

The
Mathematical
Foundation of
Informatics

This page intentionally left blankThis page intentionally left blank

I

Proceedings of the Conference
Hanoi, Vietnam 25 - 28 October 1999

Editors

Do Long Van
Institute of Mathematics, Vietnam

M Ito
Kyoto Sangyo University, Japan

1: World Scientific
N E W J E R S E Y * LONDON * SINGAPORE * B E l J l N G - S H A N G H A I HONG KONG * TAIPEI - C H E N N A I

The

MathematicalMathematicalal aal

Foundation of

Informatics

Published by

World Scientific Publishing Co. Re. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

THE MATHEMATICAL FOUNDATION OF INFORMATICS
Proceedings of the Conference

Copyright Q 2005 by World Scientific Publishing Co. Re. Ltd.

All rights reserved. This book, or parts thereoj may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written pennissionfiom the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-02-4656-0

Printed in Singapore by World Scientific Printers (S) Ple Lld

V

Preface

The first international conference organized in Vietnam, which
concerns theoretical computer science, was the ICOMIDC Sym-
posium on Mathematics of Computation, held in Ho Chi Minh
City in 1988. For the last years great developments have been
made in this areas. Therefore, it had become necessary to or-
ganize in Vietnam another international conference in this field,
which would enable Vietnamese scientists, especially young peo-
ple, to update the knowledge, to make contacts, to exchange
ideas and experiences with leading experts all over the world.

For such a purpose, the conference on Mathematical Foun-
dation of Informatics (MFI99), held at the Institut de Fran-
cophonie pour Informatique (IFI) in Hanoi, was co-organized
by the Institute of Mathematics and Institute of Information
Technology, Vietnam National Center for Natural Sciences and
Technologies (now, Vietnam Academy of Science and Technol-
ogy). This conference was also endorsed as one of the activities
of the South East Asian Mathematical Society (SEAMS).

The Program Committee consisted of And& Arnold, Jean
Berstel, Marc Bui, Robert Cori, Bruno Courcelle, Karel Culik
11, Janos Demetrovics, Josep Diaz, Volker Diekert, Phan Dinh
Dieu, Dinh Dung, Jozef Gruska, Masami Ito, Helmut Jiirgensen,
Juhani Karhumaki, Takuya Katayama, Gyula 0. H. Katona,
Bach Hung Khang, Hoang Kiem, Daniel Krob, Ivan Lavallde,
Bertrand Le Sa ec, Igor Litovsky, Maurice Nivat, Dominique
Perrin, Dang Huy Ruan, Jacques Sakarovitch, Ludwig Staiger,

vi

Howard Straubing, Ngo Dac Tan (Secretary), Nguyen Quoc
Toan, Do Long Van (Chair).

The Steering Committee consisted of Ding Dung, Wanida
Hernakul, Bach Hung Khang, Kar Ping Shum, Polly Wee Sy,
Dao Trong Thi, Nguyen Dinh Tri, Do Long Van, Tran Duc Van.

The Organizing Committee consisted of Le Tuan Hoa (Chair),
Le Hai Khoi, Michel Mouyssinat, Ngo Dac Tan, Le Cong Thanh.

The main sponsors of MFI99 are: UNESCO Jakarta, Viet-
nam National Program for Basic Research in Natural Sciences,
Institut de Francophonie pour Informatique (IFI), V' ietnam
Union of Science and Technology Associations (VUSTA), and
the Institute of Computer Science at Kyoto Sangyo University.

At the conference, invited lectures were delivered by Andrk
Arnold, Ho Tu Bao, Jean Berstel, Christian Choffrut, Nguyen
Huu Cong, Robert Cori, Bruno Coucelle, Volker Diekert, Nguyen
Cat Ho, Dang Van Hung, Masami Ito, Helmut Jurgensen, Juhani
Karhumaki, Takuya Katayama, Gyula 0. H. Katona, Nguyen
Huong Lam, Ivan Lavallke, Bertrand Le Saec, Igor Litovsky,
Maurice Nivat, Jacques Sakarovitch, Kar Ping Shum, K. G.
Subramanian, Ngo Dac Tan, Klaus Wagner. Over 40 contri-
butions in different aspects of theoretical computer science were
presented at MFI '99.

This volume consists of several invited lectures and selected
contributions at MFI '99. The editors thank the members of
the Program Committee and also many referees for evaluation
of the papers. We are grateful to all the contributors of MFI
'99, especially to the invited speakers who have made a very
successful and impressive conference.

We would like to express our thanks to the members of the
Steering Committee and Organizing Committee for their coop-
eration and assistance in the preparation process for the con-
ference and during the conference. Sincere thanks are due to

vii

the organizations-sponsors without their supports the confer-
ence would not be organized.

on the conference in the bulletin of EATCS as well.
We would like to thank Prof. Bruno Courcelle for his report

Finally, the editors apologize to the contributors for a long
delay in publishing the proceedings volume.

July 2005 Editors:
Do Long Van

Masami Ito

This page intentionally left blankThis page intentionally left blank

ix

Contents

Preface

On Growth Function of Petri Net and its Applications
Pham 13-a An

On an Infinite Hierarchy of Petri Net Languages
Pham 13-a A n and Pham Van Thao

Algorithms to Test Rational w-Codes
Xavier Augros and Igor Litovsky

Distributed Random Walks for an Efficient Design of a Random
Spanning Tree

Hichem Baala and Marc Bui

Formal Concept Analysis and Rough Set Theory in Clustering
Ho Tu Bao

A Simple Heuristic Method for the Min-Cut k-Balanced
Partitioning Problem

Lelia Blin and Ivan Lavalle'e

Longest Cycles and Restgraph in Maximal Non-Hamiltonian Graphs
Vu Dinh Hoa

Deterministic and Nondeterministic Directable Automata
Masami It0

Worst-case Redundancy of Solid Codes
Helmut Jiirgensen and Stavros Konstantinidis

V

1

13

23

37

43

55

67

71

85

Maximal Independent Sets in Certain Subword Orders 95
Nguyen Huong Lam

X

Strong Recognition of Rational @-Languages
Bertrand Le Saec, V. R. Dare and R. Siromoney

Some Results Concerning Covers in the Class of Multivalued
Positive Boolean Dependencies

Le DUC Minh, Vu Ngoc Loan and Nguyen Xuan Huy

A New Measure for Attribute Selection
Do Tan Phong, Ho Thuan and Ha Quang Thuy

The Complexity of Problems Defined by Boolean Circuits
Steffen Reith and Klaus W. Wagner

The Rational Skimming Theorem
Jacques Sakarovitch

A New Classification of Finite Simple Groups
Wujie Shi and Seymour Lapschutz

Connectedness of Tetr avalent Met acir culant Graphs with
Non-Empty First Symbol

Ngo Dac Tan and Tran Minh Tuoc

111

119

131

141

157

173

183

On the Relation between Maximum Entropy Principle and the
Condition Independence Assumption in the Probabilistic Logic

195

Ha Dang Cao Tung

1

On Growth Function of Petri Net and
its Applications

Pham Tra An
Institute of Mathematics, P.O. Box 631, BoHo, Hanoi, Vietnam

Abstract

In this paper is introduced the growth function of a Petri net. We
show that the growth function of any Petri net is bounded by a certain
polynomial. There are relations between the growth function and the
representative complexity of the language which is accepted by a Petri
net. Some applications are examined.

1 Introduction
Petri net was introduced in 1962 by C. Petri, in connection with a theory
proposed to model the parallel and distributed processing systems. From
then onwards, the theory of Petri net was developed extensively by many
authors (see, for example, [lo-131).

In a Petri net, each place describes a local state, and each marking de-
scribes a global state of the net. Since the number of tokens which may be
assigned to a place can be unbounded, there may be an infinity of markings
for a Petri net. From this point of view, a Petri net could be seen as an
infinite state machine.

In order to study thus infinite state machines, in this paper we propose a
new tool : the notion of state growth speed, which is called to be the growth
function of the machine. An analogous growth function for Lindenmayer
systems was earlier considered by some authors, (see [2-31). As we shall
see in the sequel, in the theory of growth function, only the state growth
speed of the system matters, no attention is paid to the states themselves.
This implies that many problems which are very hard for the infinite state
machine in general, but could become solvable for the growth function. From
the obtained results on growth function of Petri nets, we hope that it could
shed a light to some problems concerning with the capacity of Petri nets.

2

The purpose of this paper is study of growth function of Petri nets and
its applications.

The definitions of Petri net and of Petri net language are recalled in
Section 2. The Section 3 deals with the notion of growth function of a Petri
net. The main result of this part is the growth speed theorem which shows
that the growth function of any Petri net is bounded by a certain polynomial.
The Section 4 is devoted to the relations between growth function of a Petri
net and representative complexity of the language, which is accepted by this
Petri net. Finally we close the paper with a remark and an open problem in
Section 5.

2 Definitions
We first recall some necessary notions and definitions. For a finite alphabet
C, C* (resp. C', El') denotes the set of all words (resp. of all words of
length r, of length at most r)) on the alphabet C, A denotes the empty word.
For any word w E C*,l(w) denotes the length of w. Every subset L C C* is
called a language over the alphabet C. Let N be the set of all non-negative
integers and N+ = N\{O}.

Definition 1. A (free-labeled) Petri net N is given by a list :

N = (P, T, I ,O, po, Mf)l

where :
P = { P I , ...,pn} is a finite set of places;
T = {tl, ..., tm} is a finite set of transitions , P n T = 0;
I : P x T + N , the input function;
0 : T x P -+ N , the output function;
po : P + N , the initial marking;
M f = {pup, . . . l p f k } is a finite set of final marking,

Definition 2. A marking p (global state) of a Petri net N is a function from
the set of places to N :

p : P + N .

The marking p can also be defined as a n-vector p = (PI, ..., pn) with pi =
p(p i) and IPI = n.

Definition 3. A transition t E T is said to be firable at the marking p if :

3

Let t be firable at p and if t fires, then the Petri net N shall change its state
from marking p to a new marking p' which is defined as follows :

VP E p : P'(P> = P(P) - I@, t) + O(t, PI.

We set S(p, t) = p' and the function 6 is said to be the function of changing
state of the net.

A firing sequence can be defined as a sequence of transitions such that
the firing of each its prefix will be led to a marking at which the following
transition will be firable. By FN we denote the set of ail firing sequences of
the net N .

We now extend the function 6 for a firing sequence by induction as follows
Let t E T*, t j E T, p be a marking, at which ttj is a firing sequence, then

{ ::;:;:) 1 !$a(p,t),tj).

Definition 4. The language acceptable by (free-labeled) Petri net N is the

set

The set of all (free-labeled) Petri net languages is denoted by Cf .
L(N) = {t E T*/(t E FN) A (d(Po,t) E Mf)).

3 The Growth Function of a Petri Net
3.1. Let N = (P, T, I, 0, po, Mf) be a Petri net. We denote

Sr = {P/(3t E -7%) A (t E T') A P = PO, t)) ,

s,, = {@/(st E FN) A (t E T5r) A /d = d(p0, t)}.

S, (resp. S<,) is the set of all reachable markings of N by firing T (resp. at
most r) transitions.

Definition 5. The Growth hnctions h ~ , gN of Petri net N are defined
bY

h ~ (r) = lsrl,
g N (r) = IS,,l.

Now we remark that an exact estimating g N (r) or h ~ (r) will doubtless be a
complicated function of T . However, it almost always happens that for large
value of T , gN(r) or hN(r) can be closely approximated by a much simpler
function which will provide us about state growth speed of the net N.

4

3.2. In the sequel, we use the notations and definitions of the theory of
computational complexity.

Definition 6.
then

for all n 2 N .

If f and g are functions defined on the positive integers,

(1) f = O(g) if there is a C > 0 and an N > 0 such that If(n)l 5 CIg(n)l

(2) f = Q (g) if 9 = W).
(3) f = R(C), where C is a class of functions, if f = n(g) for all g E C.
The following theorem gives us an upper bound of state growth speed for

any Petri net.

Theorem 1.

Pk is any polynomial of degree k, then

(The growth speed Theorem)
If N is a Petri net with m transitions and n places, k = min(m, n) and

hN = O(pk),

SN = O(pk).

Thus the growth funtion of any Petri net is bounded by a certain polynomial.
This is an essential limitation of the Petri net.

Proof. Let n/ = (P, T, I , O , p o , M f) be a Petri net with IT/ = rn, IPJ = n.
We now estimate IS<,./. There are two ways for doing it.
First we prove IS<,/ 5 P,(r) with IPI = n.

Denote
po = (a l , ..., a,);

1 = rnazlO(tj,pi) - I(pi, t j) l ,
Let t = tj,tj z...tj,, p 5 r, be any firing sequence of N . The equation of state
change by firing t can be determined as follows :

a = mu2 ui , 1 I i I n.

1 5 i 5 n; 1 5 j 5 m.

d(p0, t j l) = p1 with Vpi E P :

p’(pi) 5 a + 1.

d(p0, t j , ... t j ,) = p(P) with Vpi E P :

5

Therefore Vr E N + :

IS<,I 5 (a + IT)" = Pn(.).

Second, we show IS<,I - 5 Pm(r) with IT1 = m. We define the matrices I - ,
o+ , D as follows :

I-[.% i] = (I (P2 , t j)) m x n .

O+[j,i] = (O (t j 1 P 2)) m x n .

D = o + - I -

e[j]=(O,. . . ,O, 1 , O , . . . , O) l x m .

Let t = t& z . . . t j p l p 5 r, be any firing sequence of n/. Firing t , the equation
of state change is also determined by another way as follows :

and set :

v
j - t h

&(Po, t j ,) = P' = Po + e [W .

&(Po, t j l ... t j ,) = p(p) = P (P-l) +e[jplD.

We obtain :
&(PO, t j l . . . t j ,) = PO + e[j@ + ... +

We set e[j]D = u j , j = 1, . . . , m , and fj is number of occurences of transition
t j in t. We can now express the equation of state change in the following
form :

= PO + Cj"L fj.j, { gi1fj 5 r.

It follows that IS<,I equals at most the number of non-negative integer solu-
tions of inequation CYZl f j 5 r. In [8] we have proved this number equals
C;+, = (m + r)! /r!m! 5 (m + r)". Therefore V r E N + :

IS<,l 5 (m+.)" = Pm(r).

Combining both results of estimating IS<,.[, we obtain :

ISI,I 5 Pk(r) , with Ic = min{m, n}.

Finally, from the property 'v'r E N : IS,/ 5 IS<,I - , it follows IS,l 5 Pk(r),
we obtain h~ = O(Pk), gN = O(Pk). QED.

3.3. We now consider the growth function for some special classes of Petri
nets. Denote S = u S,. , r 2 0. S is the set of all reachable markings of net.

6

A Petri net N is safe if Vp E S,Vpi E P : p(pi) 5 1, i.e. the number
of token in any place is either 0 or 1. Safeness is an important property of
hardware devices. If (PI = n, then IS1 I 2n = C. Therefore for any T E N +

hN(T) 5 9N(T) I c.
A Petri net is bounded if there exists a contant K , such that for Vp E

S,Vpi E P : p(pi) 5 K. It is easy to see that if N is bounded and [PI = n,
then IS1 5 (K + l)n = C. Therefore for any T E N + :

h (r) 5 9 N (T) 5 c.
A Petri net is consewative if Vp E S, IF') = n :

n n

i=l i=l

Because po is given, therefore Cy=lp~(pi) = K, it implies that p(p i) I K ,
i.e. N is bounded and we obtain also :

hN(T) I SN(T) I c.
Thus, the growth functions of either safe or bounded or conservative Petri
net are bounded by a contant.

4 The Growth Function and Representative
Complexity

4.1. In [7-91, we have examined a representative complexity of language,
defined as follows :

C * . We define two equivalence relations E,,(modL) in Zs' (and
E,(modL) in C.) by :

Let L

Vx1,22 E EST,(and Vx1, x2 E C') :

x l E ~ , x ~ (m o d L) e+ Vw E C* : x1w E L t) x2w E L.

(x I E , x ~ (~ o ~ L) H VW E C* : x1w E L +) X ~ W E L) .

It is easy to show that the relations E<,(modL), - E,.(modL) are reflexive,

We define :
symmetric and transitive, therefore they are equivalence relations.

GL(T) = Rank Eir(modL),

7

H L (T) = Rank E,(modL)

where Rank E is rank of the equivalent relation E .
They are considered to be representative complexity characteristics of the

language L over XI ' and over C'. There is a nice relation between the growth
functions of a Petri net and the representative complexities of the language
which is accepted by this Petri net.

Theorem 2. (The supply-demand Theorem).
Let L = L (N) , where N is a Petri net. Then for any r E N +

H L (T) 5 b (r) + 1,

G L (~) I w (r) + 1.
Proof. We first extende the partial function 6 to a total function over TI'

by adding a new marking pe defined as follows :

. If x is a firing sequence of N at p, then

&, x) = %% x)

s'b, x) = Pr

. If x is not a firing sequence of N at p, then

. For all x E TI', 8 (p E , x) = p6

. Finally pe $ M f .

We remark that in a strict sense, p E is not a marking, since it is not an

Set S<r - = S<r U { p E } , and
Now we prove that if L = L (N) then GL(T) 5 I & [.

n-vector. But here we could consider it to be a special marking of N .
(S<r(+ 1.

We assume
the contrary that GL(r) > IssTI. There exist x1,x2 E T I P such that
x1E<,x2(modL) but d(p0, X I) = d(p0, x2) , where F<,(modL) is the nega-
tionof E<,(modL). It follows from the last equation that both 2 1 , x2 are (or
are not) firing sequences and we could verify that :

VW E T* 1 x1w E L tf X ~ W E L.

According to the definition, it implies that x1 E<,.x2 - (modL) which conflicts
with hypothesis xl~<,x2(modL). - Therefore :

G L (T) I IS<,I = IssrI + 1 = gN(r) + 1.

By an analogous argument, we also obtain HL(T) 5 hN(r) + 1. QED.

8

4.2. Using the above relation, we get some corollaries and applications.

Corollary 1. If L i s a language with either H L = R(Pk) or GL = R (P k) ,

then L i s not acceptable by any Petri ne t whose numbers of transitions and
of places are equal or less than k .

Proof.In order to prove the corollary, we assume the contrary that L is
acceptable by a Petri net N with k = min(lT1, If'[}. Applying the theorem
2, and then the theorem 1, we obtain :

G L (T) 5 gN(r) + 1 = O(Pk).
This conflics with hypothesis either H L = f l (P k) or GL = f l (P k) . Therefore
L is not acceptable by any Petri net whose numbers of transitions and of
places are equal or less than k. QED.

Corollary 2. If L i s a language with either H L = R(P) or GL = R(P),
where P is the class of all polynominals, then L i s not acceptable by any Petri
net.

Proof. The proof is analogous to the one of corollary 1.
By the Corollaries 1 and 2, we can show a lot of rather simple languages

not being acceptable by either any Petri net or a Petri net whose number of
transitions and number of places are less than a given contant.

Example 1. Let 1x1 = k 2 2, c @ C and :

L = { x c x / x E C+}.

It can verify that if q , x 2 E XI', 2 1 # 2 2 then x1&,.x2(modL). Therefore
GL(T) = ICs'I = (k'+' - l)/(k - 1) = R(P) . According to the corollary 2,
L is not acceptable by any Petri net.

Example 2. Let C = (0,l) , c @ C , k 2 2 and :

L k = {ZCZ / Z E C* , 1x11 = k } ,

where 1x11 denotes the number of occurences of 1 in x. We now prove that
for any r 2 k : H L ~ (T) 2 Pk(r) .

We set :
w,. = {x / x E c*; l (x) = r ; 1x11 = k},

where 1(x) is the length of x. It is easy to show that :

k IW,l = C,. = T ! / k!(r - k)! = T (T - 1). .. (T - k + 1) / k! = P ~ (T) .

9

For any x l , 5 2 E W,., we prove that if X I # x2 then xlE,.xz(modLk). In fact,
if we choose w = cx1, then X I W = x1cx1 E Lk, but 22w = ~ 2 ~ x 1 4 Lk. It
follows x1E,.x2 (modLk). Therefore :

HL,(r) 2 Iwrl = pk(r).

According to corollary 1, it implies that Lk is not acceptable by a Petri net
whose numbers of transitions and of places are equal or less than k .

Theorem 3. Let N be a Petri net with g N (r) 5 C, then L = L (N) is
regular.

Proof. We first recall the Myhill-Nerode’s equivalence relation E(modL)
defined as follows : Vxl, x2 E C* :

xlEx2(modL) e Vw E C* : x1w E L +) x2w E L.

Denote IL = Rank E(modL).
Myhill and Nerode have proved that L is regular if and only if IL 5 C.
From the Theorem 2, GL(T) 5 g,u(r) + 1, it follows that G L (T) 5 C.

Because GL(T) is non-decreasing and bounded, there exists lim GL(T) =
q, q = const, when r -+ 00. Since the values of GL(T) are integer, so there
is a constant T O , such that Vr 2 TO :

For proving L is regular, we assume the contrary that L is not regu-
lar. By Myhill-Nerode’s theorem, IL = +00, therefore there is an infi-
nite sequence x 1 , x ~ ,..., Xk, ... with xi E C* , xi # xj and xiExj(modL).
From this sequence, we pick up the finite sequence x1,x2, ..., xq,xq+l and
set k = Max{l(xl) , ..., l(x,+l)}. We now choose r = Max{k,n-,}. We ob-
tain xiE<,xj(modL) for i # j . It follows Gr,(r) 2 q + 1. Thus, there
is T , T 5 TO but GL(T) # q. This contradicts with the property that
Vr 2 TO ,
Corollary 3. If Petri net N has one of following properties : safe, bounded,
conservative, then L = L (N) is regular.

Proof. At the end of Section 1, we have proved that if N gets one of
properties safe, bounded, conservative then its growth functions are bounded.
According to theorem 3, it implies that L (N) is regular. QED.

GL(T) = q.

GL(T) = q. It follows that L is regular. QED.

5 Remark and Open Problem
Now we extend the sphere of applying method of growth function.

A (non-erasing) labeled Petri net N is defined by a list :

N = (Pl T, I , 070, Po, Mf),

10

where P, T , I, 0, PO, Mf are the sames in Definition 1,

alphabet;
a : T -+ C , is a (non-erasing) labeled function , where C is a finite output

We can extend the labeled function a for a sequence as follows :

if t = t l t z ... tn t h e n o(t) = a(tl)a(tz) ... a(&).

The language acceptable by labeled Petri net N is the set :

L(N) = {Z E C*/ 3t E T* : (Z = a(t)) A (t E 3 ~) A (d(p0, t) E M f) } .

The set of all labeled Petri net languages is denoted by C.
It is obvious that the free-labeled Petri net is a particular case of labeled

Petri net with a is an isomorphism, then it may be omitted completely by
choosing C = T. In [9], we have proved that Cf c C.

Remark. We have proved that the theorems 1 and 2 are still hold for the
(non-erasing) labeled Petri net. The result shall be published in the Qext
paper.

Open Problem. Is it possible to apply the method of growth function to
other infinite state systems, for example, to the iterative array of finite state
automata ? On notions and definitions, concerning iterative array of finite
automata, we refer to (41.

Acknowledgement. The author would like to thank the referee for making
some valuable suggestions for improving the presentation of the paper.

References
[l] P.D. Dieu, O n a complexity characteristic of languages. EIK 8 (1972)8/9,

447-460.

[2] A. Salomaa, O n exponential growth in Lindenmayer systems. Indaga-
tiones Mathematical 35 (1973)1, 23-30.

[3] A. Paz and A. Salomaa, Integral sequential word functions and growth
equivalence of Lindenmayer systems. Information and Control 23
(1973)4, 313-343.

[4] S.N. Cole, Real-time computation by n-dimentional iterative arrays of fi-
nite state machines. IEEE Trans. Comp. C-18 (1969)4, 349-365.

11

[5] M. Jantzen, Language theory of Petri nets. LNCS 254 , Springer-Verlag,
Berlin, 1987, 397-412.

[6] G. Rozenberg, Behaviour of elementary net systems. LNCS 254 ,
Springer-Verlag, Berlin, 1987, 60-94.

[7] P.T. An, O n a necessary condition f o r free-labeled Petri ne t languages.
Proceedings of the Fifth Vietnamese Mathematical Conference, Science
and Technics Publishing House, Hanoi, 1999, 73-80.

[8] P.T. An, A complexity characteristic of Petri ne t languages. Acta Math-
ematica Vietnamica 24(1999)2,157-167.

[9] P.T. An and P.V. Thao, O n capacity of labeled Petri net languages. Viet-
nam Journal of Mathematics 27 (1999)3, 231-240.

[lo] W. Brauer, W. Reisig and G. Rozenberg (Eds.), Petri nets : Central
models and their properties. LNCS 254 , Springer-Verlag, Berlin, 1987.

[ll] W. Brauer, W. Reisig and G. Rozenberg (Eds.), Petri nets : Applications
and relationships to other models of concurrency. LNCS 255 , Springer-
Verlag, Berlin, 1987.

[12] G. Rozenberg (Ed.), Advances in Petri nets 1988. LNCS 340 , Springer-
Verlag, Berlin, 1988.

[13] G. Rozenberg (Ed.), Advances in Petri nets 1989. LNCS 424 , Springer-
Verlag, Berlin, 1990.

[14] J.L. Peterson, Petri net theory and the modeling of systems. Prentice-
Hall, New York, 1981.

[15] J.E. Hopcroft and J.D. Ullman, Introduction to automata theory, lan-
guages and computation. Addison-Wesley, New York, 1979.

This page intentionally left blankThis page intentionally left blank

13

On an Infinite Hierarchy of Petri Net
Languages

Pham Tra An and Pham Van Thao
Institute of Mathematics, P.O. Box 631, BoHo, Hanoi, Vietnam

Abstract

In this paper we show the existence of an infinite hierarchy of Petri
net languages on the number of transitions and places of their recog-
nizing nets.

1 Preliminaries
As well-known, the Petri net is a mathematical model of parallel and dis-
tributed computing systems. In the last years, the theory of Petri nets and
its applications have been investigated extensively by many authors (see, for
example, [8-111).

Let N be a Petri net with m transitions and n places, and Ic = min{m, n}.
For any integer n 1 1 we denote by L(n) the class of all Petri net languages
acceptable by a Petri net with Ic 5 n.

Our aim in this paper is to prove that there exists an increasing infinite
sequence of integers ni,

15 n1 < n2 < ... < ni < ni+l < - * * ,
such that

L(n1) c L(n2) c . . . c C(ni) c C(ni+i) c . * .

The proof of the result is based on a complexity characteristic of Petri
net languages, obtained earlier by the first author of this note [6].

Analogous hierarchies for some other language classes were earlier con-
sidered by several authors, for instance, by Cole for languages recognizable
by iterative arrays of finite automata [l], by P. D. Dieu and the first author
of this note for languages recognizable by probabilistic automata and those
with a time-variant-structure [3-41.

14

Definitions of Petri nets and Petri net languages are recalled in this sec-
tion. In Section 2 a complexity charactristic of languages is considered. Using
this characteristic a necessary condition for the Petri net languages is given.
However as it will be shown, this condition is not sufficient. In Section 3,
we show the existence of an infinite hierarchy of Petri net languages on the
number of transitions and places of their recognizing nets.

For any finite alphabet C, we denote C*, (resp. C', El') the set of all
words (resp. of all words of length r , of all words of length at most r) on the
alphabet C, A denotes the empty word. For any word w E C*, Z(w) denotes
the length of w. Every subset L C C* is called a language over the alphabet
C. Let N be the set of all non-negative integers and N+ = N\{O}.

A (labeled) Petri net N is given by a list :

N = (P, T , I , 0, ff, Po, Mf 1,
where :

P = {PI, ...,pn} is a finite set of places;
T = {t l , ..., t m } is a finite set of transitions , P n T = 0;
I : P x T -+ N is the input function;
0 : T x P -+ N is the output function;
CT : T -+ C is the labeling function , where C is a finite output alphabet;
po : P -+ N is the initial marking;
M f = { p f l , ..., p f k } is the finite set of final markings.
We can extend the labeling function for the words in T* as follows :

if t = t1t2 ..A, then u(t) = o(tl)a(tz) ... a(t,).

A marking p (global configuration) of the Petri net N is a function p : P --f N

from the set of places P into N . The marking p can also be represented as
an n-vector p = (p1, ...,p,) where p i = p (p i) and n =]PI. A transition t of
N is said to be firable at the marking p if

VP E P : 11.03) 2 I(P,t) .

If t is firable at p then when t fires, the Petri net N will go into a new marking
p' given by

We write then 6(p, t) = p' and call 6 the state changing function of the net
N .

A firing sequence of N can be defined as a sequence of transitions such
that the firing of each of its prefix will lead N into a marking at which the

VP E p : P Y P) = P(P) - I (P, t) + O(t,P).

15

next transition is firable. The set of all firing sequences of N is denoted by

The function 6 can be extended for firing sequence by induction as follows
F N .

{$:a;) 1 !;6(p, t) , t j) ,

where .t E T* , t j E T and p is a marking at which ttj is a firing sequence.
We call language acceptable by a (labeled) Petri net N the set :

L(N) = {Z E C*/ 3t E T* : (Z = a(t)) A (t E FN) A (6(po, t) E Mf)}.

The set of all (labeled) Petri net languages is denoted by C.

2 On a criterion for Petri net languages
In this section we recall a necessary condition for Petri net languages in-
troduced in [7] (Theorem 2.4) and show that the condition is not sufficient
(Theorem 2.8). This condition is based on a complexity characteristic for
languages defined as follows :

C* we associate an equivalence relation on
XI', denoted by E<,(modL), and an equivalence relation on C', denoted by
E,. (rnodL), which are defined respectively as follows

With every language L

Vx1,x2 E Csr,xlE~Tx2(rnodL) ej Vw E C* : xlw E L H x2w E L;

V X ~ , X ~ E C', (x ~ E , x ~ (~ o ~ L) * VW E C* : X ~ W E L ++ X ~ W E L).

Then we define :
GL(T) = RankEl,.(modL),

H L (T) = RankE,.(modL).
With RankE<,.(modL) is the rank of the equivalent relation E<,(modL).
They are usedas complexity characteristics of the language L. 1 6 s easy to
see that for any r E N :

1 I H L (~) I G L (~) L Exp(r).

where Esp(r) denotes some exponential function of r.

Example 2.1 Let C = {a,b} and L1 = {ambn/rn,n E Nf}.

Let's take some examples :

Consider the subsets
w1= {A};

16

W2 = {am/l 5 m 5 r } ;

~3 = {ambk/m + k I r; k 2 1);
W4 = {w E C q d $ W1 u W2 u W3}.

Obviously CS' = W1 U W2 U W, U W4 and Wi n Wj = 0 , i # j
It is easy to prove that any two words in every Wi , a = 1 , 2 , 3 , 4 , are

equivalent however any two words in different sets wi are not equivalent by
the relation E<,(modLl). - Therefore G L ~ (r) = 4.

Example 2.2 Let 1x1 = k 2 2 and L2 = { z z R / z E C*}, where zR is the
inverse image of 5.

It is easy to show that if z1,zz E C', z1 # 2 2 then zlErz2(modL2),
thereby H L , (T) = lC'l = k', where E, is the negation of the equivalent
relation E,.

Example 2.3 Let 1x1 = k 2 2, c $ C and L3 = { z c x / z E C*}.

Therefore GL,(T) = lCl' l = (k'+l - l / (k - 1).

Theorem 2.4 Let L be accepted by a Petri net with m transitions and n
places and k = min{m, n}. There exists a polynomial Pk of degree k such
that, for any integer r 2 1,

It can be verify that if z1,zz E El', z1 # 5 2 then z1E+~(modL3).

The following result has been established in [7].

H L (T) I P k (T) ,

G L (T) I Pk(r).

Using the theorem 2.4, we can show a series of rather simple languages
not being acceptable by any Petri net.

Example 2.5 Let 1x1 = k 2 2 and c $! C. Consider the languages L2 =

{zxR /z E C* }, L3 = {zcz /z E C* }, where xR is the inverse image of z.
We have proved in examples 2.2 and 2.3 that H L ~ (T) = k' and G L , (~) =

k(k' - l) / (k - 1). By Theorem 2.4 we have L2 $! L and L3 $ L.
Now we shall show that the necessary condition in theorem 2.4 is not

sufficient. For this we need some notions in the theory of codes (see [14]).
A language L

L , the equality :

implies n = m and zi = zi for i = 1,. . . , n.
In other words, a set L is a code if any word in L* can be written uniquely

as a product of words in L, that is it has a unique factorization on words of
L.

C* is a code over C ifVn,m 2 1 and XI,. "x,, xi,. .. , X; E

x1z2.. .z, = z'1.h. . . z:,

17

A subset L of C* is a prefi set if no word in L is a proper left of another
word in L. Evidently every prefix set L with L # {A} is a code called a prefix
code.

It is not difficult to check that if L is a prefix code then every word x E C +
can be written uniquely in the form x = 5x0, where 3 E L* and xo has no
left factor in L.

Using the above fact we obtain

Lemma 2.6 If L is a prefix code, then for any r E N + :

GL+ (r) L G L (~) ,

where L+ = L*\{A}.

Proof. We denote by E;' the set of all words of length at most r and no
any prefix in L. As C:' C E S T , we have RankE<,(modL) - over E:r is not
greater than RankE<,(modL) over C<-'

In the other hand, L is a prefix code, so with Vx, y E E<,, x and y can
be written uniquely in the form x = 3x0 , y = gyo, where 3 , fi E L* ,

Now we prove that if xoE<,yo(modL) then xE<,y(modL+)
Indeed, if xoE<,yo(modL) - then Vw E C*, X ~ W - E L - yow E L. Two

Case 1 : xow E L and yow E L.
From xow E L and yow E L, it follows 3 x 0 ~ E L+ and gyow E L+, i.e.

Case 2 : xow $ L and yow q! L.
If xow E L+, yow E L+ then 3 x 0 ~ E L+ and Qyow E L+, i.e. xw E L+

and yw E L+.
If xow $ L+, yow $ L+ then Z X O W 6 L+ and gyow $ L+, i.e. xw q! L+

and yw $ L+.
Let xow E L+, yow 6 L+. We have xow = (xow0)W E L+, where xowo E L ,

W E L+. On other hand yow = (y0wo)W $! L+, L is prefix and W E L+, it
follows yowo $ L. i.e. exists wo such that xowo E L, yowo 6 L. This conflicts
with hypothesis xOE<ry~ (modL).

(1).

2 0 , yo E c:..
(2).

cases are possible :

that xw E L f and yw E L+, therefore xE<,y(modL+). -

Thus in the bothcases we have proved that xE<,y(modL+).
From (2), we get RankE<,(modL+) 5 RankE<,(modL) - over E:' (3).
From (1) and (3), we have :

RankE<,(modL+) - 5 RankE<,(modL)

This completes the proof.
Now we can establish the main result of this section.

18

Theorem 2.7 There exists a language L with G L (T) I Pl(r), which can
not be accepted by any Petri net. In other words the necessary condition an
Theorem 2.4 is not suficient.
Proof. We consider the language :

L’ = {anbnln > 1).

This language L‘ is easily verified to be accepted by the Petri net N, described
as follows :

N = ({Pi ,P2, P 3 } , { t l , t 2 , t 3 } , 170, a, (1,0,0), { (o,o, I)}),
where a(t1) = a and a(t2) = a(t3) = b , I (p l , t l) = I(pl , tz) = I (p2, t2) =
IbZ,t3) = - I (p3, t3) = o(ti ,pi) = O(ti,p2) = O(tz ,m) = O(t3,m) = 1 and
I (p , t) = O(t,p) = 0 for any other p and t .

We can show that Gk(r) 5 Pl(r).
On the other hand, L‘ is obviously a prefix code.
Put L = (L’)+. By the Lemma 2.6 we have

GL(r) = G (L /) + (~) I G u (r) 5 Pi(r).

As shown in (131 by Peterson the language L = (L’)+ is not a Petri net
language. The Theorem is proved.

3 An infinite hierarchy of Petri net languages
Basing on the Theorem 2.4 we can obtain the solution of problem on infinite
hierarchy of Petri net languages :
Theorem 3.1 There exists an increasing infinite sequence of integers ni,

1 I n1 < 722 < ... < ni < ni+l < . . .
with ni+l = 3ni + 6, such that :

L(n1) c L(n2) c . . . c L(na) c L(ni+l) c . . .

Proof. Let C = {0,1} , c 6 C , k 2 2. Consider the language:

LI, = {5c5 / 5 E c* , (%(I = k},

where 1x11 denotes the number of occurrences of 1 in 5.
We now prove two following propositions :
(i) For any r 2 k : HL,(r) 2 pk(r) , therefore L k $! L(k - 1).

19

\ / \ / * Y

k Transitions k Transitions

Fig. 1:

(ii) Lk = L(N), where N is a Petri net with rnin{lTI, lPl} = 3k + 3,

Put :
therefore Lk E L(3k + 3).

WT = {x/xEC*;z(x)=r;lxll =k},
where Z(x) denotes the length of x. It is easy to verify that :

Iwrl = c," = r! / k! (r - k) ! = T (T - 1) ' " (r - k + 1) / k! = Pk(r).

For any XI, x2 E W, with x1 # x2, by choosing w = cx1 we have x1w =
x1cx1 E Lk whereas x2w = ~ 2 ~ x 1 $! Lk, that is xlErxz(rnodLk). This
means that

HLk(r) 2 IWTI = pk(r).
By Theorem 2.4 it follows that Lk $! L(k - 1).

On the other hand, the language LI, is easily verified to be accepted by
the Petri net N, depicted in the above Fig 1. with po = (1,0,. . . , 0,O) and
Mf = {pf = (O , O , . * * , 0,1)}.

20

Obviously, the number of transitions and that of places of JV are respec-
tively 4k + 3 and 3k + 3. Thereby L k E L(3k + 3). Thus we have proved

To obtain the sequence ni of integers, it suffices to fix a k 2 2 and put

The Theorem is proved.

that Lk E L(3k 4- 3)\L(k - 1).

nl = k - 1, ni+l = 3ni + 6 for all i 2 1.

Acknowledgment The authors would like to thank the referee for making

some valuable suggestions for improving the presentation of the paper.

References
[l] S.N. Cole, Real-time computation by n-dimentional iterative arrays of fi-

nite state machines. IEEE Trans. Comp. C-18 (1969)4, 349-365.

[2] P.D. Dieu, O n a complexity characteristic of languages. EIK 8 (1972)8/9,
447-460.

[3] P.D. Dieu and P.T. An, Probabilistic automata with a time-variant struc-
ture, EIK 12 (1976)1/2, 3-27.

[4] P.T. An, Some necessary conditions for the class of languages accepted by
probabilistic automata with a time-variant structure, EIK 17 (1981)11/12,
623-632 (in Russian).

[5] P.T. An, O n a necessary condition for free-labeled Petri net languages.
Proceedings of the Fifth Vietnamese Mathematical Conference (1999),
73-80.

[6] P.T. An, A complexity characteristic of Petri net languages. Acta Math-
ematica Vietnamica 24 (1999)2, 157-167.

[7] P.T. An and P.V. Thao, O n capacity of labeled Petri net languages. Viet-
nam Journal of Mathematics 27 (1999)3, 231-240.

[8] W. Brauer, W. Reisig and G. Rozenberg (Eds.), Petri nets :Central models
and their properties. LNCS 254, Springer-Verlag, Berlin, 1987.

[9] W. Brauer, W. Reisig and G. Rozenberg (Eds.), Petri nets : Applications
and relationships to other models of concurrency. LNCS 255, Springer-
Verlag, Berlin, 1987.

[lo] G. Rozenberg (Ed.), Advances in Petri nets 1988. LNCS 340, Springer-
Verlag, Berlin, 1988.

21

[ll] G. Rozenberg (Ed.), Advances in Petri nets 1989. LNCS 424, Springer-
Verlag, Berlin, 1990.

[12] J.E. Hopcroft and J.D. Ullman, Introduction to automata theory, lan-
guages and computation. Addison-Wesley, New York, 1979.

[13] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-
Hall, New York, 1981.

[14] J. Berstel and D. Perrin, Theory of codes. Academic Press, New York,
1985.

This page intentionally left blankThis page intentionally left blank

23

A L G O R I T H M S TO TEST RATIONAL W-CODES

XAVIER AUGROS AND IGOR LITOVSKY
Laboratoire 13s b6t. ESSI,

930, Route des Colles, B. P. 145, 06903 Sophia-Antipolis Cedex, fiance
E-mail: {augros,lito} @i3s.unice.fr

In this paper we present some algoritms to decide whether a given rational language
is an w-code. Those algorithms have a complexity in the worst case in O(n3) , n
being the number of states of the automaton representing the language.

1 Introduction

Let C be a finite alphabet. We denote by C* (respectively C") the set of
words (resp. infinite words) over C. Given L of C*, the language L* is the
submonoid generated by L and it denotes the set of words factorizable over
L. The w-power L" denotes the set of infinite words factorizable over L. A
language C g C* is a code (respectively an w-code') if every word of C*
(respectively C") has a unique factorization over C. Any w-code is a fortiori
a code. Algorithms to test if a given language L is a code can be found in 2 ,

To test w-codes, we present three tests and we give their complexities in time
(O(n3)) . The first test of the section 4 is based on the interlaced product of
automata, the second one' and the third one are based on the computation
of the left quotients of automata.

or if the language L is a finite set, and in 5 , or for L rational.

2 Preliminaries

Let C be a finite alphabet. The set C* is the set of all finite words over C,
Cw is the set of all infinite words, and C" is the union of C* and C" . The
empty word is denoted by E and C+ = C* \ { E } . Words of C+ are obtained
by finite concatenation of letters of C: u = uluz .. .u, E 9, for n > i > 0,
ui E C. Words of C" are obtained by infinite concatenation of letters of C:
u = ~ 1 ~ 2 . . .u,. . . E C", for n > i > 0, ui E C.
Let L c C* be a language over C, then L* is the set of finite words obtained
by finite concatenation of words of L, that is the submonoid generated by L,
and L" is the set of infinite words (also called w-words) obtained by infinite
concatenation of words of L.
We denote by Lc0 the set of all finite or infinite words generated by L:
Loo = L* u L".
An automaton d(L) which recognizes a rational language L is a 5-tuple

24

(Q , I , F, 6, C) where Q is the set of states, I E Q and F C Q are respectively
sets of initial and final states, and 6 is the transition function mapping Q x C
to Q (see for example). A recognizes a word w if w is the label of a
path from an initial state to a final state in A. For infinite words, we give
two acceptances modes by an the automaton. The first one, with the Buchi
Criterion(see lo) says that an w-word w is recognised by an automaton A =
(9, I , F, 6, C), if and only if w is the label of an infinite path reaching infinitely
some “final” states of F . In the second one (the Muller mode”), a word w
is accepted by an automaton A = (Q, I , 7 , 6 , C), where 7 is a subset of the
set of the part of Q, if and only if w is the label of path reaching infinitely
exactly the states of a set in 7.

A is deterministic if and only if for each state there is a unique transition
on each symbol. A is unambiguous if and only if for every word w recognized
by A there is a unique successful path in A labeled by w.
A is normalized if there is exactly one initial state and one final state, and the
initial state has no ingoing transition and final state has no outgoing ones.
A normalized automaton can be chosen unambiguous.
For any submonoid M , the root of M is defined by R o o t (M) = (M \ { E }) \
(M \ (&)I2.
Let u‘and v be two words of C*, u -L v if and only if for all w E C* and

Let u and w be two words over C. We denote by u < v the fact that the word
u is a prefix of the word u. It follows that v = uu‘ for some word u’ in C*,
the word u’ stands for u-lv and is a suffix of the word v.

We denote by pref(v) (respectively suff(v)) the set of all words that are
prefixes (resp. suffixes) of the word w , pref(L) (resp. suff(L)) is the set of
prefixes (resp. suffixes) of words of L. For two languages L and L‘, the left
quotient of L’ by L is L-lL‘ = {w E C*/ for some u E L, uw E L’}.

w’ E C*, wuw’ E L u wuw’ E L.

A factorization of a word u in L+ (respectively in Lw) is a finite sequence
(resp. an infinite sequence) fiL = (211, u2,. . . , u,, . . .) of words of L such that
u = u1u2 . . .u, . . .

We call sequence of left factors of u for the factorization f u , the sequence
(p i) t l , where n is the number of factors in the factorization fu (infinite for
infinite words), where for i 2 1, pi is the concatenation of the i first factors

Let u , u be two comparable words with respect to prefix order,
fu = (~ 1 , . ..un) and f,, = (q ,... w,) be two factorizations of u and
u such that u1 # u1. Let (pi)?==, be the sequence of left factors of u for the
factorization fu and (qi)zl be the sequence of left factors of u for the factor-
ization fv. A word s is called a shift if there exist two integers, k > 1 and

.

of u: pi = U l U 2 . . .ui.

25

1 2 1, such that S = pklql (for k = 12, pk 5 ql and for k < 12, pk 5 Ql < pk+l),
or s = q1-lpk (for I = m, q1 5 pk and for I < m, q1 5 pk < q1+1). We denote
by s(fu, f,,) the sequence of shifts for the two factorizations of comparable
words u and w , for example on Fig. 1, s(fu,f,,) = (s~,s~,s3,s4,s5,s6,s~).
si(fu, f,,) denotes the i th shift of (fu, f,,) (for example on Fig. 1, the 4th shift

L L L L

L L L L

for the factorizations fu and f,, is s4(fu, f,,) = sq).
A word u is ambiguously covered by L if u has two factorizations with
different first factors over L

A language C is a code (see l2 for example) if and only if

C-~C n c*(c*)-~ = { E } (1)
in other words C is a code if and only if each finite word of C* has only one
factorization over C , and C is an w-code if and only if

C - ~ C n cw(cW)-l = { E } (2)
i.e. C is an w-code if and only if each infinite word of C” has only one
factorization over C ’. Clearly, any w-code is a code. A generalization of
w-code, called strict code, has been proposed by Do Long Van in 13. A strict
code is a subset of Coo such that each word and each infinite word has only
one factorization. If C C+, then C is a strict-code if and only if C is an
w-code.
A language C is a code with bounded deciphering delay l2 if it satisfies the
following property:

3d 2 0 Vu E c Vv E C (ucdz* n v c * # 0 + u = W) (3)

3 Testing unique decipherability of finite words

A.A. Sardinas and C.W. Patterson have proposed a test for codes that allows
us to decide if a rational language is a code or not.

26

3.1

Let us consider the next sequence of sets constructed with a language L C C*:

The Test of Sardinas and Patterson

u1 = L-1L \ {&}
Un+l = L-lUn u U L ' L

Then we have the following theorem that gives a criterion for codes.
Theorem 1
defined above contains the empty word.
Example 1 Let L = {b, abb, abbba, bbba, baabb},

A language L i s a code if and only i f none of the sets Un

U1 = {ba, bba, aabb} U2 = {a, ba, abb} , U, = { a , E , bb, bbba, abb, ba}

E E U3, L is not a code.

