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Preface 

The aim of this text is to present a systematic development of elementary applied 
mechanics assuming a mathematical background of elementary algebra, geometry 
and calculus. A knowledge of the principles of Newtonian mechanics is funda­
mental to the solution of many engineering problems and is a prerequisite for the 
study of more advanced texts; it is hoped that the treatment here will provide 
sufficient material on which this knowledge can be based. 

Our experience leads us to believe that a return to basic principles is often 
desirable, and is particularly necessary for new engineering undergraduates who, in 
spite of having been exposed to previous instruction, frequently display a lack of 
familiarity with the meaning and significance of certain basic ideas. It is to this 
category that the book is mainly addressed, namely first-year students studying 
for an engineering degree or equivalent, who have some acquaintance with the 
subject matter but who require a more thorough grounding. The book is designed 
to cover the applied-mechanics content of the first year of an engineering degree 
course but will, in many cases, also provide a significant contribution to the 
second-year syllabus in mechanics of machines. 

The traditional subdivision into statics and dynamics has been retained in order 
that familiarity may initially be gained with forces and their manipulation. We do 
not wish to appear pedantic in this matter since we recognise that there may be 
an equally good case for placing the initial emphasis on the concept of mass. 
Unfortunately it is difficult at this elementary level to treat one without the other, 
and a choice has to be made. 

Having expressed Newton's laws in terms of particle behaviour the development 
of both statics and dynamics proceeds by way of particle systems to rigid bodies 
and systems of rigid bodies, incorporating in some cases a limited number of 
elastic elements. 

In order to keep the discussion within reasonable bounds certain topics have 
been purposely omitted in the knowledge that detailed treatments are available 
elsewhere. For example, a more comprehensive study of the methods of structural 
analysis is better left to those books devoted to this topic. More important is the 
limitation of the discussion in the main to topics in two dimensions. This is in 
accord with the elementary nature of the book, but the decision was also based on 
the belief that the extension to three dimensions is facilitated by a thorough 
grounding in the basic principles that we hope this book will provide. 

The inertia-force method of solution is given prominence for dealing with 
problems involving acceleration. Objection is raised by many, whose views we 
respect, on the grounds that the method is of historical interest only, and that it 
is used to assist in solving problems whose solution using dynamical principles 
requires no such assistance. We do not think these objections are completely 
valid; we maintain that the method has its merits and does nothing to relieve the 
student of the necessity of fully understanding the dynamics of the problem. 
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Our justification for writing yet another book on applied mechanics is that we 
felt there was a gap between those of very elementary nature and the more com­
prehensive texts that give rather more coverage than we considered necessary at 
this level, and that this gap could be filled by a book based on elementary mathe­
matical knowledge but in which the argument was carefully developed. Also, by 
imposing the limitations already mentioned, we hope that the book will be within 
the financial reach of the student we wish to address. With these considerations in 
mind we claim no originality for the subject matter, the principles of which have 
long been recognised. However, we hope that the presentation, including the 
worked examples, chapter summaries and hints to problems, will be found of 
direct assistance to the student. 

The book is separated into thirteen chapters with sections and subsections 
identified by a decimal notation; for example, 2.3.4 refers to subsection 2.3.4 in 
chapter 2. Equations relating to the text also carry a decimal notation and are 
numbered consecutively through each chapter; for example, the fifth equation in 
chapter 2 is numbered 2.5. Figure numbers again use the decimal notation and are 
numbered consecutively through each chapter including those relating to worked 
examples and problems. Answers to problems are assembled at the back of the 
book in the hope that students will exercise some restraint before consulting these. 

We wish to acknowledge the encouragement of several colleagues in making 
comments on certain chapters, also the unstinting help of our typists, in particular 
Mrs Wilma Scott. 



1 Introduction 

Theoretical mechanics is that aspect of applied mathematics that is relevant to the 
physical world and in particular to the interactions and motion of matter. The 
study has regard to observable phenomena and is developed from basic concepts, 
definitions and postulates relating to those phenomena, the development of the 
theory being essentially mathematical. In the study of applied mechanics or 
engineering mechanics we emphasise the application of the theory of mechanics 
to solutions of practical problems and to predictions of the behaviour of mechani­
cal systems. In setting up the relevant theory we endeavour to follow a logical 
development similar to that of theoretical mechanics. 

1.1 Concept: Postulate: Law 

The physical concepts we have referred to and on which our study will be based 
are those measurable attributes of the material world that are simply recognised in 
experience and that cannot be further described or explained in terms of simpler 
concepts. For our present purpose they are three in number, namely extension in 
space, duration in time and action on matter, giving rise to corresponding entities 
or dimensions that can be observed and measured, namely length, time and force. 
On seeking relations involving these entities, other entities derived from them are 
immediately encountered or are found to be required in our descriptions of the 
behaviour of mechanical systems. These are called derived entities or derived 
dimensions, some examples of which are area and volume, velocity and accelera­
tion, work and energy. Others are specially formulated to assist and simplify our 
descriptions. A definition involves the recognition or formulation of such new 
entities, their naming and their subsequent identification. These defmitions will 
be introduced as they are required. It will be found that careful use of names in 
the sense in which they have been allocated in the defmitions will enable many 
pitfalls to be avoided. 

A postulate is a statement setting out, in as precise a form as possible, a relation 
between entities that it is thought corresponds to the behaviour of the physical 
world. Such postulates, which are in effect plausible assertions, form the starting 
point for the development of the theory, by way of deductions and predictions 
from those postulates. 

A law is a statement of this kind that has been found to correspond closely 
with experimental observations and is justifiably accepted as being valid in the 
light of past and present experience. Subsequent deductions and predictions are 
then soundly based. The theory that we shall develop in this book is based pri­
marily on Newton's three laws of motion, which have been found to be unassail­
able as far as engineering applications are concerned. 

1 
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At certain points important statements are made that have been derived from 
the basic laws and are in a sense one stage removed from them. These merit parti­
cular attention since once they have been established the results they embody can 
be used to advantage without reference to the laws from which they were derived. 
We shall refer to a statement of this kind as a principle. 

In applying the deductions we make to actual problems of engineering interest, 
it will soon become apparent that the physical objects we have to deal with do not 
match the assumptions made in the theory. Forces do not act on bodies at geo­
metrical points; bodies do not make contact at points, along lines of contact or 
by exact matching of surfaces; surfaces are never perfectly smooth. Furthermore, 
rarely can all the physical factors entering into a problem be dealt with simul­
taneously. It is therefore necessary to idealise the problem by first simplifying the 
geometrical form of the objects concerned and then introducing only those 
physical factors that are of immediate importance. Part of the discipline of 
problem -solving is developed in the simplifying of the problem, its statement in 
mechanics forms and in recognising the significance of the simplifying assump­
tions made. The degree to which the problem is simplified will necessitate realistic 
decisions on the accuracy to which answers to problems should be stated. 

1.2 Dimensions and Units 

The word dimension is used when referring to the nature of the physical entities 
that are encountered, either directly or as a consequence of definition. If so-called 
primary dimensions are chosen, such as length, time and force, the dimensions of 
other entities are derived from these. Thus we say that velocity v has the dimen­
sions length/time, and this is written symbolically in the form [v] = L/T, which is 
read as 'the dimensions of velocity are those of length divided by time'. 

The magnitude of a given quantity of some physical entity requires for its 
specification a unit and a measure. The unit is that amount of the same kind of 
entity that by common usage or legal sanction is taken as a standard reference. 
The measure is a number that expresses the amount of the entity as compared 
with that of the unit. For example, if the unit of area is the square metre (m2 ) a 
given area may have magnitude 5 square metres (5m2 ), where the number 5 is the 
measure. The units that we adopt will be noted as they are required. 

It follows that equations involving physical quantities are more than relations 
between symbols representing numbers only. Each symbol now represents the 
product of a measure and a unit and it further follows that if a physical equation 
is to have meaning each term must have the same dimensions and also the same 
units. The student should develop the habit of continually checking both algebraic 
and numerical equations to ensure correctness of dimensions and units. In itself 
such a check does not guarantee the validity of the equations. Thus the well 
known physical equations= ut + !at2 with metre, second units is dimensionally 
correct, since 
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and 

[s] = L 

[ut] = (L/T) x T = L 

[at 2 ] = (L/T2 ) x T2 = L 

3 

On the other hands = ut + at2 is dimensionally correct, but physically incorrect. 
In stating numerical answers to problems it is essential to state both measures and 
units, otherwise the answers are meaningless. 

1.3 Statics and Dynamics 

It is convenient to subdivide the study of mechanics into statics and dynamics, 
the former dealing with bodies at rest and the latter with bodies in motion. The 
distinction, though artificial, is traditional and is adopted for convenience. Thus 
the civil engineer is very much concerned with structures that are intended to 
remain at rest, while the mechanical engineer's concern is with equipment and 
processes involving the motion of bodies. It will appear later that statics can be 
described more fundamentally as the study of bodies in equilibrium. The state of 
equilibrium is of fundamental importance and will be referred to continually in 
what follows. 

Statics will be studied first since this will familiarise the student with forces, 
their representation and their manipulation, before embarking on the study of the 
dynamical relations between those forces and the motion of the bodies on which 
they act. 

At this point a further concept, that of mass needs to be mentioned. This con­
cept, although of the greatest importance in dynamics, also enters into the dis­
cussion of statics, since it is necessarily involved in the description of gravitional 
forces, which are always present in earth-based engineering problems. A more 
detailed appreciation of the significance of mass will be taken up at a later stage. 
For the present we appeal to everyday experience of bodies set in motion by 
forces. Experience indicates that bodies differ in their response to a force of given 
magnitude, in the sense that bodies differ in the time required to attain a given 
speed. We say that for a given force different bodies have different accelerations. 
The property that distinguishes one body from another, in so far as resistance to 
being accelerated (or inertia) is concerned, is called the mass of the body. By 
comparing the body with a standard body, the mass of which is adopted as a unit, 
a measurable mass can be assigned to the body. This is a fundamental property 
that, as far as the engineer is concerned, is constant. 

It becomes convenient to select mass as a primary dimension, together with 
length and time. If this is done then we are led to treat force as a derived dimen­
sion. However, in the study of statics this consideration does not arise. Force will 
be treated as a primary dimension, and mass will only enter the discussion when 
the magnitudes of gravitional forces are called for. 



4 BASIC ENGINEERING MECHANICS 

1.4 Mathematical Considerations 

We have already noted that physical equations are symbolic statements about 
physical quantities. The manipulation of the symbols is in accordance with 
acknowledged mathematical techniques. Mechanics affords ample scope for the 
use of special techniques and mathematical forms, many of which will be at this 
stage unfamiliar to the student. For the chapters that follow a knowledge of 
elementary algebra, geometry and calculus is the only necessary prerequisite. An 
acquaintance with vector analysis will enable the characteristics of vectors to be 
more readily grasped and their manipulation to be more confidently undertaken; 
however, sufficient information is given in chapter 2 to enable the student to deal 
with vector quantities to the extent required in the succeeding chapters. 



2 Fundamentals 

In the chapters that follow the study will be directed towards describing the action 
of sets of forces on material bodies. Certain terms will be introduced, all of which 
have definite meanings that need to be borne in mind whenever they are used. 
This chapter deals with some of these, by setting out their working definitions. 

2.1 Particle: Rigid Body: System 

Definition 

A particle is a material body whose linear dimensions are small enough to be 
considered irrelevant in the context of the problem in hand. 

A particle can also be thought of as a quantity of matter concentrated at a 
point, or in the context of finite bodies, as an elementary portion of such a body. 

Definition 

A rigid body is an assembly of particles, the distance between any two of which 
remains fixed or can be considered to be so for the purpose of analysis. 

The notion of a particle provides a convenient starting-point for our studies 
since the results of the analysis of particle behaviour can then be extended to a 
finite rigid body. 

When discussing the action of forces on assemblies of particles it is essential to 
identify the particular assembly under consideration and the forces acting on that 
assembly. We therefore distinguish clearly between the so-called system and its 
surroundings. 

Definition 

A system is an identifiable quantity of matter or assembly of particles bounded 
by a geometrical surface, the boundary. A system may therefore comprise one or 
many particles, whose distances apart are not necessarily constant. The matter 
and space outside the boundary constitute the surrounuings. 

In the case of a rigid body the boundary can clearly be made to coincide with 
the visible physical surface of the body. 

If we now recognise the surroundings as the source of the forces acting on the 
system we can think of the system in isolation and refer to it as a free body. A 
diagram drawn to illustrate a selected free body together with the forces acting on 
it is referred to as a free-body diagram. We shall always emphasise the importance 
of drawin!! free- bodv dia!!rams in the solution of oroblems. 
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2.2 Scalars and Vectors 

When discussing physical quantities we fmd that some require only a statement of 
magnitude (measure and unit) for their complete description or specification. Thus 
the temperature of a water bath could be quoted as 20 degrees Celsius without 
any further qualification. Other quantities require in addition a statement of 
direction. Thus the position of a flying object would require not only the distance 
from the observation point to be known but also the orientation of the line of 
sight. These two types of quantities are called respectively scalar and vector 
quantities. 

Definition 

A scalar quantity is one that is specified by a statement of its magnitude. 
Scalar quantities or scalars are symbolised by an algebraic symbol, for example 

a, representing the product of a measure and a unit. Positive and negative scalars 
are encountered. The sum of two or more scalars can be found by algebraic addi­
tion, provided the scalars have the same dimensions, otherwise the sum has no 
meaning. The addition can also be carried out by successively marking off seg­
ments of a given straight line to an appropriate scale and the sum is then given to 
scale by the distance between the starting and terminal points. 

Definition 

A vector quantity is one that is specified by a statement of its magnitude and its 
direction. 

Vector quantities are symbolised in printed texts by a bold algebraic symbol, 
for example a, implying that it is a directed quantity. In written work an algebraic 
symbol with a wavy underline can be used. The magnitude of the vector quantity 
is symbolised by the corresponding scalar symbol such as a, or if the absolute 
(non-negative) magnitude is intended, by lal. In the figures of this book, directed 
arrows are used to indicate the directions of vectors when these are referred to in 
general terms, and a vector symbol such as a at the side of the arrow expresses the 
quantity referred to. However, if the directions are otherwise fixed then a scalar 
symbol is adequate to express the magnitude of the vector referred to. 

2.3 Addition of Vectors 

The manipulation of scalars according to the rules of elementary algebra and 
calculus should present no difficulty. The corresponding operations with vector 
quantities require an extension of the familiar rules to those of elementary vector 
algebra and calculus, which can nevertheless be reduced to operations with scalars. 
Initially, however, we avoid the symbolic approach by utilising the geometric 
properties of vectors. 
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A segment AB of a straight line has magnitude and direction in passing from A 
to B. A vector quantity can therefore be represented by such a directed straight­
line segment (drawn to some arbitrary scale) since it too has the same properties. 
Such a ~resentation is also given the name vector and can be referred to as the 
vector AB, the ordering of the letters being made to correspond with the direction 
intended. Two vector quantities having the same magnitude and direction are said 
to be equal, andJ4th~representations are respectively AB and PQ (to the same 
scale) we write AB = 1'\J. 

This method of representing a vector enables us to defme the addition of two 
vectors. 

Definition 
-- - --+ If OA, OB are ve~s then their addition is symbolised as OA + OB and is defmed 

to be the vector OC, ~re ~is thf diagonal of the parallelogram OACB (figure 
2.1a). We then write OA + OB = OC. 

{:7]' 
0 a A 

(a l 

Z c 

b 
I 

0 a A 

(b) 

Figure 2.1 

~c) 

This defmition conforms to our expe~ence with most physical vector quanti­
ties of interest in so far as the vector OC does indeed represent the addition of 
vector quantities represented by OA and 00. This defmition is accordingly referred 
to as the parallelogram law of addition. 

There are, however, certain quantities that do not combine in this way even 
though they are vector qllantities having magnitude and direction. The term vector 
is therefore reserved for those vector quantities that satisfy the more precise defmi­
tion that follows. 

Definition 

The quantity a is said to be a vector if it satisfies both of the following criteria 
( 1) a has magnitude and direction 
(2) the sum of quantity a and a similar quantity b is the vector a + b given by 

the parallelogram law (figure 2.1a). 
A more useful form of the parallelogram law is the triangle law. In figure 2.1a 

since AC = OB we have a + b = OC = Q/{ + oB = OX + A.C. Therefore if the two 
~ors a, bare placed tail to head as in figure 2.lb then their sum is the vector 
OC, the directed line from 0, the starting point, to C, the terminal point. 
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It follows that a third vector c can be added to (a +b) and we obtain the sum 
(a + b) + c (figure 2.1 c). From the geometry of the figure it follows that 
(a + b) + c = a + (b + c). Further consideration shows that other combinations are 
possible, such as (c +a)+ b, all of which are equal. The brackets can therefore be 
omitted, and we conclude that any number of vectors can be added by placing 
them tail to head in any order, their sum being the vector extending from the 
starting point to the terminal point. 

If b is a vector with magnitude equal to that of a but is oppositely directed, 
then we write b = -a. This leads us to write b +a =a + b = 0, a result that is 
confirmed by the triangle law. Similarly the vector that is equal in magnitude to 
the vector c but oppositely directed is - c. If we write a + (-c)= a - c, this is 
interpreted as the subtraction of c from a, an operation that is effected by adding 
to a a vector equal in magnitude to c but reversed in direction (figure 2.2). 

a-c / {_a_~ 

~c 

Figure 2.2 

The addition and subtraction of vectors using graphical representations is a 
straightforward procedure if all vectors lie in one plane, and in many types of 
problem is the appropriate method to use. However, the manipulation of vectors 
in general and the establishment of significant vector relations require an exten­
sion of our notation and the use of the ideas of component and unit vector. 

2.4 Components and Unit Vectors -In figure 2.3a OX, 0 Y, OZ are three arbitrary directions and OC is the representa-
tion of a vector a. With OC as d~on~ a paralle~iped is drawn with edges 
parallel to OX, OY, OZ. Then OC' = OH + OC = OA + AB + BC, and it is evident 
that a vector a can be expressed in an infinit~mber ~ways as the sum of three 
vectors having arbitrarily chosen directions. OA, AB, BC are called vector com­
ponents of OC. It is convenient and usual to choose directions OX, OY, OZ that 
are mutually perpendicular and this is so in all future work. In figure 2.3b, f~he 
~an~r p~lelepiped shown, OM = LB and ON= BC and we can write OC = 
OL +OM+ ON. The lengths OL, OM, ON, which are the projections of OConto 
the mutually perpendicular axes OX, OY, OZ respectively, represent magnitudes 
that we signify as ax, ay, Oz. These three scalar quantities are called the com­
ponents of the vector a. 

It follows immediately from the triangle law that if a + b = c then the com­
ponents of care respectively (ax+ hx), (ay +by), (az + hz), and in general the 
components of the sum of two or more vectors are respectively the algebraic sums 
of the corresponding components of the vectors. The addition of vectors can be 
reduced in this way to algebraic addition of (scalar) components. 
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y y 

X 

z z 
(a) (b) 

Figure 2.3 

We can go further and adopt a notation that separates the magnitude and 
direction aspects of a vector. The magnitude of a vector a is written a as already 
noted, and the direction is written a, which stands for a unit vector in the direc­
tion of a. Then a= aii, in which it is understood that a stands for the scalar magni­
tude {having a measure and a unit). The unit vector a can be interpreted as that 
vector having no dimensions, which when multiplied by the scalar a gives the 
vector a. 

If three unit vectors i, j, k are conventionally chosen to lie in the respective 
directions OX, 0 Y, OZ then we can express the vector components of a in the 
respective directions as axi, ayi. azk, and it follows that 

and 

a = axi + ayi + azk 

a + b = (ax + hx)i + (ay + by)i + (az + hz)k 

= Cxi + Cyj + Czk 

This provides the basis of an alternative method for defining scalars and 
vectors, a scalar being a quantity requiring one magnitude for its specification 
and a vector being a quantity requiring three magnitudes for its specification. The 
three magnitudes are the components, which when set down in order in the form 
[ax, ay, az] defme the vector a and serve as an alternative notation. 

Although not referred to in this introductory course, the student will soon 
encounter quantities that involve the statement of a magnitude and two directions. 
Such quantities are dealt with in the manipulation of tensors, which can be shown 
to require the statement of nine scalar components that are subject again to the 
rules of ordinary algebra. 

The directions shown for the axes OX, OYand OZ should be carefully noted 
and adhered to. These are described as a right-handed set of axes and are so 
arranged that the sense of the rotation required to bring the axis OX to coinci­
dence with the axis OYis that of a right-handed screw advancing along the 
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axis OZ. With the axis OZ pointing directly towards the observer, a line rotating 
in the XOYplane in the corresponding anticlockwise sense makes increasing 
angles with the axis OX. This anticlockwise sense is consistent with the usual 
convention for the positive sense of angle indication. 

2.5 Units 

In the study of statics the only primary dimensions involved in the discussion are 
length and force. The dimensions time and mass enter the discussion when 
dynamics is studied. The selection of units for physical quantities involving these 
dimensions, although having a long historical background, is now based on 
Newton's laws of motion, and the units are so chosen as to form sets of inter­
related units. For engineering purposes two sets or unit systems are in use- the 
British Engineering System and the International System. The units of the latter 
are referred to as SI units, SI being an abbreviation of Systeme International. 

The basic SI units for the quantities used in mechanics are those for length, 
time and mass, these being respectively the metre, the second and the kilogram. 
The unit for force is derived from these and is named the newton. The method by 
which the newton is derived is taken up in chapter 9. 

On the other hand in the British Engineering System the basic units are those 
for length, time and force and are respectively the foot, the second and the 
pound-force. The unit of mass is derived from these and is named the slug. The 
pound-force is the gravitational pull on a body having mass of one pound at a 
location on the Earth's surface where the body would fall freely with acceleration 
32.1416 ft/s2 • 

The British Engineering System is gradually being superseded by the SI System 
and will be referred to very rarely in the following chapters. However, since the 
units are still in wide every-day use the following table is included showing the 
basic units of both systems and their comparative magnitudes. 

British Engineering 

length foot (ft) 
1ft= 0.3048 m* 

time second (s) 

mass slug (32.1416lbm*) 
1lbm = 0.454 kg 

force pound-force (lbf) 
1lbf = 4.448 N 

The values marked with an asterisk are exact. 

International (SI) 

metre (m) 
1m= 3.281 ft 

second (s) 

kilogram (kg) 
1 kg= 2.205 Ibm 

newton (N) 
1 N = 0.225 lbf 
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2.6 Solution of Problems 
In the context of engineering the purpose of the study of mechanics is the analysis 
and solution of engineering problems, that is, given an engineering system subject 
to various forces and constraints, to deduce relevant information about the 
behaviour of the system from our knowledge of the laws appertaining to its 
behaviour. In the solution of every problem the following stages should be 
recognisable. 

(1) Statement of the problem in real physical terms. In many cases the system is 
immediately recognisable using terms in common use. Frequently a diagram or 
dimensioned drawing is required to clarify the subject of the problem. 
(2) Recognition of applied mechanics concepts and entities and the statement of 
the problem in these terms. At this stage a free-body diagram should always be 
drawn since this will embody the immediately relevant concepts in diagrammatic 
form. 
(3) Statement of the applicable laws and principles, or alternatively theorems that 
have been derived from them, in the form of (a) physical equations or (b) graphi­
cal constructions. Usually it is possible in numerical problems to set out the work 
algebraically and substitute numerical values when required. This approach has 
advantages, the chief one being the opportunity it affords of checking the mathe­
matical development. Whether algebraic or numerical methods are used it should 
become a habit to maintain a continual check on the dimensions and units of all 
equations. 
(4) Solution of equations or interpretation of graphical constructions for the 
desired information. 
(5) Checking of solutions. The validity of the basic laws is not open to question. 
However, they can be incorrectly applied and mistakes can be made in calculation. 
The solution should be a re~onable one as far as can be judged: for example, the 
order of magnitude of a numerical answer should be in accord with that of the 
information given in the problem. Sometimes another method of solution is 
possible. Usually the order in which arithmetic operations are carried out can be 
varied. 
(6) Statement of the solution in the terms required by the problem. If numerical 
solutions are called for then units must be stated. The number of significant 
figures must not be greater than that warranted by the information given and the 
nature of the assumptions made. In addition the direction and sense of vector 
quantities must be clearly described. A succinct symbolism used for expressing the 
magnitude, direction and sense of a vector quantity is (by way of example) I 
20.75 m/s L 69.5°, the angle indicated being that made with a reference direction 
and increasing anticlockwise. 

Problem -solving is an essential part of the study of engineering mechanics 
since it affords practice in the construction of mathematical models and in the 
development of logical methods of analysis. The basic ideas are relatively few in 
number and the memorising of formulae is rarely required. Instead, the student 
should aim for precise statement of principles, concise expression, and systematic 
setting out of solutions. 
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Problems 

2.1 From your experience of the following, state whether they are scalar or vector 
quantities. 

(a) The distance between two points 
(b) The height of a mountain 
(c) The bearing of a ship 
(d) The speed of a train 
(e) The kinetic energy of a bullet 
(f) The intensity of a sound 
(g) The weight of a body 
(h) The drag on an aeroplane 

2.2 Obtain graphically the sum of the vectors a and b in the following cases. 

(a) a= 5 L 60°, b = 3 L 90° 
(b) a = 10 L 30°, b = 20 L - 30° 
(c) a= 200 L 45°, b =- 400 L 30° 

2.3 Obtain graphically the difference a - b for the vectors of problem 2.2. 

2.4 Obtain graphically the sum of the vectors a= 4 L 0°, b = 5 L 90°, c = 3 L 150°, 
d= 6L 230°. 

2.5 The following vectors all lie in the x-y plane. Obtain the x- andy -compo­
nets in each case. 

(a) a= 15L50° 
(b) b = 20 L 150° 
(c) c =- 10 L- 30° 

2.6 A vector a has components ax = 5.3, ay =- 7. Obtain a in terms of its magni­
tude and direction. 

2.7 Obtain the magnitude of the vector a= [5, 6, 3] and determine its inclination 
to (a) thex-y plane and (b) thez-x plane. 

2.8 Obtain the magnitude of the sum of the vectors a= [5, 6, 3] and b = [2, 4,- 7] 
and its inclination to the x-y plane. 

2.91f a+ b = 10 L 60° and a- b = 20 L 30° determine a and b. (Hint: use the 
vector equations to solve for a and b.) 



3 Statics of a Particle 

If the surroundings act on a system in such a way as to tend to change the 
motion of the system then we say that a force exists. The force is the action of 
the surroundings, but nevertheless it is usual to state that the force itself is acting 
on the system. The forces encountered in practice are usually found to be applied 
to the system as a whole or over finite areas of the system boundary. Initially, 
however, we consider only the forces acting on a single particle. Any one such 
force can immediately be characterised by its magnitude and its direction, and in 
addition, for a single particle, by its line of action, since this passes through the 
particle. In the next chapter we extend the discussion to particular assemblies of 
particles, namely rigid bodies. 

3.1 Resultant: Components 

Experiment indicates that two forces acting together on a single particle can be 
replaced by a single force with its line of action also passing through the particle 
and whose magnitude and direction are given by the triangle law. A force is there­
fore a vector. The single force is called the resultant of the two forces. The two 
forces have thus been summed, and if they are symbolised as F 1 and F 2 we write 
F 1 + F 2 = R where R is the resultant. 

In accordance with the results of the preceding chapter, three or more forces 
on a particle can be added by placing their representations tail to head in any 
order, the resultant then being represented by the line joining the starting point 
to the terminal point. For coplanar forces the triangle law is therefore developed 
into the polygon law. 

Definition 

The resultant of any number of coplanar forces (a set of forces) acting simul­
taneously on a particle is the single force that is equivalent to the force set and 
that is obtained by placing their representations tail to head in any order. The 
resultant is then represented by the line joining the initial point to the terminal 
point. 

The use of the word equivalent should be carefully noted, since it implies that 
the resultant has the same effect as the individual forces taken together, and can 
replace them. Two forces can be equal in magnitude but have different effects if, 
for example, their directions or lines of action differ. 

A given force on a particle can be resolved into any number of vector com­
ponents having specified directions. In particular, if the directions are mutually 
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perpendicular in space the components are three in number and are referred to as 
rectangular vector components. If OX, OYare two chosen perpendicular direc­
tions that are coplanar with the force then the components are two in number. 
As with vectors in general, only the magnitudes of the vector components need to 
be stated. In future the word component will be used to stand for rectangular 
scalar component on the understanding that the directions are specified or other­
wise implied. 

If the line of action of a force F acting on a particle lies in the XO Y plane and 
is inclined at an angle 8 to the OX -axis, then the x- andy -components, Fx and 
Fy respectively are given by Fx = F cos 8, Fy = F sin 8 (figure 3.1a) and we can 
write 

F = Fxi + Fyi 

= (F cos 8)i + (F sin 8)j (3.1) 

y 

Fsm8 

X 

(a) (b) 

Figure 3.1 

We shall be concerned mainly with sets of forces F 1 , F2 , ••• having lines of action 
lying in one plane such as XOY, and referred to as coplanar forces. From figure 
3.1 b and the polygon law it follows that the x -component of the resultant R of 
any number of such forces is the sum of the x -components of the individual 
forces; and similarly for they-components. Thus 

and similarly 

Rx = F 1 cos8 1 + F2 cos82 + F3 cos83 

= F!x + F2x + F3x 

(3.2a) 

(3.2b) 

The symbol l: will be used extensively to indicate the summation of quantities 
typified by the quantity indicated. 
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Conversely, if the sums of the x -components and of they -components of a 
set of forces are known the resultant can be determined in magnitude and direc­
tion, since the magnitude 

15 

(3.3a) 

and 

R 
tan IJR = _L (3.3b) 

Rx 

where the magnitude of IJ R and consequently the sense of R can be determined 
by inspection of the signs of Rx and R y. 

3.2 Equilibrium: Newton's First Law 

Definition 

If the resultant force on a particle is zero then the particle is said to be in 
equilibrium. 

A particle is therefore in a state of equilibrium, by defmition, by reason of the 
resultant of the forces acting on it being zero. 

The physical significance of equilibrium is contained in the first of the three 
fundamental laws of classical mechanics enunciated by Sir Isaac Newton (1642-
1727). After rephrasing, the first law can be stated as follows. 

The First Law 

If the resultant force on a particle is zero, then the particle remains in a state of 
rest or constant speed in a straight line. 

It follows that a particle in equilibrium is one which is either at rest or moving 
with constant speed in a straight line. The converse is also true, that if a particle is 
known to be at rest or moving at constant speed in a straight line, then it is in 
equilibrium and the resultant force acting on it is zero. 

3.3 Conditions for Equilibrium 

In practice we encounter particles that are known or are seen to be in equilibrium 
under the action of a set of forces, having magnitude, direction and sense, some 
of which may not be known initially. If the resultant of the force set is zero then 
the forces and their characteristics must be related in some way and must satisfy 
certain conditions. In order to be able to determine the unknown characteristics 
we have to set out the conditions that must be satisfied in a form that will permit 
of solution for the desired information. This can be done in two ways. 



16 BASIC ENGINEERING MECHANICS 

(1) If the forces acting on the particle are summed by the polygon law, then if the 
resultant is zero the polygon must close. We have therefore the graphical condition: 
for a particle to be in equilibrium the force polygon must close. 
(2) Since the magnitude of the resultant IRI = vf[(~Fx)2 + (~Fy)2 ] then for 
R = 0 the summations ~Fx and ~Fy must both be zero. We have therefore the 
analytical condition: for a particle to be in equilibrium ~Fx = 0 and ~Fy = 0. 

3.4 Applications 

In applying the graphical condition, the force polygon is built up using the known 
forces first and the closure of the polygon then reveals the desired unknown 
characteristics. It will become immediately apparent that the number of unknown 
characteristics that can be determined is limited to two, such as for example, the 
magnitude and direction of a single unknown force, or the magnitudes of two 
forces whose directions are initially known. The use of the graphical condition 
does not imply that the force polygon must necessarily be drawn to scale- a neat 
sketch can be used as a basis for calculation using the geometry of the polygon. 

The two equations of the analytical condition will again enable two charac­
teristics to be determined, namely two unknown components. A judicious choice 
of x- andy -directions will simplify the equations and enable a solution to be 
more readily obtained. 

In the problems at the end of this chapter the solutions are to be obtained on 
the basis of certain assumptions, namely (1) the body is a particle; (2) if a force 
is applied by means of a massless cord then the direction of the force and its line 
of action coincide with the cord; (3) if a cord passes over a smooth pulley the two 
forces exerted by the cord on the pulley are equal in magnitude, this magnitude 
being referred to as the tension in the cord, (4) if a body is in contact with a 
smooth surface the force of the surface on the body is in a direction normal to the 
surface. All these assumptions need to be justified on the basis of arguments to be 
developed at later stages. 

In certain problems the forces on the particle are acting in a vertical plane. One 
of those forces is invariably a gravitational force arising from the attraction of the 
Earth. The nature of such forces will be discussed in more detail in sections 9.1 
and 1 0.6.1 when the dynamics of a particle is being studied. At this stage suffi­
cient information is given to enable the gravitional force to be included with its 
correct magnitude. 

The gravitational force on a particle is referred to as the weight W of the particle. 
Although by this terminology weight is made to appear to be a property of the 
particle, it should be remembered that weight is a force that depends for its exis­
tence on the presence of the earth. 

When we come to consider the dynamics of a particle we shall find that if a 
particle mass m kg is being accelerated under the action of a force F N, the 
acceleration a m/s2 is given by the equation F =rna. Now we know that a particle 
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falling freely under the action of its weight alone descends with acceleration 
magnitude g, which is the same for all particles in the same locality. This was first 
demonstrated by Galileo (I564- I642). We can therefore write for any particle 

W = mg (3.4) 

The value of g may vary slightly from one locality to another, but for our pur­
poses we can adopt the value 9 .8I m/s2 ; W is then in newtons if m is in kg. 

Worked Example 3.1 

The ends of a cord length 3.5 mare attached to points A and Bas shown in figure 
3 .2a. A small smooth pulley carrying a body, mass m = I 0 kg is placed on the cord 
and allowed to reach a point of equilibrium at C. Find the horizontal distance of 
this point from A and the tension in the cord. 

3m:__ _ _ _.., 

1--- --B 
b 

(a) 

Figure 3.2 

Solution 

L71 72 
-

98.1N 

(b) 

rq 
981N~_: 

(c) 

Since the distance AB = ylO = 3.I6 m the cord hangs below the line AB and a 
diagrammatic view of the situation for the equilibrium condition is given in 
figure 3.2a. We now consider the equilibrium of the pulley, which can be regarded 
as a particle in this example. The forces acting on it are 

(I) the weight of the body, mg = 10 x 9.8I = 98.1 N downwards 
(2) the force in the cord segment AC; this force is along CA and since the cord 
can only be in tension the force, denoted symbolically as T1 , is in the direction 
given in figure 3.2b 
(3) the force in the cord segment CB; by the same reasoning this force, denoted 
symbolically as T2 , is in the direction again given in figure 3.2b. 

Figure 3 .2b is the free· body diagram for the pulley showing all the external 
forces acting on the pulley. 

Since the forces on the pulley are in equilibrium the force triangle must close. 
The latter is shown drawn diagrammatically in figure 3.2c. 
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Making use of assumptions already stated, we can write T1 = T2 and it follows 
from the force triangle that a = /3. 

From similar triangles in figure 3.2a 

X = ~ 
a b 

therefore 

X x+y 
= 3 

=- = cosa 
a a + b 3.5 

hence tan a= .../13/6; also from figure 3.2a 

x tan a + 1 = (3 - x) tan 13 = (3 - x) tan a 

giving x = 0.667 m. 
Let T = T1 = T2 be the tension in the cord. Then from the force triangle 

2Tsin a = 98.1 

and 

T = 95N 

3.5 Summary 

(1) The resultant R of a set of forces F1 , F2 , F3 , ••• acting on a particle is the 
single force R = F1 + F2 + F3 + ... , and for coplanar forces is given by the poly­
gon law of addition. 
(2) The resultant R is equivalent to the force set. 
(3) A force F can be resolved into any number of vector components. The rec­
tangular scalar components ofF are signified by Fx, Fy. For the resultant R 

Rx "J:,Fx 

Ry = "'l:Fy 

The magnitude and direction of the resultant are given by 

R = y(Ri + R/) 

() = tan-1 (Ry/Rx) 

(4) A particle is in equilibrium if R = 0. 

(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 

(5) A particle in equilibrium is ~ither at rest or moving with constant speed in a 
straight line (Newton's first law). 
(6) The conditions for equilibrium of a particle are either (a) the graphical condi­
tion: force polygon must close; or (b) the analytical condition: "J:,Fx = 0, "J:,Fy = 0. 
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(7) The weight W of a particle having mass m is given by 

W = mg (3.4) 

Problems 

3.1 A particle is acted on in the horizontal plane by three forces having magni­
tudes 20 N, 30 N and 40 N. If the particle is in equilibrium under these forces 
find the directions of the 20 Nand 30 N forces relative to the 40 N force. (A 
graphical solution is suggested.) 

3.2 A particle, mass 0.2 kg, is held at rest on an inclined plane of slope 30° to the 
horizontal by the application of a force P, which is at 60° to the horizontal. 
Assuming the reaction N of the plane on the particle is normal to the plane find 
the magnitudes of P and N. (Hint: Draw a free- body diagram of the three forces 
acting on the particle.) 

3.3 Two cords, lengths 3m and 4 m respectively, are each attached at one end to 
two points 5 m apart horizontally. The free ends of the cords are joined together 
to one end of another cord of length 2 m. To the free end of the latter is attached 
a small body, mass 2 kg, which is being pulled with a horizontal force 15 N to the 
same side as that of the 3 m cord. Determine the inclination of the 2 m cord to 
the vertical and the forces in the 3 m and 4 m cords. (Hint: Consider first the three 
forces acting on the body (draw a free-body diagram) and hence find the force and 
inclination of the 2 m cord; draw a free- body diagram for the junction of the three 
cords and solve for the other unknowns.) 

3.4 Four forces 10 N L 0°, 15 N L 60°, 20 N L 120°, and 30 N L 180° act in the 
horizontal plane on a particle. 

(a) Determine from a force polygon the resultant of these forces. 
(b) What force is required to maintain the particle in equilibrium? 

3.5 An airship, mass 10 000 kg, is tethered by four ropes equally disposed around 
it and each making an angle of 15° with the vertical (the four ropes would thus be 
on the face of a cone with vertex angle 30°). What is the lift force on the ship if 
the force in each rope is 20 000 N? (Hint: The resultant vertical force is zero.) 

3.6 A particle is moving with constant velocity in a straight line on a smooth 
horizontal surface under the action of the following forces, which all act in the 
horizontal plane: 100 N L 0°; Q L 70°, P L 150°; 70 N L 225° and 80 N L 300°. 
Use a polygon of forces to determine the magnitudes of P and Q. 

3.7 If in problem 3.6 P and Q are allowed to take up any direction as long as they 
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are mutually perpendicular, fmd their magnitudes and directions if the magnitude 
of Pis to be twice that of Q. 

3.8 A piece of cord oflength 2.5 m is connected between two points 2m apart 
horizontally. A massless pulley is placed on the cord and a force 20 N L- 80° is 
applied to it. 

(a) Show that when the pulley reaches a state of rest the angles that the two 
portions of the cord make with the horizontal differ by 20°. 
(b) Verify that the relevant equations are satisfied when the smaller angle is 28° 
and hence determine the tension in the cord. 

(Hint: Cord tension is constant. For (a) use the force triangle, for (b) criteria to 
be satisfied involve geometrical relations of cord length and distance between 
supports, relationship from (a) between the cord angles; note that only two use­
ful equations can be derived from the force triangle- any others will be 
redundant.) 

3.9 A particle at the point 0 is subject to three coplanar forces which can be 
represented by the vectors oA, 01f,' OC. If the intersection of the medians of the 
triangle ABC is at G, show that the resultant of the three forces is represented by 

~ -the vector 30G . (Hint: Write OA as a summation of other vector quantities one 
of which is 00, and similarly for 5B and OC.) 

3.10 A particle located at the point 0 of a polygon O~CO~ s.!:!Q_ject t~ur 
coplanar forces, which are represented by the vectors AO, AB, CO and CB. If P, 
Q are the midpoints of AC and_Qp respectively, show that the resultant force~ 
the particle is represented by 4PQ. (Hint: See problem 3.9, but involve vector PQ.) 



4 Statics of Rigid Bodies 

A rigid body, as already defined, is an assembly of particles whose relative posi­
tions remain unchanged. Actual bodies all deform to some degree when subjected 
to forces, but the rigid bodies we shall consider are such that changes of shape 
can be disregarded. The shape of a rigid body, that is, the configuration of its 
particles, is maintained because of forces between the particles, the forces being 
such that all particles are individually in equilibrium if the whole body is in 
equilibrium. 

The forces acting on the particles of a rigid body can therefore be classified as 

(1) external forces: forces whose sources are outside the body 
(2) internal forces: forces between the particles of the body. 

Note particularly that forces that are internal for a particular assembly of particles 
can become external forces for a part of the assembly. More precisely, therefore, 
we say: having defined the boundary of the system, those forces that have their 
origin in the surroundings are external forces. 

On the basis of this distinction between external and internal forces we now 
extend the discussion of the statics of single particles to that of particle assemblies 
and rigid bodies in particular, with the aim of finding resultant forces and setting 
out the corresponding conditions which must be satisfied if equilibrium is to be 
achieved. 

4.1 Newton's Third Law 

The analysis of the forces acting on a particle system is greatly simplified when 
the third of Newton's laws is taken into account. This can be stated in the follow· 
ing form. 

The Third Law 

The force exerted by one particle on another is always accompanied by an equal 
and opposite force exerted by the second particle on the first particle, both forces 
acting along the line joining the particles. 

The set of internal forces for a rigid body is therefore made up of pairs of 
equal and opposite collinear forces that cancel each other. It follows that, for the 
body as a whole, the external forces are the only forces that influence the resul­
tant and the conditions for equilibrium for a rigid body. 

The external forces act on different particles of the body and in general their 
lines of action do not meet at a point. In turn, the resultant will not only have a 
magnitude and a direction but also a line of action that must be found. Fortun-
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ately the results for a single particle are still applicable by virtue of a principle that 
we now introduce. 

4.2 Principle of Transmissibility 

In figure 4.la a rigid body of arbitrary shape is indicated with a single force acting 
at particle A. Suppose now some other particle B is selected in the line of action 
ofF and two forces F' and F" are applied at Bas in figure 4.1 b, the forces being 

(a) (b) (c) 

Figure4.1 

such that F' = - F" and F' =F. This set of three forces is equivalent to Fat 
particle A since the resultant ofF' and F" is zero. However, it is evident that for 
the body as a whole forces F and F" have no resultant, therefore the set of forces 
is also equivalent to F' at particle Bas indicated in figure 4.lc. Since this equi­
valence exists for each external force on the body we can express the result as a 
principle in the following form. 

Principle of Transmissibility 

If a set of forces acts on a rigid body then the resultant of the set or the state of 
equilibrium of the body is unchanged if any force F of the set acting on a particle 
of the body is replaced by a force F' having the same magnitude and direction 
acting on a different particle, provided the line of action is unchanged. The force 
sets are all equivalent. 

Note particularly that this principle only relates to resultants and states of 
equilibrium. The internal forces, although their resultant is still zero, are modified 
if the points of application of the external forces are changed. 

4.3 Resultant: Parallel Forces: Couples 

The resultant of a set of forces acting on a rigid body, that is, the single force 
equivalent to the set, can be found by repeated application of the principle of 
transmissibility. The case of parallel forces will be taken up first using this method. 
This will enable certain new entities to be introduced, which will enable more 
expeditious and significant methods to be adopted for force sets in general. 
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( 1) Two Like Parallel Forces 

In figure 4.2a two parallel forces P and Q having the same sense are shown acting 
at the boundary of a rigid body. Choose any straight line in the body intersecting 
the lines of action of P and Q at points A and B. If P and Q are now moved along 
their lines of action to A and B respectively we obtain an equivalent force set. 

Q 
p 

(a) (b) (c) 

Figure 4.2 

Two equal and opposite collinear forces F and F' are now introduced at A and B 
and combined with the forces P and Q by the triangle law to produce two forces 
whose lines of action meet at a point X. The point X, if it happens to be outside 
the body, can be taken to be an isolated particle belonging to the rigid body 
(figure 4.2b ). At X these two forces can again be resolved into the same vector 
components, and after removing the two equal and opposite forces F and F' we 
are left with a single force (P + Q) whose line of action passes through the point 
Y of the line AB (figure 4.2c) and which is equivalent to the original force set. 
From the geometry of figure 4.2c and that of the force triangles we have P/ F = 
XY/AYand Q/F' = XY/YB, from which it follows that AY/YB = Q/P. The 
resultant is therefore the single forceR with magnitude (P + Q) whose line of 
action passes through the point Y on an arbitrary line AB and which divides it in 
the inverse ratio of the magnitudes of the forces. 

f2) Two Unlike Parallel Forces 

The same procedure applied to forces P and Q having opposite senses will show 
that a single force can again be found, which is equivalent to the original set but 
whose magnitude is the difference between the magnitudes of P and Q. The point 
Y is again given by the relation AY/YB = Q/P but Y now lies outside AB. If 
P > Q then the point Y lies on BA produced, that is, beyond the line of action of 
the larger force; the magnitude of the resultant is (P- Q) and its sense is that of 
P the larger force. Figure 4.3 illustrates two cases. 

( 3) Two Equal Unlike Parallel Forces 

If the same procedure is attempted for forces P and Q having opposite senses but 
for which P = Q it will become apparent that no single force can be found and 
that the procedure merely produces further pairs of equal unlike parallel forces, 
each pair being equivalent to the original set. Such pairs of forces therefore have 
no resultant. A force set of this kind is termed a couple. 
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p Q Q 

(o)P>Q (b)Q>P 

Figure4 •. 3 

( 4) Any Number of Parallel Forces 
By repeated application of the above results, taking forces in pairs at each stage, 
we can obtain the resultant, if it exists, of any number of parallel forces. If there 
is no resultant then the set is reducible either to zero or to a couple as the case 
may be. 

4.4 Centre of Parallel Forces 

Consider a rigid body subject to a set of three like parallel forces P, Sand Q 
applied to particles A, Band C (figure 4.4a). The resultant of P and Sis a force 
(P + S) passing through the pointY such that AY/YB = S/P. The resultant of 
(P + S) at Y and Qat C is a force (P + Q + S) passing through the point Z on YC 
such that YZ/ZC = Q/(P + S). 

( 0) ~b) 

Figure 4.4 

If now the lines of action of P, Q and S are all rotated through the same angle, 
their magnitudes remaining unchanged, we obtain another set of like parallel 
forces, and it is evident that the line of action of their resultant passes through 
the same point Z as before. The lines of action of the two force sets therefore 
pass through a point Z, which is ft.xed in relation to A, B and C, that is, to the 
rigid body. This point is termed the centre of parallel forces. It follows that if the 
directions of P, Q and S are maintained and the body is rotated instead, the 
resultant will always pass through the point Z in the body. 
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If now the set of parallel forces arises from the Earth's gravitational attraction 
on all particles of the body, the resultant gravitational force, the weight of the 
body, again acts through a point fixed in the body, now termed the centre of 
gravity. 

It should be noted that although in practice the centre of gravity is, by the 
preceding argument, a point fixed in the body, this is not strictly the case since 
gravitational forces are not truly parallel. Thus in the case of the gravitational pull 
of the sun on the Earth the centre of the sun's gravitational forces varies with the 
orientation of the Earth. However, for the bodies of engineering applications the 
centre of gravity for the Earth's gravitational forces can be taken as fixed in the 
body with quite negligible error. 

More important is the consideration that the centre of gravity is associated with 
gravitational forces. A more fundamental point can be defined that is fixed and 
independent of these gravitational forces. This is the mass-centre, which will be 
discussed in chapter 7. 

4.5 Moment of a Force 

A force F acting on a particle of a rigid body can be replaced by an equal force 
F' acting on another particle provided the line of action is not changed. However, 
an equal force F", acting on another particle not in the same line of action, 
although equal, is not equivalent; that is, F" cannot replace F. The effects ofF 
and F" on the body, in particular as far as a tendency for rotation about an axis 
is concerned, are different. In figure 4.5, drawn in the plane of the forces, the 

w~ 
Figure 4.5 

axis is at A and is perpendicular to the plane. We define the moment MA of the 
force F (or its equivalent F') about the axis at A as the product F x d, where d 
is the perpendicular distance from A to the line of action of the force. If the force 
tends to produce anticlockwise rotation then the turning effect will be considered 
to have a positive sense and the associated moment will also be positive. 

Although the moment is defined in relation to an axis at A, for coplanar forces 
it is usual to refer to moments about the point A, in which case the point A can 
be termed the moment-centre. 

The moment of a force has a magnitude and in the general three-dimensional 
case a direction would be, by definition, associated with it. In the case we have 
considered, the direction of an anticlockwise moment would be defmed as that 
of the axis at A, pointing upwards from the diagram. Moments of forces can also 
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be summed by the triangle law and are, therefore, in the general three-dimensional 
case, true vectors. 

If arbitrary OX and 0 Y directions are chosen in the plane of the diagram then 
as we have seen, Fx and Fy serve to define the magnitude and direction of the 
force F; MA now serves to define the line of action in relation to the axis at A, 
since the perpendicular distance to the line of action is given by d = MAfF. 

The calculation of moments is often simplified by the use of a theorem named 
after Varignon, which states that the moment of a force about an axis is equal to 
the ·sum of the moments of its vector components about the same axis. The result 
can be demonstrated with the aid of figure 4.6 in which rectangular components 

Figure4.6 

have been used for simplicity. A particle Pis chosen lying in the line of action of 
F. The chosen vector components ofF at Pare shown as Fx and Fy. From the 
axis at A the perpendiculars AQ, AR and AS are dropped on to the lines of action 
of the force and its components. If RM is now made perpendicular to AQ and RN 
is made parallel to AQ, then 

MA = F X AQ 

= F(AM + MQ) = F(AM + RN) 

= F(AR cos () + PR sin ()) 

= Fx x AR + Fy x RP 

=Fx x AR+Fy x AS 

thus demonstrating the theorem in this case. 

4.6 Moment of a Couple 

The rigid body in figure 4.7 is subject to the couple comprising two unlike 

Figure 4.7 
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parallel forces F1 and F2 for which F1 = F2 = F, say. The sum of the moments of 
F1 and F2 about A is F1d 1 - F2 d2 = F(d 1 - d2 ) = Fd. This quantity, again 
signified by MA is called the moment of the couple. It is evident that since dis the 
perpendicular distance between the lines of action the moment of a couple does 
not depend on the position of the axis and is a property of the couple itself. 

Further properties of couples follow. 

(1) Two coplanar couples having the same moment and sense are equivalent (figure 
4.8). It is sufficient to show that one couple can be transformed into the other; 

Figure4.8 

the proof, using the principle of transmissibility, is straightforward and is left as an 
exercise. The equivalence of couples having the same moments and sense enables 
us to intropuce the symbol shown in the figure to represent a couple, the sense 
of the arrow serving to indicate the sense of the couple, and the symbol M the 
magnitude of the moment of the couple and its equivalents (the suffix now being 
omitted). 

Furthermore, if the moment of a couple is known then the d~tails of the two 
forces making up the couple need not be specified. A body is then said to be 
subject to a torque, a quantity that is now described by a statement ofits magni­
tude and sense, having the same dimensions and units as those of the moment of 
a couple. 

It is convenient in the discussion to be able to refer to a couple in general 
terms without particularly specifying the magnitude of its moment. For this 
purpose the symbol L can be used to represent the couple, the direction of L 
being that of the moment of the couple. 

(2) Two coplanar couples are together equivalent to a single couple having a 
moment equal to the algebraic sum of the moments of the individual couples. The 
proof, utilising property 1, consists of transforming each pair of forces into 
corresponding equivalent pairs with the forces the same distance apart and having 
the same lines of action, and then summing the forces directly. 

4.7 Force- Couple Sets 

Although a force F acting on a rigid body can only be replaced by an equivalent 
single force F if the line of action is unchanged we can still obtain an equivalent 
force set with the force Fin some other parallel line of action if it is accompanied 
by an appropriate couple. Thus in figure 4.9, by introducing oppositely directed 
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M=Fd for couple 

Ffgum4.9 

forces F' and F", for which F' = F" = F, at particle B on the desired line of action, 
we can form a couple consisting ofF and F' having moment Fd. The original force 
F is therefore equivalent to the single force F' acting at B, together with this 
couple. This couple is further equivalent to any other having the same moment. 
We can summarise thus: any force F acting on a particle of a rigid body may be 
moved to any given point (the direction being unchanged) provided a couple L is 
added having a moment M equal to the moment of the given force about the given 
point. 

Conversely, a force F acting on a particle of a rigid body together with a 
coplanar couple L may be combined into a single force whose line of action is 
such that its perpendicular distanced from the particle is given by d = M/F, 
where M is the moment of the couple. To ensure that the line of action is moved 
in the correct direction it should be verified that the moment of the single force 
about the particle on the original line of action has the same sense as that of the 
couple originally present. 

4.8 Coplanar Forces: Resultant 

It has already been pointed out that the resultant of a set of forces acting on a 
rigid body can be found by repeated application of the principle of transmissibility 
and the triangle law. Any two forces are combined into a single force passing 
through the intersection of their lines of action. The number of forces is therefore 
reduced by one. The process is repeated until there remains either a single force 
with a defmed line of action, or a couple. For particular cases the method becomes 
essentially graphical and will not be pursued in detail. By the use of force -couple 
sets more general results can be derived. 

F2 

@" R --F.z. = F, 

(a) (b) (c) 

Figure 4.10 
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Consider the set of forces shown in figure 4.10a. Each force in turn can be 
replaced by an equal force at some particle A, together with a couple. The forces 
now acting at particle A can be combined into a single forceR and the couples 
combined into a single couple L. Thus the set is reducible to a force- couple set 
with the force acting at any chosen particle. 

If R is not zero then from the previous section the force -couple set can in 
turn be replaced by a single force with a definite line of action; this force is the 
resultant R of the force set as shown in figure 4.1 Oc and is given by 

R = y'[(~Fx)2 + (~Fy)2] 

~F 
tanO = _Y_ 

~Fx 

~MA 
d= --

R 

If R is zero then the force set has been reduced to a couple; this couple is the 
resultant couple L of the force set and has a moment ~MA. 

Any set of coplanar forces acting on a rigid body can therefore be reduced 
either to a single forceR or to a single couple L as the case may be. If in a parti­
cular case there is neither a resultant R nor a resultant couple L then the body is 
in equilibrium. Conversely if a body is known to be at rest then it is in equilibrium 
and there can be no resultant R or resultant couple L. 

Worked Example 4.1 

In figure 4.1la the column AB has weight 2 kN, the centre of gravity being at D . 

1~_.5.L-H.;..;A_ 
I I u 

(a) 

Figure 4.11 

1 kN B E S\ 
.:.;.;;..;.,,::---t-------1 kN m 

,/3kN 1kN 

A 

( / • unknown ground 
V reaction at A 

(b) 

The overhanging portion, weight 1 kN with centre of gravity atE, carries a pro­
jecting pin at C to which a torque is applied as shown. The force at B is supplied 
by a stay wire. By transferring these forces to the foot of the column deduce the 
reaction of the ground on the column. 
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Solution 

The free· body diagram is shown in figure 4.11 b in which the force at B is resolved 
into two vector components where 

Fax = 2 sin 30° = 1 kN +­

Fay = 2 cos 30° = y3 kN -1-

The couple at C is equivalent to a couple at A having the same moment. 
The 1 kN force at E is equivalent to a vertical 1 kN force at A together with a 

clockwise couple having moment 1 x 1 = 1 kN m. 
The 2 kN force at D can be moved to A in its line of action. The 1 kN force at 

B is equivalent to a horizontal 1 kN force at A together with an anticlockwise 
couple having moment 1 x 3 = 3 kN m. 

The y3 kN force at B can be moved to A in its line of action. Thus-+ ~Fx at 
A=- 1 kN; t~Fy at A= -1 -2- y3 =- 4.732 kN; J')~MA =- 2- 1 + 3 = 0. 

For equilibrium of the body R = 0 and L = 0 and it follows that the ground 
reaction at A must have force components Rx = 1 kN-+; Ry = 4. 732 kN t and 
that the couple exerted is found to be zero. If the applied couple at C had 
moment 3 kN m there would be an anticlockwise couple, moment 1 kN m, 
exerted by the ground on the body at A. 

4.9 Conditions for Equilibrium 

In practice we encounter rigid bodies that are known or are seen to be in equili­
brium under the action of a set of forces. In a particular case the magnitudes, 
directions and lines of action of some of the forces may be known (the purpose 
of the rigid body being to support or transmit such forces) and it is desired to 
determine the characteristics of the remaining forces. To do so it is necessary to 
set out the conditions for equilibrium, R = 0 and L = 0, in the form of scalar 
equations that can be solved for the desired information. For this purpose the 
forces are expressed in terms of their components. 

Consider again, therefore, any arbitrary set of coplanar forces acting on a rigid 
body. As found in section 4.8 the set must reduce either (1) to a single force R 
with vector components Rx and Ry where Rx = ~Fx and Ry = ~Fy in given x­
andy-directions, or (2) to a couple L having momentM. 

Choose three points A. B and C. 
(a) If ~Fx = 0, then Rx = 0, but it.is possible that the set reduces toRy only or 
L only; if now ~Fy = 0, then Ry = 0, but it is possible that the set reduces to L 
only; if now ~MA = 0, then L = 0. If Rx = 0, Ry = 0, L = 0, then the body must 
be in equilibrium. 
(b) If ~Fx = 0, then Rx = 0, but it is possible that the set reduces toRy only or 
L only; if now ~MA = 0, then L = 0, but it is possible that the set reduces toRy 
only passing through A; if now ~M8 = 0, then provided AB is not perpendicular 
to the x -direction, Ry = 0. If Rx = 0, L = 0, Ry = 0, then the body must be in 
equilibrium. 
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(c) If ~MA = 0, then L = 0, but it is possible that the set reduces toR passing 
through A; if now ~M8 = 0, then it is possible that the set reduces toR passing 
through A and B; if now ~Me = 0, then provided Cis not on the line AB, R = 0. 
If L = 0, R = 0 then the body must be in equilibrium. 

It follows that for a rigid body to be in equilibrium, the conditions for equili­
brium contained in any one of the following groups of equations must be satisfied. 

~Fx = 0, ~Fy = 0, ~MA = 0 

where A is any point; or 

~Fx = 0, ~MA = 0, ~MB = 0 

where A and B are any two points not both on a line perpendicular to the 
x-direction; or 

~MA = 0, ~M8 = 0, ~Me = 0 

where A, Band Care any three points that are not collinear. 
The three equations in any group can be solved for not more than three un­

known quantities. 

4.10 Solution of Problems 

The solution of problems in statics follows the basic procedure described in the 
following paragraphs. The fundamental requirement for the consideration of the 
equilibrium of a rigid body is that all external forces are properly accounted for, 
therefore the importance of the free- body diagram in ensuring this cannot be 
overemphasised. This diagram is not a sketch to illustrate the solution but it is an 
integral part of the solution, and should not be omitted or drawn haphazardly. 

(1) Choose the body that is known or is required to be in equilibrium. The body 
chosen may be a part of a larger body or one of an assembly of connected bodies 
that are as a whole in equilibrium. Consider the chosen body in isolation and 
draw a neat diagram on which the boundaries are clearly defmed. 

This free body or system is subject to the action of its surroundings, namely 
external forces that can be grouped as follows. 

(a) Applied forces, namely all forces other than those referred to under (b) 
and (c). 
(b) Gravitational forces, namely the weight of the body or its component in the 
plane of the other forces. 
(c) Constraint forces or reactions, namely those external forces required to main­
tain the position or configuration of the free body and which can be regarded as 
being brought (simultaneously) into play as a result of the action of the applied 
and gravitational forces; it should be noted that there will be a constraint force or 
reaction at every point where the free body is in contact with any kind of support; 
constraint forces can therefore arise as forces exerted by other parts of a larger 
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body or by other connected bodies from which the chosen body has been 
separated. 

Forces in groups (a) and (c) are also classed as surface forces while those of 

type of support reaction supplied 

(alternative senses shown 
dotted I 

(a) 

{~7 17 
;z (b)A =f -I? ,,,v(d:v yv 

smooth surface cord or cable 

frictionless rollers 

,,~,~ 41'0, 
collar on 
smooth rod 

pin in 
smooth slot 

(g)Q(h)_Q 

smooth pin rough surface 

built in or encostre 

single farce: 
point of application- known 
directional force -known 
magnitude of force-not known 

force components= single force: 
point of application -known 
direc tion of force -not known 
magnitude of force-not known 

I 

{~ ... _. 
I 

force-couple set= single force: 
point of application - not known 
direction of force - not known 
magnitude of force- not known 

Figure 4.12 

unknowns 

one unknown 

or 

two unknowns 

three unknowns 
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groups (b) are body forces. Some of these forces may not be known completely, 
in particular, those in group (c). However, we can note that a force in this latter 
category is equivalent to a force at a known point with known direction, or a 
force at a known point with unknown direction, or a force at an unknown point 
with unknown direction, the number of unknowns being respectively one, two or 
three in number. Figure 4.12 illustrates for reference some typical examples of 
constraints that are encountered in practice and the nature of the forces that can 
be supplied by those constraints. 

(2) Show all external forces, both known and unknown, on the diagram. If any 
forces are unknown use appropriate symbols, preferably indicating components 
for ease of calculation. This diagram is the free-body diagram for the problem. 

(3) Apply the conditions for equilibrium and solve the equations for the unknown 
quantities. This step usually calls for some thought since a suitable choice of 
reference directions and moment centres can often expedite a solution. 

(4) Check solutions for reasonableness and arithmetical accuracy. It is always 
desirable to verify correctness by inserting the solution in an equation that has 
not already been used under paragraph (3). 

4.11 Composite and Connected Bodies 

Most engineering applications are concerned with assemblies of elementary rigid 
bodies that are connected in various ways to each other or to some ftxed support. 
The conditions for equilibrium set out in section 4.9 are for a rigid body and 
obviously may be directly applied to an individual body or member, or to a group 
of rigidly connected members of an assembly. The conditions can also, however, 
be applied to a non- rigid assembly of connected members if their configuration is 
maintained constant by the applied forces and couples, for the assembly may then 
be regarded as a rigid body. Thus each individual body or member of the assembly, 
or group of connected members that is maintained in a ftxed configuration, can 
be chosen as a free body and the forces required for equilibrium of that free body 
determined. 

An essential fact to note is that by Newton's third law there are at each connec­
tion mutual forces or reactions that are equal in magnitude and oppositely direc­
ted along the same line of action. Thus in ftgure 4.12 a force shown as acting on 
the body from the support is accompanied by an equal and opposite force acting 
on the support from the body. However, as far as the free- body diagram of the 
body is concerned, it is only the force on the body that is indicated. Similarly, 
for two connected bodies, the free-body diagram for one body must show (as 
one of the external forces) only the force exerted by the other body to which it 
is connected. 

Following from the conditions for equilibrium it is possible to write three, and 
only three, independent equations for each individual body or member. Thus an 
assembly of three connected members gives rise to nine independent equations 
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allowirig a solution for nine unknowns. However, in certain problems, depending 
on the number of unknowns required to be evaluated, it will hot be necessary to 
set up all the independent equations. Free-body diagrams of connected groups 
do not give rise to further independent equations although they may yield more 
useful combinations of the same equations. 

Typical of the engineering examples of connected bodies are trusses, frames, 
mechanisms and composite beams. The analysis of these assemblies is directed 
towards the determination of the internal forces in the members, but a necessary 
preliminary is the determination of all the external forces acting on each member 
separately using the principles already discussed. 

In the analysis of connected bodies it is useful to recognise two types of 
member that are frequently encountered: these are referred to as two-force and 
'three-force members respectively. 

(1) Two-force member: if a body is in equilibrium under the action of two forces 
only then the two forces have equal magnitudes and opposite senses in the same 
line of action. 
(2) Three-force member: if a body is in equilibrium under the action of three 
forces then their lines of action meet at a point, unless they are parallel. 

If these conditions were not met then clearly there would be a resultant force 
in case (1) and a resulting moment about the intersection of two of the forces in 
case (2), and a state of equilibrium could not exist. 

.._ 035m-.! 

0.075 m~0075 m I 

8 

(a) (b) 

(c) (d) 

Figure 4.13 

Worked Example 4.2 

In figure 4 .13a the body A, having mass 100 kg with centre of gravity at GA, is 
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hinged to a fixed point C and a leg at D rests on a smooth surface. The body B, 
having mass 10 kg, with centre of gravity at GB, is hinged to A atE and is also 
supported at H, the contact surfaces at this point being smooth. If the system is 
in equilibrium under the applied SON force and 100 N force indicated, determine 
the horizontal and vertical components of (1) the reactions of the fixed surface 
on the body A at D and C and (2) the reactions of the body B on body A at E 
and H. 

Solution 

Following section 4.10, free-body diagrams are drawn for the assembly of body 
A and body Bas shown in figure 4.13b, for body B alone, as in figure 4.13c, and 
for body A alone, as in figure 4.13d. 

Using the categories of section 4.10 we insert into each free- body diagram 
forces as follows. 

(a) The applied forces; in the case of figure 4.13b these are the SON and 100 N 
forces, in figure 4.13c it is the SON force only and in figure 4.13d the 100 N force 
only. 
(b) Gravitational forces; these are the weights of A and B acting through GA and 
GB respectively in figure 4.13b and the separate weights in figures 4.13c and 
4.13d. 
(c) Constraint forces or reactions exerted by other parts of the system on the 
'particular free body being considered, as follows. 

(i) In the case of figure 4.13b the reactions of the fixed surface on body A at 
points C and D; from a study of figure 4.12 it follows that there can only be an 
upward force at D, called Foy• while at C the force can have both horizontal and 
vertical components that are unknown in sense; senses have therefore been 
assumed for these components, which are symbolised by Fey and Fcx· 
(ii) In the case of figure 4.13c the reactions of body A on body B at points E and 
H; FHy can only be vertically upwards but the senses of the two components FEx 
and FEy at E are again unknown and have to be assumed. 
(iii) In the case of figure 4.13d the reactions of the fixed surface on body A at 
points C and D as already described in (i) and the reactions of body B on body A 
at points E and H; the senses of FHy• FEx and FEy in figure 4.13d must be oppo­
site to those in figure 4.13c to conform with the third law. Note that the sense of 
FEx and FEy in figure 4.13d must follow logically from the senses assumed in 
figure 4.13c. 

Each separate member gives rise to three independent equations and since all 
six unknowns (FEx• FEy• FHY• F0y. Fcx and Fey) are to be evaluated it will be 
necessary to write down all six independent equations in order to provide a 
solution. Equilibrium conditions as set out in section 4.9 are used to write down 
the six equations, each equation preferably containing only one unknown. The 
latter can often be accomplished by judicious choice of moment -centres or 
reference directions. 
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From figure 4.13b: ~c = 0 

981 X 0.3 + 98.1 X 0.275 - 50 X 0.4- 100 X 0.15- 0.6 X Foy= 0 
therefore 

F0 y = 477 N 

50 + 100 + Fcx = 0 
therefore 

Fcx = -150N 

F0 y + Fey - 981 - 98.1 = 0 
therefore 

Fey = 602 N 

From figure 4.13c: ~ME = 0 

FHy X 0.15 - 98.1 X 0.075 - 50 X 0.2 = 0 
therefore 

FHy = 115.7 N 

FEx +50= 0 

therefore 

FEx =-SON 

FEy + FHy - 98.1 = 0 

therefore 

FEy = -17.6N 

Strictly figure 4.13d is unnecessary since all the required answers are available; 
it should be retained, however, and used to check the already calculated values. 
This can be done by inserting these values into the following equation, deduced 
from figure 4.13d, for the equiljbrium of body A. 

~Me = FEx X 0.2 + FEy X 0.35 + 981 X 0.3 + FHy 
X 0.2 - 100 X 0.15 - Foy X 0.6 

Inserting values the right-hand side becomes 

(-50) X 0.2 + (- 17.6) X 0.35 + 981 X 0.3 + 115.7 
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X 0.2 - 100 X 0.15 - 477 X 0.6 = 0 

as required. (Note the retention of the negative signs in the values of FEx and 
FEy·) 

The required answers are as follows. 

(1) Reactions of the fixed surface on A at C and Dare Fcx• Fey and Foy in 
figure 4.13b (or d); taking account of the assumed directions and the signs ob­
tained for the quantities the correct reaction components are 

at C 

at D 

+- 150 N, t 602 N 

t477 N 

37 

(2) Reactions of the body Bon body A atE and Hand are FEx• FEy and FHy in 
figure 4.13d; taking account of signs the correct reaction components are 

atE ~50N,t17.6N 

at H t 115.7 N 

4.12 Simple Trusses 

A simple truss is a structure made up of straight two-force members usually of 
uniform cross-section; the connections are regarded as being made by smooth 
pinned joints, and the members are so connected that the structure as a whole is 
rigid under the action of a set of forces applied at the joints in the plane of the 
truss. 

The simplest rigid assembly is the triangle made up of three members shown 
in figure 4.14a, the members being represented in the diagram by straight lines. 

(a) (b) (c) 

Figure 4.14 

The figure shows other configurations developed by connecting further members 
in pairs to form additional rigid triangles, the whole assembly or truss then being 
connected to or being i:iJ. contact with the supports at appropriate joints. 
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The support shown diagrammatically at A in figures 4.14b and c represents a 
smooth pinned joint as detailed in figure 4.12g; the support at Bin both figures 
represents a roller support as detailed in figure 4.12b. 

The truss is in equilibrium under the action of applied forces or loads, and the 
reactions from the supports. The conditions for equilibrium require in general that 
the supports supply three reaction '~omponents and conversely, the conditions will 
enable three such components to be determined. Figures 4.14b and c show how 
three components of reaction are supplied by a roller and pinned joint. A simple 
truss supported in this manner is said to be statically determinate. If the truss in 
figure 4.14b or 4.14c had been connected to the support at two pinned joints 
then a further reaction component would have been supplied. The determination 
of the four components would have required some additional condition beyond 
those relating to equilibrium. The truss is then said to be statically indeterminate. 
We shall only consider trusses and other assemblies that are statically determinate. 

Each pin of the truss is in equilibrium under the action of the forces exerted 
by the members meeting at the joint. In addition there are applied forces and 
reactions at certain joints. Since by definition the members are two -force mem­
bers, the forces (having equal magnitude and opposite s_.ense) exerted on any 
member by the pins at the ends of that member have lines of action coinciding 
with the line joining the pins. By the third law the directions of the member 
forces on the pin at each joint are therefore known; the magnitude and sense of 
each member force remain to be determined. Applying the conditions for equili­
brium of a particle, treating the pin as a free body, the member forces at each 
joint can now be determined, analytically or graphically, provided the unknown 
forces at the joint considered do not exceed two in number. The analysis 
commences at a joint where a solution for the member forces is possible and then 
moves from joint to joint, noting that since the members are two-force members 
the solutions are progressively carried over from one joint to another, care being 
taken to change the sense of a member force on passing to an adjacent joint. It is 
advisable to calculate the support reactions initially by treating the whole truss as 
a free body; this can afford a check on the correctness of the analysis since the 
pins at the support joints must be individually in equilibrium. 

