a),ada
I DI

- / WP 0P ada
P

Thus, we can express the constant D, in the form

D, = / ’u(gp@(p,a + 2604556(1(,0,5 + l‘pl‘p)
> (3.4.7)

/ (p.a +Epats) (.0 + Epatp)da
¥
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It follows from the relations 1.1.5 and 3.4.7 that D, > 0. The relation 3.4.5

determines the constant 7. We conclude that the displacement vector field

1.3.23, where ¢ is the solution of the boundary-value problem 3.4.1, 3.4.2,

and 7 is given by Equation 3.4.5, is a solution of the torsion problem. Clearly,

if the material is homogeneous, then we rediscover Saint-Venant’s solution.
We note that Equation 3.4.1 can be written as follows

Ap+ (Inp) o(p,a —capzrs) =00n X; (3.4.8)
A form for p that is commonly used [209] is
p = po exp(azy + Bx2) (3.4.9)

where pg, o, and (3 are prescribed constants. For the law 3.4.9, Equation 3.4.8
becomes
Ap+alpr —z2)+ B(p2+x1) =00n X, (3.4.10)
The torsion problem can be formulated in terms of the stress function y
defined by

mleg —x2) =x2,  plp2+2) =—X1 (3.4.11)
It follows from Equation 3.4.11 that x satisfies the following equation
1
(X¢a> =—2onX, (3.4.12)
H o

In view of Equations 1.3.39 and 3.4.11, the function x satisfies the following
condition on the boundary of the simply-connected domain 3,

x=0onT (3.4.13)
By Equations 1.3.24 and 3.4.11, we find that
t13 = TX72, t23 = 77’X71 (3414)
Using Equations 3.4.6, 3.4.11, and 3.4.13, we can express D, as follows
D, = 2/ xda (3.4.15)
P

Consider the family of curves in 3, defined by
X(x1,22) =0 (3.4.16)
By Equations 1.3.39, for any curve of this family we have
X,1m2 — X,2n1 =0

In view of Equation 3.4.14, the last relation implies that the stress vector
T = to3e, is directed along the tangent to the curve. The curves 3.4.16 are
called the lines of shearing stress. The magnitude of the tangential stress T is

|T| = N(X,(xX,a)lﬂ

We note that, instead of solving the Neumann problem 3.4.1 and 3.4.2, we
can equally well solve the Dirichlet problem 3.4.12 and 3.4.13.
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3.5 Flexure

We assume that the loading applied on ¥ is statically equivalent to the
force F = F, e, and the moment M = 0. The conditions on ¥, are given
by Equations 1.3.48, 1.3.49, and 1.4.1. The flexure problem consists in the
finding of a displacement vector field that satisfies the Equations 1.1.1, 1.1.4,
and 1.1.8 on B and the boundary conditions 1.3.1, 1.3.48, 1.3.49, and 1.4.1,
when A and p have the form 3.2.1.

In view of Theorem 1.7.2, we seek the solution of the flexure problem in the

form
3

baxg + x3 Z bku&k) — TEQBTRT3
k=1 (3.5.1)

1
Uz = §(b1x2 -+ le‘g -+ bg)l’% + TY -+ G(.’tl, 1'2)

1
6

Uy = —

where u((lk) are the components of displacement vector from the problem D),

(k=1,2,3), ¢ is the solution of the boundary-value problem 3.4.1 and 3.4.2,
G is an unknown function of x; and z2, and b; and 7 are unknown constants.
By Equations 1.1.1, 1.1.4, and 3.5.1, we get

3
tag = )\(bll’l + baxy + bg)ﬂ?g(sag + x3 Z bkt&’fﬁ)

k=1
3
tas = UT(Pa — Capp) + L [G,a +y bk“&k):| (3.5.2)
k=1

3
t3z = ()\ + 2”)(b1.’)§1 + bows + b3)x3 + A3 Z bkel(lkg
k=1

where t&kﬁ) are given by Equations 3.2.8 and 3.2.9.

The first two equations of equilibrium 1.1.8 and the first two conditions
1.3.1 are satisfied on the basis of the relations 3.2.10 and 3.2.11. In view of
Equations 3.4.1 and 3.5.2, the third equation of equilibrium 1.1.8 reduces to

(:U'G,a),a =pon X1 (353)

where

w

p= *()\ + 2#)(1)11‘1 + bgfﬂg + bg) — Z bk [(,uu(ﬂk)),ﬁ + )\e(p];)} (354)
k=1

By Equations 3.4.2 and 3.5.2, we see that the last of conditions 1.3.1 on the
lateral boundary becomes

PG ang =qonT (3.5.5)
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where

3
q=—png Y bul) (3.5.6)
k=1

Thus, the function G is solution of the boundary-value problem 3.5.3 and
3.5.5. It follows from Equations 3.3.7, 3.5.4, and 3.5.6 that

/ pda—/quZ—/
N r N

= —Ds;b;

3
(A + 20) (br1 + oz +b3) + A Y byell) |da
k=1

so that the necessary and sufficient condition to solve the boundary-value
problem 3.5.3 and 3.5.5 is
Dsib; =0 (3.5.7)

In view of Equations 1.3.57, 3.3.7, and 3.5.2, we find that the conditions
1.4.1 reduce to
Dajbj =TI (358)

It follows from the relation 3.3.18 that the systems 3.5.7 and 3.5.8 determine
the constants by, bo, and bs. We consider that in the functions 3.5.4 and 3.5.6,
the constants by are given by Equations 3.5.7 and 3.5.8. In what follows, we
suppose that G is known.

If we use Equations 3.4.6 and 3.5.2, we find that the condition 1.3.49
reduces to

Dyt =-M (3.5.9)
where s
M = / HEQBTq |:G73 + Z bkugﬂ da (3.5.10)
21 k=1

We conclude that the constant 7 is determined by Equation 3.5.9. The condi-
tions 1.3.48 are identically satisfied. Thus, the flexure problem has a solution
of the form 3.5.1.

3.6 Elastic Cylinders Composed of Different
Nonhomogeneous and Isotropic Materials

In this section, we study the deformation of composed cylinders introduced
in Section 3.1. We suppose that B, is occupied by an isotropic material with
the Lamé moduli A and p(?), and that

AP = AP (g1, 2,), pl?) = 4P (@1, 23),  (w1,72) € 4, (3.6.1)
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We can consider B as being occupied by an elastic medium which, in general,
has elastic coefficients discontinuous along IIy. We assume that A(®) and (P
belongs to C'(>) and that the elastic potential corresponding to the material
which occupies B, is positive definite.

Saint-Venant’s problem for heterogeneous cylinders consists in finding of a
displacement vector field u € C?(B;) N C?(By) N CY(B1) N CY(By) N C°(B)
that satisfies Equations 1.1.1, 1.1.4, and 1.1.8 on B,, the conditions 3.1.1 on
the surface of separation Ily, the conditions for z3 = 0 and the boundary
conditions 1.3.1.

3.6.1 Auxiliary Plane Strain Problems

Let us consider the state of plane strain of composed cylinders. The displace-
ment field has the form 1.5.1. Given elastic coefficients A(?) and p(?), body
forces £(P) on B, surface tractions () on II,, with £(0) and t(») independent
of x3 and parallel to the x1,xo-plane, the second boundary-value problem
consists in finding an elastic state on B that satisfies the strain—displacement,
the stress—strain relations, the equations of equilibrium, the conditions on the
surface of separation, and the tractions condition. The first boundary-value
problem can be defined as in Section 1.5. In what follows, we restrict our
attention to the second boundary-value problem. The basic equations of the
plane strain problem consist of the strain—displacement relations

€aB = %(ua,g +ug,a) (3.6.2)
the stress—strain relations
tas = AP ey b0 + 2P enps (3.6.3)
and the equations of equilibrium
tgap+ [P =0 (3.6.4)
on A,. The conditions on the surface of separation Iy reduce to
[Ual; = [Uals, [tsal; n% = [tgal, n% on Iy (3.6.5)
The conditions on the lateral boundary become

[tpamsl, =t on T, (3.6.6)

We assume that the functions f((f ) and fc(f) ) belong to C*°. From the general
theory developed by Fichera ([88], Section 13), it follows that under suitable
smoothness hypotheses on the arcs I', and I'g, a solution ug EC(‘X’)(Zl) N
C>(A3) N C>(X;) of the second boundary-value problem exists if and
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only if
2 o~
Z [/ fé”)da—l—/ té’))ds] =0
p=1 AP FP
) (3.6.7)
Z [/A gaﬁxafép)da—i-/ 5aﬁxat5p)ds} —0
p=1 P

In what follows, we assume that the requirements which insure this result are
fulfilled. It can be shown that if the conditions 3.6.5 are replaced by

[ua]; = [Ual2, [tsal; n% = [tgal, n% + go on Ty (3.6.8)

where g, are C* functions, then the conditions 3.6.7 are replaced by

i[/f k[ 7] + [ as=o

{/ aagxafép)da+/ €a5$at~ﬁ(p)d$:| +/ EaBTagpds =0
A r, To

1 P

(3.6.9)

MM I

>
I

These conditions have been established by Sherman [308] and Muskhelishvili
[241] within the theory of piecewise homogeneous cylinders.
We will have occasion to use three special problems P, (k = 1,2,3),

of plane strain for the composed cylinder B. In what follows we denote by

v((xk),'yéﬁ), and o 5) the components of displacement vector, the components

of the strain tensor, and the components of the stress tensor for the problem
P respectively. The problems P*) are characterized by the equations

k k k
S 2( )+ o) (3.6.10)
o) = XD 855 + 2007 ") (3.6.11)

agjjﬂJr(A() K) —0, og’)BJrAfg) —0ond, (k=12 (3.6.12)

)

and the conditions

Rl =2, (o5 Ik = [ofelnG + ¢ on To (3.6.13)
op’n = — TrNa, O’ M No ON .6.
Cngl, = —A®) Sngly = —A r, 3.6.14

where
g =A@ — AWz, nl g =@ X0 (k=1,2) (3.6.15)

It is easy to prove that the necessary and sufficient conditions 3.6.9 for the
existence of the solution are satisfied for each boundary-value problem P*).
In what follows, we shall consider that the functions Ué ), 'ygf@), and Ugcﬁ) are

known.
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3.6.2 Extension and Bending

The problem of extension and bending for the composed cylinder B con-
sists in the determination of a displacement vector field that satisfies Equa-
tions 1.1.1, 1.1.4, and 1.1.8 on B,, the conditions 3.1.1 on Ily, the conditions
3.3.1 and 3.3.2 on ¥, and the conditions 1.3.1 on II. On the basis of Theo-
rem 1.7.1, we try to solve the problem assuming that the displacement vector
field has the form

3
1
Uy = —idaz‘g + devék), ug = (dix1 + dawo + d3) 3 (3.6.16)
k=1

where v((lk) are the solutions of the problems P*), (k=1,2,3), and the dj, are

unknown constants. It follows from Equations 1.1.1, 1.1.4, and 3.6.16 that

3
tap = NP (dyx) 4 doxo + d3)dap + Z dkagg, tas =0
k=t , (3.6.17)
t33 = ()\(p) + Q[L(p))(dll‘l + dQIQ + dg) + )\(p) Z dk,ygix) on Ap
k=1

where *yl(xkﬁ) and Uékﬁ) are given by Equations 3.6.10 and 3.6.11, respectively.

It is easy to verify that the equations of equilibrium 1.1.8 and the boundary
conditions 1.3.1 on II are satisfied on the basis of the relations 3.6.12 and
3.6.14. The conditions 3.1.1 on the surface of separation Il are satisfied in
view of the relations 3.6.13 and 3.6.15.

If we take into account Equation 3.6.11, we see that the conditions 3.3.1
are satisfied. It follows from Equations 3.3.2 and 3.6.11 that the constants dj,
satisfy the following equations

Lajdj = EagMg, L3jdj = —F3 (3618)

where
2
Loy = Z/ £a[(M + 205 + AP da
p=1 Ap
2
Lis=3 / 20 AP+ 249 + X943 da
— Ja,
=t (3.6.19)

2
L3o = Z/ [(/\(p) + QM(P))J;& + )\(p)véoé)]da
p=1 Ap

2
Las — Z/ (AP 121 4 AP da
p=1 Ap
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As in Section 3.3, we can show that the system 3.6.18 uniquely determines the
constants d. Let W () (u) be the elastic potential associated with u on B,.
Clearly,

W (u) = A(P)e”( Jess () + pPesj(w)ei; () = 5 [tij(w)ei; ()], (3.6.20)

N | =

We continue to assume that W) is a positive definite quadratic form in the
variables e,.;(u). Let us consider two displacement vector fields u’ and u” that
satisfy Equations 1.1.1, 1.1.4, and 1.1.8 on B, and the conditions 3.1.1 on Ilj.
We denote

1 1
W (', u") = §>\(”)ew(u’)ess( )+ e (u)ei; () = 3 [t (W)es; (0],
(3.6.21)
Clearly,
WP, u")y =wP’ v), W (au) =W () (3.6.22)

In view of Equations 1.1.1, 1.1.8, 3.1.1, and the divergence theorem, we find
that

2
ZZ/ W(”)(ul,u")dv:/ tji(u')njuglda:/ tii(0")nuida (3.6.23)
=B, 2B 2B

The strain energy U(u) corresponding to a displacement vector field u on

By U Bs is given by
2
= Z/ W) (u)dv (3.6.24)
p=1"Bp

By Equations 3.6.22 and 3.6.23,

1

U(u) = 5 AB tji(u)njuida (3625)

It follows from Equations 3.6.16 and 3.6.17 that
3 .
u=>"da?, Z dis) (3.6.26)
j=1

Clearly, u\) satisfy Equations 1.1.1, 1.1.4, and 1.1.8 on B, and the condi-
tions 1.3.1 and 3.1.1. By Equations 3.6.25 and 3.6.26,
where

Z a4 dv (3.6.28)
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In view of Equations 3.6.16, 3.6.17, and 3.6.26, we find that

1 o o~ A~
W) = o W0ap+ol, WY =hea, AP =, @ =h
k), k) _ (@, (\® (p) (P) ()
S:0Mj = 83, =0, s5an; = (A 4+ 20 P )aq + APy
e o % (3.6.29)
slgg)nj = AP 4 2P 1 AP on 3,
S§];)nj =0, ﬂgk) =0, a® = v® on ¥,

Using the relations 1.3.1, 3.6.22, 3.6.23, 3.6.28, and 3.6.29, we find that
2U11 :/ sﬁ)njﬁgl)da = / sé?ﬂg)da = hLll
31 UXUIT PP
Similarly,
2Uij = hL”
It follows from Equations 3.6.24, 3.6.27, and 3.6.28 that L;; = L;; and

so that the system 3.6.18 can always be solved for di,ds, and d3. Thus, the
solution of the problem has the form 3.6.16, where v&k)

the problem P*) and d; are given by Equation 3.6.18.

are characterized by

3.6.3 Torsion and Flexure

Let us suppose that F = F,e, and M = M3es. Then, the conditions on
3, are given by Equations 1.3.21, 1.3.22, and 1.4.1. The problem of torsion
and flexure consists in the finding of a displacement vector field that satisfies
Equations 1.1.1, 1.1.4, and 1.1.8 on B, the conditions 3.1.1 on the surface of
separation Ilj, the conditions 1.3.21, 1.3.22, and 1.4.1 on ¥, and the condi-
tions 1.3.1 on the lateral boundary of the cylinder B. Following Ref. 151, we
seek a solution of the problem in the form

3
1 .
Uo = —gbamg — TEQRTRT3 + T3 E ij((j)
j=1 (3.6.31)

1
Us = 5(1)1%1 + bQiL’Q + bg)l’% + (13(1'1,562)

where v&j ) are the components of the displacement vector in the auxiliary
plane strain problem P & € C2(A;)NC?(A2)NCH(A)NC?(A) N CO(2y)

is an unknown function, and by and 7 are unknown constants. In view of
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Equations 1.1.1, 1.1.4, and 3.6.31, we get

3
tap = AP (b1 + bazs + b)z30as + 73 Y bjol)
j=1

3
tos = pu'” <<1>’a — TEapTp + Y ijgﬂ) (3.6.32)

Jj=1

3
ta3 = ()\(p) + 2M(p))(b1.’£1 + boxo + b3)x3 + AP g Z bj’ygg on B,

=1

where fygﬁ) and ogﬁ) are defined by Equations 3.6.10 and 3.6.11.

Clearly, the conditions 1.3.21 are satisfied on the basis of Equations 3.6.32.
It follows from the equations which characterize the auxiliary plane strain
problems and 3.6.32 that the equations of equilibrium and the conditions 1.3.1
and 3.1.1 are satisfied if the function ® satisfies the equation

(U ) 0 =—p® on 4, (3.6.33)
and the conditions
od o
[(I)]l = [@]27 u(l) |:8nO:| 1 — #(2) |:8n0:| , +qon Fo (3634)
o

(p) [] — (p) T 3.6.35
% m* onT, (3.6.35)

on p

where

3
plP) = ()\(p) + QM(P))(blxl + by + bs) + AP ij%(f;)‘

j=1
3 .
- [#(p) (Tﬁaaﬂﬂﬁ - ijéf)ﬂ
=1 o
3 (3.6.36)
g=(u" —pu) (Tsaam - bj@&”)ﬂi
j=1
3 .
m® = ) (Té_aﬁmﬁ _ ijvg>>na
j=1
Let us consider the boundary-value problem
(/J/(p)X7Ot),Oé = _f(p) on A, M(p)[gx} — f(p) onT,
n
’ (3.6.37)

ax 125%
= m x| _ @ X
X1 = [x]2, p [ﬁnOL p [anoL‘f—CODF
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where f(P) ¢() and ¢ are C* functions. Necessary and sufficient condition
to solve the boundary-value problem 3.6.37 is (cf. [88,241,308])

() ») _
3 (/Af , da+/Fp§ p ds> + FOCda 0 (3.6.38)

p=1

By Equations 3.6.19 and 3.6.36, we obtain

(/ p(p)da—l—/m(")ds) +/qu=L3jbj
A T, To

Thus, the necessary and sufficient condition for the existence of a solution to
the boundary-value problem 3.6.33, 3.6.34, and 3.6.35 reduces to

°
Il N
-

P

Lajb; =0 (3.6.39)

It is easy to verify that the relations 1.3.57 are valid in the present circum-
stances.
By Equations 1.3.57, 3.6.19, and 3.6.32, we conclude that the conditions
1.4.1 reduce to
Lojbj = —F, (3.6.40)

In view of Equation 3.6.30, the system 3.6.39 and 3.6.40 determines the con-
stants by, by, and bs. We introduce the function ¢ € C?(A;)NC?(A2)NC* (A;)N
C1(A3) N CY(%1) which satisfies equation

(10 5) 5 = cap(n'? ) o on A, (3.6.41)
and the conditions
[el = [¢]2
0 0
w2 — @ % w_, O onT
s [ano} e L’)nO] T (17 = 1 )eapzgna on o (3.6.42)
0
{&Sﬂ ) = €q8%3Nq 001,

It is easy to show that the necessary and sufficient condition 3.6.38 for the
existence of a solution to the boundary-value problem 3.6.41 and 3.6.42 is
satisfied. We introduce the function ¢ by

=710+ (3.6.43)
It follows from the above equations that the function 1 satisfies the equation

(1P o) .0 = —(AP) 4 24P)) (byay + by + b3)

3 3
CADS b - (u(”) Zbﬂij)> on A,
j=1 j=1

(3.6.44)

&
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and the conditions

[ =[]z
oY oY 3 )
(1) — (2 () _ (2 E .0y(7) 0
: [6n0:| 1 - [8n0:| 2 ( 8 )j:1 byt on Fo (3.6.45)

oy ~, )
[&LL =- ijvaj ne on I,

j=1

In what follows, we shall treat ¢ and 1 as known functions. By Equations 3.6.32
and 3.6.43, we obtain

3
tas = T (9.0 — eaprg) + pP <¢7a +3° ijgg')) on B, (3.6.46)
j=1

In view of Equation 3.6.46, the condition 1.3.22 reduces to
D()T = —Mg - M* (3647)

where Dy is the torsional rigidity defined by

2
Do = Z/ M(p)zfagxa(@ﬁ - Eﬁnxn)da (3.6.48)
p=1 Aﬂ

and
3 3
M = Z/ caphza (w,ﬁ +> ij,é”>da (3.6.49)
p=1 Ap j=1

As in Section 3.4, we can prove that Dy > 0. From Equation 3.6.47, we can
determine the constant 7. Thus, the problem of torsion and flexure is solved.

3.6.4 Uniformly Loaded Cylinders

We shall now consider the Almansi-Michell problem for heterogeneous cylin-
ders. We assume that the body forces have the form

fi= Ggp)(xl,x2)7 (x1,22) € 4, (3.6.50)
Let us consider the following conditions on the lateral boundary
[tiin,], = p” on 11, (3.6.51)

We suppose that GZ(-p ) and pz(-p ) are O functions which are independent of
the axial coordinate.
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The Almansi—Michell problem consists in finding of a displacement vec-
tor field u € C?(B;) N C?(By) N CH(By) N CY(By) N C°(B) that satisfies
Equations 1.1.1, 1.1.4, and 2.1.1 on B,, the conditions for x3 = 0, the con-
ditions 3.1.1 on the surface of separation Ily, and the boundary conditions
3.6.51, when the body forces and the surface tractions are independent of zs.
Following the results of Section 2.4, we seek the solution of Almansi—-Michell
problem in the form

1, 1

U *ffa:cffbm—icz‘LJre X +}7'x2 T
a*2(x3 6(13 24a3 Ba 143 223 B

+ Z (ak + bpxs + 20km3> (k) + wa(xhl‘g)

— (3.6.52)

1
5 —(cpzy + c3)Ts

+ (11 + mox3)0 + \I/(l’l,l'g) + x3A(x1,22), (x1,29,23) € B

ug = (anxy +as)rs + - (b Ty + b3)x3

where vék) are the displacements from the plane strain problem P®*) ¢ is

torsion function characterized by Equations 3.6.41 and 3.6.42, ¥ and A are
unknown functions, and ay, bg, ¢, and 7, are unknown constants.
We introduce the notations

2908 = Wa,8 + Wsa, Tag = )\(p)%yéag + Zu(p)vag on A, (3.6.53)

By Equations 1.1.1, 1.1.4, 3.6.10, 3.6.11, 3.6.52, and 3.6.53, we get

1
tag = AP {an:pn +az + (byzy + b3)rs + = 5 (cpxy + 03)x3] dap

3

+ AP (A + ) a5+;(aj+b :c3+2 ) (])—Hra,g

tag = ()\(p) + QIU(P)) [anmn + az + (byxy, + bs3)zs3

" <cnxn+c3>x3] A9 1 200)(A + 7200)

DN | =

(3.6.54)

3
1 .
+ )\(P) Z (aj + b‘I3 + Qij?))),y‘(XJg + /\(P)fyaa

,u(p) (11 + 1223)(P,0 +€8a28) + U o + x3A 4

"

3
+ Z (bj + cjxs)v (7)]
Jj=1
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By using Equations 3.6.12, 3.6.41, and 3.6.54, we find that the equations of
equilibrium 2.1.1 reduce to

Tgas + HP =0 (3.6.55)
(O o) 0 = g (3.6.56)
(WPA o) o =hP (3.6.57)

on A,, where

3
HP =GP + N (A+750)] 0+ pP [12(0.0 +Epatp) + Aa] + p? D o)
j=1

3
g = —G¥ — (AP) 4+ 24(P))( byy + bs) — Zbﬂ () (J) L AP
j=1

3
B = —(A + 20 ey + c3) = D ¢ [(WP0D) |+ A0 (3.6.58)
Jj=1

In view of Equations 3.6.13, 3.6.42, and 3.6.54, the conditions 3.1.1 on the
surface of separation become

[walt = [wal2,  [Tpaling = [rpalang + A® = XD)(A +mp)nl,  (3.6.59)

[OW ] (oW ] SN
— 2= — @ 22 0,2 _ QO E ()
[\II]I - [\I’]% 2 _877,0_1 =K -an0_2+na(:u H ) 4 b]U(xj

(3.6.60)

oA oA &
_ 1 _ 2 0¢,(2 _ (1) _
[Alr = [A]2, ) | 9n0 | . pu® | nd | , +ng () — p) E Cﬂ)&])

(3.6.61)
on I'y. Using Equations 3.6.14, 3.6.42, and 3.6.54, we find that the conditions
(3.6.51) reduce to

[msans], = P (3.6.62)
o

(p) — 0w
[871} =Q (3.6.63)

<P>[8A] =KW (3.6.64)
on )

on I'y, where

pép) — P((f) _ )\(P)(A + T20)Ng,

3
QW = p — 1P, b, KW = 0, S c0l) (3.6.65)
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Thus, from Equations 3.6.53, 3.6.59, and 3.6.62, we conclude that w, are
the displacements in a plane strain problem. By Equations 3.6.58, 3.6.59, and

3.6.62, we find that the necessary and sufficient conditions 3.6.9 to solve this
problem become

2
Z { / G{(f)da +/ p((f)ds} +/ t3q,3da =0
p=1 Ap rp, 3

{/ €a5$aG(gp)da+/ 5aﬁxapgp)ds}+/ Eaplatspsda =0
A T 31

1 P )
(3.6.66)

NE

p

It follows from Equations 2.2.10, 3.6.19, and 3.6.54 that

/ tgoéygda = Lajcj
¥

Thus, the first two conditions from Equation 3.6.66 reduce to

2
Lojc;j =~y {/ Ggp>da+/ pfj’)ds} (3.6.67)
p=1 AP FP

Let us consider now the boundary-value problem 3.6.57, 3.6.61, and 3.6.64.
The necessary and sufficient condition to solve this problem becomes

ngCj =0 (3668)

where L3; are given by Equation 3.6.19. Thus, in view of Equation 3.6.31, we
conclude that the system 3.6.67 and 3.6.68 uniquely determines the constants
c1,C2, and c3. In what follows we shall consider A as a known function. By
Equations 3.6.54, the last condition of Equations 3.6.66 reduces to

2
DOTQ = 72 / 5aﬁxaG(ﬁp)da+/ Eagl'ap(ﬁp)ds
T

p=1 Ap P

3
+/ captal®| Mg+ c;vf) |da (3.6.69)

Ap j=1

where Dy is given by Equation 3.6.48. The constant 75 is determined by Equa-
tion 3.6.69.

Let us consider now the boundary-value problem 3.6.56, 3.6.60, and 3.6.63.
The necessary and sufficient conditions to solve this problem can be expressed

in the form s

Lysby == [ /A GV da + / pg")ds] (3.6.70)

Jj=1 4 Fﬂ
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As in Section 2.2, we can prove that

2
/ t3oda = / Zatsssda + Z [/ xaGép)da —|—/ xapép)ds} (3.6.71)
Y Y A T

p=1 P P

In view of Equations 3.6.54 and 3.6.71, the conditions 1.4.1 reduce to

2

Lojbj = —Fo = > [/ xaGgp)daJr/ x pg))d} (3.6.72)
AP

p=1 4

The system 3.6.70 and 3.6.71 determines the constants bi,b2, and bs. By
Equations 3.6.54, the conditions 1.4.2 and 1.4.3 become

Ligar, = N; (3.6.73)

where

Na = casM - Z R R I
(3.6.74)
Ny = —F — Z / () 4+ 240) (A + 70) + X0 da
A

In view of the relation 3.6.30, the system 3.6.73 can always be solved for a1, ag,
and as. The condition 1.4.4 reduces to

2 3
Doy = —Ms — Z/ apTap? | U5+ Z ijé]) da (3.6.75)
— /4, P

where Dy is defined by Equation 3.6.48. The relation 3.6.75 determines the
constant 71. Thus, the Almansi—Michell problem is solved.

3.6.5 Almansi Problem

We now suppose that the body forces and the tractions on the lateral surface
of the cylinder B have the form

= ZF1(]£))(‘%.17$2)$§7 (xlvaaxS) S Bp
= (3.6.76)

sz (w1, m2)x (21,22, 23) €11,

where F (k) and p(p ) are prescribed functions. The Almansi problem for hetero-
geneous cylinders consists in determination of a displacement vector field u €

© 2009 by Taylor & Francis Group, LLC



Deformation of Nonhomogeneous Cylinders 107

C?(B1)NC*(B2)NCY(B1)NCY(B2)NCY(B) that satisfies Equations 1.1.1,
1.1.4, and 2.1.1 on B,, the conditions for x3 = 0, the conditions 3.1.1 on the
surface of separation Ily, and the boundary conditions 2.5.2 on the lateral
boundary, when the body forces and the surface tractions are given by Equa-
tion 3.6.76. As in Section 2.3, the Almansi problem reduces to the following:
to find the functions u; which satisfy the equations

tiig + A (21, 22yt =0

(3.6.77)
tij = )\(")eTT(Sij + 2M(p)6ij, 26ij = U5 + uj; on Bp
and the conditions
[ui]l = [Ui]g, [tm]lng = [tai]Qng on HO (3678)
[tainalp = al-(p) (21, :L‘g)xg”rl onlI, (3.6.79)
/ tgida = 07 / Sijkl'jtgkda =0 (3680)
21 z:1
when the solution of the equations
th .+ AZ(P) (x1,22)25 =0
I ° (3.6.81)
ti; = )\(”)ejiréij + 2u(”)efj, 2e;; = u; ; +uj, on B,
with the conditions
[uil = [ug]2, [t5:)1ng, = [thi]ang on T (3.6.82)
[thinalp = ai(p) (21, 29)xy on I, (3.6.83)
/ t;da = O7 / sijkxjt?;kda =0 (3684)
21 21

is known. In the above relations, A; and o; are prescribed functions which
belong to C'*°. As in Section 2.4, we seek the solution of the problem in the
form

x3
u; = (n+1) {/ uydrs + vi] (3.6.85)
0
where v; are unknown functions. By Equations 3.6.85 and 3.6.77, we get
T3
tij = (n+1) { /O t;dzs + sij + kiﬂ (3.6.86)
where

Sij = )\(P)'fh.r(si]’ + 2M(p)77ija 27’]” = v j + Vji (3687)
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and

k((;g = )\(p)ug(m,xz, 0)das, k((g) = kég) = ,u(p)ui;(xl, x2,0) (36.58)
kgg) = ()\(p) + 2u(p))u§(m1,x2,0), (x1,22) € Ap

In view of Equations 3.6.81 and 3.6.86, the equations of equilibrium reduce to

sji; + 0" =0on B, (3.6.89)
where
07 = kL) + (a1, 22,0) (3.6.90)

Clearly, the functions EZ(-’J ) are independent of the axial coordinate. By Equa-
tions 3.6.82, 3.6.83, 3.6.85, and 3.6.86, we find that the conditions 3.6.78 and
3.6.79 become

[vili = [vil2,  [Sail1ng = [Sail2nd + Ki on Tlg (3.6.91)
[Sailalp = Ti(p) on II, (3.6.92)

where
= (K2 — kW0 20 = 0y (3.6.93)

We note that the functions k; and Ti(p ) are independent of x3. In view of
Equations 3.6.84 and 3.6.86, we conclude that the conditions 3.6.80 reduce to

/ s;;ida = —Ti / €ijkl‘j83kda = —Ni (3694)
31

1

where ) )
=3 / k$da,  Ni=Y / cirstrkda
p=1 Ap p=1 Ap

Thus, the functions v; are characterized by Equations 3.6.87 and 3.6.89
on B,, the conditions 3.6.91 on the surface Ily, the conditions 3.6.92 on the
lateral boundary, and the conditions 3.6.94 on ;. If k; were to vanish, then
this problem would reduce to the Almansi—Michell problem studied in the
preceding section. However, it is easy to see that for k; # 0 as well the solution
of this problem has the form 3.6.52. Moreover, in this case, the solution has the
form 3.6.52 with ¢; =75 =b; =0, A =0. Thus, the Almansi-Michell problem is
solved. The results presented in this section have been established in Ref. 151.

Remark 1. It is easy to extend the solution to the case when B is composed
of n elastic bodies with different elasticities.

Remark 2. The results presented in this section continue to hold when we
consider the following distribution of the two materials. Let L be a closed
curve contained in ¥, which is the boundary of a regular domain A% con-
tained in ;. We assume that L and I' have no common points. We de-
note by Aj the regular domain bounded by the curves L and I'. Clearly,
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At N A; =0, AT U A3 U L = 3. We denote by B} the cylinder defined by
By ={z: (z1,22) € A},0 < 23 < h}, (p = 1,2). We assume that B} is oc-
cupied by an isotropic elastic material with the constitutive coefficients A(?)
and p(?). We continue to denote by Iy the surface of separation of the two
materials.

The solutions 3.6.16, 3.6.31, and 3.6.52 continue to hold in this case if we
consider that ’U&k) are the solutions of the problems P(()k) characterized by
Equations 3.6.10, 3.6.11, and 3.6.12 on A} and the conditions

(08 = [, loglinfy = [ofRlen + gl on L (3.6.95)
oinsh = AV, [ohingl = -Ang on T (3.6.96)

where gék) are defined by Equation 3.6.15. The torsion function ¢ is the solu-

tion of the equation

(p)

(1P¢5) 5 = cap('?wp) o on A7 (3.6.97)

with the conditions

dp 9) | O 1 2 0
ol = (oo, u® {] e { (D — i ®)enzgnd on L
onl |, on |,

9
on

} =¢eqpxang onl (3.6.98)
1

In this case, in the relations 3.4.67, 3.6.19, 3.6.48, 3.6.49, 3.6.69, and 3.6.75,

we have to replace 4, by A7 and to take I'; = 0,I'; = Rpgl) = p;. The other

boundary conditions can be modified as in the case of the boundary-value
problem 3.6.97 and 3.6.98.

3.7 Piecewise Homogeneous Cylinders

Muskhelishvili [241] was the first to solve Saint-Venant’s problem for cylin-
ders composed of different homogeneous and isotropic materials. The solu-
tions for several problems of interest from a technical point of view have been
established in various works [307,313,340]. An account of the historical devel-
opments of the theory as well as references to various contributions may be
found in the books by Sokolnikoff [313], Bors [28], and Khatiashvili [173,175].

In this section, we derive the results established by Muskhelishvili by using
the theory developed in Section 3.6. Throughout this section, we assume that
the elastic coefficients A(?) and u(?) are constants. Thus, we consider that
cylinder B is composed of two homogeneous and isotropic materials which
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FIGURE 3.1 Cross section of a piecewise homogeneous cylinder.

are welded together along the surface Ily. We assume that the materials are

distributed as in Section 3.6, Remark 2. (Figure 3.1)

3.7.1 Alternative Form of Auxiliary Plane
Strain Problems

We introduce the functions vz(k) on A} by

vf(l) _ vgl) n %V(p)(ﬁ —22), v;(l) _ vél) + g
vi® =0 4 Py, v =0 %V(p)(x% — )
UT(S) _ Ug?,) Py, 11;(3) _ vé?’) 1+ P g
where )
W= AT (p=12)

2(/\(13) + u(p))

We define ez(ﬁk) and az(ﬂk) by

*(k 1 *(k *(k
= 3+ )
JZL([;:) = )\(p)Py;’(]k)éaﬂ + 2N(p)7253k)7 (k = 17 23 3)
By Equations 3.6.10, 3.6.11, 3.7.1, and 3.7.3, we find that
’YZ(N) = ’7&%) + V(p)mn(saﬁa 7;(;) = ’Y%) + V(p)éaﬁ

O’Z(;) = O'((fﬁ) + AU’)IK(SQB, 0:;(;) = O’((fg + )\(p)(;ag

(3.7.1)

(3.7.2)

(3.7.3)

(3.7.4)

From Equations 3.6.12 and 3.7.4, we obtain the following form of the equations

of equilibrium

U;(ak,)ﬁ =0on A;
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In view of Equations 3.7.1 and 3.7.4, the conditions 3.6.95 reduce to
«(k)]  _ [,x(k k #(k)1 0 _ 1 *(k)] 0
[Ua( )}1 - [Uoc( )]2 + h& )’ [Uﬁ Lnﬁ - [Uﬁoz ]271@ on L (3'7'6)
where

o C) Y I S ¥ C B 7 CO R ) P

2 (3.7.7)
h§2) _ h(Ql), h(22) _ _hgl)7 hl(XS) — (Z,(l) _ V(2))Z‘a
It follows from Equations 3.7.4 that the conditions 3.6.96 become
05 ngli =0onT, (k=1,2,3) (3.7.8)

We denote by 73 (k) , (k = 1,2,3), the plane strain problem characterized
by Equatlons 3.7.3 and 3.7.5 on Ay, and the conditions 3.7.6 and 3.7.8. The
problems P have been mtroduced by Muskhelishvili [241] to solve Saint-
Venant’s problem for composed cylinders. The existence of solutions of these
problems has been established by Sherman [308].

Muskhelishvili [241] studied the plane strain problems PP with the aid of
the method of functions of a complex variable, presented in Section 1.5. Thus,

in the case of the problem Pil), the relation 1.5.45 implies that
vV pig® = aPQ(z) - g0 (z) - BOG(Z) on A7 (3.7.9)

where

ol = 1 T3 Py, gl = (3.7.10)

QILL(p 2/_;(9)

and ) and w are arbitrary analytic complex functions on A7. It follows from
Equations 1.5.50 and 3.7.8 that

Qz) + zﬁl(f) +@(z) = const.on T’ (3.7.11)
By Equations 3.7.9 and 1.5.50, the conditions 3.7.6 imply

[a00() - 8= () - 805 ()|

-~ [a(Q)Q(z) _ 5(2)25’(5) _ 5(2)5(5)}2 =f (3.7.12)

[Q(z) 290+ w(z)] = [Q(z) + 87 (2) +@(z)|_+ const. on L

where, in the case of the problem Pil), we have

1
F=1W = ving) = S0 —r®)2? (3.7.13)
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Thus, the problem 73(1 is reduced to the finding of the complex analytic
functions € and w on A7 which satisty the COIldlthIlb 3 7 11 and 3.7.12. In a
similar way, we can formulate the problems 73* and 73* Wlth the aid of the
complex potentials.

3.7.2 Extension and Bending of Piecewise Homogeneous
Cylinders

In view of Equations 3.7.1, the solution 3.6.16 can be expressed in the form

1 *
u; = fidl [zg + V(p)( — xQ)} — do P g0 — dgv Py + Z div; (k)
k=1

3
1 *
Uy = —dv P zy — §d2 [x% — V(”)(x% — x%)} —ds Py + Z dkvz(k)
k=1
Uz = (d1$1 + daxo + d3)l‘3 (3714)

where vz(k) are the displacements in the problems ’P,Ek), (k=1,2,3). By using
Equations 3.7.4, we find that the constants L;; defined by Equations 3.6.19
have the form

Laﬁ:Lﬁa:ja,@"‘%ﬁ? La3:fa3+%3:L3a

(3.7.15)
L33 = S33 + K33
where
2 2
Iop = Z/ EP g,z Hop = Z/ )\(p)xa'yfn(]ﬂ)da
p=1 A; p=1 ;
2
Iz = Izo = Z E® g da, Koz = Z l‘a%, 3 da (3.7.16)
= Ax

2
Ty =3 / E@da, Ao = Z / Prr®da
p=1 ;;

The constants d; are determined by the system 3.6.18. The solution 3.7.14
has been established by Muskhelishvili ([241], Section 146).
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3.7.3 Torsion and Flexure

By using the relations 3.7.1 and 3.6.43, we can write the solution 3.6.31 in
the form
1
u; = _§b1 {3:&% + v (1’% - x%)] T3 — bgu(p)xlxgxg

3
— b3\ Py xs — Taows + 13 g brvy
k=1

1 1
Uy = —b Py zoms — ibg {ng — v (22 - x%)] x3 (3.7.17)

(k)

3
— by P ayxs + Ta123 + 73 Z bkv;(k)
k=1

1
Uz = 5(()11‘1 + boxo + bg)l‘g + TP+ Y

In this case, the torsion function ¢ satisfies the equation

Ap=00nAj (3.7.18)
and the conditions
[e]1 = [¢]2
dp o
M @ 2 o, 2) 0 L
a {8710] 1 a [anOL (1 H)Eap@sng on (3.7.19)
0
{az] ) = £q828Nq 00 I’

In view of Equations 3.6.44, 3.6.45, and 3.7.1, we find that the function ¥ is
the solution of the following boundary-value problem

3
1
At = —2(b1x1 + bowg + bg) — — (AP 4 p(P)) megg’f) on A7

ne P
=Wk 0 [g5] —u 55| —oent (37.20)
{gls] ) =nonl
where
o= (u® — M) Zg:ijz(j)ng — (@@ — M)y B(ﬁ —22)

J=1

(bln(l) — b2ng) + T172 (b1ng + b2n(1)) + b3$ang:| (3.7.21)

Zb v:ng + 1/( ) (byny — bono) (23 — z3)

+ V (blﬂz + 62711).1313}2 + b3l/(1)l‘ana
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The constants by, bo, and b3 are determined by the system 3.6.39 and 3.6.40,
where L;; are given by Equation 3.7.15.
Readers interested in further details can find them in Ref. 241.

3.8 Applications

3.8.1 Nonhomogeneous Cylinders with Constant
Poisson’s Ratio

In what follows, we use the results of Sections 3.3 and 3.5 to study the
deformation of nonhomogeneous and isotropic elastic cylinders when the con-
stitutive coefficients have the form

E = E(:El,JCQ), v = const., (561,1‘2) €1 (381)

This case has been studied in many works [209,279]. It is easy to verify that
the solution of the problem D), defined in Section 3.2, is

1
) =gl =), ol = v 382

By Equations 3.2.8, 3.2.9, 3.8.1, and 3.8.2, we get
(1) 1 _ (1)

ey = —vx1, €y = —VI1, ey =0
(3.8.3)
tﬁ) = 2wx1(A+p) = —Azq, tglz) = —Az11, tg) =0
The solutions of the problems D and D®) are given by
) @_1 2
uy”’ = —vriTo, uy = -v(zy —
! o > =g - (3.8.4)
u(l?’) = —vxq, ug‘o’) = —vxs
From Equation 3.8.4, we obtain
6521) = 6222) = —vx,, 6(122) =0, eﬁ) = 6(2:;) = —v, 6532) =0 (3.8.5)
It follows from Equations 1.1.7, 3.8.3, and 3.8.5 that
)\—|—2u—|—/\6§,?;)) =A+2u—2vA=FE
(3.8.6)

(A +2p)zs + Ae%) = Exg

In view of Equations 3.3.7 and 3.8.6, we find that the coefficients D;; of the
system 3.3.6 are given by

Dop =135, Dy3 = D3, = Q€0 D33 =Q (3.8.7)
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where
1
I:zﬁ = / TorgFE (1, x2)da, g = 7/ zoE(x1,22)da
; e (3.8.8)
Q= / E(zq,z2)da

3

Thus, the system 3.3.6 becomes
Ihgas + Qa3 = eqpMg
(3.8.9)

1
a1&) + ax€d + az = _ﬁF?’

It follows from Equations 3.3.3, 3.8.2, and 3.8.4 that the solution of exten-
sion and bending problem is

_ 1 2 2 2
uy = —5(11 (1‘3 + vry — sz) — QVX1T2 — A3lVxy
1 1
Uy = —A1VT1Ty — §a2 (x% — fo + Vx%) — aszvrs (3'8' 0)

uz = (@121 + a2x2 + az)xs

where the constants aj,as, and ag are given by Equations 3.8.9.

Clearly, the solution of the torsion problem, presented in Section 3.4, cannot
be simplified by the assumption that v is constant.

By Equations 3.5.1, 3.8.2, and 3.8.4, we find that the solution of the flexure
problem is given by

1 1
Uy = fgblxg — 51)11/(:1:% — .T%)I’g — bovxi1x0T3 — b3vx1T3 — TLOX3
1 1
Uy = —Engg — bivrixox3 — §b2V(.’17% — x%)xg — bsvzoxs + T3 (3.8.11)

1
us = 5([)11’1 + bg:l?g =+ bg)$§ +T(p + G

From Equations 3.5.7, 3.5.8, and 3.8.7, we find that the constants by, by, and
bs are determined by the following system

I gbs + Q&bs = —F,

. . (3.8.12)
5161 =+ 6252 =+ b3 =0

It is easy to see that the function G satisfies the equation
1
(MG@),O‘ = —QM(bll‘l + bows + b3) + pav |:2b1 (l‘% — l‘%) + byxix9 + b3y

1
+ pov |bizize + §b2 (x% — x%) + b3$2:| on ¥ (3.8.13)
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and the boundary condition
1
G,ana =V |:2b1 (CC% — I%) + b2I1I2 + b3.171:| ny

1
+ v [blxlxg + §b2 (x% — x?) + bgl‘g:l ngonl (3.8.14)

The constant 7 is given by Equation 3.5.9, where 9t has the form
1
N = - 1% |:$1G)2 - £L‘2G)1 - §V(.’L‘% + x%)(bl.%‘g - bg(I}l):| da (3815)

The torsional rigidity D, is given by Equation 3.4.6, where ¢ is the torsion
function.

3.8.2 Deformation of a Nonhomogeneous Circular Cylinder

Let us study the extension, bending, and torsion of a nonhomogeneous and
isotropic cylinder that occupies the domain B = {x : 22423 < a?,0 < x3 < h},
(a > 0). We assume that

E = E(r), v = const. (3.8.16)

where
r= (a2 +22)"° (3.8.17)

It follows from Equations 3.8.8 and 3.8.16 that

I, =13 = 7r/ r3E(r)dr, I}5=0
0 u (3.8.18)
€ =0, Q= 27r/ rE(r)dr
0

By Equations 3.8.9 and 3.8.18, we obtain

Mo M,y

1
= o) a9 = e az = _*Fj (3819)
Ill 122

aq 9

The solution of extension and bending problem has the form 3.8.10 where
the constants ay are given by Equations 3.8.19. In this case, the extension is
not influenced by the bending of terminal couples.

To solve the torsion problem, we consider the boundary-value problem
3.4.12 and 3.4.13. We assume that the functions ¢ and y depend only on r.
Let us introduce the function H by

1
—X,a =Ha (3.8.20)
X
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We note that the condition

(1 ) <1 )
—Xo) =(=x
), M),

3 )

is satisfied on the basis of relations

(1) zg d (1) | T, , dx
- =——-), xa=xX—7 X =
/g rodr \ p r dr

Thus, the function H exists. From Equation 3.4.12, we see that H satisfies
the equation
AH =-2o0on%; (3.8.21)

By Equations 3.4.14 and 3.8.20, we find that the stresses t,3 are given by
t13 = p7H o tos = —utH (3.8.22)
The conditions on the lateral surface are satisfied if
H=0onr=a (3.8.23)

The solution of the boundary-value problem 3.8.21 and 3.8.23 is

H= %(aQ —r?) (3.8.24)

Thus, from Equations 3.8.22 and 3.8.24, we obtain
tiz = —p(r)Tae, tos = p(r)Ta1 (3.8.25)

By Equations 3.4.11, 3.8.20, and 3.8.24, we find that ¢ = 0. In view of Equa-
tion 3.4.6, we obtain the torsional rigidity,

a
D, =2r / r3u(r)dr (3.8.26)
0
The constant 7 is given by Equation 3.4.5. We note that from Equations 3.8.20

and 3.8.24, we find that
T
X == [ tuyae
0

3.8.3 Extension, Bending, and Torsion
of Nonhomogeneous Tube

First, we study the plane strain problems D*) defined in Section 3.2, for a
hollow cylinder. We assume that the domain 3; is bounded by two concentric
circles of radius Ry and Ry, X1 = {z : R? < 22 + 23 < R3,23 = 0}. We sup-
pose that the cylinder is occupied by an isotropic material with the following
constitutive coefficients

A= Xr ™, w=por ", m>0 (3.8.27)
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where r is given by Equation 3.8.17 and Ag, ftg, and m are prescribed constants.
This kind of inhomogeneity has been investigated by Lekhnitskii [205] and
Lomakin [209]. Let us prove that the solution of the problem D) is given by

1
)= —glet-ad), ) = we (3829

where
Ao
vp= ————
2(Ao + po)
In view of Equations 3.2.8 and 3.8.2, we obtain

6511) = —v11, 692) = -1y, 6512) = (3.8.30)

(3.8.29)

By the constitutive equations 3.8.9 and the relations 3.8.27, 3.8.29, and 3.8.30,
we find that

1Y = 20921 (A + 1) = —2v0z1 (Ao + po)r ™™
—)\0.’[17'77” = —)\1'1 (3831)
) = —xayp ¢ =0

It is easy to see that the stresses 3.8.31 satisfy the equations of equilibrium
3.2.10 and the boundary conditions 3.2.11. In a similar way, we can prove that

1
ug2) = —VpZ1T2, ng) 3" (x% - x%), ul?) = —vor, (3.8.32)

By Equations 1.1.7 and 3.8.27, we find
E=FEyr™™ (3.8.33)

where

o 1o (3X0 + 240)

, = HOA220 T 2Bo)
Ao + po

With the aid of Equations 3.8.30, 3.8.32, and 3.8.33, we obtain
At 20+ Al = X+ 20 — 2D\ = (Xo + 200 — 2Aoro)r ™ = E

(3.8.34)
(A +2p)zs + /\e%) = Exg
It follows from Equations 3.3.7, 3.8.33, and 3.8.34, that
Di1=Dyp=J  Di2=D2 =Da3s=D3s =0 D33 =J,
™ ™ —m —m
J= i [R3E(R») — R{E(Ry)] = . mEO(R;1 —R{™™), form # 4
J =2mEy In(Ry/Ry), form =4
27 _ _
J, = mEO(Rg ™ RET™) . for m # 2
J* = 27TEO In (Rg/Rl), form =2 (3835)
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By Equations 3.3.6 and 3.8.5, we obtain
MQ Ml F3

-7 =~ = 3.8.36
“ J’ a2 J’ @3 J. ( )
Thus, the solution of extension and bending problem is given by
1
= —5m (5”% +vor] — VO»”C%) — A2V)T1T2 — A3VQT1
1
Uo = —A1VgT1T9 — 5&2 (l‘g — yox% + Voxg) — asVoTs (3837)

Uz = ((111’1 + asxo + ag)xg

where ay, are defined by Equations 3.8.36 and 3.8.35. In view of Equations 3.8.27,
we find that

pp(UTp),0 = Epp (ff:xpxﬁrl + ,“5pﬁ> =0
so that Equation 3.4.1 for the torsion function becomes
(11,0),0 = 0 on Xy

Clearly, for r = Ry and r = Ry, we have

€aBTgNg =0
and the boundary condition 3.4.2 reduces to

@ ang =0onT

Thus, in this case, we find that

p=00n%; (3.8.38)

From Equation 3.4.6, we obtain the torsional rigidity,

27T 4— 4—
wo(Ry™ ™ —Ry™™), form #4
Tt ) (3.8.39)

D, =2mpgIn(R2/Ry), form =4

D, =

The solution of the torsion problem is
Uq = TERaTITS, ug =0
where the constant 7 is given by Equations 3.4.5 and 3.8.39.