Moreover, this property is decidable for rational languages.
Proposition 1 If L is a rational language, then each U,, i s a rational lan-
guage and the number of the sets U,, (n 2 1) i s finite.
Remark 1 For the test of Sardinas/Patterson, Ui = 0 for some i 2 1 if
and only if L i s a code with bounded deciphering delay 12.

Example 2 Let L = {ab,abb, baab},

U1 = { b } , Uz = {aab} , Us = 0
U3 = 0, L is a code with bounded deciphering delay.

Remark 2 For rational finitary languages, codes with bounded deciphering
delay are included in the set of rational w-codes.
Remark 3 For finite finitary languages, codes with bounded deciphering de-
lay are exactly finite w-codes.

3.2 A Test by product of automata

Let L be a rational language, let A be a unambiguous normalized automaton
which recognize L. The interlaced product of A = (Q, qo, q f , 6, C) by itself
is defined as:

A' = A x A = (Q x Q , (qo, 401, (qf, qf), 6/, C).

The initial state is (q o , q o) , the final state is (q f , q f) .
The transitions 6' are defined as :

W P , 41, a) = (P' , 4')

27

if and only if

This automaton recognize some words of L* which have at least two
factorizations over L. The following proposition gives us a criterion to decide
if a given language L is a code.
Proposition 2 A rational language L is a code if and only i f the set rec-
ognized by the previously defined automaton is empty.

Example 3 Let L = { a , ba,ca,abac}, an normalized antomaton A is :

A part of the interlaced product A x A is :

There is a path f rom (qo, qo) to (q f , q f) reading the word abaca, for example,
which has two factorizations : (a,ba,ca) and (abac,a). The language L is
not a code.
Remark 4 The label of the path between two consecutives states (q i , qo) and
(qj,qo) (i 2 0 , j 2 0) (or (q0 ,q i) and (q0,qj)) is a word of L. f o r example:
the path between (q1,qo) and (q 3 , q o) is labeled b y ba E L. I n other words,
we can read on the graph of the automaton A' the factorizations of the words

28

ambiguously covered over L.

4 Testing rational w-codes

4.1

With almost the same notations as in Section 3.2, one can decide if a given
language L is an w-code. In Section 3.2 the criterion was the existence of
a path, in the automaton defined by the interlaced product A' = A x A =
(Q x Q , (qo, qo) , (q f , q f) , 8, C) , from the initial state to the final one. To test
if a rational language L is an w-code, the problem is somewhat different. L is
not an w-code if and only if there exists an infinite word, in L", ambiguously
covered by L. In an automaton A&, constructing from A, such a word is the
label of an infinite path begining at the state (40, q0) and crossing infinitely
many particular states.

Let A& = (Q x Q, (qo,qO),7,S'' ,C) be the Muller automaton defined
from A' = A x A such that 7 = { P E P(Q x Q)/3 2 0 and j 2 0, (q i , qo) E
P and (q0 ,q j) E P } (where P(Q x Q) is the set of of the part of the set
Q x Q). 6" is defined by :

A Test by product of automata

and
if p' = qf then p" = qo else p" = p'
if q' = qf then q" = qo else q" = q'

Proposition 3 A rational language L is an w-code if and only if the Muller
autonaton A& do not recognize any word.

If there exists an w-word w recognized by dL, it is the label
of an infinite path in A& that infinitly reach some states (qi , 40) and (qo, q j)
(for some qi E Q, qj E Q , i 2 0, j 2 0) . If there exists a such infinite path in
A& then, like in the remark 4, there exist two infinites sequences of words
of L, f = (fi , fz, . . . , fn . . .) and f ' = (fi , f; , . . . , fk . . .) (fi E L, f j E L for
i 2 1,j 2 1). Those two sequences are both the same path in A& and then
two factorizations of an infinite word of L".
Conversely, let f = (f1, fz,. . . , fn . . .) and f' = (fi ,f i , . . . , f; . . .) be two
factorizations of an ambiguously covered word w. Each factors fi and f; are
words of L which are the labels of paths in the automaton A. So to each
factors fi, we can associate a finite sequence (the path of the word fi in the
automaton A): qo 3 qli 3 q 2 i . . . q k i qf and fi = uliui2 . . . U(k+l) i E
L, uj E C, qji E Q for i and j 2 0.
So for each factorizations f and f', we have the following sequences of paths
in the automaton A (each path being labeled by a factor respectively of f or

proof.

u (k + l) i -+

f'):

29

Uk+m " k + m + l
f' = (40 3 q; 9 q: . . .q; "3' q;+l u3z q ; + 2 . . . + Q f , qo + . . .))

Now, let us assume that we can apply the rules (*) to those paths. The
following path is a part of the result of this operation:

" k 1
(Q0,QO) 3- (41,q:) 3 (! ? 2 , q :) . . . (C l k , q ;) -4 (40,44+1)

U k + m
(q k + 2 , & + 2) . . . + (q k + m , 40) - . .
This is a path in the automaton A:, and it reach infinitely a set of states
which contains some states (qo, q) and (q', qo) (for q and q' in Q), then the

0
Example 4 Let L = {a, b} U ab*c, the following automaton recognizes this
language L :

label of this path is an w-word recognized by d;.

The automaton obtained by the interlaced product A' = A x A is :

a

The language L is' a n w-code because the single infinite path in A' cross
infinitely only the state (q1,qo).

4.2 A Test f o r strict-codes

It has been proposed by Nguyen Huong L5m and Do Long Van in
dure to test if a given language of C" is a strict-code.

Let us consider a language L of C" and the sequence of sets:

a proce-

u; = L-1L \ { E }

u;,, = u, L 1 - 1 03

With this sequence of sets, we have the following criterion to test strict-codes:

30

Theorem 2 Let L c C" be rational. L is a strict-code if and only if
U,! = 0 for some i 2 1.
Example 5 Let L = a + (ab)*ba, then Ui = (ba)*bba and U; = 0 then L is
a strict-code and an w-code because L is a language of finite words.

If the language L is a subset of C* then Theorem 2 allows one to test
w-code without using infinite power of the language L because, in this case,
the sequence of sets becomes:

u; = L-1L \ { E }

u;+l = U;-lL*

As we will see in the section 5 , the test can be implemented with an
algorithm whose complexity in the worst case is O(n3) (n being the size of a
deterministic automaton for L.)

4.3

We introduce here a new algorithm also based on the computation of left
quotients of languages, whose complexity in time is O(n3) too.
Let L be a subset of C+ such that L = root(L*) and M denotes the monoid
L*. We define inductively the sequence (Vn)n>l by:

Another test for Codes and w-Codes

Vl = (M \ { W I L \ { E)
Vn+1 = (V n M) - l L

We can state the following results:
Result 1 (theorem 3) A language L is a code if and only i f none of the sets
& contains the empty word.

Example 6 Let L = {b, abb, abbba, bbba, baabb}. Then we have
I4 = {bba,ba,a,aabb}, V2 = (KL*)- lL = {abb,&,bb,b,bbba,bba,ba
E E Vz and L is not a code.

This result holds for every set of words (rational or not). Moreover for
rational languages we can state:
Result 2 (proposition 5) For a rational language L , all the sets V , are ra-
tional languages and the number of the sets Vi is bounded by 2n, n being the
number of states of an automaton which recognizes L.

This result shows that we can construct an algorithm based on the se-
quence (Vn)~?1, in 2card(d) steps, to decide whether a given rational language
is a code. With the following criterion, the same sequence allows one to decide
if a rational language is an w-code.

31

Result 3 (theorem 4) A rational language L is an w-code if and only if none
of sets V, is the empty set.
Example 7 Let L = a + (ab)*ba,

V1 = (ba)*bba , Vz = 0 then L is an w-code.

Before proving these results, let us state the following lemma.
Lemma 1 For i 2 1, V, is the set of all ith shafts for the factorizations of
words of L* over L.

We first prove by induction that each shift is an element of a set
V,. Let u and v be two words of L+ comparable by the prefix order. Let fu and
fu be two factorizations respectively for u and v, assuming that f u l # f u l .

To each factorization f u and fu we associate respectively the sequence of left
factors over L (pi)? and (q i) r . Let us assume that pl 5 q1 and the sequence
of shifts s(f u , f v) = (~ 1 , . . . , s,,,), where m a s is the number of shifts for the
two factorizations fU and fu.
By definition, s1 E (plL*)-lql C_ V1. Let us assume that there exists 1 , Ic > 1
and 1 < j < m a s such that sj E V, and s j = (pk)-'ql (or s j = (q l) - l p k) .
Consider that sj = (pn)-lql, then by definition sj+l E (sjL*)-lL (see figure
2). Moreover, sj E V, then sj+l E (sjL*)-lL C (&L*)-'L = V,+1.

proof.

Figure 2. s j E V, then s ~ + ~ E q+l

Now, we prove by induction that each word in a set & is a shift. Let
u E V1 then u E V1 E (L+)-'L. Let n 2 1 and for u E V,, this word verifies
the lemma. Considering u E V,+l, there exists two words u E V, and u' E L*

L+ L L"

L+ L

Figure 3. v E Vn+l, u E V, and u' E L* then uu'v E L

such that uu'u E L (see figure 3). As u E V, there exists m such that for Ic

32

and 1 , m = (p i) : , mu = (q i) ; , and p l # q1 (inductive hypothesis), therefore
0

Theorem 3 A language L over C i s a code i f and only if none of the sets
V , contains E .

proof. Let u be a word of L+ which has two factorizations with different
first factors. There exists k 2 1, 1 2 1, and two sequences of left factors of
(p i) : and (qi); such that pk = qi = u and p l # q1. By lemma 1, there exists
r 2 1 such that (pk)- lql E V,, and then E E V,.

By the lemma 1 with u = E E V, (for i 2 l), there exists m E L+ with
two sequences of left factors over L (pi): and (qi); and pl # q1. So the word
m of L+ has two factorizations and therefore L is not a code if there exists
i > l E E V , . 0
Lemma 2 (corollary of lemma 1) If a E Lw has two factorizations with
different first factors over L, there exists (pi)f* and (q i) f* (p1 # q1) and
f o r every n > 1, there exists 1 , k > 1 such that pk < ql < Pk+l, such that

Proposition 4 Let L be a language over C. If f o r every i 2 1, vi # 0 then
L i s not a n w-code.

Suppose that L is not an w-code. There exists an infinite word
a which has two factorizations over L. There exists (pi)f* and (q i) f* . By
lemma 2, for i 2 1, there exists Ic 2 1 and 1 2 1 such that p i l q l E vi and

0

pk+l = pk'w'v = muu'v and for I' > 1 , qlt = qlu' = mud.

PklQl E vn.

proof.

then vi is not empty.

Rational case

Our object is to construct an algorithm to decide if a rational language is an
w-code. In order to do so, we must be able to decide when we can stop the
construction of the sequence (V ,) i ? l . The next result establish the fact that
the number of sets 6 is finite for a given rational language.
Proposition 5 Let L be a rational language over C. The cardinal of the set
of & for L i s bounded by 2card(d(L)) (d (L) i s an automaton fo r L) .

A word of V, (n 2 1) is a suffix of a word of L. A set V, can
be represented by a set of states of the automaton A recognizing L. The
cardinal of the set of subsets (of the set of states) is 2ca'd(d(L)). This number

0
Theorem 4 Let L be a rational language. L i s an w-code i f and only if there
exists i 2 1 such that vi = 0.

proof. By the proposition 4 if there exists i 2 1 such that V, = 0 then
L is an w-code.
Conversely, let us suppose that for i 2 1, V, # 0 and set n = c a r d (d (L)) .
Let 2, E V,,, mo > n then, by lemma 1, there exist p = (pi)? and q =

proof.

bounds the number of V, (n 2 1).

33

! ! !
! ! W' ! W

. - - :

Figure 4. u NL u'

(qi)(2 such that w = pj,'qj,. Let us denote by s(p, q) the sequence of shifts
associated to the two factorizations induced by the sequences p and q of left
factors. There exists ml and m2, 1 5 ml # m2 5 mo such that u = s,, (p, q)
and u' = s,, (p, q), with u -L u' (see figure 4.) For u there exists k and 2
such that u = p,'ql (or u = qr'pk), and for u' there exists T and t such that
u' = p;lqt (or u' = q~lp,).
Let w = p,. if qt is prefix of p, , (else let w = qt). Let w' = w-lqr. Let
u" E pref(w') such that u'u'' E L and let us consider the two following
cases :

0 u' = p;'qt, then w' E L+ and ((U")-~)W'(U-') E L+, u'u'' E L, and
2121'' E L (u - L u').

w _ j _ W'

u' = q t l p , , then w'(u-') E L+ and ((u")-l)w' E L+, u'u" E L, and
uu" E L (u -L u').

w i W' !
- i

The infinite word Q: = W(W')~ has two factorizations over L. 0

34

Remark 5 If L i s not a code then it i s not an w-code, and then, i f E E V,
f o r some i 2 1, there is no Vj that are empty sets. This can be checked with
the definition of the sequence (l$)i>l.

For non-rational languages, this theorem does not hold (see the next exam-

Example 8 Let L be the following language a+bU (anban-'c, ancan-'c/n 2
1). L is not a rational language. L i s an w-code, but f o r n 2 1, c E V,.
O n the figure 5, we can see that f o r n 2 1, an-'c E VI, an-2c E V2, . . .,
ac E Vn-l , and c E Vn.

ple).

Figure 5 . Vn 2 1, c E V,

5 Complexity analysis

The complexity analysis of algorithms to test finite codes can be found in
2 , 3 and (in O(n.m), n being the number of words in the language and m
being the sum of the length of words). For a rational language given by a
deterministic automaton of n states, ones can decide whether the language
is a code and the complexity is O(n2)6.
For the tests presented in section 4, we give the followings complexities:

Test by interlaced product

Let L be a language to test, let A be an unambiguous normalized finite au-
tomaton recognizing L. The main part of the complexity of this test consists
in deciding if there is a cycle in the automaton A' which contains at least
two states of type (qo, q) and (q', qo) (for q and q' different of qo). This can
be done in O(n3). In effect, there is at most n states of type (q0,q) in A'.
For each of this state, ones has to search states of type (q',qo) in the set of
its descendents. There are also at most n such states. For each (q',qo) one
must check if among its descendents there is the state (qo, q) .

Tests by quotients of languages

Let A(L) be a deterministic finite automaton recognizing L. The two algo-
rithms of sections 4.2 and 4.3 do the same kinds of operations and the same
number of times.

The second part of the proof of the theorem 4 tell us that ones needs to
compute at most n = card(d) sets - to decide if a rational language is an
w-code:
Lemma 3 If there exists i 2 1 such that K = 0 then there exists j 5 n + 1
such that V, = 0.

algorithm of section 4.2

[1]- M = L*

[2]- ul = (L - ~ L) \ { E }

[3]- For i = 2 to n + 1 do

[3a]- Ui = Ut;iM
[3b]- if Ui = 0 then L is an w-code.
[3c]- if E E Ui then L is not a code.

[4]- if U, # Qr then L is not an w-code.

algorithm of section 4.3

[1]- M = L*

[3]- For i = 2 to n + 1 do

[3a]- V, = (K- lM)- lL
[3b]- if K = 0 then L is an w-code.
[3c]- if E E V, then L is not a code.

[4]- if V, # 0 then L is not an w-code.

The main part of the complexity for this algorithm is done by the step [3a],
the left quotient (K - l M) - l L . The algorithm given in l4 compute the left
quotient of two non deterministic finite automata has a complexity in O(n3)
if one automaton is deterministic, that is the case for our construction. The
number of Vi that we have to compute is bounded by n, because the number
of states of d (L) is n. The complexity in time of this algorithm is O(n4) .
For each state q of d (L) = (Q , I , F, 6 , C), L, is the language recognizing by
the automaton d , = (Q, q, F, 6, C) (like d (L) , this automaton is determin-
istic). To improve efficiency of the algorithm, we can precompute, for each
state q E Q, the set of state V, defined by the set of the initials states of
the automaton of (L,M)-lL, the time to execute this step is O(n2) with

36

the algorithm for left quotient given in l4 because d, is deterministic. The
complexity of this preprocessing is O(n3). The step [3a] (& = (K - l M) - l L)
become I4 = UqEK.l V,, and then the complexity in time for the algorithm
is O(n3).

Acknowledgments

The authors would like to thank the anonymous referee for his careful reading
and suggestions.

References

1. L. Staiger. On infinitary finite length codes. Theoretical Informatics and

2. S . Even. Graph algorithms. Addison-Wesley,Reading,MA, 1973.
3. M. Rodeh. A fast test for unique decipherability based on suffix trees.

IEEE transaction on information theory, 28:648-651, 1982.
4. A. Apostolic0 and R. Giancarlo. Pattern matching machine implemen-

tation of a fast test for unique decipherability. Inform. Proc. Letters,

5. A.A. Sardinas and C.W. Patterson. A necessary and sufficent condition
for the unique decomposition of coded messages. IRE Internat. Conv.
Rec., 8:104-108, 1953.

6. J. Berstel and D. Perrin. Trends in the theory of codes. Bull. of EATCS,

7. R. Konig. Lectures on codes. 1994.
8. Nguyen Huong L$m and Do Long Van. On a class of infinitary codes.

9. J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, lan-

Applications, 20(4):483-494, 1986.

18:155-158, 1984.

29:84-95, 1986.

Theoretical Informatics and Applications, 24(5):441-458, 1990.

guages, and computation. Addison-Wesley, 1979.

http://www .liafa.jussieu.fr/-jep/Resumes/InfiniteWords.html.
10. D. Perrin and J.E. Pin. Infinite words. (to be published)

11. J . Karhumaki. A property of three-element codes. Theoret. Comput.

12. J . Berstel and D. Perrin. Theory of codes. Academic Press, 1985.
13. Do Long Van. Contribution to Combinatorics on Words. Doctor B

thesis, Humboldt University, Berlin, 1985.
14. 0. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkema. Report

on the program AMoRE. Technical report, Institut fur Informatik und
Praktische Mathematik, 1995. Software.

Sci., 41:215-222, 1985.

37

Distributed Random Walks for an Efficient Design of a Random
Spanning Tree

Hichem Baala

Abstract
We present a distributed algorithm for constructing a ran-
dom spanning tree, making use of random walks as net-
work havenal scheme. Our approach is novel and make
use of distributed random walks, each one represented by
a token annexing a temtory over the underlying graph.
These multiple random walks collapse into a final one,
that defines the final temtory and provides the random
spanning tree. The scheme is parallel and make use of
waves to merge very efficiently the spanning forest com-
puted by the random walks into one final random span-
ning tree.
Keywords: random spanning tree, random walks, dis-
tributed algorithm.

1 Introduction

A distributed algorithm is an algorithm designed to run
on a distributed system where many processes cooperate
to solve parts of a given problem in parallel. The problem
of efficiently constructing a spanning tree in distributed
networks is a central one and is essential for structuring a
distributed system. We address the problem of construct-
ing such a structure with a protocol that tolerate faults and
adapt itself to dynamic topology changes. In this paper,
we introduce Distributed Random Walks (DRW) as a col-
lection of random walks that cooperate in order to estab-
lish a computation. The technique uses a collection of
random walks that are coalescing into a final one which

UniversitC de Reims, DCpartement de Mathematiques et Informa-
tique, UFR Sciences Exactes et Nalurelles, Moulin de la Housse, BP
lm9, F-51687 Reims Email. Hichem.Baala@univ-reims.fr

TLRIA. UniversitC Paris 8, 15 rue Catulienne, 93200 Saint-Denis,
France, Email. Marc.Bui@univ-paris8.fr

Marc Bui 1

maintains the control structnre. We apply this technique
to compute a spanning tree which is randomly selected
among all the possible ones for the network, and to gather
informations, we use a wave scheme. We can informally
described the whole procedure as follows : several nodes
initiate a random walk, with an explorer token. Every
node, upon receiving an explorer token, mark himself vis-
ited with the identity of the token, except if it has already
been visited by another token, and then forwards at ran-
dom to one of its neighbors the received explorer token.
The network is thus, explored in parallel and decomposed
into subregions, one per token. Each token constructs a
snbtree of the network. When a node meet another one,
or an already visited node, a wave is initiated. This wave
is a backward propagation wave that merges one of the
subtrees with the other into one. This process is driven in
parallel and eventually, the waves will cover the network,
resulting in the spanning tree definition and the protocol
is ready for termination when a single explorer token re-
mains and all nodes of the graph are visited. In this pa-
per, we develop a technique for designing algorithms on
graphs, especially for an efficient random spanning tree.
Our goal is the computation of a random spanning tree (ie
a spanning tree that is chosen randomly among all possi-
ble spanning trees).

The problem. Let G(V, E) be a connected graph rep-
resenting a distributed system with real-valued weights
w : E R having n vertices and m edges. A span-
ning tree in G is an acyclic subgraph of G that includes
every vertex of G and is connected; every spanning tree
has exactly n - 1 edges. We are interested in computing
in a distributed way a random spanning tree (RST) (i.e. a
random spanning tree is a spanning tree selected among
all possible spanning tree on the underlying graph at ran-
dom).

38

Related Works. In distributed computing, the de-
sign of a spanning tree structures for distributed networks
has a wide litterature. Many papers [GHSBJ, &R86],
[GKP93] propose distributed solutions and identify in-
teresting properties to construct efficiently and in paral-
lel a spanning tree. Else, the power of RW has also
been demonstrated in distributed computing, several au-
thors have successfully designed original solutions for
many important control problems such as mutual exclu-
sion DJ90]orUniqueNamingproblem [AE91], withinthe
self-stabilizing area where the goal is to cope with possi-
ble transient failures. We will make use of the attractive
techniques found in this area in our solution. E. Chang
[ChangSZ] and A. Segall [SegallB] have introduced the
concept of wave in distributed computing with the Prop-
agation oflnformation with Feedback scheme. More re-
cently, FGL941 and m 9 9] have respectively defined the
dishjbuted recursive wave and distributed recursive multi-
wave as a general programmingparadigms for distributed
systems. We couple these items with a derivation of span-
ning tree construction and RW techniques to define our
general modular technique that we call DRW,

Contributions In this paper, we propose a multiple
random walks scheme combined with a generalized
diffusing feedback scheme (waves) that allow a fast RST
construction. The main result of this paper, is that the
simulation of multiple random walks on a connected
undirected graph G coupled with some (adequate) path
reversal scheme (that we call waves) can be used to
generate a spanning tree of G at random. The advantages
of our scheme are the following: we generate a random
spanning tree structure that is less subject to failures
compare to a deterministically predetermined spanning
tree; the solution is adaptive and deals with topology
changes and can be adapted to ad-hoe wireless networks;
it can be derived to obtain a self-stabilizing solution; it is
parallel, uses the whole power of distributed ressources
and exhibits a good average running time.

Outline of the Paper. The paper is organized as fol-
lows : in the next section, we describe the model of
distributed computation assumed. In section 3, we de-
scribe the algorithm illustrating the use of multiple ran-
dom walks for selecting a random spanning tree. There-
after, we show how we implement rhisand discuss why it
is an efficient solution and discuss the key points on cre-

ating a RST. Section 4 addresses the (time and message)
complexity aspects as well as some remarks basedon sim-
ulations . An informal correctness proof is also given in
this section. Finally, in section 5, we give some conclud-
ing remarks and open questions.

2 Preliminaries
In this section, we give the definitions needed and we in-
troduce some of the tools we use.

The system. We model the network as an undirected
connected graph G = (V, E) with V the set of nodes
(V = n) and E s the set of edges. Each node represents
a computer and each link represents a bidirectional com-
munication channel. Each node is associated to a unique
identifier A communication link (i , j) exists iff i and j
are neighbors, and is asociated to a cost which can vary
in time but is always positive. A change in the status of a
node is implicitly recognized by the change in the status
of its links. We consider the network to be asynchronous,
Each node i maintains its set of neighbors, denoted as N,.
The degree of i is the number of neighbors of i, it is equal

Proeesses. Every process of the distributed systems ex-
ecutes the same code. The program consists of a set of
variables and a finite set of rules. A process proceed to
an internal action (for example, write to its own variables,
compute something or send a message) upon reception of
a message.

Random Walk. Let us consider a token that moves
on a connected undirected graph G = (V, E). At each
step, the token goes from the current vertex to one of its
neighbors, chosen uniformly at random. This stochastic
process is a Markov chain; it is called (simple) random
walk on the graph.

to N i ,

39

3 Algorithms description

Data Structure Each node p maintains
- color, the identity of a token
- master, the (sub)tree root which the node belongs to
- /flt/ierhthe node father within the (sub)lree
- sans set of sons >is (he set of the node sons

The algorithm RST is specified in a pseudocode form
as in [KKM90] for a belter understanding .We specify the
algorithm behavior by means of overall actions driven by
tokens and waves.

Some sites randomly generate token identified by a color
and charalerizcd by the initiators of die token.

(TA2-ti) taketij continue its traversal scheme, p
marked himself with color colart, muster
raci, father q

(WU) Wave Update Mode Whenever a
tckzn^colar^raci) reaches a node p with
its variable color such that color < colori a wave
is generated.

WUI the wave is propagated applying a path
reversal scheme over the domain identified
by cola:- fthe domain which p belongs to)

WU2 the wave stops itself when it reaches
the p domain limit.

(TA) Token Annexing Mode whenever a
toksrtj(cf>lor^Teici) issued from a node q is an-
nexing (or generated at) node p, which belongs lo
n (sub)lree [i.e. a tokenj(colorj,ro,Cj)]

(TA1) it color^ < celorj, the annexing is
stopped and the token is destroyed.

(TA2) if color j > colorj, one of the 2 condi-
tions holds :

- (i) one (or more) loken(s) are present
on node p

— (ii) no other token on node p

(TA2-j) if lest collision is true :

r.ni is the unuiuc biggest, it continue its
traversal and all others are destroyed. Node
p marked himself with coloi- catori,
master roc,-, father q

if tokerii is biggest but not unique (oth-
ers toierij,, . . . jiofcenjj has respectively
color 'j, , . . . , color jj equal to colfjTj, tokeni
and tQKEriji , . , . f token j are mer°ed to
form the unique token of identity t + 1 rooted
inp (i.e. token(i + l,p) is generated]

if token j is not the biggest, it is destroyed.

Termination of Ihe algorithm is realized ivith a derivation
of the Dijkslra-Scholten scheme [DS80] known as diffus-
ing computation. This termination detection is periodi-
cally initiated by nodes which have initiated an annexing
token.

Example The following example illustrates RST's
construction.

Q EL
1*

M41

\

i 1

r

xj

i
s

— ('

J
/

1

Wl

IU

'»'

I

\^

.

11.
r

..'

•

: i

'

/

•

1

;

..

\

ii

Figure 1: Example network. 3 token proceed to random
walks.

40

Correctness
proofs

and complexity

The proof is by [he following lemmas. The proofs of the
lemmas are not detailed in this extended abstract.

Lemma 1 At feast a token starts a random walk.

Lemma 2 Within a finite time k tokens will eventually
collide and only one token remains after.

Lemma 3 After a finite time, a single token is in the net-
work, it will eventually visits all the nodes

Lemma 4 A wave is eventually initialed and will update
Figure 2: Evolution of random walks: 3 explorer tokens a" visited nodes.
annexing regions of the graph in parallel, blue red and Lemma S The algorithm terminates and a spanning tree
green (the tokens are located in darker color) ,-s OUpU!

Theorem 1 The algorithm outputs a random spanning
tree.

We have tested the algorithm with a similator written
in C++ with the LEDA library. Under the assumption ofa
synchronous distributed system, the results obtained show
a good time complexity.

1
Network size

(n,m)
(30,46)
(40,65)
(50,96)

initiators
\/n average

6
8

Time (steps)
average

52
66
73

Mb msg

242
344
460

Figure 3: Waves: a wave is initiate when a token meets
another one or enter the region of the graph already ex-
plored by a token. In this example, the meeting of the red
and blue token initiate a red wave (that wil l flood the blue
region

5 Conclusions and future works

We have presented DRW an efficient scheme for con-
structing a uniform spanning tree over a distributed net-
work. It is based on a new family of algorithms for dis-
tributed computing called the distributed random walks
scheme algorithms. The key advantage of this novel ap-
proach is that it has a very moderate and the best balanced
impact on network and computer resources. RW are ex-
pected to converge to one that keeps a surveillance func-
tion to relaunch computation in case of iinks or node fail-
ures.

However, the estimate of the complexity of DRW algo-
rithms for the general case is more complicated than for
usual DC algorithms The difficulty is due to the interac-
tions between the random walks.

Figure 4: Evolution of waves: the wave issued from the
token with the largess identity merge the subtrees and up-
date the variables of each node (here the red token wins).

41

References

[ACK+98] B. Awerbuch, I. Cidon, S. Kutten, Y. Man-
sour, and D. Peleg. Optimal broadcast
with partial knowledge. Siam J . Comput,
28(2):511-524,1998.

E. Anagnostou and R. El-Yaniv. More on the
power of random walks: Uniform random-
ized algorithms. In Proceedings of the 5th
International Wokshop on Dirtributed Algo-
rithms andGraphs, 1991.

[AEY91]

[AKL,+79] R. Aleliunas, R. Karp, R. Lipton, L. Lo-

[4d901

[Awe851

@3FSU98]

[BIZ891

PK891

[Cha92]

vasz, and C. Rackoff. Random walks univer-
sal traversal sequences and the complexity of
maze problems. IEEE, pages 218-222.1979.

David J. Aldous. The random walk construc-
tion of uniform spanning trees and uniform
labelled trees. Siam J . Disc. Math., 3(4):4%
465, november 1990.

Baruch Awerbuch. A new distributed depth-
first-search algorithm. Information Process-
ing Letters, 20147-150, april 1985.

A. Broder. A. Frieze, S. Suen, and E. Up-
fal. Optimal construction of edge-disjoint
paths in random graphs. Siam J. Comput,
28(2):541-573,1998.

J. Bar-Ilan and D. Zemik. Random lead-
ers and random spanning trees. In JC.
Bermond M. Raynal, editor, International
Workshop on Distributed Algorithms and
Graphs, Lecture Notes in Computer Science
392, pages 1-12, Nice, France, September
1989. Springer.

A. 2. Broder and A. R. Karlin. Bounds on the
cover time. Journal of Theoretical Probabil-
ity, 2(1):101-120,1989.

E. Chang. Echo algorithms: Depth parallel
operations on general graphs. IEEE Trans-
actions on Software Engineering, 8(4):391-
401,192.

D. Dolev, J. Meseguer, and M.C. Pease. Find-
ing safe paths in a faulty environment. ACM
Symposium On principles Of Distributed
Computing, pages 9S103,1982.

E.W. Dijkstra andC.S. Scholten. Termination
detection for diffusing computations. lnjor-
mation Processing Letters, 1 l(1): 14,1980.

D. Eppstein. Finding the k shortest paths.
Siam J. comput, 28(2):652673,1998.

A. Fiat, D. Foster, H. Karloff, Y. Rabani,
Y Ravid, and S. Vishwanathan. Competitive
algorithms for layered graph traversal. Siam
J . Comput, 28(2):447462,1998.

Robert G. Gallager, Pierre A. Hnmblet, and
Paul M. Spira. A distributed algorithm for
minimum weight spanning trees. TOPLAS,
5(1):6&77,1983.

Juan A. Garay, Shay Kutten, and David Pe-
leg. A sub-linear time distributed algorithm
for minimnu-weight spauning trees. IEEE,
pages 659667,1993.

A. Israeli and M. Jalfon. Token manage-
ment schemes ans random walks yields self-
stabilizing mutual exclusion. In Proceeedins
of the 9th ACM Symposium on Principles of
Distribbuted Computing, 1990.

E. Korach, S. Kutten, and S. Moran. A
modular technique for the design of efti-
cient distributed leader finding algorithms.
ACM Transactions on Programming Lan-
guages andSystems, 12(1):84101,1990.

&LNS89] J.D. Kahn, N. Linial, N. Nisan, and M.E.
Saks. On the cover time of random walks on
graphs. Journal of Theoretical Probability,
2(1):121-128,1989.

wT94] P. Klein and R. E. Tarjan. A randomized
linear-time algorithm for finding minimum
spanning trees. ACM, pages 9-15.1994.

42

m981 James G. Propp and David B. Wilson. How
to get an exact sample from a generic markov
chain and sample a random spanning tree
from a directed graph, bith within the cover
time. Journal ofAlgorithms, pages 170-217,
1998. Combines two conference article, one
appearing in 1996 ACM-SIAM Symposium
on Discrete Algorithm, the second appearing
in ACM Symposium on the Theory of Com-
puting.

[Seg83] A. Segall. Distributed network protocols.
IEEE Transactions on Information Theory.
29(1):23-35.1983.

[STU97] Akiyoshi Shioura, Akihisa Tamura, and
Takeaki Uno. An optimal algorithm for scan-
ning all spanning trees of undirected graphs.
Siam J . Comput, 26(3):678492,1997.

P. Tetali and P. Winkler. On an random walk
problem arising in self-stabilizing token man-
agement. In Proceedings of the Tenth Annual
ACM Symposium on Principles of Distributed
Computing, pages 273-280.1991.

[WG94] J. Warpechowska-Gruca. Meeting times of
random walks on graphs. Technical Report
941535104. University of Calgary, 1994.

m 9 1]

43

Formal Concept Analysis and
Rough Set Theory in Clustering

Ho Tu Bao
Japan Advanced Institute of Science and Technology, Japan

National Institute of Information Technology, Vietnam

Abstract. This paper is concerned with the fundamental role of two math-
ematical theories in some clustering problems. Formal concept analysis pro-
vides the algebraic structure and properties of possible concepts from a given
context, and rough set theory provides a mathematical tool to deal with im-
precise and incomplete data. Based on these theories, we developed models
and algorithms for solving three clustering problems: conceptual clustering,
approximate conceptual clustering, and text clustering.

1 Formal Concept Analysis and Rough Set
Theory

A theory of concept lattices has been studied under the name formal concept
analysis (FCA) by Wille and his colleagues [I, 111. Considers a context as
a triple (O,D,R) where 0 be a set of objects, D be a set of primitive de-
scriptors and R be a binary relation between 0 and D, i.e., R 0 x 2, and
(old) E R is understood as the fact that object o has the descriptor d. For
any object subset X C 0, the largest tuple common to all objects in X is
denoted by X (X) . For any tuple S E 7, the set of all objects satisfying S is
denoted by p(S). A tuple S is closed if X(p(S)) = S. Formally, a concept C
in the classical view is a pair (X , S) , X C 0 and S C 7, satisfying p(S) = X
and X (X) = S. X and S are called extent and intent of C , respectively.
Concept (X2 ,Sz) is a subconcept of concept (X ~ , S I) if X2 C X I which is
equivalent to S2 2 SI, and (X I , Sl) is then a superconcept of (X2, S2).

It was shown that X and p define a Galois connection between the power sets
p(0) and p(D), i.e., they are two order-reversing one-to-one operators. As
a consequence, the following properties hold which will be exploited in the
learning process:

44

if S1 C: S2 then p(S1) 2 ~ (5 ’ 2) and Xp(S1) C Xp(S2)
if XI c X2 then X(X1) 2 X(X2) and pX(X1) C: pX(X2)

PAP = PI XPX = X I XP(XP(S)) = XP(S)
s c XP(S), X c PX(X)

P (u j sj) = nj m, ~ (u , xj) = nj x(xj)
The basic theorem in formal concept analysis [ll] states that the set of all
possible concepts from a context (0, V, R) is a complete lattice1 C, called
Galois lattice, in which infimum and supremum can be described as follows:

Rough set theory, a mathematical tool to deal with uncertainty introduced
by Pawlak in early 1980s [lo]. The starting point of this theory is the as-
sumption that our %iew” on elements of a set of objects 0 depends on some
equivalence relation E on 0. An approximation space is a pair (0, E) con-
sisting of 0 and an equivalence relation E C: 0 x 0.

The key notion of the rough set theory is the lower and upper approxima-
tions of any subset X C 0 which consist of all objects surely and possibly
belonging to XI respectively. The lower approximation E,(X) and the upper
approximation E*(X) are defined by

E * (X) = (0 E 0 : [O] E c X}
E * (X) = {0 E 0 : [O] E n X # 8)

(3)

(4)
where [o] ~ denotes the equivalence class of objects indiscernible with o with
respect to the equivalence relation E.

2 FCA-based Conceptual Clustering
Conceptual clustering concerns mainly with symbolic data [9]. It does simul-
taneously two tasks: (i) hierarchical clustering (Le., finding a hierarchy of
useful subsets of unlabelled instances); and (ii) characterization (i.e., finding
an intensional definition for each of these instance subsets). An important
feature of conceptual clustering is that a partitioning of data is viewed as

l A lattice L is complete when each of its subsetf X has a least upper bound and a
greatest lower bound in L.

45

Table 1: Scheme of OSHAM conceptual clustering

Input
Result H formed gradually.
Top-level call OSHAM(root concept, 0).

concept hierarchy H and an existing splittable concept ck.

1. While ck is still splittable, find a new subconcept of it that corresponds to
the hypothesis minimizing the quality function q(Ck) among 77 hypotheses
generated by the following steps

(a) Find a “good” attribute-value pair concerning the best cover of Ck.
(b) Find a closed attribute-value subset S containing this attribute-value
pair.
(c) Form a subconcept c k i with the intent is S.
(d) Evaluate the quality function with the new hypothesized subconcept.
Form intersecting concepts corresponding to intersections of the extent of the
new concept with the extent of existing concepts excluding its superconcepts.

2. If one of the following conditions holds then c k is considered as unsplittable

(a) There exist not any closed proper feature subset.
(b) The local instances set C; is too small.
(c) The local instances set C; is homogeneous enough.

3. Apply recursively the procedure to concepts generated in step 1.

‘good’ if and only if each cluster has a ‘good’ conceptual interpretation. In
this sense, FCA is a good tool for conceptual clustering as it formalizes the
duality between objects and their properties by Galois connections. Based on
FCA, we have developed a conceptual clustering method OSHAM with some
additional components to the concept representation by extent and intent.
The key idea here to enrich the concept representation in FCA by adding
several components based on the probabilistic and exemplar views on con-
cepts that allow dealing better with typical or unclear cases in the region
boundaries. The conceptual clustering method OSHAM to form a concept
hierarchy in the framework of concept lattices is introduced and described in
[2]. OSHAM searches to extract a good concept hierarchy by exploiting the
structure of Galois lattice of concepts as the hypothesis space.

46

Instead of characterizing a concept only by its intent and extent, OSHAM
represents each concept ck in a concept hierarchy ‘FI by a 10-tuple

where

-
-
-
-

l (c k) is the level of c k in W ;
f (c k) is the list of direct superconcepts of c k ;
S (c k) is the list of direct subconcepts of c k ;
i (c k) is the intent of c k (set of all common properties of instances

e(Ck) is the extent of c k (set of all instances satisfying properties

d (C k) is the dispersion between instances of c k ;
p (c k) is the occurrence probability of ck;
d(C[) is the dispersion of local instances of ck which are not
classified into subconcepts of ck;
p (c L l c k) is the conditional probability of these unclassified
instances of c k ;
q (c k) is the quality estimation of splitting ck into subconcepts c k i .

of c k) ;

of i (c k)) ;
-

-
-
-

-

-

Table 1 represents the essential idea of algorithm OSHAM that allows discov-
ering both disjoint and overlapping concepts depending on the user’s interests
by refining the condition l.(a) and the intersection operation. In short, OS-
HAM combines the concept intent, hierarchical structure information, prob-
abilistic estimations and the nearest neighbors of unknown instances. A
experimental comparative evaluation of OSHAM is given in [2].

3 Approximate Conceptual Clustering
Kent [7] has pointed out common features between formal concept analysis
and rough set theory, and formulated the rough concept analysis (RCA).
For the sake of simplicity, we restrict ourselves here to present the basic
idea of presenting approximate concepts in case of binary attributes where
D is identical to the set A of all attributes a. Saying that a given formal
context (0, A, R) is not obtained completely and precisely means that the
relation R is incomplete and imprecise. Let (0,E) be any approximation
space on objects 0, we wish to approximate R in terms of E. The lower
approximation R,E and the upper approximation R*E of R w.r.t. E can be
defined element-wise as

47

R,Eu = E*(Ra) = { 0 E 0 I [O] E C Ru} (6)

(7) R * E ~ = E*(Ru) = { 0 E 0 I [O] E n RU # 8)
The formal context (0, A, R) can be then roughly approximated by two lower
and upper formal contexts (0, A, R*E) and (0, A, R*E). These approximate
contexts can be intuitively viewed as LLtrun~ated” and “filled up” contexts
with respect to the equivalence relation E. Two formal context (O,A,R)
and (0, A, R’) are E-roughly equal if they have the same lower and upper
formal contexts, i.e., R*E = RkE and R*E = A rough formal context
in (0, E) is a collection of formal contexts of object set 0 and attribute set A
which have the same lower and upper formal contexts (roughly equal formal
contexts).

The rough extent of an attribute subset S C A w.r.t. R*E and R*E are
defined as

P (~ * E) = n R * ~ ~ p (~ * ~) = n R * E ~ (8)
aES aES

Now, any formal concept (X, S) E L (0 , A, R) can be approximated by R,E
and R*E. The lower and upper E-approximation of (X , S) are defined as

(x, S)+E = (P(S*E)7 AP(S*E)) E C (0 , A R * E)

(X, S)*E = (P (S * ~) , A P (~ * ~)) E C (0 , A, R*E)

(9)

(10)

A rough concept of a formal concept (0, A, R) in (0, E) is the collection of
concepts which have the same lower and upper E-approximations (roughly
equal concepts). Note that approximate contexts of (0, d, R) in (0, E) vary
according to the equivalence relation E. In [3] we introduce algorithm A-
OSHAM for learning approximate concepts in the framework of rough con-
cept analysis. Essentially, A-OSHAM induces a concept hierarchy in which
each induced concept is associated with a pair of its lower and upper approx-
imations. A-OSHAM generates concepts with their approximations recur-
sively and gradually, once a level of the hierarchy is formed the procedure is
repeated for each class.

4 Document Clustering based on a Tolerance
Rough Set Model

Given a set V of M full text documents. Our method of generating a hierar-
chical structure of this document collection consists of two phases. The first

48

Table 2: Scheme of A-OSHAM approximate conceptual clustering

Input
Result H formed gradually.
Top-level call A-OSHAM(root concept, 8).
Variables

concept hierarchy H and an existing splittable concept c k .

a is a given threshold.

1. Suppose that C k l , ..., C k , are subconcepts of c k = (X k , S k) found so far.
While c k is still splittable, find a new subconcept Ck,,+] = (X k n f l , s k , + l)

of Ck and its approximations by doing:

(a) Find attribute a* so that ua, X k i U p ({ a * }) is the largest cover of x k .

(b) Find the largest attribute set S containing a* satisfying Xp(S) = S.

(c) Form subconcept

(d) Find a lower approximation and an upper approximation of C k , +] with

From intersecting subconcepts corresponding to intersections of P (S k , + l)

with extents of existing concepts on H excluding its superconcepts, and find
their approximations.

2. Let x; = x k \ u::: X k i . If one of the following conditions holds then c k is
considered unsplittable:

with p (s k , + ,) = s and X k n t l = p(s) .

respect to a chosen equivalence relation E .

(a) There exist not any attribute set s & s k satisfying Xp(s) = s in x k .

(b) c a ~ d (X ;) 5 a.

3. Apply A-OSHAM(Cki, H) to each c k i formed in the step 1.

phase extracts and maps each document into a set of terms, then enriches
documents with their approximations by the proposed tolerance rough set
model. The second phase groups documents by an agglomerative clustering
method using the document approximations.

In the first phase each document d j is mapped into a list of terms ti each
is assigned a weight that reflects its importance in the document. Denote
by f d j (t i) the number of occurrences of term ti in d j (term frequency), and
by fD(t i) the number of documents in D that term ti occurs in (document
frequency). The weights wij of terms ti in documents d j are first calculated

49

then normalized by vector length as wij c wij/ h , E d j W h j 1 2 . Each doc-
ument d j is represented by its r highest-weighted terms. A usual way is to
fix a default value r common for all documents. We denote the document
set by 2, = { d l , d 2 , . . . , d M } where d j = (t l j , w l j ; t z j , w2j;. . . ; t , j , w T j) and
wij E [0,1]. The set of all terms from 2) is denoted by 7 = { t l , t z , . . . , t N } . In
information retrieval, a query is given the form Q = (41, wlq; q 2 , ~ 2 ~ ; . . . ; qs, wSq)
where qi E 7 and wiq E [0,1].

J--

The tolerance rough set model (TRSM) aims to enrich the document repre-
sentation in terms of semantics relatedness by creating tolerance classes of
terms in 7 and approximations of subsets of documents. The model has the
root from rough set models and its extensions [lo]. The key idea is among
three properties of an equivalence relation R in an universe U used in the
original rough set model (reflexive: xRx; symmetric: xRy -+ yRx; transitive:
xRy A yRz 4 xRz for Vx, y, z E U) , the transitive property does not always
hold in natural language processing, information retrieval, and consequently
text data mining. In fact, words are better viewed as overlapping classes
which can be generated by tolerance relations (requiring only reflexive and
symmetric properties).

The key issue in formulating a TRSM to represent documents is the identi-
fication of tolerance classes of index terms. There are several ways to iden-
tify conceptually similar index terms, e.g., human experts, thesaurus, term
co-occurrence, etc. We employ the co-occurrence of index terms in all doc-
uments from V to determine a tolerance relation and tolerance classes. The
co-occurrence of index terms is chosen for the following reasons: (i) it gives
a meaningful interpretation in the context of information retrieval about the
dependency and the semantic relation of index terms, and (ii) it is relatively
simple and computationally efficient. Note that the co-occurrence of index
terms is not transitive and cannot be used automatically to identify equiva-
lence classes. Denote by fD(ti, t j) the number of documents in 2) in which
two index terms ti and t j co-occur. We define an uncertainty function I
depending on a threshold B as

Io(ti) = { t j I f ~ (t i , t j) 2 Q} U { t i } (12)

It is clear that the function I0 defined above satisfies the condition of ti E
Ie(ti) and t j E Ie(ti) iff ti E Ie (t j) for any t i , t j E 7, and so I0 is both

50

Table 3: The TRSM nonhierarchical clustering algorithm

Input
Result

The set V of documents and the number K of clusters.
K clusters of V associated with cluster membership of each document.

1. Determine the initial representatives RI, R2, ..., RK of clusters CI, C2, ..., CK
as K randomly selected documents in V.

2. For each d j E V, calculate the similarity S(U(R, dj), Rk) between its upper
approximation U(R, dj) and the cluster representative Rk, k = 1, ..., K. If
this similarity is greater than a given threshold, assign d j to c k and take this
similarity value as the cluster membership m(dj) of d j in Ck.