The complete solution yields the forces exerted on the pins. These forces, 
reversed in sense, are the forces on the members. If these latter forces are directed 
inwards along a member then it is said to be in compression, and if outwards, in 
tension. A member in compression can be referred to as a strut, and a member in 
tension as a tie. 

Worked Example 4.3 

The truss in figure 4.15 is pin jointed at A and Band carries applied loads,, 
magnitudes 1000 Nand 2000 N, as shown. Determine (a) the force in each 
member stating whether it is a strut or tie and {b) the reactions of the truss on the 
wall at A and B. 
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This type of problem lends itself to graphical solution since the force directions 
are known to be along the lines representing the members. We start at a pin where 
there are only two unknown forces- for example, in this particular case it is 
advantageous to start by considering the equilibrium of pin E. 

The forces acting at E are the applied 2000 N force and the forces in the 
members CE and DE, the directions of which lie along these members. A triangle 
of forces using the three directions and the sense of the 2000 N force is drawn to 
close in figure 4.15b and the senses and values of FeE and FoE are deduced from 
this. 

The force exerted by pinE on link CE is opposite to that in figure 4.15b and 
it follows that the forces exerted on CE are as indicated on figure 4.15c, therefore 
CE is a tie. By the same arguments the forces exerted on DE are as indicated, 
showing it to be a strut. From the force acting at end C of CE the force exerted by 
CE on pin Cis deduced and shown in figure 4.15c. The force exerted by DE on 
pin D is also indicated. 

We may now consider the equilibrium of pin C, which has four forces acting 
upon it: the 1000 N applied force, the known force FeE exerted on C in the 
direction indicated in figure 4.15c and the forces in the members AC and CD. A 



40 BASIC ENGINEERING MECHANICS 

polygon offorces is drawn (figure 4.15d) and from this the values and senses of 
Fco and F AC are deduced. The forces exerted on AC and CD are thus as given in 
figure 4.15e, indicating AC as a tie and CD as a strut. The force exerted by AC on 
pin A is deduced and also that exerted by CD on pin D. 

There are now only two unknown forces acting at pin D and the relevant force 
polygon, figure 4.15f, is drawn to give the values and senses of FoA and F80 . 

The forces acting on AD and BD (figure 4.15g) show AD as a tie and BD as a 
strut. The diagram also shows the forces exerted by AD on pin A and BD on pin 
B. From the latter, the forces on pin Bare shown in figure 4.15h and the action 
of the truss on the wall at this point is 7071 N L 225°. 

Of the three forces acting on pin A, two are known and one is unknown in 
magnitude and direction. The triangle offorces in figure 4.15j gives the solution 
for RA (of the wall on the pin) as 6708 N L 206.6°; it follows that the action of 
the truss on the wall is 6708 N L 26.6°. 

The force RA (wall on truss) could be determined from a polygon of forces for 
the complete truss; this would include the applied 1000 Nand 2000 N forces, the 
force R8 exerted by the wall on the truss at B, and will be closed by RA. R8 could 
have been calculated, since its direction must be that of BD, from the free- body 
diagram for the whole truss, by taking moments about the point A. 

The required answers are given below. 

Member 

AC 
AD 
BD 
CD 
CE 
DE 

Force (N) 

4243 
3000 
7071 
5000 
2828 
2000 

4.13 Simple Frames 

Strut (S) or Tie (T) 

T 
T 
s 
s 
T 
s 

A simple frame is an assembly of connected bodies, some or all of which are 
multi-force members. For our present purpose the connections are regarded as 
being made by smooth pinned joints. The frame will not necessarily need to be 
rigid when independent of the support, and the applied forces can act at points 
other than the connections. 

Typical configurations are shown in figure 4.16. Figure 4.16b illustrates a 
simple case in which the frame is no longer rigid if detached from its supports. 
There are now four reaction components at the supports (and two internal equal 
and opposite pairs of components at the joint C) but these can all be determined 
using equilibrium conditions only since six independent equations can be written 
(see section 4.11 ). The vertical wall between joints A and B can, if necessary, be 
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(a) (b) (c) 

Figure 4.16 

regarded as a member ensuring the rigidity of the frame. The frames in figures 
4.16a and b are both fixed in position and configuration and are therefore being 
maintained in a state of equilibrium. 

Figure 4.1 ()c is strictly that of a mechanism; this is discussed further in chapter 
11 but is included here with frames since the force analysis is the same for both. 
A mechanism can be regarded as a frame in which one of the support constraints 
has been removed; this implies that the configuration of the mechanism can 
change, but it is the purpose of a mechanism to transform movement at one point 
to a corresponding movement at another. If there are forces acting on the mechan­
ism then it is called a machine in which an applied force or torque at one point is 
required to balance a force or torque applied at another point. We may thus regard 
a particular configuration of the machine as being fixed under the applied forces. 
From section 4.11 it follows that any member of the machine, or any group of 
connected members, can be selected as a free body that is in equilibrium. For 
example, the free body consisting of the whole engine mechanism of figure 4.16c 
is in equilibrium under the external forces F, Rp, R0 and the torque M; the free 
body consisting of the connecting rod CP and piston B is in equilibrium under the 
external force set consisting ofF, Rp and the action of OC on CP through the pin 
at C. Mechanisms are one example where it is sometimes advantageous to consider 
a connected group of members as a free body rather than each individual member. 

Whereas for a truss the analysis involved the equilibrium conditions at the 
joints, for a frame the analysis proceeds by isolating each member, or group of 
connected members as discussed above, as a free body in equilibrium under the 
action of the applied forces and the action of those other members that are 
connected to it at pinned joints. The pin at a joint can be imagined to be an 
integral part of one of the members meeting at the joint. At each pin there exists 
an opposing pair of internal reaction components. The worked example 4.4 indi­
cates a suitable method of indicating the pin reaction components, by which each 
component in a pair of opposed components is assigned one symbol; the senses in 
which the reaction components are assumed to be positive for the member under 
consideration are then entered on the free -body diagram of that member; at the 
same time the opposing components are entered on the free-body diagrams of the 
adjacent members. 

By repeated application of the conditions of equilibrium the forces on each 
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isolated member can be determined. It is here that care should be taken to avoid 
a multiplicity of simultaneous equations by judicious selection of reference direc­
tions and moment-centres. It should again be noted (see section 4.11) that the 
number of independent equations available is three times the number of separate 
members although this number of equations may not need to be set up in a 
particular problem. The unknown should be determined and inserted in successive 
equations as the solution proceeds. 

Worked Example 4.4 

Determine the forces acting on each member of the fr3.p1e shown in figure 4.17a 
when carrying the 4 kN load at the point F. 

(a) F(;y 
c c c 

Fe, 

Fay 
Fax 8 I=* F 8 F B 

D lFay D r Fa, 
fby 4 kN 

4 kN 

FAx 
A E A E 

FAr 
(b) 

FEy 

1. 5 kN 1.5kN 

c c 

3.0 kN ~ B 0 
7.0 kN 

8 F 

4 kN 

A E 

1.5 kN 5.5 kN 

(c) 

Figure4.17 
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Solution 

Since the roller at E and the pin at A together supply three reaction components 
they can be determined without difficulty. Free-body diagrams of the frame and 
of the individual members are drawn (figure 4.17b ). The pin reaction components 
at each joint are entered in opposing pairs with one symbol assigned to each pair, 
as illustrated at joint C. There is clearly no need to letter all components since the 
symbol assigned has the same form at each joint. The direction of the opposing 
pairs is initially assumed but it is essential that the sense in which a component is 
shown be maintained throughout the analysis until all the magnitudes have been 
determined. Following the arguments at the end of the previous section only nine 
independent equations can be written and since from the free-body diagrams 
there are nine unknowns, all nine equations must be utilised. Equilibrium condi­
tions are thus used to write down nine equations, preferably those equations that 
contain only one unknown. 

For the frame 

Member BF 

~MB = 0 

Member CE 

~Me= 0 

FEy X 4 - 4 X 5.5 0 FEy = 5.5 kN 

-FAy + 5.5 - 4.0 = 0 FAy = 1.5 kN 

-FAx 0 

-4 X 3.5 + Foy X 2 0 7.0kN 

-FBy + 7.0-4.0 0 F 8 y = 3.0 kN 

-Fox X 2.5 = 0 Fox = 0 

- Fcx - 0 0 Fcx = 0 

-Fey - 7.0 + 5.5 = 0 Fey = -1.5 kN 
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Member BF 

"kFx = 0 

-Fox + 0 
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= 0 Fox = 0 

As a check verify equilibrium of member AC 

"£Me = FAy X 4 - FAx X 5 - F By X 2 + F Bx X 2.5 

1.5 X 4 - 3.0 X 2 

= 0 

The forces are now shown with correct senses on the free- body diagrams of the 
members (figure 4.17c). 

Worked Example 4.5 

For the frame shown in figure 4.18a determine the magnitude of the forces on the 
three pins at A, B and C. 

(b) 

(a) 

(c) 
Fe, 

Figure4.18 

Solution 

Since the pins at A and C supply four reaction components they cannot be deter­
mined completely from the equilibrium conditions for the frame. Free-body 
diagrams are drawn as in figure 4.18b for the two parts of the frame and in figure 
4.18c for the frame as a whole. 

Member AB 

"kMA = 0 

- F By X 15 + F Bx X 10 - 10 X 7.5 = 0 
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Member BC 

~Me= 0 

- F8 y X 15 - Fax X 15 + 10 X 7.5 - 5 X 5 = 0 

Solving these two equations, Fax= 5 kN and F8 y =- 5/3 kN. 

Member AB 

~Fx = 0 

Member BC 

~Fx = 0 

= 0 

FAy - 10 - (- 5/3) = 0 

-Fcx + 5 = 0 

Fcy+(-5/3)-10-5= 0 

Check for the frame 

FAx =5kN 

FAy = 25/3 kN 

Fcx = 5 kN 

Fey = 50/3 kN 

~MA = - 10 X 15/2 - 10 X 45/2 - 5 X 35 - 5 X 5 

+ 50/3 X 30 = 0 

FA = y(52 + 8.332 ) = 9.72 kN 

F 8 = y'(52 + 1.672 ) = 5.27 kN 

Fe= y(52 + 16.672 ) = 17.38kN 

Worked Example 4. 6 

45 

The mechanism of figure 4.19a has massless links and is in equilibrium under the 
applied force F acting on link BC and an unknown torque Q acting on a shaft at 
D which is rigidly fixed to the link CD. Determine this torque and the reactions of 
the supports on the mechanism at A and D. 

Solution 
Free-body diagrams are drawn, see figures 4.19b, c, d and e for the whole 
mechanism and the separate links. The reactions shown in the diagrams have been 
drawn in an arbitrary fashion when with experience many of them could be 
drawn in the correct direction (if not in sense); these directions can be decided in 
the following manner. 
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AB=BC=O.lm 
BC =0.5m 
BE =03m 

Ro 

F=20N 

(o) 

B 
Ra 

(d) (e) 

F =20 N C 

~8N 

20N~Ra=99: 

(g) 

(f) 

l
Ra ~16.3" 

B 0 1 ~cos 16 3" m c C 0 reactiOn of 
A 0 the supper 

reoct1on of _ _ R 0 
the support RA(- Ra) (=-Rcl 

(h) 

Figure 4.19 

(1) Forces R8 and RA acting on AB must lie along the line joining the hinged ends 
since it is a two-force member. 
(2) The three forces acting on link BC are in equilibrium and therefore pass 
through one point. Figure 4.19f is drawn utilising this fact and the known direc­
tion of RR to find the direction (but not the sense) of Rc· 

With their directions known a triangle of forces, figure 4.19g, is drawn of the 
three forces acting on BC, the sense of the forces following from that of F. 

The forces on the link ABare as indicated in figure 4.19h (showing it to be a 
tie) and it follows that the reaction of the support on the mechanism at A is 
9.9 N L - 90°. 
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The force R 0 acting on link CD was indicated randomly in figure 4.19e, but 
it follows from the equilibrium of the link that R 0 must be equal and opposite 
to Rc; the diagram is drawn correctly in figure 4.19j, the direction of Rc in this 
being opposite, of course, to that in figure 4.19g. The external torque Q must be 
clockwise for equilibrium and its value can be determined by moments about any 
point; for example 

~Mo = 0 

Rc X (0.1 cos 16.3°) - Q = 0 

therefore 

Q = 1.42 N m 

The reaction of the support on the mechanism at D is, as indicated in figure 
4.19j, 14.8 N L- 16.3°. 

4.14 Summary 

(1) By Newton's third law the set of internal forces reduce to zero, therefore the 
external forces are the only forces that influence the resultant and the conditions 
for equilibrium of a rigid body. 
(2) By the principle of transmissibility a force on a rigid body can be moved to 
any point on the line of action without affecting the resultant or the conditions 
for equilibrium. 
(3) Two unequal parallel forces have a resultant, but two forces having equal 
magnitude but opposing senses have no resultant and are referred to as a couple. 
(4) A set of parallel forces acting on specific particles of a body pass through a 
point whose position in the body does not depend on the orientation of the body. 
(5) The magnitude M of the moment of a force magnitude F about a point is 
defined to be Fd, where dis the perpendicular distance from the point to the line 
of action of the force. For coplanar forces moments having anticlockwise sense 
are taken as being positive. 
(6) The magnitude M of the moment of a couple L is Fd where dis the perpendi­
cular distance between the two unlike parallel forces, each having magnitude F, 
constituting the couple. The moment is a property of the couple and does not 
depend on the choice of a moment centre. 
(7) Coplanar couples having the same moment and sense are equivalent. A body 
can then be said to be subject to a torque of specific magnitude. Coplanar torques 
are added algebraically. 
(8) A force acting on a rigid body may be replaced by an equal force having a 
parallel line of action, provided a couple having the correct moment and sense is 
introduced. 
(9) For a set of coplanar forces acting on a rigid body, the magnitude R of the 
resultant, the direction 8 relative to the X -direction and the distanced of the line 
of action from a point A are given by 
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R = y[(~Fx)2 + (~Fy)2] 

tan() = ~Fy 
~Fx 

d = ~MA 
R 
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(1 0) Any set of coplanar forces acting on a rigid body can be reduced either to a 
single resultant forceR, or if there is no resultant force, to a single couple L. If 
there is neither a single resultant nor a single couple then R = 0 and L = 0 and the 
body is in equilibrium. 
(11) If a body is in equilibrium then R = 0 and L = 0, and any one of the follow­
ing groups of equations must be satisfied. 

(a) ~Fx = 0, ~Fy = 0, ~MA = 0, where A is any point. 
(b) ~Fx = 0, ~MA = 0, ~M8 = 0, where A and Bare any two points not both 
on a line perpendicular to the x-direction. 
(c) ~MA = 0, ~Mo = 0, ~Me = 0, where A, Band Care any three points that 
are not collinear. 
Note that for a rigid body only three independent scalar equations are supplied by 
the equilibrium conditions. 
(12) In the solution of problems a free-body diagram should always be drawn on 
which all external forces must be indicated. 
(13) A free-body diagram may be of any single member, or of any assembly or 
group of connected members whose configuration is fiXed under the action of the 
external forces and couples. 
(14) The external forces to be inserted in a free-body diagram are 

(a) applied forces 
(b) gravitational forces (weight) 
(c) reactions of all other bodies and supports (note that there will be a reaction at 
every point of contact or support) 

(15) For a two- force member in equilibrium the forces must have the same line 
of action; thus if the forces are applied at the ends of the member thefr lines of 
action lie along the line joining the ends. 
(16) For a three-force member in equilibrium the lines of action of the three 
forces intersect at one point. 
(17) For a system of n connected members there are 3n independent equations of 
equilibrium available; any further equations of equilibrium beyond this number 
will be redundant. 
(18) A truss is an assembly of pin-jointed two-force members and is analysed by 
applying the conditions for equilibrium of a particle to each pin. 
(19) A frame is an assembly of pin-jointed multi-force members and is analysed 
by applying the conditions for equilibrium to each member, a group of connected 
members, or the whole frame. A frame may be non-rigid when a support con­
straint is removed. When used to transmit forces and couples it is then classed as 
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a mechanism or a machine. If at any instant in a particular fixed configuration it 
is in equilibrium under the applied forces and couples. 
(20) Graphical methods sometimes facilitate a solution especially if the system 
consists of two- and three- force members. 

Problems 

4.1 Reduce the force -couple set in figure 4.20 to (a) a single force through A 
plus a couple and (b) a single force. State the magnitude, direction and position 
where necessary. 

Figure 4.20 

4.2 The massless rectangular plate ABCD in figure 4.21 is maintained in equili­
brium by the forces shown. Determine the magnitude of P and the reaction of the 
plate on the hinge. (Hint: See conditions for equilibrium; draw a free-body 
diagram.) 

p 

~ 
0.4 m 

20N 

o{: c 

D 30 N 

~ 

Figure 4.21 

4.3 The rectangular plate in figure 4.22 is lying in the horizontal plane and is in 
equilibrium under two known forces (1 000 N and 600 N) and three forces R 1 , 

R 2 , R 3 known in direction (lying along the full lines) but not in magnitude. 

see problem 4.l 

R1 

Figure 4.22 
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(a) Can the magnitudes of R 1 , R 2 and R 3 be determined? 
(b) If so, calculate these magnitudes. 

(Hint: How many equations are available? A judicious choice of moment-centre 
simplifies the calculation.) 

4.4 As for problem 4.3 but R 2 and R 3 are now inclined along the broken lines. 

4.5 A rigid rod ABC, length l m, carries a vertical load 500 Nat 0.2 m from A. 
The rod is supported in a horizontal position by three frictionless roller supports, 
one at A, another at B, 0.4 m from A, and the other at C. 

(a) Can the vertical reactions at A, Band C be evaluated? 
(b) If it assumed that R8 = 0.5 Rc calculate their values. 
(c) How is the system in (a) described? 

(Hint: Draw a free-body diagram and see conditions for equilibrium.) 

4.6 Determine the reaction of the wall on the rod in figure 4.23 if this is in equili­
brium under the applied forces 10 Nand 20 Nand has weight 5 N. {The centre of 
gravity is at G.) (Hint: Draw a free-body diagram assuming force components and 
a couple at the fixed end.) 

Figure 4.23 

4.7 The hinged rod in figure 4.24 rotates in the horizontal plane but is held in 
equilibrium under the forces and couples shown and the unknown force F. Deter­
mine F and the reaction of the hinge on the rod. (Hint: Draw a free- body 
diagram.) 

0.6m 

Figure 4.24 

4.8 A rod AB, length 1 m, is hinged at its top end A so that it can rotate in a 
vertical plane. A force, magnitude P, at L 0° is applied at Bin this vertical plane 
such that AB makes an angle 30° to the vertical. If the mass of the rod is 20 kg 
and its centre of gravity is 0.6 m from A, determine P and the reaction of the 
hinge on the body without taking moments. (Hint: Only three forces act on the 
rod.) 
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4.9 A massless square lamina ABCD with 1 m side is lying in a vertical plane and 
has cords attached to two top corners A and Band one bottom corner C. The cords 
from the two top corners are passed over frictionless pulleys and a body, mass 20 kg, 
is attached to that from A and a body, mass 40 kg, to the other. If a body, mass 
50 kg, is attached to the third cord and the lamina rests in equilibrium find (a) the 
angles the upper cords make with the vertical and (b) the angle the top edge of the 
lamina makes with the horizontal. A graphical solution is acceptable. (Hint: Use 
the triangle of forces and the fact that only three forces act on the lamina; the 
tensions in each cord are uniform.) 

4.10 An elastic cord of constant 20 N/m is fixed, just taut, between two points 
that are 1 m apart horizontally. If a particle of mass 2 kg is slowly dropped on to 
the cord show that when a state of equilibrium is reached all the relevant condi­
tions are satisfied when the cord tension is 12.46 N and each portion of the cord 
makes an angle of 38° to the vertical. (Hint: Make use of the relationship of 
tension and extension; use conditions for equilibrium, also geometrical relation­
ships.) 

4.11 (a) A uniform beam of mass misplaced against a smooth vertical wall and 
stands on a smooth horizontal floor; can it ever be in equilibrium? 

(b) A uniform ladder of length 10 m and mass 100 kg is placed to rest in a 
vertical plane with each end resting on a smooth surface, the surfaces being 
inclined towards each other and each making an angle of 45° with the horizontal. 
If a mass of 60 kg is placed at 3 m from one end find the angle of inclination of 
the ladder when it reaches a state of equilibrium. Is the 60 kg mass above or below 
the centre of gravity of the beam? (Hint: Consider equilibrium of the free- body 
diagrams; for (b) note directions of reactions of surfaces and use conditions for 
equilibrium.) 

mass of body A •s 50 kq 
mass of body 8 •s 20 kq 

p 

Figure 4.25 
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for each body and the assembly; make use of those directly applicable and make 
reference directions suitable for the problem. It is simpler for moment and force 
summations to resolve all forces parallel to and perpendicular to the chosen 
reference directions.) 

4.13 The assembly in figure 4.26 is in equilibrium with the applied force P such 
that the reaction at Cis just zero. Determine P and the reactions of body B on A 
at D and E. (Hint: See problem 4.12.) 

Figure 4.26 

4.14 Determine, for the truss in figure 4.27 the forces in each member, stating 
whether each is a strut or a tie. Find also the reactions at A and E of the supports 
on the frame. (Hint: Consider the free body of the whole truss to find the reac­
tion at E.) 

1 kN 

Figure 4.27 

4.15 Determine the forces (stating whether struts or ties) in each member of the 
truss in figure 4.28. Would the force in ABbe reduced if a member were used to 
connect AD rather than BE? 

Figure 4.28 
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4.16 Determine the forces in each member of the truss in figure 4.29. 

c 

1kN 

2kN 

AD= DF=2 m 
CO= CE=DE=1m 

Figure 4.29 
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4.17 The mechanism in figure 4.30 is in equilibrium under the applied force of 
20 N and a torque Q applied to the link AB through a shaft at A. Determine this 
applied torque and the reactions of the supports on the mechanism at A and D. 
Ignore the mass of the links. (Hint: See worked example 4.6.) 

Figure4.30 

4.18 Determine the values of the reactions of the supports at A and C on the 
frame, which lies in the horizontal plane, of figure 4.31. What is the reaction of 
AB on BC at B? (Hint: Draw separate free-body diagrams; an analytical method 
is probably most suitable.) 
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Figure 4.31 

4.19 In the mechanism shown in figure 4.32 the small roller D moves in a friction­
less fixed horizontal slide and roller A in a frictionless guide in link FC. Determine 
the external torque required on AE to maintain equilibrium when a force of 
10 kN is applied at D, and also the reactions of the mechanism on the supports at 
D, E and F. Ignore the mass of the links. (Hint: Draw free-body diagrams; use 
knowledge of two-force and three-force members; consider a graphical solution.) 

EA=0.3m 
FC = 1.4m 
CD=1.2m 

Figure 4.32 

4.20 The mechanism in figure 4.33 lies in the vertical plane. The only external 
forces acting are the applied force of 20 kN on the roller E, which moves in a 
vertical frictionless guide, and the weight of AC, which is also 20 kN and acts 
through G. Determine the torque required on OA to maintain the mechanism in 
equilibrium. What are the reactions of the mechanism on its supports at 0 , D and 
E? A partly graphical solution is suggested. (Hint : Draw a scale diagram to deter­
mine angles and distances, consider the free-body diagrams of roller E and links 
CD, BE, AC and OA.) 
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20 kN 

c B 

OA-lm AC=275m 
DC=lm AB=15m 
BE=15mAG=lm 

@ ' 

@--~----+ 
I 
I 

r---
i 
r 30m 

~-m-

Figure 4.33 

I 
----j 

~..j 
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4.21 In the mechanism shown in figure 4.34 the link BC has mass 10 kg, its centre 
of gravity being at D. The small block E has mass 5 kg and the mass of link AB is to 
be neglected. Determine the external couple required on AB to maintain the 
mechanism in equilibrium under the weights of BC and E and the applied force of 
1000 N for the position shown. (Hint: The use of a free-body diagram of a 
connected group of members will facilitate a solution.) 

lkN 

AB=1m 
BC= 3m 

BD=DC =1 5m 

D 

Figure 4.34 

8 

4.22 A platform is supported by two cross-frames AB and CD hinged atE as 
shown in figure 4.35. The frames are free to slide at Band C, AB is hinged to the 
ground at A and CD hinged to the platform at D. The platform and the load it 
carries have a total mass M and the centre of gravity of this may be assumed to be 
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A 

Figum 4 .35 

directly above E. Each frame has a mass m and its centre of gravity is at E. 
AB= CD= 2a. 

If friction is negligible find the value of P required to maintain the system in 
equilibrium when (} = 30°. (Hint: Draw free -body diagrams for the whole frame, 
the platform and DC.) 



5 Friction 

If two bodies are in contact and an attempt is made to slide one body relative to 
the other, forces tangential to the surface of contact will be developed tending to 
impede relative motion between the bodies. These forces are called friction forces 
and exist primarily because of the roughness of the contact surfaces; however, 
there are other contributory factors. If two surfaces are described in problems as 
being smooth then it is implied that friction forces do not exist or that they can 
be disregarded. 

The magnitude and characteristics of the resultant friction force on the body 
under consideration depend on the applied forces, the nature of the materials in 
contact, and the nature of the contact surfaces. The presence of contaminants 
such as oxide films and lubricants can affect the friction force considerably; thus 
a film of lubricant may be sufficient to keep the surfaces apart and the friction 
force is then dependent only on the properties of the lubricant film. 

We shall concern ourselves only with dry .friction (also referred to as Coulomb 
friction), that is, the friction at surfaces not purposely contaminated or lubricated. 
The characteristics of dry friction are fairly consistent and as such can be applied 
to problems in engineering mechanics. 

Friction is a complex phenomenon that has been studied for many centuries. 
In recent years the interdisciplinary nature of the study has been recognised and is 
now the subject of the wide- ranging field of tribology, defined as 'the science and 
technology of interacting surfaces in relative motion and of the practices relating 
thereto'. 

5.1 Characteristics of Dry Friction 

Suppose a block of mass m is lying on a horizontal surface and a horizontal force 
Pis applied to it. If the magnitude of Pis slowly increased from zero then the 
block remains stationary until, at a certain value of P, the block is on the point of 
moving. 

G 

N 

Figure 5.1 

p 

F 

The forces acting on the block are shown in figure 5.1; these are the weight mg, 
the force P, the normal component N of the reaction of the surface, and the fric­
tion component F, in the directions shown. The action of the block on the sur-
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face consists of a downwards force, component N, and a friction force component 
F to the right. If the block is at rest then F = P and N = mg. AsP is increased the 
magnitude of the friction component also increases until it reaches a limiting value 
FL when motion is about to occur. If motion does occur it is found thatPcan be 
reduced in magnitude while maintaining the body in motion at constant speed, 
implying that the limiting friction component has also decreased in magnitude. 
Continued increase in P causes the block to move at increasing speed, the friction 
component remaining at its reduced magnitude or possibly decreasing further in 
magnitude. The variation ofF with Pis indicated in figure 5 .2. 

F 
llm1t1ng 
value-FL 

Figure 5.2 

mat1on 

p 

If the normal force between the surface and the block, as represented by the 
magnitude N, is varied by adding loads to the block, it is found that the limiting 
value FL of the friction force component (as determined by observing P) is 
proportional to the magnitude N of the normal reaction component. 

In the case discussed, N is equal to the weight of the block and the super­
imposed loads. However, in most cases this is not so. Thus in figure 5.3a, in 

G 

N 

(a) (b) 

Figure 5.3 

which the surface is inclined to the horizontal, N = mg cos a; in figure 5.3b the 
force Pis shown inclined to the surface and N = mg - P sin (), showing that N can 
also depend on the applied force. 

The proportionality between the limiting value FL of the friction force (com­
ponent) F and the normal reaction (component) N has long been recognised and 
can be described as a law of friction. If the relation is written 

(5.1) 

the proportionality constant J.t is called the coefficient of friction between the 
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contact surfaces. The coefficient has a static value IJ.s corresponding to the limiting 
friction force at impending motion, and a lesser kinetic value Ilk corresponding to 
the friction force when motion is occurring. However, in this book we shall express 
the coefficient as p., without a subscript, on the understanding that the value 
assigned to this is the relevant one for the particular conditions of the problem 
being solved. In the few problems where situations of both impending and actual 
motion occur we shall assume that the value given applies in both cases; in the 
cases where motion occurs we shall also assume that the coefficient of friction is 
independent of the relative velocity of sliding. 

The basic facts relating to the magnitude of the friction f')rce may be sum­
marised as follows. 

(1) If no motion takes place the magnitude of the friction force can have any 
value betwe1·n zero and p.N, depending on the applied forces, but will always be 
such that tlte body is in equilibrium. 
(2} There is a limiting value to the magnitude of the friction force that can be 
generated; this value is p.N. 
(3} The limiting value of the friction force is only attained if relative motion is 
about to take place between the two surfaces in contact. 
(4) When relative motion occurs the friction force on a body is in the opposite 
direction to that of the relative motion of the body. 
(5) The coefficient of friction p. depends on the nature of the materials in contact 
and the nature of the surfaces; in this respect any quoted figures must be taken 
as purely nominal values- for example, touching a surface with the hand can 
change the characteristics of the surface. 
(6} The friction force is independent of the area of contact. 
(7} If motion occurs the kinetic friction force is less than the limiting static 
friction force. 

5.1.1 Angle of Friction 
The friction force F and the normal reaction N are the vector components of the 
total reaction R of the surface on the body- see figure 5.4a in which all other 
external forces have been omitted for clarity; the total reaction is seen to be 
inclined at an angle {3 to the normal. If motion is impending, F has attained the 
value FL = p.N, and {3 has attained a limiting value cp such that 

F 
tan cp = __!: = ll 

N 

The limiting angle cp is termed the angle of friction. 

(5.2} 

It follows from this that before motion takes placeR can possibly lie in any 
direction within ± cp from N (figure 5 .4b ), its actual direction depending on the 
other external forces. When motion is impending, R is at an angle cp to N in such 
a direction that FL opposes the impending motion. 

Suppose the body is resting on a surface inclined at a small angle a to the 
horizontal (as in figure 5.4a) and a is then gradually increased. Initially the body 
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(b) 

j ':" 
/ mg 
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pOSSible range 
of {3 

remains at rest and the reaction R of the surface is equal and opposite to the 
weight mg, since these are the only two forces acting (figure 5 .4c ). Resolving 
parallel and perpendicular to the plane 

F = mg sin(3 

N = mg cos 13 

with (j = a. When (j attains the value r/1, the inclination of R to the normal has 
reached its limiting value, but R is still equal and opposite to the weight. A further 
increase in a cannot increase the inclination of R to the normal and there is now 
an unbalanced force on the body (figure 5.4d), which now moves down the plane. 
The value of a when motion is impending is called the angle of repose and is equal 
to the angle of friction rp. 

Worked Example 5.1 

In figure 5.5a an external force Pacts on a body of mass 10 kg; the coefficient of 
friction /,l = 0.4. 

(a) Find the magnitude and direction of the friction force and the value of the 
normal reaction for (i) P = 10 N (ii) P = 30 N (iii) P = 56.6 N (iv) P = 70 N. 
(b) At what value of Pis motion impending up the plane? 

Solution 

A free- body diagram is drawn as in figure 5 .5b; the friction force F is unknown 
in either magnitude or sense and this is indicated in the figure. 
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98.1 

d 

(e) 

In this type of problem, in which it is not known whether motion is not 
impending, is impending, or is taking place, the method of solution is to examine 
the equilibrium of the body. The problem lends itself to a graphical solution and 
a polygon of forces is drawn to close with two lines parallel to the two unknowns 
Nand F; N is not restricted and can take up the value represented in the polygon, 
but the value ofF generated by the surface is restricted to a maximum value of 
F L = 11N. A comparison of the value ofF required to close the polygon with the 
limiting value FL will determine whether equilibrium is possible. If the polygon 
requirement is less than FLit can be generated by the surface, and it follows that 
the body is at rest with non-limiting friction; if the polygon requirement is equal 
to FL, motion is impending; if the polygon requirement is greater than FLit can­
not be generated, the actual friction force is F L, and motion occurs due to the 
unbalanced resultant force on the body. 

(a) (i) Figure 5.5c shows the polygon of forces for P = 10 N. Vectors cd and da 
represent the known forces mg = 98.1 Nand P = 10 Nand line ab is drawn 
parallel toN. The closing line be parallel to F represents the polygon requirement 
for F to maintain equilibrium; this is directed up the plane and measures 40.4 N. 
Now vector ab (N) measures 80 N and thus F is limited to F L = 0.4 x 80 = 32 N 
and is represented by the vector be'. With F = F L = 32 N up the plane c' is the 
terminal point of the force summation and there is thus a resultant force on the 
body of 8.4 N down the plane represented by cc' causing motion in that direction. 

(ii) The same general figure 5.5c suffices for P= da = 30 N. With this value 
N"" ab = 70 Nand be = 23.1 N. The maximum value possible for Fis FL = 
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0.4 x 70 = 28 Nand thus F can take the value 23.1 N. The friction force is there­
fore 23.1 N up the slope, the body remains in equilibrium, and motion is not 
imminent because F <FL. 

(iii) In this case Pis represented by de (figure 5.5c) andNby ec = 56.6 N; 
F = be = 0 and motion is not imminent. 

(iv) See figure 5.5d; with da = 70 N, N= ab = 49.9 Nand F (=be) needs to be 
11.6 N, directed down the plane. FL = 0.4 x 49.9 = 20 Nand F can therefore 
take the value 11.6 N. The friction force is 11.6 N down the slope and motion is 
not imminent because F <FL. 

(b) For impending motion up the plane FL/N= 0.4 and it is more convenient to 
useR(= ac) in the diagram, drawn at an angle 1/J (= tan-1 0.4) to the direction of 
N. Take care that 1/J is placed on the correct side of N; this is determined by the 
direction of FL, which, in this case, because impending motion is upwards, is 
down the slope. A line to represent R is thus drawn, in the correct direction, 
through c to locate a on the vector representing P. P then measures 77.9 N, 
N= 46 Nand F=FL = 18.4 N. 

Note the following from this problem. 

(1) The normal reaction N can vary according to the external forces. In this case 
it varies from 80 N to 46 N. 
(2) Because N varies the limiting value of friction is different for the two directions, 
being 32 N for motion down the plane and 18.4 N for motion up the plane. 
(3) The value of the friction force can consequently take up any value (depending 
on the value of P) between 32 N down and 18.4 N up. 

Worked Example 5. 2 

A uniform plank having mass 10 kg and length 6 m is lying at 20° to the horizontal 
across a channel as in figure 5.6a. The value of J1 at the contact surfaces is 0.3. 

(a) (b) 

Figure 5.6 

(c) 
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(a) Show that the plank is in equilibrium in this situation. 
(b) Determine the mass m of a small body, which, if placed at the point C 1.5 m 
from the centre, will make the plank just slip. 

Solution 

(a) If the body is in equilibrium under non -limiting friction conditions it is 
impossible to calculate the actual end reactions since there are four unknowns 
(magnitudes and directions of R A and R 8 ) and only three equations are available 
from the equilibrium of the body. 

The method of solution is to assume impending motion at both points of 
contact, being the condition for the body as a whole to be on the point of 
moving, and to demonstrate from the equilibrium of the body either that this is 
so, or not. In the latter case the body remains at rest in equilibrium. 

Note that the force set acting initially on the plank consists of three forces­
the total reactions at A and B, RA and R 8 , and the weight mpg acting through 
the centre of gravity. For equilibrium these three forces must pass through one 
point. 

The angle of friction rp = tan -l 0.3 = 16.7°. 
The total reaction RA has a possible direction of± rp from NA and similarly with 

R 8 ; the ranges of these directions are shown in figure 5.6b. If the assumption is 
made that upward motion is imminent at A and thus downward motion is 
imminent at B then RA takes the line AH (figure 5.6b) and R8 the line BE. This 
is clearly inconsistent with the assumed impending motion since this requires the 
body to be still in equilibrium and the lines of action of both RA and R 8 to pass 
through the same point on the line of action of the weight mpg. Also, for this 
implied clockwise impending motion, RA and R 8 pass through the pointY and 
moments about this point imply anticlockwise motion, which is again incompat­
ible with the original assumption. 

If the assumption is made that downward motion is imminent at A and up­
ward motion is imminent at B then RA takes the line AD and R8 the line BF. This 
is again inconsistent with the assumed impending motion since RA and R8 do 
not pass through one point on the line of action of mpg. Also, for this implied 
anticlockwise impending motion, RA and R8 pass through the point X and 
moments about this point imply clockwise motion, again incompatible with the 
implied anticlockwise impending motion. 

The plank must therefore be in equilibrium under non-limiting friction condi­
tions, the two reactions RA and R 8 not having their maximum inclination to their 
respective normals but both passing through the same point between F and D on 
the line of action of mpg. 

It also follows that motion of the plank will be imminent if its position is 
changed so that the points F and D coincide, and that the plank cannot be in 
equilibrium if the ranges HD and FE do not overlap. 
(b) In problems the statement 'to just slip' can be assumed to have the same 
meaning as 'imminent motion'. 

The force set in this case consists of the four forces RA, R 8 , mpg and the 
weight of the small body, mg. RA and R 8 take up their limiting positions at rp to 
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the normal and, assuming impending downward motion at A, their directions are 
known, as shown in the free-body diagram figure 5.6c; the angles in this figure 
can easily be verified. There are thus only three unknowns- the magnitudes of 
RA,R 8 and mg. Since the body is in a condition of imminent motion the forces 
are in equilibrium and thus 

"l:-Fx = 0 

"l:-M8 = 0 

(5.3) 

RA sin 61.7° + Ra sin 28.3° - 98.1 - mg = 0 (5.4) 

6RA sin 41.7° - 98.1 X 3 cos 20° - mg X 4.5 cos 20° = 0 

(5.5) 

The solution of these three simultaneous equations gives m = 9.74 kg. 
A partly graphical solution is also possible: with impending downwards motion 

at A the reactions RA and R 8 intersect at X (figure 5.6c ), which must, for equili­
brium, be on the line of action of the resultant of mpg and mg. If this line inter­
sects AB at P then mg x CP = mpg x PG and m = mp x PG/CP. 

The location of P is relatively simple in this case because the triangle AXB has 
a right angle at X. Then 

and 

and 

Thus 

BX = AB cos 48.3° = 3.99 m 
BQ = BX cos 28.3° = 3.51 m 

BQ 
BP ---

PG = 0.74m 

CP = 0.76 m 

3.74m 

10 X 0.74 
m = = 9.74 kg 

0.76 

Worked Example 5.3 

A cylinder of radius a rests with its curved surface on a horizontal floor. A uni­
form straight plank of length 2L lies symmetrically across it, such that its centre is 
in contact with the cylinder and its lower end rests on the floor. The coefficients 
of friction at all three points of contact are equal. The system is in equilibrium 
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with impending motion at only one of the three points of contact. Show that this 
point is never the point of contact of the cylinder with the ground but is the point 
of contact of the plank with the floor or with the cylinder depending on the 
inequalities 

3a2 § L 2 

Confirm that for equilibrium conditions to exist in these situations 1.1 must be 
> 1/ y3. 

Solution 

Note that both bodies are acted on by three forces. The cylinder (see figure 5.7a) 
has the reactions at A and B and its own weight, the plank the reactions at B artd 
C and its own weight. Free-body diagrams of the cylinder and plank are drawn in 
figures 5. 7b and d making use of the fact that when only three forces act on a 
body in equilibrium they must pass through one point. 

A 
(a) 

(c) 

Figure 5.7 

For the cylinder, R8 must thus pass through A and it follows, see figure 5.7c, 
that a must be less than {3 for the force triangle to close. For the plank, Rc must 
pass through B and therefore its line of action is inclined to the normal at C at the 
same angle as BC, namely 'Y· 

For impending motion to occur at only one of the points A, B or C the angle 
between the total reaction and the normal at that point must attain the value rp. 
This point cannot be A since {3 is always greater than a and thus limiting friction 
will always occur at B before it occurs at A. 



66 BASIC ENGINEERING MECHANICS 

From the geometry of figure 5.7b 

(5.6) 

Consider first the case in which motion is impending at both B and C simul­
taneously and~= r = </> 1 • From equation 5.6 

and 

also 

a 1 
tan 8 = - = 

L y3 
in this case, since 8 = ~ = 30°. 

If now r > 30° then (from equation 5 .6) ~ < 30°. Motion can become 
imminent at C first for some value of</>, </>2 that is greater than 30° (when 

(5.7) 

r = </>2 , ~ < </>2 ). It follows that for motion to be impending at C first 8 (= ~) < 30° 
and 

!!__ < _1_ 
L y3 

On the other hand if r < 30° then~> 30° and motion can become imminent 
at B first for some value of</>, </>3 that is greater than 30° (when~= </>3 , r < </>3 ). 

It follows that for motion to be impending at B first 8 (= ~) > 30° and 

a 1 ->­
L y3 

Motion is therefore impending at one of the points C or B depending on the 
inequalities a/LS 1/ y3 or 3a2 § L 2 • 

It has been demonstrated (1) for motion to become imminent at C first that 
</> = </>2 must be> 30°, (2) for motion to become imminent at B first that</>= </>3 

must be> 30°. It follows that the system can only be in equilibrium with motion 
imminent at either B or C (A being excluded as already shown) if</>> 30°, that is 
p.> 1/y3. 

5.1.2 Note on the Solution of Problems 

A geometrical solution, as illustrated by the preceding worked example, in which 
the total reaction R of the surface is used rather than its components F and N, is 
often preferable since the angle ~ between R and the normal can be seen and 
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compared with its limiting value cp. However, the analytical method in which F 
and N are treated separately can always be used; the ratio F/N at each contact 
must then be compared with its limiting value J.L. 

67 

For problems involving bodies at rest or in a state of impending motion the 
conditions for equilibrium are applied in graphical or analytical form. In all cases 
free-body diagrams should always be drawn. 

(1) To ascertain whether a body is in a state of rest and that motion is not impend­
ing under given applied forces, demonstrate that for equilibrium the friction forces 
are not simultaneously limiting. Friction forces can be inserted in the free-body 
diagrams with arbitrary directions, subject of course to compliance with the third 
law. 
(2) To ascertain whether motion is impending demonstrate that for equilibrium 
the friction forces are limiting at all points of contact. 
(3) To show that motion will occur under given applied forces set all friction 
forces to their limiting values and demonstrate that there is then a resultant force 
or couple acting on the body. Friction forces must be inserted with the correct 
sense corresponding to the assumed direction of relative motion. 
(4) Corresponding considerations arise for problems in which it is necessary to 
ascertain the applied forces required to ensure states of rest or impending motion. 

5.2 Some Practical Applications 

5.2.1 Wedges 

Wedges are used for raising large loads or adjusting levels of heavy machinery by 
the application of relatively small forces. Wedges have the useful attribute of being 
self -locking. 

Worked Example 5.4 

If the wedge in figure 5.8a is used to lift the block, mass 1000 kg, which abuts 
against the vertical wall, find P if J.1. = 0.2 at all contact surfaces. Ignore the mass 
of the wedge. 

Solution 

We assume motion is just about to take place and that limiting friction exists at 
all surfaces. Draw free-body diagrams for both bodies, as in figures 5.8b and c. 
The directions of the total reactions in these figures are determined from the 
directions of the respective friction forces, which themselves are determined by 
the relative motion of the surface; their lines of action are not known. 

cp = tan-1 0.2 = 11.3° 

Triangles of forces (since the forces are in equilibrium at impending motion) are 
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(b) 

(d) (e) 

Figure 5.8 

given in figures 5 .8d and e for the block and the wedge respectively. Note that 
the reaction R 2 is common to both triangles. 

From figure 5.8e,P= 5230 N. 

5.2.2 Jamming or Self-locking 

If a state of impending motion in a body or mechanism cannot be brought about 
by an applied force however large the force may be, then the body or mechanism 
is said to be jammed or self-locked. The condition is frequently associated with a 
force in a particular direction, and a reversal of the force will release the body or 
mechanism. 

Consider again the case of a block mass m resting on an inclined plane but now 
subject to a horizontal force P (figure 5.9a). If a< cf> and Pis zero then conditions 
will be as illustrated in figure 5.9b, which is the same as figure 5.4c. The block will 

---
( b) (c) (d) 

Figure 5.9 

be in equilibrium and will remain so whatever additional loads are placed on the 
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block. A force P to the left and of sufficient magnitude is now required to initiate 
motion down the plane. 

If a:> rp and Pis zero, F on the block is directed up the plane but is insufficient 
to maintain equilibrium and the block moves down the plane. If P acting to the 
right is gradually increased in magnitude, F first reduces to zero and is then 
directed down the plane as in figure 5 .9c, the block being in equilibrium if 
~ < rp. Eventually Pis such that F has reached its limiting value and the angle ~ 
has reached the value rp when motion is impending up the plane. From the poly­
gon of forces at impending motion, with~=¢ (figure 5.9d), P = mg tan (a:+ rp). 
For a given value of rp, if a: is now increased P must also be increased for impend­
ing motion and the required value of P can become indefinitely large as a: tends to 
the value (rr/2- rp); the block is then said to be jammed as regards motion up the 
plane. Note, however, that if Pis removed, then because a: is larger than cp, the 
'angle of repose', the block will begin to move down the plane. 

Deformation of the body and of the surface have not been taken into account 
and in practice there will clearly be limitations on the magnitude of the forces 
which can be applied. 

Worked Example 5.5 

The arm AB in figure 5.10a is attached to a shaft which can rotate in frictionless 
bearings. The rigid rod CD, mass 20 kg, slides in vertical guides and is in contact 
with the arm AB at C. If rp = 15° at each sliding contact, determine 

0 

t6 m 

(o ) 

•a 
f+---- --- -!0 

(d) 

Figure 5.10 

F 

0.8 ton 8 m 

(c) 

(a) the value of the angle fJ at which it is impossible to lift CD by the application 
of an anticlockwise torque to the shaft. 
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(b) If () = 10°, the magnitude of the torque required to initiate upward movement 
of CD. 

Assume that the diameter of the rod and the thickness of the arm are small. 

Solution 
(a) We need to consider the equilibrium of both CD and AB and it is therefore 
necessary to determine the directions of the total reactions at the sliding surfaces 
at C, E and F. The impending motion atE and F is upwards and thus the friction 
forces exerted by the guides at these points on CD must be downwards. For this 
upward impending motion, the impending motion of the contact point of CD on 
AB is towards B; the friction force exerted by AB on CD at C opposes this motion 
and is thus towards A. The free-body diagram, figure 5.10b, is now drawn with 
the angles between the reactions and their respective normals all equal to rf> be­
cause motion is everywhere imminent. The reactions R 1 and R 2 could, without 
further consideration, lie along either the broken lines or full lines but moments 
about F and C will confirm that, for equilibrium, they must lie along the full lines. 

It is now necessary to consider whether CD can be in equilibrium under the 
external forces and in this type of situation the moment equation for equilibrium 
is useful. In this case the lines of action of R 1 and R 2 intersect at X, a fixed point, 
as long as motion is impending at E and F. The moments of the other two forces 
mg and R must thus sum to zero about X and it follows that for equilibrium to be 
possible R must lie to the right of X such that bR = amg. As the angle() is in­
creased b will decrease and R (= amg/b) will increase becoming infinite as b-+ 0. 
Thus an infinite value of R is necessary for the rod CD to be in equilibrium when 
the line of action of R passes through X. This decides the maximum value of 
()(() m) beyond which CD may not be lifted, the mechanism then being jammed as 
regards upward motion. 

From the geometry of figure 5.10c 

and 

also 

XF 
sin (em + rf>) 

0.4 
XF 

sin rf> 

CF 

sin 1/J 

= 1.5455 

CF = 2.4 - 0.8 tan ()m 

1/J = 90 - (rf> + ()m) + rf> = 90 - ()m 

sin 1/J cos Om 

sin (Om + rf>) = sin Om cos rf> + cos Om sin rf> 

0.966 sin Om + 0.2588 cos Om 

(5.8) 
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Equation 5.8 becomes 

1.5455 = (0.966 sin Om + 0.2588 cos Om) (
2.4 - 0.8 tan Om) 

COS ()m 

The solution of this is 

()m = 65.4° or 28.7° 

The smaller value that satisfies the equation, namely 28.7°, is the solution. It is 
thus impossible to raise AB beyond()= 28.7°. 

(b) If()= 10° then 

and 

Thus 

CH = 2.0 - 0.8 tan 10° 

= 1.859 m 

(see figure 5.10b) 

HJ = CHtan(O + </>) 

= 1.859 tan 25° = 0.867 m 

0.4 
a = -- = 1.492 m 

tan</> 

XJ = a - HJ = 0.626 m 

b XJ cos 25° 0.567 m 

R 
amg 1.492 X 20 X 9.81 

= 516 N 
b 0.567 

From the equilibrium of AB, whose free-body diagram is given in figure 5.10d 

a11d 

AC x R cos </> - M = 0 

AC 
0.8 

= 0.812 m 

M = 0.812 X 516 X cos 15° 

= 405 Nm 

This is the torque required to produce imminent motion upwards when () = 10°. 
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5.2.3 Screws 

We shall only consider screws with threads of square cross-section. The thread 
winds spirally around a cylindrical shaft and can slide in a corresponding square 
groove, cut spirally inside a cylindrical guide. An axial load on the shaft is trans­
mitted to the guide through the thread and an external torque is then usually 
required to make the load move axially through movement of the thread in its 
surrounding guide, which is assumed ftxed in the following analysis. 

A view of a thread on a spindle or shaft and a cross-section of the guide or 
nut is given in ftgure 5.11 a. Two definitions relating to the thread are 

p 

(c) ~. 
8P 

(a) 

guide (dl 

Figure 5.11 

(1) lead L is the axial distance travelled by the shaft during one complete revolu­
tion of the shaft 
(2) mean diameter D is the mean diameter measured midway between the top 
and bottom of the thread. 

If one could unwind the spiral, diameter D, made by the thread and lay it down 
flat it would form an inclined plane, as indicated in figure 5.11 b, the angle a being 
given by tan a= L/rrD. Thus the loaded screw thread in its guide or nut is 
mechanically equivalent to a block carrying the same load on a plane inclined at 
angle a. If the external couple applied to the shaft is applied in a plane perpendi­
cular to the axis of the shaft it follows that a force P applied to the block, equi­
valent to the set of elementary forces distributed around the thread, is horizontal 
and in the plane of the ftgure. The equivalent system is shown in figure S.llc for 
motion up the plane and it is seen to be exactly that discussed in the previous 
section; from that section the horizontal force P required to move such a block 
up an inclined plane of slope a is W tan (a+ cp) where W is now the axial load. 
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Reverting now to the case of the threaded shaft the force Pis made up of a set of 
elementary forces that are tangential to the thread in a plane perpendicular to its 
axis, see figure 5.11 d, and in total they constitute a torque about the axis having 
magnitude 

D D 
M = P x - = W tan (a + cf>) x -

2 2 
(5.9) 

This is the axial torque required to move a spindle against an axial load W and is 
applied in the sense of the angular movement of the shaft. Conversely this may be 
thought of as the frictional torque exerted by the guide that has to be overcome in 
rotating the shaft to cause axial movement against the load. Its magnitude may 
be rewritten as 

WD WD tan a + tan cf> 
M = -tan (a + cf>) = -

2 2 1 - tan a tan cf> 

WD L + J.11TD 
2 rrD - pL 

since tan a= L/rrD and tan cf> = J.l. 
If the shaft is fixed and the guide, now carrying the axial load, is rotated to 

produce axial movement the relationships are unchanged. 
By further reference to section 5.2.2 it is apparent that if a< cp then the 

loaded shaft can remain in equilibrium in its guide with no external torque 
applied, friction then being non-limiting. However, if motion is required in the 
direction of the axial load then for the block, P = W tan (C/> -a) in the opposite 
direction to that given in figure 5.11c and a corresponding torque M is required 
on the shaft, where 

D 
M = Wtan(cf>- a)-

2 

in the sense of the angular movement of the shaft. 

(5.10) 

If a> cf> then for the block, motion will occur down the plane unless a force 
magnitude P = W tan (a- cf>) is applied in the direction shown in figure 5.11c. 
The external torque required to be applied to the shaft to maintain the load in 
position is 

D 
M = Wtan(a-cp)-

2 

in the opposite sense to the impending angular motion. If this torque is not 
applied the shaft will move axially in the direction of the load. 

Worked example 5. 6 

(5.11) 

A screw is to lift a vertical load of weight 2000 N. If J.1 = 0.2 and the lead is 0.05 m 
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(a) find the mean diameter if, when the external couple is removed, the load just 
remains stationary; (b) if the mean diameter is made half the value determined in 
(a) find the external torque required (i) to raise the load and (ii) to lower the load; 
(c) repeat (b) if the mean diameter is made twice that determined in (a). 

Solution 

(a) The limiting value of a: for the load to remain stationary is 

a:= cf> = tan-1 0.2 = 11.3° 

Also 
L 

tan a:=-
rrD 

0.2 
0.05 

rrD 

giving D = 0.08 m. 

(b) (i) If D is actually 0.08/2 = 0.04 m then 

0.05 
tana: = ---

rr x 0.04 

a: = 21.7° and a: > cf> 

From equation 5.9 

M = 2000 tan (21.7° + 11.3°) 0·04 
2 

= 26.0 Nm 

in the sense of the angular motion. 
(ii) Since a:> C/>, a torque is required to stop the load descending of its own 

accord. From equation 5.11 

M = 2000 tan (21f 

= 7.3 N m 

in the opposite sense to that of the angular motion. 

(c) (i)D = 0.16 m 

0.05 
tana: =----

rr x 0.16 

a: = 5.68° and a: < cf> 
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From equation 5.9 

M = 2000 tan {5.68° + 11.3°) 0·16 
2 

= 48.8 Nm 

in the sense of the angular motion. 
(ii) From equation 5.10 

M = 2000 tan {11.3 ° 

= 15.7 Nm 

in the sense of the angular motion. 

5.2.4 Belt and Cable Friction 

Belts are often used for the transmission of a torque from one shaft to another 
and have some advantages over gearing; transmission is carried out by having 
cylindrical pulleys fixed to each shaft and a continuous belt passing around the 
rims of the pulleys. 
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Friction is necessary between the belt and the pulleys in order that a torque 
can be transmitted, and the maximum torque that can be transmitted is related to 
the coefficient of friction between them. 

Consider a belt passing over a pulley radius R, which is mounted on a shaft and 
is being driven by the belt in.a clockwise direction as shown in figure 5.12a. The 

res1st1ng torque 

d1rect1on of 
rotat1011 

(a) 

N 

71 (hght) 
(b) 

Figure 5.12 

belt laps the pulley by an angle (}, T1 is the tension in the tight side of the belt 
{because this side is being pulled) and T2 ( < T1 ) is the tension in the slack side 
when the shaft is subject to an opposing torque and rotating at constant speed. 

We require to know the relationship between T1 and T2 in the limiting condi­
tion when the belt is about to slip on the pulley. In this condition the forces acting 
on a small circumferential element of the belt, length R8cx, at an angle ex from the 
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tangent point on the slack side are as shown in figure 5.12b. The tension is Tat 
angle a: and has increased to [T+ (dT/da:)c5a:] over the angular distance c5a:; there is 
the normal reaction N of the pulley on the element of the belt and the friction 
force opposing the imminent motion has its limiting value J,J.N. The mass of the 
belt has been disregarded. 

Choosing the normal and tangential directions at the centre of the element 

~Fn = 0 

- Tsin ( 6;) - [ T + (::) c5a: J sin e2Q) + N= 0 

Since c5a: is small, sin (c5Q/2) = c5a:/2, cos (c5a:/2) = 1 and since (c'ia:)2 /2 is second 
order, terms involving it can be neglected. The equations then reduce to 

Eliminating N 

Integrating 

and 

It follows that 

- Tc'la: + N = 0 

dT 
- = J.J.T 
da: 

(5.12) 
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T1 (1 - e-f..!tJ) 

T2 (e1L0 - 1) 
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(5.13) 

These are the required relations between T1 and T2 when the belt is about to slip. 
The onset of slipping is therefore governed not by the difference in the tension 
but by either their ratio, or their difference in comparison with the tension in one 
side or the other of the belt. 

The same relationships hold for a belt passing over a driving pulley except that 
now of course the pulley is driving the belt; thus the same equations, 5.12 and 
5.13 can be applied in the limiting condition. 

For the case of a fixed pulley or cylinder the same relationships are applicable 
and cover the case of a rope passing around a fixed bollard. The ratio of tensions 
can become very large in the latter case where the rope is wound around a number 
of times; for example for two complete turns round a bollard with J.L == 0.2, 
Tt/T2 == 12.3. 

Worked Example 5. 7 

A pulley 1.5 m diameter is mounted on a shaft that is being driven at 40 rad/s. If 
J.L = 0.2 and e is 120° what is the maximum torque that can be transmitted along 
the shaft if the maximum allowable tension in the belt is 2000 N? 

Solution 

(see figure 5.12a) 

If we put T1 /T2 = k whether slipping is imminent or not, then torque = 
T1 (1 - 1/k)R and is obviously at its maximum when both T1 and k have their 
largest values. Since T1 > T2 we set T1 equal to the maximum allowable tension, 
which is 2000 N. The largest value of k occurs when the belt slips and 

T1 ~ 120 ) k = - = exp 0.2 x - n 
T2 180 

:: 1.52 

(note e is in radians). 
Thus the maximum torque that can be transmitted is 

2000 (1 - - 1-) x 0.75 513 N m 
1.52 
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5.2.5 Friction in Thrust Bearings and Outches 

Although the theoretical analysis is the same for thrust bearings and clutches 
there is a distinct practical difference in that we wish to reduce friction in the 
bearing to conserve energy, whereas we wish to increase it in the clutch in order 
that it may transmit more torque. Figure 5.13 shows schematic sections of a 

end 

load 

Figure 5.13 

fnchoo spr~rogs to g.ve 
plate end load 

collar 

thrust bearing and a clutch. In figure 5.13a the rotating shaft carrying an axial 
load is supported by the stationary frustum-shaped bearing. In figure 5.13b, which 
shows the clutch, the springs press the face of the collar on to a renewable friction 
plate and torque is transmitted from the driving to the driven shaft. (The action 
of depressing a clutch pedal in a car is to compress the spring and draw the clutch 
faces apart.) 

The theory for both can be covered by examining the thrust bearing as shown 
in figure 5.14a. Consider an elementary frustum between radii rand r + 8r, shown 

end -1; 
~f----_=L~ 

s 

elementary 
oreo =r 88 Sr 

tt-
j LSB 
¥ - -

Figure 5.14 

p 

axial 
component 

enlarged in figure 5.14b. The normal pressure, or force per unit area, between the 
bearing and the conical end of the shaft is denoted asp. The normal force 8N on 
an elementary length of the frustum which subtends an angle 88 at the axis of the 
shaft is 
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or 
oN= p-- roe 

sin a 

and the axial component of this is 

oN sin a = p_!!_ roe sin a 
sin a 

= porroe 

The axial force oS on the elementary frustum is thus 

21T 
oS = L por roe = por r2rr 

IJ=O 

and the total axial force 

(5.14) 

The tangential friction force on the elementary length of the elementary 
frustum is 

Or 
JJBN = JJ.P --roe 

sin a 

and the total tangential frictional force on the elementary frustum is 

21T 

L 
IJ=O 

or 
JJ.P-- roe 

sin a 

or 
JJ.p-- r2rr 

sin a 

The torque required to overcome friction on the elementary frustum is thus 

or 
oMe = JJ.P -- r 2rrr 

sin a 

2TrJJ. = --pr2 or 
sin a 

For the whole bearing the torque Me required to overcome friction is 
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2rr sr, 2 Me = -.- JJ.pr dr (5.15) 
sma rt 

Equations 5.14 and 5.15 cannot be evaluated until the relationships between 
p, J1. and r are known. The usually accepted assumptions are 
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(1) f.1 is constant 
(2) if the surfaces are new or fit together perfectly pis constant 
(3) if the surfaces are worn the wear is assumed uniform over the bearing. 

If wear is assumed to be proportional to the product of pressure and distance 
moved by one surface relative to the other, then since the relative distance moved 
is proportional to the radius r, wear is proportional top x r; then (3) also implies 
that, for uniformly worn surfaces, pr =constant. 

For new surfaces p =constant and equations 5.14 and 5.15 become 

f r2 
S = 2rrp rdr = rrp(r~ - ri) 

r, 

27rf.1pf.rz 2 21rf.1P 
Mf = -- r dr = -- (r 3 - r 3 ) 

sin ex r, 3 sin ex 2 1 

2f.1S (r~- rn 
3 sin ex (r~ - ri) 

For uniform wear pr = a constant C and the equations become 

f r2 
S = 2rrC dr = 2rrC(r2 - r1) 

r, 

and 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

For clutches,Mf represents the friction torque that can be transmitted before 
slipping occurs and S represents the spring force acting on the clutch plates. For 
bearings Mf represents the torque that needs to be applied to the shaft to over­
come the friction of the bearing. 

In order to obtain a cortservative value for Mf use the larger of the values given 
by equations 5.17 and 5.19 for bearings and the smaller of the values for clutches. 

Worked Example 5.8 

A flat clutch plate has r 1 = 0.2 m, r 2 = 0.25 m, f.1 = 0.4. Find the spring force re­
quired in order that a torque magnitude 250 Nm may be transmitted. 



FRICTION 

Solution 
Equation 5.17 

Equation 5.19 

3(sin a)Mr(r~ - ri) s = 
2JL(r~ - ri) 

3 X 1 X 250 (0.252 - 0.22 ) 

2 X 0.4 (0.25 3 - 0.23 ) 

= 2766 N 

S _ 250 X 1 ( 2 ) 

0.4 \0.25 + 0.2 

= 2778 N 

In order to ensure th4t the clutch will transmit at least the required torque, 
the larger value is chosen, that is, S = 2778 N. 

5.2.6 Bearing and Axle Friction 
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Bearings are used to provide lateral support to rotating shafts and axles. The 
simplest form is the journal bearing in which the accurately turned end of the 
shaft or axle, the journal, rotates in a fixed plain cylindrical bearing having 
slightly larger internal diameter- as in figure 5.15a, in which the radial clearance 

bearing 

~ 
'tV 
shell 

1 

(a) 

w 

R 

(b) (c) 

Figure 5.15 

friction Clrcle 
radius,u,r, 

w """ 

R 

-I¢'\ 

angular motion 
of shaft 

(R=W, 10 thiS easel 

(d) (e) 

(rb - r s) has been exaggerated. We shall only consider the case where dry friction 
exists, or, more realistically, where the bearing is lubricated but the amount of 
lubricant is insufficient to separate the surfaces at the point of contact. 

Figure 5.15b shows a free-body diagram of the shaft, when at rest. If now a 
small couple is applied tending to rotate the shaft, the shaft rolls up the bearing 
surface and takes up the position shown in figure 5.15c when equilibrium is 
reached, with the total reaction R still equal in magnitude to W, the lateral load. 
As the couple is increased the angle {3 becomes equal to ¢s (figure 5.15d) and 
slipping occurs. The shaft moves back to a new equilibrium position with. {3 equal 
to ¢k corresponding to the coefficient of kinetic friction (see figure 5.15e) and 



82 BASIC ENGINEERING MECHANICS 

the shaft continues to rotate as long as the couple is maintained, for example by a 
driving motor. Note in particular that the shaft rolls up the bearing in the opposite 
sense to that of the angular motion of the shaft; a useful rule of thumb is that 
the sense of the moment of R about the axis must oppose that of the rotation. 

When the shaft is rotating at constant speed it is in equilibrium and the point 
of application of the vertical reaction R is clearly dependent upon the value of 
<f>k = tan- 1 f.J.k. If the magnitude of the continuously applied torque isM f, then 

Mr = Wr5 sin 1/Jk 

In practice 1/Jk is very small and sin 1/Jk :=:::: tan <h. = f.J.k and justifiably Mr = f.lk Wr5 • 

Mr is the so-called friction torque, being the magnitude of the torque re­
quired to be applied to the shaft in order to maintain angular motion when the 
lateral load W is being supported. The line of action of R is always tangential to 
the circle radius f.J.k's (figure 5.15e); this is called the friction circle and is the 
same for any lateral load if f.lk is constant. 

Consider now a wheeled container being hauled along a horizontal track as in 
figure 5.16a; it has wheels at back and front but only one wheel and axle are 
shown. 

bearing 

(a) 

Figure 5.16 

When the container and attached bearing are moving at constant speed to the 
right the axle rotates clockwise and the total reaction Rb of the bearing on the 
axle will exert an anticlockwise moment about the axis in the opposite sense to 
that of the rotation. Rb has horizontal and vertical components P and V; Vis 
clearly that part of the weight W of the container that is carried by the axle; P 
is part of a total horizontal force Q acting through the bearings on the axles and 
required to maintain the motion of the container at constant speed. The other 
force acting on the wheel and axle is the total reaction of the track, Rt, which has 
components N andP'. The free-body diagram of the wheel and axle is given in 
figure 5 .16b and it follows for equilibrium that P' = P, N = V and that the total 
reactions Rb and Rt must have the same line of action passing through the points 
Sand T, inclined at angle ~ to the vertical. It follows that P = V tan~. Since R b 

is inclined at angle 1/Jk to the radial direction at Sit follows from figure 5.16b 
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that the common line of action is again tangential to the friction circle radius 
ra sin 1/>k, where ra is the radius of the axle. Again if Jlk is small the radius of the 
circle is Jlkr a as before. Now sin 13 = Jlk ra/R0 , where R 0 is the radius of the wheel, 
and if r a is small compared with R 0 then sin 13 ~tan 13, therefore 

P = V X JlkrafRo 

If the track friction force P', as given by the equation for P above, cannot be 
generated due to limiting friction conditions at the track (P' is limited to J1 track N) 
and Jlk at the bearing is sufficiently large, the wheel and axle cannot rotate and 
slipping occurs at the track. On the other hand, if the bearing is well lubricated, 
Jlk is small and the force P to maintain the motion is correspondingly reduced. 

Assuming all the wheels and axles of the container are the same size and since 

Q = ~(P on all axles) 

W = ~(V on all axles) 

then 

Q = J1kWra/R 0 

being the force required to overcome friction at the bearings due to the vertical 
load W. 

5.3 Summary 

(1) The friction force component F of the total reaction R of a surface at a rough 
contact is in the opposite sense to that in which the body is tending to move 
relative to the adjoining surface. 
(2) The friction force F due to dry friction has a limiting value FL = J1N, which is 
attained when motion is impending. If motion is not impending the value ofF is 
less than J1N. 
(3) The angle of friction¢= tan-1 J1 is the angle that the total reaction R of a 
surface on a body makes to the normal when friction is limiting; as such it is the 
limiting value of 13, the angle between R and its normal component N. 
(4) The values of Nand Fare both dependent upon the other external forces. 
(5) Under non-limiting friction conditions where more than one sliding face is 
involved it is usually not possible, when only one body is involved, to determine 
the individual reactions. 
(6) For a body to be in a condition of impending motion limiting friction must 
exist at all sliding surfaces. 
(7) In solving problems make use of equilibrium conditions in graphical or analyti­
cal form; use free-body diagrams. If equilibrium exists and all the friction forces 
are not limiting simultaneously, the body is at rest and motion is not impending; 
if equilibrium exists when all the friction forces are limiting simultaneously then 
motion is impending; if when all the friction forces have limiting values there is a 
resultant force or couple, motion of the body is occurring; see section 5 .1.2. 
(8) When slipping just occurs it is assumed that the conditions for equilibrium can 
be applied. 
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(9) Wedges: examine the equilibrium of each body with limiting friction present, 
appropriately directed. 
(1 0) Jamming: consider the equilibrium of each body assuming limiting friction is 
present and ascertain the conditions under which applied forces become indefin­
itely large. 
(11) Screws: equivalent model is a block (carrying a load) on an inclined plane 
with an applied force perpendicular to the load; equations are derived on the 
assumption oflimiting friction; note differences for motion against and with the 
load, particularly for the latter when ¢>a. 
(12) Belts 

Tt - JJIJ -- e 
T2 

(fJ in radians). Note other limitations such as maximum allowable tension. 
(13) Clutches and thrust bearings 

2rr/). sr· 2 Mr =-.- pr dr 
sm a r, 

For new surfaces assume p =constant; for uniformly worn surfaces assume 
pr = constant. 

(5.12) 

(5.14) 

(5.15) 

(14) Bearing and axle friction: the total reaction R of a bearing on an axle has a 
line of action that is always tangential to the friction circle and such that the 
moment of R about the axis is in the opposite sense to that of the angular motion 
of the axle; the friction circle has radius IJ.'s where rs is the radius of the axle. 

Problems 

5.1 A bar rests on two pegs and makes an angle {3 with the horizontal. The 
coefficients of friction are /). 1 at one peg, which is distance a from G, the centre of 
gravity of the bar, and IJ.2 at the other peg at distance b from G. Show that for an 
equilibrium condition to exist 

IJ.tb + IJ.2a 
tan{3 <----

(a + b) 

(Hint: Draw a free- body diagram inserting forces at contact points as separate 
normal (N) and friction forces (F); from the equilibrium condition obtain three 
equations.) 

5.2 A circular cylinder of mass m with its axis horizontal is supported in contact 
with a rough vertical wall by a string wrapped partly around it and attached to a 
point on the wall above the cylinder. 
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If the angle between the string and the wall is~ show that the coefficient of 
friction must be not less than cosec ~' and that the normal force on the wall is 
mg tan ({3/2). (Hint: As problem 5.1.) 
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5.3 A uniform circular hoop has a small body, with a mass equal to its own, 
attached to a point on its rim, and is hung over a rough horizontal peg. Show that 
if the angle of friction is greater than rr/6 the system can rest with any point of 
the hoop in contact with the peg. (Hint: The external forces due to the weights of 
the attached mass and the hoop itself are vertical; the direction of the total 
reaction at the peg follows from this; use a free-body diagram with the peg at (J 

to the vertical through the hoop centre.) 

5.4 The body in figure 5.17 is stationary when the force Pis gradually applied. 

l 
G p 

1.2m 
0.8m 

~ 

Figure 5.17 

What is the critical value of J1 so that the body tips before it slides? Assume accele­
rations are zero. (Hint: Use a free-body diagram insertingN and Fat each contact 
point; use equilibrium conditions; if it tips one normal reaction must be zero.) 

5.5 A uniform plank of length 5 m and mass 50 kg is standing on a horizontal 
floor and leaning against a vertical wall. At the floor the coefficient of friction is 
0.3 and at the wall 0.2. 

(a) The plank is placed at an angle tan-1 0.6 to the vertical. Can the magnitudes 
of the normal reactions and the friction forces at the wall and the floor be 
determined? 
(b) Determine the ranges of values that are possible for these forces. 
(c) Can the plank slip in the position given in (a)? 
(d) Can the friction force at the floor ever be zero when the plank is in equilibrium? 
(e) At what angle to the vertical must the plank be placed for slip to be about to 
occur? 

(Hint: As problem 5.1; see worked example 5.2 for (a), (b) and (c); for (e) use 
total reactions and a geometrical approach.) 

5.6 A uniform rod mass m and length Lis lying on a rough horizontal table. A 
horizontal force Pis applied to the rod perpendicular to its axis at a distance 
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kL(k > t) from one end so that it just moves. Show that the rod rotates about a 
point distance hL from the same end and thatP= pmg(l- 2h), where h = 
k - (k2 - k + t F. (Hint: Choose an elementary length of the cylinder and thus 
decide the frictional force acting on it; then consider the equilibrium of the whole 
cylinder.) 

