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Preface

The aim of this text is to present a systematic development of elementary applied
mechanics assuming a mathematical background of elementary algebra, geometry
and calculus. A knowledge of the principles of Newtonian mechanics is funda-
mental to the solution of many engineering problems and is a prerequisite for the
study of more advanced texts; it is hoped that the treatment here will provide
sufficient material on which this knowledge can be based.

Our experience leads us to believe that a return to basic principles is often
desirable, and is particularly necessary for new engineering undergraduates who, in
spite of having been exposed to previous instruction, frequently display a lack of
familiarity with the meaning and significance of certain basic ideas. It is to this
category that the book is mainly addressed, namely first-year students studying
for an engineering degree or equivalent, who have some acquaintance with the
subject matter but who require a more thorough grounding. The book is designed
to cover the applied-mechanics content of the first year of an engineering degree
course but will, in many cases, also provide a significant contribution to the
second -year syllabus in mechanics of machines.

The traditional subdivision into statics and dynamics has been retained in order
that familiarity may initially be gained with forces and their manipulation. We do
not wish to appear pedantic in this matter since we recognise that there may be
an equally good case for placing the initial emphasis on the concept of mass.
Unfortunately it is difficult at this elementary level to treat one without the other,
and a choice has to be made.

Having expressed Newton’s laws in terms of particle behaviour the development
of both statics and dynamics proceeds by way of particle systems to rigid bodies
and systems of rigid bodies, incorporating in some cases a limited number of
elastic elements.

In order to keep the discussion within reasonable bounds certain topics have
been purposely omitted in the knowledge that detailed treatments are available
elsewhere. For example, a more comprehensive study of the methods of structural
analysis is better left to those books devoted to this topic. More important is the
limitation of the discussion in the main to topics in two dimensions. This is in
accord with the elementary nature of the book, but the decision was also based on
the belief that the extension to three dimensions is facilitated by a thorough
grounding in the basic principles that we hope this book will provide.

The inertia-force method of solution is given prominence for dealing with
problems involving acceleration. Objection is raised by many, whose views we
respect, on the grounds that the method is of historical interest only, and that it
is used to assist in solving problems whose solution using dynamical principles
requires no such assistance. We do not think these objections are completely
valid; we maintain that the method has its merits and does nothing to relieve the
student of the necessity of fully understanding the dynamics of the problem.
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Our justification for writing yet another book on applied mechanics is that we
felt there was a gap between those of very elementary nature and the more com-
prehensive texts that give rather more coverage than we considered necessary at
this level, and that this gap could be filled by a book based on elementary mathe-
matical knowledge but in which the argument was carefully developed. Also, by
imposing the limitations already mentioned, we hope that the book will be within
the financial reach of the student we wish to address. With these considerations in
mind we claim no originality for the subject matter, the principles of which have
long been recognised. However, we hope that the presentation, including the
worked examples, chapter summaries and hints to problems, will be found of
direct assistance to the student.

The book is separated into thirteen chapters with sections and subsections
identified by a decimal notation; for example, 2.3.4 refers to subsection 2.3.4 in
chapter 2. Equations relating to the text also carry a decimal notation and are
numbered consecutively through each chapter; for example, the fifth equation in
chapter 2 is numbered 2.5. Figure numbers again use the decimal notation and are
numbered consecutively through each chapter including those relating to worked
examples and problems. Answers to problems are assembled at the back of the
book in the hope that students will exercise some restraint before consulting these.

We wish to acknowledge the encouragement of several colleagues in making
comments on certain chapters, also the unstinting help of our typists, in particular
Mrs Wilma Scott.



1 Introduction

Theoretical mechanics is that aspect of applied mathematics that is relevant to the
physical world and in particular to the interactions and motion of matter. The
study has regard to observable phenomena and is developed from basic concepts,
definitions and postulates relating to those phenomena, the development of the
theory being essentially mathematical. In the study of applied mechanics or
engineering mechanics we emphasise the application of the theory of mechanics
to solutions of practical problems and to predictions of the behaviour of mechani-
cal systems. In setting up the relevant theory we endeavour to follow a logical
development similar to that of theoretical mechanics.

1.1 Concept: Postulate: Law

The physical concepts we have referred to and on which our study will be based
are those measurable attributes of the material world that are simply recognised in
experience and that cannot be further described or explained in terms of simpler
concepts. For our present purpose they are three in number, namely extension in
space, duration in time and action on matter, giving rise to corresponding entities
or dimensions that can be observed and measured, namely length, time and force.
On seeking relations involving these entities, other entities derived from them are
immediately encountered or are found to be required in our descriptions of the
behaviour of mechanical systems. These are called derived entities or derived
dimensions, some examples of which are area and volume, velocity and accelera-
tion, work and energy. Others are specially formulated to assist and simplify our
descriptions. A definition involves the recognition or formulation of such new
entities, their naming and their subsequent identification. These definitions will
be introduced as they are required. It will be found that careful use of names in
the sense in which they have been allocated in the definitions will enable many
pitfalls to be avoided.

A postulate is a statement setting out, in as precise a form as possible, a relation
between entities that it is thought corresponds to the behaviour of the physical
world. Such postulates, which are in effect plausible assertions, form the starting
point for the development of the theory, by way of deductions and predictions
from those postulates.

A law is a statement of this kind that has been found to correspond closely
with experimental observations and is justifiably accepted as being valid in the
light of past and present experience. Subsequent deductions and predictions are
then soundly based. The theory that we shall develop in this book is based pri-
marily on Newton’s three laws of motion, which have been found to be unassail-
able as far as engineering applications are concerned.

1



2 BASIC ENGINEERING MECHANICS

At certain points important statements are made that have been derived from
the basic laws and are in a sense one stage removed from them. These merit parti-
cular attention since once they have been established the results they embody can
be used to advantage without reference to the laws from which they were derived.
We shall refer to a statement of this kind as a principle.

In applying the deductions we make to actual problems of engineering interest,
it will soon become apparent that the physical objects we have to deal with do not
match the assumptions made in the theory. Forces do not act on bodies at geo-
metrical points; bodies do not make contact at points, along lines of contact or
by exact matching of surfaces; surfaces are never perfectly smooth. Furthermore,
rarely can all the physical factors entering into a problem be dealt with simul-
taneously. It is therefore necessary to idealise the problem by first simplifying the
geometrical form of the objects concerned and then introducing only those
physical factors that are of immediate importance. Part of the discipline of
problem-solving is developed in the simplifying of the problem, its statement in
mechanics forms and in recognising the significance of the simplifying assump-
tions made. The degree to which the problem is simplified will necessitate realistic
decisions on the accuracy to which answers to problems should be stated.

1.2 Dimensions and Units

The word dimension is used when referring to the nature of the physical entities
that are encountered, either directly or as a consequence of definition. If so-called
primary dimensions are chosen, such as length, time and force, the dimensions of
other entities are derived from these. Thus we say that velocity v has the dimen-
sions length/time, and this is written symbolically in the form [v] = L/T, which is
read as ‘the dimensions of velocity are those of length divided by time’.

The magnitude of a given quantity of some physical entity requires for its
specification a unit and a measure. The unit is that amount of the same kind of
entity that by common usage or legal sanction is taken as a standard reference.
The measure is a number that expresses the amount of the entity as compared
with that of the unit. For example, if the unit of area is the square metre (m?) a
given area may have magnitude 5 square metres (5 m?), where the number 5 is the
measure. The units that we adopt will be noted as they are required.

It follows that equations involving physical quantities are more than relations
between symbols representing numbers only. Each symbol now represents the
product of a measure and a unit and it further follows that if a physical equation
is to have meaning each term must have the same dimensions and also the same
units. The student should develop the habit of continually checking both algebraic
and numerical equations to ensure correctness of dimensions and units. In itself
such a check does not guarantee the validity of the equations. Thus the well
known physical equation s = ut + %at2 with metre, second units is dimensionally
correct, since
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[s] =L
[uz] = @L/T) x T=L
and [az?] = (L/T?) x T2 =L

On the other hand s = ut + at? is dimensionally correct, but physically incorrect.
In stating numerical answers to problems it is essential to state both measures and
units, otherwise the answers are meaningless.

1.3 Statics and Dynamics

It is convenient to subdivide the study of mechanics into statics and dynamics,
the former dealing with bodies at rest and the latter with bodies in motion. The
distinction, though artificial, is traditional and is adopted for convenience. Thus
the civil engineer is very much concerned with structures that are intended to
remain at rest, while the mechanical engineer’s concern is with equipment and
processes involving the motion of bodies. It will appear later that statics can be
described more fundamentally as the study of bodies in equilibrium. The state of
equilibrium is of fundamental importance and will be referred to continually in
what follows.

Statics will be studied first since this will familiarise the student with forces,
their representation and their manipulation, before embarking on the study of the
dynamical relations between those forces and the motion of the bodies on which
they act.

At this point a further concept, that of mass needs to be mentioned. This con-
cept, although of the greatest importance in dynamics, also enters into the dis-
cussion of statics, since it is necessarily involved in the description of gravitional
forces, which are always present in earth-based engineering problems. A more
detailed appreciation of the significance of mass will be taken up at a later stage.
For the present we appeal to everyday experience of bodies set in motion by
forces. Experience indicates that bodies differ in their response to a force of given
magnitude, in the sense that bodies differ in the time required to attain a given
speed. We say that for a given force different bodies have different accelerations.
The property that distinguishes one body from another, in so far as resistance to
being accelerated (or inertia) is concerned, is called the mass of the body. By
comparing the body with a standard body, the mass of which is adopted as a unit,
a measurable mass can be assigned to the body. This is a fundamental property
that, as far as the engineer is concerned, is constant.

It becomes convenient to select mass as a primary dimension, together with
length and time. If this is done then we are led to treat force as a derived dimen-
sion. However, in the study of statics this consideration does not arise. Force will
be treated as a primary dimension, and mass will only enter the discussion when
the magnitudes of gravitional forces are called for.
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1.4 Mathematical Considerations

We have already noted that physical equations are symbolic statements about
physical quantities. The manipulation of the symbols is in accordance with
acknowledged mathematical techniques. Mechanics affords ample scope for the
use of special techniques and mathematical forms, many of which will be at this
stage unfamiliar to the student. For the chapters that follow a knowledge of
elementary algebra, geometry and calculus is the only necessary prerequisite. An
acquaintance with vector analysis will enable the characteristics of vectors to be
more readily grasped and their manipulation to be more confidently undertaken;
however, sufficient information is given in chapter 2 to enable the student to deal
with vector quantities to the extent required in the succeeding chapters.



2 Fundamentals

In the chapters that follow the study will be directed towards describing the action
of sets of forces on material bodies. Certain terms will be introduced, all of which
have definite meanings that need to be borne in mind whenever they are used.

This chapter deals with some of these, by setting out their working definitions.

2.1 Particle: Rigid Body: System

Definition
A particle is a material body whose linear dimensions are small enough to be
considered irrelevant in the context of the problem in hand.

A particle can also be thought of as a quantity of matter concentrated at a
point, or in the context of finite bodies, as an elementary portion of such a body.

Definition
A rigid body is an assembly of particles, the distance between any two of which
remains fixed or can be considered to be so for the purpose of analysis.

The notion of a particle provides a convenient starting-point for our studies
since the results of the analysis of particle behaviour can then be extended to a
finite rigid body.

When discussing the action of forces on assemblies of particles it is essential to
identify the particular assembly under consideration and the forces acting on that
assembly. We therefore distinguish clearly between the so-called system and its
surroundings.