3. For each cluster c k , re-determine its representative Rk.
4. Repeat steps 2 and 3 until there is little or no change in cluster membership

during a pass through D.
5. Denote by d, an unclassified document after steps 2, 3, 4 and by NN(d,)

its nearest neighbor document (with non-zero similarity) in formed clusters.
Assign d, into the cluster that contains NN(d,), and determine the cluster
membership of d, in this cluster as the product m(d,) = m(NN(d,)) x
S(U(R, d,),U(R,NN(d,))). Re-determine the representatives Rk, for k =
1, ..., K .

reflexive and symmetric. This function corresponds to a tolerance relation
Z C 7 x 7 that tiZtj iff t j E Ie(t i) , and Ie(ti) is the tolerance class of index
term ti.

A vague inclusion function v, which determines how much X is included in
Y , is defined as

(13) IX nyl v (X , Y) = - 1x1
This function is clearly monotonous with respect to the second argument.
Using this function the membership function, introduced by Pawlak [lo], a
similar notion as that in fuzzy sets, p for ti E 7, X 7 can be defined as

With these definitions we can define a tolerance space as R = (7, I , v, P)
in which the lower approximation L (R , X) and the upper approximation

51

Table 4: TRSM-based hierarchical agglomerative clustering algorithm

Input
Result Hierarchical structure of D

A collection of M documents D = {di, dz, . . . , d ~)

Given: a collection of M documents D = {di, dz, . . . , d i ~ }
a similarity measure sim : P(D) x P (D) --t R

€or j = 1 to M do
Cj = { d j } end
H = {Ci,cz,, . . . , C M }
i = M f l
while [HI > 1

(Cn,, G2) = argmax(c,,C,)EHXHSim(U(R, G) , U (R , C,)
Ci = Cn, U Cn,
H = (H \ { G I , Cn,}) U {Ci}
i = i + l

U(R, X) in R of any subset X C 7 can be defined as

C (R , X) = {ti E 7 I .(Ie(ti),X) = 1)

U(R, X) = {ti E 7 I v(Ie(ti), X) > 0)
(15)
(16)

The term-weighting method defined by Eq. (11) is extended to define weights
for terms in the upper approximation U(R, d j) of d j . It ensures that each
term in the upper approximation of d j but not in dj has a weight smaller
than the weight of any term in d j .

(1 + l%(fdj(ti))) x 1% fD t . if ti E 4,
if ti E U (R , d j) \ d j
if ti $2 U(R, d j)

(17)

The vector length normalization is then applied to the upper approximation
U(R, d j) of d j . Note that the normalization is done when considering a given
set of index terms.

Figure 3 and Figure 4 describe two general TRSM-based nonhierarchical and
hierarchical clustering algorithm. The TRSM-based nonhierarchical cluster-
ing algorithm can be considered as a reallocation clustering method to form
K clusters of a collection D of it4 documents. The main point of the TRSM-
based hierarchical clustering algorithm is at each merging step it uses upper

52

approximations of documents in finding two closest clusters to merge. Sev-
eral variants of agglomerative clustering can be applied, such single-link or
complete-link clustering. As documents are represented as length-normalized
vectors and when cosine similarity measure is used, an efficient alternative
is to employ the group-average agglomerative clustering. The group-average
clustering can avoid the elongated and straggling clusters produced by single-
link clustering, and can avoid the high cost of complete link clustering. In
fact, it allows using cluster representatives to calculate the similarity between
two clusters instead of averaging similarities of all document pairs each be-
long to one cluster [8]. In such a case, the complexity of computing average
similarity would be O (N 2) . Careful evaluation and validation of clustering
quality are given in [5] and [6]. The results show that tolerance rough set
model and TRSM-based clustering algorithms can be used to improve the
effectiveness and efficiency in information retrieval and text analysis.

References
[l] Ganter, B., Wille, R., Formal Concept Analysis: Mathematical Founda-

tions, Springer-Verlag, 1999.

[2] Ho, T.B., Discovering and Using Knowledge F’rom Unsupervised Data.
Decision Support Systems, Elsevier Science, Vol. 21, No. 1, 1997, 27-41.

[3] Ho, T.B., “TWO approaches to the representation and interpretation
of concepts in concept lattices”, Information Modelling and Knowledge
Bases X I , 10s Press, 2000, 12-25.

[4] Ho, T . B. and F’unakoshi, K., “Information retrieval using rough sets”,
Journal of Japanese Society f o r Artificial Intelligence, Vol. 13, No. 3,
1998, 424-433.

[5] Ho, T . B. and Nguyen, N.B., ”Nonhierarchical Document Clustering
by Tolerance Rough Set Model”, International Journal of Intelligent
Systems, Vol. 17 (2002), No. 2, 199-212.

[6] Kawasaki, S., Nguyen, N.B., and Ho, T. B., “Hierarchical Document
Clustering Based on Tolerance Rough Set Model”, Fourth European
Conference on Principles of Data Mining and Knowledge Discovery,
September 2000, Lyon. Lecture Notes in Artificial Intelligence 1910,
Springer, 458-463

53

[7] Kent, R.E., “Rough concept analysis”, Rough Sets, Fuzzy Sets and
Knowledge Discovery, Springer-Verlag, 1994, 248-255.

[8] Manning, C. D. and Schutze, H., Foundations of Statistical Natural Lan-
guage Processing, The MIT Press, 1999.

[9] Michalski, R.S. and Stepp, R.E., “Learning from observation: Concep-
tual learning” , Machine Learning: A n Artificial Intelligence Approach,
Vol. 1, R. S. Michalski, J. G. Carbonelle, T. M. Michell (Eds.), Morgan
Kaufmann, 1983, 331-363.

[lo] Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning about Data,
Kluwer Academic Publishers, 1991.

[ll] Wille, R., “Restructuring lattice theory: An approach based on hierar-
chies of concepts”, Ordered Sets, I. Rival (Ed.), Reidel, 1982, 445-470.

This page intentionally left blankThis page intentionally left blank

55

A Simple Heuristic Method for the Min-Cut
k-Balanced Partitioning Problem

Lelia Blin and Ivan Lavallee

Abstract We consider the problem of k-partitioning a graph into k bal-
anced subsets that minimizes the number of crossing weighted edges Previ-
ously, Maximum flow approach, iterative improvement, geometric represen-
tation were given to solve this problem. In this paper we propose a balanced
k-partition heuristic based on a max spanning tree method

Keywords: Bipartition, k-Partition, Min-Cut, Balanced, Merging.

1 Introduction
Graph connectivity is one of the classical subjects in graph theoiy The paititio-
ning of the grapbs is an important problem that has extensive applications in
mmy areas, including scientific computing, VLSI design [AK95], data mining
[MJHS96], geo-glaphical information systems, operation research, and task
scheduling. In circuit design, working with VLSI-CAD systems yields a high
level of complexity because the number of electronic circuits increases very
fast due to the technology improvements. Current designs are in the order
of 100.000 cells and it is expected to reach 1 000.000 cells in next years.
To give an idea of the involved complexity when working in design, actually
300.000 cells requires 8 hours of processing time running in parallel under
128 networked Sparc stations. The system must deal with the combinatorial
explosion of all the possible solutions and it is very important to find new
efficient heuristics.

Much heuristics are known as interchange methods and are based on
iteratively improving a series of partitions. In general, the quality of the final
solution depends on the quality of the initial partition. Moreover, iterative
exchange approaches cam easily can trapped in local minima. In contrast, we
propose a simple and efficient heuristic method usine a global optimization
criterion that promises a better performance.

The rest of the paper is organized as follows : section two introduces

56

the problem, on section three we discuss the state-of-the-art, section four
describes our heuristic approach and illustrates with an example.

2
0

0

This
been

3

The problem
Instance: Given G = (V, E) undirected graph [Ber73], weights w(e) E
Z+ for each e E E. Let V the vertex set, IVI = n, and the edges set
E , IEl = m. A cuted edge is an edge (u,v) where u E V,, and v6 $! &.
The cut set CUT(E) is the set with all the cuted edges in G. k is given
as a positive integer.

Question: Is there a k-partition of V into disjoint sets Vl, Vz, ..., V k

such that minimize c w(e)
E € C U T (E)

problem is known to be NP-hard[GJ79], thus, many heuristics have
developed to obtain suitable partitions.

The state of the art
The k-partitioning problem is most frequently solved by recursive biparti-
tion. That is, we first obtain a 2-partitioning (bipartitioning) of V , and
then we recursively obtain a 2-partitioning of each resulting partition. After
many phases, graph G is partitioned into k partitions. Thus, the problem
of performing a k partitioning is reduced to that of performing a sequence
of bipartitions. Consequently, in the literature, many heuristics have been
proposed in the context of Bipartitioning. Whereas, one of the original is-
sues in this work is to directly construct k-partitions without making use of
bi-partitioning.

There are two types of approaches based on a Min-Cut Graph Bipar-
titioning: The first one only seeks one minimal cut in the bipartition and
the second one also seeks a minimal eut cut add a constraint: the balance
constraint, the disjoints subsets of V must have the same size Min-Cut.

3.1 Bi-Partitioning: MC2P
The usual approach to solve this problem is to use its close relationship with
the maximum-flow problem[FF62]. In this field there are very simple heulistic
methods proposed [SW97]. However, it was overlooked as a viable approach
for circuit partitioning due to the following reasons:

57

0 The two components obtained by the network ma-flow min-cut tech-
nique are not necesarly balanced.

Although, a balanced eut can be achieved by repeatedly applying min-
cut to the larger component, this method can possibly incur n max-flow
computations.

The traditional network-flow technique works on graphs, but hyper-
graphs are more accurate models for circuit netlists than graphs.

Figure 1: Example of Stoer et Wagner heuristic methods [SW97]. The min
cut is 9, partition is {2}{1,3,4,5,7,8}

3.2 Min-Cut Balanced Bi-Partioning: MCB2P
The standard bipartitioning approach is iterative improvement based on the
Kernighan-Lin algorithm [KL70], which was later improved by Fiduccia-
Mattheyses [FM82].

In 1970, Kerighan and Lin [KL70] introduced what is often described as
the first graph bisection heuristic. Their algorithm begins whith some initial
solution (A*, B*). The KL method uses a par-swap neighborhood structure
and proceeds in a series of passes.

Suppose that (A*, B*) is a minimum cost bi-partition and let (A , B) be
any arbitrary bi-partition. Then there are two subsets with X E A and
Y E B where 1x1 = IyI 5 n/2. Thus, interchanging X and Y may produce
A* and B* as shown below X and Y are found by interchanging two nodes
in each iteration.

Example of Khernighan and Lin heuristic method.

58

a 8

9 3
4 4 :

I :

Figure 2: While interchanging nodes 1 and 7, the cut passes from 6 cuted
edges to 4)

3.3 Hypergraph
There are various graph and hypergraph representations of the circuit netlist
(VLSI), and formulated basic variants of the partitioning problem. The most
common method for representing the circuit netlsist connections (VLSI) is
a hypergraph. Although the original [KL70] algorithm only to undirected
weighted graphs, Schweikert and Kernighan [SK72] extend [KL70] to hyper-
graphs .

1 I

' Figure 3: Circuit

However, iterative improvement methods was overlooked as a viable ap-
proach for circuit partitioning due to the following reasons:

0 the quality of the final solution depends on the quality of the initial
partition.

0 the iterative method is very expensive and far from their practical use
(a good implementation KL yields a complexity in the oider of O(n2).

0 It is not possible to make Ic-partitioning directly.

59

Figure 4: Graph representation of the circuit, circuit representation by hy-
pergraph

3.4 Geometric Representation
In this part, we discusses methods that construct a gometric representation
of the partitioning problem via constructions as such a 1-dimensional linear
ordering or multi-dimensional vector space. Such a represation offers possi-
bilities for geometric approaches to solve problems that are intractable for
general graphs. Spectral methods are commonly used to construct geometric
representations, due to their ability to capture global netlist information.

Illustration of Hall’s Quadratic Placement [Ha1701 The significance of
hall’s result is that it provides the optimal non-disciete solution for Min-
Cut Bipartitioning. Given an nxn symmetric connection matrix C = (c i j) .

Eigenvaiues are computed by starting from this matrix. The eigenvectors as-
sociated E l , E2, E3, Eq with the eigenvalues are obtained X = (0.0,0.586,2.0,
3.414). To find the cut there are two possible choices:

First choice Placement in one dimension. By using the two smallet eigen-
values: i.e. the vectors El and E2 where the nodes are placed on the line
according to the coordinates of E2 (El line). The cut is at the center of the
line and it is the optimum because only one edge is cut.

Second choice Placement in 2 dimensions El = 0 is a line, it cannot thus
be used. That is why the two others smaller values of X are used, i.e the
eigenvectors E2 and E3 where the nodes are placed following X coordinated
and Y coordinated. The cut passes along the x-axis and this is the optimum
because only one edge is cut.

60

-0.01 0.463

Figure 5: Method of placement: The graph, one dimension, and two dimen-
sions

3.5 Replication
Replication modules can reduce the cutsize, and are paiticulary useful for
FPGA paititioning since many device architectures seem more I/O-limited
or interconnected-limited than logic-limited. Replication can also reduce the
number of interchip wires along a given path, increasing system performance.
The Min-Cut Replication Problem of Hwang and El Gamal [HG92] seeks a
collection of subsets of modules C;jlC;j, 1 5 i,j 5 k that minimizes F(Pk*
where Pk* is the partitioning that results when each subsets C:j is replicated
from Ci to Cj. Hwang and El Gamal implicitly assume each Ci contains a
subset Ii of primary imputs that cannot be replicated. Consider the directed
graph shown in figure 6(a), in which module v represents an N-input decoder
circuit. The cut shown has size 2N but if the decoder v is replicated as in
6(h), every one of these Z N edges will become uncut (however, N new edges
will be cut). The following rules are used to modify the edge set E when
v E Ch is replicated into v' E Cl. In [HG95], Hwang and El Gamal showed
how to modify their flow network to solve min-cut replication for hypergraphs
with signal information

We have presented a non-exhaustive review of the existing methods in
this field. These methods have several shelfs. The first shelf is that they
are not easy to understand and to implement. The second shelf it is that
they are not very powerful, the execution time becomes prohibitory for the
circuits'size interesting. The last major problem, is that they do not propose
k-partition but of the reiteration of bipartition, but in the reality of the VLSI,
it is necessary to tackle k-partition. These heuristics have execution times
which make them of not use in state, their repetition to obtain k-partition
only makes worst this observation.

61

Figure 6: Replication

4 Our heuristic
We locate our heuristic in the min-cut balanced k-partition (MCBkP). The
main idea of our heuristic is simple. The edges of maximum weight should
not be found in the cut-set CUT(E), that minimize the cut-set. Moreover
the weights of the edges will be small in the unit of cut, the more their will
tend towards a minimum.

The search of maximum edges can be made by the search of the maximum
spanning tree. We use the Sollin algorithm [So1631 for finding the maximum
spanning tree. This algorithm does not require preprocessing of the edges,
save computing time, and adopts a “bottom-up” strategy. Moreover we build
the tree from several forests, which authorizes a parallelism [LavSl] and this
principle is the base for k-partitioning. The general principle is the Borukva
phase [Bur26]. By merging node sets, we obtain a new graph and we iterate
the strategy on the new graph. During the heuritic method, a sequence of
successively smaller graphs is constructed.

for each e E E. Let V the vertex set, IVI = n, and the edges set E , [El = m.
A cuted edge is an edge (u, v) where u E &, and w # V, . The cut set CUT(E)
is the set with all the cuted edges in G. k is given as a positive integer, it is
the number of partition. We associate to each node a state; a node is marked
if already visited, unmarked if not. At the beginning each node is unmarked.

It is easy to understand the heuristic. The unmarked vertices are visited in
a random order, and for each vertex w, the edge incident on v with the highest
edge-weight is selected, e = (M a x w(I’[w]) = (v, u), where r[w] stands for the
edges incidents of w. Once all vertices have been marked, the unselected edges
are moved, and each one of the connected components of the resulting graph
becomes a set of vertices to be merged together.

Although not being completely unbalanced, the partitions obtained do

Our heuristic given G = (V, E) undirected graph [Ber73], weights w(e)inZ+

62

not satisfy the criterion of balance, ie, the constraint saying that the sizes of
the partitions must be equal. To answer this constraint, we should manage
the size of the partitions. For that we choose to make a compromise between
the size of the partitions and the cost of all the cuts. We accept an unbalance
r (fixed) on the size of the partitions, 0 < r < 0.5, if that enables us to have
a better cut. To manage the size of the partition we insert a test into the
moment of the choice of the incidental edge. That is to say V, a unmarked
node for an unspecified graph, Ivil = p i . That is to say e the incidental edge
with V, stsonger weight, el = (Max w(r[vi])) = (V,, vjl) and Ivj~jll = pjl. If
pi + p j < (q + r q) one selects e, if not we select the following node with
the strongest weight, e2 = (Max w(I'[V,]) # w(e1)) = (K, x2) , and so on ...

4.1 Example

Figure 7: Initial graph

Figure 8: First phase:first and second step

63

16 13
16

Figure 9: First phase:third and fourth step

Figure 10: First phase:fifth and sixth step

As on Figure 7, in a graph G = (V, E) , we seek a balanced bi-partition.
The Figures 8, 9, 10 illustre the first Phase. As on Figure 8 first and second
step. The first step choose the node unmarked 0 and merging it with its
successors with the largest weighted edge, it is the node 1 Nodes 0 and 1 are
marked. The second step choose the node unmarked 2 and merging it with
its successors whith the largest weighted edge, it is the node 5 Nodes 2 and
5 are marked.

As on Figure 9 third and fourth step. The third step choose the node
unmarked 3 and merging it with its successors with the largest weighted

64

edge, it is the node 1. The node 3 is marked. The fourth step choose the
node unmarked 4 and merging it with its successors with the largest weighted
edge, it is the node 1. The node 4 is marked.

As on Figure 10 fifth and sixth step. The fifth step choose the node un-
marked 6 and merging it with its successors with the largest weighted edge,
it is the node 7. Nodes 6 and 7 are marked. The sixth step choose the node
unmarked 8 and merging it with its successors with the largest weighted edge,
it is the node 5. The node 8 is marked. The figure 4.1 illustres the second
phase and the min-cut balanced bipartition. For start the second phase, we
unmarked the merging nodes. The second phase have one step, which corre-
sponds to the merging the unmarked-merging-nodes (2,5,8) and the merging
nodes (6,7), the max edge for the merging-node (2,5,8) (Now merging-nodes
(2,5,8) and (6,7) are marked). The merging-node (0,1,3,4) is not use, because
it satisfy the balanced criterium. The min-cut cost is 33.

References
[AK95]

[Ber 731

[Bur261

[FF62]

[FM82]

[GJ79]

[Ha1701

[HG92]

Charles J. Alpert and Andrew B. Kahng. Recent directions in
netlist partitioning. Integration, the VLSI Journal, 19, 1995.

Graphes et hypergraphes. North-Holland, Amsterdam, 1973.

0. Burukva. 0 jistm problmu minimaln
im”. Price Mor. Prirodoved Spol. v Brne Acta Societ. Scient.
Natur Moravicae), pages 37-58, 1926.

L.R Ford and D.R Fulkerson. Flows in networks. New Jersey:
Princeton University Press, page 11, 1962.

C.M. Fiduccia and R. M. Mattheyses. A linear-time heuristic
for improving network partitions. Proc. 19th ACM/IEEE Design
Automation Conf., pages 175-181, 1982.

M. Garey and D.S. Johnson. Computers and Intractability: A
guide to the Theory of NP-Completeness. San Fransisc0,W.H.
Freeman, 1979.

K.M. Hall.
Management Science, pages 219-229, 1970.

J. Hwang and A. El Gamal. Optimal replication for min-cut par-
titioning. Proc. IEEE Int. Conf. Computer-Aided Design, pages

An r-dimensional quadratic, placement algorithm.

432-435, NOV 1992.

65

[HG95] J . Hwang and A. El Gamal. Min-cut replication in partitioned
network. IEEE Trans. Computer-Aided Design, 14:96-106, Jan
1995.

B.W Kernighan and S. Lin. En efficient heuristic procedure for
partitioning graph. Belle Systems Technical Journal, pages 291-
307, 1970.

Algorithmique parallle et distribue. Hermes, 1991.

[KL70]

[LavSl]

[MJHS96] B. Mobasher, N. Jain, E.H. Han, and J . Srivastava. Web mining:
Pattern discovery from world wide web translation. Technical re-

[SK72]

[So1631

[SW97]

port, Departement of Computer Science, University of Minnesota,
Minneapolis, 1996.

D.G. Schweikert and B.W Kernighan. A proper model for the
partitioning of electonical circuits. Bell Telephone Laboratories
Incorporated, New Jersey, 1972.

M. Sollin. Expos du sminaire de c. berge, ihp, 1961, repris in
extenso dans. Mthodes et modles de la recherche Oprationnelle,
Dunod, pages 33-45, 1963.

M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of
the A C M , 44(4):585-591, Jul 1997.

This page intentionally left blankThis page intentionally left blank

67

LONGEST CYCLES AND RESTGRAPH IN
MAXIMAL NONHAMILTONIAN GRAPHS

Vu Dinh Hoa

Faculty of Information Technology
Pedagogical University of Hanoi

136 duong Xuan Thuy Ha noi Vietnam
e-mail: hoavd@fpt.com.vn

Abstract. A graph is called a maximal nonhamiltonian graph if it is nonhamil-
tonian and will be hamiltonian by adding any new edge. The following conjecture
was presented by Erdos that if C is a longest cycle in a maximalnonhamiltonian
graph G then G-C is a complete graph. In this paper we prove that the conjecture
is true for some classes of graphs.

1 Terminology and Notation

We consider only undirected graphs without loop or multiple edges. Our termi-
nology is standard except as indicated. We begin by introducing some definitions
and notation. Let w (G) denote the number of components of a graph G. Follow-
ing Chvdtal [2] a graph G is I-tough if IS1 > w (G - s) for any nonempty subset
S of the vertex set V (G) of G. G is called nontough if there exists a nonempty
subset S such that IS1 < w (G - S) . We shall denote the number of vertices of
G by n. A graph G is called a hamiltonian graph if G contains a hamiltonian
cycle, i. e. a cycle of length n. Otherwise, G is nonhamiltonian. Similarly, a path
is called a hamiltonian path if it contains all vertices in G. A graph G is called
a maximalnonhamiltonian graph if G is nonhamiltonian and will be hamiltonian
by adding any new edge. Clearly, for every nonadjacent vertices u and u in a
maximalnonhamiltonian graph G there is a hamiltonian path joining u with u. A
cycle C of G is a dominating cycle if G - C is an edgeless graph and G is called
dominated by C or dominable. The length l (C) of a longest cycle C in a graph G,
called the circumference of G, will be denoted by c(G). For k 5 Q we denote by
(~ k the minimum value of the degree sum of any k pairwise nonadjacent vertices.
For k > Q we set ok = co. Instead of 01 we use the more common notation 6.

2 Results and Conjecture

We begin with a well-known theorem of Nash-Williams [4].

Theorem 1 Let G be a 2-connected graph on n vertices with 6 2 (n+ 2)/3. Then
every longest cycle in G is a dominating cycle.

68

Bigalke and Jung [l] improved Theorem 1 under the assumption that G is 1-tough.

Theorem 2 Let G be a 1-tough graph on n vertices with 6 2 n / 3 . Then every
longest cycle in G is a dominating cycle.

The class of graphs with 6 2 was also studied by Enomoto et other in [3].
Let C be a longest cycle in a nonhamiltonian graph G. In the proof technics
for the existence of a hamiltonian cycle we often ask for the rest graph G - C.
Clearly, it is very useful1 if we know about G - C for any longest cycle C in a
maximalnonhamiltonian graph G. For some special cases we can describe the rest
graph G - C . A such result is proved in [6].

Theorem 3 Let G be a %connected graph on n vertices with 6 2 n / 3 and C be
a longest cycle in it. Then G - C is either a complete graph or an edgeless graph.

It was also shown in [6] that if 6 2 n / 3 and G is 2-connected then G - C is only
dependent on G, namely:

Theorem 4 Let G be a %connected graph on n 2 3 vertices with 6 2 n / 3 . Then
the following properties are equivalent:
(a) G is a dominable graph,
(b) every longest cycle in G is a dominating cycle,
(c) G $?I? for a class X of special graphs.

The definition of the class X shows that Theorems 4 is a generalization of Theorem
1 and Theorem 2. The class X is the union of the classes of graphs W1, ... , 8 5 and
it takes only a polynomial time to know whether a given graph G E W or not.
$21 is the class of graphs on 3r vertices and with minimal degree 6 = r 2 3, which
are isomorphic to a graph G, where

2KT-1 + K 2 c G c (2 K ~ - 1 U Kr) + Kz;

X2 the class of graphs on 15 vertices and with minimal degree b = 5, which are
isomorphic to a graph G, where

4K3 + K 3 c G 4K3 + K3;

X3 the class of graphs on 3r vertices and with minimal degree 6 = r 2 3, which
are isomorphic to a graph G, where

(T - 1)K2 + KT-i c G c ((T - 1)Kz UK3) + KT-1;

Wd the class of graphs on 3r + 2 vertices and with minimal degree 6 = T + 1, which
are isomorphic to a graph G, where

3KT + K 2 G c 3KT +K2;

69

R5 the class of graphs on 3r + 2 vertices and with minimal degree 6 = r + 1 2 3,
which are isomorphic to a graph G, where

(r + 1)Kz + I?, 2 G C (r + 1)Kz + K,.

Note that all graphs of R are nontough graphs, we can easily see that the graph
G - C is a complete graph for any graph G E !I2 and every longest cycle C in G.
The following conjecture was posed by Vu Dinh Hoa and presented by Erdos in
the "Second Kmkdw Conference of Graph Theory" (September 1994).

Conjeture 1 If G i s a maximalnonhamiltonian graph and C is any longest cycle
in G, then G - C is a complete graph.

In the following, we show that the conjecture is true for nontough maximalnon-
hamiltonian graphs.

Theorem 5 Let C be a longest cycle in a nontough maximalnonhamiltonian
graph G, then G - C is a complete graph.

Proof. Since G is nontough, there exists a set S of vertices such that w (G -
S) 2 IS1 + 1. Let s = IS1 and GI , Gz .. G, the components of G - S with
m 2 s + 1. Clearly, GI, Gz ... G, are complete graphs and m = s + 1 since G is a
maximalnonhamiltonian graph. Otherwise, we can add a new edge in some G, or a
new edge joining two of the components of G - S to obtain a new nonhamiltonian
graph with more edges. Similarly, S is a complete graph and every vertex of S is
joining with any vertex of G - S. Now, we can easily see that for every longest
cycle C the graph G - C is one of the components GI, GP, ... G,, i. e. a complete
graph.

Now we will show that the same result holds for the class of graphs with 6 2 g .
We denote by p (G) the length of a longest path in G. In [5] , Van den Heuvel
proved the following result.

Lemma 1 (Corollary 6.8 in 151) Let G be a 1-tough graph on n 2 3 vertices such
that u3 2 n. Then G satisfies c(G) 2 p(G) .

Thus, we conclude the following result.

Theorem 6 Let G be a rnmimalnonhamiltonian graph on n 2 3 vertices such
that 6 2 and C be a longest cycle in G, then G - C is a complete graph.

70

Proof. If G is nontough graph, then G - C is a complete graph because of theorem
5. Otherwise, G is a 1-tough graph and G satisfies the condition u3 2 n. By
lemma 1, we have c (G) 2 p (G) . But, since G is maximalnonhamiltonian graph,
p (G) 2 n - 1. Thus G- C has at most one vertex and therefore G - C is a complete
graph.

By the similarly proof, we have the same result for graph G with u3 2 n.

Theorem 7 Let G be a mmimalnonhamiltonian graph on n 2 3 vertices such
that u3 2 n and C be a longest cycle in a graph G . Then G - C is a complete
graph.

References

1. A. Bigalke and H. A. Jung, Uber Hamiltonsche Kreise und unabhangzge Ecken

2. V. Chvhtal, Tough graphs and hamiltonian circuit, Discrete Math. 5 (1973)

3. H. Enomoto, A. Kaneko and Zs. Tuza, P3-factors and Covering Cycles in
Graphs of Minimum Degree n/3, Colloquia Mathematica Societatis JBnos
Bolyai, 52. Combinatorics, Eger (Hungary), 1987.

4. C. St. J . A. Nash - Williams, Edge- disjoint hamiltonian circuits in graphs
with vertices of large walency, In ”Studies in Pure Mathematics”, L. Mirsky
ed. Academic Press, London 1971, 157-183

5. Van den Heuvel, J . , Degree and Toughness Condition for Cycles in Graphs,
Ph. D. Thesis University of Twente, Netherland 1994.

6. Vu Dinh Hoa, Ein Struktursatz fur 2-fach zusammenhangende Graphen mit
groj3er Minimalvalenz Math. Nachr. 128 (1986), 151-160.

in Graphen, Monatsh. Mathematics 88 (1979), 195-210

215 - 228.

71

Deterministic and Nondeterministic Directable
Automata

Masami Ito
Department of Mathematics

Kyoto Sangyo University, Kyoto 603-8555, Japan
email: ito@kyoto-su.ac.jp

Abstract

This paper is a survey article to introduce some results on deterministic
and nondeterministic directable automata and their related languages.

1 Introduction
Let. X be a nonempty finite set,, called an alphabet. An element of X is called a
letter. By X * , we denote the free monoid generated by X . Let X + = X * \ { E }

where E denotes the empty word of X * . For the sake of simplicity, if X = {a} ,
then we write a+ and a* instead of {a}+ and {a}*, respectively. Let L C X * .
Then L is called a language over X . If L X * , t,hen L+ denotes t,he set of all
concatenations of words in L and L* = L+ U (6) . In particular, if L = {w},
then we write w+ and w* instead of {w}+ and {w}', respect.ively. Let, u E X ' .
Then u is called a word over X . If u E X * , then IuI denotes the length of u, i.e.
the number of letters appearing in u. Notice that we also denote the cardinality
of a finite set A by IAl.

A finite automaton (in short, an automaton) A = (S , X , 6) consists of the
following data: (1) S is a nonempty finite set, called a state set. (2) X is a
nonempty finite alphabet,. (3) 6 is a function, called a state transition function,
of S x X into S.

The state transition function 6 can be extended to the function of S x X *
into S as follows: (1) b (s , t) = s for any s E S. (2) 6 (s , a u) = 6 (S (s , a) , u) for
any s E S , a E X and u E X * .

Let A = (S , X , 6) be an automaton, let s E S and let, u E X * . . In what
follows, we will write su-4 instead of 6(s,u).

A finite recognizer A = (S , X , 6, SO, F) consists of the following data: (1) The
triple (S , X , 6) constitutes a finite automaton. (2) SO E S is called the initial
state. (3) F S is called the set of final states.

72

Let A = (S ,X ,6 , so ,F) be a finitme recognizer. Then the language 7 (A) =

Let L X ' . Then L is said to be regular if L is accepted by a finit,e
{u E X * I 6(so,u) E F } is called the language accepted by A .

recognizer.

2 Deterministic Directable Automata
First, we define a directable automaton.

Definition 1 An automaton A = (S , X , 6) is said to be directable if the follow-
ing condition is satisfied: There exists w E X * such that swA = t w A for any
s, t E s.

In the above definition, a word w E X' is called a directing word of A. Then
we have:

Fact Let A = (S , X , 6) be a n automaton. T h e n A is directable i f and only i f
f o r any s, t E S , there exists u E X * such that suA = tuA.

Proposition 1 Assume that A = (S , X , 6) is a directable automata. T h e n the
set of directing words D (d) of A is a regular language.

Proof To prove the propositmion, it is enough to provide the recognizer f3 =
(P (S) , X , y , S , G) where P (S) = {T I T C S } , G = ({ s } I s E S } and y (T , a) =
U t E T 6 (t , a) for any a E X and T E P(S) . Then it, can easily be verified that,
'T(f3) = D (A) . Hence D (d) is regular.

Let, A = (S , X , 6) be a directable automatmoil. By d (A) , we denot,e the
va.lue min{lwl 1 w E D(A)}. Moreover, d (n) denotes t,lie value r n a z { d (d) I
A = (S , X , 6) is a directable automat,on witah n stat,es}. In the definit,ion of
d (n) , X ranges over all finite nonempt,y alphabets.

In [2], Cernjr conjectured the following.

Conjecture For any n 2 l ,d(n) = (n, - 1)'

Act,ually, Cernf proved only that. (n - 1)2 5 d (n) using t,he following di-

A = ((1 , . . . , n } , {a ,b} ,6) where6(i ,a) = i + l i f i = 1 , 2 , . . . , n - 1 and

Then it can be shown t,hat t,he word b(a"-'b)"-2 is a shortest directing word

rectable automaton.

6(n ,a) = 1, 6(n - 1, b) = n and 6 (i , b) = i if i = 1 , 2 , . . . , n and i # n - 1.

of A and hence (n - 1)2 5 d (n) .

However, the above problem is stmill open and at present we have only t>he
following result:

73

Proposition 2 For any n 2 1, we have (n - 1)’ 5 d (n) 5 1 + (n - 2)(y).

Proof The lower bound is obvious from the above result.. As for the upper
bound, it, is enough to consider only t,he case n, 2 3. Let A = (S , X , 6) be a
directable a.ut,omaton with IS1 = n. Since d is a directable automaton, t,liere
exist S O , s1 E S, SO # s1 and a E X such that, soad = s l d . Hence ISadl < (5’1.
Let s, t E Sad, s # t . Moreover, let, u E X ” be one of t,lie shortest, words such
that sud = tuA. Suppose IuI 2 (y) + 1. Then we have u = xvy,w,xy E X +
such that { s , t } x A = {s,t)(~v)~. This implies that. ~ (x c y) ~ = t (~ y) ~ . This
contradicts t4he assumption that, u is one of t,he shortest, words. Hence lul 5 (y) .
Now consider s’, t’ E S (U ~) ~ , s’ # t‘. In t,he same way as the above, we can find
u’ E X*, 121’1 5 (y) such that s ’ d A = t ’dd. Using the same technique, we can
find a direct,ing word w = auu’. . . of A with IwJ 5 1 + (n - 2)(;).

In [9] and [lo], J.-E. Pin gave more precise evaluations.

We can consider a similar problem for some subclasses of direct,able au-
t,omata. For instance, an automaton d = (S, x, 6) is said t,o be commutative if
s (u t ~) ~ = ~ (v u) ~ holds for any s E S and any u,c E X * . By dcom(n), we denote
the value ~naz{d(A) I A = (S , X , 6) is commutative and directable, a.nd IS1 =
n}. In the definition of dcom(n) , X ranges over all finit,e noneinpt,y alphabets.
The following result is due t,o [ll] and [la].

Proposition 3 For any n 2 1, we have dcOm(n) = n - 1.

Proof Let A = (S, X , 6) be a commut,ative directable aut,oma.t,on wit,li IS1 = n.
Remark that, Sud = USES suA 2 S (t r ~) ~ = S(UW)~ for any u, v E X * . Let.
w = alaz...a,. be one of the shortest directing words of A. Thus we have
Saf 2 S (~ l a 2) ~ 2 S(alaza3)A 2 . . . 2 S(~laza~...a,)~. Notice tha.t every
inclusion is proper because tShe word w is one of the shot,est, directing words.
Hence r 5 n - 1. On the ot,lier hand, consider the following commut,a.t,ive
direchble a.utomat,on B = ({I, 2,. . . ,n},X,y) where y (i , a) = i + 1 for any
a E X and any i = 1,2 , . . . ,n - 1 and y(n,,a,) = n for any a E X . Then
d(B) = n, - 1. Consequentsly, d,,, (n) = n - 1.

It. is an interesting questioii to ask whether or not a. given automaton is
directable. For t,liis purpose, we introduce the notion of a. merged word of a
language.

Let L C X * be a language over X Then ‘UI E X * is called a merged word of
L if any word in L is a subword of w, i.e. X * u X * n {w} # 0 for any u E L. In
[8], the following proposition is given:

Proposition 4 Thrre extsts a merged word ul E X + of X d (n) such that luil 5
I X p + d(n) - 1

74

Using the word w, we can check whether a. given automa.ton A = (S , X , 6)
wit,h JSI = n, is directfable, i.e. A is directable if arid only if SwA is a singleton
set.

However, the above algorit,hm is not effective. To provide an effective al-
gorithm to decide whether a given automa.t,on is directable, we int,roduce the
following relat,ioiis p and pi on S .

vs, t E s, (s, t) E p e 3u E x*, S U A = tuA.

(1) V s , t E S , (s , t) E po 1 s = t .
(2) ~i 2 l ,Vs , t E S, (s, t) E p1 u 3a E X , (s a A , t a A) E pi-1.

Then we have:

(3
Proposition 5 p = u p ? . Moreover, A is directable if and only i f (s, t) E p for

any s, t E S .
2=0

Using t,he above proposition, B. Imreh and M. St,eiIiby ([5]) provided an algo-
rithm to decide whether or not, any given automaton A = (S , X , 6) is directable
with t,he time bound of O(m. . n,’) where m = 1x1 and n = IS].

3 Nondeterministic Directable Automata
A nondeterministic automaton A = (S , X , 6) consists of t,he following data: (1)
S , X are t,he same tnaterials as in ta le definition of finit,e automat,a. (2) 6 is a
relation such t,liat, 6(s , a) 5 S for any s E S and any a E X u { E } .

As in t,lie case of finitme aut,omata, 6 can be ext,ended to the following relation
in a. natural way, i.e. 6(s, au) = UtE6(s ,a) 6 (t , u) for any s E S , any u E X* and
any a E X U {F}. In what, follows, we will writ,e suA inshad of 6(s, u,) as in the
case of finitme aut,omata.

Now we will deal wit,li rioridet,eririiiiistir direchble autorna.ta and t,lieir related
languages. For nondet,erininist.ic aut,oinat.a, t,he direct,a.bilit.y can be defined in
several ways. In each case, tjhe directing words coiistit-ut,e a regular language.
We will consider six classes of regular languages wit41i respect. to t,lie different.
defiiiit,ioiis of direct,ability.

Let. A = (S , X , 6) be a xioiidet,errniiiistic aut,ornaton. In 161, the not,ion of
direct,irig words of A is given. In t.he defiiiit,ion, SwA denoies USES swA for
w E x * .

75

Definition 2 (1) A word w E X * is D1-directing if swd # 0 for any s E S and
(SwdI = 1. (2) A word w E X * is Dz-directing if swd = Swd for any s E S.

S E S

(3) A word w E X * is Ds-directing if n S W ~ # 0.

Definition 3 Let i = 1,2 ,3 . Then A is called a D,-directable automaton if the
set of Di-directing words is not empty.

Let A = (S , X , 6) be a nondeterministic automaton. Then, for any i = 1 ,2 ,3 ,
Di(d) denotes the set of all Di-directing words. Then we have:

Proposition 6 For any i = 1,2 ,3 , Di(A) is a regular language.

Proof Let A = (S , X , S) be a nondeterministic automaton and let S =
{SO, s1 , s2,. . . , s T } , r 2 0. For any i = 1,2 ,3 , we define a finite recognizer di =
({T 1 T C S } , X , 6r1 ({SO} , { SI}, . . . , { S T }) , Fi) as follows: (1) (To , Ti , . . . I TT) adi
= 6,((To,Tl,. . . , T T) , a) = (ToaA,T1ud,. . . ,TTad) for any a E X and any
Ti 2 S, i = 0 , 1 , . . . , r . (2) F1 = { ({ t } , { t } , . . . , { t }) I t E S } , FZ = { (T ,T , . . . , T)

I T s S } and Fs = {(To,Ti,. . . ,TT) I Ti s S,i = 0 , 1 , . . . , r , 0 T, # 0).
T

i=O

Then it is obvious that D i (d) = 7(&) for any i = 1 ,2 ,3 . Hence Di(d) is a
regular language for any i = 1 ,2 ,3 .

A nondeterministic automat(on A = (S , X , 6) is said to be complete if sad # 0
for any s E S and any a E X . As for the D1-directability of a complete nonde-
terininist,ic automaton, Burkhard introduced it in [l] . We will investigate the
classes of languages consisting of D1-, Da- and Ds-directing words of nondeter-
minist,ic mtomata and complete nondeterministic automata.

The classes of Di-directable nondeterministic automat,a and complete non-
deterministsic automata are denoted by Dir(i) and CDir(i), respectively. Let
X be an alphabet. For i = 1,2 ,3 , we define t,he following classes of languages:

A = (S , X , 6) E CDir(i)}.
(1) L&,(il = {Di(A) I d = (S , X , 6) E Dir(i)}. (2) LgND(%) = {Di(A) I

Let D be the class of deterministic directfable automata. For A E D, D(A)
denotes the set of all directing words of A. Then we can define the class, i.e.
Lg = {D(A) 1 A = (S , X , b) ED}.

Then, by Propsition 1 and Proposition 6, all the above classes are subclasses
of regular languages. Figure 1 depicts the inclusion relations among such 7
classes. In [3], the inclusion relations among more classes are provided.

We will consider the shortest directing words of nondet,erministic automata.

76

'CD(1) 'CD(2) 'CD(3)

x - ' X
'D - CND(2) = '&VD(3)

Figure 1: Inclusion relations

Let. i = 1 ,2 ,3 and let A = (S , X, 6) be a nondet,erministic automaton. Then
&(A) denotes the value min{lul I u E Dl(A)}. For any positive integer n 2 1,
d i (n) denot,es t,he value max{d i (d) 1 A = (S , X , 6) : A E Dir(i) and JSI = n}.
Moreover, cdz(n.) denotes the value maz{di(A) I A = (S , X , 6) : A E CDir(i)
and IS1 = n}. Notice that in the definitions of d , (n) and cd,(n) , X ranges over
all finit,e nonempty alphabets.

In [l], Burkhard det,ermined the value cdl(n) as follows:

Proposition 7 Let n 2 1. Then cdl (n) = 2n - n, - 1.

Proof First,, we show that cdl (n) 5 2n -n- 1. Let A = (S, X , b) be a complete
nondeterminist.ic automaton with IS1 = n and let, uf = a1a2 . . .a,-la E Dl(A)

,-1,a E X and r = IwI = dl(A). Suppose that, r = Iuil >
hat ,2n-n-2= [{ T c S I IT1 >2}l. L e t T i = S (a l a ~ . . . a i) ~

xist. i, j = 1,2, . . . , r - 1 such t.liat, i < j
+1 . . . a,a E Dl(A). This contradict,s t,lie

assumption t,liat r = dl(A). Hence cdl(n) 5 2n - n - 1.
Now we show that, 2n - n, - 1 5 cdl(n). To prove 2n - n - 1 5 cdl(n,), it

is enough to const,ruct a complet,e nondeterministic autorna.ton A = (S, X, b)
such t,hat, IS1 = n and d l (A) = 2n - n - 1. Let S be a finite set, wit,li IS1 = n.
Moreover, let. (Tl,T2,. . . ,TT} = {T c S I IT1 2 a } . Furtheremore, we assume
that \TI(2 IT21 2 . . . >_ IT,[and T, = (~ 1 , s ~) . Not,ice that, T = 2n - n - 2.
Now we const,ruct the following nondeterministic automaton A = (S, X, 6): (1)
X = {a l ,a2 , . . . ,a, ,z}. (2) s a t = 7'1 for any s E S. (3) For any i = 1 ,2 , . . . , r -
l , saf i l = Ti+1 if 's E Ti and = S, otherwise. (4) s p A = s2zA = {sl}
a.nd szA = S if .s # s1, s2.

= S a f (a 2 . . . u , z) ~ = Tl(a2. . .

{sl}. Hence ala2" 'arz E DI(A) and lala2...a,zl = r + 1 = 2n - n - 1.
Suppose that t,here exists U J E D1(A) wit,li dl(A) = IwI < 2n - n - 1. Let,

Then A is complete and S(a la2 . .
a , ~) ~ = T i a f (a 3 . . . ~ , 2) ~ = T ~ (u ~ . . . c L , z) ~ = . . . = T T z A = { s l , s 2 } z A =

77

w = aiw‘ where UJ’ E X * and i = 2,3 , . . . , T . Since S 2 Ti-1, we have Sai, =
S , S (a i ~ i ’) ~ = SwtA and ISW’~I = 1. This implies that w’ E Dl(A). This
contradicts the minimality of 1201. For the case that, w = zw’ where w’ E X * ,
we have S(zui’)” = S Z * W ’ ~ = S W ’ ~ because S 2 {sl, sz}. Hence we encounter
the same contradictaion. Assume w = uluz . . . a,w‘ for some i = 1 ,2 , . . . , r and
w‘ E X * . Obviously, w’ E X + and hence i 5 r - 1. Suppose w‘ = ajv where
j # i + 1 and v E X * . Let j < i + 1. Remark t,hat U I = a1u2 . . . aj . . . aiajv.
Notice that, S(alaz. . . aj . . . a i , c ~ j) ~ = Tj or S(ala2.. . aj . . . a i c ~ j) ~ = S. In
the former case, since S (a l a z . . . ~ j) ~ = Tj, we have S(alaz...~jv)~ = SwA
and a1a2 . . . a j v E Dl(A) , which contradicts the Ininimality of 1 ~ 1 1 . In the
latter case, SwA = SvA and ISvAI = 1. Therefore, ‘u E D1(d) , which is a
contradiction. Suppose j > i + 1. Since i < j - 1, Ti \ Tj-1 # 0. Therefore,
S (a l a z . . . a i ~ j) ~ = Tiaf = S . Consequently, SvA = SwA and v E D1(A),
which contradicts t,he minimality of IwI. Now let w’ = zv where v E X * . Since
w = a laz . . . U i z V , SwA = S(a laz . . . = TizAvA, Not,ice that, Ti # T,.
Hence T, \ {sl, sz} # 8. Therefore, SwA = S(alaz . . . aizcl)A = TizAvA = SV*
and v E Dl(A), which contradicts the minima1it.y of 1~11. This means t.hat, there
is no ‘u! E D1(A) with IwI < 2n - n - 1. Hence dl(A) = 2n - n, - 1. This
cornplet,es the proof of’ t,he proposition.

For dl(n,) , we have the following new result.

n

Proposition 8 Let 71. 2 2. Then 2n - n 5 dl (n) 5 c (L) (2 k - 1). Notice that

dl(1) = 0 and d l (2) = 3.
k=Z

n

Proof Let, n 2 2. First,, we show taliat d l (n) 5 x (i) (2 k - l) . Let, A = (S , X , 6)

be a D1-directjable autornat.on wit,h n strates and let, ui = alaz . . . a, E D1(A)
such that ai X , i = 1 ,2 , . . . , r, T 2 1 and IwI = r = dl(A). Since w E D l (d) ,
t,here exists SO E S such that swA = { S O } for any .s E S . For any i = 1,2,

k=2

llows: (1) s, = S(a1az ’ ’ . a y . (2) T, = {t E s,

. . . , T . Since s(a,laZ . . .ai,ai+l
have s (a l a Z . . . ~ ~) ~ n T i # 0. Let, S = SO =TO.

, r - 1). It, is obvious t,lia.t. Si, # 0 for
any i = 0 ,1 , . . . , r - 1. It is also obvious that, IS01 # 1. Suppose t,hat, ISjl = 1 for

, r - 1. Then Si = Ti = { t} for some t E S. By the definit,ion
s that alaz . . . ai E Dl(A), which contradicts the minimality

, n. Hence t,he set, { (Si, T,) I
, T - 1) does not contain any ({ s}, { s}) with so # s E S.

