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Preface 

The first international conference organized in Vietnam, which 
concerns theoretical computer science, was the ICOMIDC Sym- 
posium on Mathematics of Computation, held in Ho Chi Minh 
City in 1988. For the last years great developments have been 
made in this areas. Therefore, it had become necessary to or- 
ganize in Vietnam another international conference in this field, 
which would enable Vietnamese scientists, especially young peo- 
ple, to update the knowledge, to make contacts, to exchange 
ideas and experiences with leading experts all over the world. 

For such a purpose, the conference on Mathematical Foun- 
dation of Informatics (MFI99), held at  the Institut de Fran- 
cophonie pour Informatique (IFI) in Hanoi, was co-organized 
by the Institute of Mathematics and Institute of Information 
Technology, Vietnam National Center for Natural Sciences and 
Technologies (now, Vietnam Academy of Science and Technol- 
ogy). This conference was also endorsed as one of the activities 
of the South East Asian Mathematical Society (SEAMS). 

The Program Committee consisted of And& Arnold, Jean 
Berstel, Marc Bui, Robert Cori, Bruno Courcelle, Karel Culik 
11, Janos Demetrovics, Josep Diaz, Volker Diekert, Phan Dinh 
Dieu, Dinh Dung, Jozef Gruska, Masami Ito, Helmut Jiirgensen, 
Juhani Karhumaki, Takuya Katayama, Gyula 0. H. Katona, 
Bach Hung Khang, Hoang Kiem, Daniel Krob, Ivan Lavallde, 
Bertrand Le Sa ec, Igor Litovsky, Maurice Nivat, Dominique 
Perrin, Dang Huy Ruan, Jacques Sakarovitch, Ludwig Staiger, 
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Howard Straubing, Ngo Dac Tan (Secretary), Nguyen Quoc 
Toan, Do Long Van (Chair). 

The Steering Committee consisted of Ding Dung, Wanida 
Hernakul, Bach Hung Khang, Kar Ping Shum, Polly Wee Sy, 
Dao Trong Thi, Nguyen Dinh Tri, Do Long Van, Tran Duc Van. 

The Organizing Committee consisted of Le Tuan Hoa (Chair), 
Le Hai Khoi, Michel Mouyssinat, Ngo Dac Tan, Le Cong Thanh. 

The main sponsors of MFI99 are: UNESCO Jakarta, Viet- 
nam National Program for Basic Research in Natural Sciences, 
Institut de Francophonie pour Informatique (IFI), V' ietnam 
Union of Science and Technology Associations (VUSTA), and 
the Institute of Computer Science at Kyoto Sangyo University. 

At the conference, invited lectures were delivered by Andrk 
Arnold, Ho Tu Bao, Jean Berstel, Christian Choffrut, Nguyen 
Huu Cong, Robert Cori, Bruno Coucelle, Volker Diekert, Nguyen 
Cat Ho, Dang Van Hung, Masami Ito, Helmut Jurgensen, Juhani 
Karhumaki, Takuya Katayama, Gyula 0. H. Katona, Nguyen 
Huong Lam, Ivan Lavallke, Bertrand Le Saec, Igor Litovsky, 
Maurice Nivat, Jacques Sakarovitch, Kar Ping Shum, K. G. 
Subramanian, Ngo Dac Tan, Klaus Wagner. Over 40 contri- 
butions in different aspects of theoretical computer science were 
presented at MFI '99. 

This volume consists of several invited lectures and selected 
contributions at MFI '99. The editors thank the members of 
the Program Committee and also many referees for evaluation 
of the papers. We are grateful to all the contributors of MFI 
'99, especially to the invited speakers who have made a very 
successful and impressive conference. 

We would like to express our thanks to the members of the 
Steering Committee and Organizing Committee for their coop- 
eration and assistance in the preparation process for the con- 
ference and during the conference. Sincere thanks are due to 
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the organizations-sponsors without their supports the confer- 
ence would not be organized. 

on the conference in the bulletin of EATCS as well. 
We would like to thank Prof. Bruno Courcelle for his report 

Finally, the editors apologize to the contributors for a long 
delay in publishing the proceedings volume. 

July 2005 Editors: 
Do Long Van 

Masami Ito 
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On Growth Function of Petri Net and 
its Applications 

Pham Tra An 
Institute of Mathematics, P.O. Box 631, BoHo, Hanoi, Vietnam 

Abstract 

In this paper is introduced the growth function of a Petri net. We 
show that the growth function of any Petri net is bounded by a certain 
polynomial. There are relations between the growth function and the 
representative complexity of the language which is accepted by a Petri 
net. Some applications are examined. 

1 Introduction 
Petri net was introduced in 1962 by C. Petri, in connection with a theory 
proposed to model the parallel and distributed processing systems. From 
then onwards, the theory of Petri net was developed extensively by many 
authors (see, for example, [lo-131). 

In a Petri net, each place describes a local state, and each marking de- 
scribes a global state of the net. Since the number of tokens which may be 
assigned to a place can be unbounded, there may be an infinity of markings 
for a Petri net. From this point of view, a Petri net could be seen as an 
infinite state machine. 

In order to study thus infinite state machines, in this paper we propose a 
new tool : the notion of state growth speed, which is called to be the growth 
function of the machine. An analogous growth function for Lindenmayer 
systems was earlier considered by some authors, (see [2-31). As we shall 
see in the sequel, in the theory of growth function, only the state growth 
speed of the system matters, no attention is paid to the states themselves. 
This implies that many problems which are very hard for the infinite state 
machine in general, but could become solvable for the growth function. From 
the obtained results on growth function of Petri nets, we hope that it could 
shed a light to some problems concerning with the capacity of Petri nets. 
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The purpose of this paper is study of growth function of Petri nets and 
its applications. 

The definitions of Petri net and of Petri net language are recalled in 
Section 2. The Section 3 deals with the notion of growth function of a Petri 
net. The main result of this part is the growth speed theorem which shows 
that the growth function of any Petri net is bounded by a certain polynomial. 
The Section 4 is devoted to the relations between growth function of a Petri 
net and representative complexity of the language, which is accepted by this 
Petri net. Finally we close the paper with a remark and an open problem in 
Section 5. 

2 Definitions 
We first recall some necessary notions and definitions. For a finite alphabet 
C, C* ( resp. C', El') denotes the set of all words ( resp. of all words of 
length r,  of length at most r )  ) on the alphabet C, A denotes the empty word. 
For any word w E C*,l(w) denotes the length of w. Every subset L C C* is 
called a language over the alphabet C. Let N be the set of all non-negative 
integers and N+ = N\{O}. 

Definition 1. A (free-labeled) Petri net N is given by a list : 

N = (P, T,  I ,O,  po, Mf)l 

where : 
P = { P I ,  ...,pn} is a finite set of places; 
T = {tl, ..., tm} is a finite set of transitions , P n T = 0; 
I : P x T + N , the input function; 
0 : T x P -+ N , the output function; 
po : P + N , the initial marking; 
M f  = {pup, . . . l  p f k }  is a finite set of final marking, 

Definition 2. A marking p (global state) of a Petri net N is a function from 
the set of places to N : 

p : P + N .  

The marking p can also be defined as a n-vector p = (PI, ..., pn) with pi = 
p(p i )  and IPI = n. 

Definition 3. A transition t E T is said to be firable at the marking p if : 
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Let t be firable at p and if t fires, then the Petri net N shall change its state 
from marking p to a new marking p' which is defined as follows : 

VP E p : P'(P> = P(P)  - I@, t )  + O(t, PI.  

We set S(p, t )  = p' and the function 6 is said to be the function of changing 
state of the net. 

A firing sequence can be defined as a sequence of transitions such that 
the firing of each its prefix will be led to a marking at which the following 
transition will be firable. By FN we denote the set of ail firing sequences of 
the net N .  

We now extend the function 6 for a firing sequence by induction as follows 
Let t E T*, t j  E T,  p be a marking, at which ttj is a firing sequence, then 

{ ::;:;:) 1 !$a(p,t),tj). 

Definition 4. The language acceptable by (free-labeled) Petri net N is the 

set 

The set of all (free-labeled) Petri net languages is denoted by Cf . 
L(N) = {t E T*/( t  E FN) A (d(Po,t) E Mf)). 

3 The Growth Function of a Petri Net 
3.1. Let N = (P, T,  I, 0, po, Mf) be a Petri net. We denote 

Sr = {P/(3t E -7%) A ( t  E T') A P =  PO, t ) ) ,  

s,, = {@/(st  E FN) A (t E T5r)  A /d = d(p0, t)}.  

S, (resp. S<,) is the set of all reachable markings of N by firing T (resp. at 
most r )  transitions. 

Definition 5. The Growth hnctions h ~ ,  gN of Petri net N are defined 
bY 

h ~ ( r )  = lsrl, 
g N ( r )  = IS,,l. 

Now we remark that an exact estimating g N ( r )  or h ~ ( r )  will doubtless be a 
complicated function of T .  However, it almost always happens that for large 
value of T ,  gN(r) or hN(r) can be closely approximated by a much simpler 
function which will provide us about state growth speed of the net N.  
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3.2. In the sequel, we use the notations and definitions of the theory of 
computational complexity. 

Definition 6. 
then 

for all n 2 N .  

If f and g are functions defined on the positive integers, 

(1) f = O(g) if there is a C > 0 and an N > 0 such that If(n)l 5 CIg(n)l 

(2) f = Q ( g )  if 9 = W).  
(3) f = R(C), where C is a class of functions, if f = n(g) for all g E C. 
The following theorem gives us an upper bound of state growth speed for 

any Petri net. 

Theorem 1. 

Pk is any polynomial of degree k, then 

(The growth speed Theorem) 
If N is a Petri net with m transitions and n places, k = min(m, n )  and 

hN = O(pk),  

SN = O(pk). 

Thus the growth funtion of any Petri net is bounded by a certain polynomial. 
This is an essential limitation of the Petri net. 

Proof. Let n/ = (P, T,  I , O , p o , M f )  be a Petri net with IT/ = rn, IPJ = n. 
We now estimate IS<,./. There are two ways for doing it. 
First we prove IS<,/ 5 P,(r) with IPI = n. 

Denote 
po = (a l ,  ..., a,); 

1 = rnazlO(tj,pi) - I(pi, t j) l ,  
Let t = tj,tj z...tj,, p 5 r, be any firing sequence of N .  The equation of state 
change by firing t can be determined as follows : 

a = mu2 ui , 1 I i I n. 

1 5 i 5 n; 1 5 j 5 m. 

d(p0, t j l )  = p1 with Vpi E P : 

p’(pi) 5 a + 1. 

d(p0, t j ,  ... t j , )  = p(P) with Vpi E P : 
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Therefore Vr  E N +  : 

IS<,I 5 ( a +  IT)" = Pn(.). 

Second, we show IS<,I - 5 Pm(r) with IT1 = m. We define the matrices I -  , 
o+ , D as follows : 

I-[.% i] = ( I (P2 ,  t j ) ) m x n .  

O+[j,i] = ( O ( t j 1 P 2 ) ) m x n .  

D = o + - I -  

e[j]=(O,. . . ,O, 1 , O , . . . , O ) l x m .  

Let t = t& z . . . t j p l  p 5 r,  be any firing sequence of n/. Firing t ,  the equation 
of state change is also determined by another way as follows : 

and set : 

v 
j - t h  

&(Po,  t j , )  = P' = Po + e [ W .  

&(Po,  t j l  ... t j , )  = p(p) = P (P-l) +e[jplD. 

We obtain : 
&(PO, t j  l . . . t j , )  = PO + e[j@ + ... + 

We set e[j]D = u j ,  j = 1, . . . , m , and fj is number of occurences of transition 
t j  in t. We can now express the equation of state change in the following 
form : 

= PO + Cj"L fj.j, { gi1fj 5 r. 

It follows that IS<,I equals at most the number of non-negative integer solu- 
tions of inequation CYZl f j  5 r. In [8] we have proved this number equals 
C;+, = (m + r)! /r!m! 5 (m + r)". Therefore V r  E N +  : 

IS<,l 5 (m+.)" = Pm(r). 

Combining both results of estimating IS<,.[, we obtain : 

ISI,I 5 Pk(r) , with Ic = min{m, n}. 

Finally, from the property 'v'r E N : IS,/ 5 IS<,I - , it follows IS,l 5 Pk(r), 
we obtain h~ = O(Pk),  gN = O(Pk). QED. 

3.3. We now consider the growth function for some special classes of Petri 
nets. Denote S = u S,. , r 2 0. S is the set of all reachable markings of net. 
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A Petri net N is safe if Vp E S,Vpi E P : p(pi) 5 1, i.e. the number 
of token in any place is either 0 or 1. Safeness is an important property of 
hardware devices. If (PI = n, then IS1 I 2n = C. Therefore for any T E N +  

hN(T) 5 9N(T) I c. 
A Petri net is bounded if there exists a contant K ,  such that for Vp E 

S,Vpi E P : p(pi) 5 K. It is easy to see that if N is bounded and [PI = n, 
then IS1 5 ( K  + l )n  = C. Therefore for any T E N +  : 

h ( r )  5 9 N ( T )  5 c. 
A Petri net is consewative if Vp E S, IF') = n : 

n n 

i=l i=l  

Because po is given, therefore Cy=lp~(pi) = K, it implies that p(p i )  I K ,  
i.e. N is bounded and we obtain also : 

hN(T) I SN(T)  I c. 
Thus, the growth functions of either safe or bounded or conservative Petri 
net are bounded by a contant. 

4 The Growth Function and Representative 
Complexity 

4.1. In [7-91, we have examined a representative complexity of language, 
defined as follows : 

C * .  We define two equivalence relations E,,(modL) in Zs' (and 
E,(modL) in C.) by : 

Let L 

Vx1,22 E EST,( and Vx1, x2 E C' ) : 

x l E ~ , x ~ ( m o d L )  e+ Vw E C* : x1w E L t) x2w E L. 

( x I E , x ~ ( ~ o ~ L )  H VW E C* : x1w E L +) X ~ W  E L) .  

It is easy to show that the relations E<,(modL), - E,.(modL) are reflexive, 

We define : 
symmetric and transitive, therefore they are equivalence relations. 

GL(T) = Rank Eir(modL),  
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H L ( T )  = Rank E,(modL) 

where Rank E is rank of the equivalent relation E . 
They are considered to be representative complexity characteristics of the 

language L over XI '  and over C'. There is a nice relation between the growth 
functions of a Petri net and the representative complexities of the language 
which is accepted by this Petri net. 

Theorem 2. (The supply-demand Theorem). 
Let L = L ( N ) ,  where N is a Petri net. Then for any r E N +  

H L ( T )  5 b ( r )  + 1, 

G L ( ~ )  I w ( r )  + 1. 
Proof. We first extende the partial function 6 to a total function over TI' 

by adding a new marking pe defined as follows : 

. If x is a firing sequence of N at p, then 

&, x )  = %% x )  

s'b, x )  = Pr 

. If x is not a firing sequence of N at p, then 

. For all x E TI', 8 ( p E ,  x )  = p6 

. Finally pe $ M f .  

We remark that in a strict sense, p E  is not a marking, since it is not an 

Set S<r - = S<r U { p E } ,  and 
Now we prove that if L = L ( N )  then GL(T) 5 I & [ .  

n-vector. But here we could consider it to be a special marking of N .  
(S<r( + 1. 

We assume 
the contrary that GL(r) > IssTI. There exist x1,x2 E T I P  such that 
x1E<,x2(modL) but d(p0, X I )  = d(p0, x2) , where F<,(modL) is the nega- 
tionof E<,(modL). It follows from the last equation that both 2 1 ,  x2 are (or 
are not) firing sequences and we could verify that : 

VW E T* 1 x1w E L tf X ~ W  E L. 

According to the definition, it implies that x1 E<,.x2 - (modL) which conflicts 
with hypothesis xl~<,x2(modL).  - Therefore : 

G L ( T )  I IS<,I = IssrI + 1 = gN(r)  + 1. 

By an analogous argument, we also obtain HL(T) 5 hN(r)  + 1. QED. 
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4.2. Using the above relation, we get some corollaries and applications. 

Corollary 1. If L i s  a language with either H L  = R(Pk) or GL = R ( P k ) ,  

then L i s  not acceptable by any Petri ne t  whose numbers of transitions and 
of  places are equal or less than  k .  

Proof.In order to  prove the corollary, we assume the contrary that L is 
acceptable by a Petri net N with k = min(lT1, If'[}. Applying the theorem 
2, and then the theorem 1, we obtain : 

G L ( T )  5 gN(r )  + 1 = O(Pk). 
This conflics with hypothesis either H L  = f l ( P k )  or GL = f l ( P k ) .  Therefore 
L is not acceptable by any Petri net whose numbers of transitions and of 
places are equal or less than k. QED. 

Corollary 2. If L i s  a language with either H L  = R(P)  or GL = R(P),  
where P is the class of all polynominals, then L i s  not acceptable by any Petri 
net. 

Proof. The proof is analogous to  the one of corollary 1. 
By the Corollaries 1 and 2, we can show a lot of rather simple languages 

not being acceptable by either any Petri net or a Petri net whose number of 
transitions and number of places are less than a given contant. 

Example 1. Let 1x1 = k 2 2, c @ C and : 

L = { x c x / x  E C+}. 

It can verify that if q , x 2  E XI', 2 1  # 2 2  then x1&,.x2(modL). Therefore 
GL(T)  = ICs'I = (k'+' - l)/(k - 1) = R(P) .  According to  the corollary 2, 
L is not acceptable by any Petri net. 

Example 2. Let C = (0,l)  , c @ C , k 2 2 and : 

L k  = {ZCZ / Z E C* , 1x11 = k } ,  

where 1x11 denotes the number of occurences of 1 in x. We now prove that 
for any r 2 k : H L ~ ( T )  2 Pk(r) . 

We set : 
w,. = {x / x E c*; l ( x )  = r ;  1x11 = k}, 

where 1(x) is the length of x. It is easy to show that : 

k IW,l = C,. = T !  / k!(r - k)! = T ( T  - 1). .. (T - k + 1) / k! = P ~ ( T ) .  
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For any x l ,  5 2  E W,., we prove that if X I  # x2 then xlE,.xz(modLk). In fact, 
if we choose w = cx1, then X I W  = x1cx1 E Lk, but 22w = ~ 2 ~ x 1  4 Lk. It 
follows x1E,.x2 (modLk). Therefore : 

HL,(r) 2 Iwrl = pk(r). 

According to corollary 1, it implies that Lk is not acceptable by a Petri net 
whose numbers of transitions and of places are equal or less than k .  

Theorem 3. Let N be a Petri net with g N ( r )  5 C,  then L = L ( N )  is 
regular. 

Proof. We first recall the Myhill-Nerode’s equivalence relation E(modL) 
defined as follows : Vxl,  x2 E C* : 

xlEx2(modL) e Vw E C* : x1w E L +) x2w E L. 

Denote IL = Rank E(modL). 
Myhill and Nerode have proved that L is regular if and only if IL 5 C. 
From the Theorem 2, GL(T)  5 g,u(r) + 1, it follows that G L ( T )  5 C. 

Because GL(T)  is non-decreasing and bounded, there exists lim GL(T)  = 
q, q = const, when r -+ 00. Since the values of GL(T) are integer, so there 
is a constant T O ,  such that Vr 2 TO : 

For proving L is regular, we assume the contrary that L is not regu- 
lar. By Myhill-Nerode’s theorem, IL = +00, therefore there is an infi- 
nite sequence x 1 , x ~  ,..., Xk, ... with xi E C* , xi # xj and xiExj(modL). 
From this sequence, we pick up the finite sequence x1,x2, ..., xq,xq+l and 
set k = Max{l(xl) ,  ..., l(x,+l)}. We now choose r = Max{k,n-,}. We ob- 
tain xiE<,xj(modL) for i # j .  It follows Gr,(r) 2 q + 1. Thus, there 
is T , T 5 TO but GL(T) # q. This contradicts with the property that 
Vr 2 TO , 
Corollary 3. If Petri net N has one of following properties : safe, bounded, 
conservative, then L = L ( N )  is  regular. 

Proof. At the end of Section 1, we have proved that if N gets one of 
properties safe, bounded, conservative then its growth functions are bounded. 
According to theorem 3, it implies that L ( N )  is regular. QED. 

GL(T)  = q. 

GL(T)  = q. It follows that L is regular. QED. 

5 Remark and Open Problem 
Now we extend the sphere of applying method of growth function. 

A (non-erasing) labeled Petri net N is defined by a list : 

N = (Pl T,  I ,  070, Po, Mf), 
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where P, T ,  I, 0, PO, Mf are the sames in Definition 1, 

alphabet; 
a : T -+ C , is a (non-erasing) labeled function , where C is a finite output 

We can extend the labeled function a for a sequence as follows : 

if t = t l t z  ... tn t h e n  o(t) = a(tl)a(tz) ... a(&). 

The  language acceptable by labeled Petri net  N is the set : 

L(N) = {Z E C*/ 3t E T* : (Z = a( t ) )  A (t E 3 ~ )  A (d(p0, t )  E M f ) } .  

The set of all labeled Petri net languages is denoted by C. 
It is obvious that the free-labeled Petri net is a particular case of labeled 

Petri net with a is an isomorphism, then it may be omitted completely by 
choosing C = T. In [9], we have proved that Cf c C. 

Remark. We have proved that the theorems 1 and 2 are still hold for the 
(non-erasing) labeled Petri net. The result shall be published in the Qext 
paper. 

Open Problem. Is it possible to apply the method of growth function to 
other infinite state systems, for example, to the iterative array of finite state 
automata ? On notions and definitions, concerning iterative array of finite 
automata, we refer to (41. 

Acknowledgement. The author would like to thank the referee for making 
some valuable suggestions for improving the presentation of the paper. 
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On an Infinite Hierarchy of Petri Net 
Languages 

Pham Tra An and Pham Van Thao 
Institute of Mathematics, P.O. Box 631, BoHo, Hanoi, Vietnam 

Abstract 

In this paper we show the existence of an infinite hierarchy of Petri 
net languages on the number of transitions and places of their recog- 
nizing nets. 

1 Preliminaries 
As well-known, the Petri net is a mathematical model of parallel and dis- 
tributed computing systems. In the last years, the theory of Petri nets and 
its applications have been investigated extensively by many authors (see, for 
example, [8-111). 

Let N be a Petri net with m transitions and n places, and Ic = min{m, n}. 
For any integer n 1 1 we denote by L(n) the class of all Petri net languages 
acceptable by a Petri net with Ic 5 n. 

Our aim in this paper is to prove that there exists an increasing infinite 
sequence of integers ni, 

15 n1 < n2 < ...  < ni < ni+l < - * * ,  
such that 

L(n1) c L(n2) c . . . c C(ni) c C(ni+i) c . * .  

The proof of the result is based on a complexity characteristic of Petri 
net languages, obtained earlier by the first author of this note [6]. 

Analogous hierarchies for some other language classes were earlier con- 
sidered by several authors, for instance, by Cole for languages recognizable 
by iterative arrays of finite automata [l], by P. D. Dieu and the first author 
of this note for languages recognizable by probabilistic automata and those 
with a time-variant-structure [3-41. 
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Definitions of Petri nets and Petri net languages are recalled in this sec- 
tion. In Section 2 a complexity charactristic of languages is considered. Using 
this characteristic a necessary condition for the Petri net languages is given. 
However as it will be shown, this condition is not sufficient. In Section 3, 
we show the existence of an infinite hierarchy of Petri net languages on the 
number of transitions and places of their recognizing nets. 

For any finite alphabet C, we denote C*, (resp. C', El') the set of all 
words (resp. of all words of length r ,  of all words of length at most r )  on the 
alphabet C, A denotes the empty word. For any word w E C*, Z(w) denotes 
the length of w.  Every subset L C C* is called a language over the alphabet 
C. Let N be the set of all non-negative integers and N+ = N\{O}. 

A (labeled) Petri net N is given by a list : 

N = (P, T ,  I ,  0, ff, Po, Mf 1, 
where : 

P = {PI, ...,pn} is a finite set of places; 
T = {t l ,  ..., t m }  is a finite set of transitions , P n T = 0; 
I : P x T -+ N is the input function; 
0 : T x P -+ N is the output function; 
CT : T -+ C is the labeling function , where C is a finite output alphabet; 
po : P -+ N is the initial marking; 
M f  = { p f l ,  ..., p f k }  is the finite set of final markings. 
We can extend the labeling function for the words in T* as follows : 

if t = t1t2 ..A, then u(t) = o(tl)a(tz) ... a(t,). 

A marking p (global configuration) of the Petri net N is a function p : P --f N 

from the set of places P into N .  The marking p can also be represented as 
an n-vector p = (p1, ...,p,) where p i  = p ( p i )  and n = ]PI. A transition t of 
N is said to be firable at the marking p if 

VP E P : 11.03) 2 I(P,t) .  

If t is firable at p then when t fires, the Petri net N will go into a new marking 
p' given by 

We write then 6(p,  t )  = p' and call 6 the state changing function of the net 
N .  

A firing sequence of N can be defined as a sequence of transitions such 
that the firing of each of its prefix will lead N into a marking at which the 

VP E p : P Y P )  = P(P) - I (P, t )  + O(t,P). 
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next transition is firable. The set of all firing sequences of N is denoted by 

The function 6 can be extended for firing sequence by induction as follows 
F N .  

{$:a;) 1 !;6(p, t ) ,  t j ) ,  

where .t E T* , t j  E T and p is a marking at which ttj is a firing sequence. 
We call language acceptable by a (labeled) Petri net N the set : 

L(N) = {Z E C*/ 3t E T* : (Z = a(t))  A ( t  E FN) A (6(po, t )  E Mf)}. 

The set of all (labeled) Petri net languages is denoted by C. 

2 On a criterion for Petri net languages 
In this section we recall a necessary condition for Petri net languages in- 
troduced in [7] (Theorem 2.4) and show that the condition is not sufficient 
(Theorem 2.8). This condition is based on a complexity characteristic for 
languages defined as follows : 

C* we associate an equivalence relation on 
XI', denoted by E<,(modL), and an equivalence relation on C', denoted by 
E,. (rnodL), which are defined respectively as follows 

With every language L 

Vx1,x2 E Csr,xlE~Tx2(rnodL) ej Vw E C* : xlw E L H x2w E L; 

V X ~ , X ~  E C', ( x ~ E , x ~ ( ~ o ~ L )  * VW E C* : X ~ W  E L ++ X ~ W  E L). 

Then we define : 
GL(T) = RankEl,.(modL), 

H L ( T )  = RankE,.(modL). 
With RankE<,.(modL) is the rank of the equivalent relation E<,(modL). 
They are usedas complexity characteristics of the language L. 1 6 s  easy to 
see that for any r E N :  

1 I H L ( ~ )  I G L ( ~ )  L Exp(r). 

where Esp(r) denotes some exponential function of r. 

Example 2.1 Let C = {a,b}  and L1 = {ambn/rn,n E Nf}. 

Let's take some examples : 

Consider the subsets 
w1= {A}; 
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W2 = {am/l 5 m 5 r } ;  

~3 = {ambk/m + k I r; k 2 1); 
W4 = {w  E C q d  $ W1 u W2 u W3}. 

Obviously CS' = W1 U W2 U W, U W4 and Wi n Wj = 0 , i # j 
It is easy to prove that any two words in every Wi , a = 1 , 2 , 3 , 4 ,  are 

equivalent however any two words in different sets wi are not equivalent by 
the relation E<,(modLl). - Therefore G L ~  ( r )  = 4. 

Example 2.2 Let 1x1 = k 2 2 and L2 = { z z R / z  E C*}, where zR  is the 
inverse image of 5. 

It is easy to  show that if z1,zz E C', z1 # 2 2  then zlErz2(modL2), 
thereby H L , ( T )  = lC'l = k', where E, is the negation of the equivalent 
relation E,. 

Example 2.3 Let 1x1 = k 2 2, c $ C and L3 = { z c x / z  E C*}. 

Therefore GL,(T) = lCl' l = (k'+l - l / ( k  - 1). 

Theorem 2.4 Let L be accepted by a Petri net with m transitions and n 
places and k = min{m, n}. There exists a polynomial Pk of degree k such 
that, for any integer r 2 1, 

It can be verify that if z1,zz E El', z1 # 5 2  then z1E+~(modL3).  

The following result has been established in [7]. 

H L ( T )  I P k ( T ) ,  

G L ( T )  I Pk(r). 

Using the theorem 2.4, we can show a series of rather simple languages 
not being acceptable by any Petri net. 

Example 2.5 Let 1x1 = k 2 2 and c $! C. Consider the languages L2 = 

{zxR /z E C* }, L3 = {zcz /z E C* }, where xR is the inverse image of z. 
We have proved in examples 2.2 and 2.3 that H L ~ ( T )  = k' and G L , ( ~ )  = 

k(k' - l ) / (k  - 1). By Theorem 2.4 we have L2 $! L and L3 $ L. 
Now we shall show that the necessary condition in theorem 2.4 is not 

sufficient. For this we need some notions in the theory of codes (see [14]). 
A language L 

L ,  the equality : 

implies n = m and zi = zi for i = 1,. . . , n. 
In other words, a set L is a code if any word in L* can be written uniquely 

as a product of words in L,  that is it has a unique factorization on words of 
L. 

C* is a code over C ifVn,m 2 1 and XI,. "x,, xi,. .. , X; E 

x1z2.. .z, = z'1.h. . . z:, 
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A subset L of C* is a prefi set if no word in L is a proper left of another 
word in L. Evidently every prefix set L with L # {A} is a code called a prefix 
code. 

It is not difficult to check that if L is a prefix code then every word x E C +  
can be written uniquely in the form x = 5x0, where 3 E L* and xo has no 
left factor in L. 

Using the above fact we obtain 

Lemma 2.6 If L is a prefix code, then for any r E N +  : 

GL+ ( r )  L G L ( ~ ) ,  

where L+ = L*\{A}. 

Proof. We denote by E;' the set of all words of length at  most r and no 
any prefix in L. As C:' C E S T ,  we have RankE<,(modL) - over E:r is not 
greater than RankE<,(modL) over C<-' 

In the other hand, L is a prefix code, so with Vx, y E E<,, x and y can 
be written uniquely in the form x = 3x0 , y = gyo, where 3 , fi E L* , 

Now we prove that if xoE<,yo(modL) then xE<,y(modL+) 
Indeed, if xoE<,yo(modL) - then Vw E C*, X ~ W - E  L - yow E L. Two 

Case 1 : xow E L and yow E L. 
From xow E L and yow E L,  it follows 3 x 0 ~  E L+ and gyow E L+, i.e. 

Case 2 : xow $ L and yow q! L. 
If xow E L+, yow E L+ then 3 x 0 ~  E L+ and Qyow E L+, i.e. xw E L+ 

and yw E L+. 
If xow $ L+, yow $ L+ then Z X O W  6 L+ and gyow $ L+, i.e. xw q! L+ 

and yw $ L+. 
Let xow E L+, yow 6 L+. We have xow = (xow0)W E L+, where xowo E L ,  

W E L+. On other hand yow = (y0wo)W $! L+, L is prefix and W E L+, it 
follows yowo $ L. i.e. exists wo such that xowo E L,  yowo 6 L. This conflicts 
with hypothesis xOE<ry~ (modL). 

(1). 

2 0  , yo E c:.. 
(2). 

cases are possible : 

that xw E L f  and yw E L+, therefore xE<,y(modL+). - 

Thus in the bothcases we have proved that xE<,y(modL+). 
From (2), we get RankE<,(modL+) 5 RankE<,(modL) - over E:' (3). 
From (1) and (3), we have : 

RankE<,(modL+) - 5 RankE<,(modL) 

This completes the proof. 
Now we can establish the main result of this section. 
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Theorem 2.7 There exists a language L with G L ( T )  I Pl(r),  which can 
not be accepted by any  Petri net. In other words the necessary condition an 
Theorem 2.4 is not suficient. 
Proof. We consider the language : 

L’ = {anbnln > 1). 

This language L‘ is easily verified to be accepted by the Petri net N, described 
as follows : 

N = ({Pi ,P2, P 3 } ,  { t l ,  t 2 ,  t 3 } ,  170, a, (1,0,0), { (o,o, I)}), 
where a(t1) = a and a(t2) = a(t3) = b , I (p l , t l )  = I(pl , tz)  = I (p2, t2)  = 
IbZ,t3) = - I (p3, t3)  = o(ti ,pi)  = O(ti,p2) = O(tz ,m)  = O(t3,m) = 1 and 
I (p , t )  = O(t,p) = 0 for any other p and t . 

We can show that Gk(r)  5 Pl(r).  
On the other hand, L‘ is obviously a prefix code. 
Put L = (L’)+. By the Lemma 2.6 we have 

GL(r) = G ( L / ) + ( ~ )  I G u ( r )  5 Pi(r). 

As shown in (131 by Peterson the language L = (L’)+ is not a Petri net 
language. The Theorem is proved. 

3 An infinite hierarchy of Petri net languages 
Basing on the Theorem 2.4 we can obtain the solution of problem on infinite 
hierarchy of Petri net languages : 
Theorem 3.1 There exists an increasing infinite sequence of integers ni, 

1 I n1 < 722 < ...  < ni < ni+l < . . .  
with ni+l = 3ni + 6, such that : 

L(n1) c L(n2) c . . . c L(na) c L(ni+l) c . . . 

Proof. Let C = {0,1} , c 6 C , k 2 2. Consider the language: 

LI, = {5c5 / 5 E c* , (%(I = k}, 

where 1x11 denotes the number of occurrences of 1 in 5. 
We now prove two following propositions : 
(i) For any r 2 k : HL,(r) 2 pk(r ) ,  therefore L k  $! L(k - 1). 
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\ / \ / * Y 

k Transitions k Transitions 

Fig. 1: 

(ii) Lk = L(N), where N is a Petri net with rnin{lTI, lPl} = 3k + 3, 

Put  : 
therefore Lk E L(3k + 3). 

WT = {x/xEC*;z(x)=r;lxll =k}, 
where Z(x) denotes the length of x. It is easy to verify that : 

Iwrl = c," = r! / k! (r  - k ) !  = T ( T  - 1) ' " ( r  - k + 1) / k!  = Pk(r). 

For any XI, x2 E W, with x1 # x2, by choosing w = cx1 we have x1w = 
x1cx1 E Lk whereas x2w = ~ 2 ~ x 1  $! Lk, that is xlErxz(rnodLk). This 
means that 

HLk(r) 2 IWTI = pk(r). 
By Theorem 2.4 it follows that Lk $! L(k - 1). 

On the other hand, the language LI, is easily verified to  be accepted by 
the Petri net N, depicted in the above Fig 1. with po = (1,0,. . . , 0,O) and 
Mf = {pf = ( O , O , .  * * ,  0,1)}. 
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Obviously, the number of transitions and that of places of JV are respec- 
tively 4k + 3 and 3k + 3. Thereby L k  E L(3k + 3). Thus we have proved 

To obtain the sequence ni of integers, it suffices to fix a k 2 2 and put 

The Theorem is proved. 

that Lk E L(3k 4- 3)\L(k - 1). 

nl = k - 1, ni+l = 3ni + 6 for all i 2 1. 
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In this paper we present some algoritms to decide whether a given rational language 
is an w-code. Those algorithms have a complexity in the worst case in O(n3) ,  n 
being the number of states of the automaton representing the language. 

1 Introduction 

Let C be a finite alphabet. We denote by C* (respectively C") the set of 
words (resp. infinite words) over C. Given L of C*, the language L* is the 
submonoid generated by L and it denotes the set of words factorizable over 
L. The w-power L" denotes the set of infinite words factorizable over L. A 
language C g C* is a code (respectively an w-code') if every word of C* 
(respectively C") has a unique factorization over C. Any w-code is a fortiori 
a code. Algorithms to  test if a given language L is a code can be found in 2 ,  

To test w-codes, we present three tests and we give their complexities in time 
(O(n3)) .  The first test of the section 4 is based on the interlaced product of 
automata, the second one' and the third one are based on the computation 
of the left quotients of automata. 

or if the language L is a finite set, and in 5 ,  or for L rational. 

2 Preliminaries 

Let C be a finite alphabet. The set C* is the set of all finite words over C, 
Cw is the set of all infinite words, and C" is the union of C* and C" . The 
empty word is denoted by E and C+ = C* \ { E } .  Words of C+ are obtained 
by finite concatenation of letters of C: u = uluz .. .u, E 9, for n > i > 0, 
ui E C. Words of C" are obtained by infinite concatenation of letters of C: 
u = ~ 1 ~ 2 . .  .u,. . . E C", for n > i > 0, ui E C. 
Let L c C* be a language over C, then L* is the set of finite words obtained 
by finite concatenation of words of L,  that is the submonoid generated by L,  
and L" is the set of infinite words (also called w-words) obtained by infinite 
concatenation of words of L. 
We denote by Lc0 the set of all finite or infinite words generated by L: 
Loo = L* u L". 
An automaton d(L)  which recognizes a rational language L is a 5-tuple 



24 

(Q ,  I ,  F, 6,  C) where Q is the set of states, I E Q and F C Q are respectively 
sets of initial and final states, and 6 is the transition function mapping Q x C 
to Q (see for example). A recognizes a word w if w is the label of a 
path from an initial state to a final state in A. For infinite words, we give 
two acceptances modes by an the automaton. The first one, with the Buchi 
Criterion(see lo) says that an w-word w is recognised by an automaton A = 
(9, I ,  F, 6, C), if and only if w is the label of an infinite path reaching infinitely 
some “final” states of F .  In the second one (the Muller mode”), a word w 
is accepted by an automaton A = (Q, I ,  7 , 6 ,  C), where 7 is a subset of the 
set of the part of Q, if and only if w is the label of path reaching infinitely 
exactly the states of a set in 7. 

A is deterministic if and only if for each state there is a unique transition 
on each symbol. A is unambiguous if and only if for every word w recognized 
by A there is a unique successful path in A labeled by w. 
A is normalized if there is exactly one initial state and one final state, and the 
initial state has no ingoing transition and final state has no outgoing ones. 
A normalized automaton can be chosen unambiguous. 
For any submonoid M ,  the root of M is defined by R o o t ( M )  = ( M  \ { E } )  \ 
( M  \ (&)I2. 
Let u‘and v be two words of C*, u -L  v if and only if for all w E C* and 

Let u and w be two words over C. We denote by u < v the fact that the word 
u is a prefix of the word u. It follows that v = uu‘ for some word u’ in C*, 
the word u’ stands for u-lv and is a suffix of the word v. 

We denote by pref(v) (respectively suff(v)) the set of all words that are 
prefixes (resp. suffixes) of the word w ,  pref(L) (resp. suff(L)) is the set of 
prefixes (resp. suffixes) of words of L. For two languages L and L‘, the left 
quotient of L’ by L is L-lL‘ = {w E C*/ for some u E L, uw E L’}. 

w’ E C*, wuw’ E L u wuw’ E L. 

A factorization of a word u in L+ (respectively in Lw) is a finite sequence 
(resp. an infinite sequence) fiL = (211, u2,. . . , u,, . . .) of words of L such that 
u = u1u2 . . .u, . . . 

We call sequence of left factors of u for  the factorization f u ,  the sequence 
(p i ) t l ,  where n is the number of factors in the factorization fu (infinite for 
infinite words), where for i 2 1, pi is the concatenation of the i first factors 

Let u , u  be two comparable words with respect to prefix order, 
fu = ( ~ 1 , .  ..un) and f,, = (q ,... w,) be two factorizations of u and 
u such that u1 # u1. Let (pi)?==, be the sequence of left factors of u for the 
factorization fu and (qi)zl be the sequence of left factors of u for the factor- 
ization fv. A word s is called a shift if there exist two integers, k > 1 and 

. 

of u: pi  = U l U 2 . .  .ui. 
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1 2 1, such that S = pklql (for k = 12, pk 5 ql and for k < 12, pk 5 Ql < pk+l), 
or s = q1-lpk (for I = m, q1 5 pk and for I < m, q1 5 pk < q1+1). We denote 
by s(fu, f,,) the sequence of shifts for the two factorizations of comparable 
words u and w ,  for example on Fig. 1, s(fu,f,,) = (s~,s~,s3,s4,s5,s6,s~). 
si(fu, f,,) denotes the i th shift of (fu,  f,,) (for example on Fig. 1, the 4th shift 

L L L L 

L L L L 

for the factorizations fu and f,, is s4(fu, f,,) = sq). 
A word u is ambiguously covered by L if u has two factorizations with 
different first factors over L 

A language C is a code (see l2 for example) if and only if 

C-~C n c*(c*)-~ = { E }  (1) 
in other words C is a code if and only if each finite word of C* has only one 
factorization over C ,  and C is an w-code if and only if 

C - ~ C  n cw(cW)-l = { E }  (2) 
i.e. C is an w-code if and only if each infinite word of C” has only one 
factorization over C ’. Clearly, any w-code is a code. A generalization of 
w-code, called strict code, has been proposed by Do Long Van in 13. A strict 
code is a subset of Coo such that each word and each infinite word has only 
one factorization. If C C+, then C is a strict-code if and only if C is an 
w-code. 
A language C is a code with bounded deciphering delay l2 if it satisfies the 
following property: 

3d 2 0 Vu E c Vv E C (ucdz* n v c *  # 0 + u = W) (3) 

3 Testing unique decipherability of finite words 

A.A. Sardinas and C.W. Patterson have proposed a test for codes that allows 
us to decide if a rational language is a code or not. 
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3.1 

Let us consider the next sequence of sets constructed with a language L C C*: 

The Test of Sardinas and Patterson 

u1 = L-1L \ {&} 
Un+l = L-lUn u U L ' L  

Then we have the following theorem that gives a criterion for codes. 
Theorem 1 
defined above contains the empty word. 
Example 1 Let L = {b, abb, abbba, bbba, baabb}, 

A language L i s  a code if and only i f  none of the sets Un 

U1 = {ba, bba, aabb} U2 = {a, ba, abb} , U, = { a ,  E ,  bb, bbba, abb, ba} 

E E U3, L is not a code. 

Moreover, this property is decidable for rational languages. 
Proposition 1 If L is  a rational language, then each U,, i s  a rational lan- 
guage and the number of the sets U,, (n 2 1 )  i s  finite. 
Remark 1 For the test of Sardinas/Patterson, Ui = 0 for some i 2 1 if 
and only if L i s  a code with bounded deciphering delay 12.  

Example 2 Let L = {ab,abb, baab}, 

U1 = { b }  , Uz = {aab} , Us = 0 
U3 = 0, L is  a code with bounded deciphering delay. 

Remark 2 For rational finitary languages, codes with bounded deciphering 
delay are included in the set of rational w-codes. 
Remark 3 For finite finitary languages, codes with bounded deciphering de- 
lay are exactly finite w-codes. 

3.2 A Test by product of automata 

Let L be a rational language, let A be a unambiguous normalized automaton 
which recognize L. The interlaced product of A = (Q, qo, q f ,  6, C) by itself 
is defined as: 

A' = A x A = (Q  x Q ,  (qo, 401, (qf, qf), 6/, C). 

The initial state is ( q o , q o ) ,  the final state is ( q f , q f ) .  
The transitions 6' are defined as : 

W P ,  41, a )  = (P' ,  4') 
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if and only if 

This automaton recognize some words of L* which have at least two 
factorizations over L. The following proposition gives us a criterion to decide 
if a given language L is a code. 
Proposition 2 A rational language L is a code if and only i f  the set rec- 
ognized by  the previously defined automaton is empty. 

Example 3 Let L = { a ,  ba,ca,abac}, an normalized antomaton A is : 

A part of the interlaced product A x A is : 

There is a path f rom (qo, qo) to ( q f ,  q f )  reading the word abaca, for example, 
which has two factorizations : (a,ba,ca) and (abac,a). The language L is 
not a code. 
Remark 4 The label of the path between two consecutives states (q i , qo )  and 
(qj,qo) (i 2 0 , j  2 0 )  (or (q0 ,q i )  and (q0,qj)) is a word of L.  f o r  example: 
the path between (q1,qo) and ( q 3 , q o )  is labeled b y  ba E L. I n  other words, 
we can read on  the graph of the automaton A' the factorizations of the words 
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ambiguously covered over L. 