Definition

A system is an identifiable quantity of matter or assembly of particles bounded
by a geometrical surface, the boundary. A system may therefore comprise one or
many particles, whose distances apart are not necessarily constant. The matter
and space outside the boundary constitute the surroundings.

In the case of a rigid body the boundary can clearly be made to coincide with
the visible physical surface of the body.

If we now recognise the surroundings as the source of the forces acting on the
system we can think of the system in isolation and refer to it as a free body. A
diagram drawn to illustrate a selected free body together with the forces acting on
it is referred to as a free-body diagram. We shall always emphasise the importance
of drawing free-bodv diagrams in the solution of nroblems.
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2.2 Scalars and Vectors

When discussing physical quantities we find that some require only a statement of
magnitude (measure and unit) for their complete description or specification. Thus
the temperature of a water bath could be quoted as 20 degrees Celsius without

any further qualification. Other quantities require in addition a statement of
direction. Thus the position of a flying object would require not only the distance
from the observation point to be known but also the orientation of the line of
sight. These two types of quantities are called respectively scalar and vector
quantities.

Definition

A scalar quantity is one that is specified by a statement of its magnitude.

Scalar quantities or scalars are symbolised by an algebraic symbol, for example
a, representing the product of a measure and a unit. Positive and negative scalars
are encountered. The sum of two or more scalars can be found by algebraic addi-
tion, provided the scalars have the same dimensions, otherwise the sum has no
meaning. The addition can also be carried out by successively marking off seg-
ments of a given straight line to an appropriate scale and the sum is then given to
scale by the distance between the starting and terminal points.

Definition

A vector quantity is one that is specified by a statement of its magnitude and its
direction.

Vector quantities are symbolised in printed texts by a bold algebraic symbol,
for example a, implying that it is a directed quantity. In written work an algebraic
symbol with a wavy underline can be used. The magnitude of the vector quantity
is symbolised by the corresponding scalar symbol such as a, or if the absolute
(non-negative) magnitude is intended, by lal. In the figures of this book, directed
arrows are used to indicate the directions of vectors when these are referred to in
general terms, and a vector symbol such as a at the side of the arrow expresses the
quantity referred to. However, if the directions are otherwise fixed then a scalar
symbol is adequate to express the magnitude of the vector referred to.

2.3 Addition of Vectors

The manipulation of scalars according to the rules of elementary algebra and
calculus should present no difficulty. The corresponding operations with vector
quantities require an extension of the familiar rules to those of elementary vector
algebra and calculus, which can nevertheless be reduced to operations with scalars.
Initially, however, we avoid the symbolic approach by utilising the geometric
properties of vectors.
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A segment AB of a straight line has magnitude and direction in passing from A
to B. A vector quantity can therefore be represented by such a directed straight-
line segment (drawn to some arbitrary scale) since it too has the same properties.
Such a representation is also given the name vector and can be referred to as the
vector AB, the ordering of the letters being made to correspond with the direction
intended. Two vector quantities having the same magnitude and direction are said
to be equal, and if their representations are respectively AB and PQ (to the same
scale) we write AB = PQ.

This method of representing a vector enables us to define the addition of two
vectors.

Definition

If (ﬁ: (Tﬁ) are vectars then their addition is symbolised as O—A> + 6]§> and is defined
to be the vector OC, where OC is_the diagonal of the parallelogram OACB (figure
2.1a). We then write OA + OB = OC.

(g+b)+¢
=a+(b+e)

(b) c)

Figure 2.1

This definition conforms to our expetience with most physical vector quanti-
ties of interest in so far as the vector OC d_og)s indeed represent the addition of
vector quantities represented by OA and OB. This definition is accordingly referred
to as the parallelogram law of addition.

There are, however, certain quantities that do not combine in this way even
though they are vector quantities having magnitude and direction. The term vector
is therefore reserved for those vector quantities that satisfy the more precise defini-
tion that follows.

Definition

The quantity a is said to be a vector if it satisfies both of the following criteria

(1) a has magnitude and direction

(2) the sum of quantity & and a similar quantity b is the vector a + b given by
the parallelogram law (figure 2.1a).

A more useful form of the parallelogram law is the triangle law. In figure 2.1a
since AC = OB we have a + b = OC= OA+ OB = OA + AC. Therefore if the two
vecgors @, b are placed tail to head as in figure 2.1b then their sum is the vector
OC, the directed line from O, the starting point, to C, the terminal point.
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It follows that a third vector ¢ can be added to (a + b) and we obtain the sum
(a + b) + ¢ (figure 2.1c). From the geometry of the figure it follows that
(@ +b) + c =a+ (b +c). Further consideration shows that other combinations are
possible, such as (¢ + ) + b, all of which are equal. The brackets can therefore be
omitted, and we conclude that any number of vectors can be added by placing
them tail to head in any order, their sum being the vector extending from the
starting point to the terminal point.

If b is a vector with magnitude equal to that of a but is oppositely directed,
then we write b = — q. This leads us to write b +a =a + b =0, a result that is
confirmed by the triangle law. Similarly the vector that is equal in magnitude to
the vector ¢ but oppositely directed is — ¢. If we write a + (— ¢) =a — ¢, this is
interpreted as the subtraction of ¢ from a, an operation that is effected by adding
to a a vector equal in magnitude to ¢ but reversed in direction (figure 2.2).

I N

Figure 2.2

The addition and subtraction of vectors using graphical representations is a
straightforward procedure if all vectors lie in one plane, and in many types of
problem is the appropriate method to use. However, the manipulation of vectors
in general and the establishment of significant vector relations require an exten-
sion of our notation and the use of the ideas of component and unit vector.

2.4 Components and Unit Vectors

In figure 2.3a OX, OY, OZ are three arbitrary directions and OCis the representa-
tion of a vector a. With OC as diagonal, a parallelepiped is drawn with edges
parallel to OX, OY, OZ. Then 6§= (_)ﬁ)+ BC=0A+ K§+ ﬁ, and it is evident
that a vector a can be expressed in an infinite number of ways as the sum of three
vectors having arbitrarily chosen directions. OA, m BC are called vector com-
ponents of OC. It is convenient and usual to choose directions OX, OY, OZ that
are mutually perpendicular and this is so in all future work. In figure 2.3b, for the
rectangular parallelepiped shown, OM = LB and ON = BC and we can write OC =
OL + OM + ON. The lengths OL, OM, ON, which are the projections of OC on to
the mutually perpendicular axes OX, OY, OZ respectively, represent magnitudes
that we signify as a,, a,, a,. These three scalar quantities are called the com-
ponents of the vector a.

It follows immediately from the triangle law that if a + = ¢ then the com-
ponents of ¢ are respectively (ax + by), (a, + by), (a; +b;), and in general the
components of the sum of two or more vectors are respectively the algebraic sums
of the corresponding components of the vectors. The addition of vectors can be
reduced in this way to algebraic addition of (scalar) components.
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4 Y

(b)

Figure 2.3

We can go further and adopt a notation that separates the magnitude and
direction aspects of a vector. The magnitude of a vector g is written a as already
noted, and the direction is written @, which stands for a unit vector in the direc-
tion of . Then @ = ad, in which it is understood that a stands for the scalar magni-
tude (having a measure and a unit). The unit vector d can be interpreted as that
vector having no dimensions, which when multiplied by the scalar a gives the
vector a.

If three unit vectors i, §, k are conventionally chosen to lie in the respective
directions OX, QY, OZ then we can express the vector components of @ in the
respective directions as a,/, a,J, a,k, and it follows that

a=a.d+ajtak

and

a+b (ax+bx)i+(ay+byj+(az+bz)k

= oyl T 0)f + cik

This provides the basis of an alternative method for defining scalars and
vectors, a scalar being a quantity requiring one magnitude for its specification
and a vector being a quantity requiring three magnitudes for its specification. The
three magnitudes are the components, which when set down in order in the form
[ax,ay,a;] define the vector @ and serve as an alternative notation.

Although not referred to in this introductory course, the student will soon
encounter quantities that involve the statement of a magnitude and two directions.
Such quantities are dealt with in the manipulation of tensors, which can be shown
to require the statement of nine scalar components that are subject again to the
rules of ordinary algebra.

The directions shown for the axes OX, QY and OZ should be carefully noted
and adhered to. These are described as a right-handed set of axes and are so
arranged that the sense of the rotation required to bring the axis OX to coinci-
dence with the axis OY is that of a right-handed screw advancing along the



10 BASIC ENGINEERING MECHANICS

axis OZ. With the axis OZ pointing directly towards the observer, a line rotating
in the XOY plane in the corresponding anticlockwise sense makes increasing
angles with the axis OX. This anticlockwise sense is consistent with the usual
convention for the positive sense of angle indication.

2.5 Units

In the study of statics the only primary dimensions involved in the discussion are
length and force. The dimensions time and mass enter the discussion when
dynamics is studied. The selection of units for physical quantities involving these
dimensions, although having a long historical background, is now based on
Newton’s laws of motion, and the units are so chosen as to form sets of inter-
related units. For engineering purposes two sets or unit systems are in use — the
British Engineering System and the International System. The units of the latter
are referred to as SI units, SI being an abbreviation of Systéme International.

The basic SI units for the quantities used in mechanics are those for length,
time and mass, these being respectively the metre, the second and the kilogram.
The unit for force is derived from these and is named the newton. The method by
which the newton is derived is taken up in chapter 9.

On the other hand in the British Engineering System the basic units are those
for length, time and force and are respectively the foot, the second and the
pound-force. The unit of mass is derived from these and is named the slug. The
pound-force is the gravitational pull on a body having mass of one pound at a
location on the Earth’s surface where the body would fall freely with acceleration
32.1416 ft/s2.

The British Engineering System is gradually being superseded by the SI System
and will be referred to very rarely in the following chapters. However, since the
units are still in wide every -day use the following table is included showing the
basic units of both systems and their comparative magnitudes.

British Engineering International (SI)

length foot (ft) metre (m)

1 ft = 0.3048 m* 1 m=3.281ft
time  second (s) second (s)
mass  slug (32.1416 Ibm*) kilogram (kg)

11bm =0.454 kg 1 kg =2.205 Ibm
force  pound-force (Ibf) newton (N)

11bf=4.448 N 1 N=0.225Ibf

The values marked with an asterisk are exact.
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2.6 Solution of Problems

In the context of engineering the purpose of the study of mechanics is the analysis
and solution of engineering problems, that is, given an engineering system subject
to various forces and constraints, to deduce relevant information about the
behaviour of the system from our knowledge of the laws appertaining to its
behaviour. In the solution of every problem the following stages should be
recognisable.

(1) Statement of the problem in real physical terms. In many cases the system is
immediately recognisable using terms in common use. Frequently a diagram or
dimensioned drawing is required to clarify the subject of the problem.

(2) Recognition of applied mechanics concepts and entities and the statement of
the problem in these terms. At this stage a free-body diagram should always be
drawn since this will embody the immediately relevant concepts in diagrammatic
form.

(3) Statement of the applicable laws and principles, or alternatively theorems that
have been derived from them, in the form of (a) physical equations or (b) graphi-
cal constructions. Usually it is possible in numerical problems to set out the work
algebraically and substitute numerical values when required. This approach has
advantages, the chief one being the opportunity it affords of checking the mathe-
matical development. Whether algebraic or numerical methods are used it should
become a habit to maintain a continual check on the dimensions and units of all
equations.

(4) Solution of equations or interpretation of graphical constructions for the
desired information.