Nowassuinet,liat (Si,T<) = (Sj,T’)forsomei,j = 1,2, . . . , r-l , i < j . Then
a, E D l (d) , which contradict,s the

of’ 12111. Therefore, IS, I # 1 for any i = 1,2,

it, can be seen t,hat. u1uz . . . ai,aj+laj+z

78

minirriality of IwJ. Hence all (S7, z), i = 0, 1 ,2 , . . . , T - 1, are distinct. Therefore,
n n

We will show that, 2n - n 5 d l (n) . It is obvious that dl(2) 2 2. Let.
n 2 3. We will const,ruct, a D1-directable automaton A = (S , X , 6) such taliat,
IS1 = n arid d l (d) = 2n - n. Let. S be a. finite set with IS1 = n and let
{Tl,Tz,. . . ,T,} = {T c S I IT1 2 2}. Notice t,hat, r = 2n - n - 2. Moreover,
we assume t)hat IT11 2 IT21 2 . . . 2 ITTI, {SO} = S \ TI and T, = {s1,s2}.
Now we construct the following noiideterrninist,ic a.ut,omaton A = (S, X , 6) : (1)
X = {a1,a2,. . . , a,, b}. (2) For any i = 1,2, and
s a t = S, otherwise. (3) .slap = szup = {sl} arid sup = S if s E S\ {sl, s2}.

(4) sobA = 0 and sbA = TI for any s E S \ { s o } .

Let s E S and let, i = 1,2 , . . . , T . Notice t,liat, s(aibala2 . . . a ,) A = { s i } and
hence uibu,la2 ; . .a, E DltA). Moreover, since sobd = 0, we have b X * n D l (A) =
0. Let i , j = 1 ,2 , . . . , T . Then S (U ~ U ~) ~ = S. On the other hand, s(u,b)d = Tl
for any s E S. This means that u E aibX* if u is a shortest D1-directing word
of A. Let, i = 1 ,2 , . . . , r - 1. Then T,(~,aj)” = Ti+lat = S if j > i + 1 and
T , (~ i , a j) ~ = Ti+laf 2 T’+1 i f j 5 i . Notice t,liat, in t,lie lat,t,er case j + 1 5 i + 1.
This implies that. u is not, a shortest, D1-directing word of A if u E X*a7,a jX*
where j # i+ 1. Moreover, since S b A = Ti, u is not a. shortest, D1-direct.ing word
of A if u E X X + b X * . ConsequentJy, aibalaz . . . a, is a shortest, D1-direct,ing
word of A, i.e. dl(A) = T + 2 = 2n - n. Hence we have 2” - n 5 dl(n.).

Finally, we compute d l (1) arid dl (2). It is obvious that. dl (1) = 0. Coiisider
the following nondeterministic aut,omat,on A = ({1,2}, {u,, b, c},6): (1) laA =
{l ,2} and 2aA = {a}. (2) lbA = 0 and 2bA = {1,2}. (3) l cA = {l} and

Then ubc is a sliort,est D1-direct,ing word of A. Since dl (2) 5 2’ - 1 = 3, we

, r - 1, s a t = T,+1 if s E

2cA = 0.

ha.ve d l (2) = 3.

Now we consider the value &(TI.). Before dealing wit,h t,he va.lue d 3 (n) , we

A Iioiidet,eriniriist,ic aut,omat.on A = (S, X , 6) is said t,o be of partial function
define a. nondet,erminist,ic a.utomat.on of part,ial function type.

type if I saA I 5 1 for any s E S and any a E X . Then we have:

Remark 1 Let A be a nondeterministic aut,omat.on of partial function type.
The11 D3(d) = D l (d) .

Let A = (S , X , 6) be a Ds-directable automaton of partial function type.
Consider the following procedure P: Let TL E D3(d). Assume that u = 2 ~ 1 ~ 2 ~ 3

where u1, u3 E X * , up E X + arid SulA = S (U ~ U ~) ~ . Then procedure P can be
applied as u j P ‘ILl’LL3.

Then we have t<he following result.

79

Lemma 1 In the above procedure, we have ~ 1 ~ 3 E D3(A).

Proof Let A = (S, X, 6) be a nondeterministic automaton of part,ial function
type. Moreover, let u = ulu2u3 where ~ 1 ~ ~ 3 E X*,ug E X+ and SulA =
S(ulu2)d. Since u E D3(d), there exists so E S such that SU* = {so} for any
s E S. From the assumptions that Suld = S(uluZ)A and d is a nondetermin-
istic automaton of partial function type, it follows that suA = s (u ~ u ~ u=
s (u ~ u ~) ~ = {SO} for any s E S. By Remark 1, this means that u1u3 E D3(d).

Let A = (S , X, 6) be a D3-directable aut,omaton of partial function type and

Assume that v E D3(d),w = w 1 w 2 w 3 , ~ 1 , w 3 E X * , W Z E X + , lSwlAl =
S w l A . Then procedure & (s , t) can be applied as w ae(. 1)

let a1a2.. .a, E D3(d) such that salA = talA for some s, t E S, s # t .

IS(wlw2)Al and {s, t }
v1a1a2.. .a,.

Then we have the following results.

Lemma 2 In the above procedure, we have 010102. . . a, E D3(d) and lSwlAl >
I S W l alA I .
Proof Let s E S. Since 21 = ~ 1 0 2 ~ 3 E D3(d), we have ~ 1 1 1 ~ # 0, actu-
ally (svlA(= 1. Notice that 3s, E S,Vt E S , t (a l a ~ . . . a ,) ~ = { s T } . There-
fore, ~ (v ~ a l a 2 . . . a ,) ~ = (s ~ l ~) (a l a 2 . . . a ~) ~ = { s T } and hence wlala2...aT E
D3(A). Since d is of partial function t,ype and { s , t } C SqA, lSwlAl 2
lSwlalAl + 1. This completes the proof of the lemma.

Lemma 3 Let A = (S,X,6) be a Da-directable automaton such that IS[=
n and d3(d) = d3(n). Then there exists a nondeterministic automaton B =
(S , Y , y) of partial function type such that d3(B) = d3(n).

Proof Let, u = ala2 . . . a, E D3(d) with 1uI = &(-A). Since u E D3(d), there
are s, E S and a sequence of part,ial functions of S into S, p1, p2, . . . , pT such t,ha.t
s(alaz...a,)A 2 pi(pi-l(. . . (pl(s)) . . .)) for any s E S and any i = 1,2, . . . , r .
F’urthermore, p,(p , - ~ (. . . (p l (s)) . . .)) = { s T } for any s E S. Now we define
the automaton of partial funct,ion type B = (S , Y , y) as follows: (1) Y = {bi I
i = 1 , 2 , . . . ,r}. Remark that b l , b z , . . . , b, are distinct symbols. (2) sbi = pi(s)
for any s E S and any i = 1 , 2 , . . . , r.

Then I3 is a nondeterministic automaton of partial function type. Moreover,
it is obvious that blb2 . . . bT E D3(B). Suppose that b,, bi, . . . bi, E D3(B) where
i 1 , i 2 , . . . ,zk: E {1,2, . . . ,r}. Then we have a,,ai, . . .ai, E D3(d). Therefore,
k 2 r and r = d3(B). This completes the proof of t,he lemma.

U

We are now ready to determine an upper bound for d3(n).

80

n-1 n-2

Proposition 9 For any n 2 3, &(n) 5 x (L) - x("L2) + n - 1 .
k=2 k=O

Proof By Lemma 3, there exists a nondeterministic. automaton of partial
function type A = (S , X , 6) such that IS(= n and &(n) = &(A). Let
u = ala2 . . .a , . E D3(A) with r = d3(n) and let Si = S(a la2 . . . a i ,)A for
i = 1 , 2 , . . . , r . Since A is of partrtial function type and r = d3(n) = &(A),

> Is11 2 IS21 2 . . . 2 IS,.-11 > IS,l = 1. Let S,. = {s,.}. By Lemma 1,
S, S1, S z I . . . and S,. are distinct. Moreover, since IS(> /SIIl there exist.
SO, s1 E S such t.hat SO # s1 and s0ald = slald. Therefore, we can apply pro-
cedure to 0102 . . .a,. if necessary and we can get 0102.. . a,. + Q (, - i l . , . i)

tilala2 . . . a,. Now we apply procedure P to wla la2 . . . a , as Inany t,imes a s
possible until we cannot apply procedure P anymore. Hence we can obtain
w E D3(A) with IwI 5 21sl-(SI. Then we apply procedure Q(,,,,,,) to w. We will
continue the same process until we cannot apply eit,her procedure P nor Q,,,,,,,).
Notice t,liat, this process will be terminated after a finite number of a.pplications
of procedures P and Q (S , l r S 1) . Let w = clc2 . . . c , , ci E X, i = 1,2, . . . , s be
the last D3-directing word of A which was obtained by the above process. Let
Ti = S(clc2 . . . ci)d for any i = 1,2 , . . . , s. Then T, # Tj for any a , j = 1,2, . . . , s
with i < j and (Tl,T2,. . . ,T , } contains a.t, most n - 2 elements T , , i = 1 , 2 , . . . , s

with Ti 2 {so, s l } . Since I{T C S I { S O , s 1 } C T}I = c (ni2) and by t,he a.bove

observa.tion (including Lemma 2), we have &(n) 5 c(;) - x(ni2) + n - 1.

n-2

k=O
n-1 n-2

k=2 k=O

For the lower bound for d3(n), we have t.lie following new result,.

Proposition 10 Le tn 2 3. ThendS(n) 2 2m+l ifn = 2m (d 3 (n) 2 3.21n-1+l
i fn = 2m + 1).

Proof Let n 2 3 and let S = { 1,2 , . . . , n}. Moreover, let S1 = {1,2} , let.
S2 = {3,4}, . . ., let. Sm-l = {2m - 3,2m - 2) and let S,, = (2m - 1,2m,} if
n = 2m (STn = (2m. - 1,2m, 2m + 1) if n = 2m+ 1) .

We define t,he following D3-directlable nutmomaton A = (S , X , 6):
(1) {Tl , T2, . . . 1 Tkl = {{nu 1 7 2 2 , . . . 1 n,,} I (721, n2r . . . 1 n1n) E s1 x s 2 x . . . x Sm}
where k = Zrn if n = 2m (k = 3. 2m-1 if n = 2m,+ 1). (2) Tl = { 1 , 3 , 5 , . . . ,2m -

(3}, . . . , (2m - 3)aA = (am - 2)ad = {am - 3) and (2m - l) aA = (2m)ad =
{2m - I} if n = 2m ((2m - 1)ad = (2m)aA = (2m + 1)ad = {2m - I} if
n = 2m + 1). (5) Let, i = 1,2 , . . . , k - 1. By pi, we denote a. bijection of Ti onto
Ti+1. Then t b , A = p i (t) for any t E Ti and tb,' = 0, ot,herwise. (6) tcA = (1)
for any t E Tk and tcd = 0, otherwise.

1). (3) X = {a , b l , b2 , . . . , b k - 2 , b k - 1 , c}. (4) lad = 2ad = (1},3aA = 4uA =

81

Then it can be easily verified t,liat ablbz . . . b k - 1 ~ is a unique shortest D3-
directing word of A. Therefore, &(n.) 2 2m + 1 if n = 2m (&(n) 2 3.27n-1 + 1
if n = 2m + 1).

Now we consider the values cdz(n) and &(n). The lower bound IS due to [l]
and the upper bound is followed by [6].

Proposition 11 For n 2 2, 2n - n - 1 5 cdz(n) 5 &(n) < 1 + (2. - 2)(’;)
Remark that cdz(1) = dz(1) = 0.

Finally, we provide a result on the value of c&(n). The result is due to [2]
and [6].

Proposition 12 Let n 2 1. Then (n - 1)’ 5 c&(n) 5 1 + (n - 2)(;).

4 Commutative Nondeterministic Directable Au-
tomata

In this section, we will deal wit,li commuta.tive nondet,erministic a.ut,ornata. and
related languages alongside t-lie same line as t,hat of the previous sect,ion.

A nondeterminist,ic automaton A = (S , X , 6) is said t,o be commutative if
s(ab)’ = s(bu)’ holds for any s 6 S and any a, b E X .

By LIE, L’&D(,) and Lc’iD(3), i , j = 1,2,3, we denote the classes of regular
languages of directling words of determinist,ic commutative a.ut,omata, of D,-
directing words of complete commut,ative nondeterministic automata, and of
D,-directing words of commuta.tive nondeterministic automata, respect,ively.

Then we have t,he following inclusion relat,ions among t,liese classes (see Fig-
ure 2).

Figure 2: Commut,at,ive case

Now we will consider tjhe shortest directing words of commutative nondet,er-
ministic automata.. The resuks in t,liis section are due t.o [4].

82

Let i = 1,2,3 and let, n 2 1. Then ~ d ~ , ~ (~) (n ,) denot,es t,he value maz{di,(d)

Not,ice t,liat in t,he definit,ions of dcom(i) (n) and ~ d ~ , , ~ (~) (n) , X ranges over
1 A = (S , X , 6) is commut,ative, A E CDir(i) and IS1 = n}.

all finit,e nonempty alphabets.

Proposition 13 For any n 2 l ,dcom(l)(n) = cdcom(~)(n) = n - 1.

Proposition 14 Let n 2 2. Then (n - 1)’ + 1 5 ~d , , , , (~) (n) = dcorn(z) (n) 5
2n - 2. For n = 1, cd,,,,(z) (1) = dcom(2) (1) = 0.

Proposition 15 Let n 2 2. Then n2 - 3n + 3 5 cdcoln(3)(n) = dCom(3)(n) I
1 + (7 ~ - 2)(:). For 12 = 1,Cdc0,n(3)(1) = d~0m(3)(1) = 0.

As for more detailed informa.t.ion on determinist,ic and nondeterministic di-
rect,able aut,omata, refer to [7].

Acknowledgement The author would like to t(1iank Dr. K . Tsuji and Dr. Cs.
Imreh for their valuable comments.

References
[11 H.V. Burkhard, Zurn Langenproblem homogener experiment,e an deter-

minierten und nicht,-det,erminist,ischeii a.ut,omaten, Elekt,ronische Informa-
tionsverarbeit,ung und Kybernet,ik, EIK 12 (1976), 301-306.

Ma,ternaticko-fysikalny Casopis SAV 14 (1964), 208-215.
[a] J. &my, PoznBmka k homogknym experimentom s koneFinymi ant,omat,ami,

[3] B. Imreh and M. Itlo, On some special classes of regular languages, in Jewels
are Forever (edited by J. Karhumiiki et, al.) (1999) (Springer, New York),
25-34.

[4] B. Imreh, M. It,o and M. St,einby, On conimut,at,ive directfable nondetermin-
ist,ic aut,omat,a, in Grammars and Automata for Strin.gs: From Math,ematics
and Computer Science to Biology, and Back (edited by C. Mart,in-Vide et, al.)
(2003) (Taylor and Fmncis, London), 141-150.

[5] B. Imreh and M. Steinby, Some remarks on direct,able automa.t,a, Acts. Cy-
bernet,ica 12 (1995), 23-36.

[6] B. Imreli and M. Steinby, Direct,able iioiidet,eriniiiistic automa.ta, Acts Cy-
bernet,ica 14 (1999), 105-1 15.

[7] M. It,o, Algebraic Theory of Autom.ata an,d Languages, World Scient>ific (Sin-
ga.pore), 2004.

83

[8] M. Ito and J. Duske, On cofinal and definite automata, Acta Cybernetica 6
(1983), 181-189.

[9] J.-E. Pin, Sur les mots synchronisants dans un automata fini, Elektronische
Informat,ionsverarbeitung und Kybernetik, EIK 14 (1978), 297-303.

[lo] J.-E. Pin, Sur un cas particulier de la conjecture de Cerny, Automata,
Lecture Notes in Computer Science 62 (Springer) (1979), 345-352.

[ll] I. Rystsov, Exact linear bound for the length of reset, words in commutative
automata, Publicationes Mathematicae of Debrecen 48 (1996), 405-409.

[12] I. Rystsov, Reset, words for commutative and solvable automata, Theoret-
ical Computer Science 172 (1997), 273-279

This page intentionally left blankThis page intentionally left blank

85

Worst-case Redundancy of Solid Codes*

H. Jurgensen
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada N6A 5B7

and
Institut fur Informatik
Universit at Potsdam

August-Bebel-Strafie 89
14482 Potsdam, Germany

S. Konstantinidis
Department of Mathematics and Computing Science

Saint Mary's University
Halifax, Nova Scotia, Canada, B3H 3C3

Abstract

The quality of codes can be expressed in terms of their error-
resistance and their redundancy. Solid codes are highly resistant to
decoding errors resulting from incorrectly transmitted code words. We
derive lower bounds on the redundancy of certain maximal solid codes.

1 Introduction
Solid codes, introduced in [5,6] for information transmission in the presence of
certain types of synchronization errors, are remarkably error-resistant in the
following sense: in a received message every correctly transmitted code word
will be decoded correctly. In a received message there may, of course, be parts
that have been disturbed beyond repair or parts that , due to errors, happen to
be code words, but not the ones originally sent; however, the decoding of those

'This research was supported by the Natural Sciences and Engineering Council of
Canada, through Grants OGPOO0243 and OGP220259.

86

parts that have been transmitted correctly will not be affected by the errors
in their vicinity when a solid code has been employed. Using this property
as a definition, solid codes were re-introduced in [7] in the context of the
study of disjunctive domains. First steps towards a systematic investigation
of the error-detection capabilities of solid codes is presented in [3]. A survey
of known results concerning solid codes, as of 1996, is available in [2].

When introducing error-handling capabilities like error-resistance, error-
detection or error-correction, one pays a price in terms of transmission speed.
For systematic block codes the speed is usually expressed as the ratio of the
number of information bits over the code word length. For variable-length
codes, one can express the transmission speed - or rather the transmission
delay - in terms of the redundancy introduced by using the code.

Depending on the context, redundancy has been defined in several quite
different ways including the following.

1. Given a probabilistic model for an information source, redundancy can
be defined as the difference between the expected code word length and
the entropy of the source.

2. Without a probabilistic model for the source, redundancy can be ex-
pressed as the difference between the maximal length of a code word
in a given code and the optimal length of a code word given a fixed
number of distinct signals.

In this paper - as in [6] - we consider the latter approach. For lack of a better
term, we call it worst-case redundancy.

In [l] a structural characterization of all maximal solid codes contained
in a+b+ u a+b+a+b+ is provided. With some effort it may be possible to ex-
tend this characterization to maximal solid codes in (a+b+)+. The structural
characterization permits us to determine lower bounds on the worst-case re-
dundancy of maximal solid codes in a+b+ U a+b+a+b+.

An algorithmic characterization of all maximal finite solid codes is given
in [4]. At this point we do not know how the algorithmic construction can
be translated into the computation of the redundancy of the codes thus con-
structed.

Our paper is structured as follows: in Section 2 we briefly review the
notions and notation used. Section 3 re-states the characterization, proved
in [I], of the maximal solid codes in a+b+ u a+b+a+b+ in a fashion which is
both more concise and more manageable. The crucial new notion is that of
pairs of near-inverses of integer functions. The maximal solid codes in a+b+U
a+b+a+ b+ are uniquely determined by such pairs of functions. Consequently,
in Section 4, we derive some properties of near-inverses; moreover, for deriving

87

bounds on the redundancy of solid codes we need continuous and strictly
monotonically increasing pairs of such functions. In Section 5, we first show
that the achievable redundancy of maximal solid codes in a+b+ U a+b+a+b+
is bounded from below by 6 - logn and exhibit an example that has
this redundancy. We then provide a general technique for determining the
redundancy of maximal solid codes in a+b+ u a+b+a+b+ from the pairs of
near-inverse functions defining them. Section 6 contains a few concluding
observations.

2 Notions and Notation
Let N, Iw and R+ denote the sets of positive integers, of real numbers and of
positive real numbers, respectively. We write NO for M U {0}, N, for N U {m}
and Iwz for R+ u {m}. Open and closed intervals of real numbers are written
as usual; for example (2, 2’1 denotes the left-open, right-closed interval { r I
2 < 7- 5 el} .

Consider functions f and g of R+ into R+. We say that

f(.) 5 g (2) as 2 +

if limsup,,, f(z)/g(x) 5 1; similarly,

f(z) - g(x) as x --+ 00

if limz-m f(x)/g(x) = 1. We write f 5 g to denote the fact that f(z) 5 g(x)
for all 2 E Iw+. The function f is said to be sub-linear if 2 # O(f(2)); it is
supra-linear if f(x) # O(2).

An alphabet is a finite nonempty set. To avoid trivial cases, we assume
that every alphabet has at least two elements, a and b . Let X be an alphabet.
Then X* is the set of words over X including the empty word E and X + =
X * \ { E } . The length of a word w E X * is denoted by IwI and, for k E NO,
X k is the set of words of length k. A language over X is a subset of X * . For
a language L over X and for k E NO, let nL(k) be the number of words of
length k in L and let N L (~ .) =

X + be an infinite language over X . An L-encoding is a bijec-
tion K : NO + L such that, for all n , IK(n)I 5 Ilc(n+ 1)l. The worst-case
redundancy of K (or of L) is the function

k
nL(i).

Let L

where the logarithm is taken with respect to base 1x1. In the sequel, by
redundancy we mean worst-case redundancy.

88

The asymptotic behaviour of the redundancy is determined by the values
of n at which I.(n)I changes and by the growth of I.(n)I at these steps.

3 Maximal Solid Codes in a+b+ U a+b+a+b+
We review the characterization of all maximal solid codes in a+b+Ua+b+a+b+.
The presentation of the characterization in this section is more concise than
that of [l] and emphasizes the fact that these maximal solid codes are in
a one-to-one correspondence with certain monotonically increasing partial
functions of N into N. First, we set up some required notation and prove
some auxiliary results.

For m E N m , let I , = {i I i E N , i < m}. Thus, 11 = 8. As usual, let
00 + 1 = 00. Consider a monotonically increasing function' f : I , + W.
When m = 1 then f is the empty function. Define limf as

0, i f f is empty,

p ,
limf = CO, i f f is unbounded,

if f is bounded by p E N and f(j) = p for some j E I , . {
Definition 3.1 Let m,n E Nm and let f : I , + N and g : I, + N be
monotonically increasing functions. Then f and g are said to be (m, n)-near-
inverses of each other if the following conditions are satisfied:

1. If n = co, then limg = m.

2. If m = 00, then limf = n.

3. For all i E I,,

min{j I j E I,, f(j) > i}, if such a j exists,
otherwise.

4. For all j E I,,

min{i I i E In,g(i) > j } , if such an i exists,
otherwise.

Let Fi and Gj be the sets used in conditions (3) and (4) in Definition 3.1,
that is,

Fi = {j I j E Im,f(j) > i} and Gj = {i I i E I , ,g(i) > j}.
'The function f need not be strictly monotonically increasing.

89

The conditions (3) and (4) could, at a first glance, lead to g(i) = 00 or
f(j) = co in some cases, which is, of course, not allowable. We verify that
this cannot happen. Suppose m = co. Then lim f = n by (2) . If also n = 00

then the set Fi is non-empty for all i E I,. If n < 00 then f (j o) = n for some
jo E Im and, hence, for i E I , one has f (j 0) > i and this shows again that
all sets Fa are non-empty. Thus, in both cases g is well-defined. Similarly, one
proves that f is well-defined.

Proposition 3.1 Let m, n E W m .

1. l f f is a monotonically increasing function, f : I,,, + W , bounded b y n
and such that lim f = n when m = 00, then there is a unique mono-
tonically increasing function g : In + W such that f and g are (m, n) -
near-inverses of each other.

2. If g is a monotonically increasing function, g : In + W , bounded b y m
and such that limg = m when n = 00, then there is a unique mono-
tonically increasing function f : I , --+ N such that f and g are (m, n) -
near-inverses of each other.

3. If f and g are (m,n)-near-inverses of each other then g and f are
(n , m)-near-inverses of each other.

For m,n E Wm and a monotonically increasing function f : I , ---f W,
bounded by n and such that limf = n when m = co, let gf,,,, be the
function determined by Proposition 3.1(1).

We now state the characterization of all maximal solid codes in a+b+ U
.afb+at b+ proved in [l] using our new more concise terminology.

Theorem 3.1 ([l]) Let C a+b+ U a+b+a+b+.

1. The language C is a finite maximal solid code i f and only if there are
m, n E N and a monotonically increasing function f : I , + I,+l such
that

C = {a"b"} U {af(j)bJaibgf,m,n(i) 1 j E I,, i E I,}.

2. The language C is an infinite maximal solid code if and only i f there
are m,n E W-, at most one of which is finite, and a monotonically
increasing function f : Im ---f In+l with lim f = n when m = co such
dhat

C = {af(j)bJaibgfsm,n(i) I j E I,,,, i E I,}.

90

Consider rn, n E N, and f : I , + N. We say that the condition S(f , m, n)
is satisfied if and only i f f is monotonically increasing, bounded by n, and
limf = n when m = 00. By Theorem 3.1, the maximal solid codes in
a+b+Ua+b+a+b+ are in a one-to-one correspondence with the triples (f , m, n)
satisfying S(f , m, n). For any such triple, let Cf,,,,, be the corresponding
maximal solid code.

4 Properties of Near-Inverses
We explore the connection between functions that are near-inverses of each
other in greater detail. The results will help us to compute bounds on the
redundancy of solid codes.

Near-inverses are, really, nearly inverse functions of each other. To make
this connection explicit, we resort t o the tools of real calculus and specifically
to continuous real functions.

For m E N,, let I, be the open real interval (0, m). Then I, n W = I,.
For any real function f : I,,, + R+, let f* : I , + W be the function defined
by f*(j) = [f(j)l for j E 1,’

Lemma 4.1 For m E W U {co} let f : I , + R+ be a function. Then f*
is unbounded if and only i f f is unbounded on (0,m - 13. Moreover, f* is
monotonically increasing when f is monotonically increasing.

The following simple observation provides a key to the manipulation of
near-inverses.

Lemma 4.2 Consider m E W, and a monotonically increasing function
f : I , + N. Then there is a continuous strictly monotonically increasing
function f : I, + R+ with the following properties:

I. p = f.

2. For all n E N one has f(j) < n for all j E I , if and only if f(z) < n

3. limf = limz+, f(z).

Let m E W, and let f : I , + W be a monotonically increasing function.
Any continuous strictly monotonically increasing real function f : 1, + R+
satisfying the conditions of Lemma 4.2, is a continuous- strictly monotonically
increasing approximation of f . The precise shape of f can be important for
the details of some of the bounds to be derived below. However, for expressing
properties of near-inverses any such approximation f^ will be sufficient. Hence,

for all x E 1,.

91

without further mention we use f̂ to denote an arbitrary continuous strictly
monotonically increasing approximation of f.

Using these tools we obtain continuous strictly monotonically increasing
approximations even for arbitrary monotonically increasing functions of I,,,
into R+ in the following sense. For 'p : 1, ---f R+ , consider f = 'p* . Then
f * = f = 'p*; hence we define @ = p*.

Let m, n E Nm and let f be a continuous strictly monotonically increasing
function of IIm into R', bounded by n, such that lim-,, f (x) = n when m =
00. In this case we say that S(f , m, n) is satisfied. We define gf ,m,n = gf*,,,n
and Cj,m,n = Cj*,m,n.

Proposition 4.1 Let m,n E W, and let f : 1, -+ IW+ be a continuous
strictly monotonically increasing function such that n, m > 1 and S(f , m, n)
is satisfied. Then

h

if i < f(l) ,

if i 2 1imz-+, f(z),
Lf-'(i)], i f f (l) L i < l i m z + , f (z) , gf ,m,n(i) =

for all i E In .

The case distinction in Proposition 4.1 is necessary as one cannot assume
in general that I , C f (I I m) as would be required for f - ' (i) to exist for all
i E In. While stated in terms of real functions, Proposition 4.1 is intended
to be used mainly for integer functions. For example, if f (j) = a j 2 for some
a E N then f* = f and

Similarly, if f(j) = 2 j then

The main advantage in considering real functions is that we obtain an explicit
connection between near-inverses. Moreover, near inverses are nearly inverses
of each other in the usual sense.

Proposition 4.2 Let m,n E Nw and let f , h : I , + N be monotonically
increasing functions such that S(f , rn, n) and S(h, m, n) are satisfied. Iff 5 h
then g f ,m,n 2 gh,m,,, and conversely.

92

Corollary 4.1 Let rn, n E Nm and let f , h : 1, + R+ be continuous strictly
monotonically increasing functions such that S(f, m, n) and S (h , m, n) are
satisfied. I f f 5 h then S j ,m ,n L gh,m,n.

Theorem 4.1 Let m, n E Nm an.d let f : I , --f N be a monotonically in-
creasing function such that s(f , m, n) is satisfied. Let g = g j , m , n . Then either
both f and g are bounded by strictly monotonically increasing positive linear
real functions from above and below or one of them is supra-linear and the
other one is sub-linear.

Theorem 4.1 reflects the fact that the functions f and g defining a maximal
solid code in a+bf U a+bta+b+ are essentially inverses of each other. Hence,
if f grows faster than any linear function, then g has to grow more slowly
than any linear function and vice versa. This will imply further below that
the maximal solid codes in a+ b+ U a+bt atb+ with smallest redundancy are
those for which both f and g are linearly bounded from above and below.

5 Redundancy of Maximal Solid Codes
in a+b+ u a+b+a+b+

We now show that the redundancy of any maximal solid code in a+b+ U
a+b+a+b+ is asymptotically bounded from below by 6 - log n. Moreover,
this bound is tight.

Theorem 5.1 Let f : N -+ N be an unbounded monotonically increasing
function such that S(f,co,co) holds true, let C = Cf,m,m be the infinite
maximal solid code in a+b+ U a+b+a+b+ defined by f , and let K be a C-
encoding. Then

6 5 I4n)I
as n -+ 00.

The lower bound obtained in Theorem 5.1 is tight as shown by the fol-
lowing example.

Example 5.1 Let f and g be the functions of N into N defined by

n
f (n) = 2 - 1 and g(n) = 2 + 1

for all n E N. Then f and g are (00, co)-near-inverses of each other.

93

Let K be a Cj,,,,-encoding. One computes that

for all n E No. Hence K(n) - I/% as n -+ 00.

The basic idea of the proof of Theorem 5.1 is as follows: one considers
I , n E N such that

N c (l) 5 n < N c (l + 1).
Then IK(n)I = 1 + 1 and, hence, en(.) = 1 - Llogn]. Thus, one can deter-
mine the redundancy by solving the inequality above for 1. This idea can be
exploited to yield a more general lower bound, parameterized by f, on the
redundancy of C.

For a continuous function cp : IR ---f IR and a constant c E R, let [lcp] be
the real function defined by

[Iccp](2) = 2 - c + p (t - c + 1)dt LX
whenever the integral exists.

Theorem 5.2 Let f : N + N be a monotonically increasing function such
that n = O(f (n)) and S(f , 00, co) holds true, and let f be a continuous strictly
monotonically increasing approximation o f f . Let C = Cj,w,, = Cf,,,, and
let K be a C-encoding. Then there is a constant c E IR+ such that

a s n - c o .

The bound in Theorem 5.2 is essentially tight in the following sense: the
growth rate of f determines the growth rate of K . For example, i f f grows as
nk then K grows as a("'m); i f f grows as 2n then K grows as a (n) .

6 Concluding Remarks
Lower bounds on the growth rate of the redundancy of infinite maximal solid
codes in a+b+ U a+b+a+b+ can be derived directly from the near-inverse
functions f and g defining such codes. Our presentation is restricted to the
case when both lim f = co and limg = co, but can be easily extended to
the case of only one of the limits being infinite. We suspect that these lower
bounds are nearly tight and hence would provide useful lower bounds on the
achievable redundancy of arbitrary solid codes.

94

References
[l] H. Jurgensen, M. Katsura, S. Konstantinidis: Maximal solid codes. Jour-

nal of Automata, Languages and Combinatorics 6 (2001), 25-50.

[2] H. Jurgensen, S. Konstantinidis: Codes. In G. Rozenberg, A. Salomaa
(editors): Handbook of Formal Languages, 1. 51 1-607. Springer-Verlag,
Berlin, 1997.

[3] S. Konstantinidis: Error-detecting properties of languages. Theoret. Com-
p u t . Sci. (to appear).

[4] N. H. Lam: Finite maximal solid codes. Theoret. Comput. Sci. 262
(2001), 333-347.

[5] V. I. Levenshtein: Decoding automata, invariant with respect to the initial
state. Problemy Kibernet. 12 (1964), 125-136, in Russian.

[6] V. I. Levenshtein: Maximum number of words in codes without overlaps.
Problemy Peredachi Informatsii 6(4) (1970), 88-90, in Russian. English
translation: Problems Inform. Transmission 6(4) (1973), 355-357.

Forum 41 (1990), 23-37.
[7] H . J . Shyr, S. S. Yu: Solid codes and disjunctive domains. Semigroup

95

Maximal Independent Sets in Certain Subword
Orders

Nguyen Huong Lam
Hanoi Institute of Mathematics

P. 0. Box 631, Bo Ho, 10 000 Hanoi , Vietnam
Email: nhlam@ thevinh.ac.vn

1 Introduction
The free monoid, or the set of words on an alphabet, can be made into a poset
(patially ordered set) by different kind of orders, one example in view is the
lexicographic arrangement of words in a dictionary. One can also order the
words by their length: the shorter words precede the longer ones in this order.
The structure of an odered set is usually determined by its chains in the one
hand and antichains in the other hand. Antichain - a notion from the Theory
of Posets - is, as the term suggests, a subset in which no two distinct elements
form a chain. In this article the antichains are called independent sets and we
are concerned with independents sets in some specific orders on words.

The systematic study of independent subsets in the binary relation was ini-
tiated by Thierrin and Shyr probably in the mid 1970s [ll]. Relations in con-
sideration are such that their independent sets are usually codes [lo], a subject
which is treated thoroughly in [l], and it turns out that many fundamental
classes of codes are that of independent subsets of certain simple binary rela-
tions, for instance, prefix, sufix, bifix, infix codes, hypercodes, uniform codes
and so on.

In this paper we consider chiefly the classes of infix codes and hypercodes.
By nature they both are the independent set in a class of very common orders
compatible with the word length. Let us be precise as follows. Let A be a
finite alphabet comprising a finite number of letters and A* be the set of words
defined on A, which is a free monoid on the basis A with the concatenation of
words as product and the empty word, denoted 1, as the unit. For a set S and
a word u of A* we denote by IS1 the number of elements, or the cardinality, of
S and by 1.1 the length, or the number of letters, of u. By convention, 111 = 0

96

and by definition luvl = IuI + lvl for all words u ,v . The word u is said to be a
factor of v if v = zuy for some words z, y of A*. In particular, u is a prefix of v
if z = 1, s u f i x if y = 1.

For any abstract sets S, T we use the notations S - T and S + T to denote
their difference and union respectively; and for any subsets of words X , Y A* ,
we denote X Y = {zy : z 6 X,y 6 Y } ; X n = X X ... X (n times) for a possitive
integer n and X * = 1 + X + X 2 + . . . the star closure of X . For a singleton set
{w} we use wn, w* instead of {w}* .

We define the notion of subword; u is a subword of v if u is obtained from v
by omitting some letters occurring in v , possibly none; formally, if

and
21 = U1u2 ... uk

for a nonnegative integer k and some words V I , v2, ..., vk, vk+1, ‘111 , u2, ..., uk in
A*.

For a binary relation on A*, a subset of words is said to be independent if
every pair of elements of it is incomparable by the relation. Clearly, we have
a standard statement that, by Zorn’s lemma, every independent set is included
in a maximal (by inclusion) independent one. We deal exclusively with orders
on words in the sequel. Recall that order is an reflexive, antisymmetric and
transitive binary relation.

Obviously, the binary relations “being a factor of, a prefix of, a suffix of’
and “being a subword of ” all define partial orders on A*, which we call corre-
spondingly the factor, prefix, suffix and subword orders.

Independent sets in the prefix and suffix orders are called prefix and suffix
sets respectively; independent sets in the factor order is called infix codes and
that in the subword order are usually called hypercodes ([ll]). The bifix relation
is defined by means of disjunction of the prefix and suffix relations, independent
sets in which are bifix codes. Otherwise speaking, a subset is a bifix code if
none of its words is prefix or suffix of the others. While the prefix and suffix
relations are orders, the bifix relation is not, since it is not transitive.

It has been known that every finite infix code may be embedded into a
maximal infix code which is finite (see [7]) and that every hypercode is always
finite (see [6], or [lo] for a proof). The main scope of this paper is to describe
a convenient method to construct all finite maximal infix codes as well as all
maximal hypercodes containing a given infix and hypercode, but the exposition
is done for independent sets of a more general class of orders, including the
factor and subword orders, and certainly, the prefix and suffix orders as well.
We highlight some definitions.

A binary relation 4 on a subset L of A* is called length-compatible if it is
length-monotonic, i.e. for all words u , v E L , u 4 v implies u = v or IuI < lvl
and, moreover, for every integer i : Ju] < i < 1.1 there exists a word w of

97

L such that u 4 w 4 v and Iwl = i. It is at once clear that the prefix,
suffix, factor and subword orders, defined on L = A*, are all length-compatible.
Length-monotonic relation is considered in Van [13] where he has shown how to
complete every finite independent set in such relations to a finite maximal one.
I would like to thank Do Long Van for drawing the approach taken upon here
to my attention.

The presentation is as folows. In the Section 2 below, we describe a procedure
to obtain all the finite independent sets containing a given one in a length-
compatible order. In particular this allows to obtain all finite independent sets
of A*. In $3 and $4 we apply the procedure to the concrete cases of infix code
and hypercode.

The main idea of the construction originates from [8] but the argumentation
is purified and more concentrated that now makes the exposition transparent
and more unified in style.

We should say that the techniques in this papers could not be applied to bifix
codes, but there is no need to do so since there has been already a remarkable
work of C6sari [a] giving an algorithm to determine all finite maximal bifix
codes.

2 Maximal independent sets in lengt h-compati-
ble order

Let 4 be a length-compatible order on a subset L of A* and u ,v be words of
L. We say that u is a predecessor of v, or v is a successor of u, if u # v and
u 4 v ; u is a predecessor (successor) of a subset X of A* if u is a predecessor
(successor) of a word in X . We denote the set of predecessors (successors) of X
by Pred(X) (Suc(X) resp.). We also use Pred(X,Y) and Suc(X,Y) to denote
the collection of predecessors and successors of X in Y respectively.

A subset Y of L is said to be a base of L if Y contains no distinct comparable
words and every word of L is either in Y or is a successor or predecessor of Y.
Otherwise speaking, a base is a maximal independent set of L with respect to 4.
A base is called initial if it has no prodecessors, and final if it has no successors.

It is obvious that every subset L posseses a unique initial base which is

y o = {u E L : Pred(u) = @},

the collection of elements in L without predecessors. We pay special attention
to those L having finite bases. For this purpose, it is enough to check Yo for
finiteness.

Proposition 2.1 A set possesses finite bases if and only if its initial base is
finite.

98

Proof The “if” direction is vacuously true. Let now L have a finite base Y .
Every word of YO is either in Y or in Pred (Y) as YO has no successors in L and
Y is a base. Thus every word of Yo has length not greater than the maximum
length of words of Y, hence YO is finite as the base Y and the alphabet A both
are finite.

Our ultimate goal in this section is to determine all finite maximal indepen-
dent sets containing a given one, but as the first step we consider the question to
a larger extent: describe an efficient method to obtain all finite bases (if exist)
of an arbitary subset L from the initial base of it provided, indeed, the premises
involved are given constructibly.

For a base Y of L , we call a subset W of Y coherent if all words of W are
of the same length n and there is a word u of length n + 1 of L such that the
set of predecessors in Y of u is W and no non-empty proper subset of W has
this property, or equivalently, 0 # Pred(u, Y) C W implies Pred(u, Y) = W for
every word u of length n + 1. Otherwise speaking, a non-empty subset W of Y
is coherent if it is a minimal set with respect to the folowing : (i) all words of
W have the same length n, and (ii) W has the form Pred(u,Y) for a word u of
length n + 1. Certainly, not every base has coherent subsets but also not every
base has no coherent subsets. To wit

Proposition 2.2 A base has coherent subsets if and only if it is not final.

Proof The direct implication is trivial. For the converse, we make an obser-
vation that if Y is a base, not final, of L then there exist u E L and y E Y
such that y 4 u which in turn implies that there exist v E L such that y < v
and lvl = IyI + 1 by length-compatibility of 4. Let n be the smallest integer
such that none of the words of L has predecessors in Y of length less than n
but some do have predecessors of length n in Y. Actually, this integer exists
by the observation above, hence the set of words of length n + 1 having all
predecessors in Y of length n is not empty. We choose among such words one
with the minimal (by inclusion) set of predecessors in Y. It is easy to chek that
these predecessors form a coherent subset of Y.

For a coherent subset W (of word-length n) of Y, denote D(W, Y), or shortly
D (W) when there is no need of explicit reference to Y, the set of words of L of
length n + 1 all of whose predecessors in Y are precisely the words of W :

D(W,Y) = {u E L : Pred(u, Y) = W, 1’111 = n + 1).

We define now the following transformation of Y:

F(Y, W) = Y - W + D(W,Y)

that will be the operation we need to produce a new base from a given one.

99

Proposition 2.3 If Y is a (finite) base then F(Y) is also a (finite resp.) base.

Proof It is immediate to see that F preserves finiteness. We show that F
preserves independence and maximality as well.

Independence: Two arbitrary distinct words of D(W) are not comparable by
4 as they are of equal length. The same is true for Y - W as Y is independent.
Every word of D (W) has only predecessors in W and no successors in Y as
it has predecessors in Y (in W , to be exact) already, which means that every
word of D (W) is not comparable to any word in Y - W . This shows that
F(Y, W) = Y - W + D (W) is independent.

Maxcimalityr Suppose that u E L and u 6 F(Y) (sometimes we omit the
reference to W in F(Y, W) for brevity). We show that u has either predecessors
or successors in F(Y). If u E Y then u 6 W as u E Y - W c F(Y) which
shows that u is a predecessor of D (W) , or just the same, u has successors in
D (W) c F(Y) . If u 4 Y we have two cases:

(i) u has predecessors in Y . If u, moreover, has predecessors in Y - W &
F(Y) then this alternative is done. If, otherwise, every predecessor of u in Y is
in W then IuI > n + 1, therefore u has a predecessor uo with luol = n + 1 such
that all predecessors of uo in Y are in W , hence Pred(uo, Y) = W by coherency
of W that means uo E D (W) that is u has a predecessor in D (W) 2 F(Y).

(ii) u has successors in Y. Then u has successors in Y - W or else in W ,
therefore, in D (W) . In either case u has successors in F(Y). This completes
the proof.

We now define another operation, reverse to F which is instrumental in
proving that multiple use of F can engender all finite bases, but some notions
first.

A predecessor of Y is said to be direct if it has no successors among the
predecessors of Y or in other words, it is not a predecessor of any predecessors
of Y . We call a system S of direct predecessors of Y cohesive if the words of
S are of the same length n and the set of successors in Y of each of them is
the same (which is actually Suc(S, Y)) and, moreover, for any predecessor u of
Suc(S, Y) if = n and u 6 S then Suc(u, Y) - Suc(S, Y) # 0. The following
reformulation is more intuitive. A system S of direct predecessors is cohesive
if and only if (i) it consists of the words having the same set of successors in
Y , and (ii) Suc(S,Y) is minimal among the subsets of Y which are the the
set of successors of a set satisfying the preceding condition. The equivalence
of this definition to the former one is essentially shown in the converse of the
proposition below. Note that every word of Suc(S, Y) has length n + 1.

Does every base possess a cohesive system of direct predecessors? The answer
is just the opposite extreme to the case of coherent subsets.

100

Proposition 2.4 A finite base has no cohesive system of predecessors if and
only if the set of its predecessors is empty, that is, i f and only if it is the initial
base.

Proof The initial base has no predecessors by definition hence has no whatever
ones.

For the converse, let Y be a finite base with (finite) non-empty collection of
predecessors and once finite it admits at least one direct predecessor. Consider a
direct predecessor s1 with the property that Suc(s1, Y) is minimal by inclusion
among its counterpart Suc(s, Y) when s run through the direct predecessors of
Y. Denote S the set consisting of those predecessors s satifying Is1 = Is11 and
Suc(s, Y) C Suc(s1, Y). Certainly, S is not empty because it contains s1. We
show that S is cohesive.

In fact, for every s E S the inclusion Suc(s, Y) E Suc(sl, Y) implies that the
predecessor s is direct. Moreover the minimality of Suc(s1, Y) forces the equality
Suc(s,Y) = Suc(sl ,Y). For a predecessor s2 of Suc(s1,Y) with Is21 = Is11 the
fact that s2 4 S means by definition that Suc(s2, Y) is not a subset of Suc(s1, Y) ,
or equivalently, Suc(s2,Y) - Suc(sl ,Y) # 0. The cohesivity of S is proved.

Now we are ready to define the anticipated inverse of F : Let Y be a base of
L and S a cohesive system of direct predecessors of Y. We define the transfor-
mation B as

B(Y, S) = Y - Suc(S, Y) + s.
Of course we expect that B has the same property as F that is the content of
the following

Proposition 2.5 The transformation B preserves finiteness, independence and
maximality of the base Y.

Proof If Y is finite then B(Y, S) (onward we use B(Y) for short, when possible)
is obviously finite, since S is finite. For the independence of B(Y) , we observe
first that every pair of elements of S are not comparable since they are of the
same length. Second, every pair of different words of Y - Suc(S,Y) are not
comparable either as they are in the independent Y. Finally, every word of S
has no predecessors in Y - Suc(S, Y) since it is a predecessor of Suc(S, Y) Y
and the order is transitive; further it has no successors in Y - Suc(S, Y) either
since they all are already in Suc(S, Y) by definition.

Now we prove the maximality of B(Y). Consider an arbitrary word u not
belonging to B(Y). If u E Y then u E Suc(S,Y) then u has successor in
S B(Y). Alternatively, suppose that u has a successors v in Y. The case
v E Suc(S,Y) ensures that v, hence u, has successor in S ; the other case v E
Y - Suc(S, Y) shows that v itself belong to B(Y).

Further, suppose that u has a predecessor w in Y. If w E Y - Suc(S, Y) then
w E B(Y); if w E Suc(S,Y) then w in turn has successors in S , that is, again

101

in B(Y). Thus, in all instances we have shown that u has either successors or
predecessors in B(Y): B(Y) is a base.

The following assertion shows that B is a right inverse of F . As a matter of
fact, we could prove that B is really an inverse to F (both left and right) but
we do not need that much in the sequel.

Proposition 2.6 Let Y be a base with S a cohesive system of its direct prede-
cessors. Then S i s a coherent subset o f B (Y , S) with D (S , B(Y, S)) = Suc(S, Y)
and Y = F(B(Y, S) , S) .