5. 7 A thin sheet of metal is to be positioned for feeding into a press by use of a 
simple jig consisting of two cylindrical rods, which.are parallel and at the same 
level. The sheet is passed to the right over rod 1 and then under rod 2 and positioned 
so that its centre of gravity is 2 m to the left of rod 1. The whole jig is now tilted 
anticlockwise until the sheet slides out of the jig. Find the distance required 
between the two rods if the sheet is to slide when at an angle of 60° to the hori­
zontal. For both sliding surfaces J.l = 0.2. Ignore the thickness of the sheet and the 
diameter of the rods. (Hint: Consider the equilibrium of the forces on the sheet 
under limiting friction.) 

(5.8) Two rough uniform cylinders, having equal diameters but unequal masses 
m 1 and m 2 (m 1 < m2 ) rest in line contact with each other on a plane whose 
inclination {3 is< 45°, the axes of the cylinders being horizontal. 

If J.l is the same for all surfaces, show that the frictional forces at each contact 
surface are equal and that for equilibrium to be possible the heavier cylinder must 
be uppermost and that J.l > (m2 + m 1 )/(m2 - m 1 ). (Hint: Draw the separate free­
body diagrams inserting (with assumed directions) the friction and normal forces 
at each contact point; use the equilibrium condition to answer the questions; 
compare the ratio of F/N with p.) 

5.9 Two cylinders lie in equilibrium on a rough inclined plane, in line contact 
with one another with their axes horizontal. The upper cylinder radius a, is heavy 
but the lower cylinder, radius b, has negligible weight. Show that if {3 is the 
inclination of the plane to the horizontal then b >(a tan2 {3)/4, that the coefficient 
of friction between the heavy cylinder and the plane must be at least 1/[2 cot {3-
..J(a/b )} , and that the other coefficients of friction must be at least equal to 
..J(b/a). (Hint: As for problem 5.8; all friction and normal force components can 
be evaluated in terms of the weight and the dimensions of the heavy cylinder (use 
the geometrical relationships). The condition forb arises from the fact that all 
normal components must be > 0.) 

5.10 (a) If for the wedge and block shown in figure 5.18 Q = 100 Nand (J = 40°, 
find the value of P required to lift the block. 
(b) If P = 100 N and (J = 40° fmd the value of Q required to make the block 
descend. 
(c) What should be the value of (J so that the wedge is locked (i) for any value of 
P, (ii) any value of Q? 

Disregard the masses of the wedge and the block and take J.l at all surfaces as 
0.3. (Hint: Use the total reactions and hence draw triangles of forces for each 
body; solve for Q andP. For (c) examine the relevant triangle to find the critical 
values of 8.) 
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r 
p 

Figure 5.18 

5.11 The mechanism shown in figure 5.19lies in the horizontal plane. AB slides 
in guides and carries a pin E which slides in a slot on the arm CD. The latter 
rotates freely on an axle at D. The coefficient of friction at each of the sliding 
surfaces at R, SandE is 0.35. 

Figure 5.19 

(a) Find the maximum value of() at which a couple applied to CD can move AB 
to the left. 
(b) Determine the value of the axial force that needs to be applied at B to move 
AB to the left when a clockwise couple having moment 50 N m is applied to CD 
and() has the value found in (a). Ignore the thickness of AB. 

(Hint: Use separate free-body diagrams; the directions of the total reactions are 
determined from the relative movement. For (a) consider equilibrium of AB, for 
(b) consider equilibrium of both AB and CD.) 
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5.12 The mechanism shown in figure 5.20 lies in the horizontal plane and con­
sists of a rigid rod AB with cylindrical ends sliding in mutually perpendicular slots. 
ll for all sliding surfaces is 0.3. 

(a) If Q = 0 determine the minimum value of() at which P can move AB. 
(b) If Pis removed, can Q cause movement at the value of() determined in (a)? 
(c) If Q = 100 N and () = 40° determine the magnitude of P so that motion is 
impending (i) in the anticlockwise direction (ii) in the clockwise direction. 

(Hint: Use a free-body diagram with limiting friction conditions. For (a) consider 
the case when there is no resultant moment on AB to cause motion; similarly for 
(b). Solve (c) using a polygon or triangles of forces, or by moments.) 
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p 

Q 

Figure 5.20 

5.13 The force required to tether a ship is 10000 N. The rope used to do this is 
wound four complete turns around a cylindrical post, the remaining length L 
lying on the ground. If the rope has mass 20 kg/m and the coefficient of friction 
between the rope and the floor and between the rope and the post are 0.1 and 
0.2 respectively, determine L to prevent slipping. Disregard the mass of the rope 
except where it contacts the floor. (Hint: Use the ratio of tensions and the force 
required to move the rope in contact with the floor.) 

5.14 A belt-and-pulley system consists of a driving pulley A with outside radius 
0.2 m and a driven pulley B with outside radius 0.4 m. The distance between the 
axes of the pulley shafts is 1 m. If the coefficients of friction between the belt 
and the pulleys are 0.2 at A and 0.15 at B determine at which pulley the belt first 
slips. What is the maximum torque that can be transmitted through the driven 
pulley if the allowable tension in the belt is 800 N? 

Will it always be true in a two-pulley system, with J1 the same for both pulleys, 
that the criterion for slipping is at the smaller pulley? 

5.15 A belt is attached at its two ends to two pins at the same level and distanced 
apart. A uniform cylinder- diameter d and mass m, to the surface of which a 
small body, mass m, is attached- is placed to lie in the belt with its axis horizon­
tal. If the length of the belt is greater than t rrd and J1 between belt and cylinder is 
0.2, determine the angular position 8 of the small body from the vertical line 
through the centre of the cylinder at which the cylinder will just slip in the belt. 
(Hint: Consider the equilibrium of the pulley with the attached mass; relate the 
tensions.) 

5.16 An electric motor drives a pulley of radius 0.2 m through a clutch. The 
pulley is fitted with a belt with angle of lap 150°, and J1 between the belt and the 
pulley is 0.25. The clutch plate has inner and outer radii 0.3 m and 0.6 m, and J1 
is 0.2. Determine the required end load on the clutch if the clutch is to slip just 
before the belt, when the tension on the tight side of the belt is 500 N. 

5.17 A screwed shaft moving in a fixed guide has a mean diameter 0.5 m and lead 
0.25 m, J1 = 0.05. For an axial load of magnitude 1000 N determine the torque 
required (a) to just sustain the load in equilibrium and (b) to move the shaft 
against the load. (Hint: For (a) which way is motion impending?) 
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5.18 A screwed shaft moving in fixed guide carries an end load of 500 N. The 
thread has a mean diameter 0.15 m and a lead 0.05 m; fJ. is 0.2. Find the magnitude 
and sense of the torque on the shaft required to (a) move the shaft against the 
load, (b) move the shaft in the direction of the load. 

What should the mean diameter be in order that the torque should be zero in 
case (b)? 

5.19 A body mass 1000 kg is to be lifted by means of a screw jack consisting of a 
screwed spindle moving in a fixed guide. The body cannot rotate and is carried on 
a thrust plate, which acts as a thrust bearing for the top face of the spindle. The 
top face of the spindle is made 0.3 diameter and the pressure may be assumed to 
be uniform. The thread has a mean diameter 0.1 m and a lead 0.02 m; fJ. at both 
sliding surfaces is 0.2 

(a) Find the torque required to be applied to the spindle to raise the load. 
(b) Will the load stay in position if this external torque is removed? 
(c) What should the lead be if the load is to be on the point of descending without 
assistance when the torque is removed? 

(Hint: Consider the friction torques (in magnitude and sense) at both thread and 
thrust bearing.) 

5.20 In the thrust bearing of figure 5.14, r 1 = 0.1 m, r2 = 0.3, a= 60° and fJ. = 0.05. 
The end load is 10 000 N. Obtain a conservative estimate of the friction torque. 

5.21 A flat thrust bearing is to have the inner radius one-third that of the outer 
radius. It carries a load of 20 000 Nand the pressure p (assumed uniform) is to be 
50 000 N/m2 • Determine the radii and the torque required to overcome friction. 
Assume fJ. = 0.08. 

If the bearing wears until pr = constant what will then be the maximum 
pressure and the torque required to overcome friction? 

5.22 A rope passing over a pulley is used to lift a body mass 20 kg. What force, 
applied vertically downwards on the other end of the rope, is required in the 
following cases: (a) the pulley is locked on its axle and the rope slips on the pulley, 
with fJ. = 0.3; (b) the pulley rotates on its axle, the clearance being sufficient for 
contact to be made along a single horizontal line. The ratio of the outside radius 
of the pulley to the radius of the axle is 10:1 and fJ. is again 0.3. (Hint: For (b) 
consider the equilibrium of the pulley noting that the reaction of the axle on the 
pulley is tangential to the friction circle.) 

5.23 The wheel of the container in figure 5.16 has outside radius R 0 , and axle 
radius ra; the coefficient of friction between the wheel periphery and its contact 
surface is f.J.o and at the axle is f.l.a· Find the relationship between IJ.o and IJ.a, assum­
ing ra ~R0 , in order that slip will first occur at the wheel periphery. 

5.24 The carrier in figure 5.21 has impending motion up the plane. Its total mass 
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Figure 5.21 

is 100 kg, its centre of gravity is at G; the friction circle of the axle is of 0.1 m 
radius and J1 at the road surface is 0.5. 

(a) In the impending motion will slip take place at the road surface or at the axle? 
(b) What is the magnitude of P and the value of 8? 

(Hint: Decide the direction of the reaction of the road on the wheel; consider the 
equilibrium of the carrier.) 



6 Virtual Work 

The methods used in chapter 4 for the complete analysis of trusses and frames 
involved successive applications of the conditions for equilibrium either for a 
particle or for a rigid body. In this chapter we consider a further interpretation of 
the state of equilibrium that has important implications. In particular, a method 
is provided for enabling selected unknown forces in connected bodies to be deter­
mined without having to apply the conditions for equilibrium to each body 
separately. 

6.1 Work 

Before going on to discuss the principle of virtual work it is necessary to define 
the work of a force. In chapters 10 and 13 the discussion of work will be much 
enlarged in the context of power and energy but for our present purposes the 
basic definition which follows is sufficient. 

6.1.1 Work of a Force 

In figure 6.1 a a particle is moving along a path under the influence of a force F. 

y 

0 X 

(a) (b) 

Figure 6.1 

The work of the force for a small displacement os of the particle from P to P' is 
defined to be F cos a:os or Fsos where Fs = F cos a: is the component ofF in the 
direction of the tangent to the path of the particle at P. The total work of the 
force on the particle as ~t moves from position s1 to position s2 along its path is 
symbolised by U1 _ 2 , and it follows that 

(6.1) 

Work is positive if Fs has the same sense as os; its unit is the joule (J), which is 
equivalent to 1 N m. 
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It is easily demonstrated (see section 10.5) that the work of a force F can be 
calculated by reference to its components in arbitrary x- andy-directions, since 

F cos a: lis = F8 lis = F'x li x + Fyli y 

and 

the initial and final positions of the particle being (x 1 , y.) and (x 2 , Y2 ). 

6.1.2 Work of a Torque or Couple 

The preceeding definition is sufficient to allow the total work of a set of forces 
acting on a rigid body to be calculated. However, where torques or couples are 
applied to a rigid body, it is convenient to be able to state the work of a couple 
in terms of its moment. A couple is indicated in figure 6.1 b by two equal unlike 
parallel forces F and F' a distanced apart such that the moment of the couple 
M = Fd. It is required to determine the work of the couple as the body turns 
through an angle l)(J about a point 0 so that the line AB moves to A'B', its 
length remaining unchanged. If l)(J is small, AA' and BB' are both perpendicular 
to AB, and make equal angles with the common direction ofF and F'. The total 
work of the couple is then 

l) u = F cos a: X AA' - F' cos a: X BB' 

= F cos a: (AA' - BB') 

= F cos a: (r A l)(J - r8 l>O) 

= F l)(J x AB cos a: 

= Fd liO 

= M l>O 

The total work of the couple as the body rotates from 0 1 to 0 2 is 

(6.2) 

This is positive if M and l)(J have the same sense. The unit is again the joule, 
with (} measured in radians. 

It is a simple matter to demonstrate that if the body moves in such a way that 
the orientation of AB is unchanged, that is, the body does not rotate, the couple 
does no work; the work of a couple or torque is therefore associated only with 
rotation of the body. 
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6.2 Principle of Virtual Work 

In chapters 3 and 4 the forces acting on the particles of a particle system were 
broadly classified as external and internal, depending on their source relative to 
the system boundary. For the purposes of the present discussion, different criteria 
are adopted to classify the forces; they again fall into two categories, now 
referred to as applied forces and forces of constraint. Constraints are geometrical 
restrictions imposed on the motion of a system; constraint forces are those 
external forces associated with such constraints when the system is subjected to 
applied forces, and also those internal forces required to maintain the geometrical 
configuration of the system particles. The distinction is brought out further in the 
course of the discussion. 

Suppose now a single particle subject to a given set of forces undergoes an 
arbitrary, infmitesimally small displacement l>s whose effect on the magnitudes and 
directions of the forces acting on the particle is negligible. The cause of the dis­
placement need not be questioned since it is arbitrary and is not necessarily 
related to the forces acting. Such a supposed displacement is termed a virtual 
displacement. Arising from the displacement there will be work Fs l>s associated 
with each individual force and the total work ~8 U = ~Fs l>s for all the forces can 
in principle be calculated. Since the work arises from a virtual displacement it is 
called virtual work. 

If the particle is in equilibrium under the action of the force set, then the total 
work is zero in a virtual displacement. This follows since the sum of the virtual 
works of the forces is equal to the virtual work of their resultant, and the resultant 
is zero if the particle is in equilibrium. 

For a particle system the virtual work for the forces, both external and internal, 
on all the particles can again, in principle, be calculated. The total virtual work is 
not, in general, zero even if the system is initially in equilibrium, since the internal 
forces in particular may change during the arbitrary displacements, which are, in 
general, different for each particle. 

Now we can limit the virtual displacements to those that are said to be consis­
tent with certain constraints. Thus if the system is a rigid body the distances 
between the particles are unchanging; the total virtual work of the internal forces 
taken in pairs is then zero. Further, the rigid body itself can be subject to con­
straints on its movement, which limit the number of possible virtual displacements; 
if the work of a constraint force during such a displacement is zero then the 
constraint is said to be a workless constraint. Typical examples of forces at work­
less constraints are 

(1) the normal reaction at a sliding contact with a fixed smooth surface 
(2) the normal reaction at a rolling contact 
(3) the reaction at a smooth fixed pin 
(4) the pair of equal and opposite reactions at a smooth pinned joint between 
connected bodies. 

It now follows that if a rigid body, or a system of rigid bodies connected by 
smooth pins, is in equilibrium under a set of applied forces and forces of workless 
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constraints, then the virtual work of the applied forces is zero in a virtual dis­
placement consistent with the constraints, since the work of the constraint forces 
is zero. If friction is present it is treated as an applied force. 

The converse of this statement can be shown to be a condition for equilibrium. 
It is then referred to as the principle of virtual work and can be stated as follows: 
a rigid body or system of connected rigid bodies is in equilibrium if and only if 
the work of the applied forces is zero in any arbitrary virtual displacement that is 
consistent with workless constraints. 

If Fapp,s is the component of an applied force in the direction of a virtual 
displacement, magnitude 8s, of its point of application, then the condition for 
equilibrium of the system can be stated in the form 

L8 U = LFapp,s 8s = 0 (6.3) 

When applied couples or torques are present L8 U is understood· to include the 
virtual work of such couples or torques. 

6.3 Applications: Connected Bodies 

The principle of virtual work, when expressed in equation form, can be used to 
calculate unknown forces acting on systems that are known to be, or are required 
to be, in equilibrium. For this purpose the virtual displacements at the salient 
points are expressed in terms of the changes in those coordinates that fix the 
configuration of the body or system of connected bodies. The number of such 
coordinates represents the number of degrees of freedom of the system. For 
example, in figure 6.2a the angle 8 fixes the configuration of the slider- crank 

p 

{a) {b) 

Figure 6.2 

mechanism, which accordingly has one degree of freedom. A small angular 
displacement 88 of the link OC brings about a corresponding linear displacement 
8xp at P; the relation between 88 and 8xp can be determined, and hence 8xp can 
be expressed in terms of 88. Figure 6.2b represents a five-bar chain having two 
degrees of freedom since it is necessary to specify two coordinates, such as 8 1 

and 82 , to fix the configuration. 
In the case of a truss supported on a roller and pin joint, or a framework pinned 

to a support, it might be thought at first sight that no displacement is possible. 
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However, if one or other of the constraints is relaxed and replaced by a force 
equivalent to the original constraint force then a virtual displacement is possible 
in which the equivalent force, now regarded as an applied force, has virtual work 
associated with it. 

95 

In order to set up the virtual-work equation it is again advisable to draw a 
diagram of the isolated body or system. However, the forces of workless con­
straints should not be entered since they do not appear in the virtual-work 
equation. The remaining applied forces are sometimes referred to as active forces, 
and the diagram is then best referred to as an active-force diagram. 

Worked Example 6.1 

For the framework shown in figure 6.3a determine the force in the member CD 
in terms of the load Wand the angle 8. All pins are smooth. 

(a) (b) 

Figure 6.3 

Solution 

The framework as shown is rigid. Now the member CD supplies equal and oppo­
site forces of magnitude Fat joints C and D. If the member is removed and the 
same forces are applied at C and D the configuration of the frame can be arbitrarily 
changed. Since the configuration of the frame can be determined by the angle 8 
only, or by the length AB only, the system has one degree of freedom. An active­
force diagram is drawn as shown in figure 6.3b, the constraints at all the pins 
being workless. Rectangular coordinate directions are indicated with origin at the 
fixed pin A. 

In terms of 8 the coordinates of C, D and B are respectively 

xc = - L sin 8 Xo = L sin 8 YB = 8 L cos(} 
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The change ox in a typical coordinate x due to a small change o8 is given by 
ox= (dx/d8~8. The virtual displacements at C, D and B corresponding to a 
virtual angular displacement 08 are thus respectively 

oxc - (L cos 8)08 

ox0 = (L cos 8)o8 

oz8 = - (8L sin 8)o8 

Applying the principle of virtual work, and using equation 6.3, (note that the 
force at Cis in the negative x -direction) 

(- F)oxc + Fox0 + Woz8 = 0 

therefore 

(-F) x (- L cos 8)o8 + F x (L cos 8)88 + W x (-8L sin 8)o8 = 0 

and 

F = 4Wtan8 

In the above example the relaxation of a constraint in order to make a virtual 
displacement possible had the effect of converting an otherwise rigid frame into a 
mechanism. The principle of virtual work is thus directly applicable to mechanisms 
to determine the relation between input and output forces and torques; a velocity 
diagram (as described in chapter 11) for the mechanism is then the most conven­
ient method of relating displacements at the salient points. 

6.4 Connected Bodies: Friction and Elastic Members 

In the application of the virtual-work principle to connected bodies, the forces 
considered to be active forces were so chosen as to make certain constraints work­
less. If external friction were present at a constraint then it was to be treated as 
an active force. A difficulty arises here since the magnitude and direction of such 
a friction force is usually not known; even if it were known to be limiting friction 
then it would depend on the normal reaction, which would have to be determined 
first, usually by separation of the members. The main advantages of the virtual­
work method are then lost. The same remarks would apply to problems involving 
friction at internal constraints. Worked example 6.2 illustrates a case in which an 
initial assumption has been made on the magnitude of the friction force at an 
internal constraint. The essential fact is that the net work of the pair of equal 
and opposite friction forces at a connection at which relative movement is taking 
place, is always negative because the frictional force always opposes the relative 
motion. 

Suppose the system contains an elastic member. By this we mean one whose 
deformation o is proportional to the magnitude F of the force exerted by it, such 
that F = ko, where k is termed the elastic constant, with units N/m. If this elastic 
member, for example a spring having undeformed length L 0 , has length L then its 
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action is equivalent to two equal and opposite forces each having magnitude Fe, 
where Fe= k(L- L 0 ). If the spring is extended (L > L 0 ) then Fe is positive and 
the two forces are directed inwards. Fe therefore has a positive numerical value if 
the member is in tension and conversely a negative value if in compression. If in 
the virtual displacement of the system the length of the member changes from 
L to L + 8L, where 8L may be a positive or negative quantity, then the work of 
the pair of elastic forces is in general- Fe8L. This quantity must be included in 
the virtual-work equation k8 U = 0 which now may be written 

k8Uexternal active forces + (- Fe8L) = 0 (6.4) 

In the application of equation 6.4, Fe= k(L- L 0 ) and 8L is the incremental 
change in L arising from the change in a chosen reference coordinate such as 0. 

Worked Example 6.2 

In the framework shown in figure 6.4a members AB, AC each have length L, and 

A A 

(a} (b) 

Figure 6.4 

members BE, CD each have length 2L with the hinge F at their midpoints. The 
four members have mass m per unit length. The ends D and E rest on a smooth 
horizontal surface and are joined by an inextensible cord whose length can be 
varied. The angle 0 is initially made less than 30°. 

When the cord is slowly tightened an internal friction couple having moment 
mgL2 /2 is brought into play at each hinge. Determine the tension in the cord 
when it is tightened sufficiently to make 0 = 30°. 

The cord is now further tightened and then slowly slackened until 0 is again 
30°. What is now the tension in the cord? 

You may assume the friction couples are insufficient to hold the frame in 
equilibrium. 

Solution 

Remove the cord and replace it by equal and opposite forces of magnitude T. The 
active-force diagram is given in figure 6.4b. Choose point 0 on the axis of sym­
metry as the origin ofx- andy-coordinates. The coordinates of the relevant points 
G, H, F, D and E are set down, together with the displacements corresponding to 
a change 80 in the angle 0. 
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X£ = L cos 8 OX£ -Lsin8o8 

xo = - L cos 8 ox0 = L sin 8 88 

YF =Lsin8 oyF = L cos 8 o8 

YG = 2.5L sin 8 oyG = 2.5L cos 8 o8 

YH = 2.5L sin 8 oyH = 2.5L cos 8 o8 

For a change 88 in 0 the relative angular movement of the members meeting at 
A, B, C and F is 2MJ in each case. For both positive and negative numerical values 
of 88 the friction work at a hinge is negative with magnitude t mgL 2 X 21881. 
When the cord is tightened 88 is a positive quantity. The virtual-work equation 
for equilibrium at angle 8 is "LFapp,sos = 0, thus 

(- T) X oxE + Tx oxo + (- mgL) X oyG + (-mgL) X oyH + (-4mgL) X oyF 

- 4 X t mgL 2 X 21 0 8 I = 0 

2TL sin 8 88- 5mgL 2 cos 8 88- 4mgL 2 cos 8 88- 4mgL 2 Io8 I= 0 

and 

When 8 = 30° 

T = mgL (9 cos 8 + 4) 
2 sine 

T = -fxmgL(9 y3 + 8) 

When the cord is slackened 88 takes a negative sign but the friction work is 
unchanged. The virtual-work equation now becomes 

2TL sin 8 (- 88) - 9mgL2 cos 8 (- 88) - 4mgL2 1o8 I = 0 

and 

mgL 
T = -- (9 cos 8 - 4) 

2 sin 8 

When e = 30° 

T = tmgL(9y3 - 8) 

6.5 Systems with Two Degrees of Freedom 

In the two preceeding worked examples the system in each case had one degree 
of freedom and the components of the virtual displacements at all relevant points 
could be expressed in terms of the small change 88 in one selected coordinate such 
as 8, which fixed the configuration. For systems having two degrees of freedom 
the configuration depends on two coordinates such as 8 1 and 82 , either or both 
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of which can be varied independently (see for example figure 6.2b) to bring 
about a virtual displacement of the system. The corresponding components of the 
virtual displacements of all relevant points are now expressed in terms of the 
changes in either or both of the coordinates 01 and 0 2. The position of some 
relevant point is first expressed as a function of the two variables (J 1 and 02 , for 
example the x -component x(O 1, 02), and it then follows that the change in xis 
given by 

ax ax ox = - oo 1 + - oo2 
ao1 ao2 

with similar expressions for other components of displacement. 
Now an equilibrium configuration requires for its description particular values 

of both (J 1 and 02 . However, two virtual-work equations can now be written, one 
in terms of virtual displacements related to oO 1' with 02 kept fixed, and the 
other in terms of virtual displacements related to 0 0 2 ' with 0 1 kept fixed; in the 
first equation virtual-displacement components are quantities such as (ax;ao 1 )o (J 1 
(with o0 2 = 0), and in the second equation the components are quantities such as 
(ax;ao2)li02 (with o0 1 = O). 

Worked Example 6.3 

In figure 6.5a the uniform members AB, BC have masses m1, m2 and lengths 
L 1 , L 2 respectively, and can swing freely in the vertical plane. Determine the 
angles 01 and 02 at which the members are in equilibrium when the horizontal 
force Pis applied at the end C. 

y 

A 

p 

c c 

(a) (b) 

Figure 6.5 

Solution 

The active forces are shown in figure 6.5b, on which are shownx- and 
y -coordinate directions. 

p 
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- t L 1 cos 8 1 

t L 1 sin 8 1 8 8 1 

YE -L 1 cos8 1 - tL 2 cos8 2 

DYE = L 1 sin8 1 88 1 + tL 2 sin8 2 88 2 

xc = L 1 sin 8 1 + L 2 sin 82 

oxc = L 1 cos8 1 88 1 + L 2 cos8 2 88 2 

Applying the virtual-work equation with 82 fixed, and 88 2 = 0 

-m 1gx tL 1 sin8 1 88 1 -m2gx L 1 sin8 1 88 1 +Px L 1 cos8 1 88 1 =0 

and 

2P 
tan 81 = ------

(m1 + 2m2)g 

Applying the virtual-work equation with 8 1 fixed, and 88 1 = 0 

- m 2g x t L 2 sin 82 88 2 + P x L 2 cos 82 88 2 = 0 

and 

2P 

6.6 Summary 

(1) The work of a force 

f s 2 
F cos ads 

sl 

where a is the angle between F and os. 
(2) The work of a torque or couple of moment M is 

(3) Constraints are geometrical restrictions on the motion of a system. 

(6.1) 

(6.2) 

(4) The forces on a system are of two kinds, (a) applied forces, and (b) forces of 
constraint. 
(5) A virtual displacement is an arbitrary infinitesimally small displacement. 
(6) Virtual work is the work associated with the forces acting on the particles of 
the system when the system undergoes a virtual displacement. 
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(7) A rigid body or system of connected rigid bodies is in equilibrium if and only 
if the work of the applied forces is zero in any arbitrary virtual displacement that 
is consistent with workless constraints (principle. of virtual work). 

(6.3) 

(8) For mechanisms, the velocity diagram serves to relate displacements at salient 
points, and can be used to relate forces and torques using the principle of virtual 
work. 
(9) External friction forces at constraints are treated as applied or active forces. 
Friction forces at internal constraints occur in pairs of equal and opposite forces, 
and in a virtual displacement of the system involving relative movement at the 
constraint, net negative virtual work is associated with those forces. 
(10) An elastic member can be replaced by two equal and opposite forces having 
magnitude Fe. The work of the pair in a virtual displacement is- Fe oL and the 
virtual-work equation becomes 

~oUexternal active forces - Fe oL = 0 (6.4) 

(11) For two-degree-of-freedom systems displacement components are typically 

Two virtual-work equations are now written and solved for equilibrium values of 
01 and 02 • 

Problems 

6.1 For the platform of problem 4.22 determine the magnitude of P required to 
maintain the platform in position, with 0 = 30°, using the principle of virtual 
work. 

6.2 A tripod consists of three legs smoothly jointed at the apex, each leg having 
length Land inclined at the same angle to the vertical. The mid-points of the legs 
are joined by three inextensible cords each having length L/2. The tripod stands 
on a smooth horizontal floor and a body mass m is hung from the apex. If the 
weights of the legs are neglected show that the tension in each cord is [v2/(3v3)] mg. 

6.3 In figure 6.6 AC and CB are pairs of members length L pinned at A, C and B. 
Outward movement of B compresses the spring BD, which has a spring constant k 
and is undeformed when 0 = 0 0 = 60°. Show that when a body mass m is hung 
from C equilibrium is attained when 2 sin 0 -tan 0 = mg/2kL. Neglect the 
weights of the members. 
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Figure 6.6 

6.4 In figure 6.7 the uniform members OA, AB each have mass m and length L. 
The member OA can rotate about a pin fixed to the support and AB can rotate 
about a pin flxed to OA. Spiral springs are attached to the pins with their outer 

Figure 6.7 

ends attached to the adjacent members. Each spring has a constant c, this being 
the torque exerted per radian of relative angular movement of the adjacent 
member. When OA, AB are hanging vertically there are no torques exerted by the 
springs. 

If a couple having moment M is applied to member AB, show that if the 
angular deflections() 1 and () 2 from the vertical are small then for equilibrium 

()l 
M c + Sp/~ + 3p2 /4) 

--
c 

M c + 
3p/2 + 2 ) 

()2 -
3p2 /4 c Sp/2 + 

where p = mgL/c. 
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6.5 A rigid uniform beam AB, length 2a, is freely pivoted at its mid-point 0. A 
light rod BC, length b (b >a), is pin-jointed to AB at Band the end Cis con­
strained by a frictionless guide to move in the vertical line below the point 0. A 
body mass 2m hangs from A and a body mass m hangs from C. If the angle 
between OB and the upward vertical direction at 0 is 8(8 < 90°) and there is a 
friction torque having constant magnitude Mr opposing relative angular motion at 
the joint B, show that the system is in equilibrium for a value of 8 given by the 
equation 

sin 0 (b2 fa2 - sin2 0)112 + sin 8 cos 8 Mr 
= +--

(b2 /a2 - sin2 0)112 - cos 0 - mga 

(Hint: Start the solution with two angular coordinates. These are not independent 
and can be related by an equation of constraint.) 



7 Centres of Gravity and of 
Mass: Centroids 

In this chapter we discuss certain properties of rigid bodies related to their weight, 
their mass and their geometrical form. These properties arise in the mechanics of 
rigid bodies when we are led to defme certain quantities that are representative of 
the body as a whole. For example, we have already used the result that the 
gravitational forces on the individual particles of a rigid body reduce to a single 
force acting at some well-defined point in the body; if the location of this point 
is known in a particular case the analysis is obviously greatly simplified. 

At the same time we introduce the idea of continuous distributions of matter 
and gravitational forces, enabling the summations over particles of a rigid body to 
be replaced by integration processes. 

In the following sections we define and set out methods of obtaining centres 
of gravity and centres of mass of rigid bodies, and also the centroids of geometrical 
entities comprising lines, areas and volumes. 

7.1 Centre of Gravity 

We recall from section 4.4 that the centre of parallel gravitational forces, referred to 
as the centre of gravity, was a point whose position relative to the particles of a 
particle system did not depend on the orientation of the system. 

To determine the position of the centre of gravity in a thin plane rigid body, 
lamina or plate, we need only find the line of action of the resultant gravitational 
force for two orientations of the body, and the centre of gravity is then the point 
at which the lines of action intersect. This is the basis of the experimental method 
of determination in which the lamina is suspended in turn at each of two small 

y 

0 X 
(a) 

Figure 7.1 

y 

0 x 
(b) 

X 
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holes drilled in the lamina. When the lamina is in equilibrium the centre of gravity 
lies in the vertical line through the point of suspension, as defined by a plumb 
line suspended from the same point. If the line is marked on the lamina in both 
cases, the intersection of the lines locates the centre of gravity. 

The analytical method of determination is based on arbitrary orientations of 
the force set. Thus in figure 7.1 the plane of the lamina is vertical and axes OX, 
0 Yare chosen to be parallel to two perpendicular orientations of a set of parallel 
gravitational forces acting on the particles of the lamina. 

In figure 7.1 a the resultant W of the elementary gravitational forces, such as 
5 W, passes through the point G, the centre of gravity. Choosing 0 as a moment­
centre the x -coordinate of G, x, is given by 

and 

(~5W) x x = wx = ~(5W)x 

-
X 

~(5W)x 

w 

where W is the weight of the lamina. 
By similar consideration of figure 7.1 b we obtain 

y = ~(5W)y 
w 

(7.1a) 

(7.1 b) 

If the lamina is subdivided into two or more parts as indicated in the figure, 
then if the subscripts 1, 2, 3, ... refer to these parts 

X = 

and 

(~(5 W)x) 1 + (~(5 W)x )2 + ... 

wl + w2 + ... 

w1x1 + w2x2 + 
(7.2a) 

Wt.Yt + W2Y2 + ... 
y = -----------------

wl + w2 + ... 
(7.2b) 

where .X 1 , x 2 , .•• , j/1 , y2 , ••• refer to the centres of gravity of the parts. If a 
lamina can be subdivided into parts whose centres of gravity are known then 
equations 7.2 enable the centre of gravity of the whole lamina to be located. 

For a thin wire shaped into a plane curve the centre of gravity is located in the 
same way as for a thin plate. 

For three-dimensional bodies three coordinates are required to locate the centre 
of gravity. If mutually perpendicular axes OX, OY, OZ are chosen, as in figure 7.2, 
the orientations of the gravitational forces can be made parallel to the OX- and 
OY-axes in turn. The coordinates x and yare determined from moments about the 
OZ -axis for the two orientations (figure 7 .2a). The coordinate zis then determined 
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w w 
X X 

(a) (b) 

Figure 7.2 

from the moments of either the x- or y-directed forces about the OY-or OX-axes 
respectively (figure 7.2b). The three coordinates are then 

X = 
~(oW)x ~(oW)y 

y = ---'--~ 
w w 

z = 
~(oW)z 

w 
(7.3) 

However, in many engineering applications a plane of symmetry can usually be 
found. The centre of gravity lies in this plane and the OX- and OY-axes can be 
chosen to coincide with it; only x andy then need to be determined. 

It may now be noted that although the orientations of the gravitational field 
have been chosen in accordance with the physical significance of the centre of 
gravity as a centre of parallel forces, the expressions for x, y and z given by equ­
ations 7.3, although obtained as a result of moments of forces about respective 
axes, merely contain products of magnitudes of the weights of the particles (their 
directions being irrelevant) and their distances from a particular plane. Having 
chosen axes OX, OY and OZ we therefore repeat equations 7.3 

X = 
~(oW)x 

w 
y = 

~(oW)y 

w 
~(oW)z z =___:__..c.___ 

w 
where x, y and z are now the distances of the particles from the YOZ, ZOX- and 
XO Y- planes respectively. 

In the application of equations 7.3 we replace the particle model by one for 
which a continuous distribution of matter is assumed. The particle is now replaced 
by an element of line, area or volume. It is now appropriate to use the idea of in­
tensity of gravitational force or weight intensity, signified by the symbol w. This 
represents weight per unit length, weight per unit area or weight per unit volume, 
as appropriate, for the material of wires, thin plates or three -dimensional bodies 
respectively. Thus the particle weight oW is now replaced by woL, woA or wo V for 
an element, as appropriate. The summations can now be written as integrations and 
typical expressions for the x-coordinate of the centre of gravity are 
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fLwxdL 
X='--=---- X = 

fA wx dA 

fLwdL fAwdA 

-
X 

fvwx dV 

fvwdV 
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(7.4) 

for wires, plates and three-dimensional bodies respectively. Corresponding expres­
sions can be written for y and z in each case. 

The choice of suitable axes and line, area or volume elements should be such as 
to simplify and expedite the integration. The examples considered in the next 
section indicate the method of approach. 

7.2 Centres of Gravity: Standard Cases 

(1) The uniform triangular plate (figure 7.3). Place an axis OY along any side, say 

y 

8 

h 

c 
0 X h X 

(a) (b) 

Figure 7.3 

AC, and choose an element of plate, width ox, parallel to and a distance x from the 
axis 0 Y. All parts of the element are therefore at a distance x from the axis. 
The length of the element is b x (h- x )/h and its area is b(h - x )o x/h, where h is 
the altitude in relation to side AC. If w is the weight per unit area, taken as being 
uniform, the weight of the element is 

lix oW = wb(h- x) -
h 

and the weight of the plate is 

W = W X tbh 
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From the second of equations 7.4 

( 1 bh) - Jhwb(h-x)xdx wx2 xx= 
0 h 

= wb [ hx2 - ~3 J h 

h 2 3 0 

wbh 2 
= 

6 
and 

h 
X=-

3 
If ay-axis is chosen to lie along any other side a similar result follows, and we 
conclude that the centre of gravity is at a distance equal to one-third of the corres­
ponding altitude from any side. This is equivalent to stating that the centre of 
gravity is located at the intersection of the medians. This result indicates that the 
centre of gravity could have been found without integration by noting that the 
centres of gravity of strips parallel to one side lie along the median to that side, 
implying in turn that the centre of gravity of the triangle lies on that median. By 
taking strips parallel to the other sides we are led to the result that has been stated. 

(2) The uniform circular wire (figure 7.4). Place an axis OX along the axis of sym-

Y 

Figure 7.4 

me try of the wire arc AB with the origin at the centre. Choose an element of wire 
at an angular distance 8 from the axis subtending an angle 68 at the centre 0. The 
length of the element is R6 8. If w is the weight per unit length, taken as being uni­
form, then 

6W = wR68 W = 2wRcr x = R cos 8 
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From the first of equations 7.4 

(2wR£t) x x = J +a wR2 cos 0 dO 
-0! 

and 

Rsina 
X---

£t 

= wR 2 [sin 0] !~ 

= 2wR2 sin£t 

It follows that for a semicircular-shaped wire x = 2R/rr 
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(3) The uniform sector-shaped plate (figure 7 .5). With the axis OX along the axis 
of symmetry choose a sector-shaped element of the plate with vertex angle 80 at 
the origin. If l>O is small the element is effectively a triangular plate with weight 6 W 
acting at its centre of gravity Ge distance 2R/3 from the vertex at 0. The resultant 

y 

X 

Figure 7.5 

gravitational force on all such elements therefore acts through the centre of gravity 
of an equivalent circular wire having radius 2R/3, and it follows that for the plate 

2Rsin £t 
X=---

3£t 

It follows that for a semicircular-shaped plate 

4R 
x--

3rr 
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Worked Example 7.1 
Locate the position of the centre of gravity of the uniform thin plate shown in 
figure 7.6. 

y 

X 

Figure 7.6 

Solution 
Choose axes OX and OY as indicated. Since OY is an axis of symmetry the centre 
of gravity must lie on this line, that is, x = 0. In order to determine y divide the 
plate into standard shapes, (1) and (3) being triangles and (2) a sector. 

1 2 2 2 
At = A3 = 2 x 2 x - = - m 

y3 y3 

- 1 
Yt = Y3 =3m 

Y 2 = .j x 2sin(11'/3) = 2y3 m 
11'/3 11' 

Ifw is the weight per unit area, then from the result expressed by equation 7.2b 

w(A1 + A2 + A3) 

= (2/ y3) X (1/3) + ( 411'/3) X (2 y3/11') + (2/ y3) X (1/3) 

(2/y3) + (411'/3) + (2/y3) 

= 0.83 m 

Worked Example 7.2 
Locate the centre of gravity of the block shown in figure 7. 7a. 
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0 15 m d1a x 0 25 m deep 

z 

03m 

X 

(a) 

y 

7 
-ji1=015m 

~--~--~-----L---.x 

(b) 

I 

Ill 

lz3=0175 m 

I I 
~ / -------7-

/Y3=02m 

X 

x2 =0267m 
(c) (d) 

Figure 7.7 

Solution 

Choose axes OX, OY, OZ as shown in the figure. Consider the block as made up of 
a cuboid and a triangular wedge. The hole will be treated as a portion to be deducted. 

If the weight per unit volume is w (N/m3 ), then 

weight of cuboid = W1 = w x 3 x 3 x 2 x 10-3 = 18 x 10-3 w N 

weight of wedge = W2 = w X t x 2 x 2 x 3 x 10-3 = 6 x 10-3 w N 

weight of material to be deducted at hole 

1r 
W3 = W X- X 1.52 X 2.5 X 10- 3 = 4.43 X 10-3w N 

4 

total weight = WI + w2 - w3 19.57 x 10- 3 w N 
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The centre of gravity of each part can be located by inspection as in figures 7.7b, 
c and d noting that for each part there is a plane of symmetry parallel to the 
XOZ-plane. 

For the cuboid 

For the wedge 

For the hole 

x 1 = O.lOm 

0.2 
X2 = 0.20 + -

3 

Y1 = 0.15m z 1 = 0.15m 

= 0.267my 2 = O.IOm z2 = jx 0.3 = 0.2m 

x 3 = 0.10m 
0.25 

Ya = 0.20m za = 0.05 +-
2 

= 0.175 m 

X = ~WX = 18 X 0.10 + 6 X 0.267 - 4.43 X 0.10 =0. 151 m 

w 19.57 

~Ji:Y 18 X 0.15 + 6 X 0.10 - 4.43 X 0.20 
= 0.123 m y - -----w 19.57 

- ~U'Z 18 X 0.15 + 6 X 0.20 - 4.43 X 0.175 
= 0.160 m z = --= w 19.57 

7.3 Centre of Mass 

The quantities W.X and {6W)x appearing in equation 7.1a were derived from the 
moments of weights about the moment-centre 0. If m is the mass of the body 
then W= mg, 6W= 6mg, and equation 7.1a becomes 

_ ~(6m)x _ ~(6m)y 
x= y=--- (7.5) 

m m 

after cancelling the gs (assuming g is constant throughout the body). 
The numerators now represent products of particle masses and distances from 

the axes OY and OX respectively. The point (x,y) is no longer a centre of grav­
itational force but a point that is representative of the particle mass distribution. 
This point is called the centre of mass or the mass-centre. 

To take account of continuous distributions of mass we now introduce the 
quantity mass per unit volume, symbolised by p. For an element of a three -dimen-
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sional body the particle mass om is now replaced by po V and the integral forms 
for x, y and z now become 
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fvPX dV 
X = JvPY dV y ::.....:._ __ 

JvpdV 

- fvpzdV z = (7.6) 
fvpdV fvP dV 

The corresponding expressions for x in the case of wires having cross-sectional area 
a and thin plates having thickness t are 

J ,,pax dL 
X = ---'----

fLpadL 
-
X (7.7) 

with corresponding expressions for y and z 
If the integrations are carried out for the standard cases already discussed then, 

provided pis constant, the coordinates of the centre of mass are in each case iden­
tical to those of the centre of gravity. However it should be carefully noted that 
the mass-centre is a property of the body that is quite independent of the existence 
of gravitational forces. 

7.4 Centroids of Lines, Surfaces and Volumes 

If in the expressions for x in equations 7.6 and 7.7 the quantities p, a and tare 
constant they can be cancelled, and we obtain the following expressions 

fLxdL 
X = 

L 

- JvxdV 
X=---

V 
(7.8) 

and correspondingly expressions for y and z. Equations 7.8 now relate to the 
length of a wire, the surface area of a thin plate and the volume of a three-dimen­
sional body respectively. These are geometrical properties and the values of x, y 
and z are dependent only on the shapes of the geometicalline, surface or volume 
concerned. The point (x, y, z) as defined by equations such as 7.8 is called the 
centroid of the particular geometrical entity, and the quantities Lx, Ax,· Vx are 
described as first moments of line, area or volume respectively with respect to the 
YOZ-plane. Of these the one most used is Ax, the first moment of a plane area, 
and, although not employed in this book, it is nevertheless conveniently associated 
with the discussions in this chapter. Facility in the determination of centroids of 
area is an essential prerequisite to the study of internal forces. 

It is evident that for a thin flat plate having uniform thickness and uniform 
density the coordinates of the centre of gravity and the centre of mass coincide 
with those of the centroid of the area of the plate. However, it must be stressed that 
the centroid is a property of the geometrical surface only, and that its location is 
dependent only on the shape of the surface. 



114 BASIC ENGINEERING MECHANICS 

7.5 Theorems of Pappus and Guldinus 

Using the ideas of the preceding section two useful results can be obtained. These 
are associated with the name of Pappus of Alexandria (third century A.D.) and 
Paul Guldinus (1577 -1643) and are useful in connection with the geometrical 
properties of bodies possessing axes of symmetry. 
(1) In figure 7.8a a surface, area A, is generated by revolving a line length£ about 

X 

z 

y 

y 

0 --· -
z X 

(a) 

Figure 7.8a 

the axis OX, which it does not intersect. The area swept out by an element of the 
line 5L at a distance y from the axis is clearly 5L x 21Ty. The total area of the sur­
face of revolution is then 

A = t 21Ty dL = 21T fL y dL 

= 21TLy 

= L X 2ey (7.9) 

where y is the distance of the centroid G of the line from the axis OX. It follows 
that the area of the surface of revolution is equal to the product of the length of 
the line and the distance travelled by the centroid of the line in one revolution. 
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(2) In figure 7.8b a torus-shaped volume Vis generated by revolving a closed curve, 
enclosing area A, about the axis OX. The curve again should not cross the OX axis. 

z 

( b ) 

Figure 7.8b 

X 

The volume swept out by an element of area oA at a distance y from the axis is 
oA X 21Ty. The total volume swept out is then 

v = t 2zy dA = 21T L y dA 

= 21TAy 

= A X 2rry (7.10) 

where y is the distance of the centroid of the area from the axis. It follows that 
the volume generated by a closed curve is equal to the product of the area enclosed 
by the curve and the distance travell~d by the centroid of the area in one revolution. 

These two theorems, which will be referred to as the first and second theorems 
of Pappus, are not only useful for calculating areas and volumes of the kind des­
cribed, but can be useful for locating centroids, if the areas or volumes of revolution 
are known together with the lengths or enclosed areas of the appropriate curve. 

Worked Example 7.3 

Locate (a) the centroid of a circular arc radius R and (b) the centroid of a circular 
sector radius R, if the angle subtended at the centre is 90° in each case. 

Solution 

(a) The circular arc is placed in the first quadrant of axes OX and 0 Y with its 
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centre at 0. If the arc, length t1r R, is revolved about the axis OX, a hemispherical 
surface is generated whose area is 27TR2 • Ify is they-coordinate of the centroid 
of the arc then using the first theorem of Pappus 

27TR 2 = t 7TR X 21Ty 

2R 
y =-

1T 

similarly, by revolving the curve about the axis 0 Y 

2R 
X=-

1T 

The centroid is therefore on the axis of symmetry of the arc at a distance 2 ..j2R/7T 
from the centre. This result can be compared with that obtained in section 7.2 for 
the centre of gravity of a circular wire. 

(b) If the sector corresponding to the circular arc is revolved about the axis OX the 
volume generated is that of a hemisphere, namely 27TR 3 /3. The area of the sector 
is 1rR2 /4 therefore by the second theorem of Pappus 

and 

similarly 

2 3 1 2 -- 7TR = - 1TR X 211}' 
3 4 

lJ = ., 
4R 

3 1T 

4R 
X=--

3 1T 
The centroid is now at a distance 4 ..j 2R/37T from 0 on the axis of symmetry, a 
result which can again be compared with that given previously in section 7.2. 

y y 

M 

R 

G' 

----
G -. 

0 
L 

X X 

(a) (b) 

Figure 7.9 
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Worked Example 7.4 

Locate the centroid of the shaded area shown in figure 7 .9a using the second the· 
orem of Pappus, and verify the result by integration. 

Solution 

Revolve the shaded area about the axis OX. The volume of revolution for the 
shape LOM is not known. For the sector LCM 

volume of revolution =-nR2 x 2n R --1 ( 4R) 
4 3zr 

=!_n2 R3(1- ~) 
2 3n 

For the square OLCM 

volume of revolution = nR 3 

therefore for the shape LOM 

volume of revolution = nR3 - ~1T2 R3 (1 - 3:) 

= nR3(i _ %) 
For the shape LOM 

area 

By the second theorem of Pappus 

nR3(i - %) = R2 (1 - ~) x 2ny 

therefore 

10 - 3n R 
y = X-

4 - 1T 3 

and similarly 
- -
X = y 

For the integration method choose strips parallel to the axis OY as in figure 
7.9b 
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area of shape LOM = J: y dx 

y = R (1 - cos 6), x = R (1 - sin 6), dx = - R cos 6 d6 and when 8 is used as the 
variable the lower and upper limits become rr/2 and 0 respectively. Therefore 

area = - J 0 R2 (I - cos 6) cos 6 d6 
w/2 

The details of the integration, which is straightforward, are omitted. From the 
definition of the centroid 

area x x "" J: yx dx 

f o R 3 (1 - cos 6 )(1 - sin 6) cos 6 d6 
rr/2 

the details of the integration again being omitted. Therefore 

- 5/6 - rr/4 
X R X 

1 - rr/4 

10 - 3rr R 
X-

4 - 1T 3 

confirming the previous result. 

7.6 Summary 

(1) The centre of gravity of a uniform thin plate lying in the XOY-plane is at the 
point x, y given by 

-
X 

fwx dA 

fwdA 

-y 
fwy dA 

JwdA 
where w is the weight per unit area. 

For a thin wire lying in the XOY-plane 

_ fwx dL 
X = 

fwdL 

_ fwy dL 
y =--­

fwdL 
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where w is the weight per unit length. 
For three-dimensional bodies 

fwx dV 

fwdV 

-y 
fwydV 

fwdV 

-z = 
fwz dV 

fwdV 

where w is the weight per unit volume and x, y, z are distances from the YOZ, 
ZOX and XOY-planes respectively. 
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(2) The mass-centre of a three -dimensional body is at the point x, y, z given by 

- fpx dV - fpy dV _ fpz dV 
x=--- y=--- z=---

~dV ~dV ~dV 

where p is the mass per unit volume. 
For thin plates, thickness t 

jp dV = fpt dA 

For wires, cross-sectional area a 

fp dV = fpa dL 

(3) The centroid of a plane area in the XOY-plane with respect to the x- and 
y-axes respectively is given by 

fy dA _ fx dA 
y=-- X=--

A A 

Ay, Ax are the first moments of area with respect to the x- andy-axes res­
pectively. 
(4) Composite bodies and areas can usually be subdivided into standard-shaped 
bodies and areas whose properties are known. Axes should be chosen, where 
possible, such that there are planes of symmetry parallel to one or other of the 
chosen axes. 
(5) The total area of revolution of a line length Lis A = L x 21Ty, where y is the 
distance of the centroid of the line from the axis of revolution. 
(6) The total volume of revolution of an area A is V =A x 21T)l, where y is the 
distance of the centroid of the area from the axis of revolution. 

Problems 

Unless otherwise stated the mass density p is constant. The thickness of plates is 
to be taken as constant. 
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7.1 Locate the centre of gravity of the thin plate shown in figure 7.10. 
y 

2m 

0 

2m 

Figure 7.10 

7.2 A thin rectangular plate 5 m by 3m has a hole 2m diameter cut in it such 
that the centre is 1.5 m from a short edge. Determine the distance of the mass­
centre from the same edge. 

7.3 A box has a base 0.2 m by 0.4 m and its sides are 0.5 m high. It is made of 
thin sheet steel, the bottom being reinforced by having a double thickness. Find 
the distance of the centre of gravity above the base when the top is (a) on and (b) 
off the box. 

7.4 A wire frame is in the form of a triangle ABC with AB = BC = 0.1 m and CA 
= 0.15 m. If it is hung from the point A determine the angle that AB makes with 
the vertical. (Hint: The centre of gravity will be directly below A; do not make 
the mistake of treating the frame as a solid triangular plate.) 

7.5 Determine the position of the centroid of the area in figure 7.11. 

y 2m 

2m 1m 

2m 

0 X 

Figure 7.ll 
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7.6 Locate the centre of gravity of the body shown in figure 7.12. 

y 

Figure 7.12 

7.7 A body consists of a semicircular plate, radius R, on the end of a rectangular 
plate- width 2R and length L- the edge of length 2R coinciding with the dia­
meter of the semicircle. The length L is to be such that when the body is stood in 
the vertical plane with its curved edge standing on a horizontal plane, it is to be 
in equilibrium for any point of contact. (Hint: For equilibrium note the line of 
action of the normal reaction of the plane and the weight of the body.) 

7.8 Show that the mass-centre of a wire lengthL bent into an arc of radius R is 
at a distance 2R2 sin(L/2R)/L from the centre of the arc. 

A frame consists of a wire bent into a rectangular shape 0.3 m by 0.2 m plus 
a length of the same wire bent into a semicircle 0.3 m diameter fixed to a 0.3 m 
side. Find the distance of the mass-centre of the frame from the 0.3 m base. 

7.9 A 5 m length of wood tapers uniformly from a rectangular section 0.4 m by 
0.3 mat one end to 0.2 m by 0.15 mat the other. Find (a) its weight in terms 
of pits mass per unit volume and (b) the distance of the centre of gravity from 
the thicker end. (Hint: Consider a lamina distance x from one end and obtain an 
expression for its area in terms of x.) 

7.10 A conical body, radius 1 mat the base and height 3m is cast in a mould, 
but the metal runs so badly during moulding that the density varies from 5000 
kg/m3 at the apex to 1000 kg/m3 at the base. Assuming that the density varies 
linearly with height from apex to base determine (a) the mass of the body and 
(b) the distance ofits mass-centre from the base. (Hint: Obtain an expression for 
the mass density at any point and consider a circular lamina distance x from the 
apex.) 

7.11 By using the theorems of Pappus determine the surface area and volume of 
the body of revolution formed by revolving the line in figure 7.13 around the axis 
nv 
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y 

X 

Figure 7.13 

7.12 Use the theorems of Pappus to determine the position of the centre of gravity 
of the thin plate of figure 7.1 0. (Hint: The volumes of revolution can be calcu­
lated directly.) 

7.13 Verify the formula for the volume of a sphere ( 4trR 3 /3) by calculating the 
swept volume of a semicircular area. 

7.14 The equation of a parabolic curve is y = Kx 2 • Determine the distance from 
they -axis of the centroid of the area lying between the curve, the x -axis and the 
ordinate at x = R. Hence fmd its volume of revolution about they-axis. 

When a cylindrical can partly filled with water is rotated at a uniform speed 
w rad/s about its vertical axis, the height of the water surface at radius r is 
y = w2 r 2 /2g, measured relative to the water surface at the axis. If such a can 
having radius 0.2 m, has depth equal to twice its radius and .is initially half ftlled 
with water, determine the speed at which water will just begin to spill from the 
can. (Hint: Equate water volumes.) 



8 Kinematics of a Particle 

Dynamics is the study of systems that are not in equilibrium. The set of forces 
acting on the system under consideration reduces to either a single resultant force 
or a resultant couple, and the system is no longer in a state of rest or constant 
speed in a straight line. In our discussion of the statics of systems, making use of 
Newton's first law, we assumed the particle or the particle system to be at rest, 
and for the most part disregarded the possibility of constart speed in a straight 
line, since we did not have at our disposal the necessary criteria for establishing 
the nature of motion in general. However, if the system is not in equilibrium, then 
motion of some kind is certainly taking place and the study of that motion 
becomes all-important. 

This study will have two aspects, namely the description of the motion itself, 
the 'how' of the motion, which is named kinematics, together with an examina­
tion of the relations between the motion and the associated set of forces, the 
'why' of the motion, named kinetics. 

In this chapter we discuss the kinematics of a particle. We first define the 
terms that are used to describe motion in mathematical terms. The mathematical 
descriptions that follow from the definitions can take different forms, the form 
selected being that which is appropriate to the problem in hand. We also consider 
in detail some simple types of motion that occur frequently in engineering 
situations. 

8.1 Rectilinear Motion of a Particle 

A particle whose motion is confined to a straight line is said to be undergoing 
rectilinear motion. 

8.1.1 Definitions 

(1) We shall now take the straight line to be an X-axis and choose any point 0 on 
the axis as a reference point. Suppose the particle to be at point Pat a certain 
timet measured from some arbitrary instant (figure 8.la). Then OP = x, where x 
varies with t. We say that xis a function oft, and express this dependence by 
writing x = x (t). The position of the particle at time t is defined to be the vector 
OP = x having magnitude x. 

f1xed 

(a) 
-J reference p01nt part1cle at t1me I . 0 

Q X p X 

(b) ~ part1cle at time 1+81 

X+8X ~· 
. 
X 

Figure 8.1 
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(2) At time t + ot the particle will be at some point p'' where OP' =X +ox (figure 
8.1 b). 'Qle change of position, or the displacelflent of the particle in the time 
inteval Ot, is defined to be the vector PP' having magnitude 8x. 
(3) The average rate of change of position, or the average rate of displacement, in 
the time interval 8t, is given by the ratio PP' /&t, the value of which will depend 
uppn the magnitude of Ot. The smaller the m<lgnitude of 8t the closer P' is toP 
anp the above ratio has a limiting value as 8t-+ 0. 

The rate of change of position of the particle at the point P, or the rate of 
displacement of the particle at the point P, is the velocity of the particle at the 
point P and is defined to be 

lim pp' = dx 

ot-> 0 8t dt 

a vector hllving magnitude dx/dt. Velocity is symbolised as v, with magnitude v. 
(4) If in the time interval 8t during which the particle moves from P toP' the 
magnitude of the velocity changes from v to v + {)v, then we can obtain the 
average rate of change of velocity, the magnitude of which will be ov/8t. Again, as 
p! approaches P with reduction in 8t, the ratio 8v/8t attllins a limiting value as 
ot-+ 0. The rate of change of velocity of the particle at the point P, or the acceler­
ation of the particle at the point P, is defined to be 

8v dv 
lim - =-

ot-> o 8t dt 

a vector having magnitude dv/dt. 
Acceleration is symbolised as a, with magnitude a. It follows that 

dv d2x 
a=-=--

dt dt 2 

If the unit for velocity is m/s then the unit for acceleration is m/s2 • 

The quantities we have defined are all vectors, but since the motion was 
specified as being rectilinear, that is, in a given direction, only the scalar magni­
tude of a given quantity need be stated. This can be positive or negative; the sign 
of the quantity then indicates the sense with respect to the positive sense chosen 
for x. 

Summarising for the rectilinear motion of a particle 

position is defined by x 
change of position, displacement, is defined by {)x 

rate of change of position, velocity, is defined by dx /dt 
rate of change of velocity, acceleration, is defined by d2x/dt 2 

A convenient notation is that by which a time derivative is indicated by a dot 
over the quantity being operated upon; thus v =.X and a= v = j( 

If the particle path is curved then the motion is not strictly rectilinear. How-
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ever, the position of the particle can be specified by the distances measured along 
the path from some fixed reference point on the path. Following the same pro­
cedure as before we obtain the quantity ds/ dt, the positive magnitude of which is 
called the speed, v, of the particle at P. A separate statement is required to des­
cribe the sense of the motion in relation to increasing values of s. The quantity 
d2 s/dt 2 can also be found, the positive magnitude of which is again given the 
name acceleration, a, if the speed is increasing; if the speed is decreasing then a is 
referred to as the retardation. 

It is stressed that s, ds/dt and d2 s/dt 2 in the preceding paragraph are position 
and rates of change measured along the path, and are positive quantities. Motion 
in a curved path, so-called curvilinear motion, will be discussed in section 8.2, 
and it will be found that these quantities are not sufficient to describe the motion 
fully. 

8.1. 2 Applications 
The definitions framed above can now be used to describe the motion of a particle 
undergoing (1) rectilinear motion in a fixed x -direction, and (2) motion in a 
curved path to the extent that position, speed and acceleration or retardation 
along the path can be ascertained. We shall use the symbols x, v and a in our 
equations; if the path is curved then scan be substituted for x and the equations 
are identical in form for the purpose of determining the magnitudes of ds/dt and 
d2 s/dt 2 . The following paragraphs illustrate the types of analysis that can arise. 

(1) If the position of the particle is stated as a particular function of time, 
x == x(t), then successive differentiations with respect to time will give the velocity 
and acceleration at specified times and positions. 
(2) Usually it is the velocity or the acceleration that is stated and the position of 
the particle at any time is to be determined. If the velocity or the acceleration is 
stated as a function of time then a graphical representation of the information 
can lead to a solution that is more easily handled. The velocity- time graph 
(figure 8.2) is such a representation; this graph displays the variation of velocity 
with time. Two important properties of the graph can be noted. 

v 

xz - x1 

Figure 8.2 

(a) Since a= dv1dt, the slope of the curve at any point represents the acceleration 
of the particle at the corresponding time. 
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(b) Since v' = dx/dt, then vdt = dx, and 

(8.1) 

The integral on the left is therefore the change in position of the particle, x 2 - x 1 , 

in the time interval t 2 - t 1 , and is represented by the area under the curve between 
the ordinates at t 1 and t 2 • The required areas can usually be obtained by calculation, 
the unit of area being derived from the units adopted for the velocity and time 
axes. Properties of some standard geometrical shapes are given in the appendix. 
(3) The most frequently occurring problems are those in which the acceleration is 
given, as a function of time, position or velocity, and we need to determine the 
velocity and position of the particle at some specified instant. It now becomes 
useful to express the acceleration in other equivalent forms, thus 

a = dv = dv x dx = v dv = ~ (.!C) 
dt dx dt dx dx 2 

We can now integrate the given function in the following ways, the choice 
depending on the manner in which the acceleration is described. 

(a) If a is given as a function of time, a(t), we use 

a(t) 
dv 

---
dt 

then 

fdv = fa(t)dt 

and v(t) is determined 

v(t) 
dx 

dt 

therefore 

Jdx = fv(t)dt 

and x(t) is determined. 
(b) If a is given as a function of position, a~), we use 

dv 
v-

dx 
a(x) = 

then 

fvdv = fa(x)dx 

(8.2) 
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and v(x) is determined 

therefore 

v(x) 
dx 

dt 

J dx = fdt 
v(x) 

and x (t) is determined. 
(c) If a is given as a function of velocity, a(v ), then we have the alternatives 

(i) using a(v) = dv/dt, then 

Jdv = fdt 
a(v) 

and v(t) is determined 

v(t) 

therefore 

dx 

dt 

fdx = fv(t)dt 

and x(t) is determined. 

(ii) using a(v) = v dv/dx then 

S~ =Jdx 
a(v) 

and v(x) is determined 

therefore 

v(x) 
dx 

dt 

S~ = rdt 
v(x) J 

and x(t) is determined. 
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The above integrations .involve arbitrary constants, the evaluation of which 
require knowledge of the details of the motion at some initial instant or position. 

(4) A particularly simple case is that in which the acceleration is constant. If the 
timet and the position x are taken to be zero when the speed of the particle is u, 
then from the velocity- time graph (now a sloping line) or by using any of the 
integration methods discussed, the familiar relations may be derived for the 
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position x and velocity v at a subsequent time t, namely 

v = u + at 

x = ut + lat 2 
2 

v2 = u 2 + 2ax 

(8.3a) 

(8.3b) 

(8.3c) 

(5) An important case of a motion for which a =a~) is that for which the magni­
tude of the acceleration a is proportional to the position x measured from some 
reference point, and the sense is always opposite to that of the position. This 
implies that if the particle is moving away from the reference point its speed is 
decreasing, and if moving towards the reference point its speed is increasing. The 
acceleration a is now expressed as a = - kx, but it will be found more convenient 
to write the proportionality constant as w 2 , and then a = - w2 x, which can be 
written 

(8.4) 

This equation can be solved for .X and x by the integrations given under section 
(3) above if we write x· in the form.X(dX/dx) or (d/dx)(x2 /2). Integrating once, 
x2 =- w2x 2 + C, and .X= wy(A 2 - x 2 ) in which the constant Chas been 
replaced by w2 A 2 , for convenience later. 

Putting .X = dx/dt and integrating again 

and 

sin-1 (Ax) wt + B 

or 

x = A sin ( wt + B) (8.5) 

The values of A and B are determined from prescribed initial conditions, for 
example, the values of x and .X when t = 0. 

The expression for x in equation 8.5 shows that it takes the same value, imply­
ing that the particle passes through the same point, at time intervals 2rr/w since 
sin [w(t + 2rr/w) + B] = sin(wt + 2rr +B)= sin(wt +B). From the expressions 
for x and x· we see that there are associated with this point a definite magnitude 
of the velocity and a definite magnitude and sense of the acceleration. This implies 
that the motion repeats itself, the time for one cycle or the periodic time r being 
given by 

2rr 
T =­

w 
(8.6) 
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The position x attains maximum and minimum values X max/min=± A. The 
magnitude A is termed the amplitude of the motion. The motion of the particle 
is therefore confined to the range x = - A and x = +A, and is termed oscillatory. 

Oscillatory motion of this kind which is described by the equation x + c.i x = 0 
is named simple harmonic motion and is the starting point for the study of other 
oscillatory phenomena of many kinds. 

A basic characteristic of simple harmonic motion is the number of cycles of the 
motion undergone in unit time. Since the frequency f= 1/r = w/2rr it follows 
that the quantity w entering into the equation of motion 8.4 is given by w = 2rrf; 
w can be referred to as the circular frequency. If unit time is the second then 
frequency has the unit, cycle/second, which is named the hertz (Hz). The quantity 
w, from its association with tin equation 8.6 can be ascribed the unit, rad/s. 

Summarising, we have 

x = A sin( wt + B) 

.X = Aw cos(wt + B) 

:x· = - Aw2 sin(wt + B) = - w 2x 

(8.7a) 

(8.7b) 

(8.7c) 

from which we note that the magnitude of the acceleration is a maximurri when 
x =±A and is zero when the particle passes through the reference point. Further, 
when passing through the reference point at x = 0 the magnitude of the velocity 
is a maximum, with a value Aw. Since A= (1/w) x (the magnitude of the particle 
velocity at x = 0) it follows that the amplitude of the motion A depends on the 
speed of the particle as it passes through the reference point. 

This case has been solved analytically to indicate the application of the stan­
dard methods of integration described in paragraph (3) to simple harmonic 
motion. A fuller and perhaps simpler appreciation of the characteristics of this 
type of motion will emerge after we have discussed the motion of a particle in a 
circular path. 

Worked Example 8.1 

A particle is moving in the x-direction with constant acceleration 5 m/s2 • At 
time t = 0 it passes through a certain point with velocity 20 m/s. What is its dis­
placement in the subsequent 5 s? 

At the instant t = 5 s the acceleration changes to - 10 m/s2 , this acceleration 
remaining constant until the particle again passes through its initial position. At 
what value oft does this occur? 

What is the extreme position of the particle in the x-direction and at what 
value oft does the particle reach this position? 

What is the velocity of the particle as it passes through its initial position? 

Solution 

The velocity- time graph of the motion is drawn as in figure 8.3. This consists 
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I (s) 

10(1r11) m/s 

Figure 8.3 

of two sloping lines with gradients 5 m/s2 and - 10 m/s2 respectively. When 
t = 5 s, velocity = 20 + (5 x 5) = 45 m/s. 

Displacement in 5 s = area under graph between t = 0 and t = 5 s 

= t (20 + 45) X 5 

162.5 m 

Between t = 5 sand t 1 s displacement is positive since area is increasing. For 
t > t 1 s we have negative area indicating negative displacement. Eventually at 
time t 2 • s net area is zero, therefore net displacement is zero and the particle has 
regained its initial position. 

From the diagram for 5 < t < t 1 

therefore 

ft - 5 = 45 = 4.5 
10 

ft = 9.5 

The particle attains its extreme position after 9.5 s. 
Displacement in 9.5 s = area under graph between t = 0 and t = 9.5 s 

= 162.5 + t X 4.5 X 45 

= 162.5 + 101.25 

= 263.75 m 

and this is the extreme position reached by the particle. 
Area under graph between t 1 sand t2 s =- 263.75 m 

= - t(t2 - 9.5) X 10(t2 - 9.5) 

2 X 263.75 
(t2 - 9.5)2 = ----

10 

t2 - 9.5 = 7.26 
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and 

t2 = 16.76 

The particle returns to its initial position after 16.76 s. 

Velocity at time t2 =- 10(t2 - 9.5) 

= -10 X 7.26 

= -72.6 m/s 

Worked Example 8. 2 
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A particle moving along the x -axis has acceleration a, given by a(v) = - kv, where 
k is a constant. When t = 0, v = v0 and x = x0 . Obtain 

(a) equations for velocity and position as functions of time 
(b) an equation for velocity in terms of position. 

Solution 

(a) Since we are given a(v) and we require v and x as functions oft we choose 

a(v) = dv = - kv 
dt 

then 

dv -kdt 
v 

Integrating 

ln v =- kt + cl 
When t = 0, v = v0 , therefore 

ln Vo = C1 

Eliminating C1 

ln (~) = - kt 

and 

v = v0 e-kt 

With v = dx/dt, dx = v0 e-kt dt. Integrating 
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When t = 0, x = x 0 , therefore 

Xo = 
k 

Eliminating C2 

Vo -kt) x = x0 +- (1 - e 
k 

(b) Since we require v in terms of x we choose 

dv a(v) = v - = - kv 
dx 

then 

dv = - k dx 

Integrating 

v = - kx + c3 
When v = v0 , x = x 0 , therefore 

Vo = - kXo + C3 

Eliminating C3 

v = v0 - k(x - x 0 ) 
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Using the previous solution for x- x 0 we verify that 

k Vo (I - e-kt) V = Vo - X 
k 

as before. 

Worked Example 8. 3 

A particle moving in the positive x- direction has acceleration a (v) = 
(1 00 - 4 v2 ) m/s2 , where v is the speed of the particle in m/s. 

(a) For what values of speed is the speed of the particle (i) increasing, (ii) decreas­
ing? 
(b) If the speed of the particle is initially zero what is its maximum speed? Is this 
a mathematical maximum or is it a final steady value? If t = 0 when the particle is 
at rest, at what timet is the maximum speed attained? What is the speed at t = 
0.05 s? 
(c) In case (b) what is the time interval and the displacement of the particle as the 
speed changes from 1 m/s to 3 m/s? 
(d) If the speed of the particle is initially 8 m/s what is its ultimate speed? 



KINEMATICS OF A PARTICLE 133 

Solution 

(a)a(v) = 100- 4v2 ;a(v) is positive for 0 < v < 5 m/s and negative for v > 5 m/s. 
Thus (i) for speeds less than 5 m/s speed is increasing and (ii) for speeds greater 
than 5 m/s speed is decreasing. Note :negative values of v are not considered since 
particle is moving in the positive x -direction. 
(b) The speed v will have a maximum value when dv/dt = 0 and d2 v/dt2 is nega­
tive. Since dv/dt = a(v) = 100- 4v2 , dv/dt = 0 when v = 5 m/s, and d2 v/dt 2 = 
- 8v(dv/dt), which is also zero at v = 5 m/s. Thus v = 5 m/s is not a mathematical 
maximum. However when v attains the value 5 m/s,a(v) = 0; the speed therefore 
remains constant and is a final steady value. 

Since we are interested in the time, we retain the form 

and 

dv 
a(v) = - = 100 - 4v2 

dt 

Integrating this equation gives a relation between v and t. We can use partial 
fractions or use the standard form 

1 
= -ln 

2a 
f~) \a - x x <a 

with appropriate limits. 

rv dv = jt dt 
4 Jo 52 - v2 Jo 

1 
t=- X 

4 
[ln ~] 

10 5 - v 0 

v 

1 5 + v 
=-x ln--

40 5 - v 
As v ~ 5, t ~ oo, therefore the steady value of speed is attained after infinite time. 