(5) Checking of solutions. The validity of the basic laws is not open to question.
However, they can be incorrectly applied and mistakes can be made in calculation.
The solution should be a reasonable one as far as can be judged: for example, the
order of magnitude of a numerical answer should be in accord with that of the
information given in the problem. Sometimes another method of solution is
possible. Usually the order in which arithmetic operations are carried out can be
varied.

(6) Statement of the solution in the terms required by the problem. If numerical
solutions are called for then units must be stated. The number of significant
figures must not be greater than that warranted by the information given and the
nature of the assumptions made. In addition the direction and sense of vector
quantities must be clearly described. A succinct symbolism used for expressing the
magnitude, direction and sense of a vector quantity is (by way of example)

20.75 m/s L 69.5°, the angle indicated being that made with a reference direction
and increasing anticlockwise.

Problem-solving is an essential part of the study of engineering mechanics
since it affords practice in the construction of mathematical models and in the
development of logical methods of analysis. The basic ideas are relatively few in
number and the memorising of formulae is rarely required. Instead, the student
should aim for precise statement of principles, concise expression, and systematic
setting out of solutions.



12 BASIC ENGINEERING MECHANICS

Problems

2.1 From your experience of the following, state whether they are scalar or vector
quantities.

(2) The distance between two points
(b) The height of a mountain

(c) The bearing of a ship

(d) The speed of a train

(e) The kinetic energy of a bullet

(f) The intensity of a sound

(g) The weight of a body

(h) The drag on an aeroplane

2.2 Obtain graphically the sum of the vectors @ and b in the following cases.

(@)a=5L60°,b=3190°
(b)a=10L30°, b =20, —30°
(c) @ =200 45°, b = — 400 L 30°

2.3 Obtain graphically the difference a — b for the vectors of problem 2.2.

2.4 Obtain graphically the sum of the vectorsa=4/£0°,b=5,90°,¢ =3, 150°,
d=6/1230°.

2.5 The following vectors all lie in the x - y plane. Obtain the x- and y -compo-
nets in each case.

(@) a=15L50°

(b)b=20/150°

©)e=—10L-30°

2.6 A vector a has components a, = 5.3, a, = — 7. Obtain g in terms of its magni-
tude and direction.

2.7 Obtain the magnitude of the vector a = [5, 6, 3] and determine its inclination
to (a) the x - y plane and (b) the z - x plane.

2.8 Obtain the magnitude of the sum of the vectorsa = [5,6,3] and b = [2,4, — 7]
and its inclination to the x -y plane.

29Ifa+b=10,60° anda— b =20 L 30° determine a and b. (Hint: use the
vector equations to solve fora and 5.)



3 Statics of a Particle

If the surroundings act on a system in such a way as to tend to change the
motion of the system then we say that a force exists. The force is the action of
the surroundings, but nevertheless it is usual to state that the force itself is acting
on the system. The forces encountered in practice are usually found to be applied
to the system as a whole or over finite areas of the system boundary. Initially,
however, we consider only the forces acting on a single particle. Any one such
force can immediately be characterised by its magnitude and its direction, and in
addition, for a single particle, by its line of action, since this passes through the
particle. In the next chapter we extend the discussion to particular assemblies of
particles, namely rigid bodies.

3.1 Resultant: Components

Experiment indicates that two forces acting together on a single particle can be
replaced by a single force with its line of action also passing through the particle
and whose magnitude and direction are given by the triangle law. A force is there-
fore a vector. The single force is called the resultant of the two forces. The two
forces have thus been summed, and if they are symbolised as F; and F, we write
F, + F, = R where R is the resultant.

In accordance with the results of the preceding chapter, three or more forces
on a particle can be added by placing their representations tail to head in any
order, the resultant then being represented by the line joining the starting point
to the terminal point. For coplanar forces the triangle law is therefore developed
into the polygon law.

Definition

The resultant of any number of coplanar forces (a set of forces) acting simul-
taneously on a particle is the single force that is equivalent to the force set and
that is obtained by placing their representations tail to head in any order. The
resultant is then represented by the line joining the initial point to the terminal
point.

The use of the word equivalent should be carefully noted, since it implies that
the resultant has the same effect as the individual forces taken together, and can
replace them. Two forces can be equal in magnitude but have different effects if,
for example, their directions or lines of action differ.

A given force on a particle can be resolved into any number of vector com-
ponents having specified directions. In particular, if the directions are mutually



14 BASIC ENGINEERING MECHANICS

perpendicular in space the components are three in number and are referred to as
rectangular vector components. If OX, QY are two chosen perpendicular direc-
tions that are coplanar with the force then the components are two in number.
As with vectors in general, only the magnitudes of the vector components need to
be stated. In future the word component will be used to stand for rectangular
scalar component on the understanding that the directions are specified or other-
wise implied.

If the line of action of a force F acting on a particle lies in the XOY plane and
is inclined at an angle 8 to the OX-axis, then the x- and y -components, F, and
Fy.iespectively are given by F = F cos 8, F}, = F'sin 8 (figure 3.1a) and we can
write

F = Fit Fjj
= (Fcos0)i + (Fsin 0)j 3.1)
Y
£ Fsné
4
c F cos 8 X o A Fou| |Fax X
L R=zh
(a) (b)
Figure 3.1
We shall be concerned mainly with sets of forces Fy, F,, . . . having lines of action

lying in one plane such as XOY, and referred to as coplanar forces. From figure
3.1b and the polygon law it follows that the x -component of the resultant R of
any number of such forces is the sum of the x-components of the individual
forces; and similarly for the y-components. Thus

R, = F,cos8; + Fycos0, + F3 cosf,
Fl_x + F2x + Fax
= ZF, (3.23)

and similarly
R, = ZF (3.2b)
y ¥y

The symbol T will be used extensively to indicate the summation of quantities
typified by the quantity indicated.
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Conversely, if the sums of the x-components and of the y-components of a
set of forces are known the resultant can be determined in magnitude and direc-
tion, since the magnitude

R =+/(R: + R3) (3.32)

and

R
tanfp = 7{1 (3.3b)
X

where the magnitude of 85 and consequently the sense of R can be determined
by inspection of the signs of Ry and R,,.

3.2 Equilibrium: Newton’s First Law

Definition
If the resultant force on a particle is zero then the particle is said to be in
equilibrium.

A particle is therefore in a state of equilibrium, by definition, by reason of the
resultant of the forces acting on it being zero.

The physical significance of equilibrium is contained in the first of the three
fundamental laws of classical mechanics enunciated by Sir Isaac Newton (1642 -
1727). After rephrasing, the first law can be stated as follows.

The First Law

If the resultant force on a particle is zero, then the particle remains in a state of
rest or constant speed in a straight line.

It follows that a particle in equilibrium is one which is either at rest or moving
with constant speed in a straight line. The converse is also true, that if a particle is
known to be at rest or moving at constant speed in a straight line, then it is in
equilibrium and the resultant force acting on it is zero.

3.3 Conditions for Equilibrium

In practice we encounter particles that are known or are seen to be in equilibrium
under the action of a set of forces, having magnitude, direction and sense, some
of which may not be known initially. If the resultant of the force set is zero then
the forces and their characteristics must be related in some way and must satisfy
certain conditions. In order to be able to determine the unknown characteristics
we have to set out the conditions that must be satisfied in a form that will permit
of solution for the desired information. This can be done in two ways.
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(1) If the forces acting on the particle are summed by the polygon law, then if the
resultant is zero the polygon must close. We have therefore the graphical condition:
for a particle to be in equilibrium the force polygon must close.

(2) Since the magnitude of the resultant IR|=+/[(ZF,)* + (ZF,)?] then for

R =0 the summations ZF, and T F,, must both be zero. We have therefore the
analytical condition: for a particle to be in equilibrium ZF, =0 and F, = 0.

3.4 Applications

In applying the graphical condition, the force polygon is built up using the known
forces first and the closure of the polygon then reveals the desired unknown
characteristics. It will become immediately apparent that the number of unknown
characteristics that can be determined is limited to two, such as for example, the
magnitude and direction of a single unknown force, or the magnitudes of two
forces whose directions are initially known. The use of the graphical condition
does not imply that the force polygon must necessarily be drawn to scale — a neat
sketch can be used as a basis for calculation using the geometry of the polygon.

The two equations of the analytical condition will again enable two charac-
teristics to be determined, namely two unknown components. A judicious choice
of x- and y-directions will simplify the equations and enable a solution to be
more readily obtained.

In the problems at the end of this chapter the solutions are to be obtained on
the basis of certain assumptions, namely (1) the body is a particle; (2) if a force
is applied by means of a massless cord then the direction of the force and its line
of action coincide with the cord; (3) if a cord passes over a smooth pulley the two
forces exerted by the cord on the pulley are equal in magnitude, this magnitude
being referred to as the tension in the cord, (4) if a body is in contact with a
smooth surface the force of the surface on the body is in a direction normal to the
surface. All these assumptions need to be justified on the basis of arguments to be
developed at later stages.

In certain problems the forces on the particle are acting in a vertical plane. One
of those forces is invariably a gravitational force arising from the attraction of the
Earth. The nature of such forces will be discussed in more detail in sections 9.1
and 10.6.1 when the dynamics of a particle is being studied. At this stage suffi-
cient information is given to enable the gravitional force to be included with its
correct magnitude.

The gravitational force on a particle is referred to as the weight W of the particle.
Although by this terminology weight is made to appear to be a property of the
particle, it should be remembered that weight is a force that depends for its exis-
tence on the presence of the earth.

When we come to consider the dynamics of a particle we shall find that if a
particle mass m kg is being accelerated under the action of a force F N, the
acceleration a m/s? is given by the equation F = ma. Now we know that a particle
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falling freely under the action of its weight alone descends with acceleration
magnitude g, which is the same for all particles in the same locality. This was first
demonstrated by Galileo (1564 - 1642). We can therefore write for any particle

W = mg (34

The value of g may vary slightly from one locality to another, but for our pur-
poses we can adopt the value 9.81 m/s?; W is then in newtons if m is in kg.

Worked Example 3.1

The ends of a cord length 3.5 m are attached to points A and B as shown in figure
3.2a. A small smooth pulley carrying a body, mass m = 10 kg is placed on the cord
and allowed to reach a point of equilibrium at C. Find the horizontal distance of
this point from A and the tension in the cord.

(a) (b) (c)

Figure 3.2
Solution

Since the distance AB =+/10 = 3.16 m the cord hangs below the line AB and a
diagrammatic view of the situation for the equilibrium condition is given in

figure 3.2a. We now consider the equilibrium of the pulley, which can be regarded
as a particle in this example. The forces acting on it are

(1) the weight of the body, mg = 10 x 9.81 = 98.1 N downwards

(2) the force in the cord segment AC; this force is along CA and since the cord

can only be in tension the force, denoted symbolically as T, is in the direction
given in figure 3.2b

(3) the force in the cord segment CB; by the same reasoning this force, denoted
symbolically as T3, is in the direction again given in figure 3.2b.

Figure 3.2b is the free-body diagram for the pulley showing all the external
forces acting on the pulley.