4 Testing rational w-codes 

4.1 

With almost the same notations as in Section 3.2, one can decide if a given 
language L is an w-code. In Section 3.2 the criterion was the existence of 
a path, in the automaton defined by the interlaced product A' = A x A = 
(Q x Q ,  (qo, qo) ,  ( q f ,  q f ) ,  8, C ) ,  from the initial state to  the final one. To test 
if a rational language L is an w-code, the problem is somewhat different. L is 
not an w-code if and only if there exists an infinite word, in L", ambiguously 
covered by L. In an automaton A&, constructing from A, such a word is the 
label of an infinite path begining at the state (40, q0) and crossing infinitely 
many particular states. 

Let A& = (Q x Q, (qo,qO),7,S'' ,C) be the Muller automaton defined 
from A' = A x A such that 7 = { P  E P(Q x Q)/3 2 0 and j 2 0, (q i , qo )  E 
P and (q0 ,q j )  E P }  (where P(Q x Q) is the set of of the part of the set 
Q x Q). 6" is defined by : 

A Test by product of automata 

and 
if p' = qf then p" = qo else p" = p' 
if q' = qf then q" = qo else q" = q' 

Proposition 3 A rational language L is an w-code if and only if the Muller 
autonaton A& do not recognize any word. 

If there exists an w-word w recognized by dL, it is the label 
of an infinite path in A& that infinitly reach some states (qi ,  40) and (qo, q j )  
(for some qi E Q, qj E Q ,  i 2 0, j 2 0) .  If there exists a such infinite path in 
A& then, like in the remark 4, there exist two infinites sequences of words 
of L,  f = (fi , fz, . . . , fn . . .) and f '  = (fi , f; , . . . , fk . . .) ( fi E L, f j  E L for 
i 2 1,j  2 1). Those two sequences are both the same path in A& and then 
two factorizations of an infinite word of L". 
Conversely, let f = (f1, fz,. . . , fn . .  .) and f' = (fi ,f i , .  . . , f; . . .) be two 
factorizations of an ambiguously covered word w. Each factors fi and f; are 
words of L which are the labels of paths in the automaton A. So to each 
factors fi, we can associate a finite sequence (the path of the word fi in the 
automaton A): qo 3 qli 3 q 2 i . .  . q k i  qf and fi = uliui2 . . . U(k+l ) i  E 
L, uj E C, qji E Q for i and j 2 0. 
So for each factorizations f and f', we have the following sequences of paths 
in the automaton A (each path being labeled by a factor respectively of f or 

proof. 

u ( k + l ) i  -+ 

f'): 
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Uk+m " k + m + l  
f' = (40 3 q; 9 q: . . .q; "3' q;+l u3z q ; + 2 . .  . + Q f ,  qo + . . .)) 

Now, let us assume that we can apply the rules (*) to those paths. The 
following path is a part of the result of this operation: 

" k  1 
(Q0,QO) 3- (41,q:) 3 ( ! ? 2 , q : ) . . . ( C l k , q ; )  -4 (40,44+1) 

U k + m  
( q k + 2 ,  & + 2 )  . . . + ( q k + m ,  40) - .  . 
This is a path in the automaton A:, and it reach infinitely a set of states 
which contains some states (qo, q )  and (q', qo) (for q and q' in Q), then the 

0 
Example 4 Let  L = {a,  b}  U ab*c, the following automaton recognizes this 
language L : 

label of this path is an w-word recognized by d;. 

The  automaton obtained by the interlaced product A' = A x A is : 

a 

The language L is' a n  w-code because the single infinite path in A' cross 
infinitely only the state (q1,qo). 

4.2 A Test  f o r  strict-codes 

It has been proposed by Nguyen Huong L5m and Do Long Van in 
dure to test if a given language of C" is a strict-code. 

Let us consider a language L of C" and the sequence of sets: 

a proce- 

u; = L-1L \ { E }  

u;,, = u, L 1 - 1  03 

With this sequence of sets, we have the following criterion to test strict-codes: 
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Theorem 2 Let L c C" be rational. L is a strict-code if and only if 
U,! = 0 for  some i 2 1. 
Example 5 Let L = a + (ab)*ba, then Ui = (ba)*bba and U; = 0 then L is 
a strict-code and an w-code because L is a language of finite words. 

If the language L is a subset of C* then Theorem 2 allows one to test 
w-code without using infinite power of the language L because, in this case, 
the sequence of sets becomes: 

u; = L-1L \ { E }  

u;+l = U;-lL* 

As we will see in the section 5 ,  the test can be implemented with an 
algorithm whose complexity in the worst case is O(n3) (n being the size of a 
deterministic automaton for L.) 

4.3 

We introduce here a new algorithm also based on the computation of left 
quotients of languages, whose complexity in time is O(n3) too. 
Let L be a subset of C+ such that L = root(L*) and M denotes the monoid 
L*. We define inductively the sequence (Vn)n>l by: 

Another test for Codes and w-Codes 

Vl = ( M  \ { W I L  \ { E )  
Vn+1 = ( V n M ) - l L  

We can state the following results: 
Result 1 (theorem 3) A language L is a code if and only i f  none of the sets 
& contains the empty word. 

Example 6 Let L = {b,  abb, abbba, bbba, baabb}. Then  we have 
I4 = {bba,ba,a,aabb}, V2 = (KL*)- lL  = {abb,&,bb,b,bbba,bba,ba
E E Vz and L is not a code. 

This result holds for every set of words (rational or not). Moreover for 
rational languages we can state: 
Result 2 (proposition 5) For a rational language L ,  all the sets V ,  are ra- 
tional languages and the number of the sets Vi is bounded by 2n,  n being the 
number of states of an automaton which recognizes L.  

This result shows that we can construct an algorithm based on the se- 
quence (Vn)~?1,  in 2card(d) steps, to decide whether a given rational language 
is a code. With the following criterion, the same sequence allows one to decide 
if a rational language is an w-code. 
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Result 3 (theorem 4 )  A rational language L is an w-code if and only if none 
of sets V,  is the empty set. 
Example 7 Let L = a + (ab)*ba, 

V1 = (ba)*bba , Vz = 0 then L is an w-code. 

Before proving these results, let us state the following lemma. 
Lemma 1 For i 2 1, V, is the set of all ith shafts for  the factorizations of 
words of L* over L.  

We first prove by induction that each shift is an element of a set 
V,. Let u and v be two words of L+ comparable by the prefix order. Let fu and 
fu be two factorizations respectively for u and v, assuming that f u l  # f u l .  

To each factorization f u  and fu we associate respectively the sequence of left 
factors over L (pi)? and ( q i ) r .  Let us assume that pl  5 q1 and the sequence 
of shifts s( f u ,  f v )  = ( ~ 1 , .  . . , s,,,), where m a s  is the number of shifts for the 
two factorizations fU and fu. 
By definition, s1 E (plL*)-lql C_ V1. Let us assume that there exists 1 ,  Ic > 1 
and 1 < j < m a s  such that sj E V, and s j  = (pk)-'ql (or s j  = ( q l ) - l p k ) .  
Consider that sj = (pn)-lql, then by definition sj+l E (sjL*)-lL (see figure 
2). Moreover, sj E V, then sj+l E (sjL*)-lL C (&L*)-'L = V,+1.  

proof. 

Figure 2. s j  E V, then s ~ + ~  E q+l 

Now, we prove by induction that each word in a set & is a shift. Let 
u E V1 then u E V1 E (L+)-'L. Let n 2 1 and for u E V,, this word verifies 
the lemma. Considering u E V,+l, there exists two words u E V, and u' E L* 

L+ L L" 

L+ L 

Figure 3. v E Vn+l, u E V, and u' E L* then uu'v E L 

such that uu'u E L (see figure 3). As u E V, there exists m such that for Ic 
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and 1 ,  m = (p i ) : ,  mu = (q i ) ; ,  and p l  # q1 (inductive hypothesis), therefore 
0 

Theorem 3 A language L over C i s  a code i f  and only if none of the sets 
V ,  contains E .  

proof. Let u be a word of L+ which has two factorizations with different 
first factors. There exists k 2 1, 1 2 1, and two sequences of left factors of 
(p i ) :  and (qi);  such that pk = qi = u and p l  # q1. By lemma 1, there exists 
r 2 1 such that (pk)- lql  E V,, and then E E V,. 

By the lemma 1 with u = E E V,  (for i 2 l), there exists m E L+ with 
two sequences of left factors over L (pi): and (qi);  and pl  # q1. So the word 
m of L+ has two factorizations and therefore L is not a code if there exists 
i > l E E V , .  0 
Lemma 2 (corollary of lemma 1) If a E Lw has two factorizations with 
different first factors over L,  there exists (pi)f* and (q i ) f*  (p1 # q1) and 
f o r  every n > 1, there exists 1 ,  k > 1 such that pk < ql < Pk+l, such that 

Proposition 4 Let L be a language over C. If f o r  every i 2 1, vi # 0 then 
L i s  not a n  w-code. 

Suppose that L is not an w-code. There exists an infinite word 
a which has two factorizations over L. There exists (pi)f* and (q i ) f* .  By 
lemma 2, for i 2 1, there exists Ic 2 1 and 1 2 1 such that p i l q l  E vi and 

0 

pk+l = pk'w'v = muu'v and for I' > 1 ,  qlt = qlu' = mud. 

PklQl E vn. 

proof. 

then vi is not empty. 

Rational case 

Our object is to construct an algorithm to decide if a rational language is an 
w-code. In order to do so, we must be able to decide when we can stop the 
construction of the sequence ( V , ) i ? l .  The next result establish the fact that 
the number of sets 6 is finite for a given rational language. 
Proposition 5 Let L be a rational language over C. The  cardinal of the set 
of & for  L i s  bounded by 2card(d(L))  ( d ( L )  i s  an  automaton fo r  L ) .  

A word of V, (n 2 1) is a suffix of a word of L. A set V, can 
be represented by a set of states of the automaton A recognizing L. The 
cardinal of the set of subsets (of the set of states) is 2ca'd(d(L)). This number 

0 
Theorem 4 Let L be a rational language. L i s  an  w-code i f  and only if there 
exists i 2 1 such that vi = 0. 

proof. By the proposition 4 if there exists i 2 1 such that V,  = 0 then 
L is an w-code. 
Conversely, let us suppose that for i 2 1, V,  # 0 and set n = c a r d ( d ( L ) ) .  
Let 2, E V,,, mo > n then, by lemma 1, there exist p = (pi)? and q = 

proof. 

bounds the number of V, (n 2 1). 
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! ! ! 
! ! W' ! W 

. -  - :  

Figure 4. u NL u' 

(qi)(2 such that w = pj,'qj,. Let us denote by s(p, q)  the sequence of shifts 
associated to the two factorizations induced by the sequences p and q of left 
factors. There exists ml and m2, 1 5 ml # m2 5 mo such that u = s,, (p, q )  
and u' = s,, (p, q),  with u -L  u' (see figure 4.) For u there exists k and 2 
such that u = p,'ql (or u = qr'pk), and for u' there exists T and t such that 
u' = p;lqt (or u' = q~lp,). 
Let w = p,. if qt is prefix of p, ,  (else let w = qt). Let w' = w-lqr. Let 
u" E pref(w') such that u'u'' E L and let us consider the two following 
cases : 

0 u' = p;'qt, then w' E L+ and ((U")-~)W'(U-') E L+, u'u'' E L, and 
2121'' E L (u - L  u'). 

w _ j _  W' 

u' = q t l p , ,  then w'(u-') E L+ and ((u")-l)w' E L+, u'u" E L,  and 
uu" E L (u -L u'). 

w i  W' ! 
- i  

The infinite word Q: = W(W')~ has two factorizations over L. 0 
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Remark 5 If L i s  not a code then it i s  not an  w-code, and then, i f  E E V, 
f o r  some i 2 1, there is no  Vj that are empty sets. This can be checked with 
the definition of the sequence (l$)i>l. 

For non-rational languages, this theorem does not hold (see the next exam- 

Example 8 Let L be the following language a+bU (anban-'c, ancan-'c/n 2 
1). L is not a rational language. L i s  an  w-code, but f o r  n 2 1, c E V,. 
O n  the figure 5, we can see that f o r  n 2 1, an-'c E VI, an-2c E V2, . . ., 
ac  E Vn-l , and c E Vn. 

ple). 

Figure 5 .  Vn 2 1, c E V, 

5 Complexity analysis 

The complexity analysis of algorithms to test finite codes can be found in 
2 , 3  and (in O(n.m), n being the number of words in the language and m 
being the sum of the length of words). For a rational language given by a 
deterministic automaton of n states, ones can decide whether the language 
is a code and the complexity is O(n2)6.  
For the tests presented in section 4, we give the followings complexities: 

Test by interlaced product 

Let L be a language to test, let A be an unambiguous normalized finite au- 
tomaton recognizing L. The main part of the complexity of this test consists 
in deciding if there is a cycle in the automaton A' which contains at least 
two states of type (qo, q )  and (q',  qo) (for q and q' different of qo). This can 
be done in O(n3).  In effect, there is at most n states of type (q0,q) in A'. 
For each of this state, ones has to search states of type (q',qo) in the set of 
its descendents. There are also at most n such states. For each (q',qo) one 
must check if among its descendents there is the state (qo, q ) .  

Tests by quotients of languages 

Let A(L) be a deterministic finite automaton recognizing L. The two algo- 
rithms of sections 4.2 and 4.3 do the same kinds of operations and the same 
number of times. 



The second part of the proof of the theorem 4 tell us that ones needs to 
compute at most n = card(d) sets - to  decide if a rational language is an 
w-code: 
Lemma 3 If there exists i 2 1 such that K = 0 then there exists j 5 n + 1 
such that V, = 0. 

algorithm of section 4.2 

[1]- M = L* 

[2]- ul = ( L - ~ L )  \ { E }  

[3]- For i = 2 to  n + 1 do 

[3a]- Ui = Ut;iM 
[3b]- if Ui = 0 then L is an w-code. 
[3c]- if E E Ui then L is not a code. 

[4]- if U, # Qr then L is not an w-code. 

algorithm of section 4.3 

[1]- M = L* 

[3]- For i = 2 to n + 1 do 

[3a]- V,  = (K- lM)- lL  
[3b]- if K = 0 then L is an w-code. 
[3c]- if E E V, then L is not a code. 

[4]- if V, # 0 then L is not an w-code. 

The main part of the complexity for this algorithm is done by the step [3a], 
the left quotient ( K - l M ) - l L .  The algorithm given in l4 compute the left 
quotient of two non deterministic finite automata has a complexity in O(n3)  
if one automaton is deterministic, that is the case for our construction. The 
number of Vi that we have to compute is bounded by n, because the number 
of states of d ( L )  is n. The complexity in time of this algorithm is O(n4) .  
For each state q of d ( L )  = (Q ,  I ,  F, 6 ,  C), L,  is the language recognizing by 
the automaton d ,  = (Q, q,  F, 6, C) (like d ( L ) ,  this automaton is determin- 
istic). To improve efficiency of the algorithm, we can precompute, for each 
state q E Q, the set of state V, defined by the set of the initials states of 
the automaton of (L,M)-lL,  the time to  execute this step is O(n2)  with 



36 

the algorithm for left quotient given in l4 because d, is deterministic. The 
complexity of this preprocessing is O(n3).  The step [3a] (& = ( K - l M ) - l L )  
become I4 = UqEK.l V,, and then the complexity in time for the algorithm 
is O(n3).  
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Distributed Random Walks for an Efficient Design of a Random 
Spanning Tree 

Hichem Baala 

Abstract 
We present a distributed algorithm for constructing a ran- 
dom spanning tree, making use of random walks as net- 
work havenal scheme. Our approach is novel and make 
use of distributed random walks, each one represented by 
a token annexing a temtory over the underlying graph. 
These multiple random walks collapse into a final one, 
that defines the final temtory and provides the random 
spanning tree. The scheme is parallel and make use of 
waves to merge very efficiently the spanning forest com- 
puted by the random walks into one final random span- 
ning tree. 
Keywords: random spanning tree, random walks, dis- 
tributed algorithm. 

1 Introduction 

A distributed algorithm is an algorithm designed to run 
on a distributed system where many processes cooperate 
to solve parts of a given problem in parallel. The problem 
of efficiently constructing a spanning tree in distributed 
networks is a central one and is essential for structuring a 
distributed system. We address the problem of construct- 
ing such a structure with a protocol that tolerate faults and 
adapt itself to dynamic topology changes. In this paper, 
we introduce Distributed Random Walks (DRW) as a col- 
lection of random walks that cooperate in order to estab- 
lish a computation. The technique uses a collection of 
random walks that are coalescing into a final one which 
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maintains the control structnre. We apply this technique 
to compute a spanning tree which is randomly selected 
among all the possible ones for the network, and to gather 
informations, we use a wave scheme. We can informally 
described the whole procedure as follows : several nodes 
initiate a random walk, with an explorer token. Every 
node, upon receiving an explorer token, mark himself vis- 
ited with the identity of the token, except if it has already 
been visited by another token, and then forwards at ran- 
dom to one of its neighbors the received explorer token. 
The network is thus, explored in parallel and decomposed 
into subregions, one per token. Each token constructs a 
snbtree of the network. When a node meet another one, 
or an already visited node, a wave is initiated. This wave 
is a backward propagation wave that merges one of the 
subtrees with the other into one. This process is driven in 
parallel and eventually, the waves will cover the network, 
resulting in the spanning tree definition and the protocol 
is ready for termination when a single explorer token re- 
mains and all nodes of the graph are visited. In this pa- 
per, we develop a technique for designing algorithms on 
graphs, especially for an efficient random spanning tree. 
Our goal is the computation of a random spanning tree (ie 
a spanning tree that is chosen randomly among all possi- 
ble spanning trees). 

The problem. Let G(V, E) be a connected graph rep- 
resenting a distributed system with real-valued weights 
w : E R having n vertices and m edges. A span- 
ning tree in G is an acyclic subgraph of G that includes 
every vertex of G and is connected; every spanning tree 
has exactly n - 1 edges. We are interested in computing 
in a distributed way a random spanning tree (RST) (i.e. a 
random spanning tree is a spanning tree selected among 
all possible spanning tree on the underlying graph at ran- 
dom). 
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Related Works. In distributed computing, the de- 
sign of a spanning tree structures for distributed networks 
has a wide litterature. Many papers [GHSBJ, &R86], 
[GKP93] propose distributed solutions and identify in- 
teresting properties to construct efficiently and in paral- 
lel a spanning tree. Else, the power of RW has also 
been demonstrated in distributed computing, several au- 
thors have successfully designed original solutions for 
many important control problems such as mutual exclu- 
sion DJ90]orUniqueNamingproblem [AE91], withinthe 
self-stabilizing area where the goal is to cope with possi- 
ble transient failures. We will make use of the attractive 
techniques found in this area in our solution. E. Chang 
[ChangSZ] and A. Segall [SegallB] have introduced the 
concept of wave in distributed computing with the Prop- 
agation oflnformation with Feedback scheme. More re- 
cently, FGL941 and m 9 9 ]  have respectively defined the 
dishjbuted recursive wave and distributed recursive multi- 
wave as a general programmingparadigms for distributed 
systems. We couple these items with a derivation of span- 
ning tree construction and RW techniques to define our 
general modular technique that we call DRW, 

Contributions In this paper, we propose a multiple 
random walks scheme combined with a generalized 
diffusing feedback scheme (waves) that allow a fast RST 
construction. The main result of this paper, is that the 
simulation of multiple random walks on a connected 
undirected graph G coupled with some (adequate) path 
reversal scheme (that we call waves) can be used to 
generate a spanning tree of G at random. The advantages 
of our scheme are the following: we generate a random 
spanning tree structure that is less subject to failures 
compare to a deterministically predetermined spanning 
tree; the solution is adaptive and deals with topology 
changes and can be adapted to ad-hoe wireless networks; 
it can be derived to obtain a self-stabilizing solution; it is 
parallel, uses the whole power of distributed ressources 
and exhibits a good average running time. 

Outline of the Paper. The paper is organized as fol- 
lows : in the next section, we describe the model of 
distributed computation assumed. In section 3, we de- 
scribe the algorithm illustrating the use of multiple ran- 
dom walks for selecting a random spanning tree. There- 
after, we show how we implement rhisand discuss why it 
is an efficient solution and discuss the key points on cre- 

ating a RST. Section 4 addresses the (time and message) 
complexity aspects as well as some remarks basedon sim- 
ulations . An informal correctness proof is also given in 
this section. Finally, in section 5, we give some conclud- 
ing remarks and open questions. 

2 Preliminaries 
In this section, we give the definitions needed and we in- 
troduce some of the tools we use. 

The system. We model the network as an undirected 
connected graph G = (V, E) with V the set of nodes 
( V = n) and E s the set of edges. Each node represents 
a computer and each link represents a bidirectional com- 
munication channel. Each node is associated to a unique 
identifier A communication link ( i , j )  exists iff i and j 
are neighbors, and is asociated to a cost which can vary 
in time but is always positive. A change in the status of a 
node is implicitly recognized by the change in the status 
of its links. We consider the network to be asynchronous, 
Each node i maintains its set of neighbors, denoted as N,. 
The degree of i is the number of neighbors of i, it is equal 

Proeesses. Every process of the distributed systems ex- 
ecutes the same code. The program consists of a set of 
variables and a finite set of rules. A process proceed to 
an internal action (for example, write to its own variables, 
compute something or send a message) upon reception of 
a message. 

Random Walk. Let us consider a token that moves 
on a connected undirected graph G = (V, E). At each 
step, the token goes from the current vertex to one of its 
neighbors, chosen uniformly at random. This stochastic 
process is a Markov chain; it is called (simple) random 
walk on the graph. 

to N i ,  
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3 Algorithms description

Data Structure Each node p maintains
- color, the identity of a token
- master, the (sub)tree root which the node belongs to
- /flt/ierhthe node father within the (sub)lree
- sans set of sons >is (he set of the node sons

The algorithm RST is specified in a pseudocode form
as in [KKM90] for a belter understanding .We specify the
algorithm behavior by means of overall actions driven by
tokens and waves.

Some sites randomly generate token identified by a color
and charalerizcd by the initiators of die token.

(TA2-ti) taketij continue its traversal scheme, p
marked himself with color colart, muster
raci, father q

(WU) Wave Update Mode Whenever a
tckzn^colar^raci) reaches a node p with
its variable color such that color < colori a wave
is generated.

WUI the wave is propagated applying a path
reversal scheme over the domain identified
by cola:- fthe domain which p belongs to)

WU2 the wave stops itself when it reaches
the p domain limit.

(TA) Token Annexing Mode whenever a
toksrtj(cf>lor^Teici) issued from a node q is an-
nexing (or generated at) node p, which belongs lo
n (sub)lree [i.e. a tokenj(colorj,ro,Cj)]

(TA1) it color^ < celorj, the annexing is
stopped and the token is destroyed.

(TA2) if color j > colorj, one of the 2 condi-
tions holds :

- (i) one (or more) loken(s) are present
on node p

— (ii) no other token on node p

(TA2-j) if lest collision is true :

r.ni is the unuiuc biggest, it continue its
traversal and all others are destroyed. Node
p marked himself with coloi- catori,
master roc,-, father q

if tokerii is biggest but not unique (oth-
ers toierij,, . . . jiofcenjj has respectively
color 'j, , . . . , color jj equal to colfjTj, tokeni
and tQKEriji , . , . f token j are mer°ed to
form the unique token of identity t + 1 rooted
inp (i.e. token(i + l,p) is generated]

if token j is not the biggest, it is destroyed.

Termination of Ihe algorithm is realized ivith a derivation
of the Dijkslra-Scholten scheme [DS80] known as diffus-
ing computation. This termination detection is periodi-
cally initiated by nodes which have initiated an annexing
token.

Example The following example illustrates RST's
construction.
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walks.
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Correctness
proofs

and complexity

The proof is by [he following lemmas. The proofs of the
lemmas are not detailed in this extended abstract.

Lemma 1 At feast a token starts a random walk.

Lemma 2 Within a finite time k tokens will eventually
collide and only one token remains after.

Lemma 3 After a finite time, a single token is in the net-
work, it will eventually visits all the nodes

Lemma 4 A wave is eventually initialed and will update
Figure 2: Evolution of random walks: 3 explorer tokens a" visited nodes.
annexing regions of the graph in parallel, blue red and Lemma S The algorithm terminates and a spanning tree
green (the tokens are located in darker color) ,-s OUpU!

Theorem 1 The algorithm outputs a random spanning
tree.

We have tested the algorithm with a similator written
in C++ with the LEDA library. Under the assumption ofa
synchronous distributed system, the results obtained show
a good time complexity.

1
Network size

(n,m)
(30,46)
(40,65)
(50,96)

initiators
\/n average

6
8

Time (steps)
average

52
66
73

Mb msg

242
344
460

Figure 3: Waves: a wave is initiate when a token meets
another one or enter the region of the graph already ex-
plored by a token. In this example, the meeting of the red
and blue token initiate a red wave (that wil l flood the blue
region

5 Conclusions and future works

We have presented DRW an efficient scheme for con-
structing a uniform spanning tree over a distributed net-
work. It is based on a new family of algorithms for dis-
tributed computing called the distributed random walks
scheme algorithms. The key advantage of this novel ap-
proach is that it has a very moderate and the best balanced
impact on network and computer resources. RW are ex-
pected to converge to one that keeps a surveillance func-
tion to relaunch computation in case of iinks or node fail-
ures.

However, the estimate of the complexity of DRW algo-
rithms for the general case is more complicated than for
usual DC algorithms The difficulty is due to the interac-
tions between the random walks.

Figure 4: Evolution of waves: the wave issued from the
token with the largess identity merge the subtrees and up-
date the variables of each node (here the red token wins).
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Formal Concept Analysis and 
Rough Set Theory in Clustering 

Ho Tu Bao 
Japan Advanced Institute of Science and Technology, Japan 

National Institute of Information Technology, Vietnam 

Abstract. This paper is concerned with the fundamental role of two math- 
ematical theories in some clustering problems. Formal concept analysis pro- 
vides the algebraic structure and properties of possible concepts from a given 
context, and rough set theory provides a mathematical tool to deal with im- 
precise and incomplete data. Based on these theories, we developed models 
and algorithms for solving three clustering problems: conceptual clustering, 
approximate conceptual clustering, and text clustering. 

1 Formal Concept Analysis and Rough Set 
Theory 

A theory of concept lattices has been studied under the name formal concept 
analysis (FCA) by Wille and his colleagues [I, 111. Considers a context as 
a triple (O,D,R) where 0 be a set of objects, D be a set of primitive de- 
scriptors and R be a binary relation between 0 and D, i.e., R 0 x 2, and 
(old) E R is understood as the fact that object o has the descriptor d. For 
any object subset X C 0, the largest tuple common to all objects in X is 
denoted by X ( X ) .  For any tuple S E 7, the set of all objects satisfying S is 
denoted by p(S). A tuple S is closed if X(p(S)) = S. Formally, a concept C 
in the classical view is a pair ( X ,  S ) ,  X C 0 and S C 7,  satisfying p(S) = X 
and X ( X )  = S. X and S are called extent and intent of C ,  respectively. 
Concept (X2 ,Sz )  is a subconcept of concept ( X ~ , S I )  if X2 C X I  which is 
equivalent to S2 2 SI, and ( X I ,  Sl) is then a superconcept of (X2,  S2). 

It was shown that X and p define a Galois connection between the power sets 
p(0) and p(D), i.e., they are two order-reversing one-to-one operators. As 
a consequence, the following properties hold which will be exploited in the 
learning process: 
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if S1 C: S2 then p(S1) 2 ~ ( 5 ’ 2 )  and Xp(S1) C Xp(S2) 
if XI c X2 then X(X1) 2 X(X2) and pX(X1) C: pX(X2) 

PAP = PI XPX = X I  XP(XP(S))  = XP(S) 
s c XP(S), X c PX(X) 

P ( u j  sj )  = nj m, ~ ( u ,  xj) = nj x(xj) 
The basic theorem in formal concept analysis [ll] states that the set of all 
possible concepts from a context (0, V, R) is a complete lattice1 C, called 
Galois lattice, in which infimum and supremum can be described as follows: 

Rough set theory, a mathematical tool to deal with uncertainty introduced 
by Pawlak in early 1980s [lo]. The starting point of this theory is the as- 
sumption that our %iew” on elements of a set of objects 0 depends on some 
equivalence relation E on 0. An approximation space is a pair (0, E )  con- 
sisting of 0 and an equivalence relation E C: 0 x 0. 

The key notion of the rough set theory is the lower and upper approxima- 
tions of any subset X C 0 which consist of all objects surely and possibly 
belonging to XI  respectively. The lower approximation E,(X) and the upper 
approximation E*(X) are defined by 

E * ( X )  = ( 0  E 0 : [ O ] E  c X} 
E * ( X )  = {0 E 0 : [ O ] E  n X # 8) 

(3) 

(4) 
where [ o ] ~  denotes the equivalence class of objects indiscernible with o with 
respect to the equivalence relation E. 

2 FCA-based Conceptual Clustering 
Conceptual clustering concerns mainly with symbolic data [9]. It does simul- 
taneously two tasks: (i) hierarchical clustering (Le., finding a hierarchy of 
useful subsets of unlabelled instances); and (ii) characterization (i.e., finding 
an intensional definition for each of these instance subsets). An important 
feature of conceptual clustering is that a partitioning of data is viewed as 

l A  lattice L is complete when each of its subsetf X has a least upper bound and a 
greatest lower bound in L.  
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Table 1: Scheme of OSHAM conceptual clustering 

Input 
Result H formed gradually. 
Top-level call OSHAM(root concept, 0). 

concept hierarchy H and an existing splittable concept ck. 

1. While ck is still splittable, find a new subconcept of it that corresponds to 
the hypothesis minimizing the quality function q(Ck) among 77 hypotheses 
generated by the following steps 

(a) Find a “good” attribute-value pair concerning the best cover of Ck. 
(b) Find a closed attribute-value subset S containing this attribute-value 
pair. 
(c) Form a subconcept c k i  with the intent is S.  
(d) Evaluate the quality function with the new hypothesized subconcept. 
Form intersecting concepts corresponding to intersections of the extent of the 
new concept with the extent of existing concepts excluding its superconcepts. 

2. If one of the following conditions holds then c k  is considered as unsplittable 

(a) There exist not any closed proper feature subset. 
(b) The local instances set C; is too small. 
(c) The local instances set C; is homogeneous enough. 

3. Apply recursively the procedure to concepts generated in step 1. 

‘good’ if and only if each cluster has a ‘good’ conceptual interpretation. In 
this sense, FCA is a good tool for conceptual clustering as it formalizes the 
duality between objects and their properties by Galois connections. Based on 
FCA, we have developed a conceptual clustering method OSHAM with some 
additional components to the concept representation by extent and intent. 
The key idea here to enrich the concept representation in FCA by adding 
several components based on the probabilistic and exemplar views on con- 
cepts that allow dealing better with typical or unclear cases in the region 
boundaries. The conceptual clustering method OSHAM to form a concept 
hierarchy in the framework of concept lattices is introduced and described in 
[2]. OSHAM searches to extract a good concept hierarchy by exploiting the 
structure of Galois lattice of concepts as the hypothesis space. 
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Instead of characterizing a concept only by its intent and extent, OSHAM 
represents each concept ck in a concept hierarchy ‘FI by a 10-tuple 

where 

- 
- 
- 
- 

l ( c k )  is the level of c k  in W ;  
f ( c k )  is the list of direct superconcepts of c k ;  
S ( c k )  is the list of direct subconcepts of c k ;  
i ( c k )  is the intent of c k  (set of all common properties of instances 

e(Ck) is the extent of c k  (set of all instances satisfying properties 

d ( C k )  is the dispersion between instances of c k ;  
p ( c k )  is the occurrence probability of ck; 
d(C[) is the dispersion of local instances of ck which are not 
classified into subconcepts of ck; 
p ( c L l c k )  is the conditional probability of these unclassified 
instances of c k ;  
q ( c k )  is the quality estimation of splitting ck into subconcepts c k i .  

of c k ) ;  

of i ( c k ) ) ;  
- 

- 
- 
- 

- 

- 

Table 1 represents the essential idea of algorithm OSHAM that allows discov- 
ering both disjoint and overlapping concepts depending on the user’s interests 
by refining the condition l.(a) and the intersection operation. In short, OS- 
HAM combines the concept intent, hierarchical structure information, prob- 
abilistic estimations and the nearest neighbors of unknown instances. A 
experimental comparative evaluation of OSHAM is given in [2]. 

3 Approximate Conceptual Clustering 
Kent [7] has pointed out common features between formal concept analysis 
and rough set theory, and formulated the rough concept analysis (RCA). 
For the sake of simplicity, we restrict ourselves here to present the basic 
idea of presenting approximate concepts in case of binary attributes where 
D is identical to the set A of all attributes a. Saying that a given formal 
context (0, A, R) is not obtained completely and precisely means that the 
relation R is incomplete and imprecise. Let (0,E) be any approximation 
space on objects 0, we wish to approximate R in terms of E. The lower 
approximation R,E and the upper approximation R*E of R w.r.t. E can be 
defined element-wise as 
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R,Eu = E*(Ra) = { 0  E 0 I [ O ] E  C Ru} ( 6 )  

(7) R * E ~  = E*(Ru) = { 0  E 0 I [ O ] E  n RU # 8) 
The formal context (0, A, R) can be then roughly approximated by two lower 
and upper formal contexts (0, A, R*E) and (0, A, R*E). These approximate 
contexts can be intuitively viewed as LLtrun~ated” and “filled up” contexts 
with respect to the equivalence relation E.  Two formal context (O,A,R) 
and (0, A, R’) are E-roughly equal if they have the same lower and upper 
formal contexts, i.e., R*E = RkE and R*E = A rough formal context 
in (0, E )  is a collection of formal contexts of object set 0 and attribute set A 
which have the same lower and upper formal contexts (roughly equal formal 
contexts). 

The rough extent of an attribute subset S C A w.r.t. R*E and R*E are 
defined as 

P ( ~ * E )  = n R * ~ ~  p ( ~ * ~ )  = n R * E ~  (8) 
aES aES 

Now, any formal concept (X, S )  E L ( 0 ,  A, R) can be approximated by R,E 
and R*E. The lower and upper E-approximation of ( X ,  S )  are defined as 

(x, S)+E = (P(S*E)7  AP(S*E))  E C ( 0 ,  A R * E )  

(X, S)*E = ( P ( S * ~ ) ,  A P ( ~ * ~ ) )  E C ( 0 ,  A, R*E) 

(9) 

(10) 

A rough concept of a formal concept (0, A, R) in (0, E) is the collection of 
concepts which have the same lower and upper E-approximations (roughly 
equal concepts). Note that approximate contexts of (0, d, R) in (0, E )  vary 
according to the equivalence relation E. In [3] we introduce algorithm A- 
OSHAM for learning approximate concepts in the framework of rough con- 
cept analysis. Essentially, A-OSHAM induces a concept hierarchy in which 
each induced concept is associated with a pair of its lower and upper approx- 
imations. A-OSHAM generates concepts with their approximations recur- 
sively and gradually, once a level of the hierarchy is formed the procedure is 
repeated for each class. 

4 Document Clustering based on a Tolerance 
Rough Set Model 

Given a set V of M full text documents. Our method of generating a hierar- 
chical structure of this document collection consists of two phases. The first 
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Table 2: Scheme of A-OSHAM approximate conceptual clustering 

Input 
Result H formed gradually. 
Top-level call A-OSHAM(root concept, 8). 
Variables 

concept hierarchy H and an existing splittable concept c k .  

a is a given threshold. 

1. Suppose that C k l ,  ..., C k ,  are subconcepts of c k  = ( X k , S k )  found so far. 
While c k  is still splittable, find a new subconcept Ck,,+] = ( X k n f l ,  s k , + l )  

of Ck and its approximations by doing: 

(a) Find attribute a* so that ua, X k i  U p ( { a * } )  is the largest cover of x k .  

(b) Find the largest attribute set S containing a* satisfying Xp(S) = S.  

(c) Form subconcept 

(d) Find a lower approximation and an upper approximation of C k , + ]  with 

From intersecting subconcepts corresponding to intersections of P ( S k , + l )  

with extents of existing concepts on H excluding its superconcepts, and find 
their approximations. 

2. Let x; = x k  \ u::: X k i .  If one of the following conditions holds then c k  is 
considered unsplittable: 

with p ( s k , + , )  = s and X k n t l  = p(s) .  

respect to a chosen equivalence relation E .  

(a) There exist not any attribute set s & s k  satisfying Xp(s) = s in x k .  

(b) c a ~ d ( X ; )  5 a. 

3. Apply A-OSHAM(Cki, H )  to each c k i  formed in the step 1. 

phase extracts and maps each document into a set of terms, then enriches 
documents with their approximations by the proposed tolerance rough set 
model. The second phase groups documents by an agglomerative clustering 
method using the document approximations. 

In the first phase each document d j  is mapped into a list of terms ti each 
is assigned a weight that reflects its importance in the document. Denote 
by f d j ( t i )  the number of occurrences of term ti in d j  (term frequency), and 
by fD(t i )  the number of documents in D that term ti occurs in (document 
frequency). The weights wij of terms ti in documents d j  are first calculated 
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then normalized by vector length as wij c wij/ h , E d j  W h j 1 2 .  Each doc- 
ument d j  is represented by its r highest-weighted terms. A usual way is to 
fix a default value r common for all documents. We denote the document 
set by 2, = { d l ,  d 2 , .  . . , d M }  where d j  = ( t l j ,  w l j ;  t z j ,  w2j;.  . . ; t , j ,  w T j )  and 
wij E [0,1]. The set of all terms from 2) is denoted by 7 = { t l ,  t z ,  . . . , t N } .  In 
information retrieval, a query is given the form Q = (41, wlq;  q 2 ,  ~ 2 ~ ; .  . . ; qs, wSq)  
where qi E 7 and wiq E [0,1]. 

J-- 

The tolerance rough set model (TRSM) aims to enrich the document repre- 
sentation in terms of semantics relatedness by creating tolerance classes of 
terms in 7 and approximations of subsets of documents. The model has the 
root from rough set models and its extensions [lo]. The key idea is among 
three properties of an equivalence relation R in an universe U used in the 
original rough set model (reflexive: xRx; symmetric: xRy -+ yRx; transitive: 
xRy A yRz 4 xRz for Vx, y, z E U ) ,  the transitive property does not always 
hold in natural language processing, information retrieval, and consequently 
text data mining. In fact, words are better viewed as overlapping classes 
which can be generated by tolerance relations (requiring only reflexive and 
symmetric properties). 

The key issue in formulating a TRSM to represent documents is the identi- 
fication of tolerance classes of index terms. There are several ways to iden- 
tify conceptually similar index terms, e.g., human experts, thesaurus, term 
co-occurrence, etc. We employ the co-occurrence of index terms in all doc- 
uments from V to determine a tolerance relation and tolerance classes. The 
co-occurrence of index terms is chosen for the following reasons: (i) it gives 
a meaningful interpretation in the context of information retrieval about the 
dependency and the semantic relation of index terms, and (ii) it is relatively 
simple and computationally efficient. Note that the co-occurrence of index 
terms is not transitive and cannot be used automatically to identify equiva- 
lence classes. Denote by fD(ti,  t j )  the number of documents in 2) in which 
two index terms ti and t j  co-occur. We define an uncertainty function I 
depending on a threshold B as 

Io(ti) = { t j  I f ~ ( t i , t j )  2 Q} U { t i }  (12) 

It is clear that the function I0 defined above satisfies the condition of ti E 
Ie(ti) and t j  E Ie(ti) iff ti E Ie ( t j )  for any t i , t j  E 7, and so I0 is both 



50 

Table 3: The TRSM nonhierarchical clustering algorithm 

Input 
Result 

The set V of documents and the number K of clusters. 
K clusters of V associated with cluster membership of each document. 

1. Determine the initial representatives RI,  R2, ..., RK of clusters CI, C2, ..., CK 
as K randomly selected documents in V. 

2. For each d j  E V, calculate the similarity S(U(R,  dj), Rk) between its upper 
approximation U(R, dj) and the cluster representative Rk, k = 1, ..., K.  If 
this similarity is greater than a given threshold, assign d j  to c k  and take this 
similarity value as the cluster membership m(dj) of d j  in Ck. 

3. For each cluster c k ,  re-determine its representative Rk. 
4. Repeat steps 2 and 3 until there is little or no change in cluster membership 

during a pass through D. 
5. Denote by d, an unclassified document after steps 2, 3, 4 and by NN(d,) 

its nearest neighbor document (with non-zero similarity) in formed clusters. 
Assign d, into the cluster that contains NN(d,), and determine the cluster 
membership of d, in this cluster as the product m(d,) = m(NN(d,)) x 
S(U(R,  d,),U(R,NN(d,))). Re-determine the representatives Rk, for k = 
1, ..., K .  

reflexive and symmetric. This function corresponds to a tolerance relation 
Z C 7 x 7 that  tiZtj iff t j  E Ie( t i ) ,  and Ie(ti) is the tolerance class of index 
term ti. 

A vague inclusion function v, which determines how much X is included in 
Y ,  is defined as 

(13) IX nyl v ( X , Y )  = - 1x1 
This function is clearly monotonous with respect to  the second argument. 
Using this function the membership function, introduced by Pawlak [lo], a 
similar notion as that  in fuzzy sets, p for ti E 7, X 7 can be defined as 

With these definitions we can define a tolerance space as R = (7, I ,  v, P )  
in which the lower approximation L ( R , X )  and the upper approximation 
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Table 4: TRSM-based hierarchical agglomerative clustering algorithm 

Input 
Result Hierarchical structure of D 

A collection of M documents D = {di, dz, . . . , d ~ )  

Given: a collection of M documents D = {di, dz, . . . , d i ~ }  
a similarity measure sim : P(D) x P ( D )  --t R 

€or j = 1 to M do 
Cj = { d j }  end 
H = {Ci,cz,, . . . , C M }  
i = M f l  
while [HI > 1 

(Cn,, G2) = argmax(c,,C,)EHXHSim(U(R, G ) , U ( R ,  C,) 
Ci = Cn, U Cn, 
H = ( H  \ { G I ,  Cn,}) U {Ci} 
i = i + l  

U(R, X) in R of any subset X C 7 can be defined as 

C ( R , X )  = {ti E 7 I .(Ie(ti),X) = 1) 

U(R, X )  = {ti E 7 I v(Ie(ti), X) > 0 )  
(15) 
(16) 

The term-weighting method defined by Eq. (11) is extended to define weights 
for terms in the upper approximation U(R, d j )  of d j .  It ensures that each 
term in the upper approximation of d j  but not in dj has a weight smaller 
than the weight of any term in d j .  

(1 + l%(fdj(ti))) x 1% fD t .  if ti E 4,  
if ti E U ( R , d j )  \ d j  
if ti $2 U(R, d j )  

(17) 

The vector length normalization is then applied to the upper approximation 
U(R, d j )  of d j .  Note that the normalization is done when considering a given 
set of index terms. 