Proof Put Y’ = B(Y, S) = Y - Suc(S,Y) + S. Of course S C Y’; we shall
show it to be a coherent subset of Y’. By definition, all words of S have the
same length n; we first show that there exists a word of length n + 1 the set of
predecessors of which in Y’ is precisely S. Take an arbitrary word u of Suc(S, Y)
(certainly)u) = n + 1). It follows that S E Pred(u) as S is a cohesive system
for Y and u E Y, hence S C Pred(u,Y’) as S C Y’. Next, if v E Pred(u,Y’)
then v 4 Y as u E Y, hence E Y‘ - Y C S . That is Pred(u, Y‘) C - S and the
equality Pred(u, Y’) = S follows for every u E Suc(S, Y).

Further, we assume that 0 # Pred(u,Y’) C S for a word u of length n + 1.
If u admits a predecessor v in Y, we have Iv/ < Iul = n + 1, or lvl 5 n, which
implies that v cannot be a successor of S , so v E Y - Suc(S,Y) Y’. Hence
v E Pred(u,Y’) C S that contradicts the fact that IJ E Y and the words of S
are predecessors of Y. Consequently, u has no successors in Y. But u has no
sucessors in Y either since u has a predeccessor in S and this predeccessor is a
direct one of Y. As Y is a base, it remains for u to be in Y, hence u E Suc(S, Y).
Now that u is a successor in Y of some word of S , and S is a cohesive system
for Y then u is a successor in Y of all words of S , or equivalently, every word
of S is predecessor of u in Y’, that is S Pred(u,Y‘). Combining with the
assumption we get Pred(u, Y’) = S .

Stated briefly, we have proved that if 1211 = n + 1 and Pred(u,Y’) # 0 then
Pred(u, Y’) C S if and only if Pred(u, Y’) = S if and only if u E Suc(S, Y). This
shows that S is a coherent subset of Y’ and, moreover, D(S,Y‘) = Suc(S,Y).
Eventually we have

F (B (Y , S) , S) = F(Y’ , S) = Y’ + D (s , y’)

= Y - Suc(S, Y) + s - s + D (S , Y’) = y.

as was to be proved. Note that in this proof we do not require the cohesivity at
its full strength.

Now we describe a method to obtain all finite bases of L. We apply the
transformation F to Yo, with an appropriate coherent subset to obtain a new

102

base Y1, then again to Y1 we apply F whenever possible to get Yz, etc. That is
we apply successively F to YO with properly choosen coherent subsets of bases
in process, in all possible ways, to obtain new and new bases. We state that in
this manner we can obtain every finite base of L .

Theorem 2.7 For every finite base Y of L there exists a sequence of finite bases
Yo,Yl, ..., Yn with their corresponding coherent subsets So,S1, ..., S,, beginning
with the initial base YO and satisfying Y1 = F(Yo,So), ..., Y = F(Yn, Sn).

Proof Since Y is finite, the number of predeccessors of Y is also finite; the
proof is proceeded by induction on the cardinality of Pred(Y). If Pred(Y) = 0
then Y is the initial base and the sequence we needed is empty. Let Y be a base
and assume that the theorem is valid for all bases with fewer than IPred(Y)I
predecessors. By Proposition 2.4, we dispose at least one cohesive system of
direct predecessors of Y, say S. Then

Y’ = B(Y, S) = Y - Suc(S, Y) + s
is a finite base with Pred(Y’) = Pred(Y) - S. Consequently, the cardinality
of Pred(Y’) being less than Pred(Y), the induction hypothesis applied to Y’
yields a sequense of bases YO, Yl, ..., Yn-l and the corresponding coherent subsets
So, S1, ... , Sn-l satifying

Y1 = F(Y0, So), ..., Y’ = F(Yn-1,Sn-l).

In virtue of Proposition 2.6, Y = F(Y’,S). Putting Yn = Y’ and S,, = S , we
get the sequence

Y1 = F(Yo,So), ...,Yn-1 = F(Yn-l,Sn-l),Y = F(Yn,Sn)

with the corresponding sequence of coherent subsets SO, ..., Sn-l, Sn as desired
to prove.

It is noteworthy that the backward sequence need not be unique, thus a base
can be obtained several times by the procedure.

Let now < be a length-compatible order defined on the whole A*. We now
return to the task set up at the onset of this section: determine all the finite
maximal independent sets containing an independent set X that turns out now
to be a simplified question. Set

L (X) = A* - Pred(X) - X - Suc(X)

as the set of the words not comparable with any word in X . We say that a
set Y is a complement to X if Y is disjoint from X and X + Y is a maximal
independent set of A*. In this case we say also that X + Y is a completion of X .
For a maximal independent set 2 containing X , clearly 2 - X is a complement
to X ; our problem is equivalent to determining all complements to X .

103

It is now important that the order on L (X) inherited from the order 4 on
A* is also length-compatible. To see that it suffices to verify that for all words
u , v , w of A* the relation u 4 w < II implies w E L (X) whenever u , v E L (X) .
In fact, if this is not the case, w @ L (X) means that w is either in X or is
a successor or predecessor of X , hence either v is a successor of X or u is a
predecessor of X , that is, either u or v is not in L (X) : a contradiction.

The following assertion shows that complements are nothing else but bases.

Proposition 2.7 Y is a complement to X if and only i f it is a base of L (X) .

Proof L (X) . Since
X + Y is a maximal independent set, every word of L (X) must be in X + Y or
Pred(X + Y) or Suc(X + Y) but it is forbidden to be in Pred(X) + X + Suc(X)
so it must be in Pred(Y) + Y + Suc(Y). This means that Y is a base of L (X) ,
as Y is independent. Conversely, let Y be a base of L (X) . Then, first, X + Y is
independent, Y is disjoint from X and, for an arbitrary word of A*, if u E L (X)
then u E Pred(Y)+Y +Suc(Y), as Y is a base; if u @ L (X) then u E Pred(X)+
X + Suc(X). In either case u E Pred(X + Y) + (X + Y) + Suc(X + Y) showing
that X + Y is maximal independent.

I t is trivial to see that if Y is a complement to X then Y

Now let X futher be finite. Determination of the finite complements to X is
just then the determination of all finite bases of L (X) . Of course, we cannot be
certain that L (X) always possesses finite bases, however, when the underlying
order satisfies a mild condition, L (X) does so.

Proposition 2.8 If the length-compatible order 4 is such that every non-empty
word is a successor of the empty word then L (X) possesses finite bases for every
finite independent set X .

Proof It suffices to show that the initial base YO is finite. To do this we just
bound above the length of words of Yo.

Let u E YO and u # 1. Since 1 4 u, there exists a word v E A* such that
v 4 u and lvl = IuI - 1. By definition, u has no predecessors in L (X) , hence
v @ L (X) , that is v E Pred(X) + X + Suc(X), but v @ X + Suc(X) otherwise
u E Suc(v) Suc(X) in spite of u E L (X) . Consequently v E Pred(X) and lvl
is less than the maximal length of the words of X, which is finite as X is finite,
and IuI is less than that maximal value plus 1. The proposition is proved.

Our general consideration is finished, we go on to concrete examples in the
two following sections. Although the prefix, suffix, factor and subword orders
are all among the length-compatible ones, we treat only the cases of factor and
subword order in detail, as the construction prefix and suffix codes are simple
(by trees) and have been treated comprehensively elsewhere (cf. [l], [lo]).

104

3 Factor order. Infix codes
We make a transcript of all done in the previous section for the factor order.
Now a word is a predecessor of another if the first is a factor of the latter.

Independent sets in the factor order are called infix sets or infix codes. Infix
sets happen to be finite or infinite.

Example 3.1 Consider a binary alphabet A = { a , b} . The following sets are
maximal infix sets:
(a) {aa , aba, bab, bb};
(b) a2b2 + b2a2 + {ba'b : i = 1 , 2 , ...} + {abia : i = 1 , 2 , ...};
(c) ba2 + bab + {a'b'a : i = 1 , 2 , ...}.

Certainly the factor order is length-compatible and, moreover, it satisfies
Proposition 2.8 as the empty word is a factor of every word, thus L (X) has
finite bases for all finite infix sets X . In particular, this shows that every finite
infix code has a finite completion that has been established in [7].

Let X be an infix set. It is straightforward to see that

L (X) = A* - A*XA* - F (X)

where F (X) denotes the set of factors of X , and the initial infix base of L (X)
is 10 = L (X) - A*L(X)A+ - A+L(X)A*.

We now clarify what sets can be coherent subsets or cohesive systems for an
infix bases I . Note that a word of length n+ 1 has at most two factors of length
n which are the longest prefix and suffix of its, consequently, every coherent
subset has one or two words.

If a coherent subset W of I is a singleton, W = {u}, then clearly the set of
words of length IuI + 1 having just u as factors in I is

D(u , I) = L (X) n (((u A - A*(I - u)) + (Au - (I - u)A*)) .

If W has two elements, W = {u, w}, then the corresponding D(W, I) is

D({u , w}, I) = L (X) n ((uA n Av) + (Au n v A))

and, of cousre, with D(u , I) = 0 and D (v , I) = 0 saying that {u} and {w} both
are not coherent. Observe also that in this case D(W, I) has two words at the
most because uA n Av is either empty or singleton. Summing up, we have

Proposition 3.2 A subset W of the infix base I is coherent if and only if
W = {u} with non-emptyD(u, I) = L(X)n(((uA--*(I-u))+(Au-(I--)A*))
or W = {u , v} with non-empty D({u , w}, I) = L (X) n ((uA n Av) + (Au f l vA))
but empty D (u , I) and D(w, I) .

105

Example 3.3 Let A = { a , b } , X = { a 2 , b 2 } . Then L (X) = { a b , b a } + { (~ b) ~ :
i > 0) + {b(ab)i : i > 0) + {a(ba) i : i > 0) + { (b a) i : i > 0). The intial infix base
L (X) is I0 = {ab ,ba} . Calculation shows that D ({ a b } , I o) and D({ba},Io) are
both empty, so l o has no coherent singleton. We conlude at once that W = I0
must be coherent, but we calculate however: D(l0,Io) = L (X) n ((a b A n A b a) +
(A a b n b a A)) = (aba + bab) n L (X) = aba + bab.

Next, we investigate under which conditions a finite infix base is final. Re-
mind that a finite infix base is final if and only if every word of L (X) is a factor
of the base. It follows that L (X) is then finite too. The sets X with L (X) finite
are nothing but unavoidable sets, a subject in Combinatorics on Words inves-
tigated in detail in [3] or in a recent paper [9]. A subset of A* is unavoidable
if all but finitely many words of A* have a factor in it. Of course not every
unavoidable set is infix but the minimal unavoidable set (i.e. one if deprived of
any one element is no more unavoidable) is infix.

The following assertion is true not only for the factor order but also for all
length-compatible orders.

Proposition 3.4 L (X) has f ini te f inal bases i f and only i f L (X) is f ini te .

Proof The “only if” part is proved above. Let L (X) be finite then starting
from 10 we cannot apply the transformation infinitely, that is, at some step, the
base in consideration has no coherent subsets. This base is final.

Example 3.5 Let A = { a , b} and X = {aa , bb, bab}. Then L (X) = { a b a } and
trivially L (X) has a unique infix base 10 = { a b a } which is initial and final at
the same time and which indicates also that the only finite maximal infix code
containing {aa , bab, bb} is { a a , bab, bb; aba}.

The Proposition 3.4 says also that when X is unavoidable there are only
finitely many infix bases in L (X) , or equivalently, there are only finitely many
infix codes containing X and vice versa. We further give an example illustrating
the execution of the procedure.

Example 3.6 Consider the set in the Example 3.3, X = { a 2 , b2}. We have
shown that the initial base of L (X) is 10 = { a b , b a } and the whole 10 is a
(unique) coherent subset with D(I0,Io) = {aba,bab}. Thus I1 = F (l 0 , l o) =
l o - 10 + D(I0,Io) = {aba, bab} is an infix base of L (X) and { a 2 , b2, aba, bab}
only is a maximal infix code containing { a 2 , b2}.

Concluding we should say that the important case X = 0 with L (X) = A’,
when we have to determine all finite maximal infix codes of A* has been treated
in detail in [8].

106

4 Subword order. Hypercodes
Recall that u is a subword of v if

u = u1u2 ... u,v = 211.U1 ... vnunvn+l

for some (possibly empty) words u1, u2, ..., un , q , v2, ... v,, v,+1 on A. It is also
evident that the relation “u is a subword of d’ is a length-compatible order.
Hypercode is a set independent in this order. It is interesting to mention that
while infix bases may be finite or infinite the hypercodes are definitely finite
that is a theorem of Higman [6], one can see also [lo] for a proof.

To define formally the set of words having subwords in a given set we
can use the notion of shuf le product [5] . Let X and Y be sets of words,
we denote by X o Y the set of words of the form ~ 1 ~ 1 2 2 ~ 2 ... z,y,z,+l with
n 2 0 and 2 1 2 2 ... 2,2,+1 E X I y1y2 ...yn E Y for (possible empty) words
21, 2 2 , .,.x,, 2,+1, y1, y2, ...yn of A*. Now it is easy to see that the set of words
having subwords in X is X o A*. Let now X be a hypercode then L (X) =
A* - X o A* - S(W) , where S (W) stands for the set of subwords of W and
the initial subword base of L (X) is YO = L (X) - L (X) o A*. For a coherent
subset S of a base Y we have clearly D(S , Y) = L (X) nsES s o A. We consider
an example to show the execution of procedure.

Example 4.1 Let X = {a2 ,aba} on the alphabet {a ,b} . Then L (X) = {bi :
i > 1) + {biabj : i + j > 1) and Yo = { b 2 , bab}. The set SO = { b 2 } is coherent
for YO and D(S0, YO) = { b 3 , b2a, ab2}. We get then a new base:

Yl = F(Y0, So) = { b 2 , bab} - { b 2 } + { b 3 , b2a, ab2} = bab + b3 + b2a + ab2

of L (X) . Note that {bab} is not a coherent set of YO since all words of length 4
of L (X) have equally b2 as a subword.

We now state some specific properties of the subword order.

Proposition 4.2 If a coherent subset S has at least three words, the correspond-
ing set D (S) has at most one word.

The Proposition is an immediate consequence of the following lemma.

Lemma 4.3
of length n in common.

Proof Suppose on the contrary that two words w1 and w2 of length n + 1
have three common subwords. We can assume further that 202 has two dictinct
subwords u1v1 and u2v2 for which

Two distinct words of length n + 1 have at most two subwords

~2 = u1cv1, 202 = ~ 2 d ~ 2 (1)

107

with c , d E A , u1, v1,u2,v2 E A* and

w1 = ~ 1 V 1 1 ~ V 1 2 , w1 = u2v21bv22 (2)

with a,b E A , ~ l ~ , v ~ ~ , u 1 2 , ~ 2 , ~ ~ 1 , u 2 2 E A* and v1 = ~ 1 1 ~ 1 2 , 212 = ~ 2 1 ~ 2 2 .

that l u ~ l < 1u11, hence u1 = u2t for t # 1. Then (1) and (2) give
Note that lull # lu211 otherwise the two subwords are equal. Let suppose

tcvl = dv2 = d ~ 2 1 ~ 2 2 (3)

The last equality implies that t or 2121 is a prefix of the other. If t is a prefix
of 2121 then by (3) we get tc = dt, consequently we get c = d and t = dk = ck
for k > 0. It follows that w2 = ulcvl = u ~ t d v l = u2dk+'v1 = uzdtv1 = u ~ d v z
and then 212 = t v l which yields, together with u1 = uzt, that ulvl = '112212: a
contradiction! If, otherwise, v21 is a proper prefix o f t , again from (3) we get
that v21 is a prefix of dv21. Consequently, 2121 = dk, k 2 0, hence dk+' is prefix
o f t . But by (4) dkb is also a prefix o f t , which forces d = b. Now this implies

w2: again contradiction. The proof is complete.
~1 = ~ 2 ~ 2 1 b v 2 2 = u2dkbv22 1 u2dk+lv22 = uzdd k 2122 1 ~2dv21~22 = ~ 2 d v 2 =

Unlike infix bases, we cannot say that all coherent subsets of subwords bases
are one- or two-element sets. The following argument help constructing large
coherent subsets.

We say that a word w has complexity k provided k is the smallest integer
satisfying w E a; . . . u i for letters a l l ..., a k E A. It is straightforward to verify
that if w has complexity k then the subwords of length IwI - 1 of w are exactly k
in number and, besides, they all have complexity at least k - 2. It is also evident
that a word containing words of complexity k as subwords have complexity at
least k. Let now w be a word with high complexity k (k is large) and of length
n + 1. Let denote the sets of subwords of length n - 1 and of length n of w by
U and S , recpectively. When w is "complex" the cardinality of S is certainly
large. It is not complicated to verify that for a subword u of length n - 1 of
w there always exist a word of length n having u as subword and not being
subword of w; we spare one of such words, denoted s(u), by each u E U . Now
let 2 be any subset of S comprising sufficiently many words and X the set of
the remaining words of length n of A*. Note that s(u) E X for all u E U .

We see that, first, X is a hypercode (of words of the same length) and,
second, 2 is included in L (X) and moreover, in the initial subword base Yo of
L (X) since every subword u of length n - 1 of 2, being in U , is a subword of
s(u) , hence of X . That is u 6 L (X) and every word of 2 has no subwords in
L (X) , therefore 2 C YO.

We show that 2 is a coherent subset of YO. In fact, by construction 2 is a
subset of subwords of length n of w in YO, so the word of 2 has complexity not

108

less than k - 2. Since a word of length n, if not in 2 is in X , every word u of
L (X) has all subwords of length n in 2, hence it has complexity at least k - 2
and the subwords of length n of u amount up to at least k - 2 in number and
they are all in 2. Consequently, when lul = n + 1, u has at least k - 2 subwords
of length n in common with w which implies that v = w by Proposition 4.2 as
k is large by choice. That is to say there is none but one word, namely w, of
length n + 1 whose subwords of length n are all in 2 that shows the coherency
of 2.

Thus every word of complextity 5 will be appropriate to produce large 2,
but we shall see that sometimes k = 3 is also fit for our purposes. The following
example shows the detail.

Example 4.4 Let A = { a , b} . Let take w = ababa with n + 1 = 5 and k = 5
then S = {abab,aba2,ab2a,a2.ba, baba} is of four elements. Any subset Z of S
containing more than two words is a desired coherent set for the initial subword
base Yo of L (X) .

However, some words of lower complexity also bring large coherent sets S
even for k = 3, the least admissible value of complexity for words in D (S) . Con-
sider w = a2b2a, n+ 1 = 5 , k = 3. Here is the set S = {ab2a,a2ba, a2b2} of three
elements. The only possible issue for 2 to take is 2 = S. It is straightforward to
verify that all words of length 5, and of complexity 2, contain subwords out of 2
i.e., in X, hence they are not in L (X) . Next, if their complexity, otherwise, are
not 2 then they have subwords in 2 only if their complexity is not 1, hence is at
least 3. Direct inspection yields w as the only candidate that has no subwords
in X. This shows that 2 is coherent for the corresponding Yo of L (X) .

Now we turn to the question when L (X) admits a final subword base? That
is when is L (X) finite? Again we can think of a kind of unavoidable set in the
subword order. If L (X) is finite the sufficiently long words are not in L (X) that
means they have subwords in X. Conversely, if X is unavoidable then the words
in L (X) avoid X therefore they are finite in number.

It appears that in the subword order the unavoidable set has a very simple
characterization. It is clear that an unavoidable set contains an for each a E A
and some n > 0. Conversely, if a set satisfies this property then the words
avoiding it have the occurences of the letter a fewer than the corresponding
integer n. Hence their length is bounded above by the sum of all these exponents
n’s and the sufficiently long words have subwords in the set. That is, a set is
unavoidable in the subword order if and only if it contains a power of every
letter. Summing up, we state an analogous result to the factor order.

Proposition 4.5 Let X be a hypercode. T h e n L (X) is f ini te if and only if one
of the following equivalent conditions holds: X is unavoidable, X contains a
power of every letter and there are finitely m a n y maximal hypercodes containing
X .

109

For the special case when X is empty, L (X) is the whole A*, the initial
subword base is A, our procedure allows to dertermine all maximal hypercodes
of A*. We conlude the paper with an example showing the performance in some
detail.

Example 4.6 Let A = { a , b} and the hypercode X = { a 2 , ab, ba, b3} is maximal
which is verified directly. X can be derived from A by the following sequence
of applications of F :

X i = { a , b 2 } = F (A , So), So = { b } , D(S0, A) = { b 2 } ,

X = X3 = { a b , b a , ~ ~ , b ~ } = F(X2,S2) , 5’2 = { u } , D (S ~ , X ~) = {ab,ba, a’} .
This sequence, however, is not unique, X can be obtained by another se-

X1 = { a 2 , b } = F (A , So), So = { a } , D(S0, A) = { a 2 } ,
X2 = {a2,ab,ba,b2} = F (X 1 , S i) , S 1 = { b } , D (S i , X I) = {ab,b2,ba}

X = X3 = { ~ ~ , ~ b , b ~ , b ~ } = F(X2 ,Sz) ,S z = { b 2 } , D (S z r X z) = { b 3 } .

X 2 = {a,b3} = F (X l r S 1) , S 1 = {b2},D(S1,X1) = { b 3 } ,

quence as follows:

and

References
[l] Berstel J. and D. Perrin, “ Theory of Codes,” Academic Press, Orlando,

1985

[2] CCsari Y., Sur un algorithme donnant les codes biprkfixes finis, Math. Sys-
tems Theory 6(1982), 221-225

[3] Choffrut C. and Culik I1 K., On Extendibility of Unavoidable Sets, Discrete
Applied Mathematics 9(1984), 125- 137

[4] Ehrenfeucht A. and G. Rozenberg, Each Regular Code Is Included in a Reg-
ular Maximal Code, RAIRO Informatique theorique 20(1986), 89-96

[5] Eilenberg E., “Automata, Languages and Machines,’’ Volume A, Academic
Press, New York and London, 1974

[6] Higman G., Ordering by Divisibility in Abstmct Algebra, Proc. London Math.
SOC. 2(3) (1952), 326-336

[7] Ito M., H . Jurgensen, H. J . Shyr and G. Thierrin, Outfix and Infix Codes
and Related Classes of Languages, Journal of Computer and System Sciences
43(1991), 484-508

[8] Lam N. H., Finite Maximal Infix Codes, (to appear in Semigroup Forum)

[9] Rosaz L., Unavoidable Languaes, Cuts and Innocent Sets of Words, Theo-
retical Informatics and Application 29(1995), 339-382

110

[lo] Shyr H. J., “Fkee Monoids and Languages,” Lecture Notes, Hon Min Book
Company, Taichung, 1991

[ll] Shyr H. J. and G. Thierrin, Codes and Binary Relations, Lecture Notes 586
“SCminaire d’Algkbre, Paul Dubreil, Paris (1975-1976) ,” 180-188, Springer-
Verlag

[12] Shyr H. J. and G. Thierrin, Hypercodes, Inform. Control 24(1974), 45-54

[13] Van D. L., Embedding Problem for Codes Defined by Binary Relations,
Preprint 98/A22, Hanoi Institute of Mathematics

111

Strong recognition of rational w-languages]

Bertrand Le Saec, 2 , V.R.Dare and R.Siromoney

Abstract We propose a new notion of the recognition of w-languages using monoids. The used
criteria is stronger than the one previously introduced by Buchi. It very easy to build deterministic
automaton accepting a given rational w-language from a monoid that strongly recognizes this w-
language.

1 Introduction

Two notions of recognition used to characterize the rational langages of finite or infinite words has
been intensively studied. The former is the recognition of langage using an automaton : a word is
recognizes if its computation satisfies a given recognition criteria. The latter uses morphisms from
the alphabet to monoid : a language is recognizes if its image in the monoid satisfies a given property.
When the considered langage is a rational langage of finite words, it is easy to set a natural bijection
between the deterministic automata recognizing a langage L and a set of right congruences of finite
satisfying a property on their classes. In the same way, such a correspondance can be proposed
between the monoids and the congruences of finite index. The property used for congruence and
right congruence is a saturation one : if a word belongs to the language then the class of this word

'This work has been supported by the Indc-french Centre for the Promotion of Advanced Research (CEFIPRA)
2Laboratoire Bordelais de Recherche en Informatique - Unite de Recherche Associee au Centre National de la

3Madras Christian College, TAMBRARAM, MADRAS 59, INDIA
Recherche Scientifique 11.1304, Universitb Bordeaux I 351, cows de la Liberation 33405, Talence Cedex France

112

must be included in the language. Since congruences are obviously right congruences, it is easy to
obtain a deterministic automaton recognizing a langage from a monoid that recognizes this langage.
From this result, it becomes simple to prove the Kleene theorem.

For rational w-language (language of infinite words), Biichi introduced in [BU 621 a notion of
recognition using monoids. This notion is based on a saturation property that can be easily “trans-
late” in terms of congruences. There is many types of automata used to recognize rational languages.
For the table transition automaton, a correspondance with right congruence has been also set in
[LS 901, but the used saturation property is not of the same kind than the Biichi one.

In this note, we proposed a new definition of the recognition of rational w-languages using
monoids : the strong monoid recoginition. This notion is more powerful than those introduced by
Biichi : when a monoid strongly recognizes a rational w-language, it also recognizes the same w-
language in the Biichi sense, but the converse is false. We prove that a w-language is rational iff
it is strongly saturated by a finite monoid. Moreover, given a monoid which strongly recognizes a
rational w-language, the construction of a deterministic table transition automaton which accepts
this w-language is obvious. So a similar approach to those of the finite case can be made to set
the Mac Naughton theorem : it consists to establish the equivalence of the Biichi recognition and
the strong recognition. The sketch of the proof is : To build from a arbitrary automaton (Biichi or
Miiller or table transition) accepting aw-language L a monoid that Biichi recognizes L , then to build
from this monoid another one that strongly recognizes L and finally to construct a deterministic
table transition automaton that accepts L.

Section 2 contains preliminary notions. The next section is devoted to the notion of strong
monoid recognition. In the last section, we propose to study the Mac Naughton theorem by using
strong recognition monoids.

2 Preliminaries

Let C be a finite alphabet. We denote by C* and Cw the sets of all finite and infinite words over
C respectively. For any subset X # 0 of C*, we denote X + = { q ~ . . . z,, n >_ 1, zi E X },
X‘ = X+ U { E } , where F is the empty word, and X w = (~ 1 ~ 2 . . . , V i 2 1, zi E X \ { E } }.

A language is a subset of C’ and a language of infinite words (w-language) is a subset of C”.
We denote by UP(L) the set of its ultimately periodic words: UP(L) = { zyw E L, z,y E C+}.
An w-language L is rational if it is a finite union of w-languages of the form CBW where C, B are
rational languages in C*. In [BU 621, Biichi proved the following property : Let L, L’ be rational
w-languages
then L # 0 tr. U P (L) # 0 and so L C L’ H UP(L) C UP(L’).

A transition system T S is a triple (Q, I , 6) where Q is a finite set of states, I C Q is a
set of initial states and 6 is a transition function, ie., a partial mapping of Q x C into 2Q. As

113

usual, we extend 6 to Q x C* by setting, for all q E Q, a E C and w E C*, 6 (q , ~) = { q } and
J (q , a w) = u pE6(q ,a) 6(p ,w) . A transition system T S is deterministic if C a r d (I) = 1 and for any
pair (q , a) E Q x C, there is at most one state q' in 6(q, a) . By abuse, we will write 6(q, a) = q'
when TS is deterministic.

Let T S = (Q, I , 6) be a transition system. A transition is an element (q, a, q') of Q x C x Q
such that q' E d(q,a) . We denote by A the set of transitions of TS. A computation c in TS is
a finite or infinite sequence 606162. ' . of transitions where for each i, 6, = (qs , a,, q2+1) E A. The
word w = aOa1. . . is called the label of c and the state qo the origin of c. We use the notation
c(qO,w,q,+l) to denote a finite computation c with the origin qo, the end qn+l and the label
w = aOa1 . . a, and for each i, 6, = (q,, a,, q,+1) E A. We denote by T f i n (c) (resp. T i n f (c)) the
set of the transitions which have a finitely (resp. infinitely) many occurences in c.

Definitions 2.1 A transition table automaton [LS 901 is a 4-tuple A = (Q, I , 6 , I) where (Q , I , 6)
is a transition system and I a set of subsets of transitions. An infinite word w E Cw is accepted by
A i f there exists a computation c i n A with the origin in I and the label w such that T i n f (c) E I .

The transition table automata accepts the rational w-languages and their recognition power does
not decrease if we only consider the deterministic ones [LS 901. In the sequel, we denote L(d) the
w-langage accepted by an automaton A.

Let 3 be an equivalence relation on C*. We denote by zI the class of the word z and we say that
= is of finite index if it has a finite number of classes. A right congruence - on C* is an equivalence
relation satisfying: V u , v E C*, Vw E C*, u - v implies uw N vw. A congruence N on C* is an
equivalence relation satisfying: Vu, v E C * , v w , w' E C*, u N v implies wuw' N wuw'. As usual,
with any congruence N on C*, we associate a monoid ME and a morphism pE : C* + M% defined
by Me = {u,,u E C*} and for any u E C*, p (u) = uz. Symetrically, with any M is a monoid
and any morphism p : C* + ME, we associate a congruence FSM defined by Vu, v E C*, u X M u

iff p(u) = p(u). A stabilizer g of an element m of a monoid M satisfies the identity mg = g and
an idempotent f of M satisfies f 2 = f.

Definition 2.2 [BU 621 A congruence N on C* Biichi-recognizes an w-language L iff for any pair
m, f in M % , we have pp,'(m)[pp,'(f)]" n L # 0 implies pp=l(m)[pp,'(f)]" C L. I f the congruence
N is of finite index, it is easy to show that the elements m, f can be choose i n such a way that
m=mf and f 2 = f.

Definitions 2.3 [AR 851 Let L E Cw and let xs be the congruence on C' defined by:

V (x , w) E c* x CW, z u w E L e xvw E L
Vz, w , w' E C* with ww' # E , ~ (W U W ') ~ E L e ~ (W V W ') ~ E L.

vu, v E C*,U NS u H

114

We denote by M, the monoid associated with wS . The congruence w s (resp. the monoid M,, the
morphism 'ps) is called the syntactic congruence (resp. monoid, morphism) of L. The congruence
wS is the largest congruence offinite index which Buchi-recognizes a rational w-language [AR 851.

There is a canonical bijection between the family of right congruences of finite index and the
family of complete deterministic transition systems (up to isomorphism). This canonical bijection
is defined in the following way:
With any right congruence of finite index -, we associate a deterministic transition system TS, =
(QN,I,,6,) where Q, = {z,,z E C*}, I , = {E, } , 6, is the function from Q, x C
to Q, defined by V(z,,a) E Q, x C , 6,(z,,a) = (xa),. With any deterministic transition
system TS = (Q, {qo} ,6) , we associate a right congruence -Q defined by Vu,v E C*,u -Q v iff
6(qo,u) = 6(qo,u). The right congruence -Q is of finite index.
It is easy to see that the right congruence associated with TS, is exactly - and, conversely, that
the transition system associated with -Q is TS.

3 Strong congruence recognition

Definition 3.1 A congruence w (or its induced monoid M,) on C' strongly recognizes an w-
language L if, for any triple m, f , g E M , such that m f = mg = m, we have :
(p,'(m)[('p,'(f))+((p,'(g))+lW n L # 0 implies 'p,'(m)[('p,'(f))+(ip,'(g))+IW c L.

The following property is simple to set :

Lemma 3.2 Let L be a rational w-language accepted by a table transition automaton A =
(Q , { q o } , 6 , 1) . Let " Q be the relation defined by :

Then " Q is a congruence of finite index which Buchi-recognizes L and so its induced monoid
M,, also Buchi-recognizes L.

Theorem 3.4 An w-language is rational ifl it is strongly saturated by congruence of finite index.

115

Proof : Let M be a congruence of finite index that strongly recognizes an w-language L. In order to
prove that the w-language L is rational, we can identify, in the definition of the strong recognition,
the two elements f and g. This shows that a congruence which strongly recognizes a w-langage L
is also a congruence which Biichi-recognizes L. And so L is rational.

Conversely, let L be a rational w-language accepted by a deterministic table transition automaton
A = (Q, {qo} , 6, I). Let MQ the congruence defined in the previous lemma.

Now, let m, f , g E M,, such that m = mf = mg . Since L is a rational w-language, the
languages cp;b(m), cp;:(f),p&(g) are rational and F(,sQ,m,f,g) : is a rational w-language. So, in
order to prove that MQ strongly saturates L, we just need to prove the following equivalence :

UP(F,,,, ,*,fa) L # 0 - UP(F(9,, , m , ~ , g)) C L

Since m = m f = mg, it is easy to see any ultimately periodic word of the w-language F(9,q ,m,f ,g)

is of the form y(uy# ... upw?)" with y E cp&L(m) and for any 1 5 i 5 k , ui E cp,b(f),wi E
tp;i(g). Moreover, A is deterministic and for any 1 5 i 5 k , y M Q yui MQ ywi so there exists
q E Q such that G(q0,y) = q, 6(q,u,) = q and G(q,v,) = q.

For any u E cp&(f) and v E cp&(g), we have V k 5 0, Tfin(c(q,uk,q)) = T-fin(c(q,u,q)) and

Vk 5 O,T-fin(c(q,wk,q)) = T-fin(c(q,w,q)) so Tfin(c(q,uyv? ... upw$,q)) = T-fin(c(q,uw,q))
where u, w are two fixed words of 9;; (f) and cp;: (9) respectively. So, we have

T-fin(c(q,up'wF . . .uyv$,q)) E 7 w T-fin(c(q,uv,q)) E 7. Let z be an arbitrary word in

ZQ strongly recognizes L. 0
z E cp&;(m), we have : UP(F(,,Q,m,f,s) n L) # 0 H z(uw)" E L and UP(F(,,Q,m,f,g)) C L. So

Remark 3.5 In the proof of the previous Theorem, it is shown that any congruence which strongly
recognizes an w-langage L is also a congruence which Buchi-recognizes the same w-language. The
converse is false.

For instance, let L = {a,b)'(ab)". The class of the syntactic congruence of the word aa also
contains the two words aaa and aab so we have aa M, aaa M, aab. Let maa (resp. ma, mb) denote
the element the syntactic monoid of L corresponding to aa (resp. (a, b)). Since aa(ab)" E L,
we have cp,~(maa)[(cp,~(ma))+(cp;:(mb))'lw) n L # 0 ; but cpi;(maa)[(G: (ma))+(V,:(mb))+lw
is obviously not included in L since aa(abb)" $ L. The syntactic congruence of L Buchi recognizes
L, but it does not strongly recognizes L.

Definition 3.6 Let - be a congruence of finite index. Let A, be the deterministic table transition
automaton A, = (Q,.,, I,, 6,, I,) where (Q,, I,, 6,) = TS, is the transition system inced by -
and I, = {Tin f (E ~ , w) such that w E UP(L)}. This automaton is called the deterministic table
transition automaton induced by -.

Proposition 3.7 Let M be a congruence that strongly recognizes a rational w-language L then A,

116

is a deterministic table transition that accepts L.

Proof. Let L be a rational w-language and M be a congruence that strongly recognizes L. In
[LS 901, it has been proved that if a right congruence of finite index - recognizes L in the following
way :

1. V(u,v) E C* x C*,Vw E Cw : u N w implies {uw E L w z)w E L }

2. V(z,u,v) E C* x C* x C’, x - zu N zw implies { z (u + ~ +) ~ n L # 0 ==+ z(u+v+)” E L}.

then the deterministic table transition automaton induced by - accepts the w-language L. So it is
suffisant to show that N recognizes L : in this sense.

1. Let u, v E C* such that u w and let w E Cw such that uw E L. There exists m,m’, f E M=
such that u E p;’(m),w’ E p;’(m’),w’’ E ~ p ; ’ (f) ~ andw = w’w’’. Sop;’(mm’)p;’(f)wnL #
0. Moreover x strongly recognizes L , so it also Biichi-recognizes L and p;’(mm’)~p;’(f)~ c L.
Since u N v , we have vw’ E p;’(mm’) and finally vw’w’’ = vw E L.

2. Let z E C* and u, v E C+ such that x N zu N ZW and Z (U + W +) ~ n L # 0. Let m, g , f E M ,
such that m = p = (z) , g = p=(u) and f = p=(w). Then F(,,,J,~) n L # 0 e F(,,,,f,s) c L
and so Z (~ + V +) ~ c L.

Finally, the automaton A, accepts L. 0

4 Mac Naughton Theorem and strong recognition

The previous theorem provides a direct way to prove the Mac Naughton theorem : we “just” need
to build a congruence of finite index that stongly recognizes a rational w-language. We propose two
manners to obtain such a proof. The first one can be view as an intrepretation in term of monoids
of the proof proposed in [LPW 921. The second is based on a conjecture concerning the role of
commutativity for the stabilizers in a monoid.

4.1 Nice semigroups

The two following results has been set in [LPW 921 :

Theorem 4.1 Any finite monoid M is the image by a surjective morphism of a finite monoid M
in which the stabilizers satisfy the identities f = f and fgf = f g .

117

Proposition 4.2 An w-language L is rational iff i t i s Buchi-recognized by a finite nice semigroup.

The proof of the previous result consists to start with a finite semigroup M that Biichi-recognizes
L, to build the corresponding finite nice semigroup &f and to easily show that k also Biichi-
recognizes L.

Proposition 4.3 A finite nice semigroup that Buchi-recognizes a rational w-language L also strongly
recognizes L

Proof. Let L be a rational w-language and M be a finite nice semigroup that Biichi-recognizes
L. So there exist a morphism (o : C* -- M such that for any pair m, f in M , we have
(o-'(m)[(p-'(f)]" n L # 0 implies (o-'(m)[(o-l(f)]w c L.

Let m, f , g E M such that mf = m g = m and F(,,,,f,g) n L # 0.
Let z E p-'(m),u E (o-'(f),w E (o-'(g) be three arbitrary words.

Since M is a nice semigroup, the stabilizers of M satisfy f 2 = f and f g f = f g . In fact, in the
sequel of the proof, we just need one of the two properties : f 2 = f .

Since f and g are idempotents, we have p-'(f)+ = (o-'(f), and (o-'(g)+ = p- ' (g) so
q,,,,f,g) = (o-l(m)l((o-'(f))(p-'(g))lw.

(o-'(g).
Let y(ulw1 . . "ubvb)" E UP(F(,,,,f,,) n L) with y E cp-'(m) and V1 5 i p k , ui E cp-'(f),w, E

Since M Buchi-recognizes L, it is larger than the syntactic monoid of L. So V l i: i 5 k,
u X, u1 zS u2 ... zS U k and w xS w1 z9 w2 ... zS vk. So, we have y(ulw1. . . U k v l ~) ~ E
F(,,,,f,g) n L f 0 - +J)~ E F(,,,,f,g) n L. ina all^ : F(,,f,g) n L # 0 - q,,,,f,g) c_ L.
0

4.2 Semigroups with commutative stabilizers

A semigroups with commutative stabilizers is a semigroup in which the stabilizers satisfy the identity
f g = g f .

Proposition 4.4 A finite semigroup with commutative stabilizers that Buchi-recognizes a rational
w-language L also strongly recognizes L

Proof. Let L be a rational w-language and M be a finite semigroup with commutative stabilizers
that Biichi-recognizes L. So there exist a morphism (o : C' --t M such that for any pair m, f
in M , we have (o-'(m)[(o-'(f)]" n L # 0 implies p-'(m)[(o-'(f)lW c L.

118

Remark 4.5 We don’t know if a result similar to the theorem 3.1 can be set replacing “nice semi-
group” by “semignmp with commutative stabilizers”. Our initition is based on the fact that around
a state in an automaton the loops can commutes without changing the accepting language. But if it
is true this should lead to an another proof of the Mac Naughton theorem.

References

[AR 851 A. Arnold “A syntactic congruence for rational w-languages”
Theor. Comp. Sci. 39 (1985) 333-335.

[BU 621 J.R Biichi “On a decision method in restricted second-order arithmetic”
In E. Nagei, P. Suppes and A Tarski editors, “Logic, Methodology and Philosophy of Sciences:
Proc of the 1960 International Congress”, Stanford University Press, (1962) 1-11.

[LS 901 B. Le S d c “Saturating right congmences”
R.A.I.R.O. Inform. Theor. Appl. 24(6) (1990) 545-560.

[LPW 92) B. Le Sdc , J.E. Pin, P. Weil, “Semigroups with idempotent stabilizers and applications
to automata theory”,
International Journal of Algebra and Computation, Vol l(3) (1991) 291-314.

[MN 66) R. McNaughton “Testing and generating infinite sequences by finite automaton. ”
Inform. Control 9, (1966) 521-30.

119

SOME RESULTS CONCERNING COVERS
IN THE CLASS OF MULTIVALUED POSITIVE

BOOLEAN DEPENDENCIES

LE DUC MINH AND VU NGOC LOAN

Vietnam National University (VNU)

NGUYEN XUAN HUY

Institute of Information Technology
National Center for Natural Science and Technology of Vietnam

In this paper we present a new class of data dependencies that called multivalued
positive Boolean dependencies. This class is a generalization of all classes of posi-
tive Boolean dependencies. Some generalization concepts for implications as well
as an axiom system for inference rules are also presented. With the help of the
equivalence theorem of consequences in the world of all relations, the world of 2-
tuple relations and propositional logic in the class of multivalued positive Boolean
dependencies we can get some significant results related to m-covers. Some condi-
tions for two sets being m-equivalent are given. Necessary and sufficient conditions
for testing an m-redundant set of multivalued positive Boolean dependencies are
introduced. Base on these results some algorithms for constructing a nonredundant
m-cover of a given set of multivalued positive Boolean dependencies are presented.

1. Introduction

An important part of the design of relational database schema is the specifica-
tion of constraints or data dependencies in databases. In other words, central
to the design of database schemes is the idea of a data dependency, that is,
a constraint on the possible relations that can be the current instance of a
relation scheme.

Data dependencies represent a semantic tool for expresssing properties of
data and play an important role to ensure consistency of data. There are many
kinds of data dependencies that have been studied, such as, functional depen-
dencies, strong dependencies, equational dependencies, generalizied positive
Boolean dependencies, etc. [l, 2,3,4,8].

120

In this paper we intend to mention a new class of data dependencies that
called Multivalued positive Boolean dependencies. This class is a generalization
of all classes of positive Boolean dependencies [8,9,10,11]. In this class we can
also see data of objects managed in database in fuzzy semantics. This is useful
and significant for other purposes when using databases.

Some generalization concepts for implications as well as an axiom system
for inference rules are also presented. With the help of the equivalence theorem
of consequences in the world of all relations, the world of 2-tuple relations and
propositional logic in the class of multivalued positive Boolean dependencies
we can get some significant results.

In fact, we want to find, for a given set of dependencies, an equivalent set
with a number of useful properties and a shorter representation of constraints.
For several algorithms with running times that are dependent on the number
of dependencies in the input, a smaller set of dependencies guarantees faster
execution. Dependencies are used in database systems to help ensuring consis-
tency and corrections. Fewer dependencies mean less storage space used and
fewer tests to make when the database is modified.

Also with the help of the equivalence theorem we can get some significant
results related to rn-covers. Necessary and sufficient conditions for testing an
m-redundant set of multivalued positive Boolean dependencies are introduced.
On the basis of these results, some algorithms for constructing a nonredun-
dant rn-cover of a given set of multivalued positive Boolean dependencies are
presented.

2. Some concepts and results

Some basic concepts concerning with the class of multivalued positive Boolean
dependencies have been mentioned in [9]. Let U be a set of attributes, U =

(A1, Az, ..., An}. For each attribute Ai in U , beside the domain di we have a
set Bi called the valuation domain of Ai that satisfies the following conditions:

6) Bz c [0,11,
(ii) 1 E Bi, and

(iii) If s E Bi then 1 - s E Bi.

We denote B = B1 x B2 x ... x B,.

121

Definition 1. A formula f over U is said to be a multi-valued positive
Boolean dependency (MVPBD) iff f (e) = 1 with e = (1,1, ..., 1) E B. B y M F ,
we denote the set of all multivalued positive Boolean dependencies over U .

Definition 2. For each domain di of attribute Ail 1 5 i 5 n, we consider a
mapping C Y ~ : di x di --, Bi, satisfying the following :

(i) (VU E d i) (a i (a , a) = I),
(iz) (Va, b E di) (ai(a, b) = at@, a)) , and

(iii) (Ys E Bi, 3a, b E di) (Qi(a, b) = S)

For each Ic E [0,1], f E M F , and C G MF,, we set T t = {x E B I f (x) 2 Ic}
and Tk = {x E B I Yf E C, f (x) L k}.

By R E L (U) we denote the set of all relations over U . Let R E R E L (U) and
u,v E R. Then (a~(u .Al , v . A l) , ..., an(u.A,,v.An)) is said to be a valuation
over U and denoted by Q (U , v), where u.Ai is the value of attribute Ai in tuple
u. We set TR = {Q(u ,v) /u , v E R } . Note that for every u E R we have
a(u,u) = e E TR.

Suppose p is a mapping p : [0,1] -+ [0,1], then ,8 is called a level.

Definition 3. Let R E R E L (U) , Ic E [0,1], f E M F , and C C MF,, m E
[0,1] and ,O : [0,1] 4 [0,1]. Then

(a) W e say that R k-satisfies f , iff TR C Tf". R is said to k-satisfy the set
C i.fTR C T;. I f R k-satisfies C then we denote R k (C) . Instead of *
R k ({ f}) we write Rk(f) .

(P,m)-satisfy the set C iff R p(m)-satisfies C .
(b) W e say that R (p, m)-satisfies f , iff R p(m)-satisfies f . R is said to

Definition 4. Let C G MF,, f E MF,, m E [0,1] and ,B be a level

(a) W e say that f is implied from C by relations and write C f iff for

(b) I f for any relation R having two tuples and R m-satisfies C we also
any relation R m-satisfying C then R also (p,m)-satisfies f

have R (p, m)-satisfies f then we denote C F z f .

W e set C; = {f 1 CF f}.

122

Definition 5. Let C C MF,, f , g E MF,, m E [0, 11 and /3 is a level. W e
consider a system of two rules for deductions 1 - as follows:

m
P

m
(a) I f f - 1 t h e n C J - f ,

(b) If C 1; f and TF n T;(m) = TF n T/(m) then C I - 9. m P

P

Definition 6. Suppose m E [0,1], C C MF,, f E MF, and P is a level. W e
say that C (P,m)-implies f or f is (P,m)-implied from C, denoted by C I - f

iff f can be obtained from C after a finite number of steps applying ru1 es of
the above axiom system. For briei we write C

m
P

m f instead of C I- f .
P

Definition 7. A set C C MF, is said to be stable i f l C C Ck.

Note that if P(m) = m then any set C is stable.