3.8.4 Flexure of Hollow Cylinder

We now study the flexure of the hollow cylinder defined in the Section 3.8.3.
We continue to assume that the elastic coefficients are given by Equations 3.8.27.
We suppose that the loading applied on the end located at x3 = 0 is statically
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equivalent to the force F = Fje; and the moment M =0. The form of the
solution is given by the functions 3.5.1. Since the Lamé moduli are speci-
fied by Equations 3.8.27, the solutions of the problems D®*) are given by
Equations 3.8.28 and 3.8.32. Moreover, we have seen that for the considered
cylinder, the torsion function is zero. The constants b1, bs, and b3z which ap-
pear in Equations 3.5.1 are determined by Equations 3.5.7 and 3.5.8. In view
of Equations 3.8.35, we find that

by =0, b3=0 (3.8.40)

Thus, the boundary-value problem 3.5.3 and 3.5.5 reduces to the equation

(4G 0) 0 = —2ubray — bipguly) on B (3.8.41)
and the boundary condition
G.ang = —blug)ng onT (3.8.42)

In view of Equations 3.8.30 and 3.8.37, we find that

@ _ 1
Pty = SVoHmy

so that Equation 3.8.41 takes the form
1
PAG 4+ 110G o = —p <2 + 2V0m> bix1 on X4 (3.8.43)

We seek the solution of this equation in the form
G =x19(r) (3.8.44)

where 7 is given by Equation 3.8.17 and @ is an unknown function.
With the aid of relations

AG = z1(®" 4 3r7 @), t.0Go = —pmr 22, (O + rd)

we find that Equation 3.8.43 reduces to

1 m 1
Q"+ (3 - m);(I)’ — T—2<I> =— (2 + 2m1/0> by (3.8.45)

A particular solution of this equation is
&, = Br? (3.8.46)

where
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The general solution for ® is
® = Cyr* + Cor*? + Br? (3.8.47)

where C7 and C5 are arbitrary constants, and

1
k=g =24+ Y, ke = Slm—2— (P 447 (38.49)

In view of Equations 3.8.28 and 3.8.44, the condition 3.8.42 reduces to
1
@(7’) + ’I‘(I)/(T) = 51/0()17’2 onr = Rl and r = R2 (3849)

By Equation 3.8.47, the conditions 3.8.49 take the form

1
(14 k)RMCy + (14 ko) RE2Cy = <2u0b1 - 33) R?
) (3.8.50)
(14 k)RECy + (14 ko) RE2Cy = <2u0b1 - 33) R2

Since

(1 +k1)(1+ ko) #0, ki # ko

we conclude that the system 3.8.50 can always be solved for the constants
C1 and Cs. The constant 7 is given by Equation 3.5.9. It follows from Equa-
tions 3.8.28, 3.8.40, and 3.8.44 that

1
M = —/ Toll ((I> + V()blTQ)da =0
., 2
so that 7 =0

From Equations 3.5.1, 3.8.28, 3.8.38, 3.8.40, and 3.8.44, we find the solution
of the flexure of a hollow cylinder,

1/1
2 2 2
uy = 75 giﬂg —+ 1/01171 — Vol’Q b1$3, Ug = 7()11/011711’2$3

1
us = iblxlxg + 1P

where ® has the form 3.8.47 and b; is given by Equation 3.8.40.

3.8.5 Plane Strain of Nonhomogeneous Tube

In this section, we investigate the plane strain traction problem for the
domain ¥y = {z : R} <% + 23 < R3, 23 =0}, (R2 > Ry >0), when the cylinder
is in equilibrium in the absence of body forces, and the lateral boundaries are
subjected to constant pressures. We assume that the tube is occupied by a
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nonhomogeneous and isotropic elastic material with Lamé moduli given by
Equations 3.8.27. The equilibrium equations become

tﬂa,ﬂ =0on 21 (3851)
The boundary conditions are
tgaMg = —pingonr =R
palty =~ ! (3.8.52)
t3aMg = —Dang ON T = Ry

where p,, are prescribed constants and r = (23 4 23)'/2.

We seek the solution in the form
Uy = 2o 'G (3.8.53)
where G is an unknown function of r. Then, we have

U g = Oapr "G — Toxpr G + z0wsr G’
e
~dr
ta,@ =\ (TflG + G/)éaﬁ (3854)
+ 2u(6apr rG — x0r5r PG 4 20z 2G)
AUg = Up po = To (rilG’” +r72@ - TﬁSG)

Upp = r1G+ @ G’

We note that
t8a,8 = AU + (A + 1)Up pa + A alipp + 11,3(Ua, + Ug,a) (3.8.55)
By using Equations 3.8.54, 3.8.55, and the relations
Ao = )\/xarfl, Mo = u/xarfl
we obtain

tgap = o " [A+20)(G" +1r7 G —r2G) +r T ING + (N +21)G]
(3.8.56)

From Equations 3.8.51 and 3.8.56, we conclude that the equilibrium equations
are satisfied if the function G satisfies the equation

N N VR . P
G +(r+ i G - G=0 (3.8.57)
where
M=X+2u (3.8.58)
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By Equations 3.8.27 and 3.8.58,
M = —mr~'M, N = —mr 1 MN,, No = Xo/(Mo +2p0)  (3.8.59)
so that Equation 3.8.57 reduces to

ean %(1 )G — %(1 +mNy)G =0 (3.8.60)
In view of relations 1.1.5, we obtain
1-NZ2>0 (3.8.61)
The general solution for G is
G(r) = Cyr™ + Corh2 (3.8.62)
where
ky = % m+ (m? + 4mN + 4)1/2], ky = % [m — (m2 + 4mN, + 4)1/2]

(3.8.63)
and C7 and C5 are arbitrary constants. It follows from inequality 3.8.61 that
m? +4mNo +4 = (m +2Np)* +4(1 — N§) >0

so that k; and ko are real and distinct. On the boundary of X;, we have

Lo e
Ng =——onr= Ry, Ng =—=—onr =Ry
1 2

so that the conditions 3.8.52 reduce to
tgag = —ppa OnT =R, (3.8.64)
It follows from Equations 3.8.27, 3.8.54, and 3.8.62 that
taTs = To[ M G + (A + 2u)G]
= 2o ™{[Xo + (Mo + 200)k1]C1rF 7 4 Ao 4+ (Ao + 2p0) k2] CarF2 1}
(3.8.65)
Thus, the boundary conditions 3.8.64 become
Mo + (Ao + 240) k1] RY ' C1 + [Mo + (Mo + 20) k2] RY? ™' Co = —py RY"

o+ (Mo + 200) k1] RE 1 C1 + [Ao + (No + 2p0) k2] RE2 ' Co = —po RY'
(3.8.66)

& klfl B & k}z*l
Ry Ry
By the relations 1.1.5, 3.8.59, and 3.8.63, we get

Ao + 2p0 > 0, k1 # —No, ko # —No, ki # ko

so that the system 3.8.66 uniquely determines the constants C7 and Cs. Thus,
the solution of the problem is given by Equations 3.8.53, 3.8.62, and 3.8.66.

The determinant of this system is

(Ao + 240)*(No + k1) (No + ko) RY> RE
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3.8.6 Special Solutions of Plane Strain Problem

We consider the plane strain problem for nonhomogeneous bodies when the
body forces vanish. In Section 3.2, we have seen that the stresses t,g can be
expressed in terms of the Airy function which satisfies Equation 3.2.7. First,
we assume that

q = dyx1 + doxs + d3, v =dy (3867)

where dy, (k = 1,2,3,4), are constants. In this case, Equation 3.2.7 reduces to
AAx =0on ¥,

We note that the boundary conditions 1.5.25 also hold for nonhomogeneous
bodies. By Equations 1.5.19, 1.5.22, and 1.5.25, we see that the stresses ¢,z
in the nonhomogeneous material defined by Equations 3.8.67 are the same as
the corresponding stresses in a homogeneous material, provided the material
occupy cylinders of the same shape and are subject to the same surface forces.
It is simple to verify that the conditions 3.8.67 correspond to the following
constitutive coefficients

Q(dll‘l + doxa + d3) —dy dy

E = - 1 -
(dyz1 + dawo +d3)? g dix1 + doxg + ds

Let us consider now the traction problem for a simply-connected region ¥,
and for the following surface tractions

to = —png (3.8.68)
where p is a given constant. In the case of homogeneous bodies, the solution

of the boundary-value problem 1.5.22 and 1.5.25 is

1
X = —§p(x% +23), (z1,22) €%y (3.8.69)

The corresponding stresses are
tag = —POag ON X7 (3.8.70)

Let us determine the class of nonhomogeneous materials which, subjected
to the tractions 3.8.68, generate the stresses 3.8.70. Substituting the func-
tion 3.8.69 into Equation 3.2.7, we get

A2y —¢q)=0 (3.8.71)
The condition 3.8.71 can be written as
1 1-2
A [H”)(E”)} —0 (3.8.72)

If the Poisson’s ratio is constant, then Equation 3.8.72 reduces to

AETH =0 (3.8.73)
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Thus, if v is constant and the Young’s modulus attains a maximum (or min-
imum) in interior of ¥;, then the tractions 3.8.68 cannot produce the plane
stress field 3.8.70.

For the remaining of this section, we assume that the Poisson’s ratio is
constant. Then, Equation 3.2.7 can be written in the form

1
A(yAx) = :(“f,zzx,n + 711X .22 — 27,12X12) (3.8.74)

By using the relations 1.5.19, this equation can be expressed in terms of the
stresses tag3,

1
A(taa) = m(’%ntn + ¥.20t22 + 2t1277,12) (3.8.75)

This equation has been established by Olszak and Rychlewski [260].
Let us assume that the loading generates the plane elastic state character-
ized by
t1a="1T, t11 =1t =0 (3.8.76)

where T is a given constant. Then, from Equation 3.8.75, we find that
Y12 =10
The plane stress field 3.8.76 is possible to exist if and only if
v = hi(z1) + ha(x2)

where hy and ho are arbitrary functions.
We now consider the plane elastic state for which

t11 = P, tog =t10 =0 (3.8.77)

where P is a given constant. In this case, Equation 3.8.75 reduces to

v

Y11+ Y22 =0
1—v

The general solution of this equation is

Lo\ 12
7291(m2+ﬂx1)+92(1’2—ﬁ51’1), K = T

where g1 and g9 are arbitrary functions. Thus, for example, we can say that
for nonhomogeneous bodies with

= m:f —&—Alx% + Agxq + Az

where A are constants, it is not possible to have the plane stress field 3.8.77.
Other special plane elastic states have been discussed in Ref. 260.
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3.9 Exercises

3.9.1

3.9.2

3.9.3

3.9.4

3.9.5

3.9.6

3.9.7

A continuum body occupies the domain B = {z : (z1,22) € ¥1,0 <
x3 < h} where the cross section 3 is the assembly of the regions A; =
{z:—a1 <21 <0,—-B<z3< P}, As={2:0< 21 <g,— B <3 <
B}, (a1 > 0,2 > 0,8 > 0). The domains By = {z : (x1,22) € Ay,
0 < z3 < h}and By = {z: (z1,22) € A2,0 < x3 < h} are occupied
by different homogeneous and isotropic elastic materials. Study the
torsion of cylinder B.

Determine the solutions of auxiliary plane strain problems defined in
Section 3.7 when L and I' are two concentric circles.

Investigate the extension and bending of a piecewise homogeneous
circular cylinder.

Study the plane strain of a circular cylinder composed of two homo-
geneous and isotropic elastic materials and subjected on the lateral
surface to a constant pressure.

Investigate the deformation of a piecewise homogeneous circular cylin-
der which is subjected to a constant temperature variation.

An inhomogeneous and isotropic elastic cylinder occupies the domain
B = {z:2} + 2% < a% 0 < 23 < h},(a > 0). The constitutive coeffi-
cients are given by

A= Ao "7, w=poe ", k>0

where \g, 1o, and  are prescribed constants and r = (2% + x§)1/2.
Study the deformation of the considered cylinder when it is subjected

to the loads

foz:_U,av f3207 ,Ea:Unou ,{3207
F,=0, F3=Q, M;=0

where U = Upe™"", and @ and Uy are given by constants.

A nonhomogeneous and isotropic elastic cylinder has the constitutive
coefficients independent of the axial coordinate. The body is subjected
to a temperature field that is a polynomial in the axial coordinate.
Study the deformation of the cylinder.
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Chapter 4

Anisotropic Bodies

4.1 Preliminaries

The Saint-Venant’s problem for anisotropic elastic bodies has been exten-
sively studied [28,175,204,313]. We note that the researches devoted to Saint-
Venant’s problem are based on various assumptions regarding the structure of
the prevailing fields of displacement or stress. It is the purpose of this chapter
to extend the results derived in the previous chapters to the case of anisotropic
elastic bodies with general elasticities. The procedure presented in this chap-
ter avoids the semi-inverse method and permits a treatment of the problem
even for nonhomogeneous bodies, where the elasticity tensor is independent
of the axial coordinate. Saint-Venant’s problem for nonhomogeneous elastic
cylinders where the elastic coefficients are independent of the axial coordinate
has been studied in various works [150,152,318]. According to Toupin [329],
the proof of Saint-Venant’s principle presented in Section 1.10 also remains
valid for this kind of nonhomogeneous elastic bodies.

In the first part of the chapter, we present a solution to the Saint-Venant’s
problem for anisotropic elastic bodies. This solution coincides with that given
in Ref. 150 and incorporates the solutions presented in Refs. 28, 175, and 204.
Then, minimum energy characterizations of the solutions are established. The
results of Section 1.9 are extended to study Truesdell’s problem for anisotropic
elastic cylinders. We also present a study of the problems of Almansi and
Michell. The theory is used to study the deformation of orthotropic cylinders.
Finally, the Saint-Venant’s problem for elastic cylinders composed of different
anisotropic materials is analyzed.

We assume for the remainder of this chapter that the elasticity field C is
independent of the axial coordinate, that is,

Cijii = Cijri(z1,22), (x1,22) € X4 (4.1.1)

Moreover, we continue to assume that C is symmetric and positive definite.

We denote by Z* the set of all equilibrium displacement fields u that satisfy
the condition s(u) = 0 on the lateral boundary. The following results hold
true for anisotropic elastic bodies.

127
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Theorem 4.1.1 Ifu€ 2* and uz € C*(B)NC?(B), then uz € * and
R(us) =0,  Ha(uz)=capRs(u),  Hz(ug) =0

The proof of this theorem, which we omit, is analogous to that given for
Theorem 1.6.1. We continue to use notations from Section 1.6. Theorem 4.1.1
has the following consequences.

Corollary 4.1.1 If u € K;(F3, My, Mz, M3) and us € CY(B) N C?*(B),
then uz € Z* and

R(u’g) = 0, H(u’3) =0
Corollary 4.1.2 If u€ K;;(F1, F2) and uz € CY(B) N C?(B) then

us € KI(O7F277F170)

4.2 Generalized Plane Strain Problem

The state of generalized plane strain of cylinder B is characterized by
u=u(z1,z2), (z1,22)€ Xy (4.2.1)

This restriction, in conjunction with the stress—displacement relation, implies
that ti; = ti; (.231, 1‘2). Further,

tia(1) = Ciarpur,p (4.2.2)
By an admissible displacement field, we mean a vector field with the properties

(i) u is independent of x3 and
(ZZ) uc Cl(il) n CQ(El)

Given body force f on B and surface force p on II, with f and p independent
of x3, the generalized plane strain problem consists in finding an admissible
displacement field u which satisfies the equations of equilibrium

(tia(w)),a + fi=0o0n3; (4.2.3)
and the boundary conditions
tio(Wng, =p;onT (4.2.4)

We note that the stress t33(u) can be determined after the displacement field
u is found.
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The generalized plane strain problem for homogeneous bodies was studied
in various works (e.g., [204]).
The conditions of equilibrium for cylinder B are equivalent to

/ fda + / pds =0, / EapTafada + / €aplappds =0  (4.2.5)
N r DN r

/ xafgda—l—/xapgds:/ tsq(u)da (4.2.6)
N r N

From Equations 4.2.3, 4.2.4, and the divergence theorem, we get
[ tan(uida = [ {tan() + zal(tay(w), + fal)da
21 E1

- / [(atsp(w), + 7 folda = / Tapads + / rofsda

P

Thus, the conditions 4.2.6 are identically satisfied.
We assume for the remainder of this chapter that C € C*(X;) and that the
domain ¥; is C*°-smooth. Moreover, we assume that f and p belong to C*°.
We denote by & the set of all admissible displacement fields. Let L be the
operator on & defined by

Lin = —(Ciakptk,p),0
The equations of equilibrium 4.2.3 take the form
Lu=fonX, (4.2.7)
The conditions 4.2.4 can be written as
s(uy=ponTl (4.2.8)

We assume that u,v € &. By the divergence theorem, we find

W(u,v)da - /F s(u) - vds (4.2.9)

/El(Lu)~vda—2

P

Here -
2W(u,v) = Ciarpeia(W)ers(v)

is the bilinear form corresponding to the quadratic form
2W(u) = C’iakﬁem(u)ekg(u)

Let u* be a solution of the boundary-value problem 4.2.7 and 4.2.8 corre-
sponding to f = 0 and p = 0. We assume that W (u) is positive definite in
the variables es3(u). It follows from Equation 4.2.9 that

Uy = Qo + Eapbrg, uy = as (4.2.10)
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where a; and b are arbitrary constants. Let us consider the boundary condition
s(uy=0onT (4.2.11)

Following Fichera [88], a C° solution in ¥; of the boundary-value problem
4.2.7 and 4.2.11 exists if and only if

/f-u*da:()
X1

for any displacement field u* given by Equation 4.2.10. Thus, we derive the
following result.

Theorem 4.2.1 Let f be a vector field of class C* on §1; The boundary-
value problem 4.2.7 and 4.2.11 has solutions belonging to C*°(X1) if and only if

/ fda =0, / €apflafsda =0 (4.2.12)
21 2:1

It is easy to see that in the case of the boundary-value problem 4.2.7 and
4.2.8, the conditions 4.2.12 are replaced by conditions 4.2.5.

4.3 Extension, Bending, and Torsion

We denote by R the set of all rigid displacement fields. In view of Corol-
lary 4.1.1, we are led to seek a solution u® of the problem of extension, bending,
and torsion such that u% € R.

Theorem 4.3.1 Let T be the set of all vector fields u € C1(B)NC?(B) such
that uz € R. Then there exists a vector field u® € T which is solution of the
problem (Py).

Proof. We consider u’ € C1(B) N C?(B) such that
u?3 =a+pBxx

where a and B are constant vectors. Then we get

1
ug = —iaax?,) — G4EQBTRT3 + Wy (4 3 1)
ug = (apx, + as)rs + ws

modulo a rigid displacement field. Here w is an arbitrary vector field indepen-
dent of z3 such that w € C1(X;) N C?(X;), and we have used the notations
Qo = €pafBp, a3 = a3, and aq = (3. From Equation 4.3.1, we obtain

0
Uk o = AaT30k3 — A4€BaT30k3 + Wk o

0
ug 3 = (apTp + a3)0k3 — OkaGaT3 — Ora4€apTp
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The stress—displacement relations imply that
tij(uo) = Cij33(ap$p + a3) - a4Cija3€aﬁ(Eﬁ + TZ](W) (432)

where
Tij(w) = CijraWhk,a (4.3.3)

The functions T;;(w) are independent of the axial coordinate.
The equations of equilibrium and the conditions on the lateral boundary
reduce to

(Tia(W)) o +9i = 0on 34, Tia(W)ng =¢q onT (4.3.4)
where

9i = ap(Cia33%p) .0 + a3Cia33,0 — @4€p3(Ciap3Ts) o

(4.3.5)
¢i = (a46p3C50p323 — 0,Cia337, — a3C033)Nq

We note that the relations 4.3.3, 4.3.4, and 4.3.5 constitute a generalized
plane strain problem. It follows from the relations 4.3.5 and the divergence
theorem that the necessary and sufficient conditions to solve this problem are
satisfied for any constants ai,as,as, and as. We denote by w@) a solution
of the boundary-value problem 4.3.4 when a; = d;;, ax = 0, and by w® a
solution of the boundary-value problem 4.3.4 corresponding to a; = 0,a4 = 1.
We can write

4
w=> aw? (4.3.6)
i=1
The functions w(®) are characterized by the equations

(Tia(WwD)) o + (Ciaz3z3) o =0, (8=1,2)

s

(Tia(W™)) o + Ciagza =0 (4.3.7)
(Tia (W(4))),Ot - Epﬁ(ciaprﬁ),a =0on X,

and the boundary conditions

T’ioc(w(g))na = —04a33T3Ma, E (W(S))na = —Uja33Na (4 3 8)
T; (W(4))na = £,3Ciap3TaNe on I’ o

We assume that the displacement fields w(*), (s = 1,2,3,4), are known. The
vector field u® can be written in the form

4
u’ =) a;u? (4.3.9)
j=1
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where u?) are defined by

1
ul? = —ixgéaﬁ +wl®, uéﬁ) = xgx3 + wéﬂ), (6=1,2)
U&B) = w((f’)a U§3) =3+ wgg)a ugl) = €Balpr3 + wgy4)a ui(’)4) = UJ§4)
(4.3.10)
From Equations 4.3.2 and 4.3.9, we get
4
tii(u) =) axti;(u®) (4.3.11)
k=1
where
tij (u("‘)) = Cij33l‘a + Tij (W(a))
tij(u®) = Cijas + Ty(w?),  ti;(0) = ~Cijazeapzs + Ty(w'?)

(4.3.12)
By Equations 4.3.7 and 4.3.8,

(tei(u) y =000 B,  su¥)=0onll, (j=1,2,3,4) (4.3.13)

so that u9) € 2%, (j = 1,2,3,4).
The conditions on the end X are

Ry(u”) =0, R3(u”)=F, Hu")=M (4.3.14)
In view of Theorem 4.1.1 and u?g € R, we obtain
Ra(u’) = epoHs(uy) =0

so that the first two conditions 4.3.14 are satisfied. The remaining conditions
furnish the following system for the constants as, (s = 1,2, 3,4),

4 4 4
> Diai=capMs, > Dya;=-Fs, > Dja;=-Ms (4.3.15)
i=1 i=1 i=1
where

D, :/ xat33(u(i))da7 D;i:/ t33(u(i))da
o o

(4.3.16)
DL:/ capTatss(u)da, (i =1,2,3,4)
3

The constants Dy, (r,s = 1,2,3,4), can be calculated after the displacement
fields w(®, (i =1,2,3,4), are determined. Let us prove that the system 4.3.15

can always be solved for a1, a9, a3, and ay.
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By Equations 1.1.2 and 4.3.9,

4
1 . .
I/ (uo) = § E <u(7‘), u(])>aiaj

i,j=1
Since C is positive definite and u'? is not a rigid displacement, we find that
det (u®, u?y £ 0 (4.3.17)

We note that ul® e 2%, (i = 1,2,3,4). Tt follows from Equations 4.3.10,
4.3.12, 1.1.16, and 1.1.17 that

) 1 .
(u® ul@)y = §h2Ra(u(’)) + hD?,
(u® u®y = D3, u® u®y =hD3, (i=1,2,3,4)
Since u®” € * and ufg) €R, by Theorem 4.1.1, we have R, (u?)=0, (i =
1,2,3,4). Thus, we obtain
(u uP) = hDy,; (4.3.18)
From relations 4.3.17 and 4.3.18, we find
det (D},) #0 (4.3.19)

so that the system 4.3.15 uniquely determines the constants a;, (i = 1,2, 3,4).
Thus, we have proved that the constants as, (s = 1,2,3,4), and the vector
field w can be determined so that u® € K;(F3, My, Mo, M3). O

Remark. Theorem 4.3.1 offers a constructive procedure to obtain a solution
of the problem (P;) for anisotropic elastic bodies. This solution is given by
Equations 4.3.9 and 4.3.10 where the vector fields w/), (j = 1,2,3,4), are
characterized by the boundary-value problems 4.3.7 and 4.3.8, and the con-
stants as, (s = 1,2, 3,4), are determined by Equations 4.3.15.

4.4 Flexure of Anisotropic Cylinders

The flexure problem consists in finding an equilibrium displacement field u
that satisfies the conditions

s(u) =0 on II, R,(u) = F,, R3(u) =0, H(u)=0

We denote by @ the four-dimensional vector (ay, az,as,as). We shall write
u’{a} for the displacement vector u’ defined by Equation 4.3.9, indicating
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thus its dependence on the constants ai,as, as, and ay4. In view of Corollar-
ies 4.1.1 and 4.1.2 and Theorem 4.3.1, it is natural to seek a solution of the
flexure problem in the form

u= / W{B}dzs + u{e} + W’ (4.4.1)
0

where b = (b1, ba, b3, by) and ¢ = (c1, ¢2, c3, ¢4) are two constant four-
dimensional vectors, and w’ is a vector field independent of x3 such that
w' € CY(X)NC%(%y).

Theorem 4.4.1 LetY be the set of all vector fields of the form 4.4.1. Then
there exists a vector field ' € Y which is solution of the flexure problem.

Proof. We have to prove that the vector field w’ and the constants b;, ¢;, (i =
1, 2, 3, 4), can be determined so that u’ € K;(Fy, Fy). First, we determine
the vector b. If u’ € K;;(Fy, Fy), then by Corollary 4.1.2 and Equation 4.4.1,

u’{b} € K;(0, Fy, —F},0) (4.4.2)
By Equations 4.3.15 and 4.4.2, we find that

4
> Dibi=—F,
i=1

. . (4.4.3)
> Dybi=0, > Dibi=0
i=1 i=1
From the system 4.4.3, we can determine by, b, b3, and by.
It follows from Equations 4.3.9, 4.3.10, and 4.4.1 that
1 1 1
ul, = —gbaxg — icaxg - ib4eag:cgw§ — C4€0BT3T3
4
+ ¢; + 23b))w) +w!,
;( J J (4.4.4)
1 . :
uz = 5 by, + b3)23 + (cpuy + c3)as + Y (¢ + wsby)ws + wh
j=1
By Equations 1.1.2 and 4.3.12, we obtain
4 .
tra(W) = (ci + w3bi)trs (WD) + Tpo (W) + ki (4.4.5)
i=1

where

4
kij = Z Cijk:?)brw](:)
r=1
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If we substitute Equation 4.4.5 into equations of equilibrium, then we find,
with the aid of Equation 4.3.13, that

(Tia(W')),a + fi =00n 34 (4.4.6)

where .
£l =kiaa + Y bitis(u?
j=1

With the help of Equations 4.3.13, the conditions on the lateral boundary
reduce to
Tio(W)ng =pionT (4.4.7)

where p; = —kjano. The relations 4.4.6 and 4.4.7 constitute a generalized
plane strain problem. The necessary and sufficient conditions for the existence
of a solution of this problem are

flda + / pids =0, / Eaptafpda + / €apTappds =0
N r o r

We can verify that these conditions become

4 4
Z / u(J )da = 0, Z bj / €a5$at53(u(j))da =0 (4.4.8)
j=1 j=1 7%

It follows from Equation 4.4.3 and R,(u®)) =0, (j = 1, 2, 3, 4), that the
conditions 4.4.8 are satisfied. In what follows, we assume that the displacement
field w’ is known.

Since Ho(u'3) = eapRp(u’) and v’y € K(0, Fp,—Fy, 0), it follows that
R,(u’) = F,. The conditions R3(u’) = 0, H(u’) = 0 are satisfied if and only
if

4
Y Dijej =4, (i=1,2,34) (4.4.9)
j=1

where

Aa = _/ Lo [kSS + T33(Wl)}daa A3 = _/ [k33 + T33(Wl)]da
= 31

Ay = —/ capalkps + Tps(W)]
P

On the basis of relation 4.3.19, the system 4.4.9 can always be solved for
c1,¢2,c3, and ¢q. Thus, if b and ¢ are defined by Equations 4.4.3 and 4.4.9,
respectively, and the displacement field w’ is characterized by the generalized
plane strain problem 4.4.6 and 4.4.7, then the displacement field u’ defined
by Equations 4.4.4 is a solution of the flexure problem. O
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We have obtained the system 4.4.9 from the conditions Rs(u’) = 0,
H(u') = 0. If we replace these conditions by Rz(u’) = F3, H(u') = M,
then we arrive at

4
ZDZiCi = €a[3M5 + A,
i=1

- \ (4.4.10)
Y Diyici=A3—Fs, Y Diei=As— Ms
i=1 i=1

If b is defined by Equation 4.4.3, ¢ is defined by Equation 4.4.10, and w’ is char-
acterized by the boundary-value problem 4.4.6 and 4.4.7, then u’ € K(F,M).

4.5 Minimum Energy Characterizations of Solutions

In this section, we present minimum strain-energy characterizations of the
solutions obtained in Sections 4.3 and 4.4. Similar results for homogeneous
and isotropic bodies were given by Sternberg and Knowles [322].

We denote by Q7 the set of all equilibrium displacement fields u that satisfy
the conditions

[tgi(ll)](xl, T2, O) = [tgi(ll)](l'l,xz, h)7 (!El, (EQ) S 21
Ra(w)=0, Ry(u)=Fs;, Hu)=M (4.5.1)
s(uy=0onII

Theorem 4.5.1 Let u® be the solution 4.3.9 of the problem (Py) correspond-
ing to the scalar load F3 and the moment M. Then

U(u®) < U(u)

for every u € Qp, and equality holds only if u = u® modulo a rigid displace-
ment.

Proof. Let u € Q; and define
v=u—u
Then v is an equilibrium displacement field that satisfies

[tai(v)](z1,22,0) = [ta:(V)](w1, 72, h), (21,72) € Xy

s(v)=0onll, R(v)=0, H(v)=0 (4.5.2)
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From Equations 1.1.12 and 1.1.13, we obtain
Uw) =U(v) +Uu’) + (v,u’)

If we apply Equations 1.1.16 and 1.1.17, then we conclude, with the aid of
Equations 4.3.9, 4.3.10, and 4.5.2, that

1
(v,ul) = / tgi(v)u?da—/ tsi(V)udda = —~h%agRa(V)
22 z:1 2
+ hleapaaHpg(v) —azR3(v) —asHs(v)] =0
We can write
U(u) = U(v) + U(u’)
Thus U(u) > U(u®), and U(u) = U(u®) only if v is a rigid displacement. O
We denote by @Qj; the set of all equilibrium displacement fields u that
satisfy the conditions
u; € CY(B)NC%B), s(u) = 0 on II, R,(u)=F,

[t3i(0,3)] (21, 22, 0) = [tss(ws)] (w1, 22, h), (21,22) € Ty (4.5.3)

Theorem 4.5.2 Let u’ be the solution 4.4.4 of the flexure problem corre-
sponding to the loads Fy and Fs. Then

U(uf3) < U(u73)
for every u € Qrr, and equality holds only if uz = u'y (modulo a rigid dis-
placement).
Proof. We consider u € Qy;. Since u’ € Q;; it follows that the field
v=u-u
is an equilibrium displacement field that satisfies
vz € CYB)NC%(B), s(v) =0onTI, R,(v)=0
[t3s(v.3)](z1,22,0) = [tsp(v3)l(z1,22,h), (21,72) € 1
With the help of Equations 1.1.12 and 4.4.1 and Theorem 4.3.1, we find
Uug) =U(vs+ ) = Uvs+u'{b}) = U(vs) + UWy) + (v 3,u’{b})
By Equations 4.3.9, 1.1.16, 1.1.17, and 4.5.4,

(4.5.4)

~ 1
<V,3, uO{b}) = —ibahQRa(Vﬁ) + h[bng(V,g)
— b2H1(V73) — bgRg(V,g) — b4H3(V73)]

In view of Theorem 4.1.1 and Equations 4.5.4, we conclude that
(v.3,u’{b}) = 0. We find that

Ulug) =U(vz)+U(u'y)

The desired conclusion is now immediate. O

© 2009 by Taylor & Francis Group, LLC



138 Classical and Generalized Models of Elastic Rods

4.6 Global Strain Measures

Truesdell’s problem as formulated in Section 1.9 can be set also for aniso-
tropic bodies. Thus we are led to the following problem: to define the func-
tionals 7;(+), (i =1,2,3,4), on K (F3, My, Ms, M3) such that

ZD = EagMg
(4.6.1)

4
ZD§jTj(u) =—F, Y Dymi(u)=—M;
=1 =1
hold for each u € K;(F5, My, Ms, M3). We consider the set Qr of all equilib-
rium displacement fields u that satisfy the conditions 4.5.1. Clearly, if u € Q;

then u € K;(F3, My, M, M3). In view of Theorem 4.5.1, we are led to consider
the real function f of the variables &1, &5, &3, and &4 defined by

4 2
u- 3 gud
j=1 e

where u € Q; and ul), (j = 1,2,3,4), are given by Equations 4.3.10. By
Equation 4.3.18,

4
f= th% 2 &i(u,u) + [luf?
1=1

1,7=1

Since the matrix (D;;), (4,5 = 1,2,3,4), is positive definite, f will be a mini-
mum at (a1 (u), az(u), as(u), as(u)) if and only if (a1 (u), as(u), as(u), as(u))
is the solution of the following system of equations

hZD (u,u), (i=1,2,3,4) (4.6.2)

From Equations 4.3.18, 1.1.16, 1.1.17, and 4.5.1, we obtain

1
(u,u®) = / s(u) - uWda=h [ 21tss(u)da — §h2 ts1(u)da
OB ) D3]
1
= —EhQRl(u) + hHy(u) = hHy(u)
Similarly,

<u7 u(a)> = hEO&ﬁHﬁ(u)» <u7u(3)> = _R3<u)7 <u’ u(4)> = _H3(u)
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It follows from Equations 4.6.1, 4.6.2, and 4.6.3 that 7;(u) = «;(u),
(i=1,2,3,4), for each u € Q.
On the other hand, by Equation 1.1.16 we find

(w,u) = A.(u), (r=1,2,3,4) (4.6.4)
where

Ap(u) = /Z tai(u)uda — /Z tai (0 )u;da (4.6.5)

From Equations 4.6.2 and 4.6.4, we get
. 1
> Dimi) = S Ai(w),  (i=1,2,3,4) (4.6.6)

The system 4.6.6 defines 7;(u), (i = 1,2,3,4), for every displacement field

uc QI-
Truesdell’s problem can be set also for the flexure of anisotropic cylinders:
to define the functionals v;(-), (i = 1,2,3,4), on K;;(F;, F,) such that

4 4
ZDM% =—F, Y Dyvn(w)=0, > Div(u)=0 (46.7)
i=1 =1

hold for each u € K;;(Fy, F»).
We denote by H the set of all equilibrium displacement fields u that satisfy
the conditions

u; € CY(B)NC?*(B), s(uy=0onII
Ro(u) = F,,  Ry(u)=0, H(u)=0 (4.6.8)
[t3i(u3)](z1,22,0) = [t3;(u3)](z1, 22, h), (21,22) € 3y

If u € H then u € K ;(Fy, Fy). Let g be the real function of the variables ¢;,
(i=1,2,3,4), defined by

1 2
usz— Z ¢u®
i=1 e

where u € H and u, (i = 1,2,3,4), are given by Equations 4.3.10. Clearly, g

will be a minimum at (81 (u), S2(u), B3(u), Ba(u)) if and only if (81 (u), B2(u),
Bs(u), Bs(u)) is the solution of the following system of equations

hZD (ug,u®y,  (i=1,2,3,4) (4.6.9)

Let us prove that 5;(u) = v;(u), (i = 1,2,3,4), for every u € H. By Equa-
tions 4.3.10, 1.1.16, and 4.6.8, we obtain

1
(us, uM) = / s(u3) uWda = _ihZRl(u’?’) + hHy(u 3)
OB
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With the help of Theorem 4.1.1, we get
(uz,uM) = —hR;(u)
Similarly,
(ug,u) = —hR,(u), (uzu®9) =0, (a=1,2) (4.6.10)

It follows from Equations 4.6.7 and 4.6.9 that v;(u) = 8;(u), (i=1,2,3,4), for
any u € H. By Equation 1.1.16, we obtain

(uz,uy = By(u), (i=1,2,3,4) (4.6.11)

where

Bj(u):/Etgi(u(j))ui,;gda—/Etgi(u(j))ui,gda
2 1

Thus, from Equations 4.6.9 and 4.6.11, we conclude that
1 .
ZD”% Bl(u), (i=1,2,3,4)

for each u € H. This system defines ~;(-) on the subclass H of solutions to
the flexure problem.

4.7 Problem of Loaded Cylinders

In the first part of this section, we consider the Almansi-Michell problem. It
is easy to verify that Theorem 2.4.1 also remains valid for anisotropic bodies
where the elasticity field is independent of the axial coordinate. As in Section
2.4, we are led to consider the set V of all vector fields of the form

T3 T3 R xrs3 ~
/ / u’{b}drsdrs + / u’{cldrs +u’{d} + z3w’ +w’ (4.7.1)
o Jo 0

where g, ¢, and d are four-dimensional constant vectors, and w’ and w” are
vector fields independent of z3 such that w',w” € C1(X;) N C?(%;). Here
u’{a} is defined by Equation 4.3.9. We assume that the body force and surface
force belong to C*°.

Theorem 4.7.1 Let B be anisotropic and assume that the elasticity field is
independent of the axial coordinate. Then there exists a vector field u’ € V
such that u” € K1 (F,M, G, p).
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Proof. If u” € V and u” € K (F,M, G,p), then by Theorems 2.4.2 and
4.3.1 and Equation 4.7.1,

/13 u’{b}das + u’{c} + w' € K(P,Q)
0

where P and Q are defined by Equation 2.4.3. From Equations 4.4.3 and 4.4.6,
we find that b is given by

4
> Db = 7/ Gadaf/pads
i=1 X1 r

: \ (4.7.2)
> Dybi=0, > Dibi=0
i=1 i=1
and w’ is characterized by
+ Z b zakdwk + tzd(u(r))] = 0 on 21
(4.7.3)

Tm(w/)na = — Z Ciakgbrwl(;)na onI

r=1

In view of Equation 4.4.10, the vector ¢ is determined by

ZD =C;, (i=1,2,3,4) (4.7.4)
where
C, = —/ Top3ds —/ 2o Gsda — F,, —/ Tolkss + Taz(w')|da
I pI5Y P
Cy = —/pgds — Gsda —/ [k3s + Ts3(w')]da
N 31 3
Cy = —/ EafTappds —/ capTaGpda —/ EapTaplhps + Tps(W')]da
T 31 3
4
kij = Z Cijk?)brw](:)
r=1
From Equations 4.3.9, 4.3.10, and 4.7.1, we get

1 1 1 1 1
u! = ——bamg — écaxg - §dam§ — 4828 <6b4x§ + 504333 + d4x3>

1 .
+ Z (dj +cjzs + 2bj$:2))> w{) + 23w, + wl,

j=1
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1 1
uy = g(bpxp + bB)xg + 5 (cpzp + 03)35% + (dpz) + d3)zs

2
4 LN o o (4.7.5)
+ ; <dj +cjas+ 2bjm3) wy + Taws + ws
By Equations 1.1.2, 4.3.12, and 4.7.5,
. 1
tij(u”) = ;:1 <dr + cras + Qbr@) tij(u") + 3k + K,
+ Tij(w") + 25 Ti5 (W) (4.7.6)

where
4
/ / (s)
ki; = Cijrswy, + E csCijrawy,
s=1

The equations of equilibrium and the conditions on the lateral boundary

reduce to

Tia(W") o +hi=00n%
(Tia(w)), . ' (4.7.7)
Tia(Ww'ng =¢onT

where

4
hi = Gi+ kig o + Tis(W) + kig + Y ,tiz(u™)
r=1
i = pi — kjgna

Using the divergence theorem, we find that
/ hida + / qids = [ Gida + /pids — R;(u’y) = P, — R;(u')
o r oA r ' '

/€aﬁxah5da+/5agxaqu8:/sag;vanga—f—/sagxapgda
s r r

1 P

— Hs(uy) = Q3 — Hz(u'y)

The conditions
R;(u’3) = P H3(u'y) = Q3

were used to obtain Equations 4.7.2 and 4.7.4.

We conclude that the necessary and sufficient conditions for the existence
of a solution of the boundary-value problem 4.7.7 are satisfied.

From Equations 4.7.4 and 4.7.6, we obtain

4
Ho(u's) = epa ( > Dhici+ /E zglkss + T33(W')]da)
i=1 1

(4.7.8)
sga</zgp3ds+/ Q:ﬁnga) +eapls
r N
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With the help of Theorem 2.4.1, we get

H(,,(ufg) = €a5<Amgp3dS+/2:I5G3da> +5agR5(u") (479)
1

It follows from Equations 4.7.8 and 4.7.9 that R,(u”) = F,. The conditions
R3(u”) = F3, H(u”) = M reduce to

ZD* dy=E,, (r=1,23,4) (4.7.10)

where

Eo =eapMp — / Talkis + Ts3(w")]da
P

By = / [k + Tas (w")]da
PN

Ey=—M3— / EaBTa [%3 + Tp3(w")]da
31

The system 4.7.10 determines the vector d. Thus we have determined the vec-
tors b ¢, and d and the vector fields w’ and w” to have u” € K;r;(F,M, G, p).
|

Let us consider the Almansi problem. Let u* be an equilibrium displacement
field on B corresponding to the body force f = gz¥ that satisfies the conditions

s(u*) =qzz onll, R(u’)=0, H(u")=0 (4.7.11)

where g and p are vector fields independent of x3, and n is a positive integer
or Zero.
We denote by u an equilibrium displacement field on B, corresponding to

the body force f = gxg”rl that satisfies the conditions

s(u) = qzy ™ on 11, R(u) =0, H(u) =0 (4.7.12)

With the help of the results obtained in Section 2.4, the Almansi problem
reduces to the problem of finding a vector field u once the vector field u* is
known. As in Section 2.4, we are led to seek the vector field u in the form

a=(n+1) UOI w*das + u'{a) +w} (4.7.13)

where @ = (a1, az, ag, a4) is an unknown vector, u’{a} is given by Equa-
tion 4.3.9, and w is an unknown vector field independent of x3.
By Equations 4.3.12 and 4.7.13,

i) = -+ )| [ e+ 3 i) 4 T + 3
r=1
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where
*
9ij = Cijrsur(x1,2,0)

The equilibrium equations and the conditions on the lateral boundary

reduce to

(Tia(w)), on 21 (4.7.14)
Tia(W)ng = ¢, onT

where
hi = Gia,a + [tis(u)](z1,22,0), ¢ = —giaNa

We can write

/ hida + / ¢;ds = —R;(u*) =0

o r

/ Eaﬁxah,’gda + / 5a5$aq’ﬁds = —Q3(u*) =0
s r

The necessary and sufficient conditions for the existence of a solution to the
boundary-value problem 4.7.14 are satisfied. We conclude that the vector field
w is characterized by the generalized plane strain problem 4.7.14.

With the help of Theorem 2.4.1, we get R, (u) = egoHs[(n + 1)u*] = 0.
The conditions R3(u) = 0 and H(u) = 0 imply that

4
> Dias=ky, (r=1,2,34) (4.7.15)
s=1

where
o = — / 2o [Tss (W) + gss]da
P

ks = _/2 [T33(W) + g3s]da

ky = —/ cap®alT38(W) + g3glda
P

Thus, the constant vector @ is determined by Equation 4.7.15.
The solution presented in this section coincides with the solution established

in Ref. 150 using the semi-inverse method. Various applications are presented
in Ref. 175.

4.8 Orthotropic Bodies

A large number of works are devoted to the deformation of anisotropic cylin-
ders with various symmetry properties of the material. The torsion problem
for an orthotropic material was first studied by Saint-Venant [291]. An account
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of the historical development of the subject as well as references to various
contributions may be found in the works of Lekhnitskii [204], Sokolnikoff [313],
Bors [28], and Khatiashvili [175].

In the first part of this section, we study Saint-Venant’s problem when the
material is homogeneous and orthotropic. The solution for the case when
the medium is homogeneous and has a plane of elastic symmetry, normal to
the axis of cylinder, can be obtained in the same manner. In the second part
of this section, we present the solution of Almansi—-Michell problem.

For an orthotropic material, the nonzero components of the elasticity tensor
are Cr111, Cr122, C1133, C2202, C2233, C3333, C2323, C3131, and Cia12. In what
follows, we use the notations

A = Chua, Aso = Ca229, Ass = U333, A1z = Ag1 = Chiae
A1z = Az1 = Chiss, Agz = Azy = Caaas (4.8.1)
Ayq = Coaas, Ass = Cs131, Ags = Cr212

The constitutive equations 1.1.2 reduce to

t11 = Ar1e11 + Aisess + Aizess

oo = Aize11 + Agsean + Aszess (4.8.2)
tsz = Aizer1 + Agzeas + Assess -

tog = 2A44€93, t31 = 2As5e31, tio = 2A66€12

where, for convenience, we have suppressed the argument u in the components
of the stress tensor and the strain tensor. We assume that the constitutive
coeflicients are constant. The condition that C is positive definite implies

A11 > 0, A11A22 — A%2 > O7 det (Azy) > 0, A44 > O,

A55 > 0, A66 >0 (483)

In this section, we apply the results established in the preceding sections
to obtain the solution of Saint-Venant’s problem for orthotropic bodies. The
constitutive equations 4.2.2 for the generalized plane strain problem become

ti1 = Ajiui 1 + Aigus g, tag = Ajouy,1 + Axouap
sz = Ajsui 1 + Aoguz 2, tog = Asqus o (4.8.4)
t31 = Assus;1, t12 = Ass(u1,2 + u2,1)

The equations of equilibrium 4.2.3 reduce to

9?2 0?2 02us
<A118$%+A668%) u1+(A12+A66)8 Oy +f1i=0
R
(A2 + AGG)a 5‘ . <A668 Agga > Uz + fo =0 (4.8.5)
(A5532+ )u;;—l—fg—OonZl
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The boundary conditions 4.2.4 can be expressed in the form

(A11u1,1 + Argug 2)ny + Ag(ur e + uz1)ng = p1
Age(u1,2 + uz1)n + (Aigur,1 + Asaus 2)ne = po (4.8.6)
Assuzini + Agauz ong = pson I’

It follows from Equations 4.8.5 and 4.8.6 that in the case of orthotropic
bodies the generalized plane strain problem reduces to the solution of two
boundary-value problems. The first boundary-value problem consists in the
determination of the functions u; and ug which satisfy Equations 4.8.5; 2 and
the boundary conditions 4.8.61 2. This is a plane strain problem for homoge-
neous and orthotropic cylinders. The study of this problem will be presented
in Section 4.9. The second boundary-value problem consists in the finding of
the function ws which satisfies Equation 4.8.55 and the boundary condition
4.8.63. This is an antiplane problem for the considered cylinder.

4.8.1 Extension, Bending, and Torsion
of Orthotropic Cylinders

We shall use the solution 4.3.1 to obtain the displacement vector field cor-
responding to the problem of extension, bending, and torsion of homogeneous
and orthotropic cylinders. The vector field w from Equation 4.3.1 has the
form 4.3.6, where w(*) are the solutions of the generalized plane strain prob-
lems 4.3.7 and 4.3.8. Thus, for homogeneous and orthotropic bodies, the vector
field w1 satisfies the equations

A11w1 1+ Agewl) 22 + (A2 + A66)w2 2t A13=0

(A2 + A66)w1 12+ A66w2 1t A22w2 22=10 (4.8.7)

(1
A55w3’11 + Agawg 9o = 0 on ¥y

and the boundary conditions

(1)

(An'w —+ A12w )77,1 —+ A66(w1 2 + w2 1) U») 7A13’13177,1

—Agzw1na (4.8.8)

Agé (w§12) + w(l))nl + (Algwi 2 + Aggwé %)ng

(1)

Asswg 1n1 + A44w3 sng =0onT

We seek the solution of the boundary-value problem 4.8.7 and 4.8.8 in the
form

wd = 2 = W _q

1
—i(ulx%—ygxz , = —UsX X2, wy ' =0, (z1,22) € 31
(4.8.9)
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where 11 and v, are unknown constants. It is easy to see that Equations 4.8.7
and the boundary conditions 4.8.8 are satisfied if

Anv + Aove = Ags
Aqavy + Agavs = Ags

In view of the relations 4.8.3, we can determine v and vs,

1
v = 5 (A13A22 — Az Aia), Vo = 6*1(1423A11 — Ai3A12) (4.8.10)
where
by = A Aoy — Al (4.8.11)

Similarly, we find that

(2) @ 1 2 2 (2)
w,’ = —UV1x1T2, Wy ' = —(1127 — V2x3), wy =0

' e 2 = glel —wn) i (4.8.12)
w§3) = —rT, wég) = —l12Ty, wg?’) =0, (z1,22) €%

It follows from Equations 4.3.7 and 4.3.8 that the vector field w® satisfies
the equations

Allwl T A66w1 22 F (A12 + A66)w2 12 =0

(A2 + A66)w1 12+ A66w2 1t A22w2 22 =10 (4.8.13)

A55’U}§7%1 + A44’LU§?2)2 =0on 21

and the boundary conditions

(Anwl 1+ Alg’w )’I’L1 + Aﬁﬁ(w 3) + w(?’)) =0

Ags(w®) + wégf)nl + (Aw®) + A22w232))n2 —0 (4.8.14)

(3) (3)
A55w371n1 + A44w3,2n2 = A553:2n1 — A44I1’/l2 onI’

The solution of the boundary-value problem 4.8.13 and 4.8.14 is given by
wi® =0, wi =0, wi = p(r1,2), (w1,72) €%y (4.8.15)
where ¢ satisfies the equation
Assp.11 + Asap 20 =0 0n X (4.8.16)
and the boundary condition

A55<p,1n1 + A44<p,2n2 = A55x2n1 — Agpuzinoon T (4817)
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It follows from Equations 4.3.1, 4.3.6, 4.8.9, 4.8.12, and 4.8.15 that the solution
of the problem of extension, bending, and torsion for orthotropic cylinders is
given by

o_ 1 2 2 2
uj = —ial(gcg + 1 T] — Vol5) — a1 T1To — Q31T — A4Tak3
1 4
0 2 2 2 .8.18
Uy = —A1VaT 1T — 5@2(333 — 1 T] + Voxs) — aslexs + agr1x3 ( )

ud = (@121 + asxs + a3z)xs + asp(x1,x2), (1,72,73) € B

where the constants ay, (k = 1,2,3,4), are determined from Equations 4.3.15.
For homogeneous and orthotropic cylinders, the system 4.3.15 has a spe-
cial form. Let us study the coefficients D, (r,s = 1,2,3,4). From Equa-
tions 4.3.10 and 4.8.9, we get

1
ugl) = —5(.1‘3 + 1/1117% — Vgl‘%), ugl) = —V2X1Z9, uél) = X1T3
so that
t33(u(1)) = —(Algl/l + A23V2 - A33)1’1, t3ﬁ(u(1)) = 0 (4819)

By Equations 4.3.16 and 4.8.19, we obtain

D*, = (As3 — Ai3v1 — Aosin)l,

31 (As3 131 23V2) 10 ) (4.8.20)

D31 = (A33 — A13V1 - A23V2)A.’E17 D41 =0

where I,5,2%, and A are defined by Equations 1.7.14 and 1.4.9. In view of
Equations 4.8.10, we get

d2
A33 — A13V1 - A23V2 = (571 (4821)
where 6 = det (A4;;), and &; is given by Equation 4.8.11. If we introduce the

notation
0o

Ey=—= (4.8.22)
01
then from Equations 4.8.20, we find that
D, = Eola, D}, = Axd, Dy =0
In the same manner, we arrive at
D? ;= Eylygs, D3, = EgAx?, D;, =0
S 4 (4.8.23)
D3q = EpA, Djs =0, Dy, = Dy
where
Dy = / [Agam1(p 2 +71) — As572(0,1 — 72)]da (4.8.24)
¥
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The system 4.3.15 reduces to

EQ(Iaﬂag + A:Z?gag) = €aﬂM5

; ; o - (4.8.25)
EoA(ayz] + aszy + a3) = —F3, Doas = —M;

We note that the torsion problem can be treated independently of the ex-
tension and bending problems.
The solution of the torsion problem is

Uq = G4EGaTRT3, Uz = a4 (4.8.26)

where ¢ satisfies the boundary-value problem 4.8.16 and 4.8.17, and the con-
stant a4 is given by Equation 4.8.25.