To obtain the speed after time t we rearrange the expression to make v explicit 

from which 

v = 

5 + v 
5 - v 

5(e40t - 1) 

1 + e40t 

= e4ot 
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when t = 0.05 s 

5(e2 - 1) 
v = = 3.81 m/s 

1 + e2 

(c) We use the same integration as in (b) but amend the limits, putting v = 1 m/s 
att=t1 and v=3m/satt=t2 • Then 

1 

40 

40 

~ 5 + VJ 3 In--
5 - v 1 

1 8 
= -In- = 0.0245 s 

40 3 

For the displacement we require the form 

and 

then 

dv 2 a(v) = v- = 100 - 4v 
dx 

v dv 
=ctx 

x2- Xt = _!_ J3 vdv = 81 fin(25- v2)]31 
4 1 25 - v2 l 

1 
= - -(In 16 - In 24) 

8 
1 3 = - ln- = 0.0506 m 
8 2 

(d) If the initial speed is 8 m/s then, by similar considerations as those in (b) above, 
particle speed reaches a final steady value 5 m/s. 

8.2 Curvilinear Motion of a Particle 

The particle now moves along a plane curved path C (figure 8.4) but the defini­
tions framed in the previous section still formally apply, provided we recognise 
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y 

X 

Figure 8.4 

that, because of the curvilinear motion the directions of the position, displace­
ment, velocity and acceleration vectors no longer coincide with each other nor 
do they remain ftxed. For particular applications it is necessary to determine the 
components of these vectors in specified directions. 

8.2.1 Position and Velocity Components 

We again choose a ftxed reference direction, which we take as an X-axis, and 
select a reference point 0 on the axis. If the particle at time tis at point P of its 
path we again define its position as being OP, having magnitude and direction. We 
shall call this the position vector r. 

In a time interval ot the particle will have moved to a new position OP' = r'. 
and the change of position, the displacement, is given vectorially by PP' which we 
signify by or such that r' = r +or. 

The ratio or/ot represents the average rate of change of position, a vector 
having the direction of or. 

The average speed of the particle during the same time interval is os/ot where 
s is the distance of P measured along the path from some reference point 0' on 
the path, and tis is the length of the curved segment PP'. 

The velocity of the particle at P at time t can now be formally defined to be 

tir dr 
lim -::::::-

ot~ o M dt 

Since in the limiting process the magnitude of {ir tends to os, and the direction of 
or tends to that of the tangent at P, we interpret dr/dt as being a velocity vector 
v with magnitude v = ds/dt and direction that of the tangent at P. 

The motion of the particle is therefore characterised by a stretching and a 
swinging of the position vector r, the particle thereby tracing a path to which the 
velocity vector vis always tangential. 
(1) Rather than proceed using vector symbolism exclusively we can use the 
polar coordinates of P to indicate the position of the particle (figure 8.5). These 
are particularly appropriate since the magnitude of the position vector is con­
veniently given by r and its direction by (J. 

The velocity v can now be expressed in terms of time rates of change of r and 
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(a) (b) 

Figure 8.5 

8, by resolving v into its components in the radial and transverse directions shown 
in figure 8.5a, from which Vr = v cos ( t/1 - 8) and vo = v sin (t/1 - 8). In figure 8.5b, 
o8 is small and in the limit cos(ijt- 8) = dr/ds and sin(t/1- 8) = r d8/ds. 

ds 
Vr = - cos(t/1 

dt 
e) = ds x dr = dr = ; 

dt ds dt 

ds ds rde r de . 
V(! = - sin( t/J - 8) = - X - = - = r8 

dt dt ds dt 

(8.8a) 

(8.8b) 

(2) We can also indicate the position of the particle by specifying the rectangt.ilar 
coordinates of P, and in a similar manner the velocity v may be expressed in terms 
of the time rates of change of x andy by resolving in the x- andy- directions 
(figure 8.6a). 

y 

y 
Y~~ 

df 
n 

p 

s 

0 X X 
(a) 

Figure 8.6 

From the figure 

ds ds dx dx . 
Vx = - COS t/1 = X-=-=X 

dt dt ds dt 

ds 
vy = -sin t/J = 

dt 

ds dy dy . 
-X-::::-::::y 
dt ds dt 

(b) 

(8.9a) 

(8.9b) 
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(3) Further, we can indicate the position of the particle by specifying the distance 
of P from some reference point 0' on the path, measured along the path. We call 
this the intrinsic coordinate of P (figure 8.6b ). At the point P we have two per­
pendicular directions, namely, the t-direction, that of the tangent, and the 
n -direction, that of the normal. 

We can now write immediately 

ds s Vt = - = 
dt 

(8.10a) 

Vn 0 (8.10b) 

8.2.2 Acceleration Components: The Hodograph 

The acceleration of the particle is the rate of change of its velocity and again can 
be formally defined as being dv/dt. However, we note that as the particle moves 
the velocity vector is changing in both magnitude and direction, and, in the same 
way as the velocity itself was the result of a stretching and swinging of the posi­
tion vector, so the acceleration is now the result of the stretching and swinging of 
a velocity vector in the plane of the motion. In figure 8.4 we were able to see the 
stretching and swinging of the position vector since the path itself was the result 
of the movement of the end point of this vector. In the case of the velocity we 
should draw a separate diagram of the velocity vector, that is, a representation of 
the velocity at P, and observe how it too stretches and swings. 

This is conveniently done by choosing another plane, the so-called hodograph 
plane, in which the behaviour of the velocity vectors can be observed. While the 
actual particle traverses the actual path in what we shall now call the physical 
plane, a second particle is made to move in the hodograph plane in such a way 
that its position vector is always equal to the velocity vector of the actual particle. 
The path traced out by the second particle, the hodograph particle, is called the 
hodograph of the motion of the actual particle. Thus in figure 8. 7, if the actual 

v 

phys1cal plane 

Figure 8.7 

7' 1' 
hodograph plane 
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particle, when at the point 5 in the physical plane, has velocity v then the hodo­
graph particle is at the point 5' in the hodograph plane, the vector O'P' having 
magnitude v and the direction of v. 

We can now state generally that if the actual particle is at a point P and the 
hodograph particle is at P', then 

( the velocity of the actual \ 
particle in the physical plane) 

= ( the position of the hodograph ) 
particle in the hodograph plane 

It follows that 

or 

( the rate of change of the \ 
velocity of the actual particle) 

( the acceleration of the actual) 
particle in the physical plane 

= 

= 

( the rate of change of the posi-) 
tion of the hodograph particle 

( the velocity of the hodograph ) 
particle in the hodograph plane 

(1) Consider now our particle, which is at the point (r, 0) and moving with velocity 
magnitude ds/dt in the direction of the tangent to its path, as in figure 8.8a. The 
hodograph of the motion will be of the form shown in figure 8.8b. Then as the 

y 

X 

(a) (b) 

Figure 8.8 

position vector r of the actual particle stretches and swings, the position vector v 
of the hodograph particle, magnitude v, also stretches and swings, and the velocity 
v' of the hodograph particle is equal in magnitude and direction to the accelera­
tion a of the actual particle at all times. 

By comparison with the radial and transverse components of the velocity of a 
particle in the physical plane, as already discussed (see equations 8.8), the velo­
city v' of the hodograph particle has a radial component v and a transverse com­
ponent v~. We note that the radial component v is in the direction of the tangent 
at P to the actual path, and the component v~ is in the direction of the normal at 
P. We have therefore, for the actual particle 

. dv ( ) at = v =- 8.lla 
dt 

an = v~ = v dt/1 X ds -
ds dt 

2 dt/1 v-
ds 
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since ds/dt = v. Since {from coordinate geometry) ds/dl/1 = p, the radius of curva­
ture of the path at P 

{8.1lb) 

at and an are respectively the tangential and normal components of the 
acceleration of the particle at P. 
{2) We can also resolve the velocity of the hodograph particle in the x- and 
y-directions and obtain rectangular components of acceleration. Thus, referring 
to figure 8.8b 

ax = v cos 1/1 - v~ sin 1/1 

Noting that v cos 1/1 = dx/dt 

d 
( 1 dx) cos"' - ( 1 dx) 

cos"' dt 

Co:i x 
d2x sin 1/1 = - +--
dt 2 cos2 1/1 

sin 1/1 dx 
X-- X 

dl/1 

cos"' dt dt 

It can be verified that 

ay = v sin 1/1 + vl/1 cos 1/1 

dly .. 
=- =y 

dt 2 

cos"' dt 

X dl/1_ X dx_) 
dt dt 

~-~ sinl/1 
dt 

cos"' 

{8.12a) 

{8.12b) 

ax and ay are respectively the x andy -components of the acceleration of the 
particle at P. 
{3) To obtain the radial and transverse components of acceleration we can again 
resolve the hodograph particle velocity in the direction of and perpendicular to 
the direction of the actual particle position vector; but it will be found more con­
venient to use two hodographs, one in plane 1 to follow the radial velocity com­
ponent;' and the other in plane 2 to follow the transverse component re (figure 
8.9). 

In hodograph plane 1 the hodograph particle shown has a radial velocity 
component d{r)/dt = f = a,1 and a transverse velocity component {r)d8/dt = i-0 = 
ae 1 • In hodograph plane 2 the hodograph particle shown has a radial velocity 
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v,=r 

a,, 

(a) phys1cal plane (b) hodograph plane 1 (c) hodograph plane 2 

Figure 8.9 

component d(re)/dt = f(J + r(j = a01. and a transverse velocity component 
(rB)d(O + 7r/2)/d t = r02 =an. The subscripts rand e refer to directions in the 
physical plane. 

If we now add corresponding components we obtain 

art - ar2 = i' - r62 

ao1 + ao2 = fB + ;() + r(j = rO + 2r0 
(8.13a) 

(8.13b) 

ar and a 8 are respectively the radial and transverse components of the acceleration 
of the particle at P. 

The expressions we have derived can be summarised as in figure 8.10. 

1ntnns1C polar rectangular 
coordinates coordinates coord1nates 

) 
y 
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0 
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)k 
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~ 
=x 

--+- ____ o ___ y I 0 X 

···';t: y 

1 :J ~, a,= dl 
On 

acceleration a,= r-riJ2 

/ 
=x 

0 ¥ -+------- 0 
X 

Figure 8.10 
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The choice of coordinate system will depend on the prJblem under considera­
tion, and the solution in turn will be considerably simplified by a correct choice. 
We shall find later that the choice will depend to a large extent on the type of 
force acting on the particle. Typical choices would be (a) for vehicle motion­
intrinsic coordinates, (b) for orbital motion- polar coordinates, (c) for motion 
under unidirectional forces such as gravity- rectangular coordinates. 

Worked Example 8.4 

A particle travels along the parabolic path y = x 2 with speed v = 2 + 2 t (m, s 
units), the timet being zero as the particle passes through the origin. Determine 
the time at which the particle passes through the point (1,1) and thex- and 
y -components of its velocity and acceleration at that instant. 

Solution 

If the tangential direction at any point makes an angle 1/1 with the x- axis then 

dx 
V X = --- = V COS 1/1 

dt 

and 

therefore 

tan 1/1 
dy 

= 2x 
dx 

cosl/1 = ----­
.J(l + 4x2 ) 

dx 2 + 2t 
= 

dt .J(l + 4x2 ) 

s: .J(l + 4x2 )dx = s:! (2 + 2t)dt 

t [x .J(l + 4x2 ) + t In t { 2x + .J(l + 4x2 )}] ~ 

t.J5 + ± ln(2 + vf5) = lt1 + t 12 

lt 2 + 2ft - 1.479 = 0 

t 1 = 0.575 (positive value) 

therefore 

v1 2 + 2t1 = 3.150m/s 
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at the point (1,1), cos 1/1 = 1/..jS, sin 1/1 = 2/..jS, therefore 

Vx 1 = Vt cos 1/1 = 3.15/..JS = 1.408 m/s 

vy1 = v1 sin 1/1 = 6.30/..JS = 2.817 m/s 

From above, Vx = dx/dt = v cos 1/1, therefore ..J(l + 4x2 ) dx/dt = 2 + 2t. 
Differentiating 

( dx 2 

dt) = 2 

At the point (1, 1) 

d2x 4 (dx) 2 
..js- +- - = 2 

dt 2 ..js dt 

therefore 

From above, vy = dy/dt = v sin 1/1 

2x 
sinl/1 = ---­

..j(1 + 4x2 ) 

2-.jy 2 
= =----

..J(l + 4y) ..J(lfy + 4) 

therefore ..J(lfy + 4) dy/dt = 4 + 4t. Differentiating 

At the point (1, 1) 

therefore 
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8.3 Angular Motion of a Line 

In our discussion of the motion of a particle in a curved path we found that it 
was characterised by the stretching and swinging of position and velocity vectors. 
The swinging was conveniently referred to the changes in the angles 8 and 1/J, 
and we encountered quantities such as iJ and 1/J in our description of the motion of 
a particle. To accommodate such angle changes we introduce further definitions 
relating to the angular motion of a line. 

Suppose OP is such a line (figure 8.11 a), which is rotating about a fixed point 
0. Choose a fixed direction OX. Then we define the angular position of OP to be 

X 

(a) (b) 

Figure 8.11 

the angle 8, measured in the anticlockwise sense from OX. The angular velo-
city of the line, n, is then defined to be de I dt = e, and the angular acceleration 
of the line, 0!, is defined to be d2 e /dt 2 = ii' with the anti clockwise direction being 
taken as the positive sense in both cases. If the unit for measurement of angle is 
the radian, then the units for nand a are respectively rad/s and rad/s2 • 

It is evident that the relationships between position x, speed v and acceleration 
a that followed from the definitions in the case of rectilinear motion can be 
formally repeated for angular motion, with the substitution of 8, n and a: res­
pectively for x, v and a. For example, if a is constant, we can write 

n = no + at 

8 = H0 t + tat2 

Q 2 = Ho2 + 2a8 

where t is measured from the instant when e = 0 and n = no. 

{8.14a) 

(8.14b) 

{8.14c) 

Similarly we have a corresponding angular simple harmonic motion expressed 
by the equation 

{8.15) 

Note that whereas previously we were discussing the motion of a material 
particle we are now referring to the angular motion of a geometrical line. We shall 
later have occasion to refer to the motion of a geometrical point and the angular 
motion of a material body. It is meaningless, however, to speak of the angular 
velocity of a particle. 
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If a particle is moving in a circular path then we obtain particularly simple 
relations between linear and angular motions. In figure 8.11 b suppose the particle 
is moving in a circular path having radius R. If s is the arc length AP measured 
from the reference axis and 8 is the angular position of OP, then for the particle 
at P we have 

s = R8 (8.16a) 

and 

v = s = R8 = Rfl (8.16b) 

the direction of the velocity being tangential to the path, or at right angles to the 
radius OP. 

The acceleration of the particle at P has two components, at and an where 
(from figure 8.10) 

dv 
RB = ROl (tangential to the path) (8.17) at = -

dt 

v2 v2 
= Rfl2 (8.18) a = -- (towards the centre) n 

p R 

at is termed the tangential acceleration component and an is termed the centri­
petal acceleration component. 

Although for purposes of definition we chose the reference direction in figure 
8.lla to pass through 0, we could equally well have chosen a parallel reference 
direction o'x' (figure 8.12), and the definitions of()' nand Q would have been 

X' 

Figure 8.11 

unchanged. Had we chosen any other reference direction O"X" inclined at a fixed 
angle {3 to the direction OX, then since 8" = 8' - {3 = 8 - {3 the angular position of 
line OP would have been different, but after differentiating 

iJ'' = iJ = [l 

8" 8 = Ol 
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and n and a would have been unchanged in value. 
We go further and select another line LM as shown which rotates with OP in 

such a way that the angle 'Y between the lines is fixed. Then if the angular position 
of LM is ¢ with respect to the direction 0 Y 

cfJ = e + 'Y 

and again, after differentiating 

¢ = e = n 
¢ = e = a 

The same result is true for all lines that are in a fixed relation to one another. It 
follows that all line segments of a rotating plane have the same angular velocity 
and the same angular acceleration. If a plane 2 is rotating relative to another plane 
1, we can now associate with its rotation an angular velocity n and an angular 
acceleration a relative to plane 1, without specifying any particular axis of rota· 
tion or any particular line in plane 2. However, we must still define e, n and a by 
reference to the angular motion of some selected line in plane 2 and a reference 
direction in plane 1. 

8.4 Simple Harmonic Motion 

We now return to the particular type of motion that we described in section 8.1.2 
as being simple harmonic, and review its characteristics in the light of the motion 
of a particle in a circular path. In figure 8.13 a particle B is moving at constant 

Figure 8.13 

speed v in a circular path radius R. At the same time a particle A is moving along 
the axis 0 Yin such a manner that the line PQ joining the points occupied by the 
particles is always perpendicular to OY. Timet will be measured from the instant 
the particles cross the axis OX, this being also the reference direction for the 
angular position e of the line OQ. 
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Since vis constant and n = v/R, then n is constant, and 0 = flt. We can then 
write for particle A when at the point P at time t 

y=Rsinflt 

y = R flcos flt 

For the motion of particle A we have therefore, at all points of its path 

(8.19a) 

(8.19b) 

(8.19c) 

ji + 0 2y = 0, and the particle is moving with simple harmonic motion (SHM) 
between the points P1 and P2 • The amplitude of the motion isR, and the periodic 
time T for one cycle of the motion is the time taken for particle B to traverse the 
circular path, or for the line OQ to rotate through the angle 27T, that is 27T/il. 

Usually the motion of a particular particle is already known or can be shown 
to conform to an equation of the formji + 0 2y = 0, and the accelerationji and 
the position y are known at some instant. From- equations 8.19 it can be seen that 

= 27T j ( position ) 
corresponding acceleration 

(8.20) 

without regard to signs. 
If the time t is measured from the instant that OQ is in the angular position t/J, 

our expressions now become 

y = R sin (nt + t/J) 

.Y = R n cos (nt + tP) 

ji = -R 0 2 sin(Ut + tfJ) 

(8.21a) 

(8.21b) 

(8.21c) 

The angle tfJ is called the phase angle. Comparing equations 8.21 with equations 
8.7 previously derived analytically, we identify A with the radiusR of the so-called 
auxiliary circle; we identify w with the angular velocity n of the line OQ, and we 
identify B with the phase angle t/J. 

Finally we can plot a position- time curve as in figure 8.14 which shows how y 
varies sinusoidally with time, each cycle of the motion being repeated at time 
intervals of 27T/n. 

Worked Example 8.5 

A particle moves with simple harmonic motion in a straight line, the amplitude 
being 2m and the frequency 15Hz. Determine (a) its positions during one cycle 
when its velocity has magnitude 100 m/s, (b) its acceleration at these positions, 
and (c) the time taken to travel3 m from one end position. 
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auxiliary c1rcle 

Figure 8.14 

Solution 

Frequency= w/2rr, therefore 

w = 2rr x 15 = 94.25 rad/s 

(a) In equations 8.7a 

x = A sin ( wt + B) 

x = A w cos (wt + B) 

Therefore 

cos (wt + B)= 
100 

Aw 2 X 94.25 

(since the velocity changes direction during each cycle). 

cos (wt + B) = ± 0.5305 

and 

(wt + B)= 58°, 122°, 238° and 302° 

-100 
or 

2 X 94.25 

sin (wt + B)= 0.8477, 0.8477,- 0.8477 and- 0.8477 

and 
x = 2 sin(wt + B) = 1.695 rn, 1.695 rn,- 1.695 rn and 

- 1.695 rn 

when the velocity will be 100 rn/s,- 100 rn/s,- 100m/sand 100 m/s. 

(b) 

when 

.x· = - Aw2 sin(wt + B) = -2 x 94.22 sin (wt + B) 

- 15.06 km/s2 ,- 15.06 krn/s2 , 15.06 km/s2 and 

15.06 km/s2 

( wt + B) = 58°, 122°, 238° and 302° 

147 
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(c) The required time is best obtained by using an auxiliary circle similar to figure 
8.13 with OP1 =2m; then after moving 3m the particle is at the point P where 
OP = 1 m. The angle e is then sin-1 1/2 = 30°, and angle P1 OQ = 120°. For one 
cycle, 7 = 1/f= 1/15 s. Therefore, for the part cycle 

120 1 
--X time taken 
360 15 

= 1/45 s 

8.5 Relative Motion of Particles 

We shall shortly be discussing many-particle systems, in particular the motion of 
rigid bodies. As the first step towards that discussion we now consider the motion 
of two particles moving in a plane. We first confine their motion to a straight line 
and then allow the particles to move independently in curved paths. 

8.5.1 Rectilinear Motion 

Consider two particles A and B moving independently in the same straight line 
(figure 8.15). 

~ PA Pa • 
1-: --XA----<.I,__x_a --_j--<0>------x 

Figure 8.15 

If at time t the particles are at points P A and P8 respectively, where their posi­
tions are defined to be x A, x B as previously discussed, then we define the position 
of B relative to A as OP8 - OP A, where 

OP8 - OPA = x 8 - xA 

symbolised as Ax B. 

Alternatively we can refer to the relative position of B with respect to A. AxB 

can also be regarded as the position of B as viewed by an observer travelling with 
A who relates the position of B to himself as a reference point. 

The definitions of relative velocity and relative acceleration of B with respect 
to A follow immediately, their magnitudes being respectively 

AVB = VB - VA = is - XA 

AaB = as - aA = :Xs - xA 
the sense again being based on the choice of a positive x-direction. 

The subscript notation for relative position, velocity and acceleration should 
be carefully noted since its use will be found to facilitate the solution of relative 
motion problems. A significant extension of the notation can be made if we 
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imagine a third particle to be stationed at the reference point 0, its position being 
xo, which is now zero. An equivalent expression for xB is now xB- x 0 , which 
can be written as a position relative to 0 in the form 0 xB. Similarly we can write 
x A = 0 x A. We then have the position of B relative to A 

AXB = XB - XA = oXB - oXA 

and, after rearranging 

oXB = oXA + AXB (8.22a) 

The ordering of the subscripts in this equation should be particularly noted, 
since the recognition of this ordering enables us to write five further relations each 
of which is equivalent to equation 8.22a. For example we can write two of these 
as follows 

AXo = AXB + sXo 

with proper regard to signs. 
If we differentiate equation 8.22a twice we obtain 

oVB = oVA + AVB 

oas = oaA + Aas 

(8.22b) 

(8.22c) 

in which the cyclic ordering of the subscripts is apparent. Again these relationships 
can be written in equivalent ways by proper re-arrangement of subscripts. 

8.5.2 Curvilinear Motion: Translating Axes 

Consider a particle B that is moving along a path in a plane 2, which is attached to 
some other particle A (figure 8.16a). B is then said to be moving relatively to A, 

P8 
Ps 

AfB 

2 
PA 

(a) 

(b) 

Figure 8.16 

path of 8 
\ 1n plane 2 

\ 

(c) 

and P A is a reference point for the position of B. Then the position of B relative 
to A is A'B, the velocity of B relative to A is AVB tangential to the path and the 
acceleration of B relative to A is AaB, not usually tangential to the path. 
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Suppose now that particle A is moving along a path in a plane 1 and that plane 
2 attached to particle A moves with it but is not allowed to rotate figure 8.16b. 
Plane 2 is said to be in translation relative to plane 1. This implies that a pair of 
axes fixed in plane 2 retain their orientations as P A moves along the path of 
particle A. 

From the figure we see immediately that at time t 

(8.23a) 

where orB is the position of Bin plane 1. 
In the subsequent short time interval ot, particle A moves to P A 1 in plane 1, and 

particle B moves to PB 1 in plane 2, the displacements being respectively o0 r A and 
o ArB. The total displacement of Bin plane 1 is given by the vector addition of these 
two displacements (figure 8.16c) and oorB =oar A+ DArB. Dividing by ot, then in 
the limit as o t -+ 0 

(8.23b) 

in which the velocity vectors are in the same directions as the displacement 
vectors. Thus, if the paths of A in plane 1 and B in plane 2 are known, 0 v A and 
AVB are tangential to those paths and, by vector addition, we obtain the velocity 
of Bin plane 1, oVB, in magnitude and direction (figure 8.17a). 

Without setting out the argument in detail it can be seen that a corresponding 
relationship can be set down for the accelerations (figure 8.17b ). 

0 

(a) (b) (c) 

Figure 8.17 

The directions of 0 aA and AaB are not tangential to the paths unless the paths 
are straight lines. 

Figure 8.17 illustrates a further facility afforded by the subscript notation. The 
ends of the vectors in the vector triangles carry lower-case letters, which corres-
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pond to the vector being represented. Thus the vector AVB is represented by the 
line segment a .-- b, the direction being that from a to b. The same line seg­
ment also represents the vector B v A, the direction now being that from b to a. 
The vector addition of the relative velocities in figure 8.17a can now be displayed 
as in figure 8.17c, which not only displays the relationship of equation 8.23b but 
also displays the remaining five equivalent relationships that can be written, for 
example 

BVO = BVA + AVO 

The same principle is applicable to the graphical summation of relative 
accelerations. 

It is again emphasised that plane 2 must not be allowed to rotate. If rotation 
also occurred then the expressions for the acceleration of B relative to 0, 0 as, 
would contain additional terms arising from the rotation of the path of B. These 
additional terms are considered in the section that follows. 

Worked Example 8. 6 

At time 14.00 h a ship B is sailing on a N-E course at 12 km/h when it sights 
another ship A at a position 10 km N 60°E, which is sailing on anE-W course at 
15 km/h. Ship B continues on its course until ship A is directly ahead; it then 
changes course in order to rendezvous with ship A as soon as possible. 

(a) Determine the time at which B changes course and its distance from A at that 
time, 
(b) the new course taken by B, 
(c) the time at which the two ships meet. 

Plot the path of B relative to A and verify that the time taken by B to traverse 
this relative path agrees with the time determined in (c) above. Disregard the 
curvature of the surface of the Earth. 

Solution 
Figure 8.18a gives a space diagram to illustrate the solution. If we take plane I to 
be the Earth's surface, then, relative to B, A is moving in plane 2 attached to B, 
plane 2 being defined by the N-S, E-W directions at B. 

Then 

EVA = EVB + BVA 

15 +- = 12L45° + sVA 

in which sVA is not yet known. (Subscript E refers to the Earth.) 
This equation is represented graphically in the vector diagram, figure 8.18b, 

from which Bv A can be determined by measurement (or calculation) of the mag­
nitude and direction of the line ba. Similarly AVB is represented by ab. The path 
of A relative to B and parallel to B v A is then indicated in the space diagram. 
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15 km/h 
b 

N 

EVA= 15 km/h e 

( b) velocrty vector dKJgram before change of course 
b1 

E 

(a) space d1agram show~ng locations and paths 
on Earth's surface (plane 1) 

a-------''--""'e· 
EVA =15 km/h 

(c) veloc1ty vector d1agram after change of course 

Figure 8.18 

As viewed from B, A travels along its relative path and is directly ahead of B 
when it reaches point Q' on the relative path, or alternatively, is at point Q on the 
actual path 

p Q' p Q 
Elapsed time = ~ or A 

BV A EVA 

and B changes course at 14 h 14.6 min. 

= 3"66 h = 14.6 min 
15 

Distance of A from Bat this time is P8 Q' = 4.13 km, by measurement. 
During these 14.6 min, ship B will have travelled to a point P8 ', a distance 

14.6 (min) x 12 (km/h) = 2.93 km. From this point onwards, in order that the 
ships may meet it is necessary that the velocity of A relative to B be in the direc­
tion QP8 ' (or Q'P8 ) and we write 

EVA = EV B + BV A 

15 +- = 12L? + aVAL-135° 

This equation contains sufficient information to construct the vector diagram, 
figure 8.18c, and thereby obtain the required direction for Ev 8 . We find that two 
directions are possible, and we select by inspection the one that gives the shorter 
time, namely eb 1 , where Laeb 1 = 73.5°. 

The new course for ship B is therefore N 16.5° Wand the ships meet at the 
point R (see figure 8.18a). 

The total elapsed time is 

PAR = 7.45 h = 29.8 min 
EVA 15 

and the ships meet at 14 h 29.8 min. 
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The path of B as viewed from A is as shown in the space diagram. From P8 to 
S, AvB is given by ab in the vector diagram, figure 8.18b, and from StoPA, Ava 

is given by ab 1 in the vector diagram figure 8.18c. 
The total time for B to travel the relative path is 

P8 S 

ab 

= 6.12 + 4.13 h 

25.0 16.2 

= (14.7 + 15.3) min 

= 30 min 

(The difference between this value and the previous value of 29.8 is due to the 
graphical construction.) 

8.5.3 Curvilinear Motion: Rotating Axes 

We now allow plane 2 of the previous section to rotate about an axis through 
particle A, the axis being perpendicular to the plane. For convenience in descrip­
tion we now signify the point occupied by particle A in plane 2 by 0' (figure 
8.19a). Initially we shall assume particle A to be at rest in plane 1 but later we 

partocleB~ 

0 

(a) 

path of particle 8 
'"plane 2 

X 

(b) (c) 

Figure 8.19 

shall allow it to move, carrying with it the rotating plane 2. A fixed reference 
direction OX is taken through 0, and the angular position of plane 2 is then 
defmed by an axis O'X' fixed in plane 2 and rotating with it with angular velocity 
n and angular acceleration a relative to the axis OX, which is stationary in plane 
1. Particle B travels as before along its path which is now fixed in the rotating 
plane 2 and rotates with it. 

We wish to determine (1) the velocity and (2) the acceleration of particle Bas 
seen by an observer stationed with particle A at 0', who refers all motion to the 
reference direction defined by OX. 
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( 1) Velocity 

At time t the particle B will be at some point P on its path, the point P being that 
point of plane 2 with which particle B happens to be coincident at time t. This we 
call the coincident point of particle B. In the subsequent time interval 8 t the 
particle will have moved in its path to a neighbouring point P' (figure 8.19b). We 
have already discussed this motion and concluded that the velocity of the particle 
B relative toP has magnitude ds/dt = pV 8 and is tangential to the path. However, 
due to the rotation of the plane, the point P moves in a circular path with radius 
O'P toP", through a distance (O'P)88 in time ot. It has itself therefore, a velocity 
of magnitude (O'P) d8/dt = (O'P)n relative to OX, in a direction perpendicular to 
O'P. The total velocity of particle B relative to OX therefore has two components, 
one tangential to the path at P with magnitude pV Band the other perpendicular 
to O'P with magnitude (O'P)n = Av p. 

We can now write, for the total velocity AVB of particle B as viewed from 
particle A at 0' 

AVB = AVP + pVB 

These components are shown in figure 8.19c. 

(2) Acceleration 

(8.24) 

(i) When particle B is at the coincident point P it will have two components of 
acceleration as viewed in plane 2, one tangential to the path with magnitude 
d(pv8 )/dt and the other normal to the path with magnitude (pvs)2 / p as previously 
discussed. For convenience we write pVs as v, it being understood that vis the 
speed of particle B in its path. We then write the above components in the simpler 
forms dv/dt and v2 fp. These are shown in figure 8.20b. 
(ii) Due to the rotation of the plane the coincident point Pis travelling in a 
circular path and therefore has itself two components of acceleration, one per­
pendicular to O'P with magnitude O'Pcx and the other directed towards 0' with 
magnitude (O'Pn)2 /O'P = O'Pn2 • These are shown in figure 8.20a. 

It might be concluded that the total acceleration of particle B as viewed from 
particle A is the vector sum of these four components. Such a conclusion would 
be premature since we have not taken into account all the velocity changes that 
are occurring. 
(iii) The two acceleration components referred to in (i) above are the result of the 
changes in magnitude and direction respectively of the velocity v, the change in 
direction being due to curvature of the path. We have not yet taken into account 
the rotation of the path as a whole. Because of this rotation the orientation of the 
path at Pis changing, and therefore the velocity vector v swings through an 
additional angle 88 in the time interval8t. The angle 88 is the angular displace­
ment of plane 2 in time 8t and is additional to the angle 81/; previously used to 
obtain the component v2 fp arising from the curvature of the path. Particle B 
therefore undergoes an additional velocity change having magnitude v88 in time 
8t, giving rise to an additional acceleration component having magnitude (as 8t 
tends to zero) v d8 /dt = vn in a direction perpendicular to that of v, that is, along 
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(b) acceleration af part1cle B relatiVe to 
cotnclcfe, Jf pomt P due to movement of B 
1n 1ts path (paragraph (1)) 

\ 
'\ P' 
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/ h\ 
I .{2 

I 
I 

d 

(d) acceleration of COinCident po1nt P' of 
part1cle B re/aflve lo COinCident pomt P 
due to rotation of the path ( paragraph (IV) ) 

the normal to the path at P. This component is shown in figure 8.20c. 
{iv) In paragraph (ii) above we have taken into account the acceleration of the 
point P arising from the rotation of plane 2. We recall that Pis that point of plane 
2 with which particle B happens to be coincident at timet. It is also that point of 
the plane with respect to which the particle B has the acceleration components 
referred to in paragraph (i) and is the point at which those components are 
defined. Any other point would serve equally well provided it was not moving 
relative toP. However, since plane 2 is now rotating, all other points of plane 2 
have different velocities and accelerations, and in its motion the partlcle B moves 
to coincident points whose velocities are different from that of P. 

Now after a short time interval f>t the coincident point of B will be p' as noted 
above (figure 8.19b) and P' has a velocity relative to P arising out of the rotation 
of the segment PP' (assumed straight) through an angle &8, with plane 2. This 
relative velocity has magnitude nos (with f>s small) in a direction perpendicular 
to pp', that is, along the normal to the path at P. In time f>t the particle has there­
fore acquired a further velocity. il&s relative to P, and accordingly has an addi­
tional acceleration component normal to its path (in the limit as f>t tends to zero) 
of magnitude (ilf>s)/f>t = {ds/dt)il = vil. This component is shown in figure 
8.20d. {There will also be a centripetal component of magnitude {il&s)2 /f>s = 
il2 f>s directed towards p' but this becomes zero as we proceed to the limit.) 
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The rotation of the path- see paragraph (iii)- and the change in the coincident 
point- paragraph (iv)- together give rise to an acceleration component of magni­
tude 2vn directed along the normal to the path. The recognition of this compon­
ent was due to G. Coriolis (1792- 1843) and is accordingly referred to as the 
Coriolis component. 

The total acceleration of particle B is the resultant of the components shown in 
figure 8.20: the resultant of the components shown in figure 8.20a we symbolise 
as AaP; the resultant of the components shown in figure 8.20b we symbolise as 
pa8; the Coriolis component resulting from the components shown in figures 
8.20c and d we symbolise as pas, or simply ac, and we write, for the total 
acceleration of particle B as viewed from particle A 

(8.25) 

where Pis the coincident point of particle Band ac is the Coriolis component 
(magnitude 2v.Q) of the acceleration of B with respect to P. 

Note that the direction of the Coriolis component of the total acceleration is 
given by rotating the direction of the tangential velocity through 90° in the same 
sense as that of the angular velocity n of plane 2. 

To complete the analysis of the motion of particle B we now allow particle A 
(with the attached rotating plane 2) to move in plane 1 with velocity 0 v A and 
acceleration 0 a A. The complete expressions for the velocity and acceleration of 
particle B in plane 1 now become 

QVB = QVA + AVP + pVB 

oas = oaA + AaP + pa~ + ac 

(8.26a) 

(8.26b) 

For example, consider the case of a particle moving around the perimeter of a 
stationary circular disc radius R, with constant speed v in an anticlockwise direc­
tion. We have already found that at any point of its path the particle has accelera­
tion v2 /R directed towards the centre of the disc. Suppose the disc is now made to 
rotate in its plane about an axis through the centre in an anticlockwise direction 
with angular velocity n, which we choose to be equal to vfR. The peripheral speed 
of the coincident point of the particle at any time is then R.Q = v and its accelera­
tion is centripetal with magnitude v2 /R. One might be tempted to say that the 
total acceleration of the particle has magnitude 2v2 /R, but this is evidently 
incorrect since the particle is clearly moving in a circular path with speed 2v and 
the acceleration has therefore magnitude (2v)2 /R = 4v2 /R. The mistake arises 
because of the omission of the Coriolis acceleration component, magnitude 2v.Q = 
2v 2 /R, which in this case is also directed towards the centre of the disc. 

Worked Example 8. 7 

In figure 8.2la a small body B can slide along the rod OQ, which is rotating about 
the end 0 with angular velocity 0 and angular acceleration 0, in the anticlockwise 
sense. When at the point P on the rod the velocity and acceleration of the body 
relative to the rod are respectively r and r, where r = OP. The body thereby traces 



KINEMATICS OF A PARTICLE 157 

I I 
ve I I 

I ae I 
I v, I a, 

I 
' I 

7 I 
I I 

I I 
r I r I 

/ I 
/ I 

0 0 0 

(a) (b) (c) 

Figure 8.21 

a curved path in the reference plane XO Y. Obtain expressions for the radial and 
transverse components of the velocity and acceleration of the body in the reference 
plane. 

Solution 

From equation 8.24 

oVB = oVp + pVB 

in Which 0 Vp = r0 in the transverse direction pVB = f in the radial direction, there­
fore oVB has the components Vr =rand v11 = rO. These components are shown in 
figure 8.21 b, which should be compared with the appropriate diagram in figure 
8.10. 

From equation 8.25 

oaB = oap + pa~ + ac 

in which oap has two components, rii in the transverse direction and - r(p in the 
radial direction 

pa~ r in the radial direction 

ac 2r0 in the transverse direction 

therefore oaB has the components Oy =;: - r02 and ao = re + 2r0. These com­
ponents are shown in figure 8.2lc, which should be compared with the appropri­
ate diagram in figure 8.10. Note that the path of the body in the rotating plane is 
a straight line, and that the Coriolis component is perpendicular to this line. 

Worked Example 8. 8 

The vertical plate shown in figure 8.22a is hinged at one corner and has a narrow 
slot LM cut in it; the centreline of LM is an arc of a circle with centre Q. A small 
peg B can slide in the slot. At the instant when the bottom edge of the plate 
passes through the horizontal its angular velocity is 10 rad/s anticlockwise and its 
angular acceleration is 50 rad/s2 clockwise. At the same instant the peg is at the 
point P of the slot and moving towards L with speed 5 m/s and acceleration 20 
m/s2 relative to the slot. 



158 BASIC ENGINEERING MECHANICS 

0 

Figure 8.22 

Determine the total acceleration of the peg in the vertical plane. 

Solution 

oas = oap + pa~ + ac 

0 ap has two components, OPa perpendicular to OP and OPn2 along PO 

OPa = (0.2 X y2) x 50 = 10y2 m/s2 L - 45° 

0Pn2 = (0.2 X y2) X 102 = 20y2 m/s2 L - 135° 

These components are represented by op 1 and p 1 pin the graphical solution 
shown in figure 8.22b, their resultant being represented by op. 

pa~has two components, at tangential and an normal to the slot at P. 

at = 20 m/s2 ~ 

pVs2 52 
125 m/s2 ~ an --- - = 

QP 0.2 

These components are represented by pb 1 and b 1 b' and their resultant by pb'. 
ac is perpendicular to pVs and the direction is given by rotating pv8 in the same 
sense as n 

ac = 2pv8 n = 2 x 5 x 10 

and ac is represented by b'b. 
We now determine the resultant of these vector components, this being repre­

sented by the vector ob. The total acceleration of the peg is thus found to be 
61 m/s2 L - 125°. 
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8.6 Summary 

(1) If the position of a particle on the axis OX at time t is x(t) then its velocity 
v = dx/dt and its acceleration a= dv/dt = d2 x/dt2 , the positive sense being that 
of increasing x. These may also be written v = x; a = v = x. 
(2) If s is a distance measured along a curved path, the velocity and acceleration 
along this path are ds/dt and d2 s/dt 2 respectively. 
(3) a may be expressed as 

a = :; = v :: = d: ( v~) 
(4) Simple harmonic motion is defined by the equation 

d2x 
- + w 2x = 0 
dt 2 

where the periodic time 

27T 
T =-

W 

and the frequency 

[= 
w 

27T 

The solution to the differential equation 8.4 is 

x = A sin ( wt + B) 

A and B being determined from the initial conditions. 

(8.2) 

(8.4) 

(8.6) 

(8.5) 

(5) In plane curvilinear motion the pairs of velocity and acceleration components 
for the respective coordinate directions are 
polar 

Vr = r vo = riJ (8.8) 

Or = ;: riJ2 ao = rO + 2riJ (8.13) 

rectangular 

Vx =X vy =y (8.9) 

ax = x· ay =Y (8.12) 

intrinsic 

Vt = s vn = 0 (8.10) 

Ot = s On = Vt2 fp (8.11) 
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(6) For a particle moving in a circular path 

s = Re 
v = Rrl. 

(8.16) 

(8.17) 

(8.18) 

(7) The relationships between position x, speed v and acceleration a for the case 
of rectilinear motion can be formally repeated for angular motion of a line, with 
the- substitution of 0, fl. and a for X, V and a respectively. 
(8) For relative motion in non-rotating reference frames 

oVB =oVA + AVB (8.22a) 

oaB = oaA + AaB (8.22b) 

where yvx and yax represent generally the velocity and acceleration of X with 
respect to, or as seen from, Y. 
(9) For problems involving relative motion, relative velocities and relative paths 
are best determined by graphical interpretation of equation 8.22a. 
(1 0) Relative motion in a rotating reference plane in which a path is rotating at a 
speed n involves a Coriolis component of acceleration ac, having magnitude 2rl.v 
and direction that of v turned through 90° in the sense of n. In equation 8.22a 
the term A VB now becomes 

AVB = AVP + PVB 

and in equation 8.22b the term AaB now becomes 

AaB = AaP + pa~ + ac 

where Pis the coincident point of B. 

Problems 

8.1 The maximum possible acceleration of a train is 1.5 m/s2 , its maximum speed 
is 30 m/s and its maximum retardation 4.5 m/s2 • What is the shortest time, from 
rest to rest, in which it can cover (a) 300m (b) 1000 m? (Hint: Use a velocity­
time graph.) 

8.2 A train moves off from station A with constant acceleration 1 m/s2 and 
attains a top speed of v m/s, which it maintains for 9.6 km until it reaches station 
B, 10.05 km from A. The brakes are then applied, causing a constant retardation 
a m/s2 and as soon as the train comes to rest it is reversed to st~tion B, first with 
constant acceleration 1 m/s2 , and then at constant retardation of 5 m/s 2 • If it 
comes to rest at B 422 s after it left A find v and a and the distance the train 
overshot B before reversing. (Hint: Use a velocity- time graph.) 
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8.3 A train starts from rest and for the first kilometre moves with constant 
acceleration, for the next 3 km it has constant velocity and for another 2 km it 
moves with constant retardation to come to rest after 10 min. Draw the velocity­
time graph and find (a) the maximum speed and (b) the three time intervals. 

8.4 The motion of a particle is described by the equations= (10v2 + 50v) m. 

(a) Will it have a maximum velocity? 
(b) WUI it have a maximum acceleration? 
(c) Find the time taken for the velocity to change from 2 to 10 m/s. 
(d) Find the distance covered in this period. 
(e) What is the acceleration at the beginning and end of the period? 

(Hint: Differentiate the equation and use relationships given in section 8.1.2.) 

8.5 The motion of a particle in a straight line is described by a= (5 - 0.05v2 ) 

m/s2 • 

(a) What is the final velocity of the particle? 
(b) If the initial velocity when t = 0 is 4 m/s find the time required and distance 
covered to reach 8 m/s. 
(c) If the initial velocity is 20 m/s what happens to the velocity of the particle? 

(Hint: Use the relationships given in section 8.1.2.) 

8.6 A particle moves in a straight line with velocity v =(50- 2t + O.Olt2 ) m/s, 
where t is the time in seconds. 

Sketch a velocity- time graph and calculate the times when the particle is 
instantaneously (a) at rest and (b) has no acceleration. 
(c) What are the values of acceleration in case (a), and (d) what is the velocity in 
case (b)? 
(e) Find the distances from its initial position at which the particle comes 
instantaneously to rest. 
(f) What is the total distance the particle travels in a negative direction? 
(g) Find the values oft at which the particle passes again through its original 
position. 
(h) What is the total length of its path from t = 0 to the instant when is passes 
through its initial position for the last time? (Hint: Only definitions of displace­
ment, velocity and acceleration are required.) 

8.7 A particle has component velocities vy = 20 sin 20t m/s and 
Vx = 10 sin (lOt+ 45°) m/s. At timet= 0, y = x = 0. 

Find, for t = 0.1 s, the absolute velocity and acceleration of the particle and 
its displacement from the origin. (Hint: Find component accelerations and dis­
placements by using relationships in section 8.2.1.) 

8.8 A particle has component velocities Vy = t m/s and Vx = 5 - 3t m/s. At time 
t= O,y =x = 0. 
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Find equations for x andy and thus deduce an expression for the distance r of 
the particle from the origin. 

(a) Find the farthest distance the particle reaches from the origin in the time 
period 0 to 2.6 s. 
(b) At what time does this occur? 
(c) State the significance of the instant t = 2.5 s. 
(d) Find the absolute velocity and acceleration of the particle when t = 2.0 s. 

8.9 The position of a particle is described in polar coordinates as r = 58. If its 
velocity along its path is constant at 5 m/s show that after 2 sits e -coordinate is 
given by an equation that is satisfied by e = 1.53 rad; hence give the position of 
the particle at that instant. 

Find also the absolute velocity and absolute acceleration at the same instant. 
(Hint: Deduce an equation for s (see the appendix) in terms of e, hence, or other­
wise, relate s and iJ and s and 0. Use equations relating to polar coordinates to find 
the absolute velocity and acceleration.) 

8.10 A particle is moving along a horizontal smooth surface with constant velo­
city V when it impinges tangentially on to an upward curved surface of radius R. 
If the velocity in the horizontal (x) direction is maintained constant by the appli­
cation of a suitable force, show that the acceleration in they direction is 

R Co:3 ~) 
where ~ •s the angle subtended at the centre by the arc along which the particle 
has travelled. (Hint: Write equations for x andy measured from the point of 
impingement (or use any other set of components); differentiate for velocity and 
acceleration or use other component sets; use conditions on x values to solve.) 

8.11 A particle describes SHM having amplitude 0.5 m and frequency 20 Hz. 

(a) Find its maximum velocity and maximum acceleration. 
(b) Find its velocity and acceleration when travelling away from the centre and 
at a distance of 0.2 m from one end of its travel. 
(c) Find the time taken to travel from 0.1 m from one end position to the other 
extreme position and back to within 0.2 m of the original position. 

8.12 A rigid link in hinged at one end. It performs simple harmonic motion in an 
angular fashion with amplitude 30° and period 0.5 s. 

(a) Determine the maximum angular velocity of the link. 
(b) Find its maximum angular acceleration. 
(c) Find its angular velocity and angular acceleration when at 10° to the mean 
position and travelling away from the centre. 
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(Hint: Write (J =A sin wt, where (J is the angle of the link; differentiate for 
angular velocity and angular acceleration.) 
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8.13 A particle moving with SHM passes through two points A and B 0.3 m apart 
with the same velocity having taken 2 s to pass directly from A to B. After another 
4 sit passes through Bin the opposite direction. Find the period and amplitude of 
oscillation. 

8.14 Ifx =a sin (wt + cp) where a, wand cp are constants, show that x· =- w2 x. 
Hence solve x· = - 16 X' given that when t = 0, X = 4 and X= 20. 

8.15 A particle moves along a path so that its rectangular coordinates are x = 
2 sin (J, y = 3 (1 - cos 0). The motion is such that x = sin(20 t) m, t being the 
time in seconds. Find (a) the distance from the origin, (b) the absolute velocity 
and (c) the absolute acceleration of the particle when t = 2rr/50 s. (Hint: Deduce 
equations for velocity and acceleration by differentiation; use the two relation­
ships for x and solve the resulting equations.) 

8.16 Two straight roads cross at right angles at an intersection, car A is on one 
road and Bon the other. If car A travelling at 40 m/s passes the intersection 0.5 s 
after car Band its nearest distance to B (at any time) is 10m, what is the speed of 
B? 

How far is B from the intersection when A is 100m before the intersection? 
(Hint: determine the path of B relative to A when the former is at the intersection 
(the position of A is known at that instant).) 

8.17 Boat A leaves port X and sails at 25 km/h due west. Boat B leaves half an 
hour later from port Y which is 30 km south west of X and sails at 20 km/h 
north west. At what time (after A leaves port) will they be nearest together and 
how far apart will they then be? 

For what duration of time are the boats within 10 km of each other? (Hint: 
Consider relative motion from the time when B leaves port.) 

8.18 A pilot boat leaves port to intercept a tanker which is sailing at 30 km/h on a 
straight course whose nearest point is 5 km from the port. At the instant the pilot 
boat leaves port the tanker is 8 km away. 

(a) At what minimum speed must the pilot boat sail in order to intercept the 
tanker? 
(b) If the pilot boat sails at 20 km/h for how long is the tanker in a position to 
be intercepted by the pilot boat. 

(Hint: (a) relative velocity of the pilot boat to tanker must lie along the 8 km 
path. (b) There are two possible relative velocities; calculate time to reach the 
tanker for each.) 



9 Kinetics of Particles and 
Particle Systems I­
Equations of Motion 

In the last chapter we sought to establish methods of describing the motion of a 
particle, so giving us the ability to predict the motion of the particle if the 
equations of motion were known and the initial conditions specified. We now 
have to consider how to determine these equations of motion. 

The characteristics of the motion of an engineering system are entirely deter­
mined by the forces acting on the system. On this basis the engineer is able to 
predict the mechanical behaviour of systems, and to assemble systems that behave 
in a predetermined manner. The mechanical behaviour of a system must therefore 
be related at all times to the forces acting, and, furthermore, an analysis of the 
motion of a system that omits any relevant force, or neglects any such force 
without justification- based on the principles of mechanics- is bound to be 
defective. 

9.1 Equations of Motion for a Particle 

The fundamental relationships between force and motion were first clearly 
enunciated by Isaac Newton in his three laws of motion. We have already en­
countered the first and third laws in our study of statics; the first law associated 
with zero resultant force a state of either no motion or a state of rectilinear 
motion at constant speed; the third law enabled us to extend the first law for a 
particle to an assembly of particles, the particle system. 

We now consider the implications of the second law, which we state in the 
following form. 

The Second Law 

If the resultant force on a particle is not zero then the particle is accelerated, the 
magnitude of the acceleration being proportional to the magnitude of the resultant 
force J:.F and the direction being that of the resultant force. 

For a given particle at any instant the law can be written 

J:.F = constant x a (9.1) 

For different particles the proportionality constant has in general a different value 
for each particle. For a resultant force of given magnitude, the larger the constant 
the smaller the magnitude of the acceleration produced. The proportionality con-
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stant is evidently a measure of some property of a particle that determines the 
acceleration of the particle in response to a resultant force. This property is called 
the inertial mass of the particle, or simpy the mass. 

This property is additive in the sense that a single particle made up of two 
particles has mass that is the sum of the masses of the individual particles. We can 
therefore choose a particular particle and declare that its mass is to be regarded as 
a unit of mass. Any other particles can then be ascribed a mass m, and the law 
can be expressed in a form applicable to all particles as 

"'f.F = kma (9.2) 

in which "'i:.F the resultant force, m the mass, and a the acceleration can be 
measured in independent arbitrarily defined units. The constant k takes a numeri­
cal value that will now depend only on the units selected. 

9.1.1 Coherent Units 

To avoid the continual use of a proportionality constant it is convenient to adopt 
a set of units that will enable k to have a numerical value of unity. If units of 
length, time and mass are chosen initially then the unit of force can be defined as 
that force which gives unit acceleration to a particle having unit mass. This is the 
method adopted for deriving a force unit based on the set of primary SI units. 

The SI unit of mass is the kilogram (kg), this being the mass of the so- called 
International Prototype Kilogram which is in the custody of the Bureau Inter­
national des Poids et Mesures, at Sevres, near Paris, and with which other stan· 
dards can be compared directly or indirectly. Having adopted the kilogram as the 
unit mass, the unit force is then defined to be that force which, when applied to a 
body having mass 1 kg, gives it an acceleration of 1 m/s2 • This derived unit of 
force is named the newton (N), and can be expressed equivalently as 1 kg m/s2 • 

The mathematical statement of the second law now becomes 

"'f.F =rna (9.3) 

it being understood that the units of force, mass, length and time are respectively 
N, kg, m and s (or some other coherent set of units so defined as to enable k to 
have the value unity). 

9.1.2 The Inertial Frame 

We now ask if the simple relation between force and acceleration for a given par­
ticle is invariably satisfied in practice. The answer is that it is not. The justifica­
tion of this statement reveals the necessity of supplementing the second law 
statement by an important condition, which must be fulftlled if the relation 
"'i:.F= rna is to retain its validity. 

We first recall that the acceleration of a particle is defined and measured in 
some frame of reference that must be specified or otherwise inferred. Suppose an 
observer is fixed in this frame and that this observer anticipates the acceleration 
of the particle will be given by "'f.F/m. Another observer moving in the frame with 
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acceleration o0 and referring accelerations to a frame travelling with him might 
also anticipate that the acceleration of the same particle would be given by "LF/m, 
the mass of the particle and the magnitude of the force as indicated by say a 
spring balance, both being unchanged. Both observers cannot be correct since the 
accelerations as viewed by the observers are bound to differ by an amount o0 • 

Unfortunately, it could be that the first observer is also being accelerated in some 
other frame. Since "LF = mo is not satisfied simultaneously in all reference frames 
that are being accelerated relative to one another, we have to ask if there is any 
frame in which the relation is true. We now assert that there is such a frame in 
which "LF = mo holds, and we call this an inertial frame of reference. From an 
engineering point of view this frame is represented to sufficient accuracy by the 
surface of the Earth, and henceforth all accelerations associated with the relation 
"LF = mo will be assumed to have the Earth's surface as a reference. 

The equality of "LF and mo in both magnitude and direction (in an inertial 
frame) has been expressed by the notation "LF = mo in which m is a scalar 
quantity. Having regard to the method of representing a vector by a directed line 
segment we go further and state that, for a particle, the vectors "LF and ma are 
equivalent and write "LF = mo, implying that the vectors are identical in magni­
tude, direction and line of action. This is an important statement that underlies 
much of the succeeding work. 

The equivalence of "LF and ma implies the equality of their components in 
specified directions. Unless graphical methods are employed the vector equation 
is expressed in component form for calculation purposes. The x- andy-component 
forms of the equation of motion are then 

"LFx = max = nix" 

"LFy may = mji 

(9.4a) 

(9.4b) 

Similar equations can be written for other pairs of component directions, in parti­
cular the directions tangential and normal to the particle path at any instant, and 
the radial and transverse direction::.. 

9.1.3 Effective Force and Inertia Force 

The force "LF has been referred to as the resultant force, being the resultant of the 
set of applied forces acting on the particle. The product rna is now referred to as 
the effective force, and we say that for a particle the resultant force and the 
effective force are equivalent in an inertial frame (figure 9.la). 

Suppose now that in the equation of motion, or its vector representation, a 
vector (mo)rev• equal in magnitude and line of action to rna but reversed in direc­
tion, is added to both sides of the equation. We then have (figure 9.1 b) 

"LF + (mo)rev = "LF- rna= 0 (9.5) 

The vector (ma)rev is referred to as an inertia force, and we conclude that a 
particle subject to the action of a set of forces that includes the inertia force is in 
equilibrium, meaning that the resultant of the force set is zero. Since the resultant 
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(a) 

(b) 

applied forces 

applied forces plus 
1nert1a force 

resultant force 

resultant of applied 
forces and 1nert1a force 

Figure 9.1 

} 
effect1ve force 

0 

of the applied forces is not zero and the problem in hand is accordingly one of 
dynamics, the statement is qualified and the particle is said to be in dynamic 
equilibrium. 
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It follows that, since the particle is in (dynamic) equilibrium under the action 
of the applied force set and the inertia force, the principles of statics are applic­
able. In particular the conditions for equilibrium must be satisfied and they can 
be used for the determination of unknown forces and accelerations. The inertia 
force now enters in terms of its components, such as - max, - may or (max )rev, 
(may)rev· 

This method of interpreting the equation of motion may appear to be merely 
an artifice that, as we shall find later, is very useful in problem solving. However, 
it will also be found useful in the analysis of motion as observed in non- inertial 
reference frames by enabling the observer to associate in such frames also a state 
of zero acceleration with zero resultant force. 

9.1.4 Gravitational Force 

The magnitudes and directions of the individual applied forces in a force set are 
prescribed by the problem in hand. Certain forces, which we shall consider more 
fully later, are determined by the position of the particle in a so-called field of 
force, that is a region where a certain force is associated with each point. For 
present purposes such a field of force is exemplified by gravitational forces. A 
particle near the surface of the Earth experiences a downward vertical force such 
that, if the particle is released in a vacuum, it falls with constant acceleration. 
Represented by a vector g, it has the same value for all particles. The magnitude 
of g varies slightly from place to place, but where absolute precision is not 
demanded it may be taken to be 9.81 m/s2 • 
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Application of the equation of motion to a particle mass m falling freely 
shows that the downward vertical force is mg; we conclude that there is a gravita­
tional force acting on any particle mass m, having magnitude mg and directed 
vertically downwards. This particular force is called the weight of the particle. 
Thus a particle having mass m kg has weight mg kg m/s2 or N. Note that whereas 
mass is a property of the particle, its weight is a characteristic of the gravitational 
force field at the point occupied by the particle, and varies with the strength of 
the field. 

Since in a given locality the weights of particles are proportional to their 
masses and vice versa, it becomes convenient to measure the mass of an object 
by opposing its weight to that of suitably calibrated mass standards using a beam 
balance. The comparison, the so-called weighing procedure, is valid in all localities. 
On the other hand, if a spring balance were used, utilising the deflection of a 
spring, this would respond to the gravitational force on the single object and the 
reading would vary slightly from place to place on the Earth's surface. 

Worked Example 9.1 

A particle having mass m = 0.5 kg is moving in a vertical plane under the influence 
of gravity. A force of magnitude 10 N and directed 30° upwards from the horizon­
tal is now applied to the particle. Determine the horizontal and vertical compon­
ents of acceleration in the subsequent motion. 

Solution 

The free-body diagram is drawn in figure 9.2. The acceleration components are 
unknown and are assumed to have positive values in the x- andy-directions 
shown. 

Applying equations 9.4 

'J:,Fx =max 

Figure 9.2 

10 cos 30° = 0.5 X ax 

ax = 17.32 m/s2 

10 sin 30° - 0.5 x 9.81 

ay = 0.19 m/s2 

0.5 x ay 
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Note that we have made no statement about the velocity of the particle, the 
magnitude and direction of which will have been determined by the preceding 
motion. Will this velocity change abruptly? 

Worked Example 9. 2 

A particle having mass m = 0.2 kg is constrained to move in a smooth circular 
slot, radius 2 m, in a vertical plate under the influence of the tangential force P 
(figure 9.3a). It is initially at rest at A and its speed along the slot after timet 

(a) 

components 

(c) 

Figure 9.3 

(b) 

(d) 

acceleration 
components 
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if given by v = 0.5t m/s. Determine for t = 4 s (a) the tangential force that is being 
applied to the particle, and (b) the force that the particle is then exerting on the 
plate. 

Solution 

If s is the distance travelled along the curve from A then 

ds 
- = v = 0.5t m/s 
dt 

therefore 

s = Jvdt = J: 0.5t dt 

4 

= [O.:t~-J o = 4 m 
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The angle sub tended at the centre by the arc length s (figure 9 .3b) is 

4 360 0 
-X - = 115 
2 21T 

The tangential component of acceleration 

dv 
at = - = 0.5 m/s2 

dt 

and the normal component of acceleration 

v2 (0.5 · x 4? 
an = - = = 2 m/s2 

p 2 

In the free· body diagram, figure 9 .3c, R the force of the plate on the particle, 
is shown acting normally to the path since friction is absent. The sense has been 
arbitrarily assumed to be inwards. 

J:,Ft = mat 

P - 0.2g COS 25°= 0.2 X 0.5 

P = 1.87 N 

R + 0.2g sin 25° 0.2 x 2 

R = 0.32 N 

The assumed direction for R is therefore correct. The particle exerts a force 0.32 N 
on the plate, directed outwards. 

Using the inertia force method the inertia force components are included in 
the free-body diagram, figure 9.3d. The equations now become 

J:,Ft = 0 

p - 0.2 X 9.81 X COS 25° - 0.2 X 0.5 0 

P = 1.87 N 

R + 0.2 X 9.81 X sin 25° - 0.2 X 2 = 0 

R = 0.32 N 

9.2 Equations of Motion for a Particle System 

In engineering applications we have to deal with finite material bodies. Just as in 
our study of statics, the material bodies of dynamical studies are considered to 
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be made up of a fmite number of particles. A finite body is therefore a many­
particle system and we have to extend our discussion of the equation of motion 
to embrace such systems. In doing so we shall find that we can make deductions 
relating to the system as a whole without having to consider the behaviour of 
each individual particle. 

The motion of a particle system is determined by first applying the equation 
of motion to each particle separately and then summing all the equations over 
the particles of the system. Thus, since for each particle, resultant force =effective 
force, we can write for the system 

~(resultant forces) = ~(effective forces) (9.6) 

summed over all particles, by vector addition. 
In carrying out the summation we should find that the forces making up the 

set of forces acting on the system fall into two classes, as follows. 

(1) External forces having their source in the surroundings; these can be sub­
divided into: 

(a) contact forces acting at the boundary of the system, 
(b) body forces acting on all particles of the system because of its presence in a 
force field; for example, the weight of the system, 

(2) Internal forces, namely the mutual forces between the particles of the system. 

Consider, for simplicity, a system consisting of three particles only as in figure 
9.4. A typical set of forces is shown acting on the particles of the system. 

2/1 

8m2fS,I2 
~2 

w2 (8m2)o2 

p. 

, 

, , 
,13 

(8m 1Ja, 

Figure 9A 

(8m) a - effect1ve force 

P - contact force 

W - body force ( we1ght) 

nlm - 1nternal force on 
part1cle m due to the 
action of part1cle n 

Each particle will move independently in accordance with the equation 
of motion ~F = (6m )a, where ~F is the resultant force on the particle and a is the 
acceleration of the particle. The figure shows the effective force for each particle, 
the direction of that force being the same as that of the resultant force on that 
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particle and, in general, being different for each particle. For the system as a whole 
we have 

'i:P + ~W + ~I = ~(lim)a 
By Newton's third law, internal forces occur in pairs of equal and opposite forces 
in the same line of action, therefore for the system,~/= 0. We conclude that the 
resultant of the external forces acting on the system, that is ~p + ~W, is equivalent 
to the resultant of the effective forces of the particles and 

set of external forces = set of effective forces 

~F = ~(lim)a 
We have in this way extended the equation of motion for a particle to a 

many-particle system and we shall accordingly refer to equation 9.7 as the 
equation of motion for a particle system. 

To emphasise the significance of this equation the equivalence is indicated 
graphically in figure 9.5; this corresponds to figure 9.4 previously referred to. 

Figure 9.5 

9.2.1 Motion of the Mass-centre 

(9.7) 

The evaluation of the individual motions of the particles would be a formidable 
task for which equation 9.7 offers little further assistance; however, we can 
develop this result and thereby enable the equation of motion to be directly 
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applied to the system as a whole. For this purpose we introduce the mass-centre, 
previously defined in section 7.3 for a rigid body at rest, and now redefined with 
a slight change of notation. 

Definition 

If particles having masses om 1 , 8m2, ... are located at some instant at the points 
(x 1 ,y1), (x 2 ,y2 ,), ... of a reference frame XOY then the mass-centre of the 
system of particles is defined to be the point (x, y) given by 

(8mt)x 1 + (8m 2)x2 + . . . L(8m)x X = __:.____.:___ __ __:___:_ __ (9.8a) 

y = 

8m 1 + 8m2 + ... 

(8mt)y 1 + (8m2)Y2 + 
8m 1 + 8m2 + ... 

where m is the total mass of the system. 

m 

L(f>m)y 
(9.8b) 

m 

The coordinates :X andy are calculated by reference to the positions of the 
particles at a given instant, but since in general the configuration of the particles 
is continually changing, the position (:X, y) of the mass-centre will need to be 
determined anew at each instant of interest. Fortunately our primary concern 
will be with rigid bodies; the mass-centre of a rigid body remains fixed in relation 
to the boundaries of the body whatever its motion may be, and the position 
(x,y) of its mass·centre can be monitored directly. 

Since L(8m)x = mX and L(8m)y =my, successive differentiations with respect 
to time lead to 

L(f>m)x· = m.x 

or 

and similarly 

L(f>m)ay = may 

where fix and ay are the components of the acceleration of the mass·centre. 
From the equation of motion for a system, equation 9. 7, we can now write in 

component form 

[ x- direction component of the J 
resultant of the external forces = 

and similarly 

[
x-direction component of] 
the resultant of the effec­
tive forces 

(9.9a) 

(9.9b) 
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These two component equations taken together state that, for a particle sys­
tem, the product of the total mass of the system and the acceleration of the mass­
centre is equal in magnitude and direction to the resultant of the external forces. 
This result can be referred to as the principle of the motion of the mass-centre 
and it implies that the mass-centrt of a particle system moves as if it were a 
particle having mass equal to that of the system and subject to the action of a 
force that is equal to the resultant of the external force set. Note carefully that 
we have not·stated that the line of action of the resultant passes through the 
mass-centre. Further discussion of this point will appear later in our examination 
of the motion of rigid bodies. At this stage we emphasise only the role of the 
mass- centre and the particle -like behaviour of the system in so far as the magni­
tude and direction of the acceleration of its mass-centre are concerned. 

For example, a standard problem in elementary mechanics is the flight of a 
projectile that is fired at a certain angle of elevation. If the drag of the atmosphere 
is disregarded its path is easily shown to be of parabolic shape under the influence 
of gravitational forces only acting on its particles. Suppose that at some point in 
its flight it explodes. The fragments now pursue individual parabolic paths and 
the analysis of their motions becomes intractable. However, we can still say that 
the mass-centre of the fragments continues along the same parabolic path that the 
projectile was originally pursuing (provided the fragments are still in flight), since 
the resultant gravitational force on the system is still equal to that on the original 
projectile. 

A further observation needs to be made. In the problems relating to this 
chapter a finite rigid body is treated as a particle in the manner we have described, 
but no attention is paid to the size of the body or to the exact location of the 
mass-centre relative to the boundaries of the body. This step requires justification 
but at this stage we shall use a result that will be demonstrated in chapter 11, 
namely that if no rotation of the body occurs, any point of the body may be 
chosen to represent the whole body and all points of the body have the same 
motion as the mass-centre. 

9.3 Solution of Problems 

In the solution of problems the drawing of a free- body diagram should be regarded 
as essential. The free- body diagram should embody all those facts of the problem 
appertaining to its mechanics and should never be regarded as a rough sketch. The 
worked example solutions include such diagrams and indicate suitable ways of 
showing the essential information, namely the mass of the body, the magnitude 
and direction of the acceleration as given or as assumed, and the forces acting on 
the body. The effective force vector need not be shown, but if the inertia-force 
method of solution is adopted then the inertia force should be shown by a dotted 
arrow acting on the body since it is now included with the applied force set. 
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9.4 Connected Particles 

We have noted that, in general, to determine the motions of the individual particles 
of a particle system would be very difficult. If the configuration of the particles is 
fixed in a rigid body the analysis is considerably simplified, as in the case of the 
non-rotating bodies discussed. The study of the motion of rigid bodies will be 
taken up fully in later chapters, but meanwhile we can usefully consider certain 
particle systems whose configurations are such that straightforward solutions are 
possible. 

We can state the situation more precisely. A system containing n particles 
moving in a plane requires 2n independent coordinates to locate the particles at 
any instant; the system is said to have 2n degrees of freedom. It follows that the 
same number of equations are required to describe the motion at any instant. If 
n is small, and in addition the particles do not all move independently of each 
other, the number of degrees of freedom is less than 2n and the number of inde­
pendent equations of motion is reduced. If further the motions of the particles 
are rectilinear then evidently the analysis of their motions could become straight­
forward. 

Typical examples of simple particle systems are pulley systems of various kinds. 
To fix ideas we refer to figure 9 .6a, illustrating a system consisting of two bodies, 

R 

(o) 

Figure 9.6 

two pulleys and inextensible cords. We shall assume the pulleys and cords have 
negligible mass, the pulleys are frictionless, and the two bodies behave as particles 
having masses m1 and m2 respectively. 

We now wish to describe the motion of the system following release from rest, 
that is, to determine the accelerations a 1 and a2 of the bodies. 
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Now, recalling the definitions from chapter 8, we mean by the acceleration a 1 

the derivative d2 s ddt 2 = s 1 , where s 1 is the position of body 1 relative to some 
arbitrary reference that we shall choose to be the support shown in the figure. 
Similarly a2 = Sz where s2 is the position indicated for body 2. 

The basic feature of this system is that changes in the magnitudes of s1 and s2 
are not independent, since the motions of the bodies are constrained by the 
inextensibility of the cord LR. We can introduce the constraint into our equations 
by first expressing the constancy of cord length in terms of s1 and s2 as follows 

length of cord LR = LM + MN (around pulley) 

+ NP + PQ (aroundpulley) + QR 

= (s 1 - I) + MN + (s2 - I - n) 

+ PQ + (s2 - n) 

= some constant 

then since I, n, MN, PQ are constant 

s1 + 2s2 = another constant 

differentiating with respect to time 

S1 + 2sz = v1 + 2v2 = 0 

and 

V1 = - 2Vz 

s1 + 2s2 = a1 + 2a2 0 

and 

Note that since s is measured downwards the positive senses of v and a are also 
downwards. We now have a relationship between a 1 and a2 that expresses the 
constraint on the motions of the bodies. 

To obtain the actual accelerations we apply the equation of motion to each 
body in tum. In doing so we fmd that certain forces that are internal for the 
whole system now become external forces for part of the system. 

The free-body diagrams are shown in figure 9.6b. The action of the cord on 
body 1 is indicated as having magnitude T1 , and we refer to this as the tension in 
the cord at the point L. Since the portion LM of the cord has no mass, the tension 
in the cord at M is also T1 • For-reasons that will be apparent later we can accept 
that the tension in a massless cord passing over a frictionless massless pulley is the 
same on both sides of the pulley. The tensions at the points N, P and Q are 
accordingly each equal to T1 • The free-body diagram of the lower pulley is there­
fore as shown with the tension in the short cord length n indicated as T2 • We can 
write for this pulley 
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T2 - 2T1 = ma2 = 0 

since the mass of the pulley is zero; therefore 

T2 = 2T1 

For the body 1 

"2:.Fy = may 

For the body 2 

"2:.Fy =may 
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These two latter equations together with the constraint equation a 1 =- 2a2 

enable a 1 , a2 and T1 to be determined. The accelerations are constant since they 
do not depend upon the actual positions of the bodies. We can now obtain the 
velocities and positions of the bodies at any specified instant following the 
instant of release from rest. 

Worked Example 9.3 

For the pulley system illustrated in figure 9.7a show that the acceleration of the 
body 3 is g/17 and obtain the accelerations of the other bodies and the tensions 
in the cords. The pulleys are massless. 

271 

(a) (b) 

Figure 9.7 
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Solution 

Only the method of solution is indicated, the complete solution being left as an 
exercise. Free-body diagrams are shown in figure 9.7b. We note first that there 
are two cords, therefore we require two constraint equations. In setting up these 
equations we find that we have to retain a term Sp, the position of the lower 
pulley, that is not a constant. 