Figure 3 and Figure 4 describe two general TRSM-based nonhierarchical and 
hierarchical clustering algorithm. The TRSM-based nonhierarchical cluster- 
ing algorithm can be considered as a reallocation clustering method to form 
K clusters of a collection D of it4 documents. The main point of the TRSM- 
based hierarchical clustering algorithm is at each merging step it uses upper 
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approximations of documents in finding two closest clusters to  merge. Sev- 
eral variants of agglomerative clustering can be applied, such single-link or 
complete-link clustering. As documents are represented as length-normalized 
vectors and when cosine similarity measure is used, an efficient alternative 
is to employ the group-average agglomerative clustering. The group-average 
clustering can avoid the elongated and straggling clusters produced by single- 
link clustering, and can avoid the high cost of complete link clustering. In 
fact, it allows using cluster representatives to calculate the similarity between 
two clusters instead of averaging similarities of all document pairs each be- 
long to one cluster [8]. In such a case, the complexity of computing average 
similarity would be O ( N 2 ) .  Careful evaluation and validation of clustering 
quality are given in [5] and [6]. The results show that tolerance rough set 
model and TRSM-based clustering algorithms can be used to improve the 
effectiveness and efficiency in information retrieval and text analysis. 
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A Simple Heuristic Method for the Min-Cut 
k-Balanced Partitioning Problem 

Lelia Blin and Ivan Lavallee 

Abstract We consider the problem of k-partitioning a graph into k bal- 
anced subsets that minimizes the number of crossing weighted edges Previ- 
ously, Maximum flow approach, iterative improvement, geometric represen- 
tation were given to solve this problem. In this paper we propose a balanced 
k-partition heuristic based on a max spanning tree method 

Keywords: Bipartition, k-Partition, Min-Cut, Balanced, Merging. 

1 Introduction 
Graph connectivity is one of the classical subjects in graph theoiy The paititio- 
ning of the grapbs is an important problem that has extensive applications in 
mmy areas, including scientific computing, VLSI design [AK95], data mining 
[MJHS96], geo-glaphical information systems, operation research, and task 
scheduling. In circuit design, working with VLSI-CAD systems yields a high 
level of complexity because the number of electronic circuits increases very 
fast due to the technology improvements. Current designs are in the order 
of 100.000 cells and it is expected to reach 1 000.000 cells in next years. 
To give an idea of the involved complexity when working in design, actually 
300.000 cells requires 8 hours of processing time running in parallel under 
128 networked Sparc stations. The system must deal with the combinatorial 
explosion of all the possible solutions and it is very important to find new 
efficient heuristics. 

Much heuristics are known as interchange methods and are based on 
iteratively improving a series of partitions. In general, the quality of the final 
solution depends on the quality of the initial partition. Moreover, iterative 
exchange approaches cam easily can trapped in local minima. In contrast, we 
propose a simple and efficient heuristic method usine a global optimization 
criterion that promises a better performance. 

The rest of the paper is organized as follows : section two introduces 
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the problem, on section three we discuss the state-of-the-art, section four 
describes our heuristic approach and illustrates with an example. 

2 
0 

0 

This 
been 

3 

The problem 
Instance: Given G = (V, E) undirected graph [Ber73], weights w(e) E 
Z+ for each e E E. Let V the vertex set, IVI = n, and the edges set 
E ,  IEl = m. A cuted edge is an edge (u,v) where u E V,, and v6 $! &. 
The cut set CUT(E) is the set with all the cuted edges in G. k is given 
as a positive integer. 

Question: Is there a k-partition of V into disjoint sets Vl, Vz, ..., V k  

such that minimize c w(e) 
E € C U T ( E )  

problem is known to be NP-hard[GJ79], thus, many heuristics have 
developed to obtain suitable partitions. 

The state of the art 
The k-partitioning problem is most frequently solved by recursive biparti- 
tion. That is, we first obtain a 2-partitioning (bipartitioning) of V ,  and 
then we recursively obtain a 2-partitioning of each resulting partition. After 
many phases, graph G is partitioned into k partitions. Thus, the problem 
of performing a k partitioning is reduced to that of performing a sequence 
of bipartitions. Consequently, in the literature, many heuristics have been 
proposed in the context of Bipartitioning. Whereas, one of the original is- 
sues in this work is to directly construct k-partitions without making use of 
bi-partitioning. 

There are two types of approaches based on a Min-Cut Graph Bipar- 
titioning: The first one only seeks one minimal cut in the bipartition and 
the second one also seeks a minimal eut cut add a constraint: the balance 
constraint, the disjoints subsets of V must have the same size Min-Cut. 

3.1 Bi-Partitioning: MC2P 
The usual approach to solve this problem is to use its close relationship with 
the maximum-flow problem[FF62]. In this field there are very simple heulistic 
methods proposed [SW97]. However, it was overlooked as a viable approach 
for circuit partitioning due to the following reasons: 
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0 The two components obtained by the network ma-flow min-cut tech- 
nique are not necesarly balanced. 

Although, a balanced eut can be achieved by repeatedly applying min- 
cut to the larger component, this method can possibly incur n max-flow 
computations. 

The traditional network-flow technique works on graphs, but hyper- 
graphs are more accurate models for circuit netlists than graphs. 

Figure 1: Example of Stoer et Wagner heuristic methods [SW97]. The min 
cut is 9, partition is {2}{1,3,4,5,7,8} 

3.2 Min-Cut Balanced Bi-Partioning: MCB2P 
The standard bipartitioning approach is iterative improvement based on the 
Kernighan-Lin algorithm [KL70], which was later improved by Fiduccia- 
Mattheyses [FM82]. 

In 1970, Kerighan and Lin [KL70] introduced what is often described as 
the first graph bisection heuristic. Their algorithm begins whith some initial 
solution (A*,  B*).  The KL method uses a par-swap neighborhood structure 
and proceeds in a series of passes. 

Suppose that (A*,  B*) is a minimum cost bi-partition and let (A ,  B )  be 
any arbitrary bi-partition. Then there are two subsets with X E A and 
Y E B where 1x1 = IyI 5 n/2. Thus, interchanging X and Y may produce 
A* and B* as shown below X and Y are found by interchanging two nodes 
in each iteration. 

Example of Khernighan and Lin heuristic method. 
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Figure 2: While interchanging nodes 1 and 7, the cut passes from 6 cuted 
edges to  4) 

3.3 Hypergraph 
There are various graph and hypergraph representations of the circuit netlist 
(VLSI), and formulated basic variants of the partitioning problem. The most 
common method for representing the circuit netlsist connections (VLSI) is 
a hypergraph. Although the original [KL70] algorithm only to  undirected 
weighted graphs, Schweikert and Kernighan [SK72] extend [KL70] to hyper- 
graphs . 

1 I 

' Figure 3: Circuit 

However, iterative improvement methods was overlooked as a viable ap- 
proach for circuit partitioning due to the following reasons: 

0 the quality of the final solution depends on the quality of the initial 
partition. 

0 the iterative method is very expensive and far from their practical use 
(a good implementation KL yields a complexity in the oider of O(n2). 

0 It is not possible to make Ic-partitioning directly. 
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Figure 4: Graph representation of the circuit, circuit representation by hy- 
pergraph 

3.4 Geometric Representation 
In this part, we discusses methods that construct a gometric representation 
of the partitioning problem via constructions as such a 1-dimensional linear 
ordering or multi-dimensional vector space. Such a represation offers possi- 
bilities for geometric approaches to solve problems that are intractable for 
general graphs. Spectral methods are commonly used to construct geometric 
representations, due to their ability to capture global netlist information. 

Illustration of Hall’s Quadratic Placement [Ha1701 The significance of 
hall’s result is that it provides the optimal non-disciete solution for Min- 
Cut Bipartitioning. Given an nxn symmetric connection matrix C = ( c i j ) .  

Eigenvaiues are computed by starting from this matrix. The eigenvectors as- 
sociated E l ,  E2, E3, Eq with the eigenvalues are obtained X = (0.0,0.586,2.0, 
3.414). To find the cut there are two possible choices: 

First choice Placement in one dimension. By using the two smallet eigen- 
values: i.e. the vectors El and E2 where the nodes are placed on the line 
according to the coordinates of E2 (El line). The cut is at the center of the 
line and it is the optimum because only one edge is cut. 

Second choice Placement in 2 dimensions El = 0 is a line, it cannot thus 
be used. That is why the two others smaller values of X are used, i.e the 
eigenvectors E2 and E3 where the nodes are placed following X coordinated 
and Y coordinated. The cut passes along the x-axis and this is the optimum 
because only one edge is cut. 
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Figure 5: Method of placement: The graph, one dimension, and two dimen- 
sions 

3.5 Replication 
Replication modules can reduce the cutsize, and are paiticulary useful for 
FPGA paititioning since many device architectures seem more I/O-limited 
or interconnected-limited than logic-limited. Replication can also reduce the 
number of interchip wires along a given path, increasing system performance. 
The Min-Cut Replication Problem of Hwang and El Gamal [HG92] seeks a 
collection of subsets of modules C;jlC;j, 1 5 i,j 5 k that minimizes F(Pk*
where Pk* is the partitioning that results when each subsets C:j is replicated 
from Ci to Cj. Hwang and El Gamal implicitly assume each Ci contains a 
subset Ii of primary imputs that cannot be replicated. Consider the directed 
graph shown in figure 6(a), in which module v represents an N-input decoder 
circuit. The cut shown has size 2N but if the decoder v is replicated as in 
6(h), every one of these Z N  edges will become uncut (however, N new edges 
will be cut). The following rules are used to modify the edge set E when 
v E Ch is replicated into v' E Cl. In [HG95], Hwang and El Gamal showed 
how to  modify their flow network to solve min-cut replication for hypergraphs 
with signal information 

We have presented a non-exhaustive review of the existing methods in 
this field. These methods have several shelfs. The first shelf is that they 
are not easy to understand and to implement. The second shelf it is that 
they are not very powerful, the execution time becomes prohibitory for the 
circuits'size interesting. The last major problem, is that they do not propose 
k-partition but of the reiteration of bipartition, but in the reality of the VLSI, 
it is necessary to tackle k-partition. These heuristics have execution times 
which make them of not use in state, their repetition to obtain k-partition 
only makes worst this observation. 
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Figure 6: Replication 

4 Our heuristic 
We locate our heuristic in the min-cut balanced k-partition (MCBkP). The 
main idea of our heuristic is simple. The edges of maximum weight should 
not be found in the cut-set CUT(E), that minimize the cut-set. Moreover 
the weights of the edges will be small in the unit of cut, the more their will 
tend towards a minimum. 

The search of maximum edges can be made by the search of the maximum 
spanning tree. We use the Sollin algorithm [So1631 for finding the maximum 
spanning tree. This algorithm does not require preprocessing of the edges, 
save computing time, and adopts a “bottom-up” strategy. Moreover we build 
the tree from several forests, which authorizes a parallelism [LavSl] and this 
principle is the base for k-partitioning. The general principle is the Borukva 
phase [Bur26]. By merging node sets, we obtain a new graph and we iterate 
the strategy on the new graph. During the heuritic method, a sequence of 
successively smaller graphs is constructed. 

for each e E E.  Let V the vertex set, IVI = n, and the edges set E ,  [El = m. 
A cuted edge is an edge (u, v) where u E &, and w # V, . The cut set CUT(E) 
is the set with all the cuted edges in G. k is given as a positive integer, it is 
the number of partition. We associate to  each node a state; a node is marked 
if already visited, unmarked if not. At the beginning each node is unmarked. 

It is easy to  understand the heuristic. The unmarked vertices are visited in 
a random order, and for each vertex w, the edge incident on v with the highest 
edge-weight is selected, e = ( M a x  w(I’[w]) = (v, u), where r[w] stands for the 
edges incidents of w. Once all vertices have been marked, the unselected edges 
are moved, and each one of the connected components of the resulting graph 
becomes a set of vertices to be merged together. 

Although not being completely unbalanced, the partitions obtained do 

Our heuristic given G = (V, E )  undirected graph [Ber73], weights w(e)inZ+ 
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not satisfy the criterion of balance, ie, the constraint saying that the sizes of 
the partitions must be equal. To answer this constraint, we should manage 
the size of the partitions. For that we choose to make a compromise between 
the size of the partitions and the cost of all the cuts. We accept an unbalance 
r (fixed) on the size of the partitions, 0 < r < 0.5, if that enables us to have 
a better cut. To manage the size of the partition we insert a test into the 
moment of the choice of the incidental edge. That is to say V, a unmarked 
node for an unspecified graph, Ivil = p i .  That is to say e the incidental edge 
with V, stsonger weight, el = (Max w(r[vi])) = (V,, vjl) and Ivj~jll = pjl. If 
pi + p j  < (q + r q )  one selects e, if not we select the following node with 
the strongest weight, e2 = (Max  w(I'[V,]) # w(e1)) = (K, x2) , and so on ... 

4.1 Example 

Figure 7: Initial graph 

Figure 8: First phase:first and second step 
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Figure 9: First phase:third and fourth step 

Figure 10: First phase:fifth and sixth step 

As on Figure 7, in a graph G = (V, E ) ,  we seek a balanced bi-partition. 
The Figures 8, 9, 10 illustre the first Phase. As on Figure 8 first and second 
step. The first step choose the node unmarked 0 and merging it with its 
successors with the largest weighted edge, it is the node 1 Nodes 0 and 1 are 
marked. The second step choose the node unmarked 2 and merging it with 
its successors whith the largest weighted edge, it is the node 5 Nodes 2 and 
5 are marked. 

As on Figure 9 third and fourth step. The third step choose the node 
unmarked 3 and merging it with its successors with the largest weighted 
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edge, it is the node 1. The node 3 is marked. The fourth step choose the 
node unmarked 4 and merging it with its successors with the largest weighted 
edge, it is the node 1. The node 4 is marked. 

As on Figure 10 fifth and sixth step. The fifth step choose the node un- 
marked 6 and merging it with its successors with the largest weighted edge, 
it is the node 7. Nodes 6 and 7 are marked. The sixth step choose the node 
unmarked 8 and merging it with its successors with the largest weighted edge, 
it is the node 5. The node 8 is marked. The figure 4.1 illustres the second 
phase and the min-cut balanced bipartition. For start the second phase, we 
unmarked the merging nodes. The second phase have one step, which corre- 
sponds to the merging the unmarked-merging-nodes (2,5,8) and the merging 
nodes (6,7), the max edge for the merging-node (2,5,8) (Now merging-nodes 
(2,5,8) and (6,7) are marked). The merging-node (0,1,3,4) is not use, because 
it satisfy the balanced criterium. The min-cut cost is 33. 
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Abstract. A graph is called a maximal nonhamiltonian graph if it is nonhamil- 
tonian and will be hamiltonian by adding any new edge. The following conjecture 
was presented by Erdos that if C is a longest cycle in a maximalnonhamiltonian 
graph G then G-C is a complete graph. In this paper we prove that the conjecture 
is true for some classes of graphs. 

1 Terminology and Notation 

We consider only undirected graphs without loop or multiple edges. Our termi- 
nology is standard except as indicated. We begin by introducing some definitions 
and notation. Let w ( G )  denote the number of components of a graph G. Follow- 
ing Chvdtal [2] a graph G is I-tough if IS1 > w ( G  - s) for any nonempty subset 
S of the vertex set V ( G )  of G. G is called nontough if there exists a nonempty 
subset S such that IS1 < w ( G  - S) .  We shall denote the number of vertices of 
G by n. A graph G is called a hamiltonian graph if G contains a hamiltonian 
cycle, i. e. a cycle of length n. Otherwise, G is nonhamiltonian. Similarly, a path 
is called a hamiltonian path if it contains all vertices in G. A graph G is called 
a maximalnonhamiltonian graph if G is nonhamiltonian and will be hamiltonian 
by adding any new edge. Clearly, for every nonadjacent vertices u and u in a 
maximalnonhamiltonian graph G there is a hamiltonian path joining u with u. A 
cycle C of G is a dominating cycle if G - C is an edgeless graph and G is called 
dominated by C or dominable. The length l ( C )  of a longest cycle C in a graph G, 
called the circumference of G, will be denoted by c(G). For k 5 Q we denote by 
( ~ k  the minimum value of the degree sum of any k pairwise nonadjacent vertices. 
For k > Q we set ok = co. Instead of 01 we use the more common notation 6. 

2 Results and Conjecture 

We begin with a well-known theorem of Nash-Williams [4]. 

Theorem 1 Let G be a 2-connected graph on n vertices with 6 2 (n+ 2)/3. Then 
every longest cycle in G is a dominating cycle. 
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Bigalke and Jung [l] improved Theorem 1 under the assumption that G is 1-tough. 

Theorem 2 Let G be a 1-tough graph on n vertices with 6 2 n / 3 .  Then every 
longest cycle in G is a dominating cycle. 

The class of graphs with 6 2 was also studied by Enomoto et  other in [3]. 
Let C be a longest cycle in a nonhamiltonian graph G. In the proof technics 
for the existence of a hamiltonian cycle we often ask for the rest graph G - C. 
Clearly, it is very useful1 if we know about G - C for any longest cycle C in a 
maximalnonhamiltonian graph G. For some special cases we can describe the rest 
graph G - C .  A such result is proved in [6]. 

Theorem 3 Let G be a %connected graph on n vertices with 6 2 n / 3  and C be 
a longest cycle in it. Then G - C is either a complete graph or an edgeless graph. 

It was also shown in [6] that if 6 2 n / 3  and G is 2-connected then G - C is only 
dependent on G, namely: 

Theorem 4 Let G be a %connected graph on n 2 3 vertices with 6 2 n / 3 .  Then 
the following properties are equivalent: 
(a )  G is a dominable graph, 
(b) every longest cycle in  G is a dominating cycle, 
(c) G $ ?I? for a class X of special graphs. 

The definition of the class X shows that Theorems 4 is a generalization of Theorem 
1 and Theorem 2. The class X is the union of the classes of graphs W1, ... , 8 5  and 
it takes only a polynomial time to know whether a given graph G E W or not. 
$21 is the class of graphs on 3r vertices and with minimal degree 6 = r 2 3,  which 
are isomorphic to a graph G, where 

2KT-1 + K 2  c G c ( 2 K ~ - 1  U Kr )  + Kz; 

X2 the class of graphs on 15 vertices and with minimal degree b = 5, which are 
isomorphic to a graph G, where 

4K3 + K 3  c G 4K3 + K3; 

X3 the class of graphs on 3r vertices and with minimal degree 6 = r 2 3,  which 
are isomorphic to a graph G, where 

( T  - 1)K2 + KT-i c G c ( ( T  - 1)Kz UK3) + KT-1; 

Wd the class of graphs on 3r + 2 vertices and with minimal degree 6 = T + 1, which 
are isomorphic to a graph G, where 

3KT + K 2  G c 3KT +K2; 
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R5 the class of graphs on 3r + 2 vertices and with minimal degree 6 = r + 1 2 3, 
which are isomorphic to a graph G, where 

( r  + 1)Kz + I?, 2 G C ( r  + 1)Kz + K,. 

Note that all graphs of R are nontough graphs, we can easily see that the graph 
G - C is a complete graph for any graph G E !I2 and every longest cycle C in G. 
The following conjecture was posed by Vu Dinh Hoa and presented by Erdos in 
the "Second Kmkdw Conference of Graph Theory" (September 1994). 

Conjeture 1 If G i s  a maximalnonhamiltonian graph and C is any longest cycle 
in G,  then G - C is  a complete graph. 

In the following, we show that the conjecture is true for nontough maximalnon- 
hamiltonian graphs. 

Theorem 5 Let C be a longest cycle in a nontough maximalnonhamiltonian 
graph G, then G - C is  a complete graph. 

Proof. Since G is nontough, there exists a set S of vertices such that w ( G  - 
S )  2 IS1 + 1. Let s = IS1 and GI ,  Gz .. G, the components of G - S with 
m 2 s + 1. Clearly, GI, Gz ... G, are complete graphs and m = s + 1 since G is a 
maximalnonhamiltonian graph. Otherwise, we can add a new edge in some G, or a 
new edge joining two of the components of G - S to obtain a new nonhamiltonian 
graph with more edges. Similarly, S is a complete graph and every vertex of S is 
joining with any vertex of G - S. Now, we can easily see that for every longest 
cycle C the graph G - C is one of the components GI,  GP,  ... G,, i. e. a complete 
graph. 

Now we will show that the same result holds for the class of graphs with 6 2 g .  
We denote by p ( G )  the length of a longest path in G. In [ 5 ] ,  Van den Heuvel 
proved the following result. 

Lemma 1 (Corollary 6.8 in 151) Let G be a 1-tough graph on  n 2 3 vertices such 
that u3 2 n. Then G satisfies c(G) 2 p(G) .  

Thus, we conclude the following result. 

Theorem 6 Let G be a rnmimalnonhamiltonian graph on n 2 3 vertices such 
that 6 2 and C be a longest cycle in G,  then G - C is a complete graph. 
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Proof. If G is nontough graph, then G - C is a complete graph because of theorem 
5. Otherwise, G is a 1-tough graph and G satisfies the condition u3 2 n. By 
lemma 1, we have c ( G )  2 p ( G ) .  But, since G is maximalnonhamiltonian graph, 
p ( G )  2 n - 1. Thus G- C has at most one vertex and therefore G - C is a complete 
graph. 

By the similarly proof, we have the same result for graph G with u3 2 n. 

Theorem 7 Let G be a mmimalnonhamiltonian graph on n 2 3 vertices such 
that u3 2 n and C be a longest cycle in a graph G .  Then G - C is a complete 
graph. 
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Abstract 

This paper is a survey article to introduce some results on deterministic 
and nondeterministic directable automata and their related languages. 

1 Introduction 
Let. X be a nonempty finite set,, called an alphabet. An element of X is called a 
letter. By X * ,  we denote the free monoid generated by X .  Let X +  = X *  \ { E }  

where E denotes the empty word of X * .  For the sake of simplicity, if X = {a} ,  
then we write a+ and a* instead of {a}+ and {a}*,  respectively. Let L C X * .  
Then L is called a language over X .  If L X * ,  t,hen L+ denotes t,he set of all 
concatenations of words in L and L* = L+ U ( 6 ) .  In particular, if L = {w}, 
then we write w+ and w* instead of {w}+ and {w}', respect.ively. Let, u E X ' .  
Then u is called a word over X .  If u E X * ,  then IuI denotes the length of u, i.e. 
the number of letters appearing in u. Notice that we also denote the cardinality 
of a finite set A by IAl. 

A finite automaton (in short, an automaton) A = (S ,  X ,  6) consists of the 
following data: (1) S is a nonempty finite set, called a state set. (2) X is a 
nonempty finite alphabet,. (3) 6 is a function, called a state transition function, 
of S x X into S.  

The state transition function 6 can be extended to the function of S x X *  
into S as follows: (1) b ( s , t )  = s for any s E S. (2) 6 ( s , a u )  = 6 ( S ( s , a ) , u )  for 
any s E S , a  E X and u E X * .  

Let A = ( S , X , 6 )  be an automaton, let s E S and let, u E X * .  . In what 
follows, we will write su-4 instead of 6(s,u).  

A finite recognizer A = ( S ,  X ,  6, SO, F )  consists of the following data: (1) The 
triple ( S , X , 6 )  constitutes a finite automaton. (2) SO E S is called the initial 
state. (3) F S is called the set of final states. 
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Let A = (S ,X ,6 , so ,F)  be a finitme recognizer. Then the language 7 ( A )  = 

Let L X ' .  Then L is said to be regular if L is accepted by a finit,e 
{u  E X *  I 6(so,u)  E F }  is called the language accepted by A .  

recognizer. 

2 Deterministic Directable Automata 
First, we define a directable automaton. 

Definition 1 An automaton A = (S ,  X ,  6) is said to be directable if the follow- 
ing condition is satisfied: There exists w E X *  such that swA = t w A  for any 
s, t E s. 

In the above definition, a word w E X' is called a directing word of A. Then 
we have: 

Fact Let A = (S ,  X ,  6 )  be a n  automaton. T h e n  A is  directable i f  and only i f  
f o r  any s, t E S ,  there exists u E X *  such that suA = tuA. 

Proposition 1 Assume that A = ( S ,  X ,  6 )  is  a directable automata. T h e n  the 
set of directing words D ( d )  of A is  a regular language. 

Proof To prove the propositmion, it is enough to provide the recognizer f3 = 
( P ( S ) , X , y , S , G )  where P ( S )  = {T I T C S } ,  G = ( { s }  I s E S }  and y ( T , a )  = 
U t E T 6 ( t , a )  for any a E X and T E P(S) .  Then it, can easily be verified that, 
'T(f3) = D ( A ) .  Hence D ( d )  is regular. 

Let, A = ( S ,  X ,  6) be a directable automatmoil. By d ( A ) ,  we denot,e the 
va.lue min{lwl 1 w E D(A)}. Moreover, d ( n )  denotes t,lie value r n a z { d ( d )  I 
A = ( S , X , 6 )  is a directable automat,on witah n stat,es}. In the definit,ion of 
d ( n ) ,  X ranges over all finite nonempt,y alphabets. 

In [2], Cernjr conjectured the following. 

Conjecture For any n 2 l ,d(n) = (n, - 1)' 

Act,ually, Cernf proved only that. (n  - 1)2 5 d ( n )  using t,he following di- 

A = ((1 , . . .  , n } , {a ,b} ,6 )  where6(i ,a) = i + l  i f i  = 1 , 2  , . . . ,  n - 1  and 

Then it can be shown t,hat t,he word b(a"-'b)"-2 is a shortest directing word 

rectable automaton. 

6(n ,a)  = 1, 6(n - 1, b) = n and 6 ( i ,  b) = i if i = 1 , 2 , .  . . , n and i # n - 1. 

of A and hence (n  - 1)2 5 d ( n ) .  

However, the above problem is stmill open and at present we have only t>he 
following result: 
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Proposition 2 For any n 2 1, we have (n  - 1)’ 5 d ( n )  5 1 + (n  - 2)(y). 

Proof The lower bound is obvious from the above result.. As for the upper 
bound, it, is enough to consider only t,he case n, 2 3. Let A = ( S , X , 6 )  be a 
directable a.ut,omaton with IS1 = n. Since d is a directable automaton, t,liere 
exist S O ,  s1 E S,  SO # s1 and a E X such that, soad = s l d .  Hence ISadl < (5’1. 
Let s, t E Sad, s # t .  Moreover, let, u E X ”  be one of t,lie shortest, words such 
that sud = tuA. Suppose IuI 2 ( y )  + 1. Then we have u = xvy,w,xy E X +  
such that { s , t } x A  = {s,t)(~v)~. This implies that. ~ ( x c y ) ~  = t ( ~ y ) ~ .  This 
contradicts t4he assumption that, u is one of t,he shortest, words. Hence lul 5 ( y ) .  
Now consider s’, t’ E S ( U ~ ) ~ ,  s’ # t‘. In t,he same way as the above, we can find 
u’ E X*, 121’1 5 ( y )  such that s ’ d A  = t ’dd.  Using the same technique, we can 
find a direct,ing word w = auu’. . . of A with IwJ 5 1 + (n  - 2)(;). 

In [9] and [lo], J.-E. Pin gave more precise evaluations. 

We can consider a similar problem for some subclasses of direct,able au- 
t,omata. For instance, an automaton d = (S, x, 6) is said t,o be commutative if 
s ( u t ~ ) ~  = ~ ( v u ) ~  holds for any s E S and any u,c E X * .  By dcom(n), we denote 
the value ~naz{d(A) I A = ( S ,  X ,  6) is commutative and directable, a.nd IS1 = 
n}. In the definition of dcom(n) ,  X ranges over all finit,e noneinpt,y alphabets. 
The following result is due t,o [ll] and [la]. 

Proposition 3 For any n 2 1, we have dcOm(n)  = n - 1. 

Proof Let A = (S, X ,  6) be a commut,ative directable aut,oma.t,on wit,li IS1 = n. 
Remark that, Sud = USES suA 2 S ( t r ~ ) ~  = S(UW)~ for any u, v E X * .  Let. 
w = alaz...a,. be one of the shortest directing words of A. Thus we have 
Saf 2 S ( ~ l a 2 ) ~  2 S(alaza3)A 2 . . .  2 S(~laza~...a,)~. Notice tha.t every 
inclusion is proper because tShe word w is one of the shot,est, directing words. 
Hence r 5 n - 1. On the ot,lier hand, consider the following commut,a.t,ive 
direchble a.utomat,on B = ({I, 2,. . . ,n},X,y)  where y ( i , a )  = i + 1 for any 
a E X and any i = 1,2 , .  . . ,n  - 1 and y(n,,a,) = n for any a E X .  Then 
d( B) = n, - 1. Consequentsly, d,,, (n)  = n - 1. 

It. is an interesting questioii to ask whether or not a. given automaton is 
directable. For t,liis purpose, we introduce the notion of a. merged word of a 
language. 

Let L C X *  be a language over X Then ‘UI E X *  is called a merged word of 
L if any word in L is a subword of w, i.e. X * u X *  n {w} # 0 for any u E L.  In 
[8], the following proposition is given: 

Proposition 4 Thrre extsts a merged word ul E X +  of X d ( n )  such that luil 5 
I X p  + d(n)  - 1 



74 

Using the word w, we can check whether a. given automa.ton A = ( S ,  X ,  6 )  
wit,h JSI = n, is directfable, i.e. A is directable if arid only if SwA is a singleton 
set. 

However, the above algorit,hm is not effective. To provide an effective al- 
gorithm to decide whether a given automa.t,on is directable, we int,roduce the 
following relat,ioiis p and pi on S .  

vs, t E s, (s, t )  E p e 3u E x*, S U A  = tuA. 

(1) V s , t  E S , ( s , t )  E po 1 s = t .  
(2) ~i 2 l ,Vs , t  E S, (s, t )  E p1 u 3a E X , ( s a A , t a A )  E pi-1. 

Then we have: 

(3 
Proposition 5 p = u p ? .  Moreover, A is directable if and only i f  (s, t )  E p for 

any s, t E S .  
2=0 

Using t,he above proposition, B. Imreh and M. St,eiIiby ( [ 5 ] )  provided an algo- 
rithm to decide whether or not, any given automaton A = ( S ,  X ,  6 )  is directable 
with t,he time bound of O(m. . n,’) where m = 1x1 and n = IS]. 

3 Nondeterministic Directable Automata 
A nondeterministic automaton A = ( S ,  X ,  6 )  consists of t,he following data: (1) 
S , X  are t,he same tnaterials as in ta le  definition of finit,e automat,a. (2) 6 is a 
relation such t,liat, 6(s ,  a )  5 S for any s E S and any a E X u { E } .  

As in t,lie case of finitme aut,omata, 6 can be ext,ended to the following relation 
in a. natural way, i.e. 6(s, au)  = UtE6(s ,a)  6 ( t ,  u )  for any s E S ,  any u E X* and 
any a E X U {F}. In what, follows, we will writ,e suA inshad of 6(s, u,) as in the 
case of finitme aut,omata. 

Now we will deal wit,li rioridet,eririiiiistir direchble autorna.ta and t,lieir related 
languages. For nondet,erininist.ic aut,oinat.a, t,he direct,a.bilit.y can be defined in 
several ways. In each case, tjhe directing words coiistit-ut,e a regular language. 
We will consider six classes of regular languages wit41i respect. to t,lie different. 
defiiiit,ioiis of direct,ability. 

Let. A = ( S , X , 6 )  be a xioiidet,errniiiistic aut,ornaton. In 161, the not,ion of 
direct,irig words of A is given. In t.he defiiiit,ion, SwA denoies USES swA for 
w E x * .  
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Definition 2 (1) A word w E X *  is D1-directing if swd # 0 for any s E S and 
(SwdI = 1. (2) A word w E X *  is Dz-directing if swd = Swd for any s E S.  

S E S  

(3) A word w E X *  is Ds-directing if n S W ~  # 0. 

Definition 3 Let i = 1,2 ,3 .  Then A is called a D,-directable automaton if the 
set of Di-directing words is not empty. 

Let A = ( S ,  X ,  6) be a nondeterministic automaton. Then, for any i = 1 ,2 ,3 ,  
Di(d )  denotes the set of all Di-directing words. Then we have: 

Proposition 6 For any i = 1,2 ,3 ,  Di(A) is a regular language. 

Proof Let A = ( S , X , S )  be a nondeterministic automaton and let S = 
{SO, s1 , s2,. . . , s T } ,  r 2 0. For any i = 1,2 ,3 ,  we define a finite recognizer di = 
({T 1 T C S }  , X ,  6r1 ({SO} , { SI}, . . . , { S T } )  , Fi ) as follows: ( 1) (To , Ti , . . . I TT) adi 
= 6,((To,Tl,. . . , T T ) , a )  = (ToaA,T1ud,. . . ,TTad) for any a E X and any 
Ti 2 S, i  = 0 , 1 , .  . . , r .  (2) F1 = { ( { t } ,  { t } ,  . . . , { t } )  I t E S } ,  FZ = { (T ,T , .  . . , T )  

I T s S }  and Fs = {(To,Ti,. . . ,TT) I Ti s S,i = 0 , 1 , .  . . , r ,  0 T, # 0). 
T 

i=O 

Then it is obvious that D i (d )  = 7(&) for any i = 1 ,2 ,3 .  Hence Di(d)  is a 
regular language for any i = 1 ,2 ,3 .  

A nondeterministic automat(on A = ( S ,  X ,  6) is said to be complete if sad # 0 
for any s E S and any a E X .  As for the D1-directability of a complete nonde- 
terininist,ic automaton, Burkhard introduced it in [l] . We will investigate the 
classes of languages consisting of D1-, Da- and Ds-directing words of nondeter- 
minist,ic mtomata and complete nondeterministic automata. 

The classes of Di-directable nondeterministic automat,a and complete non- 
deterministsic automata are denoted by Dir(i) and CDir(i), respectively. Let 
X be an alphabet. For i = 1,2 ,3 ,  we define t,he following classes of languages: 

A = ( S ,  X ,  6) E CDir(i)}. 
(1)  L&,(il = {Di(A) I d = ( S , X , 6 )  E Dir(i)}. (2) LgND(%) = {Di(A) I 

Let D be the class of deterministic directfable automata. For A E D, D(A) 
denotes the set of all directing words of A. Then we can define the class, i.e. 
Lg = {D(A) 1 A =  ( S , X , b )  ED}. 

Then, by Propsition 1 and Proposition 6, all the above classes are subclasses 
of regular languages. Figure 1 depicts the inclusion relations among such 7 
classes. In [3], the inclusion relations among more classes are provided. 

We will consider the shortest directing words of nondet,erministic automata. 
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'CD(1) 'CD(2) 'CD(3) 

x - ' X  
'D - CND(2) = '&VD(3) 

Figure 1: Inclusion relations 

Let. i = 1 ,2 ,3  and let A = ( S ,  X, 6) be a nondet,erministic automaton. Then 
&(A) denotes the value min{lul I u E Dl(A)}. For any positive integer n 2 1, 
d i ( n )  denot,es t,he value max{d i (d )  1 A = ( S , X , 6 )  : A E Dir(i) and JSI = n}. 
Moreover, cdz(n.) denotes the value maz{di(A) I A = ( S , X , 6 )  : A E CDir(i) 
and IS1 = n}. Notice that in the definitions of d , ( n )  and cd,(n) ,  X ranges over 
all finit,e nonempty alphabets. 

In [l], Burkhard det,ermined the value cdl(n) as follows: 

Proposition 7 Let n 2 1. Then cdl (n)  = 2n - n, - 1. 

Proof First,, we show that cdl (n )  5 2n -n- 1. Let A = (S, X ,  b )  be a complete 
nondeterminist.ic automaton with IS1 = n and let, uf = a1a2 . . .a,-la E Dl(A) 

,-1,a E X and r = IwI = dl(A). Suppose that, r = Iuil > 
hat ,2n-n-2= [ { T c S I  IT1 >2}l. L e t T i = S ( a l a ~ . . . a i ) ~  

xist. i, j = 1,2, . . . , r - 1 such t.liat, i < j 
+1 . . . a,a E Dl(A). This contradict,s t,lie 

assumption t,liat r = dl(A). Hence cdl(n) 5 2n - n - 1. 
Now we show that, 2n - n, - 1 5 cdl(n). To prove 2n - n - 1 5 cdl(n,), it 

is enough to const,ruct a complet,e nondeterministic autorna.ton A = (S, X, b )  
such t,hat, IS1 = n and d l ( A )  = 2n - n - 1. Let S be a finite set, wit,li IS1 = n. 
Moreover, let. (Tl,T2,. . . ,TT} = {T c S I IT1 2 a } .  Furtheremore, we assume 
that \TI( 2 IT21 2 . . . >_ IT,[ and T, = ( ~ 1 , s ~ ) .  Not,ice that, T = 2n - n - 2. 
Now we const,ruct the following nondeterministic automaton A = (S, X, 6): (1) 
X = {a l ,a2 , .  . . ,a, ,z}.  (2) s a t  = 7'1 for any s E S.  (3) For any i = 1 ,2 , .  . . , r -  
l , saf i l  = Ti+1 if 's E Ti and = S, otherwise. (4) s p A  = s2zA = {sl} 
a.nd szA = S if .s # s1, s2. 

= S a f ( a 2 . .  . u , z ) ~  = Tl(a2. . . 

{sl}. Hence ala2" 'arz  E DI(A) and lala2...a,zl = r + 1 = 2n - n - 1. 
Suppose that t,here exists U J  E D1(A) wit,li dl(A) = IwI < 2n - n - 1. Let, 

Then A is complete and S(a la2 . .  
a , ~ ) ~  = T i a f ( a 3 . . . ~ , 2 ) ~  = T ~ ( u ~ . . . c L , z ) ~  = . . .  = T T z A  = { s l , s 2 } z A  = 
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w = aiw‘ where UJ’ E X *  and i = 2,3 , .  . . , T .  Since S 2 Ti-1, we have Sai, = 
S ,  S ( a i ~ i ’ ) ~  = SwtA and ISW’~I = 1. This implies that w’ E Dl(A). This 
contradicts the minimality of 1201. For the case that, w = zw’ where w’ E X * ,  
we have S(zui’)” = S Z * W ’ ~  = S W ’ ~  because S 2 {sl, sz}. Hence we encounter 
the same contradictaion. Assume w = uluz . . . a,w‘ for some i = 1 ,2 , .  . . , r and 
w‘ E X * .  Obviously, w’ E X +  and hence i 5 r - 1. Suppose w‘ = ajv where 
j # i + 1 and v E X * .  Let j < i + 1. Remark t,hat U I  = a1u2 . . . aj . . . aiajv. 
Notice that, S(alaz. .  . aj . . . a i , c ~ j ) ~  = Tj or S(ala2..  . aj . . . a i c ~ j ) ~  = S. In 
the former case, since S ( a l a z . . . ~ j ) ~  = Tj,  we have S(alaz...~jv)~ = SwA 
and a1a2 . . . a j v  E Dl(A) ,  which contradicts the Ininimality of 1 ~ 1 1 .  In the 
latter case, SwA = SvA and ISvAI = 1. Therefore, ‘u E D1(d) ,  which is a 
contradiction. Suppose j > i + 1. Since i < j - 1, Ti \ Tj-1 # 0. Therefore, 
S ( a l a z . . . a i ~ j ) ~  = Tiaf = S .  Consequently, SvA = SwA and v E D1(A), 
which contradicts t,he minimality of IwI. Now let w’ = zv where v E X * .  Since 
w = a laz . .  . U i z V ,  SwA = S(a laz . .  . = TizAvA, Not,ice that, Ti # T,. 
Hence T, \ {sl, sz} # 8. Therefore, SwA = S(alaz  . . . aizcl)A = TizAvA = SV* 
and v E Dl(A), which contradicts the minima1it.y of 1~11.  This means t.hat, there 
is no ‘u! E D1(A) with IwI < 2n - n - 1. Hence dl(A) = 2n - n, - 1. This 
cornplet,es the proof of’ t,he proposition. 

For dl(n,) ,  we have the following new result. 

n 

Proposition 8 Let 71. 2 2. Then 2n - n  5 dl (n)  5 c ( L ) ( 2 k  - 1). Notice that 

dl(1) = 0 and d l ( 2 )  = 3. 
k=Z 

n 

Proof Let, n 2 2. First,, we show taliat d l ( n )  5 x ( i ) ( 2 k - l ) .  Let, A = ( S ,  X ,  6 )  

be a D1-directjable autornat.on wit,h n strates and let, ui = alaz . . . a, E D1(A) 
such that ai X , i  = 1 ,2 , .  . . , r,  T 2 1 and IwI = r = dl(A). Since w E D l ( d ) ,  
t,here exists SO E S such that swA = { S O }  for any .s E S .  For any i = 1,2,  

k=2  

llows: (1) s, = S(a1az ’ ’ .  a y .  (2) T, = {t E s,  

. . . , T .  Since s(a,laZ . . .ai,ai+l 
have s ( a l a Z . . . ~ ~ ) ~ n T i  # 0. Let, S = SO =TO.  

, r  - 1). It, is obvious t,lia.t. Si, # 0 for 
any i = 0 ,1 , .  . . , r - 1. It is also obvious that, IS01 # 1. Suppose t,hat, ISjl = 1 for 

, r  - 1. Then Si = Ti = { t}  for some t E S.  By the definit,ion 
s that alaz . . . ai E Dl(A), which contradicts the minimality 

, n. Hence t,he set, { (Si, T,) I 
, T - 1) does not contain any ( {  s}, { s}) with so # s E S.  

Nowassuinet,liat (Si,T<) = (Sj,T’)forsomei,j  = 1,2, . . . ,  r-l , i  < j .  Then 
a, E D l ( d ) ,  which contradict,s the 

of’ 12111. Therefore, IS, I # 1 for any i = 1,2, 

it, can be seen t,hat. u1uz . . . ai,aj+laj+z 
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minirriality of IwJ. Hence all (S7, z), i = 0, 1 ,2 , .  . . , T -  1, are distinct. Therefore, 
n n 

We will show that, 2n - n 5 d l ( n ) .  It is obvious that dl(2) 2 2. Let. 
n 2 3.  We will const,ruct, a D1-directable automaton A = (S ,  X ,  6 )  such taliat, 
IS1 = n arid d l ( d )  = 2n - n. Let. S be a. finite set with IS1 = n and let 
{Tl,Tz,. . . ,T,} = {T c S I IT1 2 2}. Notice t,hat, r = 2n - n - 2. Moreover, 
we assume t)hat IT11 2 IT21 2 . . .  2 ITTI, {SO} = S \ TI and T, = {s1,s2}. 
Now we construct the following noiideterrninist,ic a.ut,omaton A = (S, X ,  6 ) :  (1) 
X = {a1,a2,. . . , a,, b}. (2) For any i = 1,2,  and 
s a t  = S, otherwise. ( 3 )  .slap = szup = {sl} arid sup = S if s E S\ {sl, s2}. 

(4) sobA = 0 and sbA = TI for any s E S \ { s o } .  

Let s E S and let, i = 1,2 , .  . . , T .  Notice t,liat, s(aibala2 . . . a , ) A  = { s i }  and 
hence uibu,la2 ; .  .a,  E DltA). Moreover, since sobd = 0, we have b X * n D l ( A )  = 
0. Let i , j  = 1 ,2 , .  . . , T .  Then S ( U ~ U ~ ) ~  = S. On the other hand, s(u,b)d = Tl 
for any s E S. This means that u E aibX* if u is a shortest D1-directing word 
of A. Let, i = 1 ,2 , .  . . , r  - 1. Then T,(~,aj)” = Ti+lat = S if j > i + 1 and 
T , ( ~ i , a j ) ~  = Ti+laf 2 T’+1 i f j  5 i .  Notice t,liat, in t,lie lat,t,er case j + 1 5 i + 1. 
This implies that. u is not, a shortest, D1-directing word of A if u E X*a7,a jX* 
where j # i+ 1. Moreover, since S b A  = Ti, u is not a. shortest, D1-direct.ing word 
of A if u E X X + b X * .  ConsequentJy, aibalaz . . . a, is a shortest, D1-direct,ing 
word of A, i.e. dl(A) = T + 2 = 2n - n. Hence we have 2” - n 5 dl(n.). 