Remark. The finding of the torsion function for homogeneous and orthotropic
cylinders can be reduced to the determination of the torsion function for
certain homogeneous and isotropic cylinders. We introduce new independent
variables & by

94 1/2 94 1/2
1 =& <55> , Ty = &2 (44) ; 3 = &3

Ayq + Ass Ayg + Ass
(4.8.27)
Let X7 be the image of 3; under the mapping 4.8.27.
We assume that the curve I' admits the representation
f(z1,22) =0, z3 =0
and denote
(€1, &2) = flr1(61), v2(&2)]
Let T'yx be the curve described by the equations
[7(&1,&2) =0, §=0
We introduce the function G defined by
Agg + Ass
G = ———
(51752) 2\/@@[171(51)51’2(52)}

Clearly,

G _ (Au+ A\ 0 0G  (Aut A\ 0p

o0& 2A44 Oxq’ 0y 2As5 O

PG _ (AP 0G_ (Au\V O

85% - A44 QI% ’ 86% a A55 81‘%

of* _( 2455 )1/28f of* _( 2A44 )1/2af

&1 Agg + Ass Oy’ 3] Agg + Ass 0z2
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It follows from Equation 4.8.16 that the function G satisfies the equations

0’G  9°G
— 4+ =5 =00on X}
o "o T
The boundary condition 4.8.17 reduces to
oG oG
—n] + —nj =&n] —&nson L,
agl 1 852 2 €2 1 §1 2

where (n},n3) are the components of the outward normal unit vector along T'...
We conclude that G is the torsion function for a homogeneous and isotropic
cylinder with the cross section Xj.

4.8.2 Flexure

In the case of homogeneous and orthotropic elastic materials, the solu-
tion 4.4.4 takes a special form. First, from Equations 4.4.3 and 4.8.23, we
obtain the following system for the constants by, (k =1,2,3,4),

Eo(Iapbg + AzSbs) = —F,
EgA(bya) + boa§ +b3) =0,  by=0
By Equations 4.3.10, 4.8.9, 4.8.12, 4.8.15, and 4.8.19, we get
t33(u(“)) = Eyx,, tg@(u(a)) =0
tss(u®) = By, taq(u®) =0,  tss(u?)=0 (4.8.29)
ta1(u®) = Ass(p1 — 29), tza(u®) = Ayy(po + 1)
so that the functions ks which appear in Equation 4.4.5 are given by
ko = kga =0, kss =0
ka1 = kig = Ass (biw!” + bow'® + byw™) (4.8.30)
ko = k3o = Ay (blwél) + b2w§2) + b3w§3))

(4.8.28)

Here, w&k) are defined in Equations 4.8.9 and 4.8.12. The body forces f/ for
the generalized plane strain problem 4.4.6 and 4.4.7 reduce to

fi=0, fs =0, f3 = (Eo— Assvi — Agara) (biw1 +baza +b3)  (4.8.31)
The surface tractions p} associated to this problem become

p1=0, ph=0, p3=@Q (4.8.32)

where

1
Q = Ass {251 (123 — vaad) + bavizias + bsV1332] ny

1
+ A |:b1V2£L'1{L‘2 + §b2 (VQ.T% — Vll'%) + b3V2.%‘2:| No (4833)
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By using Equations 4.8.5, 4.8.6, 4.8.31, and 4.8.32, we conclude that the so-
lution of the generalized plane strain problem 4.4.6 and 4.4.7 is given by

wy =0, wy =0, wy = (4.8.34)
where the function v satisfies the equation
Asst 11 + Aaatp 00 = (Assin + Agave — Eg)(bizy + baza +bg) on 37 (4.8.35)
and the boundary condition
Assthing + Agatpang = Qon T (4.8.36)

From Equations 4.3.3, 4.8.1, and 4.8.34, we get

Tsz(w') =0, Toz(W') = Aua) o, Tiz(w') = Ass1 4 (4.8.37)
so that the system 4.4.9 reduces to

Eo(Inpcs + Azles) =0
: * (4.8.38)
clx? + chg +c3=0

and

3
Dycy = / {A55$21/)71 — Auzia+ Y (Asswabjwl’) — Aggzibjws”) |da
1 j=1
(4.8.39)
By Equation 4.8.38, we find that

¢ =0, (i=1,2,3) (4.8.40)

The constant ¢y is given by Equation 4.8.39.

It follows from Equations 4.4.4, 4.8.28, 4.8.34, 4.8.40, 4.8.9, 4.8.12, and
4.8.15 that the solution of the flexure problem for homogeneous and or-
thotropic cylinders is

1 1
2 2 2
uy = —§b1 §x3 + 127 — vexs | k3 — bavi 1wy — b3viT103 — 423

!/

2 2 2
Uy = —b11ox129T3 — §b2 (xg -]+ Vng)xg — b3oxoxy + c41x3

1
ug = §(b1$1 + bozo + b3>$§ + C4<P($1a552) + P(x1, 22), (3717x2’x3) €B
(4.8.41)
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4.8.3 Uniformly Loaded Cylinders

The solution 4.7.5 of the Almansi—Michell problem will now be specialized
to the case of homogeneous and orthotropic bodies. In view of Equations
4.8.23, the system 4.7.2 takes the form

Ey (Iagbg + A.Igbg) = f/ Goda — / Pads
N r

b1.’L‘(1) + bzl‘g +b3=0

by =0

It follows from Equations 4.8.9, 4.8.12, 4.8.15, 4.8.29, and 4.8.30 that the
solution of the boundary-value problem 4.7.3 is

wy =0, wh =0, wy =1 (4.8.43)

where 9 is characterized by the boundary-value problem 4.8.35 and 4.8.36
with by defined by Equations 4.8.42.
The system 4.7.4 reduces to

Eo([aﬁ;cﬁ + AJJgCg) = —/
>

(4.8.42)

roGsda — / Tap3ds — Fy
1 T

EoA(c12d + o2 + ¢c3) = — | Gada — /pst
> " (4.8.44)

Dycy = —/ €aptaGpda — / Eagxapﬁds-i-/ |:A55£L'21/)’1
21 r Zl
3
— Apzipa + )
i=1

j=

(A55l‘gbjw§j) — A44l‘1bjw§j)):| da

The boundary-value problem 4.7.7 reduces to the solution of two indepen-
dent boundary-value problems. The first problem consists in finding of the
functions w! which satisfy the equations of the plane strain problem

Anwy 1 + Asew? 99 + (Ar2 + Ags)wh 12 +h1 =0

4.8.45
(Alz + A66)w’1'712 + (A66w§’711 + A22w/2/722) + hg =0on 21 ( )
and the boundary conditions
(Aniwy + Arzwy 5)na + Age(wi s + w3y )n2 = q1 (4.8.46)
Ags(wy o 4wy 1) + (Argwy ;) + Agwy y)ng = gz on T o
where
3 .
h1=G1+4 (A3 + As5) (Y1 +cap1) + A55<Z bjw§3) - C41‘2>
=1
N (4.8.47)
ho = Ga + (A3 + Aua) (V2 + cap2) + Aua ( Z bjws" + 041’1>
=1
@1 = p1 — A13( + cap)na, q2 = p2 — Aa3 (VY + cap)no
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We have seen in Section 4.7 that the necessary and sufficient conditions for
the existence of a solution of the boundary-value problem 4.8.45 and 4.8.46
are satisfied. In what follows, we assume that w!, are known functions.

We introduce the notation w4 = x. The second boundary-value problem
derived from Equation 4.7.7 consists in the determination of the function y
which satisfies the equation

A55X,11 + A44X,22 =—-G3— (Eo — Assv1 — A44V2)(C1CE1 + coxo + 03) on X
(4.8.48)
and the boundary condition

3
A55X71n1 + A44X72n2 = P3 — Z Cj (A55ng)n1 + A44w§])n2) on I (4849)

j=1

We note that T33 (W//) = O7 Tgl(W//) = A55X71 and T32 (W”) = A44X72. Thus,
Equations 4.7.10 reduce to

Ey (Iaﬁdﬁ + Amgdg) = eqpMp — / xaA33(¢ + cap)da
31

EgA(d2) + dox + d3) = —F3 — / Asz3 (¢ + cap)da
DY

4.8.50
Dody = —M3 — / Agpazix,2 — AssTax 1 ( )
¥

Cj (A44x1w£j) — A55£L’2’W§j)) da

3
=1

+
J

By Equation 4.7.5, we conclude that the solution of Almansi—Michell prob-
lem for homogeneous and orthotropic cylinders is given by

1 1 1 1
uf = _Zbl (6;3% + le% — 1/2m3> x% — 5[)21/11'1(E2£C§ — §b3l/1x1x§

1
2 2 2
_ 561 (.’Es + V1] — Vxy | X3 — CoV1X1T2T3 — C3V1T1L3

3

1
2 2 2
— —dy (333 + vy — 1/2952) — dov1x129 — d3n a1

2
1 2 "
— 504333 +dazs | 2 + W)
1 1 1 1
ul = —7b1u2x1x2x§ — —by fatg — Vlzv% + Vg.’)i‘% :v% — *b3V21‘2$C§
2 4 6 2
1 L, 2 2
— C1V2X1X2X3 — 562 5373 — "Iy + Vo | T3 — C3V2X2X3
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1
2 2 2
— divex1To — 5(12(1‘3 — ]+ VQJTQ) — d3voTs

1
+ (204:10% + d4> x1 + wh

1 1
uy = E(baxa + bg)ad + i(ca%‘ +¢3)22 4 (doto + d3)zs
+ (cqws + dy)p + x30 + X (4.8.51)

The constants b, cs, and dg, (s = 1,2,3,4), are given by Equations 4.8.42,
4.8.44, and 4.8.50, respectively.

By using the results of Sections 2.3 and 4.7, we can also derive the solution
of Almansi problem.

4.9 Plane Strain Problem of Orthotropic Bodies

In the previous section, we have seen the important role of the plane strain
problem in the study of Saint-Venant’s problem for orthotropic cylinders. The
state of plane strain of cylinder B is defined by Equations 1.5.1. It is easy to
see that the basic equations of the plane strain of orthotropic cylinders consist
of the equations of equilibrium

tga,p + fa =0 (4.9.1)
the constitutive equations
t11 = Ajren + Arzeas, tag = Ajgerr + Aszean, ti2 = 246612 (4.9.2)
and the geometrical equations
2e43 = Uq,8 + UB,a (4.9.3)

on ;. We restrict our attention to homogeneous bodies so that the constitu-
tive coeflicients A3 and Agg are prescribed constants. We continue to assume
that the elastic potential is a positive definite quadratic form. This fact implies
that

A > 0, A1 Axg — A%Q >0, A66 >0 (494)

The nonzero surface tractions acting at a point x on the curve I' are given by
Sa = tgang (4.9.5)

where n, = cos(ng, x,), and n, is the unit vector of the outward normal to
I at x.
In the case of the first boundary-value problem, the boundary conditions are

Ug = U on I’ (4.9.6)
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The first boundary-value problem consists in the determination of the func-
tions u, € C%(31) N CY(X;) that satisfy Equations 4.9.1, 4.9.2, and 4.9.3 on
31 and the boundary conditions 4.9.6.

The second boundary-value problem is characterized by Equations 4.9.1,
4.9.2, and 4.9.3 the following boundary conditions

tang =t on T (4.9.7)

The plane strain problems for homogeneous and orthotropic bodies can be
studied with the aid of the method of functions of complex variables [113,204].
For isotropic bodies, this method has been presented in Section 1.5. In this
section, we present the method of potentials [194,196]. This method has been
applied for anisotropic bodies by various authors. Here we present some of
the results established by Basheleishvili and Kupradze [10] and Basheleishvili
[13]. We note that the method of potentials is a constructive one.

The equations of equilibrium can be expressed in terms of displacement
vector field,

Ar1ur a1 + Assur 22 + (A12 + Aes)uz,12+ f1 =0

(4.9.8)
(A12 + Agp)ui,12 + Agsa,11 + Azoua 20+ fo =0

on 21.
4.9.1 Galerkin Representation

We present a counterpart of the Boussinesq—Somigliana—Galerkin solution
in the classical elastostatics. We introduce the notation

94 4 4
M = AllAGGaixil + (A Agg — A3y — 2A12A66)W + A22A6687x121 (4.9.9)
Theorem 4.9.1 Let
0? 0? 0%G
up = (A6662 + A222) G1— (A2 + A66)72
g 0x3 0x10x2
02a, 52 92 (4.9.10)
ug = —(A12 + AGG)M + (Allal% + AGG@g;%) Gs
where the fields G, of class C* satisfy the equations
E)JTG1 = _f1, mGQ = —f2 (4911)

Then uy and ug satisfy Equations 4.9.8.
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Proof. By Equations 4.9.10,

Avur 11 + Aseu 22 + (Ar2 + Ags)ug 12

9? N 9? 02
= (An + As6 5 > <A66 + Ao ) G

0z3 x3 Oz? 0z3
0%Gy
— (A App) ——2
(A2 + Ao) 5 52 | (4.9.12)
0% T 0? 02
A Ags) m——— || A11== + A6 =
+ (A2 + 66)8x18x2 ( Hax% =+ 668x%) Ga
0%G, ]
— (A A = MG
(A2 + 66)am18x2_ 1
Similarly, we get
(A12 + Agp)ur 12 + Assua,11 + Asotz 20 = MGy (4.9.13)
From Equations 4.9.11, we obtain the desired result. O

4.9.2 Fundamental Solutions

We now apply the representation 4.9.10 to derive the fundamental solutions
of the field equations 4.9.8. First, we assume that

fl:(;(x_y)v f2:0

where d(-) is the Dirac delta and y(y,) is a fixed point. If we take G; = g and
Go = 0, then Equations 4.9.11 are satisfied if g satisfies the equation

Mg = —5(x —y) (4.9.14)
From Equations 4.9.10, we obtain the following displacements

(1

Uy ) = Ags69.11 + A229 22, ué” = —(A12+ As6)9,12 (4.9.15)

In the case of the following body forces
J1=0, fo=0(z—y)

Equations 4.9.11 are satisfied if G; = 0 and G2 = g. By Equations 4.9.10, we
find the corresponding displacements

(2

ut? = —(A12 + Ag6)g.12, us? = Au1ga1 + Asog,22 (4.9.16)

The functions ug, ) given by Equations 4.9.15 and 4.9.16 represent the funda-

mental solutions of the system 4.9.8.
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In view of relations 4.9.4, we conclude that the system 4.9.8 is elliptic. We
consider the characteristic equation

A22A66a4 + (A11A22 - A§2 - 2A12A66)Oé2 + A11A66 =0 (4917)
The roots of Equation 4.9.17 have the form
ap = ap + by, a,=a,—1ib,, b,>0, p=12 (4.9.18)

We assume that a; # . The equality a; = a holds only for isotropic bodies.
We introduce the notations

1 a1 o aof
1 & o a
A= s sl d=detA (4.9.19)
1 o o5 a3
1 @ a5 as

and denote by dj, the cofactor of o divided by d. Following Levi [208] (see
also Kupradze [194]), the solution of Equation 4.9.14 is

2

g= a%mdeoz In oy, (4.9.20)
k=1
where
+ ag( ) ! (4.9.21)
op =21 — ag(Ty — a=——"— 9.
k 1~ Y k(T2 — Y2), 27 Ay Ags

It is easy to verify that

2 2 2
_ L __L 20 — 1
de = 220, kzzjlakdk = QZA, ;akdk = QZB (1.9.22)
A=2(asbi +arbs)y,  B=2[bi(a3+b3) +bs(ai +b7)]y
C = 2(b1 + bQ)’}/, ")/71 = 2b1b2 [(CLl — CL2)2 + (bl + bg)z]

Let I'(x,y) be the matrix of fundamental solutions of the system 4.9.8

I'(z,y) = [[Tap(@,y)ll2x2 (4.9.23)
where
Lap = ul) (4.9.24)

Substituting function 4.9.20 into Equations 4.9.15 and 4.9.16, we find that

A, By

| 1.9.25
B, C.|| " (4.9.25)

2
D(z,y) =Smy
k=1
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where

A, = 20,(14220[% + A66)dk

9 (4.9.26)
By, = —2a(A12 + Ags) g dy, Cr = 2(1(14660% + A11)dk
We note that
ApCy — B =0, (k=1,2) (4.9.27)
Clearly, we have
L(z,y) =T"(z,y) (4.9.28)

where M* is the transpose of the matrix M. If 2 # vy, each column T'®)(z, ),
(s = 1,2), of the matrix I'(z,y) satisfies at & the homogeneous system 4.9.8.
We introduce the matricial differential operator

0 0
D () _ HDW () (4.9.20)
ox 0z / ||95o
where
0 0? 0?
D — | =A11=— + Aes =
11 <8x> 1183@% + Aes o2
0 0 0?
D — | =D — | = Ap—r-— 4.9.30
12 <6x) 21 <a$) 12 3116‘x2 ( )
0 02 0?
D — A A
22 <8x> 668$% + 275 2
The system 4.9.8 can be written in matricial form. Following Kupradze
[195], the vector v = (v1,v2, ...,V ) shall be considered as a column ma-
trix. Thus, the product of the matrix A = ||a;j||mxm and the vector v =
(v1,v2,...,0y) is an m-dimensional vector. The vector v multiplied by the

matrix A will denote the matrix product between the row matrix ||vq, v, ...,
U || and the matrix A. We denote

u=(u,u2),  F=(f1,f2) (4.9.31)
The system 4.9.8 can be written in the form

0

D (m) u=—F (4.9.32)

We introduce the matricial operator
0] 0]
H{— xz | — Ha a oz
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where
0 0 0
H — =A A —
11 (&E,nw) 1M1 a1 + Agene 92,
0 0 0
H —ng | =A A —
12 (81’” ) 6672 a1 + A12m1 92,
0 0 0
Hoyi | =—.,n, | =A A
21 (81’” ) 12712 a1 + Ageni1 92,
0 0 0
Hoy | —.,n, | =A A
22 (81’” ) 6671 a1 + Agano 92,
If we denote
T = (51, 82)

then the relations 4.9.5 reduce to

0
T_H(ax,nm)u

159

(4.9.34)

(4.9.35)

(4.9.36)

Let H;(0/0x,ny) be the row matrix with the elements H;;(9/0z,ny), (i,j =

1,2). Clearly,

For convenience, we denote

0
Tc(f)u =H, (&C,ng;) U

Let us introduce the matrix

T V(x,y) = H <§y, ny> [(z,y)

If we use the relations

An Ay + Arpag B, = —ag Ags (Axau, + Br)
An By, + A12axCr = —ay Age(Brag + Ck)
Ago(Br + Agar) = —ay(A12Ag + Ao Broy,)
Age(Brag + Cr) = —ag(A12By, + A2204C)

0 In Olnoy cos(ny, 1) Ol oy, cos(ny, T2)
o = ,
88y k 62./2 Yy L1 8y1 ys L2
1
= —[cos(ny, x2) — ay cos(ny, 1))
ok
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then we obtain )
0
Tl(y)F(l) (z,y) =Sm Z Lka— Inoy,

Sy

2
0
Tg(y)F(l)(x, y) =Sm Z M’“aT In oy,
k=1 v

9 (4.9.40)
0
Tl(y)F(Q) (ZL’, y) =Qm ; Nkaisy Inoy,
29
TT® (2,y) =Sm Y Pka—% In oy,
k=1
Here we have used the notations
1
Ly = 5 [2(bibe = araz)andy - (-D*ar/(ar —a2)], My =—Ly/ay
1
Nip = 5-[2(b1b2 — araz)idy — (—1)*aqas/(ay — a2)], P = —Ni/ay
(4.9.41)

We denote by A(z,y) the matrix obtained from Equation 4.9.39 by inter-
changing the rows and columns,

8 *
A(z,y) = [H (aymy) F(x,y)} (4.9.42)
In view of Equations 4.9.40, we can write

0
—1 4.9.4
75, noy (4.9.43)

It follows from Equations 4.9.21, 4.9.22, 4.9.26, and 4.9.41 that

[\v]

2 2
1.
2 Ly = 27r(1 —ikA), kz:: —mC kZNk = —ﬂmB

2
Sn
k=1

where A, B, and C are defined by relations 4.9.22.
It is easy to verify that for « # y, each column of the matrix A(x,y) satisfies
at = the homogeneous system 4.9.8.

1
%(1 +ikA), k=biby—ajaz (4.9.44)

4.9.3 Somigliana Relations

Let us consider two states of plane strain for the domain ¥, characterized

by the displacements u( ~) , the components of the strain tensor e&?, and the
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components of the stress tensor tg"ﬁ), (k = 1,2). We assume that the state

{ugf), g}), tg ﬂ?} corresponds to the body forces f4™. Thus, we have

) w9 () (R) —
aﬁ_g( B+ W) tgap TSV =0

= Al + Agelty), 15 = 2A446¢'5), 155 = Argely) + Aggely)
(4.9.45)
on ¥, (k =1,2). If we denote
W = t)el) (4.9.46)
then, with the aid of the constitutive equations, we get

Wiy = Way (4.9.47)

On the other hand, by using the strain-displacement relation and the equa-
tions of equilibrium, we find that

W = t§uiy = (1ful) 5+ Ful (4.9.48)

If we integrate this relation over 3 and use the divergence theorem, then we

obtain
/Wpﬁda:/ tgznguff)der/fép)ug‘)da (4.9.49)
b ax by

By Equations 4.9.47 and 4.9.49, we arrive at the following reciprocity relation

/fél)u((f)da—&—/ tg(zngu,(f)ds:/f,gf)ugl)da—i—/ t(ﬁza)ngu( )ds (4.9.50)
) 0% b

In the case of the plane strain of orthotropic bodies, the elastic potential is
given by

QW() = Ane%l + A22€§2 + 2A12€11622 + 4A666%2 (4951)

It follows from relations 4.9.4 that Wy is a positive definite quadratic form.
As in Section 1.5, we find that

2/ Woda:/fauadaJr/ t3angUads (4.9.52)
b b %

Thus we are led to the following theorem, the proof of which is strictly anal-
ogous to that given in Section 1.5.2.

Theorem 4.9.2 Assume that relations 4.9.4 holds. Then
(i) The first boundary-value problem has at most one solution

(i) Any two solutions of the second boundary-value problem are equal mod-
ulo a rigid displacement.
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Let ¥t be a domain in R? bounded by a simple closed C?-curve L, and
Y- =RAS'. Let u = (uy,uz) and v = (u}, u}) be two vector fields on I+
such that u,v € C2(S+) N CL(E ). The reciprocity relation 4.9.50 leads to

/E+ [uD (i) v—vD <‘1) u] da
:/L [u; (a@x’nm> . _5UH <8ax’n$> u] N (4.9.53)

From Equation 4.9.52, we get

2 Woda = 7/ uD (8) uda Jr/ uH <8,nz> uds (4.9.54)
S+ by ax L 833

Let X(y; €) be the sphere with the center in y and radius e. Let y € ¥ T and let
e be so small that X(y; €) be entirely contained in . Then the relation 4.9.53
can be applied for the region X T\X(y; ) to a regular vector field u = (u1,uz)
and to vector field v(z) = T'®)(z,y), (s = 1,2). We obtain the following
representation of Somigliana type

mw=A{W@wm(iygﬁ@w[HQimgrwwrwm}@m
- /)S Ty)D (a‘i)u(;@)d% (4.9.55)

In view of Equations 4.9.28 and 4.9.42, the relation 4.9.55 implies that
0
u(e) = [ [Pt (5 )uly) = Aep)uty)]| ds,
L dy
0
- / I(z,y)D (a)u(y)day (4.9.56)
»+ Y

4.9.4 Existence Results

In what follows, we restrict our attention to the equation

9]
Dl —|u=0 4.9.57
(5) (4.9.57)
In this case, Equation 4.9.54 becomes
0
uH [ —,ng | uds =2 Wods (4.9.58)
L Ox o+

We say that the vector field u = (u1, u2) is a regular solution of Equation 4.9.57
in ¥F if the formula 4.9.58 can be applied to u, and if u satisfies Equa-
tion 4.9.57 in ©7T.
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Let z € ¥7. We describe around z a circle Cr of sufficiently large radius
R, containing the region . We denote by X the region bounded by L and
Cgr. From Equations 4.9.54 and 4.9.57, we get

/ uH (a,nw)uds =2 Woda (4.9.59)
L+Cr O YR

If u satisfies the condition
27 a
lim R uH (, ngg)ude =0 (4.9.60)
R—oo 0 ax

then from Equation 4.9.59, we obtain

/ uH (a,nx>uds = -2 Woda (4.9.61)
L afl] Sr

We say that the vector field w is a regular solution of Equation 4.9.57 in ¥~
if formula 4.9.61 can be applied to v in %7, and if u satisfies Equation 4.9.57
in ¥~ and the condition 4.9.60.
We consider the following boundary-value problems:
Interior problems. To find a regular solution in X1 of Equation 4.9.57 sat-
isfying one of the conditions
lim u(z) = f1(y) (I1)

r—Y

lim 1 (a, n) u(z) = () (12)

z—y ox

where x € ¥,y € L, and f; and f5 are prescribed vector fields.
Ezxterior problems. To find a regular solution in X~ of Equation 4.9.57
satisfying one of the conditions

;13; u(z) = f3(y) (Ev)
tim H (ai n) u(@) = faly) (E2)

where x € X7,y € L, and f3 and f4 are given.

We assume that f1 and f3 are Holder continuously differentiable on L, and
f2 and f, are Holder continuous on L.

We denote by (IJ) and (E2) the homogeneous problems corresponding to
(I,) and (E,), respectively. We introduce the potential of a single layer

Vo) = [ Tayotu)ds, (1.9.62)

and the potential of a double layer

W (x;v) :/LA(x,y)V(y)dsy (4.9.63)
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where p = (p1, p2) is Holder continuous on L and v = (vy, 1) is Holder con-
tinuously differentiable on L. As in the classical theory of potentials [55,175],
we have the following results.

Theorem 4.9.3 The potential of a single layer is continuous on R2.

Theorem 4.9.4 The potential of a double layer has finite limits when the
point x tends to y € L from both within and without, and these limits are
respectively equal to

W+<y;u>:f§u<y> / Aly, (2}

(4.9.64)
W~ (y;v) / Ay, z)v(z)ds.

Theorem 4.9.5 H(9/0x,n,)V(x;p) tends to finite limits as the point x
tends to the boundary point y € L from within or without, and these limits
are respectively equal to

1 (o) Vi) T Lw+ [ | (5o ) v st
1 (gom ) V)| ==got+ [ 1 (g ) T2 pledas.

(4.9.65)

Theorem 4.9.6 The potentials V(x; p) and W (x;v) satisfy Equation 4.9.57
on LT UYL,

We seek the solutions of the problems (I;) and (E4) in the form of a double-
layer potential and the solutions of the problems (I3) and (Es2) in the form

of a single-layer potential. In view of Theorems 4.9.4 and 4.9.5, we obtain for
the unknown densities the following singular integral equations

—71/ /A (y, 2)v(2)ds. = f1(y) (11)
%p(y)—i—/A (y:2)p(2)ds. = f2(y) (I2)
; / Ay, 2)v(2)ds. = fs(y) (E1)
,%p(yH /L A*(y, 2)u(2)ds, = faly) (Ez)

where y € L. The homogeneous equations corresponding to equations ([7),
(1), (E1), and (E») for fy =0, (s = 1,2,3,4), will be denoted by (I?), (19),
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(EY), and (EY), respectively. The equations (I1) and (E3), (I2) and (E;) are

pairwise mutually associate equations.
If we introduce the notations

o =x1—y1+i(r2—Y2), r= [(371—?/1)2‘1‘(%2—192)2]1/2’ r=(Ta—Ya)€a

then we can write

0 . og 0 0
—Inop,=—Ihn—+ —Inr=—1nr

0s, O0sy, 1T  0sy 0sy

p IO rcos(r,n,) — L cos(r,n,) (4.9.66)
OO0 T
We note that
d dt
9 trds, = I = —idf (4.9.67)
ds, r o t—to

where t and %y are the affixes of the points y and z.

Taking into account Equations 4.9.66, 4.9.67, and 4.9.44 and pointing out
the characteristic part of the singular operator, the system (I;) can be written
in the form

v(to) + — H_zg :i“/LtV_(tzodt+lC(to):—2f1(to) (4.9.68)

It is not difficult to prove that the index of the system 4.9.68 is zero [194].
Thus, the system (I;) is a system of singular integral equations for which
Fredholm’s basic theorems are valid (cf. [196,242]). We note that the index of
the system (I3) is also zero [194].

Let us consider the problems (I;) and (FE3). The homogeneous equations
(I7) and (E3),

—%ww+1/A@,><>wZ=o (19)

—ip /A* (z,9)p(z)ds, =0 (E9)

have only trivial solutions. We assume the opposite and suppose that p® is a
solution of equation (EY), not equal to zero. Then the single-layer potential

vmﬁwzﬁrwm (y)ds,

satisfies the condition

[H (aay,ny) V(y;po)] . 0, yelL (4.9.69)
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When z tends to a point at infinity and y remains fixed on L, then uff ) tends

at infinity as dqagInr. If the density p = (p1, p2) of the potential of a single
layer satisfies the conditions

/ Pads =0, (a=1,2) (4.9.70)
L

then the potential V(x; p) satisfies the asymptotic relations

ov

V=01, 3

O(r~?)asr — oo (4.9.71)

where R is an arbitrary direction.
As in classical theory of potentials [55,172], we find that

/ H, (an) IO (2, y)dss = —((y)dap (4.9.72)
L 8:0
where

1, yext

1

0, yeX~

If we multiply the equation (EY) by ds, and integrate on L, on the basis of
Equation 4.9.72, we obtain

[ Awds, =0 (@=12)
L

so that the potential V(z; p") satisfies the relations 4.9.71. This fact implies
that V (z; p¥) satisfies the relation 4.9.60. Thus, we conclude that (i) V (x; p°)
satisfies Equation 4.9.57 on ¥~ and the condition 4.9.69 on Lj; (ii) the formula
4.9.61 can be applied to V(z;p%); and (iii) V(x;p°) satisfies the asymptotic
relations 4.9.71. It follows that

V(z;p°) =0o0n X~ (4.9.73)
According to the continuity of the single-layer potential, we have

[V(z;p")]T=00n L

Taking into account that V(x;p°) satisfies Equation 4.9.57 on ¥+, from the
uniqueness theorem, we get

V(x;p°) =0on BT (4.9.74)
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It follows from Equations 4.9.65, 4.9.73, and 4.9.74 that

0 * ) B
P(y) = [H (ay”y) V(y;po)] - {H ((ay,ny> V(y;po)} =0
Thus, our statement concerning the equation (EY) is valid.
Since the equations (1Y) and (EY) form an associate set of integral equations,

(I9) has also no nontrivial solution. We note that from Equation 4.9.72 and
the equation (E2), with fy = (fa1, fa2), we obtain

_/ pa(y)dsy = / f1ads, (04 = 172)

L L

We have derived the following results.

Theorem 4.9.7 The problem (I1) has solution for any Holder continuously
differentiable vector field f1. This solution is unique and can be expressed by

a double-layer potential.

Theorem 4.9.8 The problem (E3) can be solved if and only if

/ faads =0, (a=1,2)
L

We now consider the equations (I3) and (EY). We note that the vector field
w(z) = (e1 — c3z2, €2 + c321)

where ¢; are arbitrary constants, satisfies the boundary-value problem
D 9 wx)=0, zeX™t H 2n w(x)=0onL  (4.9.75)
ax - ) ) 81:7 xT - .
From Equation 4.9.56, we obtain
w(z) = 7/ Az, y)w(y)ds,, zeXT (4.9.76)
L

Passing to the limit in Equation 4.9.76 as the point x approaches the boundary
point zg € L from within, according to Equation 4.9.64, we get

%w(mo) —i—/LA(a:o,y)w(y)dsy =0

Hence, the matrix w(z) satisfies the equation (E?). Clearly, the vector fields

w(l) — (1,0)7 w(2) = (O, 1)7 w(g) - (_Z'Q,xl)
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are linearly independent solutions of the equation (EY?). According to the
second Fredholm theorem, the equation (I9) has at least three linearly inde-
pendent solutions v, (i = 1,2,3). It is not difficult to prove that v() form a
complete system of linearly independent solutions of the equation (19) [194].
This fact implies the completeness of the associate system (w(1)7w(2),w(3)).
Hence, the necessary and sufficient conditions to solve the equation (I3) have
the form

/ WO (@) fo(x)ds, =0, (j=1,2,3) (4.9.77)
L

If we take fo = (fl,fg), then the condition 4.9.77 can be written in the form

/ tods =0, /(xlf2 — 29t1)ds =0 (4.9.78)
L L

Thus, we have proved the following theorem.

Theorem 4.9.9 The problem (I3) can be solved if and only if the conditions
4.9.78 hold. The solution can be represented as a single-layer potential and s
determined within an additive rigid-displacement vector field.

In the same manner, we can study the problem (F7). The method of poten-
tials has been applied to study the plane strain problems for cylinders com-
posed of different homogeneous and anisotropic materials [14,194,285,320].
The generalized plane strain problem for homogeneous elastic solids was in-
vestigated by this method in various works (see, for example, Ref. 35).

4.10 Deformation of Elastic Cylinders Composed of
Nonhomogeneous and Anisotropic Materials

The results presented in Section 3.6 for elastic cylinders composed of dif-
ferent nonhomogeneous and isotropic materials can be extended to the case
of anisotropic bodies. In this section, we study Saint-Venant’s problem when
cylinder B is composed of different nonhomogeneous and anisotropic materi-
als. The results presented in this section have been established in Ref. 152.

We assume that B, is occupied by an anisotropic material with the elastic

coefficients C’i(f gl. We consider nonhomogeneous bodies characterized by

) = C (w1, x2),  (21,22) € A, (4.10.1)

The elastic coefficients are supposed to belong to C'°°, and the elastic potential
corresponding to the material which occupies B, is assumed to be a positive
definite quadratic form. Saint-Venant’s problem consists in the determination
of a displacement vector field u € C2(B;)NC?(By)NCY(B1)NCY (B2)NCO(B)
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that satisfies Equations 1.1.1, 1.1.2, and 1.1.8 on B, the conditions 3.1.1 on
the surface of separation Ilj, the conditions for x3 = 0, and the boundary
conditions 1.3.1.

4.10.1 Generalized Plane Strain Problem
for Composed Cylinders

We assume that cylinder B is composed of different nonhomogeneous and
anisotropic materials which occupy the domains B; and By introduced in
Section 3.1. For the generalized plane strain of this cylinder, the displacement
vector field has the form

u; = u]‘(l‘l,afg), (J?l,l‘g) S 21

We assume that the cylinder is subject to body forces f,gp ) and to surface

tractions p,(cp), associated to domain B,, and suppose that f]gp) and %V,gp) are

independent of x3. We restrict our attention to Neumann problem since this
problem is involved in the solution of Saint-Venant’s problem. In what follows,
we assume that fi(p) and tNi(p) belong to C*°.

The basic equations of the generalized plane strain problem consist of the
constitutive equations

tia = Ci2) stk (4.10.2)
and the equations of equilibrium
toia + [P =10 (4.10.3)

on A,. The conditions on the surface of separation reduce to
[Uz’]l = [ui]g, [tai]lng = [tai]zng on FO (4104)
The conditions on the lateral boundary take the form
tainal, = 6" on T, (4.10.5)

Following Fichera [88], a solution u, € C°(A;) N C®(A3) N CY(L;) of the
generalized plane strain problem exists if and only if

2

3 { / FPda + / tNi(p)ds} =0

pu i r,
5 (4.10.6)
Z [/ €a5$afép)da + / Erxﬁxatép)ds} -0
p=1 Ap r,
It is easy to show that if the conditions 4.10.4 are replaced by
[ui]l = [ui]g, [tuihng = [tui]gng +g;on Ty (4107)
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where g are C* functions, then the conditions 4.10.6 are replaced by

3 / f}”>da+/ P ds +/ gids =0
A, r, Ty

p=1
+/ €aBZagpds =0
To

2
Z [/ Eaﬁxafép)da—k/ Eaﬁxaftvgp)ds
A r

p=1 P P

(4.10.8)

We introduce the generalized plane strain problems P(*), (s = 1,2,3,4),
characterized by the constitutive equations

m) = O o on A, (s=1,2,3,4), (4.10.9)
the equilibrium equations

7 (CY)as) =0, (5=1,2)

ai,o

0, + 0L

1a33,a

-0 (4.10.10)

- Eng(C-(ngxﬂ)ﬁ =0on 4,

at,o 1K

and the following conditions

[Uz(S)h = [”z‘(S)]Z» [77((;)]1712[ = [W((;i)]zng + g§3) on Iy (4.10.11)
3
o naly = ~Clligepnas (B=12 [mnaly = —Clligna 00
[ﬂéi)na]p = EnﬁCfQL?,xgna onTl,
where
2 1 3 ) .
gz(ﬁ) = (Cz(oa)id - Ci(a?SS)xﬁnaa gf ) - (Cz(a?js — Cz'(a?jg)na

(4.10.13)
4 2 1
9" = ean(Clans = Clans)ana

It is easy to verify that the necessary and sufficient conditions 4.10.8 for the
existence of the solution are satisfied for each boundary-value problem P(*).

4.10.2 Extension, Bending by Terminal
Couples, and Torsion

We assume that the loading applied on the end ¥; is statically equivalent to
a force F = F3e3 and a moment M = Me,. Thus, the conditions for x3 =0
have the form

/ tazda =0 (4.10.14)
P

/ tszda = —F3, / ZTotszda = g Mp
> > (4.10.15)

/ €a5xat53da = 7M3
¥
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The problem consists in the finding of a displacement vector field that satisfies
Equations 1.1.1, 1.1.2, and 1.1.8 on B, the conditions 3.1.1 on Ily, and the
boundary conditions 1.3.1, 4.10.14, and 4.10.15.

We seek the solution in the form

1

Uy = —iaaxg — A4€apTaT3 + ;asvfj)
’ (4.10.16)
uz = (121 + a2x9 + az)xs + Z asv:(gs)
s=1

where v](f) are the components of the displacement vector in the problem
P®) and a; are unknown constants. By Equation 4.10.16 and the constitutive

equations, we get

4
ti; = C3(a11 + asws + az) — C\f)seapaazs + Y asmy on B, (4.10.17)
s=1

(s)

where 7,/ are given by Equation 4.10.9 and

7733 = C?Emﬂ”l 8

The equilibrium equations 1.1.8 and the boundary conditions 1.3.1 are sat-
isfied on the basis of the relations 4.10.10 and 4.10.12. The conditions 3.1.1
are satisfied in view of relations 4.10.11.

We can show that, on the basis of the equilibrium equations and the con-
ditions 3.1.1 and 1.3.1, the relation 1.3.57 also holds in the case of composed
cylinders. Since t33 is independent of x3, we conclude that the conditions
4.10.14 are identically satisfied. From Equations 4.10.15 and 4.10.17, we ob-
tain the following system for the unknown constants

4 4 4
> Ldas=capMs, > Lias=-Fs, Y Lia,=-Ms; (410.18)

s=1

where we have used the notations

Log = Z/ Ta 3333555 + W(B))d
3
LYz = Z/ 20 (CShs + 753 )da, LS, Z/ (CHhso + 753 )da
3
Loy = Z/ Ta 33n355n$6+77§3 da, L3; = Z/ (C§63s + 783 )da

4
L, = Z/ (C?()g()xggﬁaxﬁ + Wég))da (4.10.19)
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L3, = Z/ EnBy ( 6333$04 + W(Q))d
3
L23 = Z/A 5nﬂ$n(cé333 + és))d

LY, = Z/ s,,@x,](Cég)VBaAVx,\ T 77( ))d

Let us prove that the system 4.10.18 uniquely determines the constants ay,
(k=1,2,3,4). We have assumed that the elastic potentials

1

W () = 507 eij (Wers(w) = 3 [t (w)es; (w)],

are positive definite quadratic forms in the variables e,.s(u). Let u’ and u” be
displacement vector fields that satisfy Equations 1.1.1, 1.1.2, and 1.1.8 on B,,
and the conditions 3.1.1 on IIy. If we denote
W) (u', u”) = fcffﬁsezx ers(u”)
then we can see that the relations 3.6.22, 3.6.23, and 3.6.25 hold.
The relations 4.10.16 and 4.10.17 can be written in the form

4 4
=Y aal”, ;=Y atl) (4.10.20)
s=1 s=1
where
1
u((f) = —§x§6a5 + v&ﬁ), ugﬁ) =323 + vgﬁ), UES) = 0323 + 02(3)
(4) = EpatsTs + U(4) u§4) _ (4)
o 3 4 4
t‘ = Ciflaa + 75, Of;’ég +ry, by =) - Ciflacasts
(4.10.21)
on A,. It follows from Equations 3.6.24 and 4.10.20 that
4
— Z Arsarag (4.10.22)
r,s=1
where
2
Aps = Z/ W™ uNdv, (r,s=1,2,3,4) (4.10.23)
Clearly, we have
) =0on A4,, #3100 = t(s) ng on I’
aza [az]l « [ ]2 0 (41024)

[t( )na]p =0onl),
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On the basis of Equations 4.10.24, we obtain

/ t)da=0, (s=1,2,3,4) (4.10.25)
3

Let us apply the relations 3.6.23 and 3.6.24 to the displacement fields ugs)
(s =1,2,3,4). In view of Equations 4.10.23 and 4.10.17, we find that

2A,s = hLY

r8s)

(r,s =1,2,3,4) (4.10.26)
In view of Equations 4.10.22 and 4.10.26,
det(L2,) > 0 (4.10.27)

In view of the relation 4.10.27, we conclude that the system 4.10.18 determines
the constants ag, (k =1,2,3,4).

4.10.3 Flexure

We assume now that F = F,e, and M = 0. The conditions on the end
located at 3 = 0 are

/ toazda = —F, (4.10.28)
P

/ tszda = 0, / Tatzzda =0, / €apTatpzda =0 (4.10.29)
Y Y 1

The flexure problem consists in the determination of a displacement vector
field that satisfies Equations 1.1.1, 1.1.2, and 1.1.8 on B,, the conditions 3.1.1
on Ilp, and the boundary conditions 1.3.1, 4.10.28, and 4.10.29. We seek the
solution in the form

1 1
Uy = —§aax§ — A4EQRTRT3 — gbaxg — §b4eaﬁxﬁx§
4
+ Z(as + by23) ) + vo (1, 29)
s=1 (4.10.30)

1
Uz = (a1x1 =+ as2x9 —+ a3)$3 =+ 5([)11’1 + bg.’ﬂg =+ bg)l'g
4
+ Z(aS + bsxg)vés) + v3(z1,72)
s=1

where vl(s) are the components of displacement vector in the problem P®) v,

are unknown functions, and as, by, (s = 1,2, 3,4), are unknown constants.
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It follows from Equations 1.1.9 and 4.10.30 that
tij = Cz.(f?))3[a1$1 + agx2 + a3z + (bll'l + boxo + bg).’ﬂg]

— O (a5 + baws)eapzs

4
+ Z(as + bsx3)7r§;) +o0i; + kl{f) on B, (4.10.31)
s=1
where
0ij = Cf) ke (4.10.32)
and
() . (p) (s)
ki =" Ciflsbavy (4.10.33)
s=1
With the aid of notations 4.10.21, the stress tensor can be written in the form
4
tiy = (as +x3bo )t + 0y + £ on B, (4.10.34)
s=1

In view of Equations 4.10.10, the equilibrium equations reduce to

Oaia t Fi(p) =0on 4, (4.10.35)
where
4
Fz(p) — k’EZ?a + Z bst’E;) (41036)
s=1

On the basis of the relations 4.10.12, the conditions 1.3.1 become

[Cainalp, = qz(p)

on L, (4.10.37)
where we have used the notations

¢\ = kP, (4.10.38)

By Equations 4.10.31 and 4.10.10, we find that the conditions 3.1.1 reduce to

[vi]1 = [vil2, [0ai]1nd = [0ail2n’ 4 p; on T (4.10.39)

where
pi = (k2 — k))nl, (4.10.40)
Thus, the functions v; are the components of the displacement vector field

in the generalized plane strain problem 4.10.32, 4.10.35, 4.10.37, and 4.10.39.
The necessary and sufficient conditions to solve this problem are

( / F”da + / q§”>ds> + / pids =0
1 \/4, r Lo

P

(/ €a5IaFﬂ(p)da+/ 5aﬁ$aq/(3p)d8> +/ €apfZaPpds =0
A r To

M

P (4.10.41)

hE

1 4 P

p
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The first two conditions 4.10.41 are satisfied on the basis of the relations
4.10.36, 4.10.38, 4.10.40, and 4.10.25. From the remaining conditions, we ob-
tain

ZLO by =0, (r=3,4) (4.10.42)
where LY, are defined in Equations 4.10.19.

By using Equations 4.10.31, 1.3.57, and 4.10.19, the conditions 4.10.28
reduce to

4
ZLgsbs = _F, (4.10.43)
s=1

In view of relation 4.10.27, the system 4.10.42 and 4.10.43 uniquely determines
the constants b, (kK = 1,2,3,4). As the conditions 4.10.41 are satisfied, we
can assume that the functions v; are known.

It follows from Equations 4.10.31 and 4.10.29 that the constants as, (s =
1,2,3,4), satisfy the equations

4
> La,=d, (4.10.44)

where

Z/ .’Ea 033+k(p))d Z/ 033+I€(p) da
Z/ 5@63304 Ugg—Fk(p))d

Clearly, the system 4.10.44 can always be solved for a,, (r = 1,2, 3,4). Thus,
the flexure problem is solved.

4.11 Cylinders Composed of Different
Orthotropic Materials

The deformation of cylinders composed of different orthotropic and homo-
geneous elastic materials has been studied in various works [28,175,205,339).
In this section, we present the solution of Saint-Venant’s problem when cylin-
der B is composed of different nonhomogeneous and orthotropic materials.
We denote by AE;) the elastic coefficients 4.8.1 of the material which occupies
the domain B,, and assume that

AW = A (2, 22), (1,5 =1,2,...,6), (21,22) € A, (411.1)
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Saint-Venant’s problem consists in the determination of a vector field
u € C?(B1)NC?(B2)NCY(B1)NC (B2)NCY(B) that satisfies Equations 1.1.1,
4.8.2, and 1.1.8 on B,, the conditions 3.1.1 on the surface of separation Iy,
the conditions for 3 = 0, and the boundary conditions 1.3.1.

4.11.1 Plane Strain Problem

The plane strain problem for homogeneous and orthotropic cylinders has
been studied in Section 4.9. When cylinder B is composed of different ma-
terials, the equations of the plane strain problem consist of the equations of
equilibrium

tpas + fP) =0 (4.11.2)

the constitutive equations
ti = A e+ 4% 0y, oy =AY er1+AY ens, tin =24Wer,  (4.11.3)
and the geometrical equations

2eqa8 = UB,a + Ua,B (4.11.4)
on A,. The conditions on the surface of separation become

[ua]l = [UQ}Q; [taﬁ]lng = [tag]zng on I'y (4.11.5)

In the case of the second boundary-value problem, the boundary conditions
are N
[tagnal, =5 on T, (4.11.6)

We suppose that the body forces f((f ) and the surface forces Nc(f) ) are indepen-

dent of x3 and are prescribed functions of class C'°°. We continue to assume
that A&? belongs to C*° and that the elastic potential corresponding to the
material which occupies B, is positive definite. If the domains A; and A sat-
isfy some conditions of regularity, then the second boundary-value problem
has a solution u, € C®°(A; UT;) N C>®(A; UT9) N C%(%,) if and only if the
functions £ and £ satisfy the conditions 3.6.7 (cf. [88]). In what follows,
we will have occasion to consider the boundary-value problem characterized
by Equations 4.11.2, 4.11.3, and 4.11.4 on A,, the boundary conditions 4.11.6,
and the conditions

[ta]l = [Ua)2, [tag]ln% = [taﬁ]gn% + go on I (4.11.7)

where g, are prescribed functions of class C'°°. In this case, the necessary
and sufficient conditions for the existence of the solution are given by the
relations 3.6.9.

