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Research in systems biology requires the collaboration of

researchers from diverse backgrounds, including biology,

computer science, mathematics, statistics, physics, and bio-

chemistry. These collaborations, necessary because of the

enormous breadth of background needed for research in this

field, can be hindered by differing understandings of the limi-

tations and applicability of techniques and concerns from dif-

ferent disciplines. This comprehensive introduction and

overview of system modeling in biology makes the relevant

background material from all pertinent fields accessible to

researchers with different backgrounds.

The emerging area of systems level modeling in cellular

biology has lacked a critical and thorough overview. This book

fills that gap. It is the first to provide the necessary critical

comparison of concepts and approaches, with an emphasis

on their possible applications. It presents key concepts and

their theoretical background, including the concepts of

robustness and modularity and their exploitation to study bio-

logical systems; the best-known modeling approaches and

their advantages and disadvantages; lessons from the appli-

cation of mathematical models to the study of cellular biology;

and available modeling tools and datasets, along with their

computational limitations.
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System Modeling: Why and Why Now?

Vipul Periwal, Zoltan Szallasi and Jörg Stelling

Introduction

Biology is the study of self-replicating chemical processes. Biology is the study of
systems accurately transmitting a genetic blueprint. Biology is the study of complex
adaptive reproducing systems.

What is systems biology if all definitions of biology implicitly or explicitly refer to
the study of a whole object, whether it is a virus, a cell, a bacterium, a protozoan
or a metazoan? We treat systems biology as the quantitative study of biological
systems, aided (or hindered) by technological advances that both permit molecular
observations on far more inclusive scales than possible even 15 years ago, and permit
computational analysis of such observations. Thus, for the purposes of this book,
systems biology is the promise of biology on a larger and quantitatively rigorous
scale, a marriage of molecular biology and physiology. Concretely, this defines the
focus of the book: data-centric quantitative modeling of biological processes and
systems.

Biology is an experimentally driven science simply because evolutionary processes
are not understood well enough to allow theoretical advances to rest on terra firma.
Systems biology is experimentally driven, computationally driven, and knowledge
driven. It is experimentally driven because the complexity of biological systems is
difficult to penetrate without large-scale coverage of the molecular underpinnings;
it is computationally driven because the data obtained from experimental investi-
gations of complex systems need extensive quantitative analysis to be informative;
and it is knowledge driven because it is not computationally feasible to analyze the
data without incorporating all that is already known about the biology in question.
Furthermore, the use of data, computation and knowledge must be concurrent.
Available knowledge guides experiment design, novel knowledge is generated by the
computational analysis of new data in light of available knowledge, and the cycle
repeats.

The difference between knowledge and data is central to understanding the
underpinnings of systems biology. The sequencing of whole genomes is a good
example. Any given genome is data. Without extensive analysis, it is just as
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uninformative about biological processes as a photograph of the night sky. First
steps in transforming a genome into knowledge include identifying genes, identifying
transcription factor binding sites, finding the transcription factor complexes that
control the expression of the genes, and finding the chromatin structure in the
cell being studied, to determine which genes are accessible for transcription. While
this is wildly optimistic in terms of the knowledge that can be extracted from the
genome data, it is still nowhere close to the level of understanding required to make
predictions about the response of an organism to a specific stimulus. A reductionist
approach to biology is bootless because complex adaptive systems are inherently
nonlinear, so their behavior is well summarized by the statement: the whole is more
than the sum of the components.

Handicapping the Bout

From a quantitative perspective, there are striking features of biological dynamics
that make analysis challenging:

1. Large range of spatial scales

2. Large range of temporal scales

3. A lack of separation between responses to external stimuli versus internal pro-
grams

4. Multiple functionalities of constituents

5. Multiple levels of signal processing

6. Incomplete evolutionary record

7. Wide range of sensitivities to perturbations

8. Genotypic variation

None of these challenges is an absolute barrier to progress. Nevertheless, these
challenges must be addressed to make real progress.

From an experimental perspective, the challenges of biology are better under-
stood:

1. Coverage in terms of components and interactions

2. Reproducibility

3. Spatial resolution

4. Temporal resolution

5. Cross-validation

6. Combinatorial perturbations

7. Accuracy
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From a knowledge perspective, there are four central problems:

1. Find an appropriate level of abstraction for a given analytic problem.

2. Find a common basis to relate knowledge gained using different experimental
techniques on the same system.

3. Find a common basis to relate knowledge gained from the same experiment on
different model systems.

4. Incorporate knowledge incrementally as new data is analyzed.

Taking all these difficulties together, it is not surprising that researchers tradi-
tionally have considered the study of biological systems rather resistant to quan-
titative approaches. It is, therefore, worth pointing out to skeptics that in some
cases thorough quantitative analysis has produced insights into or explanations of
biological phenomena that would have been impossible without the application of
advanced mathematical tools. Various chapters in this book will discuss a great
variety of, often counterintuitive, examples. For instance, the advantages of a more
extensive mathematical analysis over simpler approaches are emphasized in chap-
ter 8 (pp. 170–173). When circadian oscillators are analyzed by formal logic, the
traditional analytical tool of molecular biology, or by macroscopic descriptors such
as differential equations, the experimentally observed behavior cannot be recon-
structed from the molecular machinery. Stochastic analysis, however, demonstrates
how, by random fluctuations, the system escapes the macroscopic point-attractor
and thus oscillatory behavior is maintained. Examples such as this will probably
contribute to the long-awaited common ground for discussions between biologists
and quantitative scientists. The mutual suspicion on both sides, which has been
difficult to overcome by intellectual curiosity alone, will probably be eliminated by
the mutual need for each other’s expertise.

“My Complications Had Complications”

The goal of systems biology is a predictive understanding of the whole. If the
whole is more than the sum of its parts, it follows that acquiring a catalog of
all the parts is not necessarily the first order of business. In a caricature, there
are two avenues of attack possible: either one focuses on subsystems governing a
specific function in arbitrary conditions and gains a predictive understanding of the
system, one subsystem at a time, or one focuses on the system in a restricted set of
conditions and gains an understanding by gradually increasing the set of conditions
and, as required, the level of detail in the model of the system. The analogy is with
molecular biology in the former approach and with physiology in the latter.

The modeling associated with each approach is distinct. In the molecular biology
type approach, the aim is to go beyond traditional pathway-centric points of
view and deal with the challenges of feedback loops formed either directly or
indirectly due to interactions with other pathways. In the physiology type approach,
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interactions between the components in the model are added as needed to maintain
contact with the experimental data. The components in this approach are not
necessarily directly related to biochemical species. Eventually, these bottom-up
and top-down approaches should meet. However, each has its own strengths and
weaknesses and they complement each other.

Why Read This?

The importance of feedback loops and crosstalk in almost all facets of biological
systems has been apparent for several decades. The cell cycle control circuitry or
the developmental programs in bilaterians are prime examples of this. The ability
of cancerous cells to evade targeted therapies results largely from biological systems
having evolved in ways that place a premium on robustness and adaptability.
Such properties, as yet only nebulously defined, are not localizable to a small
set of interactions. They reside in the network as a whole, as has been clearly
demonstrated in predictions on metabolic networks.

Modeling biological systems faces the challenge of appropriate abstractions—
levels on which to focus, and details to be left out. For instance, molecular biology
abounds with mechanistic analogies, but on a more detailed level often the un-
derlying interactions are driven by chemistry. This makes modeling subtle since
statistical biases are often the driving force in what superficially appears to be a
mechanical process, for example, chemotaxis. At what level does such detail be-
come relevant, and at what level can one ignore it? This is not a priori obvious,
and one needs rigorous approaches to model parsimony to answer such questions.
Indeed, the answer to the model selection question depends to a great extent on
the predictions required. This is an important point in all biological modeling: The
model, its purpose, and the experimental data are intimately related. A model that
predicts hepatic glucose uptake precisely but insulin levels with greater uncertainty
is not a useful selection if the only measurement available is insulin levels.

There are two main approaches to computational analysis of biological data.
The causal approach makes concrete deterministic or stochastic models (differ-
ential equations, stochastic differential equations, Boolean networks, et cetera) of
biological processes. The probabilistic view is associated with probabilistic infer-
ence approaches, using pattern recognition or learning algorithms (such as neural
networks and graphical models) for analysis of data from large-scale experimen-
tal methods. These two approaches rest on a large part of applied mathematics
(including numerical integration, optimization, interpolation, and control theory)
and computer science (search theory, coding theory, and database design). This
breadth necessitates collaborations between people with diverse backgrounds, but
an inadequate understanding of the limitations and applicability of techniques and
concepts from different fields hinders such collaborations. The background infor-
mation required makes biological modeling a difficult task, but the real challenge
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remains that of making computational models effective and efficient representations
of biological systems.

What’s Included and What’s Not

This book starts with generalities and progresses towards practicalities. Thus, the
first section is conceptual, with attempts to define the role of modeling in biology,
as well as attempts to cut through the miasma that surrounds the use of the terms
robust, complex, adaptive, and module in the systems biology literature. As will be
evident, these are important notions that need much further work to crystallize to
the point where they can be assigned the honorific concept. Nevertheless, these terms
may ultimately be quantitatively used as concrete guiding principles in modeling.

The next section provides introductions to general approaches to making models
of biology: qualitative models, constraint-based models, dynamical systems based
on differential equations, and stochastic models, as well as models with spatial struc-
ture. The other side of the modeling coin, probabilistic inference aimed at inference
from large-scale data sets, is also introduced. The section proceeds from relatively
simple towards mathematically more demanding approaches. Although each chap-
ter tries to convey its central messages in an intuitive as well as in a mathematically
rigorous way, readers arriving from biology will have to realize that each method
has a certain minimum difficulty level associated with it. While ordinary differential
equation–based or qualitative models can be quite readily introduced in an intuitive
manner, stochastic or spatial modeling cannot be described in simple terms and re-
quire an appropriate level of background in quantitative sciences. Key applications
of the various modeling approaches are also widely covered. Taken together, this
section will provide the reader with an overall impression of the relationship between
the potential utility of quantitative approaches and their associated analytical cost.

Reality bites. And models model biological reality. The section that follows next
contains introductions to the data that is available for systems biology and the
caveats that go with the data. It also contains introductions to inferring model
architecture from data, using control theory in models, and studying synthetic gene
networks. The antidote to these computational limitations is multi-level modeling,
and this is also introduced in this section. Limitations in observability, accuracy,
and coverage of biological data are widely recognized. One of the goals of this
section is to guide the readers through various data interpretation methods while
emphasizing what the data will or will not allow in terms of quantitative analysis.

The last section of the book contains the computational issues and techniques for
practical application of the preceding approaches: numerical methods for simulating
biochemical systems, and the software infrastructure for representing models in a
reusable and exchangeable manner. Biological data quality is not the only obstacle
systems biology is facing. The various numerical methods also have their well
known strengths and limitations and these should be considered when designing
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experiments and their associated models. For instance, computational limitations
form barriers to increasing model size arbitrarily.

The book ends with an eclectic list of the software tools that the contributing
authors of this book find useful.

While this book contains a plethora of approaches to biological modeling, we are
keenly aware that there are many that we have not covered. For instance, we have
eschewed much discussion of pattern recognition because this is only really useful
when combined with domain specific biological knowledge—for which no general
technique exists. Likewise, we do not cover approaches such as neural networks
or Petri nets that have either limited application in systems biology so far, or are
problematic regarding model interpretation. Our attempt has been to provide broad
basic coverage of fundamental approaches and techniques. In our view, picking some
of the techniques introduced in this book and combining them artfully leads to
almost complete coverage of modeling in systems biology.

Enjoy

Systems biology is an approach to quantitatively understand biological systems
that attempts to embrace the complexity of life as a fact of life. There is no
hope of understanding biological systems at the predictive level required for disease
detection, prevention, or cure other than by this means. Nevertheless, it would serve
us well to temper Burnham’s maxim of grand thinking, “Make no little plans . . . ”
with the story of the emperor’s new clothes.
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1 The Role of Modeling in Systems Biology

Douglas B. Kell and Joshua D. Knowles

The use of models in biology is at once both familiar and arcane. It is familiar
because, as we shall argue, biologists presently and regularly use models as ab-
stractions of reality: diagrams, laws, graphs, plots, relationships, chemical formulae
and so on are all essentially models of some external reality that we are trying to
describe and understand (fig. 1.1). In the same way we use and speak of “model
organisms” such as baker’s yeast or Arabidopsis thaliana, whose role lies in being
similar to many organisms without being the same as any other one. Indeed, our
theories and hypotheses about biological objects and systems are in one sense also
just models (Vayttaden et al., 2004). Yet the use of models is for most biologists
arcane because familiarity with a subset of model types, especially quantitative
mathematical models, has lain outside the mainstream during the last 50 years of
the purposely reductionist and qualitative era of molecular biology. It is largely
these types of model that are an integral part of the “new” (and not-so-new) sys-
tems biology and on which much of the rest of this book concentrates. Since all
such models are developed for some kind of a purpose, our role in part is to explain
why this type of mathematical model is both useful and important, and will likely
become part of the standard armory of successful biologists.

1.1 Philosophical Overview

When one admits that nothing is certain one must, I think, also admit that some
things are much more nearly certain than others.

Bertrand Russell, Am I an Atheist or an Agnostic?

It is conventional to discriminate (as in fig. 1.2) (a) the world of ideas, thoughts,
or other mental constructs and (b) the world of observations or data, and most
scientists would recognize that they are linked in an iterative cycle, as drawn: we
improve our mental picture of the world by carrying out experiments that produce
data, and such data are used to inform the cogitations that feed into the next part
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Figure 1.1 Models in biology. Although we shall be concentrating here on a subset
of mathematical models, we would stress that the use of all sorts of models is entirely
commonplace in biology—examples include (a) diagrams (here a sequence of DNA bases
and the “central dogma”), (b) laws (the flux-control summation theorem of metabolic
control analysis), (c) graphs—in the mathematical sense of elements with nodes and edges
(a biochemical pathway), (d) plots (covariation of 2 metabolites in a series of experiments),
(e) relationships (a rule describing the use of the concentration of a metabolite in disease
diagnosis), (f) chemical formulae (tryptophan), and (g) images (of mammalian cells).

of the right-hand arc, that designs and performs the next set of experiments as
part of an experimental program. Such a cycle may be seen as a “chicken and egg”
cycle, but for any individual turn of the cycle there is a clear distinction between
the two essential starting points (ideas or data). This also occurs in scientific
funding circles—is the activity in question ideas- (that is, hypothesis-)driven or
is it data-driven? (Until recently, the latter, hypothesis-generating approach was
usually treated rather scornfully.)

From a philosophical point of view, then, the hypothetico-deductive analysis, in
which an idea is the starting point (however muddled or wrongheaded that idea
may be), has been seen as much more secure, since deductive reasoning is sound
in the sense that if an axiom is true (as it is supposed to be by definition) and
the observation is true, we can conclude that the facts are at least consistent with
the idea. If the hypothesis is “all swans are white” then the prediction is that a
measurement of the whiteness of known swans will give a positive response. By
contrast, it has been known since the time of Hume that inductive reasoning, by
which we seek to generalize from examples (“swan A is white, swan B is white,
swan C is white . . . so I predict that all swans are white”) is insecure—and a
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Figure 1.2 The iterative relationship between the world of ideas/hypotheses/thoughts
and the world of data/observations. Note that these are linked in a cycle, in which one
arc is not simply the reverse of the other (Kell, 2002, 2005; Kell and Welch, 1991).

single black swan shows it. Nothing will ever change that, and the “problem of
induction” probably lies at the heart of Popper’s insistence (see Popper (1992)
and more readable commentators such as Medawar (1982)) that theories can only
be disproved. Note of course that it is equally true for the hypothetico-deductive
mode of reasoning that a single black swan will disprove the hypothesis. This said,
the ability of scientists to ignore any number of ugly facts that would otherwise
slay a beautiful hypothesis is well known (Gilbert and Mulkay, 1984), and in this
sense—given that there are no genuinely secure axioms (Hofstadter, 1979; Nagel and
Newman, 2002)—the deductive mode of reasoning is not truly much more secure
than is induction.

Happily, there is emerging a more balanced view of the world. This recognizes
that for working scientists the reductionist and ostensibly solely hypothesis-driven
agenda has not been as fruitful as had been expected. In large measure in biology
this realization has been driven by the recognition, following the systematic genome
sequencing programs, that the existence, let alone the function, of many or most
genes—even in well-worked model organisms—had not been recorded. This could be
seen in part as a failure of the reductionist agenda. In addition there are many areas
of scientific activity that have nothing to do with testing hypotheses but which are
exceptionally important (Kell and Oliver, 2004); perhaps chief among these is the
development of novel methods. In particular there are fields—functional genomics
not least among them (Kell and King, 2000), although this is very true for many
areas of medicine as well—that are data-rich but hypothesis-poor, and are best
attacked using methods that are data-driven and thus essentially inductive (Kell
and King, 2000).

A second feature that has emerged from a Popperian view of the world (or
at least from his attempt to find a means that would allow one to discriminate
“science‘” from “pseudo-science” (Medawar, 1982; Popper, 1992)) is the intellectual
significance of prediction: if your hypothesis makes an experimentally testable (and
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thus falsifiable) prediction it counts as “science,” and if the experimental prediction
is consistent with the prediction then (confidence in) the “correctness” of your
hypothesis or worldview is bolstered (see also Lipton (2005)).

1.2 Historical Context

The history of science demonstrates that both inductive and deductive reasoning
occur at different stages in the development of ideas. In some cases, such as in the
history of chemistry, a period of almost purely inductive reasoning (stamp-collecting
and classification) is followed by the development of more powerful theories that
seek to explain and predict many phenomena from more general principles. Often
these theories are reductionist, that is to say, complicated phenomena that seem
to elude coherent explanation are understood by some form of breaking down into
constituent parts, the consideration of which yields the required explanation of
the more complicated system. A prime example of the reductionist mode is the
explanation of the macroscopic properties of solids, liquids, and gases—such as
their temperature, pressure, and heat— by considering the average effect of a
large number of microscopic interactions between particles, governed by Newtonian
mechanics. For the first time, accurate, quantitative predictions with accompanying,
plausible explanations were possible, and unified much of our basic understanding
of the physical properties of matter.

The success of early reductionist models in physics, and later those in chemistry,
led in 1847 to a program to analyze (biological) processes, such as urine secretion
or nerve conduction, in physico-chemical terms proposed by Ludwig, Helmholtz,
Brucke, and du Bois-Reymond (Bynum et al., 1981). However, although reduction-
ism has been successful in large part in the development of physics and chemistry,
and to a great extent in acquiring the parts list for modern biology—consider the
gene—the properties of many systems resist a reductionist explanation (Solé and
Goodwin, 2000). This ultimate failure of reductionism in biology, as in other dis-
ciplines, is due to a number of factors, principal among them being the fact that
biological systems are inherently complex.

Although complexity is a phenomenon about which little agreement has been
reached, and certainly for which no all-encompassing measure has been established,
the concept is understood to pertain to systems of interacting parts. Having many
parts is not necessary: it is sufficient that they are coupled in some way, so that the
state of one of them affects the state of one or more others. Often the interactions are
nonlinear so, unlike systems which can be modeled by considering averaged effects,
it is not possible to reduce the system’s behavior to the sum of its parts (Davey
and Kell, 1996). Common interactions in these systems are feedback loops, in which,
as the name suggests, information from the output of a system transformation is
sent back to the input of the system. If the new input facilitates and accelerates
the transformation in the same direction as the preceding output, they are positive
feedback —their effects are cumulative. If the new data produce an output in the
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opposite direction to previous outputs, they are negative feedback—their effects
stabilize the system. In the first case there is exponential growth or decline; in the
second there is maintenance of the equilibrium. These loops have been studied in
a variety of fields, including control engineering, cybernetics, and economics. An
understanding of them and their effects is central to building and understanding
models of complex systems (Kell, 2004, 2005; Milo et al., 2002).

Negative feedback loops are typically responsible for regulation, and they are
obviously central to homeostasis in biological systems. In control engineering,
such systems are conveniently described using Laplace transforms—a means of
simplifying the combination and manipulation of ordinary differential equations
(ODEs), and closely related to the Fourier transform (Ogata, 2001); Laplace
transforms for a large variety of different standard feedback loops are known and
well-understood, though analysis and understanding of non-linear feedback remains
difficult (see chapter 12 for details). Classical negative feedback loops are considered
to provide stability (as indeed they do when in simple systems in which the feedback
is fast and effective), though we note that negative feedback systems incorporating
delays can generate oscillations (for example (Nelson et al., 2004)).

Positive feedback is a rather less appreciated concept for most people and, until
recently, it could be all but passed over in even a control engineer’s education. This
is perhaps because it is often equated with undesired instability in a system, so it
is just seen as a nuisance; something which should be reduced as much as possible.
However, positive feedback should not really be viewed in this way, particularly from
a modeling perspective, because it is an important factor in the dynamics of many
complex systems and does lead to very familiar behavior. One very simple model
system of positive feedback is the Polya urn (Arthur, 1963; Barabási and Albert,
1999; Johnson and Kotz, 1977). In this, one begins with a large urn containing two
balls, one red and one black. One of these is removed. It is then replaced in the
urn, together with another ball of the same color. This process is repeated until
the urn is filled up. The system exhibits a number of important characteristics
with respect to the distribution of the two colors of balls in the full urn: early,
essentially random events can have a very large effect on the outcome; there is a
lock-in effect where later in the process, it becomes increasingly unlikely that the
path of choices will shift from one to another (notice that this is in contrast to the
“positive feedback causes instability” view); and accidental events early on do not
cancel each other out. The Polya urn is a model for such things as genetic drift in
evolution, preferential attachment in explaining the growth of scale-free networks
(Barabási and Albert, 1999), and the phenomenon whereby one of a variety of
competing technologies (all but) takes over in a market where there is a tendency for
purchasers to prefer the leading technology, despite equal, or even inferior, quality
compared with the others (for example QWERTY keyboards and Betamax versus
VHS video). (See also Goldberg (2002) and Kauffman et al. (2000) for the adoption
of technologies as an evolutionary process.)

Positive feedback in a resource-limited environment also leads to familiar be-
havior. The fluctuations seen in stock prices, the variety of sizes of sandpiles, and
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cycles of population growth and collapse in food-chains all result from this kind of
feedback. There is a tendency to reinforce the growth of a variable until it reaches
a value that cannot be sustained. This leads to a crash which “corrects” the value
again, making way for another rise. Such cyclic behavior can be predictably peri-
odic but in many cases the period of the cycle is chaotic—that is, deterministic but
essentially unpredictable. All chaotic systems involve nonlinearity, and this is most
frequently the result of some form of positive feedback, usually mixed with negative
feedback (Glendinning, 1994; Tufillaro et al., 1992; Strogatz, 2000).

Behavior involving oscillatory patterns may also be important in biological
signaling (Lahav et al., 2004; Nelson et al., 2004), where the downstream detection
may be in the frequency rather than the amplitude (that is, simply concentration)
domain (Kell, 2005). All of this said, despite encouraging progress (for example
(Tyson et al., 2003; Wolf and Arkin, 2003; Yeger-Lotem et al., 2004)), we are far
from having a full understanding of the behavior of concatenations of these simple
motifs and loops. Thus, the Elowitz and Leibler oscillator (Elowitz and Leibler,
2000) is based solely on negative feedback loops but is unstable. However, this
system could be made comparatively stable and robust by incorporating positive
feedback loops, which led to some interesting work by Ferrell on the cell cycle
(Angeli et al., 2004; Pomerening et al., 2003).

It is now believed that most systems involving interacting elements have both
chaotic and stable regions or phases, with islands of chaos existing within stable
regions, and vice versa (for a biological example, see (Davey and Kell, 1996)).
Chaotic behavior has now been observed even in the archetypal, clockwork system
of planetary motion, whereas the eye at the heart of a storm is an example of
stability occurring within a wildly unpredictable whole.

Closely related to the vocabulary of complexity and of chaos theory is the slippery
new (or not so new?) concept of emergence (Davies, 2004; Holland, 1998; Johnson,
2001; Kauffman, 2000; Morowitz, 2002). Emergence is generally taken to mean
simply that the whole is more than (and maybe qualitatively different from) the
sum of its parts, or that system-level characteristics are not easily derivable from the
“local” properties of their constituents. The label of emergent phenomenon is being
applied more and more in biological processes at many different levels, from how
proteins can fold to how whole ecosystems evolve over time. A central question that
the use of the term emergence forces us to consider is whether it is only a convenient
way of saying that the behavior of the whole system is difficult to understand
in terms of basic laws and the initial conditions of the system elements (weak
emergence), or whether, in contrast, the whole cannot be understood by the analysis
of the parts, and current laws of physics, even in principle (strong emergence). The
latter view would imply that high level phenomena are not reducible to physical
laws (but may be consistent with them) (Davies, 2004). If this were true, then the
modeling of (at least) some biological processes should not follow solely a bottom-
up approach, hoping to go from simple laws to the desired phenomenon, but might
eventually need us to posit high-level organizing principles and even downward



1.3 The Purposes and Implications of Modeling 9

causality. Such a worldview is completely antithetical to materialism and remains
as yet on the fringes of scientific thought.

In summary, reductionism has been highly successful in explaining some macro-
scopic phenomena, purely in terms of the behavior of constituent parts. However,
this was predicated (implicitly) on the assumption that there were few parts (for ex-
ample, the planets) and that their interactions were simple, or that there were many
parts but their interactions could be neglected (for example, molecules in a gas).
However, the scope of a reductionist approach is limited because these assumptions
are not true in many systems of interest (Kell and Welch, 1991; Solé and Good-
win, 2000). The advent of computers and computer simulations led to the insight
that even relatively small systems of interacting parts (such as the Lorenz model)
could exhibit very complex (even chaotic) behavior. Although the behavior may be
deterministic, complex systems are hard to analyze using traditional mathematical
and analytical methods. Prediction, control, and understanding arise mainly from
modeling these systems using iterated computer simulations. Biological systems,
which are inherently complex, must be modeled and studied in this way if we are
to continue to make strides in our understanding of these phenomena.

1.3 The Purposes and Implications of Modeling

We take it as essentially axiomatic that the purposes of academic biological research
are to allow us to understand more than we presently do about the behavior and
workings of biological systems (see also Klipp et al. (2005)) (and in due time to
exploit that knowledge for agricultural, medical, commercial, or other purposes).
We consider that there are several main reasons why one would wish to make models
of biological systems and processes, and we consider each in turn. In summary, they
can all be characterized as variations of simulation and prediction. By simulation
we mean the production of a mathematical or computational model of a system or
subsystem that seeks to represent or reproduce some properties that that system
displays. Although often portrayed as substantially different (though we consider
that it is not), prediction involves the production of a similar type of mathematical
model that simulates (and then predicts) the behavior of a system related to the
starting system described above. Clearly simulation and prediction are thus related
to each other, and the important concept of generalization describes the ability of
a model derived for one purpose to predict the properties of a related system under
a separate set of conditions. Thus some of the broad reasons—indeed probably the
main reasons—why one would wish to model a (biological) system include:

Testing whether the model is accurate, in the sense that it reflects—or can be
made to reflect—known experimental facts

Analyzing the model to understand which parts of the system contribute most to
some desired properties of interest
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Hypothesis generation and testing, allowing one rapidly to analyze the effects
of manipulating experimental conditions in the model without having to perform
complex and costly experiments (or to restrict the number that are performed)

Testing what changes in the model would improve the consistency of its behavior
with experimental observations

Our view of the basic bottom-up systems biology agenda is given in fig. 1.3.

1.3.1 Testing Whether the Model Is Accurate

A significant milestone in a modeling program is the successful representation of the
behavior of the “real” system by a model. This does not, of course, mean that the
model is accurate, but it does mean that it might be. Thus the dynamical behavior
of variables such as concentrations and fluxes is governed by the parameters of the
systems such as the equations describing the local properties and the parameters
of those equations. This of itself is not sufficient, since generalized equations (for
example, power laws, polynomials, perceptrons with nonlinear properties) with
no mechanistic or biological meaning can sometimes reproduce well the kinetic
behavior of complex systems without giving the desired insight into the true
constitution of the system.

Such models may also be used when one has no experimental data, with a
view to establishing whether a particular design is sensible or whether a particular
experiment is worth doing. In the former case, of engineering design, it is nowadays
commonplace to design complex structures such as electronic circuits and chips,
buildings, cars, or aeroplanes entirely inside a computer before committing them
to reality. Famously, the Boeing 777 was designed entirely in silico before being
tested first in a wind tunnel and then with a human pilot. It is especially this kind
of attitude and experience in the various fields of engineering that differs from the
current status of work in biology that is leading many to wish to bring numerical
modeling into the biological mainstream. Another example is the development of
“virtual” screening, in which the ability of drugs to bind to proteins is tested in silico
using structural models and appropriate force fields to calculate the free energy of
binding to the target protein of interest of ligands in different conformations (Böhm
and Schneider, 2000; Klebe, 2000; Langer and Hoffmann, 2001; Shen et al., 2003;
Zanders et al., 2002), the most promising of which may then be synthesized and
tested. The attraction, of course, is the enormous speed and favorable economics
(and scalability) of the virtual over the actual “wet” screen.

1.3.2 Analyzing Subsystem Contributions

Having a model allows one to analyze it in a variety of ways, but a chief one is
to establish those parts of the model that are most important for determining the
behavior in which one is particularly interested. This is because simple inspection
of models with complex (or even simple) feedback loops just does not allow one
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(a)

(b)

(c)

Figure 1.3 The role of modeling in the basic systems biology agenda, (a) stressing the
bottom-up element while showing the iterative and complementary top-down analyses.
(b) The development of a model from qualitative (structural) to quantitative, and (c) its
integration with (“wet”) experimentation.

to understand them (Westerhoff and Kell, 1987). Techniques such as sensitivity
analysis (see below) are designed for this, and thus indicate to the experimenter
which parameters must be known with the highest precision and should be the focus
of experimental endeavor. This is often the focus of so-called top-down analyses
in which we seek to analyze systems in comparatively general or high-level terms,
lumping together subsystems in order to make the systems easier to understand. The
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equivalent in pharmacophore screening is the QSAR (quantitative structure-activity
relationship) type of analysis, from which one seeks to analyze those features of a
candidate binding molecule that best account for successful binding, with a view
to developing yet more selective binding agents.

1.3.3 Hypothesis Generation and Testing

Related to the above is the ability to vary, for example, parameters of the model, and
thereby establish combinations or areas of the model’s space that show particular
properties in which one might be interested (Pritchard and Kell, 2002), and then
to perform that small subset of possible experiments that it is predicted will
show such interesting behavior. An example here might be the analysis of which
multiple modulations of enzymatic properties are best performed for the purposes
of metabolic engineering (Cascante et al., 2002; Cornish-Bowden, 1999; Fell, 1998).
We note also that when modeling can be applied effectively it is far cheaper than
wet biology and, as well as its use in metabolic engineering, can reduce the reliance
on in vivo animal/human experimentation (a factor of significant importance in the
pharmaceutical industry).

1.3.4 Improving Model Consistency

In a similar vein, we may have existing experimental data with which the model
is inconsistent, and it is desirable to explore different models to see which changes
to them might best reproduce the experimental data. In biology this might, for
example, allow the experimenter to test for the presence of an interaction or kinetic
property that might be proposed. In a more general or high-level sense, we may use
such models to seek evidence that existing hypotheses are wrong, that the model
is inadequate, that hidden variables need to be invoked (as in the Higgs Boson in
particle physics, or the invocation of the existence of Pluto following the registration
of anomalies in the orbit of Neptune), that existing data are inadequate, or that
new theories are needed (such as the invention of the quantum theory to explain or
at least get round the so-called “ultraviolet catastrophe”). In kinetic modeling this is
often the case with “inverse problems” in which one is seeking to find a (“forward”)
model that best explains a time series of experimental data (see below).

1.4 Different Kinds of Models

Most of the kinds of systems that are likely to be of interest to readers of this
book involve entities (metabolites, signaling molecules, etc.) that can be cast as
“nodes” interacting with each other via “edges” representing reactions that may be
catalyzed via other substances such as enzymes. These will also typically involve
feedback loops in which some of the nodes interact directly with the edges. We refer
to the basic constitution of this kind of representation as a structural model (not,
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of course, to be confused with a similar term used in the bioinformatic modeling of
protein molecular structures). A typical example of a structural model is shown in
fig. 1.4.

Figure 1.4 A structural model of a simple network involving nine enzymes (E1 to E9),
four external metabolites (A,J,K,L—whose concentration must be assumed to be fixed
if a steady state is to be attained), and eight internal metabolites (B,C,D,E,F,G,H,I). D
and E are effectively cofactors and are part of a ‘moiety-conserved cycle’ (Hofmeyr et al.,
1986) in that their sum is fixed and they cannot vary their concentrations independently
of each other.

The classical modeling strategy in biology (and in engineering), the ordinary
differential equation (ODE) approach (discussed in chapter 6) contains three initial
phases, and starts with this kind of structural model, in which the reactions and
effectors are known. The next level refers to the kinetic rate equations describing
the “local” properties of each edge (enzyme), for instance that relate the rate
of the reaction catalyzed by, say, E1 to the concentrations of its substrates; a
typical such equation (which assumes that the reaction is irreversible) is the
Henri-Michaelis-Menten equation v = Vmax.[S]/([S] + Km). The third level involves
the parameterization of the model, in terms of providing values for the parameters
(in this case Vmax and Km. Armed with such knowledge, any number of software
packages can predict the time evolution of the variables (the concentrations and
fluxes of the metabolites) until they may reach a steady state. This is done
(internally) by recasting the system as a series of coupled ordinary differential
equations which are then solved numerically. We refer to this type of operation as
forward modeling , and provided that the structural model, equations, and values
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of the parameters are known, it is comparatively easy to produce such models
and compare them with an experimental reality. We have been involved with
the simulator Gepasi, written by Pedro Mendes (Mendes, 1997; Mendes and Kell,
1998, 2001), which allows one to do all of the above, and that in addition permits
automated variation of the parameters with which to satisfy an objective function
such as the attainment of a particular flux in the steady state (Mendes and Kell,
1998).

In such cases, however, the experimental data that are most readily available
do not include the parameters at all, and are simply measurements of the (time-
dependent) variables, of which fluxes and concentrations are the most common (see
chapter 10). Comparison of the data with the forward model is much more difficult,
as we have to solve an inverse modeling , reverse engineering or system identification
(Ljung, 1999b) problem (discussed in chapter 11). Direct solution of such problems
is essentially impossible, as they are normally hugely underdetermined and do
not have an analytical solution. The normal approach is thus an iterative one in
which a candidate set of parameters is proposed, the system run in the forward
direction, and on the basis of some metric of closeness to the desired output a new
set of parameters is tested. Eventually (assuming that the structural model and
the equations are adequate), a satisfactory set of parameters, and hence solutions,
will be found (see table 1.1). These methods are much more computer-intensive
than those required for simple forward modeling, as potentially many thousands or
even millions of candidate models must be tested. Modern approaches to inverse
modeling use approaches from heuristic optimization (Corne et al., 1999) to search
the model space efficiently. Recent advances in multiobjective optimization (Fonseca
and Fleming, 1996) are particularly promising in this regard, since the quality of
a model can usually be evaluated only by considering several, often conflicting
criteria. Evolutionary computation approaches (Deb, 2001) allow exploration of the
Pareto front, that is the different trade-offs (for example, between model simplicity
and accuracy) that can be achieved, enabling the modeler to make more informed
choices about preferred solutions.

We note, however, that there are a number of other modeling strategies and issues
that may lead one to wish to choose different types of model from that described.
First, the ODE model assumes that compartments are well stirred and that the
concentrations of the participants are sufficiently great as to permit fluctuations
to be ignored. If this is not the case then stochastic simulations (SS) are required
(Andrews and Bray, 2004) (which are topics of chapter 8 and chapter 16). If flow of
substances between many contiguous compartments is involved, and knowledge of
the spatial dynamics is required (as is common in computational fluid dynamics),
partial differential equations (PDEs) are necessary. SS and PDE models are again
much more computationally intensive, although in the latter case the designation
of a smaller subset of representative compartments may be effective (Mendes and
Kell, 2001).

If the equations and parameters are absent, it may prove fruitful to use qualitative
models (Hunt et al., 1993), in which only the direction of change (and maybe rate
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Table 1.1 10 Steps in (Inverse) Modeling.

1. Get acquainted with the target system to be modeled

2. Identify important variable(s) that changes over time

3. Identify other key variables and their interconnections

4. Decide what to measure and collect data

5. Decide on the form of model and its architecture

6. Construct a model by specifying all parameters. Run the model
forward and measure behavior.

7. Compare model with measurements. If model is improving return
to 6. If model is not improving and not satisfactory, return to 3, 4,
and 5.

8. Perform sensitivity analysis. Return to 6 and 7 if necessary.

9. Test the impact of control policies, initial conditions, etc.

10. Use multicriteria decision-making (MCDM) to analyze policy trade-
offs.

of change) is recorded, in an attempt to constrain the otherwise huge search space
of possible structural models (see chapter 7). Similarly, models may invoke discrete
or continuous time, they may be macro or micro, and they may be at a single level
(such as metabolism, signaling) or at multiple levels (in which the concentrations
of metabolites affect gene expression and vice versa (ter Kuile and Westerhoff,
2001). Models may be top-down (involving large “blocks”) or bottom-up (based on
elementary reactions), and analyses beneficially use both strategies (fig. 1.3). Thus a
“middle-out” strategy is preferred by some authors (Noble, 2003a) (see chapter 14).
Table 1.2 sets out some of the issues in terms of choices which the modeler may
face in deciding which type of model may be best for particular purposes and on
the basis of the available amount of knowledge of the system.

Table 1.2: Different types of model, presented as choices facing the
experimenter when deciding which strategy or strategies may be
most appropriate for a given problem.

Dimension

or Feature

Possible choices Comments

Stochastic
or determin-
istic

Stochastic: Monte Carlo methods
or statistical distributions
Deterministic: equations such as
ODEs

Phenomena are not of themselves either
stochastic or deterministic; large-scale,
linear systems can be modeled deter-
ministically, while a stochastic model
is often more appropriate when nonlin-
earity is present.

Discrete ver-
sus continu-
ous (in time)

Discrete: Discrete event simula-
tion, for example, Markov chains,
cellular automata, Boolean net-
works.
Continuous: Rate equations.

Discrete time is favored when variables
only change when specific events occur
(modeling queues). Continuous time is
favored when variables are in constant
flux.
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Table 1.2: Different types of model, presented as choices facing the
experimenter when deciding which strategy or strategies may be
most appropriate for a given problem.

Dimension

or Feature

Possible choices Comments

Macroscopic
versus mi-
croscopic

Microscopic: Model individual
particles in a system and compute
averaged effects as necessary.
Macroscopic: Model averaged ef-
fects themselves, for example, con-
centrations, temperatures, etc.

Are the individual particles or subsys-
tems important to the evolution of the
system, or is it enough to approximate
them by statistical moments or ensem-
ble averages?

Hierarchical
versus
multi-level

Hierarchical: Fully modular net-
works.
Multi-level: Loosely connected
components.

Can some processes/variables in the
system be hidden inside modules or ob-
jects that interact with other modules,
or do all the variables interact, poten-
tially? This relates to reductionism ver-
sus holism.

Fully quan-
titative ver-
sus partially
quantita-
tive versus
qualitative

Qualitative: Direction of change
modeled only, or on/off states
(Boolean network).
Partially quantitative: Fuzzy mod-
els.
Fully quantitative: ODEs, PDEs,
microscopic particle models.

Reducing the quantitative accuracy
of the model can reduce complexity
greatly and many phenomena may still
be modeled adequately.

Predictive
versus
exploratory/ex-
planatory

Predictive: Specify every variable
that could affect outcome.
Exploratory: Only consider some
variables of interest.

If a model is being used for precise pre-
diction or forecasting of a future event,
all variables need to be considered. The
exploratory approach can be less pre-
cise but should be more flexible, for ex-
ample, allowing different control poli-
cies to be tested.

Estimating
rare events
versus typi-
cal behavior

Rare events: Use importance sam-
pling.
Typical behavior: Importance
sampling not needed.

Estimation of rare events, such as apop-
tosis times in cells is time-consuming
if standard Monte Carlo simulation is
used. Importance sampling can be used
to speed up the simulation.

Lumped or
spatially
segregated

Lumped: Treat cells or other com-
ponents/compartments as spa-
tially homogeneous.
Spatially segregated: Treat the
components as differentiated or
spatially heterogeneous.

If heterogeneous it may be necessary to
use the computationally intensive par-
tial differential equation, though other
solutions are possible (Mendes and
Kell, 2001)

1.5 Sensitivity Analysis

-Sensitivity analysis for modelers?
-Would you go to an orthopaedist who didn’t use X-ray?

Jean-Marie Furbringer

Sensitivity analysis (Saltelli et al., 2000) represents a cornerstone in our analysis of
complex systems. It asks the generalized question “what is the effect of changing
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something (a parameter P) in the model on the behavior of some variable element
M of the model?” To avoid the magnitude of the answer depending on the units used
we use fractional changes ΔP and observe their effects via fractional changes (ΔM)
in M. Thus the generalized sensitivity is (ΔM/M)/(ΔP/P) and in the limit of small
changes (where the sensitivity is then independent of the size of ΔP) the sensitivity
is (dM/M)/(dP/P) = d(lnM)/d(lnP). The sensitivities are thus conceptually and
numerically the same as the control coefficients of metabolic control analysis (MCA)
(see Fell (1996); Heinrich and Schuster (1996); and Kell and Westerhoff (1986)).

Reasons for doing sensitivity analysis include the ability to determine:

1. If a model resembles the system or process under study

2. Factors that may contribute to output variability and so need the most consid-
eration

3. The model parameters that can be eliminated if one wishes to simplify the model
without altering its behavior grossly

4. The region in the space of input variables for which model variation is maximum

5. The optimal region for use in a calibration study

6. If and which groups of factors interact with each other.

A basic prescription for performing sensitivity analysis (adapted from (Saltelli
et al., 2000)) is:

1. Identify the purpose of the model and determine which variables should concern
the analysis.

2. Assign ranges of variation to each input variable.

3. Generate an input vector matrix through an appropriate design (DoE).

4. Evaluate the model, thus creating an output distribution or response.

5. Assess the influence of each variable or group of variables using correla-
tion/regression, Bayesian inference (chapter 4), machine learning, or other methods.

Two examples from our recent work illustrate some of these issues. In the first,
(Nelson et al., 2004; Ihekwaba et al., 2004), we studied a refined version of a model
(Hoffmann et al., 2002) of the NF-κB pathway. This contained 64 reactions with
their attendant parameters, but sensitivity analysis showed that only 8–9 of them
exerted significant influence on the dynamics of the nuclear concentration of NF-
κB in this system, and that each of these reactions involved free IκBα and free
IKK. An entirely different study (White and Kell, 2004) asked whether comparative
genomics and experimental data could be used to rank candidate gene products in
terms of their utility as antimicrobial drug targets. The contribution of each of
the submetrics (such as essentiality, or existence only in pathogens and not hosts
or commensals) to the overall metric was analyzed by sensitivity analysis using 3
different weighting functions, with the top 3 targets— which were quite different
from those of traditional antibiotics—being similar in all cases. This gave much
confidence in the robustness of the conclusions drawn.
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1.6 Concluding Remarks

The purpose of this chapter was to give an overview of some of the reasons for
seeking to model complex cellular biological systems, and this we trust that we have
done. We have also given a very brief overview of some of the methods, but we have
not dwelt in detail on: their differences, the question of which modeling strategies to
exploit in particular cases, the problems of overdetermination (where many models
can fit the same data) and of model choice (which model one might then prefer and
why), nor on available models (for example, at http://www.biomodels.net/) and
model exchange using, for example, the systems biology markup language (SBML)
(http://www.sbml.org) (Finney and Hucka, 2003; Hucka et al., 2003; Shapiro et al.,
2004) or others (Lloyd et al., 2004). These issues are all covered well in the other
chapters of this book.

Finally, we note here that despite the many positive advantages of the modeling
approach, biologists are generally less comfortable with, and confident in, models
(and even theories) than are practitioners in some other fields where this is more
of a core activity, such as physics or engineering. Indeed, when Einstein was once
informed that an experimental result disagreed with his theory of relativity, he
famously and correctly remarked “Well, then, the experiment is wrong!” It is our
hope that trust will grow, not only from a growing number of successful modeling
endeavors, but also from a greater and clearer communication of models enabled
by new technologies such as Web services and the SBML.
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2 Complexity and Robustness of

Cellular Systems

Jörg Stelling, Uwe Sauer, Francis J. Doyle III, and John Doyle

The daunting complexity of cellular systems appears as a major hurdle for large-
scale modeling efforts. This complexity resides not only in the sheer number of
components and interactions, but also in the operations on multiple levels and
time-scales. Guidelines for meaningful modeling such as underlying organizational
and design principles are thus required. A key to derive guidelines could be the high
internal organization and the selection for function that distinguish cellular systems
from complex physical systems; both factors considerably shrink the space of
possible designs. One prominent aspect of cellular functions is their robustness, that
is, their insensitivity to a wide range of perturbations. Here, we focus on connections
between cellular complexity and robustness—with robustness requirements being
the driving forces for complexity. Since only a rather limited set of mechanisms
establishes robustness in biological circuits, understanding robustness can provide a
key for understanding cellular organization. Practical implications for the modeling
task are, for instance, the emphasis on network structures over exact values of
kinetic parameters. Thus, we advocate that qualitative or structural modeling
approaches may already yield deep insights by identifying important versus less
important parts of a system for the purpose of more detailed modeling.

2.1 Introduction

Complexity is a hallmark of cellular systems, with great challenges for the devel-
opment and analysis of cellular networks at the system level. Without appropriate
conceptional frameworks for dealing with that complexity, the vision of ultimately
going from the description of entire cells to organs and organisms will not be achiev-
able. Hence, it is important to think about rather high-level abstractions of cellular
properties that could help in system modeling and analysis. In general, complex sys-



20 Complexity and Robustness of Cellular Systems

tems may either show a behavior or a design that is difficult to understand (Weng
et al., 1999). While the behavior of biological systems is, in most cases, relatively
simple, the numbers of metabolic and regulatory genes shows that complexity in
biology arises mainly from abundant control circuits, that is, from the system’s
design.

For maintaining simple behavior under real-life conditions, biological systems
have to cope with a constantly varying environment, be it changing physico-
chemical conditions or noisy external signals that have to be processed. Moreover,
their internal properties are also subject to uncertainty, since they can, for instance,
be changed by mutations, and because stochastic noise is an important source of
cellular variability. Therefore, evolution must have strongly favored robustness, that
is, a system’s ability to maintain (key) functional characteristics despite potentially
harmful external or internal perturbations. A now widely accepted notion is that
many (or most) cellular sub-systems are robust (Kitano, 2002a; Stelling et al.,
2004b; Kitano, 2004b). Examples for this capacity can already be found in simple
organisms such as the bacterium Escherichia coli, which displays robust perfect
adaptation in its search for nutrients (see chapter 12) and also a high resistance to
gene deletions (see section 2.4).

Robustness has long been recognized as an important property of biological sys-
tems, for instance described as “canalization” (towards a specific outcome despite
uncertain starting conditions) in developmental biology. However, the understand-
ing of how robustness is accomplished at the cellular or molecular level is still limited
(Hartman et al., 2001), mainly because robustness is intimately linked to the ap-
parent complexity of cellular systems. For instance, the main purpose of cellular
control systems seems to be to guarantee reliable performance of vital functions un-
der conditions of uncertainty (Lauffenburger, 2000; Csete and Doyle, 2002). Hence,
elucidating high-level cellular design principles that could be exploited in systems
modeling will require the simultaneous consideration of complexity and robustness
in cellular networks—which is the topic of the present chapter.

We will start with describing the sources and types of cellular complexity in
more biological detail, before attempting to distinguish the type of complexity that
is present in biological and physical systems by focusing on functional and organiza-
tional principles that underly this complexity at a more abstract level (section 2.2).
Robustness as a concept for understanding biological function and behavior will
require a more in-depth exposition of the theoretical concept (section 2.3), before
we discuss two biological example systems, namely central metabolism and circa-
dian clocks (section 2.4). These examples are intended to explain how and why
robustness can help in modeling cellular complexity (section 2.5).
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2.2 Complexity of Cellular Networks

2.2.1 Sources of Complexity

Biological complexity arises at several levels. At the molecular level, heterogeneous
regulation networks control individual cell responses to environmental changes. The
basic biological information flow from DNA to biochemical activities—with inter-
connected control mechanisms—is illustrated here for metabolic networks (figs. 2.1
and 2.2). About a quarter of the around 4,000 genes in a typical microbe encode the
enzymes that catalyze approximately 1,000 biochemical reactions. While all cells
share essentially the same DNA, the rate of transcription (synthesis of mRNA from
DNA) varies greatly for each gene. Dynamically controlled by overlapping networks
of repressors and activators, transcription is further affected by the hard-wired loca-
tion of the gene in an operon (or on the genome), promoter or initiation site quality,
or more general mechanisms like DNA topology and epigenesis. Typically, regula-
tory proteins themselves are subject to negative and positive feedback regulation
through interaction with other proteins or metabolites. Next, mRNA is translated
into protein, which again is regulated at multiple levels by different mechanisms
that include mRNA stability, active degradation, attenuation (premature termina-
tion as a function of the initial rate of translation), rare tRNAs, anti-sense RNA,
quality of the ribosome binding site, etc.

Figure 2.1 Complexity in cellular networks. Flow of information (left) and example
interaction network (right). Cellular components are, for example, regulatory proteins
(ellipses, R), enzymes (ellipses, E), and metabolites (capital letters). Bold arrows indicate
regulatory influences (activation or inhibition), while normal arrows denote chemical
reactions.