These two equations become 

s1 + s2 - 2sp = constant 

Sp + s3 = constant 

After differentiating we are left with a term ap in our two equations. This can be 
eliminated and we have finally 

a1 + a2 + 2a3 = 0 

The solution then proceeds as before, this time with three equations in a 1 , a2 , a3 
and T1 , which can be solved in conjunction with the constraint equation. (This 
problem is referred to later inproblem 9.19.) 

9.5 Summary 

(1) If the resultant force '.iF on a particle is not zero then the particle accelerates 
in the direction of the force such that 

'.iF= rna (9.3) 

where '.iF is the resultant force inN, rn the mass in kg and a the acceleration in 
m/s2 • 

(2) The equation of motion 9.3 is valid only in an inertial frame. The Earth's surface 
is assumed to be an inertial frame and all accelerations associated with the equa­
tion are relative to the Earth's surface. 
(3) The equation of motion 9.3 can be written in component form, for example in 
thex- andy-directions 

where 'LFx is the component of the resultant force in the x -direction. 
(4) The effective force of a particle is rna and is equivalent to '.iF. 

(9.4a) 

(9.4b) 

(5) The inertia force of a particle is (rna)rev or- rna, that is, a force having magni­
tude rna in the opposite sense to that of a. 
(6) The inertia force and the applied forces acting on the particle have zero resul­
tant and the particle is in dynamic equilibrium. 
(7) The gravitational force on, or weight of, a particle massrn isrngwheregis the 
gravitational acceleration normally to be taken as 9.81 m/s2 • 
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(8) For a particle system having total mass m the motion of the mass centre is 
given by 
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'l:,Fx =max 

'l:,Fy =may 

(9.9a) 

(9.9b) 

(9) Equations 9.9 are applicable to a rigid body. There is no implication that the 
resultant of the applied forces passes through the mass-centre. 
(10) In problems always draw a free-body diagram. 
(11) With connected particles relate the motions of the particles by the constraint(s) 
imposed. This provides the extra equation(s) required. 

Problems 

9.1 A body, mass 2 kg, is placed on a weighing machine, which uses a spring as the 
measuring device. The weighing machine carrying the body is placed in a lift, 
which accelerates upwards at 5 m/s2 . What weight (in newtons) will the machine 
indicate? 

If a beam-balance-type machine were used what weight would this indicate? 
(Hint: Draw free-body diagrams of the body and the machine; the force exerted 
by machine on the body is the weight it registers.) 

9.2 A body of mass m is released from rest on a rough plane (coefficient of 
friction J.L) inclined at an.an angle 8 to the horizontal. Obtain an expression for the 
velocity of the body after it has travelled a distance s down the plane. (Hint: 
Draw a free-body diagram, deduce its acceleration and hence its velocity- see 
section 8.1.2.) 

9.3 Two bodies A and B are connected by a cord, which passes over a frictionless 
pulley. A, mass m 1 , slides on a rough plane (coefficient of friction J.L) inclined up­
wards towards the pulley ate to the horizontal, the cord being parallel to the 
plane between A and the pulley. If B, mass m2 , hanging freely downwards from 
the pulley, accelerates downwards when released derive an expression for its 
acceleration. (Hint: Draw separate free-body diagrams for A and B; insert inertia 
forces for dynamic equilibrium if this method is used.) 

9.4 A particle, mass m, is placed on top of a smooth circular cylinder whose axis 
is horizontal. If when released it slides from rest, show that it loses con tact with 
the cylinder at a point where the normal to the surface makes an angle cos-1 (2/3) 
with the vertical. (Hint: For a symbolic angle 8 insert a symbolic Q and a; hence 
decide the component accelerations. Draw a free-body diagram for the particle 
(including inertia effects if required); solve for a and hence Q by integration; note 
the condition on the normal reaction for the particular solution.) 
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9.5 If in problem 9.4 the surface of the cylinder is rough such that the coefficient 
of friction is 1J. show that while the particle is in contact with the cylinder its 
equation of motion may be written 

where R is the radius of the cylinder. 

9.6 A particle, massm, travels in a vertical plane over a smooth cylinder radius 
5 m the axis of which is horizontal. If the horizontal component of its velocity 
is maintained constant at 2 m/s to the right by a suitable horizontal force and it is 
on the second quadrant of the cylinder, determine at what angle with the horizon­
tal it is moving when it loses contact with the surface. (Hint: See problem 8.1 0; 
use a free- body diagram to relate forces and accelerations.) 

9. 7 A particle of mass m is supported on the end of a cord of length R. It is held 
with the cord taut and horizontal and then dropped. When the cord makes an 
angle(} with horizontal find expressions for (a) the acceleration of the particle 
(b) its velocity and (c) the tension in the cord. (Hint: It is easier to work in terms 
of angular movement of the cord- see problem 9.4 for a and n; convert these 
to linear values for the particle.) 

9.8 A train, mass 10 000 kg, has a tractive effort (the component of the force 
exerted on it by the track in the direction of its motion) of 50 000 N, and the 
resistance to motion is 1000 V N, where Vis its velocity in m/s. Determine (a) the 
maximum velocity attainable up a slope of 1 in 10 (sin-1 1/10) (b) the time taken 
to change the velocity from 20 to 30m/sup the same slope and (c) the distance 
travelled in doing this. (Hint: Draw a free- body diagram and hence deduce an 
equation for acceleration; note relationships of a, v and s- section 8.1.2.) 

9.9 Figure 9.8 shows two particles B, mass 2 kg, and C, mass 1 kg, held suspenced 
by three inextensible cords. If cord DC breaks find the new initial tensions in the 
other cords. (Hint: There are six unknowns- you need six equations; when cord 

A 
D 

30" B c 45° 

Figure 9.8 

DC breaks it can be disregarded. The particles are initially instantaneously at rest 
but have accelerations; some components of these accelerations are related since 
the cords are inextensible. The total acceleration of B is also related to its motion 
about A. 
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9.10 A cam mechanism used to actuate a tappet vertically is shown diagrammatic­
ally in figure 9.9. The cam is in the form of an eccentric circular plate which is 
driven at a constant speed n rad/s. Deduce expressions for (a) the velocity and 

Figure 9.9 

acceleration of the tappet (assuming that it is contact with the cam), (b) the 
normal reaction between the tappet and the cam, and hence (c) the lowest cam 
speed at which the tappet can lose contact with the cam. Ignore friction. (Hint: 
Write down an expression for x and thus deduce the velocity and acceleration; 
draw a free-body diagram for the tappet to include the inertia force; for (c) the 
normal force becomes zero.) 

9.11 The two bodies in figure 9.10 are connected by an inextensible cord passing 
over a frictionless peg of negligible diameter. If when x is 6 m the velocity of A is 

Figure 9.10 

5 m/s to the left find (a) the velocity of B and (b) the acceleration of both bodies. 
(Hint: Write expressions for x andy in terms of(} (use the 4 m dimension) and 
hence expressions for velocities and accelerations; draw free-body diagrams, 
including inertia force, for each body and hence deduce the equations of motion.) 

9.12 A particle of mass m slides in a tube for which the coefficient of friction is 
J.l.. If the tube is rotated in the horizontal plane about one end show that the 
normal reaction between the tube and the particle has magnitude my(g2 + a1/) 
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where a8 is the component of the acceleration of the particle perpendicular to the 
tube direction in the horizontal plane. Hence show, if at a particular instant the 
tube has angular velocity w and angular acceleration a when the particle is a 
distance r from the centre of rotation, that the equation of motion of the particle 
along the tube may be written 

+ (w4 _ f.lzO!z)rz = f.lzgz 

If f.l = 0 and the particle has no radial velocity when t = 0 and r = r 0 , show that 
at timet 

(Hint: Draw free-body diagrams in the vertical and horizontal planes, to include 
all inertia forces based upon assumed accelerations. Note that the normal reaction 
is affected by its weight and the inertia force due to a8 ; see appendix for the 
solution of the resulting differential equation.) 

9.13 A particle, mass m, hangs on a massless rod of length 2m that is hinged to 
one end of a massless arm 1 m long so that it can swing in a vertical plane passing 
through the arm; this arm rotates in the horizontal plane about its other end. If 
the arm has a constant angular velocity of 2 rad/s find the angle 8 that the rod 
makes with the vertical. 

It is suggested that the equation for 8 be solved graphically. (Hint: Use a free­
body diagram inserting the inertia force.) 

9.14 A particle, mass m, is projected along the horizontal section AB of the smooth 
surface ABCDEFG, shown in figure 9.11, so that it approaches B with velocity V. 

A 

Figure 9.11 
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Show that when the particle is at C its motion can be described by 

cp = 
g sin cp 

R 

and that 

dcp [ v, 2 r -= (R) - : (1 - coscp) 
dt 

Derive expressions for 0 and 0 when the particle is at E and hence determine the 
velocity V that just allows the particle to pass over F without losing contact. 
(Hint: Write down component accelerations of the particle at C (either ax and ay 
or at and an) and relate to the free-body diagram, which should include the 
inertia force or its components; similarly at E.) 

9.15 A particle, mas~ 2 kg, is travelling in a straight line on a horizontal table under 
the action of a horizontal force, magnitude 400 N. The resistance to motion due 
to the table and air resistance is proportional to (velocity)2 , and if the 400 N 
force is applied for a sufficient length of the time the mass finally attains a velocity 
of 20 m/s. Find the time taken and distance covered as the particle's velocity 
changes from 0 to 10 m/s. (Hint: Draw a free-body diagram and write down the 
equation of motion.) 

9.16 A small particle is placed inside a smooth hole of radius R, the axis of which 
is horizontal. Show that if it is released from rest on the surface of the hole near 
the lowest point, its subsequent motion in an angular fashion will be simple 
harmonic if its displacement from the vertical through the hole centre is small. 
What is the periodic time? (Hint: Draw a free-body diagram, including inertia 
effects, for a symbolic displacement 8 from the vertical and assume symbolic 
angular velocity and angular acceleration in the correct mathematical direction; 
compare the differential equation of motion with that for SHM (section 8.4) after 
making the required approximations.) 

9.17 A particle B, mass 0.1 kg, is lying on a smooth horizontal surface and is 
connected by two elastic strings AB and BC to points A and C which are such a 
distance apart that the cords are just taut. The cords AB and BC have elastic 
constants 10 N/m and 2.5 N/m respectively. Show that if the mass is moved 
towards C such that AB is extended by 0.1 m and then released, the subse­
quent motion is periodic. Assume that if a cord is slack it has no effect. 

Determine (a) the maximum velocity of the particle, (b) the maximum exten­
sion of cord BC and (c) the periodic time of oscillation. (Hint: Draw free-body 
diagrams of the particle on each side of the equilibrium position for a displace­
ment x, inserting the corresponding acceleration x; hence show that the 
equations of motion are those of SHM in each case. Obtain solutions in both 
cases.) 
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9.18 A particle, mass 0.1 kg, slides on a wire that is bent in a curve lying in the 
horizontal plane. The particle has rectangular coordinates 

x = 4(13 + sin 13 cos 13) y = 4 sin2 13 

and the curve has a path length s == 8 sin J3, all measured from the same origin; J3 is 
an independent variable. 

If the particle is moving along the wire such that s = 5t2 , t being the time in 
seconds, find its total velocity and total acceleration when t = 1 s. 

If the motion is caused by an applied force P, that is always tangential to the 
path of the particle, find the magnitude of P and that of the reaction N of the 
wire on the particle when t = 1 s. 

Does P vary along the path? (Hint: Write equations for sands, and similarly 
for x, .x·, y, y, or find the radius of curvature and use at and a0 (see chapter 8). To 
find P and N draw a free· body diagram.) 

9.19 Complete the solution of worked example 9.3. 



10 Kinetics of Particles and 
Particle Systems II 
Integrated Forms 

In the previous chapter we considered applications of the vector equation 'i:,F =rna 
as expressed in component form, both for a particle and for a particle system. 
Having expressed the acceleration components in terms of the external force 
components, we could obtain the velocity and position of a particle or of the 
mass-centre of a particle system at some specified instant- given the initial 
conditions. Conversely we were able to determine the resultant force required 
to bring about some specified motion. A review of the problems of the previous 
chapter will show that if the resultant force and its variation were known, then 
the complete solution for both velocity and position involved two successive 
integrations of the expression for the acceleration. 

We shall now rewrite the basic equation of motion in two additional ways 
and then integrate these equations once in their general form before introducing 
the details of any specific problem. The equations we shall obtain are called 
integrated forms of the equation of motion and we shall find that these equations 
incorporate over-all changes in certain new quantities that are of fundamental 
importance. 

Thus if we choose the x-component equation J:,Fx =max, this can be 
manipulated in two ways. 

(I)We write 

and obtain 

'l:,(Fxdt) = d(mvx) 

an equation that introduces linear impulse of a force and change in linear momen­
tum of a particle. 
(2) We write 

and obtain 

'i:,(Fxdx) = d(i mvx 2 ) 

dvx 
= mv -

X dx = ~ (_!_mv 2) 
dx 2 X 

an equation that introduces the work of a force and the change in kinetic energy 
of a particle. 
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We first formally define these new quantities and then proceed to consider 
their use in the analysis of the motion of particles and particle systems. 

10.1 Linear Impulse and Linear Momentum 

1 0.1.1 The Particle 

Consider a particle mass m which, at time t, is at point P of its path (figure 10.1) 

a 

~· 
Figure 10.1 

and moving at that instant with velocity v under the influence of a set of forces 
as indicated. 

If the resultant force on the particle is "2:-F (the direction being that of the 
acceleration a) then we have 

d 
"2:-F = ma = - (mv) 

dt 
(10.1) 

The quantity mv is defined to be the linear momentum of the particle. This is a 
vector whose direction is that of v. We shall use the symbol G for this quantity, 
the units of which will be kg m/s or N s. We have therefore 

. _ (rate of change of linear momentum) 
(resultant force on a particle) - \of the particle with respect to time 

Both the resultant force and the linear momentum can be resolved into rec­
tangular components, namely "'2:-Fx, "'2:-FY, and mvx = Gx, mvy = GY" We can 
then write 

d d 
"'2:-F = -(mv ) = -(G ) 

X dt X df X 

d d 
"'2:-F = - (mv ) = - (G ) y dt y dt y 
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Taking the first of these equations, multiplying through by dt and integrating 
over the time interval t 1 to t2 , the times at which the particle passes through 
points 1 and 2 of the path, we have 
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(10.2) 

the expression on the left implying a term-by-term integration of the quantity 
k{Fxdt). 

Each integral on the left-hand side of equation 10.2 is the x-component of a 
quantity that is defined to be the linear impulse of the corresponding force F. 
This quantity, which is symbolised as Imp 1- 2 is the vector sum of elementary 
quantities such as F8t over the time interval t 1 to t 2 ; this vector will have 
components 

After rearranging, equation 10.2 and the corresponding y-component equation 
can be written in the form 

Gxl + klmpx,l-2 = Gx2 

Gyt + klmpy,t-2 = Gy2 

or both equations can be combined into the vector form 

(10.3a) 

(10.3b) 

(10.3c) 

We have thus arrived at our first integrated form, which can be referred to as 
the impulse- momentum equation, and which states that the initial linear momen­
tum plus the sum of the linear impulses of the forces equals the final linear momen­
tum. This is a vector equation and for calculation purposes is expressed in the 
component forms given in equations 10.3a and 10.3b. Since k(Fx dt) = k(Fx)dt 
and similarly for they components, then it follows that klmp 1_ 2 , the sum of the 
linear impulses of the individual forces, is equal to the linear impulse of their 
resultant. 

If the manner in which a particular force component (say the x-component) 
varies is shown on a force-time graph as in figure 10.2 then it is clear that the 
corresponding component of the linear impulse, namely j:2 Fx dt, is repre­
sented by the area under the graph between the ordinates itt= t 1 and t = t2 • 
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Figure 10.2 

Worked Example 10.1 

A plane having mas~ 14 000 kg is making its take-off run. The forward thrust of the 
engines less the drag on the plane is constant at 44.5 kN. If the required speed for 
lift-off is 200 km/h, determ1ne the total time for take-off, starting frofll rest. 

Solution 

Since the linear impulse and the line'lr momentum are vectors we can represent 
the impulse -momentum equation by means of a diagram in which the vectors are 
shown. Figure 10.3 is such a diagram , in which only tlw x-components are 

+ L Imp •. 1-2 

Figure 10.3 

indicated for the purpose of this problem. The equation is applied between the 
instant at which the plane starts moving (t 1) and the time at lift-off (t2 ). 

If tis the total time for take-off 

Gxl = 0 
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and 

= (44.5 x 103 )tNs 

Gx2 14000 (200 X 103) 
3600 

7 X 106 

= Ns 
9 

7 X 106 
0 + 44.5 X 103 t = ---

9 

t = 17.5 s 
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This problem could also have been solved in two stages, by first calculating the 
acceleration ax using '2:-F x = max and then deriving the time using the relation 
vx2 = vx1 + axt, ax being constant in this case. The method using the impulse­
momentum equation solves the problem in one stage. The time saved by using the 
method is trivial in this example but later we shall encounter problems for which 
the use of the impulse- momentum equation is more expeditious and also 
situations in which its use is essential. 

1 0.1.2 Particle Systems 

Having obtained the impulse- momentum equations for a single particle we can 
immediately extend our result to a many-particle system in which the particles 
may have differing momenta, by summing over the particles of the system, We 
now write 

'f-G1 + 'f-lmp1_2 = 'f-G2 

summed over all particles and forces by vector addition. In carrying out the 
summation we find that the internal impulses occur in equal and opposite pairs 
and therefore reduce to zero: the second term is now the vector sum of the 
impulses of the external forces only, therefore we have 

'f-G1 + 'f-(Impl-2)ext = 'f-G2 

In component form this is written 

where typically 

'f-Gxl + 'f-(lmPx,1-2)ext = 'f-Gx2 

'2:-Gyl + 'f-(Impy,t-2)ext = 'f-Gy2 

'f-Gxl = '2:-(Bm)vxl 

(8m)vx 1 being the x-component of the momentum of a typical particle. 

(10.4a) 

(10.4b) 

(10.4c) 
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Following the procedure we adopted for the basic form of the equation of 
motion we again introduce the mass-centre, the x-coordinate of which is given by 

~(8m)x = niX 

On differentiating with respect to time 

~(8m)x = mX or ~(8m)vx mvx 

where Vx is the x-component of the velocity of the mass-centre of the particle 
system. 

Our equations now become 

mvxl + ~(Impx,t-2)ext = mvx2 (IO.Sa) 

mvy1 + ~(Impy,l-2)ext = mvy2 (10.5b) 

in which the second terms are the sums of the components of the linear impulses of 
the external forces acting on the system, or equivalently the components of the 
linear impulse of the resultant of the external forces. 

The mass -centre moves as if it were a particle in which the whole mass of the 
system was concentrated, a result that is comparable to that of the previous 
chapter. In this case it is again emphasised that no statement has yet been made 
about the lines of action of the linear momentum and linear impulse vectors, but 
if the equation is applied to a rigid body, then, provided the body does not rotate, 
all points of the body have motions identical to that of the mass centre. Subject 
~o this proviso, we are again justified in discussing the motion of rigid bodies as 
if they were particles, in which case equations 10.3 can be applied directly. 
Extending our discussion to a system of more than one rigid body: for each rigid 
body G = mv where v is the velocity of the mass-centre of the body and it follows 
that equation 1 0.3c can be used for a system of rigid bodies provided G now means 
~mv. If a body is not rotating the quantity v can be referred to as the velocity of 
the body. 

10.2 Conservation of Linear Momentum· 

If the resultant of the external forces is zero and remains zero over some time 
interval, then since the total linear impulse is zero it follows from equation 10.3 
that the total linear momentum of a system remains constant. Consequently the 
mass-centre of the system moves with constant velocity. The total linear momen­
tum of the system is said to be conserved. 

It is often one component of the resultant force that remains zero, in which 
case it is the corresponding component of linear momentum that is conserved. 
Thus if a body is moving in a horizontal plane the net vertical force on the body 
is zero and the vertical component of linear momentum remains zero. 

Cases can arise in which the total linear impulse over a certain time interval is 
zero but the resultant force has non-zero values during the interval. In such 
cases the linear momenta are again the same at the beginning and end of the 
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interval but may vary during the interval. Thus if the resultant force on a particle 

induces simple harmonic motion, then during one cycle the force takes zero 

values at two particular instants only (when the acceleration is zero), but the 

momenta are the same at any two instants separated by an interval equal to 

the periodic time. 

Worked Example 10.2 

A particle, mass 2 kg, has velocity components Vx =- 10m/sand Vy = + 5 m/s 

when it is subjected to a force with components Px andPy that vary as indicated 

in figure 1 0.4. Determine the velocity components after (a) 2.5 s and (b) 5 s. 

Figure lOA 

Solution 

Applying the impulse -momentum equations 10.3 

(a) Fort = 2.5 s 

2 X (- 10) + ~lmpx,1-2 = 2 Vx2 

2 X (5) + ~lmpy, 1 _2 = 2 Vy2 

f2.5 
~lmPx,1-2 = Jo Px dt = area ABC 

= t X 20 X 2.5 = + 25 N s 

jl·S 
~Impy, 1 -2 = Jo Py dt = area FGIUKLM 

= 45 X 1 - 15 X 1.5 = + 22.5 N s 

Using these values in equations 10.6 and 10.7 

- 20 + 25 = 2 Vx2 

(10.6) 

(10.7) 
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and 

and 

(b) Fort= 5 s 

Vx2 = + 2.5 m/s 

10 + 22.5 = 2 Vy2 

vy 2 = + 16.25 m/s 

BASIC ENGINEERING MECHANICS 

Impx,t-2 = s: Px dt = area ABCDE = 0 

lmpy,t-2 = s: Py dt = area FGIUKNP 

= 45 X 1 - 15 X 4 = - 15 Ns 

Substituting in equations 10.6 and 10.7 

and 

and 

- 20 + 0 = 2 Vx2 

Vx2 =- 10m/s 

10 - 15 = 2 Vy2 

vy2 = - 2.5 m/s 

10.3 Impulsive Forces 

In many cases of engineering interest a large force acts over a very short time 
interval; such a force is called an impulsive force. The linear impulse of the force 
is still JF dt, but the manner in which the magnitude of the force varies is often 
difficult to measure directly, as also is the time for which it acts. The impulse 
of the force is therefore deduced indirectly by observing the change produced in 
the linear momentum of the system. 

When impulsive forces act on a system those forces that are known to be non· 
impulsive can usually be neglected, since over the same short time interval their 
linear impulses are small in comparison with those of the impulsive forces. In 
cases of doubt they should be classed as impulsive until demonstrated to be 
otherwise. 

10.4 Impact 

If two bodies interact in such a way that the contact forces between them are 
impulsive forces, then the interaction is termed an impact. 
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Assuming the surfaces of the bodies are continuously curved, the common 
normal at the point of contact is termed the line of contact. If the mass-centres 
of the bodies both lie on this line, we have central1mpact; if otherwise the impact 
is eccentric. In the case of central impact, if the velocities of the mass-centres are 
both directed along the line of impact we have direct impact; but if inclined fo the 
line of contact the impact is termed oblique. These terms are illustrated in figure 
10.5. 

eccentnc 1mpact d~rect central 
1m pact 

Figure 10.5 

oblique central 
1m pact 

At this stage we shall discuss central impacts only and for discussion purposes 
we shall assume initially that the bodie!l are uniform spheres. 

10.4.1 Direct Central Impact 

Consider therefore the case of two spheres, A and B, having masses mA and mB 
and moving with speeds uA and uB in the same straight line. (figure 10.6). If 
uA > uB, they will collide and then separate. To justify this simple model we 
can assume the spheres are smooth, have equal diameters, and are sliding without 
rolling on a smooth horizontal table. 

Without digressing into a discussion on the source of the mutual impulsive 
forces that are produced, we can accept that a condition for the forces to be 
generated is that real bodies, although nominally rigid, undergo deformation. 
Whether or not the original shape is restored after completion of the impact is 
dependent on the nature of the materials of the bodies, or in engineering terms, 
whether or not they are perfectly elastic. We shall use the terms deformation and 
restitution in our description of the motion of the spheres during the impact. 

The behaviour of the spheres while they are in contact is complex, but we can 
assume a simplified picture of the sequence of events and separate the motion of 
the spheres into three phases, as explained in figure 10.6. Velocities to the right 
are assigned positive senses. Note in particular that there is some instant at which 
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phase 1 : approach I< I 1 

v 

phase 2 b : rest1tullon 
and loss of contact 

12<1<13 

phase 2a : contact 
and deformation 

Figure 10.6 

00 
phase 3 . separation 

I> l3 

both spheres are moving at some common velocity; this will occur when the 
deformation of the spheres is greatest, since it is then that their relative velocities 
are zero. 

We now apply the impulse -momentum equations 10.3, noting that G = ~mv, 
first to the whole system consisting of two spheres and then to each sphere in turn. 

For the whole system 

phases 1 and 2a; there is no external impulse 

mAuA + m8 u8 = (mA + m8)V 

phases 2b and 3; there is no external impulse 

(mA + m8)V = mAVA + m8 v8 

phase 1 to phase 3; there is no external impulse 

(10.8a) 

(10.8b) 

mAuA + m8 u8 = mAvA + m8 v8 (10.8c) 

For sphere A: phases 1 and 2a- sphere B is exerting a force Pd in the negative 
sense, varying from zero at t = t 1 to its value at t = t2, during the deformation phase. 

(10.9a) 
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Phases 2b and 3 - sphere B is exerting a force Pr in the negative sense, varying 
from its value at t = t2 to zero at t = t3 , during the restitution phase 

(10.9b) 

Now the manner in whichPr diminishes to zero in the restitution phase will not, 
in general, be the same as the manner in whichP d increases from zero in the 
deformation phase and the impulse of the force Pr during restitution is not, in 
general, equal to the impulse of the forcePd during deformation. The ratio of the 
magnitudes of the two impulses is defined to be the coefficient of restitution e, 
and thus 

Impulse during restitution e = ---- = -~---_;_ ___ _ 
Impulse during deformation 

(10.10) 

An alternative way of expressing the coefficient of restitution is given by writing 
from equations 10.9 

r2 pd dt 
t1 

Similarly by considering sphere B, and noting that the mutual impact forces (and 
hence their impulses) are equal in magnitude but oppositely directed, we can obtain 

m8 v8 - m8 V v8 - V 
= = 

m8 V- m8 u8 V - UB 

Since these are both expressions for e, we can write 

that is 

or 

(V - VA) + (vB - Jl) Va - VA 
e= =-----

e = 

(uA - Jl) + (V - UB) Us - UA 

(relative velocity after impact) 

(relative velocity before impact) 
(10.11) 
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The coefficient of restitution, therefore, can also be defined as the negative of 
the ratio of the relative velocity of separation and the relative velocity of approach. 
It is important to observe a uniform convention for the positive senses of the 
velocities. It is also advantageous to use consecutive symbols u, v, w, and so on 
for the successive velocities between multiple impacts, if these occur. 

The definitions numbered 10.10 and 10.11 have been developed using the 
impulse- momentum equation but the value of the coefficient of restitution has 
to be determined experimentally. The second definition is useful for this purpose. 
The value of e is not a constant, and depends not only on the material of the 
spheres but also on other factors such as the relative velocity of approach. Its 
value is normally less than unity. If the spheres were perfectly elastic and the 
deformation was at all times uniquely related to the deforming force, then the 
value of e would be unity and the impact would be described as being elastic. At 
the other extreme, a zero value implies the absence of elasticity and the impact 
is then termed plastic. A value of e greater than unity can be envisaged, as for 
example, in the case of an impact that detonated a small explosive charge located 
at the point of contact. 

Consider now the motion of the mass-centre. Since there is no external 
impulse on the whole system we anticipate that its velocity will be unchanged 
by the impact. We can verify this by assigning positions x A and x8 to the spheres 
and x to the position of the mass-centre, measured from some origin. At any 
instant before the impact 

(rnA + rn8 )x = rnAXA + rn 8x 8 

and by differentiating with respect to time we obtain 

(rnA + rn8 )u = rnAuA + m 8u8 

After the impact 

(rnA + rn8 )v = rnAvA + m8v8 

It follows, using equation 1 0.8c, that 

(10.12) 

and the velocity of the mass-centre is the same before and after the impact. 

Worked Example 10.3 

Two spheres, A with mass 5 kg, and B with mass 10 kg have initial velocities along 
the same path,+ 10m/sand- 2 m/s respectively. 

(a) Assuming e = 1 determine (i) the common velocity of the two spheres when 
fully deformed, (ii) the final velocities of the two spheres and (iii) the maximum 
value of the impulsive force between the spheres if this is assumed to vary linearly 
with time and the total time of contact is 0.1 s. 
(b) Repeat the problem fore= 0.5. 
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Solution 

Let the common velocity be V and the final velocities be v A and v8 : 

(a) (i) Applying the impulse- momentum equation 10.3 to the whole system for 
the deformation phase, the external impulse is zero and 

5(10) + 10(- 2) = (5 + 10)V 

V = + 2 m/s 

(ii) Applying the impulse- momentum equation 10.3 to the whole system for 
the whole impact 

5(10) + 10(- 2) = 5vA + 10vB 

By the definition of coefficient of restitution, 10.11 

1 = - (vB - vA) 
[(- 2) - 10) 

From equations 10.13 and 10.14 

VA = - 6 m/s vB = + 6 m/s 

(10.13) 

(10.14) 

(iii) Applying the impulse- momentum equations to sphere A, for the defor­
mation phase 

5(10) - st, pd dt = 5(2) 
t I 

and therefore 

Similarly for the restitution phase 

5 X 2- st• Prdr = 5(-6) 
t2 

and therefore 

Both impulses are equal, as expected if e = 1. 

Since both P d and Pr are assumed to vary linearly with time, the plot of 
impulsive force against time must be as in figure 10.7a so that the integrals shall 
both be equal. It follows that t 3 - t 2 = t2 - t 1 = 0.05 sand also 
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Thus 

2 X 40 
Pmax = = 1600 N 

0.05 

p p 

each area = 40 N s area=40Ns 

0 0 

I· 01s ·I I· 01 s 

(a) (b) 

Figure 10.7 

(b) (i) The value of e does not affect the result and V = + 2 m/s. 
(ii) Following the same procedure as before 

giving 

5(10) + 10(- 2) = 5 VA + 10 Vo 

0.5 =-
(va - vA) 

[(- 2) - 10] 

vA =- 2m/s v8 = + 4m/s 

(iii) By the same procedure as before 

and therefore 

5(10) - ft2 pd dt = 5(2) 
Jt. 

f3 

·I 
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as before. Also 

and 

(The last figure could have been found from the ratio of impulses - definition 
10.10.) 
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It follows that the plot of impulsive force against time must now be as shown 
in figure 10.7b such that the areas representing the integrals are in the ratio of 
2 : 1. From this we deduce 

and thus 

tz- t 1 = 0.067s t3 - tz = 0.033 s 

Hence 

p - 2 X 40 = 1200 N 
max - 0.067 

This type of problem is best solved by direct application of the impulse­
momentum equation 10.3, supplemented by the defining relations fore, either 
10.10 or 10.11. 

1 0.4.2 Oblique Central Impact 

Suppose the mass-centres of the spheres are now moving in the directions shown 
in figure 10.8 at the instant of contact. If we choose the line of contact to be 

y 

'!(X 
Figure 10.8 

an x-direction then we can write the x-components of the velocities of approach 
as (uA)x = uA cos (J A and (uB)x = uB cos (JB respectively. Equation 10.8c, 
expressing the conservation of momentum, and equation 10.11, relating x-
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components of velocities, can now be written for the x-direction, enabling the 
components of the velocities of separation (v A)x and (vB )x to be calculated. Now 
if we still assume that the spheres are smooth, then since for each sphere there is 
no y·direction frictional force, they-components of the velocities are unchanged 
and we have 

(vA)y = (uA)y = uAsinOA 

(va)y = (ua)y = ua sin Oa 

Having now ascertained the x- andy-components of the velocities of separation 
we can determine the values of v A and v8 in magnitude and direction. 

Worked Example 10.4 

A small wooden block, mass 1.2 kg, is moving in a straight line on a smooth hori­
zontal table at 100 m/s. It is struck by a bullet, mass 0.1 kg, moving in a horizontal 
plane along a line at 60° to the path of the block, its velocity component in the 
path of the block being opposed to the velocity of the block. If the bullet remains 
embedded in the block and the path of the latter is deflected through 30°, determine 
the velocity of the bullet and the impulse exerted on the block. 

Rotations of the block and the bullet can be ignored. 

Solution 

The last sentence implies that only the motions of the mass-centres are to be 
considered and that the equations for a particle can be applied. x- andy -directions 
are chosen as in figure 10.9a and free-body diagrams, during impact, are drawn as 
in figure 10.9b for both the block and the bullet. Note the directions of the 

y 

~s 

0 
so• 

(a) ~,., 
(b) free -body d1agroms 

dunng 1mpact 

Figure 10.9 

(c) 
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impulsive force componentsP and Q on the block; the same components, in 

reversed direction, act on the bullet. 
Figure 10.9c shows the final velocity of the block (and bullet) with its 

components Vx and Vy. 
The impulse -momentum equation 10.3 is applied in component form to both 

bodies. 
For the block 

and 

Also 

and 

For the bullet 

and 

Also 

Gx1 = 1.2 X 100 = 120 N s 

klmpxl-2 = ftz (- Q)dt 
' Jtl 

120- rr2 Qdt = 1.2Yx 
Jr, 

Gy 1 = 0 

klmpy,l-2 = + ftz P dt 
Jr, 

Gy2 = 1.2 Vy 

o + st2 p dt = 1.2 Vy 
t, 

(-vb) 
Gxl = 0.1 - 2- = - 0.05vb 

klmp x,l-2 = rtz Q dt J,, 

i t2 
- 0.05vb + Q dt = 0.1 Yx 

t, 

Gy 1 = 0.1 x (vb V3/2) = 0.0866vb 

ftz 
klmpy,1_2 = Jr - P dt 

I 

(10.15) 

(10.16) 

(10.17) 
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and 

Gy2 = 0.1Vy 

0.0866vb - r2 Pdt = 0.1 Vy 

'· 
(10.18) 

There are five unknowns vb, fP dt, fQ dt, Vx and vy, and another equation is 
thus required; this is the relationship for Vx and Vy from figure 10.9c. 

Vy 1 
- =- (10.19) 
Yx y3 

From equations 10.15 and 10.17 

120 - 0.05vb = 1.3Vx 

From equations 10.16 and 10.18 

0.0866vb = 1.3 Vy 

Equations 10.19 and 10.20 give 

Equation 10.16 

Equation 10.15 

vb = 600 m/s 

Vy = 39.97 m/s 

Vx = 69.23 m/s 

r2 P dt = 1.2 X 39.97 = 47.96 N s 
r. 

i t2 
Q dt = 120 - 1.2 X 69.23 = 36.92 Ns 

tl 

(10.20a) 

(10.20b) 

confirming that the directions of P and Q in figure 10.9b are physically correct. 
The impulse exerted by the bullet on the block is the vector sum of 

47.96 N s t and 36.92 N s +-

= 60.53 N s 'l. 127.6° 

If the impulse values had not been required the problem could be solved by 
expressing the conservation of linear momentum, since no external impulse acts 
on the system. Applying the impulse- momentum equation 10.3: In the x direction 

( -vb) 1.2 X 100 + 0.1 2 = (1.2 + 0.1) Vx 

in they direction 
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(vbv3) 1.2 x 0 + 0.1 - 2 - = (1.2 + 0.1) Vy 

These equations are exactly the same as equations 10.20. 

10.5 Work and Kinetic Energy 

10.5.1 The Particle 

Consider a particle, mass m, which at timet is at point P of its path (figure 10.10) 
and moving at that instant with velocity v under the influence of a set of forces as 

path of part1cle 

Figure 10.10 

indicated. If the resultant force on the particle is ~F then the tangential com­
ponent in the direction of the velocity is ~Fs = I ~F I cos a. We then have 

d d cis d 1 
~Fs = mas = - (mv) =- (mv) - = - (2-mv 2 ) (10.21) 

dt cis dt cis 

The quantity t mv2 is defined to be the kinetic energy of the particle. This is a 
scalar quantity for which we shall use the symbol T and which has units kg m2 /s2 

or N m. We have therefore 

(
component of the resultant force) ( rate of change of the kinetic ~ 
on a particle in the direction of = energy of the particle with respect 

motion of the particle to distance along the path 

Writing ~CFs cis) = d ct mv2 ) and integrating along the path between s 1 and s2 , 
the positions of the particle when at points 1 and 2 of the path 

(10.22) 

Each integral on the left-hand side of equation 10.22 is a quantity that has already 
been defined in chapter 6 to be the work of the corresponding force F. This 
quantity, fFs ds, is a scalar which we symbolise as U1_2 its unit being the joule (J) 
equal to 1 N m. After rearranging, equation 10.22 can be written in the form 

(10.23) 
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This is our second integrated form which can be referred to as the work- kinetic­
energy equation, and that states that the initial kinetic energy plus the work of the 
force equals the final kinetic energy. Since 'L(fs ds) = ('LF8 ) ds it follows that 
'LU1_ 2 , the sum of the works of the individual forces, is equal to the work of the 
resultant. 

y 

X 

Figure 10.11 

The quantity U1 - 2 is the summation of elementary quantities such as Fcos a 5s, 
that is, the product of the component ofF in the direction of motion, and the 
actual elementary displacement of the particle. In order to calculate the work 
ul-2 in a particular case it is more convenient to carry out the summation using 
rectangular components of the force and the displacement. Referring to figure 
10.11, we have 

5U=Fcosa5s=F5scos(8- 1/1) 

= F 5s (cos 8 cos 1/1 + sin 8 sin 1/1) 

= Fcos8(5scosl/l) + Fsin8(5ssinl/l) 

= Fx 5x + Fy 5y 

The work integral now becomes 

ul-2 = rs2 Fs ds = sx2 Fx dx + SYl Fy dy (10.24) 
Js, x, y, 

This relationship expresses the fact that the work of a force acting on a particle 
undergoing a displacement is equal to the sum of the works of the components of 
the force in displacements whose magnitudes are the corresponding components of 
the particle displacement. In particular if a particle is moving in a fixed x-direction 
as in figure 1 0.12a. 

Jx, 
Ul-2 = Fx dx 

x, 

since dy = 0, and if moving under the action of a force F having fixed x-direction, 
as in figure 10.12b. 
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F 

0 X 0 X 

(a) (b) 

Figure 10.12 

since Fy = 0. 
If the component of the force in the direction tangential to the path has the 

same sense as the displacement then the element of work oU is positive, and if it 
has the opposite sense, o U is negative. Work can therefore be either a positive or 
a negative quantity, and this implies corresponding changes in the kinetic energy 
of the particle. We can also refer to positive work as work that is done by a force 
on a particle and negative work as work that is done against a force by a particle. 
We return to this point later, but mention at this stage that in applying the work­
kinetic-energy relationship it is more satisfactory to speak only of work of a force 
on a particle and ascribe positive and negative signs to that work as the case may be. 

A particular force component (say the x-component) will usually vary in a 
definite manner with the corresponding component of the position of the particle. 
If the variation is shown on a force-distance graph as in figure 10.13 then it is 

f,~x dx 

0 X 

Figure 10.13 

clear that the work of the force component is represented by the area under 
the graph between the ordinates at x = x 1 and x = x 2 • 

Power 

Reverting to equation 10.21 on multiplying by ds/dt we obtain 

( "<;' L") ds d (I 2 dS d l 2 
"-'rs - = - 2mv)- =-(-mv) 

dt ds dt dt 2 

where the term on the left is the limiting value of L(F os)/ot at the point P. This 
represents the rate at which work is being done on the particle by the forces LF 
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at timet. This quantity, which is equal to (:2:F8 )v, is given the name power. For 
the particle, power is seen to represent also the rate at which its kinetic energy 
is changing. If the numerical values of :2:F8 and v have opposing signs, then 
clearly the power is negative and the rate of change of kinetic energy is negative. 
For a system subject to external forces we can refer to net power of these forces, a 
quantity which can be positive or negative. 

Power has particular significance in engineering applications where rates 
of performance of work by forces and rates of energy transfer are especially 
important. In such applications it should be made quite clear at what points the 
power is being evaluated. 

It may be noted that since 

the work of a force on a particle as it moves between positions P1 and P2 can be 
expressed either as the space integral of the force or as the time integral of the 
power, the latter based if necessary on its corresponding graphic representation. 

The unit of power is the watt (W) equal to 1 J /s or 1 N m/s. A more practical 
sized unit is the kilowatt (kW) which equals 1 000 watts. 

Worked Example 10.5 
A small body, mass 1 kg, is moving in a horizontal plane along a smooth wire as 
shown in figure 10.14, under the influence of the constant applied force 25 N 

y 

A 

0 

I~ 
Figure 10.14 

L sin- 1 3/5. (a) Evaluate the work done on the particle as it moves from A to B. 
(b) If its speed at A is 6 m/s what is its speed at B? 
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Solution 

There are two forces on the particle, the applied force and the reaction of the 
wire. Since the reaction is always normal to the path there is no work for this 
force. 

(a) Since the shape of the path is not given we use equation 10.24 and evaluate 
the sum of the works of the components of the applied force. 

Fx = 25 cos e = 20 N 

Fy = 25 sin e = 15 N 

UA-B= s: Fx dx + s: Fy dy 

= s:20 dx + s:6 15 dy 

160- 90 = 70Nm 

207 

Since the path was not specified and work is associated only with the applied force 
then it is clear that f Fs ds in equation 10.24 is the same for any path between A 
and B. However, if the wire were rough then this would not be so since the work 
of the friction force component would vary with the path. 
(b) Applying the work-kinetic-energy equation 10.23 

I 2 U I 2 2mvA + A-B = 2mvs 

t X 1 X 62 + 70 = t X 1 X VB2 

and 

v8 = 13.27 m/s 

Note how the use of the work- kinetic -energy equation enables us to avoid 
consideration of the speed variation between A and B. Is it possible to calculate 
the speed at Busing the equation '2:-F = ma? Remember that there are two 
forces to consider. 

10.5.2 Particle Systems 

Having obtained the work- kinetic-energy equation for a single particle we can 
immediately extend our result to a many-particle system by summing over the 
particles of the system. We now write 

(10.25) 

summed over all particles and forces and taking due account of signs in the work 
term. 

Considering first the kinetic energy summation, we again seek to introduce the 
mass-centre. If lix, vy are the components of the velocity of the mass-centre, 
then those of a typical particle can be written Vx + vx', Vy + vy', where the dashed 
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quantities are the components of the particle velocity relative to the mass-centre. 
For the particle 

T = -} (8m)v2 

1 ., [h. + 1)2 + c- + ')2 1 = -;:um \Vx Vx Vy Vy 
1 1> c- 2 + - 2 + 2- I + 2- I + 12 + 12) = -;:um Vx Vy VxVx VyVy Vx Vy 

Summing over all the particles 

'i:,T = -}m (vx 2 + v/) + Vx 'i:,(l>m) vx' + vy !-(8m) vy' + -}m(vx12 + vy'2 ) 

The second and third terms are zero, since 

!-(8m)vx' = ~ '1:,(8m)x 1 and !-(l>m)vy' = ~ '1:,(8m)y 1 

dt dt 

where X1, Y1 are the components of the position of the particle relative to the mass­
centre, and by definition of the mass centre 

'1:,(8m)x' = '1:,(8m)y' = 0 

Therefore 

T = -}m>2 + -}mv'2 

The kinetic energy of a particle system mass m can therefore be expressed as the 
sum of the kinetic energy of a particle mass m moving with the mass-centre and 
the kinetic energies of the separate particles in their motions relative to the mass­
centre. 

If this equation is applied to a rigid body, then, provided the body does not 
rotate ,all points of the body have motion identical to that of the mass-centre, and 
the relative velocity v' for each particle is zero. Subject to this proviso the kinetic 
energy of a rigid body can be calculated as if the mass of the body were con­
centrated into a particle having the motion of the mass-centre and 

'i:,T = -} m)l2 (10.26) 

When we examine the work of the forces, both internal and external, we find 
that we can no longer disregard the work of the internal forces. Figure 10.15 

I 

I 
-f.P.\ 

ap;-;A a 
PA I 

A 

I 

Figure 10.15 

l~ 
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shows two typical particles A and B of a particle system a .. ct a pair of equal and 
opposite internal forces each having magnitude I. In a small displacement of the 
system the two particles move from positions P A and P8 to PA' and Ps' respectively, 
the displacements being tis A and 8s8 . The work of the pair off orces shown in the 
fig4re 

BU =I cos cx8sA - I cos/3 Bss 

I (Bss cos f3 - 8sA cos ex) 

f x (change in length of PAPs) 

a quantity which will be positive or negative depending on the displacements of the 
particles and the senses of the internal forces. In general therefore, there is the 
work of the internal forces to consider. However, in the case of rigid bodies, or 
systems made up of rigid bodies connected by inextensible links, the work of 
internal forces is zero, and only the work of external forces enters into the work­
kinetic-energy equation. 

We can state this result in more general terms by recognising that external forces 
are those that are exerted on a system by the surroundings. By virtue of Newton's 
third law, an equal and opposite set of forces is exerted by the system on the sur­
roundings. In the former case we speak of the work of the surroundings on the 
system, a quantity that may be positive or negative in a particular case; in the 
latter case we can refer to the work of the system on the surroundings. In our 
discussions we shall invariably be concerned with the work of the surroundings 
on the system - with appropriate signs - and again it becomes essential to identify 
the system under consideration, and use a free-body diagram to display that 
identification. 

10.6 Evaluation of Work in Standard Cases 

The forces that the engineer h~s to take account of in his analyses are given by 
the conditions of the problem in hand, and in applying the work- kinetic- energy 
relation work can be calculated with'out discriminating between the source or 
nature of one force and another. It is soon found that certain forces ~re 
associated with the position of the particle or particle system, in the ~ense that 
associated with each point of a region of space is a definite magnitude and 
direction of force, the force being that which would be experienced by a particle 
if it were placed at the point in question. We call such a region a field of force. 
Knowing the characteristics of the field of force and given the position of the 
particle, we can immediately state the magnitude and directjon of the force 
acting on the particle, in so far as the force is of a type which can be described 
in this manner. 

We select two classes of this kind of force for consideration. 
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10.6.1 Gravitational Forces 

The phenomenon of gravitation has already been brought into our disc•tssion 
since it gives rise to a force that we cannot avoid in motions occurring on or near 
the surface of the Earth. The Earth's gravitational force is a particular example 
of the mutual forces that exist between any two particles having masses m1, m2 
respectively and distance r apart. These forces are the subject of Newton's law 
of gravitation, according to which two such particles attract each other with 
forces F and F', directed along the line joining the particles, and with magnitudes 
given by 

F = F' = G m,m2 
r2 

where G is a universal constant having the value 6.67 x w- 11 N m2 /kg2 • 

An interesting feature of this equation is that the property mass, which 
measures the resistance to change of motion of a particle, also enters into a 
law of universal gravitation. 

The total resultant gravitational force between two particle systems is 
obtained by summing the mutual particle attractions. This could be a formidable 
task for large numbers of particles, but fortunately the summation can be simplified 
in certain cases. Omitting formal proof we state the results for three cases. 

(1) If two bodies are a very large distance apart then they can be treated as 
particles and no summation is required. 
(2) If the two bodies are uniform solid spheres or uniform spherical shells then 
the particle attractions are equivalent to those of particles at the centres of the 
spheres, with masses respectively equal to the masses of the spheres. 
(3) If one body is a uniform sphere attracting a single particle we have the case 
which is of immediate interest to us in which the Earth, having mass Me and 
assumed to be uniform and spherical, is attracting a particle mass m, the distance 
of the particle from the centre of the Earth being r. The gravitational force on the 
particle now has magnitude 

Mem 
Fg = G -­

r2 
(10.27) 

and is directed towards the Earth's centre. To avoid having to specify a particular 
mass we choose a particle having unit mass and then characterise the gravitational 
force field by stating that the force per unit mass which would be experienced at 
any point is given by 

(10.28) 

directed towards the Earth's centre. 
Suppose the motion of our particle is confined to small elevations z above the 

Earth'ssurface. Then if Re is the radius of the Earth, r2 = (Re + z)2 , which is 
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negligibly different from Re 2 , and the gravitational field has a magnitude that is 
more or less constant and given by 

GMe 
Fg = -- per unit mass 

R 2 e 

(10.29) 

Furthermore, over a small region of the Earth's surface the gravitational force 
field, although strictly radial is unidirectional, and we say that the field is uniform 
in both vertical and horizontal directions. 

For a particle falling freely vertically downwards the acceleration Oz in the 
vertical z -direction is given by 

GMem GMe 
- -- = maz andaz = - -- (10.30) 

R 2 R2 
e e 

therefore for a particle az has a magnitude that is independent of the mass of the 
particle. We signify this magnitude by the symbol g, now referred to as the 
acceleration due to gravity. 

The magnitude and direction of the experimentally observed acceleration 
vector g will vary with locality since the Earth is not a unifcrm sphere, and 
furthermore, our observations are made in a frame of reference that is fixed to 
the Earth's surface and rotates with it. However, in our work we shall neglect 
variations of this kind and adopt the value g = 9.81 m/s2 that we have already used. 

We now consider the work of the gravitational force on a particle as the particle 
moves radially outwards in the Earth's gravitational field from position 1 to position 
2, at distances r 1 , r2 respectively from the centre of the Earth (figure 10.16a). 

Figure 10.16 

At any distance r, Fg =- G Memfr2 , therefore 

(b) 

\ 
I 

[- GMem] r, 
T r, 

[(- G:em) _ (- G~em)J 

\ 
)2 

/\ 
Jt I 

tl I 

I 

(10.31) 
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It is important to note that the same result would have been obtained for any 
other path such as that shown in figure 10.16b, provided the end points were also 
at radii r 1 , r 2 from the Earth's centre, since such a path could be considered as 
made up of small radial displacements together with displacements along spherical 
surfaces for which the work of the gravitational force is zero. We shall return to 
this point. 

If the motion of the particle were confined to regions near the Earth's surface 
for which the changes in elevation were small, then the gravitational field would 

~/ //,mg 
z1 

____ ...L_ _____ __...L datum 

Figure 10.17 

be sensibly uniform and the gravity force on the particle would be mg vertically 
downwards (figure 10.17) and 

(10.32) 

We note that the work of the force mg depends only on the difference of 
elevations. The datum for measurement of z is now arbitrary. 

10.6.2 Spring Forces 

A close-coiled helical spring serves as an elastic deformable body with some well­
defined relationship between axial deformation and applied axial force. If the 
deformation o is proportional to the magnitude F of the applied force then F = ko. 
The spring is now referred to as a linear spring, and k is termed the spring constant, 
with units N/m. The spring can also serve as a means of applying a force to a body, 
the magnitude of the force, by Newton's third law, being related through F = ko 
to the deformation of the spring. 

In figure 10.18a a particle is moving in the x-direction when under the influence 
of the force exerted by a linear spring. The position of the particle is measured 
relative to its rest position, that is, when the spring is undeformed. When the 
particle is at the position x then the force on the particle in the x-direction is 
- ko, o now being equal to x. As the particle moves from position 1, x = x 1 , to 
position 2, x = x2 , the work of the spring force 

U1_ 2 = {'X2 -kxdx = _ [kx2 2 
_ kx 1 2

] = _ [ko2 2 
_ kot 2

] 

Jx, 2 2 2 2 
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X' X 

undeformed lenglh 

(a) (b) 

Figure 10.18 

If the spring had been in compression during the motion of the particle in the 
x' -direction shown, then the force in that direction would have been- ko =- kx' 
and in moving from position 1, x' = x 1 ' to position 2, x' = x 2 ',the work of the 
spring force 

Ut- 2 = J:,~·- kx' dx' = - [kx;'2 - kx~'2] = - [k~22 - k~lz] 

The same result would have been obtained if the particle had followed a path 
such as that shown in figure 1 0.18b and the orientation of the spring had changed 
during the motion. The force of the spring is now radially inwards; only the radial 
displacements of the particle enter into the calculation of U1_2, and o 1 and o 2 

are still the deformations of the spring at positions 1 and 2. 
It can be verified that in all cases, including those in which the particle passes 

through its rest position, the work of the spring force on the particle is given by 

ko2 2 ko1 2 

U1-2 =- [-2 --2 J (1 0.33) 

where o 1 , o2 are the initial and final deformations of the spring, or equivalently, 
the corresponding positions of the particle relative to the rest position, measured 
along the axis of the spring. 

10.7 Potential Energy and Conservative Forces 

If we examine the expressions we have obtained in equations 10.31, 10.32 and 
10.33 for the work of gravitational forces and spring forces, we see that U1_ 2 is 
the negative of the change in value of some quantity that depends only on the 
position of the particle. In the cases considered the quantities encountered were 
respectively - GM em/r, mgz and ko 2 /2. 
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We now define each of these quantities to be the potential energy of the 
particle with respect to the particular force field in which it is situated. This is a 
scalar symbolised by V, with units N m. We use a subscript to indicate the nature 
of the field, whether gravitational force or spring force. We have therefore 

potential energy due to a non-uniform gravitational force field Vg = - GMemfr 

potential energy due to a uniform gravitational force field Vg = mgz 

potential energy due to a spring force field V8 = f ko 2 

and we can write 

(1) for motion in a gravitational force field 

Ut-2 = - (Vg2 - Vgt) 

(2) for motion in a spring force field 

Ut-2 = - (Vs2 - Vs.) 

(10.34a) 

(10.34b) 

Both of the forces that we have discussed are characterised by the following 
properties 

(a) the magnitude and direction of the force is a function only of the position of 
the particle on which it acts; 
(b) the work of the force, U1_ 2 , if the particle moves between initial and final 
positions is independent of the path followed by the particle. 

We call such forces conservative forces, for reasons that follow directly. If at every 
point of a region the force acting on a particle is a conservative force we say we 
have a conservative field of force. 

It is a consequence of the definition of a conservative force that to each point 
of the field there can be ascribed a potential energy V, and the force field can then 
be described fully in terms of the scalar function V = V(x, y, z). The component of 
the force on a particle at any given point in some specified direction can be deter­
mined by evaluating the negative of the rate of change of V in the chosen direction. 
Thus the x-component of the conservative force at the point X1>Y1> z1 in a force 
field described by the potential function V(x, y, z) is given by [ -3 VI ox] x Y z . 

For the cases discussed 1 1 1 

GMem o Vg GMem 
Vg=--- -=---

r or r 2 

the r-directed gravitational force 

Vg = mgz 

the z-directed gravitational force 

Vs = fkx2 --= 
ox 

the x- direc.ed spring force. 

- mg 

- kx 



KINETICS OF PARTICLES AND PARTICLE SYSTEMS II 215 

10.7.1 Total Mechanical Energy 

In general for a particle moving under the influence of conservative forces only, 
fromequationsl0.34'LU1 ~ 2 =- (V2 - V1).lfweinsertthisexpressionfor 
'LU1_ 2 into the work- kinetic -energy relationship, equation 10.23 we have 

and therefore 

(10.35) 

where V implies the summation of quantities such as Vg and V8 • 

We shall refer to the sum of the kinetic energy and the total potential energy 
as the total mechanical energy and we can then state that, for a particle moving in 
a conservative force field, the total mechanical energy is conserved. 

10.7.2 Application to Rigid Bodies 

Having introduced the potential energy of a particle, it is now necessary to extend 
the discussion to a rigid body, We have found (sections 7.2 and 7.3) that if the 
gravitational force field is uniform the resultant gravitational force on a rigid 
body acts at the centre of gravity, or equivalently, for a uniform field, at the 
centre of mass. The potential energy, as already defined, is based on the evaluation 
of work, and for a rigid body it can be determined by the summation of works 
over all the particles, or equivalently, the work of the resultant at the mass-centre. 
It follows that the potential energy of a rigid body in a uniform gravitational field 
is equal to that of a particle at the mass-centre having mass equal to that of the 
body. 

As far as the spring force is concerned the definition of potential energy 
cannot be usefully extended to rigid bodies except in a limited number of cases, 
such as, for example, motion without rotation in a straight path along a line 
lying on the axis of the spring. This is because the potential energy cannot be 
defined unambiguo).lsly by the position of the body since it will vary according 
to the point of attachment of the spring on the body and the orientation of the 
body. Problems involving spring forces where a potential energy cannot be defined 
unambiguously are best treated by use of the work- kinetic-energy equation 1 0.23, 
the work of the spring forces being evaluated directly. 

It is emphasised that the spring force is an external force as far as the rigid body 
is concerned. In chapter 13 it will be shown that a potential energy can be 
associated with the internal forces in the spring; this will enable the internal 
forces to be included in an energy accounting and thus the difficulty we have 
noted can be circumvented. 

For the simpler cases where the total potential energy can be defined equation 
10.35 can be used. In the next section a further equation is introduced, of which 
equation 10.35 is a special case. 
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10.8 Extraneous Forces 

Usually a particle or a rigid body, while moving in a conservative force field, is 
subject to the action of other, non-conservative forces. Such forces are arbitrarily 
applied forces and forces depending on the direction of motion or the magnitude 
of the particle or body velocities. These are referred to as extraneous forces. We 
can now write two equations for a particle or a rigid body moving without 
rotation, from position 1 to position 2: from equation 10.23 

work of conservative forces and extraneous forces 

= ~(UJ-l)cons + ~(U•-2 )extr = T2 - T1 

from equations 10.34 

work of conservative forces only 

= ~(UJ-2)cons = - (V2 - V.) 

Subtracting the second equation from the first 

work of extraneous forces 

= L(UJ_2)tlxtr = (T2 + V2) - (TJ + V.) 

= change in total mechanical energy (T + V) (10.36) 

The work of the extraneous forces can be positive or negative as calculated in 
any particular case. In particular the friction force of a stationary surface on a 
rigid body is always in the opposite direction to that of the body's motion; the work 
of this extraneous friction force is therefore always negative and if acting alone, 
friction forces bring about a reduction in the total mechanical energy. 

Equation 10.36 in the rearranged form 

(TJ + V.) + L(UJ_2)extr = (T2 + V2) (10.37) 

( initial total \ + ( work of ) = ( final total ) 
mechanical energy} \.extraneous forces mechanical energy 

indicates the accounting of energy in this situation and is a useful form -referred 
to as the work- energy equation. 

If any forces, although conservative, are not treated as such, then they must be 
included in equation 10.37 and dealt with as extraneous forces. 

Worked Example 10.6 

A body, mass 0.5 kg, drops vertically through a distance of 2m before striking a 
vertical spring, constant k = 100 N/m, and after the impact rebounds in the same 
vertical path. Determine its velocity just before it strikes the spring. Deduce an 
equation relating its velocity while in contact with the spring with the spring 
deflection during deformation and obtain the maximum deflection and maximum 
force in the spring. What impulse does the spring impose on the body during the 
deformation stage? 
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If e for the impact (between the body and the Earth with the spring regarded as 
the deforming part of the latter) is 0.5 find the height of the rebound and the 
change in total mechanical energy of the body as a result of the impact. 

Assume (1) that the spring behaves linearly during deformation, (2) that the 
spring has regained its original length when the body leaves the spring and (3) that 
the total mechanical energy is conserved during deformation. 

Solution 
Assume that the undeformed length of the spring is L and that the datum for 
gravitational potential energy is at the base of the spring. 

Several different conditions relevant to the problem should be noted as follows, 
they are also illustrated in figure 10.19 - the velocity directions shown in this 
figure are the physical directions. 

2 3 4 

Figure 10.19 

(1) The body is at rest 2 m above the spring. 
(2) The body is just about to strike the spring. 

5 6 

(3) The body is in contact with the spring during the deformation stage with a 
spring deformation o. 
( 4) The spring has a maximum deflection and it follows that the body is instan­
taneously stationary. 
(5) The body just loses contact with the spring. 
( 6) The body becomes instantaneously stationary at the top of its rebound at a 
distance h above the top of the spring. 
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(a) Applying the work- energy equation 10.37 to the body between conditions 
1 and 2 in order to obtain v2 

T1 = 0 

V1 = Vg 1 = mgz 1 = 0.5 x 9.81 X (2 + L) N m 
r 1 2 1 05 zN 2 = 2 mv2 = 2 x . x v2 m 
V2 = Vg 2 =0.5 X 9.81 x LNm 

1:(U1-2)extr = 0 

since there are no extraneous forces. Thus 

0 t 0.5 X 9.81 X (2 t L) = t X 0.5 X v22 + 0.5 X 9.81 X L 

and 

v2 = y(2 x 9.8I x 2) = 6.27 m/s downwards 

(b) Applying the work- energy equation I 0.37 between conditions I and 3 

T 1 2 1 0 5 2 0 25 2 3 = 2 mv3 = 2 X • X v3 = . v3 

V3 = Vg3 + VsJ = mgz3 + tk02 

0.5 X 9.81 X (L - o) + t X IOO X o2 

1:(U1_J)ext = 0 

because there are no extraneous forces. Thus 

0 + 0.5 X 9.81 (2 + L) = 0.25 v3 2 + 0.5 X 9.8I (L - o) + 500 2 

giving 

Va 2 = 2 X 9.81 (2 + o) - 200o 2 

(c) The spring deflection will be a maximum when v3 is zero (the latter being 
its value at condition 4). Thus 

giving 

0 = 2 X 9.8I (2 + Omax) - 200 Oma/ 

200 Omax 2 - 19.62 Omax - 39.24 = 0 

Omax = + 0.495 or - 0.396 

(The negative value is not applicable in this case. It is applicable if the spring 
remains adhered to the body on the rebound.) 

The maximum force in the spring is 

komax = IOO x 0.495 = 49.5 N 

Note that this is much greater than the weight of the particle - the further the 
mass is dropped the larger the force it will cause in the spring. 
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(d) In order to find the impulse during the deformation stage we apply the 
impulse-momentum equation 10.3 in the z-direction between conditions 2 
and 4. 

Gz2 + Llmpz,2~4 = Gz4 

Llmpz,2~4 = Gz4 - Gz2 
Now G24 = 0 since the mass is instantaneously at rest and GZ2 = m x (- 6.27) 
since the direction of the velqcity in position 2 is in the negative z -direction; 
therefore 

Llmpz, 2~4 = 0 - 0.5 X (- 6. '27) 

= 3.135 kg m/s or 3.135 N s upwards 

21~ 

(e) In order to find the height of rebound we shall equate the total mechanical 
energy of the body in condition 6 to that in condition 5 (since there are no 
extraneous forces acting between these conditions); to find the total mechanical 
energy at 5 we require the body's velocity, which we determine using equation· 
10.11 fore, applied between conditions 2 and 5. 

e =-
(relative velocity after impact) 

(relative velocity before impact) 

Since the other body in the impact is the Earth which has zero velocity, this 
equation becomes 

e = 
(v 5 - 0) 

(- 6.27 - 0) 

hence 

v5 = 0.5 x 6.27 = 3.135 m/s 

The definition 10.10 fore, together with the impulse- momentum equation 
could alternatively be used to determine v5 • 

(f) Applying the work- energy equation 10.37 between conditions 5 and 6 

therefore 

and 

Ts = t X 0.5 X (3.135)2 N m 

V5 = Vg 5 = 0.5 x 9.81 x LNm 

T6 = 0 

V6 = Vg 6 = 0.5 x 9.81 X (L + h)Nm 

t X 0.5 (3.135)2 + 0.5 X 9.81 X L 0 + 0.5 X 9.81 (L +h) 

h (3.135)2 = 0.5 m 
2 X 9.81 
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(g) The change in the total mechanical energy of the body due to the impact can be 
computed by evaluating the quantity (T + V) at any two conditions separated by the 
impact; in this case it is simpler to use conditions 1 and 6. 
At 1 Tt + Vt = 0 + 0.5 X 9.81 X (L + 2) 

At6 T6 + Jl6 = 0 + 0.5 X 9.81 x (L + 0.5) 

The change being 

(T6 + V6 ) - (Tt + V1 ) = -0.5 x 9.81 x 1.5 = - 7.35 N m 

the negative sign indicating, of course, a decrease in total mechanical energy. 

10.9 Summary 

(1) linear momentum of a particle G =mv. 
(2) linear impulse of a force 

lmpt-2 = f.t, F dt 
t 1 

(3) Impulse -momentum equation for a particle 

Gt + ~ lmPt-2 = G2 

for a particle system 

(10.3) 

mvt + ~(Imp,_2 )ext = mv2 (10.5) 

for a set of rigid bodies use equation 10.3 with G = ~ mv. 
( 4) Conservation of linear momentum: If ~Imp 1_2 is zero: for a particle 

G1 = G2 

for a particle system 

mv 1 = mv 2 

for a set of rigid bodies 

~mvi = ~mv2 

(5) Impulsive force is the name given to F when it is large and acts for a very 
short time. 
(6) Impact of moving bodies: use equation 10.3 for each body, relating the 
impulsive forces on each to the momentum change. Coefficient of restitution is 

impulse during restitution 
e = ----------

impulse during deformation 
(10.10) 

(relative velocity of separation) 
= - ~----~-~--~ 

(relative velocity of approach) 
(10.11) 
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(7) Kinetic energy of a particle T =t mv2 

(8) Work of a force 

U1_ 2 = f81 F cos ads Js, 

where a is the angle between F and ds. Also 
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(10.24) 

(9) The sum of the works of the individual forces is equal to the work of the resultant. 

(10) Work-kinetic-energy equation: for a particle 

T1 + ~U1-'l = T2 

for a rigid body in translation 

1 - 2 ~cu ) 1 - 2 
zmVt + "-' 1-2 ext = zmV2 

(10.23) 

(11) For a particle, power= (~F8) x v, the rate of performance of work, which can 
be positive or negative. 
(12) Potential energy of a particle: due to a uniform gravitational force field 

Vg = mgz 

due to a spring force field 

Vs = tk6 2 

(13) Total mechanical energy= T + V. Vbeing equal to V8 + Vs; the total mechanical 
energy is conserved during motion in a conservative force field. 
(14) Potential energy of a rigid body: due to a uniform gravitational force field 
Vg = mgz; due to a spring force field V8 = t k6 2 for the simple case where motion is 
in a straight line along the axis of the spring. 
(15) Work- energy equation for a particle or rigid body moving without rotation 

(10.37) 

~(U1_'l)extr is the work of those forces that are treated as being extraneous; 

Problems 

10.1 A body of mass 10 kg is. moving to the right in a straight line on a 
smooth horizontal table at 10 m/s when a force of 20 N, opposed to its motion, 
is applied for 8 s. What is its final velocity? (Hint: Draw a free-body diagram and 
apply equation 10.3.) 
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10.2 A body of mass 10 kg is initially moving at 10 m/s to the left on a rough 
(p. = 0.5) horizontal table when a force P= (100 + 20t) N is applied to the right, 
t being the time in seconds from the instant of application. What is velocity of 
the body after 5 s? (Hint: Write impulse- momentum equations for horizontal 
and vertical directions; split problem into (a) motion to left and (b) motion to 
right.) 

10.3 A body of mass 5 kg is initially at rest when t = 0 on a rough (p. = 0.2) 
inclined plane making an angle of sin-1 (5/13) with the horizontal. A force P = 
(5t2 ) N is applied to the body and makes an angle of sin-1 (3/5) to the plane 
in an upward direction. Find (a) the time t 2 when the body first moves up the 
plane, (b) the time t3 when it loses contact with the plane and (c) its velocity at 
this instant. (Hint: Use a free-body diagram and hence write down impulse­
momentum equations for motion parallel and perpendicular to the plane; decide 
which way the body will first move; will the body remain stationary for any 
interval of time? Note that both the normal and friction components will vary.) 

10.4 A body of mass 100 kg is dropped on to a pile (a civil engineering term 
meaning a column that is driven into the ground) of mass 50 kg in order to drive 
it into the ground. If the body drops 5 m before striking the pile and does 
not rebound from the latter, find their common velocity just after completion 
ofthe impact (ignore ground resistance during the impact). If the pile and body 
together move 0.2 m after the impact what is the ground resistance if this is 
assumed constant? (Hint: Use work- energy to deduce velocity just before 
impact, impact- momentum during impact and work- energy for ground 
resistance.) 

10.5 A body of mass 2 kg moving with a velocity of 20 m/s along a smooth 
horizontal surface is opposed by a force of 10VN, V being its velocity in m/s. 
Use the impulse- momentum equation to find the distance required before the 
velocity drops to 10 m/s. What work is done by the body against the force 
during this distance? (Hint: Note relationship ofv, sand t; use work-energy 
for last part.) 

10.6 A particle, mass m, rests at the bottom of a smooth cylindrical hole of 
radius R, the axis of which is horizontal. Find the impulse needed to be applied 
horizontally to the particle sci that it will just lose contact with the surface of the 
hole at the uppermost point. (Hint: Draw a free-body diagram at the uppermost 
point to relate forces and accelerations, hence find velocity; use work -energy 
after and impulse -momentum during the impact. 

10.7 If the impulse in problem 10.6 is to be delivered by allowing another particle 
of mass Sm to slide downwards on the surface of the hole to strike the original 
mass, find the vertical distance through which it must slide if e = 1. Decide 
whether the Sm mass rebounds or carries on in the same direction, and with what 
velocity. (Hint: Use impulse- momentum during the two stages of impact and use 
the equation for e.) 
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10.8 Body A of mass 1 kg hangs vertically by a cord of length 2 m. Body B of 
mass 2 kg is on a cord oflength 1 m and, when hanging freely, just touches A. 
They are both dropped from the positions with the cords horizontal and with 
such coordination that they strike each other when the cords are vertical. If 
e = 0.8 find (a) the velocities of the bodies at the end of the impact (b) the 
impulse exerted by A on Band (c) the energy lost during impact. (Hint: Use 
impulse- momentum and e during impact; work energy before and during 
impact- the latter to determine energy loss.) 

10.9 Two trucks A and B, masses 1000 kg and 2000 kg respectively, are connected 
by a rope 1000 m long and are on the same horizontal rail, which is directed 
perpendicular to the edge of a cliff. The trucks are being used to tip refuse over 
the cliff with A standing on the edge and B 200 m from A with the rope slack. By 
some mishap A falls over the cliff. Find (a) the velocity of A just before the rope 
tightens (b) the common velocity of the trucks just after the rope becomes taut 
(c) their velocity when B falls over the cliff if e = 0 for the impulse action. 

Ignore the weight of A as an impulsive force and the frictional effect of the 
cliff edge on the rope. [Hint: Draw a free-body diagram for each truck; use work­
energy for (a); impulse- momentum (for each truck) for (b) and work- energy 
(or equation of motion) for (c)] 

10.10 A small wooden block of mass 1.2 kg is moving in a straight line on a 
smooth horizontal table at 100 m/s. It is struck by a bullet whose path is 
in a plane normal to the path of the block and inclined at 40° to the 
horizontal. If the bullet (mass 0.1 kg) remains fixed in the block and the new 
path of the latter makes an angle of 30° to its original path, find the velocity 
of the bullet. 

What impulse is exerted by the block on the table? [Hint: Consider first 
the horizontal component of the bullet velocity, apply the impulse- momentum 
equation in component form in the horizontal plane to both bodies separately 
(drawing free- body diagrams of external forces for each body); secondly 
consider the velocities and impulses in a vertical plane.] 