We introduce three plane strain problems Q*), (k = 1,2, 3), characterized
by the equations of equilibrium

(k) » _
tgo s+ Fif)e =0 (4.11.8)
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the constitutive equations

k k k k k k k
t§1) = A( Del )+A52) gz)v tgz) = Agz €11 +A22 gz)v t( ) = 2A66 652)
(4.11.9)
and the geometrical equations
2e) = ul) +ulf) (4.11.10)
on A,, where
Foh=AB2),,  Fy= A%  F) = (A%, (411.11)
= (A%w) s FY =A%,  F$,=A%,0mA4,
To Equations 4.11.8, 4.11.9, and 4.11.10, we add the conditions
k k
) = [z, [Gdhnd = [Hlen +GP onTo  (411.12)
and
[t5nsl, =T, on T, (4.11.13)
where
1 2 1 2 1
G = (A - AR)end, = (A5 — AY)ains
G = (AT — AR)eant, G<2’ (Ag7 — Ay ywan}
3 1 3 1
Gg = (A13 - Ags))no Gé )= (A23 - Ags))ng (4.11.14)

f(p) = —Agg)xlnl, T(p) —Aég)l‘lng, T(p) = —A§§)l‘2n1

(H1 (2 — (2)1
TS, =AY woms, T =-A%n, T, =—-A%n,

It is easy to prove that the necessary and sufficient conditions 3.6.9 for the
existence of the solution are satisfied for each boundary-value problem Q)
(k=1,2,3). We shall assume that the functions ul®) are known.

4.11.2 Extension and Bending of Composed Cylinders

Let the loading applied at the end ¥; be statically equivalent to the force
F = F3e3 and the moment M = M,e,. The problem of extension and bend-
ing consists in the determination of a displacement vector field that satisfies
Equations 1.1.1, 4.8.2, and 1.1.8 on B, the conditions 3.1.1 on Ily, the bound-
ary conditions 1.3.1 on II, and the conditions 3.3.1, and 3.3.2 on X;. We try
to solve the problem assuming that

3
1 .
= —5(30@% + chufj), us = (¢, + c3)x3 (4.11.15)
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where ¢; are unknown constants and u(] ) are the components of the displace-
ment vector in the problem Q), (j = 1,2,3). By Equations 4.11.15 and
4.11.10, we obtain

Cap = Z ¢je aﬁ’ €a3 = 0, €33 = CpTp + C3
It follows from Equations 4.8.2 and 4.11.3 that

3
t11 = Aﬁ’;,)(clxl + coma + c3) + Z Cjtgjl)
Jj=1
3 .
tog = Aé‘;’(cwl + coma + c3) + Z Cjtéjz)

j=1
, (4.11.16)

tig = Z t%), taz3 =0
j=1
3
t33 = Agg)(clxl + coxo + ¢3) + Z c] Agg) ng) + Aég)e(;?)) on A,

j=1

The equilibrium equations and the boundary conditions 1.3.1 are satisfied
on the basis of the relations 4.11.8, 4.11.11, 4.11.13, and 4.11.14. The condi-
tions 3.1.1 on the surface of separation are satisfied in view of the relations
4.11.12 and 4.11.14. The conditions 3.3.1 are identically satisfied. From Equa-
tions 3.3.2 and 4.11.16, we obtain the following equations for the unknown
constants,

Lojej = eapMsg, Isjc; = —F3 (4.11.17)

where
ot 455 50
Pas = z [ A+ AR Ao
(4.11.18)
Fsa = Z / (470 + AL + ALl da

I3 = Z/ (Ag’;) + AR + AR eS) )da
p=1 Ap

As in Section 4.3, we can prove that I';; = I';; and that det(I';;) # 0. The
system 4.11.17 determines the constants ¢y, co, and c3.
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4.11.3 Flexure and Torsion

We assume now that F = F,,e, and M = M3es. The conditions on the end
>, are given by Equations 1.4.1, 1.3.21, and 1.3.22. The problem consists in
the finding of the functions uy that satisfy Equations 1.1.1, 4.8.2, and 1.1.8
on B,, the conditions 3.1.1 on Iy, the boundary conditions 1.3.1, and the
conditions 1.4.1, 1.3.21, and 1.3.22 on ¥;. We seek the solution in the form

3
1 .
—dazs — TEBTRT3 + T3 Z dju(()f)

Ug = —
0 i=1 (4.11.19)

1
Uz = §(d15€1 + dazg + d3)x§ + \I’(xth)

where u(j ) are the solutions of the problems QU), ¥ is an unknown function,
and di and 7 are unknown constants. By Equations 4.11.19, 1.1.1, and 4.8.2,
we obtain

tll = A13) (dlxl + d21’2 -+ dg)xg + x3 Z d t(j)

j=1
3 .
t22 = A(zg) (dlel + dQZL'Q + dg).’bg + 3 Z djtéjz), = T3 Z d t(J)
j—l

t33 = Ag3) (dlxl + doxo + d3).’E3 + x3 Z d Agg)ell + Aég) €59 )
j=1

3
t23 = Al(lfl) (@’2 + TX1 + Z djuéj)>

Jj=1

3
t31 = Aég) <\Il’1 — Tx9 + Z dju§])> on B,

j=1

(4.11.20)

The conditions 1.3.21 are identically satisfied. If we use Equations 4.11.20,
4.11.8, 4.11.11, and 4.11.14, then we find that the equations of equilibrium
1.1.8 and the conditions 3.1.1 and 1.3.1 are satisfied if the function ¥ satisfies
the equation

(ALw,) | + (AR ,) , = —¢ on 4, (4.11.21)
and the conditions

W]y = [W]a, [A 10 + AW o]
= [AQ W 10 + AT W 5nd], + hon T (4.11.22)
Agg)\ll,lnl + AE;Z)\II,QRQ = Ii( ) on Fp
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where

g\ = Agg>(d1m1 + dows + dy) — 7[(AL)wa) | — (Af)21) ]
- S A+ AR + A
h = [(Ag? — Aé?)xgnl (Agl) — A(Q))xan]

| 4.11.23
+ Z d;[(A — A 0 + (A — AL )ud nd) ( )

k(P = (A(p).’Ein - Aiﬁ?xlng)

—Zd 55u n1+A(p)u(J) ]

The necessary and sufficient condition for the existence of the solution of
the boundary-value problem 4.11.21 and 4.11.22 is (cf. [55,88])

2
> </ ¢ da +/ n(p)ds> +/ hds = 0 (4.11.24)
[)=1 AP Fp FO
Substituting the relations 4.11.23 into Equation 4.11.24, we get
Ts;d; = 0 (4.11.25)

where I's; are defined by Equations 4.11.18. In view of Equations 1.3.57,
4.11.20, and 4.11.18, we find that the conditions 1.4.1 reduce to

Tod; = —F, (4.11.26)

The system 4.11.25 and 4.11.26 uniquely determines the constants dg.
Let us introduce the function ¢ € C?(A;) N C%(A2) N CH(A;) N CH(Az) N
C°(%1) which satisfies the equation

(A01)  + (Ap2) , = (AP ws) | — (Af)w1) yon 4, (4.11.27)

and the conditions

[1 = [#l2, [A(55 ®, 1”1 + A44 L, 2”2] [A(55 @, 1”1 Az(14 L, 2”8]2

+ (A5 — A )aant — (ALY — AFY)21nd on T
Ao ny + AV o ong = ADzony — A 2inyon T,  (4.11.28)
It is not difficult to verify that the necessary and sufficient condition for the

existence of the function ¢ is satisfied. We introduce the function x by

U=r1p+x (4.11.29)
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In view of Equations 4.11.21, 4.11.22, 4.11.23, and 4.11.27, we find that the
function x satisfies the equation

(A)x1) | + (A x2) , = g on 4, (4.11.30)
and the conditions

X1 =[x, [A(s xand + AG)x, any, = [ASZF)X 1nd + AG) 2ng], + fonTy
AL m + A x ome = kP on T, (4.11.31)

where

3
90 = —AL) (dyy + dywo + ds) — Zd] A(p) (]) Lt (Afli)ug]))
j=1

2
+ ABel) + Agg)em]
2 1 j 2
f= Zd ( )) gj)”? + (Az(m) - Az(14))“(])“g]
3 .
KO = =3 d; (AR u 0y + AL us ny) (4.11.32)
j=1
It follows from Equations 4.11.20, 4.11.29, and 1.3.22 that
D't =—-M3z—IM (4.11.33)
where D* is the torsional rigidity defined by
2
D* = Z/ [Aflz)xl(gqg + xl) — Agg)l‘g(gql — .1‘2)] da (4.11.34)
A

and 9 is given by

2
o = Z/ ‘TlAELZ)X,Q - l‘zA(p)X 1+ Zd Afli)xluéj) Agg)l’gugj)) da
j=1
(4.11.35)
The constant 7 is determined by Equation 4.11.33.

If F, = 0, then from Equations 4.11.25 and 4.11.26, we obtain dx = 0,
so that y = 0 and 9t = 0. In this case, from Equation 4.11.19, we find the
solution of the torsion problem.
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4.12 Exercises

4.12.1

4.12.2

4.12.3

4.12.4

4.12.5

4.12.6

4.12.7

4.12.8

4.12.9

A homogeneous and orthotropic elastic cylinder occupies the domain

xi a3
B:{x. +b2<1, 0<x3<h}7 (a>0,b>0)

Investigate the torsion of the cylinder.

Study the flexure of an elliptical right cylinder made of a homoge-
neous and orthotropic elastic material.

Investigate the torsion of a right cylinder of rectangular cross section,
composed of two homogeneous orthotropic elastic materials.

Study extension, bending, and torsion of a circular cylinder B = {z :
22 4+13 < a?,0 < 23 < h} made from a nonhomogeneous orthotropic
material with the following constitutive coefficients

Aij = Afje_a", a >0, (Z,j =1,2,... ,6)

where A7; and « are prescribed constants, and r = (z2 + x3)1/2.
Study the deformation of a circular cylinder made of a homogeneous
and orthotropic elastic material when the lateral boundary is sub-
jected to a constant pressure.

Investigate the Almansi—-Michell problem for homogeneous and or-
thotropic elastic cylinders.

Study the extension, bending, and torsion of an anisotropic elastic
cylinder for the case when the medium is homogeneous and has a
plane of elastic symmetry, normal to the axis of cylinder.

A homogeneous and orthotropic elliptical cylinder is in equilibrium
in the absence of body forces. The cylinder is subjected on the lateral
surface to the tractions t; = 0,¢, = 0,t3 = Px3, where P is a given
constant. Investigate the deformation of the body.

Investigate the Almansi problem for inhomogeneous and orthotropic
elastic cylinders.
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Chapter 5

Cosserat Elastic Continua

5.1 Basic Equations

In a remarkable study, E. Cosserat and F. Cosserat [54] gave a systematic
development of the mechanics of continuous media in which each point has the
six degree of freedom of a rigid body. The orientation of a given particle of such
a medium can be represented mathematically by the values of three mutually
perpendicular unit vectors which Ericksen and Truesdell [76] called directors.
In the 1960s, the subject matter was reopened in the works [81,110,228]. These
early theories were discussed in Refs. 85,193,332. The Cosserat elastic contin-
uum has been used as model for bones and for engineering materials like
concrete and other composites (see [85] and references therein).

In this section, we present the basic equations of the linear theory of an
elastic Cosserat medium. This theory is usually called theory of micropolar
elasticity (cf. [83,254]). An account of the historical developments of the theory
as well as references to various contributions may be found in the works by
Eringen and Kafadar [84], Nowacki [255], Dyszlewicz [74], and Eringen [85].
In Chapters 5 and 6, we present a study of the deformation of right cylinders
made of a Cosserat elastic material. The particular rod theory based on the
concept of a Cosserat curve is not considered here. The reader interested in
this subject will find an account in Ref. 284.

As remarked above, a Cosserat medium is a continuum in which each point
has the degrees of freedom of a rigid body. Thus, the deformation of such a
body is described by

u = u(x,t), p=ep(x,t), (xt)eBxI (5.1.1)

where u is the displacement vector field, ¢ is the microrotation vector field,
and [ is a given interval of time. We consider an arbitrary region P of
the continuum, bounded by a surface 0P at time ¢, and we suppose that
P is the corresponding region at time ¢y, bounded by the surface 9P. We
postulate the energy balance in the form [85,332]

/ po (Uit + Yijpip; + €)dv
P

= / pO(@iai + Gigbi)dv + / (SZUL + mmz)da (512)
P oP
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184 Classical and Generalized Models of Elastic Rods

where pg is the density in the reference configuration, Y;; are coeflicients of
inertia, e is the internal energy per unit mass, ® is the body force per unit
mass, G is the body couple per unit mass, s is the stress vector associated
with the surface 0P but measured per unit area of the surface 9P, m is the
couple stress vector associated with the surface 0P but measured per unit
area of OP, and a superposed dot denotes the material derivative with respect
to the time. We suppose that the body has arrived at a given state at a
time ¢ through some prescribed motion. Following Green and Rivlin [109],
we consider a second motion which differs from the given motion only by a
constant superposed rigid body translational velocity, the body occupying the
same position at time ¢, and we assume that e, ®, G, s, and m are unaltered
by such superposed rigid velocity. If we use Equation 5.1.2 with ; replaced
by u; + a;, where a; is an arbitrary constant, we obtain

/poﬁidv:/fidu—i—/ s;da (5.1.3)
P P P

where f; = po®;. From Equation 5.1.3, by the usual methods, we obtain
S; = tjl"l’Lj (514)

and
tjiyj + fz = poﬁi (515)
In view of Equations 5.1.4 and 5.1.5, the relation 5.1.2 reduces to

/ po(é—l—Yijgbig'bj)dv = / (glgol —l—tjmi,j)dv—l—/ m;pida (516)
P P op

where g; = poG;. With an argument similar to that used in obtaining Equa-
tion 5.1.4, from Equation 5.1.6, we obtain

(mi —mjin;)¢i =0 (5.1.7)

where m; is the couple stress tensor. If we use Equation 5.1.7 in Equation 5.1.6
and apply the resulting equation to an arbitrary region, then we find the local
form of the conservation of energy

W = (mji; + g — poYijp;) @i + st g + mjii s (5.1.8)

where W = pge. Let us now consider a motion of the body which differs
from the given motion only by a superposed uniform rigid body angular
velocity, the body occupying the same position at time ¢, and let us assume
that W, t;5, mi;, g: — poYi;$; are unaltered by such motion. In this case, ¢; are
replaced by ¢; +b;, where b; are arbitrary constants, and u; are replaced by
U; + €410, where ;51 is the alternating symbol. Equation 5.1.8 holds when
U, ; is replaced by 1; ; + €;:xbr and @; by ¢; + b;. It follows that

W = (myij + gi — poYij$;) (@i + bi) + (Wi g + €jirbr) + mjipi
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With the help of Equation 5.1.8 and the arbitrariness of the constants by, we
obtain
Mjij + Eirstrs + gi = poYij@; (5'1'9)

By Equations 5.1.8 and 5.1.9, we get
W = tijéi) + mijhi (5.1.10)

where
€ij = Uji + Ejik Pk Kij = Vi (5.1.11)
We restrict our attention to the linear theory of elastic materials where the
independent constitutive variables are e;; and k;;. It is simple to see that
e;; and k;; are invariant under superposed rigid-body motions. We assume
that W, t;;, m;;, and m; are functions of e;;, ki;, and x,,, consistent with the
assumption of the linear theory, and that there is no internal constraint. From
Equation 5.1.7, we obtain

On the basis of constitutive equations, from Equation 5.1.10, we find that

ow 0w
861']‘7 E 3/@7

ti; = (5.1.13)

In the linear theory, and assuming that the initial body is free from stresses
and couple stresses, we have

1 1
W = §Aijrseijers + Bijrseij"{rs + icijrs’iij’@rs (5114)

where Ajjrs, Bijrs, and Cyjrs are smooth functions on B which satisfy the
symmetry relations

Aijrs = Arsij7 Cijrs = Crsij (5115)

In the case of homogeneous bodies, the constitutive coefficients A;j,s, Bijrs,
and Cjj,, are constants. By Equations 5.1.13 and 5.1.14, we find the following
constitutive equations

tij = Aijrsers + Bijrs“?“s (5 1 16)

mi; = Brsijers + Cijrs’irs

In the case of an isotropic and centrosymmetric material, the constitutive
equations 5.1.16 become

tij = Aerrlij + (1 + K)ey + peji

(5.1.17)
mi; = a’irr(sij + ﬁﬂji + YKij

where A, u, K, «, 3, and ~y are constitutive coefficients.
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If we assume that W is a positive definite quadratic form in the variables
e;; and k;;, then we find that the constitutive coefficients of an isotropic body
satisfy the inequalities [85]

3N+2u+ k>0, 2p+ K >0, k>0
(5.1.18)
3a+G+v>0, v+ 6>0, y—F3>0

In what follows, we restrict our attention to the linear theory of equilibrium.
The basic equations of the theory of elastostatics consist of the equations of
equilibrium

tjij + fi=0, Mj; ;i + €irstrs +g; = 0 on B (5.1.19)

the constitutive equations 5.1.16, and the geometrical equations 5.1.11. To
these equations, we adjoin boundary conditions. In the first boundary-value
problem, the boundary conditions are

w; = Ui, p; = p; on OB (5.1.20)

where u; and @; are given. The second boundary-value problem is characterized
by the boundary conditions

tjinj = E, mijing; = ﬁli on 0B (5121)

where ; and ; are prescribed functions.

We assume that (i) B is a bounded regular region; (ii) f; and g; are con-
tinuous on B; (iii) Aijrs; Bijrs, and Cyjps are smooth on B and satisfy the
conditions 5.1.15; (iv) t; and 7n; are piecewise regular on dB; and (v) @; and
; are continuous on 0B.

The first boundary-value problem consists in finding the functions u;, p; €
C?(B) N C°(B) that satisfy the Equations 5.1.11, 5.1.16, and 5.1.19 on B,
and the boundary conditions 5.1.20 on dB. The second boundary-value prob-
lem consists in the determination of the functions u;, p; € C%(B) N C*(B)
that satisfy the Equations 5.1.11, 5.1.16, and 5.1.19 on B, and the boundary
conditions 5.1.21.

The existence and uniqueness of solutions of the boundary-value problems
of linear elastostatics have been studied in various works [126,164,196]. We
recall the following existence result.

Theorem 5.1.1 Assume that W is positive definite and that the hypotheses
(i)—(iv) hold. Then the second boundary-value problem has solution if and

only if

/ fidv +/ tida = 0, / (€irsr fs + gi)dv + / (6m:crfs +m;)da =0
B 4B B oB
(5.1.22)

© 2009 by Taylor & Francis Group, LLC



Cosserat Elastic Continua 187

Any two solutions of the second boundary-value problem are equal, modulo a
rigid deformation.

We note that a rigid deformation has the form
U; = a; + €45rbj w; = b;

where a; and b; are constants.
We assume for the remainder of this chapter that the material is homoge-
neous and isotropic, and that the elastic potential W is positive definite.

5.2 Plane Strain

With a view toward deriving a solution of Saint-Venant’s problem, we
present some results concerning the plane deformation of homogeneous and
isotropic elastic cylinders. Throughout this section, we assume that the region
B refers to the interior of the right cylinder considered in Section 1.2. We
suppose that the vector fields f, g, 1, @, t, and m are independent of the axial
coordinate, and parallel to the x1, xo-plane. The state of plane strain of the
cylinder B is characterized by

Ug = Ua(T1,22), u3=0, @q=0, 03 = @3(r1,22), (T1,22) €31
(5.2.1)

These restrictions, in conjunction with the constitutive equations, imply that
the stress tensor and couple stress tensor are independent of the axial coordi-
nate. It follows from Equations 5.1.11 and 5.2.1 that

€af = UB,a t €3a¥3, Ra3 = P3,a (522)

The constitutive equations 5.1.17 show that nonzero components of the stress
tensor and couple stress tensor are t,g, Ma3,?33, and ms,. Further,

tag = Aeppdap + (10 + K)eap + pega, Ma3 = YKa3 (5.2.3)
The equations of equilibrium 5.1.19 reduce to
t8a,8 + fo =0, Mag,a + Eaptag+93 =0 (5.2.4)

on Y1. The nonzero surface loads acting at a regular point x on the curve I’
are given by
54 = tgang, m3 = Ma3Na (5.2.5)

where n, = cos(n,, Z,) and n, is the unit vector of the outward normal to T’
at x.
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By Equations 5.2.2 and 5.2.3, we can express the equations of equilibrium

of homogeneous and isotropic solids in terms of the functions u, and 3,
(4 K)Aua + (A + 1)up pa + Keappsp = —fa
(5.2.6)
YAP3 + KEaplp.a — 2KP3 = —g3

on X1. In the case of the first boundary-value problem, the boundary condi-
tions are

Uy = Ug, w3 =@z onl (5.2.7)
where @, and @3 are prescribed functions. The second boundary-value prob-
lem is characterized by the boundary conditions

tgang = ta, Ma3Ng = M3z on I (5.2.8)

where ¢, and 3 are given.
The functions ¢33 and ms, can be determined after the functions u, and
3 are found.

5.2.1 Polar Coordinates

In the solution of various boundary-value problems, it is convenient to em-
ploy the polar coordinates (r,#), such that 1 = rcosf,zoa = rsinf. The
equations of equilibrium can be written in the form

Oty 10tg, 1
- o +;(trr_t00)+fr:0

or r 00
Otre 1 Otge 1
ey - = 5.2.9
ot ag et ter) + fo=0 (5.2.9)
8mrz }amez

1
My, + trg — tor =0
or r 00 +rm +tro —tor + 93

on X1, where t,.,tg9,tr9, and tg, are the physical components of the stress
tensor, m,., and my, are physical components of couple stress tensor, and
fr and fp are the physical components of the body force. The constitutive
equations become

trr = ()‘ +2u + K)err + Aegg, trg = (M + f‘i)ere + peor

tog = Aerr + (A + 2 + K)ego, tor = (1 + K)ear + perg (5.2.10)
Myz = YRrz, Mo, = TRoz
where
o, = Qw1 (Ou 0, = 00 _
rr—ara 96_7’ 90 r | TO—aT ©3
(5.2.11)
g = (U N L oo 103 Ops
GT_T 90 6 ©3, 02_7"697 rz — or
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Here, u, and ug are the physical components of the displacement vector field,
so that u, + iug = (u; + iug)e . The equations of equilibrium 5.2.9 can be
expressed in terms of the functions u,., ug, and 3. Thus we obtain

Opopgnm (Lt 10w 1, 100 10w
H or? ror 27 rordd r?2 08
1 ((9211,9 +13U9 182ur)+,€18<p3

orod  r 00 r 002

1 8%up 1 0%u, 1 Ou,
A+2 —— + - —— | - .2.12
-+ “*”)<r2 o0z " roroe 2 ae) () (5:212)
1 0%u, 1 Ou, O%up 10ug 1 dps
(raraa_r? 20~ o ‘rarﬂzue) ~ Ry T =0
0?03 1003 1 0%ps Oug 1 1 du,
. R 0 - == 9 =
<8T2 Jrr or 1?2 002 >+ﬂ(8r +ru9 r 00 ('03)+93 0

Let ¢, and tg be the physical components of the given traction vector. Then
the conditions 5.2.8 can be expressed in the form

trrMy + tormg = ’57‘7 tromy + tgome = ,50
- (5.2.13)
My2Ny + MoNg = Mz on I’

where n, and ng are physical components of the vector n.

The plane strain problems for homogeneous and isotropic bodies can be
studied with the aid of the method of functions of complex variables [8]. In
this section, we use the method of potentials [140,195] to derive existence and
uniqueness results.

5.2.2 Solution of Field Equations

We now give a representation of solutions of Equations 5.2.6. We introduce
the operator

Q= %AA(A — K?) (5.2.14)
where

k2u+ K

1/2
bt = (4 w) A+ 2u + k), k= [’Y(M‘*‘“))] (5.2.15)

We note that the relations 5.1.18 imply that b and k? are strictly positive.

Theorem 5.2.1 Let
Uo = A+ 20+ K)A(YA — 26)Go — [Y(A + ) A
—Kk(2A 4+ 2p + K)|Gp pa + KA+ 2u + K)ega AGs g (5.2.16)
03 = (A4 20+ k) [keapAGap + (1 + K)AAGS)
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where G; are fields of class C% on 1 that satisfy the equations
QGQ = _fou QG?, = —3g3 (5217)
Then u, and 3 satisfy Equations 5.2.6 on 3.

Proof. In view of Equations 5.2.16, we find that

(1 + K)Aug + (A + p)ug ga + KEapPs,p
= (p+K)N+ 21+ K)AA(YA — 25)Go, — (1 + K)[YA + ) AA
— KA+ 20+ K)AIGp o + KA+ 20 + K) (1L + K)ega AAGs 3
+ A+ A+ 20+ K)AGA = 26)G g0 — A+ YA+ @A (5.2.18)
— K(2A + 21 + K)]AGB ga + KA+ 21 + k) [KAGa 3
— kAGB o + cap(i + k) AAG3 g]
=+ &)\ + 21 + K)AA(A — k)G,
Similarly, we obtain
YAQ3 + KEqpUB,a — 2KP3
= 7N+ 2u + k) [keapAAGy 5 + (1 + K)AAAGS]
+ KA+ 20+ K)A(YA — 26)e0pGaa + K2E(N + 21+ K)AG3 00 (5.2.19)
— 26N+ 21 + K)[keapAGa g + (1 + K)AAGS]
=vA+2p+ k) (p+ k)(A — k*)AAG;

In view of Equation 5.2.17, from Equations 5.2.18 and 5.2.19, we obtain the
desired result. O

5.2.3 Fundamental Solutions

We use Theorem 5.2.1 to establish the fundamental solutions of Equa-
tions 5.2.6. First, we assume that

fi=0(x—y), fa=0, g3 =20

where §(-) is the Dirac measure and y(y,) is a fixed point. In this case, we
take in Equations 5.2.16, G; = f, G2 = 0, and G3 = 0. From Equations 5.2.17,
it follows that the function f satisfies the equation

AA(A = k) f = —bd(x —y) (5.2.20)

In general, if fo =0,30(x —y), g3 =0, then we take G, = fd3, G5 =0, where
f is a solution of Equation 5.2.20. In this case, from Equations 5.2.16, we
obtain the functions u&ﬁ ) and wgﬁ ) If we assume that

.fa:Oa 93:6(33_3/)
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then we take G, = 0,G3 = f, where f satisfies Equation 5.2.20. We denote

by u((f’) and gag?’) the functions resulting from Equations 5.2.16 when G, =0

and G3 = f. Thus, we obtain

uf) = dag( N+ 20+ K)A(YA = 2R) f — [YA + ) A — K2A + 2+ k)] f ap
o = (\+ 25+ K)kegalfa

ul® = k(A + 20 + K)egaA S (5.2.21)
08 = (A + 20+ ) (u+ K)AAS

The functions ugj ) and cpgj ) represent the fundamental solutions of the system

5.2.6.

Let us study Equation 5.2.20. We note that if the functions Hj, satisfy the
equations

AAH, = S, AH, = S, (A -Kk*H; =8
then the solution of the equation
AAA-EHH =S

can be written in the form

b

H=-- (k*H, + Hy — H3) (5.2.22)
If S = —bd(z —y), then
b b b
Hy = ——?1 Hy=——1 H; = —K,
1 g 9 5 07, 5= 5 o(kr) (5.2.23)

r=[(z1 —y1)? + (x2 — 12)*]"/?

where K, is the modified Bessel function of order n. It follows from Equa-
tions 5.2.22 and 5.2.23 that the solution of Equation 5.2.20 is given by

f = gega F'r" Inr + dlnr + 4Ko (kr)] (5.2.24)
Let us note that
&Z:f;xg = (Ta = ya)(@p — y,@)r*%
+ [0apr® = (Ta — ya) (25 — yﬁ)]r—3d% (5.2.25)
d 2 , B
T Ko(kr) = —kKi(kr), S5 Ko(kr) = K Ko(kr) + k™ Ky (kr)
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Moreover, for x # y, we have

fo= 8:164 (o — ya) {2 (1 + 2In7) + 47721 — krK (kr)]}
b
Fo = g 220 07 4 8 + 27 (w0 — )5 — )
460 — 20 — yo)(@p — o)1 — rREL (k)] 220
+ 4k (20 — ya) (xp — yg) Ko(kr)}
b
Af = e [1+4 Ko(kr) +Inr], AASf = gKo(kr)

We have the following expansions in series

1 1
Ko(z) = —Inz — ~2’lnz — —z*Inz — - --
Lo b (5.2.27)
Ki(z) = - + ixlnm + Ef’lnx—!— e
Let I'(x,y) be the matrix of fundamental solutions
T(x,y) = [|[Tmn(x,y) |53 (5.2.28)
where
Tog=ul®, Tas=u®, Ty =l (5.2.29)
We note that
D(,y) = T(32) (5.2.30)

We write A* for the transpose of A. Let us denote by I'®) (k = 1,2,3), the
columns of the matrix I'(z,y).
It follows from Equations 5.2.21 and 5.2.24 that

d 0 0
r——2lo d oflmr+o dg-__AtmEr (5.2.31)
2l 0 At 20+ 2u+ k) (n+ k)
Y
where we have pointed out the terms with singularities.
We introduce the matricial differential operator
0 0
D — | =|Di| =— 5.2.32
(@) -Gl 6252
where
D 9 = (4 K)0apA + (X + 1) o
B\ ox) H B . O0xq0xg
0 0
Dys| =— | = keq 5.2.33
3 (833) REap Ozg ( )
0 0 0
Dsg| =— | = — Dss| — | =vA -2
36(856‘) '%P[’ax,,’ 33(3x> 7 "
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The system 5.2.6 can be written in matricial form. As in Ref. 195, the vector

v = (v1,2,...,Vy) shall be considered as a column matrix so that the product
of the matrix A = ||a;;|mxm and the vector v is an m-dimensional vector. The
vector v multiplied by the matrix A will denote the matrix product between
the row matrix ||v1,va, ..., vy| and the matrix A. We denote
’U/:(Ul,’U/Q,(,Dg)7 F:_(f17f27.93) (5234)
Equations 5.2.6 can be written in the form
D 9 u=F (5.2.35)
5 = 2.

We introduce the matricial operator

0 0
T<ax7nx> - ‘ Tij <ax;nz>
where

0 0 0 0
Taﬂ (ar,nw) = (,u + H)éaBT% + ()\naaxﬁ + Mnﬁm)

0 0 0 0
Tag (ax,nx> = RE€apNgs, TSa (31‘7nw) - 07 T33 (axanm> - ’Yanx

(5.2.36)

3x3

(5.2.37)
If we denote
T = (tl, t2, mg) (5238)
then the relations 5.2.5 can be written as
T=T i ng | u (5.2.39)
o \oxT " o

Let T;(0/0x,ng) be the row matrix with the elements T;;(9/0x,n,). The
relations 5.2.5 become

0 0
to =T, (&T,nx> u, ms3 = Tj (am,n,) u (5.2.40)

We denote by A(x,y) the matrix obtained from T(9/0z,n,)I'(z,y) by
interchanging the rows and columns and replacing z by y, that is,

Az,y) = |:T<a7ny> F(y,x)] (5.2.41)
dy
We can verify that
D(;) Az,y)=0 forax#y (5.2.42)
X
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It follows from Equations 5.2.21, 5.2.24, 5.2.28, and 5.2.36 that

A=M+2Z, M = ||M;j||sxs, Z = ||Zijl|sxs (5.2.43)
where
1 9
My = Moy = M3z = ———(1
11 22 33 om any( nr)
c d
My = —Mjy = ————(Inr), Maosz = M3 =0
27 ds, (5.2.44)
Zi; =0(nr) asr—0
202 + pk — Ak d 0 0
= ) -y L2 S 5
200+ 2u+ k) (1 + k) dsy Oz Oxy

If 2 # 5, then each column T'U) (z, y), ( =1,2,3), of the matrix I'(z, y) satisfies
at = the homogeneous system 5.2.6, that is,

D <(,fx) I(z,y) =0 (5.2.45)

5.2.4 Somigliana Relations

We consider two states of plane strain defined on the domain ¥ and charac-

terized by the displacements uff ), the microrotations goép ), the strain

measures e(apﬁ) and I'i((x?)) , the components of the stress tensor tof@’ and the

components of the couple stress tensor m&pg) , (p=1,2). We assume that

the state A(P) = {u(p ©3 2 e(aﬁ), ffg, ti’g, (p)} corresponds to the body loads
{f(p) (p)} We denote

) = t(p)ng, mgp) = m&p?))na (5.2.46)
In what follows, we shall use the following reciprocal theorem.

Theorem 5.2.2 If A®) are elastic states corresponding to the body loads
I®), then

/(f(l) +g(1)g0(2))da+/ (t(l)u(2)+m(1)¢(2))d

o= (5.2.47)
= [ U@+ ot [ (@0 s
Proof. We introduce the notation
oW,y = t)el + my k) (5.2.48)
It follows from Equations 5.2.3 that
Wi = Way (5.2.49)
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On the other hand, from Equations 5.2.2 and 5.2.4, we get

Wy = Fu + 907 + (t5u +mi o) (5.2.50)
so that
2 [ Wopta= [0+t [ (G0 o
= ¥ 0%
(5.2.51)
By Equations 5.2.49 and 5.2.51, we obtain the desired result. O

The elastic potential W in the case of the plane strain is defined by

2W = depvep, + (1 + K)eapeas + 1esaCas + Yhaskas (5.2.52)

Theorem 5.2.3 Assume that W is a positive definite quadratic form. Then
(i) The first boundary-value problem has at most one solution

(ii) Any two solutions of the second boundary-value problem are equal mod-
ulo a plane rigid deformation

Proof. It follows from Equations 5.2.2, 5.2.4, and 5.2.52 that

2W = taﬁeaﬁ + Mas3kas = faua + 93¥3 + (tﬂaua + m63§03),ﬁ

If we integrate this relation over ¥ and use the divergence theorem, then we
obtain

2/ Wdaz/(faua+g3<p3)da+/ (tgangua + mpsngps)ds  (5.2.53)
bl > ax

Let (ul,, ©5) and (uls, ¢5) be two solutions of a boundary-value problem, and

ud =, —u, oY = ¢ — . Clearly, (u2,¢9) is a solution corresponding to
fa = 0,93 = 0, and to null boundary data. Since W is positive definite, from
Equation 5.2.53, we obtain

u%,a + &\Ba(pg = Oa ng,a =0
so that

0 0 0
uj = 1 — 3%, Uy = 2 + c371, Yy =c3 (5.2.54)

where cj, are arbitrary constants. In the first boundary-value problem, we find
that ¢, = 0. O
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Let ¥ be a domain in the 1, zo-plane, bounded by a simple closed C?-
curve L, and let ¥~ be the complementary of ¥+ U L to the entire plane.
Let u=(uy,uz, p3) and v=(u}, ub, p4) be two vector fields on X1 such that
u,v € CEHXT)N C’l(§+). The reciprocity relation 5.2.47 leads to

LG =)
_ /L[UH(;;,%)U - vH(ai,nw)u} ds (5.2.55)

From Equation 5.2.53, we get

2 Wda:f/ uD<8>uda+/uH<a,nm>uds (5.2.56)
S+ >+ ax L (9l‘

Let Y(y;¢) be the sphere with the center in y and radius €. Let y € X7 and
let € be so small that X(y;e) be entirely contained in XT. Then the relation
5.2.55 can be applied for the region X\ (y;¢) to a regular vector field u =
(u1,uz, 3) and to vector field v(z) = I'®)(z,y), (s = 1,2,3). We obtain the
following representation of Somigliana type

u@)=Ajrwawﬂ(i,m)wm—[H(i,m)rmwﬂ*w@}wz
_ /E @)D (ai)u(x)d% (5.2.57)

In view of Equations 5.2.30 and 5.2.41, the relation 5.2.57 implies that
0
o) = [ [t (5rm )uts) - At as,
L Y
0
—/ F(x,y)D(8>u(y)day (5.2.58)
»+ Y

5.2.5 Existence Theorems

In what follows, we restrict our attention to the equation

0
Dl — )Ju=0 5.2.59
(5)0 (5.259)
In this case, Equation 5.2.56 becomes
/ uH(a,nx>uds =2 Wda (5.2.60)
L 8$ >+

We say that the vector field u= (u1,us,p3) is a regular solution of Equa-
tion 5.2.59 in X7 if the formula 5.2.60 can be applied to w and if it satisfies
Equation 5.2.59 in ©7.
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Let x € ¥~. We describe around z a circle Cr of sufficiently large radius
R, containing the region . We denote by Xz the region bounded by L and
Cgr. From Equations 5.2.53 and 5.2.59, we get

/ uH(a,nr>uds =2 Wda (5.2.61)
L+Cgr ax YR

If u satisfies the condition

27
lim R/ uH(a,nw) udf =0 (5.2.62)
0 oz

R—o0

then from Equation 5.2.61, we obtain

/uH(a,nx>uds =—2 [ Wda (5.2.63)
L ax Sk

We say that the vector field u is a regular solution of Equation 5.2.59 in %~ if
the formula 5.2.63 can be applied to u in X~ and if u satisfies Equation 5.2.59
in X~ and the condition 5.2.62.

We consider the following boundary-value problems.

Interior problems. To find a regular solution in ¥ of Equation 5.2.59 sat-
isfying one of the conditions

;iigu(x) = fi(y) (I1)
tim H(ai,nm)u(x) — Hy) ()

where x € ¥,y € L, and f; and f are prescribed vector fields.

Exterior problems. To find a regular solution in ¥~ of Equation 5.2.59
satisfying one of the conditions

tim () = /(1) (Er)
tim H(;x nx)um ~ hily) (E2)

where x € X7, y € L, and f3 and f4 are given.

We assume that f; and f3 are Holder continuously differentiable on L, and
fo and f, are Holder continuous on L.

We denote by (I2) and (E2) the homogeneous problems corresponding to
(Io) and (E,), respectively. We introduce the potential of a single layer

Vo) = [ T@atas, (5.2.64)
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and the potential of a double layer
W(z;v) = / Az, y)v(y)ds, (5.2.65)
L

where p = (p1, p2, p3) is Holder continuous on L and v = (vq, v9, v3) is Holder
continuously differentiable on L. As in the classical theory [55], we have the
following results.

Theorem 5.2.4 The potential of a single layer is continuous on R2.

Theorem 5.2.5 The potential of a double layer has finite limits when point
x tends toy € L from both within and without, and these limits are respectively
equal to

1
WH(y;v) = —sv(y) + | Ay, 2)v(2)ds.
2 /L (5.2.66)

W) = 5o+ [ A 2e)ds.

the integrals being conceived in the sense of Cauchy’s principal value.

Theorem 5.2.6 H(9/0x,n,)V(x;p) tends to finite limits as point x tends
to the boundary point y € L, from within or without, and these limits are
respectively equal to

1 (5o ) Vi) Lo+ [ (5 )| eras.

[H(aay,ny> V(y;p)] - —%p(y) + /L [H (;;ny)F(y,Z)} p(z)ds.

Theorem 5.2.7 The potentials V(x; p) and W (x;v) satisfy Equation 5.2.59
on YT UX™.

(5.2.67)

We seek the solutions of the problems (/7) and (E7) in the form of a double-
layer potential and the solutions of the problems (I3) and (E3) in the form
of a single-layer potential. In view of Theorems 5.2.5 and 5.2.6, we obtain for
the unknown densities the following singular integral equations

57+ [ Ay 2wle)ds. = fiw) (1)

L
1 . B
5000+ [ A G)ds. = hly) (1)
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/ Ay, 2 (2)ds. = fa(y) (Ey)

1 *

—5p<y> + [ X Gap)ds. = filw) ()
L

where y € L. The homogeneous equations corresponding to equations ([7),

(I2), (E1), and (E») for fs =0, (s =1,2,3,4), will be denoted by (I?), (139),

(EY), and (EY), respectively. The equations (I) and (F»), and (I3) and (E;)

are piecewise mutually associate equations.

We note that Jl p it
B gs, =< = — idf (5.2.68)
ds, r t—to

where ¢t and tg are the affixes of the points z and y. Taking into account
Equations 5.2.43 and 5.2.68 and pointing out the characteristic part of the
singular operator [242], the system (I;) can be written in the form

B A R
V(te) + = |~ 0 0 /—dtwcu(to):—zfl(to) (5.2.69)
™o o of/rtTto

Let us denote by [h(t)]r the increment of the function h as the point ¢ describes
once the curve L in the direction leaving the domain X% on the left. The index

of the system 5.2.69 is
- 1 ar det D
= on |8\ det s I

where
D = ||dijllsxs, S =|sijllaxs
dmn = Smn = 1 form = n, d21 = —d12 = S12 = —891 = ic
do3 = d3o, =0, 8q3 = 830 =0

Since in our case we have n = 0, the system ([;) is a system of singular
integral equations for which Fredholm’s basic theorems are valid [196]. In a
similar way, we can prove that the index of the system (I3) is zero.
Let us consider the problems (I;) and (E3). The homogeneous equations
(1Y) and (E3)
—;y@ + [ Ao, =0 (1?)

—fp /A* 2,y)p(2)ds, =0 (E9)

have only trivial solutions. We assume the opposite and suppose that p® is a
solution of equation (E9), not equal to zero. Then, the single-layer potential

Vi(a; ) = / Tz, y)p(v)ds,
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satisfies the condition

()

When z tends to a point at infinity and y remains fixed on L then ugﬁ ) tends
at infinity as 045 Inr. If the density p = (p1, p2, p3) of the potential of a single
layer satisfies the conditions

0, yel (5.2.70)

/ Pads =0, (a=1,2) (5.2.71)
L

then the potential V' (x; p) satisfies the asymptotic relations
ov
OR

where R is an arbitrary direction. As in classical theory of elasticity, we have

V=001, O(r=2)asr — oo (5.2.72)

/ i, (a,nw) T (@, y)dss = —C(y)Sas (5.2.73)
L 3$
where
1, ye E+,
((u)=1{3, yel,
0, yeX~

If we multiply the equation (EY) by ds, and integrate on L, on the basis of
Equation 5.2.73, we obtain

/&@mzaqum
L

so that the potential V (x; p°) satisfies Equation 5.2.72. This fact implies that
V (z; p°) satisfies the relation 5.2.62. Thus, we conclude that (i) V(z;p°) sat-
isfies Equation 5.2.59 on ¥~ and the condition 5.2.70 on L; (ii) the formula
5.2.63 can be applied to V(x;p°); and (iii) V(z;p") satisfies the asymptotic
relations 5.2.72. It follows that

V(z;p°) =0o0on X~ (5.2.74)
According to the continuity of the single-layer potential, we have
V(a5 p")]* = 0on L

Taking into account that V' (z; p") satisfies Equation 5.2.59 on ¥*, from the
uniqueness theorem, we get

V(z;p°) =0on X (5.2.75)
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It follows from Equations 5.2.67, 5.2.74, and 5.2.75 that

P°(y) = {H ((%J@) V(y;po)} i [H<aayny) V(y;po)] =0

Thus, our statement concerning the equation (EY) is valid.

Since the equations (1Y) and (EY) form an associate set of integral equations,
(I9) has also no nontrivial solution. We note that from Equation 5.2.73 and
the equation (EQ), with f4 = (f41, .]0427 f43), we obtain

—/Lp,l(y)dsy:/Lfmds7 (a=1,2)

Thus we obtain the following results.
Theorem 5.2.8 Problem (I1) has solution for any Holder continuously dif-
ferentiable vector field f1. This solution is unique and can be expressed by a

double-layer potential.

Theorem 5.2.9 Problem (E3) can be solved if and only if

/ faads =0, (a=1,2)

We now consider the equations (I3) and (EY). We note that the vector field
w(z) = (e1 — c3w2, c2 + 321, C3)

where ¢; are arbitrary constants, satisfies the equations

0 - N 9 -
D<8x> w(x)=0, zeX, H(@x’n“) w(x)=0onL (5.2.76)

From Equation 5.2.58, we obtain
w(x) = 7/ Az, y)w(y)ds,, zeXT (5.2.77)
L

Passing to the limit in Equation 5.2.77 as the point x approaches the boundary
point xg € L from within, according to Equation 5.2.66, we get

—w(xp) —i—/LA(a:o,y)w(y)dsy =0

Hence, the matrix w(z) satisfies the equation (E?). Clearly, the vector fields

w(l) = (17070)? W(2) = (07 1a0)7 w(3) = (_-TQ,JH, 1)
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are linearly independent solutions of the equation (EY?). According to the
second Fredholm theorem, the equation (I9) has at least three linearly
independent solutions v(¥, (i = 1,2,3). As in classical theory [194], we can
prove that v(® forms a complete system of linearly independent solutions of
the equation (I39). This fact implies the completeness of the associate system
(w(l),w@),w(?’)). Hence, the necessary and sufficient conditions to solve the
equation (I3) have the form

/wwwyx@mxzm (j=1,2,3) (5.2.78)
L

If we take fo = (t1,t2,m), then the conditions 5.2.78 can be written in the
form

/st:m /kmgfma+ﬁmm:0 (5.2.79)
L L

Thus, we have the following result.

Theorem 5.2.10 Problem (I3) can be solved if and only if the conditions
5.2.79 hold. The solution can be represented as a single-layer potential and is
determined within an additive plane rigid deformation.

As in classical theory, we can study the problem (F;). These results have
been established in Ref. 140.

On the basis of Theorem 5.2.10, we find that the second boundary-value
problem has solution if and only if

hm+/%@:o
= r
(5.2.80)
/ (eapxafs + g3)da + /(aagxaf@ + mg)ds =0
N r

5.3 Saint-Venant’s Problem for Cosserat Cylinders

In this section, we study the Saint-Venant’s problem within the linear the-
ory of Cosserat elastic bodies. We show that the method of Section 1.7 can
be extended to derive a solution of Saint-Venant’s problem. Minimum prin-
ciples characterizing the solutions of extension, bending, torsion, and flexure
problems are presented in Section 5.4. These principles lead to a solution of
Truesdell’s problem for Cosserat cylinders.

Saint-Venant’s problem for Cosserat elastic bodies has been studied in var-
ious works [85,141,143,154,188,338].
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5.3.1 Preliminaries

We assume for the remainder of this chapter that the domain B is occupied
by a homogeneous and isotropic material. We denote by u the six-dimensional
vector field on B, defined by u = (u1,u2,us, ¢1, p2, ¢3) = (u;, p;), where u;
are the components of the displacement vector field, and ¢ are the com-
ponents of the microrotation vector field. Let us denote the strain measures
associated with u by e;;(u) and k;;(u), that is

eij(u) = ;i + €jikr, Kij(u) = ;i (5.3.1)

We note that e;;(u) = 0, k;;(u) = 0 if and only if u; = a; + €;j8bjzk, @i = b;,
where aj and by, are arbitrary constants. Let

R* = {uo sl = (u?,cp?), u? = a; + 5102k, go? = bi} (5.3.2)

where a; and b; are constants. If u € R*, then u is called a rigid deformation.
We denote by t;;(u) and m;;(u) the components of the stress tensor and couple
stress tensor, associated with u. In the case of isotropic and homogeneous

bodies, we have
b5 () = Aery (w)dis + (1 + K)ess (u) + preg(u) 53
m”(u) = cmrr(u)(;ij -+ 6nji(u) -+ ")/Iﬂij (u)

where A\, u, k, @, 3, and v are given constants. Over the past decade, a deter-
mination of the constitutive constants has become possible (see [30,259,260]
and references therein).
We call a six-dimensional vector field v an equilibrium vector field for B if
u € CY(B)NC?*(B) and
(tji(u); =0, (mji(u)); + eintie(u) =0 (5.3.4)

hold on B.

Let s;(u) and m;(u) be the components of the stress vector and couple
stress vector at regular points of 0B, corresponding to the stress tensor ¢;;(u)
and couple stress tensor m;;(u) defined on B, that is,

si(u) = tji(u)ny, mi(u) = mj;(u)n, (5.3.5)
The elastic potential corresponding to u is given by

2W(u) = Aerp(u)ess(u) + (p + K)eij(u)es;(u) + peq;(u)eji(u)
+ akipy(u)hss(u) + Brij(w)rji(u) + vii;(u)kij(u) — (5.3.6)
We assume that the elastic potential is a positive definite quadratic form

in the variables e;;(u) and x;;(u).
The strain energy U(u) corresponding to u is defined by

Uu) = /B W (w)dv (5.3.7)
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In the following, two six-dimensional vector fields differing by a rigid defor-
mation will be regarded identical.
The functional U(-) generates the bilinear functional

1

U(u,v) = 5 /B[)\em,(u)ess(v) + (4 K)eij(u)e;(v) + peij(u)es; (v)

+ akipr (U)kss (V) + Bri(w)kji(v) + vkij(u)kig(v)]dv  (5.3.8)

The set of smooth vector fields u over B can be made into a real vector space
with the inner product

(u,v) =2U (u,v) (5.3.9)

This inner product generates the energy norm |lul|?> = (u,u). As in Theo-
rem 5.2.2, we can prove that for any equilibrium vector fields u = (u;, ;) and
v = (v, ¥;), one has

(i, v) = /a [ousi(w) + iy (1) da (5.3.10)

which implies the reciprocity relation

/ [uisi(v) + pimi(v)]da = / [visi(w) + Pym;(u)]da (5.3.11)
OB aB

We assume that the region B from here on refers to the interior of the
right cylinder defined in Section 1.2. We consider the equilibrium problem of
cylinder B which, in the absence of body forces and body couples, is sub-
jected to surface forces and surface couples prescribed over its ends and is free
from lateral loading. Thus, the problem consists in the determination of an
equilibrium six-dimensional vector field v on B, subject to the requirements

si(u) =0, m;(u) =0on Il
(5.3.12)
) on By, (a=1,2)

si(w) =5, m(u) = m,

where ﬂ(a) and 7711(-&), (a = 1,2), are prescribed functions. We assume that the
hypotheses of Theorem 5.1.1 hold. It follows from Equations 5.3.10 and 5.1.22
that the necessary and sufficient conditions for the existence of a solution to

this problem are given by

/ '{f”da+/ tPda =0
b3 PP

[ (ol 7ydn [ (el 4 5)a =0
21 Z:2

(5.3.13)

In the formulation of Saint-Venant, the conditions 5.3.12 are replaced by
si(u) =0, m;(u) =0onII

(5.3.14)
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where F and M are given vectors representing the resultant of surface forces
and the resultant moment about O of the surface forces and surface couples
acting on ;. Here, R;(-) and H;(-) are the linear functionals defined by

R;(u) = 7/2 ts;(u)da
H,(u) = _/2 [eaprptas(u) + maq(u)]da (5.3.15)

Ha(w) = = [ apatan(u) + mas(u)}da

Saint-Venant’s problem for Cosserat elastic cylinders consists in the deter-
mination of an equilibrium vector field v = (u;, ;) on B that satisfies the
conditions 5.3.14. Let K(F, M) be the class of solutions to this problem. We
continue to denote by K (F3, M1, Ms, M3) the set of all solutions of the exten-
sion, bending, and torsion problems (the problem (P;)), and by Ki;(Fy, Fs)
the set of all solutions of the flexure problem (the problem (P)).