Since the forces on the pulley are in equilibrium the force triangle must close.
The latter is shown drawn diagrammatically in figure 3.2c.
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Making use of assumptions already stated, we can write 77 = T, and it follows
from the force triangle that o= §.
From similar triangles in figure 3.2a

x _JY

a b

therefore

x _xty 3

¢ a+b 35

= Ccos &

hence tan a = +/13/6; also from figure 3.2a
xtana +1 =3 —x)tanf = (3 — x)tana
giving x = 0.667 m.
Let T=T, = T, be the tension in the cord. Then from the force triangle
2Tsina = 98.1

and
T=95N

3.5 Summary

(1) The resultant R of a set of forces Fy, F,, F3, . . . acting on a particle is the
single force R=F; + F, + F; +. . ., and for coplanar forces is given by the poly-
gon law of addition.

(2) The resultant R is equivalent to the force set.

(3) A force F can be resolved into any number of vector components. The rec-
tangular scalar components of F are signified by Fy, F,,. For the resultant R

R, = ZF, (3.2a)

R, = ZF, (3:2b)
The magnitude and direction of the resultant are given by

R =+/(R: + R}?) (3.3a)

6 = tan' (R,/Ry) (3.3b)

(4) A particle is in equilibrium if R = 0.

(5) A particle in equilibrium is either at rest or moving with constant speed in a
straight line (Newton’s first law).

(6) The conditions for equilibrium of a particle are either (a) the graphical condi-
tion: force polygon must close; or (b) the analytical condition: ZF, =0, ZF, =0.
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(7) The weight W of a particle having mass m is given by
W = mg (34

Problems

3.1 A particle is acted on in the horizontal plane by three forces having magni-
tudes 20 N, 30 N and 40 N. If the particle is in equilibrium under these forces
find the directions of the 20 N and 30 N forces relative to the 40 N force. (A
graphical solution is suggested.)

3.2 A particle, mass 0.2 kg, is held at rest on an inclined plane of slope 30° to the
horizontal by the application of a force P, which is at 60° to the horizontal.
Assuming the reaction N of the plane on the particle is normal to the plane find
the magnitudes of P and N. (Hint: Draw a free-body diagram of the three forces
acting on the particle.)

3.3 Two cords, lengths 3 m and 4 m respectively, are each attached at one end to
two points 5 m apart horizontally. The free ends of the cords are joined together
to one end of another cord of length 2 m. To the free end of the latter is attached
a small body, mass 2 kg, which is being pulled with a horizontal force 15 N to the
same side as that of the 3 m cord. Determine the inclination of the 2 m cord to

the vertical and the forces in the 3 m and 4 m cords. (Hint: Consider first the three
forces acting on the body (draw a free-body diagram) and hence find the force and
inclination of the 2 m cord; draw a free-body diagram for the junction of the three
cords and solve for the other unknowns.)

3.4 Four forces 10 N £ 0°, 15 N £ 60°,20 N £ 120°, and 30 N £ 180° act in the
horizontal plane on a particle.

(a) Determine from a force polygon the resultant of these forces.
(b) What force is required to maintain the particle in equilibrium?

3.5 An airship, mass 10 000 kg, is tethered by four ropes equally disposed around
it and each making an angle of 15° with the vertical (the four ropes would thus be
on the face of a cone with vertex angle 30°). What is the lift force on the ship if
the force in each rope is 20 000 N? (Hint: The resultant vertical force is zero.)

3.6 A particle is moving with constant velocity in a straight line on a smooth
horizontal surface under the action of the following forces, which all act in the
horizontal plane: 100 N £ 0°;Q £ 70°, PL 150°; 70 N £ 225° and 80 N £ 300°.
Use a polygon of forces to determine the magnitudes of P and Q.

3.7 If in problem 3.6 P and Q are allowed to take up any direction as long as they
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are mutually perpendicular, find their magnitudes and directions if the magnitude
of P is to be twice that of Q.

3.8 A piece of cord of length 2.5 m is connected between two points 2 m apart
horizontally. A massless pulley is placed on the cord and a force 20 N Z — 80° is
applied to it.

(a) Show that when the pulley reaches a state of rest the angles that the two
portions of the cord make with the horizontal differ by 20°.

(b) Verify that the relevant equations are satisfied when the smaller angle is 28°
and hence determine the tension in the cord.

(Hint: Cord tension is constant. For (a) use the force triangle, for (b) criteria to
be satisfied involve geometrical relations of cord length and distance between
supports, relationship from (a) between the cord angles; note that only two use-
ful equations can be derived from the force triangle — any others will be
redundant.)

3.9 A particle at the point O is subject to three coplanar forces which can be
represented by the vectors OA, OB, OC. If the intersection of the medians of the
triangle ABC  ig at G, show that the resultant of the three forces is represented by
the vector 30G . (Hint: Write OA as a summation of other vector quantities one
of which is OG, and similarly for OB and 0_6)

3.10 A particle located at the point O of a polygon OABCO is subject to four
coplanar forces, which are represented by the vectors AO, AB, CO and CB. If P,

Q are the midpoints of AC and_OB respectively, show that the resultant force on
the particle is represented by 4PQ. (Hint: See problem 3.9, but involve vector lﬁ.)



4 Statics of Rigid Bodies

A rigid body, as already defined, is an assembly of particles whose relative posi-
tions remain unchanged. Actual bodies all deform to some degree when subjected
to forces, but the rigid bodies we shall consider are such that changes of shape
can be disregarded. The shape of a rigid body, that is, the configuration of its
particles, is maintained because of forces between the particles, the forces being
such that all particles are individually in equilibrium if the whole body is in
equilibrium.

The forces acting on the particles of a rigid body can therefore be classified as

(1) external forces: forces whose sources are outside the body
(2) internal forces: forces between the particles of the body.

Note particularly that forces that are internal for a particular assembly of particles
can become external forces for a part of the assembly. More precisely, therefore,
we say: having defined the boundary of the system, those forces that have their
origin in the surroundings are external forces.

On the basis of this distinction between external and internal forces we now
extend the discussion of the statics of single particles to that of particle assemblies
and rigid bodies in particular, with the aim of finding resultant forces and setting
out the corresponding conditions which must be satisfied if equilibrium is to be
achieved.

4.1 Newton’s Third Law

The analysis of the forces acting on a particle system is greatly simplified when
the third of Newton’s laws is taken into account. This can be stated in the follow-
ing form.

The Third Law

The force exerted by one particle on another is always accompanied by an equal
and opposite force exerted by the second particle on the first particle, both forces
acting along the line joining the particles.

The set of internal forces for a rigid body is therefore made up of pairs of
equal and opposite collinear forces that cancel each other. It follows that, for the
body as a whole, the external forces are the only forces that influence the resul-
tant and the conditions for equilibrium for a rigid body.

The external forces act on different particles of the body and in general their
lines of action do not meet at a point. In turn, the resultant will not only have a
magnitude and a direction but also a line of action that must be found. Fortun-
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ately the results for a single particle are still applicable by virtue of a principle that
we now introduce.

4.2 Principle of Transmissibility

In figure 4.1a a rigid body of arbitrary shape is indicated with a single force acting
at particle A. Suppose now some other particle B is selected in the line of action
of F and two forces F' and F" are applied at B as in figure 4.1b, the forces being

(a) (b) (c)

Figure 4.1

such that F' = — F" and F' = F. This set of three forces is equivalent to F at
particle A since the resultant of F' and F" is zero. However, it is evident that for
the body as a whole forces F and F" have no resultant, therefore the set of forces
is also equivalent to F' at particle B as indicated in figure 4.1c. Since this equi-
valence exists for each external force on the body we can express the result as a
principle in the following form.

Principle of Transmissibility

If a set of forces acts on a rigid body then the resultant of the set or the state of
equilibrium of the body is unchanged if any force F of the set acting on a particle
of the body is replaced by a force F’ having the same magnitude and direction
acting on a different particle, provided the line of action is unchanged. The force
sets are all equivalent.

Note particularly that this principle only relates to resultants and states of
equilibrium. The internal forces, although their resultant is still zero, are modified
if the points of application of the external forces are changed.

4.3 Resultant: Parallel Forces: Couples

The resultant of a set of forces acting on a rigid body, that is, the single force
equivalent to the set, can be found by repeated application of the principle of
transmissibility. The case of parallel forces will be taken up first using this method.
This will enable certain new entities to be introduced, which will enable more
expeditious and significant methods to be adopted for force sets in general.
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(1) Two Like Parallel Forces

In figure 4.2a two parallel forces P and Q having the same sense are shown acting
at the boundary of a rigid body. Choose any straight line in the body intersecting
the lines of action of P and @ at points A and B. If P and Q are now moved along
their lines of action to A and B respectively we obtain an equivalent force set.

Figure 4.2

Two equal and opposite collinear forces F and F’ are now intraduced at A and B
and combined with the forces P and Q by the triangle law to produce two forces
whose lines of action meet at a point X. The point X, if it happens to be outside
the body, can be taken to be an isolated particle belonging to the rigid body
(figure 4.2b). At X these two forces can again be resolved into the same vector
components, and after removing the two equal and opposite forces F and F' we
are left with a single force (P + Q) whose line of action passes through the point
Y of the line AB (figure 4.2¢) and which is equivalent to the original force set.
From the geometry of figure 4.2c and that of the force triangles we have P/F =
XY/AY and Q/F' = XY/YB, from which it follows that AY/YB = Q/P. The
resultant is therefore the single force R with magnitude (P + Q) whose line of
action passes through the point Y on an arbitrary line AB and which divides it in
the inverse ratio of the magnitudes of the forces.

(2) Two Unlike Parallel Forces

The same procedure applied to forces P and @ having opposite senses will show
that a single force can again be found, which is equivalent to the original set but
whose magnitude is the difference between the magnitudes of P and Q. The point
Y is again given by the relation AY/YB = Q/P but Y now lies outside AB. If

P> Q then the point Y lies on BA produced, that is, beyond the line of action of
the larger force; the magnitude of the resultant is (P — Q) and its sense is that of
P the larger force. Figure 4.3 illustrates two cases.

(3) Two Equal Unlike Parallel Forces

If the same procedure is attempted for forces P and Q having opposite senses but
for which P = Q it will become apparent that no single force can be found and
that the procedure merely produces further pairs of equal unlike parallel forces,
each pair being equivalent to the original set. Such pairs of forces therefore have
no resultant. A force set of this kind is termed a couple.
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(b)@>FP

Figure 4.3
(4) Any Number of Parallel Forces

By repeated application of the above results, taking forces in pairs at each stage,
we can obtain the resultant, if it exists, of any number of parallel forces. If there
is no resultant then the set is reducible either to zero or to a couple as the case
may be.

4.4 Centre of Parallel Forces

Consider a rigid body subject to a set of three like parallel forces P, S and Q
applied to particles A, B and C (figure 4.4a). The resultant of P and S is a force
(P + S) passing through the point Y such that AY/YB = S/P. The resultant of
(P +S) at Y and Qat C is a force (P + Q + 8 passing through the point Z on YC
such that YZ/ZC = Q/(P + 5).

Figure 4.4

If now the lines of action of P, Q and § are all rotated through the same angle,
their magnitudes remaining unchanged, we obtain another set of like parallel
forces, and it is evident that the line of action of their resultant passes through
the same point Z as before. The lines of action of the two force sets therefore
pass through a point Z, which is fixed in relation to A, B and C, that is, to the
rigid body. This point is termed the centre of parallel forces. It follows that if the
directions of P, Q and § are maintained and the body is rotated instead, the
resultant will always pass through the point Z in the body.



STATICS OF RIGID BODIES 25

If now the set of parallel forces arises from the Earth’s gravitational attraction
on all particles of the body, the resultant gravitational force, the weight of the
body, again acts through a point fixed in the body, now termed the centre of
gravity.