Proposition 1. [ll] Suppose that C C MF,, f E MF, and P is a level, then
the following are equivalent:

Proposition 2. If C , r C MF, and C 2 I' then

Proof. It is clear that TF C T,". Now suppose f E r&. It means I' f.
Then f(x) _> P(m) for any z E T,". Hence, if 2 E TF then we also have
f(x) _> P(m). It means that C 1" f. We get f E CA. From b we get the

0 assertion c. The proof is complete.

123

Proposition 3. Let m E [0,1] with p(m) 2 m and C C MF,. Then C& 2
EL+.

Proof. We set I' = C&, so C&+ = I?&. For any f E C&+ we get f E I?&. By
using Proposition 1 we obtain TP G TfP(m) (1). Because of C Imr, P(m) 2 m

and Proposition 1 we have T," G Ti!(m) 5 TF (2). F'rom (1) and (2) we
obtain T," C Tf (m) . According to Proposition 1 we have C Im f and hence
C& 2 C&+. 0

Proposition 4. Let m E [0,1] with p(m) 2 m and C, I' G MF,. If C ImI'
then C& 2 r&.

Proof. Suppose f E I'& (l) , we have to show that f E E& (2). From (1)
and Proposition 1 we get TP C TfP(m) (3). From the hypothesics C l m I ? ,
Proposition 1 and p(m) 2 m we get T," G Tf?(m) G TP (4). Combining
(3) and (4) we obtain T," C Tf(m) . It implies that assertion (2) holds and

0 therefore we have C& 2 I?&. The proof is complete.

It is not hard to see the following propositions

Proposition 5. If C, I? G MF, such that I' is stable and C& 2 I'& then
qmr.

Proposition 6. Let m E [0,1] with P(m) 2 m and let C, r C_ MF, such that
C, I? are stable. Then C& = I?& iff C I' and r C.

Proposition 7. Let m E [0,1] with P(m) 2 m and C, I?, A G MF,. If
C In I' and I? A then C In A.

Proposition 8. Let m E [0,1] with P(m) 2 m. Suppose that C C MF, and
C is stable then C&+ = C+ m'

Definition 8. Suppose m E [0,1]. Two sets C, I? G MF, are said to be
m-equivalent and denoted by C 2 I? iff Ch = I?;.

Theorem 1. (Equivalence Theorem [ll]). Let m E [0,1], C C MF,,
f E MF, and be a level. Then the following are equivalent:

(a) C IXf

124

Corollary 1. Two sets C, r C MF, are m-equivalent iff C& = I?&.

Proposition 9. Let m E [0,1] and C, I? C MF,. If TF = TF then two sets
C and r are m-equivalent.

Let R E REL(U), f E MF, and let m E [0,1]. Now we consider an
algorithm for checking whether a relation R satisfying a given dependency. We
have known that for f E MF,, C & MF, and m E [0,1] then the followings
hold:

(a) R" (f) if and only if TR C_ Tf"

(b) R"(C) if and only if TR C TF.
Algorithm SATISFIES

Input - A relation R over U ,
- A formula f ,

- A real number m in [0,1]

Output - TRUE if R"(f)
- FALSE, otherwise

Format SATISFIES (R, f , m)

Method

// Verify whether the assertion TR TT is valid

return (TR C Tf");
End SATISFIES.

Definition 9. Suppose m E [0, 11 and C , r C MF,. If C and F are m-
equivalent then we say that r is a m-cover of C , and conversely C is a m-cover
ofr.
Definition 10. Let m E [0,1], C C MF, and g E C. We say that g is m-
redundant in C iff C - { g } g . The set C is said to be m-redundant iff there
exists g in C such that g is m-redundant in C .

Proposition 10. Let m E [0,1] with P(m) 2 m, C & MF, and let g E C and
g be m-redundant in C . Then two sets C and C - { g } are m-equivalent.

125

Proof. We set I? = C - {g}. Because of C 2 r and Proposition 2 we have

On the other hand, for f E CA, we have to show that f E I?&. Suppose
x E TF. Because of g being m-redundant in C and Equivalence Theorem we
have I? I m g and g (x) 2 p(m) 2 m. Hence x E T," and f (x) 2 P(m). It
means f E I'k. We obtain

r;
F'rom (l), (2) and Corollary 1 we see that two sets C and I' are m-equivalena

Here we have a necessary and sufficient condition for a dependency g beging
m-redudent in C .

Proposition 11. Let C C MF,, m E [0,1], p be a level and let g E C. Then
g is m-redundant in C iff TCm_{gl C T/(m).

Proof. Suppose that a dependency g is m-redundant in C. By Definition 10 we
have C - { g } g. Using Equivalence Theorem we obtain C-{g} 1-g. This is
also equivalent to TCm_tg) T/(m). Conversely, suppose that TCm_Igl C T/(m).
According to Proposition 1 we have C - {g} 1"g. Also using Equivalence

0 Theorem we obtain C - { g } g. It means g being m-redundant.

Corollary 2. Let C C MF,, m E [0,1] and p be a level.
redundant iff there exists g E C such that TCm_{gl C T/(m).

Then C is rn-

Proof. Suppose that there exists g E C such that TCm_{gl 5 T/(m). By applying
Proposition 1 and Theorem 1 we see that g is m-redundant in C. Hence C is
m-redundant .

Conversely, suppose that C is m-redundant. Hence there exists g E C
g. Using Equivalence Theorem we have C - { g } Img .

0

such that C - {g}
According to Propossition 1 we obtain TCm_tg) C T/(m).

Corollary 3. Let C C MF,, m E [0,1] and /3 be a level. Suppose that there
exists two formulas f , g E C such that f # g and Tf" T/(m). Then C is
m-redundant .

126

Proof. Set I' = C - (9). Then f E I' and therefore TF TT. Combining
with the hypothesis TT c T/(m) we get TF c T/(m). Using Corollary 1 we
can see that C is m-redundant. 0

Definition 11. Let m E [0,1]. A set C C MF, is said to be m-nonredundant
if C is not a m-redundant set of formulas.

Now we consider some algorithms concerning with m-redundant sets.

Algorithm MEMBER

Input - A subset C of MF,
- A formula f in C

- A real number m in [0, 11

Output - TRUE, if C f,
- FALSE, otherwise

Format MEMBER@, f , m)

Method

return (T? G T!(~));
end Member.

Algorithm DERIVES

Input - Two sets C and I? of MF,
- A real number m in [O , l]

Output - TRUE, if C I'
- FALSE, otherwise

Format DERIVES(C, I?, m);

Method ff Using Equivalence Theorem.

for each g in I? do

if not MEMBER(C, g, m) then

return FALSE

endif;

endfor;

return TRUE;

127

end DERIVES.

Algorithm EQUIVALENCE
Input - Two subsets C and r of MF, such that they are stable

Output - TRUE, if C 2 r
- FALSE, otherwise

Format EQUIVALENCE(C, l?, m)
Method // Using Proposition 6 and Corollary 1

- A real number m E [0, 11 with p(m) 2 m

return (DERIVES(C, I?, m) and DERIVES(r, C, m)
end EQUIVALENCE.

Algorithm REDUNDANT
Input - A subset C of MF,

- A real number m in [0,1], p is a level
Output - TRUE, if C is m-redundant

- FALSE, otherwise

Format REDUNDANT(C, m)
Method // Using Corollary 2

for each g in C do

if T.&) C_ Ti(m) then

return TRUE
endif;

endfor;

return FALSE;
end REDUNDANT.

Algorithm NONREDUN
Input - A subset C of MF,

- A real number m in [O, l] , is a level

Output - An m-nonredundant cover of C

128

Format NONREDUN(C, m)

Method // Step by step we delete dependencies which are m-redundant

// in C such that the rest set of dependencies is also a m-cover of C
r := C;

for each g in C do

if MEMBER(I' - {g}, g, m) then

r := r - {g}
endif;

endfor;

return I?;

end NONREDUN.

We consider the case P(m) = m. We will have some concepts and results
as follows [9].

Definition 12. Let C C MF, and f E MF,. We denote

(a) C + f iff for any m E [0,1] the assertion C f holds
(b) C(xc> = A f (x >

fez

Theorem 2. Suppose C C MF, and f E MF,. Then C + f i f lC(x) 5 f (x)
for any x E B .

Definition 13. Let C,I' c MF,. We say that C and r are equivalent and
write c FZ r iff c T r for any m E [0, 11.

Corollary 4. Suppose C , r C MF,. Then C 2 I? iff C (x) = I'(x) for any
X E B .

Definition 14. Let C C_ MF,. A dependency g in C is said to be redundant
iff C E C - (9). If there exists h E C such that h is redundant then C is also
called to be redundant.

Corollary 5. Assume that C C MF, and g E C . Then g is redundant in C
iff for any m E [0,1] g is m-redundant in C .

Proof. (a) Necessary condition. Suppose g E C and g is redundant in C. We
set I? = C - {g}. Then we have C E I?. Therefore I' + g. Applying Definition

129

12 it follows that for any m E [0,1] we always obtain I?
is m-redundant in C.

g. It means that g

(b) Suficient condition. Let g E C and suppose that for any m E [0,1] then
g is m-redundant in C. According to the hypothesis, we have C - {g} g.
Because of m is arbitrary and m E [0,1] it follows that C - { g } g . Therefore
g is a redundant dependency in C. Sufficient condition has been proved and
this completes the proof. 0

Corollary 6. Let g E C and let r = C - { g } . Then the dependency g is
redundant in C ifl I?(%) 5 g(z) for any z E B .

Acknowledgments

We would like to thank Prof. Ho Thuan for carefully reading earlier versions
of the paper. We also thank Prof. Masami Ito for helpful comments.

References

1. Beeri C., On the Membership Problem for Fuctional and Multivalued De-
pendencies in Relational Databases. ACM TODS 5, 3, September 1980,

2. Berman J. and Blok W. J., Generalized Boolean dependencies. Abstracts
of AMS, 6 (1985), 163.

3. Berman J. and Blok W. J., Positive Boolean dependencies. Inf. Processing
Letters, 27(1988), 147-150.

4. Codd E.F., A Relational Model of Data for Large Shared Data Banks
CACM 13 : 6 June 1970, 377-387.

5. Date C. J., An introduction to Databases System. Additon Wesley Pub-
lishing Company, London, 1982.

6. Ho Thuan, Some invariants of covers for functional dependencies. MTA
SZTAKI Kozlemeayek 3411986.

7. Maier D. J., Minimum covers in the relational database model. J ACM 27

8. Nguyen Xuan Huy and Le Thi Thanh, Generalized Positive Boolean De-
pendecies. J. Inform. Process. Cybernet. EIK 28 (1992) 6, 363-370.

9. Vu Ngoc Loan, Nguyen Xuan Huy, A class of generalized logical de-
pendencies in deductive databases. Vietnam Fourth Informatics Week,
Proceeding, 195-203.

241-259.

(Oct. 1980), 664-674.

130

10. Vu Ngoc Loan, Le Duc Minh, The class of extended functional depen-
dencies in the relational data model. V N U Journal of Science. Nut. Sci.,

11. Le Duc Minh, Vu Ngoc Loan, Nguyen Xuan Huy, Some results concern-
ing with the class of multivalued positive boolean dependencies in the
relational data model in context of fuzzy semantics. Proceedings of V J -
FUSSSY '98 : Vie tnam - Japan bilaterial Symposium on f i z z y Systems
and Applications, Ha Long Bay, Vietnam, 30th September - Znd October,

T. XIII, NO. 2, 1977, p. 1-5.

1998, p. 378-382.

131

A NEW MEASURE FOR ATTRIBUTE SELECTION

Do Tan Phong
Mobi Fone Company VMS, Hanoi, Vietnam

Ho Thuan
Institute of Information Technology IIT, Hanoi, Vietnam

Ha Quang Thuy
College of Sciences, VNU

Abstract. In this article, we propose a new measure for attribute selection (RN -
measure) having closed relations to rough measure (Pawlak Z. [6]) and R - measure
(Ho Tu Bao, Nguyen Trung Dung [3]) . We prove that all of these three measures
are confidence measures i.e. satisfy the weak monotonous axiom. So the RN
- measure is worth in the class of attribute selection measures. Some relations
between these three measures are also shown.
Key words: confidence measure, rough measure, R-measure, RN -measure.

1. The weak monotonous axiom

Following Dubois D. and Prade H. [l], measures in approximate reasoning
should satisfy the weak monotonous axiom. The weak monotonous axiom of a
measure is described as follows.

Let R be a set (0 is called by reference set) and let g be a positive function
defined on the subsets of R (g : 2" + R;VA R, we have g(A) 2 0). A measure
g is called to satisfy the weak monotonous miom (in this article, it is called by the
monotonous axiom) if:

V A , B 0 : A & B * g(A) < g (B) (1)

The monotonous axiom is one of main requirements that measures in approximate
reasoning should be have. The meaning of it may be explained as the follows: By
having more information for reasoning then having more belief. The axiom should
be checked when we create a new measure in approximate reasoning. A measure
which satisfies the monotonous axiom is called by a confidence measure.

2. Measures for attribute selection

The data gathered from difference sources almost are rough data and rela-
tions between these data almost are unknown. These data usually described in

132

form of two- dimensions table, where a row is the data of an object, and a col-
umn is the data of an attribute. One of the relationship should be considered is
the attribute dependency: Exists or not a relation between a group of attributes
and another group of attributes and how to determine the value of these relations?
The determination of dependency between some groups of attributes is one of main
problems in analysis, discovery relations of data systems. Measures for attribute
selection are defined to solve above problems.
Definition 1. Let 0 be a set of objects and E C 0 x 0 is an equivalence relation
on 0. Two objects 0 1 ~ 0 2 E 0 are said to be distinguished by E if they satisfied
equivalence relation E (or 01 Eoz).
Definition 2. Let 0 be a set of objects and E C 0 x 0 is a equivalence relation
on 0, X C 0. Then sets E,(X) and E * (X) are defined as following:

(where[o] E denoted the equivalent class consisting of objects distinguished with o
by the equivalence relation E) . E , (X) and E * (X) are respectively called by the
lower approximation and upper approximation of X .

Lower approximation and upper approximation, defined by above definition
show out an approximation of set X through distribution set of objects of X by
an equivalence relation.. Some contents about lower approximation and upper
approximation sets are deal in [2,3,5,6,7]. Let, R be a set of attributes, P be a
subset of 0. P determines one equivalence relation on the set of objects 0 and
partitions 0 into equivalent classes, each class consists of all objects that have the
same value for all attributes in P.

Let P and Q, two subset of 0. P and Q will partition 0 into different
equivalent classes and when we consider relations between equivalent classes by
these two partitions, we have some information of causal relations from P and Q.
This information is explained in form of measures for attributes selection [3] .

3. The measure RN

Temperature
Normal
High
Very high
Normal
High
Very high
High
Very high

Headache flu
Yes No
Yes Yes
Yes Yes
No No
No No
No Yes
No No
Yes Yes

Table 1. Table of collect data

133

Measures for attributes selection by definitions 3 and 4 have been described
in [3,6]. To explain some contents in this article, we use the data in table 1 (with
the assumption that there do not exist two rows with same values (31):
Definition 3. (Pawlak Z. [S]) Let 0 be a set of objects, let R be set of at-
tributes, P ,Q c R are two subset of attributes. Then the rough measure (is d e
noted bypp(Q)), measuring the dependence level of the subset Q on subset P is
determined as follow:

Definition 4. (Ho Tu Bao, Nguyen !hung Dung [3]) Let 0 be a set of objects, let
R be set of attributes, P, Q R are two subset of attributes. Then the measure R
(is denoted by Cp(Q)) measures the dependence level of' the subset Q on subset P
is determined as follow:

As corresponding to the data in Table 1, the dependence degree of the flu attribute
on the headache by (5) equal to 9/16 while the correlative rough measure by (4)
equal to 0.

In the following, we will propose a new confidence measure, the measure R N ,
which is smaller than "the possibility measure" R and is great,er than the rough
measure.
Definition 5. Let 0 be a set of objects, letR be set of attributes, P ,Q c R are
two subset of attributes. Then the measure RN (is denoted by &) which measures
the dependence level of the subset Q on subset P is determined as follow:

As corresponding to the data in Table 1, the dependence degree of the flu attribute
on the headache by (6) equal to 5/32.

4. Some characteristics of the measure RN

Proposition 1. Let R be set of attributes, P, Q C R are two subset of attributes.
Then:

PP(Q) < &(Q) G bp(Q)

Proof:
At first, we write the formulas of rough measure and measure R by another

form as follows:

134

Let

Consider [o]p [o]Q, we would like to show that

Because [o]p C_ [o]Q then g![O]Q satisfying [o] ~ n [o] ~ # 0 and the maximum
on equivalent classes [o] ~ reaches on this [O]Q. By other hand, we have card([o]~ fl
[o]p) = card([o]p) and (b) is confirmed. That

0 By the definition 5 and (a), we have pp(Q) < p$(Q).
0 We prove now the second inequality j $ (Q) < F p (Q)
By the definition 6 and (c), we have only to prove:

We consider for each class [o]p in case there is no class [O]Q which contained it.
Denote

Because the number of positive components which belong to B is not exceed the
number ofobjects in [o]p (it means that card {[o]Q : [o] ~ n [o] p # S} < card([o]p)),
the number of non-zero terms which belong to the sum is not exceed the cardinal
of [o]p. For each term, we have:

card2([o]Q n [o]P) < max(card2([o]~ n 101~))
Q

and then

Thus, the corresponding components in two hands of (d) satisfy the inequal-
ity, and (d) is proved so &(Q) < fip(Q).

Let R be set of attributes, P, Q C R are two subset of attributes. When con-
sidering the dependence of subset Q on subset P, then P is called by the condition
attribute set and Q is called by the decision attribute set.

For rules in form "if P then Q , the belief of them depends on the change
of parameters P and Q. In the following, we investigate the belief of this rule on
direction, in which we fixed the decision parameter Q and changed the condition
parameter P.

135

Proposition 2. Let R be set of attributes. VP, Q

Pro0 f :

R. We have jip(Q) < 1.

VP,Q c 62,Vo E Othen([o]~) n [O]Q E [O] P , ~ [O] Q

Proposition 3. Let 0 be set of objects. For two subsets of attributes P,Q we
have:

Vo E 0, [O]P C [o]~iffpP(&) = &(Q) = i i ~ (Q) = 1.

Proof; For the rough measure (Pawlak), the equation in the Proposition is obvious.
By propositions 1 and 2, we have: pp(Q) < p$(Q) < f ip(Q) < 1
* VO E 0, [O] P C [O]Q * 1 = P P (Q) < &(Q) < i i ~ (Q) < 1

&(Q) = P P (&) = 1 VO E 0, [O]P G [O]Q 1 = PP(&)

Corollary 1. Let R be set of attributes, VQ R, we have

pun(&) = &(Q) = fin(&) = 1.

Proposition 4. VP, Q C 0, (P n Q) = 8, and p is denoted the compensate set of
P in 0, we have:

PAQ) = = j i P (Q) = 1.

Proof: By proposition 3.

Remarks 1. V integers a,, b,, where a, axe no negative, b, positive (i = 1 , 2 , ..., n),

Theorem 1. The rough measure of Pawlak, the measure R, the measure RN
satisfy the monotonous axiom.

Proof: Consider two subset of attributes P and P' where P C P'. Let m be any
one of three above measures, we should prove that m(P') > m(P) .

Preliminary remarks:
Assume that the set of objects 0 is partitioned by t,he subset of attributes

P into q equivalent classes. Because P G P' then each i-equivalent class by the
subset of attributes P consists a,(i = 1 ,2 , ..., q) equivalent classes by the subset of
attributes P'.

Denote the representative object of j-equivalent class (j = 1 ,2 , ... n,) by the
subset of attributes PI which is contained the i-equivalent class by the subset of

136

attributes P is 4(j = 1,2, ..., nz). For each 2-equivalent class by the subset of
attributes P, we denote the representative object is 0:. We chose the object 0: be
one of the objects 4 in some cases.

We consider 2-equivalent class (it means that [o:]p) by the subset of at-
tributes P , we have:

(*I [OZIP = u;:llo:l>
(**) C..d(IozlP) = u;:1 card(I4l'p)
(***) For each equivalent class [o]Q by the subset of attributes Q: card([o]Qn

0 Let m be the rough measure:
Consider two sets 01 = (0 E 0 : [o]p C (o] ~ } and 0 2 = (0 E 0 : [o]>

[OlQ]}
For each o E 01, we consider the equivalence class [o]p. By above, we have

o be some oz and [o,]> & [oz]p C [o,]Q, that is o E 0 2 . Because in spite of o so

[O z I P) = UYL1 card([o]Q [oil>)

01 c 0 2 .
Since then card(@) < card(O2) whether m(P) < m(P').
0 Let m be the measure R:
According to the preliminary remarks, we have following inequalities:

and

Because of card (0) fixed so for proving f ip (Q) < i ip>(Q) we have only to
prove that:

Two members of (e) have q of terms, so to confirm this inequality, we only confirm
for each corresponding terms in q couples of terms. That is for i = 1,2, .., q, we
prove that:

According to the preliminary remarks, we may chose o: be representative
object of the i-equivalence class by subset of attributes P with some special prop-
erties. We chose o: be the object which maximizes c a T f ~ ~ ~ ~ ~ ~ ~(it belongs to

137

the equivalent class by subset of attributes Q, too). By this choise 0: belongs to
[o] p and since [o]p is partitioned into classes [4] p ~ , 0: belongs to some jo- equiva-
lent class: the equivalent class [$]p . We chose the representative object 0: = $
which have equivalent class by subset Q ([d"]Q) which maximizes the left member
of (f). Since then, the left member of (f) is equal to

Card2([4'"]Q n [e] p)

card"dolP)

For the right member of (f), for j = 1,2, ..., n,, we always have:

so that

According to the first inequality of the Remarks 1, we have:

- card2([4"]Q n [4 O] P) B > (c;:~ card([4"lQ n [o i]P '))2 - c;:1 c a r 4 [4 l P f) card(14-1 P)

(by equality (**) and (***) in the preliminary remarks and we chose o:~ to be the
representative object 0: in equivalent class by P) .

So that

card2([o]Q n [4] P t) card2([4"]Q n [o ~ o] P)
3=1 ' F r card([$]p ,) c a 4 [4 ° 1 P)

Since then, (f) is proved for any 2-term (z = 1 ,2 , .., q) that is m(P) < m (P)
or by another term, R (P) < R(P').

0 Let m be the measure R N :
Like above, we consider:

in there A = C[O1pG[OjQ card ([o]p) and

138

Due to card(0) is fixed so to prove &(Q) < &(Q) we prove the inequality for
only two right members of the formulas.

We have:

because of card([o]p) = ~ l o l Q c a r d ([o] ~ n [o] ~) and

We classify equivalent classes by subset of at,tributes P' into three following

+ [o] p C_ [o]p C_ [O]Q are equivalent classes by P' which are partitioned from
equivalent classes by P such that [o]p C [o]Q. For every equivalent class attended
in the sum A by partition of P is related with a group of equivalent classes attended
in the sum A by partition of P' in this kind and two sums have the same value.
We denote the set of equivalent classes [o] p in this kind by set I.

+ [o] p C [O]Q but [o] p @ [o]p . The value of the term for this equivalent
class by subset P' equal to card([o]pt). We denote the set of equivalent classes [o] p
in this kind by set 11.

+ [o] p

kinds:

[o]Q: We denote the set of equivalent classes [o] p in this kind by
set 111.

To apply to the preliminary remarks and with out loss of generality the
comprehensive we assume that equivalent classes by subset P which are related
with equivalent classes by subset P' belonging to set I be the first classes [o t] p (i =
1,2, ..., k ; for 0 < k 6 q) . To observe that when k = 0 the there is not any equivalent
class by subset P, that, is contained in an equivalent class by subset Q; Otherwise,
when k = q, all of equivalent classes by subset P are contained in some equivalent
class by subset Q. We perform card(0) x &(Q) by another form:

139

We consider the following sum which related with subset P':

with

After gathering all of equivalent classes by subset P' into equivalent classes
by subset P , we get:

z = k f l j = l [o] ~

By the second inequality in the Remarks 1 and the preliminary remarks
(**), and (***), we have:

Then

According (i), (j), and (k) we have R,(P) < RN(P')
By the corollary 1 and t.he theorem 1, we find out: if considering the set

of all of attributes R be the reference set then the rough measure of Pawlak, the
measure R, the measure RN are confidence measures.

5. Conclusion

By Dubois D. and Prade H. [l] , one pair of dual confidence measures are
considered as two bound measures: The necessity measure N and the possibility

140

measure II. The necessit,y measure N is seemed as the minimum measure and the
possibility measure 11 is seemed as the maximum measure. Between two measures
there is a set of confidence measures and probability is one of them. We may
consider the measure R and t,he rough measure is two bound measures and RN is
one measure which lays between them (The proposition 1). However, the measure
R and the rough measure have not some special relations as two measure lI and N .

References

1. Dubois Didier, Prade Henri (1986). Possibility Theory: An Approach to
Computerized Processing of Uncertainly. CNRS, Languages and Computer
Systems (LSI), University of Toulouse I11 (English edition: The University
of Cambridge. 1988).

2. Ha Quang Thuy (1996). Rough set in decision tables., Journal of' Science,
The Vietnam National University, Hanoi. Vol. 12. No 4-1996, pp 9-14 (in
Vietnamese).

3. Ho Tu Bao, Nguyen n o n g Dung (1996). A Rough Sets Based Measure for
Attribute Selection in Decision Tree Induction. The Fourth International
Workshop on Rough Sets, Fuzzy Sets and Machine Discovery (RSFD '96).

4. Jiawei Han and Yangjian Fu (1996). Explomting of Attribute-Oriented In-
duction in Data Mining. I n the book Advances in Knowledge discovery and
Data mining. AAAI Press / The MIT Press, 1996, pp 399-425.

5. Le Tien Vuong, Ho Thuan (1989). A relation database extended by applim-
tions of fuzzy set theory and linguistic variables. Computers and art,ificial
Intelligence, Vol. 9, No.2, 153-168, 1989, Bratislava.

6. Pawlak Z. (1985). Rough set and Decision Tables. ICS PAS Report, 540,
3-1984, Warsawa, Poland.

7. Theresa Beaubouef, F'rederik E. Petry, Gurdial Arora (1998). Infomation-
theoretic measures of uncertainty fo r rough sets and rough relational databases.
Journal of information Sciences. No 409 (1998) pp. 185-195.

8. Usama M. Fayyad, Gregory Piatetsky - Shapiro, Padhraic Smyt~h (1996).
From Data Mining to Knowledge Discovery: A n Overview. In t,he book
Advances in Knowledge discovery and Data mining. AAAI Press / The MIT
Press, 1996, pp 1-36.

141

The Complexity of Problems
Defined by Boolean Circuits

Steffen Reith Klaus W. Wagner
Lehrstuhl fur Theoretische Informatik

Universitat Wurzburg
[streit ,wagner]@informatik.uni-wuerzburg.de

Abstract
We study the complexity of circuit-based combinatorial problems

(e.g., the circuit value problem and the satisfiability problem) de-
fined by Boolean circuits with gates from an arbitrary finite base B
of Boolean functions. Special cases have been investigated in the lit-
erature. We give a complete characterization of their complexity de-
pending on the base B. For example, for the satisfiability problem for
Boolean circuits with gates from B we present a complete collection of
(decidable) criteria which tell us for which B this problem is in L, is
complete for NL, is complete for @L, is complete for P, or is complete
for NP. Our proofs make substantial use of the characterization of all
closed classes of Boolean functions given by E.L. POST already in the
twenties of the last century.

1 Introduction
The complexity of formula-based and circuit-based combinatorial problems
was studied through the more than three decades of Complexity Theory. Al-
ready in 1971, S.A. COOK [Coo7l] proved that the satisfiability problem
for Boolean formulae is NP-complete: This was the first NP-complete prob-
lem ever discovered. R.E. LADNER [Lad771 proved in 1977 that the circuit
value problem is P-complete. In many cases when a new complexity class
was introduced and investigated, a formula-based or circuit-based combina-
torial problem was the first which was proved to be complete for this class
(see [SM73, Gi1771, for example). However, usually these problems were de-
fined using formulae or circuits with a complete base of Boolean operations

142

or gates, mostly with the base {A, V, l}. But what about the complexity of
such problems when a different base is used? There are several special results
of this kind (e.g. [Sim75, Go177, Lew79, GP861). In particular, there are very
detailed investigations for the special case of Boolean formulae in conjunctive
normal form in [Sch78, Cre95, CH96, CH97, KST97, RVOO]. But there are
no results answering this question for unresricted circuits in full generality.
In this paper we will give complete characterizations of the complexity of
some combinatorial problems defined by circuits with Boolean gates from an
arbitrary finite base.
The paper is organized as follows. In Section 2 we define B-circuits as

Boolean circuits with gates from a finite set B of Boolean functions, and
we define BF[B] as the class of Boolean functions computed by B-circuits.
The complexity of a problem defined by B-circuits only depends on BF[B].
The classes of the form BF[B] are exactly those classes of Boolean functions
which contain the identity function and which are closed under superposition
(i.e., substitution, permutation of variables, identification of variables, and
introduction of non-essential variables). Already in the twenties, E.L. POST
[PosLil] gave a complete characterization of these classes. We make substan-
tial use of his results which we present in Section 3. In Sections 4-8 we study
the complexity of the circuit value problem, the satisfiability problem and
the tautology problem, some quantified circuit problems, the counting func-
tion, and the threshold problem, resp., when defined by circuits with Boolean
gates from an arbitrary finite base B. We give complete characterizations of
their complexity in terms of completeness for suitable complexity classes.

2 Problems Defined by B-Circuits
In this paper we will study problems which are defined by Boolean circuits
with gates from a finite set of Boolean functions. Informally, for a finite set
B of Boolean functions, a B-circuit C with input Variables xl , . . . , x , (~) is
a directed acyclic graph with. a special output node which has the following
properties: Every vertex (gate) with indegree 0 is labeled with an xi or a 0-
ary function from B. Every vertex (gate) with indegree k > 0 is labeled with
a k-ary function from B. Given values al , . . . ,a,(c) E (0, l} to XI,. . . , z,(c),
every gate computes a Boolean value by applying the Boolean function of this
gate to the values of the incoming edges. The Boolean value computed by
the output gate is denoted by f~(a1,. . . , a,(c)) . In such a way the B-circuit
C computes the a(C)-ary Boolean function fc. For more formal definitions
see [Vo199]. Furthermore, let BF[B] =df {fc: I C is a B-circuit} be the class
of all Boolean functions which can be computed by B-circuits.

Now let A be a property related to Boolean functions. For a finite set B of

143

Boolean functions define

A (B) =df {(C,a) 1 C is a B-circuit such that (fc, a) has property A}.

In order to study the complexity of A (B) the following question is very
important: How can we relate the complexity of A (B) and A(B’) by relating
the sets B and B’ of Boolean functions themselves? The following proposition
gives a satisfactory answer.

Proposition 1 Let A be a property of Boolean functions. For finite sets
B and B’ of Boolean functions, if B C BF[B’] then A (B) L z g A(B’) .
Consequently, i f BF[B] = BF[B’] then A (B) ~ z g A(B’) .

Proof To convert a B-circuit into an equivalent B’-circuit just replace every
0

In what follows we will make substantial use of the fact that the complex-
ity of A (B) depends only on BF[B]. To this end it is necessary to study
the classes of Boolean functions which have the form BF[B]. It turns out
that this are exactly those classes of Boolean functions which contain the
identity function and which are closed under superposition (i.e., substitu-
tion, permutation of variables, identification of variables, and introduction of
non-essential variables). In the following section we will report on important
results which are known on these classes.

B-gate by a B’-circuit computing it.

3 Closed Classes of Boolean Functions
A function f : (0, l}” + {0,1} with n 2 0 is called an w a r y Boolean func-
tion. By BF we denote the class of all Boolean functions. In particular, let co
and c1 be the 0-ary constant functions having value 0 and 1, resp., let id and
non be the unary functions defined by id(a) = a and non(a) = 1 w a = 0,
let et, vel, and aut be the binary functions defined by et(a,b) = 1 w a =
b = 1, vel(a,b) = 0 w a = b = 0, and aut(a,b) = 1 w a # b. We also
write 0 instaed of co, 1 instaed of cl, ?E or i z instead of non(z), z A y ,
z . y , or x y instead of et(z, y) , z V y instead of vel(z, y) , and z @ y instead
of aut(z,y). For i E { l , 2 , . . . ,n}, the i-th variable of the n-ary Boolean
function f is said to be non-essential iff f (a l , . . . ai-l,O, ai+l, . . . ,a,) =
f (a l , . . . ai-1,1, a i+ l , . . . ,a,) for all (11,. . . ai-1, ai+l, . . . ,a, E (0, l}.
For a set B of Boolean functions let [B] be the smallest class which contains

B U {id} and which is closed under superposition (i.e. substitution, permuta-
tion of variables and identification of variables, introduction of non-essential
variables). A set B of Boolean functions is called a base of the class F of

144

Boolean functions if [B] = F and it is called complete if [B] = BF. A class
F of Boolean functions is called closed if [F] = F.
The closed classes of Boolean functions are closely related to the sets of

Boolean functions computed by B-circuits, as shown in the following “folk-
lore” statement .

Proposition 2 For any set B of Boolean functions, BF[B] = [B].

function f is said to be
Now consider some special properties of Boolean functions. An n-ary Boolean

0 a-reproducing iff f (a , a , . . . ,a) = a (a E (0, l}),

0 linear iff there exist ao, al, . . . ,a, E {0,1} such that

-
0 self-dual iff f(a1,. . . ,a,) = f (Ei, . . .a,) for all al, . . . ,a , E (0, I},

0 monotone iff fm(al, . . . ,a,) 5 f m (b l , . . . , b,) for all al , . . . , a,, b l , . . . ,

0 a-separating iff there exists an i E {1,2, . . . ,n} such that !-‘(a) c
0 a-separating of degree m iff for every U c !-‘(a) such that IUI = m

there exists an i E {1,2,. . . n} such that U c {O,l}Z-’ x { a } x (0, l},-Z

b, E {0,1} such that a1 5 b l , a2 5 b 2 , . . . , a , 5 b,,

{O, l} i -1 x { a } x {0,1},-i (a E (0, l}),

(a E {0,1>, m 2 2).

The classes of all Boolean functions which are O-reproducing, l-reproducing,
linear, self-dual, monotone, O-separating, l-separating, O-separating of degree
m, and l-separating of degree m, resp., are denoted by BF, &, R1 L, D, M,
SO, S1, S r l and Sy, resp.
The closed classes of Boolean functions were intensively studied by E. L.

POST already at the beginning of the twenties. He gave a complete char-
acterization of these classes. In this paper we will make substantial use of
his main results which are presented in the following two theorems. For a
detailed presentation see also [JGK70], the non-German reader may prefer
[Pip97].

 1. TRhecomplete list of closed classes of Boolean

145

SO, So2 =dfSO n R, Sol =dfSO n M, So0 =dfSO n R n M,
S17 S12 =dfS1 n R, S11 =dfS1 n M, SIO =dfS1 n R M,
S r , SG =dfsr n R, Sg =dfsr r l M, S; =dfsr n R n M for m 2 2,
Sy , S z =dfsy n R, SE =dfsy r l M, S;n, =dfsy n R n M for m 2 2,
E =df[et] U [CO] U [CI], EO =df[et] U [CO], El =df[et] U [CI], E2 =df[et],

v =df[vel] u [co] u [Cl], vo =,,[vel] u [co], v1 =,,[vel] u [Cl], v2 =df[vel],
N =df[non] U [CO] U [Cl] , N2 =df[non],

1 =dr[id] u [CO] u [C l] , 10 =df[id] u [CO], 11 =df[id] u [C1], 12 =,,[id],
=df[CO] [cl], co =df[CO]f c1 =df[C1], 0.

2. The inclusional relationships between the closed classes of Boolean func-
tions are presented in Figure 1.

3. There exists an algorithm which, given a finite set B 2 BF, determines
the closed class of Boolean functions from the list above which coincides
with [B].

4. There exists an algorithm which, given f E BF and afinite set B C BF,
decides whether f E [B] or not.

5. Every closed class of Boolean functions has a finite base.

Let us consider an example. Define the Boolean function f 3 such that
f (z , y , z) = 1 iff exactly one argument has the value 1. Clearly, f is 0-
reproducing but not 1-reproducing. Now assume that f is a linear function,
i.e., f (x, y, z) = ao&i (a1 .z) @(a2 .y) @ (a3 . z) for suitable ao, a1 , a2, a3 E (0, l}.
Since f (O , O , O) = 0 we know a0 = 0 and it follows that a1 = a2 = a3 = 1,
because of f(1, 0,O) = f (0,1,0) = f (O , O , 1) = 1. But this is a contradiction
because f (1, 1 , l) = 0, showing that f is not linear. Furthermore f is not
monotone since f (1,0,0) = 1 and f (1,1,1) = 0, and it is not self-dual because
of f(0, 0,O) = f (1,1,1). Finally, f cannot be 1-separating of degree 2 because
of f (O,O, 1) = f (O , l , 0) = 1. Summarizing the above, f is not in R1, L, M,
D, and S: but it is in &. A short look at Figure 1 shows [{f}] = Ro.
For an wary Boolean function f define the Boolean function dual(f) by

dual(f)(zl,. . . ,x,) =df f (Zi, . . . ,%). The functions f and dual(f) are said
to be dual. Furthermore, f is self-dual
iff dual(f) = f . For a class F of Boolean functions define dual(F) =df

{dual(f) 1 f E F } . The classes F and dual(F) are called dual.

Obviously, dual(dual(f)) = f.

Proposition 4
dual([B]).

in Figure 1) .

1. If B is a set of Boolean functions then [dual(B)] =

2. Every closed class is dual to its “mirror class” (via the symmetry axis

146

Figure 1: Graph of all classes of Boolean function being closed under super-
position

147

4 Circuit Value
Let B be a finite set of Boolean functions. The circuit value problem for
B-circuits is defined as

VAL(B) =df {(C, a) 1 C is a B-circuit, a E (0 , l}a(C), and f c (a) = 1)

It is obvious that VAL(B) E P for every finite set B of Boolean func-
tions. LADNER [Lad771 proved that VAL({et, vel, non}) is Lkg-complete for
P. GOLDSCHLAGER [Go1771 proved that even VAL({et, vel) is Lgg-complete
for P. Eventually, GOLDSCHLAGER and PARBERRY proved for any set B of
binary Boolean functions: If {et,vel} C [B] or (B g L and B g M) then
VAL(B) is Fzg-complete for P, otherwise VAL(B) is acceptable in log’n
space. This is already a “general” result but it applies only to binary Boolean
functions and it disdinguishes only between “P-complete” and “acceptable in
log2n space”. To obtain a more general and more refined result we strengthen
Proposition 1 for the case of the circuit value problem.

Proposition 5 For finite sets B and B‘ of Boolean functions, if B g [B’ u
{id, co,c1}] then VAL(B) < k g VAL(B’). ConsequentZy, if [Bu{id, C O , C ~ }] =
[B’U {id,co,cl}] then VAL(B) ~ 2 g VAL(B‘).

Proof As for Proposition 1, but additionally a co-gate (cl-gate, resp.) is
0

Hence, for the study of the complexity of VAL(B), only those closed classes
of Boolean functions are of importance which contain co, and c1. A close
inspection of Figure 1 shows:

replaced by an input gate with Boolean value 0 (1, resp.).

Proposition 6 The closed classes of Boolean functions containing co, and
c1 are BF, M, V, E, L, N, and I.

Now we are ready to prove our main theorem on the complexity of VAL(B).

Theorem 7 Let B be a finite set of Boolean functions.
if (B N) then

VAL(B) E L
else if ((B g E) or (B

else if (B g L) then

else

V)) then
VAL(B) is skg-complete for NL

VAL(B) is skg-complete fo r @L

VAL(B) is skg-complete for P

148

There exists an algorithm which decides which of the cases above holds.

Proof sketch: The proof runs along the following lines:
1. If B s N then VAL(B) S k g VAL({non}). We prove that VAL({non})

is in L.
2. Let B g N and B V. We prove that VAL(B) =:g VAL({vel}) and

that VAL({vel}) is Skg-equivalent to the NL-complete graph accessibility
problem.

3. The case B g N and B C E is treated in the same way.
4. Let B g N and B c L. We prove that VAL(B) = k g VAL({aut}) and

that VAL({aut}) is Skg-equivalent to the @L-complete graph odd accessibil-
ity problem (eg., the problem of whether the number of paths from the start
node to the target node in a given directed graph is odd).

L. We prove VAL({et, vel}) Fkg VAL(B).
Then VAL(B) is Skg-complete for P by the GOLDSCHLAGER result. 0

Finally let us mention that the GOLDSCHLAGER-PARBERRY criterion for
sets B of binary Boolean functions is not valid for arbitrary finite sets B of
Boolean functions. Take for example B = { x y v xz} for which we obtain
vel $ [B] and B c M. The GOLDSCHLAGER-PARBERRY criterion would yield
that VAL(B) is acceptable in log'n space. However, Theorem 7 shows that
VAL(B) is <kg-complete for P which is not likely to hold at the same time.

5. Let B g V, B g E, and B

5 Satisfiability and Tautology
In this section we study the complexity of the satisfiability problem and the
tautology problem for B-circuits. For a finite set B of Boolean functions we
define

SAT(B) =df {C 1 C is a B-circuit and fc(a) = 1 for at least one
a E {o,l}a(C)}

and

TAUT(B) =df {C I C is a B-circuit and fc(a) = 1 for all a E (0, l}"

It is obvious that SAT(B) E N P and TAUT(B) E co-NP for every finite
set B of Boolean functions. COOK [Coo7l] proved that SAT({et, vel, non}) is
&g-complete for NP. Consequently, TAUT({et, vel, non}) is Sgg-complete
for co-NP. LEWIS [Lew79] proved that SAT(B) is Skg-complete for N P for
every B such that x A
The following easy-to-get reductions between different satisfiability and value

problems are needed for the proof of the main theorem on the complexity of
SAT(B).

E [B].

149

Proposition 8 Let B be a finite set of Boolean functions.

1 . If B c M then SAT(B) < k g VAL(B).

2. If co E [B] c M then VAL(B) < k g SAT(B).

3. If colcl E [B] then VAL(B) <&g SAT(B).
4. SAT(B U {cl}) s k g SAT(B).

Now we are ready to prove the main theorem on the complexity of SAT(B).

Theorem 9 Let be B a finite set of Boolean functions.
if ((B c R1) or (B c D) OT (B c N)) then

else if ((B C E) or (B 2 V)) then

else if (B c L) then

else if (B M) then

else

There exists an algorithm which decides which of the cases above holds.

SAT(B) E L

SAT(B) is Igg-complete for NL

SAT(B) is <kg-compZete for $L

SAT(B) is <kg-compZete for P

SAT(B) i s <gg-compZete for NP.

Proof sketch: The proof runs along the following lines:
1. If B c R1 then every B-circuit C is satisfiable because of fc(1,. . . 1) = 1.
2. If B D then every B-circuit C is satisfiable because of fc(0,. . . , 0) = 1

3. Let B c N. We prove that SAT(B) < k g SAT({non,cl}), and that

4. Let B g R1, B g N, and B C V. We prove SAT(B) =kg VAL(B).

5 . The case B g R1, B
6. Let B g R1, B g N, and B c L. We prove that SAT({aut}) < k g

SAT(B) < g g SAT({aut, cl}), that SAT({aut, CI}) is in @Land that the @L-
complete graph odd accessibility problem is Skg-reducible to SAT({aut}).

7. Let B g R1, B D, B g V, B g E,and B c M. WeproveSAT(B) =kg

VAL(B). Now Theorem 7 yields that SAT(B) is <kg-complete for P.
8. Let B g R1, B g D, B g L, and B g M. We prove z A 5 E [B]. By the

0

Now turn to the tautology problem. The following obvious duality principle
allows us to conclude the main theorem on the complexity of TAUT(B) from
the corresponding theorem on SAT(B).

or fc(1,. . . , 1) = 1.

SAT({non,cl}) is in L.

Now Theorem 7 yields that SAT(B) is <kg-complete for NL.
N, and B c E is treated in the same way.

LEWIS result we get that SAT(B) is <kg-complete for NP.

150

Proposition 10 For any finite set B of Boolean functions, TAUT(B) z z g

SAT(dual(B)).

Now we are ready to prove the main theorem on the complexity of TAUT(B) .

Theorem 11 Let be B a finite set of Boolean functions.

if ((B g &) or (B
TAUT(B) E L

else if ((B C E) or (B E V)) then

else if (B C L) then

else if (B C M) then

else

D) 01- (B g N)) then

TAUT(B) is &g-complete for NL

TAUT(B) is Fzg-complete for @L

TAUT(B) is igg-complete for P

TAUT(B) is <kg-complete for co-NP.

There exists an algorithm which decides which of the cases above holds.

6 Quantifiers
In this section we study the complexity of problems defined by B-circuits
with quantified input variables. For Q 1 , Q 2 , . . . ,Qm E (3,V) and k 2 1, we
call Q 1 Q 2 . . . Qm a &-string (a &-string) if Q1 = 3 (Q1 = V, resp.) and
there are at most k - 1 alternations between 3 and V in Q 1 Q 2 . . . Q,. For a
finite set B of Boolean functions define:

Xk(B) =df { Q l q . . . Qmx,C I C is a B-circuit with Boolean variables
21,. . . , z,, Q1 . . . Qm is a &-string and
Q121. . . Q m z m f c (z 1 , 5 2 , . . . , 2,) = 1)

I&(B) =df (Q1z1 . . . Qmz,C I c is a B-circuit with Boolean variables
z 1 , . . . ,z,, Q1 . . . Qm is a &-string and
Q121. . . Q m z m f ~ (z 1 , . . ., zm) = 1)

QBC(B) =df (Q1z1 . . . QmzmC 1 C is a B-circuit with Boolean variables
x l , . . * , z m , Q1, . . .7Qrn E (3,v) and
Q1z1 . . . Q m z m f c (z 1 , . . . ,zm) = 1)

Notice that &(B) = SAT(B) and lll(B) = TAUT(B) have already been
treated in the previous section. Here we concentrate on the case k 2 2.
It is obvious that Ek(B) E EL, &(B) E IIL, and QBC(B) E PSPACE for

every finite set B of Boolean functions. STOCKMEYER and MEYER [SM73]

151

proved that &({et, vel, non}) is 5:g-complete for C:, IIk({et, vel, non}) is
Skg-complete for ll:, and QBC({et, vel, non}) is 5:g-complete for PSPACE.
For sets B of monotone Boolean functions the complexity of X:k(B), IIk(B)

and QBC(B) can easily be related to the complexity of VAL(B) .

Proposition 12 If B 5 M is a finite set of Boolean functions then Xk(B)
-:g IIk(B) z k g QBC(B) =:g VAL(B) for every k 2 2 .