Finally, we compute d l  ( 1) arid dl (2). It is obvious that. dl (1) = 0. Coiisider 
the following nondeterministic aut,omat,on A = ({1,2}, {u,, b, c},6): (1) laA = 
{l ,2}  and 2aA = {a}. (2) lbA = 0 and 2bA = {1,2}. ( 3 )  l cA  = {l} and 

Then ubc is a sliort,est D1-direct,ing word of A. Since dl (2) 5 2’ - 1 = 3, we 

, r - 1, s a t  = T,+1 if s E 

2cA = 0. 

ha.ve d l  (2) = 3. 

Now we consider the value &(TI.). Before dealing wit,h t,he va.lue d 3 ( n ) ,  we 

A Iioiidet,eriniriist,ic aut,omat.on A = (S, X ,  6 )  is said t,o be of partial function 
define a. nondet,erminist,ic a.utomat.on of part,ial function type. 

type if I saA I 5 1 for any s E S and any a E X .  Then we have: 

Remark 1 Let A be a nondeterministic aut,omat.on of partial function type. 
The11 D3(d) = D l ( d ) .  

Let A = ( S ,  X ,  6) be a Ds-directable automaton of partial function type. 
Consider the following procedure P: Let TL E D3(d).  Assume that u = 2 ~ 1 ~ 2 ~ 3  

where u1, u3 E X * ,  up E X +  arid SulA = S ( U ~ U ~ ) ~ .  Then procedure P can be 
applied as u j P  ‘ILl’LL3. 

Then we have t<he following result. 
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Lemma 1 In the above procedure, we have ~ 1 ~ 3  E D3(A). 

Proof Let A = (S, X, 6) be a nondeterministic automaton of part,ial function 
type. Moreover, let u = ulu2u3 where ~ 1 ~ ~ 3  E X*,ug E X+ and SulA = 
S(ulu2)d. Since u E D3(d), there exists so E S such that SU* = {so} for any 
s E S. From the assumptions that Suld = S(uluZ)A and d is a nondetermin- 
istic automaton of partial function type, it follows that suA = s ( u ~ u ~ u= 
s ( u ~ u ~ ) ~  = {SO} for any s E S. By Remark 1, this means that u1u3 E D3(d). 

Let A = ( S ,  X, 6) be a D3-directable aut,omaton of partial function type and 

Assume that v E D3(d),w = w 1 w 2 w 3 , ~ 1 , w 3  E X * , W Z  E X + ,  lSwlAl = 
S w l A .  Then procedure & ( s , t )  can be applied as w ae(. 1 )  

let a1a2.. .a, E D3(d) such that salA = talA for some s, t E S, s # t .  

IS(wlw2)Al and {s, t }  
v1a1a2..  .a,. 

Then we have the following results. 

Lemma 2 In the above procedure, we have 010102. .  . a, E D3(d) and lSwlAl > 
I S W l  alA I .  
Proof Let s E S. Since 21 = ~ 1 0 2 ~ 3  E D3(d),  we have ~ 1 1 1 ~  # 0, actu- 
ally (svlA( = 1. Notice that 3s, E S,Vt E S , t ( a l a ~ . . . a , ) ~  = { s T } .  There- 
fore, ~ ( v ~ a l a 2 . . . a , ) ~  = ( s ~ l ~ ) ( a l a 2 . . . a ~ ) ~  = { s T }  and hence wlala2...aT E 
D3(A). Since d is of partial function t,ype and { s , t }  C SqA, lSwlAl 2 
lSwlalAl + 1. This completes the proof of the lemma. 

Lemma 3 Let A = (S,X,6) be a Da-directable automaton such that IS[ = 
n and d3(d) = d3(n). Then there exists a nondeterministic automaton B = 
( S , Y , y )  of partial function type such that d3(B) = d3(n). 

Proof Let, u = ala2 . . .  a, E D3(d) with 1uI = &(-A). Since u E D3(d), there 
are s, E S and a sequence of part,ial functions of S into S, p1, p2, . . . , pT such t,ha.t 
s(alaz...a,)A 2 pi(pi-l( . . . (pl(s)) . . . ))  for any s E S and any i = 1,2,  . . . ,  r .  
F’urthermore, p,(p , - ~ ( . . . ( p l (  s)) . . . ) )  = { s T }  for any s E S. Now we define 
the automaton of partial funct,ion type B = ( S , Y , y )  as follows: (1) Y = {bi I 
i = 1 , 2 , .  . . ,r}. Remark that b l , b z , .  . . , b, are distinct symbols. (2) sbi = pi(s) 
for any s E S and any i = 1 , 2 , .  . . , r. 

Then I3 is a nondeterministic automaton of partial function type. Moreover, 
it is obvious that blb2 . . . bT E D3(B). Suppose that b,, bi, . . . bi, E D3(B) where 
i 1 , i 2 ,  . .  . ,zk: E {1,2, . .  . ,r}. Then we have a,,ai, . .  .ai, E D3(d). Therefore, 
k 2 r and r = d3(B). This completes the proof of t,he lemma. 

U 

We are now ready to determine an upper bound for d3(n). 
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n-1 n-2 

Proposition 9 For any n 2 3, &(n) 5 x (L) - x("L2) + n - 1 .  
k=2 k=O 

Proof By Lemma 3, there exists a nondeterministic. automaton of partial 
function type A = ( S , X , 6 )  such that IS( = n and &(n) = &(A). Let 
u = ala2 . . .a , .  E D3(A) with r = d3(n) and let Si = S(a la2 . . . a i , )A  for 
i = 1 , 2 , .  . . , r .  Since A is of partrtial function type and r = d3(n) = &(A),  

> Is11 2 IS21 2 . . .  2 IS,.-11 > IS,l = 1. Let S,. = {s,.}. By Lemma 1, 
S, S1, S z I . .  . and S,. are distinct. Moreover, since IS( > /SIIl there exist. 
SO, s1 E S such t.hat SO # s1 and s0ald = slald. Therefore, we can apply pro- 
cedure to  0102 . . .a,. if necessary and we can get 0102.. . a,. + Q ( , - i l . , . i )  

tilala2 . . .  a,. Now we apply procedure P to  wla la2 . . . a ,  as Inany t,imes a s  
possible until we cannot apply procedure P anymore. Hence we can obtain 
w E D3(A) with IwI 5 21sl-(SI. Then we apply procedure Q(,,,,,,) to w. We will 
continue the same process until we cannot apply eit,her procedure P nor Q,,,,,,,). 
Notice t,liat, this process will be terminated after a finite number of a.pplications 
of procedures P and Q ( S , l r S 1 ) .  Let w = clc2 . . . c , ,  ci E X, i = 1,2, . . . , s be 
the last D3-directing word of A which was obtained by the above process. Let 
Ti = S(clc2 . . . ci)d for any i = 1,2 , .  . . , s. Then T, # Tj for any a ,  j = 1,2, . . . , s 
with i < j and (Tl,T2,.  . . ,T , }  contains a.t, most n - 2  elements T , , i  = 1 , 2 , .  . . , s 

with Ti 2 {so, s l } .  Since I{T C S I { S O ,  s 1 }  C T}I = c (ni2) and by t,he a.bove 

observa.tion (including Lemma 2), we have &(n)  5 c(;) - x(ni2) + n  - 1. 

n-2 

k=O 
n-1 n-2 

k=2  k=O 

For the lower bound for d3(n), we have t.lie following new result,. 

Proposition 10 Le tn  2 3. ThendS(n) 2 2m+l ifn = 2m ( d 3 ( n )  2 3.21n-1+l 
i fn  = 2m + 1). 

Proof Let n 2 3 and let S = { 1,2 , .  . . , n}. Moreover, let S1 = {1,2} ,  let. 
S2 = {3,4}, .  . ., let. Sm-l = {2m - 3,2m - 2) and let S,, = (2m - 1,2m,} if 
n = 2m (STn = (2m. - 1,2m, 2m + 1)  if n = 2m+ 1) .  

We define t,he following D3-directlable nutmomaton A = ( S ,  X ,  6): 
(1) {Tl ,  T2, . . . 1 Tkl = {{nu 1 7 2 2 ,  . . . 1 n,,} I (721, n2r . . . 1 n1n) E s1 x s 2  x . . . x Sm} 
where k = Zrn if n = 2m ( k  = 3. 2m-1 if n = 2m,+ 1). (2) Tl = { 1 , 3 , 5 ,  . . . ,2m - 

(3}, . . . , (2m - 3)aA = (am - 2)ad = {am - 3) and (2m - l ) aA  = (2m)ad = 
{2m - I} if n = 2m ((2m - 1)ad = (2m)aA = (2m + 1)ad = {2m - I} if 
n = 2m + 1). (5) Let, i = 1,2 ,  . . . , k - 1. By pi,  we denote a. bijection of Ti onto 
Ti+1. Then t b , A  = p i ( t )  for any t E Ti and tb,' = 0, ot,herwise. (6) tcA = (1 )  
for any t E Tk and tcd = 0, otherwise. 

1). (3) X = {a ,  b l ,  b2 , .  . . , b k - 2 ,  b k - 1 ,  c}. (4) lad = 2ad = (1},3aA = 4uA = 
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Then it can be easily verified t,liat ablbz . . . b k - 1 ~  is a unique shortest D3- 
directing word of A. Therefore, &(n.) 2 2m + 1 if n = 2m (&(n) 2 3.27n-1 + 1 
if n = 2m + 1). 

Now we consider the values cdz(n) and &(n).  The lower bound IS due to [l] 
and the upper bound is followed by [6]. 

Proposition 11 For n 2 2, 2n - n - 1 5 cdz(n) 5 &(n) < 1 + (2. - 2)(’;) 
Remark that cdz(1) = dz(1) = 0. 

Finally, we provide a result on the value of c&(n). The result is due to [2] 
and [6]. 

Proposition 12 Let n 2 1. Then ( n  - 1)’ 5 c&(n) 5 1 + ( n  - 2)(;). 

4 Commutative Nondeterministic Directable Au- 
tomata 

In this section, we will deal wit,li commuta.tive nondet,erministic a.ut,ornata. and 
related languages alongside t-lie same line as t,hat of the previous sect,ion. 

A nondeterminist,ic automaton A = ( S ,  X ,  6) is said t,o be commutative if 
s(ab)’ = s(bu)’ holds for any s 6 S and any a, b E X .  

By LIE, L’&D(,) and Lc’iD(3), i ,  j = 1,2,3,  we denote the classes of regular 
languages of directling words of determinist,ic commutative a.ut,omata, of D,- 
directing words of complete commut,ative nondeterministic automata, and of 
D,-directing words of commuta.tive nondeterministic automata, respect,ively. 

Then we have t,he following inclusion relat,ions among t,liese classes (see Fig- 
ure 2). 

Figure 2: Commut,at,ive case 

Now we will consider tjhe shortest directing words of commutative nondet,er- 
ministic automata.. The resuks in t,liis section are due t.o [4]. 



82 

Let i = 1,2,3 and let, n 2 1. Then ~ d ~ , ~ ( ~ ) ( n , )  denot,es t,he value maz{di,(d) 

Not,ice t,liat in t,he definit,ions of dcom(i) (n)  and ~ d ~ , , ~ ( ~ ) ( n ) ,  X ranges over 
1 A = ( S , X , 6 )  is commut,ative, A E CDir(i) and IS1 = n}. 

all finit,e nonempty alphabets. 

Proposition 13 For any n 2 l ,dcom(l)(n) = cdcom(~)(n) = n - 1. 

Proposition 14 Let n 2 2. Then (n  - 1)’ + 1 5 ~d , , , , (~ ) (n )  = dcorn(z ) (n)  5 
2n - 2. For n = 1, cd,,,,(z) (1) = dcom(2) (1) = 0. 

Proposition 15 Let n 2 2. Then n2 - 3n + 3 5 cdcoln(3)(n) = dCom(3)(n) I 
1 + ( 7 ~  - 2)(:). For 12 = 1,Cdc0,n(3)(1) = d~0m(3)(1) = 0. 

As for more detailed informa.t.ion on determinist,ic and nondeterministic di- 
rect,able aut,omata, refer to [7]. 

Acknowledgement The author would like to t(1iank Dr. K .  Tsuji and Dr. Cs. 
Imreh for their valuable comments. 
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Abstract 

The quality of codes can be expressed in terms of their error- 
resistance and their redundancy. Solid codes are highly resistant to 
decoding errors resulting from incorrectly transmitted code words. We 
derive lower bounds on the redundancy of certain maximal solid codes. 

1 Introduction 
Solid codes, introduced in [5,6] for information transmission in the presence of 
certain types of synchronization errors, are remarkably error-resistant in the 
following sense: in a received message every correctly transmitted code word 
will be decoded correctly. In a received message there may, of course, be parts 
that have been disturbed beyond repair or parts that ,  due to  errors, happen to 
be code words, but not the ones originally sent; however, the decoding of those 

'This research was supported by the Natural Sciences and Engineering Council of 
Canada, through Grants OGPOO0243 and OGP220259. 
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parts that  have been transmitted correctly will not be affected by the errors 
in their vicinity when a solid code has been employed. Using this property 
as a definition, solid codes were re-introduced in [7] in the context of the 
study of disjunctive domains. First steps towards a systematic investigation 
of the error-detection capabilities of solid codes is presented in [3]. A survey 
of known results concerning solid codes, as of 1996, is available in [2]. 

When introducing error-handling capabilities like error-resistance, error- 
detection or error-correction, one pays a price in terms of transmission speed. 
For systematic block codes the speed is usually expressed as the ratio of the 
number of information bits over the code word length. For variable-length 
codes, one can express the transmission speed - or rather the transmission 
delay - in terms of the redundancy introduced by using the code. 

Depending on the context, redundancy has been defined in several quite 
different ways including the following. 

1. Given a probabilistic model for an information source, redundancy can 
be defined as the difference between the expected code word length and 
the entropy of the source. 

2. Without a probabilistic model for the source, redundancy can be ex- 
pressed as the difference between the maximal length of a code word 
in a given code and the optimal length of a code word given a fixed 
number of distinct signals. 

In this paper - as in [6] - we consider the latter approach. For lack of a better 
term, we call it worst-case redundancy. 

In [l] a structural characterization of all maximal solid codes contained 
in a+b+ u a+b+a+b+ is provided. With some effort it may be possible to ex- 
tend this characterization to maximal solid codes in (a+b+)+. The structural 
characterization permits us to  determine lower bounds on the worst-case re- 
dundancy of maximal solid codes in a+b+ U a+b+a+b+. 

An algorithmic characterization of all maximal finite solid codes is given 
in [4]. At this point we do not know how the algorithmic construction can 
be translated into the computation of the redundancy of the codes thus con- 
structed. 

Our paper is structured as follows: in Section 2 we briefly review the 
notions and notation used. Section 3 re-states the characterization, proved 
in [I], of the maximal solid codes in a+b+ u a+b+a+b+ in a fashion which is 
both more concise and more manageable. The crucial new notion is that  of 
pairs of near-inverses of integer functions. The maximal solid codes in a+b+U 
a+b+a+ b+ are uniquely determined by such pairs of functions. Consequently, 
in Section 4, we derive some properties of near-inverses; moreover, for deriving 
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bounds on the redundancy of solid codes we need continuous and strictly 
monotonically increasing pairs of such functions. In Section 5, we first show 
that the achievable redundancy of maximal solid codes in a+b+ U a+b+a+b+ 
is bounded from below by 6 - logn and exhibit an example that has 
this redundancy. We then provide a general technique for determining the 
redundancy of maximal solid codes in a+b+ u a+b+a+b+ from the pairs of 
near-inverse functions defining them. Section 6 contains a few concluding 
observations. 

2 Notions and Notation 
Let N, Iw and R+ denote the sets of positive integers, of real numbers and of 
positive real numbers, respectively. We write NO for M U  {0}, N, for N U  {m} 
and Iwz for R+ u {m}. Open and closed intervals of real numbers are written 
as usual; for example (2, 2’1 denotes the left-open, right-closed interval { r  I 
2 < 7- 5 el} .  

Consider functions f and g of R+ into R+. We say that 

f(.) 5 g ( 2 )  as 2 + 

if limsup,,, f(z)/g(x) 5 1; similarly, 

f(z) - g(x) as x --+ 00 

if limz-m f(x)/g(x) = 1. We write f 5 g to  denote the fact that f(z) 5 g(x) 
for all 2 E Iw+. The function f is said to  be sub-linear if 2 # O(f(2)); it is 
supra-linear if f(x) # O(2). 

An alphabet is a finite nonempty set. To avoid trivial cases, we assume 
that every alphabet has at least two elements, a and b .  Let X be an alphabet. 
Then X* is the set of words over X including the empty word E and X +  = 
X *  \ { E } .  The length of a word w E X *  is denoted by IwI and, for k E NO, 
X k  is the set of words of length k. A language over X is a subset of X * .  For 
a language L over X and for k E NO, let nL(k) be the number of words of 
length k in L and let N L ( ~ . )  = 

X +  be an infinite language over X .  An L-encoding is a bijec- 
tion K : NO + L such that,  for all n ,  IK(n)I 5 Ilc(n+ 1)l. The worst-case 
redundancy of K (or of L )  is the function 

k 
nL(i). 

Let L 

where the logarithm is taken with respect to base 1x1. In the sequel, by 
redundancy we mean worst-case redundancy. 
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The asymptotic behaviour of the redundancy is determined by the values 
of n at which I.(n)I changes and by the growth of I.(n)I at these steps. 

3 Maximal Solid Codes in a+b+ U a+b+a+b+ 
We review the characterization of all maximal solid codes in a+b+Ua+b+a+b+. 
The presentation of the characterization in this section is more concise than 
that of [l] and emphasizes the fact that these maximal solid codes are in 
a one-to-one correspondence with certain monotonically increasing partial 
functions of N into N. First, we set up some required notation and prove 
some auxiliary results. 

For m E N m ,  let I ,  = {i I i E N , i  < m}. Thus, 11 = 8. As usual, let 
00 + 1 = 00. Consider a monotonically increasing function' f : I ,  + W. 
When m = 1 then f is the empty function. Define limf as 

0, i f f  is empty, 

p ,  
limf = CO, i f f  is unbounded, 

if f is bounded by p E N and f(j) = p for some j E I ,  . { 
Definition 3.1 Let m,n E Nm and let f : I ,  + N and g : I, + N be 
monotonically increasing functions. Then f and g are said to be (m, n)-near- 
inverses of each other if the following conditions are satisfied: 

1. If n = co, then limg = m. 

2. If m = 00, then limf = n. 

3. For all i E I,, 

min{j I j E I,, f(j) > i}, if such a j exists, 
otherwise. 

4. For all j E I,, 

min{i I i E In,g( i )  > j } ,  if such an i exists, 
otherwise. 

Let Fi and Gj be the sets used in conditions (3) and (4) in Definition 3.1, 
that is, 

Fi = {j I j E Im,f(j) > i} and Gj = {i I i E I , ,g(i)  > j}. 
'The function f need not be strictly monotonically increasing. 
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The conditions (3) and (4) could, at a first glance, lead to g(i) = 00 or 
f(j) = co in some cases, which is, of course, not allowable. We verify that 
this cannot happen. Suppose m = co. Then lim f = n by ( 2 ) .  If also n = 00 

then the set Fi is non-empty for all i E I,. If n < 00 then f ( j o )  = n for some 
jo E Im and, hence, for i E I ,  one has f ( j 0 )  > i and this shows again that 
all sets Fa are non-empty. Thus, in both cases g is well-defined. Similarly, one 
proves that f is well-defined. 

Proposition 3.1 Let m, n E W m .  

1. l f  f is a monotonically increasing function, f : I,,, + W ,  bounded b y  n 
and such that lim f = n when m = 00, then there is a unique mono- 
tonically increasing function g : In + W such that f and g are (m,  n) -  
near-inverses of each other. 

2. If g is a monotonically increasing function, g : In + W ,  bounded b y  m 
and such that limg = m when n = 00, then there is a unique mono- 
tonically increasing function f : I ,  --+ N such that f and g are (m,  n ) -  
near-inverses of each other. 

3. If f and g are (m,n)-near-inverses of each other then g and f are 
(n ,  m)-near-inverses of each other. 

For m,n E Wm and a monotonically increasing function f : I ,  ---f W, 
bounded by n and such that limf = n when m = co, let gf,,,, be the 
function determined by Proposition 3.1( 1). 

We now state the characterization of all maximal solid codes in a+b+ U 
.afb+at b+ proved in [l] using our new more concise terminology. 

Theorem 3.1 ([l]) Let C a+b+ U a+b+a+b+. 

1. The language C is a finite maximal solid code i f  and only if there are 
m, n E N and a monotonically increasing function f : I ,  + I,+l such 
that 

C = {a"b"} U {af(j)bJaibgf,m,n(i) 1 j E I,, i E I,}. 

2. The language C is an infinite maximal solid code if and only i f  there 
are m,n E W-, at most one of which is finite, and a monotonically 
increasing function f : Im ---f In+l with lim f = n when m = co such 
dhat 

C = {af(j)bJaibgfsm,n(i) I j E I,,,, i E I,}. 
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Consider rn, n E N, and f : I ,  + N. We say that the condition S( f ,  m, n) 
is satisfied if and only i f f  is monotonically increasing, bounded by n,  and 
limf = n when m = 00. By Theorem 3.1, the maximal solid codes in 
a+b+Ua+b+a+b+ are in a one-to-one correspondence with the triples (f ,  m, n)  
satisfying S( f ,  m, n).  For any such triple, let Cf,,,,, be the corresponding 
maximal solid code. 

4 Properties of Near-Inverses 
We explore the connection between functions that are near-inverses of each 
other in greater detail. The results will help us to  compute bounds on the 
redundancy of solid codes. 

Near-inverses are, really, nearly inverse functions of each other. To make 
this connection explicit, we resort t o  the tools of real calculus and specifically 
to  continuous real functions. 

For m E N,, let I, be the open real interval (0, m). Then I, n W = I,. 
For any real function f : I,,, + R+, let f* : I ,  + W be the function defined 
by f*(j) = [f(j)l for j E 1,’ 

Lemma 4.1 For m E W U {co} let f : I ,  + R+ be a function. Then f*  
is unbounded if and only i f f  is unbounded on (0,m - 13. Moreover, f* is 
monotonically increasing when f is monotonically increasing. 

The following simple observation provides a key to the manipulation of 
near-inverses. 

Lemma 4.2 Consider m E W, and a monotonically increasing function 
f : I ,  + N. Then there is a continuous strictly monotonically increasing 
function f : I, + R+ with the following properties: 

I. p = f. 

2. For all  n E N one has f(j) < n for all  j E I ,  if and only if f(z) < n 

3. limf = limz+, f(z). 

Let m E W, and let f : I ,  + W be a monotonically increasing function. 
Any continuous strictly monotonically increasing real function f : 1, + R+ 
satisfying the conditions of Lemma 4.2, is a continuous- strictly monotonically 
increasing approximation of f .  The precise shape of f can be important for 
the details of some of the bounds to be derived below. However, for expressing 
properties of near-inverses any such approximation f^ will be sufficient. Hence, 

for all x E 1,. 
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without further mention we use f̂  to  denote an arbitrary continuous strictly 
monotonically increasing approximation of f. 

Using these tools we obtain continuous strictly monotonically increasing 
approximations even for arbitrary monotonically increasing functions of I,,, 
into R+ in the following sense. For 'p : 1, ---f R+ , consider f = 'p* . Then 
f *  = f = 'p*; hence we define @ = p*. 

Let m, n E Nm and let f be a continuous strictly monotonically increasing 
function of IIm into R', bounded by n, such that lim-,, f (x) = n when m = 
00. In this case we say that S( f ,  m, n)  is satisfied. We define gf ,m,n = gf*,,,n 
and Cj,m,n = Cj*,m,n.  

Proposition 4.1 Let m,n E W, and let f : 1, -+ IW+ be a continuous 
strictly monotonically increasing function such that n, m > 1 and S( f ,  m, n)  
is satisfied. Then 

h 

if  i < f(l) ,  

if i 2 1imz-+, f(z), 
Lf-'(i)], i f f ( l ) L i < l i m z + , f ( z ) ,  gf ,m,n( i )  = 

for all i E In .  

The case distinction in Proposition 4.1 is necessary as one cannot assume 
in general that  I ,  C f ( I I m )  as would be required for f - ' ( i )  to exist for all 
i E In. While stated in terms of real functions, Proposition 4.1 is intended 
to be used mainly for integer functions. For example, if f ( j )  = a j 2  for some 
a E N then f* = f and 

Similarly, if f(j) = 2 j  then 

The main advantage in considering real functions is that we obtain an explicit 
connection between near-inverses. Moreover, near inverses are nearly inverses 
of each other in the usual sense. 

Proposition 4.2 Let m,n E Nw and let f ,  h : I ,  + N be monotonically 
increasing functions such that S( f , rn, n) and S(h,  m, n) are satisfied. Iff 5 h 
then g f ,m,n  2 gh,m,,, and conversely. 
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Corollary 4.1 Let rn, n E Nm and let f , h : 1, + R+ be continuous strictly 
monotonically increasing functions such that S( f, m, n)  and S (h ,  m, n )  are 
satisfied. I f f  5 h then S j ,m ,n  L gh,m,n. 

Theorem 4.1 Let m, n E Nm an.d let f : I ,  --f N be a monotonically in- 
creasing function such that s( f ,  m, n)  is satisfied. Let g = g j , m , n .  Then either 
both f and g are bounded by  strictly monotonically increasing positive linear 
real functions from above and below or one of them is supra-linear and the 
other one is sub-linear. 

Theorem 4.1 reflects the fact that the functions f and g defining a maximal 
solid code in a+bf U a+bta+b+ are essentially inverses of each other. Hence, 
if f grows faster than any linear function, then g has to grow more slowly 
than any linear function and vice versa. This will imply further below that 
the maximal solid codes in a+ b+ U a+bt atb+ with smallest redundancy are 
those for which both f and g are linearly bounded from above and below. 

5 Redundancy of Maximal Solid Codes 
in a+b+ u a+b+a+b+ 

We now show that the redundancy of any maximal solid code in a+b+ U 
a+b+a+b+ is asymptotically bounded from below by 6 - log n. Moreover, 
this bound is tight. 

Theorem 5.1 Let f : N -+ N be an unbounded monotonically increasing 
function such that S(f,co,co) holds true, let C = Cf,m,m be the infinite 
maximal solid code in a+b+ U a+b+a+b+ defined by  f ,  and let K be a C-  
encoding. Then 

6 5  I4n)I 
as n -+ 00. 

The lower bound obtained in Theorem 5.1 is tight as shown by the fol- 
lowing example. 

Example 5.1 Let f and g be the functions of N into N defined by 

n 
f (n)  = 2 - 1 and g(n)  = 2 + 1 

for all n E N. Then f and g are (00, co)-near-inverses of each other. 
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Let K be a Cj,,,,-encoding. One computes that 

for all n E No. Hence K(n) - I/% as n -+ 00. 

The basic idea of the proof of Theorem 5.1 is as follows: one considers 
I ,  n E N such that 

N c ( l )  5 n < N c ( l +  1). 
Then IK(n)I = 1 + 1 and, hence, en(.) = 1 - Llogn]. Thus, one can deter- 
mine the redundancy by solving the inequality above for 1. This idea can be 
exploited to yield a more general lower bound, parameterized by f, on the 
redundancy of C. 

For a continuous function cp : IR ---f IR and a constant c E R, let [lcp] be 
the real function defined by 

[Iccp](2) = 2 - c + p ( t  - c + 1)dt LX 
whenever the integral exists. 

Theorem 5.2 Let f : N + N be a monotonically increasing function such 
that n = O( f (n)) and S( f ,  00, co) holds true, and let f be a continuous strictly 
monotonically increasing approximation o f f .  Let C = Cj,w,, = Cf,,,, and 
let K be a C-encoding. Then there is a constant c E IR+ such that 

a s n - c o .  

The bound in Theorem 5.2 is essentially tight in the following sense: the 
growth rate of f determines the growth rate of K .  For example, i f f  grows as 
nk then K grows as a( "'m); i f f  grows as 2n then K grows as a (n ) .  

6 Concluding Remarks 
Lower bounds on the growth rate of the redundancy of infinite maximal solid 
codes in a+b+ U a+b+a+b+ can be derived directly from the near-inverse 
functions f and g defining such codes. Our presentation is restricted to the 
case when both lim f = co and limg = co, but can be easily extended to  
the case of only one of the limits being infinite. We suspect that these lower 
bounds are nearly tight and hence would provide useful lower bounds on the 
achievable redundancy of arbitrary solid codes. 
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1 Introduction 
The free monoid, or the set of words on an alphabet, can be made into a poset 
(patially ordered set) by different kind of orders, one example in view is the 
lexicographic arrangement of words in a dictionary. One can also order the 
words by their length: the shorter words precede the longer ones in this order. 
The structure of an odered set is usually determined by its chains in the one 
hand and antichains in the other hand. Antichain - a notion from the Theory 
of Posets - is, as the term suggests, a subset in which no two distinct elements 
form a chain. In this article the antichains are called independent sets and we 
are concerned with independents sets in some specific orders on words. 

The systematic study of independent subsets in the binary relation was ini- 
tiated by Thierrin and Shyr probably in the mid 1970s [ll]. Relations in con- 
sideration are such that their independent sets are usually codes [lo], a subject 
which is treated thoroughly in [l], and it turns out that many fundamental 
classes of codes are that of independent subsets of certain simple binary rela- 
tions, for instance, prefix, sufix, bifix, infix codes, hypercodes, uniform codes 
and so on. 

In this paper we consider chiefly the classes of infix codes and hypercodes. 
By nature they both are the independent set in a class of very common orders 
compatible with the word length. Let us be precise as follows. Let A be a 
finite alphabet comprising a finite number of letters and A* be the set of words 
defined on A,  which is a free monoid on the basis A with the concatenation of 
words as product and the empty word, denoted 1, as the unit. For a set S and 
a word u of A* we denote by IS1 the number of elements, or the cardinality, of 
S and by 1.1 the length, or the number of letters, of u. By convention, 111 = 0 
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and by definition luvl = IuI + lvl for all words u ,v .  The word u is said to be a 
factor of v if v = zuy  for some words z, y of A*. In particular, u is a prefix of v 
if z = 1, s u f i x  if y = 1. 

For any abstract sets S,  T we use the notations S - T and S + T to denote 
their difference and union respectively; and for any subsets of words X ,  Y A* , 
we denote X Y  = {zy : z 6 X,y 6 Y } ;  X n  = X X  ... X (n  times) for a possitive 
integer n and X *  = 1 + X + X 2  + . . . the star closure of X .  For a singleton set 
{w} we use wn, w* instead of {w}* . 

We define the notion of subword; u is a subword of v if u is obtained from v 
by omitting some letters occurring in v ,  possibly none; formally, if 

and 
21 = U1u2 ... uk 

for a nonnegative integer k and some words V I  , v2, ..., vk, vk+1, ‘111 , u2, ..., uk in 
A*. 

For a binary relation on A*,  a subset of words is said to be independent if 
every pair of elements of it is incomparable by the relation. Clearly, we have 
a standard statement that, by Zorn’s lemma, every independent set is included 
in a maximal (by inclusion) independent one. We deal exclusively with orders 
on words in the sequel. Recall that order is an reflexive, antisymmetric and 
transitive binary relation. 

Obviously, the binary relations “being a factor of, a prefix of, a suffix of’ 
and “being a subword of ” all define partial orders on A*,  which we call corre- 
spondingly the factor, prefix, suffix and subword orders. 

Independent sets in the prefix and suffix orders are called prefix and suffix 
sets respectively; independent sets in the factor order is called infix codes and 
that in the subword order are usually called hypercodes ([ll]). The bifix relation 
is defined by means of disjunction of the prefix and suffix relations, independent 
sets in which are bifix codes. Otherwise speaking, a subset is a bifix code if 
none of its words is prefix or suffix of the others. While the prefix and suffix 
relations are orders, the bifix relation is not, since it is not transitive. 

It has been known that every finite infix code may be embedded into a 
maximal infix code which is finite (see [7]) and that every hypercode is always 
finite (see [6], or [lo] for a proof). The main scope of this paper is to describe 
a convenient method to construct all finite maximal infix codes as well as all 
maximal hypercodes containing a given infix and hypercode, but the exposition 
is done for independent sets of a more general class of orders, including the 
factor and subword orders, and certainly, the prefix and suffix orders as well. 
We highlight some definitions. 

A binary relation 4 on a subset L of A* is called length-compatible if it is 
length-monotonic, i.e. for all words u , v  E L ,  u 4 v implies u = v or IuI < lvl 
and, moreover, for every integer i : Ju]  < i < 1.1 there exists a word w of 
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L such that u 4 w 4 v and Iwl = i. It is at  once clear that the prefix, 
suffix, factor and subword orders, defined on L = A*,  are all length-compatible. 
Length-monotonic relation is considered in Van [13] where he has shown how to 
complete every finite independent set in such relations to a finite maximal one. 
I would like to thank Do Long Van for drawing the approach taken upon here 
to my attention. 

The presentation is as folows. In the Section 2 below, we describe a procedure 
to obtain all the finite independent sets containing a given one in a length- 
compatible order. In particular this allows to obtain all finite independent sets 
of A*.  In $3  and $4 we apply the procedure to the concrete cases of infix code 
and hypercode. 

The main idea of the construction originates from [8] but the argumentation 
is purified and more concentrated that now makes the exposition transparent 
and more unified in style. 

We should say that the techniques in this papers could not be applied to  bifix 
codes, but there is no need to do so since there has been already a remarkable 
work of C6sari [a] giving an algorithm to determine all finite maximal bifix 
codes. 

2 Maximal independent sets in lengt h-compati- 
ble order 

Let 4 be a length-compatible order on a subset L of A* and u ,v  be words of 
L.  We say that u is a predecessor of v,  or v is a successor of u, if u # v and 
u 4 v ;  u is a predecessor (successor) of a subset X of A* if u is a predecessor 
(successor) of a word in X .  We denote the set of predecessors (successors) of X 
by Pred(X) (Suc(X) resp.). We also use Pred(X,Y) and Suc(X,Y) to denote 
the collection of predecessors and successors of X in Y respectively. 

A subset Y of L is said to be a base of L if Y contains no distinct comparable 
words and every word of L is either in Y or is a successor or predecessor of Y. 
Otherwise speaking, a base is a maximal independent set of L with respect to 4. 
A base is called initial if it has no prodecessors, and final if it has no successors. 

It is obvious that every subset L posseses a unique initial base which is 

y o  = {u E L : Pred(u) = @}, 

the collection of elements in L without predecessors. We pay special attention 
to those L having finite bases. For this purpose, it is enough to check Yo for 
finiteness. 

Proposition 2.1 A set possesses finite bases if and only if its initial base is 
finite. 
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Proof The “if” direction is vacuously true. Let now L have a finite base Y .  
Every word of YO is either in Y or in Pred (Y) as YO has no successors in L and 
Y is a base. Thus every word of Yo has length not greater than the maximum 
length of words of Y, hence YO is finite as the base Y and the alphabet A both 
are finite. 

Our ultimate goal in this section is to determine all finite maximal indepen- 
dent sets containing a given one, but as the first step we consider the question to 
a larger extent: describe an efficient method to obtain all finite bases (if exist) 
of an arbitary subset L from the initial base of it provided, indeed, the premises 
involved are given constructibly. 

For a base Y of L ,  we call a subset W of Y coherent if all words of W are 
of the same length n and there is a word u of length n + 1 of L such that the 
set of predecessors in Y of u is W and no non-empty proper subset of W has 
this property, or equivalently, 0 # Pred(u, Y) C W implies Pred(u, Y) = W for 
every word u of length n + 1. Otherwise speaking, a non-empty subset W of Y 
is coherent if it is a minimal set with respect to the folowing : (i) all words of 
W have the same length n,  and (ii) W has the form Pred(u,Y) for a word u of 
length n + 1. Certainly, not every base has coherent subsets but also not every 
base has no coherent subsets. To wit 

Proposition 2.2 A base has coherent subsets if and only if it is not final. 

Proof The direct implication is trivial. For the converse, we make an obser- 
vation that if Y is a base, not final, of L then there exist u E L and y E Y 
such that y 4 u which in turn implies that there exist v E L such that y < v 
and lvl = IyI + 1 by length-compatibility of 4. Let n be the smallest integer 
such that none of the words of L has predecessors in Y of length less than n 
but some do have predecessors of length n in Y. Actually, this integer exists 
by the observation above, hence the set of words of length n + 1 having all 
predecessors in Y of length n is not empty. We choose among such words one 
with the minimal (by inclusion) set of predecessors in Y. It is easy to chek that 
these predecessors form a coherent subset of Y. 

For a coherent subset W (of word-length n)  of Y,  denote D(W, Y),  or shortly 
D ( W )  when there is no need of explicit reference to Y, the set of words of L of 
length n + 1 all of whose predecessors in Y are precisely the words of W :  

D(W,Y) = {u E L : Pred(u, Y) = W, 1’111 = n + 1). 

We define now the following transformation of Y: 

F(Y, W )  = Y - W + D(W,Y) 

that will be the operation we need to produce a new base from a given one. 
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Proposition 2.3 If Y is a (finite) base then F(Y)  is also a (finite resp.) base. 

Proof It is immediate to see that F preserves finiteness. We show that F 
preserves independence and maximality as well. 

Independence: Two arbitrary distinct words of D( W )  are not comparable by 
4 as they are of equal length. The same is true for Y - W as Y is independent. 
Every word of D ( W )  has only predecessors in W and no successors in Y as 
it has predecessors in Y (in W ,  to be exact) already, which means that every 
word of D ( W )  is not comparable to any word in Y - W .  This shows that 
F(Y, W )  = Y - W + D ( W )  is independent. 

Maxcimalityr Suppose that u E L and u 6 F(Y) (sometimes we omit the 
reference to W in F(Y, W )  for brevity). We show that u has either predecessors 
or successors in F(Y).  If u E Y then u 6 W as u E Y - W c F(Y)  which 
shows that u is a predecessor of D ( W ) ,  or just the same, u has successors in 
D ( W )  c F(Y) .  If u 4 Y we have two cases: 

(i) u has predecessors in Y .  If u, moreover, has predecessors in Y - W & 
F(Y)  then this alternative is done. If, otherwise, every predecessor of u in Y is 
in W then IuI > n + 1, therefore u has a predecessor uo with luol = n + 1 such 
that all predecessors of uo in Y are in W ,  hence Pred(uo, Y )  = W by coherency 
of W that means uo E D ( W )  that is u has a predecessor in D ( W )  2 F(Y).  

(ii) u has successors in Y. Then u has successors in Y - W or else in W ,  
therefore, in D ( W ) .  In either case u has successors in F(Y).  This completes 
the proof. 

We now define another operation, reverse to F which is instrumental in 
proving that multiple use of F can engender all finite bases, but some notions 
first. 

A predecessor of Y is said to be direct if it has no successors among the 
predecessors of Y or in other words, it is not a predecessor of any predecessors 
of Y .  We call a system S of direct predecessors of Y cohesive if the words of 
S are of the same length n and the set of successors in Y of each of them is 
the same (which is actually Suc(S, Y ) )  and, moreover, for any predecessor u of 
Suc(S, Y )  if = n and u 6 S then Suc(u, Y )  - Suc(S, Y) # 0. The following 
reformulation is more intuitive. A system S of direct predecessors is cohesive 
if and only if (i) it consists of the words having the same set of successors in 
Y ,  and (ii) Suc(S,Y) is minimal among the subsets of Y which are the the 
set of successors of a set satisfying the preceding condition. The equivalence 
of this definition to the former one is essentially shown in the converse of the 
proposition below. Note that every word of Suc(S, Y )  has length n + 1. 

Does every base possess a cohesive system of direct predecessors? The answer 
is just the opposite extreme to the case of coherent subsets. 
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Proposition 2.4 A finite base has no cohesive system of predecessors if and 
only if the set of its predecessors is empty, that is, i f  and only if it is the initial 
base. 

Proof The initial base has no predecessors by definition hence has no whatever 
ones. 

For the converse, let Y be a finite base with (finite) non-empty collection of 
predecessors and once finite it admits at least one direct predecessor. Consider a 
direct predecessor s1 with the property that Suc(s1, Y) is minimal by inclusion 
among its counterpart Suc(s, Y) when s run through the direct predecessors of 
Y. Denote S the set consisting of those predecessors s satifying Is1 = Is11 and 
Suc(s, Y) C Suc(s1, Y). Certainly, S is not empty because it contains s1. We 
show that S is cohesive. 

In fact, for every s E S the inclusion Suc(s, Y) E Suc(sl, Y) implies that the 
predecessor s is direct. Moreover the minimality of Suc(s1, Y) forces the equality 
Suc(s,Y) = Suc(sl ,Y).  For a predecessor s2 of Suc(s1,Y) with Is21 = Is11 the 
fact that s2 4 S means by definition that Suc(s2, Y) is not a subset of Suc(s1, Y ) ,  
or equivalently, Suc(s2,Y) - Suc(sl ,Y) # 0. The cohesivity of S is proved. 

Now we are ready to define the anticipated inverse of F :  Let Y be a base of 
L and S a cohesive system of direct predecessors of Y. We define the transfor- 
mation B as 

B(Y, S )  = Y - Suc(S, Y) + s. 
Of course we expect that B has the same property as F that is the content of 
the following 

Proposition 2.5 The transformation B preserves finiteness, independence and 
maximality of the base Y. 

Proof If Y is finite then B(Y, S )  (onward we use B(Y) for short, when possible) 
is obviously finite, since S is finite. For the independence of B(Y) ,  we observe 
first that every pair of elements of S are not comparable since they are of the 
same length. Second, every pair of different words of Y - Suc(S,Y) are not 
comparable either as they are in the independent Y. Finally, every word of S 
has no predecessors in Y - Suc(S, Y )  since it is a predecessor of Suc(S, Y) Y 
and the order is transitive; further it has no successors in Y - Suc(S, Y) either 
since they all are already in Suc(S, Y) by definition. 

Now we prove the maximality of B(Y).  Consider an arbitrary word u not 
belonging to B(Y). If u E Y then u E Suc(S,Y) then u has successor in 
S B(Y).  Alternatively, suppose that u has a successors v in Y.  The case 
v E Suc(S,Y) ensures that v, hence u, has successor in S ;  the other case v E 
Y - Suc(S, Y) shows that v itself belong to B(Y). 

Further, suppose that u has a predecessor w in Y.  If w E Y - Suc(S, Y) then 
w E B(Y);  if w E Suc(S,Y) then w in turn has successors in S ,  that is, again 
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in B(Y). Thus, in all instances we have shown that u has either successors or 
predecessors in B(Y): B(Y) is a base. 

The following assertion shows that B is a right inverse of F .  As a matter of 
fact, we could prove that B is really an inverse to F (both left and right) but 
we do not need that much in the sequel. 

Proposition 2.6 Let Y be a base with S a cohesive system of its direct prede- 
cessors. Then S i s  a coherent subset o f B ( Y ,  S )  with D ( S ,  B(Y,  S ) )  = Suc(S, Y) 
and Y = F(B(Y, S ) ,  S ) .  

Proof Put Y’ = B(Y, S )  = Y - Suc(S,Y) + S.  Of course S C Y’; we shall 
show it to be a coherent subset of Y’. By definition, all words of S have the 
same length n; we first show that there exists a word of length n + 1 the set of 
predecessors of which in Y’ is precisely S.  Take an arbitrary word u of Suc(S, Y) 
(certainly )u) = n + 1). It  follows that S E Pred(u) as S is a cohesive system 
for Y and u E Y, hence S C Pred(u,Y’) as S C Y’. Next, if v E Pred(u,Y’) 
then v 4 Y as u E Y, hence E Y‘ - Y C S .  That is Pred(u, Y‘) C - S and the 
equality Pred(u, Y’) = S follows for every u E Suc(S, Y).  