From the conditions of equilibrium of cylinder B, we obtain

/E tgi (u)da = 7Ri (U)
/2 [zatss(u) + egamas(u)lda = eqpHp(u) — hRy () (5.3.16)

/2 [apTatss(u) + mss(u)lda = —Hs(u)

We denote by A the set of all equilibrium vector fields u that satisfy the
conditions

si(u) =0, m;(u) =0onII

Theorem 5.3.1 Ifu€ A and uz € C*(B)NC?(B) thenus € A and
R(us) =0, Hy(uz3) =eqapRp(u), Hs(usz) =0 (5.3.17)

Proof. The first assertion follows at once from the fact that ¢;; (v s) = (¢:;(u))s,
myj(w,3) = (ms;(u)) 3 and hypotheses. From Equations 5.3.4, we arrive at

tai(us) = (t3i(u),3 = —(tai(u)),a
Eapatss(us) + m3a( 3) = (maa(u))3
—(mpa(u)),p — €aijtij(u
(mpa( )).p — €aijtij(u) — (
_[mpa(u)+5aﬁxﬁtp3( N.p = Epatsp(u)
€apTatsp(us) + mas(us) = —€apZa(tps(u)),p — (Mps(u)),p — captas(u)
—leapmatop(u) +mps(u)l,

+ €apzp(tss(u)) 3
) = eaprp(tps(u)),,
apl(@ptps(u)),, — tas] (5.3.18)

© 2009 by Taylor & Francis Group, LLC



206 Classical and Generalized Models of Elastic Rods

Using the divergence theorem, Equations 5.3.15 and 5.3.18, we obtain
R(ugs) = / s(u)ds
r
Ha(ua) = [ [zapmasalu) + ma(u)lds + o, Ry(u)
r

Hy(uz) = [ apmasa(u) + ms(u)]ds

r

The desired result is now immediate. O
Theorem 5.3.1 has the following immediate consequences.

Corollary 5.3.1 Ifue K;(Fs, My, M2, M3) and u 3 € C*(B) N C?(B), then
uz €N and R(uz) =0,H(us) =0.

Corollary 5.3.2 If ue K;(F1,Fs) and uzeCY(B) N C?(B), then us€
KI(O7F27_F170)'

The above results will be used to establish a solution of Saint-Venant’s
problem.

We note that in Ref. 21, Berglund extended Toupin’s version of Saint-
Venant’s principle to the case of Cosserat elastic cylinders.

5.3.2 Extension, Bending, and Torsion

Corollary 5.3.1 allows us to establish a method to derive a solution to the
problem (P;). Let A* be the class of solutions to the Saint-Venant’s problem
corresponding to F = 0 and M = 0. In view of definition 5.3.2, it follows that
R* C A*. We note that if u € K;(F3, My, Ma, M3) and u 3 € C'(B)NC?%*(B),
then by Corollary 5.3.1, u g€ A*. It is natural to seek a solution v of the
problem (P;) such that v 3 is a rigid deformation.

Theorem 5.3.2 Let S be the set of all vector fields u € C*(B)NC?(B) such
that u 3 € R*. Then there exists a vector field v e S which is solution of the
problem (Py).

Proof. Let ve C*(B) N C%*(B), v = (v;,w;), such that
v3 = (o + €ijxBi%r, Bi)

where «; and ; are constants. We find

1 2
Vo = —5(10,173 — a4€qpx3x3 + We (x1, x2)
U3 = (apxp + a3)1'3 + wg(xl, xg) (5.3.19)

Wo = €a308%3 + Xa(T1,T2), w3 = agx3 + x3(x1, r2)
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modulo a rigid deformation. Here w = (wjy, x;) is an arbitrary vector field
independent of x5, and we have used the notations a, =¢€,a3,, a3 = a3, a4 = Bs.
Now we prove that the functions w; and x;, and the constants as, (s =1, 2, 3,4),
can be determined so that v € K (F3, My, Mo, M3). By Equations 5.3.1 and
5.3.19,

ap(v) = eap(w®),  e3a(v) = —eap(aszs + xp)
eas3(v) = eas(v’), e33(v) = apz, + as
Kap(v) = Kap(w'), K3a (V) = €apag
ka3 (v) = Kaa(w®),  Kaz(v) =
where
w® = (wy,ws,0,0,0, x3), w’ = (0,0, ws, X1, X2, 0) (5.3.20)
Clearly,
tas(v) = Mapz, + as)dap + Tap(w®), tas(v) = Po(w') — pascapt,

(v) =
(v) = Qa(w) + (1 + K)asepars
ts3(v) = (A4 20+ K)(a,z, + az) + Aeyp(wP) (5.3.21)
(v) = aasbyy + Hyp(w'), Ma3 (V) = Beapa, + Maz(w?)

(v) =

v apap + ﬁXS o) mSB(U) = (O[ + B + ’7)014 + aXp,p

where

Top(w®) = Aepp(w”)dags + (1 + K)eas(w’) + pega(w?)
MaS(wO) = 7“043(“)0)7 a(w,) (n+ )UJ3 a T KEapXp (5.3.22)
Qa(w') = pws o + Kegaxs,  Hug(w') = axpp0m + Bxvy + VX

We introduce the following notations

w3 = a4, Xa = G/4’(/)a, @ = (05 07 %¢17 wQa O) (5323)

Clearly, w = w" +a4@. Let T be the set of all vector fields w € C*(B) N C?(B)
such that @w=/(0,0,p,11,%92,0). We introduce the operators L; on T
defined by

Lyw= YA, + (a + 5)¢P7PV + KEvpp,B — 2Ky

_ (5.3.24)
L3 = (1 + K)Ap + Keaps,a

With the help of Equations 5.3.21, 5.3.23, and 5.3.24, the equations of equi-
librium and the conditions on the lateral boundary reduce to

(Tpa(@®)) 5+ 13=0,  (My(u®))  +eapTap(w’) =0on %,

5.3.25
Ta(w)ng =12, Moz (w®)ng =mJon T ( )
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and
LZ’L/I} = hi on 21, Nlt/l} = Cl onT (5326)
where
0 0 0
0 = A\, to = —Mapx, + a3)na, Ma = B€,00,Nq
f ( prp 3) 3 & patp (5_3.27)
he = R, hs = 0, CV = —Qny, C = UEapBTAN
and

Nyw = (a/‘/)p,pfsnu + ﬂ¢n,u + 'un,n)nn

N 0
Nsw = (p+ n)a—:: + KEap¥pNa

From Equations 5.3.20, 5.3.22, and 5.3.25, we conclude that w® is charac-
terized by a plane strain problem (cf. Section 5.2). It is easy to verify that
the necessary and sufficient conditions to solve the boundary-value problem
5.3.25 are satisfied. Thus, the boundary-value problem 5.3.25 has solutions
for any constants a,,ap, and as. We denote by w(® = (ugz),ug),0,0, 0, @éz))7
(¢ =1,2,3), a solution of the boundary-value problem 5.3.25 when a; = d;;.
We can write

(5.3.28)

3
w’ = Zaiw(i) (5.3.29)
i=1

where w(?) are characterized by the equations

(Toa(@®)) 5+ Xap =0, (Tga(w®)) ;=0

, . 5.3.30
(Mys(w™)) ot eapTap(w!’) = 0 on X, ( )
and the boundary conditions
Ts (W' ng = =z Ne, Tsa(wWng = —An
Ba (W )ng p Ba (W' )ng a (5.3.31)

Ma3<w(p))na = ﬁgpanou Mag(w(?’))na =0onl

In what follows, we shall assume that the vector fields w(® (i =1,2,3), are
known.
We consider now the boundary-value problem defined by

L;w = n; on X1, N;w=p;onTl (5.3.32)

where 7; and p; are C* functions. It is known (cf. [141,154]) that the boundary-
value problem 5.3.32 has a solution @ € C1(X;) N C?(%;) if and only if

/ M3 —/pgds =0 (5.3.33)
o r

The necessary and sufficient condition for the existence of a solution of the
boundary-value problem 5.3.26 is satisfied.
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By Equations 5.3.19, 5.3.20, 5.3.23, and 5.3.29, we see that the vector field
v can be written in the form

4
v= Zajv(j) (5.3.34)
j=1

where the vector fields v(/) = (vgj),ng)), (j =1,2,3,4), are defined by

1
v = —ixgéag +ul®, o = ulP), v® = egazprs
Uéﬁ) — v§3) _— U§4) — o, W = eqprs (5.3.35)
I R

Clearly, v¥) € A, (j = 1,2,3,4). The relations 5.3.34 and 5.3.35 lead to

3
1 .
Vo = —§x§aa + aseparprs + Z aiufj), v = (apx, + az)r3 + asp
i=1
3 .
Wo = £aplpDs + astha, w3 =asT3+ » i) (5.3.36)

=1

By Equations 5.3.21, 5.3.23, and 5.3.29, we arrive at

4 4
v) = Zastij(v(s)), mi;(v) = Zasmij(v(s)) (5.3.37)
s=1 s=1

tap(V) = Azpbas + Tap(w®),  tap(v®) = Aag + Tap(w®)
tag(v(4)) 0, tag(U(i)) =0, ta (0(4)) = P, (W) — peaprs

taa(v®) =0, t3a(v®) = Qu (@) + (u + K)egatp
ta3(vP) = A+ 2u + k), + )\u&p)a t3z(v®)) = A4+ 2u+ K + )\u( )
tas(0) =0, My, (D) =0, My, (vW) = ad,, + Hyy(D)
mag(v ) Beap + Mag(w(")) mag(fu(?’)) = Mag(w(S)), mag(v(‘l)) =0
mga(v(4)) =0 m33(1](1)) =0, m33(v(4)) =a+G+v+ay,,
maa(0”) = 1eap + Beln,  maa(v®) = i,
(5.3.38)
The conditions on the end Y; are
Ry(v) =0, R3(v) = F3, H;(v) = M; (5.3.39)

Since v 3 € R*, by Theorem 5.3.1, we find that R, (v) = 0. The other conditions
from Equations 5.3.39 furnish the following system for the constants aq, as, as,
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and ay
Dajaj = 5o¢pMp7 ngaj = —1‘7137 Da4 = —M3 (5340)

where
Dan = / {za[(A 420+ K)z) + /\ul(,’f)] B‘EO‘P@ + 700y }da
3

Do = {xa(A+2/~L+’f‘|‘)‘“ ) ﬂsaﬁ(pdp}da
P31

D5, = / (A + 20+ K)za + /\ul(,?‘y)]da (5.3.41)
3

Dsg = / A+ 2u+ K+ )\u(pzj’z,] da
)

D = (1eapTap g + KTala + (1L + K)Tpx, + athp , + @+ B+ 7]da
31

We note that the constants D;; and D can be calculated after the functions

{ua ,Lpg }, (1 =1,2,3), and (o, 11, 1)2) are found.
Let us prove that the system 5.3.40 can always be solved for a1, as, az, and

a4. In the view of Equations 5.3.7 and 5.3.34,

4

Z <v(i)7v(j)>aiaj

ij=1

Uv) =

|~

Since W (v) is positive definite and v(?) is not a rigid deformation, it follows
that

det(v® 0y £ 0, (i,j=1,2,3,4) (5.3.42)
By Equations 5.3.10, 5.3.11, 5.3.35, 5.3.38, and v € A, (i = 1,2,3,4),

<v(a)’v(,3)>:/ {j(a) (’U(ﬁ))—l—w;a)mj(v(ﬁ))}da
0B

1
= f§h2/ t30 (V) da + hDog
Yo

<U(0‘),v(3)> = hD,3, <U(3)’U(3)> — hDss
<v(i),v(4)> =0, <v(4),v(4)> = hD

If we use the relations v(¥ € A and v ER* then by Theorem 5.3.1 and
Equations 5.3.16, we find that R, (v )) = 0. Thus,

(w® v@y = hDy;, (w® Wy =0, (w® o™y = hD (5.3.43)

© 2009 by Taylor & Francis Group, LLC



Cosserat Elastic Continua 211
It follows from Equations 5.3.11, 5.3.42, and 5.3.43 that D;; = D;; and
det(D;;) # 0, D#0 (5.3.44)

Thus, the system 5.3.40 uniquely determines the constants a1, as, a3, and ay.
O

Remark 1. The proof of this theorem offers a constructive procedure to
obtain a solution of the extension—bending—torsion problem. This solution
has the form 5.3.36 where the functions u((f),goéi)7 (i =1,2,3), are solutions
of the plane strain problems 5.3.30 and 5.3.31, the set of functions (¢, %1, 12)
is characterized by the boundary-value problem 5.3.26, and the constants
ai1,as,as, and a4 are determined by Equations 5.3.40.

Remark 2. The functions v and <pz())3) can be determined in the following
way. The corresponding equilibrium equations and boundary conditions are
satisfied if one choose

Toa(w®) = ~Nup,  Maz(w®) =0

Since A is constant, the above functions satisfy the compatibility conditions [83].
By the constitutive equations,

ui =ugy = v, ul e =u) - e =0, @i =0

) )

where v = A\(2)\ + 2u + k) L. The integration of these equations yields
u((f) = —UZq, (p:(,)g) =0

modulo a plane rigid displacement.
From Equations 5.3.41, we get

Dy3 = D3y = AE2, Ds3 = FA (5.3.45)

where A is the area of the cross section, 20 are the coordinates of the centroid
of X1 and

E=02u+r)BA+2u+kr)/(2\+ 2u + k)

We note that we established the relations D3, = AEz% without recourse to

the determination of u{?.

Remark 3. If the rectangular cartesian coordinate frame is chosen in such a
way that the origin O coincides with the centroid of the cross section X1, then
the problems of extension and bending can be treated independently one of
the other.
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In view of Equations 5.3.36, 5.3.40, and 5.3.45, if 2 = 0, then we find the
following solutions:

1. Extension solution (F, = 0, M; = 0)
Ugq = —A3VTq, Uz = agxs, 0; =0

where
EAag = —F3

2. Bending solution (F; = 0, M3 = 0)
1 2
Uy = —gaaxg + Zapu,(f), U3 = AgraT3

p=1

) (5.3.46)
Pa = EapBaApT3, Y3 = Z ap@ép)
p=1

where the functions u((f),gogp), (p = 1,2), are solutions of the corre-

sponding plane strain problems from Equations 5.3.30 and 5.3.31, and
the constants a; and as are determined by

Dopag = eanMy
3. Torsion solution (F; =0, M, = 0)

Ug = EBaA4TAT3, U3 = G4, Po = GaPa, P3 = GaT3 (5.3.47)

where the torsion functions ¢, 71, and o are characterized by the
boundary-value problem 5.3.26 and a4 is given by

Da4 = —M3
D is the torsional rigidity for micropolar cylinders.

The solution of the torsion problem for a circular cylinder has been pre-
sented in Refs. 188 and 338 (see the solution of Exercise 5.7.3). The extension
and bending of a circular cylinder has been studied in Refs. 188-190 (see the
solution of Exercise 5.7.2).

5.3.3 Flexure

By a solution of flexure problem, we mean a vector field u € A that satisfies
the conditions

Ro(u)=F,, Rs(u)=0, Hiu)=0 (5.3.48)
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Let @ = (a1, az, a3, as). We denote, for the remainder of this chapter, by v{a}
the vector field v defined by Equation 5.3.36.

With the help of Corollaries 5.3.1 and 5.3.2 and Theorem 5.3.2, we are led
to seek a solution of the flexure problem in the form

"= / w{B}des + 0{E) + o’ (5.3.49)
0

where b= (b1, b2, b3, ba) and €=(cy, ca, c3, c4) are two constant four-dimensional
vectors, and w’ = (w}, x}) is a vector independent of 23 such that w’ € C*(31)N
C?(%).

Theorem 5.3.3 LetY be the set of all vector fields of the form 5.3.49. Then
there exists a vector field u® € Y which is solution of the problem (P).

Proof. Let u° € Y. Next, we prove that the vector field w’ = (w}, x}) and the
constants b;,c;, (i = 1,2,3,4), can be determined so that u° € K;7(Fy, F3).
First, we determine the vector b. Thus, if u’ € K;;(Fy, Fy), then by Corol-
lary 5.3.2 and Equation 5.3.49,

v{b} € K;(0, Fy, —Fy,0) (5.3.50)
In view of Equations 5.3.40 and 5.3.50, we obtain
Dajb; = —Fy, Ds;b; =0, by =0 (5.3.51)

This system determines b;,bs, and bs. From Equations 5.3.36, 5.3.49, and
5.3.51, we find that

3
1 1 )
Ul = ——baTh — ~Cals — C4EapTpTs + Z(bifbg, + ¢)uld) 4w,
6 2 pt

1
ug = i(bpxp + bs)z2 + (cpxp + c3) T3 + Catp + Wh

X (5.3.52)
50(01 = isagbgl’g + €apCprs + 047;004 + X;
3
gpg = cyx3 + Z(biwg + Ci)@él) + Xg
i=1

where (ugf), gpgi)), (i=1,2,3), are characterized by Equations 5.3.30 and 5.3.31.
It follows from Equations 5.3.1, 5.3.3, and 5.3.52 that
tap(u’) = A(bpp + b3)xs + o, + ¢3)0ap
3
+ Z(bﬂ’S + Ci)Taﬁ (w(i)> + Taﬁ(wo)
i=1
taz(u®) = (A + 20+ w)[(bpz, + bs)az + cp) + 3]
3
+ A Z(bi$3 + ci)uﬁf;)p + ), ,
i=1
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3
tas(u®) = Po(W) + c4[Po(®) + pegas] + 1y | biul))

i=1

3
t3a(u”) = [Qa(®@) + (1 + K)epatp] + (1 + ) Z biuf!
My (u®) = Hy, (W) + ca[ad, + Hxy (©)] + by, Z by (5.3.53)

ma3(u’) = alcatp, , + Xpp) +(@+B+7) <C4 + Z bi@?)
i=1
3

Maa(u’) = Bear(byws +c) + 3 (b + i) Maa(w™) + Maa(w)

i=1
3 .
m3a(u0) = ’Ygau(buxi’; + CV) + ﬂZ(bsz + Cz)@gle + ﬁXé,a
i=1

where we have used the notations

wO = (wllawéaoaoaoaXé), w = (anawéax/lax/%o)

If we substitute Equation 5.3.53 into equations of equilibrium, we find, with
the aid of Equations 5.3.26 and 5.3.30, that

(Tpa(W®) s =0,  (My3(w°))p + capTap(w?) = 0on X, (5.3.54)

and

where

3
& = —1eusby — 3 till+ DS, — cuamas]

PP

3
€3 =—(A+ 20+ K)(bpw)p + bs) — A+ ) > bul))
=1

In view of Equations 5.3.26 and 5.3.31, the conditions on the lateral boundary
reduce to

Tsa(w)ng =0, Ma3(w®)ng =0o0nT (5.3.56)
and
3 .
= —an, Z bch?) ) N3W = —pung Z biuld on T (5.3.57)
i=1

The relations 5.3.54 and 5.3.56 constitute a plane strain problem corre-
sponding to null data. We conclude that w/, =0 and x4 =0. The necessary
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and sufficient condition for the existence of a solution to the boundary-value
problem 5.3.55 and 5.3.57 reduces to

Dgibi = 0

This condition is satisfied on the basis of Equations 5.3.51. Thus, the functions
wh and x/, are characterized by the boundary-value problem 5.3.55 and 5.3.57.
The conditions R, (u) = F, are satisfied by Equations 5.3.50 and 5.3.51 and
Theorem 5.3.1. The conditions Rs(u) = 0, H(u) = 0 reduce to

DijCj =0 (5358)

and

3
2 i=

(5.3.59)
+(a+B+7) Z@%, +ax,,p}da

By Equations 5.3.44 and 5.3.58, we conclude that ¢; =0. The constant c4 is
given by Equation 5.3.59. ]

The flexure problem for a circular cylinder was investigated in Refs. 189
and 190.

Remark 4. The above theorem offers a constructive procedure to obtain
a solution of the flexure problem. This solution has the form 5.3.52 where
w!, = x5 = 0,¢; = 0, the functions ugf),apgl), (i = 1,2,3), are solutions of
the plane strain problems 5.3.30 and 5.3.31, the functions ¢ and %, are char-
acterized by the boundary-value problem 5.3.36, the functions w4 and X/,
are characterized by the boundary-value problem 5.3.55 and 5.3.57, and the
constants b; and c4 are determined by Equations 5.3.51 and 5.3.59.

Remark 5. If the rectangular cartesian coordinate frame is chosen in such
a way that the origin O coincides with the centroid of the cross section ¥,
then Equation 5.3.45 implies D3, = 0. It follows from Equation 5.3.51 that
bs = 0. In this case, Equation 5.3.52 yields the following solution of the flexure

problem
2

1
V= —fbagcg + c4epaTpTs + T3 Z bpu((x")

U
6
p=1

1
ug = §(b1931 + b2:z:2)9:§ + cap + wh
1 (5.3.60)
= ic"-:agng?)) + Ccqo + X’a

©3 = cazs + a3 Z by
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where the constants b, are determined by
Dogbsg = —F,

and ¢4 is given by Equation 5.3.59.
The stress tensor and couple stress tensor are

2
tap(u®) = Ab,x,23008 + T3 Z prag(w(p))
p=1
2

ta3(u®) = (A + 241+ £)bpaps + 231 > byulf)
p=1

2
tas(u®) = Po(®) + ca[ Pa(@) + pegas) + 1Y byulf)
p=1

t3a(u”) = Qa(@) + c4[Qa(@) + epa i + K)zp] + () Y bpulf)

p=1
2
M, (u®) = Hy, (W) + c4[Ha (@) + ady,] + ady, Z bpgogp)
p=1
2
mas(u’) = alcathpp +X,,) + (@ + B +7) (C4 + Z bpapgp)>
p=1

2
ma3(u0) = Beavsb, + T3 Z bpMag(’LU(p))

p=1

2
Mm3q (UO) = ’Yf:‘aubul’?, + 5.’1}3 Z bwpgfi
p=1

Remark 6. If we replace Equations 5.3.58 and 5.3.59 by

Dajcj = goszpa ngCj = —F3

3
Dey = —Ms — / {Eaﬁm l“wéﬁ +euprxy, + (n+R) Y bi“g)
N i=1

3
+ (a+B+7) Z bitpg) + ax;w}da

=1

then the vector field u° defined by Equation 5.3.52 belongs to K (F, M).

Remark 7. The plane problems 5.3.30 and 5.3.31 can be reduced to plane

strain problems without body loads. Let us introduce the functions uz(n),
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@5 (n=1,2), by

ui(l) = ugl) + 21/( 2 xg), u;(l) = uél) + vx172, cp;)(l) = @él) + v
* * 1 *
1(2) ( ) + vri1T9, u2(2) = uéz) — §V(xf — x%), <p3(2) = ¢g2) — VI
(5.3.61)
where
v=A2\N+2u+ k) (5.3.62)
We define ez(g), Iia(g ), tz(é’), and m*(n) by
(*;([;7) _ Ug( n) + €5 @*(n) H*( n _ (p;(;l)

(77) _ )\e 71)5 op + (n+r)e" (77) _,'_Me*(??)7 m:‘;(gﬂ) _ 7/{3(377)7 (n=1,2)

(5.3.63)
It follows from Equations 5.3.1, 5.3.29, 5.3.61, and 5.3.62 that
eap(W™) = el — Ubapry, Koz ™) = K + eayy (5.3.64)
Top(w Y )) =t, ( — AapTy, Ma3(w(”)) = mz(g") + YeanV .
By Equations 5.3.30, 5.3.31, and 5.3.64, we obtain the equations
t*(n) =0 *(n) t*(’l) =0 ) 5.3.65
Ba,B ’ Ma3,0 +€as af on 2. ( 9. )
and the boundary conditions
t;g)n,@ =0, Z(gn)na = (B+w)epang onT (5.3.66)

We denote by O, (n = 1,2), the plane strain problem characterized by
Equations 5.3.63 and 5.3.65 on X1, and the boundary conditions 5.3.66 on I'.
If we substitute Equation 5.3.61 into Equation 5.3.36 and use the relations
us’) = —VZ,, <pg3) =0, then the solution of the problem of extension and
bending can be written in the form

1 * *
uy = *ﬁal [Ig + 1/(9:% — :c%)} — QVx1X2 — A3Vxy + alul(l) + azul(g)
1 * *
Uy = —A1VT1X2 — 5@2 [mg - I/(xf — x%)] — asvry + G1u2(1) + a2u2(2)
us = (@121 + agx2 + az)xs, Pa = Eapagrs
Y3 = —a1VT + aVxr1 + (11@3( ) + azpq *(2) (5367)

where {ua ,g03 } is the solution of the problem 9. Similarly, on the
basis of Equations 5.3.61 and 5.3.52, we can express the solution of the flexure
problem in terms of the solutions of the problems (7.
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5.4 Minimum Principles

In this section, we present minimum strain-energy characterizations of the
solutions obtained in Section 5.3. We assume that the origin O coincides with
the centroid of X1. Since in the extension solution the microrotation vector
vanishes, we renounce to study this solution. First, we study the bending
problem. We denote by A; the set of all equilibrium vector fields u that
satisfy the conditions

si(u) =0, m;(u) =0 on II, tsp(u) =0,

mg3(u) = 0 on Xg, Ho(u) =M (5.4.1)

Theorem 5.4.1 Let v be the solution 5.3.46 of the bending problem, corre-
sponding to a couple of moment M(Mi, Ms,0). Then

U(v) <U(u)
for everyu € Ay, and equality holds only if u = v (modulo a rigid deformation).
Proof. We note that v = (v;,w;) € As. Let u € Ay and define v’ =u — v. Then
u' is an equilibrium vector field that satisfies

s;(u) =0, m;(u') = 0onII, ts,(u') =0,
@W)=0,  milw) tayl0) 5a2)
mas(u') = 0 on Xg, Hy(u')=0

We can write,
Uw)=U{)+U) + (U, v). (5.4.3)

It follows from Equations 5.3.10, 5.3.16, 5.3.46, and 5.4.2 that
(', v) = / [visi(u') + w;m;(u')]da
OB

- / [vits;(u') + wima; (u')]da — / [vitsi(u') + wims;(u')]da
pa%s P21

= h/ [(a121 + asma)tss(u') + eapagmsa (u')]da (5.4.4)
32
= hagleapHp(u') — hRo(u')] =0

From Equations 5.4.3 and 5.4.4, we see that U(u) > U(v), and U(u) = U(v)
only if u’ is a rigid deformation. O

We denote by Aj; the set of all equilibrium vector fields u that satisfy

conditions
si(u) =0, m;(u) =0 on I, tsz(u) =0,

(5.4.5)
mzq(u) =0on Xg, Hs(u) = Ms
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Theorem 5.4.2 Let v be the solution 5.3.47 of the torsion problem corre-
sponding to the scalar torque Ms. Then

U(v) < U(u)

for every uw € Ayy, and equality holds only if u = v.

Proof. We consider u € Ay and v = (v, w;). Since v € Ay, it follows that the
field &' = u — v is an equilibrium vector field that satisfies

si(u') =0, m;(u') =0onII, tss(u') =0

5.4.6
mzq(v') =0o0n X, Hs(w')=0 ( )
In view of Equations 5.3.10, 5.3.16, 5.3.47, and 5.4.6 we obtain
(', v) = a4h/ [egaxptsa(u') + mss(u')]da = —aghHs(u') =0
PP
Thus,
U(u) —U(v) =U(u—v)
The conclusion is now immediate. O

Let £ denote the set of all equilibrium vector fields u that satisfy the con-
ditions

uz € C'(B)NC?*(B), si(u) =0, m;(u) =0onII
[tsa(u,3)](z1,22,0) = [t3a(u3)](x1, 22, h)

[ma3(u,3)|(71,72,0) = [maz(uz)](z1,22,h) (z1,72) € X1
R, (u) = F,

Theorem 5.4.3 Let u® be the solution 5.3.60 of the flexure problem corre-
sponding to the loads Fy and F>. Then

Ul(uy) < Ulus)
for every u € &, and equality holds only if u s = u?S.

Proof. We assume that u € &. Since u° € &, it follows that the vector field
u' defined by v = u — u° is an equilibrium displacement field that satisfies

u'y € CY(B)NC*(B), si(u) =0, m;(u") =0onII
[t30 (U:S)](xl,l'% 0) = [t3a(U:3)K$la$2, h) (5.4.7)

[maz(u/)](x1,2,0) = [maz(u)s)|(z1,22,h)  (21,22) € X1, Ralu) =0

We can write,
Uluz) =U(uls) + U(U??,) + (us, U?3>
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From Equations 5.3.10, 5.3.16, 5.3.60, and 5.4.7,

1
(uf?’, U?3> = / [U?,33i(“:3) + @?73mi(uf3)]da = _ibahQ/ t3a(“f3)da
OB by

2
b [ (zataalul) + 2gaman (uly)lda
PP

1

= ibah2Ra(uf3) + hba[EaﬁHB(ufs) - hRa(u:3)]
1
:47§bah2Ra(ug)4—hbasaﬂHb(ug)
In view of Theorem 5.3.1 and Equation 5.4.7, we find
<uf3v U?3> =0

so that
Uluz) = Ul(u's) + Ulu)

The conclusion is now immediate. O

5.5 Global Strain Measures

In this section, we study Truesdell’s problem for Cosserat elastic cylinders.

We first consider Truesdell’s problem for the torsion of Cosserat elastic
cylinders. We denote by T the set of all solutions of the torsion problem
corresponding to the scalar torque M3. We have to solve the following problem:
to define the functional 7(+) on T such that

Ms = D7(u) for everyu € T (5.5.1)
Let Ty be the set of all equilibrium vector fields u that satisfy the conditions
si(u) =0, m;(u) =0 on II, tss(u) =0, maa(u) =0on Xg
Ry (u) =0, Hs(u) = Ms; (5.5.2)
If u € T, then Rg(u) =0, Hy(u) =0, so that u € T. We define the real function
€= Jlu— &2

where u € Ty and v is given by Equation 5.3.35. This function attains its
minimum at

() = (u, o) /[[o ]2 (5:5.3)

Let us prove that y(u) = 7(u) for every u € Ty. By Equations 5.3.10, 5.3.35,
and 5.5.2, we find that
(u, v = hHs(u) (5.5.4)
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In view of the relations 5.3.38, we obtain
[v®)? = hD (5.5.5)

where D is defined in Equation 5.3.41. Thus, from Equations 5.5.3, 5.5.4, and
5.5.5, we arrive at
Hs(u) = Dy(u) (5.5.6)

From Equations 5.5.1 and 5.5.6, we see that 7(u) = y(u) for each u € Ty. On
the other hand, by Equations 5.3.10, 5.3.11, and 5.3.35, we find that

(u,v™) = N(u) (5.5.7)

where
1
N(u) = / {uoz |:,U‘P,a + 556a¢6 + 55/3(1(2.“ + H)xﬁ]
Yo
+ @s(a, , + 6+ 7)}da
1
- / {ua {N@,a + Kepatp + igﬁa(zu + ’i)xﬁ]
P

+ 903(0”/)17711 + 08+ 7)} da

In view of Equations 5.5.3, 5.5.5, and 5.5.7, we get

1
T(u) = EN(U) for each u € Ty

This relation defines the generalized twist on the subclass T of solutions to
the torsion problem. By Equation 5.5.1, we interpret the right-hand side of
the above relation as the global measure of strain appropriate to torsion.

In what follows we assume that the rectangular cartesian coordinate is
chosen in such a way that the origin O coincides with the centroid of the cross
section X7.

Truesdell’s problem can be set also for the flexure. Thus we are led to the
following problem: to define the functionals n,(-) on K7 (Fy, F») such that

-Docpnp(u) =TI, (558)

for each u € Ky (Fy, Fy).
We denote by G the set of all equilibrium vector fields u that satisfy the
conditions

uz € CHB)NC*B), si(u) =0, m;(u) =0onII
[t3a(u3)](71,22,0) = [t3a(u3)](21, 72, h)
[m33(u’3)](.’171,.’1?2,0> = [mgg(u73)]($1,$27h), (.1'1,.’1?2) S 21

R.(u) = F,, Rs3(u) =0, H(u)=0

(5.5.9)
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If u € G, then u € K 1(Fy, F3). Let us consider the real function f defined by
F&,&) =20 (ug — &u) — &) (5.5.10)

where v € G and v(®), (p = 1,2), are given by Equations 5.3.35. By Equa-
tions 5.3.43 and 5.5.10,

f = hDaﬁgagﬁ - 2§a <u,3; U(a)> + <u,37u,3>

Since Dgg is positive definite, f will be a minimum at (p1(u), p2(u)) if and
only if (p1(u), p2(u)) is the solution of the following system of equations

hDagps(u) = (ug,0) (5.5.11)

Let us prove that po(u) = n4(u), (o = 1,2), for every u € G. By Equa-
tions 5.3.10, 5.3.16, 5.3.35, and 5.5.9, we obtain

(uz,0) :/ [Uz(a)si(u,:s)+W§a)mz’(u,3)]da
oB

) (5.5.12)
= 7§h2Ra(’UJ73) + heapHp(u3)
By Equation 5.5.12 and Theorem 5.3.1, we find
(uz,v') = —hR(u) (5.5.13)
It follows from Equations 5.5.11 and 5.5.13 that
Doppp(u) = —Ry(u) (5.5.14)

Thus, from Equations 5.5.8, 5.5.9, and 5.5.14, we conclude that 7, (u) =
pa(u), (a =1,2), for each u € G.
On the other hand, by Equations 5.3.10, 5.3.11, and 5.3.38, we find

(u,3, U(a)> = / [ui73t3i(v(a)) + <pi73mgi(v(”‘))]da = Sq(u) (5.5.15)
OB

where
Sp(u) = {U3,3 [()‘ + 2# + H)xp + Au&,g] + Pa,3 [Veap + ﬂ‘p:(il,)gz] }da
Yo
— | {uss [+ 20+ 8)z, + Mul)] + 0o s[1eap + Be)] Hda
PN

for each u = (u;, ;) € G.
From Equations 5.5.11 and 5.5.15, we get

Dagns(u) = 35a(u), (@ =1,2)

for every u € G. This system defines 7,(-) on the subclass G of solutions to
the flexure problem. We can interpret 7, (u) as the global measures of strain
appropriate to flexure, associated with u € G.

Truesdell’s problem can be set and solved also for extension and bending.
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5.6 Theory of Loaded Cosserat Cylinders

Now we consider that the body force f and the body couple g are prescribed
on B. By an equilibrium vector field on B corresponding to the body loads
{f, g} we mean a six-dimensional vector field u € C*(B) N C?(B) that satisfies
the equations

(tji(u); +fi=0,  (myi(u)); + eiyrtsn(u) +g: =0 (5.6.1)
on B. We assume that the conditions 5.3.14 are replaced by
si(uw) = pi, m;(u) = k; on II, R(u) =F, Hu)=M (5.6.2)

where p and k are prescribed vector fields, and F and M are prescribed
vectors. The problem of loaded cylinder consists in finding an equilibrium
vector field on B that corresponds to the body loads {f, g} and satisfies the
conditions 5.6.2.

When f, g, p, and k are independent of the axial coordinate, we refer to
this problem as Almansi-Michell problem. We denote by (P3) the Almansi—
Michell problem corresponding to the system of loads {F, M, f, g, p,k}. Let
Ki(F,M,f, g, p, k) denote the class of solutions to the problem (P3).

Theorem 5.6.1 Ifuc C'(B)NC?(B), then

Rifus) = [ stwds = [ (b0 yda
Ha(u3) = /a _ Fapmpsalu) + mo ()]s = [ leasmattiat,

+ (mja(u)) j + €arstrs(u)lda + eapRs(u)
)

Hi(us) = /B _ anosy(u) + my(u)ds = / Easmaltis(w) ;

+ (my3(u)),; + captas(u)lda

The proof of this theorem is analogous to that given for Theorem 5.3.1.
Let us consider the problem (Ps). Theorem 5.6.1 has the following
consequence.

Corollary 5.6.1 Ifu€ K (F,M,f, g, p,k) andus € CY(B)NC?(B), then
ugz € K(G,Z) where

G = /pds+/ fda
P

Za = /(Eaﬁxﬁp?) + k'a)dS + / (Eaﬁxﬁf?) + goz)da + EaﬁFB (563)
r 31

Z3 = /(sagxapg + ks3)ds +/ (apzafs+ g3)da
T PN
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With the help of Corollary 5.6.1 and Equation 5.3.49, we are led to seek a
solution of the problem (Ps) in the form

3 T3 N T3 ~
u= / / v{b}dxsdxs + / v{c}drs +v{d} + z3u’ + u° (5.6.4)
o Jo 0

where 3, ¢, and d are unknown constant vectors, v’ and u° are unknown vector
fields independent of z3, and v{a} is defined by Equations 5.3.36.

Theorem 5.6.2 Let V be the set of all vector fields of the form 5.6.4. Then
there exists a vector field uw € V' which is solution of the problem (Ps).

~

Proof. Let us determine b,¢, c?u and u? such that ue€ K (F,M,f,
g, p, k). If ue Ki;(F,M,f,g, k) then by Corollaries 5.3.1, 5.6.1, and
Equation 5.6.4,

xr3 N
/ v{btdrs + v{c} +u € K(G,Z)
0
By Theorem 5.3.3 and Equation 5.3.51, we obtain
Dujbj = =G, D3;b; =0, by =0 (5.6.5)

and v’ = (0,0, x, X1, x2,0) is characterized by

Lo = —vg,,b, Z bi[(a+ B)ess, — nyﬂu(ﬁ)]

3
Ly’ = —(A+ 2+ 1) (bpay + bs) — (A+ ) Y _ bul) on ¥y (5.6.6)

3
= —an, Z bchg , Nau' = —pung Z biu on T

i=1
Moreover, the constant vector ¢ is determined by

DajCj = EapGp, D3jCj = —G3
3

Dey = —Zs — / {sa,@xa [ux,g + Keug Xy + (1 + K) biu(i)}
oy ; 71 (567

3
+la+B8+7) > bigd) + axp,p}da

i=1
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From Equations 5.6.4 and 5.6.5, we get

~ 1 1 1
Uo = — == bo®y — ~Cath — 3

1
21 5 daxg — §C4sa5xﬁx§

3

1 .

~ dicapprs + ) (dj +¢jr3 + ija:g) ul® + w,
i=1

1

1
us (bpp + b3)a3 + i(cpxp +e3)2s + (dpz, + d3)zs

6 (5.6.8)
+ (camz +dy)o +ax3x + ¥

R 1 . 1
Pa = €ap <6bﬁ$§ + 56596% + dﬂ%) + (ca3 + da)ha + 23Xa + ¥ao

3
~ 1 i 1
P3 = E (2b1$3 + cixs + dl> gDz())) + 504(E§ + dyz3 + w3
=1

where u° = (wy,wq, ¥, ¥y, Uy, w3). The constitutive equations imply that
~ 1 2
tap(U) = A i(bpxp +b3)x3 + (cpxp + c3)a3 + dp, + d3 | dap

3
1 .
+ AX + cap)dap + Z (2bi$§ + w3 + di) Top(w?) + Tap(w)
i=1

~ 1
taz(W) = (A4 2u + K) {dpxp +ds + (¢, + c3)x3 + §(bpmp + bg)xg]

3
1
+A+2u+ k)X + cap) + A Z (2bix§ + cixs + di>upf)p + Mg 0
i=1

ta3(a) = Pa(w) + x?»Pa(ul) + (d4 + c4x3)[Pa(ﬁ]\) + Mfﬁal’ﬁ]

+ p i(ci + bizz)ul?)
i=1
t30(1) = Qo(w) + 23Qa (u') 4 (ds + c473)[Qa (D) + (1 + K)epats]
+ (p+r) 23:(0Z + bizg)ul?)
i=1
my, (@) = Hxy(w) + z3Hy, (u') + (da + ca3)[Hxw (W) + 0x,]
+ ady, 23:(81' + biz) Y
=1
mas(@) = (a+ 5 +7) [d4 + cams + g (ci + bis) )

+ alds + caw3)Ppp + a(¥y, + 23Xp,p)
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A 1
Mas3 (W) = Beay (dl, + e x3 + 2bl,x§) + B(Xa + catha)

=1

~ 1
mBQ(U) = Y€av (du + CyT3 + 2bl/x§> + ’Y(on + 041%)

3
1
+ ﬁz <di +cizz + 2bi$3) P30+ BWsa

i=1

where w® = (wy,ws,0,0,0,w3), w = (0,0, ¥, ¥y, ¥y,0).

3
1 .
+ Z (di + cirs + 2b¢$§> Ma3(w(l)) + Mus(w?)

(5.6.9)

The equations of equilibrium and the conditions on the lateral boundary

reduce to
(Tﬂa(w()))’ﬁ + ha =
(Mas(w®)) , +capTap(w’) +9=00n 3%,
Tga(wo)nﬂ =2, Mo3(wng =¢°on T
and
Liw = ~; on ¥, N;w=p;onT,
where

ha = MX + c40),a + Qa(u) + c4[Qa(u') + (1 + K)epats]

3
+ (n+r) D biws) + fa

i=1

g:ﬁ(Xa+c4¢a),oz (04—1'54'7 <C4+sz§03 )

=1
+ O‘(Xp + C47pp>,p + 93
P2 =Pa — AX+ca)na, ¢ =ks — B(Xa + ca¥a)na

3
Z oS, + B, — kevpul’] — veuacs — g

3
v =—(A+ 1) ciwl, — (A+2p+ K)(cpm, + ¢3) — f3
=1

3 3
po=hy—mad ey, ps=ps—py cwin
=1

i=1
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With the help of Equations 5.6.5, 5.6.7, and 5.6.12, the divergence theorem,
and Theorem 5.6.2, we get

/ hoda + / plds = Go — Ro(i3) = Go — e5aHp (U 33)
e r
== Ga + Daibi == 0

/ (eapTahs + g)da + /(aagazap% + qo)ds =Z3— Hs(us)=0
N r

/ ysda — / p3ds = —/ fada — /pgds — Dsjc; =0
ol r N r

We conclude that the necessary and sufficient conditions to solve the boundary-
value problems 5.6.10 and 5.6.11 are satisfied.
It follows from Equations 5.3.15, 5.6.7, and 5.6.9 that

H,(u3) =egaDgic; = /(awzgpg + ko)ds + / (apzafs+ ga)da+eapFp
T 3

By Theorem 5.6.1,

H,(us) = /(z—:ag:cgpg + kqo)ds +/ (eaprpfs + go)da + capRa ()
r =

1
The last two relations imply that R, (u) = Fj.
The conditions R3(u) = F3 and H(u) = M reduce to
Dijdj =T
3
_ _ (8
Ddy = —M; EapTa |PY g+ kELg T, + (1 + K) Z ciwg
P21

i=1

3
+ (a+B+7) Z cipl + a\IJW,}da (5.6.13)
i—1

where
Ta = €apMp — {za[Mwpp + (A + 20+ &) (X + cap)]
¥
— eaply(X8 + catp) + Pws g]}da
ry = —F3 — / (A 20+ k) (X + cap) + Awa,o)da
¥
The vector d is defined by Equation 5.6.13. |

Next, we study the Almansi problem. Let u* be an equilibrium vector field
on B which corresponds to the body loads {f = f*a%, g = g*x%}, and satisfies
the conditions

si(u*) = piay, m;(u*) = kfzf on II, R(w*) =0, H(u*)=0
(5.6.14)
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where f*, g* p*, and k* are prescribed vector fields independent of x3, and n
is a positive integer or zero. Let u be an equilibrium vector field on B which
corresponds to the body loads {f = f*a25 " g = g*z5 ™'} and satisfies the
conditions

si(u) = prag ™, mi(u) = kfzy ™ on T, R(u) =0, H(u)=0

(5.6.15)
As in Section 2.3, we can prove that Almansi problem reduces to the finding
a vector field u once the vector field ©* is known. Moreover, we are led to seek
the vector field w in the form

w=(n+ 1)[/;3 w*dey + v{a) —&—w} (5.6.16)

where @ = (a1, az,as3,a4) is an unknown four-dimensional vector and w is
an unknown vector field independent of x3. From Equation 5.6.16 and the
constitutive equations, we have

T3 4
Y = (n (s + 3 artig (00) + 5 (w) + ki
tij(u) = ( +1)[/0 by} 3+r 1 ) Hk”} (5.6.17)

mi;(u) = (n+1) [/ mi;(u*)dxs + Zarm” )+ mgj(w) + hij}

where

kop = MNapui(x1,x2,0), kss = (A +2u + k)ul(z1,22,0)

kaz = /LUJZ(IlaxQ’O)a k3o = (p+ H)UZ(SCl,CCQ,O)
hyy = adpy3(x1,2,0), hss = (a4 0+ 7)pi(x1,22,0)
hOt3 = 5@3(1‘151:270)7 h3a = '7902(1‘17372,0)

The equations of equilibrium and the conditions on the lateral boundary

reduce to
(T,@a(w))ﬂ +E,=0

(Mpg(u)))w +eapTup(w) +J =0o0n 3, (5.6.18)
Tpa(w)ng = phy, Myz(w)ng =¢ onT
and
L;w* = (; on ¥y, Nw =& onT (5.6.19)
where
w = (v1, 2,03, X1, X25 X3), w = (v1,v2,0,0,0,x3)
= (0,0,vs, X1, X2,0), Ey = kpap + [tza(u)](z1,22,0)

J = has,a + [Mmasz(u®)](z1, 22,0), Do = —kpaltp, ¢ = —hpsn, (5.6.20)
Coc = _hpa,p - [mS(x(u )](371,.’)32, )
(3 = —kp3,p + [t33(u®)] (21, 22,0), o = —Nhpany, §3 = —kp3n,
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From Equation 5.6.20, we get
E.da —&—/pfxds =—R,(u") =0
=1 r
/ (capraEs + J)da + /(ammap'ﬁ +¢')ds = —H3(u*) =0
= r
nga — / fgds = 7R3(U*) =0
= r

Thus, the necessary and sufficient conditions to solve the boundary-value
problems 5.6.18 and 5.6.19 are satisfied. We shall assume that the functions
v; and x; are known.

In view of Theorem 5.6.1, we have R, (u) = egaHg[(n + 1)u*] = 0. The
conditions R3(u) = 0, H(u) = 0 reduce to

Daja; = —/E [2a(kss + tas(w)) — eap(hsp +map(w))]da
D3jCLj = —/E [k33 + t33(w)]da

Day = — {Ea/gxa[k‘gg + tgg(w)] + m33(w) + h33}da
P
This system can always be solved for a1, as, as, and ay.
The problems of Almansi and Michell for Cosserat elastic bodies have been
studied in Refs. 155 and 287 using the semi-inverse method.

5.7 Exercises

5.7.1 A homogeneous and isotropic Cosserat elastic material occupies a right
cylinder B with the cross section ¥y = {z : 22 + 23 < a2, 23 = 0},
(a > 0). The body is in equilibrium in the absence of body forces and
body couples. Investigate the plane strain of the cylinder when the
lateral boundary is subjected to the loading

ta =0, m3 = qin1 + qana
where ¢, are prescribed constants.

5.7.2 Study the extension and bending of a homogeneous and isotropic
Cosserat elastic cylinder that occupies the domain B = {z : 23 + 23 <
a%,0 < x3 < h}, (a > 0).

5.7.3 Study the torsion problem of a right circular cylinder of radius a, made
of a homogeneous and isotropic Cosserat elastic material.

© 2009 by Taylor & Francis Group, LLC



230

5.7.4

5.7.5

5.7.6

5.7.7

5.7.8

5.7.9

Classical and Generalized Models of Elastic Rods

Investigate the torsion of a homogeneous and isotropic Cosserat elastic
cylinder with square cross section.

Investigate the deformation of a homogeneous and isotropic Cosserat
elastic circular cylinder which is subjected to a temperature field in-
dependent of the axial coordinate.

Study the Saint-Venant’s problem for a homogeneous and hemitropic
Cosserat elastic right cylinder.

A homogeneous and isotropic Cosserat elastic continuum occupies the
domain B = {x : 22+13 < a?, a < z3 < h}, (a>0). Study the extension
of cylinder B which is subjected to a uniform pressure on the lateral
surface.

Investigate the torsion of a homogeneous and orthotropic Cosserat
elastic cylinder.

Study the problem of loaded cylinders in the theory of homogeneous
and hemitropic Cosserat elastic solids.
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Chapter 6

Nonhomogeneous Cosserat Cylinders

6.1 Plane Strain Problems

In this chapter, we study the deformation of nonhomogeneous Cosserat
elastic cylinders, when the constitutive coefficients are independent of the
axial coordinate. In the first part of the chapter, we consider the case of
isotropic bodies and assume that

A= Az, 22), w=(x1,22),..., v =~(z1,22), (x1,22) €31
(6.1.1)

We suppose that the domain ¥, is C°°-smooth [88], and that the elastic
coeflicients belong to C'*°. The basic equations of the plane strain, parallel to
the z1, zo-plane, consist of the equations of equilibrium

tﬁoz,@ + fOt = 07 Ma3,«a + saﬁtozﬁ + gs = 0 (612)
the constitutive equations

tap = Aeppdap + (1L + K)eas + [€3q, Ma3 = YKa3 (6.1.3)

and the geometrical equations

€ap = UB,a t €3a¥3, Ra3 = P3,a (614)

on ¥;. We restrict our attention to the second boundary-value problem, so
that we consider the boundary conditions

tgang = ta, Ma3Ng = M3z on I (6.1.5)

We assume that f,, g3, to, and Mg are functions of class C, and that the elas-
tic potential W is a positive definite quadratic form in the variables eqg
and Kq3-

The second boundary-value problem consists in the determination of the
functions u, and 3 of class C%(3;) N C1(X;) that satisfy Equations 6.1.2,
6.1.3, and 6.1.4 on ¥; and the boundary conditions 6.1.5 on I', when the
constitutive coefficients are given by Equation 6.1.1.

We note the following existence result (cf. [88,142,147]) which holds under
the above assumptions of regularity.