Theorem 13 Let be B a finite set of Boolean functions, and let lc 2 2 .

if (B g N) then

else if ((B

else if (B g L) then

else if (B C M) then

else

&(B) , nk (B) , QBC(B) E L
E) or (B g V)) then

X:k(B),IIk(B), and QBC(B) are <:g - complete f o r NL

&(B),IIk(B), and QBC(B) are 5:g-complete for @L

&(B),IIk(B), and QBC(B) are &?-complete for P

Xk(B) is skg-complete for C:
IIk(B) is &?-complete for II:
QBC(B) is 5:g-complete f o r PSPACE.

There exists an algorithm which decides which of the cases above holds.

Proof sketch: The proof for xk(B) runs along the following lines, the other
cases are analogous.

1. Let B 2 N. We prove that Xk(B) 5:g Xk({non,cI}), and that
E:k({non,cl}) is in L.
2. Let B g N and (B V or B C E). We prove that Ek(B) z Z ~ VAL(B) .

By Theorem 7 we obtain that these problems are &g-complete for NL.
3. Let B N and B g L. We prove that X k ({ h }) <:g &(B) <:g

&({aut,cl}) where h (x , y , z) =df x @ y @ z , that I=k({aut,cl}) is in CfiL, and
that the complement of the graph odd accessibility problem is 5:g-reducible
to & ({ h }) (notice that @L is closed under complement).
4. Let B V, B E, and B C M. We prove that Xk(B) z:g VAL(B) .

By Theorem 7 we obtain that these problems are <kg-complete for P.
5 . Let B g M and B g L. We prove that B U {co,c1} is complete, that

there exists an h E [B] such that h(x, u, 0 , l) = x V u and h (x , u, w, z) 5 u for
all (v, 2) # (0, l), and that E:k(BU{co,cl}) <&g Ek(BU{h}) for such an h. 0

152

7 Counting Functions
In this section we study the complexity of functions which count the num-
ber of satisfying inputs to a B-circuit. For a B-circuit C define #C =df

#{a E (0 , l}u(") I f c (a) = l}, and for any finite set B of Boolean functions
define the counting function #(B) by #(B)(C) =df #C where C is a B-
circuit.
It is obvious that #(B) E #P for every finite set B of Boolean functions.

Simon [Sim75] proved that #({et, vel, non}) is <kg-complete for #P.
To study the complexity of #(B) in the general case we will use the following

propositions which are analogous to Proposition 1 and Proposition 8.4 and
which are proved in the same way.

Proposition 14 For B and B' be finite sets of Boolean functions, if B
BF[B'] then #(B) < k g #(B').
#(B) - k g #(B').

Consequently, if BF[B'] = BF[B'] then

Proposition 15 If B is a finite set of Boolean functions containing et then
#(B u {CI)) I!? # W .

Proposition 16 For any circuit C there holds #dual(C) = 2a(") - #C.

We will use the following obvious duality principle.

Next we prove a lemma about the representation of #P functions by #(B)
functions. We omit the proof of this lemma.

Lemma 17 Let B be a finite set of Boolean functions.

1. If [B] 2 S1 then #(B) is &g-complete for #P, i.e., for every function
f E #P there exists a logspace computable function h generating B-
circuits such that f (x) = #h(x) .

2. If [B] 2 S l o or [B] 2 So0 then #(B) is <F'T-complete for #P. More
specifically, for every function f E #P there exist logspace computable
functions hl , h2 generating B-circuits and logspace computable func-
tions g1,g2 such that f(z) = # h l (x) - gl(x) = g2(x) - #h2(x).

Now we can prove our main result on the complexity of # (B) .

153

Theorem 18 Let be B a finite set of Boolean functions.

if ((B 2 N) or (B C D)) then

else if ((B g E) or (B g V)) then

else if (B g L) then

#(B) E FL

(B) is <p'T -complete f o r FLrLIO(logn)]

#(B) is S''fT -hard for FLrL[l] and
#(B) E q L [2 I

else if (B g R1) then
#(B) is <"fT -complete for #P,
but not 5:g-complete for #P

#(B) is <p'T -complete for #P.
If #(B) is <:g-complete f o r #P then P = NP.

else if (B g M) then

else
#(B) is szg-complete fo r #P.

There exists a n algorithm which decides which of the cases above holds.

Proof sketch: The proof runs along the following line. 1. Let B 2 N. We
prove that #(B) < z g #({non, CI}) and that #({non, cl}) can be computed
in logspace.
2. If B 2 D and C is a B-circuit with n input variables then #C = 2"-l.
3. Let B g N and B C E. We prove that #({et}) 5:g #(B) <:g

#({et, co,cl}), that #({et, co, cl}) is in FLf;LIO(logn)], and that every func-
tion from FLfL[O(1ogn)] is ikg-reducible to #({et}).

4. The case B
5 . Let B g N, B g D, and B 2 L. We prove that #({aut}) 5 z g #(B) <:g

N and B 2 V is done in an anologous manner.

#({aut,cl}), that #({aut,cl}) is in FLrL[2], and that #({aut}) is
hard for FLfL [l].
6. Let B g D, B g V, B g E, B g L, and B E R1. An inspection of

Figure 1 shows that [B] 2 Slo or [B] 2 SOO. By Lemma 17 we obtain #(B)
is 5?'T-complete for #P. Because of B C R1 we have #(B)(C) > 0 for
every B-circuit C. Hence #(B) cannot be <:g-complete for #P.

7. Let B g D, B g V, B g E, B L, and B g M. As above we
obtain that #(B) is S:O_gT-complete for #P. Assume that #(B) is <;g-

complete for #P. For an arbitrary A E N P there exists an f E #P such
that x E A @ f (x) > 0 for every 2. Since # (B) is <!ig-complete for #P
there exists a logspace computable function h such that f (x) = #(B) (h (x))

154

for every z. Consequently, z E A * #(B)(h(z)) > 0 ($ h(z) E SAT(B).
Because of B g M we obtain A E P by Theorem 9.

M. An inspection of Figure 1 shows
that [B] 2 S1. By Lemma 17 we obtain that # (B) is <kg-complete for #P. 0
8. Let B g D, B g L, B g R1 , and B

8 The Threshold Problem
In this section we will study the complexity of the threshold problem

THR(B) =df { (C , k) I C is a B-circuit, k 2 0, and #C 2 k)

for every finite set B of Boolean functions. Obviously, THR(B) E PP. GILL
[Gi177] proved that THR({et, vel, non}) is Skg-complete for PP.
Now we are ready to prove the main theorem on the complexity of THR(B) .

Theorem 19 Let be B a finite set of Boolean functions.

if ((B C N) or (B g D)) then

else if ((B

else if (B E L) then

else

THR(B) E L
E) or (B g V)) then

THR(B) is Lkg-complete for NL

THR(B) is Skg-complete for @L

THR(B) is Skg-complete for PP.

There exists an algorithm which decides which of the cases above holds.

Proof 1. If B g N or B g D then, by Theorem 18, we have #(B) E FL
and consequently THR(B) E L.

E. By Theorem 18 we obtain #(B) E FLfi'L and
hence T H R (B) E LNL = NL. For the lower bound we prove GAP S 2 g
THR({et})

2. Let B g N and B

3. The c a e B g N and B 2 V is done in an analogous manner.
4. The case B g N, B g D, and B g L is also done analogously.
5. Let B g D, B g V, B g E, and B g L. An inspection of Figure 1

shows that [B] 2 Slo or [B] 2 So0 For a set A E PP there exists a f E #P
such that (z,k) E A ($ f(z) 2 k. By Lemma 17 there exist logspace com-
putable functions g, h such that f(z) = #(B)(h(z)) - g(z). Consequently,

0 (z , k) E A @ #(B)(h(z)) 2 g(z) + k @ (h(z) ,g(z) + k) E T H R (B) .

155

9 Conclusions
We have investigated the complexity of circuit-based combinatorial problems
defined by circuits with gates from an arbitrary finite base of Boolean func-
tions. What about the special case of Boolean formulae, i.e., “tree-like”
Boolean circuits? Informally, all completeness results for complexity classes
beyond P are the same as in the general case of circuits. The complet.eness
results for complexity classes inside P do not remain valid in many cases
because evaluating a formula is much easier than evaluating a circuit.

References
[CH96] N. Creignou and M. Hermann. Complexity of generalized satisfiability

counting problems. Information and Computation, 125:l-12, 1996.

[CH971 N. Creignou and J.-J. Hebrard. On generating all solutions of generalized
satisfiability problems, 1997.

 COO^^] S. A. Cook. The complexity if theorem proving procedures. In Proc. 3rd
Ann. ACM Symp. on Theory of Computation, pages 151-158, 1971.

[Cre95] N. Creignou. A dichotomy theorem for maximum generalized satisfiability
problems. Journal of Computer and System Sciences, 51:511-522, 1995.

[Gi177] J.T. Gill. Computational complexity of probabilistic turing machines.
SIAM Journal of Computation, 6:675-695, 1977.

[Go1771 L. M. Goldschlager. The monotone and planar circuit value problems are
log-space complete for P. SIGACT News, 9:25-29, 1977.

[GP86] L.M. Goldschlager and I. Parberry. On the construction of parallel com-
puters from various bases of boolean functions. Theoretical Computer
Science, 43:43-58, 1986.

[JGK70] S. W. Jablonski, G. P. Gawrilow, and W. B. Kudrajawzew. Boolesche
Funktionen und Postsche Klassen. Akademie-Verlag, 1970.

[KST97] S. Khanna, M. Sudan, and L. Trevisan. Constraint satisfaction: The
approximability of minimization problems. In Proceedings 12th Compu-
tational Complexity Conference, pages 282-296. IEEE Computer Society
Press, 1997.

[Lad771 R. E. Ladner. The circuit value problem is logspace complete for P.
SIGACT News, pages 18-20, 1977.

[Lew79] H. R. Lewis. Satisfiability Problems for Propositional Calculi. Mathemat-
ical Systems Theory, 13:45-53, 1979.

[Pip971 N. Pippenger. Theories of Computability. Cambridge University Press,
Cambridge, 1997.

156

[Pos41]

[RVOO]

E. L. Post. The two-valued iterative systems of mathematical logic. An-
nals of Mathematical Studies, 5:l-122, 1941.

S. Reith and H. Vollmer. Optimal Satisfiability for Propositional Calculi
and Constraint Satisfaction Problems. In Proc. 25th MFCS, volume 1893
of Lecture Notes in Computer Science. Springer Verlag, 2000.

Th.J. Schaefer. The complexity of satisfiability problems. In Proc. 10th
ACM STOC, pages 216-226. Association for Computing Machinery, 1978.

J. Simon. On some central problems in computational complexity. Doc-
toral Thesis, Dept. of Computer Science, Cornell University, 1975.

L. J . Stockmeyer and A. R. Meyer. Word problems requiring exponential
time. In Proc. 35th Ann. ACM Symp. on Theory of Computation, pages

H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

[Sch78]

[Sim75]

[SM73]

1-9, 1973.

[Vo199]

157

The rational skimming theorem

Jacques Sakarovitch *

Abstract

We define the notion of K-covering of automata with multiplicity
(in a semiring K) that extend the one of covering of automata. We
make use of this notion, together with the Schutzenberger construct
that we have explained in a previous work and that we briefly recall
here, in order to give a direct and constructive proof of a fundamental
theorem on M-rational power series.

In a previous work (cf. [4]), we have shown how a construction, proposed
by Schutzenberger (in [8] and [9]) in order to prove that rational functions
are unambiguous, can be given a central position in the theory of relations
and functions realized by finite automata. The other basic results such as the
“Rational Cross-section Theorem”, the “Rational Uniformisation Theorem”
(that is dual to the preceeding one), and the “Decomposition Theorem ”
(of rational functions into sequential functions) appear then as direct and
formal consequences of it.

We have explained that this construction is indeed a construction on
finite automata and we have described it in the framework of covering of
automata - which is derived from the notion of covering of graphs that was
proposed by Stallings ([lo]) - and which makes (in our opinion) the whole
subject much clearer.

The purpose of the present communication is to extend the concept of
covering to the one of K-covering that apply to automata with multiplicity
in a semiring K. And to make use of this notion together with the Schutzen-
berger construct quoted above, in order to establish another result, due to
Schutzenberger as well, and that we call the Rational Skimming Theorem.

‘LTCI, UMR 5141 CNRS/ENST , Paris

158

Theorem 1 [7] If s is a N-rational power series on A*, then the series sf
obtained from s by substracting 1 to every non-zero coeficient of s , i.e. the
series

sf = s - supps

is a N-rational power series as well.

This result is not new, by far. In [2, Theorem VI.11.11, it is obtained as
the consequence of the Rational Cross-section Theorem quoted above (and
of some other results such as the division theorem). In [6, Theorem 11.8.61
and in [l, Theorem V.2.11, more direct proofs are given (the attribution to
Schutzenberger is made in the latter reference).

The proof presented here is hopefully simpler than the preceeding ones
and corresponds to an explicit construction on automata. A complete expo-
sition of all that matter, K-coverings and their use in the theory of K-rational
series will be found in [5].

1 The Schutzenberger covering

We basically follow the definitions and notation of [2] which we use without
further notice. Those that follow in this section and that are more original
have been described in detail in [4].

A (finite) automaton over a finite alphabet A, A = (Q, A, E , I, T), is a
directed labelled graph where Q, I and T are respectively the (finite) sets of
states, initial states and terminal states, and E is the set of labelled edges.
The language accepted by A, that is the set of the labels of the successful
computations in A, also called the behauiour of A, is denoted by IAI.

A rnorphism cp from an automaton B = (R , A, F, J , U) into an au-
tomaton A = (Q, A, E , I, T) is indeed a pair of mappings (both denoted
by cp): one between the set of states 'p: R -+ Q, and one between the set of
edges cp: F + E, which are consistent with the structure of the automata,
that is, for every f in F:

i) the origin of f c p is the image (by 'p) of the origin o f f ;

ii) the label of f'p is equal to the label o f f ;

iii) and Jcp I and Ucp T .

These conditions imply that the image of a successful computation in B is a
successful computation in A, that their labels are equal, and thus that IBI C
Id1 holds.

159

For every state q of an aut,omaton A = (Q , A, E , I , T), let us denote
by OutA(q) the set’ of edges of A the origin of which is q, that is edges that
are ‘lgoing out” of q. One defines dually InA(q) as the set of edges of A the
end of which is q, that is edges that are “going in” q.

If cp is a morphism from B = (R ,A , F, J , U) into A = (Q, A, E , I , T)
then for every r in R, cp maps O u t s (r) into OUtA(rcp), and Ins(?-) into InA(rcp)
. We say that cp is Out-surjective (resp. Out-bijective, Out-injective) if for
every r in R the restriction of cp to O u t s (r) is surjective onto OutA(rcp)
(resp. bijective between O u t s (r) and OUtA(?yY), injective). Accordingly, we
say that cp is In-surjective (resp. In-bijective, In-injective) if for every T

in R the restriction of cp to Ins(r) is surjective onto InA(rcp) (resp. bijective
between Ins(r) and InA(rcp), injective).

Definition 1 L e t B = (R , A , F , J , U) a n d A = (Q , A , E , I , T) ; a m o r -
phism cp: B + A is a covering (resp. a co-covering) i f the following condi-
tions hold:

i) cp is Out-bijective (resp. In-bijective);

ii) for every i in I , there exists a unique j in J such that jcp = i (resp.

iii) Tcp-’ = U (resp. I 9 - l = J) .

for every t in T , there exists a unique s in S such that scp = t) ;

Proposition 1
a bijection between the successful computations in B and those in A.

Any covering (resp. any co-covering) cp: B + A induces
rn

Theorem & Definition 2 Let A be an automaton and .Adet the deter-
minized automaton of A. W e call Schutzenberger covering of A the acces-
sible part S of Adet x A. Then:

i) 7rd is a covering from s onto A.

ii) x~~~ is an In-surjective morphism from S onto Adet.

We call immersion of A a sub-automaton of a covering of A. From all
these definitions and result, one derives easily the result which is the basis
of the present work.

Corollary 2 Let A be an automaton on A*. Then there exists an un-
ambiguous automaton that is equivalent to A and that is a sub-automaton
of a covering of A.

‘Stallings denotes it “StarA(q)”. As the star is the common denomination for the
generated submonoid, we cannot keep it, though it nicely conveys the idea of “a set of
edges going out” of q.

160

Proof. Let S be the Schutzenberger covering of A. As 7r'adet is In-surjective
from S onto Adet, one can delete edges in S (and possibly suppress the
quality of being terminal to some of its states) in such a way that the sub-
automaton I that is obtained is a co-covering of Adet. The automaton 7
is then unambiguous - as there is a one-to-one correspondence between its
successful computations and those of Adet - and equivalent to -qdet, hence
to A.

The essence of this statement lies of course in the fact that the quoted
unambiguous automaton is at the same time equivalent to and an immersion
of A. For otherwise, the deterministic automaton Adet associated to A by
the subset construction is obviously unambiguous and equivalent to A; but
it can not, be immersed in A: there is no relationships between t,he pathes
in A and those in Adet.

Example 1 : The Figure 1 represents an automat,on A1 that accepts
all words of {a, b}* which contain at least one b (vertically, on t8he left), its
determinized automaton Aldet, the Schutzenberger covering of A1, and t,he

0 two possible immersions that can be derived from it.

Figure 1: An automaton, its Schutzenberger covering, and two immersions.

2 K-automata

As far as polynomials and power series are concerned, we follow the defini-
tions and notation of [l]. The set of polynomials over A* with multiplicity

161

in a semiring K is denoted by K(A*). A (finite) aut,omaton A over A* with
multiplicity in a semiring K, or K-automaton for short, is a straightfor-
ward generalization of a classical automaton. It is adequatly described as a
triple A = (I , E , T) where

E is a square matrix of dimension Q whose entries are polynomial
over A* with coefficients in K, i e . elements of K(A*).

I and T are vectors of dimension Q (respectively a row vector and a
column vector) with entries in K(A*).

The dimension Q is called the set of states of A, every entry Ep,q of E is
the label of the transition that goes from p to q in A.2 The behawiour of A,
denoted by 1.11, is defined if and only if the star of the matrix El E*, is
defined and it holds:

Id1 = I . E * . T

A power series is K-rational if and only if it is the behaviour of a finite
K-automaton3.

A polynomial is proper if its constant term (i.e. the coefficient of 1 ~ ’) is
zero, a K-automaton A = (I , E l T) is proper if every entry of E is proper
and every entry of I and T are in K. It is known that the behaviour of A is
defined if and only if it is equivalent to a proper K-automaton.

Example 2 : Let us consider the N-automaton over {a ,b}* , C1, de-

and represented (in two ways) at the Figure 2. If every word f of {a , b}*
is viewed as the writing of an integer in the binary system, where a is
interpreted as 0 and b as 1, then C1 ‘‘computes” the integer written by f,
which we denote by 7, in the sense that

ICIl = c Jf and the first terms of lCll reads then
fEA*

ICll = b + ab+ 2ba + 3bb + U U ~ + 2 ~ b a + 3abb + 4baa + 5bab + ... 0

’This definition coincides then with the classical one when K = 1, the Boolean semiring.
31n the context of this paper, we can take this statement as a definition for the K-

rational series.

162

Figure 2: The N-automaton C1.

The support of a power series, or of a polynomial, over A* is the set of
words of A* whose coefficient is not zero in the series or in the polynomial.
The support of a K-automaton A = (I , E , T) is the (classical) automaton
obtained by taking the support of every entry of I , E and T . Conversely, to
any (Classical) automaton A = (Q, A, E , I , T) is associated its Characteristic
automaton that is defined as the K-automaton whose support is A and whose
non-zero coefficients are all equal to lg (generally, K = N).

Property 1 The support of the behaviour of a K-automaton A is con-
tained in the behaviour of the support of A. If K is a positive semiring,
these two languages are equal.

Property 2 A n automaton over A* is unambiguous i f and only i f the
behaviour of its Characteristic N-automaton is a characteristic power series.

3 IK-coverings

The notion of covering seems to fit perfectly with the one of automaton
with multiplicity. If A and 23 are two (classical) automata, the existence
of a covering ‘p: B + A implies not only that B is equivalent to A, i.e.
that they both recognize the same language, but also that there exists a
1-to-1 correspondence between their successful computations, that is they
are equivalent even if multiplicity is taken into account, i.e. they are equiv-
alent as N-automata - with the natural hypothesis that the label of every
transition has multiplicity 1 ~ .

But it may be the case that we have two equivalent K-automata A and B
such that there exists an (automaton) morphism ‘p from the support of B
into the support of A which is not a covering. As we said, an automaton
morphism is a covering if its restriction to the corresponding “outgoing bou-
quets” is bijective. This condition is not adequate anymore for automata
with multiplicity.

163

Example 3 : Let us consider the N-automata C2 and Vz of the Figure 3.
There exists an obvious morphism from the support of C2 onto the sup-
port of V2 that, is not a covering: there is no bijection between Ouk,(j)
and Outv,(i), neither a co-covering: there is no bijection between InC,(u)
and Inv,(t).

These two N-automata are equivalent nevertheless. The reason is that
the sum of the labels of the transitions that go from j into the set of states
whose image by p is q is equal to the label of the transition that go from i =
jcp to 4.

Figure 3: The vertical is a morphism, not a covering.

We now formalize the observation made in t,he example. Let A =

(I, E , T) and I3 = (J , F, U) be two K-automata of dimension Q and R
respectively. Let 9 : R * Q be a surjective mapping. Let F' be the matrix
obtained from F by adding together the columns whose index have the same
image by cp. Then cp is a K-covering if any row of index r of F' is equal to
the row of index rcp of E.

Example 3 (continued) : If we write the above automata C2 and V2 as

164

CZ = (J2, Fz, UZ) and VZ = (1 2 , E2, TZ) , then:

0 4a+4b

a + b b b
2a+2b 0

0 0

We add the t,wo mid columns and we get the matrix

a + b 2b b

4a + 4b

whose rows of index r and s are equal t,o the mid row of

a + b 2b
E2= (0 2a+2b

0 0 4a+4b

Once it is understood that an image of a K-automaton under a K-
covering is obtained by adding together some of the “columns of the K-
aut,omaton”, the definition of a K-covering is best written under a matrix
expression. To any surject,ive mapping ‘p: R -+ Q we associate t,he row
monomial R x Q-matrix H, defined by:

1 if rcp=q

(H p) T ’ q = i 0 otherwise

Since cp is surjective, every column of H , contains at least one 1. From H,,
a matrix Kp is built by transposing H, and by making some entries equal
to 0 in such a way that Kp is row monomial (wit,h exactly one 1 in every
row). The matrix Kp is not uniquely defined by ‘p (as is Hp) but also by
the arbitrary choice of a representative in every class modulo t,he mapping
equivalence of cp.

Example 3 (continued) :
such that j cpz = i, up2 = t and r’p2 = s’p2 = q, then:

If cp2 is the mapping from { j , r , s, u } onto (2 , q, t }

1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1

1 0 0

H,, = (: :) and K,, = (0 1 0 0) or (0 0 1 0)

0 0 1
0

165

The multiplication of an X x R-matrix Z by H, on the right yields an
X x Q-matrix whose column q is the sum of the columns of Z of index s

such that s'p = q. The multiplication of a RxX-matrix Z by K , on the left
yields a QxX-matrix whose row p is chosen among the rows of Z of index r
such that r'p = p. We can then state:

Definition 2
onto A = (I , E , T) if A is defined by:

A mapping 'p: R + Q is a K-covering from U = (J, F, U)

E = K , . F . H , , I = J . H , and T = K , . U (1)

and i f the following equations hold:

The definition of K-covering via matrix expressions makes the proof of
the following basic result particularly easy.

Proposition 3 Any IK-automaton is equivalent to any of its K-coverings.

Proof. If 'p: B --f A is a K-covering, it holds, for every n in N:

and this implies the equality = J . F* . U = I . E* . T = Id1 .

To the K-covering corresponds the dual notion of K-co-covering. Roughly
speaking, some rows will be added together, instead of some columns. More
precisely we have:

Definition 3
(J, F, U) onto A = (I , E , T) i f A is defined by:

A mapping 'p: R + Q is a K-co-covering from B =

and i f the following equations hold:

and J . K:, . H:, = J .

166

Proposition 4
Any K-automaton is equivalent to any of its K-co-coverings.

Example 3 (continued) :
add the two mid rows of

Let us consider C2 = (J2, F2, U2) again: if we

0 4a+4b

a + b b b
0 2a+2b 0 F2=(0 2a+2b 2b
0 0

we get the matrix

4bb) b

0 4a+4b
("Ab 2 a i 2 b 2a+2b

whose columns r and s are equal to the mid column of t,he matrix

4bb) b

0 4a+4b

which defines another N-automaton V; = (1 2 , Eh, T2) equivalent to C2 (cf.
Figure 4). 0

Coming back to our first intuition, we then have:

Property 3 Let A and B be two (classical) automata and let 'p: B + A
be a covering (resp. a co-covering). Then, for any K, 'p is a K-covering
(resp. a K-co-covering) from the characteristic automaton of B onto the
characteristic automaton of A.

The following two properties are also easily verified.

Proposition 5 Let A be a K-automaton. Among all the K-automata of
which A is a K-covering (resp. a K-co-covering) there exists a unique one,
effectively computable, that has a minimal number of states and of which all
these K-automata are K-coverings (resp. K-co-coverings).

Proposition 6
K-covering of C and 23 is a K-co-covering of C .

Let A, B and C be three K-automata such that A is a
Then there exists a K-

automaton D which is a K-co-covering of A and a K-covering de B.

167

Remark 1 The terminology may be slightly misleading inasmuch as if a
#-automaton is exactly a classical automaton when R = I, a B-covering is
not a covering of classical automata, but only an Out-surjective morphism.

Figure 4: C2 is an N-co-covering of V;.

4 The skimming theorem

The Schutzenberger construct, applied to a N-automaton d, yields an
unambiguous N-automaton 7 whose behaviour is the characteristic series
of t,he support of the behaviour of A. (i.e. 171 = suppldl), and this is
not surprising indeed. What is remarkable is that, the same construction,
together with the notion of N-covering, yields a N-automaton P which is
the complement of 7 with respect to d i.e. Id1 = 171 + !PI, and this is the
theorem we are aiming at:

Theorem 1 If s is a N-rational power series on A*, the series
supps

s' = s -
is a N-rational power series as well.

In other words, the series obtained by substracting 1 to every non zero
coefficient of a N-rational power series on A* is still a N-rational power series
on A* and this can be represented as on Figure 5. The series s is represented
as the sequence of the values of the coefficients, adequatly oriented down-

168

wards; the upper layer. is taken o p ; what is left is the representation of
another N-rational power series.

A*

L
U

N

Figure 5: Skimming the N-series ICIl.

Proof of Theorem 1. Let A = (I , E , T) be a (proper) N-automaton
on A* whose behaviour is equal to s, S = (J , F, U) its Schutzenberger
covering (which is a N-automaton of dimension R) , and 7 = (J , G, V) a S-
immersion in A, of dimension R as well. By definition, ir is a sub-automat,on
of S and there exist a matrix H with coefficients in N((A*)) and a vector W
with coefficients in N such that F = G + H and U = V + W .

It is then observed that the automaton S' below, of dimension Rx{ 1,2 ,3}
is equivalent to S, hence to A.

S ' = ((J J 0) ,) = ((J J O) ,F ' ,

Indeed, if we add the rows of S' of index (r , 1) and (r , 2) for every r in R we
then get the matrices

whose columns of index (r , 1) et (r , 2) (for every r in R) are equal: S' is a
N-co-covering of

*As one skims the cream from a milk jar.

169

The automaton S”, of dimension Rx{l,2}, is itself an N-covering of S since
if we add the columns of index (r, 1) and (T, 2) (for every r in R) we get the
matrices

whose rows of index (r, 1) et (r, 2) (for every r in R) are equal to the row of
index r in S. Hence, it holds:

The behaviour of the automaton

is then equal to s - supps.

Example 2 (continued): The above construction is applied to the au-

This case is made simple by the fact that (with notation of the proof) V = U
and thus it holds directly that S’ = S” is a N-covering of the Schutzenberger
covering of C1. The corresponding automaton PI is drawn at the Figure 6.
0

Theorem 1 yields directly a series of well-known corollaries that give use-
ful insights on the structure of N-rational series and that are worth recalling.

An N-series is said to be bounded (by k) if the set of its coefficients is
bounded (by k) . Let s and t be two N-series. We write s < t if <s, f > < <t, f >
for every f in A*, ie. if there exists an N-series u such that s + u = t; in
this case we write u = t - s. More generally, the operation t A s is defined
bY

for every f in A*.

<t - s, f > = sup{O, (<t, f > - <s, f >)}

170

U
2~ P

2u

2b

U

Figure 6: An automatcon PI whose behaviour is equal to lCll - suppIC1I

Corollary 7 An N-rational series bounded by k is the sum of at most k
N-rational characteristic series

Corollary 8
Then t A s is an N-rational series.

Let s and t be two N-rational series such that s is bounded.

Corollary 9
the languages

Let s be an N-rational series on A*. For every integer k

Remark 2 The proof of Corollary 7 is indeed immediate: if Id1 is
bounded by k , we write 1.41 = 171 + lPl as above, lPl is bounded by k - 1
and we iterate the procedure. But it conceals a problem: at every step of
that procedure, we have to perform a determinization (for the construction
of the Schiitzenberger covering) which means an exponentiation. And this
easy proof yields then a tower of k exponentiation. However, the work of
Weber ([ll]) on the decomposion of k valued transducers leads to think that
a double exponentiation is sufficient in any case but this is still a conjecture.

Remark 3 The definition of Kcovering we have given as well as the con-
struction of the automaton P in the proof of Theorem 1 may ring some bells

171

t$o t,he reader who is familiar with symbolic dynamical system theory and
who is reminiscent of the technic of state splitting and state amalgamation
(cf. [3, 52.41 for instance).

If B is obtained from A by an In-splitting, then B is an M-covering of A
and, dually, B is an N-co-covering of A if it is obtained by an Out-splitting.
But the converse is not t,rue. Roughly speaking, B = (J , F, U) is an N-
covering of A if the rows of “equivalent” index of the matrix F’ are equal,
where F’ is obtained from F by adding the columns of equivalent index.
Whereas B is obtained from A by an In-splitting if the rows of “equivalent”
index of F are equal (and thus they are equal in F’).

Proposition 5 can then be seen as the equivalent of Williams’ theorem
in this setting.

Acknowledgements

It is a pleasure to t,hank again the organisers of the conference Mathe-
matical Foundations of Informatics 1999, Prof. Do Long Van and Prof. Le
Tuan Hoa, for their hospitality in Hanoi and for the beaut,iful job they did
and to acknowledge Prof. Masami Ito’s endless patience.

I wish to thank also GCraud SCnizergues who invited me to present the
matter of this paper in a tut,orial at the LANFOR symposium in March 99,
and Pascal Weill who suggested me the name “skimming theorem”.

References

[l] BERSTEL, J., AND REUTENAUER, C. Les skries mtionnelles e t leurs
langages. Masson, 1984. Traduction: Rational Series and their Lan-
guages. Springer, 1986.

[2] EILENBERG, S . Automata, Languages and Machines, vol. A. Academic
Press, 1974.

[3] LIND, D., AND MARCUS, B . A n introduction to symbolic dynamics
and coding. Cambridge University Press, 1995.

[4] SAKAROVITCH, J . A construction on automata that has remained hid-
den. Theoret. Comput. Sci. 204 (1998), 205-231.

[5] SAKAROVITCH, J. Elkments de thkorie des automates. in preparation.

[G] SALOMAA, A., AND SOITTTOLA, M. Autom.ata-Theoretic Aspects of
Formal Power Series. Springer, 1977.

[7] SCH~TZENBERGER, M. P. Parties rationnelles d’un monoide libre.
Proc. of th,e International Mathematics Conference (1970), 281-282.

[8] SCH~TZENBERGER, M. P. Sur les relations rationnelles entre monoides
libres. Theoret. Comput. Sci. 3 (1976), 243-259.

[9] SCH~TZENBERGER, M. P. Une propriBt6 de Hankel des relations ra-
tionnelles entre monoides libres. Advances in Math,. 24 (1977), 274-280.

[lo] STALLINGS, J . Topology of finite graphs. Inventiones Math. 71 (1983),
551-565.

[11] WEBER, A. Decomposing a k-valued transducer into k unambiguous
ones. Proc. of LATIN’92 (I. Simon, Ed.), Lect,ure Notes in Computer
Sci. 583 (1992), 503-515.

 1 7 2

173

A NEW CLASSIFICATION OF FINITE SIMPLE GROUPS

WUJIE SHI
Dept. of Math., Soochow Universiw, Suzhou 21 5006 PI R. China and

lnst. of Math., Southwest China Normal Universiw, Chongqing 400715 PIR. China
Email: wjshi@fm365.com

SEYMOUR LIPSCHUTZ
Dept. of Math., Temple Universify, Philadelphia PA 19122, USA

Email: Seymour@math.temple.edu

Let G be a finite simple group and ze(G) the set of element orders of G. For a
subset r of all positive integers, let h(T) denote the number of distinct groups G
such that ze(G) = r. For given group G, we have h(ze(G)) 2 1. In this paper
we prove that h(ze(G)) € { I , 2, m} for I G I < lo*. Moreover we give a classification
for such simple groups G.

1. Introduction and Notation

Element orders is one of the most fundamental concept like the order of
groups in group theory. It plays an important role in the research of group theory,
which can be seen from the famous Burnside problem. Let G be a group.
Denote by ze(G) the set of all orders of elements in G. Obviously, ze(G) is a
subset of the set Z+ of positive integers, and it is a more difficult problem
which subset of Z+ can become the sets of element orders of groups. Let
be a subset of .2? and h(T) be the number of isomorphism classes of groups G
such that %(G) = r. For a given group G, we have h(%(G)) 1 1. A group
G is called distinguishable if /(re(@)< 00, a group G is called non-
distinguishable if h(re(G)) = co, and a distinguishable group G is called
k-distinguishable if h(ze(G)) = k, moreover a 1-distinguishable group G is
called characterizible usually. In [lo] we prove that a finite distinguishable
group is either characterizible or 2-distinguishable if its element orders do not
exceed twenty. In this paper we continue this research and prove:

Theorem. Let G be a finite simple groups and]GI < lo8. Then

Since we did not find such finite k-distinguishable groups for k 2 3 , we

Conjecture.

All groups considered in this paper are finite, a simple group is always

h(ze(G)) E (192, m>.

have the following conjecture:

or 2-distinguishable, or non-distinguishable.
Let G be a finite group. Then G is either characterizible,

174

nonabelian, and all notation is standard (see [2]). In particular, &(G) denotes
the set of all orders of elements in G and n(G) denotes the set of all prime
divisors of IGI. Moreover the prime graph ([25]) of a group G is the graph
whose vertex set is the set n(G), and two vertices p, r E n(G) are adjacent if
and only if G contains an element of order pr. Also, a finite group G is called
a 2-Frobenius groups if it has a normal series G > K > H > 1, where K is a
Frobenius group with kernel H and GIH is a Frobenius group with kernel
KIH.

2. Preliminary Lemmas

We will need the following lemmas.
Lemma 1. Let G be a group, and let N be a minimal normal sub-

group of G. Suppose N is an elementary abelian p-group. Then G is non-
distinguishable. In particular, a solvable group (finite or infinite) always is
non-distinguishable.

ProoJ: See [22, Proposition] and [5, Theorem].
Lemma 2. Let p be a prime and b a positive integer. Then one of the

following holds:
(1) There is a prime q such that q I (pb-l) but q I (pc-l) for c< b.
(2) b = 1 o rp = 2, b = 6.
(3) p is a Mersenne prime and b = 2.
ProoJ: See [26].
For the simple groups we have the following lemmas:
Lemma 3. Let G be a simple group and

(l)An, n I l l .

IGI < 10'. Then G is one of
the following groups:

(2) ~ ~ (~) , I 577, + 29; ~ ~ (q) , I 9; ~ ~ (3 1 ,
(3) u3(q), 4 I 11; u4(2), u4(3), u5(2).
(4)Sz(8), Sz(32).
(5)S4(4), S4(5), S6(2).
(6) W).
(7) 'F4(2)'.

@)Mil, M 2 , M22, M23r Ji, J2, J3, HS.
ProoJ: By a calculation from the classification theorem of the finite simple

A finite simple group G will be called a simple Kn-group if In(G)I = n.

Lemma 4. Let G be a simple K3-group. Then G is one of the following

groups we may get the result easily.

In [6] the simple K3-groups are determined.

groups: A5. A6, Lz(q), 4 = 7, 8, 17, L3(3), u3(3),

175

For the above eight simple K3-groups we have proved the following result.
Lemma 5.
(1) h (~ (A 5)) = h(ne(Lz(q))) = 1, where q = 7,8, 17.

ProoJ See [18].
Lemma 6.

(I)& 7 In I 10.
(2) M 1, M 2 , J2.

(3) L2(q), = 16,25,49,81, L3(q), = 4,5,7,8, 17, L4(3), S4(q), 4 =

4,5,7,9, &(2), @&), G2(3), U3(q), = 4,5,7,8,9, u4(3), us(2), Sz(8),

Sz(32), 3D4(2), 'F4(2)'.

Let G be a simple K3-group. Then we have

(2) h(ne(A6)) = h(&(L3(3))) = h(ne(U3(3))) = h(ne(U4(2))) = co.

Let G be a simple &-group. Then G is one of the following
groups:

(4) (a) L2(r), where r is a prime satisfying the equation
(1) r2 - 1 = 2a3buc

where a 2 1, b 2 1, c 2 1, and u is a prime and u > 3.
(b) L2(2"), where m satisfies the equations

2" - 1 = u, 2"+ 1 = 3tb

3"- 1 = 2uc, 3"+ 1 =4 t

3" - 1 = 2u, 3" + 1 = 4tb

(2)
where u, tare primes and t > 3 and b 2 1.

(c) &(3*), where m satisfies the equations
(3)

(4)
or

where u, tare primes and b 2 1, c 2 1.
Proof. See [191.
Remark It is difficult to solve these diophantine equations (l), (2) and

(3) or (4), even determine the number (finite or infinite) of these solutions.
That is, we do not know the number of the simple &-groups is finite, or
infinite up to now.

Corollary 1. Let G be a simple K4-group and (GI = 2a3b5c13d. Then

G is one of the following groups: L2(25), L4(3), S4(5), U3(4), 2F4(2)'.

G is one of the following groups: L3(7), U3(8).

G is U3(9).

G is one of the following groups: L2(31), L3(5).

Corollary 2. Let G be a simple K4-group and (GI = 2a3b7'19d. Then

Corollary 3. Let G be a simple &-group and !GI = 2a3b5'73d. Then

Corollary 4. Let G be a simple K4-group and [GI = 2a3b5c31d. Then

176

Corollary 5. There is no existing such simple K4-group G with the
order of G is one of the following forms: 2"3'7'31d, 2"5b7'31d, 2"3'5'37',
2"3b11c37d, 2"5b11'37d.

Lemma 7.

ProoJ: The order of G is equal to

If G is a simple group whose order is divisible by 3 1 and
G(G) c ~@5(2)X then G is L5(2).

2a3b5c7d3 l', where e # 0. From Lemma
4, Corollary 4 and Corollary 5 we see that G can only be a simple K5-group
(since 16 E ze(L2(31)), 16 e G(Ls(2)) and 10 E ~e(L3(5)), 10 e G(Ls(2))).
Since (n!)/2 is divisible by 31 if and only if n 2 31, G is not an alternating
group A,, for any n. Comparing the order of G with the orders of sporadic
simple groups we have G is not a sporadic group. Therefore G = G(q) is a
group of Lie type over a finite field of order q =p", wherep = 2, 3, 5, 7 or 31,
since p divides IGI. From Lemma 2 we get that pb- 1 can divide [GI if and
only if:

forp = 2, b 5 6 ,
forp = 3 or 7, b = 1,2 and 4,
forp = 5, b = 1,2,3 and 6,
forp = 3 1, b 5 2.

forp = 2 or 3, b 5 3,
forp = 5, b = 1 and 3,
forp = 7, b I 2 ,
forp = 31, b = 1.
Moreover G can only be L2(m) , &,(2), L@) or G2(5) since G is a simple

K5-group. Because of 63 E ze(L2(125)), 63 E ze(L6(2)). 63 e ze(L5(2)) and
30 E Ze(G2(5)), 30 E G(L5(2)), G can only be L@).

Lemma 8. If G is a simple group whose order is divisible by 37 and
ze(G) c ze(U3(11)), then G is u3(11).

ProoJ: Notice that the order of G is equal to G can
only be a simple K5-group by Lemma 4 and Corollary 6. The remainder proof
is similar to Lemma 7.

following
results:

Also pb + 1 can divide IGI if and only if:

2"3b5clld37e, e # 0,

For some simple groups and nonsolvable groups we have the

Lemma 9.
(1) Alternating groups A*, p is a prime and p > 3, or A,, for n E

(2) Simple groups L2(q) with q f 9 (L2(9> E A6), L2(9). 23 (G MIO); L3(7),

(3) U4(3), U&), U3(2m) with m 2 2.
(4) Suzuki-Ree simple groups.

The following groups are all characterizible:

{8,9, 12, 14); symmetric groups S, for n E {7,9, 11, 12, 13,14}.

L3(T) with m 2 1, L3(4).21; L.43).

177

(5) W3).

(6) 'F4(2)'.

(7) 0-8(2). 0-10(2).
(8) All sporadic simple groups except 52.

Proof: See [201, [121, [lo], D41, [ll, [221, P51, [4l and 191.
A group G is called an almost simple group if M I G I Aur(M),

where Mis a simple group.
Lemma 10. The following almost simple groups are non-distinguishable:

A,, for n E (6, lo}, S,, for n E (5 , 6, 8}, L3(3), U3(q) with q = 3, 5, 7, U4(2),
U5(2), J2, L3(4) : 22, S4(7), S4(2m) with m > 1 , and PGLP($). wherep, r
are odd primes, r - 1 is divisible by p but not by p2 and s is a natural number
non-divisible by p.

Proof: See [14], [13] and [15].
Lemma 11. The following groups are 2-distinguishable:

(2) L3(9), L3(9).21.
(1) L3(5), L3W.2 (A@3(5))).

(3) S6(2), 0+8(2).
(4) 07(3), 0+8(3).
Proof: See [ll], [12], [3] and [24].
Lemma 12.

Proof: See [101.
Lemma 13.

Let G be a finite group and ze(G) (1, 2, ..., 20). Then
h(&(G)) E {I, 2, a).

Let H be a finite group and N a nontrivial normal p-
subgroup of H, for some prime p, and set K = H/N. Suppose K contains an
element x of order m coprime to p such that (v, I (x), 10) > 0 for every Brauer
character v, of (an absolutely irreducible representation o f) K in characteristic
p, where l(x) is the trivial character of (x) and v, I (x) is the restriction of v, to
(x). Then H contains an element of orderpm.

Proof: See [17, Corollary].

3. Main Results

From Lemma 1, we may reduce the proof of our Theorem to the direct prod-
ucts of simple groups and the automorphism groups of the direct products.
First we prove the following theorem.

Let G be one of the following groups: S4(5), L5(2), U3(9),
U3(11). Then h(ze(G)) E {l , m].

Let H be a group and suppose ze(H) = ze(G). If the minimal
normal subgroup N of H is a p-group, then h(ze(H)) = h(ze(G)) = co by
Lemma 1. Thus we may assume that H has a normal series

Theorem 1.

Proof:

178

H2 HI > 1, (5)
where HI is a direct product of isomorphic simple groups. Since H is a
group whose prime graph has more than one component, H has one of the
following structures: (a) Frobenius or 2-Frobenius; (b) simple; (c) an extension
of a ~1-group by a simple group; (d) simple by q-solvable; or (e) TI by
simple by TI; where TI is the component containing 2 ([25, Theorem A]).
Suppose H is a Frobenius group with complement C. From [16, Theorem
18.61 C has a normal subgroup CO of index 2 2 such that Co z SL(2, 5) x Z

and where every Sylow subgroup of Z is cyclic and n(Z) fl {2,3,5) = 0.

Since xe(SL(2,5)) = 11, 2, ..., 6, lo), we get a contradiction by comparing
their element orders. The case when H is 2-Frobenius is similar. Therefore
HI is a simple group and H/HI is a TI-group in (5). Now we prove that
Hs G if h(ze(H)) # 00. The proof is divided into cases.

Case 1. G = S45)
In this case we have ne(H) = ne(G) = ~e(S45)) = { l , 2, ... , 6, 10, 12, 13,

15,20,30) and %(HI) c xe(H). Hence HI is a simple group whose order
is divisible by 13. From p'qb theorem HI is a simple K3-group or a simple
&-group. If HI is a simple &-group, then HI can only be L3(3) (13 1 IHII).
But 4 3) contains the elements of order 8, it is impossible. If HI is a simple
K4-group, then HI can only be L2(25), U3(4) or S45) from Corollary 2 and
comparing their element orders.

Now HICH(H1) is isomorphic to a subgroup of Aut(Hl), and CH(H1) = 1
(HI has at least two components). We have Aut(H1) 2 H 2 HI . Since we
know Out(H1) and check the orders of elements of Aut(H1) one by one (see
[2]), we get H = HI E G = S4(5).

Case 2. G = L5(2)
In this case we have ze(H) = ze(G) = { 1, 2, ... , 8, 12, 14, 15,21, 31) and

%(HI) E %(H). Since HI is a simple group whose order is divisible by
31, HI can only be Ls(2) by Lemma 7. Also since CH(H,) = 1 we have
Aut(H1) 2 H 2 HI . Checking the orders of elements of Aur(Ls(2)) we get
H = HI G G = L5(2).

Case 3. G = U3(9)
In this case we have %(H) = ze(G) = { 1,2, ... ,6,8, 10, 15,16,20, 30,40,

73, 80) and ze(Hl) E ze(H). Since HI is a simple group whose order is
divisible by 73, HI can only be U3(9) from Lemma 4 and Corollary 3. Also
since CH(H1) = 1 we have Aur(Hl) 2 H 2 HI . Checking the orders of
elements of Aut(U3(9)) we get H = HI s G = U3(9).

Case 4. G = U3(11)

179

InthiscasewehaveXe(H)=xe(G)=(1,2 ,..., 6,8,10,11,12,20,22,37,
40, 44) and %(HI) E %(H). Since HI is a simple group whose order is
divisible by 37, HI can only be U3(ll) from Lemma 8. Also since C d H l) = 1
we have Aut(H1) 2 H 2 H I . Checking the orders of elements of Aut(U3(11))
we get H = HI = G = U3(ll).