It should be noted that although in practice the centre of gravity is, by the
preceding argument, a point fixed in the body, this is not strictly the case since
gravitational forces are not truly parallel. Thus in the case of the gravitational pull
of the sun on the Earth the centre of the sun’s gravitational forces varies with the
orientation of the Earth. However, for the bodies of engineering applications the
centre of gravity for the Earth’s gravitational forces can be taken as fixed in the
body with quite negligible error.

More important is the consideration that the centre of gravity is associated with
gravitational forces. A more fundamental point can be defined that is fixed and
independent of these gravitational forces. This is the mass-centre, which will be
discussed in chapter 7.

4.5 Moment of a Force

A force F acting on a particle of a rigid body can be replaced by an equal force
F' acting on another particle provided the line of action is not changed. However,
an equal force F", acting on another particle not in the same line of action,
although equal, is not equivalent; that is, F" cannot replace F. The effects of F
and F" on the body, in particular as far as a tendency for rotation about an axis
is concerned, are different. In figure 4.5, drawn in the plane of the forces, the

\

Figure 4.5

axis is at A and is perpendicular to the plane. We define the moment M, of the
force F (or its equivalent F') about the axis at A as the product F x d, where d

is the perpendicular distance from A to the line of action of the force. If the force
tends to produce anticlockwise rotation then the turning effect will be considered
to have a positive sense and the associated moment will also be positive.

Although the moment is defined in relation to an axis at A, for coplanar forces
it is usual to refer to moments about the point A, in which case the point A can
be termed the moment-centre.

The moment of a force has a magnitude and in the general three-dimensional
case a direction would be, by definition, associated with it. In the case we have
considered, the direction of an anticlockwise moment would be defined as that
of the axis at A, pointing upwards from the diagram. Moments of forces can also
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be summed by the triangle law and are, therefore, in the general three-dimensional
case, true vectors.

If arbitrary OX and OY directions are chosen in the plane of the diagram then
as we have seen, Fy, and Fj, serve to define the magnitude and direction of the
force F; Ma now serves to define the line of action in relation to the axis at A,
since the perpendicular distance to the line of action is given by d = My /F.

The calculation of moments is often simplified by the use of a theorem named
after Varignon, which states that the moment of a force about an axis is equal to
the'sum of the moments of its vector components about the same axis. The result
can be demonstrated with the aid of figure 4.6 in which rectangular components

A S
v K S 8
|a p FX
N Q
Figure 4.6

have been used for simplicity. A particle P is chosen lying in the line of action of
F. The chosen vector components of F at P are shown as Fy and F),. From the
axis at A the perpendiculars AQ, AR and AS are dropped on to the lines of action
of the force and its components. If RM is now made perpendicular to AQ and RN
is made parallel to AQ, then

My, = F x AQ

F(AM + MQ) = F(AM + RN)
F(AR cos 8 + PRsin )

F, x AR + F, x RP
=F, x AR + F, x AS

thus demonstrating the theorem in this case.

4.6 Moment of a Couple

The rigid body in figure 4.7 is subject to the couple comprising two unlike

Figure 4.7
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parallel forces Fy and F, for which Fy = F, = F, say. The sum of the moments of
F, and F, about A is Fyd, — F,d, = F(d, — d,) = Fd. This quantity, again
signified by M, is called the moment of the couple. It is evident that since d is the
perpendicular distance between the lines of action the moment of a couple does
not depend on the position of the axis and is a property of the couple itself.

Further properties of couples follow.

(1) Two coplanar couples having the same moment and sense are equivalent (figure
4.8). It is sufficient to show that one couple can be transformed into the other;

w/*

—_ -—

Figure 4.8

the proof, using the principle of transmissibility, is straightforward and is left asan
exercise. The equivalence of couples having the same moments and sense enables
us to introduce the symbol shown in the figure to represent a couple, the sense
of the arrow serving to indicate the sense of the couple, and the symbol M the
magnitude of the moment of the couple and its equivalents (the suffix now being
omitted).

Furthermore, if the moment of a couple is known then the details of the two
forces making up the couple need not be specified. A body is then said to be
subject to a torque, a quantity that is now described by a statement of its magni-
tude and sense, having the same dimensions and units as those of the moment of
a couple.

It is convenient in the discussion to be able to refer to a couple in general
terms without particularly specifying the magnitude of its moment. For this
purpose the symbol L can be used to represent the couple, the direction of L
being that of the moment of the couple.

(2) Two coplanar couples are together equivalent to a single couple having a
moment equal to the algebraic sum of the moments of the individual couples. The
proof, utilising property 1, consists of transforming each pair of forces into
corresponding equivalent pairs with the forces the same distance apart and having
the same lines of action, and then summing the forces directly.

4.7 Force-Couple Sets

Although a force F acting on a rigid body can only be replaced by an equivalent
single force F if the line of action is unchanged we can still obtain an equivalent
force set with the force F in some other parallel line of action if it is accompanied
by an appropriate couple. Thus in figure 4.9, by introducing oppositely directed
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M= Fd for couple

Figure 4.9

forces F' and F", for which F' = F" = F, at particle B on the desired line of action,
we can form a couple consisting of F and F" having moment Fd. The original force
F is therefore equivalent to the single force F' acting at B, together with this
couple. This couple is further equivalent to any other having the same moment.
We can summarise thus: any force F acting on a particle of a rigid body may be
moved to any given point (the direction being unchanged) provided a couple L is
added having a moment M equal to the moment of the given force about the given
point.

Conversely, a force F acting on a particle of a rigid body together with a
coplanar couple L may be combined into a single force whose line of action is
such that its perpendicular distance d from the particle is given by d = M/F,
where M is the moment of the couple. To ensure that the line of action is moved
in the correct direction it should be verified that the moment of the single force
about the particle on the original line of action has the same sense as that of the
couple originally present.

4.8 Coplanar Forces: Resultant

It has already been pointed out that the resultant of a set of forces acting on a
rigid body can be found by repeated application of the principle of transmissibility
and the triangle law. Any two forces are combined into a single force passing
through the intersection of their lines of action. The number of forces is therefore
reduced by one. The process is repeated until there remains either a single force
with a defined line of action, or a couple. For particular cases the method becomes
essentially graphical and will not be pursued in detail. By the use of force - couple
sets more general results can be derived.

F,

Figure 4.10
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Consider the set of forces shown in figure 4.10a. Each force in turn can be
replaced by an equal force at some particle A, together with a couple. The forces
now acting at particle A can be combined into a single force R and the couples
combined into a single couple L. Thus the set is reducible to a force - couple set
with the force acting at any chosen particle.

If R is not zero then from the previous section the force - couple set can in
turn be replaced by a single force with a definite line of action; this force is the
resultant R of the force set as shown in figure 4.10c and is given by

R = VICE) +(ZF)]

ZF,
tan 0 =
XF,
M
d=""%
R

If R is zero then the force set has been reduced to a couple; this couple is the
resultant couple L of the force set and has a moment ZM, .

Any set of coplanar forces acting on a rigid body can therefore be reduced
either to a single force R or to a single couple L as the case may be. If in a parti-
cular case there is neither a resultant R nor a resultant couple L then the body is
in equilibrium. Conversely if a body is known to be at rest then it is in equilibrium
and there can be no resultant R or resultant couple L.

Worked Example 4. 1
In figure 4.11a the column AB has weight 2 kN, the centre of gravity being at D.

2m

im
B

=7 1kN B E c>
2kN m l 2kNm
1kN

Hi V3 kN

+|0 b

( 2 kN

[ o

unknown ground
L reaction at A
(a) {b)
Figure 4.11

The overhanging portion, weight 1 kN with centre of gravity at E, carries a pro-
jecting pin at C to which a torque is applied as shown. The force at B is supplied
by a stay wire. By transferring these forces to the foot of the column deduce the
reaction of the ground on the column.
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Solution

The free-body diagram is shown in figure 4.11b in which the force at B is resolved
into two vector components where

Fgx = 2sin30° = 1 kKN«
Fg, = 2cos30°=+/3kN{

The couple at C is equivalent to a couple at A having the same moment.

The 1 kN force at E is equivalent to a vertical 1 kN force at A together with a
clockwise couple having moment 1 x 1 =1kNm.

The 2 kN force at D can be moved to A in its line of action. The 1 kN force at
B is equivalent to a horizontal 1 kN force at A together with an anticlockwise
couple having moment 1 x 3 =3 kN m.

The /3 kN force at B can be moved to A in its line of action. Thus >Z F, at
A=—1kN;1ZF,at A=~1-2—+/3=—4732kN; DM, =—2—-1+3=0.
For equilibrium of the body R=0 and L =0 and it follows that the ground
reaction at A must have force components R, = 1 kN—>; R, =4.732 kN * and

that the couple exerted is found to be zero. If the applied couple at C had
moment 3 kKN m there would be an anticlockwise couple, moment 1 kN m,
exerted by the ground on the body at A.

4.9 Conditions for Equilibrium

In practice we encounter rigid bodies that are known or are seen to be in equili-
brium under the action of a set of forces. In a particular case the magnitudes,
directions and lines of action of some of the forces may be known (the purpose
of the rigid body being to support or transmit such forces) and it is desired to
determine the characteristics of the remaining forces. To do so it is necessary to
set out the conditions for equilibrium, R =0 and L = 0, in the form of scalar
equations that can be solved for the desired information. For this purpose the
forces are expressed in terms of their components.

Consider again, therefore, any arbitrary set of coplanar forces acting on a rigid
body. As found in section 4.8 the set must reduce either (1) to a single force R
with vector components R, and Ry, where R, = ZF, and R, = ZF,, in given x-
and y-directions, or (2) to a couple L having moment M.

Choose three points A. B and C.

(2) If ZF, =0, then R, = 0, but it is possible that the set reduces to R), only or
L only;if now ZF, =0, then Ry, = 0, but it is possible that the set reduces to L
only; if now ZM, =0, then L =0.IfR, =0, R, =0, L = 0, then the body must
be in equilibrium.

(b) If TF, =0, then R, = 0, but it is possible that the set reduces to Ry, only or
L only;if now TM, =0, then L = 0, but it is possible that the set reduces to R,,
only passing through A;if now ZMp = 0, then provided AB is not perpendicular
to the x -direction, R, = 0. IfR, =0,L=0,R, =0, then the body must be in
equilibrium.
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(c) If ZM, =0, then L = 0, but it is possible that the set reduces to R passing
through A;if now ZMg = 0, then it is possible that the set reduces to R passing
through A and B; if now ZM¢ = 0, then provided C is not on the line AB, R = 0.
If L =0, R = 0 then the body must be in equilibrium.

It follows that for a rigid body to be in equilibrium, the conditions for equili-
brium contained in any one of the following groups of equations must be satisfied.

ZF, = 0,2F,=0,ZM, =0
where A is any point; or
ZF, = 0,2ZMp=0,2Mg=0

where A and B are any two points not both on a line perpendicular to the
x -direction; or

ZMy = 0, EMB =0, EMC =0

where A, B and C are any three points that are not collinear.
The three equations in any group can be solved for not more than three un-
known quantities.

4.10 Solution of Problems

The solution of problems in statics follows the basic procedure described in the
following paragraphs. The fundamental requirement for the consideration of the
equilibrium of a rigid body is that all external forces are properly accounted for,
therefore the importance of the free-body diagram in ensuring this cannot be
overemphasised. This diagram is not a sketch to illustrate the solution but it is an
integral part of the solution, and should not be omitted or drawn haphazardly.