Essentially each step of protein synthesis is affected by multiple and overlapping
regulation loops that operate both at the global cellular and a pathway/reaction
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Figure 2.2 Complexity in cellular networks for a typical microbe such as E. coli.
Regulatory interactions are indicated by dashed lines. Transcript interactions are based
on operon structures and ribosomal RNA interactions. Proteome interactions include an
average of 6–7 protein-protein interactions as well as protein-DNA, protein-RNA, and
protein-membrane interactions (see chapter 10 for details). Metabolic interactions include
biochemical transformations and regulatory interactions between metabolites, RNA, and
protein. Protein numbers encompass differences in folding, size, and covalent modifications.
Note that not all proteins are necessarily present at the same time.

specific level. Activity and stability of the synthesized proteins may then be mod-
ulated by posttranslational modification (for example, phosphorylation), aggrega-
tion to multimers, or complex formation with other proteins. Beyond such geneti-
cically determined regulation, enzyme activity is often regulated by feedback in-
hibition. This is a common regulatory principle in biosynthetic pathways, where
endproducts inhibit the first enzyme in the pathway. In the multipurpose central
metabolic pathways, several key enzymes are subject to feedback and feedforward
inhibition and activation through multiple metabolites. Temporal coordination of
control is achieved by combining rapid and sensitive regulation through feedback
loops (seconds) with somewhat slower protein modification (seconds to minutes)
and transcriptional/translational regulation (minutes). Almost no individual mech-
anism achieves on/off effects but rather modulates processing rates in a 2–20 fold
range. Thus, much of the complexity is based on multi-level combination of het-
erogeneous control systems that tune strength and speed of cellular responses to
stimuli.

Unlike most technical systems, individual biological processes are extremely
sensitive to the exact physico-chemical conditions because slight changes in, for
example, temperature, pH, or the concentration and nature of the surrounding
protein/membrane matrix influence the availability of substrates, products, and
the kinetic properties of the enzymes themselves. Rarely are all physico-chemical
parameters identical in independent experiments, but enzymes are also exposed
to different micro-environments within a single cell that cannot be determined



2.2 Complexity of Cellular Networks 23

exactly. An extreme, but not exclusive case is spatial separation into several
distinct intracellular compartments—a distinguishing feature between eukaryotes
and simpler prokaryotes.

An additional level of complexity is the organization of different cell types into
tissues and organs and finally of multiple tissues and organs into higher organisms
(for instance, humans, plants). Not even in steady state cultures of single-celled
microbes, however, are all cells necessarily in identical states. Driven by a not overly
stringent control design, often subpopulations enter a resting state or simply exhibit
different phenotypes, which increases chances to propagate the genetic offspring in
an ever-changing environment. On longer timescales (days to years), the enormous
potential of biological systems for evolutionary adaptation adds yet a different level
of complexity. Random imprecisions in copying the genetic source code during
cell duplication continuously increase the genetic diversity within a population.
While the overall precision of the duplication process is extraordinary high—about
0.003 point mutations occur per microbial genome (2–8 million base pairs) and
round of replication—short generation times (minutes to hours) rapidly lead to
recognizable genetic differences (Sauer, 2001). While most random differences have
no apparent effect or are harmful, some variants bear the potential for improved
survival upon drastic environmental changes. In contrast to most technical systems,
biological systems thus continuously adapt by “redesigning” their makeup through
the evolutionary process of mutation and selection.

2.2.2 “Organized” versus “Emergent” Complexity

The staggering complexity of cellular networks makes appropriate abstractions
mandatory for meaningful mathematical modeling. An obvious pragmatic approach
consists of decomposing the networks into smaller units that allow for the devel-
opment of models of limited complexity. Likewise, models for cellular networks are
not built at atomic resolution of individual biochemical species. More generally,
however, with an ultimate goal of modeling entire cells and organs, we will need a
deeper understanding of the specific type of complexity prevalent in biology to de-
velop rigorous analysis methods. Here, we aim at outlining such a characterization
by contrasting biological (and engineered) systems with complex physical systems.

Complexity has become a field of intensive research in physics through the notion
that systems with many components and interactions can show complicated col-
lective (“emergent”) behavior. For instance, when adding sand to apparently stable
sand piles, we cannot predict at which point the system reaches its “margin of sta-
bility” and avalanches are generated. This does not mean that the behavior is not
deterministic; we simply do not have complete knowledge of the initial conditions
when starting such an experiment. As the system is extremely sensitive to changes
in those conditions, the apparent behavior is chaotic. Similarly, simple sets of in-
teracting particles can generate complicated spatial structures. Rationalizing these
emergent properties often abstracts from the real systems by assuming homoge-
neous components that interact randomly; analysis methods for characterizing the
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collective behavior are often rooted in statistics (Goldenfeld and Kadanoff, 1999).
Such approaches were, for instance, used in revealing rich and complex dynamic be-
haviors that could be generated by simplified models of cellular signaling networks
(Amaral et al., 2004).

A different issue is whether this type of abstraction is useful for a deeper under-
standing of biological complexity. At the first glance, biological systems differ in
several aspects from the type of physical systems mentioned above. One hallmark
is their heterogeneity of components and interactions. They are highly structured,
which encompasses, among other things, sophisticated spatial organization and lay-
ering of different types of control mechanisms. Finally, their complexity resides in
these two features as well as in the sheer numbers of components and interactions.
From a dynamic point of view, real biological systems are rather boring in that
homeostasis and simple switching of states prevail, while complex behavior such as
chaos mainly occurs under conditions when the systems are not working properly.
Hence, today’s biological systems could perhaps best be understood as rare, ex-
tremely improbable outcomes of emergent processes leading to primitive forms of
life, and their subsequent shaping through evolution.

Functional requirements constitute the main differences between complex physics
and biology/engineering. In physics, they do not exist. Biological and engineered
systems, in contrast, are evolved or designed to fulfill functions, and are constantly
evaluated with respect to how well they perform. In both cases, insufficient perfor-
mance will lead to extinction of a specific species, irrespective of whether this occurs
through evolutionary or human design processes. The immediate consequence of a
purpose is a considerably smaller design space, in which network structures that
could be effective and reliable implementations are likely to be rare. Hence, we will
face a more structured (instead of randomly connected) system. A hope for under-
standing complexity in biology then is to uncover operational principles through a
“calculus of purpose” (Lander, 2004)—by asking teleological questions such as why
cellular networks are organized as observed, given their known or assumed function.

2.2.3 Function and Organization Principles

The purpose or function as one hallmark of cellular networks itself is a rather
complicated concept. Attributing a particular function to a subnetwork may not
be easy because it is in many cases context dependent. For instance, a particular
signaling pathway may have roles in counter-acting biological processes such as the
regulation of cell proliferation and apoptosis. Owing to the multiscale organization
in biology, we need a precise notion of function at the different scales. For the
example above, at the organismic level the pathway may coherently serve to achieve
homeostasis of cells in an organ. Hence, we will need a hierarchical description of
functions and corresponding organization principles at different levels, from coarse-
grained overall architectures to detailed insight into individual network motifs
(Shen-Orr et al., 2002). This corresponds to the modularization of explanations
as a final aim of dealing with biological complexity. Here, we consider the global
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architecture of metabolism as an example. In metabolism, analyses based on the
networks’ stoichiometry alone (neglecting unknown kinetics and regulation) have
revealed a close relation between network structure, function, and regulation at
least for bacteria (see chapter 5 for details), which makes it suitable for high-level
abstractions of organization principles. One possible principle has been proposed
recently, focusing on “bow tie” structures as shown in fig. 2.3 (Csete and Doyle,
2004).

Figure 2.3 Bow tie abstraction of cellular organization. Open arrows denote cellular
regulation and control. Involvement of carriers such as ATP and NAD(P)H in individual
processes is indicated by •.

In the bow tie view, the basic network organization is a combination of fans
of possible inputs (such as nutrients that can be processed) and possible outputs
(for example, the variety of biomass components) that are linked through the core
of central metabolism. Fans and core have rather different structural properties:
while the former show many specialized, mostly linear pathways for catabolism and
anabolism, the highly interconnected network of central metabolism generates and
distributes only 12 metabolites as building blocks and a few carrier molecules (such
as ATP and NADH) that are precursors for all biosynthetic processes. The carriers,
in addition, serve as common currencies for all (energy- or redox-dependent) cellular
processes. Hence, standard interfaces (such as the currency metabolites) and shared
protocols (for instance, using (A)TP for energy-dependent reactions) establish
coherence of the network. Cellular regulation relies on a similar structure, with
a core of general transcription/translation/degradation processes mediating the
information flow from genetic diversity to the large numbers of proteins and their
variants. Nesting of the two bow ties is achieved through material flux and—more
importantly—by abundant feedback regulation. Functional advantages of such an
organization become especially clear when comparing it to a “flat” architecture with
individual pathways leading from every substrate to every product. Such a solution
would be very inefficient due to the number or complexity of enzymes required.
Coordination of pathways and buffering of fluctuations in the environment could
be achieved only with a massive overhead of regulation connecting all the individual
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entities. In the long run, such a design would severely impede evolution because it
would have to operate on entire pathways and their associated control systems.

The bow tie organization, in contrast, can accommodate the divergent demands
on metabolic systems. The core facilitates high-throughput of metabolites with
only a few specialized enzymes. At all timescales, ranging from the fast regulation
of the high-flux backbone by allosteric control to the slower expression control for
individual pathways in the periphery, the structure facilitates systems integration
and regulation. It appears not merely that biology uses the available control
mechanisms but that the stoichiometry itself is highly structured and organized to
facilitate the effectiveness of these control mechanisms to create coherent and global
responses to variations, while allowing implementation in the local mechanisms.
The shared interfaces and protocols, finally, create “plug-and-play” features, where
less central reactions and pathways can easily be exchanged or added. Apparently,
bow tie architectures are associated with risks not present in the simpler type of
networks, such as high fragility when failures in the core affect the entire system
(Csete and Doyle, 2004). It also means low variability of the core, as documented
by the universality of the tricarboxylic acid (TCA) cycle at the heart of catabolism
in all living organisms (Smith and Morowitz, 2004). Hence, the structures may
primarily allow for optimal trade-offs between a variety of requirements such as
efficiency, robustness, and evolvability (Csete and Doyle, 2004).

Figure 2.4 General features of bow tie structures.

At a more abstract level, we see highly organized and structured networks
that facilitate global and coordinated responses to variations in the environment
on all time scales, using local and decentralized mechanisms. Fig. 2.4 illustrates
the key features of the organization. The basic framework is employed in many
advanced technological systems. The power grid, for instance, coordinates many
producers and consumers with highly variable production and demand, respectively,
by employing a common exchange protocol, namely 220 V AC. TCP/IP would be its
equivalent for the internet. Clearly, from an engineering point of view, biology is a
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marvel of technological “design.” We argue that analogies with engineered systems,
in particular regarding how to generate appropriate responses to variations, are one
major requirement on all highly integrated systems that can help us grasp biological
complexity.

2.3 Robustness in Cellular Networks

The notion of robustness has recently received considerable interest in diverse fields
for which the existence of complex networks is characteristic. Examples include the
internet, social networks, and biology (Strogatz, 2001; Stelling et al., 2004b; Kitano,
2004a). Not surprisingly, the term robustness has been associated with different,
sometimes conflicting interpretations. Here, starting from a broad definition we
aim at an operational concept that proves suitable for analyzing the properties of
cellular networks.

2.3.1 The Concept of Robustness

In general, robustness means the persistence of a system’s characteristic behavior
under perturbation or conditions of uncertainty. Robustness is, hence, defined for
a specific system, which, however, may have arbitrary structural and behavorial
features. The concept is closely related to stability in dynamical systems theory,
but usually employed with respect to a broader class of phenomena (Kitano, 2002b;
Carlson and Doyle, 2002). In engineering, the task of determining a system’s
robustness is often accomplished by transformation into a suitable stability problem.
However, compared to stability theory in systems dynamics, no elaborate theory of
robustness exists yet.

It has to be noted that robustness (such as stability) encompasses a relative,
not an absolute, property of a system. No system can maintain stability for all its
functions when encountering any kind of perturbation. Any operational definition
of robustness, and systems analysis thereof, thus, requires two additional specifica-
tions. Namely, it has to be explicitly clarified, (i) which characteristic behavior or
function remains unchanged, and (ii) for which type of disturbances or uncertain-
ties this invariance property holds. For relatively simple systems, the characteristic
behavior can often be captured by definition of a dynamical regime. Investigations
of oscillators may thus focus on the persistence of a regular periodic solution (see
section 2.4.2 for an example). Moreover, robustness is a qualitative property, and
does not preclude quantitative changes (in period or amplitude of the oscillations)
to occur (Barkai and Leibler, 1997). For engineered or biological systems, one often
understands by characteristic behavior the “desired system characteristics” (Carlson
and Doyle, 2002) to be maintained. Here, robustness directly connects to function-
ality. In technical as well as in living systems, it makes sense to protect key func-
tions by design, or as a result of evolution. Especially in biology, however, function
can, in many cases, not easily be assigned to a particular subsystem of a cell or
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organism (Morohashi et al., 2002). In bacterial chemotaxis, for instance, maintain-
ing the ability to adapt to changing nutrient concentrations, whereas adaptation
times are allowed to fluctuate, is intuitively understandable. As a counter-example,
signal transduction relies upon sensitive detection, amplification, and decoding of
input signals. It would not be sensible to react identically irrespective of the signals
received. Identification of key inputs and outputs for specific sub-systems, how-
ever, may not be evident from the complex overall network structure, and cellular
signaling requires both robustness and precision (Freeman, 2000). The claim of
higher-order behavior or entire modules to be robust and, hence, imply functional
advantage, therefore needs careful justification.

Similar considerations apply for the specification of perturbations. Cellular sys-
tems face three broad classes of uncertainties, namely (i) externally induced per-
turbations owing to variable environments, (ii) internal perturbations arising from
changes in the structure of the system (such as mutations affecting kinetic prop-
erties of proteins, or leading to the lack of components), and (iii) intrinsic noise
as a consequence of the low copy number of many cellular components. The first
two classes of disturbance can be dealt with in a deterministic framework. External
perturbations may directly influence the solutions of a dynamical system; resis-
tance to these influences equals the notion of stability in dynamic systems theory.
Perturbations affecting the structure of the systems itself, but which do not re-
sult in qualitatively different dynamics, reveal structural stability of a system (see
chapter 6). These two types of perturbations can, hence, be mapped on changes
in inputs and system parameters, respectively. Stochastic effects resulting from the
random character of biochemical reactions (see chapter 8) in principle require an
explicit inclusion of noise in robustness analysis (Rao et al., 2002). In gene expres-
sion, for instance, intrinsic noise considerably contributes to overall variation, with
potential amplification and propagation by regulatory dynamics (Thattai and van
Oudenaarden, 2001; Elowitz et al., 2002). Hence, also the theoretical methods for
analyzing robustness have to be tailored to the specific aspects of a system under
investigation.

2.3.2 Mechanisms for Robustness

Mainly four ingredients are currently discussed as cellular design elements for the
protection against deleterious disturbances. These encompass (i) back-up systems
(redundancy), (ii) disturbance rejection through feedback control, (iii) structuring
of complex systems into semi-autonomous functional units (modularity), and (iv)
their reliable coordination via establishment of hierarchies and protocols (Csete and
Doyle, 2002; Kitano, 2002a; Stelling et al., 2004b). We will discuss their potential
contributions for conferring robustness to cellular networks—and for the analysis
thereof—in this section.

The simplest strategy to protect against failure of a specific component is to
provide for alternative ways to carry out the function the component performs.
However, genes that do not diverge in functionality or regulation would not survive
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during evolution (Krakauer and Plotkin, 2002). In particular the genomics revolu-
tion with comprehensive gene knockout libraries of entire organisms has initiated
the quest to identify mechanisms that underlie the seemingly surprising number
of phenotypically silent deletion mutations; that is, only about 1,100 knockouts of
the 5,700 genes are lethal in haploid S. cerevisiae. In this context, the term genetic
robustness was coined to describe the condition in which a gene may be deleted
without qualitatively compromising cell growth (Gu et al., 2003). The explana-
tion is trivial for at least the approximately 1,000 genes with metabolic functions:
about 45% of the known metabolic genes are simply not active under the inves-
tigated condition (Papp et al., 2004; Blank et al., 2005). For the remaining 207
viable S. cerevisae mutants of active reactions during glucose catabolism, network
redundancy through duplicate genes was the major (3/4) and alternative pathways
the minor (1/4) molecular mechanism of genetic network robustness (Blank et al.,
2005). Although duplicate genes clearly contribute to the robustness of metabolic
networks to gene deletions, the argument cannot be turned around that this is
indeed their function because this would imply that it is a distinct mechanism.
Quantitative analyses of the 105 duplicate gene families in S. cerevisiae clearly
demonstrated that no particular dominant function maintains duplicate genes in
the genome (Kuepfer et al., 2005). In particular the putative back-up function is not
favored by evolutionary selection because duplicates do not occur more frequently
in essential reactions than singleton genes. Hence, redundancy plays some role in
biological robustness, but it may be largely overrated and misunderstood.

More importantly, feedback loops can account for robustness in cellular network
function. By using the output of a function to be controlled in order to deter-
mine appropriate input signals, feedback enables a system to adjust the output by
monitoring it. In general, negative feedback is employed in reducing the difference
between actual output and a given set-point, thereby dampening noise and rejecting
perturbations. For instance, a simple, engineered feedback loop relying on negative
autoregulation of a transcription factor stabilized steady-state gene expression levels
despite the inherent noise in gene expression. This autoregulation proved advanta-
geous over unregulated transcription for a range of biologically plausible parameters
(Becskei and Serrano, 2000). The role of positive feedback (or autocatalysis) in con-
ferring robustness is less obvious, since it may cause instabilities. However, decisions
for example in development need to be derived from noisy and graded input sig-
nals and have to be maintained (see chapter 1). In one example from engineered
gene networks (see chapter 13), two genes mutually repressing each other’s expres-
sion (double-negative feedback) proved sufficient to construct a reliable irreversible
switch (Gardner et al., 2000). Enhanced sensitivity through positive feedback also
speeds up stress responses. Depending on which cellular functionalities require pro-
tection from perturbations, both forms of feedback and combinations thereof can
contribute to robustly achieve a desired behavior (Freeman, 2000). Therefore, in
many cases where highly precise and reliable behavior is indispensable for overall
cellular functionality, multiple intertwined feedback loops operate (Ferrell Jr., 2002)
(see also section 2.4.2). True redundancy is most useful when it is part of feedback
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control systems that can sense variations and failures, and coordinate the use of
multiple resources. Trivially, there are lots of copies of enzymes at the protein level,
even when there is one gene, and the number is controlled.

Focusing on the internal structure of cellular systems, one central, increasingly
discussed notion is that these systems are composed of “functional units” or “mod-
ules”. Modules can be understood as semi-autonomous entities that show dense in-
ternal functional connections, but looser connections with their environment (Krem-
ling et al., 2000; Girvan and Newman, 2002). With respect to robustness, modularity
can lead to a benefit for overall functionality of complex systems. Encapsulation
of simpler functions can reduce the risk of catastrophic failure by preventing the
spread of damage in one module throughout the network (Hartwell et al., 1999;
Albert et al., 2000). However, two critical issues have yet to be clarified, namely
to prove the existence (or absence) of modularity in cellular systems, and to estab-
lish methods for the unanimous identification of modules (Lauffenburger, 2000). As
discussed in detail in chapter 3, both problems are intimately linked.

Protocols encompass the set of rules aiming at an efficient management of rela-
tionships between the parts (for example, modules) that constitute a system. They
include, for instance, the organizational structures for embedding modules and the
interfaces between modules that allow for system function (Csete and Doyle, 2002).
A common protocol in biology, for instance, is “protein phosphorylation relies on
ATP.” Using only 12 basic building blocks in metabolism is a similar convention.
Protocols, hence, are of primary importance for an understanding of how informa-
tion in complex systems is integrated (Hartwell et al., 1999). One efficient means
for coordination in complex systems is to organize a system hierarchically, namely
to establish different layers of integration (Mesarovic et al., 1970). This architec-
ture, for instance, helps to reduce the costs of information transmission (Guimerà
et al., 2001). Several lines of evidence suggest that hierarchical structures confer
robustness to cellular systems. One major proposition is that separation of func-
tions, and their integration at higher levels, reduces the average damage owing to
arbitrary perturbations of the network. Analysis of dynamical networks with overall
structures similar to those of cellular networks demonstrated a superior systems per-
formance and controllability when feedback control specifically operates on higher
levels of integration (Wang and Chen, 2002). Moreover, as we argued already in sec-
tion 2.2.3, well-designed hierarchies and protocols can contribute to robustness, for
instance, by constraining the effects of local deregulation or by providing common
standards for coordination of cellular functions.

2.3.3 Robustness, Fragility, and Complexity

With the variety of mechanisms for incorporating robustness into cellular systems
available, it appears surprising that cells are sensitive to quantitatively minor, but
extremely powerful perturbations such as oncogenic mutations that enable profound
changes at a genomic scale. Two possible explanations would be that either evolution
has yet to attain optimal robustness, or that principal limitations exist regarding
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how robust the systems can be made. The overwhelming evidence speaks for the
latter hypothesis, which we will discuss now.

Figure 2.5 Robustness and fragility trade offs in feedback control. (A) Reaction scheme
of glycolysis with activating (by ADP and F16P, grey arrow heads) and inhibiting (ATP,
gray bar heads) influences of co-factors and metabolites on Phosphofructokinase (PFK) as
a key glycolytic enzyme. (B) Response of the system to a sudden up-shift in ATP demand
at different feedback gains h. (C) Relative fragility F as a function of the frequency ω.

Consider the following example from control of glycolysis (fig. 2.5A): phospho-
fructokinase (PFK) at the center of the pathway is a highly regulated enzyme,
with activation by the products of the reaction it catalyzes (ADP and fructose-1,6-
bisphosphate (F16P)), and inhibition through its co-substrate ATP. Among others,
this feedback structure allows the cell to adapt to varying ATP demands, while
keeping the cellular ATP concentration tightly regulated. As shown in fig. 2.5B,
the effect of a step increase in ATP demand—and thereby a sudden decrease in
the concentration of PFK-inhibiting ATP—eventually leads to an increased flux
through glycolysis and corresponding ATP production. The degree of recovery in
ATP concentration apparently depends on the strength (or “gain”) of the feedback
h. Higher feedback gain eventually reduces the steady-state deviation between ideal
and predicted response. However, increased precision in the long run is accompanied
by more pronounced transient responses to the perturbation.

For a more quantitative analysis of this connection, let us employ the absolute
sensitivity for a frequency ω, |S(ω)|, as a measure of the deviation from perfect
control. By defining a fragility F (ω) = log |S(ω)|, the sign of F (ω) indicates if
perturbations will be attenuated (F (ω) < 0) or amplified (F (ω) > 0). Analysis
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in the frequency domain shows that the effect of feedback in glycolysis in fact is
two-fold: it increases robustness at low frequencies (for example, steady-state), but
introduces fragility at higher frequencies (figure 2.5C). This is indicative of a certain
“conservation of robustness”—increased robustness somewhere will be compensated
by increased fragility elsewhere. For certain types of (linear) systems, the co-called
Bode sensitivity integral (Bode, 1945) even describes this trade-off quantitatively
as a conservation law: ∫ ∞

0

F (ω)dω = 0 . (2.1)

Note, however, that a formal proof currently is only possible for a very limited class
of dynamical systems.

The concept of “highly optimized tolerance” (HOT) relies on the very idea
that robustness has to be regarded as a limited and conserved resource. This
quantity (tolerance) requires careful distribution, adapted to the function a system
is intended to perform, and the associated uncertainties. High optimization refers
to a strategy of simultaneously achieving high performance and error-tolerance by
a high degree of internal organization. The management and overall conservation
of robustness lead to a “robust yet fragile” behavior of such systems, namely a high
robustness (“barriers to cascading failures”) in the face of anticipated or usually
encountered disturbances, but hypersensitivity to unexpected perturbations, design
flaws, or hijacking (Carlson and Doyle, 1999, 2000). In addition, HOT emphasizes a
necessary connection between complexity and robustness. Making certain functions
of a system more insensitive to disturbances, for instance, may require additional
control loops. This, in turn, leads to higher complexity and to new potential sources
of fragility. The effect is a “spiraling complexity” in which new features expose new
fragilities to be “fixed” by further additions to the system (Carlson and Doyle,
2002). Hence, the distribution of robustness/fragility may be key for understanding
system design in cell biology.

2.3.4 From Robustness to Evolvability

An often noted reservation against the type of analogies between biological and
engineered systems we brought forward states that these two types of complex
systems arise in fundamentally different ways, namely through evolution versus
purpose-driven, top-down design (see, for example, Bosl and Li (2005)). Clearly,
evolvability is of paramount importance for living systems (Kirschner and Gerhart,
1998). Here, we think of evolvability simply (maybe naively) in the sense of
controlled and structured change in lineages, rather than cells, on long time scales in
response to perhaps large variations in the environment. At the population level (of
all engineered systems of one type), evidently progress in engineering fulfills similar
criteria. More importantly, the generic mechanisms and structures responsible for
robustness do not operate at the expense of evolvability—in fact they facilitate
both.
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Genetic redundancy allows duplicate genes to acquire new functions without
perturbing the cells under most conditions. Feedback control, for instance, supports
the normal operation even during evolutionary changes. The exchange of modules
such as biosynthetic pathways through lateral gene transfer (for instance, via
plasmids carrying the corresponding operons) lets organisms easily gain completely
new functions. Finally, protocols are of paramount importance for facilitating plug-
and-play mechanisms. Protein kinases, for instance, gain new functions by changing
substrate specificity and control of their activity, but the common currencies of ATP
and phosphate groups as effectors remain functional. In the realm of technology,
Lego is one of the best examples of an evolvable system on many time scales (Csete
and Doyle, 2002); the common carrier for the power grid, which facilitates control in
response to short term fluctuations in supply and demand, also facilitates long term
evolvability by providing a simple protocol for suppliers and consumers. Hence, we
could think of evolvability as robustness on longer time scales, which is also subject
to selection during evolution (Earl and Deem, 2004).

2.4 Biological Examples

2.4.1 Robustness in Central Metabolism

Although complex in their operation, metabolic networks are structurally organized
such that a large variety of biochemical products and complex macromolecules are
synthesized from myriads of nutrients by conversion through relatively few common
intermediate metabolites. This so-called bow-tie architecture (section 2.2.3) results
in an ubiquitous and interconnected core set of central reactions that constitute the
backbone of high metabolic fluxes. The central carbon metabolism, in particular,
provides a plethora of alternative routes for generating essential precursor molecules
and the carrier molecules for energy (ATP) and reduction equivalents (NAD(P)H).
Here, we describe two complementary—theoretical and experimental—approaches
for analyzing the robustness of central metabolism.

At the theoretical level, elementary flux mode (EFM) analysis decomposes the
metabolic network into meaningful smaller units or pathways. These EFMs can be
defined as the smallest sub-networks enabling the metabolic system to operate in
steady state (Schuster et al., 1999) (see chapter 5). The high number of EFMs in E.
coli central metabolism on different substrates (see figure 2.6A,B) directly reflects
the flexibility of this network (Stelling et al., 2002). Although all substrate regimes
comprise the same number of reactions and metabolites, the EFMs differ by two
orders of magnitude (figure 2.6B). When considering only single-substrate regimes,
glucose can be utilized in approximately 45 times more different ways than acetate,
which corresponds to biological intuition. Simultaneous utilization of all substrates
enhances the number of alternative pathways by a factor of ten.

A plausible hypothesis concerning the connection between network flexibility and
robustness is that the degrees of freedom of a network could be used to predict
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Figure 2.6 Flexibility and robustness in central bacterial metabolism. A stoichiometric
model for E. coli with 89 substances and 110 reactions was decomposed into elementary
flux modes (EFMs) (Stelling et al., 2002). (A) Schematic network representation. Shaded
areas indicate the intracellular space. Only major nodes and twelve precursor metabolites
(bold face) (Neidhardt et al., 1990) are labeled; reactions were partially combined. (B)
Number and distribution of EFMs for different substrates. (C) Effect of arbitrary gene
deletions on viability for single (•) and for multiple (◦) substrates as a function of the
total number of EFMs in wild type N(S1, . . . , Sn).

its sensitivity to disturbances. For different single-substrate uptake regimes, the
organism’s resistance to arbitrary gene deletions correlates well with the number of
EFMs N for the corresponding wild type (figure 2.6C). Similar results are obtained
when more then one substrate can be utilized. Here, in general, the number of viable
mutants is higher than for single-substrate regimes showing a comparable number
of elementary modes. Most likely, this represents the effect of higher degrees of
independence of metabolic pathways for the multi-substrate case. The ability to
utilize different carbon sources simultaneously could, thus, be advantageous for the
organism’s robustness.

Mechanistically, robustness in central metabolism can be assessed by 13C-tracer-
based flux experiments (Sauer, 2004). The particular strength of quantitative flux
data is their high degree of integrative information on regulatory and biochemical in-
teractions within the network. A recent systematic in vivo flux analysis investigated
flexibility and optimal performance in central metabolism of the model prokaryote
Bacillus subtilis by selecting a near random choice of 137 knockout mutants that
roughly reflect the proportion of all major functional gene categories (Fischer and
Sauer, 2005). The data revealed a remarkably robust distribution of intracellular
carbon fluxes, as shown exemplarily for three key fluxes (figure 2.7). The flux par-
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titioning between alternative pathways was generally very robust against genetic
perturbations and, for several pathways, completely independent of the absolute
flux through the branch point. The only detected branch point that featured any
significant flexibility in flux partitioning to different pathways was acetyl-CoA, the
entry substrate into the TCA cycle.

Figure 2.7 Relative fluxes through the pentose phosphate (PP) pathway, the TCA cycle,
and gluconeogenesis from oxaloacetate to PEP in 137 B. subtilis knockout mutants during
growth on glucose (Fischer and Sauer, 2005).

This control architecture of metabolism that maintains an unexpectedly stable
metabolic state under a given environmental condition appears to be designed
to provide a rigid flux distribution. While this state was robust against random
genetic perturbations, it was sensitive to regulatory mutations because several
regulator knockouts specifically affected flux partitioning at the acetyl-CoA branch
point; that is, reduced the TCA cycle flux. The combination of high robustness
and suboptimal efficiency also illustrates the need for trade-offs between different
functional requirements.

2.4.2 Control Architectures in the Circadian Clock

Circadian clocks provide endogenous cellular rhythms of approximately 24 hours
that directly or indirectly control many physiological processes and have been
observed in species across four kingdoms. At the molecular level, however, they show
an apparently complex regulatory architecture with multiple intertwined positive
and negative feedback loops. For the fly and the mouse, the cellular genetic networks
contain delayed transcriptional feedback mechanisms (Hastings, 2000). The core
of the heavily studied Drosophila transcriptional feedback network is shown in
figure 2.8 (Hastings, 2000; Reppert and Weaver, 2000; Young and Kay, 2001).

The transcription rates of the genes per (period) and tim (timeless) are accel-
erated when protein dCLK binds to their promoter regions. The transcribed per
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Figure 2.8 Core genetic network of the Drosophila circadian clock, adapted from
(Hastings, 2000; Reppert and Weaver, 2000; Young and Kay, 2001).

and tim mRNAs are exported from the nucleus and translated into proteins PER
and TIM, respectively. In the cytoplasm the protein DBT (doubletime) binds to
PER. DBT either phosphorylates PER, causing it to be degraded, or allows PER to
bind to TIM after a delay, thereby protecting it from degradation. After the DBT-
PER-TIM complex is formed, it is imported into the nucleus where it represses the
transcription of per and tim and activates the transcription of dClk (clock). The
dClk mRNA is exported from the nucleus and translated into protein dCLK. Pro-
tein dCLK is imported into the nucleus where it represses the transcription of Clk
and activates the transcription of per and tim. This system can be characterized
by a two loop transcriptional feedback network, where DBT-PER-TIM negatively
feeds back on per and tim transcription and activates dClk transcription, and dCLK
negatively feeds back on Clk transcription and activates per and tim transcription.
In addition to the main (double) negative feedback loop, there are loops involving
the genes vri and Pdp1e. This multi-loop architecture is shared by mammals, al-
though some homologous proteins play different roles (Reppert and Weaver, 2000;
Leloup and Goldbeter, 2003; Forger and Peskin, 2003).

Model-based analyses of these networks have pointed out their remarkable robust-
ness in the presence of molecular noise (Barkai and Leibler, 2000; Ueda et al., 2001;
Gonze et al., 2002) and with respect to parametric perturbations (Smolen et al.,
2001; Leloup and Goldbeter, 1999; Stelling et al., 2004a). Different models display
model-specific robustness and fragility properties (Zak et al., 2001; Stelling et al.,
2004a). Employing tools from systems engineering, Stelling et al. (2004) performed
a comparative analysis of the global robustness and fragility properties of two pub-
lished mathematical models for the Drosophila circadian clock. Both deterministic
models relied upon negative autoregulatory feedback for generating sustained oscil-
lations. A less complex 5-state model with only one branch (Goldbeter, 1995) and a
10-state model including two distinct branches of the control system for per and tim
(Leloup and Goldbeter, 1999) were considered. To gain insight into the structure-
function relationship, they studied robustness towards parametric perturbations by
numerical computation of the parameter sensitivities (see chapter 1).
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For the detailed analyses of both fly clock models, model parameters were orga-
nized in functional categories (for example, transcription, translation, phosphoryla-
tion, etc.), as well as into hierarchical categories. For the latter, global parameters
reflected characteristics of well regulated core cellular machineries (such as the
maximal capacity of the general transcriptional apparatus embodied in maximal
transcription rates for all genes), while local parameters were primarily confined to
the circadian oscillator. The analysis revealed clearly that global parameters were
more fragile, in comparison to the more robust local parameters. Furthermore the
separation between the two was sharpened by the complex hierarchical organiza-
tion underlying the fly dual feedback clock model (as opposed to the single feedback
engineering model). In agreement with the bow tie proposition for cellular organiza-
tion (section 2.2.3), these results suggest a design principle of cellular regulation, in
which robustness of specific (local) functions is achieved by delegation of fragilities
to global control circuits (Stelling et al., 2004a) (figure 2.9). The same trade-offs
are observed in the mammalian clock architecture (F. Doyle, unpublished results).

Figure 2.9 Scenarios for distribution of robustness and fragility. (A) Concentration of
fragilities in a central core, whereas functional modules are error tolerant; gray levels
correspond to levels of fragility. (B) Equal distribution of fragilities.

One important consideration in the analysis of robustness, particularly with
regard to the circadian rhythm circuit, is the selection of a performance attribute
for evaluation of its robustness characteristics. For example, Stelling et al. (2004a)
compared the rank ordering of sensitivities (robustness) for both period of the
proteins and transcripts, and their amplitude. Not surprising, the order is changed
significantly, with transcriptional/translational regulation having a larger impact on
amplitude, while phosphorylation/dephosphorylation have a larger impact on the
clock’s period. Additional attributes may be considered for robustness, including
entrainment, phase response sensitivity, and relative phase timing of key proteins. In
general, the conclusions drawn about robustness may vary as different attributes are
evaluated. Moreover, the scale of the network analysis may influence the conclusions:
single-cell attributes are likely to be quite different from whole organism robustness.
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2.5 Consequences for Systems Modeling

In this chapter, we focused on rather abstract concepts that deal with cellular com-
plexity, function and structure. As the biological examples in the previous section
showed, such concepts provide an organizational framework for modeling—and fi-
nally understanding—cellular systems. In particular, insight into the robustness
of cellular networks can guide us in what and how to model for such systems.
In general, given the small repertoire of mechanisms providing robustness, mod-
eling could specifically probe these mechanisms; the analysis of bacterial central
metabolism suggests that network properties rather than redundancy of individual
components should be in the focus of such efforts. The circadian clock examples
revealed structuring of sensitivities in agreement with the predictions made by the
bow tie hypothesis. For model development, such features help in identifying the
important/less important parts of the system. For instance, they would suggest
devoting more efforts to detailed modeling of the core processes because these are
likely to be highly sensitive to design flaws in the models. In addition, characteristic
distributions of robustness and fragility can be exploited to decompose larger net-
works into manageable subunits. Such an approach proved successful, for instance,
for the analysis of signal transduction processes in apoptosis (Bentele et al., 2004).

More generally, robustness may facilitate model development because exact pa-
rameter values are not required in many instances, and sensitive parameters could
possibly be predicted from network architectures. In other words, robustness im-
plies an importance of accurately describing the structure of a system as opposed
to identification of the associated parameters. A classical study on the segment
polarity network in Drosophila revealed that without the appropriate (feedback)
structures, despite large freedom in choosing parameter values, even the qualita-
tive behavior of this developmental control circuit could not be reproduced (von
Dassow et al., 2000). For practical purposes, the importance of network structures
may imply that the transferring quantitative models between similar systems, such
as different cell lines from one organism, might reduce to adjusting a few key pa-
rameters. These are some justifications for why qualitative and structural modeling
methods—although devoid of parameters—may yield deep insight into the relations
between network structure and behavior (see chapter 7 and chapter 5). Given our
incomplete knowledge on cellular circuits, moreover, we often face the challenge of
evaluating sets of different hypotheses on cellular network structures. The robust-
ness property allows for relatively easy discrimination between hypotheses because
exact parameter values are not important in many cases. For instance, the models’
ability to perform robust control tasks could be used in elucidating network struc-
tures underlying morphogen gradients in embryonic patterning (Eldar et al., 2002,
2003). In the model world, thus, robustness could be employed as one criterion for
assessing the plausibility of a particular model (Morohashi et al., 2002). However,
we always have to be aware that prior knowledge is essential for determining the
exact nature of robustness for a system.
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Finally, representation of a cellular network through a mathematical model is
always only the first step towards understanding—subsequently we have to ask
why the models perform as they do, and which are the underlying design princi-
ples (Lander, 2004). The analysis of robustness properties can lead to abstractions
in this direction, for instance, by revealing a common operating principle in bac-
terial chemotaxis despite different molecular implementations in different organ-
isms (Rao et al., 2004) (see also chapter 12). From engineering, it is known that
feedback control (plus feedforward control) enabled by fast and if possible remote
advanced-warning sensing is the most powerful mechanism for providing robust-
ness to fluctuations in the environment and the component parts. The heat-shock
response in E. coli appears to employ exactly the same principles as shown by de-
tailed modeling and subsequent model reduction to the core elements (El-Samad
et al., 2005). Future studies can make use of such principles by searching for this
type of mechanism. Hence, abstract concepts on complexity and robustness have
broad implications both for systems modeling and systems analysis.

2.6 Concluding Remarks

In this chapter, we adopted a high-level view of cellular systems by combining
biology and engineering approaches. This perspective does not want to disguise
large differences between the two types of systems; in fact, biology often shows a
more remarkable “design” than technology. However, it appears as though there are
universal principles in biology and technology that facilitate robustness, efficiency,
and evolvability. We do not yet have a clear and concise characterization of them all,
but we can say some things: (i) feedback control is the most powerful mechanism
for providing robustness to fluctuations in the environment and the component
parts; (ii) redundancy plays some role in robustness to component variations and
failures but is most useful when it is part of feedback control systems that can
sense variations and failures, and coordinate the use of multiple resources; (iii)
protocols that enable carrier and building block–based metabolism facilitate both
decentralized control and supply chain management for short term fluctuations as
well as plug-and-play modularity for long term evolution. Taking such abstractions
into account for systems analysis in biology—as several examples showed—can
provide the necessary guidelines for modeling and analyzing biological complexity.
In our view, the close relations between complexity and robustness requirements
may imply that living cells are complicated, yet comprehensible systems.





3 On Modules and Modularity

Zoltan Szallasi, Vipul Periwal, and Jörg Stelling

The enormous complexity of biological systems begs for unifying, simplifying con-
cepts that might allow a predictive understanding of their functioning. Suggestions
for such concepts include “modularity” along with robustness, discussed in the pre-
vious chapter. No comprehensive survey of system modeling can ignore these con-
cepts, even if it means pointing out the lack of consistent and clear definitions in
the field. Modularity is without doubt an enticing concept that may hold promise
for helping to overcome some of the computational limitations of dynamic modeling
of biological systems. The list of what cannot be achieved far exceeds the utility
of this concept as demonstrated thus far. As this chapter outlines, the long and
arduous task of laying its rigorous quantitative foundations is in its infancy.

3.1 Introduction

Biological systems are often said to be “complex.” Is this a precise logical concept,
in the sense that given a set of systems we can unambiguously separate the complex
systems from the simple ones, or is this merely an adjective assigned on the basis of
the user’s inability to comprehend the relation between inputs and outputs of the
system? In the quantitative science literature, a more or less standard definition
exists: A complex system is a system whose properties are not fully explained
by an understanding of its component parts. Complex systems consist of a large
number of mutually interacting and interwoven parts, entities, or agents. As is
evident from this standard definition, there is considerable ambiguity implicit in its
negative character. A variant of this definition, interesting for biology, posits that
both understanding and verification of design and/or function is difficult in complex
systems.

As a counterpoint, modeling a biological system is an exercise in understanding
how the outputs arise from the inputs. In light of the preceding definition, we
might then suppose that biological modeling is the process of moving systems from
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the complex systems set to the simple systems set. A natural notion in modeling
complex systems is to replace some of the parts being modeled with an abstraction,
while maintaining the fidelity of the model with the given experimental data.
This requires, usually, the maintenance of the functional interface of the replaced
parts with the rest of the system. For example, the engine in an automobile is an
abstraction for a large number of components. The functional interface with the
rest of the automobile is provided by the drive shaft and various hoses and wiring
harnesses. Such functional abstractions are often called modules.

Almost all artifacts of evolved human engineering are modular through and
through: their entire architecture is composed of parts packaged within bigger parts
with clear functional interfaces. This is true of electronics, it is true of houses, and
it is true of software. In these systems, all parts are members of some module, and
the entire architecture is modular. It would seem, based on this experience, that
the way forward in simplifying the complex biochemistry of life is to encapsulate
complexity in similar modules. Certainly, the computational limitations of dynamic
gene network modeling are much easier to evade and an understanding of complex
networks in terms of (higher-level) functional interactions is easier to achieve if
a modular architecture underlies the network. The question at hand is: To what
extent does modularity provide realistic and useful abstractions for systems shaped
by biological evolution?

There are two separate issues here – the existence of modules in biology, and
the utility of this concept, although it will most likely be an approximation of
reality (as in any abstract model). Regarding the existence of modules, even in the
engineering example, autonomy is never absolute. We therefore have to consider
subsystems of limited (quasi-)autonomy. One subissue is whether we can identify
modules in the biochemical interaction network that work quasi-autonomously, like
the engine in our analogy. The other subissue is the existence of an overall modular
architecture for the entire biochemical interaction network. The modules evident in
the morphological structures present in each eukaryotic cell, such as the nucleus,
the mitochondria, and other organelles, as well as the presence of specialized organs
in metazoans are certainly evidence of a modular architecture at a high level. In
this sense, the success of organ transplants can be considered as taking advantage
of the existence of modules in the human body for medical intervention. Close to
fundamental biochemistry, biological concepts of a “gene,” a “protein,” or a “protein
domain” are widely employed abstractions from the underlying chemistry. In the
context of interaction networks, for instance, protein functions are usually not
discussed in terms of the protein’s atomic coordinates. A given protein is thus
considered to be a module of all of its constituent atoms. Hence, at these two very
separate levels of cell biology we find evidence for modularity. But does this hold
for modularity at all levels in biochemistry?
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3.2 The Concept of Modules in Other Biological Disciplines

Evolutionary biologists have long considered a type of modularity in which the
animal body is composed of units, which integrate functionally related characters
(with characters in genetics defined as structures, functions, or attributes deter-
mined by a gene or group of genes) into units of evolutionary transformation (Wag-
ner, 1996). They have also investigated extensively the origins of this modularity,
either from evolution or from a priori principles of organization for reproducing
systems. In terms of the evolutionary origins of modularity, modularity could arise
from specialization resulting in the elimination of some pleiotropic effects from a
more integrated phylogenetically primitive state, that is, a bigger module splitting
into two more independent submodules or from the opposite process when a linked
functional role leads to differentially greater integration of evolutionary characters,
preventing independent variation. These two processes are acting in independent,
and potentially opposing, directions. Thus an evolving system never exhibits per-
fect nonoverlapping modularity, just as a matter of simple irreversible statistical
mechanical relaxation.

The presence of modules may well enhance the rate of evolution due to noninter-
ference between functional roles, though this mechanism is unlikely to be of interest
in multilocus systems because it is hard to maintain the necessary level of linkage
disequilibrium in multilocus systems (Wagner, 1996). Stabilizing selection, likely the
mode of selection experienced most of the time, is blind to modular organization in
systems with multiple characters, neither enhancing nor washing out distinctions.
Directional selection forces, on the other hand, may result in the adaptation of a
small number of linked characters, preserving other characters under the influence
of stabilizing selection. Pleiotropic effects may interfere with adaptation, perhaps
leading to mutations that decrease pleiotropic effects linking the genes associated
with the adapting characters to other characters, and thereby leading to the ap-
pearance of modules. Thus evolutionary biology favors the appearance of modules,
but not necessarily modularity in the overall organization. It is also apparent in
the argument for the appearance of modules that the environmental circumstances
which favored the decrease in pleiotropic effects are integral to the definition of
these modules. Therefore, the response of a biological system may reflect the exis-
tence of certain modules only in specific contexts. This is not necessarily the case
for modules in human engineering constructs.

Modularity has also been investigated extensively in neurobiology. In fact, the
notion has been considered independently in the three fields of psychology, neu-
roscience, and artificial intelligence, which can be regarded as the neurobiology
analogues of physiology, molecular biology, and biological modeling in systems bi-
ology, respectively. It is instructive to note that workers in each of these fields have
their own definitions of modularity (Bryson, 2005). Reconciling these definitions is
an important part of understanding the actual behavior of organisms, and it is just
as likely that modules found in cellular physiology are intricately related to modules
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found in molecular biology. From a physiological point of view, modularity might
be considered in the form of the hypothesis that the cell contains independent input
systems that are restricted in the range of environmental and cell-state information
that they can access.

3.3 The Concept of Modularity in Systems Biology

The interest in modules in the systems biology context was expressed clearly in
(Hartwell et al., 1999), albeit mainly invoking a hypothetical parallel between
human and evolutionary design and providing little in the way of evidence. As is
evident from other disciplines interested in biological modules, there is a lack of well-
defined, quantitatively applicable definitions. One reason for this lack is that the
concept of “modular design” is borrowed from human engineering and therefore has
an essentially forward looking, goal-oriented nature. Complex engines and networks
are constructed from modules while the final overall behavior of the system is kept
in mind. It is much more difficult to identify a “modular architecture” in an already
existing complex network, such as a cell, especially in an unsupervised fashion.
Overlapping modules and multiple “hidden” or ill-defined functions of subsystems
pose additional, potentially insurmountable, difficulties (see also Figure 3.1 and
text below). We would encounter similar difficulties in human designed systems
if we were only presented with the results without an appropriate understanding
of the functions. Advanced engineered systems are rather frequently modular in
their overall design, but for evolved systems we do not even have the appropriate
analytical tools to address the issue of modular decomposition.

As a consequence, most studies on modularity in systems biology rely on oper-
ational definitions that reflect to a large extent the biological system or data set
from which the modules were extracted, as well as data quality and the available
computational tools. The abstraction of a “module” will always be an approxima-
tion to reality. This already holds for the concept of a gene and – as discussed above
– this will be true to an even larger extent for complex cellular networks. Hence,
these operational definitions should be judged by their value in facilitating the de-
velopment of dynamic models and by the extent they enhance our understanding of
these systems. Two extremes in definitions and analysis of modularity can be found
in “bottom-up” and “top-down” approaches (see chapter 1) that we will discuss in
the following.

3.3.1 Bottom-up approaches

Bottom–up approaches to a large extent build on existing biological knowledge.
The function of the proposed module is well defined (at least under a limited set of
conditions) and the individual members of the module are determined by detailed
biochemical or molecular biological analysis, such as testing the effect of individual
gene knock-outs on the function in question. In an ideal case the dynamic inter-



3.3 The Concept of Modularity in Systems Biology 45

actions between the various components in a module are also known. This allows
the validation of the proposed module in a dynamic context. If the quantitative
behavior of this module, when studied in relative isolation from the rest of the
entire intracellular regulatory network, provides an accurate and comprehensive
description of the specific function in question, then the proposed module can be
considered validated. Hence, the approach essentially constitutes a direct test of
the “quasi-autonomy” that is characteristic of most definitions of a module.

An excellent example of this approach is given by von Dassow and colleagues (von
Dassow et al., 2000). In their paper on the quantitative analysis of the segment po-
larity network of Drosophila, they first defined a module as a quasi-autonomous
subsystem of a complex genetic circuit with a specific function. Their proposed
module was built on a large body of knowledge of Drosophila differentiation from
which they created a dynamic mathematical representation. With a few subsequent
corrections and modifications, this modular representation robustly reproduced the
qualitative in vivo dynamics of the specific differentiation process in question. More-
over, its predictions were consistent with a wide array of experimental observations.
Note that the components of the module participate in other cellular processes as
well, so the modular character of the subsystem is specific to the process being
modeled.

It is evident from the description above, that bottom-up approaches require con-
siderable effort in terms of assembling and validating modules. High throughput,
large dataset–based, computationally aided efforts for module identification, there-
fore, hold considerable appeal. The rationale of such approaches may be motivated
by the following analogy: In the classical age of genetics, genes were tradition-
ally identified by individually sequencing DNA fragments of limited size that were
isolated based on the fact that the nucleotide sequence in question had some func-
tional relevance in biological experiments. More recently, however, entire genomes
have been sequenced in a wholesale fashion, and genes have to be extracted from
a deluge of sequence information, often resulting in erroneous gene identification.
Furthermore, in most cases the function of the putative genes has to be determined
a posteriori. In other words, in the first case a nucleotide sequence is matched to a
function of interest, and in the second case functions have to be found for existing
sequences.