Further, we assume that 0 # Pred(u,Y’) C S for a word u of length n + 1. 
If u admits a predecessor v in Y, we have Iv/ < Iul = n + 1,  or lvl 5 n,  which 
implies that v cannot be a successor of S ,  so v E Y - Suc(S,Y) Y’. Hence 
v E Pred(u,Y’) C S that contradicts the fact that IJ E Y and the words of S 
are predecessors of Y. Consequently, u has no successors in Y. But u has no 
sucessors in Y either since u has a predeccessor in S and this predeccessor is a 
direct one of Y. As Y is a base, it remains for u to be in Y, hence u E Suc(S, Y).  
Now that u is a successor in Y of some word of S ,  and S is a cohesive system 
for Y then u is a successor in Y of all words of S ,  or equivalently, every word 
of S is predecessor of u in Y’, that is S Pred(u,Y‘). Combining with the 
assumption we get Pred(u, Y’) = S .  

Stated briefly, we have proved that if 1211 = n + 1 and Pred(u,Y’) # 0 then 
Pred(u, Y’) C S if and only if Pred(u, Y’) = S if and only if u E Suc(S, Y). This 
shows that S is a coherent subset of Y’ and, moreover, D(S,Y‘) = Suc(S,Y). 
Eventually we have 

F ( B ( Y ,  S ) ,  S )  = F(Y’ ,  S )  = Y’ + D ( s ,  y’) 

= Y - Suc(S, Y) + s - s + D ( S ,  Y’) = y. 

as was to be proved. Note that in this proof we do not require the cohesivity at  
its full strength. 

Now we describe a method to obtain all finite bases of L. We apply the 
transformation F to Yo, with an appropriate coherent subset to obtain a new 
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base Y1, then again to Y1 we apply F whenever possible to get Yz, etc. That is 
we apply successively F to YO with properly choosen coherent subsets of bases 
in process, in all possible ways, to obtain new and new bases. We state that in 
this manner we can obtain every finite base of L .  

Theorem 2.7 For every finite base Y of L there exists a sequence of finite bases 
Yo,Yl, ..., Yn with their corresponding coherent subsets So,S1, ..., S,, beginning 
with the initial base YO and satisfying Y1 = F(Yo,So), ..., Y = F(Yn, Sn). 

Proof Since Y is finite, the number of predeccessors of Y is also finite; the 
proof is proceeded by induction on the cardinality of Pred(Y). If Pred(Y) = 0 
then Y is the initial base and the sequence we needed is empty. Let Y be a base 
and assume that the theorem is valid for all bases with fewer than IPred(Y)I 
predecessors. By Proposition 2.4, we dispose at  least one cohesive system of 
direct predecessors of Y,  say S. Then 

Y’ = B(Y, S )  = Y - Suc(S, Y) + s 
is a finite base with Pred(Y’) = Pred(Y) - S. Consequently, the cardinality 
of Pred(Y’) being less than Pred(Y), the induction hypothesis applied to Y’ 
yields a sequense of bases YO, Yl, ..., Yn-l and the corresponding coherent subsets 
So, S1, ... , Sn-l satifying 

Y1 = F(Y0, So), ..., Y’ = F(Yn-1,Sn-l). 

In virtue of Proposition 2.6, Y = F(Y’,S).  Putting Yn = Y’ and S,, = S ,  we 
get the sequence 

Y1 = F(Yo,So), ...,Yn-1 = F(Yn-l,Sn-l),Y = F(Yn,Sn) 

with the corresponding sequence of coherent subsets SO, ..., Sn-l, Sn as desired 
to prove. 

It is noteworthy that the backward sequence need not be unique, thus a base 
can be obtained several times by the procedure. 

Let now < be a length-compatible order defined on the whole A*.  We now 
return to the task set up at  the onset of this section: determine all the finite 
maximal independent sets containing an independent set X that turns out now 
to be a simplified question. Set 

L ( X )  = A* - Pred(X) - X - Suc(X) 

as the set of the words not comparable with any word in X .  We say that a 
set Y is a complement to X if Y is disjoint from X and X + Y is a maximal 
independent set of A*. In this case we say also that X + Y  is a completion of X .  
For a maximal independent set 2 containing X ,  clearly 2 - X is a complement 
to X ;  our problem is equivalent to determining all complements to  X .  
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It is now important that the order on L ( X )  inherited from the order 4 on 
A* is also length-compatible. To see that it suffices to verify that for all words 
u , v , w  of A* the relation u 4 w < II implies w E L ( X )  whenever u , v  E L ( X ) .  
In fact, if this is not the case, w @ L ( X )  means that w is either in X or is 
a successor or predecessor of X ,  hence either v is a successor of X or u is a 
predecessor of X ,  that is, either u or v is not in L ( X ) :  a contradiction. 

The following assertion shows that complements are nothing else but bases. 

Proposition 2.7 Y is a complement to X if and only i f  it is a base of L ( X ) .  

Proof L ( X ) .  Since 
X + Y is a maximal independent set, every word of L ( X )  must be in X + Y or 
Pred(X + Y )  or Suc(X + Y) but it is forbidden to be in Pred(X) + X + Suc(X) 
so it must be in Pred(Y) + Y + Suc(Y). This means that Y is a base of L ( X ) ,  
as Y is independent. Conversely, let Y be a base of L ( X ) .  Then, first, X + Y is 
independent, Y is disjoint from X and, for an arbitrary word of A*,  if u E L ( X )  
then u E Pred(Y)+Y +Suc(Y), as Y is a base; if u @ L ( X )  then u E Pred(X)+ 
X + Suc(X). In either case u E Pred(X + Y) + ( X  + Y) + Suc(X + Y )  showing 
that X + Y is maximal independent. 

I t  is trivial to see that if Y is a complement to X then Y 

Now let X futher be finite. Determination of the finite complements to X is 
just then the determination of all finite bases of L ( X ) .  Of course, we cannot be 
certain that L ( X )  always possesses finite bases, however, when the underlying 
order satisfies a mild condition, L ( X )  does so. 

Proposition 2.8 If the length-compatible order 4 is such that every non-empty 
word is a successor of the empty word then L ( X )  possesses finite bases for  every 
finite independent set X .  

Proof It suffices to show that the initial base YO is finite. To do this we just 
bound above the length of words of Yo. 

Let u E YO and u # 1. Since 1 4 u, there exists a word v E A* such that 
v 4 u and lvl = IuI - 1. By definition, u has no predecessors in L ( X ) ,  hence 
v @ L ( X ) ,  that is v E Pred(X) + X + Suc(X), but v @ X + Suc(X) otherwise 
u E Suc(v) Suc(X) in spite of u E L ( X ) .  Consequently v E Pred(X) and lvl 
is less than the maximal length of the words of X, which is finite as X is finite, 
and IuI is less than that maximal value plus 1. The proposition is proved. 

Our general consideration is finished, we go on to concrete examples in the 
two following sections. Although the prefix, suffix, factor and subword orders 
are all among the length-compatible ones, we treat only the cases of factor and 
subword order in detail, as the construction prefix and suffix codes are simple 
(by trees) and have been treated comprehensively elsewhere (cf. [l], [lo]). 
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3 Factor order. Infix codes 
We make a transcript of all done in the previous section for the factor order. 
Now a word is a predecessor of another if the first is a factor of the latter. 

Independent sets in the factor order are called infix sets or infix codes. Infix 
sets happen to be finite or infinite. 

Example 3.1 Consider a binary alphabet A = { a ,  b} .  The following sets are 
maximal infix sets: 
(a) {aa ,  aba,  bab, bb}; 
(b) a2b2 + b2a2 + {ba'b : i = 1 , 2 ,  ...} + {abia : i = 1 , 2 ,  ...}; 
(c) ba2 + bab + {a'b'a : i = 1 , 2 ,  ...}. 

Certainly the factor order is length-compatible and, moreover, it satisfies 
Proposition 2.8 as the empty word is a factor of every word, thus L ( X )  has 
finite bases for all finite infix sets X .  In particular, this shows that every finite 
infix code has a finite completion that has been established in [7]. 

Let X be an infix set. It is straightforward to see that 

L ( X )  = A* - A*XA* - F ( X )  

where F ( X )  denotes the set of factors of X ,  and the initial infix base of L ( X )  
is 10 = L ( X )  - A*L(X)A+ - A+L(X)A*. 

We now clarify what sets can be coherent subsets or cohesive systems for an 
infix bases I .  Note that a word of length n+ 1 has at most two factors of length 
n which are the longest prefix and suffix of its, consequently, every coherent 
subset has one or two words. 

If a coherent subset W of I is a singleton, W = {u}, then clearly the set of 
words of length IuI + 1 having just u as factors in I is 

D(u ,  I )  = L ( X )  n ( ( ( u A  - A*(I - u)) + (Au - ( I  - u)A*)) .  

If W has two elements, W = {u, w}, then the corresponding D(W, I )  is 

D({u ,  w}, I )  = L ( X )  n ( (uA  n Av) + (Au n v A ) )  

and, of cousre, with D(u ,  I )  = 0 and D ( v ,  I )  = 0 saying that {u} and {w} both 
are not coherent. Observe also that in this case D(W,  I )  has two words at the 
most because uA n Av is either empty or singleton. Summing up, we have 

Proposition 3.2 A subset W of the infix base I is coherent if and only if 
W = {u} with non-emptyD(u, I )  = L(X)n(((uA--*(I-u))+(Au-(I--)A*)) 
or W = {u ,  v} with non-empty D({u ,  w}, I )  = L ( X )  n ( (uA n Av) + (Au f l  vA))  
but empty D ( u ,  I )  and D(w, I ) .  
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Example 3.3 Let A = { a ,  b } , X  = { a 2 , b 2 } .  Then L ( X )  = { a b , b a }  + { ( ~ b ) ~  : 
i > 0) + {b(ab)i  : i > 0) + {a(ba) i  : i > 0) + { ( b a ) i  : i > 0). The intial infix base 
L ( X )  is I0 = {ab ,ba} .  Calculation shows that D ( { a b } , I o )  and D({ba},Io)  are 
both empty, so l o  has no coherent singleton. We conlude at  once that W = I0 
must be coherent, but we calculate however: D(l0,Io)  = L ( X )  n ( ( a b A n A b a )  + 
( A a b  n b a A ) )  = (aba + bab) n L ( X )  = aba + bab. 

Next, we investigate under which conditions a finite infix base is final. Re- 
mind that a finite infix base is final if and only if every word of L ( X )  is a factor 
of the base. It follows that L ( X )  is then finite too. The sets X with L ( X )  finite 
are nothing but unavoidable sets, a subject in Combinatorics on Words inves- 
tigated in detail in [3] or in a recent paper [9]. A subset of A* is unavoidable 
if all but finitely many words of A* have a factor in it. Of course not every 
unavoidable set is infix but the minimal  unavoidable set (i.e. one if deprived of 
any one element is no more unavoidable) is infix. 

The following assertion is true not only for the factor order but also for all 
length-compatible orders. 

Proposition 3.4 L ( X )  has f ini te  f inal bases i f  and only  i f  L ( X )  is f ini te .  

Proof The “only if” part is proved above. Let L ( X )  be finite then starting 
from 10 we cannot apply the transformation infinitely, that is, at  some step, the 
base in consideration has no coherent subsets. This base is final. 

Example 3.5 Let A = { a ,  b} and X = {aa ,  bb, bab}. Then L ( X )  = { a b a }  and 
trivially L ( X )  has a unique infix base 10 = { a b a }  which is initial and final at  
the same time and which indicates also that the only finite maximal infix code 
containing {aa ,  bab, bb} is { a a ,  bab, bb; aba}.  

The Proposition 3.4 says also that when X is unavoidable there are only 
finitely many infix bases in L ( X ) ,  or equivalently, there are only finitely many 
infix codes containing X and vice versa. We further give an example illustrating 
the execution of the procedure. 

Example 3.6 Consider the set in the Example 3.3, X = { a 2 ,  b2}.  We have 
shown that the initial base of L ( X )  is 10 = { a b , b a }  and the whole 10 is a 
(unique) coherent subset with D(I0,Io)  = {aba,bab}.  Thus I1 = F ( l 0 , l o )  = 
l o  - 10 + D(I0,Io)  = {aba,  bab} is an infix base of L ( X )  and { a 2 ,  b2,  aba,  bab} 
only is a maximal infix code containing { a 2 ,  b2}.  

Concluding we should say that the important case X = 0 with L ( X )  = A’, 
when we have to determine all finite maximal infix codes of A* has been treated 
in detail in [8]. 
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4 Subword order. Hypercodes 
Recall that u is a subword of v if 

u = u1u2 ... u,v = 211.U1 ... vnunvn+l 

for some (possibly empty) words u1, u2, ..., un ,  q ,  v2, ... v,, v,+1 on A. It is also 
evident that  the relation “u is a subword of d’ is a length-compatible order. 
Hypercode is a set independent in this order. It is interesting to mention that 
while infix bases may be finite or infinite the hypercodes are definitely finite 
that  is a theorem of Higman [6], one can see also [lo] for a proof. 

To define formally the set of words having subwords in a given set we 
can use the notion of shuf le  product [5] .  Let X and Y be sets of words, 
we denote by X o Y the set of words of the form ~ 1 ~ 1 2 2 ~ 2  ... z,y,z,+l with 
n 2 0 and 2 1 2 2  ... 2,2,+1 E X I  y1y2 ...yn E Y for (possible empty) words 
21, 2 2 ,  .,.x,, 2,+1, y1, y2, ...yn of A*.  Now it is easy to see that the set of words 
having subwords in X is X o A*. Let now X be a hypercode then L ( X )  = 
A* - X o A* - S(W) ,  where S ( W )  stands for the set of subwords of W and 
the initial subword base of L ( X )  is YO = L ( X )  - L ( X )  o A*.  For a coherent 
subset S of a base Y we have clearly D(S ,  Y) = L ( X )  nsES s o A. We consider 
an example to show the execution of procedure. 

Example 4.1 Let X = {a2 ,aba}  on the alphabet {a ,b} .  Then L ( X )  = {bi : 
i > 1) + {biabj : i + j > 1) and Yo = { b 2 ,  bab}. The set SO = { b 2 }  is coherent 
for YO and D(S0, YO) = { b 3 ,  b2a, ab2}. We get then a new base: 

Yl = F(Y0, So) = { b 2 ,  bab} - { b 2 }  + { b 3 ,  b2a, ab2} = bab + b3 + b2a + ab2 

of L ( X ) .  Note that {bab} is not a coherent set of YO since all words of length 4 
of L ( X )  have equally b2 as a subword. 

We now state some specific properties of the subword order. 

Proposition 4.2 If a coherent subset S has at least three words, the correspond- 
ing set D ( S )  has at most one word. 

The Proposition is an immediate consequence of the following lemma. 

Lemma 4.3 
of length n in common. 

Proof Suppose on the contrary that two words w1 and w2 of length n + 1 
have three common subwords. We can assume further that 202 has two dictinct 
subwords u1v1 and u2v2 for which 

Two distinct words of length n + 1 have at  most two subwords 

~2 = u1cv1, 202 = ~ 2 d ~ 2  (1) 
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with c ,  d E A ,  u1, v1,u2,v2 E A* and 

w1 = ~ 1 V 1 1 ~ V 1 2 ,  w1 = u2v21bv22 (2) 

with a,b E A , ~ l ~ , v ~ ~ , u 1 2 , ~ 2 , ~ ~ 1 , u 2 2  E A* and v1 = ~ 1 1 ~ 1 2 ,  212 = ~ 2 1 ~ 2 2 .  

that  l u ~ l  < 1u11, hence u1 = u2t for t # 1. Then (1) and (2) give 
Note that lull # lu211 otherwise the two subwords are equal. Let suppose 

tcvl = dv2 = d ~ 2 1 ~ 2 2  (3) 

The last equality implies that t or 2121 is a prefix of the other. If t is a prefix 
of 2121 then by (3) we get tc  = dt, consequently we get c = d and t = dk = ck 
for k > 0. It follows that w2 = ulcvl = u ~ t d v l  = u2dk+'v1 = uzdtv1 = u ~ d v z  
and then 212 = t v l  which yields, together with u1 = uzt, that ulvl  = '112212: a 
contradiction! If, otherwise, v21 is a proper prefix o f t ,  again from (3) we get 
that  v21 is a prefix of dv21. Consequently, 2121 = dk, k 2 0, hence dk+' is prefix 
o f t .  But by (4) dkb is also a prefix o f t ,  which forces d = b. Now this implies 

w2: again contradiction. The proof is complete. 
~1 = ~ 2 ~ 2 1 b v 2 2  = u2dkbv22 1 u2dk+lv22 = uzdd k 2122 1 ~2dv21~22 = ~ 2 d v 2  = 

Unlike infix bases, we cannot say that all coherent subsets of subwords bases 
are one- or two-element sets. The following argument help constructing large 
coherent subsets. 

We say that a word w has complexity k provided k is the smallest integer 
satisfying w E a; . . . u i  for letters a l l  ..., a k  E A.  It is straightforward to verify 
that if w has complexity k then the subwords of length IwI - 1 of w are exactly k 
in number and, besides, they all have complexity at least k - 2. It is also evident 
that a word containing words of complexity k as subwords have complexity at 
least k. Let now w be a word with high complexity k (k is large) and of length 
n + 1. Let denote the sets of subwords of length n - 1 and of length n of w by 
U and S ,  recpectively. When w is "complex" the cardinality of S is certainly 
large. It is not complicated to verify that for a subword u of length n - 1 of 
w there always exist a word of length n having u as subword and not being 
subword of w; we spare one of such words, denoted s(u),  by each u E U .  Now 
let 2 be any subset of S comprising sufficiently many words and X the set of 
the remaining words of length n of A*. Note that s(u) E X for all u E U .  

We see that,  first, X is a hypercode (of words of the same length) and, 
second, 2 is included in L ( X )  and moreover, in the initial subword base Yo of 
L ( X )  since every subword u of length n - 1 of 2, being in U ,  is a subword of 
s(u) ,  hence of X .  That is u 6 L ( X )  and every word of 2 has no subwords in 
L ( X ) ,  therefore 2 C YO. 

We show that 2 is a coherent subset of YO. In fact, by construction 2 is a 
subset of subwords of length n of w in YO, so the word of 2 has complexity not 
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less than k - 2. Since a word of length n, if not in 2 is in X ,  every word u of 
L ( X )  has all subwords of length n in 2, hence it has complexity at least k - 2 
and the subwords of length n of u amount up to  at least k - 2 in number and 
they are all in 2. Consequently, when lul = n + 1, u has at least k - 2 subwords 
of length n in common with w which implies that v = w by Proposition 4.2 as 
k is large by choice. That is to say there is none but one word, namely w, of 
length n + 1 whose subwords of length n are all in 2 that shows the coherency 
of 2. 

Thus every word of complextity 5 will be appropriate to produce large 2, 
but we shall see that sometimes k = 3 is also fit for our purposes. The following 
example shows the detail. 

Example 4.4 Let A = { a ,  b} .  Let take w = ababa with n + 1 = 5 and k = 5 
then S = {abab,aba2,ab2a,a2.ba, baba} is of four elements. Any subset Z of S 
containing more than two words is a desired coherent set for the initial subword 
base Yo of L ( X ) .  

However, some words of lower complexity also bring large coherent sets S 
even for k = 3, the least admissible value of complexity for words in D ( S ) .  Con- 
sider w = a2b2a,  n+ 1 = 5 ,  k = 3. Here is the set S = {ab2a,a2ba,  a2b2} of three 
elements. The only possible issue for 2 to take is 2 = S.  It is straightforward to  
verify that all words of length 5, and of complexity 2, contain subwords out of 2 
i.e., in X, hence they are not in L ( X ) .  Next, if their complexity, otherwise, are 
not 2 then they have subwords in 2 only if their complexity is not 1, hence is at 
least 3. Direct inspection yields w as the only candidate that has no subwords 
in X. This shows that 2 is coherent for the corresponding Yo of L ( X ) .  

Now we turn to the question when L ( X )  admits a final subword base? That 
is when is L ( X )  finite? Again we can think of a kind of unavoidable set in the 
subword order. If L ( X )  is finite the sufficiently long words are not in L ( X )  that 
means they have subwords in X. Conversely, if X is unavoidable then the words 
in L ( X )  avoid X therefore they are finite in number. 

It appears that in the subword order the unavoidable set has a very simple 
characterization. It is clear that an unavoidable set contains an for each a E A 
and some n > 0. Conversely, if a set satisfies this property then the words 
avoiding it have the occurences of the letter a fewer than the corresponding 
integer n. Hence their length is bounded above by the sum of all these exponents 
n’s and the sufficiently long words have subwords in the set. That is, a set is 
unavoidable in the subword order if and only if it contains a power of every 
letter. Summing up, we state an analogous result to the factor order. 

Proposition 4.5 Let  X be a hypercode. T h e n  L ( X )  is  f ini te  if and  only  if one  
of the following equivalent conditions holds: X is  unavoidable, X contains a 
power of every letter and there are finitely m a n y  maximal  hypercodes containing 
X .  
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For the special case when X is empty, L ( X )  is the whole A*, the initial 
subword base is A, our procedure allows to dertermine all maximal hypercodes 
of A*. We conlude the paper with an example showing the performance in some 
detail. 

Example 4.6 Let A = { a ,  b}  and the hypercode X = { a 2 ,  ab, ba, b3} is maximal 
which is verified directly. X can be derived from A by the following sequence 
of applications of F :  

X i  = { a ,  b 2 }  = F ( A ,  So), So = { b } ,  D(S0, A)  = { b 2 } ,  

X = X3 = { a b , b a , ~ ~ , b ~ }  = F(X2,S2) ,  5’2 = { u } , D ( S ~ , X ~ )  = {ab,ba, a’} .  
This sequence, however, is not unique, X can be obtained by another se- 

X1 = { a 2 ,  b }  = F ( A ,  So), So = { a } ,  D(S0, A )  = { a 2 } ,  
X2 = {a2,ab,ba,b2} = F ( X 1 , S i ) , S 1  = { b } , D ( S i , X I )  = {ab,b2,ba} 

X = X3 = { ~ ~ , ~ b , b ~ , b ~ }  = F(X2 ,Sz ) ,S z  = { b 2 } , D ( S z r X z )  = { b 3 } .  

X 2  = {a,b3} = F ( X l r S 1 ) , S 1  = {b2},D(S1,X1)  = { b 3 } ,  

quence as follows: 

and 
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Strong recognition of rational w-languages] 

Bertrand Le Saec, 2 ,  V.R.Dare and R.Siromoney 

Abstract We propose a new notion of the recognition of w-languages using monoids. The used 
criteria is stronger than the one previously introduced by Buchi. It very easy to build deterministic 
automaton accepting a given rational w-language from a monoid that strongly recognizes this w- 
language. 

1 Introduction 

Two notions of recognition used to characterize the rational langages of finite or infinite words has 
been intensively studied. The former is the recognition of langage using an automaton : a word is 
recognizes if its computation satisfies a given recognition criteria. The latter uses morphisms from 
the alphabet to monoid : a language is recognizes if its image in the monoid satisfies a given property. 
When the considered langage is a rational langage of finite words, it is easy to set a natural bijection 
between the deterministic automata recognizing a langage L and a set of right congruences of finite 
satisfying a property on their classes. In the same way, such a correspondance can be proposed 
between the monoids and the congruences of finite index. The property used for congruence and 
right congruence is a saturation one : if a word belongs to the language then the class of this word 
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must be included in the language. Since congruences are obviously right congruences, it is easy to 
obtain a deterministic automaton recognizing a langage from a monoid that recognizes this langage. 
From this result, it becomes simple to prove the Kleene theorem. 

For rational w-language (language of infinite words), Biichi introduced in [BU 621 a notion of 
recognition using monoids. This notion is based on a saturation property that can be easily “trans- 
late” in terms of congruences. There is many types of automata used to recognize rational languages. 
For the table transition automaton, a correspondance with right congruence has been also set in 
[LS 901, but the used saturation property is not of the same kind than the Biichi one. 

In this note, we proposed a new definition of the recognition of rational w-languages using 
monoids : the strong monoid recoginition. This notion is more powerful than those introduced by 
Biichi : when a monoid strongly recognizes a rational w-language, it also recognizes the same w- 
language in the Biichi sense, but the converse is false. We prove that a w-language is rational iff 
it is strongly saturated by a finite monoid. Moreover, given a monoid which strongly recognizes a 
rational w-language, the construction of a deterministic table transition automaton which accepts 
this w-language is obvious. So a similar approach to those of the finite case can be made to set 
the Mac Naughton theorem : it consists to establish the equivalence of the Biichi recognition and 
the strong recognition. The sketch of the proof is : To build from a arbitrary automaton (Biichi or 
Miiller or table transition) accepting aw-language L a monoid that Biichi recognizes L ,  then to build 
from this monoid another one that strongly recognizes L and finally to construct a deterministic 
table transition automaton that accepts L. 

Section 2 contains preliminary notions. The next section is devoted to the notion of strong 
monoid recognition. In the last section, we propose to study the Mac Naughton theorem by using 
strong recognition monoids. 

2 Preliminaries 

Let C be a finite alphabet. We denote by C* and Cw the sets of all finite and infinite words over 
C respectively. For any subset X # 0 of C*, we denote X +  = { q ~ .  . . z,, n >_ 1, zi E X }, 
X‘ = X+ U { E } ,  where F is the empty word, and X w  = ( ~ 1 ~ 2 . .  . , V i  2 1, zi E X \ { E }  }. 

A language is a subset of C’ and a language of infinite words (w-language ) is a subset of C”. 
We denote by UP(L)  the set of its ultimately periodic words: UP(L)  = { zyw E L,  z,y E C+}. 
An w-language L is rational if it is a finite union of w-languages of the form CBW where C, B are 
rational languages in C*. In [BU 621, Biichi proved the following property : Let L,  L’ be rational 
w-languages 
then L # 0 tr. U P ( L )  # 0 and so L C L’ H UP(L)  C UP(L’). 

A transition system T S  is a triple (Q,  I , 6 )  where Q is a finite set of states, I C Q is a 
set of initial states and 6 is a transition function, ie., a partial mapping of Q x C into 2Q.  As 
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usual, we extend 6 to Q x C* by setting, for all q E Q,  a E C and w E C*, 6 ( q , ~ )  = { q }  and 
J ( q , a w )  = u pE6(q ,a)  6(p ,w) .  A transition system T S  is deterministic if C a r d ( I )  = 1 and for any 
pair (q ,  a )  E Q x C, there is at most one state q' in 6(q, a) .  By abuse, we will write 6(q, a )  = q' 
when TS  is deterministic. 

Let T S  = (Q, I ,  6 )  be a transition system. A transition is an element (q, a,  q') of Q x C x Q 
such that q' E d(q,a) .  We denote by A the set of transitions of TS.  A computation c in TS  is 
a finite or infinite sequence 606162. ' .  of transitions where for each i, 6, = (qs ,  a,, q2+1) E A. The 
word w = aOa1. . . is called the label of c and the state qo the origin of c. We use the notation 
c(qO,w,q,+l) to denote a finite computation c with the origin qo, the end qn+l and the label 
w = aOa1 . . a, and for each i, 6, = (q,, a,, q,+1) E A. We denote by T f i n ( c )  (resp. T i n f ( c ) )  the 
set of the transitions which have a finitely (resp. infinitely) many occurences in c. 

Definitions 2.1 A transition table automaton [LS 901 is a 4-tuple A = (Q,  I ,  6 ,  I )  where (Q ,  I ,  6 )  
is a transition system and I a set of subsets of transitions. An infinite word w E Cw is accepted by 
A i f  there exists a computation c i n  A with the origin in I and the label w such that T i n f ( c )  E I .  

The transition table automata accepts the rational w-languages and their recognition power does 
not decrease if we only consider the deterministic ones [LS 901. In the sequel, we denote L(d)  the 
w-langage accepted by an automaton A. 

Let 3 be an equivalence relation on C*. We denote by zI the class of the word z and we say that 
= is of finite index if it has a finite number of classes. A right congruence - on C* is an equivalence 
relation satisfying: V u ,  v E C*, Vw E C*,  u - v implies uw N vw.  A congruence N on C* is an 
equivalence relation satisfying: Vu, v E C * ,  v w ,  w' E C*, u N v implies wuw' N wuw'. As usual, 
with any congruence N on C*, we associate a monoid ME and a morphism pE : C* + M% defined 
by Me = {u,,u E C*}  and for any u E C*, p ( u )  = uz.  Symetrically, with any M is a monoid 
and any morphism p : C* + ME, we associate a congruence FSM defined by Vu, v E C*,  u X M  u 

iff p(u) = p(u). A stabilizer g of an element m of a monoid M satisfies the identity mg = g and 
an idempotent f of M satisfies f 2  = f. 

Definition 2.2 [BU 621 A congruence N on C* Biichi-recognizes an w-language L iff for any pair 
m, f in M % ,  we have pp,'(m)[pp,'(f)]" n L  # 0 implies pp=l(m)[pp,'(f)]" C L. I f  the congruence 
N is of finite index, it  is easy to show that the elements m, f can be choose i n  such a way that 
m=mf  and f 2 =  f. 

Definitions 2.3 [AR 851 Let L E Cw and let xs be the congruence on C' defined by: 

V ( x ,  w )  E c* x CW, z u w  E L e xvw E L 
Vz, w ,  w' E C* with ww' # E ,  ~ ( W U W ' ) ~  E L e ~ ( W V W ' ) ~  E L.  

vu, v E C*,U NS u H 
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We denote by M,  the monoid associated with wS . The congruence w s  (resp. the monoid M,, the 
morphism 'ps ) is called the syntactic congruence (resp. monoid, morphism) of L. The congruence 
wS is the largest congruence offinite index which Buchi-recognizes a rational w-language [AR 851. 

There is a canonical bijection between the family of right congruences of finite index and the 
family of complete deterministic transition systems (up to isomorphism). This canonical bijection 
is defined in the following way: 
With any right congruence of finite index -, we associate a deterministic transition system TS, = 
(QN,I,,6,) where Q, = {z,,z E C*}, I ,  = {E, } ,  6, is the function from Q, x C 
to Q, defined by V(z,,a) E Q, x C , 6,(z,,a) = (xa),. With any deterministic transition 
system TS = (Q, {qo} ,6 ) ,  we associate a right congruence -Q defined by Vu,v E C*,u -Q v iff 
6(qo,u) = 6(qo,u). The right congruence -Q is of finite index. 
It is easy to see that the right congruence associated with TS, is exactly - and, conversely, that 
the transition system associated with -Q is TS. 

3 Strong congruence recognition 

Definition 3.1 A congruence w (or its induced monoid M,) on C' strongly recognizes an w- 
language L if, for any triple m, f ,  g E M ,  such that m f = mg = m, we have : 
(p,'(m)[('p,'(f))+((p,'(g))+lW n L # 0 implies 'p,'(m)[('p,'(f))+(ip,'(g))+IW c L. 

The following property is simple to set : 

Lemma 3.2 Let L be a rational w-language accepted by a table transition automaton A = 
( Q , { q o } , 6 , 1 ) .  Let " Q  be the relation defined by : 

Then " Q  is a congruence of finite index which Buchi-recognizes L and so its induced monoid 
M,, also Buchi-recognizes L. 

Theorem 3.4 An w-language is rational ifl it is strongly saturated by congruence of finite index. 
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Proof : Let M be a congruence of finite index that strongly recognizes an w-language L. In order to 
prove that the w-language L is rational, we can identify, in the definition of the strong recognition, 
the two elements f and g. This shows that a congruence which strongly recognizes a w-langage L 
is also a congruence which Biichi-recognizes L. And so L is rational. 

Conversely, let L be a rational w-language accepted by a deterministic table transition automaton 
A = (Q, {qo} ,  6, I). Let MQ the congruence defined in the previous lemma. 

Now, let m, f , g  E M,, such that m = mf = mg . Since L is a rational w-language, the 
languages cp;b(m), cp;:(f),p&(g) are rational and F(,sQ,m,f,g) : is a rational w-language. So, in 
order to prove that MQ strongly saturates L, we just need to prove the following equivalence : 

UP(F,,,, ,*,fa) L # 0 - UP(F(9,, , m , ~ , g ) )  C L 

Since m = m f = mg, it is easy to see any ultimately periodic word of the w-language F(9,q ,m,f ,g)  

is of the form y(uy# ... upw?)" with y E cp&L(m) and for any 1 5 i 5 k ,  ui E cp,b(f),wi E 
tp;i(g). Moreover, A is deterministic and for any 1 5 i 5 k ,  y M Q  yui MQ ywi so there exists 
q E Q such that G(q0,y) = q,  6(q,u,) = q and G(q,v,) = q. 

For any u E cp&(f) and v E cp&(g), we have V k  5 0, Tfin(c(q,uk,q)) = T-fin(c(q,u,q)) and 

Vk 5 O,T-fin(c(q,wk,q)) = T-fin(c(q,w,q)) so Tfin(c(q,uyv? ... upw$,q)) = T-fin(c(q,uw,q)) 
where u,  w are two fixed words of 9;; (f) and cp;: (9) respectively. So, we have 

T-fin(c(q,up'wF . . .uyv$,q)) E 7 w T-fin(c(q,uv,q)) E 7. Let z be an arbitrary word in 

ZQ strongly recognizes L. 0 
z E cp&;(m), we have : UP(F(,,Q,m,f,s) n L) # 0 H z(uw)" E L and UP(F(,,Q,m,f,g)) C L. So 

Remark 3.5 In the proof of the previous Theorem, it is shown that any congruence which strongly 
recognizes an w-langage L is also a congruence which Buchi-recognizes the same w-language. The 
converse is false. 

For instance, let L = {a,b)'(ab)". The class of the syntactic congruence of the word aa also 
contains the two words aaa and aab so we have aa  M, aaa M, aab. Let maa (resp. ma, mb) denote 
the element the syntactic monoid of L corresponding to aa (resp. (a, b)). Since aa(ab)" E L, 
we have cp,~(maa)[(cp,~(ma))+(cp;:(mb))'lw) n L # 0 ; but cpi;(maa)[(G: (ma))+(V,:(mb))+lw 
is obviously not included in L since aa(abb)" $ L. The syntactic congruence of L Buchi recognizes 
L, but it does not strongly recognizes L. 

Definition 3.6 Let - be a congruence of finite index. Let A, be the deterministic table transition 
automaton A, = (Q,.,, I,, 6,, I,) where (Q,, I,, 6,) = TS, is the transition system inced by - 
and I, = {Tin f  ( E ~ ,  w) such that w E UP(L)}. This automaton is called the deterministic table 
transition automaton induced by -. 

Proposition 3.7 Let M be a congruence that strongly recognizes a rational w-language L then A, 
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is  a deterministic table transition that accepts L.  

Proof. Let L be a rational w-language and M be a congruence that strongly recognizes L. In 
[LS 901, it has been proved that if a right congruence of finite index - recognizes L in the following 
way : 

1. V(u,v) E C* x C*,Vw E Cw : u N w implies {uw E L w z)w E L }  

2. V(z,u,v)  E C* x C* x C’, x - zu N zw implies { z ( u + ~ + ) ~  n L # 0 ==+ z(u+v+)” E L}. 

then the deterministic table transition automaton induced by - accepts the w-language L. So it is 
suffisant to show that N recognizes L : in this sense. 

1. Let u, v E C* such that u w and let w E Cw such that uw E L. There exists m,m’, f E M= 
such that u E p;’(m),w’ E p;’(m’),w’’ E ~ p ; ’ ( f ) ~  andw = w’w’’. Sop;’(mm’)p;’(f)wnL # 
0. Moreover x strongly recognizes L ,  so it also Biichi-recognizes L and p;’(mm’)~p;’(f)~ c L. 
Since u N v , we have vw’ E p;’(mm’) and finally vw’w’’ = vw E L. 

2. Let z E C* and u, v E C+ such that x N zu N ZW and Z ( U + W + ) ~  n L # 0. Let m, g ,  f E M ,  
such that m = p = ( z ) , g  = p=(u) and f = p=(w). Then F(,,,J,~) n L  # 0 e F(,,,,f,s) c L 
and so Z ( ~ + V + ) ~  c L. 

Finally, the automaton A, accepts L. 0 

4 Mac Naughton Theorem and strong recognition 

The previous theorem provides a direct way to prove the Mac Naughton theorem : we “just” need 
to build a congruence of finite index that stongly recognizes a rational w-language. We propose two 
manners to obtain such a proof. The first one can be view as  an intrepretation in term of monoids 
of the proof proposed in [LPW 921. The second is based on a conjecture concerning the role of 
commutativity for the stabilizers in a monoid. 

4.1 Nice semigroups 

The two following results has been set in [LPW 921 : 

Theorem 4.1 Any finite monoid M is the image by a surjective morphism of a finite monoid M 
in which the stabilizers satisfy the identities f = f and fgf = f g .  



117 

Proposition 4.2 An w-language L is rational iff i t  i s  Buchi-recognized by a finite nice semigroup. 

The proof of the previous result consists to start with a finite semigroup M that Biichi-recognizes 
L, to build the corresponding finite nice semigroup &f and to easily show that k also Biichi- 
recognizes L. 

Proposition 4.3 A finite nice semigroup that Buchi-recognizes a rational w-language L also strongly 
recognizes L 

Proof. Let L be a rational w-language and M be a finite nice semigroup that Biichi-recognizes 
L. So there exist a morphism (o : C* -- M such that for any pair m, f in M ,  we have 
(o-'(m)[(p-'(f)]" n L # 0 implies (o-'(m)[(o-l(f)]w c L. 

Let m, f ,  g E M such that mf = m g  = m and F(,,,,f,g) n L # 0. 
Let z E p-'(m),u E (o-'(f),w E (o-'(g) be three arbitrary words. 

Since M is a nice semigroup, the stabilizers of M satisfy f 2  = f and f g f  = f g .  In fact, in the 
sequel of the proof, we just need one of the two properties : f 2  = f .  

Since f and g are idempotents, we have p-'(f)+ = (o-'(f), and (o-'(g)+ = p- ' (g)  so 
q,,,,f,g) = (o-l(m)l((o-'(f))(p-'(g))lw. 

(o-'(g). 
Let y(ulw1 . . "ubvb)"  E UP(F(,,,,f,,) n L )  with y E cp-'(m) and V1 5 i p k ,  ui E cp-'(f),w, E 

Since M Buchi-recognizes L, it is larger than the syntactic monoid of L. So V l  i: i 5 k, 
u X, u1 zS u2 ... zS U k  and w xS w1 z9 w2 ... zS vk. So, we have y(ulw1. . . U k v l ~ ) ~  E 
F(,,,,f,g) n L f 0 - +J)~ E F(,,,,f,g) n L.  ina all^ : F(,,f,g) n L # 0 - q,,,,f,g) c_ L. 
0 

4.2 Semigroups with commutative stabilizers 

A semigroups with commutative stabilizers is a semigroup in which the stabilizers satisfy the identity 
f g  = g f .  

Proposition 4.4 A finite semigroup with commutative stabilizers that Buchi-recognizes a rational 
w-language L also strongly recognizes L 

Proof. Let L be a rational w-language and M be a finite semigroup with commutative stabilizers 
that Biichi-recognizes L. So there exist a morphism (o : C' --t M such that for any pair m, f 
in M ,  we have (o-'(m)[(o-'(f)]" n L  # 0 implies p-'(m)[(o-'(f)lW c L. 
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Remark 4.5 We don’t know if a result similar to the theorem 3.1 can be set replacing “nice semi- 
group” by “semignmp with commutative stabilizers”. Our initition is based on the fact that around 
a state in an automaton the loops can commutes without changing the accepting language. But if it 
is true this should lead to an another proof of the Mac Naughton theorem. 
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In this paper we present a new class of data dependencies that called multivalued 
positive Boolean dependencies. This class is a generalization of all classes of posi- 
tive Boolean dependencies. Some generalization concepts for implications as well 
as an axiom system for inference rules are also presented. With the help of the 
equivalence theorem of consequences in the world of all relations, the world of 2- 
tuple relations and propositional logic in the class of multivalued positive Boolean 
dependencies we can get some significant results related to m-covers. Some condi- 
tions for two sets being m-equivalent are given. Necessary and sufficient conditions 
for testing an m-redundant set of multivalued positive Boolean dependencies are 
introduced. Base on these results some algorithms for constructing a nonredundant 
m-cover of a given set of multivalued positive Boolean dependencies are presented. 

1. Introduction 

An important part of the design of relational database schema is the specifica- 
tion of constraints or data dependencies in databases. In other words, central 
to the design of database schemes is the idea of a data dependency, that is, 
a constraint on the possible relations that can be the current instance of a 
relation scheme. 

Data dependencies represent a semantic tool for expresssing properties of 
data and play an important role to ensure consistency of data. There are many 
kinds of data dependencies that have been studied, such as, functional depen- 
dencies, strong dependencies, equational dependencies, generalizied positive 
Boolean dependencies, etc. [l, 2,3,4,8]. 
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In this paper we intend to mention a new class of data dependencies that 
called Multivalued positive Boolean dependencies. This class is a generalization 
of all classes of positive Boolean dependencies [8,9,10,11]. In this class we can 
also see data of objects managed in database in fuzzy semantics. This is useful 
and significant for other purposes when using databases. 

Some generalization concepts for implications as well as an axiom system 
for inference rules are also presented. With the help of the equivalence theorem 
of consequences in the world of all relations, the world of 2-tuple relations and 
propositional logic in the class of multivalued positive Boolean dependencies 
we can get some significant results. 

In fact, we want to find, for a given set of dependencies, an equivalent set 
with a number of useful properties and a shorter representation of constraints. 
For several algorithms with running times that are dependent on the number 
of dependencies in the input, a smaller set of dependencies guarantees faster 
execution. Dependencies are used in database systems to help ensuring consis- 
tency and corrections. Fewer dependencies mean less storage space used and 
fewer tests to make when the database is modified. 

Also with the help of the equivalence theorem we can get some significant 
results related to rn-covers. Necessary and sufficient conditions for testing an 
m-redundant set of multivalued positive Boolean dependencies are introduced. 
On the basis of these results, some algorithms for constructing a nonredun- 
dant rn-cover of a given set of multivalued positive Boolean dependencies are 
presented. 

2. Some concepts and results 

Some basic concepts concerning with the class of multivalued positive Boolean 
dependencies have been mentioned in [9]. Let U be a set of attributes, U = 

(A1, Az, ..., An}. For each attribute Ai in U ,  beside the domain di  we have a 
set Bi called the valuation domain of Ai that satisfies the following conditions: 

6) Bz c [0,11, 
(ii) 1 E Bi, and 

(iii) If s E Bi then 1 - s E Bi. 

We denote B = B1 x B2 x ... x B,. 
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Definition 1. A formula f over U is said to be a multi-valued positive 
Boolean dependency (MVPBD) iff f ( e )  = 1 with e = (1,1, ..., 1) E B.  B y  M F ,  
we denote the set of all multivalued positive Boolean dependencies over U .  

Definition 2. For each domain di of attribute Ail 1 5 i 5 n, we consider a 
mapping C Y ~  : di x di --, Bi, satisfying the following : 

(i) (VU E d i )  ( a i ( a ,  a )  = I), 
(iz) (Va, b E di) (ai(a,  b) = at@, a ) ) ,  and 

(iii) (Ys E Bi, 3a, b E di)  (Qi(a,  b) = S) 

For each Ic E [0,1], f E M F ,  and C G MF,, we set T t  = {x E B I f (x) 2 Ic} 
and Tk = {x E B I Yf E C, f (x) L k}. 

By R E L ( U )  we denote the set of all relations over U .  Let R E R E L ( U )  and 
u,v E R. Then (a~(u .Al ,  v . A l ) ,  ..., an(u.A,,v.An)) is said to be a valuation 
over U and denoted by Q ( U ,  v), where u.Ai is the value of attribute Ai in tuple 
u. We set TR = {Q(u ,v ) /u , v  E R } .  Note that for every u E R we have 
a(u,u) = e E TR. 