10.11 Two bodies A and B, of mass 5 kg and 3 mg respectively are connected 
by a spring of stiffness 200 N/m. They are stationary on a smooth horizontal 
table with the spring undeflected when body B is given an impulse of 30 N s in 
the direction B to A. Assuming that the impulse is of such short duration that 
the movement of B is negligible during the impulse find 

(a) the velocity of Bat the completion of the impulse 
(b) the velocity of A when B has a velocity of 5 m/s 
(c) the instantaneous common velocity of the two masses and the spring deflection 
at that time (assume no energy losses) and 
(d) the velocities of the bodies at the instant when the spring is next undeflected. 
(e) What are the ranges of velocity of each body? 
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[Hint: (a) If B does not move what of the force in the spring, hence impulse­
momentum; for {b)- (e), write impulse -momentum equations {after drawing free­
body diagrams) for both bodies; use energy considerations where necessary.] 

10.12 Solve problem 9.2 by work-energy methods. 

10.13 Check the velocity in problem 9.7 by work -energy methods. 

10.14 Show when f.J. = 0 and w is constant that the power required to drive the 
tube in problem 9.12 is mw3r0 2 (e 2c..~t_e-2""') /2. 

10.15 In problem 9.14 check the equation for d¢/dt by work -energy methods. 

10.16 Refer to problem 8.10. Show that Vy = V tan 8. Hence find the work 
done by the external force as the particle moves along the arc subtending an 
angle </> at the centre of the arc. 

10.17 A body of mass m is released on a rough inclined plane that makes an 
angle 8 with the horizontal. It slides a distance L down the plane and then strikes 
an ideally elastic spring. Ignoring the friction of the plane during contact with the 
spring show, by using work- energy considerations, that the distance it rebounds 
up the plane (measured from the undeflected end of the spring) is given by 

L{sin 8 - f.J. cos 8) 
X = ~----~~--~ 

(sin 8 + f.J. cos 8) 

where f.J. is the coefficient of friction. (tJ. <tan 8) 
If f.J. = 0.25 and 8 = sin-1 0.6 find the number of impacts required with the 

spring before x < L/6. 

10.18 Two particles A and B, of mass m1 and m2 respectively, are connected by 
a string length L of elastic constant K and lie on a smooth horizontal surface. The 
particles are initially at rest with the string just taut when A is moved a distance L 1 

and B a distance L 2 such that the string now has length L + L 1 + L 2 • If the 
particles are now released find expressions for (a) their velocities when the string is 
again just unstretched, {b) their positions at this instant and (c) the positions at 
which the particles meet. 

Positions should be stated with reference to initial positions. (Hint: (a) write 
down impulse- momentum equations for each particle to relate their velocities; use 
work- energy to relate velocities and strain energy. (b) Note relationship of 
displacements and velocities. (c) string is slack in this situation.) 

10.19 Refer to problem 9.16. Since no external work is done the work energy 
equation can be written T + Vj = constant. After substitution, differentiate this 
equation and apply to the problem to obtain the required differential equation 
of motion. 
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10.20 Check parts (a) and (b) of problem 9.17 by work- energy methods. 

10.21 For problem 9.18 find the work done by the applied force P (= 1 N) 
during the interval 0 < t < 1 s. Use work- energy considerations to check the 
absolute velocity of the particle when t = 1 s. What is the power of the force at 
this instant? 
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11 Kinematics of Rigid Bodies 

In the previous chapters we discussed the kinematics and kinetics of a single 
particle, and we were able to extend the discussion to particle systems and obtain 
significant equations relating to the kinetics of such systems. In this and the 
following chapters we apply the equations to rigid bodies, since engineering 
interest centres on particle systems of this particular kind. We first discuss the 
kinematics of rigid bodies, recalling that a rigid body is, by definition, a particle 
system for which the configuration of the particles is unchanging. 

11.1 Types of Rigid Body Motion 

We shall limit the discussion at this stage to so-called plane motion, If a body is under­
going plane motion the distance of each particle from some reference plane remains 
the same, and all particles therefore move in parallel planes. The motion of a 
cross- section of the body in any one of these planes, chosen as the reference plane, 
can be used to describe the motion, and the motion of the body can be represented 
by the motion of the so -called representative slab or lamina of negligible thickness 
moving in the plane of the lamina. 

We recognise two basic types of rigid body motion, namely translation and fixed­
axis rotation. 

recti linear translat1on curvilinear translat1on 

(a) 

f1xed- mos rotat1on 

(b) 

Figure 11.1 
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Translation 

A rigid body is said to be in translation if the straight line joining any two particles 
of the body, such as A and Bin figure 11.1, maintains the same orientation through­
out the motion. This implies that all particles of the representative lamina travel 
along parallel paths. If these paths are straight lines we have rectilinear translation 
and if curved, curvilinear translation (figure 11.1 a). 

Fixed-axis Rotation 

A rigid body is said to be in fixed -axis rotation if all particles of the body move in 
concentric circles about some fixed axis, which, in plane motion, is perpendicular 
to the reference plane. This implies that all particles of the representative lamina 
move in concentric circles, the centre of the circles not necessarily being on the 
representative lamina (figure 11.1 b). 

Although these are the basic types of motion it is evident that a rigid body can 
have some arbitrary motion that is neither basic translation nor fixed-axis rotation. 
We shall refer to such motion as general plane motion, but we shall find that this 
too can be analysed in terms of the basic types described. 

We now proceed to establish a means of describing the motion of rigid bodies 
using the definitions already introduced in chapter 8 in connection with particle 
motion and angular motion of a line. 

11.1.1 Translation 

For a given orientation of the body the position of the representative lamina at 
time t can be described by specifying the position of any point of the lamina. 

In a time interval ot all particles of the lamina have displacements that are 
equal in magnitude and direction (figure 11.2a) and therefore os' = os". It follows 

as" 

(a) 

----/ \ / 

..... -r 
I J 

:__./; 
/ 

(b) 

Figure 11.1 

that in the limit all particles have the same velocities and accelerations, as indicated 
in figure 11.2b, and the velocity and acceleration of the body can be described by 
reference to the velocity and acceleration of any selected particle. 
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11.1.2 Fixed-axis Rotation 

If 0 is the intersection of the axis of rotation with the reference plane {figure 11.3a) 
OQ is chosen as a fixed direction through 0. Select any particle or point P on 

/ 

(a) 

/ 
?~ 

Figure 11.3 

(b) 

0~ 
/ 

/ 

/ 
/ 

(c) 

/ 

the representative lamina. The angular position of the body is then described by 
reference to the angular position(} of a line such as OP. The angular velocity, B or 
n, and angular acceleration, 8 or Oi, of the line are as defined in chapter 8. From 
that discussion we see that n and Oi do not depend upon the particular line on 
the representative lamina that is selected and therefore we can now properly refer 
to the angular velocity nand angular acceleration Oi of the body. 

A typical point P on the lamina moves in a circular path radius OP; the velocity 
of Pis therefore tangential to the path {or perpendicular to OP) in a direction 
decided by the sense of n, and has magnitude vp = (OP) n. The acceleration of P 
has two components, namely, the tangential component aP,t = (OP) Oi,perpendicular 
to OP in a direction decided by the sense of Oi, and the normal or centripetal com­
ponent aP,n = (OP) [22 directed towards 0. These are shown in figures 11.3b and 
11.3c. Note that Pis any selected point of the lamina and that the magnitudes of 
vp, aP,t and ap,n for all points are, at any instant, each proportional to the distances 
of the points from the axis of rotation. 

11.1.3 General Plane Motion 

The representative lamina is now assumed to be moving in any arbitrary manner 
which is neither translation nor fixed-axis rotation. To examine its motion it is 
useful to have available the services of three observers, each of whom views the 
motion that is taking place and describes that motion by reference to his own 
set of axes attached to him. Referring to figure 11.4, observer 1 with his attached 
axes remains fixed in an inertial frame; observer 2 can translate with some velocity 
v0 and acceleration a0 but is not allowed to rotate; observer 3 if called upon, can 
translate with velocity v0 and acceleration a0 and in addition, may rotate with 
angular velocity [2 0 and angular acceleration Oi0 • 
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observer 1 observer 2 observer 3 

y 1 y l, . r y!k; 
I~ 2 X 

~ ~0~--------x 

f1xed axes 

Figure 11.4 

Consider a representative lamina, identified by three of its points A, B and C 
arbitrarily chosen (figure 11.5), undergoing general plane motion and displaced 
in some time interval to a new location represented by A', B', C', the particles 
being joined by full lines in both locations. 

X 

Figure 11.5 

Utilising the services of observers 1 and 2: observer 1 sees the complete dis­
placement; observer 2 if translating with A, sees a net rotation from A' B1 C1 to 
A' B' C'. Observer 1 can interpret the complete displacement as a curvilinear 
translation with A together with an anticlockwise rotation about A'. 

Alternatively: observer 2, if translating with B, sees a net rotation from B' 
C2 A2 to B'C' A'; observer 1 can interpret the complete displacement as a curvi­
linear translation with B together with an anticlockwise rotation about B'. 

Comparing the two interpretations made by observer 1, we note that the path 
length AA'-:/= the path length BB', but that the rotation about A' = the rotation 
about B'. The intermediate positions through which the lamina translates between 
the initial and final positions of the complete displacement are therefore different. 
We can generalise this result and describe the displacement of the lamina as being 
made up of a curvilinear translation with some point X of the lamina, together 
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with a fixed-axis rotation about that point X: the rotation is the same whichever 
point is selected but the amount of translation will depend on the choice of the 
point X. 

Consider now the displacement of a lamina in a time interval lit, as shown in 
figure 11.6. The displacement of any line AB to the position A'B' as lit becomes 

a" 
EIJsA_- -.. '- AIJ5s --.... ........ , s------ -....-.- --""::rr..B 

Ells s 

(a) 

rotatoon 

/'rotOIIOn 

(b) 

Figure 11.6 

very small is made up of a rectilinear translation from AB to A'B" together with 
a rotation about A' from A'B" to A'B' (figure 11.6a). The displacement of the 
point B is given by 

~ ~ ~ 

BB' = BB" + B"B' 
~ ~ 

= AA' + B"B' 
~ ~ 

(since BB" = AA' for translation). If we refer the motion to the earth as our fixed 
inertial reference frame we can write 

( translation) 
with A 

+ 

( movement of B due to) 
rotation about A 

where ElisB is the displacement of B as seen from, or with respect to, a fiXed 
point E on the Earth. 

Mter division by lit, then in the limit as lit tends to zero 

EVB = EVA 
(trans) 

+ A~'B 
(rot) (ll.l) 
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Thus the velocity of B is the sum of (1) the velocity of B arising from translation 
with some other point A and (2) the velocity of B relative to A arising from the 
rotation of AB about A. 

From a similar consideration of figure 11.6b we can write alternatively for the 
same motion 

EVA = EVB 
(trans) 

+ BVA 
(rot) 

(11.2) 

an equation that can be obtained directly from equation 11.1 by noting that 
aVA =-AVa. Note that AVa arising from the rotation is given by (AB) n 
similarly a VA is also given by (AB)n, in which n is the angular velocity of the 
lamina. It follows in general that, for a lamina undergoing plane motion, if the 
velocity of any point is known together with the angular velocity of the lamina, 
then the velocity of any other point can be determined. 

Differentiation of equation 11.1 with respect to t yields an expression for the 
acceleration of B 

(11.3) 

in which A as is the acceleration of B relative to A arising out of the rotation of AB 
about A. It must be noted that AaB has two components, namely AaB t = (AB)a 
perpendicular to AB (in the sense determined by the sense of o:) and AaB,n = 
(AB)n2 directed from B towards A. It follows that, for a lamina undergoing plane 
motion, if the acceleration of any point is known together with the angular 
velocity and angular acceleration of the lamina, then the acceleration of any other 
point can be determined. 

Worked Example 11.1 

The rod AB (2m long) in figure 11.7a has, at some instant, the angular velocity and 
the angular acceleration indicated; the point A has the linear velocity and the linear 

0 

~ Eay 
8 0 b 'l./ 

10m/s e (('I'>/ 
7-o I 

~ 5m/s I 
EVA --(v'"B I N 

~ 
e 

II }.as 
E lAa B,o 

EaA=20m/s2 0 
I() 

(b) I 
I 

_ill_ I 
30 m/s 2 

b - b, 

(a) 
A a a,, 

(c) 

Figure 11.7 
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acceleration indicated. Determine the absolute velocity and absolute acceleration 
of B when in the position shown. (Note that absolute velocities or accelerations 
are with respect to the Earth's surface which is usually denoted by E.) 

Solution 

Using equation 11.1 

EVB = EVA + AVB 

in which 

AVB = (AB) n perpendicular to AB 

= 2 x 5 = 10 m/s L 0° 

the sense being consistent with that of n. 
The vector addition is carried out using a vector diagram, figure 11.7b, the 

solution being given by the directed line eb, and 

EVa = 7.37 m/s L 28.7° 

Using equation 11.3 

EaB = EaA + AaB 

in which 

~ 

AaB,n = (AB) !12 in direction BA 

= 2(5)2 m/s2 L - 90° 

AaB,t (AB) a perpendicular to AB 

= 2(15) m/s2 L 180° 

the sense being consistent with that of a. 
The vector addition is carried out in figure 11.7c, the solution being given by 

the line el5 and 

11.2 Instantaneous Centre of Rotation I 

Since we can now relate the velocities and accelerations of any two points on a 
representative lamina we can say that we are able to describe the motion of that 
lamina at any instant. That motion is the result of a translation with some arbitrary 
point together with a fixed-axis rotation about that point. It may be surmised that 
there is some point for which the instantaneous velocities and accelerations of the 



KINEMATICS OF RIGID BODIES 233 

particles of the lamina are the result of rotation alone about that point. As far as 
velocities are concerned such a point - the instantaneous centre of rotation - can 
indeed be found. 

Consider the lamina in figure 11.8a. If the velocity of A is EvA (E being a fixed 
point on the Earth) and the angular velocity of the lamina is n, then the velocity 

E~B 
F 
\ 

\ 
G- · o ·- o_-:. \ • 

\ 

(a) (b) 

Figure 11.8 

of A is consistent with rotation of the lamina about a point C such that AC is 
perpendicular to EVA and AC = Ev A/n. Since EvB is determined from EVA and 
n, the velocity of B is given by EVB = CB X n in the direction perpendicular to 
CB and consistent with the sense of n. 

Alternatively it may be that the directions of EvA and Eva are known at some 
instant if the lamina is constrained to move in a certain manner, but that the 
angular velocity is not known directly. If in figure 11.8b we take lines AF and 
BG perpendicular to EvA and EVB respectively, then the directions of EVA and 
EVa are consistent with rotation about the intersection D of AF and BG. Now 
the length AB is constant being the distance between two points of a rigid body, 
therefore 

EVA COS 0: = EVB COS~ 

EVA = cos~ = sin (rr/2 - ~) AD 

Eva coso: sin (rr/2 - o:) BD 

(by the sine rule for triangle ABD). Therefore 

EvA n x AD 

EVB n X BD 

It follows that the ratio of the magnitudes of EvA and Eva is also consistent with 
rotation about D. 

The point C in figure 11.8a or D in figure 11.8b therefore represent a point on 
the lamina (or fixed relative to the lamina), which, at the given instant, is a fixed 
axis of rotation. This point, which we now label I, and whose location relative to 
the lamina is found by either of the above methods, is instantaneously at rest and 
is therefore referred to as the instantaneous centre of rotation of the lamina. 
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Note carefully that at a subsequent instant the instantaneous centre is in general 
a different point relative to the lamina. It is therefore important to appreciate that 
the point I, although instantaneously at rest, is in general accelerating and cannot 
be used directly to compare the accelerations of points of a lamina. 

Worked Example 11.2 

In the mechanism in figure 11.9a the arm DA rotates at 10 rad/s clockwise. Find, 
for the configuration shown, the instantaneous centres of rotation of the links ACB 

RF =1m; DA= 1.5m; 
BC=CA = 1m ; 
CF=1.75m; 

(a) 

Figure 11.9 

2.45 m 

2.69m 

( b) 

and CF. Hence determine the angular velocity of the links CF and HF and the 
absolute velocity of the point C. (Note: in problems such as this the links are 
represented in a so-called space diagram by straight lines joining the points at 
which the links are connected by pinned joints. The word 'configuration' refers to 
the position of the parts of the mechanism in relation to one another.) 

Solution 

The construction is laid out in figure 11.9b. At the outset our knowledge consists 
of the following facts. 

(1) ovA =EvA and is in the direction given in figure 11.9b 

EVA = (DA)Q = 1.5 X 10 = 15 m/s 

(2) EVa 1S constrained to be vertical 
(3) HvF = EvF and is perpendicular to HF. 
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This is sufficient information to locate the instantaneous centre of ACB, IAcB, 
since the directions of the velocities of two points on ACB are now known. IAcB 
must lie on DA extended (line pq) in the direction perpendicular to D VA; it must 
also lie on a line rs passing through B and perpendicular to E v8 • It is thus at the 
intersection of lines pq and rs. From the sense of D VA it follows that nAcB is 
anticlockwise and that EVa is directed downwards. 

Since 

oVA = [lACB (lAcs A) 

15 
[lACB = -- = 5.58 rad/s anticlockwise 

2.69 

Thus the absolute velocity of C 

EVe = nACB CIAcsC) 5.58 X 2.38 

13.3 m/s 

in the direction shown, perpendicular to lAcs C. 
Considering now the link FC, the velocity of C, EVe is known in direction and 

sense (and magnitude) and the velocity ofF, EVF is also known in direction. IcF 
must lie on a line IAcsC extended (line uv) in the direction perpendicular to 
EVe; it must also lie on the line wx perpendicular to H VF. IcF is at the intersection 
of lines uv and wx. 

Since the velocity of Cas a point on CF is EVe 

and thus 

EVe = ncF (lcFC) 

13.3 
ncF = -- = 6.47 rad/s 

2.05 

Its direction is clockwise, consistent with the direction of EVe. 

Now H VF must, from the sense of ncF, be in the direction shown by the full 
line in figure 11.9b and is given by 

For the link HF 

and 

HVF = ncF OcFF) = 6.47 X 0.445 

= 2.88 m/s 

2.88 
[lHF = -- = 2.88 rad/s 

1 

and its direction, consistent with that of H VF, is anticlockwise. 
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11.3 Engineering Applications 

The rigid bodies that are the subject of engineering applications either move or are 
required to move in a definite, predictable manner. In such applications, therefore, 
the ability to analyse the motion of rigid bodies that make up mechanical systems 
is essential. Such systems are usually composed of a number of rigid bodies or 
elements that are connected to one another, thereby enabling the motion of one 
body to influence the motion of another. A mechanism is a system of this kind. At 
this stage we are considering only the kinematics of rigid bodies and some simple 
mechanisms in general plane motion; in chapter 13 we shall consider the forces 
involved in the motion of rigid bodies, again confining ourselves to plane motion. 
The proportioning of machine elements and the design of mechanisms to bring about 
a specified motion is beyond the scope of this text, but the ability to analyse rigid 
body motion and the associated forces is a necessary prerequisite for this design 
process. 

The velocities and accelerations of points in bodies that are undergoing simple 
translation or fixed-axis rotation can be found directly, as we have seen, by 
applying the principles relating to the motion of a particle and the angular motion 
of a line. In discussing general plane motion for engineering applications we shall 
first consider two basic cases of constrained motion, namely the rolling disc and 
the constrained link, before discussing the analysis of the motion of connected 
bodies for application to simple mechanisms. 

11.3.1 The Rolling Disc 

The thin circular disc or lamina radius R in figure 11.1 Oa is rotating in a clockwise 

(a) (b) 

Figure 11 .10 

direction while its centre is moving to the right parallel to the horizontal plane 
shown. The disc is not in contact with the plane. This is a case of general plane 
motion since the orientation of any line on the disc is changing and there is no 
fixed axis about which the particles of the disc are moving in concentric circular 
paths. 
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(1) If the velocity of the centre 0 of the disc is Evo and the angular velocity of 
the disc is n, then the velocity EVe of the point C to the right is the result of 
translation with 0 and rotation about 0, and is given generally from equation 11.1 
by 

and 

Eve = Evo- Rn 
since o v c = - Ril). If the disc is in contact with the plane and is rolling without 
slipping then at any instant the point C in contact with the plane has zero absolute 
velocity, therefore 

o = Evo - Rn 
and 

Evo = Rn 
This condition must be satisfied if rolling is taking place. Alternatively, since C is 
at rest at the instant under consideration, it is the instantaneous centre of rotation 
and again it follows that Evo = RQ, It also follows that the velocity of any point 
P on the rim is perpendicular to CP and has magnitude CP x n = 2RQ sin (8 /2) 
where 8 is the angle subtended at the centre by the line CP. 
(2) If the acceleration of the centre 0 of the disc is Eao to the right and the angular 
acceleration of the disc is a clockwise, then Eac of the point C is given generally 
from equation 11.3 by 

Eac = Eao + oac 

where oac has two components, 0ac,t =Ra to the left and 0 ac,n =RQ2 directed 
towards 0. 

If the disc is in contact with the plane and is rolling without slipping then at 
any instant the point C in contact with the plane has zero tangential acceleration, 
therefore in the tangential direction 

0 = Eao - Ra 
and 

Eao = Ra 

This condition must be satisfied if rolling is taking place. 
Now if the disc is rolling, the acceleration of the centre cannot have a downwards 

component, therefore in the upward direction 

Eac = o + Ril2 

and 

towards 0. 
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The point C has therefore an absolute acceleration even though it is instantaneously 
at rest. 

Suppose Eao = 0 as in figure 11.1 Ob: then the acceleration of Pis also directed 
towards 0 and has magnitude RD.l. This result demonstrates that the acceleration 
of P cannot be calculated by reference to an instantaneous fixed-axis rotation 
about th.e instantaneous centre C. However, we can again show that the acceleration 
of Pis the result of translation with C and rotation about C, given by 

EaP = Eac + cap 

where 

Eac = RD.'l 

directed towards 0, and 

cap = (2R sin~) ll2 

directed towards C. 

These two accelerations can be combined to give Eap. The component of EaP 
in the direction PO 

= [2R sin (~) ll2 J sin~ - Rll2 cos (1T - 8) 

= Rll2 [2 sin2 (~ )+ cos (J J 
= Rll2 

The component of EaP perpendicular to PO 

= - (m sin (~) n 2J cos* + Rll2 sin (J 

"" Rll2 (- 2 sin ~ cos ~ + sin 8) 
= 0 

The previous result is therefore confirmed. 
If slipping is taking place then the velocity and acceleration of C tangential to 

the plane are no longer zero and the conditions for rolling are no longer applicable; 
EVo and n are not dependent on each other, and Eao and a are also independent 
of each other. The general forms of equations 11.1 and 11.3 must therefore be 
retained. Alternatively, to determine velocities of points on the disc the position 
of the instantaneous centre I can be found since 01 = Evo/ll on a line perpendicular 
to EVo and the velocity of any point can be determined on the basis of an instan­
taneous ftxed-axis rotation about I. 
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11.3.2 The Constrained Link 

It is useful in this context to reiterate and expand on some of the work covered 
in section 11.1.3. 

Notation 

The symbol yvx means the velocity of X with respect toY, or the velocity of X 
as seen by a non-rotating observer travelling withY. Its representation by a 
directed line is shown in figure 11.11, its sense being from y to x, corresponding 

yl'x 

-­xl'y 

Figure 11.11 

to the sense in which X is moving as seen from Y. The velocity xvy is also 
indicated by the same line, its sense now being from x to y. An arrow may be 
placed on the line to indicate which interpretation is intended, 

Now considering equation 11.1 we should make special note of the juxta­
position of the subscripts. This equation may be written generally as 

xvz = xvy + yvz 

It is the position of the letter Y that is important; the two terms on the right 
must be connected by the same letter (Yin this case) and the other two letters (X 
and Z) must be in the same order on both sides of the equation. Thus, given 0 vp 
and 0 vR, we may state directly that RvP is given by 

QVP = QVR + RVP 

It also follows that 

or 

RVP = RVQ + QVP 

These remarks apply equally well to accelerations, in which case a replaces v. 
The rigid body shown in figure 11.12a is typical of a link in a mechanism. At a 

certain instant, point A on the body is moving to the right with absolute velocity v, 
or more precisely EvA, meaning the velocity of A with respect to the Earth E. 
Point B is constrained to move in a vertical direction and we need to determine 
its absolute velocity EVB. 

Applying equation 11.1 

EVB = EVA + AVB (11.4) 

In this equation EvA is known completely, the direction of AVB is known to be 
perpendicular to AB (B can only have a tangential velocity when viewed from A) 
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Figure 11.12 

and the direction of E"B is known to be vertical (from the constraint on B). 
Equation 11.4 is best interpreted graphically as in figure 11.12b. ea is drawn to 

a suitable scale to represent E"A• a being to the right of e since E" A is to the right; 
we now have to add a vector A"B to EvA· A"B is known in direction only 
(perpendicular to AB) and thus a line rs drawn in this direction and passing 
through a and the point b must be on this line. We now have to make use of the 
known direction of E"B• which is vertical; a vertical line cd is thus drawn to pass 
through e; the point b must also lie on this line. The point b must therefore be at 
the intersection of rs and cd in which case es = ea + at> and thus equation 

. ---,+ ---,+ 
11.4 IS represented. Thus the correct senses of A v8 = ab and E"B = eb can now 
be put in the figure and their magnitudes scaled off. 

The angular velocity of AB can also be determined since A"B = (AB)QAB; 

consequently nAB= ab/AB and is anticlockwise. This is consistent with the 
direction of A"B (see figure ll.12c). The same vector diagram, figure 11.12b, 
referred to as a velocity diagram, can be used to determine the velocity E"P of 
any other point on the body such as P. To locate p in the velocity diagram note 
that A Jlp is perpendicular to AP; if a line is drawn in this direction to pass through 
a, then p must be on this line. By the same argument 8 vp is perpendicular to BP, 
and if a line is drawn in this direction to pass through b then p must also be on 
this line. The point pis thus located at the intersection of the two lines. It should 
be noted that the triangle apb is similar to APB and is the so -called velocity image 
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of the link as defined by APB. If Pis on the line AB it follows that p is on the line 
ab and the ratios ap/ab and AP/AB must be equal; this also follows from Avp/ AVB = 
(AP)D./(AB)n. The absolute velocity ofP, EVP is the vector ep. If this general 
procedure is carried out for the point Q, for which AQ and BQ are perpendicular 
to EVA and EVB respectively, it will be found that q coincides with e. This means 
that EVQ = 0; Q is instantaneously at rest and is the instantaneous centre of 
rotation of the body. 

Consider now the solution for the acceleration of B if A has an absolute 
acceleration EaA to the right. Equation 11.3 is now written 

(11.5) 

We must particularly note that AaB will have two components, namely a 
tangential component AaB,t = (AB)aAB in direction perpendicular to AB and 
consistent with the sense of aAB• and a normal component AaB n = (AB)D.2 AB 
directed towards A; that is in direction and sense BK(see figure' 11.12e). The 
angular velocity QAB has already been determined but QAB is unknown. The 
graphical representation of equation 11.5 is given in figure 11.12d. The line ea 
is first drawn to represent EaA thus fixing point a; aa1 is then drawn in direction 
BA to represent AaB,n with magnitude (AB)D.2 AB thus locating the point a1 • The 
component AaB,t is perpendicular to AB and a line xy is drawn in this direction 
to pass through a1 ; the point b representing the total acceleration of B must, 
by equation 11.5, lie on this line. We now make use again of the known direction 
of EaB, which, from the constraint on B, must be vertical. A line fg is drawn in 
this direction to pass through e; b must also be on this line. The intersection of 
lines xy and fg thus locate b such that 

and equation 11.5 is represented. 
The acceleration of B, EaB is thus represented to scale by eb. 
The vector diagram so constructed is referred to as an acceleration diagram. 
The angular acceleration of the link can now be determined in magnitude 

since AaB,t = (AB)aAB• consequently aAB = a1 b/ AB. Its direction is decided by 
the direction of AaB,t and recalling that this means the tangential acceleration of 
Bas seen from A, it follows (see figure 11.12e) that aAB is anticlockwise. 

The acceleration EaP of any other point, such as P, can be determined by 
locating P in the acceleration diagram. Because AP and BP have the same angular 
velocity and angular acceleration as AB, the triangles abp (in the acceleration 
diagram) and ABP are again similar and abp is described as the acceleration 
image of ABP. IfP is on the line AB it again follows that pis on the line ab such 
that ap/ab = AP/AB. If q is located by this general process it will be found not 
to coincide withe thus demonstrating that the instantaneous centre is not a 
point of zero acceleration. 
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In figure 11.12d an additional letter b1 has been indicated adjacent to the 
point a1 • This notation will be found useful in the construction of acceleration 
diagrams. It implies that not only is ab the sum of two components aa;- and a;b 
but that ba is the sum of the components~ and~. 

It should be noted that we have shown that by graphical interpretation of 
equations 11.1 and 11.3 we can detennine the velocity and acceleration of any 
point on a constrained link; we must now accept that our notation always ensures 
that these equations are satisfied. In both the velocity and acceleration diagrams, 
once the points e and a were located, there was only one logical position forb and 
it was after locating this that vector quantities were identified and fully determined 
in magnitude and direction. For the same points a, band e the following relations 
could also be written 

(l)ea = e"b + 6i,or 
(2) a6 = ae + ell, or 
(3) bit = be + ea. 
which all represent the equations if the correct notation is used. 

11.4 Velocity and Acceleration Diagrams 

11.4.1 Simple Mechanisms 

The graphical method described is now extended to determine the velocities and 
accelerations of points in simple mechanisms. Following from the preceding 
paragraphs the method used is to locate the representative points in a logical step­
by-step manner, our notation ensuring that equations 11.1 and 11.3 are represented. 
The method is best illustrated by the following worked example. 

Worked Example 11.3 

In the mechanism whose space diagram for a particular instant is shown in figure 
11.13a, the link PR is rotating with angular velocity 2 rad/s clockwise and angular 
acceleration 2 rad/s2 anticlockwise. Determine the angular velocity and angular 
acceleration of the link QS and also the linear acceleration of C, the mid -point of 
RS. 

Solution 

Note that in both velocity and acceleration diagrams all points such as p and q 
corresponding to fixed points in the mechanism must coincide withe since ftx.ed 
points have zero absolute velocity and acceleration. Starred values in these diagrams 
indicate that these are ascertained from the diagrams. 

The mechanism is ftrst drawn to scale as in ftgure 11.13a. For the velocity 
diagram,figure 11.13b, the point r is ftrst located (with respect top) by drawing 
pr = pVR = (PR)QPR in the direction perpendicular to PR and taking account of 
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the sense of nPR· Thus pr = 100 mm/s L - 25°. Now RVS is perpendicular toRS; 
a line xy is therefore drawn through r (since r must be at one end of the vector rs) 
in this direction and s must lie on this line. We now approach the problem from 
the other fixed point Q; the velocity 0 vs is perpendicular to QS and a line ab is 
thus drawn in this direction to pass truough q ; s must also lie on this line. sis thus 
located at the intersection of lines xy and ab and the velocity diagram prsq is now 
completed. There is no need to locate the point c in the velocity diagram unless 
its velocity is required. The unknown velocities may now be determined 

sVR = 73 mm/s in the direction of Sf 

0 vs = 57 mm/s in the direction of qS 
Note that we could also define Rvs in the direction of iS or svQ in the direction sq if we so desired. 
The angular velocity of links QS and RS may now be calculated. 

sVR rs 73 
.QRS = - = - = - = 1.22 rad/ s 

RS RS 60 

and from the direction of sVR is anticlockwise (see figure 11.13c). Similarly 

qs 57 nos = - = - = 0. 71 rad/s clockwise 
QS 80 
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In order to draw the acceleration diagram .the normal components of relative 
accelerations must first be calculated for every link. Thus 

-+ 
paR,n = (PR)Q2 PR = 200 mm/s2 in direction RP 

-+ 
Ras,n = (RS)Q2 RS = 89 mm/s2 in direction SR 

-+ 
oas,n = (QS)Q2 QS = 40 mm/s2 in direction SQ 

If it is possible to calculate any tangential components, as for example paR,t 
this should now be done. 

paR,t = (PRPPR = 100 mm/s2 

perpendicular to PR taking account of the sense of O:pR, that is L 155°. 
We can only write for the remaining components 

Ras,t is perpendicular to RS 

oas,t is perpendicular to QS 

since o:Rs and o:0s are not known. 
Starting at pin the acceleration diagram, figure 11.13d, we first locate r. This 

is found by drawing ph =paR n in direction RP to fix r1 (p1 ) and then adding 
f0- = paR,t perpendicular to RP (that is, at L 155°); this locates r. We now proceed 
to locates. We can locate St (rl) by drawing rs1 = Ras,n in direction Sit Now Ras,t 
is perpendicular toRS and thus a line df is drawn in this direction through s1 (r1); 
s must be on this line. Working now from q we draw in qs1 = 0 as,n in direction SQ 
to ftx St ( qt ). 0 as,t is perpendicular to this and a line gh is drawn through St (q1) 
in this direction; since s must also be on this line, its intersection with line df 
locates s and all necessary points have been found. We may now put in the line 
rs = Ras and hence locate the point c; this is on rs such that rc/rs = RC/RS = 1/2. 
The absolute acceleration of C, E0C = ec and by measurement is found to be 
260mm/s2 L212°. 

The angular acceleration of link QS is determined by 0 as,t = (QS)o:os, thus 
O:Os = 0as,t/QS = 310/80 = 3.88 rad/s2 • From figure 11.13e it is seen to be anti· 
clockwise, the sense of 0 as,t being deduced from the line joining the points s1 (qt) 
and s. Note that n08 is clockwise whereas O:Os is anticlockwise; this simply means 
that QS is slowing down. 

In certain problems it may be that only accelerations are required; even so the 
velocity diagram must still be drawn first in order to determine the angular 
velocities required for the calculation of the normal components of acceleration. 

11.4.2 Mechanisms in which Coriolis Accelerations Occur 

From the discussion in section 8.5.3 (2) it may be stated that if the path of a 
particle B (moving along the path with velocity pv8 with respect to its coincident 
point P) is rotated at angular velocity n then a Coriolis component of acceleration 
is observed. In general terms the total acceleration pa8 of B with respect to P is 
given (as in equation 8.25) by 

paB = pa's + pa"s 
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where pa'8 has a normal (centripetal) component, pv82 /p, and a tangential com­
ponent d(pv8 )/dt, and pa"8 is the Coriolis component of acceleration with magni­
tude 2pv8 n and in the direction of pv8 rotated through 90° in the same sense as n. 

If we now confine ourselves to the simplified (and in mechanisms the more 
usual) case where the rotating path is a straight line, then pa'8 reduces to the one 
component d(pv8 )/dt along the path. In this case 

pOo = pa'o + pa"o (11.6) 
(along the path) (perpendicular to the path) 

We may, for example, apply this equation to the small block sliding on a rod 
as in figure 11.14a; the rod itself is assumed to be part of a mechanism. 

B (on block) 

(a) (b) 

I d1rect10n of Cor10hs vector 
1n occelero!IOn d1agrom 

b~pO~ 

"-' ~ J , ............. 
90"tn <eapl "' p 
directiOn 
ofJ2 

(c) 

Figure 11.14 

The velocity pv8 can usually be determined in magnitude, sense and direction 
(its direction is known since it is constrained to be parallel to the rod) by drawing 
a velocity diagram for the mechanism. The velocity diagram will yield a repre­
sentation pb such as that indicated in figure 11.14b. 

With reference to equation 11.6, pa' B is directed along the rod as stated; pa" 8 is 
in the direction of p v8 rotated through 90° in the same sense of n as shown in figure 
11.14c. In this context it is useful to describe pv8 by its vector pt) (figure 11.14b) 
and to retain the letters (p and bin this case) on the vector as it is turned (see figure 
11.14c). The final vector in figure 11 .14c then indicates either the direction of pa" 8 
or that of 8 a" p as required in the acceleration diagram. This has certain advantages 
since in many problems we will know the total acceleration of B and will be 
endeavouring to determine the acceleration of P. 

In so far as the velocity and acceleration diagrams are concerned, the 
important facts relating to a block sliding on a rotating rod or a roller moving 
in a rotating slot are 

(1) the velocity of B relative toP, pv8 , has direction parallel to the rod or slot; it 
can be referred to as the sliding velocity, 
(2) the acceleration of B relative to P has two components, namely, 
(a) a component pa'8 with direction parallel to the rod but unknown in magnitude; 
it can be referred to as the sliding acceleration, and 
(b) the Coriolis component pa"8 which, after drawing the velocity diagram, is 
known in magnitude, sense and direction. 
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The method of constructing velocity and acceleration diagrams for mechanisms 
incorporating sliding connections is illustrated in the following worked example. 

Worked Example 11.4 

In the mechanism shown in figure 11.1 Sa it is required to find the angular velocity 
and angular acceleration of the slotted member QDF when e = 120° and the 
member OA is rotating at 120 rev/min clockwise. 

(c) 
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Figure ll.lS 

(e) 

The mechanism is drawn to scale with 8 = 120° (figure ll.lSa). The small roller A 
is on the link OA but is sliding in the rotating link QDF. A has a coincident point 
on the member QDF; this is the point C which is on the line DE, but to emphasise 
that C is on the link QDF, Cis shown in the diagram on the link QDF adjacent to 
A. 
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For the velocity diagram, figure ll.15b, the point a is first located with respect 
to o by drawing oa = 0 v A = (OA)noA perpendicular to OA, taking account of the 
sense of no A· 

2n 120 
4n rad/sec 

60 

and 

oa = 4n x 0.15 = 1.89 m/s L- 30° 

Now c v A is along the slot, so a line rs is drawn through a in this direction; c must 
lie on this line. With respect to the fixed point Q, Q vc is perpendicular to the 
line QC (remember that Cis actually coincident with A) and a line xy in this 
direction is drawn through q; c must also lie on this line. The intersection of lines 
rs and xy locates c and enables eVA (the sliding velocity) and 0 vc to be determined. 

Then 

Qvc 1.32 
nQDF (= nQC) =- = -- = 2.3 rad/s 

QC 0.574 

and, from the direction of 0 vc, is clockwise (QC is scaled from figure 11.15a). 
To draw the acceleration diagram we first calculate the normal components of 

the accelerations and the Coriolis acceleration component 

(0A)n2 oA = 0.15 X (4n)2 

= 23.7 m/s2 , in direction AO 
_ QVc 2 1.322 -+ 

Qac,n - -- = -- = 3.04 m/s2 , in direction CQ 
QC 0.574 

The Coriolis acceleration component 

ca"A = 2cVA nQDF = 2 X 1.14 X 2.3 = 5.24 m/s2 

its direction being given by rotating the sliding velocity vector 90° in the sense of 
nQDF as indicated in figure 11J5c. 

We know that 0 aA,t = 0 since ODA = 0 but we can only write for the remaining 
components 

oac,t is perpendicular to QC 
ca'A (the sliding acceleration) is parallel to the slot. 

In the acceleration diagram, figure ll.lSd, we first locate the point a by 
drawing oa = oaA,n = 23.7 m/s2 in direction A6 which fixes a since 0aA,t 
= 0. The vector oa represents the absolute acceleration of A with respect to 0; 
this acceleration should correspond with the acceleration of A with respect to Q. 
Starting from q the point c 1 (q 1) can be plotted since qc 1 = 0ac,n = 3.04 m/s2 in 
direction CQ. A line ef is drawn through c 1 ( q 1) in the direction of 0 ac,t (perpen­
dicular to QC) and the point c must lie on this line. We cannot proceed further 
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since 0 ac,t and ca'A are not known in magnitude or sense. However, the Coriolis 
component ca"A is known and can be represented by a' a terminating at a; with 
this drawn in position the point a'(c') is fixed. Through a'(c') a line uw is drawn 
in the direction ca'A (parallel to the slot); c must lie on this line in order that ca' 
may represent ca'A, the sliding acceleration. The point cis therefore at the inter­
section of ef and uw. 

The sliding acceleration ca'A can now be obtained and has magnitude 15.4 m/s2 

and direction as indicated in figure 11.15d. Also from this diagram 0 ac, t = 11.3 m/s2 

and therefore 

(I(QDF = ~C = QOC,t = 11.3 
19.7 rad/s2 

QC 0.574 

and, from figure 11.15e, is clockwise. 

11.4.3 Rules of Thumb 

In the preceding section a rule of thumb was given to determine the direction of the 
Coriolis component in the acceleration diagram ('retain the symbols on the velocity 
vector during the 90° rotation').Another rule of thumb that may be of help to 
some students is one to decide the direction of the normal components of 
acceleration. This is as follows. 

'If a link AB rotates with angular velocity n (say clockwise) its velocity image ab 
is the direction of the link turned 90° in the direction of n. The normal component 
of acceleration is this velocity image turned another 90° in the direction of n''. 

This is illustrated in figure 11.16. 
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Figure 11.16 

normal component of 
acceleration vector 

The graphical methods described in the previous section for determining velocities 
and accelerations of points in mechanisms have one serious disadvantage - the 
solutions are true for one particular instant only. For instance, if in worked 
example 11.3 (figure 11.13) the variation of the linear acceleration of point C was 
required for a complete revolution ofPR, we should be faced with the tedious 
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job of drawing velocity and acceleration diagrams for a multitude of positions of 
RS. A better approach when we require a continuous solution is to use analytical 
methods. Unfortunately these do not always yield simply equations but the methods 
have the advantage that they lend themselves to solution by digital computation. 

11.5.1 Useful Relationships 

The equations deduced in chapter 8 relating to the motion of a particle are relevant 
and are reiterated in the form most useful for our purposes in figure 11.17. Note 
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that cases (I) and (2) apply when the path is completely arbitrary whereas case (3) 
only applies where the path is an arc of a circle with its centre at the origin. 

Column (a) shows three ways of defining the position of a point in a plane, 
columns (b) and (c) show the component velocities and accelerations according 
to which set of coordinates are used; note that the positive senses are those 
indicated. It is emphasised that case (3) is only applicable when p is constant; 
otherwise the components shown for cases (I) and (2) must be used. 

11.5.2 Direct Method 

This consists of choosing some point on a link of the mechanism, writing its 
coordinates and calculating its absolute velocity and absolute acceleration by 
application of one of the cases illustrated in the previous section. For connected 
bodies the chosen point will usually be at a connection and its absolute velocity 
and absolute acceleration can be determined with respect to different fixed 
points; the equality of the two velocities and the two accelerations so deter­
mined then lead to a solution. The method is best illustrated by the following 
worked example. 
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Worked Example 11.5 

In the mechanism shown in figure 11.18 the link OA rotates about the fixed axis 
with the indicated angular velocity and acceleration. The rod ACD slides through 
a block B, which is free to rotate in a fixed pivot at F. If, when rf> = 20°, Q =- 40 

D 

Figure 11.18 

rad/s and a:=+ 600 rad/s2 , determine (a) the angular velocity and angular 
acceleration of ACD and (b) the linear acceleration of D at this instant. 

Solution 

A general solution will be outlined for (a), into which desired numerical values can 
be substituted. Polar coordinates will be used, they-axis shown being adopted as 
a reference axis for the angle rf> and the x- axis for the angle (}. 

Put OF= L, OA = p and FA= rA· Relative to 0 , A is at the point (p, rf>) where 
pis constant, and relative to F, A is at the point (r A, (}) where r A is varying. 

Using the expressions of figure 11.17, case (3), for the motion of A relative to 0 

Vn = 0 Vt = prp 
an = wi/ at = prf> 

Using the expressions of figure 11.17, case (2) for the motion of A relative to F 

Vr = r A Ve = r A iJ 
"2 •• • • 

ar = rA - rA(} a(} = rA(} + 2rA(} 

(a) Since A is common to both links and 0 and Fare both fixed points: oVA= fVA, 

and resolving in the x - andy-directions shown 

vt cos rf> = Vr cos(} - v0 sin (} 

Vt sin rf> = Vr sin(} + v0 cos(} 
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Substituting for Vt, Vr and vo 

p~ COS rp = r A COS 0 - r A 0 sin 0 

p~ sin rp = r A sine + rAe cos e 
The angle e is related to the angle rp since 

(11.7) 

(11.8) 

also 

L - p cos rp 
tane = -----

P sin rp 

p sin rp 
'A=--­

cos e 
For given values of p and L, and for particular values of rp and¢ we therefore 
have two simultaneous equations (11.7) and (11.8) for r A and 0. For the values 
p = 0.5 m,L = 0.75 m, rp = 20°,¢ =- 40 rad/s it is found that rA =- 15.63 m/s 
and e = 38.02 rad/s. 

(b) Again since A is common to both links 0 a A = Fa A and resolving in the x- and 
y- directions 

-On sin rp + Ot COS rp = Or COS 0 - Oe Sin 0 

0 0 COS rp + Ot sin rp = Or sin 0 + Oe COS 0 

Substituting for On, Ot, Or and ae 

-p¢2 sinrp + p~·cosrp = (j~- rA0 2 )cose- (rAe+ 2rAe)sinO 

p~2 cosr/J + p:f sin rp = (r~ - rA0 2 ) sin 0 + (rA(j + 2rAO) cos 0 

Again we have 

and 

L - p cos rp 
tan e = 

p sin rp 

p sin rp 

cos e 
For given values of p and L, and for particular values of rp, ¢ and ¢,together with 
the values of r A and (previously determined, we therefore have two simultaneous 
equations for rA. and e. 

For the values p = 0.5 m, L = 0.75 m, rp = 20°, ¢ =- 40 rad/s, ¢ = 600 rad/s2 ; 

also f.A =- 15.63 m/s, 8 = 38.02 rad/s as above it is found that rA. = 1207 m/s 
and e = 4957 rad/s2 • 

As an alternative the rectangular coordinates of A with respect to both 0 and 
F can be written, namely oX A = p sin rp, oY A =- p cos rp and FxA = r cos e, 
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FYA = r sin e. By repeated differentiation oX A, o~A• oYA and oYA can be found, 
also FXA, FXA, FYA and FYA· The following pairs of equations can now be written 

and 

These are essentially the same pairs of simultaneous equations that were 
encountered above, and for particwar values of cp, ~and (f) can be solved as before 
for rA and e, and for rA and e. 
(c) The !inear ~cceleration of D can be found directly using case (2) now that ; A, r A and e and e are known. 

The absolute acceleration ofD has two components 

ar = ro - ro82 
and 

ae = roe + 2roe 
Note that ( 1) because ACD is rigid;. A = ro and ;A = ;~' and (2) 'o = - (1 - r A) 
being negative because it is in the opposite sense to the positive direction for r. 

With these relationships 

ar = 2179 m/s2 a0 = - 4517 m/s2 

which combine to give 

Fao = 5015 m/s2 L - 5.6° 

This solution has been outlined in order to indicate one method of analytical 
solution. It is not to be implied that this is the only analytical method or that 
analytical methods are suitable for all problems. Clearly the arithmetical work 
involved in the analysis of a complete cycle of the motion of the mechanism is 
be~t entrusted to a digital computer. 

11.6 Summary 

(I) If A and Bare any two points on a rigid body in general plane motion 

(I 1.1) 

EaB EaA + AaB (11.3) 
(2) The instantaneous centre of rotation I is located at the intersection of the 
lines drawn through any two points on the body in directions perpendicular to 
the absolute velocities at those points. The point I is instqntaneously stationary; 
it usually does not have zero acceleration. 
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(3) The notation yvx = yx means the velocity of X as seen from Y, and similarly 
for acceleration. Equations 11.1 and 11.3 are automatically valid if the ordering 
of the subscripts is strictly adhered to. 
( 4) Velocity diagrams: locate the unknown points logically, making use of the 
constraints and noting that, for a rigid link AB, AvB = (AB)QAB is perpendicular 
to AB with sense dependent upon the sense of nAB· 
(5) Acceleration diagrams; locate the unknown points logically, making use of 
constraints and noting that for a rigid link AB 

A0B = AaB,n + A0B,t 
..... 

AaB,n = (AB)QAB 2 can always be calculated and its sense is always BA; AaB,t = 
(AB)aAB which generally cannot be calculated (unless aAB is stated) but is 
perpendicular to AB with sense dependent on the sense of aAB. 
( 6) If the mechanism contains a slotted member, or a block sliding on a member, 
and the member is rotating, a Coriolis acceleration component will be present. 
(7) The Coriolis acceleration component is equal to 2vn where vis the sliding 
velocity; the direction is decided by rotating the sliding velocity 90° in the sense 
ofn. 
(8) For analytical methods make use of the equations relating to motion of a 
particle; express the position of a point in a mechanism by use of a particular set 
of coordinates then either express its velocity and accelerations (as in case (2) of 
figure 11.17) or deduce these by repeated differentation with respect to time of, 
for example, the rectangular coordinates. 

Problems 

Many of the following problems have been solved graphically and it must therefore 
be expected that the answers obtained may differ by a small amount from the 
quoted answer due to variation in graphical accuracy. 

11.1 A link AB, length 1.5 m, has a constrained motion such that its end A has 
velocity 2 m/s L 0° and acceleration 5 m/s2 L 180° .If AB at this instant is in the 
angular position L 150° and has angular velocity 2 rad/s clockwise and angular 
acceleration 5 rad/s2 anticlockwise, determine the absolute velocity and acceleration 
of B. (Hint: Use vector diagrams to solve equations 11.1 and 11.3). 

11.2 A uniform rod AB, length 5 m, is moving at a particular instant with AB in 
the angular position L 90°; the absolute acceleration of A is 20 m/s2 L 0° and of B 
is 40 m/s2 L - 45°. Obtain the angular velocity and angular acceleration of the rod 
and the absolute acceleration of its mass-centre. (flint: Use a vector diagram; note 
components of acceleration of one end of the rod with respect to the other.) 

11.3 For the mechanism shown in figure 11.19 determine for the configuration 
shown, the velocity of H and the angular velocity of BDF. (Hint: The method of 
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CD=0.3m; AB=1m; 
F BD=DF=0.4m; FH=0.7 m 

Figure 11.19 

instantaneous centres is suggested; the answers should then be checked using a 
velocity diagram.) 

11.4 Use the method of instantaneous centres to determine (a) the linear velocity 
of C and (b) the angular velocity of lU for the configuration of the mechanism in 
figure 11.20. Check the answers using a velocity diagram. (Hint: Consider absolute 
velocities of Band D to find Iaco-) 

10 rod/s 

0.2m 

-t 
0.19 m 
I 
I 

Figure ll.20 

11.5 An epicyclic gear (see figure 11.21) consists of a central gear A (called the 
sun gear) rotating on the central axis, an annulus gear C which can also rotate on 
the central axis and a planet gear B that meshes with both A and C. B rotates on a 
pin S, which is carried on an arm that can also rotate about the central axis. 

Determine for the following conditions, the angular velocities of (a) B and (b) 
the arm 

(i) DA = + 10 rad/s; De = + 5 rad/s 
(ii) DA = + 10 rad/s; De = - 5 rad/s 
(iii) DA = + 10 rad/s; De = 0 
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0.05m 

s 

Figure 11.21 

(Hint: Use the absolute velocities of points P and Q to find the instantaneous 
centre of B; hence find n8 and then the velocity of S; nann may then be found.) 

11.6 Figure 11.22 shows the ouline of a mechanical digger. Link BCD is rigid 
and link AC is hinged to the body at A and to BCD at C. The point B is moved 

Figure 11.22 

vertically, with respect to the digger, by being pinned to the end of a piston moving 
in a vertical hydraulic cylinder. If, at the instant shown, the digger is moving to 
the right at 4 m/s and B is moving upwards with respect ot the digger at 2 m/s, find 
the angular velocity of AC and the velocity of D. (Hint: A velocity diagram is 
suggested.) 

11.7 For the given configuration of the mechanism shown in ftgure 11.23 draw 

Figure 11.23 
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the velocity and acceleration diagrams. What are (a) the angular velocity and 
angular acceleration of BC and (b) the acceleration of G? 

11.8 In the slider- crank mechanism shown in figure 11.24 the end P of the link 

OC=1m, CP=4m 
CG= 1m, 

Figure 11.24 

45° 

'J 

CP is constrained to slide in a slot. For the given configuration draw velocity and 
acceleration diagrams and find (a) the absolute velocity ofP, (b) its absolute 
acceleration, (c) the absolute acceleration ofG, (d) the angular velocity of CP 
and (e) its angular acceleration ; use instantaneous centres to check (a) and (d); 
(f) is P accelerating or retarding in its guide? 

11.9 Figure 11.25 shows a mechanism (a four-bar chain) in which DA rotates 

-D 

~ --- 12m 

Figure 11.25 

at a constant speed. For the configuration shown find (a) the velocity and acceler­
ation ofF and (b) the angular velocity and angular acceleration of AB. 

11.10 For the mechanism shown in figure 11.26 find (a) the velocity ofF, (b) 
the angular velocity of AB and (c) the angular acceleration of BD. (Hint: Havin_g_ 
located b recall that bed is exactly similar to BCD in both velocity and acceleration 
diagrams). 



KINEMATICS OF RIGID BODIES 

!2 = 10 rod/s -· 
(a=Ol 

OA=04 m 
AB= 14m 
BC =O.Bm 
CD=0.4 m 
DF=1 .2m 

F 

Figure II .26 
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11.11 Figure 11.27 shows a quick-return mechanism in which QC rotates clock­

wise at a constant speed 150 rev/min. Determine for the configuration shown the 

acceleration of D and the sliding acceleration of C in the slotted link. (Hint: A 

sliding velocity is being rotated.) 

Figure 11.27 

11.12 In figure 11.28, Cis a roller fixed to the link OB and sliding in the slot in 

QD. Determine the velocity and acceleration of A when() = 30° if QD rotates at 

constant speed 10 rad/s clockwise. 
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0 

0.2m 

Figure 11.28 

11.13 In the mechanism illustrated in figure 11.29 the block J is free to rotate 
in a housing at the end of the rod FG and J itself slides on the rod BC. For the 
configuration shown find the acceleration of the rod FG and the angular 
acceleration of BC. 

iG 

AB=0.1 m 
BC =0.3 m 

J 

Figure 11.29 

11.14 For the mechanism in figure 11.30 write down x as a function of e. Hence 
derive expressions for the velocity and acceleration of the roller C. If when e = 60° 
C has velocity 5 m/s to the right and acceleration 2 m/s2 to the left, find the 
instantaneous values of the angular velocity and angular acceleration of AB. 

2m 

Figure 11.30 

Determine also the velocity and acceleration of D the mid-point of BC. Confirm 
your values by drawing velocity and acceleration diagrams. (Hint: To find analytical 
values forD write expressions for x0 and y 0 and differentiate them.) 
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11.15 In figure 11.31 the ends A and B of the rigid link AB, length 2 m, are 
constrained to move in mutually perpendicular directions. If when() = 30° A has 
velocity 5 m/s downwards and acceleration 60 m/s2 upwards find, analytically, the 
velocity and acceleration of B at this instant. 

Figure 11.31 

Check your answers by drawing velocity and acceleration diagrams. (Hint: Write 
expressions for x andy in terms of 8 and differentiate them.) 

11.16 The rod AB in figure 11.32 is hinged at A and slides in a block F which is 
free to rotate in a carrier on the rod DC. The latter is constrained to move hori­
zontally. 

0 

5m f 

-' 

Figure 11.32 

If x = 3t2 , t being the time in seconds, find analytically the angular velocity 
and angular acceleration of AB when t = 1. 

What then is the sliding velocity and sliding acceleration of the rod in the block? 
Check your answers by drawing velocity and acceleration diagrams (Hint: 

Equate the absolute velocity and acceleration of point F (on DC), defined by 
x, to its absolute velocity and acceleration when sliding on AB; polar coordinates 
probably offer a quicker solution than rectangular coordinates; for the diagrams 
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first denote the point adjacent to F on the link AB as J (F is actually the coincident 
point of J), use the calculated values of the velocity and acceleration of F as a 
starting point for the diagrams.) 

11.17 A link PQ (see figure 11.33) is arranged so that the end P moves along a 
horizontal path with simple harmonic motion. PQ is 1.0 m long, the frequency 

Figure 11.33 

of oscillation is 20 Hz and the travel of P between extreme positions A and B is 
0.3 m. The link PQ slides through a block, which is free to rotate in a fixed 
pivot at X. 

Determine analytically, for the situation when Pis 0.05 m from A and travelling 
to the right, (a) the angular velocity and angular acceleration of PQ, (b) the velocity 
and acceleration of Z, a point on PQ instantaneously at the centre of the pivot 
and (c) the velocity and acceleration of Q. 

Check your answers by drawing velocity and acceleration diagrams. (Hint: 
See previous problem.) 

11.18 The link AB in figure 11.34 is fitted with smooth rollers at each end and 

y 

Figure 11.34 
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is constrained to move with these rollers in the guides. If the movement is such 
that at the instant when ~ = 60° the velocity of B is constant at 5 m/s to the left 
find the angular velocity and angular acceleration of AB and the acceleration of 

G the mid point of AB. (Hint: For the analytical method write x in terms of e 
and~ and differentiate for velocities and acceleration; relate e and~ fromy. For 
the graphical method note that A has a sliding velocity along its guide and also 
that it has normal and tangential components of acceleration with respect to E.) 



12 Moments of Inertia 

12.1 Moment of Inertia and Radius of Gyration 

In considering the kinetics of a rigid body we shall meet the quantity ~(om)r2 
where om is the mass of some particle at a perpendicular distance r from a 
particular axis. The summation symbol implies the addition of all the products 
indicated over the complete rigid body, and is termed the moment of inertia I 
with respect to the particular axis, which is then signified by a double subscript. 
For example Ixx is used to signify the moment of inertia about the x-axis 
through the origin (which is labelled X' X), Iz z signifies the moment of inertia 
about an axis Z 1'Z 1 which is parallel to, but ('!i;placed from, the z -axis (Z'Z) at 
the origin; for other special axes the moment of inertia may be signified by the 
axis itself and thus !8 •8 is the moment of inertia about the axis B'B. 

The moment of inertia of a body, as will be seen in the next chapter, is a 
measure of the resistance of the body to angular acceleration in the same way 
as the mass of a body is a measure of its resistance to linear acceleration. 

A further quantity, the radius of gyration k can be defined such that k2 = 1/m, 
where m is the total mass of the body, from which it follows that 

(12.1) 

The radius of gyration, like the moment of inertia, is defined with respect to a 
specified axis and carries the same double subscript as the corresponding moment 
of inertia. The radius of gyration is the particular measure of the distribution of 
the mass of the body, in relation to the specified axis, for angular motion. 

From their definitions, the standard unit for moment of inertia is the kilogram 
(metre )2 , kg m2 , and that for the radius of gyration is the metre, m. 

In the following sections the material of the body under consideration will be 
assumed to be homogeneous, and the mass per unit volume will be symbolised 
by p. The symbol twill be used to represent the uniform thickness of a thin plate. 

12.2 Theorems 

12.2.1 Perpendicular Axis Theorem for Thin Plates 
A thin plate is one whose thickness t is so small as to be insignificant compared to 
other dimensions. 

Consider the thin plate lying in the XO Y plane as shown in figure 12.1. A small 
area of the plate oA is at a distance r from the axis Z'OZ (the axis at 0 perpen­
dicular to the plate). The mass of the small area of plate 

om= ptoA 
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,Y-,-

X 

I 
z'l 

Figure 12.1 

/ 

By defmition the moment of inertia of the plate about Z'Z is 

lzz = L(om)r2 

Similarly by definition 

I xx = L(om )y2 

and 

Iyy = L(om)x2 

Now r 2 = x2 + y 2 , therefore 

x' 

y 

fzz = ~om(x2 + y 2 ) = ~(om)x2 + ~(om)y2 = lyy + fxx 

and 

lzz = lyy + lxx (thin plates) 

263 

(12.2) 

The equation applies only to thin plates because any significant thickness 
amends the expressions for fxx andlyy- If the general particle is a distance z 
from the plane XO Y its perpendicular distance from X' X is ..j(y2 + z2 ) and fxx 
then becomes Lom(y2 + z2 ); lyy is similarly amended;Izz remains the same and 
equation 12.2 cannot therefore apply. 

Note that axes X' X and Y' Yare in the plane of the plate and Z'Z is perpen­
dicular to it. For example, lyy is not equal to lzz + fxx· 

Worked Example 12.1 

Determine the moment of inertia of a circular disc radius R (a) about a diameter 
and (b) about its central axis. Confirm the relationship of equation 12.2. 
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Solution 

(a) Ay -axis is chosen to coincide with a diameter. If a strip is selected parallel to 
the axis, having very small width 8x and distance x from the axis (see figure 12.2a) 
all elementary areas making up the strip are at the same distance from the Y'Y 

y 

r'l 
(a) 

Figure 12.2 

y 

r' 

(b) 

axis. Then for the strip, 5Iyy =mass x x2 = 2pty(8x)x2 • For the whole plate the 
summation is expressed as an integration and 

fyy = 2pt JR yx2 dx 
-R 

Now y = R sin e and X= R cos e. It follows from the latter that dx = - R sin e de 
and the lower and upper limits become, in terms of e, 1r and 0 respectively. 

Thus 

Now 

therefore 

lyy = 2ptR 4 s: sin 8 cos2 e (- sin O)d e 

lyy = pt:4 
[ e - sin4 48] : 

pt1rR 4 

= 
4 

- cos 48 

8 
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The mass m of the disc is ptnR 2 , therefore 

mR2 
lyy = --

4 

and 

kyy = j ~~) R 

2 
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(12.3) 

(b) For the moment of inertia about a central z-axis select an elementary annular 
area radius rand small radial width or as indicated in figure 12.2b. 

Mzz = mass X r2 = pt2nr(or)r2 

For the whole plate, by integration 

and 

lzz = 2npt s: r3 dr 

nptR4 

= 

2 

mR2 

2 

kzz = j (1;:) = ~2 
Since lxx = lyy = mR 2 /4 then 

lzz = lxx + lyy 

and the relation of equation 12.2 is confirmed. 

12.2.2 Parallel Axis Theorem for Bodies in General 

(12.4) 

Figure 12.3 shows a plan and side view of a solid body. Axes X'X, Y'Y and Z'Z 
are indicated, also an axis Z'1 Z 1 which is parallel to Z'Z and distanced from it. 
Shown hatched is an elementary column of the body of very small cross-section; 
this has mass om and is parallel to both Z'Z and Z 1 'Z1 . 

By definition 

I = L(om)r 2 = Lom(x 2 + y 2 ) zl zl 1 1 1 

and 

lzz = L(om)r 

Nowr2 =(d+x1? +y12 =d2 +2x1d+x1 2 +y 12 and 

lzz = L[(om)d2 + 2(om)x1d + om(x12 + y 12 )] 

= d2 L om + 2d L(om)x1 + lz z 
I I 
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Now 'Lom = m the mass of the body; thus 

lzz = mcf + lz z + 2d 'L(om)x1 
I I 

Now if Z 1 'z 1 passes through G, the centre of the mass of the body, then by 
definition 'L(om)x 1 = 0 and it follows that 

lzz = (lz z )G + md2 (12.5) 
I I 

Note that Z 1 ' Z 1 at G must be parallel to z'z and that the equation can only be 
used to relate moments of inertia if one axis passes through G. 

Figure 12.3 

Worked Example 12.2 

A rectangular thin plate has edges of length a and b. Find from first principles its 
moment of inertia about (a) an edge length a and (b) an axis parallel to this edge 
and passing through the centre of the plate. Confirm that equation 12.5 is satisfied. 

Solution 

See figure 12.4. For lxx taking a strip parallel to X'X distancey from it and of 
width oy 
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and 

lxx = s: ptay 2 dy 

Now m = ptab; thus 

b3 
= pta-

3 
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3 
(12.6) =-

a 

b x; 

d 

x'-L---'- L..---=<o.,_ _ ___J 

y' 

Figure 12.4 

x1 

An axis parallel to X' X and at the centre is X 1 'X 1 and passes through G; the 
moment of inertia about this axis is termed (/x 1x 1 )a. Now 

o(Ix X )a = om(yt)2 = pta(oyt)yt 2 (note OYt = oy) 
I I 

p;a [b: _ ~ b:)J 
--- =-

12 12 
(12.7) 

(Ix 1 x1 )a + mtf 
mb2 

+ m(~Y = 
12 

mb 2 

=-
3 

= lxx 

thus confirming that equation 12.5 is satisfied. 
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12.3 Standard Forms 

12.3.1 Thin Plates 

(1) arcular Plate (see equations 12.3 and 12.4) 

About a diameter 

about the polar axis 

mR 2 

laxis = 
2 

(2) Rectangular Plate (see equations 12.6 and 12.7) 

About an axis X' X coincident with an edge 

mb2 

fxx =-
3 

where the edge perpendicular to X' X has length b; about an axis X 1 ' X 1 parallel to 
X' X and passing through G 

About an axis through G perpendicular to the plane: by use of the perpendicular 
axis theorem 

Uzz)G = Ux,x, )G + (/yy)G (see figure 12.4) 

mb2 + ma2 = m (a2 + b2) 
12 12 12 

yt::l 
xb 

I 
I b 

x' T-or-+ -X 

"~ yr 
Figure 12.5 

(12.8) 
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(3) Elliptical Plate 

The elliptical plate shown in figure 12.5 has semi-major and semi-minor axes 
lengths a and b respectively. Axes X' X and Y' Y are chosen as shown to pass 
through G. 

The elliptical shape is such that in the figure x =(a/b) xb where xb refers to 
the circular shape radius b. 

269 

It follows that strips parallel to the x-axis are all increased in mass by the 
ratio a/b as compared with the corresponding strips of the circular shape. Since 
lxx for a circular plate radius b, mass mb, is mbb2 /4, then for the elliptical plate 

a b2 
(/ )G = mb X - X -

XX b 4 

But the mass of the ellipse m = mb (a/b), therefore 

(Ixx)G 
b2 

=m-
4 

(12.9) 

Similarly 

(lyy)G 
ma2 

=-
4 

Thus 

(/zz)G 
m 2 

=-(a 
4 

+ b2) (12.10) 

( 4) Triangular Plate 

In figure 12.6a choose an axis Y'Ypassing through the vertex and parallel to the 

iB Q 

I 

b, 

lb 
:X 

bz I 
_ _1 

I Q' 

·I 
Ia• 

(a) (b) 

Figure 12.6 
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side length b. For IYY select an elementary strip parallel to Y'Y, then 

Myy = (8m)x2 

<'lm = ptl<'lx 

where I= (x/a)b; therefore 

b a3 
I = fa pt- X X X2 dx = ptb-
yy Jo a 4 

m =i ptbd, thus 

2 

By the parallel axis theorem 

Iyy = (Iy,y, )c + md2 

therefore 

=-
18 

and 

Is's 
6 

(12.11) 

(12.12) 

(12.13) 

It can be shown that the moment of inertia of a thin triangular plate can be 
found about any axis by replacing the plate (mass m) by three particles each 
having mass m/3 placed at the mid points of the sides. Thus in figure 12.6b 

m 2 2 2 
I 0 •0 = - (d1 + d2 + da ) 

3 

For example, applying this to figure 12.6a 

m 
Is's =-

3 [~f + (~f + 0 J = :2 
Iyy =; [(~f + G)2 

=-
18 
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as previously determined. Also 

m [(b 1) 
2 (b2 2 (b 2 

fxx = 3 2 + l) + 2 - bz) J 
and obviously depends on the shape of the triangle in relation to the axis X' X. 

12.3.2 Three-dimensional Bodies of Symmetrical Fonn 

The most convenient method is to split the solid body into very thin laminae, 
which can be regarded as thin plates whose moments of inertia are known. 

(1) Rectangular Prism 

The body is shown in figure 12.7 and the three perpendicular axes lying in the 
planes of symmetry are shown - all passing through G. 

y 

Figure 12.7 

For a thin plate mass 5m parallel to the XOY plane, from equation 12.8 

5m 
(Mzz)G =- (a2 + L 2 ) 

12 

Thus 

(Izz)G = L l)m (a2 + L 2 ) 

12. 
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raz + Lz) m 
= " L 5m = - (a2 + L2 ) (12.14) 

Similarly 

and 

12 12 

(fyy)G = .!!!_ (b2 + L2) 
12 

[Note: (Izz)G is not equal to (Ixx)G + (Iyy)G] 
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(2) arcular Cylinder 
See figure 12.8. Three perpendicular axes lying in the planes of symmetry are 

z' 

Z' 

Figure 12.8 

shown, all passing through G. For a thin plate thickness Sz distance z from the 
XOY-plane 

R2 
I = Sm-.v,.v, 4 

(Y~ Y1 is a diameter) and Sm = p1rR2 Sz, Therefore by the parallel axis theorem 

M.vy = l.vtYt + (Sm)zz 
and since Y~ 1'1 passes through the centre of mass of the thin plate 

Rz 
61 = Sm- + p1rR 2 z2 Sz 

and 

YY 4 

ln = R2 rm dm + P1TR2 
4 Jo 

mRz P1TR2L3 
::;::-+---

4 12 

S+L/2 z2 dz 
-L/2 

But m ::;:: P1TR? L; also Y' Y passes through the mass centre G of the body and thus 
lyy is correctly titled (Iyy) 0 ; therefore 

mR2 mL2 
(lyy)G = - + - (12.15) 

4 12 
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By symmetry 

mL2 
+-

12 

The moment of inertia of the thin plate aboutZ'Z is 

(om~2 
{jfzz = ---'----

2 

therefore 

=--
2 

273 

(12.16) 

The result of equation 12.15 can be generalised into the so-called cylinder 
theorem, applicable to cylinders of arbitrary, but uniform, cross section. A point 
0 is chosen within the cylinder and an axi& z'oz is tllken parallel to the length; 
axes X' OX and Y'OY define the plane perpendicular to thl:l axis Z'OZ at 0. The 
cylinder is now replaced by (1) a thin plate in the XOY -plane having as it~ 
boundary the trace of the cylinder in the XO Y plane and havjng mass equal to 
th&t of the cylinder, and (2) a thin rod in the Z'OZ-axis havin15 ends coinciding 

, with the ends of the cylinder and mass equal to that of the cylinder. The moments 
of inertia Ixx and Iyy of the cylinder are then given by 

(Jxx)cylinder = (fxx)plate + (Ixxkod 

(Jyy)cylinder = (J,Yy)plate + (Iyy)rod 

(12.17a) 

(12.17b) 

For example a cylinder having elliptical cross-section with semi-major and semi­
minor axes a and b in the x- and y-qirections respectively and length L will have 

mb2 mL2 

(Jxx)cylinder = 4 + U 
in relation to an axis X' X passing through the centre. 

Z' z 

Figure 12~9 
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(3) Sphere 

For the thin plate shown in figure 12.9 

r = y(fi.z - zz) 

=(om)rz = prrrz(oz)rz = prr r4toz 
Ofzz u 

2 2 2 

= p ~ [R4z- ~R2z3 + fzsJ~: 

8 
=- prrRs 

15 

but m = (4/3) prrR 3 , therefore 

lzz = ~ mR2 

5 

12.3.3 Uosing Note 

(12.18) 

Moments of inertia have been calculated only for axes which are parallel to or 
perpendicular to the principal linear dimensions of the bodies considered. Rigid 
bodies have moments of inertia about other axes, for example Q'Q in figure 12.10, 

Figure 12.10 

but their determination requires the use of a related quantity, the product of 

inertia. However, these are not required for the problems coming within the 
scope of this book. 