3.3.2 Top-down Approaches

Fueled by the overall accessibility of genome scale data sets, several top-down ap-
proaches have been proposed for the high throughput identification of putative
modules. These methods usually rely on the concept that intramodular “connec-
tions” (whatever they may be) are more frequent than intermodular ones. The
underlying assumption is that the number of interactions provides an indicator
for how well embedded a certain component is into a subsystem; most approaches
do not consider the “strength” of these interactions. Graph theoretical approaches,
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Figure 3.1 Identifying one or more modules in a genetic regulatory network versus
modular organization of the entire genetic network. The figures show a static graph
representation of two genetic regulatory networks. The circles represent various proteins
or genes whereas the edges represent regulatory interactions. In the genetic network of
panel A, a module (circled) can be identified by the following criteria: each member of the
module is connected to at least two other members of the same module. Note that no other
module can be identified in this network. In the genetic network of panel B, a far larger
number of modules are present. Note the overlapping modules marked by stars. Since the
majority of protein and genes can be included into one or more modules, a certain level
of modular organization is apparent.

for instance, statically represent components as nodes and interactions as edges
between these nodes (see chapter 7) (Figure 3.1).

Graph representations of large-scale biological data sets are especially attractive
targets for analysis of modularity because these simple representations can be
analyzed for very large networks. In one study, von Mering and coworkers performed
whole genome bioinformatics analysis of protein interaction networks (von Mering
et al., 2003). In their work a functional module is a tight cluster of proteins in
the protein interaction network. A similar approach was followed by Spirin and
colleagues (Spirin and Mirny, 2003) while studying protein complexes in molecular
networks: molecular modules were defined as sets of proteins that have more
interactions amongst members of the set than with the rest of the protein interaction
network. The logical end point of these static approaches to the identification of
modules is in the definition given by Guimera and colleagues (Guimera et al., 2004),
with modules assigned by a partitioning of the nodes in an interaction graph that
maximizes a modularity cost function defined entirely in graph-theoretical terms
(intramodule versus intermodule links in the graph, the sum of the node degrees
within a module).

In addition to direct physical interactions, modular connections may reflect
regulatory relationships, such as shared regulatory inputs. A regulatory module,
therefore, can be defined as a set of genes that are regulated in concert by a
shared regulatory program that governs their behavior (Segal et al., 2003). Both
the behavior and the modules assigned through analysis of the behavior may be
dynamic and overlapping. Similarly, a transcriptional module may be defined as a
self-consistent regulatory unit consisting of a set of coregulated genes as well as the
experimental conditions that induce their coregulation, with modules decomposing
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into higher-resolution modules when a resolution parameter is varied (Ihmels et al.,
2002, 2004a).

Several points should be emphasized in connection with the above-described top
down approaches:

1. They produce only putative modules; their relevance has to be validated in a
detailed manner as done for the bottom up approaches. This is especially true for
methods relying on static graph representations, such as representations of protein-
protein interaction networks (Spirin and Mirny, 2003). This is also true for modules
extracted from time-course data, although, depending on the manner in which they
were defined, such modules may carry over to dynamic modules more readily.

2. Finding a large number of putative modules in a high-throughput analysis does
not automatically translate into the modular organization of an intracellular net-
work. For one reason, most high-throughput studies only consider one level of biolog-
ical regulation (for example, transcriptional control, protein-protein interactions).

3. Top-down approaches may often produce putative modules without a well-
defined associated function, without which a reliable validation is significantly more
difficult.

4. The limitations of identifying modules by the above-described top down ap-
proaches are evident. For example, a more or less linear signal transduction path-
way will not show dense intramodular connectivity in protein interaction networks,
and will therefore be missed by these methods.

3.4 Definition of Modules for Dynamic Networks

The bottom up method for module identification described above produces modules
that could be, at least in principle, readily incorporated into dynamic network
models – with the caveat that a dynamic model is needed as a prerequisite for the
identification of a module. This would involve replacing the detailed dynamic model
of the given module with a simpler system that would still correctly characterize the
dynamic behavior of the associated function and also provide a sufficiently accurate
description of the dynamic interactions between the module and its functional
environment. Ideally, it would also allow deducing higher order cellular functions by
combinations of modules. However, this module identification method, in addition
to its essentially low throughput nature, comes with several caveats. It relies on
the existence of a biologically interpretable “function,” and it barely takes into
consideration that the module is sitting in the middle of, and has to be extracted
from, a complex dynamic network. Modules for cellular level dynamic network
modeling, however, are expected to satisfy other criteria. The main goals are:

1. The modules should provide a significant level of abstraction, aiding in the
simplification of an otherwise barely tractable dynamic network.



48 On Modules and Modularity

2. The various functions of the entire biological network are expected to be de-
scribed even if the individual “dynamic network modules” cannot be associated
with an easily interpretable or observable function, such as a given differentiation
pattern.

The biological function is thus approximated and replaced by an appropriate
“mathematical function.”

At a level of low complexity – that is, for small modules comprising few compo-
nents and interactions – biochemical “building blocks” that perform (a small num-
ber of) characteristic dynamic functions can be identified. For instance, the graph
theoretical analysis of transcriptional regulation networks in E. coli (Milo et al.,
2002; Shen-Orr et al., 2002) and budding yeast (Lee et al., 2002) identified small
over-represented “motifs” that can be attributed distinct functions, such as filtering
noise or speeding up transcriptional responses in the case of the “feedforward mo-
tif” (Mangan and Alon, 2003) (see also chapter 7). From a theoretical perspective,
one can determine small “building blocks” that are required for obtaining classes of
dynamic behavior such as adaptation, homeostasis, switching, and oscillations (see
chapter 6 for details).

Both approaches, however, are limited by the network size that can be assigned a
distinct function. For instance, cellular circuits rarely employ one prototypic device
to establish a biological function because robustness and efficiency of the function
usually need additional complexity, for example, in the form of interwoven feedback
circuits (see chapter 2 for examples). Hence, while the abstraction of “motifs” can
provide insight into constituents of a “functional” module (in terms of biology),
in general it is sufficient for neither the dynamic analysis nor the definition of a
module.

An interesting, “middle-out” approach has been proposed recently by El-Samad
et al. (El-Samad et al., 2005). They studied the heat shock response system in
E. coli, which as a first step involved developing a detailed mechanistic model
for the entire system as defined by the traditional biological definition of the
module, taking into account individual proteins and their interactions. In a top-
down manner within this module, the authors have performed a systematic model
reduction, and they have proposed the existence of certain functional submodules
based on characteristics of the overall behavior of the entire system, such as
robustness (see chapter 2) or optimal performance. This approach closely follows the
method of modular decomposition routinely used in system engineering, namely the
identification of submodules or devices based on their dynamic functions. Although
the computational analysis suggests intriguing insight and circumstantial evidence
for the proposed overall design and modular structure of the heat shock response
system, experimental assignment of the various proteins to the various submodules
and their functional validation remains to be performed.

In a similar spirit, Kholodenko and coauthors proposed methods for the modular
analysis of complex (signaling) networks, in particular with respect to the quan-
titative identification of network topologies (Bruggeman et al., 2002; Kholodenko
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et al., 2002). The system to be analyzed is a given network, the boundaries of which
are determined, for example, by a biological function or according to the notion of a
traditional signaling pathway. At a lower level, however, details of this network need
not be resolved. Instead, operational modules are the subject of analysis. Responses
of the modular system in steady state to perturbations are then described through
interactions between the modules alone in order to quantitatively analyze signal
transfer through the entire network (Bruggeman et al., 2002). Similarly, the ab-
straction of modules can be employed for identifying networks of (partly) unknown
structure through perturbations affecting one module at a time (Kholodenko et al.,
2002). Apparently, the definition of modules proceeds first irrespective of whether
these modules correspond to a biological function. However, this abstraction po-
tentially enables one to develop the dynamic models that are required for a more
unambiguous definition of modules. Note that this necessarily involves an iterative
process – a hallmark of systems biology in general (see chapter 1).

In addition, the middle-out approaches discussed above also provide some guid-
ance in determining whether a given dynamic intracellular regulatory network is
modularly organized: if a wide variety of higher level functions of the entire dy-
namic network can be comprehensively and accurately characterized by replacing
the majority of individual genes and proteins by a significantly smaller number of
dynamic modules, then a modular organization is likely to exist.

The reader will notice gaps and tensions in this section on the identification of
dynamic modules in biology. Current approaches cannot cover the huge gap between
the levels of a few interacting components and of the cell as a whole. Tensions are
evident because a proper definition of biological modules would require dynamic
models, for the development of which focusing on a small part of the cellular
networks is necessary – a classic catch-22. There are algorithmically implementable
definitions available – see the top-down approaches using graph theory discussed
above or the mathematically well-defined concept of metabolic pathways discussed
in chapter 5 – but it is largely unclear if these definitions have any relevance for
biological functions (which by themselves often require a more rigorous definition).
Hence, for this field as for systems modeling in biology in general, only iterative
processes may ultimately lead to a framework of methods by which parts of large
dynamic networks could be collapsed into and replaced by relatively simple modules.
A point to ponder, illustrating the challenges ahead, is that in the modeling domain
in general there is no universal recipe for the task of model reduction.

3.5 Conclusions

Abstractions, such as modules, are required for analyzing complex systems, but they
have obvious limitations, usually more often recognized by failure than foresight.
Studying individual modules, especially those identified by bottom–up approaches,
is appealing. Through such studies, one can make predictions and design and test
desired changes in biological functions. Various approaches along these lines are
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documented throughout this book. The behavior of biologically existing modules is
studied, for example, in chapter 6, and human designed modules, with potential
biotechnological consequences, are described in chapter 13. As biologists have
identified an increasing number of genes associated with functions, the study of
individual modules has started in earnest, reaching the level of quantitative dynamic
approaches during the past couple of years. Models of the Ran nucleocytoplasmic
transport (Smith et al., 2002), and the EGF receptor pathway (Schoeberl et al.,
2002) provided an accurate, predictive description of their respective modules.
However, these modules have not been coupled to others in order to attempt a
higher–level integration of cellular functions. Therefore, the integration of dynamic
functional modules as well as their rigorous definition and identification remain to
be investigated.
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4 Bayesian Inference of Biological Systems:

The Logic of Biology

Vipul Periwal

Systematic model selection and inference in modeling biological systems must deal
with the specific problems of incomplete prior knowledge, limited heterogeneous
data, and similar but not identical model systems. In addition, the model selection
process must allow incremental updates as new data becomes available. Probability
theory as embodied in Bayes’ theorem is the unique logically consistent framework
for such reasoning. The foundations of Bayesian inference are summarized with
some excursions into information theory and search theory. Some recent examples
taken from the recent literature are reviewed.

4.1 Introduction

Reasoning in biology imposes three general desiderata on the reasoning process:

1. We must reason with incomplete prior knowledge of and limited data on the
biological system under study. For example, we may have microarray or proteomics
data with little knowledge of cellular localization.

2. We must be able to update our inferences taking into account new data, without
having to revisit the entire reasoning process. For example, we should be able to
add mass-spectroscopy data to our inference based on expression data.

3. We must be able to combine observations in multiple model systems, with no
sense in which the different systems are merely repetitions. For example, we should
be able to use knowledge of expression levels in a pathway in different bacteria to
make more trustworthy inferences of aspects of the regulation of the pathway, even
though there is no sense in which the observations are repetitions.

The mathematical rules of probability theory (Jaynes, 2003; D’Agostini, 2003) are
the unique consistent rules for conducting plausible reasoning in such a setting. It
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must be emphasized here that, given partial observability and incomplete knowledge
characteristic of biological systems, all probabilities may be considered conditional
probabilities, especially conditioned on the state of knowledge of the biologist.
The mathematical rules of probability theory, applied consistently, will lead to a
consistent and optimal revision of the probabilities in light of new evidence. Given
adequate data and possibly quite different initial assignments of probabilities, two
different experimenters will usually arrive at convergent inferences, provided that
the rules of probability theory are consistently applied.

The aim of this chapter is to explain the basics of plausible reasoning relevant
for systems biology. As with the rest of this book, the foundational material
presented here is intended to facilitate understanding between scientists with
different backgrounds and to allow workers access to more specialized tracts with
a basic understanding of the issues. The application of plausible reasoning to
biological systems is not a novel idea and is well-documented in the medical
literature (Lusted, 1968). The same desiderata given above in the systems biology
context also apply to medicine, so this should not come as a surprise. Probabilistic
reasoning has also been applied to systems biology in many papers, under the
terminology Bayesian networks or graphical models (Jordan, 1998; Pearl, 2000).
This chapter is intended to provide a foundational perspective on the logic that
underlies such applications.

Notation: A proposition is a statement that may be true or false, for example
A = “The upregulation of Erbb1 leads to increased expression of β-catenin.” The
term probability is used in this chapter in the sense of a quantitative assignment
of a degree of plausibility to a proposition. Clearly such a probability has nothing
logically to do with the number of times a proposition is observed to hold in a
repetition of an experiment. p(A|B) is the probability that proposition A is true,
given that proposition B is true. The negation of a propostion is denoted Ā. The
proposition “A and B” is denoted AB, and the proposition “A or B” is denoted
A + B.

A sampling distribution or likelihood function is a rule for assigning probabilities
to data, given that a hypothesis is true, p(data|hypothesis). Thus, sampling theory
is concerned prototypically with problems of the form: given the contents of a cell,
determine the probabilities of drawing a certain set of messages. Scientific inference,
on the other hand, is concerned with problems of the form: knowing the observed
expression data, determine the contents of the cell. Much of this chapter is devoted
to this inverse problem: how do we calculate p(hypothesis|data)?

In the most general context, the biological system under investigation may be
characterized by a set of unobserved and unknown variables, X, for example the
phase of the cell cycle, and localization and concentration information for a large set
of proteins, but the available experimental data, D, may be only a few protein and
mRNA measurements. We expect a functional relationship of the form D = F (X),

and we hope to extract X from D by inverting F : X = F−1(D), but typically the
data is not sufficient to allow this inversion. Biological systems are never completely
observed experimentally. Thus experiments exhibit variability that is often termed
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“noise”, as a short-hand for uncontrollable effects. Biological systems often exhibit
fundamental stochasticity too in their mechanisms of action, but this stochasticity
and the former noise are completely unrelated to the probabilities that we are
concerned with here. Finally, there is the randomness associated with experimental
protocols, for example small differences in aliquots of mRNA extract, which for the
purposes of inference is in the same category as the other unknown variables in X.

We may have useful information relating D and X in the form of likelihood
functions, which give us the probability of observing D given a certain set of values
X. For example, supppose we observe a certain level of the phosphorylated form
Pf of a protein P. Using the Heaviside Θ(x) function, which vanishes for x < 0 and
is equal to 1 for x > 0, our prior probability for Pf given P is

p(Pf |P ) = Θ(P − Pf )/P, (4.1)

reflecting the probability that, given the total level of P, the observed level of Pf

must be less than P. Suppose we know that only the phosphorylated form Pf is
stable, and that the concentration of the message corresponding to P is M. The set
of reactions is, to the best of our knowledge,

M → P ↔ Pf

↓ ↓
DM D

(4.2)

where DM and D are the products of other reactions/decays of M and P, re-
spectively. What would be a plausible prior probability for p(P |Pf ,M)? Knowing
nothing else, we could start with

p(P |Pf ,M) = Θ(P − Pf )Θ(30 M − P )/(30 M − Pf ), (4.3)

which quantitatively expresses our expectation that P must be higher than Pf

and lower than M at equilibrium, and incorporates our knowledge that P is
ubiquitinated in the unphosphorylated state. The factor 30 might reflect our
ignorance of the precise translational control of M, based on a review of the
literature. These different functional forms for the likelihood function are reflections
of our differing biological knowledge in the two cases: Message does not necessarily
get translated into protein, but protein does not get made without message being
expressed. These examples may be too simple to be of practical value, but the key
point is central: any quantitative model or hypothesis linking unobserved quantities
and observed quantities can be translated into a likelihood function. In a sense, this
is implicit in the whole idea of a quantitative model and gives the data a meaning
in the context of the system under study.

There are two basic rules for the evaluation of probabilities:

1. Product Rule: p(AB|C) = p(B|C)p(A|BC).

2. Sum Rule: p(A|B) + p(Ā|B) = 1.
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From these two rules, it is possible to derive relations between probabilities, for
example

p(A + B|C) = p(A|C) + p(B|C) − p(AB|C). (4.4)

Two hypotheses, A and B, are independent if knowledge of the value of B does not
affect our knowledge of A :

p(A|B) = p(A). (4.5)

Two hypotheses A and B are conditionally independent if knowledge of the value
of a third hypothesis C along with knowledge of B does not constrain A :

p(A|BC) = p(A|C). (4.6)

Conditional independence does not imply unconditional independence.
In the context of probabilistic reasoning, we always need to ask: against which

specific alternatives are we testing a model or hypothesis? Probability theory cannot
invent alternative hypotheses for the biologist. Given some previously established
set of prior probabilities, p(A|X), where A is a hypothesis and X represents prior
data, if we obtain some new data D, we can use the product rule to compute
posterior probabilities:

p(A|DX) =
p(AD|X)

p(D|X)
= p(A|X)

p(D|AX)

p(D|X)
, (4.7)

thus updating our estimation of the plausibility of our hypothesis in light of the
new data D. This is usually referred to as Bayes’ rule. This can be written more
symmetrically as

p(D|AX)

p(D|X)
=

p(A|DX)

p(A|X)
, (4.8)

provided that the denominators do not vanish. This rule expresses exactly the fact
that the proportion by which the data D affects the probability of the hypothesis
A is the same proportion by which the hypothesis A affects the likelihood of the
data D. Notice that other hypotheses are implicit in the update rules since

p(D|X) =
∑
A

p(DA|X) =
∑
A

p(A|X)p(D|AX), (4.9)

summed over all hypotheses considered. In some cases, there may be an implicit
alternative hypothesis in the problem, but in no case can one carry out probabilistic
reasoning without a comparison of alternatives.

A note on terminology: We will use the terms prior and posterior fairly often,
and it is important to emphasize here that “logical implication” is not the same as
“biological causation”—in other words, we can infer a probability for a biologically
earlier event from knowledge of a temporally later event. Thus, prior information
is not necessarily about temporally prior events. For example, snow on the road in
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the morning may lead to a plausible inference that snow fell during the night, even
though the causal connection goes in the opposite direction.

Probabilistic reasoning requires no optimization over unknown parameters. This
would be akin to eliminating hypotheses explicitly by choosing only certain specific
hypotheses based on non-probabilistic reasons and would render the logical con-
sistency of the entire process suspect. The logically correct approach is to sum or
integrate over unknown quantities, a process known as marginalization, so that the
effects of unknown quantities, sometimes referred to as nuisance variables are aver-
aged over all plausible values, weighted by their degree of plausibility as embodied
in their probabilities.

What if the data comes out to have low probability with respect to the chosen
prior distribution? This is not a disaster, nor does it imply that the reasoning
process has broken down. Rather, it implies that the hypotheses encoded in the
prior distribution are inadequate, and that new biology is needed to explain the
data.

The flexibility of the probabilistic framework is daunting, since the biologist
is required to think about known biology in order to formulate quantitative
hypotheses for analyzing the data. The payoff is that the biology is front-and-
center in the whole process. Prior knowledge is the input to mathematical models of
biological systems. It is the biologist who is responsible for the connection between
mathematics and reality. In particular, the expectation that enough data collection
will automatically lead to emergent realistic models is a fallacy. Modeling and data
collection cannot be separated: it is the analysis of new data that leads to posterior
probabilities for alternative models, and it is the plausible models that must be used
to guide the acquisition of new data. A guide to the choice of a sufficient number
of plausible hypotheses is the value one obtains for p(D|A). The key is to pick a
set of hypotheses that are sufficient to explain the data, without making the set of
hypotheses so general that the data is implausible.

4.2 An Example

A simple example (Skilling, 1998) should help clarify the reasoning process. As-
sume that we are given a liquid, known to be water or ethanol, and a ther-
mometer, accurate to ±2.5K. We need to determine the probability that the liq-
uid is water, given the temperature reading T on the thermometer. Let X be
the true temperature of the liquid. We start by noting the a priori probabil-
ities: p(water) = p(ethanol) = 0.5, given our lack of further information, and
p(X|water) = 1/100 for 273K < X < 373K, and p(X|ethanol) = 1/160 for
193K < X < 353K. The likelihood function, given the uncertainty in the instru-
ment, might be modeled as p(T |X,water or ethanol) = 0.2 for T between X − 2.5
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and X+2.5. In this particular case, we are assuming that the measured temperature
uncertainty is independent of the liquid. We first note that

p(water, X) = p(X|water)p(water) = 0.5 p(X|water), (4.10)

so

p(water, X|T ) = p(water, X)
p(T |water, X)

p(T )
= 0.5 p(X|water)

p(T |water, X)

p(T )
.

(4.11)
Now, suppose we measure T = 271K. p(T ) is obtained by summing over the
hypotheses, since its role is to normalize the probabilities:

p(T ) = 0.5

∫
dX

[
p(T |water, X)p(X|water) + p(T |ethanol, X)p(X|ethanol)

]
.

(4.12)
Taking into account the values of X for which the probabilities in the integral are
non-vanishing, we find p(T = 271K) = 0.5(0.5/100 + 5/160) = 0.018125. It follows
that, marginalizing over X since we are interested in the classification of the liquid,
not the nuisance variable X that we needed to introduce to formulate our hypothesis
quantitatively,

p(water|T ) =

∫
dXp(water, X|T ) =

0.0025

0.01825
= 0.14. (4.13)

Thus, in this example, we find that the odds ratio for water is 0.14/0.86 = 0.16, and
the odds ratio for ethanol is 0.86/0.14 = 6.14. It would seem that the hypothesis
that the liquid is ethanol has much better odds than its alternative. The posterior
distribution p(liquid|T ) is quite different from the prior distribution p(liquid).

This example has a set of hypotheses labelled by both a discrete variable
(water or ethanol) and a continuous variable (the true temperature X), a common
circumstance in biological inference where there are structurally different models
and continuous rates and concentrations that all need to be part of the set of
hypotheses considered. Furthermore, very often in biology we are not as interested
in the most likely values of rates and concentrations as we are in finding the probable
qualitative structure of the model, even though it isn’t possible to formulate the
model mathematically without the introduction of numerical rates. This example
also shows the importance of averaging over the so-called nuisance variables,
marginalization.

4.3 Information Theory

Probability and information are intimately related (Welsh, 1988; Cover and
Thomas, 1991). If we have an observed variable X, for example the concen-
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tration of leptin, which takes the values xi, i = 1, . . . , n, with probabilities
p(X = xi) = pi :

∑
i pi = 1, the entropy of X is defined by

H(X) = −
∑

i

pi log2 pi. (4.14)

The logarithm to the base 2 is a normalization convention and leads to a unit
entropy H(X) = 1 for a variable X that takes the values 0 or 1 with equal
probabilities. The variable X is said to require one bit of information to describe
it. The entropy is maximized when all the probabilities pi are equal. An intuitive
way of thinking about this maximum is that in such a case, we have no reason to
prefer any of the n alternatives over the others. In other words, we are maximally
uncertain about the n alternatives, and the entropy measures the uncertainty in
our knowledge.

Any specific measurement/observation of a variable is an event. The information
of an event E with non-zero probability is defined as

I(E) = − log2 p(E). (4.15)

If X is an observed variable, each of the values it takes has an associated information
− log2 pi, so the mean value of the information associated with the observations of
X

∑
i piI(xi) is in fact the entropy of X. This is the fundamental relation between

the entropy and information of observed variables. The intuition for this relation is
simply that the obtaining information is simply the removal of uncertainty, both of
which are measured by the entropy.

The conditional entropy of X given an observation E is defined as

H(X|E) = −
∑

i

p(X = xi|E) log2 p(X = xi|E). (4.16)

Similarly, if Y is some other measured variable, with associated values yj , j =

1, . . . , m the conditional entropy of X given Y is

H(X|Y ) =
∑

j

p(Y = yj)H(X|Y = yj). (4.17)

What does the conditional entropy measure? Notice that H(X|X) = 0, since
p(X = xi|X = xj) = δij . Extending this, H(X|Y ) = 0 if and only if X = f(Y ) for
some function f. In words, the conditional entropy vanishes if the observed value
of X is completely predicted by the observed value of Y. On the other hand, if X

and Y are independent, H(X|Y ) = H(X). We also note that the joint entropy of
X and Y, H(X,Y ) satisfies

H(X,Y ) ≤ H(X) + H(Y ). (4.18)

In fact, it is not difficult to show that

H(X,Y ) = H(Y ) + H(X|Y ), (4.19)



60 Bayesian Inference of Biological Systems: The Logic of Biology

showing that the conditional entropy exactly measures the uncertainty remaining
in our knowledge of X, given our knowledge of Y.

The relative entropy, sometimes called the Kullback-Leibler divergence, of a set of
probabilities pi for a measurement X and another set of probabilities qi for the same
measurement (for example, these could be the prior and posterior probabilities) is
defined by

D(p|q) =
∑

i

pi log2(pi/qi). (4.20)

D is always non-negative and only vanishes if pi = qi for all i. In terms of
information theory, the information about X contained in Y is

I(X|Y ) = H(X) − H(X|Y ) = I(Y |X) = D(p(XY )|p(X)p(Y )), (4.21)

which is symmetric in X and Y. This information is often called the mutual
information of X and Y. If X and Y are independent, the mutual information
vanishes. If the value of X is predicted by the value of Y, H(X|Y ) = 0, and the
mutual information is just the information in X. Mutual information is often used
as a similarity measure in expression array (Butte et al., 2000) clustering of genes,
but it is not a “distance measure” in the sense that it does not satisfy the triangle
inequality

d(x, y) + d(y, z) ≥ d(x, z), (4.22)

which holds for any three points x, y, z in Euclidean space. This inequality expresses
the intuition that the length of any side of a triangle is less than the sum of the
lengths of the other two sides. However,

m(X,Y ) ≡ H(X|Y ) + H(Y |X) (4.23)

is symmetric in X and Y and does satisfy the triangle inequality: m(X,Y ) +

m(Y,Z) ≥ m(X,Z). If X and Y are independent, m(X,Y ) = H(X) + H(Y ),

and if X = f(Y ) and Y = f−1(X), then m(X,Y ) = 0.

In even a compressed account of information theory it is necessary to mention
the connection of entropy with coding theory. Briefly, if we think of compressing
our measurements D = {di, i = 1, . . . , n} into words made from an alphabet of
N symbols, the average length of the words will be at least H(D)/ log2 N. This
result makes it possible to estimate the entropy H(D) by finding an encoding
of the data, in situations where, due to a lack of data or prior knowledge, we
are unable to compute the entropy directly. If we use an encoding in terms of
an alphabet consisting of 0 and 1, the average length of the words will be an
upper bound on the entropy. Suppose each di is the result of an expression array
measurement in a particular condition. We discretize di into bins defined by our
expected uncertainty in the measurements. (The choice of binning can also be
incorporated into our description of the information, but we do not do so here for
the sake of simplicity.) A partitioning of the G genes into N(≤ G) subsets with nα >
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0(α = 1, . . . , N) elements has a probability p(N,G) = N !(G − N + 1)!N (N−G)/G!,
so its information is Hcluster(N,G) = − log2 p(N,G). (Prior information can be used
in this step to reduce this information by taking into account information from the
literature on known interactions between genes—the effect of this is to reduce the
total number of independent genes G to some smaller number, using prior biological
information to place certain genes together in a cluster.) In terms of these putative
clusters, we only need N numbers to describe di instead of the original G. However,
we now have to contend with the inaccuracy of our compression as well, in other
words, with the information in the residuals εi,gene = di,gene−di,cluster. The original
information is

Horig =
∑
genes

Hgene(d) (4.24)

where we compute Hgene(d) by considering how we could encode the data. If
the range of values that the gene takes over the n experiments is m, we need
about (log2 m)n bits to encode the values. We also need to encode the information
specifying the range of values for each gene, or use the same range for all the genes,
and avoid specifying the range for every gene. Taking into account the information
required to specify the clustering, the new information is

Hfinal(N) = Hcluster(N,G) +
∑

cluster

Hcluster +
∑

genes−clusters

Hgene(ε), (4.25)

where we also restrict the sum in the residual information to be over the genes
that are not cluster centers (where we define the cluster center in a variety of ways,
for example as the gene that exhibits the least deviation from the median of the
cluster over all the n experiments). The cluster center will, by definition, show no
deviation from the value accorded to the cluster. The term Hcluster is the term
that favors model simplicity. At one extreme, there is a unique clustering of one
cluster of G genes, which amounts to the original data expressed as residuals, and
at the other extreme G clusters of one gene each, in which the residuals vanish. At
both these extremes, the Hcluster(N = 1, G) = Hcluster(N = G,G) = 0. We expect a
good clustering to reduce the amount of information in the residuals, because many
of the entries in the residuals should vanish, and this should be balanced by the
amount of information required to specify the clustering. For example, if the residual
matrix is a sparse matrix, the coding required to specify it is just the gene name
or index, the experiment index i, and the true value for every non-zero entry. This
encoding will obviously take a lot less information to describe than the entire matrix,
provided that the clustering is an accurate description of the correlations between
gene expression values. Evaluating Hfinal(N) for different values of N (minimizing
over different choices of {nα} for each N) gives us a criterion for picking the number
of clusters. We can also use this approach to cluster the experiments.
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4.4 Another Example: Probabilities Are Not Frequencies

Suppose we have expression data from several samples, normalized to message
counts per cell. This is not the normalization commonly used for expression data,
but the example will show that this normalization is helpful for certain consid-
erations. The problem is to figure out the message counts in each cell, given the
expression measurements. Abstractly posed, the problem is that there are a variety
of colored balls in different jars, each jar corresponding to a sample. We have taken
a handful of balls from each jar, corresponding to the expression data. We want to
find the probable contents of each jar (Jaynes, 2003).

Let’s focus on just one color of ball, red. We have drawn n balls out of a jar, and
r of them have been red. What is the probability that we would draw r red balls
in n tries if the total number of balls in the jar is N and the number of red balls in
the jar is R? Since we are drawing the balls without replacement, this probability
is easily computed. The probability of the first ball drawn being red is

p(r = 1|N,R, n = 1) =
R

N
, with p(r = 0|N,R, n = 1) =

N − R

N
. (4.26)

The probability of the second ball being red is

p(r = 2|N,R, n = 2) = p(r = 1|N,R, n = 1) × p(r = 1|(N − 1), (R − 1), n = 1),

(4.27)
and so on. Therefore, the probability of one of the two balls being red, p(r =

1|N,R, n = 2), is

p(r = 1|N,R, n = 1) × p(r = 0|(N − 1), (R − 1), n = 1) (4.28)

+p(r = 0|N,R, n = 1) × p(r = 1|(N − 1), (R − 1), n = 1) (4.29)

= 2R(N−R)
N(N−1) . (4.30)

A little further calculation shows that

p(r|N,R, n) =

(
N

n

)−1(
R

r

)(
N − R

n − r

)
(4.31)

in general.
Now, N and R are unknown. Having drawn r red balls out of n balls, we know

of course that N ≥ n and R ≥ r. According to the rules of probability theory,

p(N,R|n, r) = p(N)p(R|N)
p(n, r|N,R)

p(n, r)
, (4.32)

since p(N,R) = p(N)p(R|N). What is p(n, r)? It is a normalization constant given
by

p(n, r) =
∞∑

N=0

N∑
R=0

p(N)p(R|N)p(n, r|N,R), (4.33)
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where p(n, r|N,R) obviously vanishes if N < n or R < r or N − R < n − r.

Where is the biology in all this? It is in the probabilities we assign to p(N) and
p(R|N) based on our biological knowledge. For example, the samples may be tissues
taken from cancer or normal tissue. In this case, we might expect that cancerous
cells are proliferating rapidly and may have an overexpression of genes involved
in cell division, compared to normal samples. However, this proliferation has a
metabolic cost as well, so these cells may also have an overexpression of messages
corresponding to, for example, glucose transport. There may, on the other hand,
be genes that are expressed at the same level as in normal tissue. Thus, if R

corresponded to any of these classes of messages, we would have different prior
distributions for p(N,R). We might even choose to use the product rule differently,
and factor p(N,R) = p(R)p(N |R), if, for example, we knew the approximate rate of
proliferation of the cells, and R was a message encoding for a mitotic spindle protein.
The central point is that known biology dictates the choice of prior distributions.

We can also employ this logic in an exploratory mode, assuming that we do not
know what form p(N,R) should take, and compute p(N,R|D) conditioned on all the
data D we have available. Label the different samples with an index α = 1, 2 . . . .

Suppose that the red balls correspond to a particular message, and we wish to
ascertain if R scales as Nα for some non-zero power α or if R is independent of
N, based on our samples. For each α, we computed p(Nα, Rα|nα, rα) as described
in the previous paragraph, using some prior distribution p0(N,R). Since we do not
know what to expect, other than the fact that R ≤ N, we should choose p0(N,R)

to reflect this ignorance, which is sometimes referred to as choosing a maximally
uninformative prior. If we do have some biological knowledge to guide our choice, we
need to incorporate it into the prior. There is no point in using uninformative priors
when information is available. To this end, we can iterate through the samples,
computing successively

p(N,R|n2, r2, n1, r1) = p(N,R|n1, r1)
p(n2, r2|N,R, n1, r1)

p(n2, r2|n1, r1)
, (4.34)

and so on, until we finally arrive at p(N,R|D) where D stands for the entire data set
{n1, r1, . . . }. We can now compute H(R|N) = H(N) − H(R,N) from p(N,R|D),

and answer our question: If H(R|N) ≈ 0 then R is a function of N, conditioned on
the given data D.

It should be noted here that there was no assumption in our considerations that
the different samples were repetitions of some experiment. The probabilities that
we calculate are not some measure of frequency of occurence in some idealized set
of infinite numbers of trial experiments. In general, there is no logical consistency
to assuming that probabilities are frequencies. Probabilities are nothing more or
less than quantitative expressions of our state of knowledge. For experiments where
the results are exchangeable sequences (for example, the identical experiment is
performed n times), the expectation of the frequency of a particular result is
numerically equal to the probability: E(fi) = pi. So the probability is an estimate
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of the frequency, but to understand the uncertainty in this estimate, we need to
compute the covariance of fi and fj , which leads to

E(fifj) − E(fi)E(fj) = (pij − pipj) +
1

n
(δijpi − pij). (4.35)

Here pij is the joint probability of outcomes i and j at two different repetitions of
the experiment. It is clear then that there is a finite n correction, and a non-zero
pij − pipj correction to the probability assessment of the frequency which does not
vanish even for infinite n. For the small numbers of repetitions available due to
resource constraints in expression array measurements, for example, it is important
to keep the finite-size correction in mind. In the particular case i = j and pii = p2

i

we get

E(f2
i ) − E(fi)

2 =
1

n
pi(1 − pi). (4.36)

If we are, conversely, attempting to assess probabilities by studying observed
frequencies, these relations are again relevant.

4.5 Search Theory, or “Use the Information, Stupid”

We have a search space of possible models. We have finite resources available to
find a correct model in the search space. How should this search be conducted?
(Jaynes, 1985) Suppose we divide the space to be searched into n subsets, with
search parameters mi, i = 1, . . . , n for each subset. The search parameters measure
the fractional “size” of the subset in terms of search difficulty, and satisfy

∑
i mi = 1.

For example, the mi parameters could be the fractional volumes of the subsets:
Larger subsets would take longer to search and therefore would have larger mi

values. We also have probabilities pi assigned to each subset, also adding up to
unity. These probabilities are our assessments of the presence of a correct model
in a given subset. If a correct model is present in subset i, the probability that a
search effort z will lead to finding it is

pi(discovery|z) = (1 − exp(−z/mi)). (4.37)

Search effort, which might be computer time or expression level measurements, is
limited to be C. If we start with some prior probabilities p

(0)
i , and expend zi of our

search effort on subset i, the posterior probabilities will be

p
(1)
i =

p
(0)
i exp(−zi/mi)∑

j p
(0)
j exp(−zj/mj)

≡ p
(0)
i exp(−zi/mi)

1 − pD
, (4.38)

if a correct model is not located, where pD is the probability of finding a correct
model with the given search efforts zi. Intuitively, this shows that if we search a
subset and do not find a model fitting the data in that subset, then the probability
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for the model being in that subset decreases. In this situation, how should we expend
our search effort?

The information we possess about the subsets is measured in two relative en-
tropies, which measure the sizes of the subsets versus the probabilities that a correct
model is present in a subset. We define

I ≡
n∑

i=1

pi log(pi/mi), (4.39)

and

J ≡
n∑

i=1

mi log(mi/pi). (4.40)

Clearly, I ≥ 0 and J ≥ 0, with I = J = 0 only when pi = mi for all i = 1, . . . , n.

As we search, we are expending our search effort z continuously, up to a maximum
value C, so we can think of pi, I, and J as functions of z, starting from initial values
pi(0), I(0), J(0). Why are I and J relevant for search? We calculate

J(z) = J(0) + log(1 − pD) + z, z ≡
∑

i

zi, (4.41)

which can be rewritten as

pD = 1 − exp(−(z + ẑ)), ẑ ≡ J(0) − J(z). (4.42)

Thus, the detection probability pD decreases if J(z) increases in the course of the
search. The best we can do is to make J(z) decrease, but since J ≥ 0, the optimal
strategy is to reach J = 0 and to conduct further search so as to maintain J(z) = 0.

In other words, we need to use up all the information we possess about the subsets
by allocating search efforts zi among the subsets to reach the J = 0 state.

Let us suppose that we want our expenditure of search effort to be optimal at
all steps. We may not know how much computer time we will have available before
an abstract needs to be submitted, for example. How should we allocate our next
infinitesimal bit of search effort, δz? Notice that (pj/mj)max ≥ 1, since

∑
i pi =∑

i mi = 1, and δJ = (1 − pj/mj)δz if the search effort is expended in subset j. It
therefore follows that we should search the subset with the highest value of pj/mj

at any given step. We order the subsets so that (p1/m1) ≥ (p2/m2) ≥ (p3/m3) . . . .

We search subset 1 until p2/m2 = p1/m1 (note that all pi are functions of the
search effort expended, z). We then treat subsets 1 and 2 as one large subset and
search it keeping p2/m2 = p1/m1 until p1/m1 = p2/m2 = p3/m3 at which point
we treat the subsets 1, 2, and 3 as one big subset and proceed as before. This part
of the search process continually decreases J and I and increases pD until all the
ratios pi/mi are equal. This is the state of maximum uncertainty characterized by
I = J = 0. Having used up all our information, the best the rest of the search can
do is to maintain this state until all the search effort available has been expended.
An interesting point about this strategy is that it can be stopped at any given step,
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and we can be certain that we have done the best that we could have, given the
information that we had available. Such finite-resource optimal strategies are likely
to be very important in large-scale biological inference, given computational and
experimental limitations.

4.6 Computational Techniques

While systems biology is generally associated with large-scale data collection, when
it comes to inference of biological processes as a complex system, the scale of
data collection is meager, and computational resources to analyze the data are
limited. If our space of hypotheses has more than a few components, the entire
set of probabilities p(X|D) cannot be exhaustively computed, since there is a
combinatorial explosion in the computational cost. The computational problems
can be overcome with variants of Markov chain Monte Carlo (MCMC) methods
(Skilling, 1998; D’Agostini, 2003). In general, Markov processes are processes where
the next step only depends on the present location, not on the previous history of
the process. A Monte Carlo method refers to a stochastic method for evaluating
a quantity, for example estimating the value of an integral. An MCMC method
marries the two, using a stochastic Markov process to generate new data points for
the Monte Carlo estimation of the quantities of interest.

One of the key points is to consider biologically interesting questions. For exam-
ple: we may want to know the probability that a certain hypothesis x is supported
by the data D. In other words, of all the models that we can generate to fit the data
with our full set of hypotheses X , we want to ask how likely is it that x is used in
the models that fit the data. We construct a function on the space of models, Ix(Y ),

which takes the value 1 if x is used in the model Y and 0 if x is not. An example
of x might be (a quantitative version of) “IKK activates NF-κB translocation to
the nucleus.” We can now evaluate the expectation E of Ix(Y ) over the space of
models by computing

E(Ix(Y )) ≡
∑
Y

p(Y,D)Ix(Y ). (4.43)

This is, typically, a huge (or infinite) summation, and impossible to compute exactly.
The trick is to approximate this summation using MCMC methods.

The Metropolis algorithm is a particular implementation of MCMC computa-
tions: We start from some initial model Y0, and compute p(Y0|D) and Ix(Y0). We
modify the model by changing the hypotheses incorporated or by changing the rate
constants or kinetic parameters, generating a new model Y1, for which we also com-
pute p(Y1|D). (Since p(Y,D) = p(D)p(Y |D), we are free to neglect the constant
factor p(D).) If p(Y1|D) ≥ p(Y0|D), we accept the change and add Ix(Y1) to our
previous computation of Ix(Y0). However, if p(Y1|D) < p(Y0|D) we compute a ran-
dom number r between 0 and 1 and accept Y1 only if p(Y1|D)/p(Y0|D) ≥ r. If we do
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not accept Y1, we accept Y0 again and try a new change in the model, and repeat
the process. After n accepted models, we compute an approximation to E(Ix(Y )) :

E(Ix(Y )) ≈ 1

n

n−1∑
i=0

Ix(Yi). (4.44)

The convergence of this approximation to the exact value scales as n−1/2, which is
slow but not impossible to compute. In the event that the probability of generating
Y1 from Y0 is not symmetric, in other words, the probability of generating Y1

from Y0 is different from that for generating Y0 from Y1, a Hastings ratio p(Y1 →
Y0)/p(Y0 → Y1) multiplies the ratio p(Y1|D)/p(Y0|D). This factor is significant in
Markov chains on spaces of models.

Another approach to MCMC computations is to use genetic algorithms. The
interesting point about these algorithms for the purposes of model selection is
that they are better suited to multimodal problems and problems with discrete
variables (common in testing collections of hypotheses, for example). The main
point is to start with a family of P sample models and generate new models
by two means: mutations (changes in a single model) and crossovers (exchanging
hypotheses between two distinct models). Other means of generating new models
can be used as well, as long as the method is reversible. For example, changing one
of the models in the population based on the difference between two other models in
the population is a possible way to exploit the population as a whole, and not just
one or a pair of the models in the population. It is particularly useful for biological
applications if the allowed mutation and crossover transformations are actually
biologically feasible alternative mechanisms for implementing a given biological
function. Having implemented the genetic algorithm, it remains to explain how this
fits in with the expectation computation of interest. For this we just have to go back
to the Metropolis algorithm, described above, and think of each genetic algorithm
step as a step on the P -fold product of our space of models. We now apply the same
acceptance or rejection criterion to each step, except that the probabilities that we
use are computed as the product

∏P−1
α=0 p(Yα|D). The expectation is computed by

picking a random selection Yi out of the P models in the population at each step,
and again using

E(Ix(Y )) ≈ 1

n

n−1∑
i=0

Ix(Yi). (4.45)

Asymptotically, this will again converge to the true expectation.
In this way, by computing expectations, we can assign plausibilities to our

set of hypothetical interactions X . A note of caution: Taking the most plausible
hypotheses in X and putting them together in a model does not necessarily result
in a model that has a high probability p(Y |D) since there may be correlations
or anticorrelations between hypotheses. In other words, there may be alternative
explanations for a phenomenon which may be antagonistic. To figure out which
hypothetical interactions combine well to match the data, we could, for example,
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compute the pair-wise expectations E(Ix(Y )Iz(Y )) where x and z are hypotheses in
X . If we pick a threshold for the mutual information t, these pair-wise expectations
lead to a graph where the hypotheses are vertices and the edges are links between
hypotheses with mutual information I(x|y) ≡ H(x) + H(y) − H(x, y) > t (using
H(x) = −E(Ix(Y )) log2 E(Ix(Y ))−(1−E(Ix(Y ))) log2(1−E(Ix(Y ))) and similarly
for Iz(Y ) and Ix(Y )Iz(Y ), up to a finite sample size correction). The connected
components of this graph (or a subset of them) would be an interesting starting
point for more detailed model inference.

An important technical point to speed up the computations is to use simulated
annealing. In this numerical method, based on analogies with statistical mechanics,
we replace p(Y,D) = p(Y )p(D|Y ) with p(Y )p(D|Y )λ where 0 < λ ≤ 1. 1/λ plays
the role of temperature, so when we approach λ = 1 from higher values of the
temperature (lower values of λ), gradually the peaks and valleys in log p(D|Y )

get more pronounced, and therefore make it less likely that a step that would
decrease the probability is accepted. Thus, at small values of λ it is easier for the
MCMC update algorithm to find acceptable steps resulting in a wider coverage of
the population of models. As λ is brought closer to the true value 1, the MCMC
update steps will stay in the vicinity of the optimal model found at lower values of
λ. It is the process of reaching the optimal model that is shortened by the cooling-
down phase of simulated annealing. Care must be taken in the multi-modal case to
find the expectations around each locally modal value. This is usually accomplished
by repeating the calculation with different starting points.

4.7 Three Applications

There is a wide range of applications of probabilistic inference in systems biology,
indicative of the universality and flexibility of the methodology expounded in this
chapter. In this section, we review briefly three examples from the literature:

1. The use of multiple types of experimental data to organize genes in modules
(Lee et al., 2004)

2. Model selection on the basis of a Bayesian comparison of models (Sachs et al.,
2005)

3. Studying the sensitivity and specificity of Bayesian inference of genetic regula-
tory interactions (Husmeier, 2003)

A specific application of probabilistic techniques that is used in two of these
examples is the concept of a Bayesian network: If we have a set of measured
quantities, and the probabilities of the values observed of some of the quantities
are conditional on the observed values of some of the other quantities, we can draw
a graph of dependencies, with the measured quantities represented as nodes and
directed arrows going into every measured quantity from the measured quantities
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upon which the probabilities of its values are conditional. An example of a Bayesian
network is

A

↙ ↘
B C

↘ ↙
D

(4.46)

while

A

↙ ↖
B C

↘ ↗
D

(4.47)

is not a Bayesian network. The parents of a node are the tail ends of the arrows
pointing to that node. If the graph obtained in this manner has no directed cycles
(in other words, no closed loops with arrows all connected head to tail), then it is
called a Bayesian network. This special case is computationally much more tractable
than the general case (usually referred to as a graphical model). The calculational
tractability arises from the fact that variables can be easily marginalized in Bayesian
networks, since the probability distribution factorizes:

p(X1, X2 . . . Xn) =

n∏
i=1

p(Xi|parents of Xi). (4.48)

Feedback loops in a graphical representation of dependencies between different
quantities correspond to networks that are not Bayesian networks, according to
the definition above. The general Bayesian logic expounded in previous sections is
still applicable, of course, but the analytical simplifications that go along with the
factoring of the probability distribution do not hold. A better way to understand the
consequences of feedback loops, in any event, is to think of the probabilities in a time
dependent context, which amounts to taking a particular graphical representation
and unfolding the arrows in a new time direction. As an example, the graph of
probabilistic dependence

A → B

↖ ↙
C

(4.49)
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unfolds to

↓ ↓ ↓
At Bt Ct

↓ ↓ ↓
Bt+1 Ct+1 At+1

↓ ↓ ↓
Ct+2 At+2 Bt+2

↓ ↓ ↓

(4.50)

Thus variables gain an additional time label and the arrows point from variables at
one time-slice to the next. The resulting graph is certainly acyclic, and is therefore
a Bayesian network. Such unfolded networks are referred to as dynamic Bayesian
networks.

Lee et al. (2004) considered several different sources for deriving gene-gene in-
teraction information: mRNA coexpression across microarrays, gene fusions, phylo-
genetic profiles, co-citations, and protein interaction experiments. They calibrated
the likelihood that any given one of these sources was reliable by picking KEGG
pathway database annotations and computing the ratio of the frequency with which
the source linkage operated in the same pathway as the KEGG annotation to the
frequency with which the source linkage operated in different KEGG pathways.
They normalized this ratio by picking random pairs of genes and computing the
ratio of the frequency with which the genes operated operated in the same KEGG
pathway to the frequency with which the pair of genes operated in different KEGG
pathways. They use the logarithm of this normalized ratio as a score for the accu-
racy of the source. In the context of this chapter, their likelihoods for the accuracy
of any given source of information was determined by their data for that source,
conditioned on the KEGG database. They then used these probabilities to score
gene linkages that were not in the KEGG database, but were predicted by the
source. Since the probabilities for each source were independently obtained, they
could produce a cumulative log likelihood score for each linkage by adding up each
individual score. Thus the framework of probability theory allowed an integrated
use of all available data to predict the reliability of a given gene-gene interaction
linkage, placed on a common scoring basis.

Learning the probability distributions p(Xi|parents of Xi) for a given Bayesian
network is a major part of determining the probability that the network is a
likely description of the data. These probability distributions are specific to each
hypothesized model since the dependencies between the entities in the network
may differ between models. kSachs et al. (2005) applied this procedure to infer the
most likely protein signaling network from multi-parameter flow cytometry data,
emphasizing the importance of data in the presence of different perturbations in
network inference. The role of a given perturbation is to fix the measured values of
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certain variables in the network, and therefore constrain the possible dependencies
in the set of probability distributions.