(1) Choose the body that is known or is required to be in equilibrium. The body
chosen may be a part of a larger body or one of an assembly of connected bodies
that are as a whole in equilibrium. Consider the chosen body in isolation and
draw a neat diagram on which the boundaries are clearly defined.

This free body or system is subject to the action of its surroundings, namely
external forces that can be grouped as follows.

(a) Applied forces, namely all forces other than those referred to under (b)

and (c).

(b) Gravitational forces, namely the weight of the body or its component in the
plane of the other forces.

(c) Constraint forces or reactions, namely those external forces required to main-
tain the position or configuration of the free body and which can be regarded as
being brought (simultaneously) into play as a result of the action of the applied
and gravitational forces; it should be noted that there will be a constraint force or
reaction at every point where the free body is in contact with any kind of support;
constraint forces can therefore arise as forces exerted by other parts of a larger
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body or by other connected bodies from which the chosen body has been

separated.

Forces in groups (a) and (c) are also classed as surface forces while those of

type of support

(a) (b}

frictionless rollers

(e) C (d) ;\—_/

smooth surface cord or cable

reaction supplied

(alternative senses shown
dotted)

SN
4%

unknowns

e

force components=single force:
point of application — known

direction of force — not known
magnitude of force—not known

collar on pin in
smooth rod smooth slot single force:
point of application — known one unknown
direction of force —known
magnitude of force—not known
2 —, FJ;
(9) —L=a. (h) - F
smooth pin rough surface P D/F(
&

two unknowns

a L7

built in or encastré

force-couple set=single force:

point of application — not known
direction of force — not known
magnitude of force —not known

1w

(U=

|

°
Ny
| N o
ul .
ll"% L \x'T]

three unknowns

Figure 4.12
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groups (b) are body forces. Some of these forces may not be known completely,
in particular, those in group (c). However, we can note that a force in this latter
category is equivalent to a force at a known point with known direction, or a
force at a known point with unknown direction, or a force at an unknown point
with unknown direction, the number of unknowns being respectively one, two or
three in number. Figure 4.12 illustrates for reference some typical examples of
constraints that are encountered in practice and the nature of the forces that can
be supplied by those constraints.

(2) Show all external forces, both known and unknown, on the diagram. If any
forces are unknown use appropriate symbols, preferably indicating components
for ease of calculation. This diagram is the free-body diagram for the problem.

(3) Apply the conditions for equilibrium and solve the equations for the unknown
quantities. This step usually calls for some thought since a suitable choice of
reference directions and moment centres can often expedite a solution.

(4) Check solutions for reasonableness and arithmetical accuracy. It is always
desirable to verify correctness by inserting the solution in an equation that has
not already been used under paragraph (3).

411 Composite and Connected Bodies

Most engineering applications are concerned with assemblies of elementary rigid
bodies that are connected in various ways to each other or to some fixed support.
The conditions for equilibrium set out in section 4.9 are for a rigid body and
obviously may be directly applied to an individual body or member, or to a group
of rigidly connected members of an assembly. The conditions can also, however,
be applied to a non-rigid assembly of connected members if their configuration is
maintained constant by the applied forces and couples, for the assembly may then
be regarded as a rigid body. Thus each individual body or member of the assembly,
or group of connected members that is maintained in a fixed configuration, can
be chosen as a free body and the forces required for equilibrium of that free body
determined.

An essential fact to note is that by Newton’s third law there are at each connec-
tion mutual forces or reactions that are equal in magnitude and oppositely direc-
ted along the same line of action. Thus in figure 4.12 a force shown as acting on
the body from the support is accompanied by an equal and opposite force acting
on the support from the body. However, as far as the free-body diagram of the
body is concerned, it is only the force on the body that is indicated. Similarly,
for two connected bodies, the free-body diagram for one body must show (as
one of the external forces) only the force exerted by the other body to which it
is connected.

Following from the conditions for equilibrium it is possible to write three, and
only three, independent equations for each individual body or member. Thus an
assembly of three connected members gives rise to nine independent equations
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allowirig a solution for nine unknowns. However, in certain ptoblems, depending
on the number of unknowns required to be evaluated, it will not be necessary to
set up all the independent equations. Free-body diagrams of connected groups
do not give rise to further independent equations although they may yield more
useful combinations of the same equations.

Typical of the engineering examples of connected bodies are trusses, frames,
mechanisms and composite beams. The analysis of these assemblies is directed
towards the determination of the internal forces in the members, but a necessary
preliminary is the determination of all the external forces acting on each member
separately using the principles already discussed.

In the analysis of connected bodies it is useful to recognise two types of
member that are frequently encountered: these are referred to as two- force and
three- force members respectively.

(1) Two-force member: if a body is in equilibrium under the action of two forces
only then the two forces have equal magnitudes and opposite senses in the same
line of action.
(2) Three-force member: if a body is in equilibrium under the action of three
forces then their lines of action meet at a point, unless they are parallel.

If these conditions were not met then clearly there would be a resultant force
in case (1) and a resulting moment about the intersection of two of the forces in

case (2), and a state of equilibrium could not exist.
035m
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Figure 4.13
Worked Example 4.2

In figure 4.13a the body A, having mass 100 kg with centre of gravity at G,, is
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hinged to a fixed point C and a leg at D rests on a smooth surface. The body B,
having mass 10 kg, with centre of gravity at Gg, is hinged to A at E and is also
supported at H, the contact surfaces at this point being smooth. If the system is
in equilibrium under the applied 50 N force and 100 N force indicated, determine
the horizontal and vertical components of (1) the reactions of the fixed surface
on the body A at D and C and (2) the reactions of the body B on body A at E
and H.

Solution

Following section 4.10, free-body diagrams are drawn for the assembly of body
A and body B as shown in figure 4.13b, for body B alone, as in figure 4.13c, and
for body A alone, as in figure 4.13d.

Using the categories of section 4.10 we insert into each free-body diagram
forces as follows.

(a) The applied forces; in the case of figure 4.13b these are the 50 N and 100 N
forces, in figure 4.13c it is the 50 N force only and in figure 4.13d the 100 N force
only.

(b) Gravitational forces; these are the weights of A and B acting through G, and
Gp respectively in figure 4.13b and the separate weights in figures 4.13¢ and
4.13d.

(c) Constraint forces or reactions exerted by other parts of the system on the
particular free body being considered, as follows.

(i) In the case of figure 4.13b the reactions of the fixed surface on body A at
points C and D; from a study of figure 4.12 it follows that there can only be an
upward force at D, called Fp,, while at C the force can have both horizontal and
vertical components that are unknown in sense; senses have therefore been
assumed for these components, which are symbolised by F¢p and Fcy.

(ii) In the case of figure 4.13c the reactions of body A on body B at points E and
H; Fy, can only be vertically upwards but the senses of the two components Fg,
and Fg,, at E are again unknown and have to be assumed.

(iii) In the case of figure 4.13d the reactions of the fixed surface on body A at
points C and D as already described in (i) and the reactions of body B on body A
at points E and H; the senses of Fyy,,, Fg, and Fg,, in figure 4.13d must be oppo-
site to those in figure 4.13c to conform with the third law. Note that the sense of
Fgy and Fgy, in figure 4.13d must follow logically from the senses assumed in
figure 4.13c.

Each separate member gives rise to three independent equations and since all
six unknowns (Fgy, Fgy, Fuy, Fpy, Fcx and Fg,) are to be evaluated it will be
necessary to write down all six independent equations in order to provide a
solution. Equilibrium conditions as set out in section 4.9 are used to write down
the six equations, each equation preferably containing only one unknown. The
latter can often be accomplished by judicious choice of moment-centres or
reference directions.
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From figure 4.13b: ZMc =0

981 x 0.3 + 98.1 x 0.275—50 x 04—100 x 0.15—0.6 x Fpy=0
therefore

Fpy, = 477N
ZF, =0

50 + 100 + Fo,, = 0
therefore

Fc, = —150N
ZF, =0

Fpy, + Fc, — 981 — 981 =0
therefore

Fcy = 602N
From figure 4.13¢c: TMg =0
Fyy x 0.15 — 98.1 x 0.075 — 50 x 02 =0

therefore

Fy, = 1157N
ZF, =0

Fge + 50 = 0
therefore

Fg, = —50N
ZF, =0

Fgy + Fy, —98.1 =0
therefore

FEy =—-176N

Strictly figure 4.13d is unnecessary since all the required answers are available;
it should be retained, however, and used to check the already calculated values.
This can be done by inserting these values into the following equation, deduced
from figure 4.13d, for the equilibrium of body A.

ZMc = Fgx x 02 + Fgy x 035 + 981 x 03 + Fy,
x 0.2 — 100 x 0.15 — Fp, x 0.6

Inserting values the right-hand side becomes
(-50) x 02 + (—17.6) x 0.35 + 981 x 0.3 + 115.7
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x 02 — 100 x 0.15 — 477 x 06 =0

as required. (Note the retention of the negative signs in the values of Fg, and

F, Ey ) i
The required answers are as follows.

(1) Reactions of the fixed surface on A at C and D are F,, Fcy and Fp in
figure 4.13b (or d); taking account of the assumed directions and the signs ob-
tained for the quantities the correct reaction components are

atC < 150N, 1602 N
atD +477TN

(2) Reactions of the body B on body A at E and H and are Fg,, Fg), and Fy, in
figure 4.13d; taking account of signs the correct reaction components are

atE +50N,1176N
atH t1157N

4.12 Simple Trusses

A simple truss is a structure made up of straight two-force members usually of
uniform cross-section; the connections are regarded as being made by smooth
pinned joints, and the members are so connected that the structure as a whole is
rigid under the action of a set of forces applied at the joints in the plane of the
truss.

The simplest rigid assembly is the triangle made up of three members shown
in figure 4.14a, the members being represented in the diagram by straight lines.
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(a) (b) {c)

Figure 4.14

The figure shows other configurations developed by connecting further members
in pairs to form additional rigid triangles, the whole assembly or truss then being
connected to or being in contact with the supports at appropriate joints.
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The support shown diagrammatically at A in figures 4.14b and ¢ represents a
smooth pinned joint as detailed in figure 4.12g; the support at B in both figures
represents a roller support as detailed in figure 4.12b.

The truss is in equilibrium under the action of applied forces or loads, and the
reactions from the supports. The conditions for equilibrium require in general that
the supports supply three reaction components and conversely, the conditions will
enable three such components to be determined. Figures 4.14b and ¢ show how
three components of reaction are supplied by a roller and pinned joint. A simple
truss supported in this manner is said to be statically determinate. If the truss in
figure 4.14b or 4.14c¢ had been connected to the support at two pinned joints
then a further reaction component would have been supplied. The determination
of the four components would have required some additional condition beyond
those relating to equilibrium. The truss is then said to be statically indeterminate.
We shall only consider trusses and other assemblies that are statically determinate.

Each pin of the truss is in equilibrium under the action of the forces exerted
by the members meeting at the joint. In addition there are applied forces and
reactions at certain joints. Since by definition the members are two -force mem-
bers, the forces (having equal magnitude and opposite sense) exerted on any
member by the pins at the ends of that member have lines of action coinciding
with the line joining the pins. By the third law the directions of the member
forces on the pin at each joint are therefore known; the magnitude and sense of
each member force remain to be determined. Applying the conditions for equili-
brium of a particle, treating the pin as a free body, the member forces at each
joint can now be determined, analytically or graphically, provided the unknown
torces at the joint considered do not exceed two in number. The analysis
commences at a joint where a solution for the member forces is possible and then
moves from joint to joint, noting that since the members are two-force members
the solutions are progressively carried over from one joint to another, care being
taken to change the sense of a member force on passing to an adjacent joint. It is
advisable to calculate the support reactions initially by treating the whole truss as
a free body ; this can afford a check on the correctness of the analysis since the
pins at the support joints must be individually in equilibrium.