Suppose p is a mapping p : [0,1] -+ [0,1], then ,8 is called a level. 

Definition 3. Let R E R E L ( U ) ,  Ic E [0,1], f E M F ,  and C C MF,, m E 
[0,1] and ,O : [0,1] 4 [0,1]. Then 

(a) W e  say that R k-satisfies f ,  iff TR C Tf". R is said to k-satisfy the set 
C i.fTR C T;. I f  R k-satisfies C then we denote R k ( C ) .  Instead of * 
R k ( {  f}) we write Rk( f ) .  

(P,m)-satisfy the set C iff R p(m)-satisfies C .  
(b) W e  say that R (p, m)-satisfies f ,  iff R p(m)-satisfies f .  R is said to 

Definition 4. Let C G MF,, f E MF,, m E [0,1] and ,B be a level 

(a) W e  say that f is implied from C by relations and write C f iff for 

(b) I f  for any relation R having two tuples and R m-satisfies C we also 
any relation R m-satisfying C then R also (p,m)-satisfies f 

have R (p, m)-satisfies f then we denote C F z  f .  

W e  set C; = {f 1 CF f}. 
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Definition 5. Let C C MF,, f , g  E MF,, m E [0, 11 and /3 is a level. W e  
consider a system of two rules for deductions 1 - as follows: 

m 
P 

m 
(a) I f f - 1 t h e n C J - f ,  

(b) If C 1; f and TF n T;(m) = TF n T/(m) then C I - 9. m P 

P 

Definition 6. Suppose m E [0,1], C C MF,, f E MF, and P is a level. W e  
say that C (P,m)-implies f or f is (P,m)-implied from C, denoted by C I -  f 

iff f can be obtained from C after a finite number of steps applying ru1 es of 
the above axiom system. For briei we write C 

m 
P 

m f instead of C I- f .  
P 

Definition 7. A set C C MF, is said to  be stable i f l C  C Ck. 

Note that if P(m) = m then any set C is stable. 

Proposition 1. [ll] Suppose that C C MF,, f E MF, and P is a level, then 
the following are equivalent: 

Proposition 2. If C , r  C MF, and C 2 I' then 

Proof. It is clear that TF C T,". Now suppose f E r&. It means I' f. 
Then f(x) _> P(m) for any z E T,". Hence, if 2 E TF then we also have 
f(x) _> P(m). It means that C 1" f. We get f E CA. From b we get the 

0 assertion c. The proof is complete. 
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Proposition 3. Let m E [0,1] with p(m) 2 m and C C MF,. Then C& 2 
EL+. 

Proof. We set I' = C&, so C&+ = I?&. For any f E C&+ we get f E I?&. By 
using Proposition 1 we obtain TP G TfP(m) (1). Because of C Imr, P(m) 2 m 

and Proposition 1 we have T," G Ti!(m) 5 TF (2). F'rom (1) and (2) we 
obtain T," C Tf (m) .  According to Proposition 1 we have C Im f and hence 
C& 2 C&+. 0 

Proposition 4. Let m E [0,1] with p(m) 2 m and C, I' G MF,. If C ImI' 
then C& 2 r&. 

Proof. Suppose f E I'& (l) ,  we have to show that f E E& (2). From (1) 
and Proposition 1 we get TP C TfP(m) (3). From the hypothesics C l m I ? ,  
Proposition 1 and p(m) 2 m we get T," G Tf?(m) G TP (4). Combining 
(3) and (4) we obtain T," C Tf(m) .  It implies that assertion (2) holds and 

0 therefore we have C& 2 I?&. The proof is complete. 

It is not hard to see the following propositions 

Proposition 5. If C, I? G MF, such that I' is stable and C& 2 I'& then 
qmr. 

Proposition 6. Let m E [0,1] with P(m) 2 m and let C, r C_ MF,  such that 
C, I? are stable. Then C& = I?& iff C I' and r C. 

Proposition 7. Let m E [0,1] with P(m) 2 m and C, I?, A G MF,. If 
C In I' and I? A then C In A. 

Proposition 8. Let m E [0,1] with P(m) 2 m. Suppose that C C MF,  and 
C is stable then C&+ = C+ m' 

Definition 8. Suppose m E [0,1]. Two sets C, I? G MF,  are said to be 
m-equivalent and denoted by C 2 I? iff Ch = I?;. 

Theorem 1. (Equivalence Theorem [ll]). Let m E [0,1], C C MF,, 
f E MF, and be a level. Then the following are equivalent: 

(a) C IXf 
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Corollary 1. Two sets C, r C MF, are m-equivalent iff C& = I?&. 

Proposition 9. Let m E [0,1] and C, I? C MF,. If TF = TF then two sets 
C and r are m-equivalent. 

Let R E REL(U), f E MF, and let m E [0,1]. Now we consider an 
algorithm for checking whether a relation R satisfying a given dependency. We 
have known that for f E MF,, C & MF, and m E [0,1] then the followings 
hold: 

(a) R" ( f )  if and only if TR C_ Tf" 

(b) R"(C) if and only if TR C TF. 
Algorithm SATISFIES 

Input - A relation R over U ,  
- A formula f ,  

- A real number m in [0,1] 

Output - TRUE if R"( f )  
- FALSE, otherwise 

Format SATISFIES (R, f ,  m) 

Method 

// Verify whether the assertion TR TT is valid 

return (TR C Tf"); 
End SATISFIES. 

Definition 9. Suppose m E [0, 11 and C , r  C MF,. If C and F are m- 
equivalent then we say that r is a m-cover of C ,  and conversely C is a m-cover 
ofr. 
Definition 10. Let m E [0,1], C C MF, and g E C. We say that g is m- 
redundant in C iff C - { g }  g .  The set C is said to be m-redundant iff there 
exists g in C such that g is m-redundant in C .  

Proposition 10. Let m E [0,1] with P(m) 2 m, C & MF, and let g E C and 
g be m-redundant in C .  Then two sets C and C - { g }  are m-equivalent. 
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Proof. We set I? = C - {g}. Because of C 2 r and Proposition 2 we have 

On the other hand, for f E CA, we have to show that f E I?&. Suppose 
x E TF. Because of g being m-redundant in C and Equivalence Theorem we 
have I? I m g  and g ( x )  2 p(m) 2 m. Hence x E T," and f ( x )  2 P(m). It 
means f E I'k. We obtain 

r; 
F'rom (l), (2) and Corollary 1 we see that two sets C and I' are m-equivalena 

Here we have a necessary and sufficient condition for a dependency g beging 
m-redudent in C . 

Proposition 11. Let C C MF,, m E [0,1], p be a level and let g E C. Then 
g is m-redundant in C iff TCm_{gl C T/(m). 

Proof. Suppose that a dependency g is m-redundant in C. By Definition 10 we 
have C - { g }  g.  Using Equivalence Theorem we obtain C-{g} 1-g. This is 
also equivalent to TCm_tg) T/(m). Conversely, suppose that TCm_Igl C T/(m).  
According to Proposition 1 we have C - {g} 1"g. Also using Equivalence 

0 Theorem we obtain C - { g }  g. It means g being m-redundant. 

Corollary 2. Let C C MF,, m E [0,1] and p be a level. 
redundant iff there exists g E C such that TCm_{gl C T/(m). 

Then C is rn- 

Proof. Suppose that there exists g E C such that TCm_{gl 5 T/(m). By applying 
Proposition 1 and Theorem 1 we see that g is m-redundant in C. Hence C is 
m-redundant . 

Conversely, suppose that C is m-redundant. Hence there exists g E C 
g. Using Equivalence Theorem we have C - { g }  Img .  

0 

such that C - {g} 
According to Propossition 1 we obtain TCm_tg) C T/(m). 

Corollary 3. Let C C MF,, m E [0,1] and /3 be a level. Suppose that there 
exists two formulas f , g  E C such that f # g and Tf" T/(m).  Then C is 
m-redundant . 
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Proof. Set I' = C - (9). Then f E I' and therefore TF TT. Combining 
with the hypothesis TT c T/(m) we get TF c T/(m).  Using Corollary 1 we 
can see that C is m-redundant. 0 

Definition 11. Let m E [0,1]. A set C C MF, is said to be m-nonredundant 
if C is not a m-redundant set of formulas. 

Now we consider some algorithms concerning with m-redundant sets. 

Algorithm MEMBER 

Input - A subset C of MF, 
- A formula f in C 

- A real number m in [0, 11 

Output - TRUE, if C f, 
- FALSE, otherwise 

Format MEMBER@, f ,  m) 

Method 

return (T? G T!(~)); 
end Member. 

Algorithm DERIVES 

Input - Two sets C and I? of MF, 
- A real number m in [ O , l ]  

Output - TRUE, if C I' 
- FALSE, otherwise 

Format DERIVES(C, I?, m); 

Method ff Using Equivalence Theorem. 

for each g in I? do 

if not MEMBER(C, g, m) then 

return FALSE 

endif; 

endfor; 

return TRUE; 
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end DERIVES. 

Algorithm EQUIVALENCE 
Input - Two subsets C and r of MF, such that they are stable 

Output - TRUE, if C 2 r 
- FALSE, otherwise 

Format EQUIVALENCE(C, l?, m ) 
Method // Using Proposition 6 and Corollary 1 

- A real number m E [0, 11 with p(m) 2 m 

return (DERIVES(C, I?, m) and DERIVES(r, C, m) 
end EQUIVALENCE. 

Algorithm REDUNDANT 
Input - A subset C of MF, 

- A real number m in [0,1], p is a level 
Output - TRUE, if C is m-redundant 

- FALSE, otherwise 

Format REDUNDANT(C, m) 
Method // Using Corollary 2 

for each g in C do 

if T.&) C_ Ti(m) then 

return TRUE 
endif; 

endfor; 

return FALSE; 
end REDUNDANT. 

Algorithm NONREDUN 
Input - A subset C of MF, 

- A real number m in [O, l ] ,  is a level 

Output - An m-nonredundant cover of C 
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Format NONREDUN(C, m) 

Method // Step by  step we delete dependencies which are m-redundant 

// in C such that the rest set of dependencies is also a m-cover of C 
r := C; 

for each g in C do 

if MEMBER(I' - {g}, g, m) then 

r := r - {g} 
endif; 

endfor; 

return I?; 

end NONREDUN. 

We consider the case P(m) = m. We will have some concepts and results 
as follows [9]. 

Definition 12. Let C C MF, and f E MF,. We denote 

(a) C + f iff for any m E [0,1] the assertion C f holds 
(b) C(xc> = A f ( x >  

fez 

Theorem 2. Suppose C C MF,  and f E MF,. Then C + f i f lC(x )  5 f ( x )  
for any x E B .  

Definition 13. Let C,I' c MF,. We say that C and r are equivalent and 
write c FZ r iff c T r for any m E [0, 11. 

Corollary 4. Suppose C , r  C MF,. Then C 2 I? iff C ( x )  = I'(x) for any 
X E B .  

Definition 14. Let C C_ MF,. A dependency g in C is said to be redundant 
iff C E C - (9). If there exists h E C such that h is redundant then C is also 
called to be redundant. 

Corollary 5.  Assume that C C MF, and g E C .  Then g is  redundant in C 
iff for any m E [0,1] g is m-redundant in C .  

Proof. (a) Necessary condition. Suppose g E C and g is redundant in C. We 
set I? = C - {g}. Then we have C E I?. Therefore I' + g. Applying Definition 
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12 it follows that for any m E [0,1] we always obtain I? 
is m-redundant in C. 

g. It means that g 

(b) Suficient condition. Let g E C and suppose that for any m E [0,1] then 
g is m-redundant in C. According to the hypothesis, we have C - {g} g. 
Because of m is arbitrary and m E [0,1] it follows that C - { g }  g .  Therefore 
g is a redundant dependency in C. Sufficient condition has been proved and 
this completes the proof. 0 

Corollary 6. Let g E C and let r = C - { g } .  Then the dependency g is 
redundant in C ifl I?(%) 5 g(z) for any z E B .  
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Abstract. In this article, we propose a new measure for attribute selection (RN - 
measure) having closed relations to rough measure (Pawlak Z. [6]) and R - measure 
(Ho Tu Bao, Nguyen Trung Dung [3]) . We prove that all of these three measures 
are confidence measures i.e. satisfy the weak monotonous axiom. So the RN 
- measure is worth in the class of attribute selection measures. Some relations 
between these three measures are also shown. 
Key words: confidence measure, rough measure, R-measure, RN -measure. 

1. The weak monotonous axiom 

Following Dubois D. and Prade H. [l], measures in approximate reasoning 
should satisfy the weak monotonous axiom. The weak monotonous axiom of a 
measure is described as follows. 

Let R be a set (0 is called by reference set) and let g be a positive function 
defined on the subsets of R ( g  : 2" + R;VA R, we have g(A) 2 0). A measure 
g is called to satisfy the weak monotonous miom (in this article, it is called by the 
monotonous axiom) if: 

V A , B  0 :  A & B * g(A)  < g ( B )  (1) 

The monotonous axiom is one of main requirements that measures in approximate 
reasoning should be have. The meaning of it may be explained as the follows: By 
having more information for reasoning then having more belief. The axiom should 
be checked when we create a new measure in approximate reasoning. A measure 
which satisfies the monotonous axiom is called by a confidence measure. 

2. Measures for attribute selection 

The data gathered from difference sources almost are rough data and rela- 
tions between these data almost are unknown. These data usually described in 
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form of two- dimensions table, where a row is the data of an object, and a col- 
umn is the data of an attribute. One of the relationship should be considered is 
the attribute dependency: Exists or not a relation between a group of attributes 
and another group of attributes and how to determine the value of these relations? 
The determination of dependency between some groups of attributes is one of main 
problems in analysis, discovery relations of data systems. Measures for attribute 
selection are defined to solve above problems. 
Definition 1. Let 0 be a set of objects and E C 0 x 0 is an equivalence relation 
on 0. Two objects 0 1 ~ 0 2  E 0 are said to be distinguished by E if they satisfied 
equivalence relation E (or 01 Eoz). 
Definition 2. Let 0 be a set of objects and E C 0 x 0 is a equivalence relation 
on 0, X C 0. Then sets E,(X)  and E * ( X )  are defined as following: 

(where[o] E denoted the equivalent class consisting of objects distinguished with o 
by the equivalence relation E) .  E , (X)  and E * ( X )  are respectively called by the 
lower approximation and upper approximation of X .  

Lower approximation and upper approximation, defined by above definition 
show out an approximation of set X through distribution set of objects of X by 
an equivalence relation.. Some contents about lower approximation and upper 
approximation sets are deal in [2,3,5,6,7]. Let, R be a set of attributes, P be a 
subset of 0. P determines one equivalence relation on the set of objects 0 and 
partitions 0 into equivalent classes, each class consists of all objects that have the 
same value for all attributes in P. 

Let P and Q, two subset of 0. P and Q will partition 0 into different 
equivalent classes and when we consider relations between equivalent classes by 
these two partitions, we have some information of causal relations from P and Q. 
This information is explained in form of measures for attributes selection [3] .  

3. The measure RN 

Temperature 
Normal 
High 
Very high 
Normal 
High 
Very high 
High 
Very high 

Headache flu 
Yes No 
Yes Yes 
Yes Yes 
No No 
No No 
No Yes 
No No 
Yes Yes 

Table 1. Table of collect data 
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Measures for attributes selection by definitions 3 and 4 have been described 
in [3,6]. To explain some contents in this article, we use the data in table 1 (with 
the assumption that there do not exist two rows with same values (31): 
Definition 3. (Pawlak Z. [ S ] )  Let 0 be a set of objects, let R be set of at- 
tributes, P ,Q  c R are two subset of attributes. Then the rough measure (is d e  
noted bypp(Q)), measuring the dependence level of the subset Q on subset P is 
determined as follow: 

Definition 4. (Ho Tu Bao, Nguyen !hung Dung [3]) Let 0 be a set of objects, let 
R be set of attributes, P, Q R are two subset of attributes. Then the measure R 
(is denoted by Cp(Q)) measures the dependence level of' the subset Q on subset P 
is determined as follow: 

As corresponding to the data in Table 1, the dependence degree of the flu attribute 
on the headache by (5) equal to 9/16 while the correlative rough measure by (4) 
equal to 0. 

In the following, we will propose a new confidence measure, the measure R N ,  
which is smaller than "the possibility measure" R and is great,er than the rough 
measure. 
Definition 5. Let 0 be a set of objects, letR be set of attributes, P ,Q  c R are 
two subset of attributes. Then the measure RN (is denoted by &) which measures 
the dependence level of the subset Q on subset P is determined as follow: 

As corresponding to the data in Table 1, the dependence degree of the flu attribute 
on the headache by (6) equal to 5/32. 

4. Some characteristics of the measure RN 

Proposition 1. Let R be set of attributes, P, Q C R are two subset of attributes. 
Then: 

PP(Q) < &(Q) G bp(Q) 

Proof: 
At first, we write the formulas of rough measure and measure R by another 

form as follows: 
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Let 

Consider [o]p [o]Q, we would like to show that 

Because [o]p C_ [o]Q then g![O]Q satisfying [ o ] ~  n [ o ] ~  # 0 and the maximum 
on equivalent classes [ o ] ~  reaches on this [O]Q. By other hand, we have card([o]~ fl 
[o]p) = card([o]p) and (b) is confirmed. That 

0 By the definition 5 and (a), we have pp(Q) < p$(Q). 
0 We prove now the second inequality j $ ( Q )  < F p ( Q )  
By the definition 6 and (c), we have only to prove: 

We consider for each class [o]p in case there is no class [O]Q which contained it. 
Denote 

Because the number of positive components which belong to B is not exceed the 
number ofobjects in [o]p (it means that card {[o]Q : [ o ] ~ n [ o ] p  # S} < card([o]p)), 
the number of non-zero terms which belong to the sum is not exceed the cardinal 
of [o]p. For each term, we have: 

card2([o]Q n [o]P) < max(card2([o]~ n 101~)) 
Q 

and then 

Thus, the corresponding components in two hands of (d) satisfy the inequal- 
ity, and (d) is proved so &(Q) < fip(Q). 

Let R be set of attributes, P, Q C R are two subset of attributes. When con- 
sidering the dependence of subset Q on subset P,  then P is called by the condition 
attribute set and Q is called by the decision attribute set. 

For rules in form "if P then Q ,  the belief of them depends on the change 
of parameters P and Q. In the following, we investigate the belief of this rule on 
direction, in which we fixed the decision parameter Q and changed the condition 
parameter P. 
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Proposition 2. Let R be set of attributes. VP, Q 

Pro0 f :  

R. We have jip(Q) < 1. 

VP,Q c 62,Vo E Othen([o]~) n [O]Q E [ O ] P , ~ [ O ] Q  

Proposition 3. Let 0 be set of objects. For two subsets of attributes P,Q we 
have: 

Vo E 0, [O]P  C [o]~iffpP(&) = &(Q) = i i ~ ( Q )  = 1. 

Proof; For the rough measure (Pawlak), the equation in the Proposition is obvious. 
By propositions 1 and 2, we have: pp(Q) < p$(Q) < f ip(Q) < 1 
* VO E 0, [ O ] P  C [O]Q * 1 = P P ( Q )  < &(Q) < i i ~ ( Q )  < 1 

&(Q) = P P ( & )  = 1 VO E 0, [O]P G [O]Q 1 = PP(&)  

Corollary 1. Let R be set of attributes, VQ R, we have 

pun(&) = &(Q)  = fin(&) = 1. 

Proposition 4. VP, Q C 0, ( P  n Q) = 8, and p is denoted the compensate set of 
P in 0, we have: 

PAQ) = = j i P ( Q )  = 1. 

Proof: By proposition 3. 

Remarks 1. V integers a,, b,, where a, axe no negative, b, positive ( i  = 1 , 2 ,  ..., n), 

Theorem 1. The rough measure of Pawlak, the measure R, the measure RN 
satisfy the monotonous axiom. 

Proof: Consider two subset of attributes P and P' where P C P'. Let m be any 
one of three above measures, we should prove that m(P') > m(P) .  

Preliminary remarks: 
Assume that the set of objects 0 is partitioned by t,he subset of attributes 

P into q equivalent classes. Because P G P' then each i-equivalent class by the 
subset of attributes P consists a,(i = 1 ,2 ,  ..., q)  equivalent classes by the subset of 
attributes P'. 

Denote the representative object of j-equivalent class (j  = 1 ,2 ,  ... n,) by the 
subset of attributes PI which is contained the i-equivalent class by the subset of 
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attributes P is 4(j = 1,2, ..., nz). For each 2-equivalent class by the subset of 
attributes P,  we denote the representative object is 0:. We chose the object 0: be 
one of the objects 4 in some cases. 

We consider 2-equivalent class (it means that [o:]p) by the subset of at- 
tributes P ,  we have: 

(*I [OZIP = u;:llo:l> 
(**) C..d(IozlP) = u;:1 card(I4l'p) 
(***) For each equivalent class [o]Q by the subset of attributes Q: card( [o]Qn 

0 Let m be the rough measure: 
Consider two sets 01 = (0 E 0 : [o]p C ( o ] ~ }  and 0 2  = (0 E 0 : [o]> 

[OlQ]}  
For each o E 01, we consider the equivalence class [o]p. By above, we have 

o be some oz and [o,]> & [oz]p  C [o,]Q, that is o E 0 2 .  Because in spite of o so 

[ O z I P )  = UYL1 card([o]Q [oil>) 

01 c 0 2 .  
Since then card(@) < card(O2) whether m(P) < m(P'). 
0 Let m be the measure R: 
According to the preliminary remarks, we have following inequalities: 

and 

Because of card (0 )  fixed so for proving f ip (Q)  < i ip>(Q)  we have only to 
prove that: 

Two members of (e) have q of terms, so to confirm this inequality, we only confirm 
for each corresponding terms in q couples of terms. That is for i = 1,2, .., q, we 
prove that: 

According to the preliminary remarks, we may chose o: be representative 
object of the i-equivalence class by subset of attributes P with some special prop- 
erties. We chose o: be the object which maximizes c a T f ~ ~ ~ ~ ~ ~ ~(it belongs to 
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the equivalent class by subset of attributes Q, too). By this choise 0: belongs to 
[ o ] p  and since [o]p  is partitioned into classes [ 4 ] p ~ ,  0: belongs to some jo- equiva- 
lent class: the equivalent class [$]p  . We chose the representative object 0: = $ 
which have equivalent class by subset Q ( [d"]Q)  which maximizes the left member 
of (f). Since then, the left member of (f)  is equal to 

Card2([4'"]Q n [ e ] p )  

card"dolP) 

For the right member of (f), for j = 1,2,  ..., n,, we always have: 

so that 

According to the first inequality of the Remarks 1, we have: 

- card2([4"]Q n [ 4 O ] P )  B >  (c;:~ card([4"lQ n [o i ]P ' ) )2  - c;:1 c a r 4 [ 4 l P f )  card( 14-1 P )  

(by equality (**) and (***) in the preliminary remarks and we chose o:~ to be the 
representative object 0: in equivalent class by P) .  

So that 

card2([o]Q n [ 4 ] P t )  card2( [4"]Q n [ o ~ o ] P )  
3=1  ' F r  card( [$]p , )  c a 4 [ 4 ° 1 P )  

Since then, (f) is proved for any 2-term (z = 1 ,2 ,  .., q )  that is m(P)  < m ( P )  
or by another term, R ( P )  < R(P').  

0 Let m be the measure R N :  
Like above, we consider: 

in there A = C[O1pG[OjQ card ( [o]p )  and 
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Due to card(0)  is fixed so to prove &(Q) < &(Q) we prove the inequality for 
only two right members of the formulas. 

We have: 

because of card([o]p) = ~ l o l Q  c a r d ( [ o ] ~  n [ o ] ~ )  and 

We classify equivalent classes by subset of at,tributes P' into three following 

+ [ o ] p  C_ [o]p C_ [O]Q are equivalent classes by P' which are partitioned from 
equivalent classes by P such that [o]p C [o]Q. For every equivalent class attended 
in the sum A by partition of P is related with a group of equivalent classes attended 
in the sum A by partition of P' in this kind and two sums have the same value. 
We denote the set of equivalent classes [ o ] p  in this kind by set I. 

+ [ o ] p  C [O]Q but [ o ] p  @ [o]p . The value of the term for this equivalent 
class by subset P' equal to card([o]pt). We denote the set of equivalent classes [ o ] p  
in this kind by set 11. 

+ [ o ] p  

kinds: 

[o]Q: We denote the set of equivalent classes [ o ] p  in this kind by 
set 111. 

To apply to the preliminary remarks and with out loss of generality the 
comprehensive we assume that equivalent classes by subset P which are related 
with equivalent classes by subset P' belonging to set I be the first classes [ o t ] p ( i  = 
1,2,  ..., k ;  for 0 < k 6 q) .  To observe that when k = 0 the there is not any equivalent 
class by subset P, that, is contained in an equivalent class by subset Q; Otherwise, 
when k = q,  all of equivalent classes by subset P are contained in some equivalent 
class by subset Q. We perform card(0) x &(Q) by another form: 
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We consider the following sum which related with subset P': 

with 

After gathering all of equivalent classes by subset P' into equivalent classes 
by subset P ,  we get: 

z = k f l j = l  [ o ] ~  

By the second inequality in the Remarks 1 and the preliminary remarks 
(**), and (***), we have: 

Then 

According (i), (j), and (k) we have R,(P) < RN(P')  
By the corollary 1 and t.he theorem 1, we find out: if considering the set 

of all of attributes R be the reference set then the rough measure of Pawlak, the 
measure R, the measure RN are confidence measures. 

5. Conclusion 

By Dubois D. and Prade H. [ l ] ,  one pair of dual confidence measures are 
considered as two bound measures: The necessity measure N and the possibility 



140 

measure II. The necessit,y measure N is seemed as the minimum measure and the 
possibility measure 11 is seemed as the maximum measure. Between two measures 
there is a set of confidence measures and probability is one of them. We may 
consider the measure R and t,he rough measure is two bound measures and RN is 
one measure which lays between them (The proposition 1). However, the measure 
R and the rough measure have not some special relations as two measure lI and N .  
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Abstract 
We study the complexity of circuit-based combinatorial problems 

(e.g., the circuit value problem and the satisfiability problem) de- 
fined by Boolean circuits with gates from an arbitrary finite base B 
of Boolean functions. Special cases have been investigated in the lit- 
erature. We give a complete characterization of their complexity de- 
pending on the base B. For example, for the satisfiability problem for 
Boolean circuits with gates from B we present a complete collection of 
(decidable) criteria which tell us for which B this problem is in L, is 
complete for NL, is complete for @L, is complete for P, or is complete 
for NP. Our proofs make substantial use of the characterization of all 
closed classes of Boolean functions given by E.L. POST already in the 
twenties of the last century. 

1 Introduction 
The complexity of formula-based and circuit-based combinatorial problems 
was studied through the more than three decades of Complexity Theory. Al- 
ready in 1971, S.A.  COOK [Coo7l] proved that the satisfiability problem 
for Boolean formulae is NP-complete: This was the first NP-complete prob- 
lem ever discovered. R.E. LADNER [Lad771 proved in 1977 that the circuit 
value problem is P-complete. In many cases when a new complexity class 
was introduced and investigated, a formula-based or circuit-based combina- 
torial problem was the first which was proved to be complete for this class 
(see [SM73, Gi1771, for example). However, usually these problems were de- 
fined using formulae or circuits with a complete base of Boolean operations 



142 

or gates, mostly with the base {A, V, l}. But what about the complexity of 
such problems when a different base is used? There are several special results 
of this kind (e.g. [Sim75, Go177, Lew79, GP861). In particular, there are very 
detailed investigations for the special case of Boolean formulae in conjunctive 
normal form in [Sch78, Cre95, CH96, CH97, KST97, RVOO]. But there are 
no results answering this question for unresricted circuits in full generality. 
In this paper we will give complete characterizations of the complexity of 
some combinatorial problems defined by circuits with Boolean gates from an 
arbitrary finite base. 
The paper is organized as follows. In Section 2 we define B-circuits as 

Boolean circuits with gates from a finite set B of Boolean functions, and 
we define BF[B] as the class of Boolean functions computed by B-circuits. 
The complexity of a problem defined by B-circuits only depends on BF[B]. 
The classes of the form BF[B] are exactly those classes of Boolean functions 
which contain the identity function and which are closed under superposition 
(i.e., substitution, permutation of variables, identification of variables, and 
introduction of non-essential variables). Already in the twenties, E.L. POST 
[PosLil] gave a complete characterization of these classes. We make substan- 
tial use of his results which we present in Section 3. In Sections 4-8 we study 
the complexity of the circuit value problem, the satisfiability problem and 
the tautology problem, some quantified circuit problems, the counting func- 
tion, and the threshold problem, resp., when defined by circuits with Boolean 
gates from an arbitrary finite base B. We give complete characterizations of 
their complexity in terms of completeness for suitable complexity classes. 

2 Problems Defined by B-Circuits 
In this paper we will study problems which are defined by Boolean circuits 
with gates from a finite set of Boolean functions. Informally, for a finite set 
B of Boolean functions, a B-circuit C with input Variables xl , .  . . , x , ( ~ )  is 
a directed acyclic graph with. a special output node which has the following 
properties: Every vertex (gate) with indegree 0 is labeled with an xi or a 0- 
ary function from B. Every vertex (gate) with indegree k > 0 is labeled with 
a k-ary function from B. Given values al , .  . . ,a,(c) E (0, l} to XI,. . . , z,(c), 
every gate computes a Boolean value by applying the Boolean function of this 
gate to the values of the incoming edges. The Boolean value computed by 
the output gate is denoted by f~(a1,. . . , a,(c)) .  In such a way the B-circuit 
C computes the a(C)-ary Boolean function fc. For more formal definitions 
see [Vo199]. Furthermore, let BF[B] =df {fc: I C is a B-circuit} be the class 
of all Boolean functions which can be computed by B-circuits. 

Now let A be a property related to Boolean functions. For a finite set B of 
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Boolean functions define 

A ( B )  =df {(C,a)  1 C is a B-circuit such that (fc, a )  has property A}. 

In order to study the complexity of A ( B )  the following question is very 
important: How can we relate the complexity of A ( B )  and A(B’)  by relating 
the sets B and B’ of Boolean functions themselves? The following proposition 
gives a satisfactory answer. 

Proposition 1 Let A be a property of Boolean functions. For finite sets 
B and B’ of Boolean functions, if B C BF[B’] then A ( B )  L z g  A(B’) .  
Consequently, i f  BF[B] = BF[B’] then A ( B )  ~ z g  A(B’) .  

Proof To convert a B-circuit into an equivalent B’-circuit just replace every 
0 

In what follows we will make substantial use of the fact that the complex- 
ity of A ( B )  depends only on BF[B]. To this end it is necessary to study 
the classes of Boolean functions which have the form BF[B]. It turns out 
that this are exactly those classes of Boolean functions which contain the 
identity function and which are closed under superposition (i.e., substitu- 
tion, permutation of variables, identification of variables, and introduction of 
non-essential variables). In the following section we will report on important 
results which are known on these classes. 

B-gate by a B’-circuit computing it. 

3 Closed Classes of Boolean Functions 
A function f : (0, l}” + {0,1} with n 2 0 is called an w a r y  Boolean func-  
tion. By BF we denote the class of all Boolean functions. In particular, let co 
and c1 be the 0-ary constant functions having value 0 and 1, resp., let id and 
non be the unary functions defined by id(a) = a and non(a) = 1 w a = 0, 
let et, vel, and aut be the binary functions defined by et(a,b) = 1 w a = 
b = 1, vel(a,b) = 0 w a = b = 0, and aut(a,b) = 1 w a # b. We also 
write 0 instaed of co, 1 instaed of cl, ?E or i z  instead of non(z), z A y ,  
z .  y ,  or x y  instead of et(z, y ) ,  z V y instead of vel(z, y ) ,  and z @ y instead 
of aut(z,y). For i E { l , 2 , .  . . ,n}, the i-th variable of the n-ary Boolean 
function f is said to be non-essential iff f (a l , .  . . ai-l,O, ai+l, .  . . ,a,) = 
f ( a l ,  . . . ai-1,1, a i+ l , .  . . ,a,) for all (11,. . . ai-1, ai+l, .  . . ,a, E (0, l}. 
For a set B of Boolean functions let [B] be the smallest class which contains 

B U {id} and which is closed under superposition (i.e. substitution, permuta- 
tion of variables and identification of variables, introduction of non-essential 
variables). A set B of Boolean functions is called a base of the class F of 
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Boolean functions if [B] = F and it is called complete if [B] = BF. A class 
F of Boolean functions is called closed if [F] = F. 
The closed classes of Boolean functions are closely related to the sets of 

Boolean functions computed by B-circuits, as shown in the following “folk- 
lore” statement . 

Proposition 2 For any set B of Boolean functions, BF[B] = [B]. 

function f is said to be 
Now consider some special properties of Boolean functions. An n-ary Boolean 

0 a-reproducing iff f ( a , a ,  . . . ,a )  = a ( a  E (0, l}), 

0 linear iff there exist ao, al,  . . . ,a, E {0,1} such that 

- 
0 self-dual iff f(a1,. . . ,a,) = f (Ei, . . .a,) for all al,  . . . ,a ,  E (0, I}, 

0 monotone iff fm(al, .  . . ,a,) 5 f m ( b l , .  . . , b,) for all al ,  . . . , a,, b l ,  . . . , 

0 a-separating iff there exists an i E {1,2, .  . . ,n} such that !-‘(a) c 
0 a-separating of degree m iff for every U c !-‘(a) such that IUI = m 

there exists an i E {1,2,. . . n}  such that U c {O,l}Z-’ x { a }  x (0, l},-Z 

b, E {0,1} such that a1 5 b l ,  a2 5 b 2 , .  . . , a ,  5 b,, 

{O, l} i -1  x { a }  x {0,1},-i (a  E (0, l}), 

( a  E {0,1>, m 2 2). 

The classes of all Boolean functions which are O-reproducing, l-reproducing, 
linear, self-dual, monotone, O-separating, l-separating, O-separating of degree 
m, and l-separating of degree m, resp., are denoted by BF, &, R1 L, D, M, 
SO, S1, S r l  and Sy, resp. 
The closed classes of Boolean functions were intensively studied by E. L. 

POST already at the beginning of the twenties. He gave a complete char- 
acterization of these classes. In this paper we will make substantial use of 
his main results which are presented in the following two theorems. For a 
detailed presentation see also [JGK70], the non-German reader may prefer 
[Pip97]. 

         1. TRhecomplete list of closed classes of Boolean                                                              
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SO, So2 =dfSO n R, Sol =dfSO n M, So0 =dfSO n R n M, 
S17 S12 =dfS1 n R, S11 =dfS1 n M, SIO =dfS1 n R M, 
S r ,  SG =dfsr n R, Sg =dfsr r l  M, S; =dfsr n R n M for  m 2 2, 
Sy ,  S z  =dfsy n R, SE =dfsy r l  M, S;n, =dfsy n R n M for m 2 2, 
E =df[et] U [CO] U [CI], EO =df[et] U [CO], El =df[et] U [CI], E2 =df[et], 

v =df[vel] u [co] u [Cl], vo =,,[vel] u [co], v1 =,,[vel] u [Cl], v2 =df[vel], 
N =df[non] U [CO] U [Cl] ,  N2 =df[non], 

1 =dr[id] u [CO] u [C l ] ,  10 =df[id] u [CO], 11 =df[id] u [C1], 12 =,,[id], 
=df[CO] [cl], co =df[CO]f c1 =df[C1], 0. 

2. The inclusional relationships between the closed classes of Boolean func- 
tions are presented in Figure 1. 

3. There exists an algorithm which, given a finite set B 2 BF, determines 
the closed class of Boolean functions from the list above which coincides 
with [B]. 

4. There exists an algorithm which, given f E BF and afinite set B C BF, 
decides whether f E [B] or not. 

5. Every closed class of Boolean functions has a finite base. 

Let us consider an example. Define the Boolean function f 3  such that 
f ( z , y , z )  = 1 iff exactly one argument has the value 1. Clearly, f is 0- 
reproducing but not 1-reproducing. Now assume that f is a linear function, 
i.e., f (x, y, z )  = ao&i (a1 .z) @(a2 .y) @ (a3 . z )  for suitable ao, a1 , a2, a3 E (0, l}. 
Since f ( O , O , O )  = 0 we know a0 = 0 and it follows that a1 = a2 = a3 = 1, 
because of f(1, 0,O) = f (0,1,0) = f ( O , O ,  1) = 1. But this is a contradiction 
because f (1, 1 , l )  = 0, showing that f is not linear. Furthermore f is not 
monotone since f (1,0,0) = 1 and f (1,1,1) = 0,  and it is not self-dual because 
of f(0, 0,O) = f (1,1,1). Finally, f cannot be 1-separating of degree 2 because 
of f (O,O,  1) = f ( O , l ,  0) = 1. Summarizing the above, f is not in R1, L, M, 
D, and S: but it is in &. A short look at Figure 1 shows [{f}] = Ro. 
For an wary Boolean function f define the Boolean function dual(f) by 

dual(f)(zl,.  . . ,x,) =df f (Zi, . . . ,%). The functions f and dual( f )  are said 
to be dual. Furthermore, f is self-dual 
iff dual(f) = f .  For a class F of Boolean functions define dual(F) =df 

{dual(f) 1 f E F } .  The classes F and dual(F) are called dual. 

Obviously, dual(dual(f)) = f. 

Proposition 4 
dual( [B]). 

in Figure 1 ) .  

1. If B is a set of Boolean functions then [dual(B)] = 

2. Every closed class is dual to its “mirror class” (via the symmetry axis 
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Figure 1: Graph of all classes of Boolean function being closed under super- 
position 
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4 Circuit Value 
Let B be a finite set of Boolean functions. The circuit value problem for  
B-circuits is defined as 

VAL(B) =df {(C, a) 1 C is a B-circuit, a E (0 ,  l}a(C),  and f c ( a )  = 1) 

It is obvious that VAL(B) E P for every finite set B of Boolean func- 
tions. LADNER [Lad771 proved that VAL({et, vel, non}) is Lkg-complete for 
P. GOLDSCHLAGER [Go1771 proved that even VAL({et, vel) is Lgg-complete 
for P. Eventually, GOLDSCHLAGER and PARBERRY proved for any set B of 
binary Boolean functions: If {et,vel} C [B] or ( B  g L and B g M) then 
VAL(B) is Fzg-complete for P, otherwise VAL(B) is acceptable in log’n 
space. This is already a “general” result but it applies only to binary Boolean 
functions and it disdinguishes only between “P-complete” and “acceptable in 
log2n space”. To obtain a more general and more refined result we strengthen 
Proposition 1 for the case of the circuit value problem. 

Proposition 5 For finite sets B and B‘ of Boolean functions, if B g [B’ u 
{id, co,c1}] then VAL(B) < k g  VAL(B’). ConsequentZy, if [Bu{id, C O , C ~ } ]  = 
[B’U {id,co,cl}] then VAL(B) ~ 2 g  VAL(B‘). 

Proof As for Proposition 1, but additionally a co-gate (cl-gate, resp.) is 
0 

Hence, for the study of the complexity of VAL(B), only those closed classes 
of Boolean functions are of importance which contain co, and c1. A close 
inspection of Figure 1 shows: 

replaced by an input gate with Boolean value 0 (1, resp.). 

Proposition 6 The closed classes of Boolean functions containing co, and 
c1 are BF, M, V, E, L, N, and I. 

Now we are ready to prove our main theorem on the complexity of VAL(B). 

Theorem 7 Let B be a finite set of Boolean functions. 
if (B N) then 

VAL(B) E L 
else if ((B g E) or (B 

else if (B g L) then 

else 

V)) then 
VAL(B) is skg-complete for  NL 

VAL(B) is skg-complete fo r  @L 

VAL(B) is skg-complete for  P 
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There exists an algorithm which decides which of the cases above holds. 

Proof sketch: The proof runs along the following lines: 
1. If B s N then VAL(B) S k g  VAL({non}). We prove that VAL({non}) 

is in L. 
2. Let B g N and B V. We prove that VAL(B) =:g VAL({vel}) and 

that VAL( {vel}) is Skg-equivalent to  the NL-complete graph accessibility 
problem. 

3. The case B g N and B C E is treated in the same way. 
4. Let B g N and B c L. We prove that VAL(B) = k g  VAL({aut}) and 

that VAL( {aut}) is Skg-equivalent to  the @L-complete graph odd accessibil- 
ity problem (eg., the problem of whether the number of paths from the start 
node to  the target node in a given directed graph is odd). 

L. We prove VAL({et, vel}) Fkg VAL(B). 
Then VAL(B) is Skg-complete for P by the GOLDSCHLAGER result. 0 

Finally let us mention that the GOLDSCHLAGER-PARBERRY criterion for 
sets B of binary Boolean functions is not valid for arbitrary finite sets B of 
Boolean functions. Take for example B = { x y  v xz} for which we obtain 
vel $ [B] and B c M. The GOLDSCHLAGER-PARBERRY criterion would yield 
that VAL(B) is acceptable in log'n space. However, Theorem 7 shows that 
VAL(B) is <kg-complete for P which is not likely to  hold at the same time. 

5.  Let B g V, B g E, and B 

5 Satisfiability and Tautology 
In this section we study the complexity of the satisfiability problem and the 
tautology problem for B-circuits. For a finite set B of Boolean functions we 
define 

SAT(B) =df {C 1 C is a B-circuit and fc(a) = 1 for at least one 
a E {o,l}a(C)} 

and 

TAUT(B) =df {C I C is a B-circuit and fc(a) = 1 for all a E (0, l}"

It is obvious that SAT(B) E N P  and TAUT(B)  E co-NP for every finite 
set B of Boolean functions. COOK [Coo7l] proved that SAT({et, vel, non}) is 
&g-complete for NP. Consequently, TAUT(  {et, vel, non}) is Sgg-complete 
for co-NP. LEWIS [Lew79] proved that SAT(B) is Skg-complete for N P  for 
every B such that x A 
The following easy-to-get reductions between different satisfiability and value 

problems are needed for the proof of the main theorem on the complexity of 
SAT(B). 

E [B]. 
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Proposition 8 Let B be a finite set of Boolean functions. 

1 .  If B c M then SAT(B) < k g  VAL(B). 

2. If co E [B] c M then VAL(B) < k g  SAT(B).  

3. If colcl E [B] then VAL(B) <&g SAT(B).  
4. SAT(B U {cl}) s k g  SAT(B).  

Now we are ready to  prove the main theorem on the complexity of SAT(B).  

Theorem 9 Let be B a finite set of Boolean functions. 
if ((B c R1) or (B c D) OT (B c N)) then 

else if ((B C E) or (B 2 V)) then 

else if (B c L) then 

else if (B M) then 

else 

There exists an algorithm which decides which of the cases above holds. 

SAT(B) E L 

SAT(B) is Igg-complete for NL 

SAT(B) is <kg-compZete for $L 

SAT(B) is <kg-compZete for P 

SAT(B) i s  <gg-compZete for NP. 

Proof sketch: The proof runs along the following lines: 
1. If B c R1 then every B-circuit C is satisfiable because of fc(1,. . . 1) = 1. 
2. If B D then every B-circuit C is satisfiable because of fc(0,. . . , 0) = 1 

3. Let B c N. We prove that SAT(B) < k g  SAT({non,cl}), and that 

4. Let B g R1, B g N, and B C V. We prove SAT(B)  =kg  VAL(B). 

5 .  The case B g R1, B 
6. Let B g R1, B g N, and B c L. We prove that SAT({aut}) < k g  

SAT(B) < g g  SAT({aut, cl}), that SAT({aut, CI}) is in @Land that the @L- 
complete graph odd accessibility problem is Skg-reducible to  SAT( {aut}). 