The requirements for successful reverse engineering of genetic regulatory networks
using dynamic Bayesian networks are considered in Husmeier (2003), who shows
the importance both of known biology in the form of possible interactions and of
time series data in disequilibirum after a perturbation as the system relaxes in
inferring the network structure. This work also shows the promise (and limitations)
of MCMC methods in inferring local structures of the genetic network. Rather
than try to infer a single most likely network, the importance of marginalizing over
models is apparent in these results, since the posterior probability distribution on
the space of models is diffuse for sparse data sets.

4.8 Summary

The logical analysis of biological data has many advantages, indicated in the intro-
duction. It has only one “disadvantage”: Known biology must be incorporated in the
analysis from the beginning, and thought must be expended on the translation of
this knowledge into quantitative models. The consistency, optimality and unique-
ness properties of logical inference imply that one cannot “do better” in extracting
knowledge from new data.

The key steps are:

(A) Encode known knowledge into prior probabilities for models that are plausible
explanations for the new data.

(B) Compute the likelihood of the new data for these models.

(C) Compute the posterior probabilities for the models using the likelihoods (B)
and the prior probabilities (A).

(D) Examine the likely models using these posterior probabilities and ask what
experiment would differentiate best between these likely models.

(E) With new data (D), go to step (A) with the posterior probabilities now serving
as the prior probabilities.

This general scheme of inference applies to sequence analysis on one end to reverse
engineering on the other end with no change. A consistent application of the simple
rules of probability theory is all that is needed.





5 Stoichiometric and Constraint-based

Modeling

Steffen Klamt and Jörg Stelling

A major current challenge in systems biology is to clarify the relationship between
structure, function, and regulation in complex networks that can be reconstructed
from genomic or biochemical data. However, dynamic mathematical modeling of
large-scale networks meets difficulties as the necessary mechanistic detail and
kinetic parameters are rarely available. In contrast, structural (topological) analyses
require only reaction stoichiometries and reversibilities, which are often well-known.
This chapter introduces the main concepts of stoichiometric network analysis, a
special class of structural analysis methods. We emphasize practical applications for
obtaining a system-wide understanding of metabolic networks, including functional
and regulatory aspects. In particular, we aim at providing a critical evaluation of the
different theoretical approaches available regarding their prerequisites, predictive
power, and inherent differences. This approach should finally enable the audience
to make critical judgments on the applicability of stoichiometric network analysis
for their special problems in systems biology.

5.1 Overview and Applications

One of the most important challenges in systems biology is to understand the
functionality of cellular networks that can be reconstructed from genomic and
biochemical data for a wide variety of organisms. Current theories have different
strengths and shortcomings in providing an integrated, predictive description of
complex networks. For dynamic mathematical modeling of large–scale systems,
often the necessary mechanistic detail and kinetic parameters are not available.
In contrast, structure-oriented analyses only require the usually well-characterized
network topology. Graph theory uses the scheme of network connectivities, which
is a simplified representation of real reaction networks (see chapter 7). Here we
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introduce a class of analysis methods that consider network stoichiometry explicitly
and potentially other constraints such as maximal pathway capacities as well. These
approaches can be subsumed under the term stoichiometric network analysis (SNA)
(Heinrich and Schuster, 1996; Simpson et al., 1999).

Stoichiometric modeling has become a particularly important approach for un-
derstanding the function of metabolic networks. Hence, we focus on metabolism,
and we discuss extensions to cellular regulation. One aim of this chapter is to criti-
cally review virtues and limitations of the approaches with respect to their potential
applications for realistic biological networks. For this comparison of altogether four
major approaches to stoichiometric network analysis, we will address the following
issues:

Network consistency: Blocked reactions and missing network elements can
compromise the validity of reconstructed networks. They should be detectable by
analytical methods.

Functional pathways and cycles: Pathways should be sets of connected re-
actions, but establishing a theoretically sound notion of “meaningful” pathways is
difficult. Pathway analysis may suggest new hypothetical routes between specific in-
puts and outputs that only emerge in the context of a complex network. Identifying
“futile cycles” that involve only a net consumption of energy can help to recognize
potential energy-wasting routes. Cycles without any net energy consumption point
to thermodynamic inconsistencies.

Network capabilities: The evaluation of, for instance, maximal product yields
in terms of the moles of product generated per mole of substrate has clear rele-
vance for biotechnological applications. Stoichiometrically derived yields may give
indicators of the maximal efficiency of engineered organisms. The identification of
alternative optimal pathways, or of sub-optimal pathways can, however, be of equal
importance with regard to the feasibility of genetic engineering approaches.

Importance of reactions: A prominent application of network analysis is to
determine the importance of single reactions for the overall systems performance,
in particular, by studying knockout mutations. Predicting the effects of enzyme
deficiencies that cause human diseases is of clear medical relevance. Estimates
of the relative importance of a reaction may differentiate between essential and
nonessential genes under specific (environmental) conditions.

Correlated reactions: Reactions that always have to operate together are likely
to be coregulated. This applies to many unbranched linear pathways in biosynthesis.
Reactions that never appear together point to differential regulation, for instance,
to establish qualitatively different network operation modes depending on the
environmental conditions. Hence, such groups of reactions help to understand, and
possibly predict, features of regulatory networks.

Network design: Studying of the effects of adding reactions to or deleting
reactions from a given network is closely related to analyzing the importance of
single reactions. In addition, it can unravel how (additional) constraints on reaction



5.2 Stoichiometric Networks 75

reversibilities influence the set of possible pathways in the network. Assessing
the effect of newly introduced genes with respect to functional capabilities and
potential, unanticipated side effects in silico could help to identify targets for the
addition or removal of genes in vivo.

Network flexibility and robustness: Robustness is generally defined as the
(relative) insensitivity of a system to changes in its parameters (Csete and Doyle,
2002) (see chapter 2). Flexibility means the capacity to switch between different
functional modes. Here we regard both concepts as equivalent because a metabolic
system should tolerate changes in its set of enzymes once it provides for alternative
pathways when a specific reaction is not functional. Hence, one has to investigate
the set of all possible behaviors of a system.

5.2 Stoichiometric Networks

Before we turn to theoretical approaches for stoichiometric network analysis (SNA),
we first need the introduction of some (formal) terms related to the stoichiometry
and structure of biochemical reaction networks. A biochemical reaction is usually
characterized by the following properties:

Stoichiometry: The stoichiometry specifies the reactants (educts or products)
participating in a reaction as well as the molar ratios in which they are consumed or
produced. The stoichiometric coefficient of a metabolite, by convention, is positive
if it is produced when the reaction proceeds in its forward direction, and negative
otherwise.

Reaction directionality: In principle, all chemical reactions are thermodynam-
ically reversible. Certain reactions in biochemical networks, however, can be con-
sidered to be practically irreversible because they (nearly) exclusively proceed in
one direction. Examples include the irreversible fixation of carbon dioxide by the
most abundant enzyme in nature, namely Rubisco. Knowledge on the reversibility
of reactions, as will be seen in the next sections, allows to constrain the number
of possible pathways in a network, since pathways that would involve reactions
proceeding in the “wrong” direction can be excluded from the analysis.

Catalyzing enzyme: Many biochemical, in particular metabolic, reactions are
characterized by the participation of an enzyme that facilitates or even enables
a reaction to proceed. The connections between reactions and enzymes do not
have to be unique, because several enzymes (isoenzymes) may catalyze the same
reaction, whereas multifunctional enzymes have the ability to catalyze different
reactions. Specification of the catalyzing enzyme, however, allows one to directly
relate structural network properties to features of the genome encoding those
enzymes.

Reaction kinetics: Reaction kinetics describe the dynamics of the reaction
based on the reaction mechanism and the enzyme properties. In many cases, these
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characteristics of a reaction are unknown. However, the metabolism is characterized
by usually fast reactions and high turnover of substances when compared to
regulatory events. Then, at least for certain modeling aspects, dynamics may be
neglected (see below).

In structural analyses of biochemical networks, only the first three properties are
considered. A formal description of the structure and stoichiometry of a reaction
network can be given as follows:

m: number of (internal) species

q: number of reactions; if desired, the catalyzing enzyme(s) and the corresponding
gene(s) can be assigned to each reaction.

N: q × m stoichiometric matrix—each row corresponds to one species and each
column to one of the reactions; the matrix element nij represents the stoichiometric
coefficients of species i in reaction j.

rev: the set of the reversible reactions

irrev: the set of the irreversible reactions (rev ∩ irrev = ∅)
The structure of any reaction network can be captured by this formalism. In

the following we will focus on metabolic networks because stoichiometric network
analysis is especially suited for them. Note that in metabolic networks, biomass
synthesis may be considered as a pseudo reaction whose (cumulative) stoichiometry
can accordingly be collected in one of the columns of N.
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Figure 5.1 Example network EN1: its graphical and formal representation.

Fig. 5.1 shows the map and the corresponding variables of a simple example
network, called EN1 throughout the paper. This network comprises 6 (internal)
metabolites and 10 reactions, two of which are reversible. Characteristics of any
network are its boundaries and its connections to “the rest of the world.” Related
to this issue is the notion of internal and external species. Internal species are those
which are explicitly considered in the network model (and, hence, in N). In contrast,
external species are thought to be sinks or sources (Heinrich and Schuster, 1996),
which can lie physically outside the system (for example, substrates or products as
the four external compounds in figure 5.1), but might also be located inside the
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cell. If, for example, metabolite E in figure 5.1 represented a metabolite in great
excess, such as water, we would probably not consider this metabolite as part of
our model and neglect it as is done in many stoichiometric (and also dynamical)
studies. External metabolites are the reason for why the stoichiometric coefficients
of a reaction in N may have only positive (R1, R2 in EN1) or only negative (R3,
R4) signs.

The stoichiometric matrix N is fundamental, not only for SNA. First, the
underlying graph of a given reaction network—needed for graph-theoretical studies
(see chapter 7)—can easily be derived from the stoichiometric matrix. Furthermore,
N is essential also for dynamic modeling of metabolic processes. The changes of
the species concentrations over time can be described by a system of differential
equations (see chapter 6 for details of the approach) as follows (Heinrich and
Schuster, 1996):

dc(t)

dt
= N · r(t) (5.1)

The m × 1 - vector c(t) represents the current metabolite concentrations and the
q × 1 - vector r(t) represents a flux distribution in the network, that is, it contains
the q reaction rates. Vector r(t) is given by a—often approximated—function of
the current metabolite concentrations and of many—often unknown or uncertain—
parameters (contained in vector p), that is,

r(t) = f(c(t),p, t) . (5.2)

Hence, as already mentioned above, the uncertainties in describing a metabolic
system dynamically lie within the kinetic description of the reaction rates. However,
the other part of equation 5.1 is given by N, which in most cases is well-known
and represents an invariant of the system. N is invariant against time, kinetics,
and concentrations (although, under certain conditions, only subnetworks, that is,
submatrices of N may be active). N describes the structural relationships between
the network components which are of eminent importance for the overall function
and behavior of the network. Therefore, results obtained by stoichiometric network
analysis do often have direct implications also for the dynamic behavior. Of course,
since equation 5.2 is practically neglected, only some of the major characteristics
of a metabolic system can be extracted by SNA.

5.3 Conservation Relations

Conservation relations (CR) characterize weighted sums of metabolite concentra-
tions which remain constant in the system. Here, concentrations are denoted by
brackets. A typical example occurring frequently in studies on metabolic networks
is [NADH] + [NAD] = S = CONST. When one of these cosubstrates is consumed,
then the other is produced, keeping the sum of both concentrations constant. For
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NADH and NAD, this is reflected by the phenomenon that the corresponding row of
NAD in the stoichiometric matrix N is exactly the same as for NADH, except that
it is multiplied by –1. This actually means that the rows are linearly dependent .

It is a general property of any conservation relation y that it represents a
combination of rows (species) of N that are linearly dependent (Heinrich and
Schuster, 1996). Linear combinations of rows of N can be represented by NT y

(NT = transpose of N), and finding linearly dependent rows means that y must
fulfill:

NT y = 0 (5.3)

(0 is the m × 1 zero vector). This means that a CR y must lie in the null-space of
the transpose of N. One also says that y lies in the left null-space of N (Strang,
1980), since equation 5.3 is equivalent to yT N = 0T . The dimension of the left
null-space is m-rank(N), that is, conservation relations only exist if rank(N)< m.
Then, m-rank(N) linearly independent CRs can be found, which can be arranged
in a matrix Y. For terms related to a null-space see also section 5.4, where the
null-space of N is analyzed.

Network EN1 (figure 5.1) does not contain any CR since rank(N)=m=6. A simple
example would be a network that contains the four metabolites A,B,C,D and only
one reaction: A + B → C + D. In this case,

N =

⎛
⎜⎜⎜⎜⎝

−1

−1

1

1

⎞
⎟⎟⎟⎟⎠ (5.4)

and, hence, three linearly independent CRs exist (because m-rank(N) = 4−1 = 3).
They can be found by searching for linearly independent solutions y for

NT y = [−1 − 1 1 1]y = 0 (5.5)

Three selected independent solutions for y are arranged as columns in the matrix
Y:

Y =

⎛
⎜⎜⎜⎜⎝

1 1 0

−1 0 1

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠ (5.6)

In the order of the columns this means (i) [A] – [B] = S1 = CONST.; (ii) [A]
+ [C] = S2 = CONST.; (iii) [B] + [D] = S3 = CONST. Furthermore, each linear
combination of these CRs is also a CR, e.g. (i) + (ii) = 2 [A] – [B] + [C] = CONST.

Identifying the CRs is a simple task, but brings important benefits. First, CRs
are helpful for detecting conserved moieties by searching only for those CRs that are
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composed of a positive sum of metabolite concentrations (Heinrich and Schuster,
1996; Cornish-Bowden and Hofmeyr, 2002). Algorithms for this task (similar to
those for computing elementary modes, see section 5.6.3) exist (Heinrich and
Schuster, 1996). Secondly, CRs are a nice example for how stoichiometric relations
affect systems dynamics: CRs shrink the possible dynamic behavior (equation 5.1)
of a given network. If at a given time point, say at the beginning of the simulation
or experiment, the value of a CR is known, then it will be constant for all the time.
In our small example above, this would mean that if [A] - [B] is 6 at any time point
then there will never be a state of the system where the difference between [A] and
[B] will be unequal to 6. For this reason, CRs express redundancies with respect to
the considered states of the systems. It is therefore possible to remove m-rank(N)
states from the set of (modeled) system variables without losing information. In our
example above, we might, thus, remove the three metabolites B, C, D and model
only A explicitly. Using the CRs and the initial concentrations, we can then derive
the concentrations of B, C, and D from the current concentration of A at any time
point (Heinrich and Schuster, 1996; Reder, 1986).

5.4 Balanced Networks: The Quasi Steady State Assumption

5.4.1 Metabolite Balancing Equation and Null-Space of N

Metabolism usually involves fast reactions and high turnover of substances when
compared to regulatory events. Therefore, analysis of metabolic networks is often
based on the assumption that, on longer time scales, metabolite concentrations and
reaction rates are constant. Applying this quasi (pseudo) steady state assumption
to equation 5.1 leads to the fundamental metabolite balancing equation (Heinrich
and Schuster, 1996)

0 = Nr . (5.7)

This homogeneous system of linear equations demands that the production
(sum of positive fluxes) and consumption (sum of negative fluxes) of a metabolite
must be equal, similar to Kirchhoff’s first law for electric circuits. As we will
see in section 5.5, the metabolite balancing equation is the main constraint in
constraint-based modeling. Note that in oscillating systems, where the metabolite
concentrations are not constant (Wolf et al., 2000), equation 5.7 is fulfilled at least
for the averaged reaction rates.

The trivial solution r = 0 always fulfills equation 5.7. However, this would
represent thermodynamic equilibrium. We are, for obvious reasons, only interested
in other solutions, and the cell should (must) have degrees of freedom. Indeed, as
the number of reactions q in real networks mostly is much larger than the number m

of internal metabolites, an infinite number of flux distributions r usually complies
with the system of equations (5.7). From linear algebra, it is known that all possible
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solutions are contained in a vector space called the null-space (or kernel) of N (cf.
with left null-space in equation 5.3) (Strang, 1980). The dimension of the null-
space is q-rank(N), which equals the number of linearly independent solutions for
equation 5.7. A set of q − rank(N) linearly independent solutions can easily be
found and is arranged in a kernel matrix K. Then, all flux distributions r fulfilling
equation 5.7, that is, which lie in the null-space of N, can be constructed by a linear
combination b of the columns of K:

r = Kb . (5.8)

For illustration, figure 5.2 shows the map and formal representation of a very
simple network called EN2. The null-space has dimension q-rank(N)=4-2=2.

R1 R2 R3 R4

rev = { }
irrev = {R1,R2,R3,R4}

1  −1  −1  0
0   1   1  −1

B B(ext)R1

R3

R2

R4AA(ext)

N = B

A

Figure 5.2 Example network EN2.

A kernel matrix for this system, which accordingly must have two columns, reads:

K =

⎛
⎜⎜⎜⎜⎝

1 0

0 −1

1 1

1 0

⎞
⎟⎟⎟⎟⎠ (5.9)

A special balanced flux distribution in this network is r = (2, 1, 1, 2)T which can be
constructed from K by using b = (2,−1)T in equation 5.9.

Note that the kernel matrix is, in general, not unique. For example, we may
substitute one of the columns of K in equation 5.9 by the vector r given above.
Therefore, usually not all qualitatively different flux distribution in the network
are captured. An even more problematic point for analyzing the null-space by the
kernel matrix is that neither sign (reversibility) nor other capacity restrictions of the
reactions are considered. For example, as all reactions in EN2 are irreversible, the
second column of K is not a valid flux distribution in this network because for R2
a negative sign occurs. It can even happen that a null-space has many dimensions
(that is, many columns in K), although no other steady state flux than the trivial
one is feasible in the network. Hence, the “real” degrees of freedom (possibilities for
distributing metabolic fluxes) can only roughly be estimated from the dimension of
K. These shortcomings are overcome by constraint-based approaches (section 5.5).
Some important steady state properties of the system can, nevertheless, be derived
from K.
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5.4.2 Analysis of the Kernel Matrix

It may happen that a reaction can only have a zero rate in steady state. This applies,
but is not restricted to, whenever an internal “dead-end” metabolite participates
only in this reaction. If this reaction carried a non-zero flux, then this metabolite
could not be in steady state. Because of equation 5.8, many blocked reactions (BRs,
also called “strictly detailed balanced reactions” (Heinrich and Schuster, 1996)) can
easily be identified from (any) K if their corresponding row in K is a zero row.
Checking a network for BRs is especially useful in reconstructed networks, since
BRs can hardly perform any function and therefore often indicate missing network
elements. For any further network analysis involving the steady state assumption
(sections 5.5–5.6), they can for practical reasons be removed.

An enzyme subset (ES), or coupled/correlated reaction set, is a set of reactions
that must always operate together with a fixed ratio in their rates (Pfeiffer et al.,
2001). Typical examples are reactions in a linear pathway, such as {R4,R7,R10}
in EN1 (figure 5.2). The rates of these reactions will be equal in any steady state
flux distribution. Consequently, if one reaction is removed from the network (for
example, by a gene deletion), then the others cannot work properly and their flux
will be zero in steady state. Since the reactions of an ES are structurally so strongly
coupled, they are often commonly regulated (Schuster et al., 2002c). ESs are not
restricted to linear pathways as shown by EN2 (figure 5.2), where {R1,R4} is the
only ES. ESs can be verified by the null space matrix because the corresponding
rows in K of two reactions of the same ES can only differ by a (scalar) factor.
In equation 5.2, the factor for the corresponding rows for R1 and R4 in K (first
and fourth row, respectively) is even unity, which means that the reactions operate
always with the same stationary rate.

Other important conclusions can be drawn if K is block-diagonisable. Then,
certain sub-networks can be identified in the system that are either completely
disconnected or whose steady state fluxes are independent from the fluxes in the
rest of the network (Heinrich and Schuster, 1996).

5.4.3 Metabolic Flux Analysis

By applying metabolic flux analysis (MFA), one tries to shrink the possible solution
space of equation 5.7 by measuring some of the reaction rates (such as uptake or
excretion rates) in a certain steady state experiment (Stephanopoulos et al., 1998).
Ideally, one unique solution (a point in the null space of N) remains for the actual
flux distribution in the respective experiment. The procedure is straightforward: one
divides equation 5.7 into the measured (index m) and unknown part (u), possibly
after rearranging the columns in N and components in r:

0 = Nr = Nuru + Nmrm ⇒ Nuru = −Nmrm . (5.10)
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The right part of equation 5.10 is the central equation for MFA and characterizes
a flux scenario. The ideal case with only one unique and exact solution occurs
if Nu is a square matrix and invertible because then all unknown rates in ru

can be determined. However, in general, from the rank of Nu, a scenario can
be classified with respect to determinacy (determined or underdetermined) and
redundancy (redundant or non-redundant). If a scenario is underdetermined, then
only some or even none of the unknown rates can be determined. In redundant
systems, a consistency check can be performed, which is useful for detecting gross
measurement or modeling errors. The basic techniques for MFA are extensively
described in Stephanopoulos et al. (1998); van der Heijden et al. (1994); and Klamt
et al. (2002). In larger networks, despite a number of measurements, many or all
rates in the system often remain completely unobservable. Then, only isotopic tracer
experiments may deliver further constraints (Wiechert, 2001).

To give a small example, we assume that in EN1 we measured the rates R1=R3=2
and R4=1 (figure 5.3). We could then calculate R2=R7=R9=R10=1. The other
three rates remain unknown.
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Figure 5.3 Example for metabolic flux analysis: stationary rates of R1, R3, and R4 are
measured (bold arrows). Using this information, one can determine the fluxes of R2, R7,
R9, and R10 (dashed arrows). The other rates remain unknown (thin arrows).

In general, MFA is useful for analyzing specific flux distributions, but it is not
able to characterize the complete admissible steady state solution space.

5.5 Constraint-Based Modeling

5.5.1 Principles of Constraint-Based Modeling

In the previous section we introduced the metabolite balancing equation which
resulted from the assumption of quasi steady state. As a consequence of this con-
straint, the space of possible flux distributions in a reaction network reduces from
“everything is possible” to the null-space of N. The basic idea of the constraint-based
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approach, mainly developed by B.O. Palsson and colleagues, is to incorporate fur-
ther well-defined physicochemical and biological constraints that limit the network
overall behavior with respect to the possible flux patterns (Varma and Palsson, 1993;
Reed and Palsson, 2003; Price et al., 2003, 2004). As a result, the solution space,
encompassing all flux distributions satisfying the imposed constraints, shrinks. Dif-
ferent types of constraints can be involved and they can all be expressed by linear
equations or inequalities:

C1) Quasi steady state: 0 = N r

C2) Capacity/Reversibility: αi ≤ ri ≤ βi

For all irreversible reactions one usually sets αi = 0 in C2. Flux capacity constraints
are often known for exchange (uptake/excretion) reactions. If capacity constraints,
for internal reactions normally given by the vmax value of the enzyme, are unknown
then the boundary values of the reaction rates are set to ±∞. C2 can be simplified
to a pure reversibility constraint when no capacity values are known/considered:

C2’) Reversibility: ri ≥ 0 (for all irreversible reactions i)

C3) Measurements: ri = mi (for measured/known rates i)

C4) Optimality: sT r = s1r1 + s2r2 + ... + sqrq = Max!

Note that null-space and metabolic flux analysis can be seen as special constraint-
based methods which take into account the constraints C1 (+partially C2) and
C1+C3, respectively.

Rate 3

Rate 1

R
at

e 
2

Figure 5.4 Example of a convex polyhedral cone.

Constraints C1 and C2’ are in practice often well-known in a given network. The
set F of all flux vectors r obeying these constraints

F = {r ∈ Rq : 0 = Nr , ri ≥ 0 ∀ i ∈ irrev} (5.11)

represents, mathematically, a convex polyhedral cone (Rockafellar, 1970; Bertsimas
and Tsitsiklis, 1997). In stoichiometric studies, it is often referred to as flux cone.
According to C1 and C2’, this cone is an intersection of the null-space with the
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positive halfspaces of the irreversible reactions. An example of a three-dimensional
polyhedral cone is given in figure 5.4. As suggested by this picture, the edges of
such a cone are of eminent importance; they are the subject of pathway analysis
(section 5.6).

The constraints C2–C4 further restrict the cone to a smaller subset of flux vectors
representing then, in general, a polyhedron. Note that the optimality condition C4
is not always considered as a constraint. However, one may treat it as the same
since it reduces the space of flux vectors of interest as the other constraints do. The
optimality condition C4 is central to the approach of flux balance analysis, which
is introduced next.

5.5.2 Flux Balance Analysis

Flux balance analysis (FBA) seeks to identify extreme patterns of flux distribu-
tions that keep the network balanced (constraint C1), are thermodynamically fea-
sible (C2) and maximize a linear objective function (C4). Thus, the characteristic
and necessary assumption of FBA is the optimal function of the network expressed
by the optimality constraint C4. The three constraints C1, C2, and C4, in math-
ematical terms, represent a linear optimization problem (Kauffman et al., 2003a;
Bertsimas and Tsitsiklis, 1997), which may be optionally extended by measurements
(C3). In most cases, the (linear) objective function is the maximization of growth
or product yield. The vector s in the linear objective function used in C4 represents
the optimization criteria and weights the reaction rates. For maximizing the growth
rate, for example, only the coefficient corresponding to the growth rate is set to one
and all others to zero. As an example, assume we want to maximize the yield of P
(reaction R3) for growth on substrate A in network EN1 (figure 5.1). The variables
for the constraints then read:

Stoichiometry (for C1): N as given in figure 5.1

Boundaries (for C2): α = (0,−∞, 0, 0, 0, 0, 0,−∞, 0, 0);
β = (1, 0,∞,∞,∞,∞,∞,∞,∞,∞)

Linear objective function (for C4): s = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Note that only α2 and α8 are −∞ because only R2 and R8 are reversible.
Furthermore, we set β2 = 0 (B cannot be taken up), because exclusive growth on
substrate A is considered. Only c3 is non-zero as we want to optimize R3. Finally, we
assume that the maximal uptake rate of A is 1 (β1 = 1). Using available computer
routines like the simplex algorithm (Bertsimas and Tsitsiklis, 1997), one can easily
solve such a linear optimization problem. In our example, one might get a solution
as shown in figure 5.5 with an optimal yield of P/A = 1.

The following main applications of FBA became attractive for metabolic engi-
neering, but also for systems biology:

Predicting optimal yield and optimal behavior: FBA enables one to predict
production capabilities of a micro-organism (Varma and Palsson, 1993). This is of
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Figure 5.5 Optimal flux distribution for producing P from A in EN1.

high interest for industrial applications (Stephanopoulos et al., 1998; Nielsen, 1998)
and FBA can also be used to search for optimal knock-outs (Burgard et al., 2003)
with respect to certain criteria. Furthermore, bacteria such as E. coli have been
shown to behave (stoichiometrically) optimal with respect to biomass yield, at least
under selective pressure (Edwards et al., 2001a; Ibarra et al., 2002). Thus, at least
for certain conditions, the quantity of this optimal behavior can be calculated in
silico.

Predicting functionality and phenotypes (after gene deletions): A very
useful application of FBA is to investigate whether a certain function can be per-
formed at all in a network, especially after removal of network elements (simulating
gene deletions): if a reaction is removed in the network (that is, from N), then one
may optimize the network again. If the optimal value, for example, for the growth
rate, now becomes zero, then one definitely knows that this function (growth) is
not possible anymore. This procedure has been applied, for example, in (Edwards
and Palsson, 2000; Förster et al., 2003), and it could be shown that the prediction
“growth is/is not possible” agrees well with the real phenotype. Especially when
a function is possible, although the in silico analysis of the network predicts the
opposite (false negative prediction), there must be an error or something missing
in the considered network.

Flux coupling: FBA can be used to analyze flux couplings in a network (Burgard
et al., 2004). Similar to investigating the null-space matrix, blocked and fully
coupled reactions may be identified, but reversibility constraints are explicitly
considered. Additionally, weaker couplings may also be identified, for instance,
where one reaction is used when another reaction is active, but not automatically
vice versa (as for R1 and R5 in EN1, for example). The results of such investigations
can help inferring the underlying regulatory rules.

The usefulness of FBA has been proven in many applications, in particular for
microbial model organisms (Price et al., 2004), but there are also limitations one
should be aware of. FBA critically depends on the optimality criterion applied. Not
all cells, and bacterial cells not under all circumstances, will behave stoichiomet-
rically optimal. This means that, in general, network capabilities but not the real
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phenotype can be predicted. Moreover, the optimal value of the objective function
is unique and an optimal solution will usually be found. However, especially in large
(genome-scale) networks, the calculated optimal flux distribution itself may be not
unique. Look at our optimal solution in figure 5.5. It is easy to find another optimal
flux distribution that also realizes optimal yield (P/A =1), such as the left one in
figure 5.6. We can even (linearly) combine this solution with the one in figure 5.5
(here with a factor of 0.5 for both) yielding the right flux map in figure 5.6. Thus,
actually, infinitely many optimal flux distributions exist even in this small network.
Therefore, in most cases, albeit the additional constraints C2 and C4 of FBA shrink
the solution space considerably, infinitely many solutions can remain. FBA delivers
one particular optimal solution. Thus, even if optimality is assumed, it may happen
that only little can be said about the internal behavior, that is, how the fluxes are
distributed inside the cell (Mahadevan and Schilling, 2003).
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Figure 5.6 Two further optimal flux distributions for producing P from A in EN1.

However, often one can specify some reaction rates that are fixed in any optimal
solution. For the example optimization problem in EN1, we could derive that R4,
R7, and R10 must be zero during optimal behavior (because they are involved in
side production of E) and that R1, R3, and R9 carry a fixed flux of unity. Thus,
only R5, R6, and R8 remain variable. Fixed rates in optimal flux patterns can easily
be identified (Mahadevan and Schilling, 2003). Moreover, one may also determine
the qualitatively distinct optimal solutions (as the two in figs. 5.5 and 5.6 (left))
for a given FBA problem, for example, by mixed-integer linear programming (Lee
et al., 2000), or—in smaller networks—by elementary modes as described in a later
section.

5.5.3 Minimization of Metabolic Adjustment (MoMA)

The analysis of the stoichiometric implications of gene deletions is one important
application of FBA, because FBA can find a new (optimal) flux distribution. Even if
the wild type grows optimally, mutants may not necessarily behave optimally with
respect to their retained resources. Instead they could adjust their metabolism
with minimal effort (Segre et al., 2002). This assumption suggests that the cell
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searches for the nearest solution in the new feasible space of steady state flux
distributions, which is part of the wild type solution space. Formally, this leads
again to a constraint-based problem, where w represents the optimal solution of
the wild type and d the index of the deleted reaction whose rate is set to zero:

Nr = 0 (5.12)

αi ≤ ri ≤ βi

rd = 0

(r − w)T (r − w) = Min!

The first three terms correspond to C1–C3 in the usual FBA, whereas the fourth
term leads to a quadratic programming problem whose handling, however, is
mathematically straightforward (Segre et al., 2002).

For E. coli mutants, this approach lead to better predictions than FBA (Segre
et al., 2002). However, MoMA at first needs the flux distribution from the wild type,
which is also assumed to be optimal and, hence, determined by FBA. Therefore,
MoMA also faces the problem of non-unique optimal flux distributions in the wild
type. It can, thus, also result in non-unique solutions for the mutant (Mahadevan
and Schilling, 2003). Hence, for MoMA it is essential to identify the real flux
distribution in the wild type under a given environment.

5.6 Pathway Analysis

Pathway analysis deals with the discovery and analysis of meaningful routes in
(primarily) metabolic networks using the concepts of extreme pathways (EPs) and
of elementary flux modes (EFMs) (Papin et al., 2003). In contrast to FBA or MFA,
it characterizes the complete space of admissible steady-state flux distributions by
particular flux vectors.

5.6.1 Principles of Pathway Analysis

Extreme pathways/elementary flux modes are structural elements that are unique
for a given network and can be considered as the smallest functional entities
(Schuster and Hilgetag, 1994; Schilling et al., 2000). They both are defined by
a flux vector e composed of q elements (e1, e2, ...eq), each describing the net rate of
the corresponding reaction. The pathway represented by e can be identified by the
utilized reactions. We denote this by

P (e) = {i : ei �= 0} . (5.13)

In other words, the pathway representation P (e) specifies all reactions that
participate in the EP or EFM e. If e is an EFM or EP, it fulfills the following
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three conditions (Schuster et al., 1999, 2000; Schuster and Hilgetag, 1994; Schilling
et al., 2000; Schuster et al., 2002b):

(C1) Pseudo steady state: None of the metabolites is consumed or produced in
the overall stoichiometry according to equation 5.7. Hence, EP or EFM e is in the
null-space of N and Ne = 0 holds.

(C2) Feasibility: All fluxes in an EP or EFM have to be thermodynamically
feasible, that is, irreversible reactions have to proceed in the “right” direction.
Formally, this requires that all rates ei ≥ 0 if reaction i ∈ irrev.

(C3) Non-decomposability: The central property of EPs and EFMs is that they
represent the minimal functional units in a network. No reaction from an EP
or EFM can be deleted, still resulting in a valid (non-trivial) steady state flux
distribution. Formally, there exists no vector v unequal to the zero vector and
to e fulfilling C1, C2, and that P (v) is a proper subset of P (e). This feature is
also called genetic independence because C3 implies that the participating enzymes
in one pathway are not a subset of the enzymes in another pathway. C1 and C3
together ensure that the sub-network spanned by the reactions in pathway e is
connected.

Conditions C1–C3 completely define an EFM up to a scaling factor for each path-
way. Note that C1 and C2 are identical to C1 and C2’ used in the constraint-based
approach (section 5.5). For an EP, two additional conditions have to be satisfied (see
section 5.6.2). Importantly, both approaches provide a unique decomposition of a
given network structure into EPs or EFMs, respectively. Hence, they unambiguously
represent a particular network. The small example network EN2 illustrates these
basic properties of EFMs (figure 5.7). Only two EFMs can occur, namely one using
the upper branch of the central reaction couple, and the other one using the lower
branch. The third flux distribution is not an EFM because the irreversible reaction
R2 operates in the backward direction, and thereby violates feasibility condition
C2. The rightmost flux distribution violates condition C3; it can be decomposed
into EM1 scaled by a factor of two and EM2.
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Figure 5.7 Elementary flux modes in the example network EN2 (left), and two flux dis-
tributions that do not constitute EFMs (right). Bold face denotes participating reactions
and their (normalized) rates.

The last example referred to a particular property of EFMs and EPs, namely
convexity, which is of paramount importance for pathway analysis. The basic
conditions C1–C3 imply that all feasible steady state flux distributions v can be
described by a nonnegative superposition of all EFMs or all EPs, respectively.
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With the complete set of EFMs in a network denoted by SEFM and, in analogy the
complete set of EPs being SEP , this feature is formally represented by

v =
∑

j

αje
j . (5.14)

Here, αj is a positive scaling factor (αj ≥ 0), and ej denotes the j=th EFM
∈ SEFM or the j–th EP ∈ SEP , respectively. The pattern of superposition does
not necessarily have to be unique for a given flux distribution, that is, different
combinations of EFMs or EPs may lead to an identical flux pattern. Hence, in most
cases a direct decomposition of a flux distribution into the underlying EFMs and
EPs is not possible.

Importantly, all edges—the so-called extreme rays—of the convex flux cone
(section 5.5) are contained in the sets of EPs and EFMs, respectively (Schuster
et al., 2002b), which directly follows from equation 5.14. In convex analysis, EPs
and EFMs are called generating vectors of the convex cone. The concepts of EPs and
EFMs were derived from a more general convex analysis approach to stoichiometric
networks. There, pathways have been called extreme currents, but they were
restricted to irreversible reactions (Clarke, 1988). EFMs permit all reactions to
be reversible, while for EPs, this is allowed for certain fluxes (see below).

5.6.2 Elementary Flux Modes and Extreme Pathways

The conditions C1–C3 already uniquely determine the complete set of EFMs in a
network (up to a scaling factor for each pathway vector). Two additional conditions
delimit the EPs from the EFMs (Schilling et al., 2000):

(C4EP ) Network configuration: Reactions have to be classified either as ex-
change fluxes, which allow a metabolite to enter or to exit the system, or as inter-
nal reactions. All reversible internal reactions must be described by two separate
irreversible reactions for the forward and the backward direction, respectively. Ex-
change fluxes can be reversible and each metabolite may only participate at most
in one exchange flux.

(C5EP ) Systemic independence: The set of EPs in a network configured ac-
cording to condition C4EP is the minimal set of generating vectors, allowing to
describe all feasible steady state flux distributions by equation 5.14. The network
configuration (C4EP ) ensures that the set of EPs is unique for a given network.

Thus, extreme pathways are only defined in a particular representation of a given
network.

Reconfiguration and the particular conditions for EPs lead to the following
consequences, which can be exemplified by EN1 (figure 5.8 and table 5.1): (i)
Each split reversible reaction leads to a “two-cycle” constituted by the forward
and backward branches, for instance, EM9’ in EN1 for R8. This type of pathway,
however, has no practical meaning and is usually not further considered (Papin
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et al., 2002). (ii) Except for these two-cycles, the EFMs in the original and the
reconfigured network are equivalent. (iii) In a reconfigured network, the set of
EPs is always a (proper or non-proper) subset of the EFMs because each EP
obeys conditions C1–C3, that is, SEP ⊆ SEM ′ . Each EP can be mapped onto
a corresponding EFM, while the inverse is not true. For instance, EFMs1’–3’
(table 5.1) can be represented by non-negative linear combinations of EPs and,
hence, are not systemically independent. (iv) Systemically dependent EFMs that
are not EPs occur only when a network contains reversible exchange fluxes (Klamt
and Stelling, 2003; Papin et al., 2004b) such as R2 in EN1. There, the direct pathway
(EM1) can formally be decomposed into two pathways that rely on the reversible
exchange flux of metabolite B (EM5’,8’ = EP2,5).
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Figure 5.8 Elementary flux modes EM1–8 in the example network EN1. EFMs were
grouped by the net conversion of external metabolites (bottom of each box) as indicated
by different gray background levels.

As the above examples indicate, the set of EFMs related to a network shows cer-
tain conservation properties. When a reversible reaction is changed to irreversible,
a new pathway set is obtained by excluding those EFMs from the original set that
use the specific reaction in the forbidden direction (Schuster et al., 2002b). Hence,
one can calculate the EFMs separately for forward and backward direction and
then assemble the complete set of EFMs for the original network by uniting the
two sub-sets. Likewise, if a reaction is deleted, the subset of EFMs not involving
this reaction is the complete set of EFMs in the reduced network (Schuster et al.,
2000). In contrast, the set of EPs needs to be recalculated whenever a (partial)
reaction is removed.
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Table 5.1 Relations between elementary flux modes in the original EN1 (EFMs; cf.
figure 5.8), in EN1 after reconfiguration (EFMs’), and extreme pathways (EPs).

EFMs EFMs’ EPs Sum of EPs

EM1 EM1’ — EP2 + EP5

EM2 EM2’ — EP3 + EP5

EM3 EM3’ — EP2 + EP4

EM4 EM4’ EP1 —

EM5 EM5’ EP2 —

EM6 EM6’ EP3 —

EM7 EM7’ EP4 —

EM8 EM8’ EP5 —

— EM9’ EP6 —

5.6.3 Calculation of Pathway Sets

Several algorithms have been proposed for the enumeration of pathways (Schuster
et al., 2000; Wagner, 2004). They contain a common core (Gagneur and Klamt,
2004) shown as pseudo-code in figure 5.9. Pathway sets, stored in matrices Mi, are
built iteratively by successively processing the imposed equality (C1), inequality
(C2), and elementarity (C3) constraints . An initial matrix M0 can be derived from
N, for example, using a special kernel matrix K of N (Wagner, 2004); in this aspect,
existing algorithms differ most. Until all constraints are satisfied, the rows in Mi,
which represent preliminary pathways, have to be processed for compliance with
conditions C1–C2. Thereby, new candidate pathways are generated by Gaussian
combination of pairs of rows in Mi. Additionally, computationally expensive tests
have to be performed to comply with C3.

Figure 5.9 Pseudo-code for pathway calculation.

Construct initial matrix M0 from N

for all constraints of C1/C2 not satisfied

Mi+1 =
Process current constraint for all rows in Mi

Pairwise Gaussian combinations of rows of Mi

Test for elementarity of all candidate pathways (C3)

Mi ← Mi+1

end

EFMs = Mi+1

These requirements render the combinatorial problem of pathway identification
NP-hard. With increasing network size, the number of pathways and the associated
computational costs are likely to grow more than linearly (Klamt and Stelling,
2002). Therefore, pathway analysis has mainly been applied to networks of small or
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moderate size. With algorithmic improvements, however, the networks investigated
became increasingly more complex (Stelling et al., 2002; Förster et al., 2002; Wiback
and Palsson, 2002). We will discuss prospects for EFM/EP computation in genome-
scale networks in section 5.7.

5.6.4 Applications of Pathway Analysis

Pathway analysis, which comprises the approaches of elementary flux modes and
of extreme pathways, per se aims at the dissection of complex networks into
smaller functional units. Here, we consider how these entities help in understanding
metabolic networks by focusing on EFM analysis because for most applications, the
sets of EPs and EFMs are identical. However, the slight differences in the methods
may have important consequences for specific applications (Klamt and Stelling,
2003).

EFM analysis can be used to identify all routes that enable a cell to convert a
certain substrate into a product. In EN1, for instance, four genetically independent
routes (EM1–4) produce P from A as sole substrate (figure 5.8). Purely internal
reaction cycles without net energy consumption, in contrast, would point to ther-
modynamic inconsistencies (Beard et al., 2002). Since all possible steady-state flux
distributions are linear combinations of EFMs, the pathway(s) that are optimal
or sub-optimal regarding the ratio of two reaction rates have to be among these
units. In the example network, the two EFMs with highest P:A yield (R3/R1) of
one (EM1,2) correspond to the two qualitatively different optimal routes in sec-
tion 5.5.2, figs. 5.5 and 5.6). However, FBA allows including additional constraints
such as maximal reaction capacities when searching for optimal flux vectors. Path-
way analysis uncovers all qualitatively different (potentially optimal) pathways, the
superposition of which gives the actual flux distribution observed in vivo. Poten-
tial contributions of individual pathways to this flux distribution may be analyzed
through the spectrum of α-values in equation 5.14 (Wiback et al., 2003).

As pathway analysis yields all possible routes, the importance of single reactions
for the network behavior in a certain context can be analyzed. For instance, reaction
R9 in EN1 is indispensable for the production of P from B alone, but several
alternative routes without R9 exist for the conversion of A to P. Similarly, correlated
reactions (see sections 5.4.2 and 5.5.2) can be dealt with. The number of reactions
in a pathway might be of interest because it indicates the amount of cellular
resources that is needed to establish the pathway, for instance, to provide for the
necessary enzymes. Moreover, the distribution of pathway lengths can characterize
the complexity of a given network or differences between seemingly similar networks
in two organisms.

The analysis of network functionality directly relates to the conservation prop-
erties of EFMs. When a reaction is removed from a network, the new set of EFMs
contains all those EFMs of the original network in which the specific reaction does
not participate. An empty set for the perturbed network, hence, indicates that the
organism is structurally unable to achieve a steady-state flux distribution. This is
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a reliable predictor of inviability for the corresponding gene deletion mutant (Ed-
wards et al., 2001a; Stelling et al., 2002). The concept of “minimal cut sets,” the
smallest sets of reactions the inactivation of which will guarantee network failure,
systematically extends these analyses; it allows to search for optimal intervention
strategies (Klamt and Gilles, 2004). Likewise, the introduction of new genes can be
assessed.

The analysis of network robustness/flexibility may be performed by assessing the
effects of all possible mutations. Here, however, it may be important to analyze the
complete (reduced) sets of EFMs in order to investigate the effects of pathway
redundancy, or the sensitivity of network performance in terms of yields upon
perturbations. For instance, such an analysis would show that production of P
from substrate A alone (four alternative pathways EM1–4) likely is less affected
by random mutations than the production of P from exclusively B (one route
EM8; figure 5.8). Hence, MPA represents a suitable approach for extracting a
large number of structural features from a given network, but it is limited by the
increasing combinatorial complexity in larger networks.

5.7 Advanced Topics and Future Directions

The most challenging fields in stoichiometric network analysis concern predomi-
nantly (i) analyzing networks of increasing complexity, (ii) decomposing networks
into modules and hierarchies, and (iii) incorporating and predicting cellular regu-
lation (Price et al., 2004; Stelling, 2004).

5.7.1 Genome-Scale Network Analysis

The first task in genome-scale network analysis is network reconstruction from
genomic, biochemical, and physiological data. Stoichiometry, directionality, and
catalyzing enzymes (and their genes) of organism-specific metabolic (sub-)networks
can now be obtained from databases such as KEGG (www.genome.ad.jp, Goto et al.
(2002)) or MetaCyc (www.biocyc.org, Karp et al. (2002)). Unknown reactions and
the necessary validation of database entries, however, pose challenges for model
development. To date, genome-scale stoichiometric models have been established
mainly for microbial model organisms. With up to ∼1,200 reactions and ∼700
metabolites, they belong to the largest models of cellular systems known so far
(Price et al., 2004).

The analysis of such complex networks is straightforward for FBA, which requires
only linear optimization (Edwards et al., 2001a). Pathway analysis, however, has
to deal with a combinatorial explosion of possible routes with increasing network
complexity. EFM analysis in a model of E. coli central metabolism that comprised
only 89 metabolites and 110 reactions yielded up to half a million pathways (Stelling
et al., 2002) (see chapter 2). However, this number is far below the theoretical upper
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bound of 4.39 · 1021 for that network size, which is typical for highly structured
cellular networks (Klamt and Stelling, 2002). Despite the progress in pathway
computation (section 5.6.3), it seems still impossible to calculate all pathways
directly in genome-scale networks. Restricting the number of simultaneously active
system inputs (substrates) and outputs (product pathways) (Papin et al., 2002;
Price et al., 2002) allows to describe many situations in practice, but it does
not provide an assessment of all organismic capabilities. Alternative approaches
aim at decomposing complex networks into biologically meaningful modules and
hierarchies, which is closely related to the study of general design principles in
cellular networks.

5.7.2 Modularity and Hierarchies

Modules are semi-autonomous entities that show dense internal functional connec-
tions, but looser connections with their environment. They occur at all levels of
cellular organization (and beyond), for instance, as metabolic pathways, or as an-
abolism and catabolism at higher levels (see chapter 3). Modularity and hierarchies
are directly linked because in general, smaller modules combine into larger modules
of the next layer. Their biological relevance lies in the possibility to evolve, main-
tain, and coordinate cellular functions effectively because changes in one module
primarily affect this entity and do not (unintentionally) spread through the network
(Lauffenburger, 2000; Oltvai and Barabási, 2002).

Graph theory has been the method of choice for uncovering modules and hi-
erarchies in genome-scale networks in various organisms. For metabolic and tran-
scriptional networks, several studies yielded a surprising overlap of the identified
modules with “classical” biochemical entities, but also divergences (Ravasz et al.,
2002; Holme et al., 2003; Gagneur et al., 2003; Ihmels et al., 2004b). Consequently,
formal approaches have been proposed for graph-based network decomposition and
subsequent stoichiometric analysis (Schilling and Palsson, 2000; Schuster et al.,
2002a). For example, metabolites with higher connectivity numbers can be con-
sidered as external to obtain “local” EFMs in small subnetworks (Schuster et al.,
2002b). Alternatively, one may consider subnetworks by neglecting reactions; the
resulting EFMs will be valid for the complete network and, thus, approximate its
capabilities. However, because graph-theoretical approaches use only little biolog-
ical knowledge and, consequently, roughly represent reality, it would be desirable
to employ other structural approaches for this type of analysis. First attempts into
this direction rely on correlated reaction sets, which correspond to enzyme subsets
for perfectly coupled reactions (Papin et al., 2004a). Pathway analysis could provide
starting points for future methods because per se it aims at identifying functional
subunits in complex networks. In fact, EPs and EFMs may represent overlapping
modules. Sound theoretical criteria for the demarcation of modules from pathway
structures, however, still have to be developed.
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5.7.3 Network Structure and Cellular Regulation

Analysis of cellular regulation in the SNA framework is at an early stage. Different
objectives distinguish three broad classes of approaches. Starting from regulation
as an additional constraint on network function, known regulatory interactions
were incorporated into FBA (Covert et al., 2001) and into EP analysis (Covert
and Palsson, 2003). Only those flux distributions were allowed that complied
with regulatory rules superimposed onto the stoichiometric model. A simple, yet
realistic control model uses logical rules, for instance “IF the favored substrate is
available THEN uptake of less preferred substrates is suppressed.” This “dynamic”
FBA improved predictions of mutant phenotypes of E. coli for a large variety of
conditions (Covert et al., 2004). Even such coarse descriptions of regulation may
serve as powerful constraints because they eliminate the majority of structurally
possible pathways (Covert and Palsson, 2003).

A second class of approaches aims at inferring regulatory features from network
structure. It assumes that evolution established regulatory circuits that are adapted
to the network they control. Inference of regulation from network structure may be
possible because the underlying regulatory logic could be relatively simple compared
to the networks’ complexity (Lauffenburger, 2000). Enzyme subsets and correlated
reactions help to qualitatively predict the relative control of fluxes. Singular value
decomposition (SVD) of pathway matrices has been proposed to define the most
important “eigenpathways” that could approximate the functionalities of a network
and thereby unravel potential key control points. First evidence from human red
blood cell metabolism supports this claim (Price et al., 2003). The pathway-based
concept of “control-effective fluxes” allows to estimate gene expression ratios under
different growth conditions solely from network structure (Stelling et al., 2002; Cakir
et al., 2004). Analysis of E. coli central metabolism pointed to a different control
logic of gene expression (long-term flexibility) versus regulation at the enzyme level
(fine-tuning of fluxes in a specific situation) (Stelling et al., 2002).