The complete solution yields the forces exerted on the pins. These forces,
reversed in sense, are the forces on the members. If these latter forces are directed
inwards along a member then it is said to be in compression, and if outwards, in
tension. A member in compression can be referred to as a strut, and a member in
tension as a tie.

Worked Example 4.3

The truss in figure 4.15 is pin jointed at A and B and carries applied loads,,
magnitudes 1000 N and 2000 N, as shown. Determine (a) the force in each
member stating whether it is a strut or tie and (b) the reactions of the truss on the
wall at A and B.



STATICS OF RIGID BODIES 39

1000 N Fee
= pinC
e —\-b- pin E .\ Fee
3 Foe 1
2000N  pinD
2000 N Fog=2828 N e
F2000 N S S T,
Foe =2000 N Foe D E Foe
(b) (c)

Fag 1-‘50 l"ca
f Foe
LI

Fep=

c -
co™
5000 N b G-
£ Feo=TOTIN
cD
(f) Foa=3000N Fpe=2000
Foa_ A D Foa ) Foa=3000 N
"B £ .=4243 N Fac
pin Jl‘«l-l:_-b- 8D binB f Foa
D& f Re R, pin A

il Q
pinB wall supportat B é'?OSN I)/’?n

(q) (h) (j)

Figure 4.15

Solution

This type of problem lends itself to graphical solution since the force directions
are known to be along the lines representing the members. We start at a pin where
there are only two unknown forces — for example, in this particular case it is
advantageous to start by considering the equilibrium of pin E.

The forces acting at E are the applied 2000 N force and the forces in the
members CE and DE, the directions of which lie along these members. A triangle
of forces using the three directions and the sense of the 2000 N force is drawn to
close in figure 4.15b and the senses and values of Fg and Fpg are deduced from
this.

The force exerted by pin E on link CE is opposite to that in figure 4.15b and
it follows that the forces exerted on CE are as indicated on figure 4.15c, therefore
CE is a tie. By the same arguments the forces exerted on DE are as indicated,
showing it to be a strut. From the force acting at end C of CE the force exerted by
CE on pin C is deduced and shown in figure 4.15¢c. The force exerted by DE on
pin D is also indicated.

We may now consider the equilibrium of pin C, which has four forces acting
upon it: the 1000 N applied force, the known force Fcg exerted on C in the
direction indicated in figure 4.15c and the forces in the members AC and CD. A
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polygon of forces is drawn (figure 4.15d) and from this the values and senses of
Fecp and Fac are deduced. The forces exerted on AC and CD are thus as given in
figure 4.15e, indicating AC as a tie and CD as a strut. The force exerted by AC on
pin A is deduced and also that exerted by CD on pin D.

There are now only two unknown forces acting at pin D and the relevant force
polygon, figure 4.15f, is drawn to give the values and senses of Fp, and Fyp.

The forces acting on AD and BD (figure 4.15g) show AD as a tie and BD as a
strut. The diagram also shows the forces exerted by AD on pin A and BD on pin
B. From the latter, the forces on pin B are shown in figure 4.15h and the action
of the truss on the wall at this point is 7071 N £ 225°.

Of the three forces acting on pin A, two are known and one is unknown in
magnitude and direction. The triangle of forces in figure 4.15j gives the solution
for R (of the wall on the pin) as 6708 N L 206.6°; it follows that the action of
the truss on the wall is 6708 N £ 26.6°.

The force R, (wall on truss) could be determined from a polygon of forces for
the complete truss; this would include the applied 1000 N and 2000 N forces, the
force Ry exerted by the wall on the truss at B, and will be closed by R, . Rg could
have been calculated, since its direction must be that of BD, from the free- body
diagram for the whole truss, by taking moments about the point A.

The required answers are given below.

Member Force (N) Strut (S) or Tie (T)
AC 4243 T
AD 3000 T
BD 7071 S
CD 5000 S
CE 2828 T
DE 2000 S

4.13 Simple Frames

A simple frame is an assembly of connected bodies, some or all of which are
multi-force members. For our present purpose the connections are regarded as
being made by smooth pinned joints. The frame will not necessarily need to be
rigid when independent of the support, and the applied forces can act at points
other than the connections.

Typical configurations are shown in figure 4.16. Figure 4.16b illustrates a
simple case in which the frame is no longer rigid if detached from its supports.
There are now four reaction components at the supports (and two internal equal
and opposite pairs of components at the joint C) but these can all be determined
using equilibrium conditions only since six independent equations can be written
(see section 4.11). The vertical wall between joints A and B can, if necessary, be
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Figure 4.16

regarded as a member ensuring the rigidity of the frame. The frames in figures
4.16a and b are both fixed in position and configuration and are therefore being
maintained in a state of equilibrium.

Figure 4.16¢ is strictly that of a mechanism; this is discussed further in chapter
11 but is included here with frames since the force analysis is the same for both.
A mechanism can be regarded as a frame in which one of the support constraints
has been removed; this implies that the configuration of the mechanism can
change, but it is the purpose of a mechanism to transform movement at one point
to a corresponding movement at another. If there are forces acting on the mechan-
ism then it is called a machine in which an applied force or torque at one point is
required to balance a force or torque applied at another point. We may thus regard
a particular configuration of the machine as being fixed under the applied forces.
From section 4.11 it follows that any member of the machine, or any group of
connected members, can be selected as a free body that is in equilibrium. For
example, the free body consisting of the whole engine mechanism of figure 4.16¢
is in equilibrium under the external forces F, Rp, R and the torque M; the free
body consisting of the connecting rod CP and piston B is in equilibrium under the
external force set consisting of F, Rp and the action of OC on CP through the pin
at C. Mechanisms are one example where it is sometimes advantageous to consider
a connected group of members as a free body rather than each individual member.

Whereas for a truss the analysis involved the equilibrium conditions at the
joints, for a frame the analysis proceeds by isolating each member, or group of
connected members as discussed above, as a free body in equilibrium under the
action of the applied forces and the action of those other members that are
connected to it at pinned joints. The pin at a joint can be imagined to be an
integral part of one of the members meeting at the joint. At each pin there exists
an opposing pair of internal reaction components. The worked example 4.4 indi-
cates a suitable method of indicating the pin reaction components, by which each
component in a pair of opposed components is assigned one symbol; the senses in
which the reaction components are assumed to be positive for the member under
consideration are then entered on the free-body diagram of that member; at the
same time the opposing components are entered on the free-body diagrams of the
adjacent members.

By repeated application of the conditions of equilibrium the forces on each
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isolated member can be determined. It is here that care should be taken to avoid
a multiplicity of simultaneous equations by judicious selection of reference direc-
tions and moment-centres. It should again be noted (see section 4.11) that the
number of independent equations available is three times the number of separate
members although this number of equations may not need to be set up in a
particular problem. The unknown should be determined and inserted in successive
equations as the solution proceeds.

Worked Example 4.4

Determine the forces acting on each member of the frame shown in figure 4.17a
when carrying the 4 kN load at the point F.

B
\F x
Far L
Fay
1.5 kN 15 kN
c c
3.0 kN . 70 kNF
B 7.0 kN[ D
3.0 kN 4 kN
A E
15kN 5.5 kN
(c)

Figure 4.17
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Solution

Since the roller at E and the pin at A together supply three reaction components
they can be determined without difficulty. Free-body diagrams of the frame and
of the individual members are drawn (figure 4.17b). The pin reaction components
at each joint are entered in opposing pairs with one symbol assigned to each pair,
as illustrated at joint C. There is clearly no need to letter all components since the
symbol assigned has the same form at each joint. The direction of the opposing
pairs is initially assumed but it is essential that the sense in which a component is
shown be maintained throughout the analysis until all the magnitudes have been
determined. Following the arguments at the end of the previous section only nine
independent equations can be written and since from the free-body diagrams
there are nine unknowns, all nine equations must be utilised. Equilibrium condi-
tions are thus used to write down nine equations, preferably those equations that
contain only one unknown.

For the frame

TMy =0
Fgy x 4 —4 x 55=0 Fgy = 55kN
F, =0
—Fpy +55—-40 =0 Fay = 1L5KN
TF, =0
— Fax =0 Fay =0
Member BF
Mg =0
—4x35+Fp,x2 =0 Fp, = 70kN
F, =0
—Fg, +70-40 =0 Fgy, = 3.0kN
Member CE
TMc =0
—Fpy X 2.5 =0 Fpx =0
TF, =0
—Fcy — 0 =0 Foy =0
TF, =0
—Fey —704+55 =0 Fey = —1.5kN
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Member BF
ZF, =0
—Fg, + 0 =0 Fgy =0
As a check verify equilibrium of member AC
ZMc = Fpy x 4 — Fpx X 5 — Fgy x 2 + Fpy X 25
1.5 x 4 —3.0x 2
=0

The forces are now shown with correct senses on the free-body diagrams of the
members (figure 4.17c).

Worked Example 4.5

For the frame shown in figure 4.18a determine the magnitude of the forces on the
three pins at A, B and C.

Figure 4.18

Solution

Since the pins at A and C supply four reaction components they cannot be deter-
mined completely from the equilibrium conditions for the frame. Free-body
diagrams are drawn as in figure 4.18b for the two parts of the frame and in figure
4.18c for the frame as a whole.

Member AB

IMy, =0
—Fpy x 15+ Fgy x 10 =10 x 7.5 =0
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Member BC
IMc =0
—Fgy x 15 — Fgy x 15+ 10 x 7.5 — 5 X 5=0
Solving these two equations, Fg, = 5 kN and Fg), = — 5/3 kN.

Member AB
TF, =0
Fax — 5 =0 Fay = 5kN
F, =0
Fay — 10 — (—=5/3)= 0 Fay = 25/3kN
Member BC
TF, =0
—Foy + 5 =0 Fox = SKN
F, =0
Fcy+(—5/3)-10-5=10 Fcy = S0/3kN
Check for the frame
IMy = —10x 15/2 — 10x 45/2 — 5x35 — 5x 5
4+ 50/3x30 =0
Fp = /(5% + 8.33%) = 9.72kN
Fg = /(5% + 1.67%) = 527kN
Fc = /(5% + 16.67%) = 17.38 kN
Worked Example 4.6

The mechanism of figure 4.192 has massless links and is in equilibrium under the
applied force F acting on link BC and an unknown torque Q acting on a shaft at
D which is rigidly fixed to the link CD. Determine this torque and the reactions of
the supports on the mechanism at A and D.

Solution

Free-body diagrams are drawn, see figures 4.19b, ¢, d and e for the whole
mechanism and the separate links. The reactions shown in the diagrams have been
drawn in an arbitrary fashion when with experience many of them could be
drawn in the correct direction (if not in sense); these directions can be decided in
the following manner.
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Figure 4.19

(1) Forces Rg and R, acting on AB must lie along the line joining the hinged ends
since it is a two-force member.
(2) The three forces acting on link BC are in equilibrium and therefore pass
through one point. Figure 4.19f is drawn utilising this fact and the known direc-
tion of Ry to find the direction (but not the sense) of R¢.

With their directions known a triangle of forces, figure 4.19g, is drawn of the
three forces acting on BC, the sense of the forces following from that of F.