7. Let B g R1, B D, B g V, B g E,and B c M. WeproveSAT(B) =kg  

VAL(B). Now Theorem 7 yields that SAT(B) is <kg-complete for P.  
8. Let B g R1, B g D, B g L, and B g M. We prove z A 5 E [B]. By the 

0 

Now turn to the tautology problem. The following obvious duality principle 
allows us to conclude the main theorem on the complexity of TAUT(B) from 
the corresponding theorem on SAT(B).  

or fc(1,. . . , 1) = 1. 

SAT({non,cl}) is in L. 

Now Theorem 7 yields that SAT(B) is <kg-complete for NL. 
N, and B c E is treated in the same way. 

LEWIS result we get that SAT(B) is <kg-complete for NP. 
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Proposition 10 For any finite set B of Boolean functions, TAUT(  B) z z g  

SAT(dual(B)). 

Now we are ready to prove the main theorem on the complexity of TAUT(B) .  

Theorem 11 Let be B a finite set of Boolean functions. 

if ( (B  g &) or (B 
TAUT(B)  E L 

else if ((B C E) or (B E V)) then 

else if (B C L) then 

else if (B C M) then 

else 

D) 01- (B g N)) then 

TAUT(B) is &g-complete for NL 

TAUT(B) is Fzg-complete for @L 

TAUT(B) is igg-complete for P 

TAUT(B)  is <kg-complete for co-NP. 

There exists an  algorithm which decides which of the cases above holds. 

6 Quantifiers 
In this section we study the complexity of problems defined by B-circuits 
with quantified input variables. For Q 1 , Q 2 ,  . . . ,Qm E (3,V) and k 2 1, we 
call Q 1 Q 2  . . . Qm a &-string (a &-string) if Q1 = 3 (Q1 = V, resp.) and 
there are at most k - 1 alternations between 3 and V in Q 1 Q 2  . . . Q,. For a 
finite set B of Boolean functions define: 

Xk(B) =df { Q l q  . . . Qmx,C I C is a B-circuit with Boolean variables 
21,. . . , z,, Q1 . . . Qm is a &-string and 
Q121. . . Q m z m f c ( z 1 , 5 2 , .  . . , 2,) = 1) 

I&(B) =df (Q1z1 . . . Qmz,C I c is a B-circuit with Boolean variables 
z 1 , .  . . ,z,, Q1 . . . Qm is a &-string and 
Q121. . . Q m z m f ~ ( z 1 , .  . ., zm) = 1) 

QBC(B) =df (Q1z1 . . . QmzmC 1 C is a B-circuit with Boolean variables 
x l , . . * , z m ,  Q1, . . .7Qrn  E (3,v) and 
Q1z1 . . . Q m z m f c ( z 1 , .  . . ,zm) = 1) 

Notice that &(B) = SAT(B) and lll(B) = TAUT(B)  have already been 
treated in the previous section. Here we concentrate on the case k 2 2. 
It is obvious that Ek(B) E EL, &(B) E IIL, and QBC(B) E PSPACE for 

every finite set B of Boolean functions. STOCKMEYER and MEYER [SM73] 
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proved that &({et, vel, non}) is 5:g-complete for C:, IIk({et, vel, non}) is 
Skg-complete for ll:, and QBC({et,  vel, non}) is 5:g-complete for PSPACE. 
For sets B of monotone Boolean functions the complexity of X:k(B), IIk(B) 

and QBC(B) can easily be related to the complexity of VAL(B) .  

Proposition 12 If B 5 M is a finite set of Boolean functions then Xk(B) 
-:g IIk(B) z k g  QBC(B) =:g VAL(B) for every k 2 2 .  

Theorem 13 Let be B a finite set of Boolean functions, and let lc 2 2 .  

if ( B  g N) then 

else if ( ( B  

else if ( B  g L) then 

else if ( B  C M) then 

else 

&(B) ,  nk (B) ,  QBC(B) E L 
E) or ( B  g V)) then 

X:k(B),IIk(B), and QBC(B) are <:g - complete f o r  NL 

&(B),IIk(B),  and QBC(B) are 5:g-complete for @L 

&(B),IIk(B),  and QBC(B) are &?-complete for P 

Xk(B) is skg-complete for C: 
IIk(B) is &?-complete for II: 
QBC(B) is 5:g-complete f o r  PSPACE. 

There exists an algorithm which decides which of the cases above holds. 

Proof sketch: The proof for xk(B)  runs along the following lines, the other 
cases are analogous. 

1. Let B 2 N. We prove that Xk(B) 5:g Xk({non,cI}), and that 
E:k({non,cl}) is in L. 
2. Let B g N and ( B  V or B C E). We prove that Ek(B) z Z ~  VAL(B) .  

By Theorem 7 we obtain that these problems are &g-complete for NL. 
3. Let B N and B g L. We prove that X k ( { h } )  <:g &(B) <:g 

&({aut,cl}) where h ( x , y , z )  =df x @ y @ z ,  that I=k({aut,cl}) is in CfiL, and 
that the complement of the graph odd accessibility problem is 5:g-reducible 
to & ( { h } )  (notice that @L is closed under complement). 
4. Let B V, B E, and B C M. We prove that Xk(B) z:g VAL(B) .  

By Theorem 7 we obtain that these problems are <kg-complete for P. 
5 .  Let B g M and B g L. We prove that B U {co,c1} is complete, that 

there exists an h E [B] such that h(x, u, 0 , l )  = x V u and h ( x ,  u, w, z )  5 u for 
all (v, 2) # (0, l),  and that E:k(BU{co,cl}) <&g Ek(BU{h}) for such an h. 0 
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7 Counting Functions 
In this section we study the complexity of functions which count the num- 
ber of satisfying inputs to a B-circuit. For a B-circuit C define #C =df 

#{a  E (0 ,  l}u(") I f c ( a )  = l}, and for any finite set B of Boolean functions 
define the counting function #(B) by #(B)(C) =df #C where C is a B- 
circuit. 
It is obvious that #(B) E #P for every finite set B of Boolean functions. 

Simon [Sim75] proved that #({et, vel, non}) is <kg-complete for #P. 
To study the complexity of #(B) in the general case we will use the following 

propositions which are analogous to Proposition 1 and Proposition 8.4 and 
which are proved in the same way. 

Proposition 14 For B and B' be finite sets of Boolean functions, if B 
BF[B'] then #(B) < k g  #(B'). 
#(B) - k g  #(B'). 

Consequently, if BF[B'] = BF[B'] then 

Proposition 15 If B is a finite set of Boolean functions containing et then 
#(B u {CI) )  I!? # W .  

Proposition 16 For any circuit C there holds #dual(C) = 2a(") - #C. 

We will use the following obvious duality principle. 

Next we prove a lemma about the representation of #P functions by #(B) 
functions. We omit the proof of this lemma. 

Lemma 17 Let B be a finite set of Boolean functions. 

1. If [B] 2 S1 then #(B) is &g-complete for #P, i.e., for every function 
f E #P there exists a logspace computable function h generating B- 
circuits such that f ( x )  = #h(x) .  

2. If [B] 2 S l o  or [B] 2 So0 then #(B) is <F'T-complete for #P. More 
specifically, for every function f E #P there exist logspace computable 
functions hl , h2 generating B-circuits and logspace computable func- 
tions g1,g2 such that f(z) = # h l ( x )  - gl(x)  = g2(x) - #h2(x). 

Now we can prove our main result on the complexity of # ( B ) .  
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Theorem 18 Let be B a finite set of Boolean functions. 

if ((B 2 N) or (B C D ) )  then 

else if ((B g E) or (B g V)) then 

else if (B g L) then 

#(B) E FL 

# ( B )  is <p'T -complete f o r  FLrLIO(logn)] 

#(B) is  S''fT -hard for  FLrL[l] and 
#(B) E q L [ 2 I  

else if ( B  g R1) then 
#(B) is  <"fT -complete for  #P, 
but not 5:g-complete for  #P 

#(B) is <p'T -complete for  #P. 
If #(B) is  <:g-complete f o r  #P then P = NP. 

else if (B g M) then 

else 
#(B) is  szg-complete fo r  #P. 

There exists a n  algorithm which decides which of the cases above holds. 

Proof sketch: The proof runs along the following line. 1. Let B 2 N. We 
prove that #(B)  < z g  #({non, CI}) and that #({non, cl}) can be computed 
in logspace. 
2. If B 2 D and C is a B-circuit with n input variables then #C = 2"-l. 
3. Let B g N and B C E. We prove that #({et}) 5:g #(B) <:g 

#({et, co,cl}), that #({et, co, cl}) is in FLf;LIO(logn)], and that every func- 
tion from FLfL[O(1ogn)] is ikg-reducible to  #({et}). 

4. The case B 
5 .  Let B g N,  B g D, and B 2 L. We prove that #({aut}) 5 z g  #(B) <:g 

N and B 2 V is done in an anologous manner. 

#({aut,cl}), that #({aut,cl}) is in FLrL[2], and that #({aut}) is 
hard for FLfL [l]. 
6. Let B g D, B g V, B g E, B g L, and B E R1. An inspection of 

Figure 1 shows that [B] 2 Slo or [B] 2 SOO. By Lemma 17 we obtain #(B) 
is 5?'T-complete for #P. Because of B C R1 we have #(B)(C) > 0 for 
every B-circuit C. Hence #(B) cannot be <:g-complete for #P. 

7. Let B g D, B g V, B g E, B L, and B g M. As above we 
obtain that #(B) is S:O_gT-complete for #P. Assume that #(B) is <;g- 

complete for #P. For an arbitrary A E N P  there exists an f E #P such 
that x E A @ f ( x )  > 0 for every 2. Since # ( B )  is <!ig-complete for #P 
there exists a logspace computable function h such that f ( x )  = #(B) (h (x ) )  
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for every z. Consequently, z E A * #(B)(h(z)) > 0 ($ h(z)  E SAT(B). 
Because of B g M we obtain A E P by Theorem 9. 

M. An inspection of Figure 1 shows 
that [B] 2 S1. By Lemma 17 we obtain that # ( B )  is <kg-complete for #P. 0 
8. Let B g D, B g L, B g R1 , and B 

8 The Threshold Problem 
In this section we will study the complexity of the threshold problem 

THR(B) =df { ( C , k )  I C is a B-circuit, k 2 0, and #C 2 k) 

for every finite set B of Boolean functions. Obviously, THR(B) E PP.  GILL 
[Gi177] proved that THR({et,  vel, non}) is Skg-complete for PP.  
Now we are ready to prove the main theorem on the complexity of THR(B) .  

Theorem 19 Let be B a finite set of Boolean functions. 

if ((B C N) or (B g D)) then 

else if ((B 

else if (B E L) then 

else 

THR(B) E L 
E) or (B g V)) then 

THR(B) is Lkg-complete for NL 

THR(B) is Skg-complete for @L 

THR(B) is Skg-complete for PP.  

There exists an algorithm which decides which of the cases above holds. 

Proof 1. If B g N or B g D then, by Theorem 18, we have #(B) E FL 
and consequently THR(B) E L. 

E. By Theorem 18 we obtain #(B) E FLfi'L and 
hence T H R ( B )  E LNL = NL. For the lower bound we prove GAP S 2 g  
THR( {et}) 

2. Let B g N and B 

3. The c a e  B g N and B 2 V is done in an analogous manner. 
4. The case B g N, B g D, and B g L is also done analogously. 
5. Let B g D, B g V, B g E, and B g L. An inspection of Figure 1 

shows that [B] 2 Slo or [B] 2 So0 For a set A E PP there exists a f E #P 
such that (z,k) E A ($ f(z) 2 k. By Lemma 17 there exist logspace com- 
putable functions g, h such that f(z) = #(B)(h(z)) - g(z). Consequently, 

0 ( z , k )  E A @ #(B)(h(z))  2 g(z) + k @ (h(z) ,g(z)  + k) E T H R ( B ) .  
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9 Conclusions 
We have investigated the complexity of circuit-based combinatorial problems 
defined by circuits with gates from an arbitrary finite base of Boolean func- 
tions. What about the special case of Boolean formulae, i.e., “tree-like” 
Boolean circuits? Informally, all completeness results for complexity classes 
beyond P are the same as in the general case of circuits. The complet.eness 
results for complexity classes inside P do not remain valid in many cases 
because evaluating a formula is much easier than evaluating a circuit. 
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The rational skimming theorem 

Jacques Sakarovitch * 

Abstract 

We define the notion of K-covering of automata with multiplicity 
(in a semiring K) that extend the one of covering of automata. We 
make use of this notion, together with the Schutzenberger construct 
that we have explained in a previous work and that we briefly recall 
here, in order to give a direct and constructive proof of a fundamental 
theorem on M-rational power series. 

In a previous work (cf. [4]), we have shown how a construction, proposed 
by Schutzenberger (in [8] and [9]) in order to  prove that rational functions 
are unambiguous, can be given a central position in the theory of relations 
and functions realized by finite automata. The other basic results such as the 
“Rational Cross-section Theorem”, the “Rational Uniformisation Theorem” 
(that is dual to the preceeding one), and the “Decomposition Theorem ” 
(of rational functions into sequential functions) appear then as direct and 
formal consequences of it. 

We have explained that this construction is indeed a construction on 
finite automata and we have described it in the framework of covering of 
automata - which is derived from the notion of covering of graphs that was 
proposed by Stallings ([lo]) - and which makes (in our opinion) the whole 
subject much clearer. 

The purpose of the present communication is to extend the concept of 
covering to the one of K-covering that apply to automata with multiplicity 
in a semiring K. And to  make use of this notion together with the Schutzen- 
berger construct quoted above, in order to establish another result, due to 
Schutzenberger as well, and that we call the Rational Skimming Theorem. 

‘LTCI, UMR 5141 CNRS/ENST , Paris 



158 

Theorem 1 [7] If s is a N-rational power series on A*, then the series sf 
obtained from s by substracting 1 to every non-zero coeficient of s ,  i.e. the 
series 

sf = s - supps 

is a N-rational power series as well. 

This result is not new, by far. In [2, Theorem VI.11.11, it is obtained as 
the consequence of the Rational Cross-section Theorem quoted above (and 
of some other results such as the division theorem). In [6, Theorem 11.8.61 
and in [l, Theorem V.2.11, more direct proofs are given (the attribution to 
Schutzenberger is made in the latter reference). 

The proof presented here is hopefully simpler than the preceeding ones 
and corresponds to an explicit construction on automata. A complete expo- 
sition of all that matter, K-coverings and their use in the theory of K-rational 
series will be found in [5]. 

1 The Schutzenberger covering 

We basically follow the definitions and notation of [2] which we use without 
further notice. Those that follow in this section and that are more original 
have been described in detail in [4]. 

A (finite) automaton over a finite alphabet A,  A = ( Q, A,  E ,  I, T ), is a 
directed labelled graph where Q, I and T are respectively the (finite) sets of 
states, initial states and terminal states, and E is the set of labelled edges. 
The language accepted by A, that is the set of the labels of the successful 
computations in A, also called the behauiour of A, is denoted by IAI. 

A rnorphism cp from an automaton B = ( R ,  A, F, J ,  U )  into an au- 
tomaton A = ( Q, A,  E ,  I, T ) is indeed a pair of mappings (both denoted 
by cp): one between the set of states 'p: R -+ Q, and one between the set of 
edges cp: F + E,  which are consistent with the structure of the automata, 
that is, for every f in F:  

i) the origin of f c p  is the image (by 'p) of the origin o f f ;  

ii) the label of f'p is equal to the label o f f ;  

iii) and Jcp I and Ucp T .  

These conditions imply that the image of a successful computation in B is a 
successful computation in A, that their labels are equal, and thus that IBI C 
Id1 holds. 
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For every state q of an aut,omaton A = ( Q ,  A,  E ,  I ,  T ), let us denote 
by OutA(q)  the set’ of edges of A the origin of which is q,  that is edges that 
are ‘lgoing out” of q. One defines dually InA(q) as the set of edges of A the 
end of which is q, that is edges that are “going in” q. 

If cp is a morphism from B = (R ,A ,  F, J ,  U )  into A = (Q,  A,  E ,  I ,  T )  
then for every r in R, cp maps O u t s ( r )  into OUtA(rcp), and Ins(?-) into InA(rcp) 
. We say that cp is Out-surjective (resp. Out-bijective, Out-injective) if for 
every r in R the restriction of cp to O u t s ( r )  is surjective onto OutA(rcp) 
(resp. bijective between O u t s ( r )  and OUtA(?yY), injective). Accordingly, we 
say that cp is In-surjective (resp. In-bijective, In-injective) if for every T 

in R the restriction of cp to Ins(r) is surjective onto InA(rcp) (resp. bijective 
between Ins(r) and InA(rcp), injective). 

Definition 1 L e t B = ( R , A , F , J , U )  a n d A = ( Q , A , E , I , T )  ; a m o r -  
phism cp: B + A is a covering (resp. a co-covering) i f  the following condi- 
tions hold: 

i) cp is Out-bijective (resp. In-bijective); 

ii) for every i in I ,  there exists a unique j in J such that jcp = i (resp. 

iii) Tcp-’ = U (resp. I 9 - l  = J ) .  

for every t in T ,  there exists a unique s in S such that scp = t ) ;  

Proposition 1 
a bijection between the successful computations in B and those in A. 

Any covering (resp. any co-covering) cp: B + A induces 
rn 

Theorem & Definition 2 Let A be an automaton and .Adet the deter- 
minized automaton of A. W e  call Schutzenberger covering of A the acces- 
sible part S of Adet x A. Then: 

i) 7rd is a covering from s onto A. 

ii) x~~~ is  an In-surjective morphism from S onto Adet. 

We call immersion of A a sub-automaton of a covering of A. From all 
these definitions and result, one derives easily the result which is the basis 
of the present work. 

Corollary 2 Let A be an automaton on A*. Then there exists an un- 
ambiguous automaton that is equivalent to A and that is a sub-automaton 
of a covering of A. 

‘Stallings denotes it “StarA(q)”. As the star is the common denomination for the 
generated submonoid, we cannot keep it, though it nicely conveys the idea of “a set of 
edges going out” of q. 
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Proof. Let S be the Schutzenberger covering of A. As 7r'adet is In-surjective 
from S onto Adet, one can delete edges in S (and possibly suppress the 
quality of being terminal to some of its states) in such a way that the sub- 
automaton I that is obtained is a co-covering of Adet. The automaton 7 
is then unambiguous - as there is a one-to-one correspondence between its 
successful computations and those of Adet - and equivalent to -qdet, hence 
to A. 

The essence of this statement lies of course in the fact that the quoted 
unambiguous automaton is at the same time equivalent to and an immersion 
of A. For otherwise, the deterministic automaton Adet associated to A by 
the subset construction is obviously unambiguous and equivalent to A; but 
it can not, be immersed in A: there is no relationships between t,he pathes 
in A and those in Adet. 

Example 1 : The Figure 1 represents an automat,on A1 that accepts 
all words of {a, b}* which contain at least one b (vertically, on t8he left), its 
determinized automaton Aldet, the Schutzenberger covering of A1, and t,he 

0 two possible immersions that can be derived from it. 

Figure 1: An automaton, its Schutzenberger covering, and two immersions. 

2 K-automata 

As far as polynomials and power series are concerned, we follow the defini- 
tions and notation of [l]. The set of polynomials over A* with multiplicity 
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in a semiring K is denoted by K(A*). A (finite) aut,omaton A over A* with 
multiplicity in a semiring K, or K-automaton for short, is a straightfor- 
ward generalization of a classical automaton. It is adequatly described as a 
triple A = ( I ,  E ,  T ) where 

E is a square matrix of dimension Q whose entries are polynomial 
over A* with coefficients in K, i e .  elements of K(A*). 

I and T are vectors of dimension Q (respectively a row vector and a 
column vector) with entries in K(A*). 

The dimension Q is called the set of states of A, every entry Ep,q of E is 
the label of the transition that goes from p to q in A.2 The behawiour of A, 
denoted by 1.11, is defined if and only if the star of the matrix El  E*, is 
defined and it holds: 

Id1 = I .  E * .  T 

A power series is K-rational if and only if it is the behaviour of a finite 
K-automaton3. 

A polynomial is proper if its constant term (i.e. the coefficient of 1 ~ ’ )  is 
zero, a K-automaton A = ( I ,  E l  T ) is proper if every entry of E is proper 
and every entry of I and T are in K. It is known that the behaviour of A is 
defined if and only if it is equivalent to a proper K-automaton. 

Example 2 : Let us consider the N-automaton over {a ,b}* ,  C1, de- 

and represented (in two ways) at  the Figure 2. If every word f of {a ,  b}* 
is viewed as the writing of an integer in the binary system, where a is 
interpreted as 0 and b as 1, then C1 ‘‘computes” the integer written by f, 
which we denote by 7, in the sense that 

ICIl = c Jf and the first terms of lCll reads then 
fEA* 

ICll = b + ab+ 2ba + 3bb + U U ~  + 2 ~ b a  + 3abb + 4baa + 5bab + ... 0 

’This definition coincides then with the classical one when K = 1, the Boolean semiring. 
31n the context of this paper, we can take this statement as a definition for the K- 

rational series. 
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Figure 2: The N-automaton C1. 

The support of a power series, or of a polynomial, over A* is the set of 
words of A* whose coefficient is not zero in the series or in the polynomial. 
The support of a K-automaton A = ( I ,  E ,  T ) is the (classical) automaton 
obtained by taking the support of every entry of I ,  E and T .  Conversely, to 
any (Classical) automaton A = ( Q, A,  E ,  I ,  T ) is associated its Characteristic 
automaton that is defined as the K-automaton whose support is A and whose 
non-zero coefficients are all equal to lg (generally, K = N). 

Property 1 The support of the behaviour of a K-automaton A is con- 
tained in the behaviour of the support of A. If K is a positive semiring, 
these two languages are equal. 

Property 2 A n  automaton over A* is unambiguous i f  and only i f  the 
behaviour of its Characteristic N-automaton is a characteristic power series. 

3 IK-coverings 

The notion of covering seems to fit perfectly with the one of automaton 
with multiplicity. If A and 23 are two (classical) automata, the existence 
of a covering ‘p: B + A implies not only that B is equivalent to A, i.e. 
that they both recognize the same language, but also that there exists a 
1-to-1 correspondence between their successful computations, that is they 
are equivalent even if multiplicity is taken into account, i.e. they are equiv- 
alent as N-automata - with the natural hypothesis that the label of every 
transition has multiplicity 1 ~ .  

But it may be the case that we have two equivalent K-automata A and B 
such that there exists an (automaton) morphism ‘p from the support of B 
into the support of A which is not a covering. As we said, an automaton 
morphism is a covering if its restriction to the corresponding “outgoing bou- 
quets” is bijective. This condition is not adequate anymore for automata 
with multiplicity. 
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Example 3 : Let us consider the N-automata C2 and Vz of the Figure 3. 
There exists an obvious morphism from the support of C2 onto the sup- 
port of V2 that, is not a covering: there is no bijection between Ouk,(j)  
and Outv,(i), neither a co-covering: there is no bijection between InC,(u) 
and Inv,(t). 

These two N-automata are equivalent nevertheless. The reason is that 
the sum of the labels of the transitions that go from j into the set of states 
whose image by p is q is equal to the label of the transition that go from i = 
jcp to 4. 

Figure 3: The vertical is a morphism, not a covering. 

We now formalize the observation made in t,he example. Let A = 

(I, E ,  T )  and I3 = ( J ,  F,  U )  be two K-automata of dimension Q and R 
respectively. Let 9 :  R * Q be a surjective mapping. Let F' be the matrix 
obtained from F by adding together the columns whose index have the same 
image by cp. Then cp is a K-covering if any row of index r of F' is equal to 
the row of index rcp of E. 

Example 3 (continued) : If we write the above automata C2 and V2 as 
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CZ = ( J2, Fz,  UZ ) and VZ = ( 1 2 ,  E2, TZ ) , then: 

0 4a+4b  

a + b  b b 
2a+2b 0 

0 0 

We add the t,wo mid columns and we get the matrix 

a + b  2b b 

4a + 4b 

whose rows of index r and s are equal t,o the mid row of 

a + b  2b 
E2= ( 0 2a+2b 

0 0 4a+4b  

Once it is understood that an image of a K-automaton under a K- 
covering is obtained by adding together some of the “columns of the K- 
aut,omaton”, the definition of a K-covering is best written under a matrix 
expression. To any surject,ive mapping ‘p: R -+ Q we associate t,he row 
monomial R x Q-matrix H, defined by: 

1 if rcp=q 

( H p ) T ’ q  = i 0 otherwise 

Since cp is surjective, every column of H ,  contains at least one 1. From H,, 
a matrix Kp is built by transposing H, and by making some entries equal 
to 0 in such a way that Kp is row monomial (wit,h exactly one 1 in every 
row). The matrix Kp is not uniquely defined by ‘p (as is Hp) but also by 
the arbitrary choice of a representative in every class modulo t,he mapping 
equivalence of cp. 

Example 3 (continued) : 
such that j cpz  = i, up2 = t and r’p2 = s’p2 = q, then: 

If cp2 is the mapping from { j ,  r ,  s, u }  onto ( 2 ,  q,  t }  

1 0 0 0  1 0 0 0  

0 0 0 1  0 0 0 1  

1 0 0  

H,, = (: :) and K,, = (0 1 0 0) or (0 0 1 0) 

0 0 1  
0 
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The multiplication of an X x R-matrix Z by H, on the right yields an 
X x Q-matrix whose column q is the sum of the columns of Z of index s 

such that s'p = q. The multiplication of a RxX-matrix Z by K ,  on the left 
yields a QxX-matrix whose row p is chosen among the rows of Z of index r 
such that r'p = p. We can then state: 

Definition 2 
onto A = ( I ,  E ,  T )  if A is  defined by: 

A mapping 'p: R + Q is a K-covering from U = ( J,  F,  U ) 

E = K , . F . H , ,  I =  J . H ,  and T = K , . U  (1) 

and i f  the following equations hold: 

The definition of K-covering via matrix expressions makes the proof of 
the following basic result particularly easy. 

Proposition 3 Any IK-automaton is equivalent to any of its K-coverings. 

Proof. If 'p: B --f A is a K-covering, it holds, for every n in N: 

and this implies the equality = J .  F* . U = I .  E* . T = Id1 . 

To the K-covering corresponds the dual notion of K-co-covering. Roughly 
speaking, some rows will be added together, instead of some columns. More 
precisely we have: 

Definition 3 
( J,  F,  U ) onto A = ( I ,  E ,  T ) i f  A is defined by: 

A mapping 'p: R + Q is a K-co-covering from B = 

and i f  the following equations hold: 

and J . K:, . H:, = J .  
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Proposition 4 
Any K-automaton is equivalent to any of its K-co-coverings. 

Example 3 (continued) : 
add the two mid rows of 

Let us consider C2 = ( J2, F2, U2 ) again: if we 

0 4a+4b 

a + b  b b 
0 2a+2b 0 F2=( 0 2a+2b 2b 
0 0 

we get the matrix 

4bb ) b 

0 4a+4b 
("Ab 2 a i 2 b  2a+2b 

whose columns r and s are equal to the mid column of t,he matrix 

4bb ) b 

0 4a+4b 

which defines another N-automaton V; = ( 1 2 ,  Eh, T2 ) equivalent to C2 (cf. 
Figure 4).  0 

Coming back to our first intuition, we then have: 

Property 3 Let A and B be two (classical) automata and let 'p: B + A 
be a covering (resp. a co-covering). Then, for any K, 'p is a K-covering 
(resp. a K-co-covering) from the characteristic automaton of B onto the 
characteristic automaton of A. 

The following two properties are also easily verified. 

Proposition 5 Let A be a K-automaton. Among all the K-automata of 
which A is a K-covering (resp. a K-co-covering) there exists a unique one, 
effectively computable, that has a minimal number of states and of which all 
these K-automata are K-coverings (resp. K-co-coverings). 

Proposition 6 
K-covering of C and 23 is a K-co-covering of C .  

Let A, B and C be three K-automata such that A is a 
Then there exists a K- 

automaton D which is  a K-co-covering of A and a K-covering de B. 
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Remark 1 The terminology may be slightly misleading inasmuch as if a 
#-automaton is exactly a classical automaton when R = I, a B-covering is 
not a covering of classical automata, but only an Out-surjective morphism. 

Figure 4: C2 is an N-co-covering of V;. 

4 The skimming theorem 

The Schutzenberger construct, applied to a N-automaton d, yields an 
unambiguous N-automaton 7 whose behaviour is the characteristic series 
of t,he support of the behaviour of A. (i.e. 171 = suppldl), and this is 
not surprising indeed. What is remarkable is that, the same construction, 
together with the notion of N-covering, yields a N-automaton P which is 
the complement of 7 with respect to d i.e. Id1 = 171 + !PI, and this is the 
theorem we are aiming at: 

Theorem 1 If s is a N-rational power series on A*, the series 
supps 

s' = s - 
is a N-rational power series as well. 

In other words, the series obtained by substracting 1 to every non zero 
coefficient of a N-rational power series on A* is still a N-rational power series 
on A* and this can be represented as on Figure 5. The series s is represented 
as the sequence of the values of the coefficients, adequatly oriented down- 
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wards; the upper layer. is taken o p ;  what is left is the representation of 
another N-rational power series. 

A* 

L .... .... 
U 

N 

Figure 5: Skimming the N-series ICIl. 

Proof of Theorem 1. Let A = ( I , E , T )  be a (proper) N-automaton 
on A* whose behaviour is equal to s, S = ( J ,  F,  U ) its Schutzenberger 
covering (which is a N-automaton of dimension R) ,  and 7 = ( J ,  G, V ) a S- 
immersion in A, of dimension R as well. By definition, ir is a sub-automat,on 
of S and there exist a matrix H with coefficients in N((A*)) and a vector W 
with coefficients in N such that F = G + H and U = V + W .  

It is then observed that the automaton S' below, of dimension Rx{ 1,2 ,3}  
is equivalent to S, hence to A. 

S ' = ( ( J  J 0) ,  ) = ( ( J  J O) ,F ' ,  

Indeed, if we add the rows of S' of index (r ,  1) and ( r ,  2) for every r in R we 
then get the matrices 

whose columns of index (r ,  1) et (r ,  2) (for every r in R) are equal: S' is a 
N-co-covering of 

*As one skims the cream from a milk jar. 
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The automaton S”, of dimension Rx{l,2}, is itself an N-covering of S since 
if we add the columns of index (r,  1) and (T,  2) (for every r in R) we get the 
matrices 

whose rows of index (r, 1) et (r, 2) (for every r in R) are equal to the row of 
index r in S. Hence, it holds: 

The behaviour of the automaton 

is then equal to s - supps. 

Example 2 (continued): The above construction is applied to the au- 

This case is made simple by the fact that (with notation of the proof) V = U 
and thus it holds directly that S’ = S” is a N-covering of the Schutzenberger 
covering of C1. The corresponding automaton PI is drawn at the Figure 6. 
0 

Theorem 1 yields directly a series of well-known corollaries that give use- 
ful insights on the structure of N-rational series and that are worth recalling. 

An N-series is said to be bounded (by k )  if the set of its coefficients is 
bounded (by k ) .  Let s and t be two N-series. We write s < t if <s, f > < <t, f > 
for every f in A*, ie. if there exists an N-series u such that s + u = t; in 
this case we write u = t - s. More generally, the operation t A s is defined 
bY 

for every f in A*. 

<t - s, f > = sup{O, (<t, f > - <s, f >)} 
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U 
2~ P 

2u 

2b 

U 

Figure 6: An automatcon PI whose behaviour is equal to lCll - suppIC1I 

Corollary 7 An N-rational series bounded by k is the sum of at most k 
N-rational characteristic series 

Corollary 8 
Then t A s is an N-rational series. 

Let s and t be two N-rational series such that s is bounded. 

Corollary 9 
the languages 

Let s be an N-rational series on A*. For every integer k 

Remark  2 The proof of Corollary 7 is indeed immediate: if Id1 is 
bounded by k ,  we write 1.41 = 171 + lPl as above, lPl is bounded by k - 1 
and we iterate the procedure. But it conceals a problem: at every step of 
that procedure, we have to perform a determinization (for the construction 
of the Schiitzenberger covering) which means an exponentiation. And this 
easy proof yields then a tower of k exponentiation. However, the work of 
Weber ([ll]) on the decomposion of k valued transducers leads to think that 
a double exponentiation is sufficient in any case but this is still a conjecture. 

Remark  3 The definition of Kcovering we have given as well as the con- 
struction of the automaton P in the proof of Theorem 1 may ring some bells 
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t$o t,he reader who is familiar with symbolic dynamical system theory and 
who is reminiscent of the technic of state splitting and state amalgamation 
(cf. [3, 52.41 for instance). 

If B is obtained from A by an In-splitting, then B is an M-covering of A 
and, dually, B is an N-co-covering of A if it is obtained by an Out-splitting. 
But the converse is not t,rue. Roughly speaking, B = ( J ,  F,  U )  is an N- 
covering of A if the rows of “equivalent” index of the matrix F’ are equal, 
where F’ is obtained from F by adding the columns of equivalent index. 
Whereas B is obtained from A by an In-splitting if the rows of “equivalent” 
index of F are equal (and thus they are equal in F’). 

Proposition 5 can then be seen as the equivalent of Williams’ theorem 
in this setting. 
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Let G be a finite simple group and ze(G) the set of element orders of G. For a 
subset r of all positive integers, let h(T) denote the number of distinct groups G 
such that ze(G) = r. For given group G, we have h(ze(G)) 2 1. In this paper 
we prove that h(ze(G)) € { I ,  2, m} for I G I < lo*. Moreover we give a classification 
for such simple groups G. 

1. Introduction and Notation 

Element orders is one of the most fundamental concept like the order of 
groups in group theory. It plays an important role in the research of group theory, 
which can be seen from the famous Burnside problem. Let G be a group. 
Denote by ze(G) the set of all orders of elements in G. Obviously, ze(G) is a 
subset of the set Z+ of positive integers, and it is a more difficult problem 
which subset of Z+ can become the sets of element orders of groups. Let 
be a subset of .2? and h(T) be the number of isomorphism classes of groups G 
such that %(G) = r. For a given group G, we have h(%(G)) 1 1. A group 
G is called distinguishable if /(re(@)< 00, a group G is called non- 
distinguishable if h(re(G)) = co, and a distinguishable group G is called 
k-distinguishable if h(ze(G)) = k, moreover a 1-distinguishable group G is 
called characterizible usually. In [lo] we prove that a finite distinguishable 
group is either characterizible or 2-distinguishable if its element orders do not 
exceed twenty. In this paper we continue this research and prove: 

Theorem. Let G be a finite simple groups and ]GI < lo8. Then 

Since we did not find such finite k-distinguishable groups for k 2 3 , we 

Conjecture. 

All groups considered in this paper are finite, a simple group is always 

h(ze(G)) E (192, m>. 

have the following conjecture: 

or 2-distinguishable, or non-distinguishable. 
Let G be a finite group. Then G is either characterizible, 
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nonabelian, and all notation is standard (see [2]). In particular, &(G) denotes 
the set of all orders of elements in G and n(G) denotes the set of all prime 
divisors of IGI. Moreover the prime graph ([25]) of a group G is the graph 
whose vertex set is the set n(G), and two vertices p, r E n(G) are adjacent if 
and only if G contains an element of order pr. Also, a finite group G is called 
a 2-Frobenius groups if it has a normal series G > K > H > 1, where K is a 
Frobenius group with kernel H and GIH is a Frobenius group with kernel 
KIH. 

2. Preliminary Lemmas 

We will need the following lemmas. 
Lemma 1. Let G be a group, and let N be a minimal normal sub- 

group of G. Suppose N is an elementary abelian p-group. Then G is non- 
distinguishable. In particular, a solvable group (finite or infinite) always is 
non-distinguishable. 

ProoJ: See [22, Proposition] and [5, Theorem]. 
Lemma 2. Let p be a prime and b a positive integer. Then one of the 

following holds: 
(1) There is a prime q such that q I (pb-l) but q I (pc-l) for c< b. 
(2) b = 1 o rp  = 2, b = 6. 
( 3 ) p  is a Mersenne prime and b = 2. 
ProoJ: See [26]. 
For the simple groups we have the following lemmas: 
Lemma 3. Let G be a simple group and 

(l)An, n I l l .  

IGI < 10'. Then G is one of 
the following groups: 

( 2 ) ~ ~ ( ~ ) ,  I 577, + 29; ~ ~ ( q ) ,  I 9; ~ ~ ( 3 1 ,  
(3) u3(q), 4 I 11; u4(2), u4(3), u5(2). 
(4)Sz(8), Sz(32). 
(5)S4(4), S4(5), S6(2). 
(6) W). 
(7) 'F4(2)'. 

@)Mil, M 2 ,  M22, M23r Ji, J2, J3, HS. 
ProoJ: By a calculation from the classification theorem of the finite simple 

A finite simple group G will be called a simple Kn-group if In(G)I = n. 

Lemma 4. Let G be a simple K3-group. Then G is one of the following 

groups we may get the result easily. 

In [6] the simple K3-groups are determined. 

groups: A5. A6, Lz(q), 4 = 7, 8, 17, L3(3), u3(3), 
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For the above eight simple K3-groups we have proved the following result. 
Lemma 5. 
(1) h ( ~ ( A 5 ) )  = h(ne(Lz(q))) = 1, where q = 7,8, 17. 

ProoJ See [18]. 
Lemma 6. 

( I )& 7 In I 10. 
(2) M 1, M 2 ,  J2. 

(3) L2(q), = 16,25,49,81, L3(q), = 4,5,7,8, 17, L4(3), S4(q), 4 = 

4,5,7,9, &(2), @&), G2(3), U3(q), = 4,5,7,8,9, u4(3), us(2), Sz(8), 

Sz(32), 3D4(2), 'F4(2)'. 

Let G be a simple K3-group. Then we have 

(2) h(ne(A6)) = h(&(L3(3))) = h(ne(U3(3))) = h(ne(U4(2))) = co. 

Let G be a simple &-group. Then G is one of the following 
groups: 

(4) (a) L2(r), where r is a prime satisfying the equation 
(1) r2 - 1 = 2a3buc 

where a 2 1, b 2 1, c 2 1, and u is a prime and u > 3. 
(b) L2(2"), where m satisfies the equations 

2" - 1 = u, 2"+ 1 = 3tb 

3"- 1 = 2uc, 3"+ 1 =4 t  

3" - 1 = 2u, 3" + 1 = 4tb 

(2) 
where u, tare primes and t > 3 and b 2 1. 

(c) &(3*), where m satisfies the equations 
(3) 

(4) 
or 

where u, tare primes and b 2 1, c 2 1. 
Proof. See [ 191. 
Remark It is difficult to solve these diophantine equations (l), (2) and 

(3) or (4), even determine the number (finite or infinite) of these solutions. 
That is, we do not know the number of the simple &-groups is finite, or 
infinite up to now. 

Corollary 1. Let G be a simple K4-group and (GI = 2a3b5c13d. Then 

G is one of the following groups: L2(25), L4(3), S4(5), U3(4), 2F4(2)'. 

G is one of the following groups: L3(7), U3(8). 

G is U3(9). 

G is one of the following groups: L2(31), L3(5). 

Corollary 2. Let G be a simple K4-group and (GI = 2a3b7'19d. Then 

Corollary 3. Let G be a simple &-group and !GI = 2a3b5'73d. Then 

Corollary 4. Let G be a simple K4-group and [GI = 2a3b5c31d. Then 
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Corollary 5. There is no existing such simple K4-group G with the 
order of G is one of the following forms: 2"3'7'31d, 2"5b7'31d, 2"3'5'37', 
2"3b11c37d, 2"5b11'37d. 

Lemma 7. 

ProoJ: The order of G is equal to 

If G is a simple group whose order is divisible by 3 1 and 
G(G) c ~@5(2)X then G is L5(2). 

2a3b5c7d3 l', where e # 0. From Lemma 
4, Corollary 4 and Corollary 5 we see that G can only be a simple K5-group 
(since 16 E ze(L2(31)), 16 e G(Ls(2)) and 10 E ~e(L3(5)), 10 e G(Ls(2))). 
Since (n!)/2 is divisible by 31 if and only if n 2 31, G is not an alternating 
group A,, for any n. Comparing the order of G with the orders of sporadic 
simple groups we have G is not a sporadic group. Therefore G = G(q) is a 
group of Lie type over a finite field of order q =p", wherep = 2, 3, 5, 7 or 31, 
since p divides IGI. From Lemma 2 we get that pb- 1 can divide [GI if and 
only if: 

forp = 2, b 5 6 ,  
forp = 3 or 7, b = 1,2 and 4, 
forp = 5, b = 1,2,3 and 6, 
forp = 3 1, b 5 2. 

forp = 2 or 3, b 5 3, 
forp = 5, b = 1 and 3, 
forp = 7, b I 2 ,  
forp = 31, b = 1. 
Moreover G can only be L2( m ) ,  &,(2), L@) or G2(5) since G is a simple 

K5-group. Because of 63 E ze(L2(125)), 63 E ze(L6(2)). 63 e ze(L5(2)) and 
30 E Ze(G2(5)), 30 E G(L5(2)), G can only be L@). 

Lemma 8. If G is a simple group whose order is divisible by 37 and 
ze(G) c ze(U3(11)), then G is u3(11). 

ProoJ: Notice that the order of G is equal to G can 
only be a simple K5-group by Lemma 4 and Corollary 6. The remainder proof 
is similar to Lemma 7. 

following 
results: 

Also pb + 1 can divide IGI if and only if: 

2"3b5clld37e, e # 0, 

For some simple groups and nonsolvable groups we have the 

Lemma 9. 
(1) Alternating groups A*, p is a prime and p > 3, or A,, for n E 

(2) Simple groups L2(q) with q f 9 ( L2(9> E A6), L2(9). 23 ( G MIO ); L3(7), 

(3) U4(3), U&), U3(2m) with m 2 2. 
(4) Suzuki-Ree simple groups. 

The following groups are all characterizible: 

{8,9, 12, 14); symmetric groups S, for n E {7,9, 11, 12, 13,14}. 

L3(T) with m 2 1, L3(4).21; L.43). 
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( 5 )  W3). 

(6)  'F4(2)'. 

(7) 0-8(2). 0-10(2). 
(8) All sporadic simple groups except 52. 

Proof: See [201, [121, [lo], D41, [ll,  [221, P51, [4l and 191. 
A group G is called an almost simple group if M I G I Aur(M), 

where Mis a simple group. 
Lemma 10. The following almost simple groups are non-distinguishable: 

A,, for n E (6, lo}, S,, for n E ( 5 ,  6, 8}, L3(3), U3(q) with q = 3, 5, 7, U4(2), 
U5(2), J2, L3(4) : 22, S4(7), S4(2m) with m > 1 , and PGLP($). wherep, r 
are odd primes, r - 1 is divisible by p but not by p2 and s is a natural number 
non-divisible by p. 

Proof: See [14], [13] and [15]. 
Lemma 11. The following groups are 2-distinguishable: 

(2) L3(9), L3(9).21. 
(1) L3(5), L3W.2 ( A@3(5))). 

(3) S6(2), 0+8(2). 
(4) 07(3), 0+8(3). 
Proof: See [ll],  [12], [3] and [24]. 
Lemma 12. 

Proof: See [ 101. 
Lemma 13. 

Let G be a finite group and ze(G) (1, 2, ..., 20). Then 
h(&(G)) E {I, 2, a). 

Let H be a finite group and N a nontrivial normal p-  
subgroup of H, for some prime p,  and set K = H/N. Suppose K contains an 
element x of order m coprime to p such that (v, I (x), 10) > 0 for every Brauer 
character v, of ( an absolutely irreducible representation o f )  K in characteristic 
p, where l(x) is the trivial character of (x) and v, I (x) is the restriction of v, to 
(x). Then H contains an element of orderpm. 