Finally, the direct application of SNA approaches to regulatory networks has just
begun. Examples include the formulation of stoichiometric models for gene expres-
sion (Allen et al., 2003). Extreme pathway analysis was extended to characterize
information flows in signal transduction (Papin and Palsson, 2004) and in gene reg-
ulatory networks (Xiong et al., 2004). Approaches like these may become important
for elucidating crosstalk between signaling systems or for yielding functional cycles
involved in signal propagation and resetting. It has to be noted, however, that reg-
ulatory processes are often characterized by their dynamics, which cannot easily
be captured by SNA methods. Here, as in the other fields described above, the
establishment of new approaches and the testing of existing ones against biological
data are necessary for the further development of stoichiometric network analysis.
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5.8 Conclusions

Stoichiometric and constraint-based modeling provides powerful methods for the
characterization of, in particular, metabolic networks. It can form a basis for more
detailed dynamical modeling of such systems. However, none of the approaches
we discussed is able to adequately address all the potential applications of SNA
(table 5.2).

Table 5.2 Approaches for stoichiometric network analysis, their requirements, and fields
of application. Parentheses denote partial applicability.

Constraints incorporated

Approach Stoi-
chio-
metry

Ther-
mo-
dyna-
mics

Quasi
steady
state

Reac-
tion
capa-
cities

Opti-
mality

Com-
puta-
tional
costs

Flux
dis-
tribu-
tion(s)

Graph theory (–)a (+) – – – Low None

CRs + – – – – Low None

Kernel matrix + – + – – Low All

MFA + (+) + (+) – Low Single

FBA + + + + + Low Single

MOMA + + + + + Medium Single

EFMs/EPs + + + – – High All

Applications

Func-
tional
path-
ways

Opti-
mal
opera-
tion

Reac-
tion
impor-
tance

Reac-
tion
cor-
rela-
tions

Path-
way
length

Net-
work
func-
tion

Ro-
bust-
ness

Graph theory – – (+) (–) (+) (+) (+)

CRs – – – – – – –

Kernel matrix – – – (+) – (+) –

MFA – – (+) – – – –

FBA – + (+) – – + (+)

MOMA – + (+) – – + (+)

EFMs/EPsb + + + + + + +
a Graph-theoretical methods use only connectivities and, possibly, directions.
b For the realistic case of equivalent sets of EPs and EFMs.

Hence, the methods for tackling a specific problem have to be carefully selected.
More specifically, FBA and related approaches are most suitable for finding partic-
ular flux solutions even in genome-scale networks. Pathway analysis delivers a mul-
titude of structural and functional aspects but is, in very large networks, hampered
by combinatorial complexity. Despite such limitations, we expect the importance
of SNA for systems biology to increase, particularly for an effective initial charac-
terization of large-scale systems. We anticipate that the field will move towards a
closer connection of the analysis of network structures in metabolism and regula-
tion, which requires the development of new or modified theoretical methods.
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with Nonlinear Ordinary Differential
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Cellular processes, like growth, division, motility, and death, are controlled by
complex networks of interacting macromolecules (genes, mRNAs, and proteins).
These networks are sets of chemical reactions that convert reactant species into
product species at rates that depend on reactant concentrations and, often, on
the concentrations of other molecules (enzymes, inhibitors, transcription factors).
To a first approximation, a reaction network can be described mathematically
by a set of nonlinear ordinary differential equations that track the effects of
these simultaneously occurring reactions. To gain some insight into the dynamical
possibilities of such networks, we explore a set of increasingly more complicated
network motifs, describing their effects in terms of signal-response curves. From
our collection of simple functional motifs (buzzers, fuses, toggle switches, and a
variety of oscillators) we can create realistic models of control systems actually
employed by cells. As an example, we discuss the DNA-damage response pathway
in mammalian cells.

6.1 Introduction

Molecular biologists often rely on suggestive cartoons to capture the complex
interactions between many molecular components in functional networks of genes,
proteins, and metabolites. In such cartoons (for example, figure 6.1), icons represent
the interacting molecules and solid arrows their chemical transformations, for
example, synthesis, degradation, phosphorylation, dephosphorylation, binding, and
dissociation. Enzymatic and other indirect effects (such as allosteric activations
or inhibition) are often represented by dashed arrows. These cartoons (or “wiring
diagrams”) are useful in summarizing many experimental observations, in capturing
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the way biologists think about molecular mechanisms, and in suggesting new
experiments to test or extend this molecular understanding of cell physiology.

Figure 6.1 Example wiring diagram (reproduced from (Ciliberto et al., 2005), with
permission). Intracellular proteins (p53, Mdm2, etc.) participate in a network of chemical
reactions (solid arrows), such as synthesis, degradation, phosphorylation, and ubiquitina-
tion. Dashed arrows represent catalytic or regulatory effects on a reaction. This wiring
diagram is a hypothetic mechanism (Ciliberto et al., 2005) for the interactions between
p53, a transcriptional activator involved in cell cycle arrest and apoptosis, and Mdm2, a
protein involved in degradation of p53. Mdm2 catalyzes the ubiquitination of p53, and
polyubiquitinated p53 is rapidly degraded. Two feedback signals govern the behavior of
the reaction network: (1) p53 stimulates the synthesis of Mdm2 in the cytoplasm, and
(2) p53 indirectly inhibits the transport of Mdm2 into the nucleus. In response to DNA
damage, the degradation of Mdm2 in the nucleus is upregulated. (IR = ionizing radiation)

Although most cell biologists use molecular wiring diagrams in these informal
ways, we would like to pursue the idea that a reaction network is fundamentally
a complex dynamical system and that its wiring diagram instructs how the con-
centrations of all the interacting components will change over time as the chemical
reactions play out within the cell. From this point of view, the next question is
how best to capture the dynamics of the network in mathematical form, in order
to analyze and simulate its behaviors and ultimately to use the model to answer
real physiological questions. For the purposes of this chapter, we will use nonlin-
ear ordinary differential equations (ODEs) to represent the dynamical properties of
reaction networks.

Realizing a reaction network as a system of ODEs is based on two assumptions.
First, that our system is a “well-stirred” chemical reactor, so that component
concentrations don’t vary with respect to space. This is a reasonable assumption
for cell-free extracts, but it hardly seems appropriate for an intact cell. Whether
it is a good approximation or not depends on the time and space scales involved.
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In box 6.1, we show that molecular diffusion is sufficiently fast to mix proteins
throughout a yeast-sized cell in less than a minute. If we are interested in cell cycle
processes (time scale = hours) or circadian rhythms (period = 1 day), then the
“well-stirred” assumption is justified. If we are interested in membrane oscillations
(time scale = seconds), then the “well-stirred” assumption would not be advisable.

When spatial information is required, then partial differential equations (PDEs)
would be indicated. We will not discuss modeling by PDEs in this chapter, but note
that, before one can appreciate the special properties of nonlinear PDE models (see
chapter 9 of this book and Murray (2002b)), one must first master the principles
in this chapter.

Box 6.1: How fast is molecular diffusion?
Given the typical diameter of a cell to be 10−3 cm and a typical diffusion constant for
a protein in aqueous solution to be D=10−7cm2/s, we can calculate the average time

for a protein to diffuse across a cell to be: t = (10−3cm)2

2×10−7cm2/s
= 5s. If diffusion is 10-fold

slower in cytoplasm, then the average time to cross a cell is roughly 1 min. These are
expected “mixing times” for macromolecules in cells. Metabolites (small molecules)
will mix on a faster time scale.

The second basic assumption is that the variables (chemical concentrations) are
continuous functions of time. This assumption is valid if the number of molecules
of each species in the reaction volume (the cell or subcellular compartment) are
sufficiently large (say, thousands of molecules each, at least). For concentrations
greater than about 10 nM, we are safe using ODEs (see box 6.2).

Box 6.2: How many molecules of a regulatory protein in a cell?
A spherical cell of diameter 10−5 m has a volume of roughly 0.5 × 10−15 m3 = 5 ×
10−13 L. Given a typical concentration of a specific regulatory protein to be 10 nM,

we calculate 10−8 mol
L

× 6 × 1023 molecules
mol

× 5 × 10−13 L
cell

=3,000 molecules
cell

. For a
reaction volume containing 3,000 molecules, we are justified in using ordinary differ-
ential equations to describe changes in a continuous variable X(t) = concentration of
species X. Were the concentration to drop below 1 nM, we would need to reformulate
the model in terms of stochastic variables to capture the effects of molecular noise in
the dynamical system.

If the total number of molecules of any particular substance, say, a transcription
factor, is less than 1,000, then a stochastic differential equation or a Monte Carlo
model would be more appropriate (Rao et al., 2002; McAdams and Arkin, 1999).
Stochastic modeling is much more difficult than ODEs and requires a preliminary
understanding of the deterministic dynamical system. For this reason, it makes sense
to limit this chapter to ODE modeling and leave the harder stuff to chapter 8.

Granted these two simplifying assumptions, then ordinary differential equations
are a very useful language in which to express mathematically the dynamical
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consequences of a molecular interaction network. By applying a set of simple
rules, we can express an arbitrarily complex reaction network as a set of coupled
differential equations. The computer can then keep track of all the complex,
interweaving interactions in the network and tell us with great precision what
are the consequences of the mechanism that purports to describe some aspect of
cell physiology. In this sense, kinetic modeling by differential equations is a tool
for hypothesis testing (see chapter 1). If the mathematical consequences of the
mechanism do not agree with observations, we must search for the problems in our
hypotheses. If the consequences agree with the observations, then we can have some
confidence that we are on the right track to understanding the mechanism.

We assume the reader has no familiarity with how to do kinetic modeling
of chemical reactions beyond some vague (and possibly regretful) memories of
the Michaelis-Menten equation. We start with the basic idea of using a simple
rate law to describe how fast a chemical reaction proceeds and show how to
estimate kinetic rate constants for isolated reactions from data. Then we assemble
a few simple reactions (for protein synthesis, degradation, phosphorylation, and
dephosphorylation) into modules for chemical buzzers, switches, and oscillators.
These reaction motifs can then be linked together to form more complicated and
realistic control systems. Writing the differential equations describing these systems
can be largely automated, and solving the equations can be fully automated (see
chapter 16). Fitting the results to experimental data and estimating rate constants
are difficult tasks, which are the subjects of active research (chapter 11). We shall
touch on all these issues in what follows.

6.2 Basic Building Blocks

6.2.1 From a Wiring Diagram to a Set of ODEs

To get from a wiring diagram to a set of ODEs, we must think about a network as
a dynamical system whose state is changing from one moment of time to the next.
We assign to each species (or icon) in the diagram a single state variable, X(t)

= the concentration of species X. The collection of values of all these variables
{X1(t), X2(t), X3(t), ...} at any point in time constitutes the state of the system.
Then, for each molecular species, we write a differential equation that describes how
its concentration changes over time due to its interactions with the other species in
the network. For example, for species X, we write

dX

dt
= synthesis − degradation − phosphorylation

+ dephosphorylation − binding + release, etc. (6.1)

The rate of each reaction (synthesis, degradation, etc.) must be represented by a
kinetic rate law , which will have one or more rate constants associated with it. By
assigning specific values to these rate constants, we fine-tune general rate laws to
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particular reactions. The set of all rate constants needed to describe the reactions
in a molecular interaction network is called the parameter set {p1, p2, . . . pm} of the
model.

In this paradigm, the dynamical consequences of a reaction network are deter-
mined by a system of nonlinear ordinary differential equations,

dXi

dt
= Fi(X1, X2, ...,Xn; p1, p2, ..., pm), i = 1, 2, ..., n (6.2)

The ODEs are nonlinear because the rate laws on the right-hand sides of equa-
tion 6.2 are often nonlinear functions of the state variables. Notice that the ODEs
tell us how each state variable is changing with respect to time; they do not tell
us the value of X at any specific time t. To solve the differential equations is to
find these functions, Xi(t), for each species (i) in the network. Each function cor-
responds to a measurable property of the system, the time course of species i. In
order to solve equation 6.2 for the time courses Xi(t), we must first prescribe a set
of initial conditions {X1(0), X2(0), ...,Xn(0)}. The combination of rate equations,
initial conditions, and parameter values is called a well-posed initial value problem
(IVP), and its solution is guaranteed by a famous theorem stated informally in
box 6.3.

Box 6.3: Existence and uniqueness theorem
Given very weak conditions on the smoothness of the rate laws on the right-hand side
of equation 6.2, conditions that are usually satisfied by realistic models of reaction net-
works, the initial value problem has one and only one solution {X1(t), X2(t), ..., Xn(t)}
for all 0 ≤ t < ∞. By running time backwards, we can also find a unique prehistory
of the system (for −∞ < t ≤ 0).

Box 6.4: Linear and nonlinear differential equations
If the Fi’s in equation 6.2 are linear functions of the variables, X1, X2, . . . , Xn, then
much can be said about the dynamical characteristics of the reaction system. The
good news is that the solution can be expressed analytically in terms of exponential
functions, exp(λit), and harmonic functions, sin(ωit + φi). The bad news is that the
dynamical possibilities of a linear system are very impoverished. In general, there can
be only a single steady state solution, and all other solutions either approach this
steady state as t → ∞ or they blow up (some Xj → ∞ as t → ∞). Linear systems
show none of the interesting dynamical behaviors (multiple steady states, limit cycle
oscillations) to be described later in this chapter. The interesting dynamical features
depend crucially on nonlinear dependencies of the Fi’s on the Xj ’s.

We can imagine three types of “solutions” of a system of ODEs.

1. Analytical. Under very special circumstances (see, for example, box 6.4), it is
possible to write the solution of a set of ODEs in terms of elementary functions,
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such as X1(t) = X1(0)e−kat, X2(t) = X2(0)[1 + 0.5 sin(kbt)], X3(t) = ..., where
ka, kb, ... are rate constants and X1(0), X2(0), ... are initial values.

2. Numerical. It is always possible to solve a well-posed IVP numerically on a
computer. In principle, we can write

Xi(t + Δt) = Xi(t) + Fi(X1(t), X2(t), ...,Xn(t)) · Δt (6.3)

for each i. By starting at Xi(0) and taking sufficiently small steps, Δt, we can “walk
along” the time course to any time t in the future (or in the past). In practice, there
are much more sophisticated, efficient, and accurate numerical schemes for walking
along the time course (see chapter 16).

3. Qualitative. Whereas numerical integration of the ODEs gives us quantitative
information about the solution (which is necessary if we are trying to account for
quantitative experimental data), sometimes we are more interested in answers to
qualitative questions, like, “What will the network do if I wait for a sufficiently long
time?” (that is, characterize the solutions—the “stable attractors”—of the ODEs as
t → ∞) or “How will the long-term behavior of the network change if I double the
rate of synthesis of protein X?” (that is, characterize the dependence of the stable
attractors on any parameter in the ODEs).

To explore the examples that we will present, we suggest that the reader download
XPPAUT or one of the other tools for simulating dynamical systems listed in the
appendix.

Many of our qualitative methods depend on identifying and characterizing the
steady state solutions of equation 6.2. A steady state solution is a set of constants
{X∗

1 , X∗
2 , ...,X∗

n} for which the net rate of change of every variable is zero, that
is, Fi(X

∗
1 , X∗

2 , ...,X∗
n) = 0 for all i = 1, 2, ..., n. A steady state is a special time-

invariant solution of the ODEs, where the reactions producing and consuming each
species perfectly cancel each other. Steady states can be either stable or unstable.
Stable steady states attract all nearby solutions, whereas unstable steady states
repel some nearby solutions as time increases.

6.2.2 Constant Synthesis

For starters, let’s consider a constant rate of synthesis of some macromolecule, which
can be described by the initial value problem dX

dt = k1, X(0) = X0. In this case, the
differential equation is simple enough that we can guess the solution of the initial
value problem: X(t) = X0 + k1t. The numerical value of the rate constant must be
estimated from experimental data. For example, from observations of accumulating
cyclin in a frog egg extract (figure 6.2), we estimate that k1 = 1nM/min.

X(t) = X0 +k1t is an example of an explicit, analytical solution. The uniqueness
part of the theorem in box 6.3 assures us that once we have guessed a solution to
the initial value problem, it is the only solution. We can sleep soundly at night,
assured that we have not overlooked some other solution of this dynamical system.
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Figure 6.2 Experimental data used to estimate kinetic rate constants. a) Accumulation
of cyclin (filled circles) in a frog egg extract; degradation of cyclin in interphase cells
(open squares; (Felix et al., 1990)) and in metaphase cells (filled squares, from (Tang
et al., 1993)). b) Formation of dimers of Cdk1 and cyclin B in an extract for which the
initial concentration of Cdk1 monomers was approximately 100nM (Kumagai and Dunphy,
1995).

Once we have the solution, we can ask, “What happens to X(t) as t → ∞?”
Well, it appears that the concentration of X grows without bound. We get this
undesirable result because there is no term to counteract the growth rate in the
differential equation.

6.2.3 Linear Degradation

Biochemical molecules naturally experience decay or degradation, and the rate at
which this happens depends on how much of the molecule is present. In math-
ematical terms, dX

dt = −k2X, X(0) = X0. The unique solution to this initial
value problem is X(t) = X0e

−k2t. An interesting property of exponential decay
is that X disappears with a constant half-life, t1/2, defined by X(t1/2) = 1

2X0.
For linear degradation, t1/2 = ln 2

k2
. From the data on cyclin degradation in fig-

ure 6.2, we see that cyclin is disappearing with a half-life of about 10 minutes,
hence k2

∼= 0.07 min-1.
At this point, the reader should consider what happens when we combine a

constant rate of synthesis with linear degradation. That is, what is the analytical
solution of the initial value problem: dX

dt = k1 − k2X, X(0) = X0? From the exact
solution, show that X(t) → k1/k2 as t → ∞, for any X0 ≥ 0.

6.2.4 Autocatalytic Production

Autocatalysis is a process whereby a molecule activates its own production, ei-
ther directly or indirectly through intermediates. In molecular biology, important
examples include DNA synthesis and ribosome biogenesis. The simplest equation
expressing autocatalysis is dX

dt = k2X. This is identical to the equation of the pre-
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vious subsection, except for a difference of sign. The solution is X(t) = X0e
k2t.

In this case, the solution grows with a constant doubling time, t2 = ln 2
k2

. We’ll see
more complex, indirect autocatalytic effects when we discuss feedback, later in the
chapter.

6.2.5 Dimerization

Another fundamental reaction in biochemical networks is dimerization, where two
species combine to form a complex. Examples include enzymes binding substrates,
and the successive steps in the formation of hemoglobin, a four subunit heteromer
(α2β2). According to the Law of Mass Action, dimerization proceeds at a rate
proportional to the product of the concentrations of the two binding species. Hence,
we can express C binding X, forming the complex M, by the following scheme

reaction C + X → M

initial concentrations C0 X0 0

extent of reaction -M -M M

concentrations at a later time C0 − M X0 − M M

dM

dt
= k3CX = k3(C0 − M)(X0 − M) , [k3] =

1

nM · min
(6.4)

where we’ve chosen to write C(t) and X(t) in terms of M(t) so that we have a
single, solvable equation for the unknown function M(t). The notation [k3] means
“the units of k3.”

Now, guessing a solution to this equation requires a bit more imagination. Let’s
suppose that we receive a mysterious letter claiming that M(t) = C0X0(1−e−αt)

C0−X0e−αt ,

where α = k3(C0 − X0), solves the initial value problem, when M(0) = 0, as in
the scheme above. We can verify this claim by differentiating and doing a bit of
algebra:

d

dt

(
C0X0(1 − e−αt)

C0 − X0e−αt

)
=

αC0X0(C0 − X0)e
−αt

(C0 − X0e−αt)
2 (6.5)

and

k3(C0 − M)(X0 − M) = k3C0(1 − X0(1 − e−αt)

C0 − X0e−αt
)X0(1 − C0(1 − e−αt)

C0 − X0e−αt
)

=
αC0X0(C0 − X0)e

−αt

(C0 − X0e−αt)
2 (6.6)

Remember that once we have a solution (even if it comes in the mail), it is the only
solution we ever need (thanks to the existence and uniqueness theorem in box 6.3).

Notice from the analytical solution, M(t) = C0X0(1−e−αt)
C0−X0e−αt , where α = k3(C0−X0),

that, if C0 > X0, then α > 0 and M(t) → X0 as t → ∞. On the other
hand, if C0 < X0, then α < 0 and M(t) → C0 as t → ∞. In either case, the
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asymptotic concentration of the complex is the initial concentration of the subunit
in short supply. In principle, this conclusion is incorrect, because we have neglected
dissociation of the complex (M → C + X, with some rate constant k−3).

In order to estimate the rate constant from the data in figure 6.2b, we notice that
C0 = 100 nM and X0

∼= 40 nM (why?). Considering that it takes about 3 minutes
for M(t) to reach 20 nM, we can solve M(3) = 20 for α:

M(3) =
4000(1 − e−3α)

100 − 40e−3α
= 20 (6.7)

⇒ 200 − 200e−3α = 100 − 40e−3α (6.8)

⇒ 5

8
= e−3α ⇒ α=

1
3
ln

8
5

min-1 (6.9)

Therefore, we estimate that k3 = 1
180 ln 8

5nM−1min−1 = 2.6 × 10−3nM−1min−1.

6.2.6 Michaelis-Menten Kinetics

The diagram in figure 6.3a represents the enzymatic transformation of substrate X
into product P. Michaelis and Menten (1913) and Briggs and Haldane (1925) first
explored the elementary reaction mechanism (figure 6.3b) for this process. Assuming
that the total enzyme concentration ET is much less than the initial substrate
concentration, X0, they showed that the rate of the enzyme-catalyzed reaction can
be written as: dX

dt = −dP
dt = −k2ET X

Km+X , where Km = k−1+k2

k1
is called the Michaelis

constant. Note that [Km] = nM. A rigorous derivation of the Michaelis-Menten rate
law can be found in (Murray, 2002a), and in (Segel, 1988).

Figure 6.3 Michaelis-Menten kinetics. a) Enzyme E catalyzes the conversion of sub-
strate X into product P. b) Michaelis-Menten mechanism for an enzyme-catalyzed reac-
tion: E binds the substrate X to form a complex C; in the complex, E converts X to P;
once the conversion is done, E dissociates from P and is free to bind another molecule of
substrate.

Among other things, the Michaelis-Menten rate law can be used to reduce the
number of variables which describe a typical enzymatic conversion process, such as
phosphorylation or dephosphorylation. This reduction is often useful when trying to
understand the dynamic possibilities of a network using analytical and qualitative
methods. On the other hand, one must keep in mind the assumption (ET � X0)

so that the rate law is applied in a consistent fashion.
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6.3 Simple Networks and Signal-Response Curves

The basic rate laws just described can be combined to form reaction motifs that are
commonly found in biochemical networks. These motifs have specific characteristics
that dominate their behavior within larger networks. In order to build some
dynamical intuition that may be useful in understanding larger, more realistic
macromolecular networks, we first explore the properties of some common network
motifs.

6.3.1 Synthesis and Degradation

Our first motif is simultaneous synthesis and degradation (figure 6.4a), described by
dX
dt = k1S−k2X, with X(0) = 0. In this equation, we might think of S (“signal”) as
the concentration of mRNA encoding protein X. Notice that [k1] = [k2] = min−1.
The solution of this ODE, which was posed as a problem earlier in the chapter, is
X(t) = k1S

k2
(1 − e−k2t). Notice that as t → ∞, e−k2t → 0, and our solution tends

towards the value Xss = k1S
k2

. Notice also that k1S − k2Xss = 0, so Xss is the
steady state solution of the differential equation, as described earlier.

Figure 6.4 A signal-response relationship. a) Signal S stimulates the synthesis of protein
X. b) Linear response of steady state protein concentration to signal strength.

If we think of S as an input signal (mRNA concentration) and X as the response
(protein concentration), then this motif at steady state generates a linear signal-
response curve, as depicted in figure 6.4b.

6.3.2 Phosphorylation and Dephosphorylation

Now suppose X is phosphorylated and dephosphorylated as depicted in figure 6.5a.
Choosing to model both the forward and reverse steps using simple linear kinetics,
we write dXP

dt = k1S(XT − XP ) − k2XP , where XT is the total concentration of
both phosphorylated and unphosphorylated forms of X (so that XT − XP = X),
and S is the concentration of the protein kinase. (The concentration of the protein
phosphatase is absorbed into the value of k2.) Notice that [k1] = nM-1 min−1,
[k2] = min−1. Solving dXP

dt = 0 results in a single steady state solution, XP,ss =
XT S

(k2/k1)+S , which is a hyperbolic function of S(see figure 6.5b). This is called a
hyperbolic signal-response curve.
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Figure 6.5 Hyperbolic signal-response curve (see text).

We can determine the stability of the steady state graphically by plotting dXP

dt

as a function of XP . Noting that trajectories lie along the x-axis, we see that for
dXP

dt > 0 (that is, wherever the curve is above the x-axis), the solution, XP (t),
moves to the right along the x-axis and for dXP

dt < 0 (where the curve is below the
x-axis), the solution moves to the left. The curve crosses the x-axis at XP,ss, the
steady state. The stability of the steady state is then obvious because XP (t) moves
towards XP,ss along the x-axis (figure 6.5c). This method of determining stability
can be applied to any single-variable system.

Our assumption of linear kinetic rate laws implies that XT is much less than the
Michaelis constants of both the kinase and the phosphatase. If this is not the case,
then we should use Michaelis-Menten rate laws.

Figure 6.6 Sigmoidal signal-response curve (see text).

In this case (figure 6.6a), the governing ODE is

dX

dt
= − k1EKX

Km1 + X
+

k2EP (XT − X)

Km2 + XT − X
, (6.10)

where XT − X = XP , EK and EP are the total concentrations of kinase and
phosphatase (taken to be constant in this equation), and Km1 and Km2 are the
Michaelis constants. At steady state, we have

k1EKX

Km1 + X
=

k2EP (XT − X)

Km2 + XT − X
(6.11)
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or, after simplifying and scaling the relevant variables,

u1x(J2 + 1 − x) = u2(1 − x)(J1 + x) (6.12)

where x = X/XT , u1 = k1EK , u2 = k2EP , J1 = Km1/XT , J2 = Km2/XT . Using
the quadratic formula, we can solve this equation for x as a function of u1, u2 , J1,
and J2. We get x = G(u1, u2, J1, J2), where the Goldbeter-Koshland function, G, is
defined as

G(u1, u2, J1, J2) =
2u1J2

B +
√

B2 − 4 (u2 − u1) u1J2

(6.13)

where B = u2 − u1 + u2J1 + u1J2 (see Goldbeter and Koshland (1981)). In terms
of the original variables, Xss is a sigmoidal function of the input signal EK (see
figure 6.6b), and so we call this a sigmoidal signal-response curve. The sigmoid
becomes more and more switch-like as J1 and J2 become much less than 1.

To confirm the sigmoidal character of the Goldbeter-Koshland function, it is
easier to think of u1 as a function of x than x as a function of u1. Rearranging
equation 6.12, we find that u1 = u2

J1+x
J2+1−x · 1−x

x . As a function of x, this curve
crosses the x-axis at x = 1 and x = −J1 and has vertical asymptotes at x = 0

and x = 1 + J2. For 0 < J1, J2 � 1, the curve must have the shape illustrated in
figure 6.6b.

We can prove the stability of the steady state by the same graphical methods
used for the case of linear reaction kinetics, but we omit the details.

6.4 Networks with Feedback

6.4.1 What Is Feedback?

Biochemical reaction networks commonly contain feedback loops, for which the
output of one reaction affects the progress of an upstream reaction. Feedback can
be characterized as positive or negative, depending on the net effect of the inter-
actions. When reaction networks have intertwined feedback loops, their dynamical
properties can be exceedingly complex (see chapter 1 and chapter 2).

We start our investigation of feedback loops with two-component interactions
(figure 6.7), which can be categorized as negative feedback (6.7a and b), positive
feedback (6.7c), or mutual antagonism (6.7d). Mathematically speaking, the effect of
species Xj on the rate of change of another species Xi, dXi

dt = Fi(X1, ...,Xn), is the
partial derivative ∂Fi

∂Xj
. The sign of this derivative determines whether the feedback

is positive or negative. Naturally, this partial derivate need not be constant and
may change sign based on the state and on parameter values, so classifying the
effect isn’t always unambiguous. A chain of such effects makes a feedback loop if it
starts and ends with the same species.
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Figure 6.7 Three types of feedback are possible between two components: a) and b) are
negative feedback, c) positive feedback, d) mutual antagonism.

6.4.2 Negative Feedback

We start with a simple example of negative feedback (figure 6.8). The phosphory-
lated form of Y activates the degradation of X, and X is the kinase that phospho-
rylates Y. In this case, we need at least two differential equations to characterize
the system:

dX

dt
= k1S − k2YP X (6.14)

dYP

dt
=

k3X(YT − YP )

Km3 + YT − YP
− k4EYP

Km4 + YP
(6.15)

where Y = YT − YP is the concentration of the unphosphorylated form of Y,
[X] = [YP ] = [S] = [E] = nM, [k1] = [k3] = [k4] = min−1, [k2] = nM · min−1,
and [Km3] = [Km4] = nM. The equation for X is constant synthesis (proportional
to S) minus degradation (proportional to YP · X). The equation for YP is just
the case studied in the subsection 6.3.2. We know how each of these differential
equations behaves in isolation, but what happens when they are coupled together?

6.4.3 Phase Planes, Vector Fields, and Nullclines

As described earlier, at any point in time t0, the network must reside in a particular
state, (X(t0), Y (t0)), which is just a point in the two-dimensional state space of the
system of ODEs. For the case of a two-species network, the state space is called
the phase plane. At each point in the phase plane, the differential equations define
a vector that tells us which direction and how far the dynamical system will move
over the next small increment of time, Δt. We can think of the phase plane as
covered with little vectors, like the hair on the head of a new military recruit. This
collection of vectors is called the vector field . A solution to the ODEs is just a curve
that starts at some initial point and follows the vector field.

The vector field in the phase plane is conveniently characterized by the X- and Y-
nullclines, the curves for which the corresponding species’ time derivative is exactly
zero. Along the X-nullcline, the vector field points north (N) or south (S) because
dX
dt = 0 (that is, no change in the east-west direction). Along the Y-nullcline,
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Figure 6.8 Example of negative feedback. a) Wiring diagram. b) Phase portrait.
Dashed curves: nullclines given by equations 6.16 and 6.17; solid curves: trajectories of
equations 6.14 and 6.15. Parameter values are k1 = k2 = k3 = k4 = 1, S = Km3 =
Km4 = 0.1, YT = 1, and E = 0.5. In b), trajectories spiral into a stable steady state at
the intersection of the nullclines.

the vector field points east (E) or west (W) because dY
dt = 0 (no change in the

north-south direction). In the region between the nullclines, the vector field adopts
one of four characteristic compass directions (NE, SE, SW, or NW). Wherever the
nullclines intersect, the pair of ODEs has a steady state solution (both dX

dt = 0 and
dY
dt = 0).

In the above example for negative feedback, the nullclines are:

X-nullcline: k1S = k2YP X ⇒ YP =
k1S

k2X
(6.16)

Yp-nullcline:
k3X(YT − YP )

Km3 + YT − YP
=

k4EYP

Km4 + YP

⇒ YP = YT · G(k3X, k4E,
Km3

YT
,
Km4

YT
) (6.17)

where G is the Golbeter-Koshland function defined by equation 6.13. These curves
are easily plotted on the phase plane (figure 6.8b) along with representative tra-
jectories that point out how the system evolves with time given several different
initial conditions. The X-nullcline is a hyperbola, while the YP -nullcline is a sig-
moidal curve with the switch point at X = k4E

k3
· YT +2Km3

YT +2Km4
. Of particular note is

how all trajectories seem to be sucked into the steady state. When this is the case,
we call the steady state locally and globally stable. It is possible to be locally stable
but not globally stable or to be locally unstable, as we shall soon see.

6.4.4 Positive Feedback

Figure 6.9 presents a simple example of positive feedback, where species X activates
species Y (via phosphorylation) and the phosphorylated form of Y promotes the
synthesis of X.
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Figure 6.9 Example of positive feedback. Wiring diagram.

One possible set of equations to describe this network is

dX

dt
= k1S + k2YP − k3X (6.18)

dYP

dt
=

k4X(YT − YP )

Km4 + YT − YP
− k5EYP

Km5 + YP
(6.19)

where [X] = [YP ] = [S] = [E] = nM, [k1] = [k2] = [k3] = [k4] = [k5] = min−1,
and [Km4] = [Km5] = nM. For this system of equations, the X-nullcline is YP =

(k3/k2)X − k1S and the YP -nullcline is YP = YT ·G(k4X, k5E,Km4/YT ,Km5/YT )

(plotted in figure 6.10a). Notice that as we increase or decrease S, the X-nullcline
moves down or up, and there is a range of S values, S ∈ (Sc1, Sc2), for which
the nullclines intersect in three places. The points at the end of this range, where
the system changes from one to three steady states, are called saddle-node (SN)
bifurcation points. For Sc1 < S < Sc2, we say that the system is bistable.

a) b)
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Figure 6.10 Example of positive feedback. a) Phase portrait. b) One parameter bi-
furcation diagram. Solid curves: stable steady states; dashed curve in between: unstable
steady states. For Sc1 < S < Sc2, the control system is bistable. Parameter values are
k1 = k4 = 1, k2 = 0.8, k3 = 1.2, S = 0.2, Km3 = Km4 = 0.05, YT = 1, and E = 0.5. In a),
trajectories move away from the unstable steady state (in the center) to one of two stable
steady states.
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A good way to visualize this bifurcation behavior is to plot a one parameter
bifurcation diagram with S on the abscissa and either the X or YP concentration
for each steady state on the ordinate, as in figure 6.10b. In general, this is a compact
way to visualize how the dynamics of a system depend on its parameters. In this
particular case, the system exhibits hysteresis as the parameter S passes back and
forth through the region of bistability. That is, for low S, the system is at rest in the
lower steady state (which is globally attracting). As S increases, the control system
remains at this lower steady state, even after passing into the region of bistability
because the lower steady state is stable with respect to small perturbations. Finally,
as S increases past the upper bifurcation point (Sc2), the system abruptly shifts
to the upper stable steady state. Now, if S were to decrease, the control system
would remain in the upper steady state until S falls below the lower critical value,
Sc1. Only then will the system switch back to the lower steady state. This non-
reversibility is called hysteresis.

6.4.5 Mutual Antagonism

Mutual antagonism is a situation where an increase in either species means a
decrease in the other, as in figure 6.11. Here, X phosphorylates Y, so more X
implies less Y. Further, Y degrades X, so more Y means less X. The equations for
this module are:

dX

dt
= k1S − (k

′

2 + k2Y )X (6.20)

dY

dt
=

k3E(YT − Y )

Km3 + YT − Y
− k4XY

Km4 + Y
(6.21)

where YT = Y + YP is constant, and the dimensions of the variables and rate
constants are as before. In this case, the X-nullcline is now a hyperbola Y =
k1S−k

′

2X
k2X , which is similar to the negative feedback case. The Y-nullcline is Y =

YT ·G(k3E, k4X,Km3/YT ,Km4/YT ), which is a switch function that turns off as X
increases. As in the case of positive feedback, there may be multiple intersections
of the nullclines and a region of bistability for the parameter S (see figure 6.12a).
Figure 6.12b shows a one-parameter bifurcation diagram for this system.

Figure 6.11 Example of mutual antagonism. Wiring diagram.
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Figure 6.12 Example of mutual antagonism. a) Phase portrait. b) One parameter

bifurcation diagram. Parameter values are k1 = k2 = k3 = k4 = 1, k
′

2 = 0.1, S = 0.125,
Km3 = Km4 = 0.05, YT = 1, and E = 0.25. In a), trajectories move away from the
unstable steady state (in the center) to one of two stable steady states.

Recently there have appeared a number of interesting experimental studies of
bistability in macromolecular regulatory networks: in the MAP kinase signaling
pathway of frog eggs (Ferrell Jr. and Machleder, 1998; Xiong and Ferrell Jr., 2003),
in the activation of MPF in frog egg extracts (Sha et al., 2003; Pomerening et al.,
2003), in the lactose utilization network of bacteria (Ozbudak et al., 2004), and in
artificial genetic networks (Gardner et al., 2000).

6.5 Networks That Oscillate

There are three simple motifs that generate oscillatory behavior: activator-inhibitor,
substrate-depletion, and delayed negative feedback.

6.5.1 Activator-Inhibitor

In figure 6.13, R stimulates its own production by phosphorylating E, and EP also
stimulates the production of X. (Think of EP as the active form of a transcription
factor.) As X increases, it promotes degradation of R. This negative feedback loop
between X and R can cause oscillation (figure 6.14a). The equations for this system
are

dR

dt
= k0Ep + k1S − k2XR (6.22)

dX

dt
= k3Ep − k4X (6.23)

where Ep = ET · G(k5R, k6,
Km5

ET
, Km6

ET
). The X-nullcline is X = (k3/k4)Ep and the

R-nullcline is X = (k0Ep+k1S)/k2R. The phase portrait (figure 6.14a) clearly shows
the tendency of the vector field to drive trajectories in a circulatory pattern. For
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appropriate values of the parameters, the control system exhibits a closed trajectory,
called a stable limit cycle. As the system rotates around the limit cycle, R(t)

and X(t) oscillate periodically in time. The classic example of activator-inhibitor
oscillations in cell biology is the cyclic AMP signaling system of the cellular slime
mold, Dictyostelium discoideum (Martiel and Goldbeter, 1987); see box 6.5.

Figure 6.13 An activator-inhibitor oscillator. Wiring diagram.
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Figure 6.14 An activator-inhibitor oscillator. a) Phase portrait, b) One parameter
bifurcation diagram. Parameter values are k0 = k1 = k2 = k3 = k5 = k6 = 1, k4 = 0.5,
S = 0.5, Km5 = Km6 = 0.1, and ET = 1. In a), trajectories spiral in towards a limit cycle
surrounding the unique unstable steady state. In b), the min and max values of R on the
limit cycle oscillation are plotted in the region between the two Hopf bifurcations, SH1

and SH2.

As we increase or decrease the signal strength, S, the R-nullcline shifts up or
down, and though there is always only one steady state (one intersection of the
nullclines), the stability of the steady state changes as we change S. For SH1 < S <

SH2, the steady state is unstable and surrounded by a limit cycle. The boundary
points, SH1 and SH2, are called Hopf bifurcation points. Figure 6.14b plots the
one-parameter bifurcation diagram for this system, along with the amplitude of the
oscillatory solution where it exists.
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Box 6.5: Cyclic AMP oscillations in Dictyostelium

Cyclic AMP binds to a membrane receptor, which activates adenylate cyclase, the
enzyme that catalyzes the synthesis of cyclic AMP from ATP (this is the positive
feedback loop promoting the autocatalytic production of cyclic AMP). Meanwhile,
cyclic AMP binding to the receptor promotes phosphorylation and desensitization of
the receptor (this is the negative feedback loop, the desensitized receptor being the
“inhibitor” that shuts off autocatalytic production of cyclic AMP). Next, cyclic AMP
is hydrolyzed to 5’-AMP, which allows the receptor to slowly regain its sensitivity.
Only then can there be a new burst of cyclic AMP synthesis.

6.5.2 Substrate-Depletion

In the substrate-depletion motif (figure 6.15), substrate X is converted by enzyme
E into product R in a process which is autocatalytically amplified by R-dependent
phosphorylation of E. This positive feedback loop leads to an explosive production
of R which depletes the pool of the substrate, X. Naturally, once X is depleted, the
production of R ceases and the degradation of R reduces its concentration below
the level necessary to sustain the positive feedback loop. At this point, the pool
of X begins to replenish. When X builds up sufficiently high, the positive feedback
loop reengages, and a new burst of R synthesis commences.

Figure 6.15 A substrate-depletion oscillator. Wiring diagram.

The differential equations for the model in figure 6.15 are

dX

dt
= k1S − (k

′

0 + k0Ep)X (6.24)

dR

dt
= (k

′

0 + k0Ep)X − k2R (6.25)

where Ep = ET · G(k3R, k4,
Km3

ET
, Km4

ET
). The X-nullcline is X = k1S

(k
′

0
+k0)Ep

and the

R-nullcline is X = k2R

(k
′

0
+k0)Ep

. Again, the phase portrait (figure 6.16a) shows a cir-
culatory pattern around the steady state, and for a suitable choice of parameters,
the system executes a stable limit cycle oscillation. In this case, the X-nullcline
shifts upward (downward) as S increases (decreases). As before, the one-parameter
bifurcation diagram shows two Hopf bifurcations and oscillatory solutions in be-
tween (figure 6.16b). Substrate-depletion oscillations are common in biochemical
networks (see table 6.1).
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Figure 6.16 A substrate-depletion oscillator. a) Phase portrait. b) One parameter

bifurcation diagram. Parameter values are k0 = k1 = k2 = k3 = k4 = 1, k
′

0 = 0.1,
S = 1, Km3 = Km4 = 0.1, and ET = 1. In a), trajectories spiral in towards a limit cycle
surrounding the unique unstable steady state. In b), the min and max values of X on the
limit cycle oscillation are plotted in the region between the two Hopf bifurcations.

Table 6.1 Examples of substrate-depletion oscillators.

Example Substrate Activator Reference

Frog egg Cyclin B MPF (Tyson, 1991)

Glycolysis F6P+ATP FDP+ADP (Selkov, 1968)

Calcium Ca2+ in ERa Ca2+ in cytosol (Dupont et al., 1991)

Ecosystem Prey Predator (Maynard-Smith, 1974)
a ER = endoplasmic reticulum.

6.5.3 Delayed Negative Feedback

In figure 6.17, we present an example of delayed negative feedback. In this scheme,
R phosphorylates E, which then binds to C to form X, and X is the active complex
that degrades R itself (closing the negative feedback loop). This motif is derived
from components of the cell cycle regulatory mechanism in eukaryotes, where R is
MPF (mitosis promoting factor), E is APC (anaphase promoting complex), C is
Cdc20, and X is a complex of APC and Cdc20.

The corresponding set of equations is

dR

dt
= k1S − k2XR (6.26)

dEP

dt
=

k3R(ET − EP )

Kmk + ET − EP
− k4QEP

Kmp + EP

−k5[EP (CT − X) − KdX] (6.27)
dX

dt
= k5[EP (CT − X) − KdX] (6.28)
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Figure 6.17 A negative feedback oscillator. Wiring diagram.

where ET = E + EP is the total concentration of the APC, Q is the (fixed)
concentration of a phosphatase, and CT = C + X is the total concentration of
Cdc20. Having left the familiar territory of two-variable systems and phase plane
portraits, we must now rely on numerical and qualitative results.

Table 6.2 Parameter values for the delayed negative feedback oscillator.

Parameter Description Value Units

k1 1st-order rate const 1 min−1

k2 2nd-order rate const 1 nM−1min−1

k3 1st-order rate const 1 min−1

k4 1st-order rate const 1 min−1

k5 2nd-order rate const 0.01 nM−1min−1

Kmk Michaelis constant 1 nM

Kmp Michaelis constant 1 nM

Kd Equilibrium constant 50 nM

S Signal 0.3 nM

Q Phosphatase concen. 100 nM

ET Total APC concen. 100 nM

CT Total Cdc20 concen. 1 nM

Using the parameter values in table 6.2 and S as the control parameter, we can
compute a one-parameter bifurcation diagram (figure 6.18a) using numerical tools.
In this case, there are two critical values of S at which the system undergoes Hopf
bifurcations, with oscillatory solutions in between, 0.2 < S < 0.4 (roughly). A
typical oscillation for S in this range is plotted in figure 6.18b.

Small amplitude oscillations due to a “pure” negative feedback loop have recently
been observed by Pomerening et al. (2005) in frog egg extracts (see box 6.6). A
long negative feedback loop on PER-protein synthesis seems to play a major role
in circadian rhythms, as described in chapter 2.
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Figure 6.18 A negative feedback oscillator. a) One parameter bifurcation diagram.
b) Simulation for S = 0.3. See table 6.2 for parameter values. Definitions: u = R/Q,
v = EP /ET , w = X/CT . In a), the min and max values of v on the limit cycle oscillation
are plotted in the region between the two Hopf bifurcations.

Box 6.6: Negative feedback oscillations in frog egg extracts
Frog egg extracts are convenient preparations in which to observe the negative feed-
back loop involving MPF and APC, although the native regulatory system also
includes a substrate-depletion oscillator involving phosphorylation of MPF (see ta-
ble 6.1). By clever experimental techniques, Pomerening et al. (2005) have knocked
out the substrate-depletion oscillator in a frog egg extract, revealing the negative feed-
back oscillator in its (presumably) unadulterated state. They observed “pure” negative
feedback oscillations in their preparations. In the absence of the self-amplification of
MPF activity provided by the substrate-depletion motif, the pure negative feedback
oscillations are of considerably smaller amplitude and drive ambiguous transitions
into and out of mitosis. It seems that the positive feedback mechanism is important
to amplify the negative feedback oscillations and give unambiguous signals to nuclei
to enter and leave mitosis.

6.6 A Multiple-Feedback Network: p53 and Mdm2

Transcriptional activator p53 is involved in cell cycle arrest and apoptosis (pro-
grammed cell death). In normal cells, the level of p53 is kept low by Mdm2, which
promotes degradation of p53. The transcription of Mdm2 is activated by p53, cre-
ating a negative feedback loop (p53 → Mdm2 —| p53). When a cell is subjected
to environmental stress causing DNA damage or oncogene activation, the activity
of Mdm2 is weakened, allowing accumulation of p53 in the nucleus. Recently, it
has been observed (Lahav et al., 2004) that p53 and Mdm2 undergo one or more
oscillations in response to ionizing radiation (which causes double-stranded breaks
of DNA), in an apparent attempt to repair the damage. Ciliberto et al. (2005)
have proposed a simple mechanism (figure 6.1), including both negative and posi-
tive feedback, which quantitatively reproduces this behavior. The equations for the
network in figure 6.1 are
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d[p53]

dt
= ks53 − k

′

d53[p53] − kf [Mdm2nuc][p53]

+kr[p53U] (6.29)
d[p53U]

dt
= kf [Mdm2nuc][p53] − kr[p53U] − k

′

d53[p53U]

−kf [Mdm2nuc][p53U] + kr[p53UU] (6.30)
d[p53UU]

dt
= kf [Mdm2nuc][p53U] − kr[p53UU]

−(k
′

d53 + kd53)[p53UU] (6.31)
d[Mdm2cyt]

dt
= k

′

s2 +
ks2[p53tot]

m

Jm
s2 + [p53tot]m

− k
′

d2[Mdm2cyt]

− kph

Jph + [p53tot]
[Mdm2cyt] + kdeph[Mdm2Pcyt] (6.32)

d[Mdm2Pcyt]

dt
=

kph

Jph + [p53tot]
[Mdm2cyt] − k

′

d2[Mdm2Pcyt]

−kdeph[Mdm2Pcyt] − ki[Mdm2Pcyt]

+ko[Mdm2nuc] (6.33)
d[Mdm2nuc]

dt
= Vratio(ki[Mdm2Pcyt] − ko[Mdm2nuc])

−kd2[Mdm2nuc] (6.34)
d[DNAdam]

dt
= kdam[IR] − krep[p53tot]

[DNAdam]

Jdna + [DNAdam]
(6.35)

where

kd2 = k
′

d2 +
[DNAdam]

Jdam + [DNAdam]
k

′′

d2 (6.36)

[p53tot] = [p53] + [p53U] + [p53UU] (6.37)

[Mdm2tot] = [Mdm2cyt] + [Mdm2Pcyt] +
1

Vratio
[Mdm2nuc] (6.38)

Vratio =
Vcytoplasm

Vnucleus
(6.39)

[IR] = imposed dose of ionizing radiation (6.40)

The network contains a long negative feedback loop (p53 → Mdm2cyt →
Mdm2Pcyt → Mdm2nuc —| p53) and a long positive feedback loop (p53 → PTEN
—| PIP3 → Akt → Mdm2Pcyt → Mdm2nuc —| p53). The positive feedback loop
is shortened to p53 —| Mdm2Pcyt → Mdm2nuc —| p53.

A simulation of this network (figure 6.19) compares very favorably with the
experimental observations of (Lahav et al., 2004). As the radiation dose increases
(figure 6.19d), the number of pulses of p53 increases. The reason for this curious
“digital” response of p53 to DNA damage is made clear by the one-parameter
bifurcation diagram in figure 6.20, where we plot system response, [p53tot], as
a function of the extent of DNA damage, measured by kd2. The positive feedback
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Table 6.3 Parameter values for p53-Mdm2 network

Rate Constants (min−1)

ks53 = 0.055 k′

d53 = 0.0055 kd53 = 8

kf = 8.8 kr = 2.5 k′

s2 = 0.0015

ks2 = 0.006 k
′

d2 = 0.01 k
′′

d2 = 0.01

kph = 0.05 kdeph = 6 ki = 14

k0 = 0.5 kdam = 0.18 krep = 0.017

Other Constants (dimensionless)

Js2 = 1.2 Jph = 0.01 Jdna = 1

Jdam = 0.2 Vratio = 15 m = 3

Figure 6.19 Simulation of gamma-irradiation experiment (reproduced from (Ciliberto
et al., 2005), with permission). At the beginning of the simulation, the system is at steady
state. (A) Between time 10 and 20, the control system is exposed to a transient damaging
agent, which induces two large amplitude oscillations in p53tot and Mdm2nuc. (B) The
oscillations of the two cytoplasmic forms of Mdm2 have a smaller amplitude compared to
Mdm2nuc concentration in panel (A). (C) The oscillations are initiated as a consequence
of kd2 increase, which is induced by irradiation. As the damage is repaired, kd2 decreases
back to its basal value. (D) The number of pulses increases with the amount of damage. In
the simulation, we count the number of oscillations as a function of the irradiation time.
In panels A through C irradiation time = 10 min.
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in the network creates multiple steady states (the S-shaped curve at kd2
∼= 0.01),

but the negative feedback loop makes the upper steady state unstable. The unstable
upper steady state is surrounded by stable limit cycle oscillations of [p53tot] and
[Mdm2tot]. The region of stable oscillation is bounded above (at kd2

∼= 0.853) by
a Hopf bifurcation, and below (at kd2

∼= 0.0135) by a saddle-node-loop bifurcation.
For a broad range of values of kd2, that is, of DNA damage, the system responds
with pulses of p53 and Mdm2 of fixed amplitude and period, exactly as observed by
Lahav et al. (2004). As the damage is repaired, kd2 drops toward kd2

∼= 0.01, and
the oscillations disappear abruptly as kd2 crosses the saddle-node-loop bifurcation
point.