The forces on the link AB are as indicated in figure 4.19h (showing it to be a
tie) and it follows that the reaction of the support on the mechanism at A is
99NL—90°.
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The force Rp acting on link CD was indicated randomly in figure 4.19¢, but
it follows from the equilibrium of the link that Rp must be equal and opposite
to R ; the diagram is drawn correctly in figure 4.19j, the direction of R¢ in this
being opposite, of course, to that in figure 4.19g. The external torque Q must be
clockwise for equilibrium and its value can be determined by moments about any
point; for example

IMp =0

Rc x (0.1cos163%) —Q =0
therefore

Q= 142Nm

The reaction of the support on the mechanism at D is, as indicated in figure
4.19j, 148 N L —16.3°.

4.14 Summary

(1) By Newton’s third law the set of internal forces reduce to zero, therefore the
external forces are the only forces that influence the resultant and the conditions
for equilibrium of a rigid body.

(2) By the principle of transmissibility a force on a rigid body can be moved to
any point on the line of action without affecting the resultant or the conditions
for equilibrium.

(3) Two unequal parallel forces have a resultant, but two forces having equal
magnitude but opposing senses have no resultant and are referred to as a couple.
(4) A set of parallel forces acting on specific particles of a body pass through a
point whose position in the body does not depend on the orientation of the body.
(5) The magnitude M of the moment of a force magnitude F about a point is
defined to be Fd, where d is the perpendicular distance from the point to the line
of action of the force. For coplanar forces moments having anticlockwise sense
are taken as being positive.

(6) The magnitude M of the moment of a couple L is Fd where d is the perpendi-
cular distance between the two unlike parallel forces, each having magnitude F,
constituting the couple. The moment is a property of the couple and does not
depend on the choice of a moment centre.

(7) Coplanar couples having the same moment and sense are equivalent. A body
can then be said to be subject to a torque of specific magnitude. Coplanar torques
are added algebraically.

(8) A force acting on a rigid body may be replaced by an equal force having a
parallel line of action, provided a couple having the correct moment and sense is
introduced.

(9) For a set of coplanar forces acting on a rigid body, the magnitude R of the
resultant, the direction @ relative to the x -direction and the distance d of the line
of action from a point A are given by



48 BASIC ENGINEERING MECHANICS

R = VICK) + (CK)]
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tan @ = Y
TF,

M
d = ___é

R

(10) Any set of coplanar forces acting on a rigid body can be reduced either to a
single resultant force R, or if there is no resultant force, to a single couple L. If
there is neither a single resultant nor a single couple then R =0 and L = 0 and the
body is in equilibrium.

(11) If a body is in equilibrium then R = 0 and L = 0, and any one of the follow-
ing groups of equations must be satisfied.

(a) ZF, = 0,ZF, = 0,ZM, = 0, where A is any point.

(b) ZF, = 0,ZMs = 0,ZMp = 0, where A and B are any two points not both
on a line perpendicular to the x -direction.

(c) ZMp = 0,ZMp = 0, ZMc = 0, where A, B and C are any three points that
are not collinear.

Note that for a rigid body only three independent scalar equations are supplied by
the equilibrium conditions.

(12) In the solution of problems a free-body diagram should always be drawn on
which all external forces must be indicated.

(13) A free-body diagram may be of any single member, or of any assembly or
group of connected members whose configuration is fixed under the action of the
external forces and couples.

(14) The external forces to be inserted in a free-body diagram are

(a) applied forces

(b) gravitational forces (weight)

(c) reactions of all other bodies and supports (note that there will be a reaction at
every point of contact or support)

(15) For a two-force member in equilibrium the forces must have the same line
of action; thus if the forces are applied at the ends of the member their lines of
action lie along the line joining the ends.

(16) For a three-force member in equilibrium the lines of action of the three
forces intersect at one point.

(17) For a system of n connected members there are 3n independent equations of
equilibrium available; any further equations of equilibrium beyond this number
will be redundant.

(18) A truss is an assembly of pin-jointed two-force members and is analysed by
applying the conditions for equilibrium of a particle to each pin.

(19) A frame is an assembly of pin-jointed multi-force members and is analysed
by applying the conditions for equilibrium to each member, a group of connected
members, or the whole frame. A frame may be non-rigid when a support con-
straint is removed. When used to transmit forces and couples it is then classed as
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a mechanism or a machine. If at any instant in a particular fixed configuration it
is in equilibrium under the applied forces and couples.

(20) Graphical methods sometimes facilitate a solution especially if the system
consists of two- and three-force members.

Problems

4.1 Reduce the force - couple set in figure 4.20 to (a) a single force through A
plus a couple and (b) a single force. State the magnitude, direction and position
where necessary.

i"' ST |
I..

ton

Figure 4.20

4.2 The massless rectangular plate ABCD in figure 4.21 is maintained in equili-
brium by the forces shown. Determine the magnitude of P and the reaction of the
plate on the hinge. (Hint: See conditions for equilibrium; draw a free-body
diagram.)

) P
-r‘_ 04 m ?O_\l
02 m
_L A p| 30N
== +
Figure 4 21

4.3 The rectangular plate in figure 4.22 is lying in the horizontal plane and is in
equilibrium under two known forces (1000 N and 600 N) and three forces R,
R, , R; known in direction (lying along the full lines) but not in magnitude.

e 04 m ) zee problem 4.4
L 0Zm | - T #Nase
Y Y — Blg 3
! | 1000N 3
005m
D4 Y600 N o J30°
R R,

Figure 4.22
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(a) Can the magnitudes of R, R, and R; be determined?
(b) If so, calculate these magnitudes.

(Hint: How many equations are available? A judicious choice of moment-centre
simplifies the calculation.)

4.4 As for problem 4.3 but R, and R; are now inclined along the broken lines.

4.5 A rigid rod ABC, length 1 m, carries a vertical load 500 N at 0.2 m from A.
The rod is supported in a horizontal position by three frictionless roller supports,
one at A, another at B, 0.4 m from A, and the other at C.

(a) Can the vertical reactions at A, B and C be evaluated?
(b) If it assumed that Rg = 0.5 R calculate their values.
(c) How is the system in (a) described?

(Hint: Draw a free-body diagram and see conditions for equilibrium.)
4.6 Determine the reaction of the wall on the rod in figure 4.23 if this is in equili-
brium under the applied forces 10 N and 20 N and has weight 5 N. (The centre of

gravity is at G.) (Hint: Draw a free-body diagram assuming force components and
a couple at the fixed end.)

20N

2 744__

g T —
[ L= N@‘*
_ﬁQEmHOEmMOEm

" 10N

Figure 4.23

4.7 The hinged rod in figure 4.24 rotates in the horizontal plane but is held in
equilibrium under the forces and couples shown and the unknown force F. Deter-
mine F and the reaction of the hinge on the rod. (Hint: Draw a free-body
diagram.)

« o |
E 20Nm / |
o 20 N ¥ 405 M ONIBN

Figure 4.24

4.8 A rod AB, length 1 m, is hinged at its top end A so that it can rotate in a
vertical plane. A force, magnitude P, at £ 0° is applied at B in this vertical plane
such that AB makes an angle 30° to the vertical. If the mass of the rod is 20 kg
and its centre of gravity is 0.6 m from A, determine P and the reaction of the
hinge on the body without taking moments. (Hint: Only three forces act on the
rod.)
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4.9 A massless square lamina ABCD with 1 m side is lying in a vertical plane and
has cords attached to two top corners A and B and one bottom corner C. The cords
from the two top corners are passed over frictionless pulleys and a body, mass 20 kg,
is attached to that from A and a body, mass 40 kg, to the other. If a body, mass
50 kg, is attached to the third cord and the lamina rests in equilibrium find (a) the
angles the upper cords make with the vertical and (b) the angle the top edge of the
lamina makes with the horizontal. A graphical solution is acceptable. (Hint: Use
the triangle of forces and the fact that only three forces act on the lamina; the
tensions in each cord are uniform.)

4.10 An elastic cord of constant 20 N/m is fixed, just taut, between two points
that are 1 m apart horizontally. If a particle of mass 2 kg is slowly dropped on to
the cord show that when a state of equilibrium is reached all the relevant condi-
tions are satisfied when the cord tension is 12.46 N and each portion of the cord
makes an angle of 38° to the vertical. (Hint: Make use of the relationship of
tension and extension; use conditions for equilibrium, also geometrical relation-

ships.)

4.11 (a) A uniform beam of mass m is placed against a smooth vertical wall and
stands on a smooth horizontal floor; can it ever be in equilibrium?

(b) A uniform ladder of length 10 m and mass 100 kg is placed to restin a
vertical plane with each end resting on a smooth surface, the surfaces being
inclined towards each other and each making an angle of 45° with the horizontal.
If a mass of 60 kg is placed at 3 m from one end find the angle of inclination of
the ladder when it reaches a state of equilibrium. Is the 60 kg mass above or below
the centre of gravity of the beam? (Hint: Consider equilibrium of the free-body
diagrams; for (b) note directions of reactions of surfaces and use conditions for
equilibrium.)

4.12 The assembly of two connected bodies in figure 4.25 is in equilibrium in the
situation shown. Find the applied force P, the reactions of body A on body B at
C and D, and the reactions of the surface on A. (Hint: Draw free-body diagrams

P mass of body A is 50 kg

Q‘?gf{/\""' mass of body B is 20 kg
5 //.

Figure 425
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for each body and the assembly; make use of those directly applicable and make
reference directions suitable for the problem. It is simpler for moment and force
summations to resolve all forces parallel to and perpendicular to the chosen
reference directions.)

4.13 The assembly in figure 4.26 is in equilibrium with the applied force P such
that the reaction at C is just zero. Determine P and the reactions of body Bon A
at D and E. (Hint: See problem 4.12.)

weight of body A is 300N
weight of body Bis 100 N

)\ . 03m _Qfm

|
0.2 mo. ~03m o
Figure 4.26

4.14 Determine, for the truss in figure 4.27 the forces in each member, stating
whether each is a strut or a tie. Find also the reactions at A and E of the supports
on the frame. (Hint: Consider the free body of the whole truss to find the reac-
tion at E.)
TkN .
g\ "l 2m

o o !
|

45, /0 @E

2 kN
Figure 4.27
4.15 Determine the forces (stating whether struts or ties) in each member of the

truss in figure 4.28. Would the force in AB be reduced if a member were used to
connect AD rather than BE?
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4.16 Determine the forces in each member of the truss in figure 4.29.

AD=DF=2m
CO=CE=DE=1m

Figure 4.29

4.17 The mechanism in figure 4.30 is in equilibrium under the applied force of
20 N and a torque Q applied to the link AB through a shaft at A. Determine this
applied torque and the reactions of the supports on the mechanism at A and D.
Ignore the mass of the links. (Hint: See worked example 4.6.)

20 kN
AB=CD=02m

BC=03m
'p CE=EB

:Illgon

Figure 4.30

4.18 Determine the values of the reactions of the supports at A and C on the
frame, which lies in the horizontal plane, of figure 4.31. What is the reaction of
AB on BC at B? (Hint: Draw separate free-body diagrams; an analytical method
is probably most suitable.)
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4.19 In the mechanism shown in figure 4.32 the small roller D moves in a friction-
less fixed horizontal slide and roller A in a frictionless guide in link FC. Determine
the external torque required on AE to maintain equilibrium when a force of

10 kN is applied at D, and also the reactions of the mechanism o