231
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232 Classical and Generalized Models of Elastic Rods

Theorem 6.1.1  The second boundary-value problem has solutions belonging
to C°°(X1) if and only if the functions fu, gs,ta, and mg satisfy the conditions
5.2.80.

We denote by /(1) the plane strain problem characterized by the loading

fa = (A21),a, 9= —Pp2, ta = —AT1na, m3 = [ng
and by 7 (?) the plane strain problem with the loads
fa = (A22),a, 9=>_1, to = —A2onq, m3 = —fny
Let us denote by <73 the plane strain problem where
fo=Aa, g=0, to = — Mg, m=20

In what follows, we denote the components of displacement vector, mi-
crorotation vector, strain tensor, stress tensor, and couple-stress tensor from
the problem «/(*), (s = 1,2,3), by o8, és),fyésﬁ), ég, and ug‘sg), respectively.
Thus, we have

o) s+ (Aey)a=0, oo s+ Aa=0

ﬂgg@ + 5a50((15) + €anBa =0, ﬂ(ﬁ?ﬁ + 50&5051:2 =0

© o (6.1.6)
=M 0ap+ (n+ e+ ), uS =)
VSg = Ué )+ 2patts” on Ty
and the boundary conditions
aggng = —ATyNq, crgzng = —Ang 617
m, @), _ (6.1.7)
:ua?, Ng = Enuﬁnua Ma3 Ng = 0 on r

The necessary and sufficient conditions 5.2.80 for the existence of the solu-
tion are satisfied for each boundary-value problem .7(*). In what follows, we

assume that the functions v&s) and z/Jés) have been determined.

6.2 Saint-Venant’s Problem

We assume that the right cylinder B is occupied by an isotropic and non-
homogeneous Cosserat elastic material with the constitutive coefficients 6.1.1.
We suppose that the elastic potential 5.3.6 is positive definite. In the absence
of body forces and body couples, the equilibrium equations are

tji; =0, mj; j + €ijitir = 0on B (621)
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We suppose that the cylinder is free of lateral loading, so that we have the
conditions
taina = 0, MaiNg = 0 on IT (6.2.2)

Let the loading applied on the end ¥; be statically equivalent to a force
F = Fjei, and a moment M = Myey. Thus, for x3 = 0 we have the following
conditions

/ tonda = —F, (6.2.3)
P
/ t33da = —F3 (624)
P
/ (Tatss — eapmag)da = eqgMp (6.2.5)
PR
/ (Eagl'at;;ﬁ + mas3)da = —Ms3 (6.2.6)
¥

Saint-Venant’s problem consists in the finding of the functions w; and ¢;
that satisfy Equations 5.1.11, 5.1.17, and 6.2.1 on B, the conditions 6.2.2 on
II, and the conditions for z3 = 0. As in the classical theory of elasticity, the
problem will be reduced to the study of plane problems.

6.2.1 Extension and Bending of Cosserat Cylinders

We suppose that the resultant force and the resultant moment about O of
the loads acting on ¥; are given by F = F3e3 and M = M,e,, respectively.
In this case, the conditions on the end ¥; reduce to

/ tzada = 0, / (€aﬂxat35 + m33)da =0 (627)
21 21

/ tszda = —F3, / (Tatss — eapmap)da = eqgMg (6.2.8)
¥ P

The problem of extension and bending consists in the determination of the
displacements u; and microrotations ¢y that satisfy Equations 5.1.11, 5.1.17,
and 6.2.1 on B and the boundary conditions 6.2.2, 6.2.7, and 6.2.8, when the
constitutive coefficients are prescribed functions of the form 6.1.1.

We seek the solution of the problem in the form

3
1
Uy = —§aax§ + Zasv((j), uz = (a121 + a2x2 + az)xs
o=t (6.2.9)

3
Pa = EapBABT3, Y3 = Zas'(/)éS)
s=1

where v((f) and ’(/J:())S) are the solutions of the problems .27(®) | and a, are unknown

constants.
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From Equations 5.1.11, 5.1.17, and 6.2.9, we obtain

3
tap = Ma121 + agw2 + a3)das + Z asat(xsﬁg
s=1
3

tsz = (A +2u+ k) (@121 + agxe + az) + A Z ag’yaa

pet (6.2.10)

ta3 = t35 =0, Mag = m33 =0

3 3
ma3 = €(Jtl/ﬂal/ + Z aslt,(l?, Mm3a = EavYay + Z as,uéz)
s=1 s=1
Using Equations 6.1.6, 6.1.7, and 6.2.1, we see that the equilibrium equa-
tions 6.2.1 and the boundary conditions 6.2.2 are satisfied. It follows from
Equation 6.2.1 that the conditions 6.2.7 are identically satisfied. The con-
ditions 6.2.8 lead to the following system for the unknown constants a1, asg,
and ag,
Asas = B, (6.2.11)

where
Anp = / {zoa [N+ 20+ K)zpg + )\'yﬁm)] —car(Ergy + # }da
3
Ay = {xa [A+2u+l€+)\’y(3)] faAN3A)}da
P

(6.2.12)
Asq = / [(A+2u+K)zo + )\7(“)] da
P

Ags = / N+ 20+ K+ M3 ]da, By =eapMp, Bs=—F;
P

As in Section 5.3 we can prove that
det(Ay5) #0 (6.2.13)

It follows that the system 6.2.11 uniquely determines the constants as. Thus,
the solution is given by Equations 6.2.9 where {va , gs)} is the solution of

the problem .27(*), and aj are given by Equations 6.2.11.

6.2.2 Torsion

Let us suppose that F = 0 and M = Mj3es. Then the conditions on the end
Y1 become

/ tsada =0 (6.2.14)
PN
/ t33da = 0, / ((Eatggg — Eaﬁm;gg)da =0 (6215)
poN P
/ (Eagl’atgﬁ + mgg)da = —Msj (6216)
X1
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The problem of torsion consists in the determination of the functions u;, @; €
C?(B) N CY(B) that satisfy Equations 5.1.11, 5.1.17, and 6.2.1 on B, the
conditions for z3 = 0 and the boundary conditions 6.2.2. We seek the solution
of this problem in the form

Uq = €8aTTRT3, uz = 7®(x1, x2) (6.2.17)
Pa = T(I)(X('Tlva)) Y3 =TI3 -

where ® and ®, are unknown functions and 7 is an unknown constant.
Let V = (G, G1, G2) be an ordered triplet of functions G, G, and G4 defined
on Y. We introduce the notations

TV = (4 k)G o + keapGa, SoV = uG o + kepaGg
M,V = oGy nu, + BGy, +7G,.
LoV = (MsoV) 3+ eap(T3V — S5V) (6.2.18)
L3V =(TaV)
MV = (MpaVng, N3V =n, T,V

By Equations 5.1.11, 5.1.17, and 6.2.17, we obtain

ta,@ = 0, t33 = 07 ta3 = T(TaA + ﬂéﬁaxg)
t3a = T[SaA —+ (,u, —+ n)&gaxg], Myy = (Mm,A -+ aény) (6219)
Ma3 = M3q = 0, maz = T(a®,, +a+ 3 +7)

where A = (O, @1, P5). The equilibrium equations 6.2.1 reduce to
LA=z,k—a,, L3A = eap(pzs) 0 on Xq (6.2.20)
The boundary conditions 6.2.2 become
N, A = —an,, NN = peqgprang on I’ (6.2.21)
Let us consider the boundary-value problem
L;V =¢& on Xq, MV = onT (6.2.22)
where &; and (; are C* functions. We have the following result (cf. [137]).

Theorem 6.2.1 The boundary problem 6.2.22 has solutions belonging to
C>™ (%) if and only if

., £3da=/r<sds (6.2.23)

The necessary and sufficient condition 6.2.23 for the existence of the solution
of the boundary-value problem 6.2.20 and 6.2.21 is satisfied. In what follows,
we assume that the functions ® and &, are known.
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From Equations 6.2.16 and 6.2.19, we obtain
TD* = —Mj (6.2.24)

where
D*:/ (eapxa{u® g+e [P+ (n+rK)z,)}+a®, ,+a+F+7)da (6.2.25)
DY

The positive definiteness of the elastic potential implies that D* > 0, so that
the relation 6.2.24 determines the constant 7.

The conditions 6.2.14 are satisfied on the basis of the equations of equilib-
rium and the boundary conditions. Thus, for the first of 6.2.14 we have

/ tzida = / (t13 — Mas,a)da = / (t13 + 1tas,a — Ma2,a)da
X1 P b

= / [(xltod}),oz - ma2,a]da = /(zltaSHa - ma2na)d5 =0
Y T

In a similar way we can prove that the second condition of 6.2.14 is satisfied.
We conclude that Equation 6.2.17, where (®, ®1, ®5) satisfies the boundary-
value problem 6.2.20 and 6.2.21 and 7 is given by Equation 6.2.24, is a solution
of the torsion problem. This solution was established in Ref. 137.

6.2.3 Flexure

We assume that the loading applied on ¥ is statically equivalent to the
force F = F,e, and the moment M = 0. The conditions on ¥; are given by

/ tsada = —F, (6.2.26)
PN
/ t33da = 0, / (l’at33 - sagm;;ﬁ)da =0 (6227)
poN P
/ (eapatsp +ms3)da =0 (6.2.28)
¥

The flexure problem consists in the solving of Equations 5.1.11, 5.1.17, and
6.2.1 on B with the boundary conditions for 3 = 0 and 6.2.2. On the basis
of Theorem 5.3.3, we try to solve the problem assuming that

3
1
Uy = —6bax§ + a3 Z bsvfj) + €8aTTRT3

s=1

1
us = 5(1)11‘1 + b2$2 + bg)x?,, + T(P + \I/(Ihl‘g)
(6.2.29)

1
Yo = §€a5b51§ + 7P, + Vo (z1,22)

3
p3 = T3 Z bt + T
s=1
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where ¢ and ®, satisfy the boundary-value problem 6.2.20 and 6.2.21, vgf)

and wgs) are the solutions of the problems «/(¥), U and ¥, are unknown
functions, and by, and 7 are unknown constants. From Equations 5.1.11, 5.1.17,
and 6.2.29, we obtain

3
tap = )\(L‘g(blxl + boxo + b3>(5a5 + x3 Z bSO'éSB)

s=1

t3z = ()\ + 2u + I*i)(bll‘l + boxo + b3)3)3 + A\x3 Z bs’}/aa
s=1
3

tas = T(ToA + pegazs) + Tow + MZ bsv((f)
s=1

tsa = T[Sal +egalpn+ K)xg] + Saw + (1 + K Zb v®)

(6.2.30)
My = 7(Myy A + aby) + My,w + aby, Z bl
s=1

Ma3 = 6€apb T3+ T3 Z bs//['a3

s=1
M3a = Yeapbs®s + T3 Z bty

s=1

3
mss = (a+0+7) (T + Z bsw§8)> +a(t®,, +0,,)
s=1

where A = ((I), (pl, q)g) and w = (\117 \Ifl, \IJQ)
With the help of the relations 6.1.6, 6.1.7, 6.2.20, and 6.2.21 we see that
the equilibrium equations 6.2.1 and the boundary conditions 6.2.2 reduce to

3
L,w = —7e,5bg — st [(oab(s))’y +ul) — El,glﬂ}és)]
s=1
3
Law =—(A+42u+ k)(byx1 + boxg + b3) — Z by [A’y&s(z + (,uv((j)),a] on X,
s=1
6.2.31
and ( )

3
Nw = —an,, Z bs 5 , NMw = —pung Z bsvgf) onT (6.2.32)
s=1 s=1

The condition 6.2.23 for the existence of the solution of the boundary-value
problem 6.2.31 and 6.2.32 takes the form

Aszsbs =0 (6.2.33)
where As, are given by Equations 6.2.12.
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Let us impose the conditions 6.2.26. With the aid of Equations 6.2.1 and
6.2.2, we can write

/ t31dCL = / (t13 — Mj2.4 + l‘ltig’i)da = /(.’L‘ltagna — magna)ds
P P r

—|—/ (Qiltgg — m32),3da = / (.’L‘ltgg — m32)73da (6234)
> P

In a similar way, we obtain

/ tzoda :/ ($2t33 —|—m31)73da (6235)

o1 o

By Equations 6.2.29, 6.2.34, and 6.2.35, the conditions 6.2.26 reduce to
Aasbs = 7Fa (6236)

The system 6.2.33 and 6.2.36 uniquely determines the constants by. From
Equations 6.2.16 and 6.2.30, we obtain

3
TD* = _/ {ga,@xa [M‘I’,ﬂ +ephWy + (et R) Y bsvg)}
P

s=1

3
+(atB+7) D bl + a\IIV,u}da

s=1

where D* is given by Equation 6.2.25. The above relation determines the
constant .

The conditions 6.2.27 are satisfied on the basis of Equation 6.2.30. Thus,
the solution of the flexure problem has the form 6.2.29.

The results presented in this section generalize the results established in
Ref. 149 for the classical theory of elasticity.

6.3 Problems of Almansi and Michell

In this section, we study the problem of loaded cylinders made of non-
homogeneous and isotropic Cosserat elastic materials. We assume that the
constitutive coefficients are independent of the axial coordinate.

6.3.1 Uniformly Loaded Cylinders

We study first the Almansi—Michell problem stated in Section 5.6. In this
case the equilibrium equations are given by Equation 5.1.19, where

fi= fi(O)(x1a$2)a gi = QEO) (1517962)7 ($1,$2) € Xy (6-3-1)
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Here, fi(o) and gl(o) are prescribed functions. The conditions on the lateral
surface have the form

toila = Ni(o), MeaiNa = ﬁ%(p) on I1 (6.3.2)

where %;(0) and ﬁzl(-o) are independent of the axial coordinate.

The Almansi—Michell problem consists in the finding of the functions u;, p; €
C?(B) N CY(B,) that satisfy Equations 5.1.11, 5.1.17, and 5.1.19 on B, the
conditions 6.3.2 on II, and the conditions on the end ¥;, when the body loads,
the constitutive coefficients and E(O), s

, ~ are independent of x3. We seek the
solution in the form

1 1 1 1
Ug = —iaaxg — ébaxg - ﬁcaxg + €3a (71333 + 272»””%) g
3 1
s+ bz + Zesa? | ol 4 va (21,
+;(a + m3—|—20 x3>va + Vo (21, 72)

1
uz = (121 + agx2 + ag)rs + 5(51331 + baxo + b3)$§
1
+ 6(01201 + comy + €3)x) + (11 + 2372)® + V(21, 22) + 23X (21, 22)

1 1
Yo = E€ap (agacg + ibﬂxg + 605x§> + (11 + 2372) P4

+ Wolz1,22) + w3X0 (21, T2)

3

1 s 1

03 = Z (as + x3bs + 2csx§> wé ) + a3 + 57’2$§ + w(z1, z2) (6.3.3)
s=1

where 05, és) are the solutions of the problems 7(*), & and ®, satisfy
the boundary-value problem 6.2.20 and 6.2.21; ¥, ¥, X, Xa, Vo, and w are
unknown functions, and a;, b;,¢;, 71, and 7> are unknown constants. From
Equations 5.1.11, 5.1.17, and 6.3.3, we obtain

taﬁ = A |:(11£81 —+ a2 —+ as —+ (bll’l —+ bQ.xQ —+ b3)£L’3

N

+ —(c121 + coma + 03)15} 0ap

3
1 S
+ A0+ 72®)dag + Z (as + bsws + 20533%) Uég + 0ap

s=1

t33 = ()\ =+ 2,U, + K) |:CL1{,C1 + asx2 + a3z + (b1x1 + boxg + b3)$3

+glam +er+ CB)wé} + (A + 20+ 1) (X + 722)

N =

1
+ A Z (as + bsx3 + 20533%)7&‘2 + Maa
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tas = ToQ 4+ 23TV + (11 + Tox3) (ToA + pegats)

3
+ Y (bs + cowa)oly)

s=1
t3a = SaQ 4+ 235,V + (11 + T2x3)[Sa A + (1 + K)egazs]

3
+ (1t 5) Y (bs + cazs)ol)

s=1
mxy, = My, Q4+ 23 M),V + (11 + 7ox3) (M A + 6x0)

3
4+ adyy Z(bs + csxg)z/)és)

s=1

3
mas = (a+ B8+7) {ﬁ + Tox3 + Z(bs + csxg)w(s)}
s=1

+ o1y + 12w3) Py ) + a(Wa \ + 23x00)

1
Ma3 = Beav (av + b3 + QCVI3> + /B(on + 1®, )

3
+ Z (as + bsw3 + 03333) Mag + Has

s=1

Mm3a = Yeav (au + b3 + CV‘/'E§> + A/ Xa + T2(I)a)

+ Z (as +bsxs + csx3> + U3a (6.3.4)

s=1

where we have used the notations A = (@, &1, Dy), Q= (U, ¥y, ¥y), V=(x, x1,
X2) and

OaB = )\fYVl/(SOéB + (:U/ + K)’Yaﬂ + HYBa (6 3 5)

Ha3 = YW «, H3a = BW q, YaB = VB,a T EGaW

With the help of Equations 6.1.6, 6.2.20, and 6.3.4, the equilibrium equa-
tions 5.1.19 reduce to

0gap+Ha =0,  Hasa+tEapoap+H =0 (6.3.6)
L =G, (6.3.7)
L;V =K, (6.3.8)
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on Y1, where

Hy = [AMx + 12®)].a + SV + m2[SaA + (1 + “)5504:175}
3

+(ntr)Deavl) + O

s=1

3
H = [ﬁ(Xa + 7'2@@)],& + (a + 06+ ’Y) (Tg + ZCSQO(S))
s=1

+ a(xu +728,), +gi”

Zb [(aws?) |, +ul) — evprvy)] —veusbs — g (6.3.9)

- Z bs [l + (108)) ] = (A + 20 + &) (br1 + bows + b) — 3

K, = —zg:cs [(CMZ);))W +u§f) _ 6u5m)( )] Vevses
s:l
Ky =~ Z Cs [AVS(Q + (ﬂ”fxs))’a] — (A +2u+ k) (1T + c2w2 + c3)
s=1
Using Equations 6.1.7, 6.2.21, and 6.3.4, the conditions 6.3.2 become
Oapla =S8,  fa3Na =5 (6.3.10)
A= N; (6.3.11)
NV =P (6.3.12)

on I'; where

Sﬁ = ;B(O) - )\(X + Tg@)ng, S = T7L3(O) - 5(Xa + TQCIDQ)TLQ

3
N, =m, Y —n ozz:b9 3 ), N3 :t~3(0) —qusv&S)na

3
P, = —an, chdzés), Ps; = 7Nchvfj)n
s=1 s=1

From Equations 6.3.5, 6.3.6, and 6.3.10, it follows that the functions v, and w
satisfy the equations and the boundary conditions in a plane strain problem.
The necessary and sufficient conditions 5.2.80 for the existence of the solution

of this problem are
/ H, + / Sads =0
oy r

/ (é‘agxaHﬁ + H)da +/(€a5f£(15/3 + S)dS =0
Y T

(6.3.13)

(6.3.14)

© 2009 by Taylor & Francis Group, LLC



242 Classical and Generalized Models of Elastic Rods

Using Equations 6.3.9 and 6.3.13 and the divergence theorem, we obtain

H.da + / Sqds = / FOda + / tOds + / t3q.3da
N r 3% r 3

/ (Eagl‘aHg + H)da + /(éaganﬁ + S)ds = / (efagxafléo) + géo))da
Y T 1

—|—/ (6a5l‘at~5(0) + T%S(O))ds —|—/ (8051‘(1153573 + m33,3)da (6.3.15)
T P
With the help of equilibrium equations 5.1.19 and 6.3.1, we have

ts1,3 = (t1s — myjo,j).3 = (t13 — Mjo; + T1ts3.5).3

= Z1t33,33 — Ma32,33 + (T1t03),a3

30,3 = Tatss 33 + M31.33 + (T2las) o3
so that, taking into account the conditions 6.3.2, we obtain
/ t3a,3da =/ (wats3,33 — Eapmap,3z)da (6.3.16)
o o

Substituting Equations 6.3.4 into Equation 6.3.16, we find that

/ taa,3da = Anic
PN

so that the condition 6.3.14; can be written in the form

Agici = — | fOda — / tDds (6.3.17)
DI r

Let us consider the boundary-value problem 6.3.8 and 6.3.12. The necessary
and sufficient condition for the existence of the solution of this problem is

Kgda - / P3d$ =0 (6318)
o r
Using Equations 6.2.12, 6.3.9, and 6.3.10, from Equation 6.3.18 we obtain

Agici =0 (6319)

In view of Equation 6.2.13, the system 6.3.17 and 6.3.19 uniquely determines
the constants ¢;. Let us consider now the boundary-value problem 6.3.7 and
6.3.11. The necessary and sufficient condition for the existence of the solution

of this problem is
o r
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By using Equations 6.2.12, 6.3.9, and 6.3.13, the condition 6.3.20 reduces to
Asby =— | f9a _/?3<0>ds (6.3.21)

o r

Let us impose the conditions 6.2.3. We can write

/ t31da = / (tlg — mj27j — géo))da
21 21

= / [t13 — My, + 931(7533,3 + féo)) - ggo)]da
¥
_ _ _ (%) d
= [(96175a3),a Ma2,0 + T1t33,3 — M32,3 — gy ] a
PN

= /(x1f3(0) - ﬁ12(0))ds —|—/ (xlféo) - géo))da (6.3.22)
r 31

+/ (r1t33,3 — ms2.3)da
>

1

/ taoda = / (SL‘Qf?EO) + g§0))da +/ (mgfg(o) + ﬁ’Ll([)))dS
P p35 T

+/ (zats3,3 + ms13)da

P

By using Equations 6.3.4 and 6.3.22, the conditions 6.2.3 become

Aysbs = —F,, — (waféo) + Egagg)))da — / (xa%;(o) +Eﬁan~1[§0))ds (6.3.23)
N r

Equations 6.3.21 and 6.3.23 determine the constants bs. In what follows we
assume that the functions y, xa, ¥, and ¥,, and the constants b; and ¢; are
known.

With the help of Equations 6.3.155 and 6.3.4, the condition 6.3.155
reduces to

ToD* = —/ (Eaﬁxaféo) + géo))da +/ (eagmafﬁ(o) + ﬁls(o))ds
pIY T
3
- /2 {Eaﬁxa |:MX,E +evpRXy + (/J + H) Z CSUE;)]
1 s=1

3
+ (a4 B +7) Z Csw:(;) + aXl/,V} da

s=1

where D* is given by Equation 6.2.25. The above relation permits the de-
termination of the constant 7. From Equations 6.2.4, 6.2.5, and 6.3.4, we
obtain

Aija; = C; (6.3.24)
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where
Cu = casMy — [ ralitus + (0t 20+ 0)(x+ 729
Y
— eaplY(xp + 12P3) + 3] tda
Cy = —F3 — / [(A+2u+ k) (X + 72P) + Maalda
b

Equations 6.3.24 determine the constants a;. By Equations 6.2.6 and 6.3.4,
we find that

TlD*_M3/{5a5:ra[u\Ifg+sygﬁ\I/ +(p+k va }
p)

3
+ (@t B+ b + aw} da

s=1

This relation determines the constant 7. The Almansi-Michell problem is
therefore solved.

6.3.2 Almansi’s Problem

We assume that f;, g; .t;, and m; are polynomials of degree r in the axial
coordinate, namely

= Falw,w)rl,  gi=) Gl w)ah

h=0 =0 (6.3.25)

%; = Zpik(xl,@)xlgf, ﬁlz = Z Qik(xlal?)x?)
k=0 k=0

where Fji, Gir, pir, and g; are prescribed functions of class C'*°. In the case of
nonhomogeneous Cosserat cylinders, the problem of Almansi consists in find-
ing of the functions u;, ; € C?(B)NC(B) that satisfy the Equations 5.1.11,
5.1.17, and 5.1.19 on B, the conditions

toila = tis MeaiNg = M; on 11 (6.3.26)

and the conditions on the end 1, when f;, g;, ;, and m; are given by Equa-
tion 6.3.25 and the constitutive coefficients have the form 6.1.1. As in Section
2.3, the Almansi problem can be reduced to the following problem: to find the
functions u;, p; € C?(B) N C'(B) which satisfy the equations

n+1 __ 0 n+1 __ 0
)

]'L J + ‘/7«(1,1’ xQ)xS My 5 + Eirstrs + Hi(ml, $2)£L'3
tij = Aerrij + (1 + K)eij + peji (6.3.27)

Mij = 0prr0i5 + BPig + VP54, €ij = Uj; + Ejirpr o0 B
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and the boundary conditions

/ tgida = O, / (5ijk$jt3k + mgi)da =0 (6328)
21 E1

taila = pi($1,$2)l‘g+l, MaiNa = qi(xl,xg)xgﬂ on II (6.3.29)

when the solution of the equations

t5;,; + Fi(z, x2)ag =0, m3; i + Eirstrs + Hi(z1,22)25 =0
th; = Aer 0y + (u+ K)ej; + pej; (6.3.30)
mi; = oy i + Bl i, el = ul + gy

with the conditions
/ ts,da =0, / (eijpz;tsy, +m3;)da =0 (6.3.31)
El 21

thing = pi(r1,x2)xy, maNa = qi(x1,x2)rs on II (6.3.32)

is known. In the above relations, .%;, H;,p;, and ¢; are prescribed functions
which belong to C'*°. We seek the solution of Almansi problem in the form

u; = (n+1) {/Omufdxg + Ul} ) pi=(n+1) {/szgoz‘dxg + 1/%} (6.3.33)

where v; and 1; are unknown functions. From Equations 6.3.27 and 6.3.33,
we obtain

x3
tij = (n + 1) |:/ tfjdl’g + 75 + k‘ij:|
0

(6.3.34)
3
my; = (n+1) [/ m;;drs + pij + hij}
0
where
Tij = Mrrij + (0 + K)vig + 1
! ! rony (6.3.35)
pij = Qrpbij + Big + Vi i = Vja T+ ke
and
kap = Mapus(x1, z2,0), ksz = (A + 2p + K)uz(71, 2, 0)
ka3:MU2($1,$270), k3a :(M+I€)u2(mlaw270) (6336)
hnu :045771/90;(:[171;270)7 h33 = (0[+,6+’}/)(,0§(.’£1,:E2,0) o
has :ﬂﬁpZ($1,x2,0), h3a :7503(1'1’1230)
By using Equations 6.3.30, the equilibrium equations reduce to
7jij +Yi =0, Wjij + EirsTrs + Zi =0 (6.3.37)
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where
Y = kuio + t5;(21, 22,0), Zi = hai,o +mi; (21, 22,0) (6.3.38)

Let us note that Y; and Z; are independent of the axial coordinate.
With the help of Equations 6.3.32 and 6.3.34, the conditions 6.3.29 become

Tging = pi, pging = n; on II (6.3.39)

where

pPi = _kainou i = _haina

From Equations 6.3.28 and 6.3.31, we obtain

/ T3;da = =T}, / (5ijk$j7-3k + ugi)da = -, (6340)
3

¥

where

T; = | kzda, Q; = / (€ijstjkss + hsi)da
Y 3
Thus, the functions v; and v; satisfy Equations 6.3.7 and 6.3.35 on B
and the boundary conditions 6.3.39 and 6.3.40. This problem was studied
in Section 6.3.1. The solution has the form 6.3.3 in which ¢; = b; = 75 = 0,
X = Xa = 0. Thus, the considered problem is solved.
The results presented in this chapter were established in Ref. 155.

6.4 Anisotropic Cosserat Cylinders

This section is concerned with the deformation of nonhomogeneous and
anisotropic Cosserat elastic cylinders. Throughout this section we consider
nonhomogeneous materials where the elastic coefficients are independent of
the axial coordinate, namely

Ajirt = Agjri(z1, 22), Bijki = Bijri(v1,22) (6.4.1)
Cijii = Cijri(z1,22), (x1,22) € X4 h

We suppose that the functions A;j,s, Bijrs, and Cijrs belong to C°°, and
that the domain i is C*°-smooth. We consider only a C°°-theory but it
is possible to get a classical solution under more general assumptions of
regularity [88].
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6.4.1 Generalized Plane Strain

We assume that the cylinder B is occupied by an anisotropic elastic material
for which the constitutive coefficients are independent of x3. We define the
state of generalized plane strain of the cylinder B to be that state in which
the displacement vector and microrotation vector are independent of the axial
coordinate,

u; = ui(T1,72), pi = pi(z1,72), (T1,72) € 51 (6.4.2)

This restriction implies that e;;, k;5,1;;, and m;; are independent of xz3. We
assume that on the lateral surface of the cylinder, there are prescribed stress
vector and the couple stress vector, and that the loads are independent of the
axial coordinate. In the case of the generalized plane strain, the equations of
equilibrium are

taia + fi =0, Maia + Eijrtir + gi =0 on X (6.4.3)
The geometrical equations imply that
€ai = Wi,o + EiakPk, €3; = €3k Pk, Kai = Pi,a: k3 =0 (6.4.4)

The constitutive equations reduce to

tai = Aaijkejk + Baigjkgg, tsa = Asajrejr + Bsagiks; (6.4.5)
Mai = BjkaiCjk + Caipjhip; B
and
33 = Assjreji + Bssgjkg;, ma; = Bjrsiejr + C3ipjkga; (6.4.6)

On the lateral surface of the cylinder, we have the boundary conditions
toila = ti, MaiNa = M; on I (6.4.7)

The generalized plane strain problem consists in the determination of the
functions w; and ¢; which satisfy Equations 6.4.3, 6.4.4, and 6.4.5 on ¥; and
the boundary conditions 6.4.7 on I". The functions t33 and mgs; can be calculated
from Equations 6.4.6 after the components u; and ¢; have been determined.

The conditions of equilibrium of the cylinder B can be written in the form

fida—i—/ﬂds =0
r

D]

R (6.4.8)
/ (apZafs + g3)da + /(sagq:atﬁ +ms)ds =0
N r

and

/ .T2f3 + 91 da + /(l‘g?g, + ﬁzl)ds — / tzoda =0
= > (6.4.9)

/ $1f3 — gg da + /(I1t~3 - T?lg)ds - / t31da =0
N r D3]
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The conditions 6.4.9 are identically satisfied on the basis of the relations
6.4.3 and 6.4.7. Thus, for the first of Equation 6.4.9, we have

/ tzada :/ (tog + g1 + Ma1,q)da
Y Y

= / [t23 + Z'Z(t(xii,oz + f3) + Mat,a + gl]da
P

= / [(x2t043),04 + 1‘2f3 +g1+ mal,a]da
P

:/(xzta3+ma1)nads—|—/($2f3 + g1)da
r

X1

= /(ngg, —|—n~11)ds+/ (z2f3 + g1)da
r

DY

In a similar way, we can prove that the second condition 6.4.9 is satisfied.
The elastic potential in the case of generalized plane strain is given by

0
2WY = Ajijreai€ik + Asajkesatik + Baigi€aiks;

+ Bsagjesaksj + Bjkai€jklhai + Caigjhaiks;

We suppose that W9 is a positive definite quadratic form in the variables
€ais €30y ANd Kqi. We recall the following result (cf. [88,154]).

Theorem 6.4.1 The generalized plane strain problem has a solution be-
longing to C*°(X1) if and only if the functions f;, g3,t;, and mg satisfy the
conditions 6.4.8.

In what follows we will use four special problems C®), (s = 1,2,3,4), of
generalized plane strain. The problems C(®) correspond to the systems of

loading fi(s) , gf

8 =
A =

i
i -

I

76 _

5(4) _
ﬁ%(ﬂ) —

m® _

s) , ;ﬁ;(s), 7%1(5)7 where

3
(Awisszs + €vpBaisy) a; fi( )= Aqiss,a
(Aai?ﬂ/eﬁul‘ﬁ + Bai33),o¢
(Bssaitg +€u8Caisu) 0 + €ijk(Ajrsszs + €usBjksy)
Bssaia + €ijkAjkss
(BSVaﬁﬁuJ?ﬁ + Cai33),a + 5ijk(Ajk3V56yxﬁ + Bjk33)
~(3
—(Anizsxg + €uBaisy)Nas ti( ) = —Anizsna
AaiSVE,Buﬁrﬁ + Bai33 Uz
Y =

—( )
—(B33aits + €,8Cqi30)Na, —B334ina
—( )

BSV()ﬂg,gl/‘Tﬂ + Caizz)na
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We denote by ul(-s) and gpgs), respectively, the components of the displace-
ment vector and the components of the microrotation vector from the prob-
lem C).

The problem C(®) is characterized by the equations

oa, NeY + f S) (ofz)a + Eljkt(S) + gz(S) =0

tal = Aaijkeg’“) * Baiﬁj’{,(@j)’ ) = A3ajke§'k) + B3aﬁjf€gsj)

o o 0 (6.4.11)
Mmey; = Bikaiesy, + Caigjkiy;
((xsz - 'Eo)c + €zak§0§€ )7 eéz) = 8131?()0 S) Rai = gpz(so)c
on X1, and the boundary conditions
t( )na =t (g), m((;i)na = ﬁzgs) onT (6.4.12)
We denote
t5) = Aggjels) + Basgins),  my) = Bjrsiels) + Caipynly)

It is a simple matter to see that the necessary and sufficient conditions 6.4.8
for the existence of the solution are satisfied for each boundary-value problem
(s) (s)

C®). In what follows we assume that the functions u;” and ¢,

,~ are known.

6.4.2 Extension, Bending, and Torsion

Let us study the deformation of the cylinder B when the loading applied
on the end X, is statically equivalent to a force F = F3e3 and a moment
M = Mj3es. The problem consists in the solving of Equations 5.1.11, 5.1.16,
and 6.2.1 on B, with the conditions 4.10.14, 4.10.15, and 6.2.20. We seek the
solution in the form

4

1

Uy = 7§aax§ + €8a04T323 + Z asuff)

s=1

4
us = (@121 + agxs + az)rs + Z asugs) (6.4.13)

s=1

4
Po = capapms + Y apl), g3 =asmws+ Y aupy)
s=1 s=1

where ul(-s) and gpl(s) are the solutions of the problems C(®) and a, are unknown

constants. From Equations 5.1.11, 5.1.16, and 6.4.13, we obtain

4
tij =y ary,  mg=Y amp) (6.4.14)
s=1
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where
Ti(ja) = tE?) + Aij33Ta + €vaBijsu, Ti(f) = tl(?) + Aijas
-(4) = tﬁf) + Ajjavepuxs + Bijss, MZ(-?) = ml(-;-x) + B33ijTa + €0aCijsu

Mg)) = mgj) + B33ij, ME?) = mgf) + Bsyijeguxg + Cijzz (6.4.15)

The equilibrium equations 6.2.1 and the boundary conditions 6.2.2 are sat-
isfied on the basis of the relations 6.4.11 and 6.4.12. As in Section 6.2, we can
prove that the conditions 4.10.14 are identically satisfied. From 4.10.15 and
6.4.14, we find that

4 4 4
> Dasas =capMs, Y Dssas=—Fs, Y Dia,=—Ms (6.4.16)

s=1

where

Dys = / ($a7§3) + Eﬁa,ués))d D3, = / Tég)da
> = (6.4.17)
Dy = /2 (6(1595“735;) + u&))da
1
As in Section 4.3, we can prove that
det(Dys) # 0 (6.4.18)
so that the system 6.4.16 uniquely determines the constants ag, (s = 1,2, 3,4).

6.4.3 Flexure

The problem of flexure consists in the determination of a solution of the
Equations 5.1.11, 5.1.16, and 6.2.1 on B which satisfies the conditions 6.2.2
and the conditions for z3 = 0. We seek the solution in the form

1 1 1
Uy = —iaaxg — ébaxg + €8a <a4x3 + 2b4x§> s
4
-1—2((15 + bsx3)uy (®) 4 Vo (71, 72)
s=1

Uz = (0,133‘1 + asxo + a3)$3 + = (bll‘l + boxo + b3)
4 (6.4.19)
—|—z:(aS + bsx3)us (&) + vg(z1, z2)

s=1

4
1 )
Vo = Eap (aﬁl'g + 2bg$§> + E as + bsx3)p 5) + Vo (21, 22)
s=1

4
1 s
s = aaws + Sbarf + ) (as+ bs3) @) + 3@, x2)

s=1
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where ul(-s) and %(s) are the solutions of the problems C(®), v; and 1); are
unknown functions, and ay and b, (k =1,2,3,4), are unknown constants.

From Equations 5.1.11, 5.1.17, and 6.4.19, we obtain

4

tij = Z(as + ngg)Tz(js) + Tij + K,’j
s=1
] (6.4.20)
mig =y (as + bsws)uiy + piy + Hij
s=1

(s)

where Ti(;) and p;;

are given by Equations 6.4.15, 7;; and p;; are defined by

Tij = Aijrs’yrs + BijTSV’I‘57 Hij = BTS?;]’"YTS + Cijrs’/rs

(6.4.21)
Yai = Vi,ao + Eiak Wk, V3i = €i3kVk, Vai = Vian v3; =0
and
4 4
Kij = bo(Agaru” + Biael),  Hig = 3 bs(Bawiguy + Ciganey”)
s=1 s=1
(6.4.22)

With the help of Equations 6.4.11 and 6.4.20, the equilibrium equations 6.2.1
reduce to

Tai,a T QZ =0, Hai,a T €ijkTik +G;=0o0n X, (6423)

where
4 4
Qi = Kaio + Z bsTéf), Gi = Hujo + €iji i1 + Z bsM:(sLZ) (6.4.24)
s=1 s=1

In view of the relations 6.4.20 and 6.4.12, the conditions on the lateral
surface become
Taila = Pi, Hailla = ¢; ON1 r (6425)
where

Thus, the functions v; and v; are the components of the displacement vector
and the components of the microrotation vector in the generalized plane strain
problem 6.4.21, 6.4.23, and 6.4.25. The necessary and sufficient conditions to
solve this problem are

Q;da + / pids =0
= 8 (6.4.27)
/ (eapzaQp + G3)da + /(5a5xapg +4q3)ds =0
o r
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It is a simple matter to see that we have

T(Sj?a =0, MSZ),Q + EijkT;S) =0onX; (6.4.28)
and
ngj)na =0, Hgsi)na =0onTl (6429)

Using Equations 6.4.28 and 6.4.29, we find that
/2 7'3(2)(10, :/2 [T(iz) + Egauffﬁ)’p] da :/E [T(iz) + xarﬁg?u + Eﬁaﬂgsﬁ),p} da
1 1 1

:/El[(xan(?)’u + €ﬁa/$£sg),p} da :/F [a:aTy(g)nl, + Eﬂaugfﬁ)np] ds =0
(6.4.30)

By Equations 6.4.24, 6.4.26, and 6.4.30, we find that the first two conditions
6.4.27 are identically satisfied. From the remaining conditions, we get

4
> Dby =0, (r=3,4) (6.4.31)
s=1

where D, are given by Equations 6.4.17. Taking into account the equilibrium
equations and the boundary conditions 6.2.2, we obtain

/ tzada = / (tas + €pam;p,j)da = / (tas + Tatizi + €pamip,j)da
> P 2
= /(watus + Egamup)nuds + / (Tatss3 + €gamap,s)da
r 2

:/ (a’:at33+€gam35))3da (6.4.32)
P

Using Equations 6.4.20 and 6.4.32, the conditions 6.2.26 reduce to
4
prbs = —F, (6.4.33)
s=1

The system 6.4.31 and 6.4.33 can always be solved for the constants c;.
Thus the conditions 6.4.27 are satisfied. In what follows we assume that the
functions v; and 1; have been determined.

In view of Equations 6.4.20, from the conditions 6.2.27 and 6.2.28, we obtain
the following equations for the unknown constants a

4
> Dysas=dp, (r=1,2,34) (6.4.34)
s=1
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where

da

—/ [Ta(T33 + K33) — €ap(psp + Hag)lda

31

d3 = 7/ (T33 + Kgg)da (6435)
31

dy = —/ [eapra(Tsp + K33) + pss + Hzs]da
3

Equations 6.4.34 uniquely determine the constants as, (s = 1,2,3,4), so
that the flexure problem is solved.

6.4.4 Uniformly Loaded Cylinders

Let us consider the Almansi—Michell problem for anisotropic elastic bodies.
The problem consists in the determination of the functions wu;,p; €
C?(B) N C'(B) that satisfy the Equations 5.1.11, 5.1.16, and 5.1.19 on B,
the conditions on the end Y1, and the conditions 6.3.2 on II, when the body
loads have the form 6.3.1.

Following Ref. 161, we try to solve the problem assuming that

1
Uy = — =

1 1 1 1
2aaac§ — gbaxg — ﬂcaxg + €8a <a4m3 + §b4m§ + 60495%) g

1
+ Z (as + bsxs + 2csx§> ugf) + wao (21, x2) + T30 (71, T2)
s=1

Uz = (alxl “+ asxo + ag)l‘g + = (blxl + bQLIIQ + b3)
1 3
+ 6(01:101 + coxo + C3)Ty

+Z (a‘S + bsx3 + 2céa:3> (s) + ws(x1, o) + x3v3(21, X2)

s=1
1 : 1
Do = Eap <a5x3 + ibﬁxg C[gmg) + Zl (a + bsx3 + 36 x3> (s)
=
+ Xa(flamoz) + 131/104(9917%2)
1 ! 1
3 = asT3 + b4x3 + 604:53 + Zl (aS + bsxs + 20 x3> <,0;(;)
S

+ x3(x1,22) + 2393(21, 22)
(6.4.36)
() (s)

where u;” and ¢, are the solutions of the problems C®) | v, b, w;, and
xi are unknown functions, and as,bs, and c¢s, (s = 1,2,3,4), are unknown
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constants. By Equations 5.1.11, 5.1.16, and 6.4.36, we get

4

ti; = Z (as + bsxs + 265.%‘3) () 4 Tij + x3045 + kij + 3K
s=1
i ) (6.4.37)
myj = Z <as +bsxs + 2Cs3«"3>m;) + pij + x3vi; + hij + x3H;;
s=1

where Ti(js) and ME;-) are given by Equation 6.4.15, 7;; and p;; are defined by

Tij = Aijrsé-rs + Bijrsnrsa Mij = Brsijgrs + Cij'rsnrs

(6.4.38)
Sai = Wia + Eiak Xk, €3 = €436 Xk Noi = Xi,o
the functions o;; and v;; have the expressions
0ij = AijrsTrs + BijrsCrs, Vij = BrsijVrs + CijrsGrs (6.4.39)
Yai = Vi,a + Eiak Wk, V3i = €i3kWks Cai = Visa
and we have used the notations
4
kij = Aijarvr + Bijsrthr + Z bs (Aij3rug=s) + Bij3r907(~8))
s=1
4
Kij = cs[Aijsrul? + Bijsrl]
=1 (6.4.40)
hij = B 37ij Ur + C”?,rl/)r + Z b Bgm_]u + Cz_]Sr‘Pr ]
s=1
4
Hij =) cs(Barijul® + Cijarol”)
s=1
The equations of equilibrium 5.1.19 reduce to
4
Tai,a + kai,a + Z bsTéis) + 03; + Kdz + fz(o) =0
s=1 (6.4.41)

4
Mai,a + EijkTjk + g(() + hai,a + Z bs:u’i(;) + V3 + H3i + Eijrkjr =0
s=1
and

Oai,o +Ka7,a +ZCST3Z =0
s=1
\ (6.4.42)

Voi,o + €ijk 0k + Hui o + €56 K1 + Z Csﬂgj) =0on X
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The boundary conditions 6.3.2 become
Taila = Pj, Laife = Q;on T (6.4.43)

and
Oaila = 15, Vaila = S;on T’ (6.4.44)

where
Pi = %VZ(O) - kaina; Q’L - NEO - hozinaa Ti = _Kainou Si = _Haina

The necessary and sufficient conditions to solve the generalized plane strain
problem 6.4.39, 6.4.42, and 6.4.44 reduce to

/ ZCST =0, / z:cé sagxaﬂ'éﬁ) +ug8)]d =0 (6.4.45)
) s

1s=1 1s=1
By using Equation 6.4.30, it follows that the first two conditions 6.4.45 are
satisfied. The remaining conditions imply

> Dracs =0, (r=34) (6.4.46)

The necessary and sufficient conditions for the existence of the solution of
the generalized plane strain problem 6.4.38, 6.4.41, and 6.4.43 are

fOda + / 7%ds +/ t3ida = 0
ol r ol
/E (caprafs” +95")da+ / (capraty’) +imy")ds (6.4.47)
1
+/ (Eagfﬂatgﬁ,g + m3373)da =0
3
By using Equation 6.3.16, the first two conditions 6.4.47 reduce to
4

> Dases=— | fPda— / 70 ds (6.4.48)
s=1 %] r

The system 6.4.46 and 6.4.48 determines the constants cs, (s = 1,2,3,4).
Thus, the conditions 6.4.45 are satisfied, and in what follows we can as-
sume that the functions v; and ; are known. The remaining conditions from
Equation 6.4.47 become

4
S Daby=—| fda- / t9ds — / (033 + Ks3)da
s=1 P r 1

4
> Dibs = — / (cap@atfy” + 95" )da - / (capral () + miV)ds  (6-4.49)
s=1 r

*/ [Eagaja(o;gﬁ + Kg@) + v33 + Hgg]da
PN
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With the help of Equation 6.3.22, the conditions 6.2.3 take the form

4
ZDaSbS =—-F,— / (xafg(o) + sgaﬁzéo))ds — / (J:af?go) + Egagg)))da
s=1 r 1
*/ [za(033 + K33) + €ga(vss + Hag)lda (6.4.50)
3

In view of Equation 6.4.18, the system 6.4.49 and 6.4.50 determines the con-
stants bs, (s = 1,2,3,4). The conditions 6.4.47 are satisfied so that we can
consider that the functions w; and x; are given.

From Equations 6.2.4, 6.2.5, and 6.2.6, we obtain the following system for
the constants ag

4
> Drsas=¢, (r=1,2,3,4) (6.4.51)
s=1

where

Co = as M / (o (73 + s3) + €ajisp + hag)lda
P

(3 =—F3 */ (733 + ka3z)da
31

4 = —M3z — / [€apTa(T3s + k3g) + p33 + haslda
P

On the basis of Equation 6.4.18, from Equation 6.4.51, we can find the con-
stants ai, as, a3, and aq.

6.4.5 Recurrence Process

In this case the problem of Almansi reduces to the finding of the functions
ui, p; € C?(B) N CY(B) that satisfy the equations

1 1
tiij + Fi(r1, x2)s T =0, Mjij + Eirstrs + Hi(z1, 22)25 T =0
tij = Aijrsers + Bijrs"frs; m;; = Brsijers + Cijrs"{rs (6452)
€ij = Wji + €jikPr, Kij = ¢jion B

and the boundary conditions 6.3.28 and 6.3.29, when the solution of the
equations
t;i,j + yz‘(l‘l, Ig)l‘g =0, m;i,j + Eirst:js + Hi(ml, 31‘2).%‘? =0
t:j = Aijrseis + BijTSH:sv m?j = Brsijef,s + Cijrs/f;ts (6453)

x % % * ok
€ij = Uj; T EjikPrs Kij = ¢;; on B

with the conditions 6.3.31 and 6.3.32, is known. We seek the solution of
this problem in the form 6.3.33, where v; and ; are unknown functions.
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By Equations 6.3.33, 6.4.52, and 6.4.53, we get

3
tij = (n + 1)(/ t;kjd,%;), + Ti; + TZJ)
0
3
m;; = (n+ 1)(/ m;idry + i + Mij)
0
where 7;; and p;; are defined by

Tij = Aijrsfrs + Bijrsﬁrs, Hij = Brsijgrs + Cijrsnrs
&ij = Vjg + €50k, Nij = Y
and we have used the notations

Tij = Aijaruy(r1,22,0) + Byjsrer(r1,22,0)
M;; = Bspijuy(x1, x2,0) + Cijarer (21, 2,0)

The equilibrium equations reduce to
Tji,j + P = 0, Wiij + EirsTrs + Qs =0on B
Here we have used the notations
P =Tj; 5 + t5,(21, 22, 0), Qi = My j +m3;(z1,22,0)
The conditions on the lateral surface become
Taila = Si, LeiNe = 13 on 11

where

Si = _Tainaa Ty = _Maina

One can see that P;, Q;, s;, and r; are independent of the axial coordinate. In
view of Equations 6.3.31, from Equations 6.3.28, we obtain

/ T3:da = —A}, / (5ijk$j7'3k> + Mgi)da = —Ei
21 E1

where

AZ:/ Tgida, Eli/ (6ijk$jT3k+M31')dCL
21 E1

Thus, for the unknown functions v; and ;, we have obtained a problem of
Almansi-Michell type. The solution of this problem has the form 6.4.36.
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6.5 Cylinders Composed of Different Elastic Materials

This section is concerned with the deformation of a cylinder composed
of different isotropic Cosserat elastic materials. We now assume that B is
a composed cylinder, as described in Section 3.1. We suppose that the do-
main B, is occupied by an isotropic material with the constitutive coefficients
XO) @) ~P) and that

AP = )\(”)(351,962), ,u(p) - u(p)(fchfﬂz% o ,W(’)) — »y(p)(xth)

oraa) € A (6.5.1)

We assume that the elastic coefficients belong to C*° and that the elastic
potential corresponding to the body which occupies B, is a positive definite
quadratic form. We can consider B as being occupied by an elastic medium
which, in general, has elastic coefficients discontinuous along ITy.
The functions u;, @;,t;, and m; must be continuous in passing from one
medium to another so that we have the conditions
[usls = [uil2, [l = [pil2
(6.5.2)
[tﬁi]ln% = [tm]zn%, [mmhn% = [mgi}gn% on Il
where it has been indicated that the expressions in brackets are calculated for
the domains By and Bs, respectively. Here, n% are the direction cosines of the
vector normal to Ily, outward to Bj.