Figure 6.20 Bifurcation diagram (reproduced from (Ciliberto et al., 2005), with permis-
sion). Recurrent states (steady states and limit cycles) for p53tot are plotted as functions
of kd2, the degradation rate of Mdm2nuc. The solid line represents stable steady states,
the dotted line unstable steady states. Black dots are the maxima and minima of the
stable limit cycles. The grey solid line represents p53tot as a function of kd2 from the
simulation shown in figure 6.19. Notice that in figure 6.19 kd2 is a variable (see equations),
while here it is a parameter (all other equations and parameter values as in table 6.3).
When the qualitative behavior of the system changes, it is said to undergo a bifurcation.
In the p53/Mdm2 model there is a saddle-node (SN) bifurcation at kd2=0.0018 and a
saddle-node-loop (SNL) bifurcation at kd2=0.0135. Before the SNL bifurcation there is
only one stable steady state, with low p53 (“p53 OFF”); after the SNL the steady state
becomes unstable, surrounded by a stable limit cycle. The family of stable limit cycles
disappears at a Hopf bifurcation at kd2 =0.8532 (not shown on the diagram).

A somewhat different model of p53/Mdm2 oscillations in response to ionizing
radiation has recently been published by (Ma et al., 2005).
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6.7 Conclusions

How are cell biologists to make reliable connections between molecular interaction
networks and cell behaviors, when intuition fails in all but the simplest cases? In
this chapter, we propose to make the connection by translating the reaction network
into a set of nonlinear differential equations that describe how all the interacting
species are changing with time (figure 6.21).

Figure 6.21 A dynamical perspective on molecular cell biology. To make a connection
between molecular mechanisms and cell physiology, we convert the mechanism into a set
of kinetic equations, by standard principles of biochemical kinetics, and view the kinetic
equations as defining a vector field in the state space of the dynamical variables. The
vector field has attracting solutions (steady states and oscillations) that correspond to
characteristic physiological responses of the cell. The dependence of these attractors on
kinetic constants (hence, on genetics and environment) are robustly captured in bifurcation
diagrams.

The differential equations define a vector field in the state space of the network.
The vector field points to certain stable attractors, which can be correlated with
long-term, stable behavior of the network and of the cell it governs. Transitions
from one stable attractor to another represent the responses of the cell to specific
perturbations (signals). A natural way to describe the signal-response properties of
a regulatory network is in terms of a one-parameter bifurcation diagram, which effi-
ciently displays the stable attractors (steady states and oscillators) and transitions
between attractors as signal strength (the “parameter”) varies.

We have illustrated these ideas with simple examples of linear, hyperbolic, and
sigmoidal signal-response curves, of bistable switches based on positive feedback
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or mutual inhibition, and of limit cycle oscillators based on substrate depletion,
activator-inhibitor interactions, or time-delayed negative feedback. These funda-
mental motifs (switches and oscillations) can be coupled together into networks of
increasing complexity and dynamical potential. Interested readers should now be
ready to read and understand the growing body of literature that takes this dynam-
ical perspective on interesting topics in cell physiology. Some nice examples include:
cell-cycle control (Tyson et al., 2002), circadian rhythms (Leloup and Goldbeter,
1998), lysogenic viruses (Arkin et al., 1998), quorum sensing in bacteria (James
et al., 2000; Usseglio Viretta and Fussenegger, 2004), NF-κB signaling (Hoffmann
et al., 2002), and programmed cell death (Eissing et al., 2004).





7 Qualitative Approaches to the Analysis of

Genetic Regulatory Networks

Hidde de Jong and Delphine Ropers

There is a growing demand for methods that can make predictions of qualitative
properties of the dynamics of molecular interaction networks, that is, properties that
are invariant for a range of reaction mechanisms and values of kinetic constants.
On the one hand, precise and quantitative information on reaction mechanisms
and kinetic constants is not available for most networks of biological interest.
On the other hand, in many situations predictions of qualitative rather than
quantitative dynamical properties are appropriate for gaining an understanding
of the functioning of a molecular interaction network. This chapter discusses
three examples of qualitative approaches for the analysis of genetic regulatory
networks, allowing qualitative dynamical properties to be inferred from currently-
available incomplete and non-quantitative data. The approaches are based on
different formalisms, namely discrete abstractions of differential equations, Boolean
networks, and graphs. We illustrate the approaches by means of a simple two-gene
network and give an example of their application to real biological systems.

7.1 Motivation for Qualitative Approaches

Differential equations are the classical formalism for modeling the behavior of nat-
ural and man-made systems. Therefore not surprisingly, they form the most promi-
nent approach for the modeling, analysis, and simulation of molecular interaction
networks (chapter 6). The application of differential equations rests on a well-
established theoretical framework for the deterministic modeling of the kinetics of
biochemical reaction systems (Cornish-Bowden, 1995; Heinrich and Schuster, 1996).
In addition, a variety of mathematical methods and computer tools is available for
transforming the model equations into experimentally-testable predictions. Many
excellent examples exist to demonstrate the capability of differential equations to
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help gain insight into the functioning of molecular interaction networks of biologi-
cal importance, such as the control of circadian rhythms in Drosophila (Leloup and
Goldbeter, 2003), the metabolism of the red-blood cell in humans (Joshi and Pals-
son, 1989), the regulation of the cell cycle in yeast and higher eukaryotes (Tyson
et al., 2001), and the signaling pathway involved in the maturation of oocytes in
Xenopus laevis (Ferrell Jr. and Machleder, 1998).

In principle, the use of differential equations allows precise numerical predictions
of the behavior of molecular interaction networks to be made. However, for many
networks of biological interest, such predictions are difficult or even impossible
to obtain. In the first place, the biochemical reaction mechanisms underlying
the interactions are usually not or incompletely known, which complicates the
formulation of the differential equation models. In the second place, quantitative
data on kinetic constants and molecular concentrations are generally absent, even
for extensively studied textbook systems.

In addition to these practical difficulties, one can raise the question of whether
quantitative information on reaction mechanisms and kinetic constants is essential
for understanding the functioning of molecular interaction networks. In fact, it is
reasonable to assume that many important dynamical properties of living systems
do not depend on precise numerical values or a specific reaction mechanism (Barkai
and Leibler (1997); Eldar et al. (2002); Rao et al. (2004); see also chapter 2).
In other words, in many situations qualitative dynamical properties—dynamical
properties that are invariant for a range of reaction mechanisms and values of
kinetic constants—are more important than quantitative dynamical properties. The
qualitative properties express the intimate connection between the behavior of the
system and the structure of the network of molecular interactions, independently
from the quantitative details of the latter.

For all of the above reasons, there is a growing interest in qualitative approaches
for the modeling, analysis, and simulation of molecular interaction networks, ca-
pable of inferring qualitative properties of the system dynamics from currently-
available incomplete and non-quantitative data. The aim of this chapter is to re-
view existing qualitative approaches focusing on one particular type of molecular
interaction network, genetic regulatory networks. These networks mainly involve
interactions between proteins and nucleic acids, controlling the transcription and
translation of genes. In the next sections, we first explain the notion of qualitative
dynamical property and then discuss three representative examples of qualitative
approaches. These approaches are based on formalisms increasingly remote from the
differential equation models traditionally used: discrete abstractions of differential
equations, Boolean networks, and graphs.

Of course, our review of qualitative approaches does not pretend to be exhaustive.
Some of the more obvious omissions of this chapter are Petri nets (Koch et al.,
2005; Reddy et al., 1996), constraint-based models (Covert et al., 2004; Edwards
and Palsson, 2000; Edwards et al., 2001a; Stelling et al., 2002), and process algebras
(Eker et al., 2002; Regev et al., 2001). On the one hand, these model formalisms
partially overlap with the formalisms discussed here, or are reviewed at length in
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other chapters of the book (chapter 5). On the other hand, they seem to have been
mostly used for metabolic and signal transduction networks, rather than for genetic
regulatory networks. For further reference, the reader may consult other reviews
of qualitative approaches in systems biology (de Jong, 2002; Gagneur and Casari,
2005). Another restriction of the scope of this chapter is that we focus on methods
that derive behavior predictions from structural information on the network, thus
leaving out of consideration methods that aim at inferring the network structure
from observations on the behavior of the system. Such reverse engineering methods
have been developed for Boolean networks and their relatives (Akutsu et al., 2000;
Ideker et al., 2000; Laubenbacher and Stigler, 2004; Liang et al., 1998; Perkins et al.,
2004), while Bayesian methods for inferring graph models from gene expression data
are discussed in chapter 4.

7.2 Qualitative Properties of the Dynamics of Genetic Regulatory Networks

In order to develop the notion of qualitative dynamical property, we will consider
a simple network of two genes (figure 7.1). Each of the genes encodes a regulatory
protein that inhibits the expression of the other gene, by binding to a site over-
lapping the promoter of the gene. Simple as it is, this cross-inhibition network is
a basic component of more complex, real networks and makes it possible to ana-
lyze some characteristic aspects of cellular differentiation (Monod and Jacob, 1961;
Thomas and d’Ari, 1990). Moreover, its dynamical properties have been experimen-
tally tested by Gardner et al., who have reconstructed the network in Escherichia
coli cells by cloning the genes on a plasmid. The genes on the plasmid have been
chosen such that the network functions independently from the rest of the cell
and the activity of the corresponding proteins can be regulated by external signals
(Gardner et al. (2000); see also chapter 13).

a b

A

B

Figure 7.1 Example of a simple genetic regulatory network, composed of two genes a

and b, the proteins A and B, and their regulatory interactions.

The cross-inhibition network can be modeled by means of differential equations.
Generally speaking, a genetic regulatory network of n genes is conveniently de-
scribed by a system of n ordinary differential equations:

dxi

dt
= fi(x), i ∈ {1, . . . , n}, (7.1)
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where x = (x1, . . . , xn)′ ∈ Ω is a vector of cellular protein concentrations, and
Ω ⊆ R

n
≥0. The function fi : Ω → R expresses how the rate of change of the

concentration of the protein encoded by gene i depends on the concentrations x of
the proteins in the cell. A differential equation model of the cross-inhibition network
is shown in figure 7.2a. The variables xa and xb represent the concentration of the
proteins A and B. The time derivative of xa equals the difference between the rate
of synthesis of A, given by κa h−(xb, θb,mb), and the rate of degradation, given by
γa xa. The use of the sigmoidal Hill function h−, shown in figure 7.2b, means that
for low concentrations of the protein B, gene a is expressed at a rate close to its
maximum rate κa, whereas for high concentrations of B, the expression of the gene
is almost completely repressed. The shape of the Hill function is in agreement with
experimental evidence (Ptashne, 1992). The rate of degradation of A is proportional
to the concentration of the protein. The differential equation for xb has an analogous
interpretation.

dxa

dt
= κa h−(xb, θb, mb) − γa xa

dxb

dt
= κb h−(xa, θa, ma) − γb xb

h−(x, θ, m) =
θm

xm + θm

(a)

1

0

h−(x, θ, m)

xθ

(b)

Figure 7.2 (a) Nonlinear ordinary differential equation model of the cross-inhibition
network (figure 7.1). The non-negative variables xa and xb correspond to the concentra-
tions of proteins A and B, respectively, the parameters κa and κb to the synthesis rates
of the proteins, the parameters γa and γb to degradation constants, the parameters θa

and θb to the threshold concentrations, and the parameters ma and mb to the degree of
cooperativity of the interactions. All parameters are positive. (b) Graphical representation
of the characteristic sigmoidal form, for m > 1, of the Hill function h−(x, θ, m).

The use of the nonlinear Hill function does not make it possible to analytically
solve the system of differential equations. However, the dynamics of the two-gene
network can be analyzed in the phase plane, by means of standard techniques
developed in dynamical systems theory (Kaplan and Glass (1995); Strogatz (2000);
see also chapter 6). The phase portrait in figure 7.3a shows that the system is
bistable, in the sense that it possesses two asymptotically stable equilibrium points,
at which either protein A or protein B is present at a high concentration. The third
equilibrium point, characterized by intermediate concentrations for proteins A and
B, is unstable and cannot be experimentally observed. The phase-plane analysis
also reveals that the system exhibits hysteresis. If one strongly perturbs the system
from one of its stable equilibria—for instance, by provoking the degradation of
the protein present at a high concentration—the other equilibrium can be reached
(figure 7.3b). From then onwards, even if the source of strong degradation has
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disappeared, the system will remain at the new equilibrium. In other words, the
analysis suggests that a simple molecular mechanism may allow the system to switch
from one functional state to another. Interestingly, this has been confirmed by the
experiments of Gardner et al. mentioned above.

0
se

ue

se

xb

xa

dxb/dt = 0

dxa/dt = 0

(a)

0

xb

xa

(b)

Figure 7.3 (a) Phase portrait of the differential equation model of the cross-inhibition
network (figure 7.2). The system has two asymptotically stable equilibrium points (se) and
one unstable equilibrium point (ue). The equilibria lie at the intersection of the nullclines
of xa and xb (drawn curves annotated by dxa/dt = 0 and dxb/dt = 0). (b) Hysteresis
effect, resulting from a transient perturbation of the system (dashed line with arrow).

The above-mentioned dynamical properties of the cross-inhibition network—
bistability and hysteresis—are invariant for a range of parameter values and molecu-
lar mechanisms. That is, they are qualitative properties of the system. For instance,
a moderate increase of the value of θb causes the nullcline of xa to move upwards
(figure 7.4a). This deforms the phase portrait, but does not lead to the loss of the
bistability and hysteresis properties. For large changes in parameter values though,
the qualitative properties may not be invariant. Figure 7.4b shows what happens
for values of θb close to, or above, κb/γb. In this case one of the stable equilibria
and the unstable equilibrium approach annihilate each other, so that the system is
no longer bistable and no longer exhibits hysteresis. In the terminology of dynami-
cal systems theory, a bifurcation has occurred (Kaplan and Glass (1995); Strogatz
(2000); see also chapter 6).

The invariance of the dynamical properties of genetic regulatory networks for
changes in the reaction mechanisms and the value of kinetic constants can be defined
more generally and more rigorously than has been done here. A classical treatment
is found in the book by Andronov et al., who define qualitative dynamical properties
as those properties invariant under trajectory-preserving topological mappings of
(a region of) the phase space (Andronov et al., 1973; Kalagnanam et al., 1991).
What will interest us in this chapter are not the technicalities of the definition,
but rather the practical question of how qualitative properties of the dynamics of
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κb/γb, θb

(b)

Figure 7.4 Changes in the phase portrait of the differential equation model of the
cross-inhibition network (figure 7.2), following a change in the value of the parameter θb.
The change in (a) preserves the bistability and hysteresis properties, whereas the more
important change in (b) does not.

genetic regulatory networks can be inferred from weak information on the structure
of the network and the type of the interactions.

The example of the two-gene network shows that dynamical systems theory
provides concepts and techniques for the characterization of qualitative properties
of dynamical systems, notably the construction and analysis of phase portraits.
Unfortunately, the theoretical results become much weaker when studying higher-
order systems. While higher-order systems can sometimes be reduced to second-
order systems, by time-scale abstraction or other model simplifications, this is not
always possible. More fundamentally, the insights to be gained from dynamical
systems theory are to a large extent based on geometrical representations that are
difficult to manipulate in higher dimensions.

The qualitative methods discussed in the remainder of this chapter also try to
infer qualitative properties of the dynamics of genetic regulatory networks. However,
they employ model formalisms and representations of the system dynamics that
are more abstract than differential equations and phase portraits. Although the
predictions that can be made by means of these qualitative methods are less precise,
they are based on theoretical results and computational techniques that better scale
up to large and complex systems. In the next sections, we will discuss three examples
of qualitative methods, based on model formalisms that make increasingly stronger
abstractions of the process of gene regulation.

7.3 Discrete Abstractions of the Dynamics of Differential Equations

In response to the problem that the use of phase portraits does not scale up well to
higher dimensions, alternative representations of the qualitative dynamics could be
proposed. A closer look at figure 7.3a, the phase portrait of the two-gene network,
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suggests one such alternative. In every region of the phase plane bounded by the
nullclines of xa and xb, the system behaves in a qualitatively homogeneous way,
in the sense that the derivatives of the concentration variables have the same sign
everywhere. When solution trajectories leave one region and enter another, the sign
of one or both derivatives changes. The partition of the phase space into regions
suggests a discrete abstraction of the qualitative dynamics of the system, which will
be formally developed in this section.

Consider again the system of differential equations 7.1, describing a network of n

genes. The nullclines of the system are the hypersurfaces on which fi(x) = 0. They
define a partition R of the phase space Ω, consisting of regions R in which the time
derivative of each of the concentration variables xi has a unique sign. We introduce
a function π : R → {−, 0,+}n, associating a derivative sign pattern to each region
R ∈ R. Figure 7.5a shows the partition of the phase space obtained in the case of the
model of the two-gene network discussed in the previous section, while figure 7.5c
shows the derivative sign pattern for each region. Suppose that R,R′ ∈ R are two
contiguous regions in the phase space. If there is a solution of equation 7.1 that
on a time interval T reaches R′ from R, without leaving R ∪ R′, then we say that
there exists a transition from R to R′, denoted R → R′. Formally, → ⊆ R × R.
For instance, by looking at the direction of the vector field in figure 7.3a, it can
be easily inferred that R1 → R8, R1 → R9, and R1 → R1 are possible transitions.
Self-transitions like R1 → R1 occur when solutions do not instantaneously cross a
region, but remain in it for some time.

The above definitions underlie an abstract, discrete representation of the dynam-
ics of the continuous differential equation system in the form of a transition graph:

TG = (R,→). (7.2)

The vertices of the graph correspond to the regions of the phase space and the edges
to the transitions between regions. Each of the regions can be seen as a discrete
or qualitative state of the system, in which the derivatives of the concentration
variables have a particular sign pattern. A sequence of regions σ is a path in
the transition graph if and only if σ = (R0) or σ = (R0, . . . , Rm), m > 0, and
for all i ∈ [0, . . . , m − 1], we have Ri → Ri+1. A path in the transition graph
gives a qualitative description of the behavior of the system, in the sense that it
describes how the derivative sign pattern changes over time. The transition graph
corresponding to the cross-inhibition network is shown in figure 7.5b.

This discrete representation of the dynamics of a continuous differential equation
system facilitates the analysis of the behavior of genetic regulatory networks. In fact,
equilibrium points correspond to regions R ∈ R, such that π(R) = (0, . . . , 0)′, while
the stability of the equilibrium points can be inferred from the outgoing transitions
of the contiguous regions. As expected, the transition graph in figure 7.5b contains
three regions coinciding with equilibrium points. In the case of R5 and R13, the
paths starting in the contiguous regions lead towards the equilibrium points, thus
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Figure 7.5 (a) Partition of the phase space for the differential equation model of the
cross-inhibition network (figure 7.2), using the nullclines dxa/dt = 0 and dxb/dt = 0. (b)
Transition graph consisting of domains and transitions between domains. The small dots
next to domains indicate self-transitions. (c) Sign of dxa/dt and dxb/dt in the regions of
the phase space, as defined by the function π.

suggesting that the latter are stable. This is not the case for R9, which corresponds
to an unstable equilibrium point. The hysteresis property can also be inferred from
the transition graph, bearing in mind that for a region R′ to be reachable from
another region R, there must be a path running from R to R′. It is then immediately
seen from figure 7.5b that a perturbation from R5 to R1 may cause the system to
attain the other equilibrium point at R13. More generally, the transition graph
can be shown to be a conservative approximation (Alur et al., 2000; Chutinan and
Krogh, 2001) of the differential equation system, in the sense that every solution of
the latter corresponds to some path in the former (although the converse does not
necessarily hold). This means that the transition graph can be safely used to study
the qualitative dynamics of the differential equation system.

The above reformulation of the study of qualitative properties of differential
equation systems raises two important questions. First, for which range of parameter
values is the transition graph invariant? Second, how can we actually compute the
transition graph in the absence of precise numerical information on the parameters?
These problems have been addressed in several areas of computer science and control
theory, in particular in the context of work on qualitative simulation in artificial
intelligence (de Jong, 2005; Kuipers, 1994) and on discrete abstractions in hybrid
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systems theory (Alur et al., 2000; Chutinan and Krogh, 2001). Examples of the
application of these approaches to the analysis of genetic regulatory networks are
the hybrid automaton models of Ghosh and Tomlin (2004) and the qualitative
differential equation models of Heidtke and Schulze-Kremer (1998). Below we will
discuss in more detail the qualitative simulation method developed in our group
(Batt et al., 2005a; de Jong et al., 2004b), which has been specifically designed so
as to favor scaling up to large and complex networks.

The qualitative simulation method uses simplified models of gene regulation
proposed by Glass and Kauffman in the early seventies (Edwards et al., 2001b;
Glass and Kauffman, 1973; Gouzé and Sari, 2002; Mestl et al., 1995). The major
difference between these so-called piecewise-linear differential equations and the
differential equations used to model the cross-inhibition network is that the sigmoid
function h− in figure 7.2b is replaced by a step function s− that abruptly changes
from 1 to 0 at a threshold value θ:

s−(x, θ) =

{
1, if x < θ,

0, if x > θ.
(7.3)

By means of the threshold values of the variables, the phase space can be par-
titioned into hyperrectangular regions, in each of which the system behaves in a
qualitatively-homogeneous manner.1 It has been proven that the transition graph
defined on this partition is invariant for certain inequality constraints on the pa-
rameters that can often be inferred from the experimental literature. Moreover, it
is possible to compute the transition graph, by means of simple symbolic rules,
from a piecewise-linear differential equation model of the network supplemented by
inequality constraints. The qualitative simulation method has been implemented in
the computer tool Genetic Network Analyzer (GNA) (de Jong et al., 2003a).

The method and the computer tool have been applied to the analysis of the
complex genetic regulatory network controlling the initiation of sporulation in
the Gram-positive soil bacterium Bacillus subtilis (de Jong et al., 2004a). Under
conditions of nutrient deprivation, B. subtilis cells may not divide and form a
dormant, environmentally-resistant spore instead. The decision to abandon growth
and division and initiate sporulation involves a radical change in the pattern of gene
expression in the cell. The switch of the genetic program is controlled by a complex
regulatory network integrating various environmental, cell-cycle, and metabolic
signals. A graphical representation of the network controlling the initiation of
sporulation is shown in figure 7.6a, displaying key genes and their promoters,
proteins encoded by the genes, and the regulatory action of the proteins.

The graphical representation of the network has been translated into a piecewise-
linear differential equation model of the network supplemented by inequality con-
straints on the parameters. The resulting model consists of 11 variables and 48
parameters constrained by 70 parameter inequalities. The choice of the latter is
largely determined by biological data. Using this model, the response of wild-type
and mutant cells to nutrient deprivation has been simulated by means of GNA. This
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Figure 7.6 (a) Key genes, proteins, and regulatory interactions making up the network
involved in B. subtilis sporulation (de Jong et al., 2004a). (b) Path in the transition
graph produced by qualitative simulation of the response of a B. subtilis cell to nutrient
deprivation. The figure shows how the threshold boundaries on the concentrations of
σF , KinA, and Spo0A evolve as a consequence of the successive region transitions. The
concentration of σF transiently crosses the threshold θf , above which this sigma factor
directs the transcription of genes essential for later stages of the sporulation process.
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has given rise to transition graphs consisting of up to several hundreds of regions,
most of which can be simplified by eliminating regions that are instantaneously
traversed and therefore of limited biological interest. An example of a path in such
a transition graph is shown in figure 7.6b.

Analysis of the sporulation network by means of GNA has revealed that essential
features of the initiation of sporulation in wild-type and mutant strains of B. subtilis
are reproduced by the model (de Jong et al., 2004a). In particular, the choice
between division and sporulation is seen to be determined by competing positive
and negative feedback loops influencing the accumulation of the phosphorylated
form of the transcription factor Spo0A. Above a certain threshold concentration,
Spo0A∼P activates various genes whose expression commits the bacterium to
sporulation, such as genes encoding sigma factors that control the alternative
developmental fates of the mother cell and the spore (figure 7.6b). Other examples
of the application of GNA are the qualitative modeling and simulation of quorum
sensing in the pathogenic bacterium Pseudomonas aeruginosa (Usseglio Viretta and
Fussenegger, 2004) and the carbon starvation response in E. coli (Ropers et al.,
2005).

In summary, the basic idea informing discrete abstractions of the dynamics of
continuous systems is that they partition the phase space into regions in which the
system behaves in a qualitatively homogeneous manner. The state of the system is
henceforward described by the region in which it resides, and a change of state by a
transition from one region to another. In comparison with the underlying continuous
system, the use of discrete abstractions leads to a loss of quantitative precision.
However, for many questions the abstract description is sufficiently informative and
well-adapted to the available biological data. Moreover, transition graphs are easy
to analyze and capture qualitative properties of the system that are invariant for
moderate changes in parameter values. The transition graphs grow exponentially
with the number of genes in the network, though, which limits the scalability of
the approach. Tools for the formal verification of qualitative dynamical properties
reduce this problem to some extent (Batt et al., 2005b; Bernot et al., 2004; Chabrier-
Rivier et al., 2004), but cannot entirely avoid it.

7.4 Boolean Networks

Instead of discretizing the dynamics of a continuous model, one could also study
qualitative properties of genetic regulatory networks by directly starting with a
discrete model. The sigmoid shape of the Hill function in figure 7.2b suggests that,
to a first approximation, a gene can be described as either active (on) or inactive
(off). That is, if the gene is active (inactive), the protein it encodes is assumed
present (absent) in the cell. The change in gene expression can be described by
making the assumption that the change in activation state of a gene is determined
in a combinatorial fashion by the activation state of other genes, in particular
genes encoding regulatory proteins. The above intuitions have been formalized by
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Boolean networks, which has become popular in the wake of a groundbreaking
study by Kauffman (1969; see Kauffman (1993); Somogyi and Sniegoski (1996) for
reviews).

Let the vector x̂ = (x̂1, . . . , x̂n)′ ∈ {0, 1}n of Boolean variables represent the
state of a network of n genes. Each x̂i has the value 0 (inactive) or 1 (active). The
activation state x̂i of a gene at a discrete time-point t+1 is determined by a Boolean
function b̂i : {0, 1}n → {0, 1}, which defines x̂i(t + 1) in terms of x̂(t). Most of the
time, b̂i will effectively depend on the state of only ki of the n genes. The variable
x̂i is also referred to as the output of the gene and the ki variables from which it is
computed the inputs. For ki inputs the total number of possible Boolean functions
b̂i mapping the inputs to the output is 22ki . This means that for ki = 2 there are
16 possible functions, the logical “AND” and the logical “OR” being two examples.
In summary, the dynamics of a genetic regulatory network can be described by a
Boolean network defined by the following equations:

x̂i(t + 1) = b̂i(x̂(t)), i ∈ {1, . . . , n}, (7.4)

where b̂i maps ki inputs to an output value. The Boolean network corresponding
to the cross-inhibition network is shown in figure 7.7a. The network is quite simple,
consisting of two Boolean variables, x̂a and x̂b, each connected to the other variable
by means of a logical “NOT”. For illustrative purposes, an example of a slightly more
complex Boolean network—involving three variables, two inputs per variable, and
various logical functions—is shown in figure 7.7b.

The dynamics of a Boolean network are conveniently represented by means of
a transition graph. Let x̂, x̂′ ∈ {0, 1}n be two states of a Boolean network with n

genes. There exists a transition from x̂ to x̂
′, denoted by x̂ →s x̂

′, if and only if
x̂′

i = b̂i(x̂), for every i ∈ {1, . . . , n}. Formally, →s⊆ {0, 1}n ×{0, 1}n. The subscript
s indicates that the transitions are synchronous, that is, the states of all genes are
updated simultaneously. Notice that the transitions are deterministic, in the sense
that every state of the system has a single successor. The transition graph can be
formally defined as follows:

BTG = ({0, 1}n,→s). (7.5)

A sequence of states σ̂ in the transition graph is a path if and only if σ̂ = (x̂0)

or σ̂ = (x̂0, . . . , x̂m), m > 0, and for all i ∈ [0, . . . , m − 1], we have x̂
i →s x̂

i+1.
Because the number of states in the state space of a Boolean network is finite, when
extended every path will eventually reach an attractor, either a state having itself as
a successor (point attractor) or a state cycle (cyclic attractor). The attractor states
and the states leading to the attractor together constitute the basin of attraction
of the attractor. For simple networks the attractors and their basins of attraction
can be calculated by hand, but for larger systems the use of computer programs
becomes inevitable, given that the size of the transition graphs scales exponentially
with the number of genes (section 7.3). Examples of such computer programs are
DDLab (Wuensche, 2003) and GINsim (Chaouiya et al., 2003).
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Figure 7.7 (a) Boolean network model of the cross-inhibition network in figure 7.1,
in the form of an electronic circuit and a system of equations. (b) Illustration of a more
complex Boolean network model. x̂a, x̂b, x̂c are Boolean variables; NOT, OR, NOR, NAND
are Boolean functions.

The transition graph for the cross-inhibition network is shown in figure 7.8a.
Because the network consists of two genes, we have a total of four states, denoted
by 00, 01, 10, and 11. For instance, 01 means that gene a is off and gene b is on. The
graph consists of three unconnected attractors: the point attractors 10 and 01, and
a cyclic attractor consisting of 00 and 11. Notice that one of the proteins is present
and the other absent in the point attractors, which allows these states to be related
to the stable equilibrium points in the differential equation model (figure 7.3a). On
the other hand, the cyclic attractor has no obvious counterpart in the differential
equation model. Moreover, the hysteresis property of the cross-inhibition network
is not preserved. When perturbing the activation state of one of the genes in a
point attractor, that is, when randomly flipping the Boolean value of x̂a or x̂b, the
system makes a transition to 00 or 11. From there it can neither return to its original
state nor reach the other point attractor. This illustrates that there are situations
in which the idealizations underlying Boolean networks are not appropriate, in
the sense that the models cannot account for experimentally-observed dynamical
properties.

Several generalizations of the standard Boolean network formalism have been
proposed, based on assumptions that are more realistic from a biological point
of view. Instead of using synchronous transitions between states, one could resort
to asynchronous transitions, in which the activation state of only a single gene is
updated at a time. Formally, this amounts to replacing →s by a new transition
relation →a⊆ {0, 1}n × {0, 1}n, where x̂ →a x̂

′ if and only if x̂′
i = b̂i(x̂), for
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Figure 7.8 Transition graphs for the Boolean network corresponding to the cross-
inhibition network (figure 7.7a). (a) Transition graph for synchronous transitions (→s).
(b) Transition graph for asynchronous transitions (→a).

some i ∈ {1, . . . , n}, and x̂′
j = x̂j , for all j �= i.2 The use of →a makes the

Boolean network nondeterministic, in the sense that a state may have up to n

successors. The asynchronous transition graph for the cross-inhibition network
is shown in figure 7.8b. As can be immediately verified, both the bistability
and the hysteresis property are now reproduced. Asynchronous Boolean networks
underlie the logical method introduced by Thomas, who also proposes the use of
multivalued instead of Boolean variables, in order to distinguish multiple levels of
gene expression (Thomas, 1973; Thomas and d’Ari, 1990). Another generalization of
the standard formalism are probabilistic Boolean networks, Boolean network which
do not associate a single Boolean function with a gene, but rather a probability
distribution on a set of Boolean functions, thus taking into account uncertainty in
the state transitions (Shmulevich et al., 2002a,b).

Boolean network models and their generalizations have been able to give insights
into the functioning of actual genetic regulatory networks, as demonstrated by
studies of pattern formation in early Drosophila development (Albert and Othmer,
2003; Sánchez et al., 1997; Sánchez and Thieffry, 2001, 2003), flower morphogenesis
in Arabidopsis (Mendoza et al., 1999), and mucus production in Pseudomonas
aeruginosa (Bernot et al., 2004). The results confirm the basic assumption of
qualitative approaches that many important dynamical properties of an organism do
not depend on specific reaction mechanisms or precise numerical values for kinetic
constants, but are to a large extent determined by the structure of interactions of
the network (chapter 2).

More generally, standard Boolean networks have been a popular model for
theoretical investigations of the relation between the structure and dynamics of
genetic regulatory networks. The basic idea of this so-called ensemble approach,
proposed by Kauffman (1993, 2004), is to consider the ensemble of Boolean networks
sharing some structural properties, such as a particular number of inputs per
gene or Boolean functions of a particular type. We can then randomly sample
networks from the ensemble and provide statistics on their dynamical properties,
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such as the number of attractors and the size of their basins of attractions.
Under the above assumptions, it follows that the dynamical properties typically
found for the sampled networks must be attributed to the structural properties
defining the ensemble, and can hopefully be explained by the latter. The biological
relevance of the ensemble approach is based on the hypothesis of Kauffman that
real genetic regulatory networks belong to an ensemble whose defining properties
remain to be discovered (2004). The aim is to identify this ensemble by the iterative
generation of ensembles and the comparison of their typical dynamical properties
with experimental data. The simplicity of standard Boolean networks makes them
excellent models for doing the extensive computations required by the ensemble
approach.

(a) (b) (c)

Figure 7.9 Examples of (a)–(b) canalizing and (c) non-canalizing Boolean functions
with inputs î1 and î2, and output ô. In the case of the AND (OR) function, a value of 0(1)
for one of the inputs forces the output to 0(1). In the case of the XOR function no such
value for one of the inputs exists.

An interesting recent application of the ensemble approach is a study of the
logical functions expected to play a role in gene regulation (Kauffman et al.,
2003b). A gene is regulated by many transcription factors, which may combine
to yield a complex regulatory logic, as demonstrated by the analysis of the control
of expression of the Endo16 gene in the sea urchin (Yuh et al., 1998). However, there
is some evidence that one particular class of logical functions, so-called canalizing
functions, are overrepresented in gene regulation (Harris et al., 2002). In terms
of Boolean logic, a canalizing function has at least one input, such that for at
least one value of this input and for any other value of the remaining inputs, the
output value is fixed to either 0 or 1 (Kauffman, 1993) (figure 7.9). Kauffman et
al. have generated random Boolean networks of thirty genes having a structure of
interactions equal to that of the core of the yeast transcriptional regulatory network.
The Boolean functions in the networks are chosen from either a distribution of all
Boolean functions or a distribution of canalizing Boolean functions. The networks
sampled from the two ensembles show different stability properties, that is, they
tend to react differently to random perturbations of an initial state. In fact, networks
with canalizing Boolean functions are on average more stable than networks with
arbitrary Boolean functions, in the sense that in the former case the state after
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the perturbation remains closer to the initial state (Kauffman et al., 2003b, 2004).
Since this stability or robustness is expected on biological grounds (chapter 2), the
results could be taken as evidence that actual genetic regulatory networks belong
to an ensemble of canalizing networks.

Contrary to the approach discussed in the previous section, Boolean networks
do not have any intrinsic abstraction relation to an underlying continuous system.
Standard Boolean networks describe the state of the system by a vector of Boolean
values, indicating for each of the genes whether it is on or off. The state of
the system evolves in discrete time, as a consequence of transitions that may
change the activation state of one or more genes. The attractiveness of Boolean
network models is based on the intuitiveness of the representation of gene regulation
by means of Boolean functions and the simplicity of the algorithms used for
computing the transition graphs. However, the classical formalisms make strong
simplifying assumptions, in particular the use of binary values for gene activation
and synchronous transitions. These assumptions are relaxed in the generalized
formalisms mentioned, thus increasing the biological validity of the models, but
at the price of losing some of the computational and mathematical simplicity of the
standard approach.

7.5 Graphs

The previous section suggests another way to predict the behavior of genetic
regulatory networks. If certain structural properties can be shown to imply specific
dynamical properties, then the behavior of the system could be inferred, at least
tentatively, by verifying whether the network possesses these structural properties.
As shown in section 7.2, the cross-inhibition structure of the example network
endows it with bistability and hysteresis properties for a large range of parameter
values. Therefore, one might argue, identifying the cross-inhibition pattern in a
network could provide us with a clue as to the dynamics of the system. This
demands a study of the structural properties of genetic regulatory networks, for
which graph models are well-suited.

A graph is defined as a tuple (V,E), with V a set of vertices and E ⊆ V × V a
set of edges (Berge, 2001):

G = (V,E). (7.6)

The edges represent the relation between vertices and may be directed or undirected.
A directed edge is a pair (i, j) ∈ E of vertices, where i denotes the head and
j the tail of the edge. The order of the vertices is of no importance, if (i, j) is
an undirected edge. A genetic regulatory network can now be seen as a directed
graph in which the vertices represent genes and the edges regulatory interactions.
The edges are directed from regulating to regulated genes, from genes encoding
transcription factors to the targets of the transcription factors. In order to express



7.5 Graphs 141

the nature of the regulatory interactions, we can label the edges. By defining a
directed edge as a tuple (i, j, s) ∈ E, with s ∈ {+,−}, it can be indicated whether
i is activated or inhibited by j. As an illustration, the graph corresponding to the
cross-inhibition network is shown in figure 7.10a. This simple graph is composed of
two vertices, a and b, as well as two directed edges. Figure 7.10b shows a slightly
more complex example of a graph model, added for illustrative purposes.

a b
V = {a, b}
E = {(a, b,−), (b, a,−)}

(a)
c

ba

V = {a, b, c}
E = {(c, a, +), (c, b, +), (a, c,−),

(a, b,−), (b, a,−), (b, b,−)}

(b)

Figure 7.10 Directed graphs representing (a) the cross-inhibition network in figure 7.1,
and (b) a more complex network, added for comparison.

The representation of a genetic regulatory network as a graph allows the analysis
of its structural properties by means of graph-theoretical techniques (Barabási and
Oltvai, 2004; Newman, 2003). The global connectivity properties of the network
can, for instance, be described by the average degree and the degree distribution
of the vertices. The degree k of a vertex indicates the number of edges to which
it is connected (if necessary, incoming and outgoing edges can be distinguished).
〈k〉 denotes the average degree and P (k) the degree distribution of the graph. The
properties give an indication of the complexity of the graph and allow different types
of graphs, and therefore networks, to be distinguished (figure 7.11). In classical
random graphs (figure 7.11a), also called Erdős-Rényi graphs, the probability that
a given vertex has k edges follows a Poisson distribution P (k). That is, the vertices
typically have 〈k〉 edges and the vertices having significantly more or less edges than
〈k〉 are extremely rare, as shown in part (c) of the figure. By contrast, in scale-free
graphs (figure 7.11b), the vertex degrees obey a power-law distribution P (k) ∼ k−γ ,
shown in part (d) of the figure. Scale-free graphs are inhomogeneous, in that most
of the vertices have few edges, whereas some vertices, called hubs, have many edges
and hold the graph together.

For values of the degree exponent γ between 2 and 3, scale-free graphs have a
number of surprising properties. First, the average length of the path between two
vertices of the graph is proportional to log log |V |, where |V | denotes the number
of vertices of the graph (Barabási and Oltvai, 2004; Newman, 2003). This is even
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(a) (b)

P (k)

k〈k〉

(c)

log k

logP (k)

(d)

Figure 7.11 Schematic illustration of the architecture of (a) random and (b) scale-free
undirected graphs (Bray, 2003). The degree distribution follows (c) a Poisson distribution
in random graphs and (d) a power-law distribution in scale-free graphs. k denotes the
degree of a vertex and P (k) the degree distribution. The filled vertices in (b) are hubs.

shorter than the average path length in random graphs, which scales as log |V | and
confers on them the small-world property (Watts and Strogatz, 1998). The small-
world property implies that local perturbations can quickly spread out through the
entire regulatory network. Second, the presence of hubs makes scale-free graphs
robust against accidental failures (Albert et al., 2000; Jeong et al., 2000, 2001).
Whereas randomly removing a certain number of vertices disintegrates a random
graph, in a scale-free graph this mainly affects the numerous low-degree vertices,
the absence of which does not decompose the graph. Third, unlike classical random
graphs, scale-free graphs can possess a modular structure (Ravasz et al. (2002);
chapter 3). Such graphs are constructed by iteratively combining small and tightly-
clustered modules of vertices into a hierarchical structure.

There is now quite some evidence that genetic regulatory networks, and many
other biological and non-biological networks, are scale-free (Dobrin et al., 2004;
Featherstone and Broadie, 2002; Guelzim et al., 2002; Jeong et al., 2000, 2001; Lee
et al., 2002; Maslov and Sneppen, 2002; Tong et al., 2004; Wagner and Fell, 2001).
Some caution should be observed in interpreting the results though. Because current
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data on regulatory interactions are incomplete, a subnetwork of the actual network
is analyzed, which may have a different degree distribution (Stumpf et al., 2005).
Moreover, the particular graph representation chosen to model the network may
bias the results, as shown by Arita for the E. coli metabolic network (Arita, 2004).
In the case of genetic regulatory networks, graph models are usually restricted to
direct transcription regulation interactions, thus ignoring indirect interactions that
are mediated by metabolites binding to transcriptional regulators (Alm and Arkin,
2003).

Although the analysis of structural properties like the degree distribution may
yield insights that seem intuitively important for understanding the dynamics of
a network, it is not so easy to actually pin down their behavioral consequences.
Some studies have begun to explore the topic, using a combination of graph theory
and Boolean networks (Aldana and Cluzel, 2003; Fox and Hill, 2001; Oosawa and
Savageau, 2002), but the relation between global structural properties and network
dynamics is still largely an open question (Strogatz, 2001). Alternatively, one could
follow an approach focusing on local structural properties, in particular specific
patterns of interactions between the network components. In this vein, Thomas
has conjectured that positive feedback loops in regulatory networks are a necessary
condition for the occurrence of multiple equilibrium points (Thomas and d’Ari,
1990), a conjecture that has been proven since by a number of authors (Cinquin
and Demongeot (2002); Gouzé (1998); Plahte et al. (1995); Snoussi (1998); Soulé
(2003); see also Remy et al. (2003)).3 In the remainder of this section, we will
discuss another example of the latter approach, the identification and functional
analysis of motifs.

Loosely speaking, network motifs are recurring patterns of interactions between
a small number of network components (Milo et al. (2002); Shen-Orr et al. (2002);
see Wolf and Arkin (2003), for a review). Their functional importance has been
suggested by the evolutionary conservation of motifs within the yeast protein-
protein interaction network (Wuchty et al., 2003) and the convergent evolution
towards the same motifs in the transcriptional regulatory network of diverse species
(Conant and Wagner, 2003).

Techniques for discovering motifs consist in the identification of small patterns
in the graph that are overrepresented when compared to a randomized version of
the same graph (Milo et al., 2002, 2004b). More precisely, all possible patterns of
a fixed number of vertices occurring in the graph are enumerated in a first step.
The statistical significance of a pattern is then inferred from the comparison of the
original graph, corresponding to the biological network, with a set of randomized
graphs, in which each vertex has the same number of incoming and outgoing edges
as the corresponding vertex in the original graph. A pattern is a motif if it occurs
significantly more often in the original graph than in the randomized graphs. Since
randomized networks are supposed to be free of any type of natural selection, the
overrepresentation of the motifs can be assumed to have an evolutionary origin,
reflecting the importance of the function performed by the motif. This conclusion
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is sensitive, though, to the particular randomization procedure followed and requires
careful statistical validation (Artzy-Randrup et al., 2004; Milo et al., 2004a).

Shen-Orr et al. have searched the transcriptional regulatory network of E. coli for
motifs, using information from the database RegulonDB and the literature (Shen-
Orr et al., 2002). In this network, consisting of 855 genes and 1,330 regulatory
interactions, three overrepresented motifs have been identified: the feedforward
loop, in which a transcription factor regulates a second transcription factor and
both regulate together their target gene (figure 7.12a); the single-input motif, in
which a group of genes is controlled by a single transcription factor; and the
dense-overlapping regulons, in which genes and the transcription factors controlling
their expression form a highly-overlapping structure. The feedforward loop is the
motif occurring most frequently (40 times) in the E. coli network. This has been
subsequently confirmed for an extended version of the same network, in which an
even higher number of feedforward loops have been found (Ma et al., 2004a).

What could be the functional role of the feedforward loop? In a follow-up
study the group of Alon has theoretically and experimentally demonstrated the
information processing task carried out by this motif. Using a differential equation
model of the feedforward motif, they show that its role might be to filter out
fluctuations in input stimuli and allow a rapid response when the stimuli disappear
(Mangan et al., 2003; Mangan and Alon, 2003). Consider the feedforward loop in
figure 7.12b, where the transcription factors X and Y together activate the gene z.
When X is active and above a threshold concentration, the input signal activating
X is transmitted to the output Z through a direct path from X and an indirect
path from X through Y. Hence, a transient signal is not transmitted to Z, since
it does not allow the concentration of Y to reach a threshold level high enough to
stimulate the expression of gene z (figure 7.12c). On the other hand, a persistent
input signal enables the concentration of Y to rise and eventually allows Z to pass
its threshold level. The functioning of the feedforward loop is asymmetric, since the
inactivation of X leads to the rapid downregulation of z. The above predictions have
been experimentally verified for the L-arabinose utilization system in E. coli using
reporter genes (Mangan et al., 2003). In this feedforward loop, CRP corresponds
to the general transcription factor X and AraC to the specific transcription factor
Y, while z is the operon araBAD.

The discussion of the feedforward motif illustrates how a clear, well-defined
function can be assigned to a pattern of interactions that is overrepresented in the
network. Unfortunately, it is not always possible to make such a straightforward
connection between structure and function. Usually, motifs do not occur in isolation,
but rather overlap to generate complex motif clusters (Dobrin et al., 2004). This
makes it difficult to draw definite conclusions on the function of an individual
pattern of interactions occurring in a cluster. For instance, it is not obvious that
the network in figure 7.10b, in which the cross-inhibition pattern is embedded in
a more complex feedback structure, also possesses the bistability and hysteresis
properties for a large range of parameter values. In order to establish this, the
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Figure 7.12 (a) Feedforward loop motif in graph representation. (b) Feedforward loop
in genetic regulatory network, where it is assumed that both X and Y are necessary for
expression of z. (c) Dynamic properties of the feedforward loop (Shen-Orr et al., 2002).
xx, xy, and xz denote the concentrations of X, Y, and Z respectively, and θx, θy, and θz,
their threshold levels. The input signal activates X.

static graph analysis need to be complemented by a dynamic analysis of the type
discussed in earlier sections of this chapter.

7.6 Discussion

In order to understand how the functions and development of living organisms
are controlled by the networks of interactions between genes, proteins, and small
molecules within and between cells, we need mathematical methods and computer
tools. We have insisted on the demand for qualitative approaches for the modeling,
analysis, and simulation of genetic regulatory networks, that is, approaches capa-
ble of inferring properties of the dynamics of genetic regulatory networks that are



146 Qualitative Approaches to the Analysis of Genetic Regulatory Networks

invariant for a range of reaction mechanisms and values of kinetic constants (sec-
tion 7.2). The interest in these qualitative approaches derives from the fact that,
for most networks of biological interest, we do not dispose of detailed information
on the reaction mechanisms and precise numerical values for the kinetic constants.
Moreover, it is reasonable to assume that many dynamical properties of living or-
ganisms are robust to at least some variations in mechanisms and numerical values.
This does not mean that qualitative approaches always impose themselves: there
are biological questions for which quantitative precision is required, and there do
exist systems for which detailed, quantitative information is available. Quantitative
and qualitative approaches should be seen as complementary rather than mutually
exclusive.

In this chapter we have reviewed three approaches for the analysis of qual-
itative properties of the dynamics of genetic regulatory networks, based on
increasingly-abstract modeling formalisms: discrete abstractions of differential
equations, Boolean networks, and graphs. Whereas the first two approaches use
models that explicitly describe the dynamics of the system, the third approach is
based on the assumption that an analysis of the structure of the system provides
useful insights into its dynamics. The structural and dynamic approaches focus on
distinct, but complementary aspects of the networks, and in practice need to be ap-
plied in combination. As discussed in section 7.5, the assignment of a function to a
network motif or module requires tools for studying the network dynamics. On the
other hand, tools for analyzing the network structure are critical for dealing with
the problem that the transition graphs generated by the qualitative approaches
scale exponentially with the size of the network. Instead of studying the dynam-
ics of very large networks directly, it seems more judicious to distinguish network
modules, study the dynamics of these modules individually, and then analyze the
interactions between the modules on a higher level of abstraction, using simplified
models for each of the modules (chapter 3).

What are the main future directions for research on qualitative approaches
towards the analysis of genetic regulatory networks? Of the many challenges that
could be mentioned, two deserve special attention in our view. The first concerns
the impact of qualitative modeling of genetic regulatory networks on experimental
biology. The qualitative approaches have some features that make them particularly
suitable for the systems studied at the forefront of experimental research, notably
the ability to deal with incomplete and non-quantitative information. However,
while many excellent qualitative models have been developed and described in the
literature, examples of the experimental verification of novel predictions made by
these models are still relatively rare.