Thus the theorem is proved.
Theorem 2. The simple groups L42) and U3(ll) are characterizible,

and S45) is non-distinguishable.
PmoJ From Theorem 1 we need only prove the minimal normal p-

subgroup N of H is equal to 1 for the cases of Ls(2) and U3(11). Let H be a
group and suppose ze(H) = &(G), G = Ls(2) or U3(11). First we prove that
H is nonsolvable. We assume G = &(2) (U3(11)). Then re(H) = ne(G) =

pose H were solvable. Then there would exists a (5, 7, 31) ((5, 11, 37))-Hall
subgroup L of H. Now 5.7, 5.31 and 7.31 (5.11, 5.37 and 11.37) do not be-
long to %(H), and so all elements of L would be of prime power order. This
contradicts a result of Higman [7], and hence His nonsolvable. Similar to the
proof of Theorem 1 we may assume that H has a normal series

(1,2, . .. ,8,12,14,15,21,31) ((1,2, ... ,6,8,10,11,12,20,22,37,40,44)). SUP-

such that N and HIHI are XI-groups, and H y = HIIN is simple. Now we
need only prove N = 1 from Theorem 1.

Case 1. G = ,542)
Since X I = (2, 3, 5, 7) we may assume that N z 1 is a 2-group, 3-group,

5-group or 7-group. Suppose N is a 2-group (5-group or "-group). Let Q be a
cyclic subgroup of order 31 in H y , and N(Q) = N p (Q) . By [2], N(Q) = Q:Z5
and suppose [Nl(Q:Zs) is its preimage in H I . It follows by [21, Lemma 61
that HI contains an element of order 10 (25 or 3 3 , which is impossible.
Suppose N is a 3-group. By Lemma 13 we utilize the Brauer character tables.
In [8, p.1731, the modular characters of L5(2) (mod 3) are given. Suppose
XE H y has order 8, and set X = (x). Calculating, we obtain

Thus by Lemma 13 we get 24 E %(H), which is a contradiction. Hence

Case 2. G = U3(11)
N = 1 and H = G. The simple group Ls(2) is characterizible.

180

Since zl = (2, 3, 5, l l } we may assume that N # 1 is a 2-group, 3-group,
5-group or 11-group. Suppose N is a 3-group (5-group or 11-group). Let
Q be a cyclic subgroup of order 37 in H*, and N(Q) = Np(Q) . By [2],
N(Q) = Q:Z3 and suppose [Nl(Q:Z3) is its preimage in HI. It follows by
[21, Lemma 61 that HI contains an element of order 9 (15 or 33), which is
impossible. Suppose N is a 2-group. We utilize the Brauer character tables
[8, p.2201 and set X = (x}. bl = 37. Calculating, we obtain 74 E ze(H) by
Lemma 13, which is a contradiction. Hence N = 1, H = G and Uj(l1) is
characterizible.

Case 3. G = S45)
If G = S4(5), then &(G) = %(S4(5)) = { l , 2, ... ,6 , 10, 12, 13, 15, 20, 30).

The group 54: (&(25).22) which is contained in the maximal 5-local sub-
groups of Monster group A4 has the same element orders set (see [2]). Since
the minimal normal subgroup is elementary abelian, we get that S45) is
non-distinguishable. This proves Theorem 2.

Lastly, we prove the following theorem.
Theorem. Let G be a finite simple group and (GI < lo8. Then

ProoJ: Let G be a simple group and IGI < lo8. Then G is either charac-
terizible, or 2-distinguishable, or non-distinguishable by Lemma 3, Theorem
1, Theorem 2, Lemma 5, Lemma 9, Lemma 10 and Lemma 1 1. Moreover, the
following simple groups G (\GI < 1 O8) are characterizible:

h(&(G)) = {1,2, to).

(1)An,n<11andn#6,10.
(2) L2(4), 29 # 4 5 577 and 4 f 9, L3(4), L3(7), L4(3), Ld2).
(3) u3(4), u3(8), u3(11), u4(3).
(4) Sz(8), Sz(32).

(6) 2F4(2)'.

(7) MI, M 2 , M22, M23,Ji, J3, HS.
The following simple groups G are 2-distinguishable:
(1) L3(5), L3(9).

(5)

(2) S6(2)-
The following simple groups G are non-distinguishable:
(1) A6, Aio.

(2) W) , ~543).
(3) u3(3), u3(5), u3(7), u4(2), us@).
(4) W4) (see [lo]), S4(5).
(5) J2.

Excluding the above cases, we have h(ze(U3(9))) E { 1, to}. Thus the
theorem is proved.

181

Question. For these case that G is U3(9), does it follow that h(%(G)) = 1
or h(%(G)) = co ?

Acknowledgments

The present paper was written while the first author visited Temple University
in 1998. Thanks are due to Temple University for its hospitality and to the
National Natural Science Foundation of China (Grant No. 10171074), Jiangsu
Natural Science Foundation (Grant No. BK200133) and the NSF of USA
(Grant INT 96002 17) for financial support.

Reference

1.
2.

3.
4.

5.

6.
7.
8.

9.

J An and Wujie Shi, Comm. in Algebra 28,3351(2000).
J H Conway et al, ATLAS of Finite Groups, (Clarendon Press, Oxford,
1985).
N Chigira and Wujie Shi, Northeast Math. J. 12,253(1996).
M R Darafsheh and A R Moghaddamfar, Algebra Colloquium 7, 467
(2000).
Huiwen Deng and Wujie Shi, J. Southwest-China Normal Univ. 25, 361
(2000).
M Herzog, J. Algebra 10,383(1968).
G Higman, J. London Math. SOC. 32,335(1957).
C Jansen et al, An Atlas of Brauer Characters, (Clarendon Press, Oxford,
1995).
A S Kondrat'ev and V D Mazurov, Siberian Math. J . 41,360(2000).

10. S Lipschutz and Wujie Shi, Progress in Natural Science 10, ll(2000).
11. V D Mazurov, Algebra and Logic 33,49(1994).
12. V D Mazurov, Algebra and Logic 36,23(1997).
13. V D Mazurov, Algebra and Logic 37,371(1998).
14. V D Mazurov and Wujie Shi, in St Andrews 1997 in Bath, 11, London

Math. SOC. Lecture Notes Ser. 261, eds. C M Campbell et al, (Cambridge
University Press, 1999).

15. V D Mazurov, M C Xu and H P Cao, Algebra and Logic 39,324(2000).
16. D S Passman, Permutation Groups, (W.A. Benjamin, New York, 1968).
17. C E Prager and Wujie Shi, Comm. in Algebra 22, 1507(1994).
18. Wujie Shi, J. Southwest-China Normal Univ. 13, l(1988).
19. Wujie Shi, Chinese Sci. Bull. 36, 1281(1991).
20. Wujie Shi, in Group Theory in China, Math. And Its Appl. (China Ser.),

eds. Z X Wan and S M Shi, (Sci. Press, New Yormeijing, 1996).

182

21. Wujie Shi, Algebra Colloquium 1, 159(1994).
22. Wujie Shi, J. Southwest-China Normal Univ. (Suppl. I) 21,6(1996).
23. Wujie Shi, J. Southwest-China Normal Univ. 25, 353(2000).
24. Wujie Shi and C Y Tang, Progress in Natural Science 7, 155(1997).
25. J S Williams, J. Algebra 69,487(1981).
26. K Zsigmondy, Monatsh. Math. Phys. 3,265(1892).

183

CONNECTEDNESS OF TETRAVALENT
METACIRCULANT GRAPHS WITH

NON-EMPTY FIRST SYMBOL

Ngo Dac Tan* and Tran Minh Tuoct

Abstract

In this paper, we give necessary and sufficient conditions for tetrava-
lent metacirculant graphs, the first symbol of which is not empty, to
be connected.

1 Introduction

Metacirculant graphs were introduced by Alspach and Parsons in [l] as an
interesting class of vertex-transitive graphs. This class contains both Cayley
and non-Cayley graphs [l] and might contain some new nonhamiltonian con-
nected vertex-transitive graphs. But these graphs need not be connected in
general. So a natural problem is to find necessary and sufficient conditions
for metacirculant graphs to be connected.

Necessary and sufficient conditions for cubic metacirculant graphs to be
connected were found in [4]. These conditions were used successfully in [3, 51
to prove the existence of a Hamilton cycle in many connected cubic metacir-
culant graphs (see also [6]). Motivated by this, we consider here the connect-
edness of tetravalent metacirculant graphs with the hope that we might apply
the obtained results to the hamiltonian problem for tetravalent metacirculant
graphs as well. In Section 4 of this paper, we will prove necessary and suf-
ficient conditions for tetravalent metacirculant graphs with non-empty first
symbol to be connected. For the proofs of the results, we develop in Section

*Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam. E-mail:

t Faculty of Mathematics, Pedagogic University Hanoi 2, Xuanhoa, Melinh, Vinhphuc,
ndtanQmath.ac.vn

Vietnam. E-mail: minhtuoc'Qhn.vnn.vn

184

3 general techniques which are probably useful in other cases. In particu-
lar, they were applied in [8] to prove necessary and sufficient conditions for
tetravalent metacirculant graphs with empty first symbol to be connected.
Thus, the results obtained here and in [8] together gave us a complete answer
to the question which tetravalent metacirculant graphs are connected.

We also note that with the help of the results obtained here the authors
have succeeded in proving the existence of a Hamilton cycle in many con-
nected tetravalent metacirculant graphs with nonempty first symbol ["]. We
do hope that using the mentioned results we will get more significant results
on the existence of a Hamilton cycle in tetravalent metacirculants.

2 Notations and definitions

All graphs considered in this paper are finite undirected graphs without loops
and multiple edges. Unless otherwise indicated, our graph-theoretic termi-
nology will follow [2], and our group-theoretic terminology will follow [9].
For a graph G we will denote by V(G), E(G) and Aut(G) the vertex-set, the
edge-set and the automorphism group of G, respectively.

A graph G is called vertex-transitive if for any u,v E V (G) there exists
cp E Aut(G) such that cp(u) = v. It is clear that a vertex-transitive graph is
a regular graph.

For a positive integer n, we will denote the ring of integers modulo n by
Z, and the multiplicative group of units in Z, by Zi .

Let n be a positive integer and S he a subset of Z, such that 0 $! S = -S.
Then we define the circulant graph G = C(n, S) to be the graph with vertex-
set V(G) = {vy I y E Z,} and edge-set E(G) = {vyoh I y, h E Z,; (h - y) E
S}, where subscripts are always reduced modulo n. The subset S is called
the symbol of C(n, S).

Let m, n be two positive integers, cy E Z i , p = Lm/2J and SO, S1,. . . , S,
be subsets of Z,, satisfying the following conditions:

1) 0 $z so = -so;
2) a"S,. = S,. for 0 i r I p;

3) If m is even, then apS, = -S,.
Then we define the metacirculant graph G = MC(m, n, a, SO,. . . , S,) to be
the graph with vertex-set

V(G) = {v; I i E Z,; j E Z,}

185

and edge-set
a a+r E(G) = {w~u,, I 0 I r I p; i E Z,; j , h E Z, and (h - j) E cyaST},

where superscripts and subscripts are always reduced modulo m and modulo
n, respectively. The subset Sa is called (i + 1)-th symbol of G.

It is easy to see that the permutations p and T on V (G) with p(wJ) =
and T(W;) = u::’ are automorphisms of G and the subgroup (p, 7) generated
by p and T is a transitive subgroup of Aut(G). Thus, metacirculants are
vertex-transitive graphs and therefore they are regular.

Denote the degree of vertex u of a graph G by deg(v). It is not dif-
ficult to see that for any vertex u E V (G) of a metacirculant graph G =

MC(m, n, a, so, ‘ ’ ’ I S ,)

(E.1)
\Sol + 21s1 I + ‘ ‘ ’ + 2lS,l
IS01 + 21Sll + ... + 2lS,-,l + ISPI

if m is odd,
if m is even.

deg(v) =

A graph G is called cubic if for any w E V (G) , deg(w) = 3 and it is called
tetravalent if for any w E V (G) , deg(w) = 4. If W C V (G) then we denote
the subgraph induced by G on W by G[W].

be a walk in G = MC(m, n, cy, So, . . . , S,). Then
the value (j t - jl) modulo n is called the change (in subscripts) of W and is
denoted by ch(W). The walk W-’ = wj: . . . wj iwj : is called the inverse walk of
W . Let U = u,”lwj:t;: . . . uj; be another walk in G, which starts at the vertex
where W terminates. Then the walk P = w$uji . . . wj:u~:~: . . . uj; is called
the concatenation of W and U and is denoted by W * U . It is easy to see
that concatenation operation of walks is associative, i. e. , (WI * W Z) * W3 =
Wl*(WZ*W3). Further, we havech(W-’) = -ch(W) (mod n), ch(W*U) =
ch(W)+ch(U) (mod n) and if a walk W has the form W = W1 *Q*Q-’*W2

then ch(W) = ch(W1* W2) (mod n).

Let G = MC(m,n, a , SO, . . . , S,) be a metacirculant graph. Then an
edge e of G is called an S:-edge if it is uxwx+i with (h - y) E aXSi and
an S,--edge if it is V,”V;-~ with (y - h) E cyX-’Si. Both an S:-edge and an
S,y-edge are called Si-edges. If all edges of a walk W are S’-edges (resp.
S,r-edges, &-edges) then W is called an $-walk (resp. S,y-walk, Si-walk).
A maximal SF-subwalk (resp. S%:-subwalk, Si-subwalk) of W is called an
$-interval (resp. S%--interval, Si-interval) of W . A subwalk W’ of a walk
W is called an interval of W if it is an Si-interval for some i E {0,1, . . . , p } .
So each walk W in G can be represented in the form W = W1* W, * . . . * W k ,

where W1, WZ, . . . , W k are intervals of W .

Let W = uji wjt . . .

u h

186

3 General reduction results

In this section, we will prove some general results concerning connectedness
of metacirculant graphs.

Let G = MC(m, n, a , SO,. . . , S,) be a metacirculant graph. Denote V 2 =
{v; 1 j E Z,}. We define graphs has the
vertex-set V (E) = v = {Vo, V 1 , . . . , Vm-'} and the edge-set E (E) = E =
{V'VJ I i # j and there exists vivi E E(G) for somep, q E Zn}. The graph Ga
has the vertex-set V (G a) = V z and the edge-set E(Gz) = Ea = {v;v; I k # l
and there exists a walk in G joining v; to wj}, i E {0,1,. . . ,m - 1) .

Lemma 3.1. Let G = MC(m, n , a, So,. . . , S,) be a metaczrculant graph.
Theq the following assertzons hold:

and Ga as follows. The graph

1. E is isomorphic to C(m,S), where = { h E Z, I VoVh E E}.
2. Gi is isomorphic to C(n ,S i) , where Si = { j E Z, I V ~ V ; E Ei} .

3. All graphs Gi, i E Z,, are isomorphic to each other.

Proof. (1) Let 3 = { h E Z,n I VoVh E E}. Then 0 $ 3. If h E 3 then
there is an edge v;vt E E(G) for some p ,q E Zn. It is easy to see that the
permutation T : V (G) -+ V (G) , vj H wi:' is an automorphism of G. So
T - ~ E Aut(G). Therefore T - ~ (v : v ~ ~) = T - ~ (v :) T - ~ (v ~ ~) = w ~ / ~ v $, where
p' = ~ r - ~ p (mod n) , q' s cr-hq (mod n), is an edge of G. This means -h E 3
and 3 = -3. Let cp : V(c) + V (C (m , S)) , V i H vi (i E Z,). Then it is not
difficult to verify that cp is an isomorphism between c and C(m,s).

(2) Let Ga = (Vi ,Ei) and Si = {s E Z, I v6.1 E Ei}. Then 0 $ Si.
Assume that s E Si. Then there is a walk W = vdvi:. . .vj:v: in G,
which joins v; to v:. It is easy to verify that the permutation p : V (G) -+

V (G) , v j H w ; + ~ is an automorphism of G. So p-s E Aut(G). Therefore

V ~ V ~ ~ - ~ . . .vi;-svis is also a walk in G. This means --s E Si and Si = -Si.
Let $: V (G z) + V(C(n,SZ)), vj H vj. Then it is easy to see that $J is an
isomorphism between Gi and C(n, Si).

(3) Consider the graphs Gk and G'. Since re-k E Aut(G), where T is
as above, it is not difficult to verify that the restriction of on V k is an

0

p - S (W - 1) = p-S(viwZ:f s 3 f . . .v;;v;, = p-"(v;)p-s(v;;). . .p-s(v;:)p-s(v;) =

isomorphism of Gk and G'.

By this lemma, we can identify ?? with C(m, 3) and Gi with C(m, SZ).

187

Lemma 3.2. Let G = MC(m,n, a, SO,. . . , S,) be a metacirculant graph.
Then G is connected if and only if both

Proof. If G is connected, then it is clear that both and Go are connected.
Conversely, if both and Go are connected. Then by Lemma 3.1, the graphs
GI, . . . , Gm-l are also connected. Let vt be any vertex of G. Since is
connected, we can find a walk vtv;: . . . v! in G joining vt to a vertex vt of
V k . Since Gk is connected, there is a walk in G joining v$ to vt. By the
concatenating these walks, we can connect vg to vk in G. From this and the

0

Lemma 3.3 ([4]). Let G = C(n, S) be a circulant graph with the symbol
S = {fsl, . . . , fSk} . Then G is connected i f and only i f gcd(s1,. . . , sk,n) =
1. 0

and Go are connected.

vertex-transitivity of G, it follows that G is connected.

Let G = C(n, S) be a circulant graph and R be a subset of S satisfying

(i) R = -R;
(ii) For every s E S, we can write s =

the following conditions:

h
t i r i , where ti E Z, ri E R.

Then we say that S is generated by R and denote this fact by S = (R) .

Lemma 3.4. Let G = C (n , S) be a circulant graph with S = (R) . Then G
is connected if and only if C(n , R) is connected.

Proof. Let GI = C(n, R) . Since R C S , it is clear that connectedness of GI
implies the connectedness of G. Conversely, let G be connected and 211, be any
vertex of G. Then there exist s1,. . . , sq E S such that vov,, ,vg lvs l+sz , . . . ,
~ ~ ~ + ~ ~ + . . . + ~ , . . . ~ v k are in E(G), where k = s1 + s2 + ... + sq. By Condi-
tion (ii), si = x;Ll t i jri j , tij E Z, T i j E R, i = 1 , 2 , . . . ,q . Therefore
k = '$=, CYjTj for suitable values h, aj E Z and rj E R, j = 1 , 2 , . . . , h.
Now we can join vo to V k by a walk in G' as follows: vo is joined to v,,,,
by the walk V O V ~ ~ V ~ ~ ~ . . . v,,,,; v,,,, is joined to v , , , ~ + ~ ~ , - ~ by the walk
ValrlVcrlrl+r2VUalrl+2rz . . .v,,,,+,,,,, and so on. From this and the vertex-

0

Lemma 3.5. A metacirculant graph G = MC(m, n, a, SO, . . . , S,) with SO #
8 is tetmvalent if and only af one of the following cases holds:

transitivity of GI, it follows that GI is connected.

1. lSol=4 a n d S l = - . - = S , = 0 ;

2. m and n are even, IS01 = 3, Sj = 0 for any j E { 1 , 2 , . . . , p - 1) and
\ % I = 1;

188

3. m is even, [Sol = 2, Sj = 0 for any j E {1 ,2 , . . . , p - 1) and IS,l = 2;

4. m > 2 is odd, IS0 1 = 2, ISi I = 1 for some i E { 1,2 , . . . , p } and Sj = 0

5. m > 2 is even, IS01 = 2, lSil = 1 f o r some i E {1,2 , . . . ,,u - l} and

6. m and n are even, 15'01 = 1, Sj = 0 for any j E {1,2 , . . . , p - 1) and

7. m > 2, m and n are even, (SO(= 1, = 1 f o r some i E {1 ,2 , . . . ,

f o r any i # j E { l , 2 , . . . , p } ;

Sj = 0 f o r a n y i # j E { l I 2 , . . . , p } ;

IS,l = 3;

,u - 1}7S,=0 f o r a n y i # j E { 1 , 2 , . . . , p-1) and(S,I=l.

Pro05 This lemma immediately follows from Formula (E.1). 0

4 Main result

In this section we will prove necessary and sufficient conditions for a tetrava-
lent metacirculant graph with the nonempty first symbol to be connected.
Namdy, we will prove the following result.

Theorem 4.1. Let G = M C (m , n, a, SO, . . . , S,) be a tetravalent metacir-
culant graph with SO # 0. Then G is connected if and only i f one of the
following conditions holds:

1. m = 1, SO = {ks, h r } and gcd(s , r ,n) = 1;

2. m = 2, n is even, SO = {fs, T}, SI = { k } and gcd(s, 5) = 1;

3. m = 2, So = {ks}, S1 = {Ic ,e} and gcd(s, k - l , n) = 1;

4. m > 2 is odd, So = {As}, Si = { k } f o r some i E {1 ,2 , . . . , p } such that
gcd(i, m) = 1, Sj = 0 for any i # j E {1 ,2 , . . . , p } and gcd(s , r ,n) = 1,
where r = k (1 + az + . . . + a(m-l)i) reduced modulo n ;

5. m > 2 is even, So = {fs}, Si = { k } for some i E {1,2 ,... , p - 1)
such that gcd(i, m) = 1, Sj = 0 f o r any i # j E {1,2 , . . . , p } and
gcd(s, r, n) = 1, where r = k(1 + (I' + . . . + d m - l) 2) reduced modulo n;

6. m = 2, n is even, SO = { i}, S1 = {h, k , e} and gcd(h - k , k - e, 5) = 1;

7. rn > 2 is even, n is even SO = {i}, Si = { s } where i is odd and
gcd(i ,m) = 1, Sj = 0 for any i # j E {1,2,. . . , p - 11, S, = { r) and
gcd(p, 5) = 1, where p is [r - s (1 + a2 + aZi + . . . + reduced
modulo n;

189

8. m > 2 is even, but p = 7 is odd, n is even, SO = { f}, Si = {s}, where
i is even and gcd(i,m) = 2, Sj = 0 for any i # j E {1,2, ... , p - l } ,
S, = {r} and gcd(q, :) = 1, where i = 2%' with i' to be odd and q to

reduced modulo n.
be [r(l + &' + cy2i' + . . . + 0(2*-1)i') - s(1 + ~ i ' + #' + . . . + ab-lb ')]

Proof. Let G = MC(m, n, a, SO,. . . , S,) be a tetravalent metacirculant graph
with SO # 0. By Lemma 3.5, only one of Cases 1 - 7 of this lemma may occur.
For each of these cases, we will consider the graph -d = C(n, 3) and the graph
Go = C(n, So) constructed from G. By Lemma 3.2, the problem of finding
the necessary and sufficient conditions for G to be connected can be reduced
to the same problems for both
and Go are circulant graphs. So we can apply Lemmas 3.3 and 3.4 to get the
corresponding condition in each of these cases.

The finding R such that (R) = 3 is easy for each of these cases. In order
to find R such that (R) = So, we first specify the set R. Then we prove
the equality So = (R) by showing that for any walk P in G connecting a
vertex uz to a vertex vi of V o , ch(P) belongs to (R) . Since ch(W1 * W Z) =
ch(W1) + ch(W2) and ch(W * W - l) = 0, without loss of generality, we may
assume that

the endvertices of P are the only vertices of V o
in P and P has no subwalks of the type W*W-'.

and Go together. But, by Lemma 3.1,

(*)

Now we consider Cases 1 - 7 of Lemma 3.5 in turn.
(1) IS01 = 4 and S1 = . . . = S P - - 0.
Let SO = {fs, k~}. Then it is not difficult to show that G = C(m, 3)

with 3 = 0 and Go = C(n,So) with So = (SO). So by Lemmas 3.2 - 3.4, G
is connected if and only if Case 1 of Theorem 4.1 holds.

(2) m and n are even, IS01 = 3, Sj = 0 for any j E { 1 , 2 , . . . , p - 1) and

Since 0 @ SO = -SO, SO must be of the form {ks, $} with s # 0, f. Let
SP = { k } . Then

Let P be a walk mentioned above. If all vertices of P are in V o then
by Assumption (*), P = w ~ z l ~ + , with s E SO. If P
has vertices not in V o , then also by Assumption (*), P must be of the form
~ ~ w ~ + ~ Q v ~ + ~ u ~ , where Q is a walk in G[VP]. We have ch(Q) E (SO) since the
subgraph G[VP] is isomorphic to C(n,aPSo). So ch(P) = k + ch(Q) - k =
ch(Q) E (So). Thus So = (SO). By Lemmas 3.2 - 3.4, we conclude G is
connected if and only if Case 2 of Theorem 4.1 holds.

(3) m is even, IS01 = 2, S, = 8 for a n y j E {1,2,. . . , p - 1) and ISP(= 2.

ISPl = 1.

= {fp}. We show that So = (SO).

So ch(P) E (SO).

190

Let SO = {fs}, S, = {k,C} Then = C(m,s) with 3 = {fp}. By
arguments similar to those of (2), we can show that Go = C(n,So) with
So = (R) , where R = {fs, k (k - !)}. Again by Lemmas 3.2 - 3.4, the graph
G is connected if and only if Case 3 of Theorem 4.1 holds.

(4) m > 2 is odd, IS01 = 2, IS,l = 1 for some i E { 1 , 2 , . . . , p } and S, = 0
f o r a n y i # j E { 1 , 2 , . . . , p } .

Let SO = {fs}, Sz = {Ic}, d be the smallest positive integer such that
di G 0 (mod rn) and r = k (1 + a' +. . . + d d - l) ') . Then it is clear that
G = C(m,S) with 3 = (43). We show now that Go = C(n,So) with
So = (R) , where R = { f s , 4 ~ } .

Let P be a walk mentioned in the beginning of the proof. We show that
ch(P) E (R) by induction on the number of So-intervals of P.

If P has no So-intervals, then P has to be an Sz-walk. If P is an S:-walk,
then P has the form v ~ v ~ + k v ~ + k + a , k . . . v$+,. so ch(P) = r E (R) . If P is
an Sz--walk, then P-l has the above form. Therefore, ch(P-') E (R) and

If P has one So-interval, then either P is an So-walk or P = Q1* Q2 * Q3,
where Q1 and Q3 are $-intervals and Q2 is an So-interval. For the former
case, it is clear that ch(P) E {fs} 5 (R) . For the latter case, there are the
following subcases to consider:

(a) Both Q1 and Q3 are S:-walks or both Q1 and Q3 are S,--walks.
If both Q1 and Q3 are S:-walks, then we can write

-

ch(P) = -ch(P-l) E (R) .

(E.2)

(E.3)

t z
Q1 = v ~ v ~ + k v ~ ~ k + a f k ' ' .'z+k+a*k+ + a (t - l) * k

Q3 = v x ~ v x , + a t * k . . . v 2 f + a t t k + . . f a (d - 1) * k
t z (t f l h dz

with 0 < t < d. So

ch(P) = MQi) + 4 Q 2) + W Q 3)

= ~ h (Q 2) + ~ Q I) + ch(Q3)
= ch(Q2) + (k + a'k + . . . +
= ch(Q2) + T E (R) .

+ (d Z k + ... + a(d - l)ak)

If both Q1 and Q3 are S,--walks, then P-l = QY1 *QT1 *QT1 is the walk
just considered above. So ch(P-l) E (R) and therefore ch(P) = -ch(P-l)
is also in (R) .

(b) Q1 is an S:-walk and Q3 is an Sz--walk.
If Q1 is as in Form (E.2), then Q3 has to have the form

191

It is clear that ch(Q1) + ch(Q3) = 0. So ch(P) = ch(Q2) E (R) .
(c) Q1 2s an $--walk and Q3 is an ,!?:-walk.
The proof is similar to that of Subcase (b).
Thus, ch(P) E (R) if P is a walk mentioned in the beginning of the proof

and has one So-interval.
Assume now that t 2 2 and ch(P) E (R) for all walks P' in G which

have less than t So-intervals. Further, let P be a walk in G, which has t SO-
intervals. Then Pmus tbeof the fo rmP= P1*P2*-..*PZ with Pl,P2, . . . , P,
intervals of P. By Assumption (*) and t 2 2, PI cannot be an So-interval. So
P 2 must be an So-interval. Let v t be the common vertex of P2 and P3, and W
be an $-walk in G starting at v t and terminating at a vertex of Vo. Consider
the walk PI', where P" = PI * P 2 * W * W-l * P3 * . . . * P,. J t is easy to see
that both PI * P 2 * W and W-l* P3 *. . .* P, are walks satisfying the induction
hypothesis. Sowe havech(Pl*P2*W) E (R) andch(W-l*P3*...*PZ) E (R) .
Thereforech(P) =ch(P") =&(PI *P2*W)+ch(W-'*P3*...*P2) E (R) .
Thus,.S" = (R) . By Lemmas 3.2, 3.3 and 3.4, we conclude G is connected if
and only if Case 4 of Theorem 4.1 holds.

The proof of Case 5 is similar to that of Case 4 and the proof of Case 6
is similar to that of Cases 2 and 3. So we omit them here.

(7) m > 2, m and n are even, IS01 = 1, lSzl = 1 for some i E {1,2,. . . ,
p - l } , S , = (b f o r a n y i # ~ E { 1 , 2 ,..., p - l) a n d I S , , I = l .

As in Case 4, we might use here induction to prove Conditions 7 and 8
of Theorem 4.1. But there is a shorter way, which we do use here, to prove
these conditions.

It is clear that SO = {f}. Let S, = {s} and S,, = { T } . Denote w; =
{ u ~ , v ~ + ~ } , wherea E Z,andj E Zn/2. WeconstructthegraphG'fromGas
follows. The vertex-set V(G') is the set {wi I i E Z,, j E Znp}. Two vertices
wj and w t are adjacent in G' if and only if there are u E wi and v E w t such
that they are adjacent in G. It is not difficult to verify that G' is isomorphic to
the metacirculant graph MC(m, ;,a', S;, . . . , Sh), where a' = a (mod ;),
Sl = {s'} with s' = s (mod X), S; = 8 for i # j E {0,1,. . . , p - 1) and
5'; = { f } with r' f r (mod z) . So we can identify G' with this metacirculant
graph. Therefore, G' is a cubic metacirculant graph with S; = 0. Also, it
is not difficult to show that in this case G is connected if and only if G' is
connected. By Theorem 2 in [4], G' is connected if and only if one of the
following conditions holds:

(i) S: = {s'} where i is odd and gcd(i,m) = 1, Si = 0 for any i # j E
{1,2, . . . , p - l},S~=(r '}andgcd(p' ,$)=l,wherep' is [r ' - ~ ' (l + (a ') ~ +

192

(a’)2i + . . . + (~ ’) (p - ~) ~)] reduced modulo 2;
(ii) p = 7 is odd, S,! = {s’} where i is even and gcd(i,m) = 2, S; = 0 for

any i‘# j E {1,2, . . . , p - l}, SL = {r’} and gcd(q’, ;) = 1, where i = 2%’

(&‘)i’ + (a’)2i’ + . . . + (a y - l) i ‘)] reduced modulo 5.
From Conditions (i) and (ii) above for G’, we can easily get Conditions 7

and 8 of Theorem 4.1, respectively, for G, because s’ = s (mod ;), a’ = a
(mod 5) and T’ E T (mod 3).

0

with i’ odd and q’ to be [~ ’ (l + (a’)i‘ + (a’)2i‘ + . . . + (~ y ’) (~ ~ - l) Z ‘) - s’(1 +

The proof of Theorem 4.1 is complete.

Theorem 4.1 gives us an algorithm to test connectedness of a tetravalent
metacirculant graph G = MC(m, n, a, SO,. . . , S,) with SO # 0 by verifying
if the parameters m, n, a, SO, . . . , S, of G satisfy one of Conditions 1 - 8 of
Theorem 4.1.

Acknowledgement

We would like to express our sincere thanks to the referees for many valuable
comments and useful suggestions which help us to improve the paper.

References

[l] B. Alspach and T. D. Parsons, “A construction for vertex transitive
graphs”, Canad. J. Math. 34 (1982), 307 - 318.

[2] M. Behzad and G. Chartrand, Introduction to the theory of graphs, Allyn
and Bacon, Boston (1971).

[3] Ngo Dac Tan, “Hamilton cycles in cubic (4, n)-metacirculant graphs”,
Acta Math. Vietnamica 17 (1992), 83 - 93.

[4] Ngo Dac Tan, “Connectedness of cubic metacirculant graphs”, Acta
Math. Vietnamica 18 (1993), 3 - 17.

193

[5] Ngo Dac Tan, “Hamilton cycles in cubic (m, n)-metacirculant graphs
with m divisible by 4”, Graphs and Combin. 10 (1994), 67 - 73.

[6] Ngo Dac Tan, “Non-Cayley tetravalent metacirculant graphs and their
hamiltonicity”, Journal of Graph Theory 23 (1996), 273 - 287.

[7] Ngo Dac Tan and Tran Minh Tuoc, “On Hamilton cycles in connected
tetravalent metacirculant graphs with nonempty first symbol”, Acta
Math. Vietnamica (accepted).

[8] Ngo Dac Tan and Tran Minh Tuoc, “Connectedness of tetravalent
metacirculant graphs with the empty first symbol”, Preprint 2002/33,
Hanoi Institute of Mathematics (2002) (submitted).

[9] H. Wielandt, Finite permutation groups, Academic Press, New York
(1964).

This page intentionally left blankThis page intentionally left blank

195

On the Relation Between Maximum Entropy Principle
and the Condition Independence Assumption

in the Probabilistic Logic

Ha Dang Cao Tung
Information Technology Department, Hanoi Teacher Training College

Abstract. In the Probabilistic Logic, the single value of the truth prob-
ability of a sentence is calculated by adding assumptions. By adding the
Maximum Entropy Principle (MEP) the reasoning problem becomes a non-
linear optimization problem. In this note, we assert the equivalence between
the MEP and the Conditional Independence assumption (CIA) and the Ran-
domness Assumtpion (RA) formulas for a class of Probabilistic Knowledge
Base. Thus, for this class, instead of solving a nonlinear optimization prob-
lem to find the truth probability of a sentence, we can drive it from Calculus
C and some CIA + RA formulas.

1. Introduction

Given a set of sentences r = {Sl, 5’2, ..., SL} and a sentence S. Denote
by A(r, S) (or A shortly) the set of propositional variables {AI, Aa, ..., An}
occurring in { 5’1, S2, ..., SL, S}. Each assignment of boolean values to the
variables in A defines a possible world [4]. For every given probability distri-
bution p = (p l , p2 , . . . , p ~) , where N = 2n, on the set of possible worlds, the
truth probability of a sentence S is defined to be the sum of probabilities of
possible worlds in which S is true.

In Probabilistic Logic (PL), from any knowledge base (KB) given by the
truth probabilities p(Sl),p(Sz), . . . ,p(SL) of setences SI,SZ, ..., SL one can
usually determinate the lower and upper bounds of an interval containing
the truth probability p(S) , but not the single value of p(S) . A such single
wlue ofp(S) can be determined from probabilities p (&) , p (S ~) , . . . ,p(SL) only
for special cases. In [l], it was proved that the truth probability of S was
calculated from the truth probabilities of S1,S2, ..., SL by a formula

if and only if (1) is deducible in the Calculus C comprising of two axioms:
1. p (P) = 1 if P is tautology.
2. p(P v Q) = p(P) + p (Q) if l(P A Q) is tautology.

196

In other words, ifp(S) can be determined uniquely from p(Sl),p(Sz), ...,
~(SL), then it is deducible in Calculus C. In the general case p (S) can not be
determined uniquely from p(S1),p(S2), . . . ,p (SL), for finding a unique value
for p(S) one has to add some assumption into KB, e.g., the maximum en-
tropy principle (MEP) [4]. In PL with MEP [4] MEP is used to calculate
a probalbility distribution p = (p1,p2, . . . , p ~) on the set of possible worlds,
and then, from this distribution p one can determine a single value of p (S) ,
this value is a function of p(S1), p (S z) , . . . ,p (SL), and is denoted by:

An another assumption, the conditinal independence assumption (CIA)
is considered in [l]. The CIA is stated in the form “two sentences A and B
are independent with respects to C” and is expressed by the formula

P(A A BIG) = P(AIC) x P(BIC)
(when C is a tautology we have a particular case p(A A B) = p(A) x p(B),
A and B are independent). Together with the CIA one considers also a
supplementary assumption called the randomness assumption (RA) which is
usually expressed in the form

1
P(AIB) = 5’

(under the condition B , A is random).
In probability theory, the MEP is often considered together with CIA.

In PL, the similar problem on the relation betwen MEP and CIA is posed
in [l] as follows: Given a knowledge base with the set of sentences r =
{S1,S2, ..., SL} and a sentence S. It is possible to determine a set H of
CIA and RA formulas such that (2) is derived in Calculus C + H? In this
note we shall the possitive answer to this problem for a class of probabilistic
knowledge bases.

Remark. In [4], the possible workds are defined by the consistent vectors
of values of { 5’1, S2, ..., SL, S}, and on the basis of this definition one can
obtain “inconsistent” results as shown in the following example: Let B be
the KB given B = {(AB,a)} , where 0 5 a < 1; from this KB by the
method used in [4] can we can calculate separately the truth probabilities of -- -
A B, AB, 71B:

1 p(AB) = p@B) = p(ZB) = z(1- a),

hence we obtain

197

that violates an axiom of the probability theory. Therefore, in this paper we
consider a possible workd of a set I' of sentence as an assignment of boolean
values to the propositonal variables occuring in r.

2. The main result
Let us give a set of sentances I' = {S1,S2, ..., SL}. We say that I' is

complete if each assigment of the boolean values to the sentences of I? - is
consistent. We denote by I'" the formula S:lS? ... ST(S: = Si,S: = Si),
where u = (211, u2, ..., u ~) is a boolean vector.

Suppose that I' can be partitioned into m subsets rl, ..., rm, where

r k = { s, (k) , s2 (k) , ..., $,:I}, k = 1, m,

such that (Vk # 2) (Vi = E, V j = Ink)-.(Sik)SS,(')) = Tautology. Then
we say that I' i s partitionable into m mutual excusive subsets.
Theorem. Suppose that I' is partitionable into mutual exclusive subsets
I ' l , ..., rm, and each of these subsets is complete. Let H is the set of CIA
formulas of the form:

j j (AS j l))=

where, Tii = {1,2, ..., n'}. Then, for any KB with the set of sentences r and
any sentence S , the values of p (S) deduced from C + H and from P L + MEP
are the same.

In order to prove the theorem, we first prove the following

Lemma. Suppose that

where 0 I aik) 5 l(Vk = 1, ..., m) (Vi = 1, ..., n k) . Then the following system
of equations for t , 5 1 , 5 2 , ..., tm

198

has a unique solution.
Proof. For each k = 1, ..., m, we consider the function:

It is easy to see that f k (z) is continuous and increasing. Therefore the

For tl = 0,
inverse function f i l (t) exists, is continuous and also increasing.

For t 2 = m s (n (1 - aik))) ,
k=l,m i€G

n (1 - a:k)) 5 t 2 * 1 = fF1 (IT (1 -a?))) i fLl (t2) . (7)
i€K a€G

m For the function

F (t) = c fL1(t)7
k=l

we have the following equalities:

From the continuity of F , we have gt*IF(t*) = 1. Put fF'(t*) = &, it
is easy to see that the system (5) has solution (< I , & , ...,tm, t*). We notice
that the left side of the first equation in (5) is an increasing function of t.
Therefore the found solution is unique.

Proof of the theorem. Suppose that r is partitioned into complete subsets
rl . . . , Fm, where

- sp), Sp), ..., sit)}, k = 1, m,
-

such that (Vk # I) (Vi = l , n k ; V j = G l) l (S j k) S (')) = Tautology. Let B
be a KB with the set of sentences I? given by p(Sij = ai for every Si E I?.
Then we have (see [5]):

199

Put in these equations

we obtain

w h e r e G = {1,2 ,..., n k } .

By the lemma, there are the unique values of a0 and <k such that

= 1

1 < k g l (l - $) =%, k = 1 , ..., m

For each k = 1 , ..., m, we consider system of equations

Put

By dividing both sides of each equation of this system by t k , we obtain
the following system (k = 1 , ..., m):

This system of equations has the solution

200

Hence, we obtain

From (3) and (9) we have
-

tJk = l ,m, V I C G, p (A$"\&) = Up(S,!"'\Qk).
i E I i E I

Then for all consistent vector uy) , we obtain

201

Thus, we obtain again the formula (8). The theorem is proved.

Remark. If I? = {SI, SZ, ...) SL} is itself a complete set of sentences, then
the set H stated in the theorem consists of the following CIA formulas:

We notice in the reasoning, if a propositional variable A occurs in the
goal S and does not occur in I?, we have to add to H the R A formula:

1 p(A) = -.
2

In general, if v and w are two possible worlds having the same consistent
vector for I?, we have to add to H the RA formula:

Example. Given a KB consisting of two formulas p(C) = a, p(AC V B) = p.
Let SI = C, SZ = ACVB. The set {C, ACVB} is complete. Then H contains
the following formulas

For S = AB, from C + H we have

202

1 1 1 -
= $ ((A v B)C) + sp(BC) = ?p(C(AC V B)) + p (C (A C V B))

3

1
= gP(3 - a)

This result can be obtained also by a calculation from PL + MEP.

3. Conclusion
Thus, in this paper we have obtained the positive answer to the question

of equivalence between the MEP and the CIA + RA for a class of probabilii-
tic knowledge bases. And therefore, for this class we can deduce the truth
probability of any sentence from the Calcules C and a suitable set H of CIA
and RA formulas instead of solving a nonlinear optimization problem.

1.

2.

3.

4.
5.

References
Dieu P. D., On a Theory of Interval-Valued Probabilistic Logic. Research
Report (Vietnam NCST, 1991).
Guggeneimer H. and Feedman R. S., Foundation of probabilistic Logic.
Proceedings of 1 dh International Joint Conference on Artificial Intelli-
gence (1987) 939-941.
McLeish M., A note on probabilistic logic. Proceedings AI IC (1988)

Nilsson N. J., Probabilistic logic. Artificial Intelligence 28 (1986) 71-87.
Tung H. D. C., Interval-Valued probabilistic Logic for a Class of Horn
Clauses. Vietnam J. Math. 25: 3 (1997) 241-252.

215-219.

This page intentionally left blankThis page intentionally left blank

	Contents
	Preface
	On Growth Function of Petri Net and its Applications Pham Tra An
	1 Introduction
	2 Definitions
	3 The Growth Function of a Petri Net
	4 The Growth Function and Representative Complexity
	5 Remark and Open Problem
	Acknowledgement.
	References

	On an Infinite Hierarchy of Petri Net Languages Pham Tra A n and Pham Van Thao
	1 Preliminaries
	2 On a criterion for Petri net languages
	3 An infinite hierarchy of Petri net languages
	Acknowledgment
	References

	Algorithms to Test Rational w-Codes Xavier Augros and Igor Litovsky
	1 Introduction
	2 Preliminaries
	3 Testing unique decipherability of finite words
	3.1 The Test of Sardinas and Patterson
	3.2 A Test by product of automata

	4 Testing rational w-codes
	4.1 A Test by product of automata
	4.2 A Test for strict-codes
	4.3 Another test for Codes and w-Codes
	Rational case

	5 Complexity analysis
	Test by interlaced product
	Tests by quotients of languages

	Acknowledgments
	References

	Distributed Random Walks for an Efficient Design of a Random Spanning Tree Hichem Baala and Marc Bui
	1 Introduction
	2 Preliminaries
	3 Algorithms description
	4 Correctness and complexity proofs
	5 Conclusions and future works
	References

	Formal Concept Analysis and Rough Set Theory in Clustering Ho Tu Bao
	1 Formal Concept Analysis and Rough Set Theory
	2 FCA-based Conceptual Clustering
	3 Approximate Conceptual Clustering
	4 Document Clustering based on a Tolerance Rough Set Model
	References

	A Simple Heuristic Method for the Min-Cut k-Balanced Partitioning Problem Lelia Blin and Ivan Lavallee
	1 Introduction
	2 The problem
	3 The state of the art
	3.1 Bi-Partitioning: MC2P
	3.2 Min-Cut Balanced Bi-Partioning: MCB2P
	3.3 Hypergraph
	3.4 Geometric Representation
	3.5 Replication

	4 Our heuristic
	4.1 Example

	References

	Longest Cycles and Restgraph in Maximal Non-Hamiltonian Graphs Vu Dinh Hoa
	1 Terminology and Notation
	2 Results and Conjecture
	References

	Deterministic and Nondeterministic Directable Automata Masami Ito
	1 Introduction
	2 Deterministic Directable Automata
	3 Nondeterministic Directable Automata
	4 Commutative Nondeterministic Directable Automata
	Acknowledgement
	References

	Worst-Case Redundancy of Solid Codes Helmut Jiirgensen and Stavros Konstantinidis
	1 Introduction
	2 Notions and Notation
	3 Maximal Solid Codes in a+b+ U a+b+a+b+
	4 Properties of Near-Inverses
	5 Redundancy of Maximal Solid Codes in a+b+ U a+b+a+b+
	6 Concluding Remarks
	References

	Maximal Independent Sets in Certain Subword Orders Nguyen Huong Lam
	1 Introduction
	2 Maximal independent sets in length-compatible order
	3 Factor order. Infix codes
	4 Subword order. Hypercodes
	References

	Strong Recognition of Rational w-Languages Bertrand Le Saec, V. R. Dare and R. Siromoney
	1 Introduction
	2 Preliminaries
	3 Strong congruence recognition
	4 Mac Naughton Theorem and strong recognition
	4.1 Nice semigroups
	4.2 Semigroups with commutative stabilizers

	References

	Some Results Concerning Covers in the Class of Multivalued Positive Boolean Dependencies Le Duc Minh, Vu Ngoc Loan and Nguyen Xuan Huy
	1. Introduction
	2. Some concepts and results
	Algorithm MEMBER
	Algorithm DERIVES
	Algorithm EQUIVALENCE
	Algorithm REDUNDANT
	Algorithm NONREDUN
	Acknowledgments
	References

	A New Measure for Attribute Selection Do Tan Phong, Ho Thuan and Ha Quang Thuy
	1. The weak monotonous axiom
	2. Measures for attribute selection
	3. The measure RN
	4. Some characteristics of the measure RN
	5. Conclusion
	References

	The Complexity of Problems Defined by Boolean Circuits Steffen Reith and Klaus W. Wagner
	1 Introduction
	2 Problems Defined by B-Circuits
	3 Closed Classes of Boolean Functions
	4 Circuit Value
	5 Satisfiability and Tautology
	6 Quantifiers
	7 Counting Functions
	8 The Threshold Problem
	9 Conclusions
	References

	The Rational Skimming Theorem Jacques Sakarovitch
	1 The Schutzenberger covering
	2 K-automata
	3 K-coverings
	4 The skimming theorem
	Acknowledgements
	References

	A New Classification of Finite Simple Groups Wujie Shi and Seymour Lapschutz
	1. Introduction and Notation
	2. Preliminary Lemmas
	3. Main Results
	Acknowledgments
	Reference

	Connectedness of Tetravalent Metacirculant Graphs with Non-Empty First Symbol Ngo Dac Tan and Tran Minh Tuoc
	1 Introduction
	2 Notations and definitions
	3 General reduction results
	4 Main result
	Acknowledgement
	References

	On the Relation between Maximum Entropy Principle and the Condition Independence Assumption in the Probabilistic Logic Ha Dang Cao Tung
	1. Introduction
	2. The main result
	3. Conclusion
	References