12.4 General Method for Calculating I for Complex Bodies 

(1) Make good sketches of the body; it is usually more satisfactory to use three 

views of the body in order to indicate all the dimensions required. 
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(2) Break up the body into standard shapes such as cylinders, rectangular prisms, 
etc., whose moments of inertia are known. Draw separate diagrams for each of 
these standard shapes selecting an axis through the centre of mass, parallel to 
the axis about which the moment of inertia of the whole body is required. 
(3) Note that moments of inertia about a given axis are additive, that is, the sum 
of the moments of inertia of the parts is equal to the moment of inertia of the 

(a) (b) 

Figure 12.11 

whole. Thus in figure 12.11a the moment of inertia of the body about X'X = 
moments of inertia of block A about X'X +moment of inertia of block B about 
x' X. This statement can also be extended to cover the removal of part of a body 
(see figure 12.11 b). Thus 

fyy of the body without the hole = fyy of A + fyy ofB 

therefore 

fyy of A = fyy of the body without the hole - lyy of B 

( 4) Determine the moment of inertia of each part about the axis through its mass­
centre and then use the parallel axis theorem to find its moment of inertia about 
the specified axis. Use the additive property to obtain the moment of inertia of 
the whole body. 

Worked Example 12.3 

Figure 12.12a shows a rigid body made up of a rectangular block A and circular 
cylinder B. Find the moments of inertia of the body about axes (a) P'P (b) R'R 
and (c) for the two parallel axes X' X and Z'Z through the mass-centre G. 
The density of the material is p kg/m3 • 

Solution 

Draw separate diagrams for parts A and B choosing x-,y- and z- directions at G A 
and GB the respective mass -centres as indicated in figures 12.12b and c. 
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1 m rad1us 

(a) 

3m\ 

Y- F--~--::::_ __ ....,/ 

2mlL-----
~ 

X a 

(b) 

Mass of block A 

!_ 

0 

da,z 

I 
- -ite-

I 
Gtl 

- ---fr;- -
IGA 

1--- 3m •I 
.~_IR 

Figure 12.12 

m A = p X 2 X 3 X 4 = 24p kg 

Mass of cylinder J3 

A 

m8 = p x rr x 12 x 3 = 9.42p kg 

Mass of body 
m = 33.42p kg 

~ 

I _G4-
\15m I da,x 

(d) 

(a) For axis P'P: For the block A the axis parallel to P'P isXA'XA and 

(!:p)A = rnA. (32 + 22 ) (see equation 12.14) 
12 
13 2 

=- mAkgm 
12 

p 
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The distance between the parallel axes XA'XA and P'P is (see figure 12.12d) 
dA,x where dA,x2 = 12 + 1.52 = 3.25 m2 ; thus 

(/p 'P)A = (/xx)A + mAdA,x 2 "' rnA c~ + 3.25) :: 104p kg m2 

For cylinder B 

ms 2 ms 2 (Ixx)s = ~ 1 +- 3 (see equation 12.15) 
4 12 

= m8 kg m2 

ds.x2 = 12 + 1.52 = 3.25 m2 

(/p•p)8 = (Ixx)B + ms ds,x 2 = ms (1 + 3.25) = 40.0p kg m2 

For the whole body 

/p•p = (/p•p)A + (/p•p)a = 144.0pkgm2 

(b) For axis R'R (parallel to the z-axes of A and B). Block A 

rnA 2 2 25 2 Uzz)A ""- (4 + 3 ) =-rnA kg m 
12 12 

dA,z 2 "" 22 + 1.52 "" 6.25 m2 

(/R'R)A == (/zz)A + mAdA,z 2 "'rnA G~ + 6.25) = 200pkgm2 

Cylinder B 

(/zz)s = ms 12 (see equation 12.16) = fma kg m2 

2 

(/R'R)B = (/zz)B + mads/ = ms (f + 13) = 127,2p kg 

For the whole body 

/R'R = (/R'R)A + (/R'R)B = 327.2p kg m2 

(c) In order to determine the moments of inertia about axes through the mass centre 
G this must first be located. Choosing an origin at the bottom left -hand corner as 
indicated in figure 12.1 2d then if the coordinates of G are x, Y. and z, and the 
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coordinates of GA and G8 carry corresponding subscripts, then (see section 7.3) 

24 X 2 + 9.42 X 1 

33.42 
= 1.72 m 

_ mAfA + ms.Ys 24 x 1.5 + 9.42 x 
y = = ---------------- = 1.36m 

mA + mB 33.42 

mAZA + mBZB 24 X 1 + 9.42 X 3.5 z = = = 1.70 m 
rnA + mB 33.42 

The required moments of inertia can now be determined by application of the 
parallel axis theorem. 

Between axis P'P and the x-axis through G there is a perpendicular distance dx 
given by 

and 

therefore 

(Ixx)G = 144.0p - 33.42p X 1.94 = 79.2p kg m2 

Between axis R'R and the z-axis through G 

dz 2 = 2.282 + 1.642 = 7.89 m 2 

and 

I R' R = (I ) + md 2 zz G z 

therefore 

(/zz)G = 327.2p - 33.42p X 7.89 = 63.6p kg m2 

The values (Ixx)G and (/zz )G could, of course, be calculated without reference 
to Ip•p, etc., as for example 

(/zz)G = (/zz)A + mA (0.282 + 0.142 ) + (Izz)B + mB (0.362 + 0.722 ) 

= 63.2p kgm2 

(The difference is due to rounding-off errors.) 

12.5 Summary 

(1) Moment of inertia I xx = ~(om )r2 , r being the perpendicular distance from the 
particle mass om to the axis X' X. Also 

(12.1) 
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where kxx is the radius of gyration of the body about the axis x'X, and m is its 
mass. 
(2) Perpendicular axis theorem - applies only to thin plates 

lzz = lyy + lxx (thin plates) (12.2) 

where the axis z•z is perpendicular to the plane of the plate. 
(3) Parallel axis theorem - applies to thin plates and three-dimensional bodies 

lzz = (lz,z, )c + md2 (12.5) 

(/z z )G is the moment of inertia of the body about an axis Z 1 'Z 1 , parallel to 
1 1 

Z'Z and passing through the centre of mass; dis the distance between Z'Z and Z 1 'Z1 . 

(4) For complex bodies use the additive property. 
(5) Use the cylinder theorem, equation 12.17, for bodies of constant cross-sectional 
area. 

Problems 

12.1 Show that the moment of inertia of the segment ABC of the thin plate in 

x'-

figure 12.13 about Y'Y is 

I 
I 

y•l 

ptR4 ( 
lyy = -4- (J 

Figure 12.13 

(See worked example 12.1.) Hence, by using the standard form for the triangle 
OAB, show that for the whole plate 

_ ptR4 ~ sin 28) Iyy- -- e +--
4 2 

12.2 Show that lzz (where Z'Z is an axis perpendicular to the plate passing through 
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the apex) for the plate in figure 12.13 is 
ptR4 

fzz =-- 8 
2 
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Hence by making use of the result of problem 12.1 show that 

1 = ptR4 fe _ sin 28) 
XX 4 \ 2 

12.3 Find the moment of inertia of a semicircular thin plate about an axis through 
its centre of mass parallel to the straight edge. Hence find the moment of inertia 
about an axis through G perpendicular to the plate. 

12.4 Determine Iyy for the plate in figure 12.14. Take t = 0. 1m and 
p = 1000 kg/m3 • 

4m ·I 

y·r- ____ _c_6--.-m ___ _____.., 

Figure 12.14 

12.5 Calculatelxx for the plate in figure 12.14. 

12.6 Find Izz for the thin plate in figure 12.15. Take t = 0.1 m and p = 1000 kg/m3 • 

X 

Figure 12.15 

12.7 Find the moments of inertia of the solid block in figure 12.16 about Z/Z1 , 



MOMENTS OF INERTIA 

z2 I z2 at the centre of the rear face, and z 31Z 3. Mass density is p kg/m3 . 

z;/' 
z' 

7 m 2 

Figure 12.16 

12.8 Determine Ixx for the body in figure 12.17. Take p = 1000 kg/m3 • 

Figure 12.17 

12.9 Find I yy and I xx for the body in figure 12.18. What is I y, y 1 ? 

/X 

Figure 12.18 

281 
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12.10 For the body in figure 12.18 determine (Ixx)G and (Jzz)G. 

12.11 A ring is formed by cutting a length from a cylindrical tube. It is 0.8 m 
outside diameter, 0.6 m inside diameter and is 0.3 m thick. Find its moment of 
inertia about (a) its central axis and (b) about a diameter on an end face. Take 
p = 1000 kg/m 3 • 

12.12 Figure 12.19 shows the cross-section of a flywheel. Calculate its moment 

01m 

Figurel2.19 

of inertia about its central axis if p = 1000 kg/m2 (and see problem 12.11). What 
proportion of the moment of inertia is due to the rim (the outer ring) of the 
flywheel? 

12.13 Verify the results for the standard r\loments of inertia given in the 
appendix. 



13 Kinetics of a Rigid Body 

In chapter 9 we derived the principle of the motion of the mass centre. For a 
particle system, and hence for a rigid body, we were able to relate the acceleration 
of the mass centre to the external forces through equations 9.9, namely 

'kFx max (9.9a) 

'2:-Fy may (9.9b) 

Given the external forces we were able to calcull\te, for a rigid body, the magni­
tude and direction of the acceleration of this one point, the mass centre. We were 
careful to note that these equations did not imply that the resultant of the exter­
nal forces passed through the mass centre. Thus the equations could be applied to 
rigid bodies undergoing translation but were insufficient to describe any rotational 
motion of these bodies. 

Since the kinematic behaviour of a rigid body, which can be translation, fixed­
axis rotation or general plane motion, is completely determined by the resultant 
of the external forces, we now consider how this behaviour is related to these 
external forces. In particular we examine how to determine the external forces 
required to bring about a desired rnotion and the motion brought about by a given 
set of applied forces. 

13.1 Equations of Motion 

We first cons\der the set of effective forces for the body mass m shown in figure 
13.1 a which is moving with general plane motion parallel to the rf:!ference plane 
XO Y. At some instant the position of the mass centre G is (x, y) (lnd that of a 
typical particle P is (.x, y) where x = x + x 1 andy = y + y 1• If the re~tangular 
components of the acceleration of P are ax and ay then 

d2 (x + x') d2x I 
ax =ax t 

dt 2 dt2 

d2 (.y + yl) d2y I 
ay = ay + --

dt2 dt2 

where ax and ay are the components of the acceleration of the mass centre G. 

If the mass of the particle Pis om then for the particle the components oFx,err 
and oFy,eff of the effective force oF err are respectively (om)ax and (om)ay as 
shown in figure 13.lb. This effective force at Pis equivalent to an equal effeptive 
force at G, qaving the same components, together with a couple as shown in 



284 BASIC ENGINEERING MECHANICS 

figure 13.lc, the moment of the couple being 

liMa,err = x'(lim)ay - y'(lim)ax 

y y y 

X X 0 X 0 

(a) (b) 

Figure 13.1 

X 

(c) 

Summing over all the particles, the set of effective forces for the body is 
equivalent to a single resultant passing through G with components Fx,eff and 
Fy,eff and a couple having moment M G,eff 

similarly 

Fx,eff = ~liFx,eff = ~(lim)ax 

= ~lim(ax + d2x'/dP) 
d2 x' 

= ax ~lim + ~(lim) -2-
dt 

Fy,eff = ~liFy,eff 

By definition of the mass centre G 

~(lJm)x' = ~(lim)y' = 0 

and it follows that 

d2x' d2y' 
~(lim)-= ~(lim)-= 0 

dt 2 dt 2 

Therefore, since ~lim= m the effective force components are 

Fx,eff = max 

Fy,eff = may 
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The couple 

M G,eff ~5M G,eff 

= ~x1(5m)ay - ~y 1(5m)ax 

( d2 1 
) ( d2x 1 

) 
= ~x15m ay + d~ - ~y15m ax + dt2 

( 
d2 I 2 I) + ""~ 1 Y ld X 

.t.Jum X -- - y --
dt2 dt2 

From the definition of G the first two terms are zero. In the third summation the 
quantity in the brackets represents the net moment about G of the rectangular 
components of the acceleration of the typical particle at P relative to G (see 
figure 13.2a). This must equal the moment about G of the total acceleration of P 
relative toG, or the moment about G of any other set of components of Gap. A 

I 
t-
1 y' 

r 
I +-----

(a) 

Figure 13.2 

+ 
(b) 

convenient set of such components is the tangential component at = (GP)a and 
the normal component an= (GP)r22 , as in figure 13.2b, where a and n are the 
angular acceleration and angular velocity of the body respectively and GP = r. 
Thus the moment of d2 x 1 /dt 2 and d2y 1 /dt 2 about G can be replaced by the 
moment of an and at. Hence 

since the moment of an about G is zero. 
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Thus 

MG,eff ~om(r2 a) 

a ~(om)r2 
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The quantity ~(om)r2 is recognised (see preceding chapter) as the moment of 
inertia of the body about an axis passing through G perpendicular to the plane 
XOY, and denoted symbolically as /G'G· 

Hence 

MG,eff = IG'GCX. 

The set of effective forces has therefore been reduced to a force- couple set, 
consisting of an effective force at the mass centre having components max and 
may, together with a couple having moment IG'GCX.. 

For a particle system we have the result expressed by equation 9.6 that the 
set of effective forces for a particle system is equivalent to the set of external 
forces. We can therefore write immediately 

~Fy =may 

~G = IG'GCX. 

(13.1) 

(13.2) 

(13.3) 

where ~Fx and ~Fy are the x- andy-components of the resultant of the external 
forces and ~MG is the sum of the moments of the external forces about G. Signs, 
of course, must be taken into account. These three equations are the equations of 
motion for a rigid body in general plane motion. 

The external force set must therefore reduce to a force passing through G 
having components ~Fx and ~Fy, plus a couple having moment ~MG. The result 
is summarised in figure 13.3. Figure 13.3a shows the body accelerations, figure 
13.3b the external force set acting on the body, and figure 13.3c the equivalent 
force- couple set showing the relations between the force components, the couple 
and the body accelerations. 

y y y 

(9. 
J 

0 X 0 X 0 X 

(a) (b) (c) 

Figure 13.3 
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Worked Example 13.1 

A body having mass 2 kg and for which /G'G is 1 kg m2 has angular acceleration 
a:= 10 rad/s2 anticlockwise and the components of the acceleration of G are 
ax = 5 m/s2 and ay = 10 m/s2 as shown in figure 13.4a. Determine the magnitude, 
direction and line of action of the resultant of the external forces. 

(a) 

Solution 

y 

(b) 

Figure 13.4 

y 

X 0 X 

(c) 

The required equivalent force- couple set is shown in figure 13.4b, R being equal 
to the resultant of the external forces. Using equations 13.1 to 13.3 

"kFx = max Rx 2 X 5 = 10 N 

'EtFy = may Ry = 2 x 10 = 20 N 

and 

R = 22.36 N L 63.4° 

'2-MG = hfGOi '2-MG = 1 x 10 = 10 N m anticlockwise 

This force- couple set is equivalent to a single force R which is such that its 
moment about G is anticlockwise and equal to "kMG = 10 N m. Its perpendicular 
distance from G is "kMGIR = 10/22.36 = 0.45 m. The required solution is shown 
in figure 13.4c. 

Particular Conditions 

(1) If the body is in equilibrium then "kFx = 0, "kFy = 0 and "kMG = 0, and if not 
at rest then its motion is such that the velocity of the mass centre and the angular 
velocity are constant. 
(2) If the body is not in equilibrium and the motion is one of translation only, 
then a:= 0 and the external forces must reduce to a single resultant force passing 
through G. 
(3) An important particular condition is that for which the body is not in equili­
brium and the motion takes place about a fixed axis. If the axis passes through G 
then ax = ay = 0 and the external forces must reduce to a couple, moment "kMG. 
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13.1.1 General Fixed-axis Rotation 

For general fixed-axis rotation the equations of motion, 13.1 to 13.3, can be 
written in a more convenient form. If the rigid body in figure 13.5a is rotating 

0 0 

(a) (b) (c) 

Figure 13.5 

about an axis at 0 the acceleration ofG, the mass centre, can be resolved into 
tangential and normal components at and an as shown. Since OG has a fixed 
length r, then at = r a and an = r Q 2 • The effective force couple set is now given 
by 

Ft,eff = mra 
- - 2 

Fn,eff- mrn 

M G,eff= IG'GQ 

as shown in figure 13.5b. 
The moment about 0 of the effective force- couple set is 

Mo,eff = Ft,eff X r + M G,eff 

mra X r + IG'GQ 

cx(mr 2 + IG'G) 

= Io•oa 

by the parallel axis theorem. 
Equating external and effective forces and couples 

'LFt = mra 

'LFn = mr2 

LMo = Io•oa 

(13.4a) 

(13.4b) 

(l3.4c) 

These are alternative forms of the equations of motion which are applicable only 
to fixed-axis rotation. 

13.1.2 Centre of Percussion 

The effective force- couple set in figure 13.5b is equivalent to a single effective 
force, having the same components, acting through P on the line OG extended 
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(see figure 13.5c). Equating moments about 0 for the effective forces in figures 
13.5b and 13.5c 

F t,eff X r + MG,eff = Ft,eff (OP) 

Then 

289 

OP = r + MG,eff!Ft,eff 

= r + IG'Gafmra 

= r + kG'G2Jr (13.5) 

where kG'G is the radius of the gyration of the body about an axis through G. 
The resultant of the external forces producing fixed-axis rotation about 0 

must therefore pass through P where GP = kG'G2 /r. The point Pis called the 
centre of percussion; it will be referred to in later work. 

13.1.3 Simple and Compound Pendulums 

Consider a rigid body having mass m and radius of gyration kG'G about its mass 
centre G which can swing freely in a vertical plane about a frictionless pivot at 0. 
It is deflected from its rest position and released so that it subsequently oscillates 
about its rest position. The body is then termed a compound pendulum and we 
wish to determine the periodic time of the oscillations if the amplitude of these 
is small. 

A diagrammatic view of the body is shown in figure 13.6a giving the instan­
taneous position at some time t during the oscillation. The displacement 8 anti-

mg 

(a) (b) 

Figure 13.6 

clockwise defines the positive senses of n and a. The free- body diagram of the 
body is shown in figure 13.6b, the forces Fo,t and Fo,n being the components of 
the reaction of the hinge at 0 on the body. From the free-body diagram it is 
clear that 

rM0 - mgh sin 8 
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and using equation 13.4c 

hence 

~Mo = lo•oa 

- mgh sine = m(kG'G 2 + h 2 )a 

a=-
gh sine 

kG'G2 + h2 

If the amplitude of the oscillation is small, then e is sinall and sin e approximates 
to 0; the above equation may then be rewritten- writing e for a as 

B+( gh )e=O 
kG'G2 + h2 

This is the equation of simple harmonic motion, being of the form (j + w2 e = 0 
(see section 8.4). The periodic time is therefore 

r = ~ = 2, j[(h' ;hkG'G')] 2•/[(h + ;a·a'/h)l 
(1) If h in the preceding equation is made a variable there is a particular value of 
h that makes r a minimum; as an exercise show that this occurs when h = kG'G· 
(2) Suppose the body is suspended from an axis through P, the centre of percus­
sion relative to 0. Then his replaced by kG'G2 /hand the periodic time 

j( kG'G2 fh + kG'G2 h/kG'G2 ) j( kG'G2 /h + h) 
T = 2tr = 2tr 

g g 

which is the same as that for suspension at 0. For this reason Pis sometimes 
called the centre of oscillation with respect to the centre of suspension 0. 
(3) A simple pendulum consists ideally of a particle mass m suspended by a mass­
less cord length l. For this system kG'G = 0 and T = 2ny(l/g). The simple 
pendulum having the same periodic time as the rigid body discussed already is the 
so called equivalent simple pendulum with length le. It can be seen that 
le = h + kG'G 2 /h = OP, the distance between 0 and the centre of percussion. 

13.1.4 ~nertia Force and Couple 

The concept of reversed effective force or inertia force already discussed in the 
case of a particle can again be introduced to simplify the form of the equations of 
motion and permit an alternative method of problem solution. 

If equations 13.1 to 13.3 are written in the form 

~Fx - max = ~Fx + (mlix)rev = 0 

~Fy - may = ~Fy + (may)rev = 0 

~MG - IG'Ga = ~MG + (IG'Ga)rev = 0 



KINETICS OF A RIGID BODY 291 

then a rigid body in general plane motion can be considered to be in dynamic 
equilibrium (implying zero resultant force or couple) under the action of a force 
set comprising the external forces and the inertia force and couple. The inertia 
force and couple consist of 

(1) (ma)rev = - rna (13.6) 

that is, a single force, magnitude rna, passing through the mass centre Gin the 
opposite sense to that of a; 
(2) (13.7) 

that is, a couple of magnitude /G'GO!. in the opposite sense to that of ex. 
Note that the moment of inertia is always that about the mass-centre. We may, 

of course, use any sets of components of (ma)rev in equation 13.6, for example 

l - -! max,rev = - rna X 

rna y,rev = - may 

or 

or any other sets of components at G which may prove the most convenient in a 
particular problem. It also follows that if a, the acceleration of the mass centre, is 
expressed in terms of some other vector components then to each such vector 
component there will be a corresponding component of the inertia force. For 
example if a= al + a2 + a3 then equation 13.6 can be replaced by the inertia 
force set 

I (ma)l,rev = - mall 

(mah,rev = ma2 

(mah,rev = ma3 

the term- ma1 signifying a force, magnitude ma 1 , passing through Gin the oppo­
site sense to that of a1 . 

To summarise the argument: if a body has the accelerations given in figure 13.7a 
the inertia force and couple are shown in figure 13.7b; in figure 13.7c the inertia 

-) / (ma rev 

tnertta farce 
(miilrev 

(a) (b) (c) 

Figure 13.7 
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force and couple are shown together with the external forces in a free-body dia­
gram. From the arguments already presented the body in this figure is in dynamic 
equilibrium, that is, the resultant force in any direction is zero and moments about 
any point sum to zero. 

Worked Example 13.2 

Solve worked example 13.1 using the inertia force method. 

Solution 

The solution is shown diagrammatically in figure 13.8. Figure 13.8a shows the 
body accelerations, figure 13.8b the inertia force- couple set and figure 13.8c the 

(a) (b) (c) 

Figure 13.8 

completed free- body diagram of the body including the inertia forces and the 
assumed external forceR. Since the latter system is in dynamic equilibrium 

'LFx = 0 Rx - 2 X 5 = 0 

'f.Fy = 0 Ry 2 X 10 = 0 

Rx 10 Ry = 20 giving R 22.36 N L 63.4° 

'LMG = 0 Rd - 10 = 0 

Rd = 10 giving d = 0.45 m 

Worked Example 13.3 

A hammer hinged at one end is allowed to fall and strikes a spring as indicated in 
figure 13.9a. At the particular instant when the hammer is vertical the force in the 
spring is 200 N. What is then the angular acceleration of the hammer and the 
horizontal reaction at the hinge? The hammer has mass 2 kg and radius of gyration 
about G of 0.5 m. 

Solution 

Figures 13.9b to 13.9e indicate the steps necessary to solve this problem- we rieed 
to end with a free-body diagram which includes all the external forces and couples 
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G 

rniin mg mg 

(a) (b) (c) (d) (e) 

Figure 13.9 

and the inertia force- couple set. In figure 13.9a the assumed directions of n and 
a are indicated; figure 13.9b shows the linear acceleration of G- the most con­
venient components in the case of a body rotating about a fixed axis are an and 
at· Figure 13.9c shows the inertia force- couple set based upon the accelerations 
in figure 13.9b; figure 13.9d gives all the external forces in the free body- note 
the assumed reactions at the hinge, and figure 13.9e gives the completed free-body 
diagram with the combined external and inertia force- couple sets. The body in 
figure 13.9e is in dynamic equilibrium 

"£Fx = 0 

and 

~H = 0 

Thus 

and 

Qx = 2 X 1.5a + 200 

1.5 mat + 2P + [G'Ga = 0 

1.5 X 2 X 1.5a + 2 X 200 + 2(0.5)2a = 0 

a = - 80 rad/s2 

Qx = - 240 + 200 = - 40 N 

Worked Example 13.4 
A car door is so hinged that it swings about a vertical axis. The door has mass m, 
its mass centre G is at a distance r from the hinge axis and its radius of gyration 
about a vertical axis through G is kG'G· When the car is at rest the door is open 
at an angle 4> to its closed position. If the car moves off with constant linear accel­
eration a determine the angular acceleration of the door when at an angle 8 to its 
closed position, and hence the angular velocity with which it closes. 
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Solution 

Figure 13.10a shows the given acceleration a of the hinge together with the 
assumed directions of 8, o: and Q in which the clockwise direction has been 

a 

(a) ( b ) 

Figure 13.10 

adopted as positive. The total linear acceleration of G is given by applying equa­
tion 11.3 

in which EaH =a and HaG has two components, Ot = ro: and On = rD 2 • Figure 
13.1 Ob shows the angular acceleration and the three components of the linear 
acceleration of G. 

Figure 13.1 Oc shows the free· body diagram including the inertia force­
couple set and the assumed external force, in component form, on the hinge. 

The free body is in dynamic equilibrium and, choosing H as a moment centre 

mro: X r + mar sin 8 + mkG'G2 o: = 0 

and 

ar sin 8 
0: -,2 + kG'G2 

Now 

dQ dQ 
0: = n 

dt d8 

and therefore 

QdQ = o:d8 

Since the angular acceleration is always anticlockwise the angular velocity at 
closure De will also be anticlockwise when 8 = 0 

J-nc s 0 ar sin 8 
QdQ =-

o </> r2 + kG'G2 
d8 
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and 

,n2 
c 

2 
= 

13.2 Impulse and Momentum 

295 

In chapter 10 we developed the impulse- momentum equations for a particle. The 
discussion was extended to a particle system and it was found that the mass centre 
of the system behaved like a particle in which the mass of the system was concen­
trated. However this result did not imply any statement about the line of action of 
the linear impulse and linear momentum vectors. Thus the equations could be 
applied to rigid bodies undergoing translation but were insufficient to describe 
motion involving rotation. 

In order to extend these equations to rigid bodies undergoing general plane 
motion we introduce two further quantities. 

13.2.1 Angular Momentum and Angular Impulse of a Particle 

If at some instant a particle mass m is moving in a plane XO Y with velocity v 
under the action of a force F as in figure 13.11 then its linear momentum is a 
vector mv in the direction of v. 

y 

0 X X 

Figure 13.11 

The angular momentum of the particle about the fixed point 0 is the moment 
of this momentum vector about 0. This is given the symbol H0 , the suffix 0 
referring to the point about which the angular momentum is defined. In terms of 
rectangular components 

H0 = mvyx - mVxY 

the anticlockwise sense being taken as positive. 
The time derivative of the linear momentum is the force on the particle, that is 
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(d/dt) (mv) =F. If now we obtain the time derivative of angular momentum 

dHo dvy dx dvx dy 
dt = m dt x + mvy dt - m dt y - mvx dt 

= Fyx - FxY + m(VyVx VxVy) 

= Fyx FxY 

= Mo 

the moment about 0 of the force on the particle. Rewriting this as 

M0 dt = dH0 

and integrating between times t 1 and t2 

or 

J tz Modt = H02 - H01 
t, 

S t2 

Hot + Modt = H02 
t, 

(13.8a) 

The angular impulse is defined as the time integral of the moment of the force F 
about 0, that is 

S tz Modt 
t, 

and is written in a shortened form as (Ang lmp0 ) 14 . Equation 13.8a can then be 
written 

(13.8b) 

13.2.2 Angular Impulse- Angular Momentum Equation for a Rigid Body 

The rigid body, mass m, of figure 13.1 is shown again in figure 13.12a. If the 
rectangular components of the velocity of a typical particle P, mass om, are Vx and 
Vy then the component linear momenta are as shown in the figure. These momenta 
are equivalent to equal momenta passing through Gas shown in figure 13.12b plus 
a couple having a moment equal to the sum of the moments of the component 
momenta about G (and therefore an angular momentum) denoted by 

8HG = x' (om)vy - y' (om)vx 

Now 
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8m Vy 
y y y 

X 0 X 

(a) (b) (c) 

Figure 13.12 

(where Eisa fixed point on the Earth's surface) and for a rigid body GVp, with 
magnitude (GP).Q, has rectangular components+ nx' in they direction and 
- .Qy' in the X direction. It follows that 

+ ,...,_, 
Vy = Vy ~"-'\ 

and 

Vx = Vx - Dy' 

Summing over the body for the total linear momentum x-component at G 

~(om)vx = ~om (vx - Dy') 

= vx ~om - n~(om)y' 

since by the definition of the mass-centre the second term is zero; similarly 

~(om)vy = mvy 

Summing the angular momenta for the body 

HG ~oHG 

~x'om (vy + nx') - ~y'om (vx - ny') 

= vy ~x'om - vx ~y'om + n ~om [(x')2 + (y')2] 

The first two terms on the right are zero (from the definition of the mass­
centre) and ~om [(x')2 + (y')2 ] = ~om (GP)2 is recognised as the moment of 
inertia of the body about G, I G'G; therefore 

(13.9) 

The momenta for the whole body (see figure 13.12c) are thus equivalent to 
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linear momentum vectors 

(13.10) 

and 

(13.11) 

passing through the mass-centre, and a momentum couple having angular momen­
tum about the mass-centre 

HG = IG'Gn 

The linear momentum G of the body is thus described by its rectangular com­
ponents Gx and Gy and the angular momentum HG of the body about G is given 
by HG = IG'Gn. 

Now since from equations 13.1 to 13.3 

"i:.Fx dGx/dt 

"i:.Fy dGy/dt 

and 

"i:.Fxdt = dGx 

"i:.Fydt = dGy 

where J:.F is the resultant external force on the body and "i:.MG is the resultant 
external moment on the body about G, after integrating we may write 

where 

and 

Gxl + "':. (Impx)l-2 = Gx2 

Gy 1 + ~ (Impy)1 - 2 = Gy2 

HGl + "':. (Ang lmpG)t-2 = HG2 

or I t, 

t, 

St. J t2 "':. Fy dt or "i:.Fy dt 
t, t, 

(13.12) 

(13.13) 

(13.14) 

It is usually more convenient to calculate the angular impulse about a fixed 
point such as 0 rather than G. The equivalent set of momenta is then (see figure 
13.12c) Gy along OY, Gx along OX, and a momentum couple having angular mo­
mentum H0 being equal to the sum of HG and the moments of Gx and Gy about 
0 (due to changing their position). That is 

(13.15) 
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Note that the first two terms on the right constitute the moment of the linear 
momentum vector mv, passing through G, about 0. 

The corresponding angular impulse-angular momentum equation is 

(13.16) 

where 

Equations 13.12 to 13.14 and 13.16 are the linear and angular impulse­
momentum equations for a rigid body and describe the changes in its velocity 
between two instants of time. It should be noted that H 0 given by equation 13.15 
is only safely applicable either to the mass centre (in which case it reduces to 
equation 13.9) or to a fixed point. The choice of some other moving point is sub­
ject to certain restrictions and should be avoided at this stage. With this in mind 
equation 13.16 (and 13.15) should be used in preference to equation 13.14. The 
equations are applicable to any type of motion but prove most useful during 
impulsive actions. 

To illustrate equation 13.15 figure 13.13 shows a body mass m having 

\s 

-t* 
Figure 13.13 

\, 
Q 

angular velocity nand linear velocity vat G. Its angular momentum about fixed 
points S and Q is 
(1) about S 

Hs = IG'Grl + mv (SN) (anticlockwise) 

(2) about Q 

HQ = IG'Grl - mv (QT) (anticlockwise) 

The signs are both positive in (1) because both nand the moment ofmv 
(through G) about S are both anticlockwise. The sign for mv (QT) is negative in 
(2) by the same argument. H0 could of course be written 

HQ = mv (QT) - /G'GQ (clockwise) 

Particular Conditions 
(1) If the motion is one of translation only then n = 0 and there is no angular 
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impulse or angular momentum about G. 
(2) If the motion is fixed axis rotation about an axis through G then v x = v y = 0 
and the system momenta reduce to a momentum couple having moment IG'GQ· 
(3) Fixed-axis rotation: If the motion is fixed axis rotation about an axis through 
Q distance r from G then, since in this case Vt = ril, the application of equation 
13.15 gives 

HQ = mvtr + IG'GQ 

= mr2 Q + /G'GQ = /Q'QQ (13.17) 

Worked Example 13.5 

A hammer, mass 2 kg, is hinged at one end and is hanging freely with its mass­
centre Gat a distance 0.8 m below the hinge S. The hammer is struck on its head at 
a distance 1.2 m from the hinge by a horizontal force magnitude 2000 N which 
acts for 0.2 s. Find 

(a) the angular impulse of the external forces about (i) the hinge and (ii) G 
(b) the angular velocity of the hammer at the end of the impact. 
The radius of gyration about G is 0.4 m. 

Solution 

The free- body diagram showing the external forces during the impact is given in 
figure 13.14. The positive direction of Q has been taken as clockwise. 

Q 

Figure 13.14 

(a) Now 

f t. st· L (Ang lmp0 )t-2 = L M0 dt = LM0 dt 
t, t, 

(i) About the hinge S the resultant external moment LMs = 1.2 P. Therefore 
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the angular impulse about S is 

(ii) 

and 

J0.2 
.l: (Ang Imps)t-2 = 1.2 0 P dt 

= 1.2 X 2000 X 0.2 
= 480 N m s, clockwise 

f t2 ft2 .l:MG dt = (0.4P + 0.8 Rx) dt 
t, t, 

This cannot be calculated until fRx dt is known. 
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(b) Since Sis a fixed hinge then from equation 13.17 the angular momentum about 
Sis 

since nl = 0 

Hs = (IG'G + mr2 )n = m(kG'G2 + r 2 )Q 

= 2 (0.42 + 0.82 )n = 1.6Q 

Hst = 0 

Thus, using the angular impulse- momentum equation 13.16 

Hst + .l:(Ang Imps)t-2 = Hs2 

0 + 480 = 1.6Q2 

therefore 

n2 = 300 rad/s clockwise 

To find fRx dt apply the angular impulse- angular momentum equation 13.16 
about a fixed point Q directly below S in order to eliminate P. 

Now 

J0.2 
L (Ang lmpQ)t-2 = 0 1.2 Rx dt 
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From equation 13.15 the angular momentum about Q is 

Ho = /G'Gn - 0.4 mv 

and 

Thus 

v = o.8n 

Ho = /G'Gn - 0.4 m 0.8n = m(kG'G2 - 0.32)n 

= 2 (0.42 - o.32)n = - 0.32n 

Hot = 0, Ho2 = - 0.32[22 = - 0.32 x 300 = - 96 

Applying equation 13.16 

Hot + ~ (Ang lmp0 )t-2 = H0 2 

,0.2 
0 + 1.2 Jo Rx dt = - 96 

Thus 

J0.2 

0 Rx dt = - 80 N s 

(that is, actually Rx is to the left). 

Thus in (a) (ii) 

f t2 f0.2 
~MG dt = 0 (0.4 X 2000) dt + 0.8 (- 80) 

t, 

and hence 

ft• ~MG dt = 0.4 X 2000 X 0.2- 64 
t, 

= 96 N m s (clockwise) 

(Check that this agrees with the equation 

HGt + ~ (Ang ImpG)I-2 = HG2 

using the already calculated value of r22 .) 

13.2.3 Centre of Percussion 

It is to be noted that in the preceding worked example involving fixed axis rota­
tion Rx can in certain circumstances be zero although Pis not. For this to occur 
it can be shown as follows that P must be applied at the centre of percussion of 
the hinged body. 
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In general terms (see figure 13.14) the angular momentum about a point Tis 

HT = lG'G[l. - (TG) X m (SG)!J. 

= m (kG'G2 - (TG) x (SG))n 

and from the angular impulse- momentum equation 13.16 

HT2 - HTl = L (Ang ImpT )J-2 

thus if Pis applied at point T 

and Rx will be zero if 

kG'G2 = (TG) X (SG) 

that is when 

SG 

which conforms to the definition (see section 13.1.2) ofT as the centre of 
percussion. 

Thus in the previous worked example R:x will be zero if Pis made to act at 
point T such that 

0.42 
TG =- = 0.2m 

0.8 

Worked Example 13. 6 

A ladder length L has radius of gyration kG'G about G. It falls as }ndicated in 
figure 13.15a, turning without slipping about A; its angular velocity, just before 

A 

(a) 

n, 

v,=u,r 
-'A"'----' 

(b) 

Figure 13.15 

(c) (d) 
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it hits the step, is rl 1 • If it hits the step and then continues to rotate about it 
without slipping 
(a) find its angular velocity just after the impact is completed. 
(b) What linear impulse is exerted by the step on the ladder? 

Note: inherent in this type of problem is the assumption that the point of impact 
(the step in this case) has no elasticity, that is the point of impact must deflect in 
a 'plastic' manner, and it follows that the ladder does not rebound off the step. 

It is assumed that the impact is of such short duration that the body, the ladder 
in this case, does not have any displacement during the impact. 

A further but perhaps more reasonable assumption is that during the impact 
only the mutual impulsive forces are of importance. They will, in general, be much 
greater than the weight of the body which is then usually ignored. The ladder is 
further assumed to have lost contact with the ground as soon as it strikes the step. 

Solution 

Figure 13.15b shows the situation just before impact, with the ladder rotating 
about A; figure 13.15c shows the situation just after completion of the impact 
when it is rotating about B; figure 13.15d shows the free-body diagram of exter­
nal forces during the impact (remember that we are neglecting mg compared to 
Pand Q). 

(a) Taking Bas the moment-centre (in order to eliminate P and Q) 

(since ~Ma = 0) 

From equation 13.15 the angular momentum about B just before the impact is 

Hat = /G'Grlt - mv1a 
and just afterwards is 

(clockwise) 

Ha2 = /G'Grl2 + mv 2 a (clockwise) 

Applying the angular impulse- momentum equation 13.16 

Hat + L (Ang Impa)t-2 = Ha2 

(/G'Grl1 - amrrl1, + 0 ;::: (/G'Gn2 + amarl2) 
( 2 -) 2 2 n1 m kG'G - ar = n2 m (kG'G + a ) 

therefore 

( kG'G2 - ar! n2 = nl 
kG'G2 +a2 

(Note that for rl2 to be zero kG'G2 = ar, and a= kG'G2 (f is such that B is the 
centre of percussion of the ladder with respect to A.) 
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(b) Knowing .Q2 the linear impulse fPdt could be found using equation 13.16 with 
A as moment centre. A more direct method is to use the linear impulse-momen­
tum equation 13.12 

Gxl + L (Impx)l-2 = Gx2 

Taking the direction of v 1 in figure 13 .lSb as the positive x direction 

Gx1 mv1 = m.Q 1r 
Gx2 - mv 2 = - m.Q2a 

f t2 
L (Impx)l-2 = - Pdt 

t, 

Thus 

13.2.4 Impact of Rigid Bodies 

Draw a free-body diagram for each body to show all external forces and couples 
that act during the impact (although it may be necessary at times to ignore the 
non- impulsive forces) and use the linear and angular impulse -momentum equa­
tions 13.12,13.13 and 13.16 for each body. Note the equality of the impulsive 
forces between the bodies. 

During the impact of rigid bodies we may still use a coefficient of restitution 
e. This is again defined by either equation 10.10 

Imp during restitution 
e = 

Imp during deformation 

in which Imp is the linear impulse exerted on the body at the point of contact, or 
equation 10.11 

e 
(relative velocity after impact) 

(relative velocity before impact) 
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in which the relevant velocities are the linear velocities of the bodies at the point 
of contact. 

Worked Example 13. 7 

Figure 13.16a shows the schematic diagram of a body A (of mass 0.2 kg) striking 
a body B (mass 20 kg; kG'G =2m) which is hinged at Sand is initially at rest. 

[ s 

5m 

)n 

~~ 100 m/s v - --8Wf- 0 ~ 
p 

0 

(a) (b) (c) 

Figure 13.16 

The impact is cushioned by a spring such that the coefficient of restitution e is 
0.8. Find the velocities of A and B immediately after the completion of the impact. 
Assume that B is smooth at the point of impact. 

Solution 

Figures 13.16b and 13.16c show the free-body diagrams of A and B. Pis the im­
pulsive force in the spring during the impact and thus the force exerted by one on 
the other; gravitational forces are disregarded. Positive directions have been chosen 
as shown for .Q and v. 

The qrst step is to find the common velocity, that is when the linear velocity 
of body A, v A, is equal to the horizontal component v0 of the linear velocity of 
the point of impact Q on body B. Let this common velocity be denoted by 
v A 2 = v02 = v2 , and let it occur at time t2 . The impact begins at time t 1 . 

(There is no necessity to complicate our solution by a consideration of the 
vertical component of the linear velocity of the point Q because there can be no 
changes in the vertical components of the velocities of the mass-centres of either 
body during the impact.) 
Note that for B 

v0 = sn 
For A, applying the linear impulse- momentum equation 13.12 during deforma-
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tion (that is until time t2) 

Gxt + ~ (Impx)t-2 = Gx2 

(13.18) 

(P d being the value of P during deformation). 
ForB, applying the angular impulse- momentum equation 13.16 during defor­

~ation and usi~g S as moment- centre (in order to eliminate Rx, Ry and mg) 

Hst + ~ (Ang Imps)t-2 = Hs2 
Now 

Hs = (/G'G + mr2 )f2 (see equation 13.17) 

= 20 (22 + 32 )n = 260n 

Hst = 0 

since n. = 0 

and 

thus 

also 

Substituting valu,es 

or 

0 + 5 Jt2 Pddt = 52v2 
tl 

Using this with equation 13.18 gives 

20 - 10.4v2 = 0.2v2 

(13.19) 



308 BASIC ENGINEERING MECHANICS 

and 

Thus 

20 
v2 = = 1.89 m/s 

10.6 

v2 n2 =- = 0.377 rad/s 
5 

Let vQ = vQ3 and v A= vA3 at the end of the impact (at time t 3). 

For A, applying the linear impulse- momentum equation 13.12 during 
restitution 

(13.20) 

(Pr being the value of P during restitution; Pr is not necessarily the same function 

of time asPct)· 
For B, applying the angular impulse- momentum equation 13.16 about S 

or 

260 !2 + 5 J ta Prdt = 260 VQ 3 

5 ~ 5 
Combining this with equation 13.20 to eliminate 

or 

53v2 = vA3 + 52vQ3 

Using equation 10.11 to define e 

(vA3 - VQ3) 
e =- = 

(vAt - vQd 

and thus 

VQ3 - VA3 = 80 

Combining equations 13.22 and 13.23 gives 

vA3 =- 76.6m/s 

VQ3 = + 3.4 m/s 

(13.21) 

(13.22) 

(13.23) 
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and thus 

n3 = + 0.68 rad/s 

If equation 10.10 is used to defme e, then 

i'' p dt t2 r 
e=---

~:2 Pddt 

and from equation 13.19 

Jt' Prdt = 0.8 X 10.4 X V2 = 8.32v2 
t2 

Substitution in equation 13.21 gives 

52v2 + 5 x 8.32v2 = 52v03 

and 

as before. 

Worked Example 13.8 

= (52 + 5 x 8.32) X 1.89 = 3.4 m/s 
52 

Wheels A and B are rotating on horizontal parallel shafts. Wheel A is initially 
rotating at 500 rad/s clockwise and wheel B at 200 rad/s anticlockwise. 

(a) They are pushed together and after a time t2 the speed of A is 400 rad/s 
clockwise; what is the speed of B? 
(b) After being pushed together for a total time t 3 slipping ceases between the 
two wheels; what are their final speeds? 
(c) If the wheels are pushed together by a constant force of 500 N and the tan­
gential force on each wheel is due to slipping friction what is the coefficient of 
friction (assumed constant) if t2 is 2 s? 
(d) What is then t 3 ? 

309 

Wheel A has (Ia•a)A = 2 kg m2 and outside radius 1 m; B has (Ia•a)8 = 1.5 kg 
m2 and outside radius 0.5 m. 

Solution 

Figure 13.17a shows a schematic diagram of the system and figures 13.17b and 
13.17c show the free-body diagrams of the external forces. The latter include a 
designation for positive directions of n and also the assumed directions of the 
tangential forces T (these have been deliberately taken as opposite to the physical 
direction- which can be argued from the relative peripheral velocities of the two 
wheels- to demonstrate that the mathematics will take care of this). The vertical 
components Y of the reactions at the bearings are also shown. 
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(a) (b) 

Figure 13.17 

(c) 

The method is to apply the angular impulse -momentum equation 13.16 to 
each body and thus eliminate JT dt; it is convenient in each case to use the centres 
as origin since this also eliminates P, Y and Q. 
(a) For A 

I t, 
T X ldt = . Tdt 

0 

Note that it should be left in this form since T may be a variable. 
From equation 13.17 the angular momentum about the (ftxed) centre of A is 

Applying the angular impulse- momentum equation 13.16 

(HG)At t ~ (Ang lmpG)A,t-2 = (HG)A2 

2(+ 500) + f 12 Tdt = 2(+ 400) 
0 

and 

f t2 
T dt = - 200 N m s 

0 

(13.24) 

(which indicates that physically Tis in the opposite direction to that shown in 
figure 13.17). 

ForB 

~ (Ang lmpG) 8 ,1 _ 2 = s:2 0.5 T dt = 0.5 s:2 T dt = - 100 N m s 

Applying the angular impulse- momentum equation 13.16 

1.5 (- 200) - 100 = 1.5QB2 

Thus 

QB2 266.7 rad/s 
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(b) When slipping ceases the peripheral velocities will be equal- but take careful 
note that the angular velocities will be in opposite directions. let these be QA3 

and QB3. Thus 

(13.25) 

Applying the angular impulse -momentum equation 13.16 to A for the whole of 
the slipping period 

f t3 
2 (+ 500) + Tdt = 2QA3 

0 

and to B 

f t3 

1.5 (- 200) + 0.5Tdt = 1.5QB3 
0 

Eliminating ta T dt between equations 13.26 and 13.27 
0 

1600 = 2QA3 - 3QB3 

which together with equation 13.25 gives 

QB3 = - 400 rad/s 

QA3 = + 200 rad/s 

(13.26) 

(13.27) 

(c) From the free- body diagrams P = Q since the centres of mass have no accelera­
tions. Thus Q = 500 and is constant and it follows that T= 11Q (see chapter 5) 
and is also constant. 

From equation 13.24 with T constant 

f t 2 
2 T dt = I T dt = 2T = - 200 

0 0 

Thus 

T = - 100 

and 

100 = 11 500 

(the sign of Tis unnecessary here since we are only concerned with the magnitude 
of the frictional force) hence 

11 = 0.2 

(d) From equation 13.26 inserting values for T and Q AJ 

f t3 
2 (+ 500) + (- 100) dt = 2(200) 

0 

giving 
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13.3 Work and Energy 

It was found in chapter 10 that the work- energy equations for a particle, in its 
various forms, could be applied to a rigid body in translation since the kinetic 
energy was simply m v2 /2, and the work of external forces (or for conservative 
forces the corresponding potential energies) was easily calculated. We now extend 
the discussion to rigid bodies in general plane motion and also briefly discuss cer­
tain cases concerned with energy of deformation such as bodies subject to large 
impulsive forces or incorporating springs. 

13.3.1 Kinetic Energy in General Plane Motion 

Consider again the rigid body in figure 13 .12a that is moving with general plane 
motion parallel to the reference plane XOY. It has been shown in section 13.2.2 
that the rectangular components of the velocity of a typical particle P at (x, y) are 

+ nxl Vy = Vy ~~ 

and 

The kinetic energy of the particle mass om is 

OT = ~(om) v2 = ~ (om)(v/ + v/) 
1 - 12 2 12 

== 2om [(vy + nx) + (vx - Sly) ] 

Summing over all particles the kinetic energy of the body is 

T ~~ ., (- 2 + 2- n I n2 12 -2 2- n I + n2yl2) = "-'2 um Vy Vy ~~x + ~~ X + Vx - Vx~~y ~~ 

v 2 + v 2 n2 

Y x L-om +- L-om(x12 + y 12 ) + vyDL-(om)x1 - vxDL-(om)y1 

2 2 

From the definition of the centre of mass the last two terms are zero and 

since 

where v is the velocity of the mass-centre, and 

L-om(x12 + / 2 ) == IG'G 

(13.28) 

is the moment of inertia of the body about an axis through G perpendicular to 
the plane XO Y. 

For the special case of fixed-axis rotation about an axis at Q, distance r from 
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G, v = ilr and equation 13.28 becomes 

T- .!.mn2 7 2 + .!.1, il2 
- 2 2 GG 

= ~ (mr 2 + /G'G)il2 

=~/Q'Qil2 

13.3.2 Work of a Force and of a Torque or Couple 

313 

(13.29) 

We reiterate here, for use in this chapter, definitions and equations already stated 
or derived in earlier chapters. 

The work of a force, as already defined in chapter 10 is 

where 

Fs = Fcos a 

This work may also be written 

(see figure 10.11) 

which is a useful form for basing calculations on the rectangular components. 
The work of a torque or couple as derived in chapter 6 is 

where M is the magnitude of the torque or the moment of the couple. If this is 
constant 

U1-2 = M (82 - 81) (13.30) 

The unit of work is the joule (J) equal to 1 N m. 

13.3.3 Work During General Plane Motion 

In chapter 10 it was verified that the total work done on a particle was the sum 
of the individual works of each separate force. This result may now be extended 
to include the work of each separate couple or torque as well as the work of each 
separate force acting on a rigid body or on a system of rigid bodies (including a 
mechanism). 

Work is being done, or is positive, if a force component in the direction of the 
displacement of the point of application of the force has the same sense as the 
displacement, or if a torque has the same sense as the angular displacement of the 
body. We speak of (i) work being done on a mechanism and (ii) work being done 
by mechanism; by (i) we mean that positive work is done on the mechanism and 
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by (ii) that negative work is done on the mechanism. The latter case occurs when 
the force component or the torque has opposite sense to that of the correspond­
ing displacement. 

13.3.4 Power 

Power, as already defined in chapter 10, is the rate at which work is done, or the 
rate of energy transfer. The definition applies to the forces or torques acting on a 
single rigid body or on a system of connected rigid bodies (such as a mechanism). 
The power of a torque, moment M, acting on a body is given by 

dO 
power = M- =Mil (13.31) 

dt 
If work is being done on a mechanism at a particular point we say that the 

power (rate of energy transfer) is into the mechanism at that point; we say that 
the power is outwards at the point if work is being done by the mechanism. It 
follows that power is inwards if a force component has the same sense as the 
velocity of the point of the mechanism or a torque has the same sense as the 
angu!ar velocity, and vice versa. Power into and power out of a mechanism are 
not necessarily equal at a given instant, the difference being accounted for by the 
rate of change of mechanical energy (kinetic and/or potential) of the system. 

Worked Example 13.9 

The rod AB in figure 13.18 is 1 m long and is acted upon by two forces, which 

Figure 13.18 

have constant magnitude and direction, and a torque. If the position of the rod 
changes from (1) to (2) determine 

(a) the work done on the rod and 
(b) the average power supplied to the rod if this work is done in 3 s. 

Solution 

(a) Since the forces have constant magnitude and direction any arbitrary path can 
be chosen for either force as a device for the calculation of the work of that force. 
This calculation is thus simplified if the straight line AC is chosen as the arbitrary 
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path of the 50 N force and the straight line BD as the arbitrary path of the 100 N 
force. The work done by the forces and the torque is then 

"LU1-2 = 50 x cos a1 x AC + 100 x cos a2 x BD - 30 x ( 301T) 
180 

Now 

AC = y(22 + 0.52 ) = 2.06 m 

and 

Also 

FD = 0.5 + 1 cos 30° - 1 = 0.366 m 

BF 2 - 1 sin 30° = 1.5 m 

BD y(1.52 + 0.3662 ) = 1.544 m 

and 

0 -1 (0.366) 0 a 2 = 45 - tan -- = 31.3 
1.5 

"2:-U1 _ 2 =50 X cos 44.04° X 2.06 + 100 X cos 31.3° X 1.544- 30 X 0.524 

= 190.2 N m 

(b) Average power supplied equals the work done/s; that is: 

190.2 = 63.4 w 
3 

An alternative solution would be to replace each force by an equal force at the 
centre of the rod plus an appropriate couple and to evaluate the work of the 
forces by using force components for an arbitrary path between the initial and 
final positions of the rod centre. This should then be summed with the work of 
the resultant couple. 

13.3.5 Work- Energy Equation 

In chapter 10 it was demonstrated that, for a rigid body moving under the action 
of conservative forces, namely external gravitational and elastic forces, the total 
mechanical energy, defined by T+ (Vg + Vg), was constant, since for a rigid body 
there was no work associated with internal forces. For the sake of clarity we shall 
now disregard all external springs in which case the total mechanical energy of a 
rigid body would be simply (T + Vg)· However if the body is one which contains 
a spring or can itself deform elastically we can ascribe internal potential energy or 
strain energy to the body (or particle system) this internal energy being associated 
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with the internal conservative forces which do work during deformation. For ex­
ample, if a system consists of two rigid bodies connected by a third deformable 
body, a massless linear spring, and this system were moving freely under gravity 
we could write for any two configurations of the system 

[T + (Vg + Ve)] 1 = [T + (Vg + Ve)J 2 

where Tis the total kinetic energy of the two rigid bodies, Vg is the gravitational 
potential energy of the two rigid bodies and Ve is the internal strain energy of the 
spring given by Ve = ko 2 /2, the latter (see section 10.6.2) being the negative of the 
work of the internal forces of the spring, that is equal to the work of the external 
forces on the spring, when it is deformed a length 8 from its unstretched length. 

If there were extraneous forces acting, namely applied external forces (includ­
ing friction forces), the equation becomes 

[T + (Vg + Ve)J 1 + LU1-2, extr = [T + (Vg + Ve)h (13.32) 

where LU1-2, extr is the work done on the system by those extraneous forces. 
Equation 13.32 is thus the equation to be applied if the deformation of the 

bodies is purely elastic, that is, upon recovery of shape the work of the internal 
forces is exactly equal (but opposite in sign) to that during deformation. 

In most real situations the deformation is not purely elastic and furthermore, 
the quantity on the right hand side of equation 13.32 does not equal that on the 
left. We must then write 

[T + (Vg + Ve)] 1 + LU1-2, extr = [T + (Vg + Ve)h + Q1-2 (13.33) 

where Ve represents the strain energy (but may not be written as ko 2 /2 without 
further justification) and Q1 - 2 represents energy that is said to be lost or dissipa­
ted as far as mechanical energy accounting is concerned. These energy losses 
usually occur in the form of heat, light and sound transferred to the surroundings. 

Equation 13.33 is the general energy equation which can be used in all cases; 
it obviously covers the case of equation 13.32 by writing Q1 _ 2 = 0 if losses can 
be disregarded. 

As an example consider the case of direct central impact of two spheres A and 
Bas described in section 10.4.1. The motion takes place in the horizontal plane 
and thus Vg remains constant; there are no extraneous forces. 

Let the phases of the motion be defined as follows 
(1) just before impact occurs, the sphere velocities are u A and u 8 , 

(2) the spheres have maximum deformation and both have the same common 
velocity v, 
(3) just after the end of the impact, sphere velocities are v A and v8 . 
(1)- (2) is the deformation phase; (2)- (3) is the restitution phase. 

In the deformation phase (using the general energy equation 13.33) 

(T + Ve)1 = (T + Ve)2 + Q1-2 
or 

T1 - T2 = Ve2 + Ql-2 (since Vet = 0) 
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(reduction in kinetic energy) = 
during deformation 

( strain energy when) ( energy dissipation ) 
fully deformed + during deformation 

Now 

Tt- T2 =tmAuA2 +tmsuB2 -t(mA +ms)v2 

and since from momentum considerations 

mAuA + msuB 
v = ------------

this can also be written 

Jn the restitution phase 

(T + Ve)2 = (T + Veh + Q2-3 
or 

T3 - T2 = Ve2 - Q2-3 (since Ve3 = 0) 

( gain in kinetic energy) = ( strain energy when) _ ( energy dissipation in ) 
during restitution fully deformed restitution 

Now 

T3 - T2 = tmAvA2 + tmsvs2 - tCmA + ms)v2 

= t ( m~A+m:B ) (•s - 'Al' 
For the whole impact, (applying the general energy equation 13.33 between con­
ditions (1) and (3)) 

(T + Ve)t = (T + Veh + Qt-3 

Tt = T3 + Qt-3 (since Vet = Ve3 = 0) 

Tt - T3 = (Tt - T2) - (T3 - T2) = Qt-2 + Q2-3 = Qt-3 
(net reduction in kinetic energy) = (energy dissipated) 

From the definition of the coefficient of restitution 

(vs - vAi = e2 (us - uA)2 

hence 

t mAmB 
Qt-3 = 2 (1 - e2) (u 8 - uA)2 

(rnA + ms) 

= over-all reduction in kinetic energy 
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Note that e is a measure of the loss of mechanical energy, the loss being zero if 
e = 1. It is also of interest that 

e2 = (vs - v A)2 

(u 8 - uA)2 

strain energy less losses incurred during restitution 

strain energy plus losses incurred during deformation 

Worked Example 13.10 

A uniform wheel, radius 0.8 m, has mass 1.5 kg and kG'G = 0.5 m. It is placed on 
top of a slope, gradient sin- 1 (1/10), and rolls downwards without slipping; find 
its linear and angular velocities after moving a distance of 20 m along the slope. 
Assume there are no losses of mechanical energy. 

Solution 

The general energy equation 13.33 is applied between the two positions of the 
wheel noting that strain energies are always zero and energy losses are zero; equa­
tion 13.28 is used to find the kinetic energy of the wheel. 

From chapter 11 the instantaneous centre of rotation (if no slipping takes 
place) at any instant is the point of contact with the surface. Thus v = QR where 
n is the angular velocity of the wheel and R its radius 

T 1 -2 1/ n2 = 2mv + 2 G'G•~ 

= 1 mR 2 r2 2 + 1 /G'Gn2 

= 1 m(R2 + kG'G 2 )r22 

= ~ 1.5 (0.82 + o.5 2)n2 = o.667n2 

Taking the datum for gravitational potential energy at the initial position of the 
mass centre of the wheel 

Vg1 = 0 

T1 0 cn1 0) 

Vg2 mgz = 1.5 X 9.81 X (- 2) = - 29.4 

T2 = 0.667[222 

(The final position is 20 x 110 = 2 m below the initial position.) 

~U1-2, extr = 0 

(there is no work for the external reaction at a rolling contact since the point of 
contact is always an instantaneous centre). 
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Applying the general energy equation 13.33: T1 + Vg1 = T2 + Vg2 

o + o = o.667nl - 29.4 

Thus 

n2 = 6.64 rad/s 

and 

v 2 = 0.8n2 = 5.31 m/s 

The general energy equation 13.33 can always be used to determine velocities in a 
potential field if information regarding energy losses and the work of the extra­
neous forces is known. 

Worked Example 13.11 

A hammer hinged at one end is allowed to drop from the horizontal position. A 
friction couple, moment MF, resists motion at the hinge; the hammer has mass m, 
radius of gyration about G of kG'G• and G is a distance r from the hinge. (a) What 
is the angular velocity of the hammer when it has turned through an angle 8? 

(b) If m = 20 kg, kG'G = 0.4 m, r = 0.7 m and MF = 30 N m find the angular 
velocity of the hammer when it reaches the vertical position. If at this instant the 
head of the hammer strikes a spring, having a constant 20000 N/m, attached to a 
rigid support find the maximum deflection of the spring 

(i) if no losses occur and 
(ii) if e = 0.8 between the rigid support of the spring and the hammer and the 

assumption is made that energy losses during deformation are twice those during 
the restitution phase. The strain energy can be described by k6 2 /2. 

Ignore the movement of the hammer during the impact. 

Solution 

(a) The method is to apply the general eneFgy equation 13.33 between the two 
positions specified. 

For fixed-axis rotation (see equation 13.29) 

T = ~/o•on2 = ~m(kG'G2 + r2)n2 
Figure 13.19 shows the original position (1) and a typical position (2). Taking 

the horizontal line through Q as a datum for z 

Vgt = 0 

Vg2 = mgz = - mgr sin 8 

(note z is the position of G relative to the datum, the positive sense being up­
wards). 
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Figure 13.19 

The extraneous forces in this case are the external friction couple and the hinge 
reaction at Q, the work of the latter being zero and thus 

};Ul-2, extr = - MFO 

Applying the general energy equation 13.33 

T1 + Vgt + };Ut-2, extr = T2 + Vg2 

0 + 0- MFO = 1m(kG'G 2 + r 2)Q2 2 -mgrsinO 

Hence 

(b) Applying the derived equation to the vertical position (denoted as stage 3) 

Q 3 = j [ 2(20g 0.7 sin 1T/2 - 301T/2)] = 3 
20(0.42 + 0_72 ) .725 rad/s 

(i) Defining stage 4 when the spring is fully deflected (and therefore the ham­
mer is stationary) and applying the general energy equation 13.33 

T3 + Ve3 + Vg3 + };U3-4, extr = T4 + Ve4 + Vg4 + Q3-4 

Now 

"Ve3 = 0 (no deformation) 

Ve4 = i k8 2 = 120000 02 

(no movement of G) 

};U3-4, extr = 0 (no movement of the hammer) 

T3 = 1 I 0•0 n32 
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T4 = 0 

QJ--4 = 0 

Substituting values 

(no velocity) 

(no losses) 

1IQ·Qnl = 1ooooo2 

and 

o = 0.095 m 

321 

(ii) Since energy is lost during the impact this loss nas to be evaluated first 
before applying the general energy equation 13.33 to the deformation phase. 
Stage 5 is taken at the instant when the hammer loses contact with the spring in 
order to evaluate this energy loss. The use of impulse- momentum equations is 
usually necessary to determine the velocities at the end of the impact but because 
one of the bodies is fixed (the support) the definition of e is sufficient to provide 
a solution. 

Using equation 10.11: e is defined as- (vH - vs)/(uH - us) where u is a 
velocity before the impact (stage 3), v a velocity after the impact (stage 5), and H 
and S refer to the head of the hammer and the support. The latter has no velocity 
so that 

vs = us = 0 

and hence 

also 

(see figure 13.19) 

Thus 

ns = - 0.8!13 = - 2.98 rad/s 

Applying the general energy equation 13.33 between stages 3 and 5, noting that 

and 

it reduces to 

therefore 

Ve3 = Yes = 0 

kUJ-5, extr = 0 

.!1 , n 2 _ l/ n 2 + QJ-S 2 Q Q~'3 - 2 Q'Qas 

QJ-s 32.47 N m 
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and since 

and we are given 

then 

Q3-4 = 21.65 N m 

Applying the general energy equation 13.33 between stages 3 and 4 

therefore 

and 

ti0•0 n32 = Ve4 + Q3-4 

Ve4 = 68.54 N m 

= t20000«5 2 

15 = 0.083 m 

Special care must always be exercised to ensure taking into account the ex­
ternal work that might be done on or by the body by all the forces whose points 
of application move, as in the following worked example. 

Worked Example 13.12 

The tailgate of a lorry is hinged along its bottom horizontal edge as in figure 
l3.20a. When the lorry is moving forwards with velocity v = 20 m/s the tailgate 

(a) (b) (c) (d) 

Figure 13.20 

falls backwards. The tailgate has mass m = 50 kg, ka•a = 0.4 m and G is 0.7 m 
from the hinge. 

(a) Obtain an expression for the kinetic energy of the tailgate when it has fallen 
through an angle 8, in terms of 8 and its angular velocity n. 
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{b) Determine the angular velocity and acceleration of the tailgate at angle () using 
equations of motion. 
(c) Determine the work done on the tailgate through the hinge as() varies from 
() = 0 to () = 60°. 

Solution 

(a) We require the absolute linear velocity of G when the angular velocity is .Q. 
Now EvG = EvQ + QvG in which EvQ = v and QvG = Hr and so, from figure 

13.20b, the absolute velocity of G 

v = [v2 + (nrY - 2vflr cos e}112 

Applying equation 13.28 
1 / n2 1 -2 Te = 2 G'G~' + 2mv 

= 1mkG'G2 fl2 + 1m(v2 + fl2 r 2 - 2vrflcose) 

= 1m(kG'G2 + r 2 )fl 2 + 1mv2 - mvr.Qcos() (13.34) 

= 150{0.42 + 0.72 ).Q2 + 150 X 202 - 50 X 20 X 0.7.Q COS() 

16.25.Q2 + 10000 - 700.Q cos() (13.35) 

(b) Now 

£0G = EDQ + QOG 

EDQ = 0 since Q has a constant speed, and QDG has two components, magnitudes 
r a and r .Q2 as shown in figure 13 .20c. From these are derived the inertia force­
couple set that is shown together with all the external forces in figure 13.20d. By 
definition these are then in dynamic equilibrium 

To find .Q use 

- r(mra) - /G'GCX + (mg)r sin() = 0 

mgr sine 
a=-------

m(kG'G 2 + r 2 ) 

d.Q 
a=-

dt 

ad() = ndn 

d.Q 

d() 

gr sine 

.Q d.Q 

d() 
(13.36) 
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Thus 

n = j [ 2gr (1 - c~s 8)] 
kG'G2 + r2 

(13.37) 

(c) Taking stages 1 and 2 when (J = 0 and (J = 60° respectively and applying the 
general energy equation 13.33 

Tt + Vg1 + ~Ut-2, extr = T2 + Vg2 + Qt-2 

Ql-2 = 0 

(no information is given so losses are assumed to be zero) 
From equation 13.35 

10000 (il 1 is zero) 

T2 16.25il2 2 700il2 (0.5) + 10000 

and from equation 13.37 

n 2 __ J [2 X 9.81 X 0.7 (1 - 0.5)] __ 
~~ 3.25 rad/s 

0.42 + 0.72 

Thus 

T2 = 172 + 10000 - 1140 N m 

Now. taking a datum through Q 

Vg1 = mg (0.7) = 50 x 9.81 X 0.7 = 344 N m 

Vg2 = mg(0.7- 0.7 cosO)= 172 Nm 

Applying equation 13.33 

10000 + ~Ut-2, extr + 344 = 172 + 10000 - 1140 + 172 

~Ut-2, extr = - 1140 (13.38) 

(which, by inspection of equation 13.34, is seen to be equal to- mvil2r cos 82 ). 

This means that the tailboard actually does work on the lorry. 
The value of ~ U1 _ 2 , extr can alternatively be calculated directly since it is the 

work done at the hinge, and (see figure 13.20d) is 

the limits s2 and s1 being the positions of the lorry as (J changes from 0 to cos-• 
0.5. The work of Ry is zero. 

Rx can be expressed symbolically from figure 13.20d and by writing the rela­
tions between o:, Q and 8, and sand v,Rxds can be written in terms of Q and 8. 
The latter can then be eliminated by use of equation 13.37 and the resulting 
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equation leads to 

which agrees with equation 13.38. 
Note that in this case the velocities of the body cannot be derived directly 

from equation 13.33 because of the presence of the unknown forces at the moving 
hinge. In cases where there are unknown forces it is safer to find accelerations (as 
in part (b) of this example) and integrate. 

13.4 Problems Involving Friction 

We have seen in chapter 5 that the magnitude of the friction force between two 
surfaces in contact has a limiting value p.N, where N is the normal reaction between 
the two surfaces. When this limiting value is attained relative motion is impending. 
It follows that until bodies slide relative to each other the friction force can have 
a magnitude less than p.N, the magnitude depending upon the other external 
forces and the motion of the bodies. 

In the solution of problems involving friction the following considerations arise 
in the application of the equations of this chapter. 

13.4.1 Impulse- Momentum Equations 

Those problems where it is appropriate to use these equations to determine 
velocity changes with time involve friction forces that are known in magnitude 
and direction- in particular -limiting friction forces. The friction forces must be 
indicated on the free body diagram with correct senses as determined by those of 
relative velocities. 

13.4.2 Work- Energy Equations 

These equations can be used to determine velocity changes with distance, but care 
must be taken in evaluating the work of friction forces in accordance with our 
definition of the work of a force. For example, if a block is sliding on a fixed 
plane the friction force acting on the moving surface of the block is in the oppo­
site sense to that of the motion; the work can be calculated and is a negative 
quantity. 

On the other hand, at the line of contact of a rolling wheel and a fixed surface 
there is no friction work since there is no tangential displacement at the line of 
contact. However, at a line contact between a rotating cylinder (the axis being 
stationary) and a fixed surface, or between two parallel contra-rotating cylinders 
the identification of a particle displacement across a line of contact becomes 
difficult, and we cannot calculate the work (if any) at this point on the basis of 
our definition. The existence of a line of contact is clearly theoretical, and in 
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practice there is certainly dissipation of mechanical energy in this region; this can 
be calculated by reference to the work of cylinder driving torques and known 
changes in the angular velocities of the cylinders, as determined from the equations 
of motion. thus 

13.4.3 Equations of Motion 

If there is insufficient information on which to base the energy equation- in par­
ticular, knowledge of friction forces- or it is required to determine details of the 
motion between two end points, then the equations of motion have to be used, 
as outlined in the following. 

General method of solution 
(1) Assume directions for the mass-centre accelerations and angular accelerations 
of the bodies and the frictional forces. Relate the accelerations at points of con­
tact to the body accelerations. 
(2) Draw free-body diagram for each body. If the bodies have accelerations 
include the inertia force- couple set. 
(3) Write down general equations of motion for each body based on the free- body 
diagrams. Note in this regard that for each body only three equations can be 
deduced from the free-body diagram, for example, two force equations and one 
moment equation- in which case any other moment equation will be redundant. 
( 4) It may not be known initially if slipping is occurring or not at the points of 
contact. Each possible set of circumstances must be considered, and if necessary, 
examined in turn. For each possibility being examined write down two extra 
equations, as in(b) following, for each contact point. 
(5) Solve the resulting set of equations for each possibility considered. 
(6) There will usually be more than sufficient equations to solve for the unknowns 
(recall that to solve for n unknowns n independent equations are sufficient). 
Note which equations are used for the solution and check that any remaining 
equations are also satisfied. The correct solution is that which satisfies all equations. 

When considering the possibilities take regard of the following. 
(a) The sense of a frictional force if slipping is taking place depends upon the 

relative velocities of the surfaces in contact. For example if two bodies A and B 
have absolute velocities v A and v8 to the right then ifv A> v8 , the frictional 
force exerted by A on B, is limiting and is to the right, and conversely that exer­
ted by B on A is to the left. If v8 > v A the situation is reversed. When the bodies 
have the same velocity slipping is not occurring and friction must not be assumed 
to be limiting. 

In this context if the absolute accelerations of A and Bare a A and a8 to the 
right respectively, then if the bodies start from rest it follows that if a A > a8 that 
v A > v8 • If the bodies do not start from rest information will be required about 
initial velocities (see worked example 13.8). If no other information is given, 
assume that initial velocities are zero. 
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(b) For a cylindric:'ll body having specified accelerations when moving in con­
tact with a flat surface the tangential acceleration of the point of contact with the 
surface can be calculated. Thus in figure 13.21 a0 =a - ra (see chapters 8 and 

.......-as 

Figure 13.21 

11 ). For this body the necessary conditions for the two available possibilities are 
(l) for no slipping 

(i) F<p.N 
(ii) a0 =as 

(2) for slipping 
(i) F= p.N 

(ii) a0 *as 
(c) The relative values and directions of a0 and as decide the direction ofF and 

these must check. (This assumes of course- see (a) above- that the bodies start 
from rest, if not the velocities of the relevant points must be considered.) 