A second challenge is the development of qualitative methods that allow the
integrated analysis of genetic regulatory networks and other types of molecular
interaction networks, such as metabolic and signal transduction networks. In this
chapter we have focused on the interactions occurring in gene regulation, but some
of the methods could be applied or extended to the modeling of other types of
interactions, such as enzyme-catalyzed reactions or protein-protein interactions.
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The search for motifs in a network composed of transcription regulation and
protein-protein interactions in yeast is a good example (Yeger-Lotem et al., 2004).
Alternatively, hybrid approaches could be followed, in which methods adapted to
the specific problems of each type of network are combined. The use of Boolean
network models to add the effects of gene regulation to flux balance models of E.
coli metabolism is a case in point (Covert et al. (2001, 2004); see also chapter 5).
Both directions are promising but have been little explored thus far.
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Notes

1. The resulting partition does not actually preserve the derivative sign pattern,
as in figure 7.5b, but a finer-grained partition can be formulated for which this is
the case (Batt et al., 2005b).

2. Mixtures of synchronous and asynchronous transitions can also be proposed.
Such transition relations allow some, but not necessarily all, genes to change their
activity state simultaneously.

3. The cross-inhibition network in figure 7.1 is an example of a network with a
positive feedback loop, due to the fact that each protein positively influences the
expression of its own gene, by inhibiting the expression of the gene encoding the
inhibitor of its own gene.





8 Stochastic Modeling of Intracellular Kinetics

Johan Paulsson and Johan Elf

Cellular events are triggered by random collisions between molecules. If each type
of event occurred numerous times per generation, this randomness could possibly
average out and cells could behave deterministically. But many central cellular
reactions by contrast occur so infrequently that substantial relative fluctuations
arise spontaneously. By affecting the rates of other reactions, these fluctuations
can propagate through networks and spread to any cellular process. The tendencies
to correct fluctuations also range from strong to insignificant depending on the
kinetic mechanisms, causing some systems to behave with high precision and
others to accumulate extreme variability. Many aspects of life in the individual
cell are therefore best understood probabilistically. This is further supported by
a rapidly growing body of experimental work. Most macromolecules are found to
be present in very low numbers per chemical species, and studies measuring single
cell concentrations almost invariably report large variation from cell to cell. This
chapter introduces some theoretical aspects of randomness in simple genetic and
metabolic networks, including both general mathematical techniques and specific
biological phenomena.

8.1 Chapter Overview

The text is organized as follows: section 8.2 discusses the assumptions behind
stochastic modeling of chemical reactions. Section 8.3 presents a multivariate model
for stochastic gene expression that can be solved exactly. Section 8.4 gives an
interpretation of the fluctuation-dissipation theorem (FDT), tailored to biochemical
processes. Section 8.5 uses simulations and FDT approximations for systems that
operate near critical points, and section 8.6 shows how such fluctuations can be
tamed by negative feedback. Section 8.7, finally, gives some examples of noise-
induced transitions and constructive roles of noise. For Monte Carlo methods we
refer to chapter 9 and chapter 16 for spatial and nonspatial descriptions respectively.
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For more extensive theoretical treatments of chemical fluctuations we refer to the
several textbooks available (Erdi and Tóth, 1989; Gardiner, 1985; Keizer, 1987; van
Kampen, 1992).

8.2 Basic Models for Stochastic Kinetics

8.2.1 Differential Equations for Probabilities, Averages, and Macroscopic

Concentrations

A starting point for stochastic descriptions of chemical reactions is to define a
sufficiently complete set of state variables such that changes only depend on the
current state (Lax, 1960). This could in principle include continuous variables, such
as temperature, cell age, or volume, but to simplify the notation we here only
account for discrete jumps corresponding to changes in the number of molecules of
each species.

Consider imax different chemical species homogeneously distributed1 in a volume
Ω. The state of the system is defined by state vector n = [n1 · · ·ni max]

T where ni

is the number of molecules of species i. Let there be jmax types of reactions and
let reaction j change component i from ni to ni + νij with a rate rj that depends
only on the current state of the system, n. The probability that reaction j occurs
in a small time interval Δt is then rj(n)Δt. The integers νij form an imax × jmax

stoichiometric matrix ν where the j:th column νj corresponds to the change in the
state vectors when a reaction of type j occurs.

The probability of arriving in state n during a short time interval Δt is the sum of
the probabilities for leaving from other states n− νj to state n in a single reaction,
Δt

∑
j rj (n − νj) P (n − νj , t). Similarly, the probability of leaving state n in this

time interval is Δt
∑

j rj (n) P (n, t). The probability P (n, t + Δt) to be in state n

at time t + Δt is thus:

P (n, t + Δt) = P (n, t) − Δt
∑

j
rj (n) P (n)︸ ︷︷ ︸

leaving

+ Δt
∑

j
rj (n − νj) P (n − νj)︸ ︷︷ ︸

arriving
(8.1)

Rearranging equation 8.1, dividing by Δt and taking the continuity limit Δt → 0

leads to a time-continuous state-discrete Markov process—the master equation for
the system of chemical reactions (Singer, 1953; van Kampen, 1992):

d

dt
P (n, t) =

M∑
j=1

(rj(n − νj)P (n − νj , t) − rj(n)P (n, t)) (8.2)
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The motion of the averages 〈ni〉 can be postulated directly from the rates and event
sizes:

d 〈ni〉
dt

=
∑

j

vij 〈rj (n)〉 (8.3)

The corresponding macroscopic concentrations xi are the number of molecules per
unit volume in an infinitely large system, that is, a system where the rates and
the volume go to infinity in such a way that xi converges. For many processes this
could be at least hypothetically achieved by taking an infinite population of cells,
removing walls and membranes, and keeping the remaining cell components well
mixed, similar to some in vitro experiments. In practice, however, rate equations
dxi/dt are typically constructed directly from first principles and often used to ap-
proximate average cell behavior. For nonlinear systems it must then be remembered
that there are qualitative differences between true averages and their macroscopic
idealizations (Bharucha-Reid, 1960; Renyi, 1954), something we will return to in
section 8.7.

8.2.2 Simulating Paths of the Master Equation

From the analysis above equation 8.1 we saw that the probability that some reaction
will occur in a short time interval Δt is the sum of their individual probabilities,
Δt

∑
j rj (n) = Δtr0. Let p(t) be the probability that the system has not left state

n at time t, given that it was in state n at time t=0. The change in p(t) between
time t and t + Δt is then Δp(t) = p(t + Δt) − p(t) = −r0p(t)Δt. Taking the
limit of continuous time, Δt → 0, and solving the resulting differential equation
dp(t)/dt = −r0p(t), gives p(t) = exp(−r0t). The probability that a reaction has
occurred at time t is thus F (t) = 1 − p(t) = 1 − exp(−r0t), that is, the system
resides an exponentially distributed time in state n, with an average 〈t〉 = 1/r0.
The probability that the first event is reaction j is in turn given by its relative
contribution to the total rate, Pr (reactionj |any reaction ) = rj (n)/r0.

This defines a simple algorithm for generating individual paths of the random
process: pick the next reaction time from an exponential distribution and choose
event type according to the fractional rates. Physical or chemical considerations are
then only important when choosing what states and jumps to include to make the
description Markovian. The algorithm itself is indistinguishable from the definition
of a homogenous time-continuous state-discrete Markov processes (Doob, 1945).
Daniel Gillespie—who effectively pioneered its use for generating sample paths of
chemical reaction networks (Cao et al., 2004b; Gillespie, 1976, 1977)—refers to it
as the stochastic simulation algorithm in chapter 16, but here we will call it the
Gillespie-Doob algorithm.
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8.2.3 Elementary Reactions

All kinetic modeling relies on condensing fast transitions between short-lived physi-
cal states into single reaction steps. The most common example is the approximation
that a system is “well-stirred,” where bimolecular reactions are described without
accounting for spatial positions. This essentially assumes that the molecules in-
volved in a chemical reaction have time to diffuse over the whole volume before
they are likely to be involved in a reaction again (Gardiner and Steyn-Ross, 1984).
Descriptions of unimolecular reactions may similarly assume rapid internal equili-
brations, so that transitions to functionally different states again effectively behave
as if they had no memory. Because these assumptions are so common and more or
less similar from system to system, they are often considered “elemental.” However,
the key assumption that the time-scales are separated can be equally true for more
complicated chemical reactions. For example, transcription involves an enormous
number of small steps, yet for many purposes the whole process of making RNA
molecules could possibly be approximated as Poissonian, that is, with exponentially
distributed dwell times between births of new RNA molecules.

Complicated reactions that can be represented by a single step are said to be
“elementary complex”—elementary because they effectively behave as elemental
reactions on the time-scale studied, and complex because they could be broken
down into several more elemental reactions (Keizer, 1987). For example consider a
protein that rapidly equilibrates between two conformations

A1
λ1
�

�

λ2
A2

such that it is in conformation A2 during p = λ1 (λ1 + λ2)
−1 percent of the time. If

the A2 conformation participates in another reaction A2
λ3−→ B which occurs on a

much slower timescale than the conformational changes in A, then this reaction can
be considered elementary complex with rate λ3pnA where nA is the total number
of A molecules. For the purpose of modeling changes in B it is then not necessary
to include the two different conformations of A.

In some cases it is important to also account for the fact that molecules involved
in intermediate states of complex reactions cannot participate in other reactions.
For example, let a protein autorepress its own transcription such that active genes
are repressed with rate λ2n and inactive genes are derepressed with rate λ1. Each
gene then switches on and off as

on
λ2n

�
�

λ1
off

If these reactions equilibrate rapidly compared to the other reactions, it is again
tempting to simply assume that genes are active for p = λ1 (λ1 + λ2n)

−1 percent
of the time, ignoring the details of binding and unbinding. However, it may also
be important to account for the fact that bound repressors are unavailable for
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other reactions, which can have large and qualitative effects on the dynamics (Berg
et al., 2000b). That being said, it should also be emphasized that simplifications
of this type are often necessary to make the models tractable, and they should
not be avoided out of a superstitious fear of condensations. Only allowing uni- or
bimolecular reactions can easily give an unwarranted impression of legitimacy: even
in the simplest and best characterized cellular systems, it is simply not the case that
we can make accurate quantitative assumptions with any confidence. When running
the substantial risk of leaving out critical variables and reactions, the possibility of
explicit simplifications that greatly facilitate modeling is one of the few blessings
we can count. Increasing the state space will make a system less transparent and
its dynamics less intelligible, which in turn makes it more difficult to identify
gross inaccuracies in the assumptions. Furthermore, just like seemingly complicated
reactions can behave as if they were elemental, seemingly simple reactions can hide
a non-trivial behavior. For example, first-order unimolecular reactions are often
automatically assumed to be elemental, though in many cases there are long-lived
intermediate states such that the transitions are not memory-lacking (Xie, 2002;
Yang et al., 2003).

8.2.4 Brief History of Stochastic Modeling of Chemical Reactions

Stochastic modeling of chemical reactions has come a full century from the first
studies of Brownian motion (Bachelier, 1900; Einstein, 1905). Models of fluctuating
concentrations in turn date back to the 1930s (Leontovich, 1935) and were soon fol-
lowed by biological applications. Several theoretical studies in the 1940s emphasized
the intracellular randomness associated with small numbers: The “1

/√
N -rule” of

relative fluctuations at equilibrium (Schrödinger, 1944) influenced generations of bi-
ologists, and autocatalysis was shown to further amplify variation (Delbruck, 1940).
The 1950s saw the first experimental analyses of heterogeneity in bacterial gene ex-
pression (Benzer, 1953), and after a decade of focusing more on stochastic enzyme
kinetics (Bartholomay, 1962), theory for stochastic gene expression was developed
in some detail (Berg, 1978a; Rigney, 1979a,c; Rigney and Schieve, 1977). Both the-
oretical and experimental efforts intensified in the 1980s and 90s, but it is only in
the last five or ten years that the field has truly taken off. This is largely due to
the possibility of systematic quantitative studies of protein fluctuations using green
fluorescent protein (GFP) (Elowitz et al., 2002; Ozbudak et al., 2002), but also to
a wider appreciation of the stochastic foundation of kinetic theory.

8.3 Stochastic Gene Expression

Gene expression is stochastic by nature: genes are activated and inactivated by
random association and dissociation of repressors or transcription factors to DNA,
transcription of a specific gene often occurs a few times per cell cycle, and many pro-
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In addition to spontaneous Poisson fluctuations (first term), proteins are also
randomized by mRNA fluctuations (second and third terms), that follow:

σ2
2

〈n2〉2
=

1

〈n2〉 +
1 − Pon

〈n1〉
τ1

τ2 + τ1
(8.6)

The first term of equation 8.6 again reflects Poisson fluctuations, now coming from
the random births and deaths of individual transcripts. The first factor of the
second term can in turn be interpreted as the normalized stationary variance in the
(binomially distributed) number of active genes:

σ2
1

〈n1〉2
=

1

nmax
1

λ−
1

λ+
1

=
1 − Pon

〈n1〉 (8.7)

where Pon = λ+
1

/(
λ+

1 + λ−
1

)
is the stationary probability that a given gene is on. At

any given average, stationary fluctuations are smaller than Poissonian because the
total number of genes is fixed. The second factor of the second term of equation 8.6
comes from time-averaging and can be explained by solving the second average
equation in equation 8.4 for fixed 〈n1〉

〈n2〉t1+t2
− 〈n2〉∞︸ ︷︷ ︸

Deviation from stationary
average at time t = t1 + t2

=
(〈n2〉t1 − 〈n2〉∞

)︸ ︷︷ ︸
Deviation from stationary

average at time t = t1

e−t2/τ2 (8.8)

This means that n2 exponentially forgets its initial conditions with rate 1/τ2, that
is, events that occurred more than τ2 time units ago are almost forgotten. The same
principles apply to n1 and the ratio τ2/τ1 thus determines how much the number
of active genes changes within the kinetic memory of the mRNA concentration. If
τ2/τ1 is large, the time-averaging factor in equation 8.6 is close to zero, reducing
mRNA fluctuations just like throwing many dice reduces relative fluctuations in
the total outcome. These principles also apply to proteins in equation 8.5. The
second term comes from time-averaged spontaneous mRNA fluctuations, and the
third term comes from low-copy gene fluctuations that are first time-averaged by
mRNAs and then by proteins.

Many processes including fluctuations in the protein synthesis machinery (Elf and
Ehrenberg, 2005a), feedback regulation of transcription and translation (Becskei
and Serrano, 2000; Swain, 2004; Tomioka et al., 2004; Elf and Ehrenberg, 2005b),
localization of transcription factors, as well as controlled transport, maturation,
folding, and degradation of mRNA and protein could similarly affect the rate of gene
expression and fluctuations in protein concentrations. To make the results accessible
in the current space, these effects are ignored above by implicitly absorbing all other
processes into effective rate constants.

For readers interested in the original literature, we recommend the pioneering and
excellent papers by David Rigney, Otto Berg and colleagues (Berg, 1978a; Rigney,
1979b,a,c; Rigney and Schieve, 1977) as well as the numerous other studies that have
appeared since (Kepler and Elston, 2001; Paulsson, 2004; Paulsson and Ehrenberg,
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2001; Peccoud and Ycart, 1995; Raser and O’Shea, 2004; Sasai and Wolynes, 2003;
Swain et al., 2002; Tapaswi et al., 1987; Thattai and van Oudenaarden, 2001).

8.4 Fluctuation-Dissipation Approximations

Most models of stochastic reaction networks include nonlinear rates and can there-
fore rarely be solved exactly. They can still be simulated using the Gillespie-Doob
algorithm described in section 8.2 and chapter 16, but each numerical simulation
only shows the behavior of a single trajectory for a single combination of pa-
rameters. Simulations are therefore easier to evaluate if they are complemented
by more generic approximations. To exemplify straightforward interpretations of
generic approximations, we here discuss a nonequilibrium version of the fluctuation-
dissipation theorem (Keizer, 1987; Lax, 1960) (FDT). This states that the matrix
of covariances σ (with notation σii = σ2

i ) follows:

dσ

dt
= Aσ + σAT+ 〈B〉 (8.9)

where “drift” matrix A reflects the dynamics for relaxation to steady state and
“diffusion” B reflects the randomness of the individual events. This equation is used
under different names in many areas of study and it can be derived in many ways
(Elf and Ehrenberg, 2003; Gardiner, 1985; Keizer, 1987; Lax, 1960; van Kampen,
1992). However, it is always assumed, explicitly or implicitly, that the responses in
the reaction rates can be linearized in the parts of state space that are reached by
fluctuations.

To define A, let J tot
i =

∑
j vijrj (n) be the total flux of component i at state n

where reaction number j occurs with rate rj , producing υij molecules of species i.
The averages then exactly follow

d 〈n〉
dt

=
〈
J tot

〉
=
〈
J+

〉− 〈
J−

〉
(8.10)

where J+
i and J−

i are the total production and elimination fluxes of species ni. The
covariance matrix in turn exactly follows

dσ

dt
=
〈
J totαT

〉
+
〈
αJ totT

〉
+ 〈B〉 (8.11)

where αi = ni−〈ni〉 is the displacement from the average and Bik =
∑

j νijνkjrj(n)

(see below). The FDT formulation in equation 8.9 follows from equation 8.11 by
approximating the flux J as linear in n, that is, by Taylor expanding the rates
around the average. That is not a trivial procedure though. When J depends
nonlinearly on n, the equations for the average dynamics cannot even be solved
exactly for the steady state because 〈J (n)〉 �= J (〈n〉). One approach (van Kampen,
1961) solves this problem by approximating fluctuations close to the macroscopic
limit where numbers are large and fluctuations are small, that is, starting with
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rate equations. A related but slightly different approach is to simply make the
direct mean-field approximation 〈J (n)〉 ≈ J (〈n〉) that the average rate is the rate
at the average number. The difference between the two approaches is clear when
approximating the average rate of bimolecular homodimerization, r− = λn (n − 1):

〈
r−
〉

= λ 〈n (n − 1)〉 = λ
(
〈n〉2 + σ2 − 〈n〉

)
≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mean-field approx.︷ ︸︸ ︷
λ
(
〈n〉2 − 〈n〉

)
λ 〈n〉2︸ ︷︷ ︸

macroscopic approx.

(8.12)

Both ignore the variance, but only the latter additionally assume high numbers.
Using either method in equation 8.12, the dynamic matrix A can then be calculated
as the Jacobian matrix of the average dynamics:

Aik ≈ ∂J+
i (〈n〉)
∂ 〈nk〉 − ∂J−

i (〈n〉)
∂ 〈nk〉 (8.13)

This is a measure for how the fluxes are affected by changes in n and thus
summarizes, in an approximate and local way, how fluctuations are amplified or
corrected. Neither the mean-field or macroscopic method necessarily provides a
good approximation, though, and when applied to specific nonlinear schemes they
should always be checked numerically.

Matrix B in the exact equation 8.11 can be similarly approximated using
〈B(n)〉 ≈ B(〈n〉):

〈Bik〉 ≈
∑

j

νijνkjrj (〈n〉) (8.14)

This is a measure of the size and frequency of the random events that introduce
fluctuations in the first place. The FDT thus captures how the overall variability
of the system as measured by σ depends on fluctuations introduced in the diffusion
matrix B and the dissipation of fluctuations introduced in the Jacobian matrix A.

8.4.1 Interpreting the FDT in Terms of Physical Observables

The approximations above may or may not be accurate, but greatly facilitate
first order approximations. Calculating stationary variances is now technically
straightforward, and the conceptual challenge lies in interpreting the results in
terms of general physical principles. To facilitate interpretations, the stationary
FDT can be reinterpreted in terms of more straightforward physical properties,
following Paulsson (2004, 2005) and starting with:

Mη+ηMT = D (8.15)
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where:

ηik =
σik

〈ni〉 〈nk〉 , Mik = −〈nk〉
〈ni〉Aik and Dik =

Bik

〈ni〉 〈nk〉 (8.16)

The normalized Jacobian matrix M can be further rewritten by using the rules
for differentiation of logarithms:

∂ ln f

∂ lnx
=

x

f

∂f

∂x
and

∂ ln (f/g)

∂ lnx
=

∂ ln f

∂ lnx
− ∂ ln g

∂ lnx
(8.17)

Applying these to equation 8.13 and using the steady state condition
〈
J+

i

〉
=〈

J−
i

〉 ≡ 〈Ji〉 gives:

Aik =
∂
〈
J+

i

〉
∂ 〈nk〉 − ∂

〈
J−

i

〉
∂ 〈nk〉 =

〈Ji〉
〈nk〉

(
∂ ln

〈
J+

i

〉
∂ ln 〈nk〉 − ∂ ln

〈
J−

i

〉
∂ ln 〈nk〉

)

= − 〈Ji〉
〈nk〉

∂ ln
〈
J−

i

〉/〈
J+

i

〉
∂ ln 〈nk〉 (8.18)

To reduce notation we here use the true averages
〈
J+

i

〉
rather than J+

i (〈n〉), but
interpret the matrices in the macroscopic limit where they are interchangeable.
Matrix M now becomes

Mik = −〈Ji〉
〈ni〉

∂ ln
〈
J−

i

〉/〈
J+

i

〉
∂ ln 〈nk〉 (8.19)

At steady state, the average degradation (or synthesis) rate per molecule is approx-
imately equal to the inverse of the average lifetime τ i:〈

J−
i

〉
〈ni〉 =

〈
J+

i

〉
〈ni〉 =

〈Ji〉
〈ni〉 ≈ 1

τi
(8.20)

This is only exact for exponential first-order decay and approximate for all nonlinear
degradation mechanisms. However, it is not an additional approximation. As shown
above, one version of the stationary FDT approximation evaluates all parameters
at the macroscopic steady state, that is, in the hypothetical limit where each
molecule is immersed in a constant environment of other concentrations. Within
this approximation even nonlinear degradation mechanisms perfectly mimic first-
order exponential decay at steady state. Matrix M thus follows:

Mik = −Hik

τi
where Hik =

∂ ln
〈
J−

i

〉/〈
J+

i

〉
∂ ln 〈nk〉 (8.21)

The H parameters are logarithmic susceptibilities or elasticities and measure
how the birth-to-death ratio is affected by concentration changes: If Hik=2, a
1% increase in nk will approximately cause a 2% increase in the degradation rate
relative to the synthesis rate of ni.
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A full reinterpretation of matrix D for arbitrary chemical events will be published
separately. Here we restrict the analysis to nonlinear versions of cases where each
chemical event adds or removes a single molecule of a single species2 :

Dii =

〈
J+

i

〉
+
〈
J−

i

〉
〈ni〉2

= 2
〈Ji〉
〈ni〉2

and Dik = 0 for i �= k (8.22)

Using equation 8.20 we then get

Dii =
1

τi

2

〈ni〉 (8.23)

Within the approximation, the randomness introduced by the ith component is thus
inversely proportional to its average copy number,〈ni〉. That does not mean that
the actual fluctuations in the ith are inversely proportional to 〈ni〉—the final effect
of the probabilistic events is filtered through the dynamic responses.

8.4.2 Examples of Elasticities

A univariate example illustrates the basic principle:

d 〈n1〉
dt

= λ+ 〈n1〉α − λ− 〈n1〉β ⇒ H11 =
∂ ln

(
λ− 〈n1〉β

/
λ+ 〈n1〉α

)
∂ ln 〈n1〉 = β − α

(8.24)
The univariate elasticity thus equals the difference in effective kinetic order of the
degradation and synthesis fluxes. If the stochastic process is compared to a random
walk in a valley, the elasticity estimates the normalized steepness of the walls. For
an unbiased and unbounded random walk in one variable, H11= 0 and the dynamics
is neutrally stable. The multivariate cases are equally simple. Excluding genes from
the gene expression model above (and shifting the indices so that n2 becomes n1

and n3 becomes n2), the mRNA-protein part gives:

d〈n1〉
dt = λ+

1 − λ−
1 〈n1〉

d〈n2〉
dt = λ+

2 〈n1〉 − λ−
2 〈n2〉

⇒ H =

[
1 0

−1 1

]
(8.25)

where τi = 1
/
λ−

i . Both the uni- and multivariate examples above are particularly
simple because both synthesis and degradation follow power-laws, but many more
complicated mechanisms are also easy to evaluate using the definitions in equa-
tions 8.18–8.21 or simply eyeballing lower and upper bounds.

8.4.3 A Generalized Pseudo-Bivariate Example

Rewriting the FDT in terms of physical observables greatly facilitates interpretation
and makes it possible to collectively address families of dynamic processes without
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losing interpretability. For example consider the following extension of the mRNA-
protein model:

n1
J+

1
(n1)−→ n1 + 1

n1
J−

1
(n1)−→ n1 − 1

n2
J+

2
(n1,n2)−→ n2 + 1

n2
J−

2
(n1,n2)−→ n2 − 1

so that
d〈n1〉

dt =
〈
J+

1 (n1)
〉− 〈

J−
1 (n1)

〉
d〈n2〉

dt =
〈
J+

2 (n1, n2)
〉− 〈

J−
2 (n1, n2)

〉 (8.26)

Because the second variable does not affect the first, this is a pseudo-bivariate
stochastic system. According to the FDT approach above any process with a stable
fixed point then has:

M = −
[

H11/τ1 0

H21/τ2 H22/τ2

]
and D =

[
2/(〈n1〉 τ1) 0

0 2/(〈n2〉 τ2)

]
(8.27)

Solving equation 8.15 gives

η22 =
σ2

2

〈n2〉2
≈

spontaneous or intrinsic x2 noise︷ ︸︸ ︷
1

〈n2〉︸︷︷︸
low-copy

fluctuations

× 1

H22︸︷︷︸
effective
stability

+

forced or extrinsic x2 noise︷ ︸︸ ︷
σ2

1

〈n1〉2︸ ︷︷ ︸
environmental
fluctuations

× H2
21

H2
22︸︷︷︸

static
susceptibility

× H22/τ2

H22/τ2 + H11/τ1︸ ︷︷ ︸
one-step

time-averaging

(8.28)

where η11 = σ2
1 〈n1〉−2 ≈ 〈n1〉−1

H−1
11 . The intrinsic noise term comes from the

spontaneous randomness of X2 itself, introduced by element D22. Its first factor
represents population smallness—each birth and death event has a larger relative
effect in a smaller population. The second factor of the first term represents the
dynamic response to perturbations and can be interpreted in several different ways.
Normalized deviations Δx̃ from steady state in the corresponding deterministic
system follow

∂Δx̃

∂t
= −MΔx̃ = −

[
H11

τ1
0

H21

τ2

H22

τ2

]
Δx̃ (8.29)

Parameter H22/τ2 is thus the adjustment rate constant to steady state following a
perturbation. The rate can be changed in two ways: by changing the nonlinearity
as measured by H22 or by changing the average lifetime τ2. However, as seen in
equation 8.27, the latter would also affect the rate of spontaneous randomization
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are the normalized rate constants for adjustments to steady state in concentrations
x1 and x2 respectively (−H11/τ1 and −H22/τ2 are the eigenvalues of M). The ratio

H22/τ2

H11/τ1
(8.34)

is thus a measure for how rapidly x2 changes relative to x1. Comparing with
equation 8.28 illustrates a qualitative difference between spontaneous and forced
fluctuations. If the fluctuations come from the randomness of the environment, rapid
adjustments simply make the system more responsive to underlying fluctuations.
In other words: The current state of a more slowly adjusting system depends on a
longer history of ups and downs in the environment that then partially cancel out.

Increasing parameter H22 thus has several effects: increasing the tendency to re-
turn to a preferred average, reducing the susceptibility to permanent changes in
the environment, and increasing the temporal responsiveness. The susceptibility
decreases quadratically with H22 while the temporal responsiveness at most in-
creases in proportion to H22, so the net effect should be lower noise. This is not
fully general though. In feedback systems with lags or delays, the temporal response
factor can increase more than quadratically in H22, so that a higher H22 can in-
crease total noise and cause oscillatory responses to perturbations (for experimental
observations of oscillations in feedback systems, see Lahav et al., 2004).

8.5 Fluctuations near Critical Points

From the FDT analysis above we saw that the size of the stationary fluctuations
depend on two opposing forces: the turnover of molecules in random events that
contributes to diffusion in state space and the rate of relaxation back towards the
average. These principles are illustrated in figure 8.1 At thermodynamic equilibrium
these forces are fundamentally coupled such that for each substance the variance in
the number of molecules is smaller than or equal to the average (as in a binomial
distribution). However, in systems away from equilibrium the flux can be large
although the rate of relaxation to steady state is small and vice versa. That means
that relative fluctuations can be arbitrarily large even if the number of molecules
is high, or arbitrarily small even if the number of molecules is low.

For univariate linearized systems where one molecule is synthesized or consumed
per reaction, the stationary FDT boils down to

σ2 =
B

−2A
= −J+

A
= −J−

A
, (8.35)

where J± are the total stationary fluxes of either production or elimination and A

is the rate of relaxation back to steady state.
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Figure 8.1 Flow, relaxation, and fluctuations. The figure illustrates in a univariate
example the four different combinations of high/low flux and fast/slow relaxation to steady
state. Near-critical fluctuations arise when the rate of relaxation is low at the same time
as the flow is relatively high.

In normalized variables the same relation takes the form

σ2

〈n〉2 =
1

〈n〉H
, (8.36)

Poissonian-sized fluctuations with σ2 = 〈n〉 is thus only obtained when the turnover
of the pool J/〈n〉 is equal to the rate of relaxation, −A, or, equivalently, when the
elasticity H=1 in equation 8.36. Here we consider some simple kinetic systems
that operate near dynamically unstable points (H ≈ 0 in univariate systems) and
therefore display large fluctuations.

8.5.1 Autocatalysis

Consider the autocatalytic system with three reactions

n
λ1−→ n + 1 n

λ2n−→ n + 1 n
μn−→ n − 1 (8.37)

Because the rates depend linearly on state, the time evolution of the average value
is given by the exact

d 〈n〉
dt

= λ1 + (λ2 − μ) 〈n〉 (8.38)
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For μ > λ2 the system has a stationary state with average 〈n〉 = λ1/(μ − λ2). The
rate of relaxation to steady state is μ− λ2 and the average flow though the system
is μ 〈n〉 = μλ1/(μ − λ2). The steady state elasticity is

H =
∂ ln (μ 〈n〉/(λ1 + λ2 〈n〉))

∂ ln 〈n〉 =
λ1

λ1 + λ2 〈n〉 =
μ − λ2

μ
(8.39)

The FDT in turn gives

η11 =
σ2

〈n〉2 =
1

〈n〉H
−1
11 =

1

〈n〉
μ

μ − λ2
=

μ

λ1
. (8.40)

This expression is exact, as can be shown by calculating the full stationary distri-
bution (Gardiner, 1985) or by noting that the reaction rates are linear in n.

8.5.2 Covalent Modification-Demodification Cycles

Assume that a substrate is converted from unmodified state X1 to modified state X2

by one enzyme, and back again by another enzyme. With a constant total number
nmax of modified and unmodified molecules, the state of the system is described by
the number n of X1 molecules. The reaction scheme is

X1
J−(n)−→ X2 X2

J+(nmax−n)−→ X1 (8.41)

Here we assume Michaelis-Menten type reactions, where J−(n) = k1n/(n + K) and
J+(nmax − n) = k2(nmax − n)/((nmax − n) + K). The Michaelis-Menten approxi-
mation relies on condensations of several elemental reactions, and was originally
derived for macroscopically large systems. The stochastic behavior (Bartholomay,
1962) can be different, so this should only be considered a first approximation.
However, it still accounts for the major dynamic effect of first order degradation at
low n and saturation at high n.

The modification-demodification cycles in equation 8.41 can display so-called
zero-order ultrasensitivity if nmax � K, such that both enzymes can be saturated
for k1 = k2 = k (Goldbeter and Koshland, 1981). Ultrasensitivity refers to the
fact that a small fractional change in the rate constant k for modification rates
makes a large difference in the fractional level of modification. A slight increase in
an enzyme level can thus push almost all molecules into one state or the other. As
a first approximation, the FDT method gives σ2

/〈n〉 = H−1= d ln 〈n〉/d ln k, that
is, the ultra-sensitive response to changes in k is again tightly connected to large
random fluctuations. For more details and exact theoretical expressions see Berg
et al. (2000a). Large fluctuations in modification-demodification cycles were also
recently experimentally observed by Korobkova et al. (2004).
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8.5.3 Multisubstrate Reactions

Consider the anabolic reaction scheme with two species and the following transi-
tions:

n1
k−→ n1 + 1 n2

k−→ n2 + 1

n1
μn1−→ n1 − 1 n2

μn2−→ n2 − 1

[n1, n2]
n1n2k2−→ [n1 − 1, n2 − 1]

(8.42)

It is possible to treat more general cases analytically (Elf et al., 2003), but here we
only consider situations where the consumption flux of the bimolecular reaction is
much higher than the first order consumption events, that is μn1 ≈ μn2 � k2n1n2.
The averages follow

d 〈n1〉/dt = k − k2 〈n1n2〉 − μ 〈n1〉
d 〈n2〉/dt = k − k2 〈n1n2〉 − μ 〈n2〉

. (8.43)

where 〈n1n2〉 ≈ 〈n1〉 〈n2〉 in the mean-field or macroscopic approximation. When
μ > 0 this system has one attracting steady state where 〈n1〉 = 〈n2〉 =√

k/k2 + μ2
/
k2
2 − μ/2k2 ≈ √

k/k2. For the linearized dynamics around steady
state, the Jacobian matrix has a slow eigenvalue μ which determines the rate of
relaxation to the steady state. In the limit μ → 0 the single attracting steady
state bifurcates into a curve of steady state points satisfying k2n1n2 = k. Thus in
the limit μ → 0 the fluctuations become macroscopically large, as the system can
diffuse freely on the curve of stationary states (Elf and Ehrenberg, 2003). When
0 < μ � √

kk2 the proximity to the critical point makes the fluctuations large in
any system of finite size.

The FDT approximation can also be applied to the system, but in this case it is
advantageous to first make a linear transformation of the variables, such that the
new stochastic variables correspond to fluctuations in the two perpendicular eigen-
directions of the linearized system. In the slow eigen-direction, [1 -1] corresponding
to the eigenvalue, μ, fluctuations are large and slow compared to the fast and small
fluctuations in the perpendicular direction [1 1]. By combined application of FDT
on the two separated timescales an accurate analytical solution can be obtained (Elf
and Ehrenberg, 2003). Here we will only focus on the large and slow fluctuations
in the variable w = n1–n2. In this variable the state transitions and their rates are

w
k−→ w + 1 w

k−→ w − 1

w
μn1−→ w − 1 w

μn2−→ w + 1
(8.44)

The macroscopic rate equation for w is d 〈w〉/dt = k−k+μ 〈n2〉−μ 〈n1〉 = −μ 〈w〉.
That is, deviations in the difference decay exponentially with rate −A11 = μ. In
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steady state 〈n2〉 = 〈n1〉 ≡ 〈n〉 and the fluxes are J+ = J− = J = k + μ 〈n〉. The
FDT approximation for the variance in w then gives

σ2
w = −k + k + μn1 + μn2

−2μ
=

k

μ
+ 〈n〉 (8.45)

The fluctuations in the original variables n1 and n2 are σ2
n ≥ σ2

w

/
4, were equality

holds if the fluctuations in n1 and n2 are perfectly anti-correlated. The relative
fluctuations in the individual pools are thus σ2

/
〈n〉2 > k/4μ. This result indicates

very large fluctuation as shown in figure 8.2. The variance in w can also be
calculated exactly (Elf, 2004) using moment generating functions with the result
that σ2

w = k/μ + 〈n〉. The FDT result equation 8.45 is therefore exact because we
could change variables so that the rates are linear in the new variables.

Figure 8.2 Near-critical fluctuations. The system is simulated using the Gillespie-Doob
algorithm. The large fluctuations in n1 and n2 are anti-correlated such that k2n1n2 ≈ k.
Parameters: k = 600s−1, k2 = 0.001s−1, and μ = 2 · 10−4s−1.

The large fluctuations can in this case be explained by a multivariate version
of the argument behind the zero-order behavior above: an increase in n1 is com-
pensated by a decrease in n2 such that the total flow is unchanged. The same
phenomenon is predicted to occur in the pools of aminoacylated tRNA used as sub-
strates in protein synthesis. Here many different concentration combinations give
the same total rate of protein synthesis, such that the fluctuations in the individual
ternary complex pool can be very large (Elf and Ehrenberg, 2005a).

8.6 Negative Feedback of Replication Control

In some systems—including replication control, cell division, and central metabolic
pathways—fluctuations pose a threat that cells must carefully eliminate. The most
studied mechanism for noise suppression is perhaps negative feedback control,



8.6 Negative Feedback of Replication Control 167

where a random fluctuation to a higher concentration leads to lower synthesis rate
and forces the system back towards the average. Negative feedback is particularly
effective in systems that otherwise would display near-critical dynamics (Elf et al.,
2003; Paulsson and Ehrenberg, 2001), but its effects can also be significant in other
types of systems (Becskei and Serrano, 2000; Lahav et al., 2004; Swain, 2004).
Here we will focus on plasmid replication control as a model system but keep the
arguments general.

Plasmids are unrivaled model systems for noise suppression for several reasons:

1. The average plasmid loss rate—the risk that a plasmid-containing mother cell
gives rise to a plasmid-free daughter cell—increases drastically with random fluc-
tuations.

2. Plasmids self-replicate and would thus generate enormous fluctuations without
negative regulation, causing both high plasmid losses and slowed growth.

3. Most plasmid species have copy numbers of about 1–100 per cell, such low
numbers that spontaneous fluctuations could be substantial.

4. Numerous plasmid replication control systems only include two or three gene
products and have been as well characterized as λ phage. They also tend to be
more independent of background processes than almost any other cellular network.

For many plasmid species, an increase in the number of plasmid copies (n1)

increases the average synthesis flux (J+
2 ) of a replication inhibitor (n2) and thereby

decreases the plasmid replication flux (J+
1 ). The average dynamics can often be

modeled by:

d 〈n1〉
dt

=
〈
J+

1 (n1, n2)
〉− 〈

J−
1 (n1)

〉
and

d 〈n2〉
dt

=
〈
J+

2 (n1, n2)
〉− 〈

J−
2 (n1, n2)

〉
(8.46)

Both J+
1 and J−

1 are assumed proportional to n1 because every plasmid copy can
self-replicate (one molecule at a time) and because plasmid segregation in growing
populations can be qualitatively approximated by first-order degradation (again
eliminating one molecule at a time). Further assuming that J+

1 and J+
2 mono-

tonically decrease and increase with n2 and n1 respectively, the equations have
a stable steady state (Kurosawa et al., 2002) around which we can approximate
stationary variances using the fluctuation-dissipation theorem. To reduce the alge-
braic complexity we will here assume that the inhibitors are present in such high
numbers that they do not contribute their own plasmid-independent fluctuations
through noisy signaling (D22 = 0). This is not always a reasonable approximation
and it will certainly hide some interesting principles. However, a full analysis will
be published elsewhere, showing the effect of both noisy signaling and fluctuations
in environmental variables.
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Without any further assumptions or restrictions, the reinterpretation of the FDT
in section 8.4 then leads to

η11 =
σ2

1

〈n1〉2
≈ 1

〈n1〉 ×
(

H22

|H12H21| +
τ2

τ1

1

H22

)

≈ 1

〈n1〉 × 1

G︸︷︷︸
correcting

fluctuations

× T1 + T2

T1︸ ︷︷ ︸
inverse effect

of time-averaging

(8.47)

where τ1 is the generation time of the host cell and τ2 is the average lifetime of
the inhibitor (including dilution effects). The compounded parameters are defined
by G = −H12H21/H22, T1 = τ1/G, and T2 = τ2/H22. A high negative H21 means
that a relative increase in plasmid concentration gives a high relative increase in the
inhibitor synthesis rate. However, plasmids affect inhibitors by encoding their genes,
so there are few exceptions to J+

2 = kn1f(n2) for which H21 = −1. This is not only
true for constitutively expressed genes: if inhibitors would feed back on their own
synthesis, that would instead affect H22. A low H22 means that the ratio J−

2 /J+
2

is insensitive to changes in n2, so that the steady state average of n2 conversely
is sensitive to J−

2 /J+
2 . If inhibitors were made at constant rates per plasmid

copy and decayed exponentially, corresponding to J+
2 = kn1 and J−

2 = n2/τ2,
then H22 =1. If inhibitors instead were degraded by enzymes that operate close
to saturation, H22 could be arbitrarily close to zero (zero-order ultrasensitivity
(Elf et al., 2003)), and if inhibitors autorepressed their own synthesis, H22 could
be arbitrarily increased. A high H12 means that an increase in the inhibitor
concentration sharply turns off replication. Plasmids use numerous strategies to
increase H12, including multistep proofreading control, inhibitor multimerization,
and cooperative binding of inhibitors where H12 is the Hill coefficient far from
saturation.

The compounded parameter G = −H12H21/H22 is the total sensitivity gain over
the feedback loop. If G = 3, then a 1% change in the plasmid concentration would
eventually lead to a 3% change in the plasmid birth-to-death balance. The time
constants T1 = τ1/G and T2 = τ2/H22 determine how rapidly the plasmid changes
and how rapidly the inhibitor adjusts to the plasmid.

This is best illustrated by some examples. Several plasmids have been described
by

d 〈n1〉
dt

= λ1

〈
n1

K

K + nh
2

〉
− μ1 〈n1〉 and

d 〈n2〉
dt

= λ2 〈n1〉 − μ2 〈n2〉 (8.48)

In the first equation, λ1 is the frequency with which each plasmid copy attempts
to initiate replication, h is the Hill coefficient of inhibition, and μ1 is the dilution
rate due to cell growth. In the second equation, λ2 is the per plasmid inhibitor
synthesis rate, and μ2 is the sum of the dilution rate due to cell growth and the



8.6 Negative Feedback of Replication Control 169

inherent inhibitor degradation rate. The parameters in equation 8.48 relate to the
parameters in equation 8.47 as:

τ1 = μ−1
1

τ2 = μ−1
2

and
H22 = −H21 = 1

H12 = h 〈n1〉
K+〈n1〉

= h (1 − μ1/λ1)
(8.49)

If the inhibitors instead were degraded by a Michaelis-Menten mechanism, as

d 〈n2〉
dt

= λ2 〈n1〉 − μ1 〈n2〉 − μ2

〈
n2

K + n2

〉
(8.50)

then the effective H22 can be substantially lower. If the enzymatic degradation term
dominates over the first-order term, and the enzymes operate close to saturation, the
inhibitor displays zero-order ultrasensitivity (see section 8.5) (Elf et al., 2003) and
H22 approaches zero. This could reduce plasmid fluctuations greatly: a small relative
increase in the plasmid concentration will produce an enormous relative increase
in the quasi–steady state of the inhibitor, which leads to an enormous relative
decrease in the plasmid replication frequency. However, as seen in equation 8.47
increasing H−1

22 too much will eventually increase fluctuations. This is because
a higher H−1

22 will also slow down the dynamic response of the inhibitor, i.e., it
will take more inhibitor lifetimes τ2 before the inhibitor adjusts to its new quasi–
steady state after a change in plasmid concentration. Parameter G only represents
the effective gain over the loop if the inhibitor response is fast. If the inhibitor
has a finite response time, it will instead lag behind and depend on the history
of plasmid concentrations. The current inhibitor value is thus an effective average
over a history of plasmid concentrations—just like protein fluctuations average over
gene or mRNA fluctuations in equation 8.5—and therefore tends to display smaller
relative deviations from steady state. In other words, the inhibitor underestimates
the deviation from steady state and the response is weaker than it otherwise would
have been. The inhibitor time-averaging thus increases plasmid fluctuations. This
can be thought of in terms of corrections: tighter feedback loops (higher G) correct
spontaneous fluctuations more rapidly, but if inhibitors lag behind the corrections
are slowed on average.

The analysis above illustrates a few principles that are common to negative
feedback systems—the importance of zero-order effects, sensitivity amplification
and time-lags. However, numerous other principles are not accounted for in the
analysis above. The fact that inhibitors are made and degraded by inherently
stochastic mechanisms will produce a signaling noise that can enslave the plasmid.
In many systems, negative feedback can thereby increase fluctuations by introducing
its own randomness. For example, in gene expression autorepression of transcription
may increase the tendency to correct fluctuations, but would also introduce random
association and dissociation of the repressor to DNA, which can have enormous
randomizing effects (Paulsson, 2004; Tomioka et al., 2004).
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8.7 Noise Induced Transitions

8.7.1 Stochastic Focusing and Noise-Suppression-by-Noise

Plasmids with the replication control systems described in section 8.6 by equa-
tion 8.48 seem to be limited by G < h, that is, the total gain over the feedback
loop cannot be higher than the Hill coefficient of inhibition. Some of these plasmids
have further been suggested to use so-called hyperbolic mechanisms (Hill coeffi-
cient h = 1) and thus seem doomed to inefficient noise suppression. However, the
FDT approach is a so-called mean-field approximation and depends on linearized
responses. It can be qualitatively misleading in some nonlinear systems.

When inhibitors fluctuate rapidly (T1 � T2 in equation 8.47), the bivariate
master equation behind equation 8.48 can be replaced by a univariate master
equation for n1 and a conditional master equation for the probability P (n2|n1)

of n2 given n1. The simplest inhibitor dynamics that give rise to equation 8.48
are Poissonian synthesis with rate λ2n1 combined with exponential decay with
rate μ2n2. This would generate a Poissonian conditional probability P (n2|n1) with
conditional average 〈n2〉 = λ2n1μ

−1
1 . If we assume that the probability that a

replication attempt is successful is given by the hyperbolic function

q (n2) =
K

K + n2
(8.51)

then the true average q is

〈q |n1 〉 =

∞∑
n1=0

q (n2) P (n1 |n2 ) �= q (〈n2〉) (8.52)

This reflects the fact that 〈q|n1〉 receives a disproportional contribution from the
left tail of the distribution where n2 is low. However, not only the actual value is
affected, but also the normalized sensitivity to changes in n1. Even with simple
Poisson fluctuations, the inhibition function above with Hill coefficient of h = 1 can
locally behave as if h = 2 or higher. That is, it is possible to have

G = −∂ ln (〈q |n1 〉)
∂ ln (n1)

� 1 (8.53)

The low-copy noise can thus make for a more sharply changing function. This can be
understood as follows: The probability that the next inhibitor event is a birth rather
than death is λ2n1 (λ2n1 + μ2n2)

−1. The probability that n2 randomly walks away
from its average 〈n2〉 = λ2n1μ

−1
1 to the lower values where the nonlinear 〈q|n1〉

receives a disproportional contribution thus depends on the birth intensity λ2n1

at every step. The concentration n1 thus affects multiple transitions, and the fi-
nal effect is indeed similar to other schemes for multistep sensitivity amplification
(Ehrenberg and Blomberg, 1980; Freter and Savageau, 1980), like kinetic proofread-
ing (Hopfield, 1974; Ninio, 1975). This principle was called stochastic focusing in
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biochemistry (Paulsson et al., 2000; Paulsson and Ehrenberg, 2001). It is a type
of noise-induced transition (Horsthemke and Lefever, 1984) and reminiscent of the
nonlinear effect in the bimolecular rate r = λn2 where 〈r〉 = λ

(
〈n〉2 + σ2

n

)
as

pointed out early in the literature on stochastic chemistry (Renyi, 1954). If x rep-
resents the protein from the gene expression model in section 8.3 we can tune the
rates of transcription and translation in such ways that the average 〈n〉2 goes down
but the variance σ2

n goes up so much that the sum 〈n〉2 + σ2
n actually increases.

The average rate of the bimolecular reaction could then go up even if the average
concentration went down. This again means that the effective nonlinearities can be
modulated almost arbitrarily by modulating the fluctuations around an average.

So far we only looked at how the underlying fluctuations affect the average value
of the nonlinear function, but they also affect fluctuations in the same. The effect
much depends on the relative timescale of fluctuations. If the inhibitor fluctuations
above are fast compared to the lifetime of the plasmid (τ2 �τ1), then only the
conditional average of q will have an effect on the plasmid dynamics. This is because
only persistent fluctuations enslave dependent processes. However, if the inhibitor
fluctuations are not fast enough, then inhibitor fluctuations can have disastrous
consequences for the plasmid regulation, drastically widening the distributions. This
phenomenon is analyzed in more detail in (Paulsson and Ehrenberg, 2000).

There is also another timescale that is important in this context. The hyperbolic
function above comes from a condensation of uni- and bimolecular reactions. For
many plasmids, the initiation frequency λ2 is the rate with which they enter an
intermediate state I from which they then decide to continue with replication or
abortion, according to

I kr−→ replicate
kan2 ↓

abort

(8.54)

The probability for replication is then

q =
kr

kr + kan2
=

K

K + n2
(8.55)

The averaging in equation 8.52 thus implies that the inhibitor number n2 remains
constant for the duration of the event. If the inhibitors fluctuate infinitely fast,
the abortion rate would simply be ka 〈n2〉 and the stochastic focusing effect would
disappear (this effect was discussed in more mathematical detail in (Paulsson et al.,
2000; Paulsson and Ehrenberg, 2000). For plasmids to exploit stochastic focusing
for noise suppression, there are thus two restrictions on the timescales: Inhibitor
fluctuations must be much slower than the duration of the individual event to
affect the average inhibition (including diffusion), and much faster than plasmid
fluctuations to avoid randomizing the same. Both conditions seem satisfied for
the best characterized plasmids. Plasmids change on a timescale on the order of
hours, inhibitors change on the order of a few minutes, and the chemical decision
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in equation 8.54 takes about 10–20 seconds. The inhibitors are small RNAs and
probably capable of diffusing many times across the cell during this time.