6.5.1 Plane Strain Problems

The plane strain problem for Cosserat elastic solids has been introduced in
Sections 5.2 and 6.1. Let us consider now the problem of the plane strain asso-
ciated to the cylinder B, which is occupied by two materials. The equilibrium
equations for the plane strain can be written in the form

tga,g + fép) =0, mgs,g + €aptas + g:(,)p) =0on Ap (6.5.3)

We assume that the functions fo(f ) and g:(),p ) belong to C°°. The constitutive

Equations 6.1.3 lead to

tap = )\(p)enn(gaﬁ + (M(p) + n(p))ea,g + M(p)eﬁa
(6.5.4)
Ma3 = '7(;))@3,04 on Ap

Since the displacement vector, the microrotation vector, the stress vector, and
the couple-stress vector are continuous in passing one medium to another, in
the plane strain we have the conditions

[walt = [ualzs a1 = [a]2 (6.5.5)

taplind = [tas]2nd, [Mas]ing = [Mas]and on Tg
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We consider the following boundary conditions
tsangly = b, [Mmasnal, =¢* onT, (6.5.6)

where hY and q'?) are functions of class C*°. If the domains A, satisfy
some conditions of regularity [88], then the above plane strain problem has a
solution if and only if

i [/ f<ﬂ>da+/F h(”)da} =0

p=1

(6.5.7)

M

[/ (capraty” +95”)da+ / (caszahff’ +q'¥)ds| =0
A

1 4 rp

S
Il

In what follows, we assume that the requirements which insure this result are
fulfilled. If the conditions 6.5.5 are replaced by

[ualr = [ual2,  [ps]h = [psl2

(6.5.8)
[taplind = [taglanl + ps, [Ma3]in® = [Mmasland +qon Ty

where p, and ¢ are functions of class C'°°, then the conditions 6.5.7 are re-
placed by

22:[/ f(”)da+/ h<ﬂ>ds} /FopadszO

p=1
2
> [/ (Eaﬁxafép) +9”)da +/ (Eaﬁxahgp) +¢'))ds (6.5.9)
p=1 Ap Ir,
+/ (Eaﬁl'apﬁ +q)ds =0
To
We will have occasion to use three special problems &%), (s = 1,2,3),

(s)

of plane strain. In what follows, we denote by ug ()

,w(s),egjﬁ), t(s , and m;;

the solution of the problem £(). The problems £(*) are Characterlzed by the
equations of equilibrium

0+ APz =0, 5 +AD =0, (3=1,2)
5 5 (6.5.10)
m(ﬁn?))ﬁ 4 saﬁt( n) + Ean ﬂ(P) = O m(ﬁz)’)ﬁ + go‘ﬂt((xﬁ) =0
the constitutive equations
tSﬁ) — /\(p)egﬁl)éaﬁ + (M(P) + H(P)) (s) + M )e,(gso)“ m&s; _ ’y(p)wg:gé (6.5.11)

the geometrical equations

ey =ul) +epaps”, K = 0f) (6.5.12)
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on A,, and the following conditions

W], = [ [, = ), 6513
(1520 n = [15)],nG + P, [m3]nd = [m3],nd + Q) on Ty
[té@ 8lp = */\(p)xnna, [t(?’)n ], = APy,
(6.5.14)
[m(an?))na]p = Enljﬁ(p)nl/7 [m(gg)na] =0on Fp

where we have used the notations
p(in) - ()\(2) — A(l))xnn& po(é3) - ()\(2) — )\(1))”(01

(6.5.15)
QI = 8W(ﬁ(l) — ﬁ(z))ng, Q¥ =0

The necessary and sufficient conditions for the existence of the solution are
satisfied for each boundary-value problem £(%).

6.5.2 Extension and Bending

The problem of extension and bending for a composed cylinder consists in
the solving of the Equations 5.1.11, 5.1.17, and 6.2.1 on B, with the conditions
6.2.2, 6.2.7, 6.2.8, and 6.5.2 when the constitutive coefficients have the form
6.5.1. We try to solve this problem assuming that

1
Uy = 7§aa:17§ + Zasuff), uz = (@121 + agxs + az)ws
= (6.5.16)

3
Po = Capagts, g3 = a.py

where ugf), goés) are the solutions of the problems £, and a, are unknown

constants. From Equations 5.1.11, 5.1.17, and 6.5.16, we get
3
tag = )\(P) (alxl + asxo + a3)5a5 + Z astgi%

3
33 = (AP 4247 ¢ kP (ay21 + agzy 4 az) + AP Zasegfgy
s=1

ta3 = t30 = 0, Mapg = M33 = 0, Ma3 = €auﬁ(p)au + Zasm( )
s=1
m3a = 5(W'Y(p)al/ + Z asmgi (6.5.17)

s=1
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By using Equations 6.5.13, 6.5.14, and 6.5.15, it follows that the conditions
6.2.2 and 6.5.2 are satisfied. The conditions 6.2.7 are satisfied on the basis of

the relations 6.5.17. From Equations 6.2.8 and 6.5.17 we obtain the following
system for the unknown constants ay,

Yysas = Cy (6.5.18)

where

2
Yos = Z/ (20 [P 4240 1 5Oz + AP
p=1 Ap

— car(ear? + myy) }da

2
Yas = Z/ {ﬁCa P\(p) +2uP) 4+ K0P 4 )\(”)egﬁg] — EaAmg?;)}da
p=1 Ap

, (6.5.19)
Ya = Z/ (AP 124 4 5Oz, + APl da
p=1 Ap

2
Yos =Y / IO 1 200) 4 1) £ AP da
p=1 Ap

Co = a(xﬁMﬁa C3=—F3

Following the procedure from Section 3.6 we can prove that det(Y;.s) # 0, so
that the system 6.5.18 determines the constants as.

6.5.3 Torsion

The problem of torsion for a cylinder composed of two materials consists
in the finding of the functions u; and ¢; that satisfy Equations 5.1.11, 5.1.17,
and 6.2.1 on B,, the conditions 6.5.2 on the surface of separation Ily, the
conditions on the end >, and the conditions 6.2.2 on the lateral boundary of
the cylinder B. Following Ref. 141 we seek the solution in the form

Uo = EBaTTRT3, us = 7®(x1, x2), Vo = TP (21, 22), 3 = Tx3
(6.5.20)

where ®, @1, and ®3 are unknown functions, and 7 is an unknown constant.
Let V = (G,G1,G2) be an ordered triplet of functions G,G1, and Go. We
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introduce the notations

TPy — (1) + NG, + kP ensGa, Sy = PG o + kP esa Gy
MC(V%)‘N/ = DGy 1bas + B Cap + 7P Cpa
L(yp)f/ _ (M(p)f/) teu (T(p)f/ - S(”)‘N/)

= (aPGyn) , + (B7Gr,) , + (VG | +esn? G - 260G,
LOT = (TOTV) | = (19 +xG.0] , +eas(PGp) |
NPV = (M(P)V) = a PGy an, + BPGy s + PGy any
./\/(p)V (T Py ) = (P + PG ana + £ P ensGang

(6.5.21)
Taking into account Equations 5.1.11, 5.1.17, and 6.5.20, we obtain

tag =0, t33 =0, tag = T[T(gp)A + M(p)f:‘gaxg]
taa = T[SOA + (1P + £P)egazs],  mp = T[MEA +as,,]
Ma3 = M3a = 0, maz = 7[aP®,, +a? + 3P 4 4] on A4,
(6.5.22)
where A = (®, &1, P5). The equations of equilibrium 6.2.1 reduce to

LON=F" on A, (6.5.23)
where
FP = w60 =) P = oV ag) o (6.5.24)

The boundary conditions 6.2.2 become

N ON=5" onT, (6.5.25)

K2

where
o) = —aPn,, o = pPe s ameg (6.5.26)

The conditions 6.5.2 reduce to
[f/i/i(l)A] (n%) — [e/Vi(Z)A] (n") = k; on T (6.5.27)
where we have used the notations
k, = (@® —aW)nl ks = (Y — e pagnd (6.5.28)

and [%(p)](no) denotes the operator JVZ-(p) for n, = nY. Following Refs. 88,
137, and 154, the necessary and sufficient condition for the existence of the
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solution of the boundary-value problem 6.5.23, 6.5.25, and 6.5.27 is

2
Z [/ ngz,fp)da—/ aép)ds} — | ksds=0
= LJa, r, ro

By using Equations 6.5.24, 6.5.26, and 6.5.28, it is easy to see that this condi-
tion is satisfied. We assume that the functions ® and @, are known. Taking
into account Equations 6.5.22 it follows that the conditions 6.2.15 are satis-
fied. As in Section 6.2.2, we can prove that the conditions 6.2.14 are identically
satisfied. From Equation 6.2.16 we determine the constant 7. Thus, by using
Equations 6.5.22, the condition 6.2.16 reduces to

D = —Mj (6.5.29)

where D’ is the torsional rigidity

2
D=3 [ Conralu®s+rsls®®, + (1 + 5z,
p=1"4p

+aPd,, + a4+ B0 4 4P)dq (6.5.30)

By using the method presented in Section 5.3 we can prove that D’ # 0, so
that the relation 6.5.29 determines the constant 7.

6.5.4 Flexure

We suppose that the loading applied on i is statically equivalent to the
force F = F,e, and the moment M = 0. The problem consists in the de-
termination of the displacement and microrotation vector fields that satisfy
Equations 5.1.11, 5.1.17, and 6.2.1 on B,, the conditions 6.5.2 on the surface
of separation, the conditions on the end X, and the conditions 6.2.2 on the
surface II. Following Ref. 155, we seek the solution in the form

3
1
Uy = —6bax§ + a3 Z bsugf) + €8aTX3T3

s=1

1
us = 5(1)11‘1 + b2$2 + bg)x?,, + T(P + \I/(.Ihl’g)
(6.5.31)

1
Pao = geagbﬁxg + 7P, + Vo (z1,22)

3
p3 = 3 Z bsgo:(f) + T3

s=1

where @, &1, and ¥, satisfy Equations 6.5.23 and the conditions 6.5.25 and
6.5.27; u&s) and goés) are the solutions of the problems £(); U W, and U,
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are unknown functions, and b; and 7 are unknown constants. By Equations
5.1.11, 5.1.17, and 6.5.31, we find that

3
taﬁ = X3 Z bst((j@) + )\(p)xg,(blxl + bQiL’Q + bg)(sag
s=1

3
t33 = ()\(p) + 2[1,(’)) + K;(”))(blxl + baxo + b3)£L‘3 + )\(p)l'g Z bsegfc)y

s=1

3
. [TC(J’)A + u(p)gﬁawﬁ] + TP+ puP) Z bouls)

tagz =
s=1
3
tae = T[S&P)A + ega(u? + R(p))xﬂ] + SO+ () + k) stufj)
s=1
3
My = 7[MEA +al6,,] + My, Q+ a6, > " o)
s=1
3
M3q = T3 Y bsmi) +~Peagbps
s=1
3
Ma3 = ﬁ(p)&‘aﬁb@.rg + x3 Z bsm((j?))
s=1
s = (0 + 30 4 0)) (T N Z bols ) ) (7B + T )

s=1
(6.5.32)

where Q = (¥, Uy, Uy). On the basis of the relations 6.5.10 and 6.5.15, we

conclude that the equilibrium equations 6.2.1 and the conditions 6.2.2 and
6.5.2 reduce to

3
LPQ = —~Pe,5b5 — st [(a(p)%S)))y + mgi) _ 51,5/£(P)UE;)]

s=1
3
6.5.33
ﬁé”)ﬂ _ _st P\( Pe (s) (M(p)u(s)) ] ( )
s=1
_ (/\(p) + QH(P) + R(P))(blxl + baxg + b3) on A,
(V] = [¥]s, [Wali = [Pal2
(6.5.34)
[(A4,00) (%) = [40] (1) = (@ ~ o) stso;)
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A09)0°) = [H429] (1) = () — w3 ba on Ty

3
%(P)Q = _—aPn, Z by, %(P)Q = —uPn, Z bsu((f) onT,
= s=1
(6.5.35)
The necessary and sufficient condition for the existence of the solution of this
boundary-value problem becomes

Yisbs =0 (6.5.36)

where Y34 are given by 6.5.19. Let us impose the conditions 6.2.26. As in
Section 6.2, we can prove that the relations 6.2.34 and 6.2.35 hold. Thus,
taking into account 6.5.32, the conditions 6.2.26 reduce to

Yasbs = _Fa (6537)

The system 6.5.36 and 6.5.37 determines the constants bs. Since the condi-
tions 6.5.36 are satisfied, we shall consider that the functions ¥ and ¥, are
known.

From Equations 6.2.28 and 6.5.32, we obtain

D Z/ {gaﬁxa[ OB 4+ 2, 5m T, + (4P + 5P Zb us)]

s=1
+ (@) 4 30) 4 A st¢gs> }da

where D' is given by Equation 6.5.38. The above relation determines the
constant 7. The conditions 6.2.27 are identically satisfied on the basis of the
relations 6.5.32. Thus, the flexure problem is solved.

6.5.5 Problem of Loaded Cylinders

In order to solve the Almansi problem, we first investigate the problem of
uniformly loaded cylinders. We assume that the body loads have the form

fi= Rz(»p) (1, 2), gi = Lgp)(xl,xg) on A, (6.5.38)

and consider the boundary conditions

[tainalp = (p)(xl, x3), [Mainal, = qi(p) (x1,29) on I, (6.5.39)

Let us establish a solution of the Equations 5.1.11, 5.1.17, and 5.1.19 on B,
which satisfies the conditions on the end 3, the conditions 6.5.39 on 1I,
and the conditions 6.5.2 on Ily, when the body loads are given by Equa-
tion 6.5.38. On the basis of Theorem 5.6.2, we try to solve the problem

© 2009 by Taylor & Francis Group, LLC



266 Classical and Generalized Models of Elastic Rods
assuming that

1 1 1 1
Uy = _iaaxg — fbazg - ﬁcavaf + €8a (Tlivs + 272$§> 3

1
+Z (as + b sT3 + 2651}3) (s) + va(xl,xz)

s=1

Uz = (alxl + asxo + ag).’)Sg + - (blxl + baxo + b3)
1
+ 6(61331 + oy + c3)xh + (11 + 2372)® + U(21, 22) + 23X (71, 22)

1 1
Do = €ap (a@x3 + 51)@9&% + 605x§>

+ (71 + T223) @0 + Vo (71, 72) + T3Xa (21, T2)
> 1 1
b= 3 (0t buaa t Jed )l 4 maa b a4 wlonan)  (65.40)
—~ 2 2
where u( *) and goi(;) are the solutions of the problems £(); ®, ®,, and ®, are
the torsion functions considered in Section 6.5.3; ¥, ¥, X, Xa, Va, and w are

unknown functions, and ag, b, ¢s, 71, and 75 are unknown constants. In view
of Equations 5.1.11, 5.1.17, and 6.5.40, we find that

tag = AP [alxl + asms + az + (biz1 + boxa + bs)ws
+ %(clxl + coxo + 03)30%] dap + )\(p)(x + 72P)d0p
+ ij (as + byas + csxg)t(ﬁ +0ag
33 = ()\(p) + 2u(p) + Ii(p)) [alwl + asxa + as + (bix1 + bawe + b3)xs

+ —(c1m1 + coxa + 03):135] + ()\(”) + 2u(p) + k(”))(x + ®)

N

+ AP Z (a‘S + bsxs + 2céx3> ) L APy,
s=1

taz = TPQ+ 23TV + (11 + Tos) (TP A + P egaas)
3
+ plP) Z(bs + Csxg)ugf)
s=1

tse = SPQ+ 238V + (11 + To3) [S(p)A + (u?) + m(p))egaxg]

3
(P) + K/(P) Z b + CS$3 )
s=1
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My, = M)(\‘;)Q + ngiz)f/ + (11 + T2x3) (M)(\’;)A + a(”)é,\y)
3
+ alPg,, Z(bs + csxg)ap:(f)

s=1

1
Ma3 = /B(p)gau (az/ + byx?) + 20u$§> + ﬂ(p) (Xa + 7—2(1)04)

3
1 s
+ Z (as + bsx3 + 2csx§> mgg,) + a3

s=1

1
msq = ’Y(p)gaz/ (au + bl/x?) + 2@/-’”%) + ’Y(p) (Xa + T2®a)

3
1 .
+ Z <as + bsx3 + 2681"%) m;(;oé) + H3a

s=1
3

s = (a® + 50 1 A0)) [n s S (e + CSxB)(p@)}
s=1
+ P (11 + 1) Ban + ol (T + 23x0,0) (6.5.41)

where Q = (U, U, Us), V = (x, X1, x2) and

_\(p (p) (p) )
0ap = A %000 + (17 + £ )Yap + 1784
(6.5.42)

Ha3 = '7(p)w,ou H3a = ﬂ(p)w,aa YaB = VB,a T EGaW

Taking into account Equations 6.5.10 and 6.5.41, the equations of equilib-
rium lead to the following equations

0Ba,B + Hép) = Oa Ha3,a + €apBOap + H(p) =0on Ap (6543)
£P0=6" on A4, (6.5.44)
LV =K on A, (6.5.45)

where we have used the notations
HP) = NP (x + 178)] o + SV + 1 [SPIA

3
+ (M(P) + Kj(p))E,@aaﬁg} + (M(P) + Kj(p)) ZCSU,&S) + R((l/))

s=1
3
H® = 3% (yo + T9®4)].o + (alP) 4 3P) 1 A(P)) (7.2 + ch(p(s)>
s=1

+ P (y, +7d,), + LY
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G = Zb A el + (uPu) N
— ()\(p) + 2/1,( P) + /43( ))(bla:l + le’Q + bg) — Réﬂ)

3
GO = =3 b, [(@Wp®) | +m§) — e, ar?ul)]

— 7(/))51/[’(,[3 — Ll(/p)
K = -3 e 06+ (1), )
=1
— S()\(P) + QH(P) + K(P))(Clxl + coxo + xg)
K = 3 e [06), ) O] 4Py
s=1

The boundary conditions 6.5.39 are satisfied if we have

Tapffa = sg), HasNa = 77(’)) onl,

%(P)Q — Ni(p) onT

NPV = QEP) onl,

K2

where

s =pf = 2O (x +m®)ng, 7 =i — B (xa + T2Pa)na

N(P) — @ Zb uls N = ¢ — oy Z bsSD

3 3
r) Z el ng, QY = —alPln, Z CSSD;(;)
s=1 s=1

The conditions 6.5.2 reduce to the following conditions on I'y

[val1 = [val2, [w]h = [w]2
[0apling — [0aplang = Zs, [asing — [Hasleng = Z
(O] = [P,  [Wa]i = [Talo

(490 (n°) - [420)(n%) = X,

XIi = [xl2s  [Xal1 = [Xal2
[V () = [4 DV () = v,

K3
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(6.5.47)
(6.5.48)

(6.5.49)

(6.5.50)

(6.5.51)

(6.5.52)

(6.5.53)

(6.5.54)

(6.5.55)
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where

Zg = (A - ADy(y + TQ@)n%, Z = (B - W) (xa + 1o®a )0’

3
Xy = (@® ~ al)n stsﬁg, Xy = (1 — )3 b
s=1
3
Vs = (@ —aD)n chws» Ya= (1@ — )Y culng
s=1
(6.5.56)

From Equations 6.5.42, 6.5.43, 6.5.47, and 6.5.53 it follows that the func-
tions v, and w satisfy the equations and the boundary conditions in a plane
strain problem. The necessary and sufficient conditions to solve this problem
are

2

> U Hgﬂ>da+/ sgf)ds] +/ Zads =0
— A, r, To

/ (copraHY + HP)da + / (apzas? +n(”))ds] (6.5.57)
A

P rp

MMT

p=1

+/ (eaprals + Z)ds =
To

By using Equations 6.5.46, 6.5.50, and 6.5.53 and the divergence theorem, we

obtain
Z [/ H((Xp)da—k/ s&p)ds} —|—/ Zods
A, r, Lo

p=1

2
= Rg”)da—i—/ pgf)ds] —|—/ t3a,3da
le [/A . 5, 0 (6.5.58)

= P P

In a similar way, the last condition from Equation 6.5.57 becomes

2
Z [/A (é‘aﬁmaR(ﬂp) + Léﬁ))da+/ (Eagxapff) qgf’))ds}

p=1 P FP

+/ (€apTatsps +ma33)da =0 (6.5.59)
PN

With the help of Equation 6.5.40, from Equation 6.3.16 we find that

/ t3a,3da = Yo,¢; (6.5.60)
31
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From Equations 6.5.58 and 6.5.60 it follows that the conditions 6.5.57;
reduce to

2
Yaici = — Z {/ Rg")da—k/ p&p)ds} (6.5.61)
p=1 AP r,

Let us consider the boundary-value problem 6.5.45, 6.5.49, and 6.5.55. The
necessary and sufficient condition for the existence of the solution of this
problem is

2

3 U K?EP)da—/ ng’)ds] — | Yads=0
A, r, To

p=1

Taking into account the relations 6.5.46, 6.5.52, and 6.5.56, the above condi-
tion becomes

Equations 6.5.61 and 6.5.62 uniquely determine the constants cj. Let us study
now the boundary-value problem 6.5.14, 6.5.48, and 6.5.54. The necessary and
sufficient condition for the existence of the solution of this problem is

> [/ ng’)da—/ N?EP)ds] — | Xsds=0
A, I's To

p=1

By using Equations 6.5.46, 6.5.51, and 6.5.56, this condition reduces to

2
Yashs =~ { / R da + / pé”)ds} (6.5.63)
p=1 AP Fp

Let us investigate the conditions 6.2.3. We can write

2

/ tznda = Z {/ (J:QR;’)) + sgaL(Bp))da +/ (xapgp) + sgaqg)))ds}
Y A

p=1 P Fp

+/ (l‘at33,3 + Egam3573)da (6.5.64)
3

With the help of Equations 6.5.40 and 6.5.64, the conditions 6.2.3 become

2
Yoibi = —Fo — Z {/A (CEaRép) + EgaLEf))da +/F (xapgp) + slgaq[(f))ds

p=1 P P

(6.5.65)
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The Equations 6.5.63 and 6.5.65 determine the constants by. In what follows,
we assume that the constants ¢, and by, and the functions x, xo, ¥, and ¥,
are known.

Let us consider now the condition 6.5.575. Taking into account Equa-
tions 6.5.41 and 6.5.59, the last condition of 6.5.57 reduces to

2

D = — Z {/ (5aﬁxaR(Bp) + Lép))da +/ (saﬂxap(p) + q(p))d }

p=1 P rp

2 3
- Z/A {ﬁaﬁxa {u(")x,ﬂ + ey + (1P +50) 3 csu,(;)}
p=1 s s=1

3
+ (o) + ) 4 P Z cspl? + Oz(p)x,,,l,}da (6.5.66)

s=1

where D’ is given by Equation 6.5.30. The relation 6.5.66 determines the
constant 75. By Equations 6.2.4, 6.2.5, and 6.5.41, we get

Yija; =1 (6.5.67)

where

2
o= caaMy =D [ {ralh+ (0 + 20+ 10) (+ )
—aplr” (X + 72@p) + pap]}da

2
vy = —Fs — Z/ (AP 1 240 4 1) (x + 758) + APyonlda

Equations 6.5.67 uniquely determine the constants ag. From Equations 6.2.6
and 6.5.41, we obtain

2
nD' = —-Ms — Z/ {Eag.%'a [,u(")\llwg +e,36P 0,

3
L0) 4 A Zb u(ﬂ +(a® 4 g0

) Z boo® + a(p>@A7A}da

s=1

so that we can determine the constant 7. The problem is therefore solved.
On the basis of the method presented in Sections 2.1 and 5.6, we have to
study now the recurrence process. Let us determine the functions u; and ¢;
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272 Classical and Generalized Models of Elastic Rods

that satisfy the equations

tji; + Fi( )(CL'17:L‘2).%'3+1 =0, Myjij + Eirstrs + Ll(vp)(xl,xg)xgﬂ =0
ti; = /\(p)err5ij + (,U( P) 4 ke ))eij + ,u(p)eji
mi; = olPp, 85 + 8P 5 + 7P s (6.5.68)

€ij = Uji + €jirpr o By
subjected to the conditions

[uil1 = [uil2, [pil1 = [wi]2

[tgiling = [tgilang, [mgiling = [mgi]ang on Iy

/ tgida = 07 / (Eirsxrtgs + mgi)da =0 (6569)
21 E1

Lo (p) n+1 , _ (0 n+l oo T

[ azna]p (.’171,.1?2) ) [mazna]p - qi <$1,$2)$3 on P

when the solution of the equations

sz + F( )(561,1132)$§ =0, ;U + Eirstys + Lgp)(z17$2)$g =0
= APer 55 + (u” —I-H(p))e +u(p) iy (6.5.70)
mij = o %,réz‘j + 6% i+ V(p)@j,m e;; = uj,; + Ejiryr
with the conditions

*

[uili = [u]]2, [pil = [pil2

[tglhn% - [tzz]Qnga [mzz]ln% = [mzz]gn% on HO

/ faida =0, / (eijrjtsy +ms;)da =0 (6.5.71)
3 bRt

[thinalp = 0 (@1, 22)2%,  [miinal, = 4 (@1, 22)2% on 11,

is known. In the above relations FZ-(p)7 LEP),pEP) and ql(p) are prescribed func-

tions which belong to C"*°. We seek the solution of the problem 6.5.68 and
6.5.69 in the form 6.3.33, where v; and 1; are unknown functions. From Equa-
tions 6.5.68, 6.5.69, 6.5.70, and 6.3.33, we obtain

T3 xrs3
tij(n+1)[/ thdes g +k [, my (n+1)[/ midas+ i +h?)
0 0

(6.5.72)
where we have used the notations
Tij = )‘(p)')/rr(sij + (1P + 6P yis + p Py 65.73)
pij = oy 855+ B 5+ Y% v =00 + €t
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and
k((fg = A5 gui (1, 22, 0), kég) = (AP 424 1 Pyt (21, 25,0)
KO = 1 Oug (a1,5,0), K = (1 + k) (@1, 22,0)
B = a@oy,ph(a1,22,0), A = (0 + ) +4P)g5 (a1, 22,0)
h) = BP@L(1,22,0), b =4Pp% (21, 22,0) (6.5.74)
By using Equations 6.5.701, the equations of equilibrium reduce to
Tji,j + GEP) — O, ,uji,j + EirsTrs + Hz(p) - 0 on Bp (6575)
where
Gl('p) = kgvpi?a + 13 (21, 22,0), Hz‘(p) = hgzpi),oz + m3; (21, 72, 0)

The conditions on the surface of separation and the conditions 6.5.39 lead
to the following conditions

[vi]1 = [vi]2, [Wi]1 = [i]2
[railind = [TgilanG + s, [wgsing = [wgilonh +rionlly  (6.5.76)
raimal, =87, lpgimgl, =M onl,

where

si= (K —k0mS, = (08— nl)ng,
7?i(p) _ —ké‘?na, ﬁlz(p) _ *h((fi)na

The conditions on the end ¥ reduce to
/ T3Z-da = —Ti / (Eijkijgk + ugi)da = —Ni (6.5.77)
1 3

where

2
S O L s
p=1740 4

p=1 p

We note that the functions GEP), HZ-(p),;f;(p), 7711(-'0), si, and r; are independent of
the axial coordinate. We conclude that the functions vy and v, are character-
ized by a problem of Almansi-Michell type. If s; = r; = 0, then the solution
of this problem can be taken as in Equation 6.5.40. However, it is easy to see
that for s; # 0,7; # 0, the solution has the same form. Thus, the Almansi
problem is solved.

It is easy to extend the solution to the case when B consists of n elastic
bodies with different elasticities.
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6.6 Exercises

6.6.1

6.6.2

6.6.3

6.6.4

6.6.5

6.6.6

6.6.7

A continuum body occupies the domain B* = {x : (z1,22) € £1,0 <
x3 < h}, where the cross section ¥; is the assembly of the regions

t={r:r3<a?+ad<r?z3=0}and A5 = {z:23+23 <ri a3 =
0}, (r1 > r2 > 0). The domain Aj is bounded by the circles L and
I'*, of radius 1 and ra, respectively. Study the torsion of the cylinder
B* if the domains B} = {x : (z1,72) € A},0 <23 < h},(p =1,2), are
occupied by different homogeneous and isotropic Cosserat elastic
materials.

Investigate the extension and bending of the nonhomogeneous cylinder
B* defined in the preceding exercise.

Study the deformation of a heterogeneous circular cylinder subjected
to a constant temperature variation.

Investigate the Saint-Venant problem for heterogeneous anisotropic
Cosserat elastic cylinders.

A nonhomogeneous and isotropic Cosserat elastic material occupies
the domain B={z : 2%+ 2% <a? 0<x3<h},(a>0). The constitu-
tive coeflicients are given by
A= /\06757"’ n= /’L067§T7 k= 506767‘
a=age ", B=Pe ", y=me ", £>0

where \g, o, Ko, ag, 80, V0, and & are prescribed constants. Study the
extension problem.

Investigate the Almansi—Michell problem for inhomogeneous and
hemitropic Cosserat elastic cylinders.

Study the problem of uniformly loaded cylinders composed of different
inhomogeneous and anisotropic Cosserat elastic continua.
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Answers to Selected Problems

1.11.1 In the boundary-value problem 1.3.43, and 1.3.44, the curve T is
defined by the equation

.’172 .’172
—1 + 1722 =1 (A1)

If we take the stress function of Prandtl in the form

2 x2
v=C ( + b722 — ) R (56'1,.%'2) €3 (A2)

where C' is an unknown constant, then the function W satisfies the condition
1.3.44. The stress function satisfies Equation 1.3.43 if

a’b?
C=-wip (A3)

By using the relations
2 L3 2 L3
rida = 1 b, ryda = iwab , da = mab
31 P P
from Equations 1.3.46 and A.2, we obtain the torsional rigidity,

mab3u

It follows from Equations 1.3.31 and A.4 that

M3(Cl2 + b2)
S A S B A.
mpadbd (A-5)
In view of Equations 1.3.36 and 1.3.42,
2C b? —a?
p1=Vao+zo= (b2+1> T2 = m$2
o 2C N b? — a?
= — — T = — - — T
¥,2 1 1 ) 1= 2 b2 1
so that
b2 _ a2
P = eIt (x1,m2) € 31 (A.6)
305
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306 Classical and Generalized Models of Elastic Rods

Thus, the solution of the problem has the form 1.3.23 where ¢ is defined in
A.6 and the constant 7 has the value A.5. From Equations A.2 and 1.3.45,
we get

tlg = 2,[1,76'1’2672, t23 = 72/,LTC£810,72 (A?)

The stress vector acting on any cross section is t3 = ti13e1 + ta3es. The
magnitude of the vector t3 at the point M (Z1,T2) on I is

1/2 72 ﬂc /2
P= (s + )" = 2ulre)( D b;) (A.8)
The tangent line at the point M on I is given by

T
711-1+b72m2_1_0

The distance between origin and this tangent line is

2 —2\"1l/2
N T
N

Thus, by Equation A.8, we get

2
= —u|rC
JHITC
The maximum and minimum of P are given by

2a%b 2ab?

Pmax = mﬂh‘h Pmin = mﬂ

7l

respectively. The maximum stress occurs at the extremities of the minor axis
of the ellipse.

1.11.2 If we introduce the notations r = (23 + 23)%/2, #; = rcosf,xy =
rsin @, then the circles C; and Cy can be described by

(C1) : r =2asinb, (Co):r=1b

We seek the stress function ¥ in the form

U = a(r — 2asin6) (r - b2> (A.9)

r

where « is an unknown constant. Clearly, the function W satisfies the condition
1.3.44. By using the relation

10 ov 1 920
A= (a) =T
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from Equations 1.3.43 and A.9, we obtain

We can express ¥ in the form

1

=y e e )

It follows from Equations 1.3.46 and A.9 that
m—arcsin(b/2a) [ 2a sin 0
D=y / / (2arsin @ — r? 4 b* — 2ab*r ' sin 0)dr | df

arcsin(b/2a) b

1 1
=pu { <a4 — 2d%b* — 2b4) |:27T - arcsin(b/2a)}
1
+ ab (Zzﬁ + 2a2)[1 — (b/2a)?] 1/2}
The torsion function is given by
b2
@:a<1—|—2>x1 on X
r

It is not difficult to show that the maximum shearing stress is at the point
(0,b) €T

1.11.3 We suppose that the loading applied on the end located at x3 = 0 is
statically equivalent to the force F = Fje; and the moment M = 0. In this
case, the solution of the flexure problem is given by Equations 1.3.70 where
A; is given by Equation 1.3.59 and the function & satisfies the boundary-
value problem 1.3.66 and 1.3.67. We assume that the curve I' is defined by
Equation A.1. In this case, from Equation 1.3.59, we obtain

4

A= ph

(A.10)

Let us study the boundary-value problem 1.3.66 and 1.3.67. We introduce the
function A on X; by

1 1 1
¢ = Al|:A(x17332) -3 (1 + V> (23 — 3z123) + 5(1 + )z}, (1, 22) € 4

3 2
(A.11)
From Equations 1.3.66, 1.3.67, and A.11, we find that A satisfies the equation

AA=0o0n%, (A.12)
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and the boundary condition

OA 1 1
i {21/xf + <1 — 21/) z%} ny — (2+v)xizangon ' (A.13)

We note that in Equation A.13, we have
2 2\ 1/2
L1 T2 _ T T
n = —=K, ng = b—zK, K t= (ai + bj) (A.14)

With the aid of Equation A.14, the condition A.13 reduces to

1 1
b2:c1A,1 + a2x2A,2 = — {21/95% + (1 — 21/) x%} b2y — 2+ l/)aZ:le% onT
(A.15)

We seek the solution of the boundary-value problem A.12 and A.15 in the
form
A=z + 72 (2} — 33123),  (21,22) €54 (A.16)

where ; and 7, are arbitrary constants. It is easy to see that Equation A.12
is satisfied. From Equations A.15 and A.16, we obtain the condition

['71 + 39 (x% — x%)]bQ — 672612:53

1 1
=— [21/:17% + (1 - 21/) :cﬂ b — (2+v)a*z? on T (A.17)

Since on I we have

the condition A.17 implies that

Y1 + 3v20” = —iva?

3(3a> + b°)v2 = (24 Sv)a® + (1= Sv)b?

Thus, we find
= —“72[2(1 +v)a? + V]
NT T2 (A.18)
B 1 1Y 1\ , :
=g | (20 3) 0+ (0-30)]
From Equations A.11 and A.16, we obtain
1 1 3 9 1 3
¢ =—A|vixr+ 72 — 37§V (23 — 3w123) + g(l +v)rr|, (w1,22) €5
(A.19)
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With the help of the relations

1
O, =—-4 [’yl + (372 —1- zz) (27 — 23) + (1 + v)a?

2
<I>72 = 7A1(2 +v— 6’}/2)931352 (A20)
/m%xgda = /xi’da: /xlxgda: /x%dazo
31 p3 3 P

from Equation 1.3.69, we find that M* = 0. In view of Equation 1.3.68, we
get 7 = 0. Thus, from Equations 1.3.70, we obtain

1 1
U = —§A1 [3$§ + V(x% — x%)} 3, Ug = —AVT12203

1 1
U3:§A1 |:x§+1/(3x%+x§):| x1+q)7 (LE17SC271'3) €nB

The stress tensor is given by

taﬁ = 0, t33 = AlEI1$3
toz = —2uAi(a %y + 1+ v)z 129

2
t31 = —,uAlfyla*Q {ag — x% =+ (a + 1) mg]
at

1.11.4 In this case, we have f, = 0. We seek the solution of Equations 1.5.8
in the form

U = Tap(T), r= (33% + x%)l/Q (A.21)

where ¢ is an unknown function. By Equation A.21,

v

Ua,8 = Oapp + Tampr ¢, ¢ = dr

1
Upp =20 +rp = ;(TQ‘P)/, Uppa = (3r7 ¢ + ¢ g

L, (A.22)
Ua,By = (0apy + dayTp + Oy Ta)T ™

— 132025740 + TaxpTr 20"
Aug = 3r7 1 + ")y
In view of Equations A.12, the equilibrium equations 1.5.8 reduce to
A+ 2p)za (0" +3r71¢) =0

Using the relations 1.1.5, we see that these equations are satisfied if and only if

O +3r7tp' =0 (A.23)
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Equation A.23 can be written in the form
(r*¢) =0
so that
p(r)=Cir? + Cy (A.24)

where C, are arbitrary constants. From the constitutive equations 1.5.7 and
A.22, we obtain

tap = 20\ + 1) pdap + (Map + 2uzazsr )¢’ (A.25)
We have the boundary conditions
t = —pin for r = Ry, t = —pon forr = Ry (A.26)
where p,, are prescribed constants. Since
1
ng:—R—lxgonr:Rl, ng:R—2xgonr=R2

the conditions A.26 reduce to
tgag = —p12o forr =R
tiaxg = —Z:ﬁa for r = R; (A.27)
In view of Equations A.24 and A.25, we obtain
tsats = 2T [(A + pu)Co — ur—2C4]
Thus, the boundary conditions A.27 reduce to
(A+p)Cy — pR2Cy = —p1 /2
(A+p)Co — uRy*Cr = —p2/2
We find that
o = RIR3(p2 — p1) L — paR3 — p1 R}
2u(R? — R3) 20\ + ) (R - R3)
The components of the stress tensor are given by
tag = 2uC177%(8ap — 224x57™2) + 2(X + 1) C2045
tss = 2ACy, tas =0
1.11.5 Clearly, we have

3 1,1
X = 42 = sty + 54
X,22 = %qxg - %qw%m — 23? (m + %qgﬂ _ ;qh2> Ta
3 , 3
X,12 = @quz - @qﬂ?l
3
X,1111 = 0, X.2222 = —3q%2, X212 = —5 54T
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so that AAx = 0, and x is a valid Airy stress function. The stresses t,3 are
given by
t11 = X,22, tao = X 11, ti2 = —X,12

The stress vector on the face x9 = a is t = t;e1 + taeq where
t1 =t =0, ta =t22 =¢q

so that t = ges. The stress vector on the face zo = —a is zero. The stress vector
on x1 =h is given by

1 3 3 22
208 (qx% — 3mzy — 5qa2x2>e1 — 4qh(l — ag) ey

The resultant force acting on z1 = h is R = —ghes. The resultant moment
about O of the traction acting on x; = h is M = (m — gh?)es. The stress
vector on the face 1 = —h is

1 3 3 x5
Gy (qx% — 3mzy — 5qa2m2> e — @qh <1 — a§> ey

so that the resultant force acting on 1 =—h is —ghes. If ¢ < 0, then the
stresses are those of a beam which is supported at both sides, and has a
uniform distributed load.

1.11.6 We assume that %; is defined by ¥y ={z : 2% + 23 < a? 23=0},
where a is a positive constant. We suppose that on the boundary T' of the
domain ¥; are imposed the conditions 1.5.6 where ¢, are piecewise regu-
lar functions. Since f, =0, from Equations 1.5.17, we conclude that ¢, must
satisfy the relations

/tN(de == 0, /(Ilgg - x2t~1)da =0 (A28)

r r

First, we assume that on I' acts a uniform pressure, so that
flel +Eg€2 = —Pn

where P is a given constant, and n is the outward unit normal of the circle I'.
Thus, we can write

1 ~ 1

t1 = —=Pur, ty = ——Pxy, (71,72) €T
a a

In this case, the representation 1.3.38 of the curve I' reduces to

1 = acos f, To = asin f, s € [0, 2ma) (A.29)
a a
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The functions ¢, can be expressed as

t1 = —P cos 2, to = —Psin 2, s € [0,2mal) (A.30)

It is easy to verify that the conditions A.28 are satisfied. From Equation 1.5.73,
we obtain s s
o= a(cos — +isin 7), s € [0,2mal) (A.31)
a a

In view of Equations A.30 and A.31, the relation 1.5.75 becomes

. S .. S S .. S
T(o) =—iP /(cos o + isin g)ds = —Pa(cos p + isin a) =—Po. (A.32)
0

The function 1.5.77 that maps X1 on the region |¢| < 1 is

z=9%() =al (A.33)
In this case,
90 _
(@)

Ni(n) = T[9(n)] = —Pan (A.34)
Thus, the boundary condition 1.5.79; becomes
Qu(n) + % @) + @1 () = —Pan, |y =1 (A.35)

The functions 1 (¢) and w(¢) have the representations

() =) anC",  wi(Q) =) baC", <1 (A.36)
n=1 n=0

In view of the arbitrariness of complex potentials discussed in Section 1.5, we
have taken €©4(0) = 0. Let us impose the condition Im[Q](0)/¥(0)] = 0. We
find that

a1 —a; =0 (A37)

The insertion of the functions A.36 in Equation A.35 yields

a1 +a; = —Pa, anp =0, n>2
bp,=0, n=0,1,2,3,...

Thus, we obtain
1
Q1(C):—§PGC7 w1(¢) =0
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so that 1
Qz) = —§Pz, w(z)=0 (A.38)
By Equations 1.5.45 and A.38, we find that
Uy = —iPma

We now consider the general case, when the traction to€q is not a uniform
pressure. We assume that the function Ny(n) can be represented in the form

Ni(n) =D A (A.39)

where Ay are prescribed complex coefficients. In this case, from Equa-
tion 1.5.79; and A.36, we obtain the following system for the coefficients ay
and by,

a1 +a; = A, ar = A, k>2

b :Z,k—(k+2)Ak+2, k=0,1,2,...

By Equations A.37 and A.40, we get

(A.40)

1
a; = 5141
Thus, we conclude that
1 o0
0(Q) = 540+ ];Aka

w1(Q) = S (Aot — (k4 2) Apyalct

k=0

oo (L) e (L)

Remark. The first equation from Equations A.40 requires A; to be real. Let
us show that this fact is the consequence of the vanishing of the resultant
moment of forces applied to the boundary,

Clearly,

/(‘Tlgg - x2t~1)ds =0 (A41)

r
It follows from Equation 1.5.75 that

> _ dIy 7 __9h

tzi =
L= s 2 ds
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Thus, the condition A.41 becomes

/(z1t~2 — ngl)ds = — /IldTl + l‘QdTQ = /Tldl‘l + TQdIQ

r r r
27 27 (A42)
= a/(Fg cosf — Fysin6)df = aSm /Te_wdﬁ =0
0 0

In view of the relations A.33 and A.39, we find that the condition A.42 reduces
to SmA; = 0.

1.11.7 We consider the ring
R1 < |Z| < R2
formed by a pair of concentric circles L, of radii R,, (o = 1,2). We assume
that on the curves L, are prescribed constant pressures. In this case, the
boundary conditions are A.26. From Equations 1.5.75 and A.26, we obtain
T(c) = —p1o on Ly, T(0) = —pao on Lo

Thus, the boundary conditions A.26 can be written in the form

Qo)+ 0Q (7) + ©() = —p1o + dy on L,
N (A.43)
Qo) +0Q () +w(T) = —pao on Loy

where d; is an arbitrary constant. In the above relation, we have chosen w(0)
to have no arbitrary constant on L. By Equations 1.5.61 and A.20, we obtain

X1 +1iY1 = —p /(m + mg)ds =0, Xo+1Yo =0

Ly

Thus, from Equations 1.5.64, we find that Q(z) = Qo(2),w(z) = wo(z), where
Qo and wy are analytic and single-valued functions on 1,

Qz) = az®,  w(z) =) bz", Ri<|z] <|Ry (A.44)
Clearly, we can take Q(0) = 0 and Im’(0) = 0, so that

ag =0, a1 —a; =0 (A45)
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From Equations A.43, A.44, and A.45, we obtain the following system for the
unknown coefficients
2R%as + by =0
2a1Ry +b_1Ry* = —paRo
arRE + (2 — k)ay_ xR " +b_1Ry;" =0

i A.46
2R%G, + by = dy (A.46)
2@1R1 +B_1R1_1 = —p1R1
apRY + (2 — k)ay_ xR} " +b_,R{" =0, k+#0,1
From the above system, we find that the nonvanishing coefficients are
a1 = s (RS i BY), by = e (p1 — po) IR
2(R? - R3) - R

We note that from Equation A.46, we obtain d; = 0. Thus, we have
O(z) = ayz, w(z) = b_1§, Ry < |z] < Ry
The relation 1.5.45 implies that
2p(ur + iug) = [(k — 1)as — boy(2? + m%)]z

2.7.1 We assume that the temperature field is a polynomial of degree r in
the axial coordinate, namely

T = Z Tyah
k=0

where T}, are independent of 3.

In this case, the problem (Z) considered in Section 2.6 reduces to the
Almansi problem. We denote by (Z,), (n = 0,1,2,...,r), the problem (2)
corresponding to the temperature field T' = T, 2%. Clearly, if we know the
solution of the problem (Z,,), for any n, then we can establish a solution of
the problem (Z) when the temperature has the form 2.6.19. The solution of
the problem (Zj) has been established previously. We must derive the solution
u” of the problem (Z, 1) when the solution of the problem (Z,) is known.
As the solution of the problem (Z,,) is known for any T, it follows that we
know the solution u* of the problem corresponding to the temperature field
T = Typq12%. According to Theorem 2.4.4, the vector field u” is given by
Equation 2.4.16, where w’ is characterized by Equations 2.4.13 and 2.4.14,
and @ is determined by Equations 2.4.15.

If the temperature field is linear in z3,

T="Ty+ Tix3
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where Ty and T; are prescribed constants, then a simple calculation shows
that

B
o= ——xTo + T
b 3)\+2/¢x (To + Tizs)

J6] 1 1
u3:73>\+2u TO+§T1x3 x3—§ 1TpT)

3.9.1 It follows from Equations 3.6.41 and 3.6.42 that the torsion function
o satisfies the boundary-value problem

Ap=0on4,
) | 9% (2)| 9 1 _ @ 0
[l = [pl2, p no = a0 + (" — p')eqpagng on Ty
1 2
8790 = €q8%TgNg on I’
an p_ aptplta P

If we introduce the functions A; and Ay by
p=A; —x129 On Ay, =Ny —x129 On Ay
then we conclude that A; and A, satisfy the equations
AA; =0on Ay, AAy =0o0n Ay (A.47)
and the conditions

Al = AQ, ,U,(l)A]_J — u(2)A2)1 = Q(M(l) — u(2))x2,

A 48
(1 =0,-8 <z <f) ( )
A1 =229, (1 =—a1,—B <29 < B), (A.49)
Ao 1 = 219, (r1 = ag, = <22 < )
A :0, J,‘:i,—Oé <z SO)
1,2 (22 B, —ay 1 ) (A.50)
Ay =0, (x2 =%, 0 <21 < a9)
We seek the functions A; and As in the form of the series
A= Z (Agln)_H shmxy + Bapy1ch mo:1>sin ms
o (A51)
Ay = Z (ASBH shmxq + Bapy1ch mxl)sin my
n=0
where 1
=—(2 1 A.52
m = 55Cn+ (A52)
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Clearly, each term of Equations A.51 is a harmonic function. In view of Equa-
tions A.51 and A.52, we see that the conditions A.50 are satisfied. It is easy
to verify that Ay = Ay on I'g. Let us study the remaining conditions from
Equations A.48 and A.49. The function f(z2) = 2x2, z2 € (=0, 5), can be
represented in the form

209 = E mCapy1 Sinmas, —B<x2 <P (A.53)
n=0
where 32
32
g = (1) 22 A.54
Cont1 = (1) (2n + 1)373 (A-54)

mCap41 are the Fourier coefficients for the function defined on (—23,203) by
F(z2) = 2x9, 22 € (=0, 8); F(22) = 48 — 222, 22 € (0,20); F(x2) = —48 —
2x9, x9 € (—0,—20). In view of Equation A.53, we find that the conditions
A.49 reduce to

(1)
A2n+1Ch moq — Bgn+1Sh maoyg = 02n+1

) (A.55)
Aén)—HCh maeg + Bypp1shmag = an+1
The condition A.48, is satisfied if we have
ﬂ(l)ASL)H - M(Q)Agi)—i-l = Q(H(l) - H(2))O2n+1 (A.56)

From Equations A.55 and A.56, we can determine the coefficients A&) 1
Agn) +1, and Bay, 4 1. The functions A; and A can be expressed as

oo

1
A = Z d—anH{[u(Q) + (M — 1@)ch mas]ch m(zy 4 ay)
n=0 M
+ M(Q)sh maogshmax; — u(l)ch mag chmay } sin masg
(A.57)
=1
Ao = Z d—CQnH{[(u(l) — uchmay — pPchm(z — o)
n=0 "M

+ ,u(l) shmay shmaxy + u(2) chmay chmay } sinmas
where
dpy = u(l) ch mas shmaoy + ,u(z) ch may shmag

The above series are absolutely and uniformly convergent, so that the term-
by-term differentiation is justified. In view of Equation 3.6.48, we find that
the torsional rigidity is given by

Dy = N(l) / (2{,63 + $1A1’2 — $2A1,1)da

Ay
(A.58)

+ ﬂ(2) / (21‘3 +a1Aoo — x2A2,1)da
Az

© 2009 by Taylor & Francis Group, LLC



318 Classical and Generalized Models of Elastic Rods

It follows from Equations A.57 and A.58 that

8 4 K 1
Da = = (M (2 3 Z) pt = 1(uM2eh
0=3 (u o+ p a2>ﬁ + nE . @n 1)5dm{(,u )*chmas

+ (1) chmar — [(p)? + (u?)*|ch maych mas
— M(l)u@)[(jh maoq + ch maog — ch ’I’)’L(Oé] - 042) - 1]}

The constant 7 is given by

1
=——M
T DO 3

The torsion problem for a homogeneous and isotropic elastic cylinder with

rectangular cross section has been solved by Saint-Venant (see, for example,
Ref. 211, Sections 221-225).