Worked Example 13.13 

The uniform block A in figure 13.22a is hinged as shown and is supported by the 
cylindrical body B. The coefficient of friction between the cylinder and the block 
is 1/2 and between the cylinder and the flxed surface is 1/6. If a horizontal force 
of 20g N is applied as shown flnd the accelerations of body B and state whether 
slipping is occurring or not at P and Q. 

Solution 

Figure 13.22b shows the assumed accelerations of body B. It follows from this that 

ap = aG 0.2a 

a0 = aG + 0.2a 

(13.39) 

(13.40) 

Figure 13.22c shows its free- body diagram with the inertia force- couple set based 
upon the accelerations in flgure 13.22b. Directions have been assumed for the 
frictional forces FQ and Fp. 

General equations of motion for body A 
From its free-body diagram, flgure 13.22d, we can obtain three equations but 
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0.8m 

A E2m 
"t----:;:l-f-o:::--}J--O~t Q IS 1/2 

0.2mrad 

~_,~20gN 

( 0) 

QQ 

aG 

(b) 

Figure 13.22 

(d) 

the only useful one in this case is by moments about the hinge 

Np 

(c) 

0.1 X FQ + 0.45 x NQ - 0.4 X lOg = 0 

General equations of motion for body B (see figure 13.22c) 

Np - NQ - 4g = 0 

20g - FQ - Fp - 4aG = 0 

20g N 

(13.41) 

(13.42) 

(13.43) 

'i:,Fy = 0 

'i:,Fx = 0 

'i:,Mp = 0 0.2 X 4aG + 0.4 X FQ + 0.8a - 0.2 X 20g = 0 (13.44) 

There are three possibilities to consider. 

(1) Slipping occurs at Q but not at P, in which case 

FQ = NQ/2 

Fp < Np/6 

ap = 0 

For F Q to be in the direction shown 

aQ > 0 

(2) Slipping occurs at P but not at Q, in which case 

Fp = Np/6 

FQ < NQ/2 

aQ = 0 

(13.45) 

(13.46) 

(13.47) 

(13.48) 

(13.49) 

(13.50) 

(13.51) 
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For Fp to be in the direction shown 

ap > 0 

(3) Slipping occurs at both P and Q, in which case 

Fp == Np/6 

F0 == No/2 

ap > 0 

a0 > 0 

Condition ( 1 ): slipping occurs at Q but not at P 

Equations 13.39 to 13.48 must be satisfied. 
From equation 13.41 and using equation 13.45 

Thus 

4g == 0.05N0 + 0.45N0 

No == 8g 

Fo == 4g 

Using equations 13.39 and 13.47 

aa == 0.2a 

and with equation 13.44 

Thus 

and 

Equation 13.40 

Equation 13.42 

Equation 13.43 

Therefore 

0.8aa + 0.4 x 4g + 0.8 ( aa ) - 4g == 0 
0.2 

aa == g/2 

a == 2.5g 

a0 == g/2 + g/2 == g 

Np == 8g + 4g == 12g N 

20g == 4g + Fp + 4 X g/2 

Fp == 14gN 

329 

(13.52) 

(13.53) 

(13.54) 

(13.55) 

(13.56) 
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Equations 13.39-13.44, 13.45 and 13.47 have been used. 
We now check the unused equations. 

Equation 13.48: a0 > 0, is satisfied. 
Equation 13.46: Fp < Np/6, this cannot be satisfied and so this solution is 
impossible. 

Condition (2): slipping occurs at P but not at Q 
Equations 13.39 to 13.44 and 13.49 to 13.52 must be satisfied. 

From equation 13.40 and 13.51 

0.2 

which with equation 13.44 gives 

0.8aG + 0.4Fo - 4aG- 4g = 0 

or 

Fo = lOg + 8aG 

Using equations 13.49 and 13.42 

Fp = iCNo + 4g) 

which with equation 13.43 gives 
1 

20g = Fo + 7;(N0 + 4g) + 4aG 

From equation 13.41 

No = 4g- O.IFo 
0.45 

which with equation 13.59 gives 

20g = F 0 + i (4g - 0. 1F0 + 4g) + 4aG 
0.45 

Combining equations 13.60 and 13.58 gives 

aG = 0.7025g m/s2 

F0 = 15.62gN 

From equation 13.57 

a = - 3.51 rad/s2 

From equation 13.41 

N0 = 5.42g 

(13.57) 

(13.58) 

(13.59) 

(13.60) 



KINETICS OF A RIGID BODY 

Equations 13.40-13.44, 13.49, 13.51 and 13.57 to 13.60 have been used. 
Checking the unused equations 

Equation 13.39: ap > 0, is satisfied. 
Equation 13.50: F Q < 0.5N0 , this cannot be satisfied and this solution is also 
impossible. 
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The only acceptable solution must be condition (3) which we proceed to check. 

Condition ( 3 }: slipping occurs at both P and Q 

Equations 13.39 to 13.44 and 13.53 to 13.56 must be satisfied. 
Using equations 13.54 and 13.41 

No= 8g 

Fo = 4g 

Using equations 13.43, 13.53 and 13.42 

20g = 4g + i (8g + 4g) + 4aG 

Hence 

aG = 3.5g m/s2 

Using equation 13.44 

Hence 

0.8 X 3.5g + 0.4 X 4g + 0.80: - 4g = 0 

o: = - ! rad/s2 

2 

Equation 13.41 -13.44 and 13.53 and 13.54 have been used. Checking the unused 
equations 
Equation 13.39 

ap = 3.5g - 0.2 (- g/2) = 3.6g m/s2 

Equation 13.40 

a0 = 3.5g + 0.2 (- g/2) = 3.4g m/s2 

Equation 13.55: ap > 0 is satisfied. 
Equation 13.56: a0 > 0 is satisfied. 

All equations are satisfied and the solution is 

aG = + 3.5g m/s2 

o: = - g/2 rad/s2 

and slipping occurs at both P and Q. 
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13.5 Composite Problems 

Many problems can involve the use of equations of motion, impulse- momentum 
equations and work- energy equations. These problems must be subdivided into 
subsidiary problems solved by the most appropriate of the equations referred to. 
The subsidiary problems must then be connected by their end conditions in order 
to solve the over-all problem. 

In general, if the subsidiary problem is concerned with displacement and over­
all changes in velocities, the work- energy equations should be used; but be careful 
if there is the possibility of energy loss (usually during an impact) or external 
work of unknown extraneous forces. If the subsidiary problem is only concerned 
with changes in velocity the impulse- momentum equations should usually be used. 
For impacts use the impulse- momentum equations; if it is inferred that no 
mechanical energy is lost the work- energy equation can also be applied. Equa­
tions of motion describe the accelerations at a particular instant; velocities can 
then be found (not always simply) by integration. Impulse- momentum and 
work- energy equations, in contrast, relate conditions at two different instants. 

Worked Example 13.14 

A uniform beam, mass 100 kg, 10m long and 1 m deep, is hinged on its top face 
at the centre of its length so that it lies initially stationary with its length horizon­
tal. A body mass 1 kg, to the underside of which is fixed a massless spring of 
stiffness 2000 N/m is suspended at a position 4 m to the left of the hinge with the 
free end of the spring 3 m above the top of the beam. If this body is released fmd 
(a) the maximum deflection of the spring {b) the angle through which the beam 
turns before coming instantaneously to rest (c) the height through which the body 
rebounds. Assumptions are that firstly, the duration of the impact is so short that 
the beam does not move during the impact, for which e = 0.5; secondly any energy 
loss occurs in the spring as it extends after compressing elastically; thirdly the 
spring deflection is negligible compared to the height dropped by the mass. 

Solution 

The problem can be separated into at least four different phases. 

(i) When the body drops its velocity will increase and its velocity just before it 
strikes the beam will determine what happens during the impact. Since the body 
drops in a potential Held energy considerations should be used. 
(ii) There is an impact. Use the impulse- momentum equations to find body 

velocities after the impact has ended. 
(iii) The energy is a function of spring deflection. Use the general energy equation 
to determine the deflection. 
(iv) Both the beam and the body move in a potential Held after the impact. 
Energy considerations should again be used. 
The datum for gravitational potential energy Vg is taken through the hinge 
throughout the problem. 
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The following situations should be noted; they are shown diagrammatically in 
figure 13.23. 

(c) 

(f ) 

( a ) 

lime 1 

w 
(d) 

' " 

(b) 

(e) 

components of !R y 1m puls1ve reac •on 

0 R, o the hinge 

(g ) 

..... __ I§:P' (\ 
05~-~-of-\"G' __ ~s,~6m 

\) e 
( h ) 

Figure 13.23 

(1) The body is released from 3 m above the beam at time t 1 • 

{2) The body attains a velocity v2 just before it strikes the beam (time t2 ). 

(3) At a particular instant t3 the body having velocity v3 has the same velocity as 
the adjacent point Won the beam; this will occur when the spring is fully deflected. 
{At any other instant they must be moving with respect to each other.) 
(4) The body just loses contact with the beam at the end of the impact (time t4 ). 

(5) The beam comes instantaneously to rest (t 5 ). 

( 6) The body comes instantaneously to rest (t6 ) . 
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(i) Applying the general energy equation 13.33 to the body (and spring) between 

positions (1) and (2) (see figure 13.23a and 13.23b) and noting that 

Now 

Vel = Ve2 = 0 

T1 + Vgt + ~U1-2, extr = T2 + Vg2 + Qt-2 

T 1 -2 
2 = 2mv 

(no velocity) 

(since it has no rotation), thus 

T2 = 1 x 1 x v 22 

Vgl = mgz = 1 x 9.81 (3 + s) 

Vg2 = 1 X 9.81 X S 

~Ul-2•extr = 0 

Substituting values 

and 

v22 
0 + 9.81 (3 + s) + 0 = - + 9.81s + 0 

2 

v2 = .../(2 x 9.81 x 3) = 7.67 m/s 

Figures 13.23c, 13.23d and 13.23e show the conditions at the times t2 , t 3 and 

t4 with assumed directions for positive velocities. Note that at time t3 the velocity 

of the point W equals the velocity of the body v3 , and 

v3 = 4il3 (13.61) 

Figures 13.23f and 13.23g show the free-body diagrams during the impact; Pis 

the impulsive force in the spring assumed to be much larger than the gravitational 

forces which are ignored. Pis denoted by Pd during deformation. 
For the body, applying the linear impulse -momentum equation 13.13 

between conditions 2 and 3 

Gy2 + ~ (Impy)z-3 = Gy3 

(P d has a negative sign because it is in the opposite direction to the positive 

direction of velocity.) Thus 

(13.62) 
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We now have to consider the beam, and for this purpose we require /G'G (see 
chapter 12) 

and 

IQ'Q = IG'G + 100 (0.5)2 = 866 kg m2 

In order to eliminate Rx and Ry we use Q as origin for momentum purposes. For 
fixed-axis rotation the angular momentum about Q is given by equation 13.17 

Applying the angular impulse -momentum equation 13.16, with Q as origin, 
between conditions 2 and 3 

HQ2 + L (Ang ImpQh-3 == HQ3 

866 (0) + f 13 4Pctdt = 866.Q3 
t2 

Combining equations 13.61, 13.62 and 13.63 gives 

4 (7.67 - v3) = 866 v3 

4 
hence 

v3 = 0.139 m/s 

and 
n3 = 0.0348 rad/s 

(13.63) 

(ii) In order to find the final velocity we have to apply the equations again for the 
conditions 3 to 4 and also use the equations for e. 

For the body, applying the linear momentum equation 13.13 

(13.64) 

Pr being the impulsive force in the spring during restitution. 
For the beam, applying the angular momentum equation 13.16 again with Q as 

origin 

(13.65) 

Combining equations 13.64 and 13.65 to eliminate fPrdt, using equation 13.61 
and Writing .Q3 = V3/4 and .Q4 = Vw4/4, where Vw is the velocity of point W, 
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we obtain 

54.1v3 + (v 3 - v4 ) == 54.1vw4 

Also (equation 10.11) 

Now 

e (== 0_5) == _ (v4 - Vw4) 
(v2 - vwJ 

(the beam is stationary) 

V3 == 0.139 

and equations 13.66 and 13.67 combine to give 

vw4 == 0.208 m/s 

hence 

n4 ;;: 0.052 rad/s 

and 

v4 == - 3.63 m/s 

(meaning the body is actually moving upwards). 

(13.66) 

(13.67) 

(iii) Using the general energy equation 13.33 for the system of beam and body 
between conditions (1) and (3) [or (2) and (3) if required, since no energy loss 
occurs between (1) and (3)]. 

T1 + Vgl + Vel + ~Ul-3, extr == T3 + Vg3 + Ve3 + Ql-3 

~Ul-3, extr == Ql-3 == Vel == 0 

(13.68) 

where T 1 is the kinetic energy of the system at t 1 == 0; Vg1 is the potential energy 
of body plus the potential energy of the beam, that is 

Vg1 "' lg (3 + s) + lOOg (- 0.5) 

T3 is the kinetic energy of body plus the kinetic energy of the beam at time t3 , 

that is 
T 1 1 2 ll n 2 

3 :: 2 X X V3 + 2 Q'Q~~3 (see equation 13.29) 

0.1392 866 
:: -- + - (0.0348)2 == 0.534 N m 

2 2 
Vg3 is the potential energy of the body plus the potential energy of the beam, that 
is 

Vg3 == 1g(s) + lOOg (- 0.5) 

Ve3 is the strain energy in the spring after elastic compression and 

Ve3 "'tk8 2 
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o being the maximum deflection. Note that we are told in the question to ignore 
the deflection of the spring compared with movement of the body [to be rigorous 
the first term of the equation for Vg3 should be 1 X g(s - o) 1. 

Substituting values in equation (13.68) gives 

0 + g(3 + s) - 50g + 0 + 0 = 0.534 + g(s) - SOg + ~ ko 2 + 0 

giving 

02 = _3g_-_o_.s_3_4 

k 

Now k = 2000 and thus 

o = 0.12 m 

(iv) Applying the general energy equation 13.33 to the beam alone between con­
ditions (4) and (5). [Condition (4) is shown in figure 13.23e and condition (5) in 
figure 13.23h.) 

since 

Thus 

~U4-S, extr = 0 Q4-S = 0 

T4 = ~I0•0n42 = ~866 (0.052)2 

T5 0 (it is at rest) 

Vg4 1 OOg (- 0.5) 

Vgs 100g (- 0.5 cos 8) 

1.17Nm 

1.11 - sog = o - sog cos e 
and the answer to (b) is 

8 = 3.96° 

Applying the general energy equation 13.33 to the body alone between condi­
tions ( 4) and ( 6). In the latter condition the body is assumed to be instantaneously 
at rest having rebounded a distance h from its position at ( 4) 

Thus 

T4 + Vg4 = T6 + Vg6 

T4 = ~ x l(v4 ) 2 = ~ (3.63)2 = 6.59 N m 

T6 = 0 

Vg4 lg(s) 

Vg6 = lg(s + h) 

6.59 + g(s) = 0 + g(s + h) 
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giving the answer to (c) 

h = 0.672 m 

Do the body and the beam become instantaneously to rest at the same time? 
{Check the energy of the system.) 

13.6 Summary 

{1) If a rigid body has angular acceleration a and its mass centre G has component 
accelerationS a X and a y the external force Set CaUSing these acceleratiOnS iS eqUiVa­
lent to a force "'l;F having components "'l;Fx =maX and "'l;Fy =may passing 
through G, and a couple having moment "'l;MG = IG'Ga (equations 13.1 -13.3). 
{2) The centre of percussion P of a body, mass centre G, rotating about a fixed 
point 0 is on the line OG extended so that GP = kG•G 2 jr where r = OG.It can 
be described in at least two ways; see sections 13.1.2 and 13.2.3. 
(3) A compound pendulum is any rigid body which oscillates in a vertical plane 
under the action of gravity in an angular fashion about a fixed horizontal axis. 
The frequency of oscillation for small angular movements is derived as a solution 
of the equation (for simple harmonic motion) ii + w2 0 = 0. A simple pendulum is 
a particle on the end of a massless cord. 
( 4) The inertia force- couple set consists of a force (- ma) or (ma)rev passing 
through G (or any set of the components of this force) and a couple (-I G'Ga) or 
(IG'Ga)rev (equations 13.6 and 13.7 in section 13.1.4). 
(5) The inertia force- couple set and the external force set are in dynamic equili­
brium, that is, "'l;Fx = 0, "'l;Fy = 0 and ~A= 0, where A is any point (section 
13.1.4). 
{6) The linear impulse- momentum equation G1 + "'2; (Imp)1- 2 = G2 , or its com­
ponent forms- equations 13.12 and 13.13- applies to a rigid body where G is 
the linear momentum of the body which equals the mass times the velocity of the 
mass centre. 
(7) H0 , the angular momentum of a body about a fixed point 0 is the sum of the 
momentum couple I G'Gn. and the moment of the linear momentum vector m v 
(which passes through G) about 0, taken in the same sense (equation 13.15). 
(8) The angular impulse of a force or a couple about 0, (Ang Imp0 ), equals 
JM0 dt, the time integral of the moment of the force or couple about 0. 
(9) The angular impulse- angular momentum equation for a rigid body is 

(equation 13.16). 
(10) Equations 13.12, 13.13, and 13.16 describe the changes in velocity of a rigid 
body between two instants of time. 
{11) For fixed-axis rotation 

Haxis = Iaxis f1. (13.17) 
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(12) Impulsive forces are generally much larger than gravitational forces (weight) 
and the latter can usually be ignored during the impact. 
(13) The choice of moment centre for calculation of angular momentum is 
restricted to any fixed point or the mass-centre G. 
(14) For the impact of rigid bodies draw a free- body diagram of the external 
forces for both bodies and use equations 13.12, 13.13 and 13.16 for both. The 
coefficient of restitution is based on linear velocities at the point of impact, or the 
linear impulses at the point of impact. 
(15) The kinetic energy of a rigid body 

mv2 Ia•arl? 
T=-- +---

2 2 
(13.28) 

(16) The general energy equation is 

(T + Vg + Ve)t + ~Ut-2,extr = (T + Vg + Ve)2 + Qt-2 (13.33) 

where Vg is the gravitational potential energy mgz, ~U1 _2 , extr is the work done 
on the body or system by the extraneous forces, Q1 _ 2 is the mechanical energy 
lost or dissipated, Ve is the strain energy which can always be described by ko 2 /2 
if the deformation is elastic. 

Equation 13.33 can be applied to a single body or a system of bodies. 
(17) Problems involving friction must be examined for all possibilities of slipping 
or not slipping at each contact surface. There are two extra conditions to be taken 
into account regarding the frictional force F and the relative accelerations (or 
more exactly the relative velocities) of the sliding surfaces (section 13.4.3). 
(18) Composite problems must be divided into subsidiary problems to be dealt 
with by appropriate equations. These are: work- energy equations, impulse­
momentum equations and equations of motion. Clarify the end conditions of 
subsidiary problems before proceeding (section 13.5). 

Problems 

13.1 A body, mass 2 kg, radius of gyration about the mass centre 1.2 m, is acted 
upon by a single force of 200 N directed to the right whose line of action is 0.6 m 
above the mass-centre. What is its effect upon the body? 

13.2 The body in figure 13.24 is standing on a smooth horizontal floor when the 
force Pis applied. Find the minimum value of P required to cause the body to 
begin overturning. What then is a? 
Hint: assume a symbolic a and use a free- body diagram including the inertia force. 
If it is just about to overturn the reaction at one edge is zero. 

13.3 A body has dimensions as in figure 13.24, but the floor is now rough with 
J.1. = 0.3. If Pis applied while the body is sliding to the left what is its value if the 
body is on the verge of tipping? 
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Figure 13,24 
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13.4 A ship, length 1000 m, mass 2 x 105 kg and radius of gyration about its 
mass centre 200 m, is being manoeuvred by two tugs with tow lines fixed to its 
bow and stern. At a particular instant the bow B is lying due north of the stern S; 
B has an absolute acceleration 5 m/s2 L - 60° and S an absolute acceleration 
2 m/s2 L - 30°. Find 

(a) the angular acceleration of the ship 
(b) its angular velocity and 
(c) the component accelerations ofits mass centre G which is on the line SB, 
400 m from S. 

If at the same instant the tow rope at S makes an angle L 0° find the tensions 
in both ropes and the direction of the rope at the bow. 
Hint: see chapter 11 regarding determination of the velocities and accelerations; 
from the ship's accelerations insert the inertia force- couple set into the free-body 
diagram and solve for equilibrium. 

13.5 A car, mass m, has a wheel base (distance between the front and rear axles) 
of length (b +c), its mass centre G being a distance c in front of the rear axle and 
height h above ground level. The car has rear wheel drive and is on the upward 
slope of a hill which can be approximated in shape to the arc of a circle of radius 
R (>>h) in the vertical plane. If when the car has forward velocity v and forward 
acceleration a the front wheels leave the ground, show that the angle subtended at 
the centre of the arc between G and the vertical is given by 

0 ~ ,.,.-• [ gy(/ +h') ( v;c + ha)]- tan-• : 

Hint: draw a free- body diagram to include the inertia forces. 

13.6 A uniform thin rod of length 3L is supported horizontally on two small 
rough pegs each at a distance L/2 from its mid-point. 

(a) If one peg is suddenly removed show that the reaction of the other peg is 
suddenly increased by half its original value. 
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(b) If in the subsequent motion the rod begins to slip on the second peg when its 
inclination to the horizontal is tan- 1 0.1 find JJ.. 
Hint : draw the free-body diagram (after assuming symbolic velocity and accelera­
tions) when having turned through an angle e; solve for component reactions at 
the peg. 

13.7 A particle of mass m is fixed at the centre of a massless rod of length L. The 
rod has rounded ends and is held in a vertical plane with one end against a smooth 
vertical wall and the other end on a smooth horizontal floor. If the rod is released 
find 

(a) an expression for the angular acceleration of the rod when it is moving and 
making an angle L eo with the horizontal. If the initial angle is L {3° use the ex­
pression to find further expressions for 
(b) the angular velocity of the rod and 
(c) the component accelerations of the particle in the x andy directions when the 
rod is inclined at angle L eo. 
(d) At what angular velocity does the rod strike the ground? 
Hint: draw a free-body diagram including inertia forces based on mass-centre 
component accelerations; find expressions for the total acceleration of the rod 
ends (chapter 11) and note the conditions on their components perpendicular to 
the contact face. 

13.8 Figure 13.25 shows a body A hinged to a uniform block B through one 

~m 
/ 
J-LOI Dond EisO 5 

Figure 13.25 

corner of the block. The whole assembly is being accelerated up the rough incline 
by the applied force P. 

Find the acceleration of the assembly which is just sufficient to reduce to zero 
the reactions between the bodies at C. Hence find the value of P and the normal 
reactions between the plane and body A at points D and E. 
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The coefficient of friction between the plane and A is 0.5, the mass of A is 
50 kg and its centre of mass is at GA. The uniform block B has a mass of 20 kg. 
Hint: draw free-body diagrams, including inertia effects, for each body. 

13.9 Refer to problem 11.18. If the motion of the link is caused by application of 
a force Fat B parallel to the guide find the magnitude and sense ofF at the 
instant described. The link AB may be regarded as a uniform rod of mass 10 kg 
and the mechanism lies in the horizontal plane. Assume the guides are frictionless. 

13.10 Refer to problem 11.7. If BC has a mass of 10 kg and its mass centre is at 
G, about which its radius of gyration is 0.5 m, find 
(a) the external couple required on AB to maintain motion and 
(b) the reaction of the hinge D on the mechanism. 

Assume that links AB and CD have no mass and the mechanism moves in the 
horizontal plane. 
Hint: draw a free-body diagram for BC inserting inertia effects. Note (see chapter 
4) the known direction of the reaction at C. Solve for the reactions at B and C; 
then consider the equilibrium of links AB and CD. 

13.11 A uniform door 2m square, mass 10 kg, lies in the horizontal plane and is 
hinged along its left hand edge. If it is allowed to drop clockwise from the horizon­
tal position find expressions for angular acceleration and angular velocity when it 
has turned through an angle 8. What is the total reaction at the hinge when 
8 = 45°? 
Hint: assume senses of a and n; draw a free-body diagram including inertia effects 
(use tit and an)· Solve the resulting equations for a and integrate to find n. 

13.12 Two rods AB and BC are connected by a hinge at B. End A is hinged to a 
fixed support and end C carries a small roller which can slide in a horizontal slot 
at the same level as end A. AB and BC have length L1 , L 2 and masses m 1 , m2 

respectively. Their mass centres are distant r 1 , r2 from A and C respectively and 
their radii of gyration about the same points A and Care k 1 and k2 • 

The rods are held in a horizontal position and then released. Show that the 
initial angular acceleration of BC is given by 

g[m1r1 + (m2r2LJ)/L2] 
aac = --~~----~----~------

(L2/LI)miki2 + (L1/L2)m2k2 2 

Hint: draw a free-body diagram for each rod to include inertia effect based upon 
assumed accelerations; relate the accelerations of the two rods at the hinge B. 

13.13 A rear wheel drive vehicle has a wheel base length 5 m and its mass centre 
G is 3 m behind the front axle and 2 m above ground level. The mass of the body 
excluding wheels and axles is 1000 kg and each of the four wheels and its axle has 
mass 20 kg, outside radius 0.5 m and a radius of gyration about its centre 
0.25 v2 m. /J. between the road and wheels is 0.3 and the vehicle is on a horizontal 
road. 
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(a) Find the maximum acceleration that it can have before skidding just occurs at 
the driving wheels. 
(b) What is then the total external driving couple required on the two rear wheels 
and the horizontal reaction of one wheel (and axle) on the vehicle frame at 
(i) the rear and 
(ii) the front? 
Hint: draw free-body diagrams for the body and each wheel, inserting the inertia 
effects. Note an external couple on the rear wheels and its reaction on the body; 
if skidding is just about to take place F = pN and the horizontal component of the 
acceleration of the point of the wheel in contact with the road is zero. 

13.14 A wheel, with moment of inertia I about its centre, is fixed on a shaft of 
radius rand round the shaft is wound a length L of thin chain of mass m per unit 
length, one end being fixed to the shaft and the other carrying a body having 
mass equal to that of the whole chain. Initially the shaft is at rest with the attached 
body level with the axis. If the body is released show that the length of chain 
unwound after t seconds is 

2L sinh2 (bt) 

where 

b _ .! J ( mgrz ) 
- 2 I+ 2mLr2 

Hint: assume a length x has dropped at time t and at this instant draw free- body 
diagrams for (1) the mass and the chain length x and (2) the wheel and remainder 
of the chain. Include inertia effects; relate forces in the chain where it leaves the 
wheel and also relate the acceleration of the chain and the angular acceleration of 
the shaft. Hence deduce the equation of motion and the required solution. 
Alternatively consider the whole system. 

13.15 Two shafts each 0.1 m diameter are carried in bearings so that they run 
parallel to each other 2 m apart in the same horizontal plane. The left hand shaft 
is rotated rapidly clockwise and the right hand anticlockwise. A uniform thin 
plank, longer than 2 m, is rested across the shafts with its length perpendicular 
to the shaft axes, whereupon limiting friction forces act on the plank proportional 
to the normal reactions at the shafts. 

Show that the plank oscillates continuously with simple harmonic motion, 
with an amplitude equal to the initial displacement of the centre of the plank 
from a point mid-way between the shafts. If the relevant friction coefficient re­
mains constant and equal to 1/4, determine the frequency of oscillation. If the 
initial displacement is 0.5 m find the minimum speed at which the shafts must be 
run to ensure that the motion of the plank is simple harmonic. 
Hint: draw a free-body diagram at the instant t when the plank's mass centre G is 
at a distance x from mid-way between the shafts; express its acceleration in terms 
of x, insert inertia forces and determine the equation of motion; compare with 
simple harmonic motion. If simple harmonic motion is to be maintained there is a 
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relationship between the peripheral velocity of the shafts and the velocity of the 
plank. 

13.16 A uniform rod of mass 2 kg, length 5 m, and of negligible thickness is 
placed in the vertical plane against a rough wall and on a rough floor (J.L = 0.3 
for both surfaces). If the rod is placed at an angle of L 30° to the floor find 
(a) its instantaneous angular acceleration and 
(b) the normal reaction at each end when it just begins to move. 
Hint: see problem 13.7. 

13.17 If in problem 11.16 the link AB is a uniform rod 8 m long of mass 2000 kg 
and DC has a mass of 500 kg find the force required along DC to maintain the 
motion when t::;: 1 s. What power is required to be supplied to DC at this particular 
instant to maintain motion? 

Assume that friction is absent and that the mechanism lies in the horizontal 
plane. 
Hint: draw separate free-body diagrams for AB and DC inserting inertia effects 
where necessary. 

13.18 If in problem 11.14 roller C has mass of 2 kg and a force of 10 N is applied 
to it to the right, find the couple required on AB to maintain the motion when 0 
equals 60°. Assume links AB and BC are massless and friction is absent. 

Calculate the values of power into and out of the mechanism. Why are they 
different? Check that the difference equals the rate of change of kinetic energy of 
the system (show that dT/dt::;: mav). 
Hint: draw a free-body diagram for C inserting the inertia effects and noting the 
known direction of the force in BC; hence from the equilibrium of AB find the 
couple on AB; refer to chapter 4 if necessary. 

13.19 If in problem 11.14 the mechanism lies in the horizontal plane, block C has 
mass 2 kg (no force now being applied) and BC is a uniform rod of mass 1 kg find 
the couple required on AB to maintain motion when 0 = 60°. Assume AB is mass­
less and friction is absent. What power is then developed at AB? Is this going out 
of or into the mechanism? 
Hint: draw a combined free- body diagram (include all inertia effects) of BC and 
C together. Take moments about a convenient point to eliminate one unknown 
reaction. Check the power by calculating the work done per second by all forces 
and couples on AB. 

13.20 A uniform wooden beam, of mass 20 kg, 4 m long and 0.2 m by 0.5 m cross 
section is lying stationary on a horizontal frictionless surface with its 0.5 m side 
face downwards. A bullet of mass 0.1 kg is fired in the horizontal plane and per­
pendicular to the length of the beam so that it enters and lodges in the beam 
0.5 m from one end. If the bullet's velocity is 2000 m/s what are the angular velo­
city of the beam and the linear velocity of its centre of mass just after the impact? 
Hint: use the impulse- momentum equations after drawing a separate frel)- body 
diagram for both the bullet and the beam; note the equality of the impulsive forces. 



KINETICS OF A RIGID BODY 345 

13.21 Two uniform gears are rotating clockwise on parallel shafts. Gear A has 
50 teeth, a moment of inertia about its mass centre G of 8.0 kg m2 and a speed of 
+ 200 rad/s. Gear B has 20 teeth, a moment of inertia about its mass centre of 
2.0 kg m2 and a speed of+ 100 rad/s. If the gears are pushed into niesh what are 
their final speeds? Note that radii are proportional to number of teeth. 
Hint: choose a sign convention and draw separate free-body diagrams; apply the 
angular impulse - momentum equation 13.16 to both bodies noting that when 
meshed peripheral velocities will be equal but opposite. 

13.22 Three uniform discs A, Band Care freely pivoted and coupled together as 
shown in figure 13.26. A small electric motor which has a normal running speed 

Figure 13.26 

of 200 rev/m is fixed to disc C with its shaft coupled to disc Band B is connected 
to A by a belt. The masses of A, Band Care 5 kg, 5 kg and 10 kg respectively. If 
the motor is started when the system is at rest find the angular velocity of each 
disc when the motor has attained its normal running speed. Neglect the masses of 
the motor and shafts. 
Hint: draw a free-body diagram for the whole system inserting any external forces 
and couples that act during the acceleration period; use impulse- momentum 
equations to relate w A and we; note other relationship of w A and we given by 
the motor speed. 

13.23 A uniform solid cube of mass m and edge of length 2a rests on one face on 
a smooth horizontal table. It is given a horizontal impulse I at the mid-point of 
one edge of its top face and perpendicular to that edge. Show that the impulsive 
reaction at the table is 31/5, and find the initial angular velocity of the cube. 
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Show also that the cube will overturn in the subsequent motion if 

12 > 1OM2 ga ( ..J2 - 1 ) 

3 

Hint: at impact the body will slide along the surface with one edge in contact 
with the surface. 

13.24 A uniform rectangular shaped body 3 m wide and 5 m high, of mass 1000 kg, 
is sliding to the right in the direction of its width along a horizontal frictionless 
surface with velocity V. It hits a horizontal bar A which is 1 m above the surface, 
maintains contact with this during the collision and continues to rotate about it 
without slipping after the impact is completed. 

Find the value of V(m/s) in order that G, the centre of mass, shall just pass the 
vertical above A. For this value of V find the angular acceleration of the body 
when the impact is completed and the body is just starting to turn about A. 
Hint: use equation 13.16 making a judicious choice of origin; use the general 
energy equation to relate velocities and draw a free -body diagram including 
inertia effects to fmd angular acceleration. 

13.25 A tilt hammer is hinged at one end and carries a head at 0.5 m from the 
hinge. Its mass centre is 0.4 m from the hinge, its mass is 150 kg and when 
allowed to oscillate freely with small amplitude about its vertical position its fre­
quency of oscillation is 0.7 Hz. The hammer is raised 45° from the horizontal 
position and allowed to fall to strike a pile of mass 1000 kg when in its horizontal 
position. Find 
(a) the angular velocity just before the impact 
(b) the linear velocity of the pile immediately after the impact 
(c) the average impulsive force between the bodies if the impact lasts 0.01 s and 
(d) the resistance of the earth surrounding the pile if the latter moves 0.05 m 
after the impact. 

Ignore the resistance of the earth during the impact and assume e = 0 for the 
impact. 
Hint: the equations relating to a compound pendulum are required. For (a) use 
the work- energy equation; for (b) and (c) use the impulse- momentum equations, 
for (d) use the work- energy equation. (Be careful about Vg for the hammer.) 

13.26 Two equal uniform rods AB and BC, each of mass M and length L are freely 
jointed at B and are in line, moving perpendicular to their length with velocity u 
in a horizontal plane. The mass centre of AB is suddenly brought to rest by a 
plastic impact. Find the angular velocity of each rod immediately after the impact 
is completed and prove that 4/7 of the original kinetic energy is lost in the impact. 
Hint: draw separate free-body diagrams for AB and BC inserting impulsive forces 
acting on each; use the impulse -momentum equations 13.12, 13.13 and 13.16; 
note the relationship of the linear velocity of the mass centre of BC to the angu­
lar velocities. 
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13.27 Figure 13.27 shows a uniform beam A hinged at one end. This is allowed 
to fall from the horizontal position and when vertical, strikes the cylindrical body 
B, which is initially rotating at 20 rad/s anticlockwise. If the beam rebounds until 

3m 6m 

moss of A is 10 000 kg 
moss of 8 is 5000 kg 
for 8 k~,G is 2 m2 

Figure 13.27 

it makes an angle of 60° with the vertical and p, between the bodies during the 
impact is 0.5 find the speed of B at the completion of the first impact. 
Hint: adopt a sign convention; use the work- energy equation to find the angular 
velocity of A just before and just after the impact; use the angular momentum­
angular impulse during the impact- relating the impulsive forces on the two 
bodies. Use free-body diagrams. 

13.28 (a) Check parts (b) and (d) of problem 13.7 by using work- energy methods. 
(b) Check the equation for n in problem 13.11 using work- energy methods. 

13.29 An electric motor drives the flywheel (moment of inertia Ia•a of 2 kg m2 ) 

of a machine with a constant torque M. The machine punches holes in 0.1 m thick 
plate during which the resisting force is 2000 N; during the withdrawal of the 
punch the resisting force is 500 N. The punching and withdrawal each take place 
during one half revolution of the flywheel. 

The mass of the punch is negligible, the kinetic energy of the system being due 
solely to the flywheel. The speed of the latter at the beginning and end of a com­
plete cycle is to be the same and equal to 20 rad/s. Find 

(a) the work done by the machine in a complete cycle and hence 
(b) the constant torque M delivered by the motor. 

What is the flywheel speed at the end of the punching operation? 
Hint: use work- energy considerations assuming no energy losses occur. 

13.30 What energy is lost during the impact 

(a) in problem 13.21 and 
(b) in problem 13.20? 

13.31 Two trucks run on parallel tracks inclined at sin- 1 0.1 to the horizontal. 
The trucks are connected by a rope, of mass per unit length 3 kg/m, which passes 
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round a 3 m diameter pulley at the top of the incline. The axis of the pulley is 
normal to the plane containing the trucks and the rope is supported to lie parallel 
with the track. The moment of inertia of the pulley about its axis, including the 
rope wrapped around it, is 80 kg m2 and the length of rope exclusive of the 
amount wrapped round the pulley is 300 m. Each truck has mass 1000 kg when 
empty and each, in turn, is loaded at the top of the incline with 4000 kg of ballast 
and then descends under gravity pulling the empty truck up the other track. 

Assuming the resistance to motion of each truck is constant at 0.25 N/kg of the 
total mass of the truck and its load, find the velocity of the trucks after they have 
travelled 200 m along the track and the constant torque to be applied to the pul­
ley to bring them to rest after a further 100 m. 
Hint: can be solved by using equations of motion but since all resisting forces are 
known it is simpler to use work- energy equations; apply equation 13.33 (do not 
forget the rope). 

13.32 Refer to problem 4.22. Each frame has a radius of gyration aj..J3 about its 
mass centre and the force P (at the value calculated in problem 4.22) is applied 
when e = 30° and the platform is stationary. If pis kept constant until e = 60° 
show that, neglecting friction, the velocity of the platform is then 

(2 - y3)(M + m)ag 

M/4 + 2m/3 

Hint: since friction is absent use work- energy equations; relate the velocities of 
the mass-centres of the platform and frames to the angular velocities of the 
frames. 

13.33 A uniform cylinder of radius rand mass m is placed on a rough surface (co­
efficient of friction fJ.) which is inclined at an angle {3 to the horizontal. Show that 
the cylinder will roll without slipping if tan {3 < 3tJ.. 
Hint: draw a free-body diagram inserting inertia effects based upon assumed 
accelerations, check all the relevant equations including the conditions for slipping 
or not slipping. 

13.34 A uniform cylinder radius rand mass m rests on a rough horizontal surface 
for which the coefficient of friction is f.J.. If the surface is now moved horizontally 
with acceleration a perpendicular to the cylinder axis determine the maximum 
value of a if the cylinder is not to slip. What is then the linear acceleration of the 
cylinder? 
Hint: as for problem 13.33. 

13.35 The mass centre of body A in figure 13.28 is at G; A has mass 80 kg. The 
cylindrical body B has mass 20 kg, outside radius 1.5 m and radius of gyration 
1 m about its centre. For the condition shown find the value of x at which slipping 
just ceases at P. 
Hint: draw free-body diagrams for both bodies including inertia effects based up­
on assumed accelerations; note the special conditions if slipping just ceases. 
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I· X I· 

Q 

1-L of Pis 0 .2 

Figure 13.28 

13.36 The cylindrical body Bin figure 13.29 is in the centre of the top face of A 
and both are at rest when a force of 1 OOg N is applied to A as shown. Decide 
whether B slips on A or not and give the accelerations of A and B. 
Hint: draw free-body diagrams (including inertia effects) for both bodies; see 
worked example 13.13. 

ll m 

Q 

10m 

Figure 13.29 

moss of A •s 100 kg 
mass of B .s 50 kg 
forBkGr,•s2m 

A lOOg N 

3m 

R 

i-<aTOandR •sO 3 

13.37 If in problem 13.33 ~ < tan- 1 3J..L show that after rolling a distances the 
kinetic energy Tis exactly equal to the reduction in potential energy, thus confir­
ming that there is no work for the friction force at a rolling contact. 
Hint: find the accelerations of the body, hence the velocities and kinetic energy. 

13.38 If in problem 13.33 ~ > tan -I 3J..L, show that the body accelerations are 

a :: g (sin~ - J..L cos~) 

a = (2 J..Lg cos ~)/r 

and hence that the kinetic energy T after moving a linear distance s is given by 

( 2J..L2 cos2 ~ ) T = mgs sin ~ - J..L cos~ + ------
sin ~ - J..L cos {3 

What is the energy dissipated in this case? 
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13.39 A hammer of mass M1 is hinged at one end at a distance L from its head; 
its mass centre G is at a distance r from the hinge and its moment of inertia about 
G is I G'G· The hammer is dropped from the horizontal position and when vertical 
its head strikes a spring fastened to a body B of mass M2 , this body being initially 
stationary on a rough horizontal table such that the coefficient of friction is p.. 

Taking e = 1 for the impact and assuming that the movement of both the 
hammer and the body is negligible during the impact find expressions for 

(a) the angular velocity of the hammer just before the impact 
(b) the linear velocity of the body when the spring is fully deformed 
(c) the velocity of the body at the end of the impact and 
(d) the distance the body moves after the impact. 

Ignore the frictional effect of the table during the impact. 
Hint: split into three problems 
(1) dropping the hammer- use the work- energy equation 
(2) the impact- use impulse- momentum equations etc 
(3) motion after impact- find the acceleration and hence the distance, or 
alternatively use work- energy equations. 

13.40 A thin uniform beam ABCD, 6 m long, rests horizontally on supports at B 
and C such that AB = CD. End A is raised by turning the beam about C and is then 
released. 

(a) Assuming that there is no slipping at the supports, show that the end D will 
rise above the original horizontal position of the beam if BC is less than 3.46 m. 
(b) If BC = 3 m and A is raised a vertical distance of 0.6 m by turning the beam 
about C, determine the vertical distance D will rise when the beam is released. 
Hint: for (a) use the impulse- momentum equations after drawing a free-body 
diagram; you will have to assume that any impulsive reaction at C is very small 
compared with that at B. For (b) use the work- energy equations to find the 
angular velocity before impact, a momentum equation for angular velocity after, 
and again a work- energy equation to find the height to which D rises. 



Appendix 

Standard Integrals 

S_dx __ = ~ ln 
a2 - x2 2a (~) a - x 

(forx<a) 

---=-tan-S dx 1 _1 (X) 
a2 + x 2 a a 

f dx __ _2_ ln (x - a) 
x 2 - a2 2a x + a 

(for x >a) 

f xdx 1 2 2( --- = - 2 ln (a - x ) for x < a) 
a2 - x2 

Length of a Curve and Radius of Curvature 

Length of a small segment of a curve 

or 

ds = [' + (:)')~ 

ds = [ (: )' + ,, p6 
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Radius of curvature 

or 

Solutions of Particular Differential Equations 

For 

the solution is 

y =A sin(yKt + cf>) 

For 

the solution is 
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Properties of Homogeneous Thin Plates 

m is the mass of the body shown. 

Plate Area Mass - centre Moment of Inerlio 

~ 
b mb2 

~ y0= constant -<o=2 Iyy=12 

~ ab 
y 

ma2 
fci~y rectangular 

a 
.Yo=2 Ixx=l2 

J• b y'l JO=constxx0 
2b mb2 

xo=-y lyy=18 

~] ab 
2 

Yo • - a ma2 fci xo y· tnangular Yo=3 Ixx=18 

j• b y"l y0=constxx02 3b 3mb2 
-<o=4 Iyy=ao 

~I ab 
3 Yo - 3a 1 = 37ma2 fo\ •o y· parabolic ro=w XX 700 

j· b •I y0= canst x x0" - (n+1lb L _ mb2(n-t 1) 
xo= (n+2) YY (n +2)2 (n-t 3) 

~;r 
ob 

(n-t1) 

YofO x y• (n-t1)a [, = ma2 (n+1)(7n2+4n+1) 
.Yo=2(2n+1) xx 12(2n+1)2(3n+1) 

~ 
b+c m(b2+c2-bc) 

X"o=-3- 1rr= 18 

P--+ -¥ x a 
ab 
2 

a ma2 
ofO x y·b tnangular J6=3 Ixx=18 

~ 
2r Sin a L = mr2 [1+ s~n2a _!§( Sln2al] X"o=---sa YY 4 2a 9 a2 

r 2a x·- Y -x 
c1ncular 

1 = mr2(1_son 2 a) sector xx 4 2a 

x-~-x 
4r mr2 ( 64 ) 

X"o= 3,. Iyy=---,;;-- 1- g;2 

..,,2 

0 X"o 2 
mr2 

y• sem1c1rcular fxx=4 

: Fis;h - 4b mb2 64 
•o= 3-rr Iyy=4 (1- 9..,2) 

-rrab 
4 

Yo elhphcal 4o ma2 64 
fO~y· quadrant .Yo=3.., J.x=4 (1- 9,;2) 

~y rs1na 1 =mr2(l+son2a _ s~n2 a) x=--

x-m-x 
0 a YY 2 4a a2 

-
th1n CirCular 

I. =mr2(1- s1n2a) •o--.... annulus 
I IY' xx 2 4a 
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Properties of Homogeneous Bodies 

m is the mass of the body shown. 

Body 

th1n rod 

crrcular 
cylinder 

elliptical 
cylinder 

rectangular 
parallelepiped 

nght c~rcular 
cone 

hem1sphere 
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volume 

=.,. abL 

area of 
curved surface 
= rr(a+b) L 

volume 

=~rr/L 

area of 
curved surface 
=.,. r /(r 2+L2 ) 

volume 

=% 7rr3 

area of 
curved surface 
= 2.,-r 2 

Moment of Inert1a 

lxx= lzz 

= -&mL2 

Ixx= lzz 

=tmr2+tzmL2 

fxx= lzz 

= {omr2 + tomL 2 

Ixx =I,, 
83 2 

= 320mr 



Answers to Problems 

Chapter 2 

2.1 (a) (b) (e) (f) scalar; (c) (d) (g) (h) vector. 
2.2 (a) 7.74 L 71.2°; (b) 26.5 L- 10.9°; (c) 213 L 195.9°. 
2.3 (a) 2.83 L 28°; (b) 17.3 L 120°; (c) 595 L 35°. 
2.4 3.1 L 142° 
2.5 (a) ax = 9.64, ay = 11.5; (b) bx =- 17.3, by= 10; (c) Cx =- 8.66, 

Cy = 5. 
2.6 8.78 L- 52.9°. 
2.7 I al = 8.37; (a) 21 o; (b) 45.8°. 
2.8 12.8 L- 18.2°. 
2.9 a= 14.5 L 39.9°, b = 6.2 L 186.2°. 

Chapter 3 

3.1 20 Nat 47°, 30 Nat 29°. 
3.2 IPI = INI = 1.13 N. 
3.3 37.4°, 6.69 N, 23.8 N. 
3.4 (a) 37.8 N L 126.6°; (b) 37.8 N L- 53.4°. 
3.5 175400 N. 
3.6 IPI=127N,IQ1=58.5N. 
3.7 P= 133.6 N L 153.9°, Q = 66.8 N L 63.9°. 
3.8 T=16.24N~--+ ____.. ~ 
3.9 Note OA = OG + GD + DA and GC = 2GD, where Dis the centre of AB. 

Chapter 4 

4.1 (a) 16.4 N L 165.4°, 29.3 N m anticlockwise; (b) 16.4 N L 165.4°, 
1.79 mL 75.4° fromA. 

4.2 P= 10 N, 14.14 N L 135°. 
4.3 (a) Yes; (b) R 1 = 425 N, R 2 = 175 N, R 3 = 1000 N. 
4.4 (a) Yes; (b) R 1 = 204 N, R2 = 1022 N,R 3 = 162 N. 
4.5 (a) No; (b)RA = 375 N,R8 = 41.6 N,Rc = 83.3 N; (c) statically 

indeterminate. 
4.6 A force 23.2 N L 190.3° plus a couple 2.17 N m anticlockwise. 
4.7 F= 115 N;RH = 140 N L 64.3°. 
4.8 P= 68 N;RH = 207 N L 109.1°. 
4.9 (a) 22.3° (40 kg), 49.5° (20 kg); (b) 11.3°. 
4.11 (a) No; (b) 8.53°. 
4.12 P= 343 N,Rcx = 98.1 N~,Rcy = 109 Nt,R0 = 60.4 Nt,RH = 263 Nt, 

RE = 332 Nt. 
4.13 P= 1037 N,R0 = 770 N~,REx = 870 N+-,REy = 273 N~. 
4.14 RE = 0.53 kNt, RAx = 2.12 kN~, RAy= 0.18 kNt; ED, 1.06 kN(T); 
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EC, 1.19 kN (S); DC, 1.41 kN (T); DA, 0.35 kN (S); CB, 0.71 kN (T); 
CA, 1.97 kN (S); BA, 0.71 kN (T). 

4.15 BC, 2.73 kN (T); CD, 2.45 kN (S); BD, 1.73 kN (T); DE, 1.73 kN (S); 
AB, 4.46 kN (T); BE, 2.45 kN (S); AE, 1.73 kN (T). The force in AB 
would be reduced to 1.73 kN. 

4.16 CE, 1.42 kN (T); ED, 2.58 kN (S); CD, 1.33 kN (S); AC, 1.38 kN (T); 
DF, 3.02 kN (S); AD, 0.72 kN (S). 

4.17 Torque= 2.19 Nmclockwise;RA = 13.8 N L 179.4°,R0 = 8.37 N 
L 126.9°. 

4.18 RAy= 0.354 k~t,RAx = 2.6 kN~;Rcy = 0.646 kN.J-,Rcx = 3.63 kN+-; 
Ray= 0.354 kN.J,, Rsx = 1.9 kN~. 

4.19 Torque = 1.53 kN m clockwise; R 0 = 1. 78 kN L - 90°; R E = 14.5 kN 
L 200.6°;RF = 7.7 kN L 62.6°. 

4.20 Torque= 5kNmclockWise;R0 28 kN L - 39f,R0 = 24.7 kN L 243°, 
RE = 10 kN L 180° (graphical soltltion). 

4.21 Torque = 522 N m anticlockwise. 
4.22 P= y3 (M + m)g 

Chapter 5 

5.4 p.>0.5 
5.5 (a) No; (b) Nw, 147 to 131, Fw, 0 to 26.3, NF, 490to 464, FF, 147 to 

131; (c) No, the friction forces cannot be limiting simultaneously, (d) No. 
(e) 32.6°. 

5.7 0.52 m. 
5.10 (a) 334 N; (b) 864 N; (c) (i) 56.6°, (ii) 33.4°. 
5.11 (a) 51.4°; (b) 68.2 N. 
5.12 (a) 16.7°; (b) Yes; (c) (i) 232 N, (ii) 65.7 N. 
5.13 3.34 m. 
5.14 Belt first slips at B when TtfT2 = 1.702; 132 N m; Yes. 
5.15 52.5°. 
5.16 515 N. 
5.17 (a) 27 N m; (b) 52.7 N m in direction of motion. 
5.18 (a) 11.7 N m; (b) 3.45 N m; 0.08 m. 
5.19 (a) 327 N m; (b) Yes; (c) 0.205 m. 
5.20 125 N m. 
5.21 r 1 = 0.126 m, r2 = 0.378 m, Mr = 437 N m; P max = 100 kN/m2 , 

Mr=403 Nm. 
5.22 (a) 503 N; (b) 208 N. 
5.23 IJ.a > Ro IJ.o/ra· 
5.24 (a) At the axle; (b) 8 = 9.4°, P= 650 N. 

Chapter 6 

6.1 P= y3 (M + m)g 



ANSWERS TO PROBLEMS 

Chapter 7 

7.1 x = 1.67m,y = 0.833 m. 
7.2 2.77 m. 
7.3 (a) 0.266 m; (b) 0.197 m. 
7.4 27.3°. 
7.5 x = 1.54 m, y = 0.937 m. 
7.6 x =2m, y = z = 0.85 m. 
7.7 L =Ry'(2/3). 
7.8 0.163 m. 
7.9 (a) 0.35p g; (b) 1.96 m. 
7.10 (a) 6280 kg; (b) 0.975 m. 
7.11 A= 0.141 m2 , V= 0.00471 m3 • 

7.14 Area= KR 3 /3; x = 3R/4; volume of revolution= rrKR4 /2; 14 rad/s. 

Chapter 8 

8.1 (a) 23.1 s; (b) 46.7 s. 
8.2 v = 30 m/s, a= 5/6 m/s2 , 540 m. 
8.3 (a) 15 m/s; (b) 400/3 s, 200 s, 800/3 s. 
8.4 (a) No; (b) No, it has a limiting value ofO.OS m/s2 ; (c) 240.5 s; 

(d) 1360 m; (e) 1/45 m/s2 , 1/25 m/s2 • 

8.5 (a) 10 m/s; (b) 1.35 s, 8.47 m; (c) It falls until it reaches a steady value 
of 10 m/s. 
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8.6 (a) 29.3 s, 170.7 s; (b) 100 s; (c)- 1.414 m/s2 , + 1.414 m/s2 ; (d)- SO m/s; 
(e)+ 690 m,- 4023 m; (f) 4713 m; (g) 63.4 s, 236.6 s; (h) 9426 m. 

8.7 v = 20.6 m/s L 61.7°;a = 167.7 m/s2 L 262f; 1.69 m L 57°. 
8.8 (a) 4.47 m L 26.6°; (b) 2.0 s; (c) At this time the particle is at its nearest 

distance fort> 2 s; (d) v = 2.24 m/s L 116.6°, a= 3.16 m/s2 L 161.6°. 
8.9 7.65 m L 87.7°, v = 5 m/s L 144.5°,a = 3.55 m/s2 L 234.5°. 
8.11 (a) Vm = 31.4 m/s, am= 1974 m/s2 ; (b) v = + 25.1 m/s, a=- 1184 m/s2 ; 

(c) 0.0356 s. 
8.12 (a) Urn= 6.58 rad/s; (b)~ = 82.7 rad/s2 ; (c) n = 6.2 rad/s, a=- 27.6 

rad/s2 • 

8.13 T= 12 s, A= 0.3 m. 
8.14 x = 6.4 sin (4t + 38.7°). 
8.15 (a) 0.603 m L 12.7°; (b) v = 17.8 m/s L 204.8°; (c) a= 262 m/s2 

L 153.7°. 
8.16 23.1 m/s, 46.2 m. 
8.17 74.5 min, 6 km, 54 min. 
8.18 (a) 18.75 km/h; (b) 13.4 min. 

Chapter 9 

9.1 29.62 N; beam balance will indicate 19.62 N. 
9.2 v = y'[2gs (sin 0 - 11 cos 0)]. 
9.3 a= g [m2 - m1 (p. cos 0 +sin 0)] /(m 1 + m2 ). 
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9.6 64.3°. 
9.7 (a)gy(4 sin2 8 + cos2 8); (b) y(2gR sin 8); (c)3mg sin 8. 
9.8 (a) 40.19 m/s; (b) 6.84 s; (c) 175m. 
9.9 TAB= 4g/3 N, T8c = 2g/3y3 N. 
9.10 (a)x =- na sin 8;x=- il2a cos 8; (b)N= m(g- il2a cos 8); (c) 

il=y(gfa). 
9.11 (a)j =- 4.16 m/s; (b).X =- 4.13 m/s2 ,y =- 2.37 m/s2 • 

9.13 8=44.4°. 
9.14 8.68 m/s. 
9.15 t = 0.055 s, s = 1.39 m. 
9.16 T= 2rry(R/g). 
9.17 (a) 1 m/s; (b) 0.2 m; (c) 0.943 s. 
9.18 v = 10 m/s L 38.7°;a = 18.87 L 96.7°;P= 1 N;N= 1.6 N;P does not 

vary. 
9.19 a1 =-21g/51,a2 =15g/51,T1 =72mg/51. 

Chapter 10 

10.1 6 m/s to the left. 
10.2 Body comes instantaneously to rest after 0.64 s, velocity after 5 s is 

46.8 m/s to the right. 
10.3 (a) t2 = 2.94 s (it comes to rest at this time in its downward motion and 

10.4 
10.5 
10.6 
10.7 
10.8 

10.9 
10.10 
10.11 

10.16 
10.17 
10.18 

instantaneously reverses); (b) t3 = 3.88 s; (c) 24 m/s. 
v = 6.61 m/s, 17850 N. 
2m, 300 Nm. 
my(5gR). 
0.9R; it carries on in the same direction with velocity 2y(gR.f5). 
Taking the direction of the velocity of A before the impact as positive 
(a) vA =- 6.57 m/s, v8 = + 1.99 m/s; (b) 12.8 N s; (c) 13.7 N m. 
(a) 125 m/s; (b) 41.7 m/s; (c) 55.2 m/s. 
904 m/s, 58.1 N s. 
(a) 10 m/s; (b) 3 m/s; (c) 3.75 m/s, 0.968 m; (d) vA = 7.5 m/s, v8 = 
- 2.5 m/s; (e) v A·· 0 to 7.5 m/s, v8 , 10 to- 2.5 m/s. 
(mv2 tan2 cp)/2 + mgR (1 -cos cp). 
3. 
Taking the velocity of A as positive (a) v A= (L 1 + L 2 }\/[Km2 /m 1 

(m2 + md], Va =- vAmdm2;(b)sA =sa= (m2L2- m1Ld/ 
(m1 + m2); (c) sA= [m2(L + L2)- m1Ld /(m2 + m!), sa= [m2L2 -
m1 (L + Ld] /(m2 + m!). 

10.21 10 w. 

Chapter 11 

11.1 EVB = 4.35 m/s L 36.6°, E0B = 10.14 m/s2 L 249.5°. 
11.2 n = 2.38 rad/s direction indeterminate; o: = 1.66 rad/s2 clockwise; 

28 m/s2 L- 30.4°. 
11.3 EvH = 4.07 m/s L 0°; ilsoF = 5.7 rad/s clockwise. 
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11.4 
11.5 

(a) Eve= 0.68 m/s L 147°; (b) nHJ = 1.86 rad/s clockwise. 
(i) (a)- 5 rad/s, (b)+ 7 rad/s; (ii) (a)- 35 rad/s, (b) 1 rad/s; (iii) 
(a)- 20 rad/s, (b)+ 4 rad/s. 
nAc = 1.73 rad/s anticlockwise, Evn = 2.75 m/s L 23.7°. 
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11.6 
11.7 (a) nac = 5 rad/s anticlockwise, aac = 43.3 rad/s2 clockwise; (b) EaG = 

86.6 m/s2 L 210°. 
11.8 

11.9 

11.10 

11.11 

11.12 
11.13 
11.14 

11.15 
11.16 

11.17 

11.18 

(a) EvP = 5.7 m/s L 30°; (b) EaP = 18 m/s2 L 210°; (c) EaG = 96 m/s2 

L 260°; (d) ncP = 2.54 rad/s clockwise; (e) 28 rad/s2 clockwise; 
(f) retarding. 
(a) EvF = 3.9 m/s L 174°, EaF = 42.5 m2 L - 8°; (b) nAB = 4.58 rad/s 
anticlockwise, aAB = 28.3 rad/s2 anticlockwise. 
(a) EvF = 0.96 m/s L 30°; (b) nAB= 0.98 rad/s antic1ockwise; (c) a 80 = 

24.3 rad/s2 anticlockwise. 
EaD = 10.6 m/s2 L 0°; sliding acceleration of C relative to the slot is 
13.5 m/s2 L 117.3°. 
EVA= 2.04 m/s L 0°; EaA = 152.4 m/s2 L 0°. 
EaFG = 10.7 m/s2 L- 90°; aac = 22.8 rad/s2 anticlockwise. 
nAB= 2.886 rad/s clockwise; aAB = 5.966 rad/s2 anticlockwise; 
EVD = 3.82 m/s L 10.9°; EaD = 5.31 m/s2 L 253.6°. 
Eva= 2.89 m/s L 0°; Eaa = 53.9 m/s2 L 180°. 
nAB = 0.88 rad/s clockwise; aAB = 0.052 rad/s2 anticlockwise; 
dr/dt = + 3.09m/s; d2 r/dt2 = + 7.63 m/s2 • 

(a) nPQ = 17.6 r~d/s clockwise, G:p9 = 2590 r~d/s2 clockwise; (b) EVz = 

9.93 m{s L- 45 , Eaz = 1004 m/s L- 65.3 ; (c) EvQ = 12.5 m/s 
L- 82.5°, EaQ = 1680 m/s2 L 253.7°. 
nAB= 2.886 rad/s clockwise, G:AB = 4.81 rad/s2 anticlockwise; 
EaG = 4.81 m/s2 L- 90°. 

Chapter 12 

12.3 (!xx)G = ptR4 (1T/8- 8/91f), (!zz)G = ptR4 (1T/4- 8/91f). 
12.4 lyy = 13000 kg m2 • 

12.5 lxx = 4050 kg m2 • 

12.6 lzz = 16611 kg m2 • 

12.7 lzt zt = lz3 z3 = 1624p kg m2 , lz2 z2 = 595p kg m2 • 

12.8 lxx = 47.57 kg m2 • 

12.9 ~Y = 44.25p kg m2 , lxx = 56.025p kg m2 , lytyt = 57.75p kg m2 • 

12.10 ~lxx)G = 10.687p kg m2 , (/zz)G = 17.062p kg m2 • 

12.11 (a) I axis = 8.247 kg m2 ; (b) /dia = 6.1 kg m2 . 

12.12 9.675 kg m2 , 85.2%. 

Chapter 13 

13.1 Body accelerates to the right with a= 100 m/s2 L 0° and a= 41.7 rad/s2 

clockwise. 
13.2 P= mg, a= g. 
13.3 P = 1.9mg. 
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13.4 (a) a= 0.000768 rad/s2 clockwise; (b) n = 0.0577 rad/s (direction 
indeterminate); (c) a X = 2.04 m/s2 L 0°' a;. = 2.33 m/s2 L - 90°' 
Ts = 238000 N, Ta = 496000 N L - 70.1 °. 

13.6 p. = 0.2. 
13.7 (a) a=- (2gcos 8)/L; (b) n =y[4g(sin{3- sin 8)/L]; (c)ax =gcos 8 

(2 sin {3- 3 sin 8), ay = g(2 sin28- cos28- 2 sin {3 sin 8); (d) 
y[(4g sin {3)/L]. 

13.8 a= 12.1 m/s2 ,P= 1490 N,NE = 85 N,N0 = 510 N. 
13.9 F=9.26N L0°. 
13.10 (a) 595 N m clockwise; (b) 187.5 N L 120°. 
13.11 a= (3g cos 8)/4, n = y'[(3g sin 8)/2], 174 N L 129.3°. 
13.13 (a) 1.93 m/s2 ; (b) 1080 N m; (i) 1022 N in the direction of motion; 

(ii) 57.9 N in the opposite direction to motion. 
13.15 f= 0.249 Hz, 2.49 rev/s. 
13.16 (a) a= 1.504 rad/s2 clockwise; (b) 7.06 Nat wall, 11 Nat floor. 
13.17 2673 N, 16.04 kW. 
13.18 24.25 N m anticlockwise; power in= 50 W, power out= 70 W. 
13.19 10.65 N m anticlockwise, 30.74 W out. 
13.20 n = 10.93 rad/s, v = 9.87 m/s. 
13.21 QA = + 53.6 rad/s; rJ.a =- 134 rad/s. 
13.22 rJ.A = rJ.a, rJ.A = rJ.c + 200, rJ.c =- 21.05 reV/min, rJ.A = 179 rev/min. 
13.23 n = 31/Sma. 
13.24 V= 6.3 m/s, a=- 2.01 rad/s2 (that is, opposite to its angular velocity). 
13.25 (kG 2 = 0.0428 m2 ) (a) 5.23 rad/s; (b) 0.284 m/s; (c) 28370 N; (d) 

11890 N. 
13.26 DAB= rJ.Bc = 6u/1L. 
13.27 6.85 rad/s. 
13.29 (a) 250 N m; (b) 39.8 N m, 18.03 rad/s. 
13.30 (a) 140503 N m; (b) 197050 N m. 
13.31 v= 11.083 m/s, 10908 Nm. 
13.34 a = 3p.g, a = p.g. 
13.35 1.19 m. 
13.36 Slipping does not take place at P; a A = 0.477g, aa = 0.147g, a= 0.11g 

rad/s2 • 

13.38 Energy dissipated= mgs p. cos {3 (sin {3- 3p. cos {3)/(sin {3- p. cos {3). 
13.39 (a) nt = y(2Mtgr)/(IG + Mtr2 ); (b) v2 = r1.tL(IG + Mtr2 )/(IG + Mtr2 + 

M2 L 2 );(c)v3 =2v2;(d)s=4M1L2 r(IG +M1r2)/p.(IG +M1 r 2 +M2L2i. 
13.40 (b) 0.0122 m. 
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acceleration 1 25, 164 
absolute 232 
angular 143 
Coriolis 156, 244 
diagram 241 
gravitational 1 7 
image 241 
relative 148, 231 
sliding 245 
summation 150 

acceleration components, intrinsic 
139 

polar 140 
rectangular 139 

acceleration diagram 242, 244 
active force diagram 95 
amplitude 129 
analytical method 248 
angular impulse, particle 295 

rigid body 296 

bearing and axle friction 81 - 3 
belt and cable friction 75 -77 

centre of gravity 25, 104- 12 
circular wire 108 
composite bodies 119 
sector plate 109 
triangular plate 107 

centre of mass 112 
centre of oscillation 290 
centre of parallel forces 24 
centre of percussion 288, 302 
centre of suspension 290 
centroid 113- 18 
clutch friction 78-81 
coefficient of friction 58 
coefficient of restitution 195, 205 
components 8 - 1 0 

rectangular 13 - 15 
composite problems 332-8 
concept 1 
configuration 41, 98 
connected bodies 33 -7, 94 
connected particles 1 7 5 
constrained link 239-42 

constraint 93 
relaxation of 96 
types of 33 
workless 93 

Coriolis 156 
component 156 

couple, definition 23 
effective 286 
inertia 290 
work of 92 

definition 1 
deformation 193 
diagram, acceleration 241 

active force 95 
free-body 5, 11 
velocity 240 

dimension 1, 2 
derived 1 
primary 2 

displaceJUent 124 
virtual 93 

elastic constant 96 
energy, ldnetic 203, 312 

potential 213, 215 
total mechanical 215 

entity 1 
derived 1 

equations of motion, particle 164 -70 
particle system 170- 84 
rigid body 283-95 

equilibrium 3 
conditions for 15, 30, 94 
definition 15 
dynamic 167, 291 

fixed-axis rotation 228, 288 
force 1, 13 

active 95 
applied 31, 93, 167 
body 33,171 
conservative 213 
constraint 31, 9 3 
contact 171 
effective 166, 283 
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force (cont.) 
external 21 , 1 71 , 286 
extraneous 216 
field of 167, 214 
friction 57 
gravitational 16, 31, 167 
impulsive 192 
inertia 21, 166,290 
internal 171 
moment of 25 
reaction 31 
resultant 13, 164 
surface 32 
unit 165 
work of 91 

force- couple set 27- 8 
equivalent 286 

frame, reference 165 
inertial 165 

frames, simple 40 
virtual work 94 

free body 5, 33, 41 
diagram 5, 11 

freedom, degrees of 94, 98, 175 
frequency 129 

circular 129 
friction 57-90, 325 

angle of 59- 60 
applications 67 - 83 
characteristics of 57-9 
circle 82 
coefficient 58 - 9 
dry or Coulomb 57 
in rigid body motion 325- 31 
law of 58 
limiting value 58 

gravitation, law of 210 
gravity 16 

acceleration due to 211 
centre of 25, 104 

hodograph 137 

impact 192 
central 193 
direct 193 
eccentric 193 
elastic 193 
oblique 193 

oblique central 199 
plastic 196 
rigid bodies 305 - 11 

impulse 186, 295 
angular 295 
linear 186 

INDEX 

impulse- momentum equation, 
particle 187 

rigid body 296 
inertia 3 

couple 290 
force 290 

inertial frame 165 
instantaneous centre 232, 235 

jamming 68, 71 

kinematics, particle 123 - 63 
rigid bodies 226-61 

kinetics, particle 123 
equations of motion 165 - 85 
integrated forms 185 - 225 

rigid body 283- 350 
kinetic energy, particle 203 

rigid body 312 

law 1 
length 1 
linear impulse, particle 186 

tigid body 299 
linear momentum, particle 186 

rigid body 298 
machine 41 
mass 3 

inertial 165 
unit 165 

mass-centre 112, 190 
definition 173 
motion of 1 72 

mechanical energy 215 
mechanism 41 

virtual work 96 
moment, of components 26 

of couple 26 -7 
of force 25 - 6 

moment-centre 25 
moment of area 113 
moment of inertia 262- 81 

circular cylinder 272 
circular plate 268 
complex bodies 274 
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cylinder theorem 273 
elliptical plate 269 
parallel axis theorem 265 
perpendicular axis theorem 262 
rectangular plate 268 
rectangular prism 271 
sphere 274 
triangular plate 269 

momentum, angular 295 
linear 186 

conservation of 190 
motion, angular 143 

constrained 236 
curvilinear 134-42 
equations of 164- 84, 283- 95 
fixed-axis rotation 228 
general plane 228 
impending 61 
oscillatory 134- 42 
plane 226 
rectilinear 122-34 
relative 148-58 
rigid body 226-32 
second law of 164 
simple harmonic 128, 145 
translation 226 

Newton 1, 164 
first law 15 
law of gravitation 210 
second law 164 
third law 21 

Pappus and Guldinus 114 
theorems 114 

parallelogram law 7 
particle, definition 5 

equations of motion 164 -70 
particle system 189, 207 

equations of motion 170- 84 
pendulum, compound 289 

simple 289 
periodic time 128 
phase angle 146 
polygon law 13 
position 123 

components 135 
relative 148 

postulate 1 
potential energy, particle 213 

rigid body 21 5 

power 205-6 
of torque 314 

principle 2 
of motion of mass-centre 174 
of transmissibility 22 
of virtual work 94 

radius of gyration 262 
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relative motion, curvilinear 149-58 
rectilinear 148 

restitution 193 
coefficient of 195 

resultant, coplanar forces 28- 9 
definition 13 
parallel forces 22-4 

retardation 125 
rigid body, definition 5 

equations of motion 283-95 
rolling disc 236-8 
rules of thumb 248 

scalar, definition 6 
screw friction 72 - 5 
self-locking 68-71 
simple harmonic motion 128, 145 
solution of problems 11, 31, 67, 174 
speed 125 
spring force, work of 212 
strain energy 31 5 
strut 38 
surface of revolution 114 
surroundings 5 

work of 209 
system, boundary 5 

definition 5 
of particles 207 

three-force member 34 
thrust bearing 7 8 - 81 
tie 38 
time 1 
torque 27 

work of 92 
translation 150, 227 

curvilinear 227 
rectilinear 227 

triangle law 7 
tribology 57 
truss, simple 37-40 

virtual work 94 
two-force member 34 
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unit 22 
British Engineering 1 0 
coherent 165 
force 165 
length 165 
mass 165 
SI 10, 165 
time 165 

unit vector 8 

Varignon 26 
theorem 26 

vector 6 
addition 7 
component 8 
definition 7 
subtraction 8 

velocity, absolute 232 
angular 143 
definition 124 
diagram 240 
image 240 
notation 239 
relative 148, 231 
sliding 245 
summation 150 

INDEX 

velocity components, intrinsic 137 
polar 136 
rectangular 136 

velocity diagram 240 
simple mechanisms 242 

velocity- time graph 125 
virtual work 91 - 103 

elastic member 96 
friction 96 
principle of 94 
simple frame 94 
simple truss 94 

volume of revolution 115 

wedge friction 67 - 8 
weight 17, 168 

intensity 1 06 
work 91, 203 

definition 91 
in general plane motion 313 
of couple 92 
of gravity force 210- 12 
of spring force 212 
virtual 91-103 

work -energy equation 216 
rigid body 315 

work- kinetic-energy equation 204 