Proof: See [17, Corollary]. 

3. Main Results 

From Lemma 1, we may reduce the proof of our Theorem to the direct prod- 
ucts of simple groups and the automorphism groups of the direct products. 
First we prove the following theorem. 

Let G be one of the following groups: S4(5), L5(2), U3(9), 
U3(11). Then h(ze(G)) E {l ,  m]. 

Let H be a group and suppose ze(H) = ze(G). If the minimal 
normal subgroup N of H is a p-group, then h(ze(H)) = h(ze(G)) = co by 
Lemma 1. Thus we may assume that H has a normal series 

Theorem 1. 

Proof: 
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H2 HI > 1, (5) 
where HI is a direct product of isomorphic simple groups. Since H is a 
group whose prime graph has more than one component, H has one of the 
following structures: (a) Frobenius or 2-Frobenius; (b) simple; (c) an extension 
of a ~1-group by a simple group; (d) simple by q-solvable; or (e) TI by 
simple by TI; where TI is the component containing 2 ([25, Theorem A]). 
Suppose H is a Frobenius group with complement C. From [16, Theorem 
18.61 C has a normal subgroup CO of index 2 2 such that Co z SL(2, 5) x Z 

and where every Sylow subgroup of Z is cyclic and n(Z) fl {2,3,5) = 0. 

Since xe(SL(2,5)) = 11, 2, ..., 6, lo), we get a contradiction by comparing 
their element orders. The case when H is 2-Frobenius is similar. Therefore 
HI  is a simple group and H/HI is a TI-group in (5). Now we prove that 
Hs G if h(ze(H)) # 00. The proof is divided into cases. 

Case 1. G = S45) 
In this case we have ne(H) = ne(G) = ~e(S45)) = { l ,  2, ... , 6, 10, 12, 13, 

15,20,30) and %(HI) c xe(H). Hence HI is a simple group whose order 
is divisible by 13. From p'qb theorem HI  is a simple K3-group or a simple 
&-group. If HI is a simple &-group, then HI can only be L3(3) (13 1 IHII). 
But 4 3 )  contains the elements of order 8, it is impossible. If HI is a simple 
K4-group, then HI can only be L2(25), U3(4) or S45) from Corollary 2 and 
comparing their element orders. 

Now HICH(H1) is isomorphic to a subgroup of Aut(Hl), and CH(H1) = 1 
(HI has at least two components). We have Aut(H1) 2 H 2 HI .  Since we 
know Out(H1) and check the orders of elements of Aut(H1) one by one (see 
[2]), we get H = HI E G = S4(5). 

Case 2. G = L5(2) 
In this case we have ze(H) = ze(G) = { 1, 2, ... , 8, 12, 14, 15,21, 31) and 

%(HI) E %(H). Since HI is a simple group whose order is divisible by 
31, HI can only be Ls(2) by Lemma 7. Also since CH(H,) = 1 we have 
Aut(H1) 2 H 2 HI .  Checking the orders of elements of Aur(Ls(2)) we get 
H =  HI G G = L5(2). 

Case 3. G = U3(9) 
In this case we have %(H) = ze(G) = { 1,2, ... ,6,8,  10, 15,16,20, 30,40, 

73, 80) and ze(Hl) E ze(H). Since HI is a simple group whose order is 
divisible by 73, HI can only be U3(9) from Lemma 4 and Corollary 3. Also 
since CH(H1) = 1 we have Aur(Hl) 2 H 2 HI .  Checking the orders of 
elements of Aut(U3(9)) we get H =  HI s G = U3(9). 

Case 4. G = U3( 11) 
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InthiscasewehaveXe(H)=xe(G)=(1,2 ,..., 6,8,10,11,12,20,22,37, 
40, 44) and %(HI) E %(H). Since HI is a simple group whose order is 
divisible by 37, HI can only be U3(ll) from Lemma 8. Also since C d H l )  = 1 
we have Aut(H1) 2 H 2 H I .  Checking the orders of elements of Aut(U3(11)) 
we get H =  HI = G = U3(ll). 

Thus the theorem is proved. 
Theorem 2. The simple groups L42) and U3(ll) are characterizible, 

and S45) is non-distinguishable. 
PmoJ From Theorem 1 we need only prove the minimal normal p- 

subgroup N of H is equal to 1 for the cases of Ls(2) and U3(11). Let H be a 
group and suppose ze(H) = &(G), G = Ls(2) or U3( 11). First we prove that 
H is nonsolvable. We assume G = &(2) (U3( 11)). Then re(H) = ne(G) = 

pose H were solvable. Then there would exists a (5, 7, 31) ((5, 11, 37))-Hall 
subgroup L of H. Now 5.7, 5.31 and 7.31 (5.11, 5.37 and 11.37) do not be- 
long to %(H), and so all elements of L would be of prime power order. This 
contradicts a result of Higman [7], and hence His nonsolvable. Similar to the 
proof of Theorem 1 we may assume that H has a normal series 

( 1,2, . .. ,8,12,14,15,21,31) (( 1,2, ... ,6,8,10,11,12,20,22,37,40,44)). SUP- 

such that N and HIHI are XI-groups, and H y  = HIIN is simple. Now we 
need only prove N = 1 from Theorem 1. 

Case 1. G = ,542) 
Since X I  = (2, 3, 5, 7) we may assume that N z 1 is a 2-group, 3-group, 

5-group or 7-group. Suppose N is a 2-group (5-group or "-group). Let Q be a 
cyclic subgroup of order 31 in H y ,  and N(Q) = N p ( Q ) .  By [2], N(Q) = Q:Z5 
and suppose [Nl(Q:Zs) is its preimage in H I .  It follows by [21, Lemma 61 
that HI contains an element of order 10 (25 or 3 3 ,  which is impossible. 
Suppose N is a 3-group. By Lemma 13 we utilize the Brauer character tables. 
In [8, p.1731, the modular characters of L5(2) (mod 3) are given. Suppose 
XE H y  has order 8, and set X =  (x). Calculating, we obtain 

Thus by Lemma 13 we get 24 E %(H), which is a contradiction. Hence 

Case 2. G = U3(11) 
N = 1 and H = G. The simple group Ls(2) is characterizible. 
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Since zl = (2, 3, 5, l l }  we may assume that N # 1 is a 2-group, 3-group, 
5-group or 11-group. Suppose N is a 3-group (5-group or 11-group). Let 
Q be a cyclic subgroup of order 37 in H*, and N(Q) = Np(Q) .  By [2], 
N(Q) = Q:Z3 and suppose [Nl(Q:Z3) is its preimage in HI.  It follows by 
[21, Lemma 61 that HI contains an element of order 9 (15 or 33), which is 
impossible. Suppose N is a 2-group. We utilize the Brauer character tables 
[8, p.2201 and set X = (x}. bl = 37. Calculating, we obtain 74 E ze(H) by 
Lemma 13, which is a contradiction. Hence N = 1, H = G and Uj(l1) is 
characterizible. 

Case 3. G = S45) 
If G = S4(5), then &(G) = %(S4(5)) = { l ,  2, ... ,6 ,  10, 12, 13, 15, 20, 30). 

The group 54: (&(25).22) which is contained in the maximal 5-local sub- 
groups of Monster group A4 has the same element orders set (see [2]). Since 
the minimal normal subgroup is elementary abelian, we get that S45) is 
non-distinguishable. This proves Theorem 2. 

Lastly, we prove the following theorem. 
Theorem. Let G be a finite simple group and (GI < lo8. Then 

ProoJ: Let G be a simple group and IGI < lo8. Then G is either charac- 
terizible, or 2-distinguishable, or non-distinguishable by Lemma 3, Theorem 
1, Theorem 2, Lemma 5,  Lemma 9, Lemma 10 and Lemma 1 1. Moreover, the 
following simple groups G ( \GI < 1 O8 ) are characterizible: 

h(&(G)) = {1,2, to). 

(1)An,n<11andn#6,10. 
(2) L2(4), 29 # 4 5 577 and 4 f 9, L3(4), L3(7), L4(3), Ld2). 
(3) u3(4), u3(8), u3(11), u4(3). 
(4) Sz(8), Sz(32). 

(6) 2F4(2)'. 

(7) MI, M 2 ,  M22, M23,Ji, J3, HS. 
The following simple groups G are 2-distinguishable: 
(1) L3(5), L3(9). 

( 5 )  

(2) S6(2)- 
The following simple groups G are non-distinguishable: 
(1) A6, Aio. 

(2) W ) ,  ~543). 
(3) u3(3), u3(5), u3(7), u4(2), us@). 
(4) W4) (see [lo]), S4(5). 
(5 )  J2. 

Excluding the above cases, we have h(ze(U3(9))) E { 1, to}. Thus the 
theorem is proved. 
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Question. For these case that G is U3(9), does it follow that h(%(G)) = 1 
or h( %(G)) = co ? 
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CONNECTEDNESS OF TETRAVALENT 
METACIRCULANT GRAPHS WITH 

NON-EMPTY FIRST SYMBOL 

Ngo Dac Tan* and Tran Minh Tuoct 

Abstract 

In this paper, we give necessary and sufficient conditions for tetrava- 
lent metacirculant graphs, the first symbol of which is not empty, to 
be connected. 

1 Introduction 

Metacirculant graphs were introduced by Alspach and Parsons in [l] as an 
interesting class of vertex-transitive graphs. This class contains both Cayley 
and non-Cayley graphs [l] and might contain some new nonhamiltonian con- 
nected vertex-transitive graphs. But these graphs need not be connected in 
general. So a natural problem is to find necessary and sufficient conditions 
for metacirculant graphs to be connected. 

Necessary and sufficient conditions for cubic metacirculant graphs to be 
connected were found in [4]. These conditions were used successfully in [3, 51 
to prove the existence of a Hamilton cycle in many connected cubic metacir- 
culant graphs (see also [6]). Motivated by this, we consider here the connect- 
edness of tetravalent metacirculant graphs with the hope that we might apply 
the obtained results to the hamiltonian problem for tetravalent metacirculant 
graphs as well. In Section 4 of this paper, we will prove necessary and suf- 
ficient conditions for tetravalent metacirculant graphs with non-empty first 
symbol to be connected. For the proofs of the results, we develop in Section 

*Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam. E-mail: 

t Faculty of Mathematics, Pedagogic University Hanoi 2, Xuanhoa, Melinh, Vinhphuc, 
ndtanQmath.ac.vn 

Vietnam. E-mail: minhtuoc'Qhn.vnn.vn 
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3 general techniques which are probably useful in other cases. In particu- 
lar, they were applied in [8] to prove necessary and sufficient conditions for 
tetravalent metacirculant graphs with empty first symbol to be connected. 
Thus, the results obtained here and in [8] together gave us a complete answer 
to the question which tetravalent metacirculant graphs are connected. 

We also note that with the help of the results obtained here the authors 
have succeeded in proving the existence of a Hamilton cycle in many con- 
nected tetravalent metacirculant graphs with nonempty first symbol ["]. We 
do hope that using the mentioned results we will get more significant results 
on the existence of a Hamilton cycle in tetravalent metacirculants. 

2 Notations and definitions 

All graphs considered in this paper are finite undirected graphs without loops 
and multiple edges. Unless otherwise indicated, our graph-theoretic termi- 
nology will follow [2], and our group-theoretic terminology will follow [9]. 
For a graph G we will denote by V(G), E(G) and Aut(G) the vertex-set, the 
edge-set and the automorphism group of G, respectively. 

A graph G is called vertex-transitive if for any u,v E V ( G )  there exists 
cp E Aut(G) such that cp(u) = v. It is clear that a vertex-transitive graph is 
a regular graph. 

For a positive integer n, we will denote the ring of integers modulo n by 
Z, and the multiplicative group of units in Z, by Zi .  

Let n be a positive integer and S he a subset of Z, such that 0 $! S = -S. 
Then we define the circulant graph G = C(n, S) to be the graph with vertex- 
set V(G) = {vy I y E Z,} and edge-set E(G) = {vyoh I y, h E Z,; ( h  - y) E 
S}, where subscripts are always reduced modulo n. The subset S is called 
the symbol of C(n,  S). 

Let m, n be two positive integers, cy E Z i ,  p = Lm/2J and SO, S1,. . . , S, 
be subsets of Z,, satisfying the following conditions: 

1) 0 $z so = -so; 
2) a"S,. = S,. for 0 i r I p; 

3) If m is even, then apS, = -S,. 
Then we define the metacirculant graph G = MC(m, n, a,  SO,. . . , S,) to be 
the graph with vertex-set 

V(G) = {v; I i E Z,; j E Z,} 
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and edge-set 
a a+r E(G)  = {w~u,, I 0 I r I p;  i E Z,; j ,  h E Z, and ( h  - j )  E cyaST}, 

where superscripts and subscripts are always reduced modulo m and modulo 
n, respectively. The subset Sa is called ( i  + 1)-th symbol of G. 

It is easy to see that the permutations p and T on V ( G )  with p(wJ) = 
and T(W;) = u::’ are automorphisms of G and the subgroup (p,  7) generated 
by p and T is a transitive subgroup of Aut(G). Thus, metacirculants are 
vertex-transitive graphs and therefore they are regular. 

Denote the degree of vertex u of a graph G by deg(v). It is not dif- 
ficult to see that for any vertex u E V ( G )  of a metacirculant graph G = 

MC(m, n, a, so, ‘ ’ ’ I S , )  

(E.1) 
\Sol + 21s1 I + ‘ ‘ ’ + 2lS,l 
IS01 + 21Sll + ... + 2lS,-,l + ISPI 

if m is odd, 
if m is even. 

deg(v) = 

A graph G is called cubic if for any w E V ( G ) ,  deg(w) = 3 and it is called 
tetravalent if for any w E V ( G ) ,  deg(w) = 4. If W C V ( G )  then we denote 
the subgraph induced by G on W by G[W]. 

be a walk in G = MC(m, n, cy, So, . . . , S,). Then 
the value ( j t  - jl) modulo n is called the change (in subscripts) of W and is 
denoted by ch(W). The walk W-’ = wj: . . . wj iwj :  is called the inverse walk of 
W .  Let U = u,”lwj:t;: . . . uj; be another walk in G, which starts at the vertex 
where W terminates. Then the walk P = w$uji . . . wj:u~:~: . . . uj; is called 
the concatenation of W and U and is denoted by W * U .  It is easy to see 
that concatenation operation of walks is associative, i. e. , (WI * W Z )  * W3 = 
Wl*(WZ*W3). Further, we havech(W-’) = -ch(W) (mod n), ch(W*U) = 
ch(W)+ch(U) (mod n) and if a walk W has the form W = W1 *Q*Q-’*W2 

then ch(W) = ch(W1* W2) (mod n). 

Let G = MC(m,n, a ,  SO, .  . . , S,) be a metacirculant graph. Then an 
edge e of G is called an S:-edge if it is uxwx+i with ( h  - y) E aXSi and 
an S,--edge if it is V,”V;-~ with (y - h)  E cyX-’Si. Both an S:-edge and an 
S,y-edge are called Si-edges. If all edges of a walk W are S’-edges (resp. 
S,r-edges, &-edges) then W is called an $-walk (resp. S,y-walk, Si-walk). 
A maximal SF-subwalk (resp. S%:-subwalk, Si-subwalk) of W is called an 
$-interval (resp. S%--interval, Si-interval) of W .  A subwalk W’ of a walk 
W is called an interval of W if it is an Si-interval for some i E {0,1, . . . , p } .  
So each walk W in G can be represented in the form W = W1* W, * .  . . * W k ,  

where W1, WZ, .  . . , W k  are intervals of W .  

Let W = uji wjt . . . 

u h  
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3 General reduction results 

In this section, we will prove some general results concerning connectedness 
of metacirculant graphs. 

Let G = MC(m, n, a ,  SO,.  . . , S,) be a metacirculant graph. Denote V 2  = 
{v; 1 j E Z,}. We define graphs has the 
vertex-set V ( E )  = v = {Vo,  V 1 , .  . . , Vm-'} and the edge-set E ( E )  = E = 
{V'VJ I i # j and there exists vivi E E(G) for somep, q E Zn}. The graph Ga 
has the vertex-set V ( G a )  = V z  and the edge-set E(Gz)  = Ea = {v;v; I k # l 
and there exists a walk in G joining v; to wj}, i E {0,1,. . . ,m - 1) .  

Lemma 3.1. Let G = MC(m,  n ,  a, So,. . . , S,) be a metaczrculant graph. 
Theq the following assertzons hold: 

and Ga as follows. The graph 

1. E is  isomorphic to  C(m,S), where = { h  E Z, I VoVh E E}. 
2. Gi is isomorphic to  C(n ,S i ) ,  where Si = { j  E Z, I V ~ V ;  E Ei} .  

3. All graphs Gi, i E Z,, are isomorphic to each other. 

Proof. (1) Let 3 = { h  E Z,n I VoVh E E}. Then 0 $ 3. If h E 3 then 
there is an edge v;vt E E(G) for some p ,q  E Zn. It is easy to see that the 
permutation T : V ( G )  -+ V ( G ) ,  vj H wi:' is an automorphism of G. So 
T - ~  E Aut(G). Therefore T - ~ ( v : v ~ ~ )  = T - ~ ( v : ) T - ~ ( v ~ ~ )  = w ~ / ~ v $ ,  where 
p' = ~ r - ~ p  (mod n ) ,  q' s cr-hq (mod n),  is an edge of G. This means -h E 3 
and 3 = -3. Let cp : V(c) + V ( C ( m , S ) ) ,  V i  H vi (i E Z,). Then it is not 
difficult to verify that cp is an isomorphism between c and C(m,s).  

(2) Let Ga = (Vi ,Ei )  and Si = {s E Z, I v6.1 E Ei}. Then 0 $ Si. 
Assume that s E Si. Then there is a walk W = vdvi:. . .vj:v: in G, 
which joins v; to v:. It is easy to verify that the permutation p : V ( G )  -+ 

V ( G ) ,  v j  H w ; + ~  is an automorphism of G. So p-s E Aut(G). Therefore 

V ~ V ~ ~ - ~ .  . .vi;-svis is also a walk in G. This means --s E Si and Si = -Si. 
Let $ : V ( G z )  + V(C(n,SZ)),  vj H vj. Then it is easy to see that $J is an 
isomorphism between Gi and C(n,  Si). 

(3) Consider the graphs Gk and G'. Since re-k E Aut(G), where T is 
as above, it is not difficult to verify that the restriction of on V k  is an 

0 

p - S ( W - 1 )  = p-S(viwZ:f s 3 f  . . .v;;v;, = p-"(v;)p-s(v;;). . .p-s(v;:)p-s(v;) = 

isomorphism of Gk and G'. 

By this lemma, we can identify ?? with C(m, 3) and Gi with C(m, SZ). 
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Lemma 3.2. Let G = MC(m,n,  a, SO,. . . , S,) be a metacirculant graph. 
Then G is connected if and only if both 

Proof. If G is connected, then it is clear that both and Go are connected. 
Conversely, if both and Go are connected. Then by Lemma 3.1, the graphs 
GI, . . . ,  Gm-l are also connected. Let vt be any vertex of G. Since is 
connected, we can find a walk vtv;: . . . v! in G joining vt to a vertex vt of 
V k .  Since Gk is connected, there is a walk in G joining v$ to vt. By the 
concatenating these walks, we can connect vg to vk in G. From this and the 

0 

Lemma 3.3 ([4]). Let G = C(n,  S )  be a circulant graph with the symbol 
S = {fsl, . . . , fSk} .  Then G is connected i f  and only i f  gcd(s1,. . . , sk,n) = 
1. 0 

and Go are connected. 

vertex-transitivity of G, it follows that G is connected. 

Let G = C(n,  S )  be a circulant graph and R be a subset of S satisfying 

(i) R = -R; 
(ii) For every s E S, we can write s = 

the following conditions: 

h 
t i r i ,  where ti E Z, ri E R. 

Then we say that S is generated by R and denote this fact by S = (R) .  

Lemma 3.4. Let G = C ( n , S )  be a circulant graph with S = (R) .  Then G 
is connected if and only if C(n ,  R)  is connected. 

Proof. Let GI = C(n,  R) .  Since R C S ,  it is clear that connectedness of GI 
implies the connectedness of G. Conversely, let G be connected and 211, be any 
vertex of G. Then there exist s1,. . . , sq E S such that vov,, ,vg lvs l+sz , .  . . , 
~ ~ ~ + ~ ~ + . . . + ~ , . . . ~ v k  are in E(G),  where k = s1 + s2 + ... + sq. By Condi- 
tion (ii), si = x;Ll t i jri j ,  tij E Z, T i j  E R, i = 1 , 2 , .  . . ,q .  Therefore 
k = '$=, CYjTj for suitable values h, aj E Z and rj E R, j = 1 , 2 , .  . . , h. 
Now we can join vo to V k  by a walk in G' as follows: vo is joined to v,,,, 
by the walk V O V ~ ~ V ~ ~ ~  . . . v,,,,; v,,,, is joined to v , , , ~ + ~ ~ , - ~  by the walk 
ValrlVcrlrl+r2VUalrl+2rz . . .v,,,,+,,,,, and so on. From this and the vertex- 

0 

Lemma 3.5. A metacirculant graph G = MC(m,  n, a, SO, . . . , S,) with SO # 
8 is tetmvalent if and only af one of the following cases holds: 

transitivity of GI, it follows that GI is connected. 

1. lSol=4 a n d S l = - . - = S , = 0 ;  

2. m and n are even, IS01 = 3, Sj = 0 for any j E { 1 , 2 , .  . . , p  - 1) and 
\ % I  = 1; 
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3. m is even, [Sol = 2, Sj = 0 for any j E {1 ,2 , .  . . , p  - 1) and IS,l = 2; 

4. m > 2 is  odd, IS0 1 = 2, ISi I = 1 for some i E { 1,2 ,  . . . , p }  and Sj = 0 

5. m > 2 is even, IS01 = 2, lSil = 1 f o r  some i E {1,2 , .  . . ,,u - l} and 

6. m and n are even, 15'01 = 1, Sj = 0 for any j E {1,2 , .  . . , p  - 1) and 

7. m > 2, m and n are even, (SO( = 1, = 1 f o r  some i E {1 ,2 , .  . . , 

f o r  any i # j E { l , 2 , .  . . , p } ;  

Sj = 0  f o r a n y i # j E  { l I 2 , . . . , p } ;  

IS,l = 3; 

,u - 1}7S,=0 f o r a n y i # j E { 1 , 2  , . . . ,  p-1 )  and(S,I=l.  

Pro05 This lemma immediately follows from Formula (E.1). 0 

4 Main result 

In this section we will prove necessary and sufficient conditions for a tetrava- 
lent metacirculant graph with the nonempty first symbol to be connected. 
Namdy, we will prove the following result. 

Theorem 4.1. Let G = M C ( m ,  n, a,  SO, .  . . , S,) be a tetravalent metacir- 
culant graph with SO # 0. Then G is  connected if and only i f  one of the 
following conditions holds: 

1. m = 1, SO = {ks, h r }  and gcd(s , r ,n)  = 1; 

2. m = 2, n is even, SO = {fs, T}, SI = { k }  and gcd(s, 5) = 1; 

3. m = 2, So = {ks}, S1 = {Ic ,e}  and gcd(s, k - l ,  n) = 1; 

4. m > 2 is odd, So = {As}, Si = { k }  f o r  some i E {1 ,2 , .  . . , p }  such that 
gcd(i, m) = 1, Sj = 0 for any i # j E {1 ,2 , .  . . , p }  and gcd(s , r ,n)  = 1, 
where r = k (  1 + az + . . . + a(m-l)i ) reduced modulo n ;  

5. m > 2 is even, So = {fs}, Si = { k }  for some i E {1,2 ,... , p -  1) 
such that gcd(i, m) = 1, Sj = 0 f o r  any i # j E {1,2 , .  . . , p }  and 
gcd(s, r, n) = 1, where r = k(1 + (I' + . . . + d m - l ) 2 )  reduced modulo n; 

6. m = 2, n is even, SO = { i}, S1 = {h,  k ,  e} and gcd(h - k ,  k - e, 5) = 1; 

7. rn > 2 is  even, n is even SO = {i}, Si = { s }  where i is  odd and 
gcd(i ,m) = 1, Sj = 0 for any i # j E {1,2,. . . , p - 11, S, = { r )  and 
gcd(p, 5) = 1, where p is [r - s ( 1  + a2 + aZi + . . . + reduced 
modulo n; 
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8. m > 2 is even, but p = 7 is odd, n is even, SO = { f}, Si = {s}, where 
i is even and gcd(i,m) = 2, Sj = 0 for any i # j E {1,2,  ... , p -  l } ,  
S, = {r} and gcd(q, :) = 1, where i = 2%' with i' to be odd and q to  

reduced modulo n. 
be [r(l + &' + cy2i' + . . . + 0(2*-1)i') - s(1 + ~ i '  + #' + . . . + ab-lb ' ) ]  

Proof. Let G = MC(m, n,  a, SO,. . . , S,) be a tetravalent metacirculant graph 
with SO # 0. By Lemma 3.5, only one of Cases 1 - 7 of this lemma may occur. 
For each of these cases, we will consider the graph -d = C(n,  3) and the graph 
Go = C(n, So) constructed from G. By Lemma 3.2, the problem of finding 
the necessary and sufficient conditions for G to be connected can be reduced 
to the same problems for both 
and Go are circulant graphs. So we can apply Lemmas 3.3 and 3.4 to get the 
corresponding condition in each of these cases. 

The finding R such that (R) = 3 is easy for each of these cases. In order 
to find R such that (R)  = So, we first specify the set R. Then we prove 
the equality So = (R)  by showing that for any walk P in G connecting a 
vertex uz to a vertex vi of V o ,  ch(P) belongs to (R) .  Since ch(W1 * W Z )  = 
ch(W1) + ch(W2) and ch(W * W - l )  = 0, without loss of generality, we may 
assume that 

the endvertices of P are the only vertices of V o  
in P and P has no subwalks of the type W*W-'. 

and Go together. But, by Lemma 3.1, 

(*) 

Now we consider Cases 1 - 7 of Lemma 3.5 in turn. 
(1) IS01 = 4 and S1 = . . .  = S P -  - 0. 
Let SO = {fs, k~}. Then it is not difficult to show that G = C(m, 3) 

with 3 = 0 and Go = C(n,So)  with So = (SO). So by Lemmas 3.2 - 3.4, G 
is connected if and only if Case 1 of Theorem 4.1 holds. 

(2) m and n are even, IS01 = 3, Sj = 0 for any j E { 1 , 2 , .  . . , p - 1) and 

Since 0 @ SO = -SO, SO must be of the form {ks, $}  with s # 0, f. Let 
SP = { k } .  Then 

Let P be a walk mentioned above. If all vertices of P are in V o  then 
by Assumption (*), P = w ~ z l ~ + ,  with s E SO. If P 
has vertices not in V o ,  then also by Assumption (*), P must be of the form 
~ ~ w ~ + ~ Q v ~ + ~ u ~ ,  where Q is a walk in G[VP]. We have ch(Q) E (SO) since the 
subgraph G[VP] is isomorphic to C(n,aPSo). So ch(P) = k + ch(Q) - k = 
ch(Q) E (So). Thus So = (SO). By Lemmas 3.2 - 3.4, we conclude G is 
connected if and only if Case 2 of Theorem 4.1 holds. 

(3) m is even, IS01 = 2, S, = 8 for a n y j  E {1,2,. . . , p -  1) and ISP( = 2. 

ISPl = 1. 

= {fp}. We show that So = (SO). 

So ch(P) E (SO). 
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Let SO = {fs}, S, = {k,C} Then = C(m,s )  with 3 = {fp}. By 
arguments similar to those of (2), we can show that Go = C(n,So)  with 
So = ( R ) ,  where R = {fs, k ( k  - !)}. Again by Lemmas 3.2 - 3.4, the graph 
G is connected if and only if Case 3 of Theorem 4.1 holds. 

(4) m > 2 is odd, IS01 = 2, IS,l = 1 for  some i E { 1 , 2 , . .  . , p }  and S, = 0 
f o r  a n y i # j  E { 1 , 2 , . . . , p } .  

Let SO = {fs}, Sz = {Ic}, d be the smallest positive integer such that 
di G 0 (mod rn) and r = k (1 + a' +.  . . + d d - l ) ' ) .  Then it is clear that 
G = C(m,S) with 3 = (43). We show now that Go = C(n,So)  with 
So = (R) ,  where R = { f s , 4 ~ } .  

Let P be a walk mentioned in the beginning of the proof. We show that 
ch(P) E (R)  by induction on the number of So-intervals of P. 

If P has no So-intervals, then P has to be an Sz-walk. If P is an S:-walk, 
then P has the form v ~ v ~ + k v ~ + k + a , k . .  . v$+,. so ch(P) = r E (R) .  If P is 
an Sz--walk, then P-l has the above form. Therefore, ch(P-') E (R)  and 

If P has one So-interval, then either P is an So-walk or P = Q1* Q2 * Q3, 
where Q1 and Q3 are $-intervals and Q2 is an So-interval. For the former 
case, it is clear that ch(P) E {fs} 5 (R) .  For the latter case, there are the 
following subcases to consider: 

(a)  Both Q1 and Q3 are S:-walks or both Q1 and Q3 are S,--walks. 
If both Q1 and Q3 are S:-walks, then we can write 

- 

ch(P) = -ch(P-l) E (R) .  

(E.2) 

(E.3) 

t z  
Q1 = v ~ v ~ + k v ~ ~ k + a f k  ' ' .'z+k+a*k+ + a ( t - l ) * k  

Q3 = v x ~ v x , + a t * k . .  . v 2 f + a t t k + . .  f a ( d - 1 ) * k  
t z  ( t f l h  dz 

with 0 < t < d. So 

ch(P) = MQi)  + 4 Q 2 )  + W Q 3 )  

= ~ h ( Q 2 )  + ~ Q I )  + ch(Q3) 
= ch(Q2) + ( k  + a'k + . . .  + 
= ch(Q2) + T E (R) .  

+ ( d Z k  + ... + a(d - l )ak )  

If both Q1 and Q3 are S,--walks, then P-l = QY1 *QT1 *QT1 is the walk 
just considered above. So ch(P-l)  E (R)  and therefore ch(P) = -ch(P-l) 
is also in (R) .  

(b) Q1 is an  S:-walk and Q3 is an Sz--walk. 
If Q1 is as in Form (E.2), then Q3 has to have the form 
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It is clear that ch(Q1) + ch(Q3) = 0. So ch(P) = ch(Q2) E (R) .  
(c) Q1 2s an $--walk and Q3 is an ,!?:-walk. 
The proof is similar to that of Subcase (b). 
Thus, ch(P) E (R)  if P is a walk mentioned in the beginning of the proof 

and has one So-interval. 
Assume now that t 2 2 and ch(P) E (R)  for all walks P' in G which 

have less than t So-intervals. Further, let P be a walk in G, which has t SO- 
intervals. Then Pmus tbeof the fo rmP= P1*P2*-..*PZ with Pl,P2, . . . ,  P, 
intervals of P. By Assumption (*) and t 2 2, PI cannot be an So-interval. So 
P 2  must be an So-interval. Let v t  be the common vertex of P2 and P3, and W 
be an $-walk in G starting at v t  and terminating at a vertex of Vo. Consider 
the walk PI', where P" = PI * P 2  * W * W-l * P3 * . . . * P,. J t  is easy to see 
that both PI * P 2  * W and W-l* P3 *. . .* P, are walks satisfying the induction 
hypothesis. Sowe havech(Pl*P2*W) E (R)  andch(W-l*P3*...*PZ) E (R) .  
Thereforech(P) =ch(P") =&(PI *P2*W)+ch(W-'*P3*...*P2) E (R) .  
Thus,.S" = (R) .  By Lemmas 3.2, 3.3 and 3.4, we conclude G is connected if 
and only if Case 4 of Theorem 4.1 holds. 

The proof of Case 5 is similar to that of Case 4 and the proof of Case 6 
is similar to that of Cases 2 and 3. So we omit them here. 

(7) m > 2, m and n are even, IS01 = 1, lSzl = 1 for some i E {1,2,. . . , 
p - l } , S , = ( b f o r a n y i # ~ E { 1 , 2  ,..., p - l ) a n d I S , , I = l .  

As in Case 4, we might use here induction to prove Conditions 7 and 8 
of Theorem 4.1. But there is a shorter way, which we do use here, to prove 
these conditions. 

It is clear that SO = {f}. Let S, = {s} and S,, = { T } .  Denote w; = 
{ u ~ , v ~ + ~ } ,  wherea E Z,andj E Zn/2. WeconstructthegraphG'fromGas 
follows. The vertex-set V(G') is the set {wi I i E Z,, j E Znp}. Two vertices 
wj and w t  are adjacent in G' if and only if there are u E wi and v E w t  such 
that they are adjacent in G. It is not difficult to verify that G' is isomorphic to 
the metacirculant graph MC(m, ;,a', S;, . . . , Sh), where a' = a (mod ;), 
Sl = {s'} with s' = s (mod X), S; = 8 for i # j E {0,1,. . . , p  - 1) and 
5'; = { f }  with r' f r (mod z ) .  So we can identify G' with this metacirculant 
graph. Therefore, G' is a cubic metacirculant graph with S; = 0. Also, it 
is not difficult to show that in this case G is connected if and only if G' is 
connected. By Theorem 2 in [4], G' is connected if and only if one of the 
following conditions holds: 

(i) S: = {s'} where i is odd and gcd(i,m) = 1, Si = 0 for any i # j E 
{1,2, . . . , p -  l},S~=(r '}andgcd(p' ,$)=l,wherep' is  [ r ' - ~ ' ( l + ( a ' ) ~ +  
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(a’)2i + . . . + ( ~ ’ ) ( p - ~ ) ~ ) ]  reduced modulo 2; 
(ii) p = 7 is odd, S,! = {s’} where i is even and gcd(i,m) = 2, S; = 0 for 

any i‘# j E {1,2, .  . . , p  - l}, SL = {r’} and gcd(q’, ;) = 1, where i = 2%’ 

(&‘)i’ + (a’)2i’  + . . . + ( a y - l ) i ‘  )] reduced modulo 5. 
From Conditions (i) and (ii) above for G’, we can easily get Conditions 7 

and 8 of Theorem 4.1, respectively, for G, because s’ = s (mod ;), a’ = a 
(mod 5) and T’ E T (mod 3). 

0 

with i’ odd and q’ to be [~ ’ ( l  + (a’)i‘ + (a’)2i‘ + . . . + ( ~ y ’ ) ( ~ ~ - l ) Z ‘  ) - s’(1 + 

The proof of Theorem 4.1 is complete. 

Theorem 4.1 gives us an algorithm to test connectedness of a tetravalent 
metacirculant graph G = MC(m, n, a, SO,. . . , S,) with SO # 0 by verifying 
if the parameters m, n, a,  SO, . . . , S, of G satisfy one of Conditions 1 - 8 of 
Theorem 4.1. 
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On the Relation Between Maximum Entropy Principle 
and the Condition Independence Assumption 

in the Probabilistic Logic 

Ha Dang Cao Tung 
Information Technology Department, Hanoi Teacher Training College 

Abstract. In the Probabilistic Logic, the single value of the truth prob- 
ability of a sentence is calculated by adding assumptions. By adding the 
Maximum Entropy Principle (MEP) the reasoning problem becomes a non- 
linear optimization problem. In this note, we assert the equivalence between 
the MEP and the Conditional Independence assumption (CIA) and the Ran- 
domness Assumtpion (RA) formulas for a class of Probabilistic Knowledge 
Base. Thus, for this class, instead of solving a nonlinear optimization prob- 
lem to find the truth probability of a sentence, we can drive it from Calculus 
C and some CIA + RA formulas. 

1. Introduction 

Given a set of sentences r = {Sl, 5’2, ..., SL} and a sentence S. Denote 
by A(r, S) (or A shortly) the set of propositional variables {AI, Aa, ..., An} 
occurring in { 5’1, S2, ..., SL, S}. Each assignment of boolean values to the 
variables in A defines a possible world [4]. For every given probability distri- 
bution p = (p l , p2 ,  . . . , p ~ ) ,  where N = 2n, on the set of possible worlds, the 
truth probability of a sentence S is defined to be the sum of probabilities of 
possible worlds in which S is true. 

In Probabilistic Logic (PL), from any knowledge base (KB) given by the 
truth probabilities p(Sl),p(Sz), . . . ,p( SL)  of setences SI,SZ, ..., SL one can 
usually determinate the lower and upper bounds of an interval containing 
the truth probability p(S) ,  but not the single value of p(S) .  A such single 
wlue ofp(S) can be determined from probabilities p ( & ) , p ( S ~ ) ,  . . . ,p( SL) only 
for special cases. In [l], it was proved that the truth probability of S was 
calculated from the truth probabilities of S1,S2, ..., SL by a formula 

if and only if (1) is deducible in the Calculus C comprising of two axioms: 
1. p ( P )  = 1 if P is tautology. 
2. p(P v Q )  = p(P)  + p ( Q )  if l(P A Q) is tautology. 
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In other words, ifp(S) can be determined uniquely from p(Sl),p(Sz), ..., 
~(SL), then it is deducible in Calculus C. In the general case p ( S )  can not be 
determined uniquely from p(S1),p(S2), . . . ,p (  SL), for finding a unique value 
for p(S)  one has to add some assumption into KB, e.g., the maximum en- 
tropy principle (MEP) [4]. In PL with MEP [4] MEP is used to calculate 
a probalbility distribution p = (p1,p2, . . . , p ~ )  on the set of possible worlds, 
and then, from this distribution p one can determine a single value of p ( S ) ,  
this value is a function of p(S1), p ( S z ) ,  . . . ,p (  SL), and is denoted by: 

An another assumption, the conditinal independence assumption (CIA) 
is considered in [l]. The CIA is stated in the form “two sentences A and B 
are independent with respects to C” and is expressed by the formula 

P(A A BIG) = P(AIC) x P(BIC) 
(when C is a tautology we have a particular case p(A A B )  = p(A)  x p(B), 
A and B are independent). Together with the CIA one considers also a 
supplementary assumption called the randomness assumption (RA) which is 
usually expressed in the form 

1 
P(AIB) = 5’ 

(under the condition B ,  A is random). 
In probability theory, the MEP is often considered together with CIA. 

In PL, the similar problem on the relation betwen MEP and CIA is posed 
in [l] as follows: Given a knowledge base with the set of sentences r = 
{S1,S2, ..., SL} and a sentence S. It is possible to determine a set H of 
CIA and RA formulas such that (2) is derived in Calculus C + H? In this 
note we shall the possitive answer to this problem for a class of probabilistic 
knowledge bases. 

Remark. In [4], the possible workds are defined by the consistent vectors 
of values of { 5’1, S2, ..., SL, S}, and on the basis of this definition one can 
obtain “inconsistent” results as shown in the following example: Let B be 
the KB given B = {(AB,a)} ,  where 0 5 a < 1; from this KB by the 
method used in [4] can we can calculate separately the truth probabilities of -- - 
A B,  AB, 71B: 

1 p(AB) = p@B) = p(ZB) = z(1- a), 

hence we obtain 
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that violates an axiom of the probability theory. Therefore, in this paper we 
consider a possible workd of a set I' of sentence as an assignment of boolean 
values to the propositonal variables occuring in r. 

2. The main result 
Let us give a set of sentances I' = {S1,S2, ..., SL}. We say that I' is 

complete if each assigment of the boolean values to the sentences of I? - is 
consistent. We denote by I'" the formula S:lS? ... ST(S: = Si,S: = Si), 
where u = (211, u2, ..., u ~ )  is a boolean vector. 

Suppose that I' can be partitioned into m subsets rl, ..., rm, where 

r k  = { s, ( k )  , s2 (k) , ..., $,:I}, k = 1, m, 

such that (Vk # 2 )  (Vi = E, V j  = Ink)-.(Sik)SS,(')) = Tautology. Then 
we say that I' i s  partitionable into m mutual excusive subsets. 
Theorem. Suppose that I' is partitionable into mutual exclusive subsets 
I ' l ,  ..., rm, and each of these subsets is complete. Let H is the set of CIA 
formulas of the form: 

j j (AS j l ) )=  

where, Tii = {1,2, ..., n'}. Then, for  any KB with the set of sentences r and 
any sentence S ,  the values of p ( S )  deduced from C + H and from P L  + MEP 
are the same. 

In order to prove the theorem, we first prove the following 

Lemma. Suppose that 

where 0 I aik) 5 l(Vk = 1, ..., m) (Vi = 1, ..., n k ) .  Then the following system 
of equations for t , 5 1 , 5 2 ,  ..., tm 
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has a unique solution. 
Proof. For each k = 1, ..., m, we consider the function: 

It is easy to see that f k ( z )  is continuous and increasing. Therefore the 

For tl = 0, 
inverse function f i l ( t )  exists, is continuous and also increasing. 

For t 2  = m s  ( n (1 - aik))) ,  
k=l,m i€G 

n (1 - a:k)) 5 t 2  * 1 = fF1 ( IT (1 -a?))) i fLl ( t2) .  (7) 
i€K a€G 

m For the function 

F ( t )  = c fL1(t)7 
k=l 

we have the following equalities: 

From the continuity of F ,  we have gt*IF(t*) = 1. Put fF'(t*) = &, it 
is easy to see that the system ( 5 )  has solution ( < I , & ,  ...,tm, t*). We notice 
that the left side of the first equation in (5) is an increasing function of t. 
Therefore the found solution is unique. 

Proof of the theorem. Suppose that r is partitioned into complete subsets 
rl . . . , Fm, where 

- sp), Sp), ..., sit)}, k = 1, m, 
- 

such that (Vk # I )  (Vi = l , n k ;  V j  = G l ) l ( S j k ) S ( ' ) )  = Tautology. Let B 
be a KB with the set of sentences I? given by p(Sij  = ai for every Si E I?. 
Then we have (see [5]): 
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Put  in these equations 

we obtain 

w h e r e G =  {1,2 ,..., n k } .  

By the lemma, there are the unique values of a0 and <k such that 

= 1  

1 < k g l ( l - $ )  =%, k = 1 ,  ..., m 

For each k = 1 ,  ..., m, we consider system of equations 

Put  

By dividing both sides of each equation of this system by t k ,  we obtain 
the following system (k = 1 ,  ..., m): 

This system of equations has the solution 
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Hence, we obtain 

From (3) and (9) we have 
- 

tJk = l ,m, V I  C G, p (  A$"\&) = Up(S,!"'\Qk). 
i E I  i E I  

Then for all consistent vector uy) ,  we obtain 
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Thus, we obtain again the formula (8). The theorem is proved. 

Remark. If I? = {SI, SZ, ...) SL} is itself a complete set of sentences, then 
the set H stated in the theorem consists of the following CIA formulas: 

We notice in the reasoning, if a propositional variable A occurs in the 
goal S and does not occur in I?, we have to add to H the R A  formula: 

1 p(A)  = -. 
2 

In general, if v and w are two possible worlds having the same consistent 
vector for I?, we have to add to H the RA formula: 

Example. Given a KB consisting of two formulas p(C) = a, p(AC V B )  = p. 
Let SI = C, SZ = ACVB. The set {C, ACVB} is complete. Then H contains 
the following formulas 

For S = AB, from C + H we have 
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1 1 1 -  
= $ ( ( A  v B)C) + sp(BC) = ?p(C(AC V B))  + p ( C ( A C  V B))  

3 

1 
= gP(3 - a) 

This result can be obtained also by a calculation from PL + MEP. 

3. Conclusion 
Thus, in this paper we have obtained the positive answer to the question 

of equivalence between the MEP and the CIA + RA for a class of probabilii- 
tic knowledge bases. And therefore, for this class we can deduce the truth 
probability of any sentence from the Calcules C and a suitable set H of CIA 
and RA formulas instead of solving a nonlinear optimization problem. 
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