3.9.2 Let us study the plane strain problems Pik)7 defined in Section 3.7,
when L and I' are two concentric circles. The results have been established
by Muskhelishvili [241]. We assume that the domain A} is bounded by two
concentric circles of radius Ry and Ry, where R; < Ry. The domain A is
bounded by the circle of radius R;. We suppose that the domains A} and A3
are occupied by two different homogeneous and isotropic elastic materials. Let
us study the problem Pil), where the function f has the form 3.7.13. We try

to satisfy the relations 3.7.11 and 3.7.12 assuming that
Q(z) = my 22, w(z) =0on A3
Q(z) = ma2?, w(z) =mazz~t +my on A}

(A.59)

where myg, (s = 1,2, 3,4), are real constants. We note that my4 has no influence
on the stress tensor. By Equations 3.7.10 and 3.7.12, we find that

my = 5p(R— R, ma=-pRl  my=pRIR}

L) _ @ (A.60)
2[B@ R} + a@ R + oV (RS — RY)]
It follows from Equations 1.5.38 and A.59 that

p:

dmix dmox
(- Amw oy dman
Ton " T\ @) e on Ay, RCU R YEY) + pM ©

n A} (A.61)
In the case of the plane strain problem P,.EZ), we have f = f(®), where
1
FO =02 ing? = —ZiM —0)2? (A.62)
We seek the solution of the problem P£2) in the form
Q(z) = im} 2%, w(z) =0on A}

Qz) = im§z2, w(z) = imngl +imj on A}

(A.63)
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where m}, (k = 1,2,3,4), are real constants. From Equations A.63, 3.7.10,
and 3.7.12, we obtain

miy=—my,  my=—my,  mj=rms (A.64)
where my, are given in Equation A.60. By Equations 1.5.38 and A.63, we get

*(2) - 4m1x2 ®(2) _ 4m2x2

’77777 = m on A2, ’}/,m,] = m on Al (A65)

In the case of the problem PE’), we take f = f) where
8 = hf” + ihgg) =M - @) (A.66)

We seek the solution in the form

(A.67)

where mg are real constants. The conditions 3.7.11 and 3.7.12 are satisfied if

2myz +m3z ' = 0;0n |z| = Ry, 2mlz = 2m9z + m3z ' on |z| = Ry
(o — BNz = (a® — B YmYz — gPmIz—1
+ (W - @)z on |zl = Ry (A.68)

It follows from Equation A.68 that
2mYR3 +m3 =0, 2miR? = 2m9R? + m}

(@) — BO)mE R = (al®) — B mYRE — B + (b — )R}
The constants m{ are given by

ml =o(R3—R}), md=-oR},  m§=20R}R}3
v — (A.69)
28 R3 + (@ — B@YR2 + (o) — 5(1))(}33 _ R%)

o =

In view of Equations A.67 and 1.5.38, we obtain

#(3) _ 2m(1)

SR L S (@) _ 23 (A70)
T 0@ 1 @) 2 ) 1 :

OO + M)

3.9.3 We use the solution 3.7.14 to solve the extension and bending problem
for a cylinder composed by two different homogeneous and isotropic elastic
materials. We assume that the curves L and I' are concentric circles of radius
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Ry and Ry, respectively. The solutions of the plane strain problems Pik) as-
sociated to the considered cylinder are given by Equations A.59, A.63, and
A.67. It follows from Equations 3.7.16, A.61, A.65, and A.70 that

S11 =B / a?da + E@ / zida = % [E(l) (Ry — RY) + E<2>Rﬂ
At A3
Iy = I1,  Jo = Isa = Iaz =0, Sz =7 [ED (RS - RY) + EDRY]

Sy = )\(1)/xlfy;gl)da—i-)\@)/xw;gl)da
Az Az

=2 {mgu(l) (R§ — R‘f) + mlu(2)Rﬂ
Hao = JHhn, Hio = Koz = Hza =0
iy = Amm [V (RS — R?) + v R3] (A.71)

Thus, with the aid of Equations 3.7.15, we obtain
Ly = Lag = J11 + A, L1z = Loz =0, L3z = J33 + H33
so that the system 3.6.18 implies that

Mo My F3
= S+ b2 = S+ A ds = - Iay + Ay (&.72)
where 411, %33, #11, and J33 are defined in Equations A.71. The solution
of the problem has the form 3.7.14 where the functions vz(k) are defined by
Equations A.59, A.63, and A.67, and the constants dj are given by Equa-
tions A.72.

3.9.4 Let us consider a continuum body that occupies the region B = {z :
R3<a? + 23< R} 0<x3<h}, Ry >0,Ry>0. The cross section X is the
assembly of the regions A} and A}, ¥ = AJU A}, where A7 = {z: R2 < 22+
r3< R} 13 =0}, Ay = {z: RS <2? + 22 < R3,23 = 0}, Ry > 0. The domains
By ={z: (z1,22) € A},0<z3<h} and By = {z : (x1,22) € A5,0<xz3<h}
are occupied by different homogeneous and isotropic elastic materials. We
denote by A(®) and ;(?) the Lamé moduli of the material which occupies
the cylinder B,. We assume that cylinder B is in equilibrium in the absence
of the body forces. Let us investigate the plane strain of B, parallel to the
1, ra-plane, when the lateral boundaries are subjected to constant pressures.
It follows from Equations 3.6.2 and 3.6.4 that the displacement vector field
satisfies the equations

PO Aug + (AP + pPYug 5, =00n A%, (p=1,2) (A.73)

We introduce the notation 7= (z? + x3)'/2. The conditions (3.6.5) on the
surface of separation reduce to

[ualy = [ual2, [taplitp = [tapl2rp on 1T = Ry (A.74)
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The conditions on the lateral surface become
[tgal1Ts = —p124 forr = Ry, [tgalorg = —poxy forr =Ry  (A.75)
We seek the solution in the form
U = 2oGP)(r) on A7 (A.76)

where G and G® are unknown functions of . With the help of Equa-
tions A.22 and A.24, we find that Equations A.73 are satisfied if and only if

GV =Cir2+Cyond;, G® =C3r2+Cyon A} (A.77)

where Cy, (k = 1,2,3,4), are arbitrary constants. Using the constitutive equa-
tions 3.6.3 and A.77, we obtain

[tsalizp = 224 [(A(l) + H(l))c2 - M(I)C’N‘*Q}
(tgal2rp = 224 [O\(Q) + H(Q))C4 - M(2)037”_2:|
Thus, the conditions A.74 and A.75 reduce to

C1Ra2 +Cy = 03R62 + Cy
()\(1) + M(l))c2 _ /J/(l)ClRo_z — ()\(2) + /’L(Q))Cfl _ /-1/(2)C3R0_2

_ 1 A.
pORT2C = (O + )Gy = Sy (A.78)
_ 1
M(Q)RQ 203 _ ()\(2) + M(2)>C4 = §p2

The determinant of the system A.78 is
1 1 A@ 4@ @)
51 = M@ Oy — - = (2"~ 7
1= p( +pt) Rg R% Ra + R%

1 1 MA@ 4@
@@ 4,y L L\ AT+
T )<R% R%)(R%* 72 )

In view of the relations
p? >0, AP 4P >0 RyZ>R;%>R?

we conclude that 4; is different from zero. Thus, the system A.78 uniquely
determines the constants Cs, (s = 1,2,3,4).

4.12.1 The solution of the torsion problem is given by

Uy = —TT2T3, U2 = TX1T3, Uz = 7¢,
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where ¢ is the solution of the boundary-value problem 4.8.16 and 4.8.17,
and 7 is given by 7= —M35/Dy. The torsional rigidity Dq is defined in Equa-
tion 4.8.24. The corresponding stress tensor has the components

tag =0, t33 =0, tog = Aua7 (2 + 1), tis = AssT(0,1 — x2)

(A.79)
We introduce the function F' by

A44(<,0,2 + 5171) = —Fl, A55((,071 — .’EQ) = FQ (A80)

If F is given, then the integrability condition to determine the function ¢ is

1 1
—F i+ —
Ass

F722 = —2o0n 21 (A81)
Asa

The boundary condition 4.8.17 takes the form
Fony —Fing=0o0onT (A.82)

Since ¥ is simply-connected, from Equations A.82 and 1.3.39, we obtain the
following boundary condition for the function F,

F=0onl (A.83)

Thus, the function F' is the solution of the boundary-value problem A.81 and
A.83. By Equations A.79 and A.80, we get

t23 = 77'F71, t13 = TEQ (A84)

As in Section 1.3, we can prove that the torsional rigidity can be written as

Do =2 / Fda (A.85)
¥

In our case, the curve I is defined by the equation

2 2
Ty | T3
] + ~ha 1 (A.86)
We seek the function F' in the form
2 2
ry | 23
F:CI(@?+I)2_ ) (A.87)

where C is an unknown constant. Clearly, F' satisfies the boundary condition
A.83. From Equation A.81, we find that

A44A55 Cl2 b2

C) = — 44557 7
! a2Au + b2 Ags

(A.88)
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It follows from Equations A.85 and A.87 that the torsional rigidity is

7TA44A55 a3 b3

Dy=———"—"7"7—" A.89
07 G2A4 + 02 Ass (4.89)
In view of Equations A.80 and A.87, we get
2C,
@71 = X2 (1 =+ %) = HZ'Q, ()072 = Hxl (AQO)
where
H= A55b2 - A44a2
- Assb? 4 Agsa®
Thus we find that the torsion function is given by
¢ = Hr1xa, (71,72) € X1
We note that for a circular cylinder (b = a), we obtain
Ass — Aug
= DX A91
¥ Ass + A44I1$27 (w1,72) € 51 ( )

In the case of isotropic circular cylinders, we find that ¢ = 0.

4.12.2 The solution of the flexure problem for a homogeneous and ortho-
tropic cylinder has the form 4.8.41, where the constants bi,bs, and b3 are
given by Equations 4.2.28, the function ¢ is the solution of the boundary-
value problem 4.8.16 and 4.8.17, the function ¢ is characterized by Equations
4.8.35 and 4.8.36, and the constant ¢4 is defined by Equation 4.8.39. We
assume that F = Fje;. We suppose that X, is bounded by the curve T,
defined by Equation A.86. In this case, from Equations 1.4.9 and 1.7.14, we

obtain )
A= /da = mab, I = /x%da = Zwa3b
P

P}
1
Ipg = Zmb?’, I =0, )V =29=0
so that the system 4.8.28 implies that
4
b = ——5—F ba =0 bs =0 A.92
1 7Ta3bE0 1, 2 ) 3 ( )

Let us study the boundary-value problem 4.8.35 and 4.8.36. In view of Equa-
tions A.92, this problem reduces to the equation

Asst 11 + Agat) 220 = gbizq on Xy (A.93)

and the boundary condition

1
A55¢71n1 +A44¢72n2 = §A55b1 (1/1.13%—1/233%)711 +A44b1V21‘1$2n2 on I (A94)
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where
q = A55I/1 —|— A44l/2 — Eo (A95)
For the curve A.86, the components n, are given by Equations A.14. Thus,
the condition A.94 can be written as
1
b2 Asstp 121 + a? Agath oxe = by {21455172 (viz — v9a3) + Agaa’voz) p 21 on T

(A.96)
We seek the function v in the form

Y =by (alx:{’ + agxlac% + agxl) on X (A.97)
where a1, as, and ag are unknown constants. Thus, Equation A.93 becomes
6A55O¢1 + 2A44042 =q (A98)

If we take into account Equation A.97 and the relation
2 o U,
x5 =b" — SzTion r
we find that the boundary condition A.96 reduces to

b2 1 b2
3A55O[1 - (2A44 + 2A55> Qg = 7A55 (Vl + 21/2) — A44V2 (A99)
a 2 a

1
(2&21444 + b2A55)0é2 + A550&3 = A44V2a2 — §A55b2V2 (AIOO)

Thus, the constants a; and ap must satisfy Equations A.98 and A.99. The
determinant of the system A.98 and A.99 is

b2
0 = —6A4s55 <3A44 + (121455)

In view of Equation 4.8.3, we conclude that § # 0 so that the system A.98 and
A.99 uniquely determines the constants a7 and ay. From Equation A.100, we

can obtain the constant ag. In view of Equations 4.8.9, A.20, and A.97, we
find that

/(A55$21/),1 - A44331¢,2 + A55m2b1w§1) - A44$1blw§1))da =0
¥

so that the relation 4.8.39 reduces to ¢4 = 0. Thus, the solution of the flexure
problem for an elliptic cylinder is

1 1
UL = —§b1 (390% + ula:% — VQ,T%) T3, Us = —biex1ToT3
_ L, 2 2
us = by 2%3 + arx] + aoxs + ag |z, (x1,29,23) € B
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We find that the stress tensor is given by

tag =0, t33 = Eobizixs, tog = Auabi(200 — o)z 122

1 1
t13 = A55b1 |:(30t1 — 21/1) .’B% + <O£2 + 21/2) IL’% + 043:|

4.12.3 We assume that the domain ¥; has the form ¥; = A; U As, where
A = {z : —a1<21<0, —B<x2<f, 23 = 0}, A2 = {2 : 0<z; <ay,
—B<ze<f,23 =0}, (a1 > 0,2 > 0,8 >0). We define B, = {z : (z1,22) €
Ay, 0<a3< h} and assume that By and By are occupied by different homo-
geneous and orthotropic elastic materials.

We assume that the loading applied at the end Y7 is equivalent to the force
F =0 and the moment M = M3zes. In Section 4.11, we have seen that the
solution of the torsion problem is given by

Uq = TEBTBTS, uz =T
where the constant 7 is defined by
D't =—Mj; (A.101)

and the function ¢ satisfies the boundary-value problem 4.11.27 and 4.11.28.
The constant D* is given by Equation 4.11.34. Let us study the boundary-
value problem 4.11.27 and 4.11.28. We introduce the functions G, by

G1 = ¢+ zw on Ay, G2 = ¢+ x122 on Ay (A.102)

From Equations 4.11.27 and 4.11.28, we find that the functions G, satisfy the
equations

Aé15)G1,11 + AE&BGLQQ =0on Ay, Aé?r))GQ’ll + Azﬁ)Gg’gg =0on Ay

(A.103)
and the conditions
G =G AVG - ADGy, =2(4W — AP
1 2 55 01,1 55 U2,1 ( 55 55 >m2 (A.104)
(1 =0,-8<z2 <)
G = 2 9 = - y S <
1,1 = 22 (x1 ar, =3 <xy < ) (A.105)
Ga1 = 2z, (r1 = ag, = < 22 < B)
G149 =0, o =210, —a1 < a2 <0
1,2 (22 B, —a 2 < 0) (A.106)
Ga2 =0, (x2 =£6,0 <21 < )
We seek the functions G; and G5 in the form
Gy, = Z Hégl_l(xl) sin mas (A.107)

n=0
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where

1
m= 25(271—&—) (A.108)

Clearly, the functions G, satisfy the conditions A.106. By Equations A.107
and A.103, we obtain

A B~ At =0 (=12

so that
Hz(i)ﬂ = A(z(:?quh HamT1 + Béiﬁ)ﬂch [haMT]

where Ag:grl and Béfl) 1 are arbitrary constants and

/u'a (a)/Aé(;)v (O‘ =1, 2)
From the condition A.105;, we obtain
1 2
Bén)ﬂ = Bén)-‘rl

Thus the functions A.107 have the form

o0
G = Z (Agz)-&-l sh pymaxy + Bapyich ,u1mx1)sin Mo
" (A.109)
= Z (Aéi)HSh pomxq + Bayqich ,uzmxl) sin maxg
n=1

We can write
2x9 = ZmCQnJ,_l sin mao, —B<x2<f

n=0

where

1643
Copy1=(—1)" ———
mCont1 = (1) m2(2n 4 1)2
The conditions A.105 reduce to

A(Q chpymay — Bagpash pimon = py 'Conga
Zntl ' (A.110)

A%)Hch pomag + Boy1sh pomas = #5102n+1

The condition A.1045 becomes

1 O\1/2 (1 2 2\1/2 ,(2 1 2
(A4(14)Aés)) Agn)+1 - (Az(m)AéE‘))) Aén)—&-l = (Aé5) - Aé5))c2n+1 (A-Hl)
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From Equations A.110 and A.111, we obtain
A0 (—1)"1632

LT (2n 4 1)3y72

+ (Aé? — Aé?)ﬂlll,gCh ugmagshulmaﬂ

[pg(ulsh pimay + posh pomas)

$1)+1 = Qn T 1165; [p1(p1sh pymon + pgsh pomas)
((1) Aés))N1U2ChU1malshN2ma2]
Bayes = is +”116f72T2 [mm( o ch jyman — A(Q) — ch ugmoo)
+ (Aé? - Ag?)ulugch pimagsh ugmag]
where
vy = A poch pomansh pymag +AF) jurch pymassh pemas, po = (AELZ)A%))UQ

The series A.109 are absolutely and uniformly convergent.

4.12.4 We denote by II*)| (k = 1,2,3), the plane strain problems charac-
terized by the equations of equilibrium

t(l)ﬂ + (Algl‘l) 1 =0, t(ﬁé 8 + (A23$1) o =10, 51 8 + (A13.732) 1 =0
(;Q)ﬁ + (A23x2) 2 =0, t,(@l),,@ + A13)1 =0, t,(HQ),B + A2372 =0
(A.ll?)

the constitutive equations

1) = Ayrel) + Apel), 15 = Apelt) + Apell), ) = 2465el3)

(A.113)
the geometrical equations
k k
2¢() = u), +uf)) (A.114)
on Y1, and the boundary conditions
t(l)nﬁ = 7A131‘1n1, t(ﬁll)nﬁ = 7A23:c1n2, t( )77,5 = 7A13x2n1
t(Q)Tlg = 7A23x2n2, tl(;’l)ng = 7A137l1, t?l)ng = 7A23n2 onT
(A.115)

The solution of the extension and bending problem is given by

3
1
Uq = —iaaxg + Zaku,(f), uz = (@171 + azwa + az)rs (A.116)
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where the constants ay, are determined by the following system
Hajaj = EaﬁMﬁ, ngaj = —F3
The coefficients H;; are defined by

Haﬁ = /ZE(X(A33565+A13€11 +A236(B))d

P

H,3 = /xa (Ass + A13€11) + A236 29 )
3

H3zo = / (Asswa + A13€;(Lof) + A23€g§))da
3

H33 = / (A33 + Algeﬁ) + Aggeg))da
¥

Let us prove that the solution of the problem II() is

1 *
ugl) =-3 (V1 x% — uzxg) (1) = —V5x129
where
vy = 5F (AT3A32 A33AT2)7 vy = 5F (AZSATI AT3AT2)

6] = A1 A%, — (ATQ)
In view of Equations A.114 and A.119,

() _ e (W) _ W _,

€11 = —TL, €2 = V2T, €12

By Equations A.113 and A.121, we get

) = —(Auv} + Aoug)a = —(Aj v} + Afpus) e
15 = —(Afpi + Apr)mer, ) =0

It follows from Equations A.111, A.120, 4.8.10, and 4.8.11 that

v = vy, vy = U5
* * * * * * * * * *
A vy + Afgry = Al Afovi + Adprs = A3y
Thus we obtain
(1) _ — (1) (1)
tll = AT3$16 ar = —1413.2317 t22 = —A23.731, t12 =0
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Clearly, the stresses A.123 satisfy the equilibrium equations A.112; and the
boundary conditions A.115;. Similarly, we can prove that the problems I1(?)
and I have the solutions

* 1 *
w? = vimes,  w? = S (vie} - viad) (A.124)
u§3) = —viT1, (3) = —U5T2
From Equation A.124, we obtain
2 N * 2
egl) = —vixy, eéQ) = —VU52, 652) =0 (A.125)
3 * 3 * 3 :
651) = V1, egz) = Vg, 652) =0
so that ) ) )
tﬁl) = —Aj32, éz) = — A3y, t(u) =0
#9) = — Ay, t53) = —Ags, 3 =0
By Equations 4.8.21, 4.8.22, and A.122, we obtain
A33 - 1413Vi‘< - Aggvg = EO (A126)
We can write
Ey = Eje " (A.127)
where
Ej = A3 — Ajsvy — Ajsvs (A.128)

We have ¥1 = {z : 2% + 23 < a®, 23 = 0}. In view of Equations A.118, A.121,
A.125, and A.126, we find that the constants H;; are given by

Hip = Hyy = %E; [6 — (6 + 6ac + 30202 + ada®)e 9]

H3o = Hog = Hi2 =0 (A.129)
2

Hys = a—ZEg[l — (14 aa)e]

From Equation A.117, we obtain

M, M, Fy

—_—, ag = ———, az = A.130
Hyy ? Hyy ° T H ( )

a; =
The solution of the extension and bending problem has the form A.116 where
u$ are given by Equations A.119 and A.124 and the constants aj, are defined
by Equations A.130.
The solution of the torsion problem is uy = —Tx2x3, us = TX1X3, Uz = TP,
where ¢ is the solution of the boundary-value problem

(As5p.1)1 + (Aaap2) 2 = (Ass522) 1 — (Aga1) 2 o0 3

(A.131)
Asssﬁ,lnl + A44§0,2n2 = A55$2ﬂ1 — Agazingon I’
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The constant 7 is equal to —M3/Dy where Dy is defined in Equation 4.8.24.
In this case, we have

(Ass2) 1 — (Agam1) 0 = Ass 129 — Aggor) = —ae” *wymor™ H (AL — Afy)

(A.132)
The condition on boundary can be written as

Assp 101 + Aaap oo = (Ass — Agg)zizo on T (A.133)
We seek the function ¢ in the form
p =kxizo (A.134)
where k is a constant. From Equations A.132 and A.133, we get

_ A5 — Al
A5 + Al

It follows from Equations A.134 and A.4.8.24 that the torsional rigidity is
Dy = 14[(1 + kA, + (1 — k)AE][6 — (6 + 6aa + 3a”a® + a®a®)e ]
@

Thus, the problem of torsion is solved.

5.7.1 We shall use the polar coordinates (r, ) and the relations 5.2.9 and
5.2.13. The problem consists in the finding of the functions w,,ug, and @3
which satisfy Equations 5.2.9, 5.2.10, and 5.2.11 with f,. = fy = 0, g3 = 0,
and the boundary conditions

trr =0, trg =0, My, = qrcosf + gosinf forr =a (A.135)
We seek the solution of this problem in the form
u, = uM (1) cos § + u® (1) sin 6, ug = v (r) cos§ + v (r)sin g
w3 = Y1 (r) cos§ + @ (r) sin (A.136)

where u(®, v(®)and ¢(®) are functions only on r. It follows from Equations
5.3.10, 5.3.11, and A.136 that

trr = t,(}T) cos @ + tg) sin 6, top = t(%) cost + tgg) sin 0
trg = tE,lg) cos ) + tf_ze) sin , tor = tg_) cos + téi) sin @ (A.137)
Myy = mSEQ cosf + ms?z) sin 6, me, = mélz) cosf + méi) sin @
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where
du®
t) = (N +2u + ®) Zr + A (w4 @)t
du(®
t2 = (A +2u + k) o+ Au @) _ Myt
du®
t5) = (A + 20+ 5) (™ + 0@yt 4 A y
"
) _ @ _ -t 4, 2u?
tog = A+ 2p+ r)(u™ — o' V)r A——
dr
10 _ dv® @ Wy e
= (utr) ==+ p™ — o) — kg
r (A.138)
dv®@
trg = (et m) = = (D + o)t —
(1) dvt) 2 1 1 1
to, = n—g- + (4 k)@ — W)=t 4 gy
dv®@
(2) —u Z ~ (e 8) (D @)t g @
dy™ dy® B
mv(ﬂlz) =7 dr mg’zz) =7 ar mélz) =T 1¢(2)
m((fz) —1¢(1)

The equilibrium equations 5.2.9 reduce to

di'y

() 1) — 1)t =0

dt(l)

0t (tgy -ty + g )r =0

dmyY

T (mf +m D) 1) — 1) =0

(A.139)
at?
dr

dt(z)
dr

2 12— ) =0
+ (2 41 D)t = 0

dm (1) @) _ 42 _
— (m's‘zz) — My, )T_1+tr t =0

dr
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Substituting the functions A.138 into A.139, we obtain the equations

oM du® do®
r? = +7r el (1+ dl)u(l) + (1 —=dy)r o
— (14 d)v? = —dory®@
0@ d® du
dl (TQ d’l"2 + Td’,") — (1 + dl)'U(Q) — (]. - dl)"’ d'r' (A140)

— (14 dy)ult) = dyr? dw

A2 dy(® dv®@)
r? d%ﬁ? +r 127" —(1+ 2d37'2)¢(2) = —dgr(r o @) — dgru®
and
,d?v (1) do@ du®
d — ) =1 +d)oW +r(1—d
1< = +r o > (T+dy)o" +r( 1) =
duyv®
+(1+ dl)u(2) = dyr” QST
o d2p() A do®
df +r flr — (14 2d3r®)p) = —dar <r ZT + v(”) + dyrul®
A2 du(® doM
Pt = (L d)u® = (= d)r—— 4+ (1 di)ot) = darygV
(A.141)
where d; are defined by
n+ K K K
1 )\+2M+:‘§’ 2 >\+2/14+K/, 3 ~ ( )
Let us study the system A.141. If we introduce the notations
d
=et Y = —
r=e, 7
then the first two equations from Equations A.140 become
V2 — (14+d)u® +[(1—d)Y — (1 +dy)]o® = —dyelyp®
(A.143)

[diY? — (1 +d)]v® + [(di — )Y — (1 +di)JuM) = doe'Yyp(?

The general solution which corresponds to a nonrigid displacement is
) t
D = Ayt + Age® 4 Age™2 4 ﬁdz /(ess—Qt _ es)w(z)(s)ds
1
dy —1 3 -
e —

dy
Ay — Ayt — Aze® + Age™™ A.144
4 1t 1t 134, 2¢ + Ase ( )

+ idg /(633—215 +€s)¢(2)(8)d8
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where A; are arbitrary constants. The functions u(!) and v(?) must be bounded
for r = 0 so that from Equation A.144, we obtain

r

uV) = Agr? — %dz /w@)(x)dx —r2 /wa(Q)(x)dx
1
0 0 (A.145)

T T

dy —3 1
@ = T L o Agr® + R / Y3 (z)dx + 1 / 2 (2)da
0 0

If we substitute «(") and v(® from Equation A.145 into A.1403, then we find

the equation

2 dyp® 8r?
a2 " dr 1-3d,

where k is given by Equation 5.2.15. The solution of Equation A.146, which

is bounded for r = 0, has the form

r2 — (14 E*?)yp® = d3As (A.146)

8(p+ k)r
@i+ m)(1 - 3d1)
where A4 is an arbitrary constant. We denote by I,, and K,, the modified
Bessel functions of order n. In view of Equation A.147, from A.145, we obtain

1

»® = ALy (kr) — Ay (A.147)

uV) = QqAgr? + ——dy Ag[Lo(kr) — Io(kd)]
2d, k
) (A.148)
U(Q) = —Q2A2T2 + ——do Ay [Ig(k’/‘) + I()(k"l")]
2d, k
where
Q=1+ al Qo= — (3-a,+- 2" (A.149)
YT Qu+r) (1 —3dy) 7 1-3d, "otk '

The solution of the system A.141 can be determined in a similar way. Thus,
we get

u(g) — QlBQT‘z =+ 1 d2B4[Io(]€T) — Iz(kr)]
2d1 k
1
U(l) = Q2BQT2 + mng4[I{)(/€7’) + Ig(k'f’)] (A150)
1
o0 = Byl (k) + 8(p+ K)r B,

(2u+ k)(1 — 3dy)
where By and B,y are arbitrary constants. It follows from Equations A.139,
A.147, A.148, and A.150 that

& = NyAor — kyr—YAglo(kr), 2 = NyBor + kyr—'Bylo(kr)
A.151
1Y = NyByr — kyr 1 Buly(kr), 2 = —NyAgr — kyr 1 Agy(kr) 15V

mty = kyByI;(kr) + vQ3Ba, m? = ky Ay (kr) — vQ3 A
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where
Ny = BA+4p+2r)Q1 — AQ2, No = uQ1 + (p+ 2k)Q2 — KQ3
Qs = 8(s+ r)[(20 + 1)(1 - 3d1)] ! (A.152)

It is easy to see that

A= pu—2K o 3A+5u+2k
1_3d1_)\+2ﬂ+/€’ dl_ >\+21LL+K,
Qi = %[(Q;H— K)(1=3di)+ K], Q2= %[(3 —d1)(2p + k) + 3k]
Q= gln+m),  Q=(1-3d)2u-+r)
Ni+No=(A+2u+k)[(3—di)Q1 — (3—di)Q2] — kQ3
= %()\ +2u+ /@){(3 —d1)[(2p + &)(1 — 3dy) + K]
8k(u+r) |
We note that
Wi = a5

It follows from Equations A.135 and A.137 that the boundary conditions
reduce to

=0, 3 =0, m?=q
(A.154)
ty@ =0, tﬁ)) =0, mﬁ}z) =q, forr=a
If we use Equations A.153 and A.151, then the conditions A.154 become
N1A2a - k’yailA4IQ(ka) = O, k’yA4I{(k:a) — ")/Q3A2 = ({2
NiBsa + kya™ Bala(ka) =0, kyBulj(ka) +1Q3B2 = ¢1

We find that
g2 N1 a? ky
A, — Ay = Aqls(k
4 ky[N1a2I](ka) — vQslz(ka)]’ : Nia? 12(ka) (A.155)
@1 N1a? ky .
B, = By = ———=B,I.
' B [N@? T (ka) — 1Qs L (ka)]’ TN 2k

Thus, the solution of the problem is given by Equation A.136, where u(®),
v(@ | p(@) are given by Equations A.147, A.148, A.150, and Ay, A4, By, By are
defined in Equation A.155.

The plane strain problems for a circular ring-shaped region have been
studied by Chiu and Lee [48].
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5.7.2 The solution of the problem of extension and bending can be ex-
pressed by Equation 5.3.67, where (uz(n), go;;(n)) is the solution of the problem
oM™ (n = 1,2), and the constants aj are given by Equations 5.3.40. We
shall study these problems by using the polar coordinates (r, ). The problem
9™ consists in the finding of the functions ne ,ue1 , and g031 which satisfy
Equations 5.2.9, 5.2.10, and 5.2.11 with f,. = fs =0, g3 =0, and the boundary
conditions

trr =0, trg =0, my, = (B +v)cosf forr =a (A.156)

The problem 92 consists in the determination of the functions ug),u((f),

and cng) which satisfy Equations 5.2.9, 5.2.10, and 5.2.11 in the absence of
body loads, and the boundary conditions

trr =0, trg =0, my, = —(B+v)sinf forr =a (A.157)

The solution of the problem MMM can be obtained from Equations A.136,
A.147, A.148, A.150, and A.155 if we take

@ =0, g2 =p+v (A.158)
From Equations A.155 and A.158, we obtain
As = Zo, Ay = 74, By=B,=0 (A.159)
where

7 — Nia? (B+v)
YT wy[Nya2 I (ka) — 4QsTa(ka)]’

Ral

Z =
2 N1a2

ZiIy(ka)  (A.160)

Thus, the solution of the problem 9™ is
ult = uM cos b, u((,l) = 0P sind, 30:(31) =y@sing (A.161)

where u, v and ¥ are given by Equations A.144 and A.147, and the
constants As and A4 are defined by Equations A.159 and A.160.

The solution of the problem 9MM(®) can be obtained from Equations A.136,
A.147, A.148, A.150, and A.155 if we take

@=-B+w), @=0 (A.162)
From Equations A.135 and A.162, we get
Ay =0, Ay =0, By = Zs, By=-7; (A.163)
The solution of the problem 9MM(?) is

u'? = u® sin g, ué2) = oW cos, <p§2) =W cos (A.164)
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where u(®), v and (1) are given by Equations A.150 with the constants B
and By defined by Equations A.163 and A.160.

We note that the divergence of the displacement vector field and the com-
ponents m., and m,g of the couple stress tensor for the problem M are
given by

divu = (3Q1 — QQ)ZQT’ COS 97 Myy = ﬂ[kZJ{ (k'?”) — QgZQ] sin 6

My = ﬁril[lel(kr) — QgZQT’] cos 0 <A165)

In the case of the problem M), we have
divu = (3Q1 — Q2)Zorsinb, My = —PBlkZ1 1] (kr) — Q3Z3] cos
mag = Br[Z1 1 (kr) — Q3Zor] sin @ (A.166)

The functions (uz(p), wg(p)) which satisfy the problems (") (p = 1,2), are
given by

wi W =y cos20 — v sin® 4, s = (u® + v@)sinfcos b
ui® = (W® —vM)sinfeosd,  u? = u@sin?0+vW cos?0  (A.167)
(p;(l) =P sinb, (p;(Q) =M cos b

where u(® v(® and 1)(®) are defined in Equations A.161 and A.164. We now
can determine D;; from Equations 5.3.41 and 5.3.45. Thus, we obtain

1‘0 = 07 D12 = O, Dag = 0, D33 = 7ra2E

) (A.168)
D11 =Dy = ZwEa4 + (27 + B + BQ3Z:)a* — waZ, BI (ka)

where FE is introduced in Equation 5.3.45. Here we have used the relations

21 (kr) + krlz(kr) = krlo(kr)
1
/mggda = —/m;(ﬁ)da = —ﬂ/ {V + Q322 — ikzllo(k”‘) da
1 31 P

It follows from Equations 5.3.40 and A.168 that

1

—F Al
ralE ° (A-169)

1
Ao = —€agMsp, as = —
« D11 apiVig 3

The solution of extension and bending problem has the form 5.3.67 where
ug’) and goén), (n = 1,2), are defined in Equation A.167 and the constants
ay, are given by Equation A.169. The solution of Saint-Venant’s problem for
a circular cylinder has been established by Reddy and Venkatasubramanian

[188-190].
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5.7.3 In the case of the torsion of a Cosserat elastic cylinder, the displace-
ments and the microrotations have the form 5.3.47, where ¢ and v, satisfy
the boundary-value problem 5.3.26, and the constant a4 is given by

The torsional rigidity D is defined in Equation 5.3.41. We seek the functions
 and 1, in the form

¢ =0, VYo = 2aV(r) (A.171)

where ¥ is an unknown function, and = (27 4 23)'/2. With the help of the
relations

3 dv
Ya,p = Voap +warpr™ W, AUy =2, (\I/” + \I/)7 V=
r r

we see that Equations 5.3.26; reduce to

S ER ) (A.172)
r
where ok
2= (A.173)
a+ B+
If we introduce the function F' by
F=rv
then Equation A.172 becomes
1 1
F"+ -F — (2 + 32)F =0 (A.174)
r r
The solution of this equation is
F = A*I1(sr) + B*Ky(sr) (A.175)

where A* and B* are arbitrary constants, and I,, and K, are the modified
Bessel functions of order n. From Equations A.171, we get

1 = F cosb, o = F'siné

To obtain a solution which is bounded for » = 0, we take B* = 0. Thus, we
have

QO - Oa wa - JIQT_IF7 F - A*I]_(S'I")y U = Eﬂa7x3$3’ Uz = 0
1 1
ur =0, Up = TZT, uy =0,

1
or = p10080 + posind =7 [A*Il(sr) — 27‘]

pg =0, Py =TZ (A.176)
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The conditions 5.3.262 on the boundary I' reduce to

1
ala+ B +7)¥(a) + (20 + f+7)¥(a) = 5(8+7)
This condition can be written in the form

aF(a) + ala+ 6 +7)F'(a) = %(5 +)a (A.177)

Using the relation
xly + I (z) = xly(z)

from Equation A.177, we obtain

o a(B +7)
2(a+ B+ 7)kli(sa)
where
b - aslp(as) B+~

I (as) a+ B+
From Equations 5.3.41 and A.176, we find that
1 a
D= zwa4(2u + k) +ma?(B + ) + 2K A /x2ll (sx)dx

0
a

+ QWA*a/[st{(sx) + I (sx)]|dx
0

With the help of the relations
(%15 (2)) = 2° 1 (x), zl)(z) + [(z) = [z (x)], L(0)=0
we obtain

1 2
D= Zwa4(2,u + k) +ma%(B + ) + wra? A*Iy(as) + 2raaA* I (as)
s

The constant a4 is given by Equation A.170. The torsion problem for a
circular cylinder was studied in Refs. 188 and 338.

6.6.1 We use the cylindrical coordinate system (r, 8, z). From Equations 6.5.20,
it follows that the solution of the torsion problem has the form

u =0, ug=71rz, u, =70, @, =7P,., poe=7Py, @.,=72
(A.178)

where ®,®,., and ®y are unknown functions of r» and 6. Equations 6.5.23
become

1 *
LOA=0,  MPIA= (@), MPA = 0on A (A.179)
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where A = (D, ®,., Dy) and

LY\ = (D? + D)@ + Pr(D, + 1)@y — ?)rDyd,
MPIA = [D? + 0P DZ — (522 — 1]®,
+ (1= b)D, — (14 b)) Dy + %(s(p))zngé
MEA = B (D2 = 1) — r2(s)? + DZ|®
+ [(1 =)D, + (1 + b)) Dy, — %r(s(p))2DT<I>

d d

— Dy = —
dr’ T
b)) = 4P ((P) 4 3P 4 A (P)y=1 (502 = 2kP) (o) 4 3P 4 (P)y~1

e(P) — (p) (M(p) + ,i(p))—l

The conditions 6.5.25 and 6.5.27 take the form
[@]1 = [D]s, [@,]1 = [D]2, [Po]1 = [Pg]2
TIA-TPA =0, SPVA-SPA=a® —a®
(A.180)
SSIA—SPA=00onT*
TOA=0, SHA=-a®  SPA=00nL
where )
TPA = Z(u? + kP)D,® + kP By
r
rSPA = (a'?) + 30 4 4D, &, + P (Dydy + ®,.)
rSép)A =~ D, ®y + ﬂ(p)(D9<I>7- — By)

We seek the solution of the problem A.179 and A.180 assuming that ®, ®,.,
and ®y are functions only of . Then we obtain

T

1
d=—e?4A, /11(5(2)r)dr, D, = A3Il(5(2)7“) - 57

Dy = A1]1(5(2)r), for0<r<mry

T

o =—e® / [B1 11 (3Wr) + ByK1 (6M)r)]dr
+Bs[1 + Mk (6% Inp (A.181)
1
®, = Bzl (sWr) + BgKy(sWr) — 3"

1
Py = 31[1(5(1)7’) + B4K1(5(1)T) — ;li(l)(v(l)(s(l)z)*lBg,, forrs <r <
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where I,, and K,, are the modified Bessel functions of order n, and A, and B,
are unknown constants, and

(5(p))2 =(2- e(p))g(p)7 (P = \(P) (,Y(p))fl
From Equations A.180 and A.181, we find that

Al = 31 = B4 = B5 = 07 Bg = (C5C7 — 0468)(6307 - 6406)_1

1 (A.182)
Bg = (c3cg — ¢s5¢6)(c3cr — cace) ™, A3z = c1B3 + c2Bg
where
c1 = Ii(sWry) /11 (sPry), = K1(sWry) /I (5®)rs)

c3 = 01[(0(2) + 8% + 7(2))1/(5(2)7“2) + a1 (5P ry) (sP)rg) 7]
— (@ + D 4O (D) + @l 1 (s0r) /(55D /5]
€4 = 02[(a(2) + 8P + )1 (sPrg) + P 1 (sPrg) /(sPrs)]
= [(@W 4+ 8D 4y K] (sWrg) + M K (sWra) /(50 r2)]s /5
s = [(B +9) = (B0 +11)]/(25)
ce = (M + 80 4 4N (W) 4+ a1 (sWrp) /(sWry)
cr = (oM 4+ M 4 7(1))K{(s(1)r1) + a(l)Kl(s(l)ﬁ)/(s(l)rl)
cs = (B +~1)/(2s1)
Thus, the solution of the problem A.179 and A.180 is
d =0, @r:—%r—i—AgIl(s@)r), Dy =0, for0<7r<rg
®=0 &= —%r + BgIl(s(l)r) + BgKl(S(l)T), Dy =0, forry <r<mr

where As, B3, and Bg are given by Equation A.182. From Equation 6.5.30, we
obtain

1
D' = 4(2u(2) + @) rrs + (8@ + Ay

2
+ W?’Hﬂ?(z AgT‘%IQ (8(2)7"2) + 27TC¥(2)A37"2I1 (5(2)7"2)

+ i(mﬁ” + M) (rf = 13) + (BN + D)7 (1} —13)

+ {Bs[r? Iy (sWry) — 1215 (sWro)] — Be[riKs (sVr)

— 12K, (sWrg) ] Y2k /D) 4 200V By [y 11 (sWry ) — 12y (sWr)]
+ Bs[ri K1 (sMr1) — rok (sWra)]}

The constant 7 is given by Equation 6.5.29.
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6.6.2 We consider cylinder B* for which the cross section ¥ is assembly
of the domains A} and A3. The solution of extension and bending problem
has the form 6.5.16. First, we have to solve the plane strain problems &),
(s =1,2,3). We introduce the notations

LWX = (D? + P D} — 1)u,

+ (1 =)D, — (1 + ) Doug + dPr Dy,
LYX = [(1-cP)D, + (1 + )] Dyu,
+ [(D2 — 1) + D§|ug — d¥)rDyp.

MP X = 6P rDyu, + oPr(D, + 1)ug + (D + Dj — 20(")7’2)902

TP X = (AP +2u® + k) D,u, + AP (Dpug + u,))r ™t
Tg(p)X = (1 + k) D,ug + p? (Dyu, — ug)r—" — kP,
S§P)X =740 Dy,

where X = (u,,up, ¢.) and
P — (M(p)+,€(p))()\(p)_~_2M(p)+,€(p))—1’ dP) = K(p)(A(p)+2M(p)+)\(p))—1
Using these notations, the problems (), (s =1,2,3), become
LPXD = —(1 =20 4 dP)r2 cos §
Lép)X(l) = (1-2¢" + d(p))r sin 6, MP XD =0on A
(XM, = (XD, TAXx® 7MW x® — AD - XO)pycosf
TG(Q)X(U = Tg(l)X(l), SAxM _ sWx® — (53 _ M) sing on T*

TIXD = ADpycosh,  TVXxD =0,  SOXD =30 singon L
(A.183)

LPX® = (1 —2¢0) 4 dP)r?sin g
Lép)X@) = —(1—2¢ + dP)r? cos b, MPX® =0 on A7
[X(2)]1 — [X(2)]2, Tr(2)X(2) _ T(l)X(Q) — ()\(1) _ )\(2))7’2 sin 6
TOXx® =M x@ g x@ _ g x® = (80 — 32 cos6 on T*
Tr(l)X(Q) = AWy, sin 0, TG(UX( ) = 0, Sgl)X(Q) = —ﬁ(l) cosfon L
LPX® =0,  LYPx® =0, MPX® =0, on A} (A.184)
[X(3)]1 - [X(3)]27 TT§2)X(3) _ Tr(l)X(3) — A1 _®
TP X® =W x® g x®) = g1 xG) on T (A.185)
TOX® = O 7MWy —o, §HX® —0onL

where X () = (ugs),ués), SD(ZS))- Let us determine the solutions of these prob-
lems. First, we consider the problems £ (3 = 1,2). We seek the solutions
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of these problems in the form

X0 = (A(lﬁ) cos 6 + Aéﬂ) sin 0, B}ﬁ) cos 0 + Béﬁ) sin 0, Cfﬁ) cos 0 + 02(5) sin6)

(A.186)

where A(()QB ),B&'H ), and C’,gﬁ ) are functions of 7. From Equations A.183 and

A.184, we obtain

A9 — BO — o) — 48— P _ o g

AW = AP =y B =_BP =y, P =—c® =y,

where v,., vg, and 1, satisfy the equations

(D2 =1 — P, +[(1 = P)D, — (14 P)]wg + d P,
= —(1+dP — 2Py

(1 =)D, + (1 + P, — [P (D2 = 1) — 1Jvg + dPrD, T,
=—(1+ 4P — QC(P))7~2

(D2 —1—20¢2)y, 4+ 0Pr(D, + 1)vg + 0P rv,. =0 on A7

and the conditions

Yh =[], TPV -1y =00 -\,
7Py =1y, SPY - Sy =53 — g0 onr =1y
TOY = AOpy TPy =0, Py =W onr=r

In the above relations, we have used the notations

Y = (v, v9,%)
TOY = (AP 4+ 200 4 kP)D, v, + AP (v, + vg)]r~!
T,"Y = [(u® + k@) Dyvg — u®) (v, + vg) — k1) Jr =t
Sg")Y — 7(p)r—lpﬂpz

The general solution of the system A.187 is

v, =01+ (2— 6c?) + 3d<2))02r2
1
+ @ (26D 1[I, (6P ) — Io(6@r)) — érz

vg = —Cy — (6 — 2¢2) 4+ d@)Cor? + € (dP) O3 1 (6P 7r) —

¥, = —8Csr + 0311(5(2)1’) —r, for0<r <rg
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vy = Dy + (2 — 6V + 3dM) Dyr? 4 €M (260) " D3 [ I (6Wr)
— I(6W7) — Dy[Ko(6Wr) — Ko(6W7)])} + Dsr—2 — %d(l)Df;
+ V(24 2¢ —dD)DgInr — éﬂ

vg = =Dy — (6 — 2¢V 4 dD)Dor? 4 W (WYL D3 1} (M)
+ D4K} (MW7) 4+ Dsr=2 — %[2(1 — WYy (2eM — dW)y 4 dV]Dg
— W @2+ 2 —dYDgInr — %"2

Y, = —8Dyr 4 DsI; (6Wr) + DK (6Wr) — 26M Dgrt, forry <r<r
(A.189)

where C;, D;, and D34, are unknown constants. From Equations A.189 and
A.187, we find that

Dy = Cy +2r2[(2 = 2¢® +d@)Cy — (2 — 2¢V +dV) Dy
e (263 Io (6P ry) — D3lo(6Wry) + DyKo(6Mry)]
Dy = hy + hoDy + h3Ds, D3 = hy + hs Dy + hgDs, Dg=0
Dy = (9192 — hsgs)(h7g1 — hsho) ™", Dy = (h7gs — hoga)(hrg1 — hshg)™"
Co = g1+ g5D2 + g6 D3 + grDa + gs D5
C3=g9+ k1Ds + koD3 + k3 Dy + k4 D5

where

1
hy = —15(1%%]{ (5(1)T1) . 6(1)(5(1)7(1))71(5(1) +”Y(1))I2 (5(1)r1) Gl_l

ho = [I1(6Wr) Ko (6Mry) + K1 (6Wr1) Lo (6Wry) ] e Gt

hg = =261, (6Wr,) (r3G1) ™!

ha = 2r[(y)7H(BY + W) (2 — 2 4+ dW) —1)G7

hs = [—2(2 —2¢M +dM)sWr2 K1 (6Wry) + 8eW (6M) 1 Ky (W) ]Gy
hy =0 [Ky(6Mr2) — hs I (60)r2)]

+ 203 [pVho — pP Q] + 1P Qulo (6®P13),  he = —16(r3G1) ™
hy = —2ry2 — W heIy (6Wry) 4+ 212 (pM hy — p@Q3) + 1P Quls (6P ry)
hg = — K1 (8Wrs) + 8rahy — hsIi (6M12) — 8raQ1 + QoI (6 1)
g1 = 8rahs — hali (30)72) — 8r2Qs + Quly (3%)r)
g2 = —2r3p Wy + W haLs (MW7) + 2r5Q5p — QeI (6@r2)n™®
g3 = —8rahy + hyly (6M12) +872Qs5 — Qo1 (6P 12)
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g1 = | (x = 1)eP (P12 4 2, (5(2)7"2)

1
—i—z(w— )5(2)’)"211( 2)’)"2) G2

g5 = [8en® I,(6®)ra) + 20pM 5P 311 (6P)ry)] G5!
96 = [—577(2)5(1)12(5(2)7’2)—7{(5(1)7"2) + CV@O)C-@(5(1)7"2)1.1(5(2)7"2)]6'271
g7 = —[eeP T L (@) K (W) + weW Ky (6Mro) I (6P 1)) G5 1
gs = 208 I (6@ ry) (r2Go) 71, ki = 16r2[wp™ — ep®G51
i = 25l =1 ) ]G
ko = [8wnW I (6Wry) + 2epP W21 (6Mry) ] G
ky = [ — 8wnW Ky (6Wry) +2ep@ M K1 (6Wry) ]| G5
ky = 16w(r§G2)_1, Q1 = g7 + hsgs + hags
Q2 = k3 + hska + haok1, Q3 =gs+ hegs + hags, Qa = ka+ heka + hsky
Qs = g+ hiks + hags, Qs = go + hak1 + haka, p\® =2—2c*) 4 gl
W = (Qu(l) + n(l))(Q,u(z) + ,i(2))71’ c = 7(1)(7(2))71
x = (BY +yM) (B +4)71 =B (EW)
B = @ ()T Gy = sy O (W) + 200621 (50
Gy = 80P L, (6@ 7r;) + 2612 p 11 (5@r5)
Therefore, the solutions of the problems £(7), (o = 1,2), are

ulV) = v, cos b, u™ = vpsind, p) =1, sind
(A.190)
u? = v, sin 6, u® = —vgcos, ) = —. cosf

where v, vg, and ¥, are given by Equations A.189. The constant C; charac-
terizes a rigid translation. Let us consider now the problem £®) defined by
Equations A.185. From Equation A.1851, we obtain

gn ) = Eqr, u((f’) = 17(2)E2]1(5(2)T), 9023) = Eg[0(5(2)7’), for 0 <r <ry
u® = Fir+ Fyr™t, ul® = nW[FL (6Wr) — By (6DWr)) + Fyr—?
(3) = F3[0(5(1) ) + F4K0(5(1)T), fOI‘ T2 S T S T1

where E, and F are unknown constants. If we impose the conditions A.185,
we find that

By =—vW 4 [r? 4072 =200 2 By, By = -0 4 (12002 Ry
P = (V(l) _ 1/(2))[(2M(1) + 50 )))\(2)(1/(2)) 1(r52 — 7«1*2)

+rr2 2 = 2O
By=Fy=F =0, v?=x0@x\0) 4240 1 o)1

© 2009 by Taylor & Francis Group, LLC



Answers to Selected Problems 345

so that the solution of the problem £®) is

uS-S) = FEqr, u((f) =0, @S’) =0, for0<r<rg

(A.191)
usg) = Fir+ f‘jg’l“_1

ué?’) =0, go(zg) =0, forry <7r<m

)

With the help of Equations 6.5.16, A.190, and A.191, we obtain the solution
of the extension and bending problem in the form

1
Uy = <_222 + vr) (a1 cos 0 + az sin 0) + azu®

1
ug = (22'2 + 119) (a1 8in6 — as cos )
u, =1rz(ay cosf + agsinb) + aszz
or = —(a1sinf — as cos )z, pg = —(ay cosl + as sinf)z

v, = (a1 8in 0 — az cosH),

where the constants as can be determined from the system 6.5.18. From Equa-
tions 6.5.19, A.190, and A.191, we find that

Yie=Y21 = Y30 =Ya3=0
Yas = W()\(Q) + 2,U(2) + k@ 4 2)\(2)E1)r§
+ (AW 425 4 kD L 2D (7 — 12)
™
Yip =Y = 1(2/1(2) + &g+ 7(8® + 43
Wﬁ(2)7‘2 [Cg[l (5(2)7"2) - 8027"2} - 27T)\(2) (20(2) - d(2))T§CQ
+ mAD5(ry = 79) + 72D + £ O) (1] = 1) + (8D +70) (13— 13)
— ﬂﬂ(l){Dg [7”‘1[1(6(1)7"1) — T2[1(5(1)T2)} — 8D2(7’% — ’I’%)
+ Dy [7‘1K1(5(1)7‘1) — T2K1((5(1)T2)]} — 27‘(’)\( (26 @ _ 5(1 )DQ( — ’/‘%)

so that, from Equation 6.5.18, we obtain

1 1 1
M - M - —F
ap = Y11 2, a2 Y11 1 as Y33 3

Thus, the problem is solved.
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