For applications to other systems, it may also be worth mentioning that the
hyperbolic control function also can arise from

on
kana

�
�

kd
off (8.56)

where na is the number of available repressor molecules. There is a subtle difference
though. Immediately after the repressor has fallen off, there is at least one repressor
molecule in the system. This affects the distribution of repressor molecules slightly.
If the repressors are made in a Poisson process and decay exponentially, this subtlety
is in fact enough to entirely abolish the stochastic focusing effect due to detailed
balance constraints. However, if the inhibitors display other and perhaps more
realistic types of fluctuations, for example if they are produced in bursts, then
stochastic focusing can have large effects on mechanisms like equation 8.56. For a
more detailed analysis see (Berg et al., 2000b).

Signal noise can thus in principle be used to make control more regular and
deterministic—even in the simplest monostable negative feedback systems without
sensitive bifurcations. It does require a separation of timescales, which rules out
some candidate mechanisms, but is still a very real possibility in some of the best
characterized negative feedback systems, like replication control of plasmids R1 or
ColE1. It can also be used to create bistability in mechanisms that otherwise would
be doomed to monostability. For example, macroscopic analyses of some mutually
repressive systems have shown that hyperbolic repression functions (equation 8.55)
are not sensitive enough to generate bistability (Cherry and Adler, 2000; Gardner
et al., 2000). That conclusion no longer holds true when spontaneous fluctuations in
concentrations are taken into account; stochastic focusing can make the hyperbolic
functions sensitive enough to support bistability.

8.7.2 Noise-Induced Escape from Macroscopic Attractors

Some biochemical systems can exhibit distinctly different, self-perpetuating states
depending on previous stimuli (Angeli et al., 2004; Ferrell Jr., 2002; Monod and
Jacob, 1961; Ozbudak et al., 2004)—including irreversible developmental switches
in the cell cycle (Tyson et al., 2001), the maturation of oocytes (Xiong and Fer-
rell Jr., 2003), the ubiquitous phosphorylation switches in signal transduction path-
ways (Bhalla et al., 2002), and the lysis-lysogeny decision system of phage lambda
(Ptashne, 1992). The attractors in these multistable systems are by definition lo-
cally but not globally stable. A series of random fluctuations—originating in the
random births and deaths of individual molecules—can thus force the system to
escape one basin of attraction and allow it to be captured by another (Erdi and
Tóth, 1989; Horsthemke and Lefever, 1984; Kramers, 1940). Depending on the size
of the fluctuations and the strength of the local stability, the escape rates can be
arbitrarily low. For example, the probability for phage lambda to spontaneously
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switch from a lysogenic to a lytic stage is on the order of 10−8 per generation
(Aurell and Sneppen, 2002). Seen across large populations, however, this can still
be a large enough number to have dramatic consequences for the population as a
whole. In addition to spontaneous escapes from a given attractor, there is also a
probabilistic initial choice of attractor when an infecting phage commits to either
lysis or lysogeny, something that has been extensively studied using Monte Carlo
sampling (Arkin et al., 1998).

The escape between distant attractors can not be analyzed by local linearized
models, including FDT, since the escape characteristics mostly depends on what
happens in between the attractors. Analytical approximations can sometimes be
useful to characterize the escape rates (Aurell and Sneppen, 2002), but often
numerical methods are the only practically useful way to study global dynamics
of these systems. Straightforward Monte Carlo sampling typically converges too
slowly for such problems, though, and the full master equation typically has too
many states for direct integration. An attractive alternative is to approximate the
master equation by a Fokker-Planck equation (FPE) (Risken, 1984), which is a
partial differential equation for the time-dependent probability density function.
The FPE approximation is good when the probability distribution function varies
smoothly over state space. Since the FPE is non-local it can be used to analyze
escape from macroscopic attractors (Qian et al., 2002), and it is also suitable for
numerical integration using the extensively refined methods developed for partial
differential equations (Ferm et al., 2004).

An example of FPE integration for a noise induced escape from a macroscopic
attractor is illustrated in figure 8.3. In this example a trajectory that escapes the
macroscopic point-attractor ends up in a limit cycle attractor in a model of a
circadian oscillator (Vilar et al., 2002). Many organisms have evolved internal clocks
to keep track of time. These are often based on biochemical oscillators that then
must be resistant to some environmental and internal cues (Barkai and Leibler,
2000; Mihalcescu et al., 2004). One possible mechanism for generating a circadian
oscillator is to use a transcriptional activator protein that promotes both its own
expression and the expression of a repressor protein which in turn sequesters the
activator. Vilar et al. present a quantitative model for such a system including
the activator and repressor proteins, their respective mRNAs, the activity state
of their promoters, and the activator-repressor complex. The model is reported
to display regular oscillations in activator activity, even for relative large internal
fluctuations in the levels of some of the chemical species (Vilar et al., 2002). In
fact, for some parameters, internal fluctuations can drive the oscillation even if
the corresponding macroscopic system has a single stable nonoscillating attractor.
Rather than destroying the regular oscillations, the random fluctuations thus make
them possible. This is illustrated in figure 8.3.
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Figure 8.3 Noise induced oscillations. In A we see an example of the time evolution
of two components of the circadian clock system with repressor (solid) and activator-
repressor complex (dashed) in a macroscopic (gray) or a stochastic (black) model. The
macroscopic model settles in a steady state whereas the stochastic model oscillates. In B
we see the time evolution of the whole probability density function (PDF) as modeled by
the Fokker-Planck approximation of the master equation. Initially the PDF was localized
close to the macroscopic attracting stationary state. Throughout the time evolution the
FPE was adaptively discretized as indicated by the grids (Ferm et al., 2004). The equations
and parameters are those given for the bivariate RC-system by (Vilar et al., 2002) except
for δR=0.1h−1.
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Notes

1. By homogeneous we mean that each molecule has an equal probability to be
anywhere in the volume on the timescale of the chemical reactions that change the
state (see chapter 9).

2. One component always turns into another in chemical reactions, but in
condensed descriptions some species are approximated as constant sources or sinks
of matter and not included as state variables.





9 Kinetics in Spatially Extended Systems

Karsten Kruse and Johan Elf

From cells to tissues and organisms, biological systems display spatially inhomoge-
neous structures. They result from processes in which the time for the transport
of proteins across the whole system is long compared to typical reaction times.
In this chapter, theoretical approaches for describing the dynamics of such sys-
tems are presented. In the first part, continuum descriptions in terms of partial
differential equations are discussed. Such a description is appropriate if one is in-
terested in the dynamics on scales that are large compared to molecular length
scales as, for example, interaction distances of single molecules. In this context, a
key concept is that of currents, which account for the transport of particles. Several
techniques for deriving expressions for currents are discussed. On smaller scales,
the discrete nature of the molecules cannot be neglected and a stochastic descrip-
tion is required. In particular, this is the case when a molecule has only a few
potential reaction partners within the diffusion range. A stochastic description in
terms of the reaction-diffusion master equation is presented in the second part of
this chapter. It is a generalization of techniques presented in chapter 8 to account
for inhomogeneous particle distributions. As will be shown, in the limit of many
reactants within the diffusion range, the reaction-diffusion master equation is well
approximated by a continuum description. The different approaches are illustrated
by application to the Min-system of the bacterium Escherichia coli as well as other
subcellular systems.

9.1 Continuum Descriptions

Continuum theories describe the dynamics of spatially extended systems on scales
that are large compared to molecular scales (Landau and Lifshitz, 1995). In such
a description, the discrete nature of the single molecules forming the system is
neglected. Instead, the state of the system is given in terms of continuous functions
of space and time, the fields1. In the simplest case, the fields represent densities,
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for example of proteins. In addition, they can represent additional features of the
molecules involved, for example the mean orientation of elongated molecules like
cytoskeletal filaments. The fields are linked to microscopic representations of the
system state in terms of individual molecules by local averages. Local averages are
performed over volume elements that are small compared to the length scales of
the structures one is interested in, but large enough to contain a sufficient number
of particles such that spatial fluctuations within a volume element are negligible.

Example: Min-oscillations. Division of the bacterium Escherichia coli usually
occurs in the cell center leading to two daughter cells of equal size. Selection
of the center as the division site is in part achieved by the Min-system which
consists of three proteins, MinC, MinD, and MinE (de Boer et al., 1989; Bi
and Lutkenhaus, 1993). While MinC inhibits assembly of the division apparatus
on the cytoplasmic membrane, MinD and MinE regulate the spatial distribution
of MinC. Fluorescence microscopy of Min-proteins tagged with green fluorescent
protein (GFP) has revealed that the distributions of the Min-proteins change
periodically with time (Raskin and de Boer, 1999b; Hu and Lutkenhaus, 1999;
Raskin and de Boer, 1999a; Hale et al., 2001). During one half of the period, most
proteins are localized in one cell half, while during the other half of the period they
predominantly reside in the opposite cell half. The oscillation periods vary from
cell to cell and range from 40 seconds to 120 seconds. As a consequence of the
oscillations, MinC suppresses formation of the division apparatus close to the cell
poles, but not in the center. The oscillations are generated by MinD and MinE alone,
while MinC oscillates because it co-localizes with MinD. Over the last few years,
several continuum descriptions of the Min-protein dynamics have been developed
(Meinhardt and de Boer, 2001; Howard et al., 2001; Kruse, 2002; Huang et al.,
2003; Drew et al., 2005; Meacci and Kruse, 2005). In these descriptions, the fields
are given by the surface densities of MinD and MinE on the cytoplasmic membrane
and the volume densities of MinD and MinE in the cytoplasm. As the distribution
of MinC is directly related to the distribution of MinD, it is not incorporated.

In a continuum description, the dynamics of the fields is commonly given by
partial differential equations2. The dynamic equations depend on a number of
phenomenological parameters. While the values of these parameters are determined
by details of the molecular interactions, the form of the dynamic equations is largely
independent of these details. Rather, it is imposed by the symmetries displayed by
the system. For example, the equations must transform correctly if the system is
rotated3; see sect. 9.1.3 for further discussion of the role of symmetries. Hence,
on large scales the system’s behavior is independent of most properties of the
microscopic molecular interactions.

As an example, consider fluid water. Water molecules are characterized by their
charge distribution, and their interactions involve dipole-dipole interactions and
hydrogen bonds. For most practical purposes, however, the flow of water can be
described by the Navier-Stokes equation (Landau and Lifshitz, 1995). Neglecting
the very weak compressibility of water, this equation contains only two parameters,
the water density and the shear viscosity. The same equation also describes the
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flow of all other simple fluids which may consist of molecules very different from
water. The implications of these differences for the dynamics on large scales are
fully captured by distinct numerical values of the phenomenological parameters.
Therefore, appropriate continuum descriptions of spatially extended systems can be
obtained from much less information than is needed for microscopic descriptions.
On a more technical level, continuum descriptions in addition permit the use of the
powerful methods of differential calculus for analysis. Taken together, these points
make continuum descriptions an extremely helpful tool to investigate mechanisms
underlying the formation of spatiotemporal structures.

In the following, general principles that guide the formulation of continuum de-
scriptions will be presented. Before continuing with the general discussion, however,
first the very important class of reaction-diffusion systems is introduced.

9.1.1 Reaction-Diffusion Systems

In his groundbreaking paper on the chemical basis of morphogenesis, Turing intro-
duced the idea that the diffusion of particles together with chemical reactions can
lead to the formation of spatiotemporal patterns (Turing, 1952). Having biologi-
cal systems in mind, Turing suggested that these patterns might be at the origin
of structures in living systems such as the regular arrangement of the tentacles
of hydra. In fact, the formation of compartments in Drosophila and calcium dy-
namics in cell aggregates as well as within cells have been successfully described
using a reaction-diffusion approach (Cross and Hohenberg, 1993; Koch and Mein-
hardt, 1994; Falcke, 2004). The application of reaction-diffusion systems to describe
intracellular protein dynamics is a more recent development.

In a reaction-diffusion system each field represents the density of one particle
species. The different species can, for example, represent different kinds of molecules
or different states of one kind of molecule. The reaction terms correspondingly
describe reactions involving the different molecules or transitions between the
different states. In their most general form, the dynamics of two interacting species
is described as

∂

∂t
c1(r, t) = D1∇2c1(r, t) + u1(c1, c2) (9.1)

∂

∂t
c2(r, t) = D2∇2c2(r, t) + u2(c1, c2) (9.2)

Here, ci(r, t), i = 1, 2 denotes the densities of the two species at a point r = (x, y, z)

in space4and at time t. The operator ∂/∂t denotes the partial derivative with respect
to time, that is a derivative with respect to time while the space coordinates are
kept constant. The first terms on the right hand sides describe particle diffusion.
The parameters Di are the respective diffusion constants and ∇2 is the Laplace-
operator. In three spatial dimensions, ∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2. Here ∂2/∂x2

is the second partial derivative with respect to x and so on. The form of the diffusion
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term will be derived below. The functions ui depend on the densities and account
for the reactions in the system.

Example: Min-oscillations. Several models for the dynamics of the Min-
proteins fall into the class of reaction-diffusion systems (Meinhardt and de Boer,
2001; Howard et al., 2001; Huang et al., 2003; Drew et al., 2005). There, cytosolic
MinD and MinE diffuse, while diffusion of membrane-bound proteins is usually
neglected. The reaction terms account for the exchange of proteins between the
cytoplasm and the membrane. It was shown in vitro that the ATPase MinD has a
high affinity for the inner bacterial membrane if ATP is present (Hu et al., 2002).
Furthermore, for concentrations of MinD exceeding a critical value, filamentous
MinD aggregates are formed on the membrane. MinE associates with the membrane
only in the presence of MinD. There, it stimulates hydrolysis of the ATP bound
to MinD, which eventually drives the proteins off the membrane. These results are
compatible with the behavior of MinD and MinE in vivo. Several different reaction
schemes have been developed that incorporate these findings. As an example,
consider the model proposed by Huang et al. (2003). There, binding of MinD to the
membrane is assumed to be cooperative, leading to the aggregation of membrane-
bound MinD. The binding of MinE to the membrane is described by a second order
process involving the concentration of membrane-bound MinD. On the membrane,
MinE is assumed to exist only in complexes with MinD. Finally, the release of
MinDE complexes is described as a first order process. Explicitly, the dynamic
equations are

∂tcD = DD∂2
xcD − [ωD + μdD(cd + cde)]cD + ωdecde (9.3)

∂tcE = DE∂2
xcE + ωdecde − ωEcdcE (9.4)

∂tcd = −ωEcdcE + [ωD + μdD(cd + cde)]cD (9.5)

∂tcde = −ωdecde + ωEcdcE (9.6)

For simplicity, the dynamic equations are given here in one spatial dimension and
in the limiting case of immediate rebinding of ATP to MinD after it is released
from the membrane. The distributions of cytosolic MinD and MinE are denoted by
cD and cE , while cd and cde denote the densities of membrane-bound MinD and
MinDE complexes, respectively. The remaining parameters denote rate constants
for the different reactions. Note that in agreement with experimental results, the
above equations conserve the numbers of MinD and MinE proteins.

The behavior of a reaction-diffusion system is determined by the values of the
diffusion constants and of the various rates. An analysis of the dynamic equations
9.1 and 9.2 usually starts with the identification of spatially homogeneous stationary
states, ci(r, t) = c

(0)
i for all r and t (Cross and Hohenberg, 1993). For such a state,

the time and space derivatives appearing in the dynamic equations vanish such
that ui(c

(0)
1 , c

(0)
2 ) = 0 for i = 1, 2. Then, the stability of these states with respect

to perturbations is analyzed. The basic idea is the same as for ordinary differential
equations (chapter 6), but in the present context, the perturbation can depend on
the space coordinate.
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For the stability analysis, the perturbed distribution is written as ci = c
(0)
i +δci. If

the state is stable, the perturbation decays with time. In the opposite case, it grows
and a pattern is formed. Inserting the above expression into the dynamic equations
yields the time-evolution of the perturbation δci. If the initial perturbation is small,
only terms linear in δci have to be retained; non-linear terms are much smaller and
can therefore be neglected. This leads to

∂

∂t

(
δc1

δc2

)
= L

(
δc1

δc2

)
(9.7)

Here, the linear operator L is given by

L =

(
D1∇2 + u11 u12

u21 D2∇2 + u22

)
(9.8)

The constants uij with i, j = 1, 2 are defined as uij = ∂ui/∂cj , where the derivatives
are evaluated at ci = c

(0)
i .

To proceed further, the densities are decomposed into eigenmodes of the linear
operator L. The effect of L on an eigenmode φ is to multiply the mode with a
constant λφ, the corresponding eigenvalue. Explicitly, Lφ = λφφ. For an eigenmode,
the dynamic equation

∂

∂t
φ = Lφ = λφφ (9.9)

is readily solved

φ(r, t) = exp(λφt)φ(r, 0) (9.10)

where φ(r, 0) is the initial perturbation at time t = 0. If the eigenvalue λφ has
a negative real part, the mode will decay exponentially in time. In the opposite
case, it will grow. The homogeneous state is, in this case, unstable under the
corresponding perturbation, and a pattern will form. Parameter values for which
the maximum of the eigenvalues’ real parts becomes positive indicate a bifurcation
or instability. In the vicinity of an instability, the pattern is well described by the
unstable eigenmode. If the corresponding eigenvalue is real, the instability leads to
a spatially nonhomogeneous pattern that is stationary in time. In the opposite case,
the pattern will oscillate in time (Cross and Hohenberg, 1993).

For systems of a finite size, the determination of the eigenmodes and eigenvalues
of the differential operator L is usually difficult. Therefore, an analysis is often
carried out first assuming an infinite system size. Then, the perturbations can be
decomposed into Fourier modes ck with

δc(r, t) =

∫ ∞

−∞

dk

2π
ck(t)eik·r (9.11)
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Figure 9.1 Schematic representation of the linear growth rate Reλk as a function of
the wave number k. Graphs in one diagram can be obtained by changing a suitable
phenomenological parameter in the dynamic equations. For the case displayed in a), the
instability occurs at a finite wave number, in b) and c) at k = 0, respectively implying a
periodic state and a homogeneous state right after the instability.

Inserting this expression into equation 9.7, the dynamics of each mode is governed
by a 2 × 2 matrix Lk with

Lk =

(
−D1k

2 + u11 u12

u21 −D2k
2 + u22

)
(9.12)

The eigenvalues of this matrix are

λk =
1

2

[
trLk ±

√
(trLk)2 − 4 detLk

]
(9.13)

where trLk = −(D1+D2)k
2+u11+u22 is the trace and detLk = (D1k

2−u11)(D2k
2−

u22)− u12u21 is the determinant of Lk. Stability requires the real parts of λk to be
negative for all values of k.

As a function of the mode number k, the real parts of the eigenvalues will show one
of the functional behaviors indicated in figure 9.1. At an instability, the wave number
of the critical mode kc as well as the imaginary part of the critical mode’s eigenvalue
can be zero or non-zero. This leads to essentially three classes of patterns that are
formed at an instability: stationary patterns with a characteristic spatial wavelength
and oscillatory patterns with or without a characteristic spatial wavelength (Cross
and Hohenberg, 1993). Beyond the instability, the non-linear terms can no longer be
neglected. Often one then has to fall back upon numerical solutions of the dynamic
equations.

Summarizing, a linear stability analysis can give a rough understanding of the
system behavior as a function of the system parameter without the need of explicitly
solving the dynamic equations. If there are more than two densities involved, an
analytic calculation of the eigenvalues is in general not possible. However, it is no
problem to obtain them in this case numerically.

Example: Min-oscillations. The homogeneous stationary state of the dynamic
equations 9.3 to 9.6 is determined by the roots of a polynomial. For each value of
the parameters it is unique and has to be determined numerically. The eigenvalue
with the largest real part as a function of the wave-number k is shown in figure 9.2.
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Figure 9.2 Analysis of the dynamic equations 9.3 to 9.6. a) Real (solid line) and
imaginary (dashed line) part of the eigenvalue with the largest real part as a function
of the wave number k. In an interval of k-values, the real part is positive. At the same
time the imaginary part is non-zero in this range, indicating an oscillatory instability. The
gray dotted line indicates Re λk = 0. b) Space-time plot of the total MinD-distribution
obtained from a numerical solution of the dynamic equations. The density is color coded
with brighter gray levels indicating a higher density. MinD periodically shifts from one
end to the opposite end.

The real parts are positive in an interval in which their imaginary part does not
vanish. The instability is thus oscillatory. Correspondingly, a numerical solution of
the dynamic equations yields a distribution that changes periodically in time.

9.1.2 Densities and Currents

The reaction-diffusion equations 9.1 and 9.2 are a special case of a continuity
equation. The structure of a continuity equation reflects that at a given point in
space, the number of molecules in a small volume element can change because of two
possible events. First, particles can be transported into or out of this volume element
and second, particles can be created or destroyed within the volume element. This
applies to all conserved quantities5 (de Groot and Mazur, 1984).

Transport across the surface of a volume is described by currents. They give
the number of particles traversing a surface element per unit time. A current j is
a vector with components ji, where i indicates the three directions x, y, and z.
Each component ji is the current through a surface element perpendicular to the
direction i. The net change of particle number in a small volume element is then
obtained from the divergence of the corresponding current

∇ · j =
∂

∂x
jx +

∂

∂y
jy +

∂

∂z
jz (9.14)
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Figure 9.3 Change in particle number due to particle transport in one dimension.
The current at x is jx(x), the current at x + dx is jx(x + dx). The current is counted
positive if directed to the right. The net change in particle number n per unit time
is then the difference between the currents across the left and the right boundary of
the interval, dn/dt = jx(x) − jx(x + dx). Replacing the particle number by the density
c through n = c dx and taking the limit dx → 0 one obtains ∂c/∂t = −∂j/∂x. For
example, in the case of diffusion we have j = −D∂c/∂x, such that the diffusion equation
is ∂c/∂t = D∂2c/∂x2. In higher dimensions the contributions of all directions have to be
summed leading to expression 9.14.

See figure 9.3. Here, ∇ is the gradient operator with ∇ = (∂/∂x, ∂/∂y, ∂/∂z) in
three dimensions. Creation or destruction of particles is captured by source and
sink terms s.

Hence, the continuity equation for the evolution of a particle density has the form

∂

∂t
c + ∇ · j = s (9.15)

In the reaction-diffusion equations 9.1 and 9.2, the current is a consequence of
diffusion. It is given by −Di∇ci, whereas the source and sink terms are given by
the reaction terms ui with i = 1, 2.

While the source and sink terms are usually given by kinetic equations for the
reactions taking place in the system, there is no generally applicable procedure or
framework for deriving expressions for the currents. As will be discussed in section
9.2, currents can be derived from microscopic descriptions by applying a mean-
field approximation and then coarse-graining. Other approaches to the currents
are phenomenological and do not require a microscopic model. At the system
boundary, additional specifications have to be made. In situations where the system
is confined by an impenetrable wall, currents across the system boundary have to
vanish. In other situations, there might be a constant influx into the system, fixing
the value of the current to a constant value. This would be the case for proteins
that are generated at a constant rate in a source that is located at the system
boundary. In more complicated situations, the current at the boundary depends on
the present state of the system. An example is provided by cell walls containing
receptor molecules to which proteins can bind. Here, the binding rate will depend
on the occupancy of the receptors and probably on the presence of other molecules.

Before presenting the phenomenological approach, let us mention again that a
continuum description will in general also contain fields of nonconserved quantities.
An example is the orientation of cytoskeletal filaments. Obviously, there are no
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currents associated with such quantities, and their time evolution is consequently
not given by a continuity equation. However, the same strategies that are used to
obtain expressions for the currents can also be applied to the rate of change of these
fields. Therefore, they will not be discussed explicitly in the following.

9.1.3 Phenomenological Currents

While there is no generally applicable framework for deriving phenomenological
expressions for the currents, there are some universal constraints on possible
expressions. They follow from the symmetries displayed by the system (Nicolis and
Prigogine, 1977; de Groot and Mazur, 1984; Chaikin and Lubensky, 1995). First
of all, if a cause is invariant under the action of a spatial symmetry operation like
rotation or reflection, then the same must be true for any effects due to this cause.
This condition is expressed by the Curie principle which furthermore states that if
an effect is not invariant under a certain symmetry operation then neither can be the
cause. One consequence of this principle is, for example, that the directed motion
of molecular motors is only possible because actin filaments and microtubules are
polar, that is because they have two different ends.

A second symmetry that imposes constraints on phenomenological theories is
the invariance under time-reversal of the microscopic equations of motion. That
is, even though the expressions in a macroscopic description may not be derived
from a microscopic description, the universal property of time-reversal invariance
of the microscopic equations of motion imposes constraints on these expressions.
This remarkable point was made by Onsager, who showed that for certain systems,
different phenomenological parameters are intimately related (Onsager, 1931a,b).

At thermodynamic equilibrium, a system is described by a set of macroscopic
state variables like temperature, volume, and particle number (Chaikin and Luben-
sky, 1995). The free energy F is a function of these variables. The equilibrium state
is the one that minimizes the free energy F , while respecting the constraints im-
posed on the system. If a constraint is released, the system will evolve towards a new
equilibrium state that is determined by a minimum in the free energy respecting
the new constraints.

The dynamics of systems out of thermodynamic equilibrium, but sufficiently
close to it, can still be obtained within a generally applicable framework. More
precisely, it applies to situations, where each of the volume elements introduced
above can be assumed to be in thermodynamic equilibrium. In this case, a free
energy F of the total system can be defined by summing the free energies associated
with the individual volume elements. Changes in the system’s free energy can
then be expressed in terms of products of currents and associated causes, often
called generalized thermodynamic forces. The currents are naturally functions of
the generalized forces. In particular, if there are no forces there will be no currents.
An expansion of the currents in terms of the forces thus starts with the linear terms.
Keeping only these, one obtains phenomenological dynamic equations (de Groot
and Mazur, 1984; Chaikin and Lubensky, 1995). The phenomenological parameters
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appearing in the expansion are called linear response coefficients and depend in
general on the state of the system.

Example: Diffusion. Consider the case of a single species of noninteracting
molecules at constant temperature and constant pressure. Then the free energy per
unit volume f only depends on the particle density c, f ≡ f(c). Consequently,

d

dt
F =

∫
dr

∂

∂t
f(c) =

∫
dr (

∂

∂c
f)

∂

∂t
c

= −
∫

dr μ∇ · j =

∫
dr j · ∇μ

In this calculation, the continuity equation 9.15 with vanishing source terms has
been used and the chemical potential μ = ∂f/∂c has been introduced. The chemical
potential gives the change in free energy upon addition of a particle to the system.
Expressing the current j in terms of the generalized force ∇μ one finds in linear
order

j = −Λ∇μ (9.16)

where Λ is the phenomenological coefficient describing the response of the system,
that is the current, to a gradient in the chemical potential. As the free energy, the
chemical potential is a function of the particle density. Defining D = Λ∂μ/∂c, the
diffusion current can then be cast in the familiar form

j = −D∇c (9.17)

where D is the diffusion constant. The minus sign in equation 9.16 has been
introduced to obtain D > 0. For an ideal gas μ(c) = kBT ln c, where kB is the
Boltzmann constant and T temperature. Since Λ/c = ξ−1 is the mobility of a
particle, one finds Dξ = kBT , which is the well-known Einstein relation (de Groot
and Mazur, 1984).

Example: Molecular motors. As an example of nondiffusive transport con-
sider the motion of molecular motors (Alberts et al., 2002). These proteins use the
energy derived from ATP-hydrolysis to move along cytoskeletal filaments. Exam-
ples are kinesins that transport vesicles along microtubules or myosins that together
with actin form the contractile machinery in muscles. The motion of motors along
a filament is directional, where the direction of motion is determined by the orien-
tation of the filament. For these motors, the current is given by j = vcmot, where
cmot is the motor density and v is the average motor velocity. The motion of mo-
tors is driven the hydrolysis of ATP, but also by external forces. Hydrolysis of ATP
occurs in the presence of a difference Δμ in the chemical potentials of ATP and its
hydrolysis products ADP and Pi. The associated rate is denoted r. The change in
free energy is f ·v + r Δμ and an expansion of v and r in terms of f and Δμ yields
in linear order (Jülicher et al., 1997)
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v = λ11f + λ12Δμ (9.18)

r = λ21 · f + λ22Δμ (9.19)

Note, that λ12 couples a vector quantity and a scalar quantity and must therefore
be itself a vector illustrating the Curie principle. As mentioned above, the cross
coefficients λ21 and λ12 are not independent of each other. In fact, the Onsager
relations impose in the present case λ21 = λ12.

There are situations in which the general framework indicated above is not suffi-
cient for obtaining appropriate expressions for the currents. First of all, interactions
with the environment can lead to anomalous diffusion. This would be, for example,
the case when proteins get trapped in small regions of space with corresponding
dwell times that are algebraically distributed, that is, the probability of having a
large dwell time t is proportional to t−(1+γ) with 0 < γ < 1. Another example is
provided by particles moving on DNA that folds back on itself. As the particles
detach from the DNA, diffuse through three-dimensional space and reattach at a
different location on the DNA, the effective motion along the one dimensional DNA
can be anomalous (Berg et al., 1981; Brockmann and Geisel, 2003). Such processes
can be described in the frame of continuous time random walks (Montroll and
Shlesinger, 1984). Secondly, systems can be far from thermodynamic equilibrium.
Even though it is in general hard to measure the distance to thermodynamic equi-
librium, presumably most people would tend to say that living cells are far away
from it. Still, one might argue that the theory presented so far should in many
situations describe the dominant effects. There are, however, situations in which
linear terms are absent or dominated by non-linear terms such that more general
expressions are needed.

Example: Attractive interactions. In the case of an attractive interaction
between proteins, macroscopic currents are induced by gradients in the protein
density. In contrast to the case of diffusion, however, the current will be directed
towards higher concentrations. One might therefore be tempted to describe the
aggregation process by a diffusion equation with negative diffusion constant. This
equation is unphysical for several reasons. First of all, it can lead to negative
densities. Secondly, infinite particle densities can be generated in finite times.
Finally, it generates structures on arbitrarily fine length scales. All these problems
can be avoided by modifying the diffusion current such that

j = c(cmax − c)(k1∂xc + k2∂
3
xc) (9.20)

with k1, k2 > 0. For simplicity, it has been assumed in this expression that
the motion of particles is confined to the x-axis. The pre-factor c prevents the
appearance of negative densities, while the pre-factor cmax − c prevents the density
from growing beyond any limit by introducing a maximal density cmax. Finally, the
third order derivative avoids the formation of structures on arbitrarily small length
scales.
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Figure 9.4 Space-time plot of the total MinD distribution on the membrane obtained
from a numerical solution, the dynamic equations 9.21 and 9.22. Results are shown for a
system size of L0 = 2μm (a) and 2L0 (b), revealing the period doubling characteristic
for the Min-oscillations in longer bacteria. The density is color coded with brighter gray
levels indicating a higher density. Modified from (Meacci and Kruse, 2005).

Example: Min-oscillations. For the Min-oscillations a mechanism has been
proposed that is based on an attractive interaction of membrane-bound MinD
(Kruse, 2002; Meacci and Kruse, 2005). This attraction is assumed to be the
dominant process for the formation of MinD aggregates. Assuming homogeneous
cytosolic distributions CD and CE of MinD and MinE, respectively, the dynamics
of the Min-system reduces to the evolution of the densities of MinD and MinDE
complexes on the membrane. Explicitly,

∂tcd = ωDCD(cmax − cd − cde) − ωECEcd − ∂xj (9.21)

∂tcde = −ωdecde + ωECEcd (9.22)

Here, the aggregation current j is chosen to be of the form of equation 9.20. The
reaction terms describing attachment of MinD and MinE to the membrane and
detachment of MinDE complexes from the membrane are linear in the membrane
densities (CD and CE are constants). A linear stability analysis of the homogeneous
state can be performed analytically in this case. It reveals a critical value k1,c

for the parameter k1 such that the homogeneous state is unstable for k1 > k1,c.
Furthermore, if the condition ω2

de < ωDωECDCE is met, then the instability is
oscillatory and oscillatory solutions reminiscent of the Min-protein oscillations are
obtained; see figure 9.4.

9.2 Stochastic Treatment of Nonhomogeneous Chemical Reactions

As stated above, continuum descriptions are appropriate only if the molecular
densities are large enough, so that each molecule has many potential reaction
partners within the diffusion range. If they are too few, then the discrete nature
of the molecules becomes apparent and a stochastic description is required. In
the derivation of the master equation in chapter 8 it was assumed that the spatial



9.2 Stochastic Treatment of Nonhomogeneous Chemical Reactions 189

distribution of molecules equilibrates on a shorter time scale than the characteristic
time scales for changes in the state variables. This was necessary in order to be able
to take the transition rates rj(n) as constant for a state n, where the numbers of
molecules are counted for the whole reaction volume. However, if the molecules do
not have time to diffuse through the reaction volume between their reactions, the
rates will not only depend on the total number of different molecules, but also on
when and where other reactions occurred. The Markovian property of the random
process is then lost for descriptions that only include the total numbers of molecules
as state variables.

The condition for homogeneity by diffusion is that

Ti � L2
/
Di for all i=1 . . . N (9.23)

where Ti is the average time between two reactions involving species i, Di is its
diffusion constant and L is the linear size of the system (Arnold, 1980; Gardiner
and Steyn-Ross, 1984). When equation 9.23 is satisfied, each molecule has an equal
probability to have its next reaction anywhere in the reaction volume. Thus the
local deviations from the spatially averaged concentration induced by localized
chemical reactions are spread throughout the system, such that the reaction rates
are homogeneous. When equation 9.23 is not satisfied, the homogeneous master
equation, used in chapter 8, is an approximation where it is assumed that 〈rj(n)〉Ω ≈
rj (〈n〉Ω), that is the spatially averaged rates that we need in the homogeneous case
equal the rates evaluated for the total number of molecules. This approximation
may be good or bad depending on how sensitive the transition rates are to local
perturbations in concentrations and how the molecules are distributed spatially.

9.2.1 The Reaction-Diffusion Master Equation

One way to model spatial heterogeneity is to introduce local concentrations. Here
we do this by dividing the total volume Ω into C artificial cubic subvolumes of
volume Δ = Ω/C and by keeping track of how many molecules there are in each
subvolume. The side length of the subvolumes � is chosen so that equation 9.23 is
satisfied if L replaced by �. With this choice of subvolume size the mean reaction
free path, the Kuramoto length (Kuramoto, 1974), is longer than a subvolume,
and the spatial distribution of molecules within a subvolume can be considered
homogeneous on the time scale of the chemical reactions.

At the same time, the subvolumes must be much larger than the mean free path.
This is necessary to describe the movement in a subvolume as a diffusion process.
The mean collision free path is very short in cells due to the high concentration of
non-reactive molecules, for example solvents. This typically makes more detailed
descriptions, including the velocity of the molecules, unnecessary, since the velocity
distribution equilibrates on the time scale of non reactive collision with the solvent
molecules.
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Finally, the length of the subvolumes, �, must also be significantly larger than the
reaction radii6 (Berg, 1978b; Ovchinnikov et al., 1989) of all interactions, which
for biomolecules can be a more demanding requirement than the mean free path.
This is required for well-defined association and dissociation rate constants within
each subvolume (Elf and Ehrenberg, 2004). If the reaction subvolumes are made
smaller than the reaction radii, molecules have a hard time finding each other, but
when they do they never let go.

The extended state description is {n} = {n1 · · ·nκ · · ·nC}, where nκ =

{n1κ · · ·niκ · · ·nNκ} and niκ is the number of i molecules in subvolume κ. The
state of the system is changed by chemical reactions within the subvolumes and
diffusion events between the subvolumes. The chemical reactions have different
rates in different subvolumes since they depend on the local concentrations of re-
actants Δ−1nκ. The probability that a reaction j will occur in subvolume κ during
the infinitesimal time between t and t + dt is dt · r(Δ−1nκ). If this reaction occurs,
the local state is changed from nκ to nκ + νj .

Diffusion is modeled as a memory-lacking random walk in discrete space, as
implemented by a set of first order diffusion events:

{· · ·niγ · · ·niκ · · ·} niκdκγ
i−→ {· · ·niγ + 1 · · ·niκ − 1 · · ·}

i = 1, 2, ..., N

κ = 1, 2, ..., C

γ = 1, 2, ..., C

(9.24)

Here, an i-molecule diffuses from subvolume κ to subvolume γ. The first order
diffusion rate constant for species i is taken to be dλμ

i = dμλ
i = Di/�2 for neighboring

subvolumes and otherwise zero. This implies that the probability that an i-molecule
diffuses from subvolume κ to its neighbor λ during the infinitesimal time between
t and t + dt is dt · dκλ

i niκ.
Given the extended state description and a set of state transition rates for the

local reaction and diffusion events, we can write down our reaction-diffusion master
equation (RDME) as in chapter 8 (Kuramoto, 1974; Gardiner et al., 1976; Nicolis
and Prigogine, 1977; Baras and Mansour, 1997):

dP ({n},t)
dt =∑

κ

M∑
j=1

(
rj

(
(nκ − νj) Δ−1

)
P ({· · ·nκ − νj · · ·} , t) − rj(nκΔ−1)P ({n} , t)

)
+∑

κ

∑
γ �=κ

∑
i

(dγκ
i (niγ + 1)P ({· · ·niγ + 1, niκ − 1 · · ·} , t) − dκγ

i niκP ({n} , t))

(9.25)
The upper row contains the state transition rates that are due to reactions (j =

1, . . . , M). For each subvolume these rates are calculated for the local concentration
of molecules. The lower row contains the terms for diffusion between neighboring
subvolumes. Here, {· · ·niγ + 1, · · · , niκ − 1 · · ·} is the state where there are niγ+1 i

molecules in subvolume γ and niκ-1 i molecules in subvolume κ compared to state
{n}. Figure 9.5 illustrates the principles from the perspective of the single molecule.
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Let us mention that in cases where the microscopic transport of particles is not only
due to diffusion, generalizations of the RDME can be used.

Figure 9.5 Example of how chemical reactions are modeled by the Reaction-Diffusion
Master Equation illustrated in two spatial dimensions. The probability that the black
molecule jumps to one of the neighboring subvolumes in the next infinitesimal time dt is
dt × 4 × D/�2, where D is the diffusion constant of the black molecule, � is the length of
the subvolume, and 4 is the number of neighbors. The probability that the black molecule
instead binds one of the two white molecules is dt×Δ× ka × 1/Δ× 2/Δ, where ka is the
association rate constant, Δ is the volume of the subvolume, and 1/Δ and 2/Δ are the
respective concentrations of black and white molecules in the subvolume.

Macroscopic Currents from the Reaction-Diffusion Master Equation

In the limit that there are macroscopically large numbers of reaction partners within
the diffusion range of each molecule, the RDME converges to the macroscopic
reaction-diffusion equation introduced in section 9.1.1 (Arnold and Theodosopulu,
1980).

To get an intuitive idea in one spatial dimension about how to reach this result,
consider the average change in the number, niκ, of i molecules in subvolume κ

between t and t + dt, under the assumption the system is in state {n} at time t.

〈dniκ〉 =
∑

j

vij

[
dt · rj

(
nκΔ−1

)]
+ 1

[
dt · Dini(κ−1)

�2

]

−2

[
dt · Diniκ

�2

]
+ 1

[
dt · Dini(κ+1)

�2

]
(9.26)

The stoichiometries of change in niκ for the different events are here weighted
by different events’ probabilities given in brackets. Assuming that there are many
molecules in each subvolume such that the molecule copy number distribution in
each subvolume is well represented by the average concentration ciκ = 〈niκ〉Δ−1

and
〈
rj

(
nκΔ−1

)〉 ≈ rj (cκ), we can approximate 〈niκ(t + dt)〉 = 〈niκ(t)〉+〈dniκ(t)〉
by

ciκ(t + dt) = ciκ(t) + dt

⎡
⎣Δ−1

∑
j

vijrj (cκ) + Di

ci(κ−1) − 2ciκ + ci(κ+1)

�2

⎤
⎦ (9.27)
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Further, if we recognize that the concentrations vary smoothly between the sub-
volumes due to the constraint that neighbors should be in diffusion equilibrium
equation 9.27 can be rewritten as

∂c(x, t)

∂t
= Δ−1

∑
j

vijrj (c(x, t)) + Di
∂2c(x, t)

∂x2

2rewritten



9.2 Stochastic Treatment of Nonhomogeneous Chemical Reactions 193

queue must be reordered according to their new event times. The next subvolume
method can be used to simulate systems with millions of subvolumes and molecules.
It is implemented in the software tools MesoRD (Hattne et al., 2005) and SmartCell
(Ander et al., 2004).

An alternative to the RDME approach to spatially dependent stochastic kinetics
is to use particle-based simulation methods. These are usually discretized in time
instead of space. The Brownian motion of the molecules is sampled at fixed time
intervals, assuming that molecule displacements in space during the time interval
follow a Gaussian distribution. Depending on the positions of the molecules in space,
it is decided if nearby molecules have reacted or not during the last time interval.
The available software tools (MCell (Stiles et al., 1998) and SmolDyn (Andrews
and Bray, 2004)) make this decision in different ways. As a point of reference to the
RDME treatment, one can consider the case where the time step is chosen as the
mean time to the next diffusion event in the RDME description, that is Δt = �2/2D

in one dimension. In this case the root mean square (RMS) displacement during the
time step equals the length of one subvolume. If, in addition, the reaction probability
during this time step is calculated from the local concentration within a radius equal
to the RMS, the particle based and RDME based methods are very similar. Another
algorithm that should be mentioned in this context is the Green’s Function Reaction
Diffusion algorithm (van Zon and ten Wolde, 2005). The GFRD can be used for
very detailed reaction-diffusion simulations, since it neither is discretized in time
nor in space.

9.2.3 Examples

Annihilation Kinetics A + B
k−→ ∅

A simple example illustrates how spatial fluctuations can change the kinetics for
very simple reaction schemes. Consider the reaction A + B

k−→ ∅, with initial
concentrations n1(0)/Ω = n2(0)/Ω= 10μM, k=108M−1s−1, and D=10−8cm2s−1.
The molecules are randomly (that is uniformly) distributed in a volume of Ω=10−12

liters divided into 106 cubic subvolumes of 10−18 liters.
Figure 9.6 shows the decay in the numbers of A and B molecules when the

subvolumes are distributed in one, two, or three spatial dimensions. These decay
rates should be compared to the corresponding (mean-field) deterministic reaction-
diffusion description, where the geometry of the reaction volume does not matter if
the initial distribution of molecules is uniform. The RDME treatment shows that
the molecules disappear much slower than what would be deduced from the mean-
field model. This is due to inevitable concentration imbalances in the systems,
where, for instance, regions with more A than B molecules will consume all B
molecules. Once regions dominated by one of the species have been established,
further reactions can only occur at interfaces between A and B regions, which
makes diffusion of molecules to the interfaces limiting for the rate of annihilation.
For this simple reaction scheme, the simulated data can be compared to analytical
work on the corresponding RDME using renormalization group methods (Lee and
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Cardy, 1995), that demonstrate that 〈n1〉 = 〈n2〉 ∝ t−d/4, where d is the dimension
of the system.

Figure 9.6 Geometry effect on the rate of annihilation in the A+B
k

−→ ∅ reaction. The
simulation was run in MesoRD.

Noise Induced Domain Separation in Bistable Systems

Noise induced transitions were discussed in chapter 8. Here we consider additional
noise induced properties that can arise in spatially extended systems. In particular,
we will use a simple bistable system built on the double negative feedback principle
(figure 9.7) to illustrate how internal fluctuations and slow diffusion can change the
escape properties. The system can be either in a state where the EA enzymes make
a lot of A molecules that can bind and inhibit the EB enzyme (dark grey ellipse) or
in the state where EB enzymes make a lot of B molecules that can bind and inhibit
the EA enzymes (light grey ellipse).

Figure 9.7 Double negative feedback schemes. EA makes A and EB makes B. A inhibits
EB and B inhibits EA.

In a macroscopic analysis of the system (homogeneous or inhomogeneous) the
system goes to one of the two attractors and stays there. However, when we consider
the fluctuations, there is always a chance that the system escapes from one attractor
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to the other in a noise induced transition. Such escape problems have been studied
for a long time in homogeneous systems (Erdi and Tóth, 1989; Horsthemke and
Lefever, 1984). When the homogeneous system gets larger and larger, the average
escape time from an attractor gets longer and longer. The escape time increases
approximately exponentially with the volume of the system, as an escape requires
that an increasing number of unlikely events occur in sequence. The exponential
dependence of the escape time on the volume is for the double feedback system
illustrated by the solid line in figure 9.8a.

a)

b)

Figure 9.8 Reduction of escape time and domain separation. a) The correlation time
for the number of A molecules in the double negative feedback system is plotted as a
function of the linear extension of the cube shaped system. (The correlation time is the
time, τ , at which the normalized autocorrelation function 〈nA(t)nA(t + τ)〉 /〈nA〉

2−1 has
decreased to e−1 of its value at τ=0. The correlation time is one half of the average time
of escape from one of the attractors in a symmetric bi-stable system.) Inserts: Examples
of time evolution of the total number of free A and B molecules are given for the points
indicated by arrows. (The figure is reproduced from (Elf and Ehrenberg, 2004)) b) The
black and white circles corresponds to free A and B molecules, diffusing together with
all the other reactants in a sphere with radius 4μm. The sphere is divided into 268,096
subvolumes each of size (0.1μm)3. The rate of diffusion of all components is d=2·10−9

cm2s−1. The simulations were done with the next subvolume method using MesoRD.

When slow diffusion of the reactants is considered, such that the molecules do
not have time to diffuse through the whole volume between two reactions, the
escape from an attractor is faster than in the homogeneous case (Elf and Ehrenberg,
2004). In figure 9.8a this is seen in the reduced correlation times for lower diffusion
constants with the same size of reaction volume.

At very low diffusion rates the correlation time even levels off and becomes
independent of further increase of the system size. Systems at the plateau display
domain separation, where different parts of the volume are in different attractors.
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An example of domain separation of the double negative feedback system is seen
in Fig. 9.8b, where all reactants are freely diffusing in a sphere of radius 4μm.

Not all bistable systems will display domain separation when the reactants are
freely diffusing in three dimensions. However, if diffusion is geometrically obstructed
such that the number of likely reaction partners is low, the spatial aspects of the
stochastic bistable systems become important (Bhalla, 2004; Elf and Ehrenberg,
2004).
Min-oscillations

To give an example of how the Min-system behaves in a stochastic setting, the
model by Huang et al. (2003) was simulated using MesoRD. For the wild type-
shaped cell the stochastic and deterministic simulations are in good agreement, as
shown in figure 9.9.

Figure 9.9 Stochastic simulation of the MinD oscillations. The figure shows MinDE
complexes (black) and MinD (gray) bound to the bacterial membrane with 5 seconds
intervals. The 4μm cell is modeled as a cylinder with two spherical caps and is divided
into a membrane and an intracellular compartment. The three dimensional volume is
discretized in subvolumes with side length 0.05μm. The concentrations of molecules and
other parameters are close to those in the corresponding deterministic model (Huang et al.,
2003).

9.3 Summary

We have presented in this chapter approaches for describing the dynamics of biolog-
ical systems when spatial inhomogeneities cannot be neglected and the transport
of particles have to be taken into account. In the simplest case, the transport of
the molecules constituting the system is diffusive. If each molecule has many po-
tential reaction partners, a mean-field description in terms of reaction-diffusion
equations is then possible. An analysis of the dynamic equations can in this case
make use of the powerful tools of differential calculus and often starts with a linear
stability analysis of stationary homogeneous states of the system. This analysis is
a systematic and not very time-consuming way to get a first impression of how
the system behaves for different values of the parameters. Further analysis then
commonly involves a numerical integration of the dynamic equations. If the change
in local concentrations cannot be approximated as an average over a large number



9.3 Summary 197

of random events in each volume element, a stochastic description must be used,
for example, in terms of the reaction-diffusion master equation. This is a general-
ization of the chemical master equation presented in chapter 8 and is built upon
a division of space into subvolumes. For its analysis, Monte Carlo methods have
been developed. An extensive analysis of the system for many parameter values is
often not possible because of the large simulation time needed to get good statis-
tics. Instead, first the continuum limit can be used to identify possible interesting
parameter values for which an extensive stochastic analysis is then performed.

In general, transport can rely on different mechanisms than diffusion. The evo-
lution of particle densities is then still given by the continuity equation (9.15), but
the currents will differ from the diffusion current. Macroscopic expressions for the
current are constrained by the symmetries of the system. If the system is close to
thermodynamic equilibrium, the currents can be expressed as linear combinations
of the generalized thermodynamic forces. In general, however, there is no systematic
procedure to arrive at macroscopic expressions, even though symmetries can guide
their development. If a microscopic model is available, then macroscopic expressions
can be obtained by a procedure similar to the one presented in section 9.2.1.

The techniques presented in this chapter have proven extremely useful to describe
spatiotemporal structures in tissues and organisms. They are now also used to de-
scribe the dynamics of subcellular structures, as was illustrated by the example of
the Min-system in E. coli. In general, they can be advantageously used whenever
a rather limited number of different molecules is sufficient to characterize the state
of a system. This does not imply that the number of different molecules constitut-
ing the system must be small. For example, the cytoskeleton contains numerous
different proteins. Its state can, however, often be sufficiently well characterized
by the distribution of the cytoskeletal filaments, while the effects of the associated
proteins can be lumped into a number of parameters characterizing the interactions
between the filaments. Thereby, the methods presented here complement those used
for the analysis of biochemical networks presented in chapter 4 and chapter 5. It
can be expected that they will continue to prove very valuable in discovering gen-
eral principles underlying the formation of spatiotemporal structures in biological
systems.
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Notes

1. Therefore, continuum theories are often referred to as field theories.
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2. Another possibility are integro-differential equations. These contain integrals
over the fields. Integrals over space reflect non-local interactions, for example by
neurons that connect to distant neurons, while integrals over time reflect a memory
in the system.

3. Note that the solutions to the dynamic equations do not necessarily display
the same symmetries as the equations. For example, the dynamic equations for the
Min-system in three spatial dimensions do not change when the system is rotated
around the long axis of the bacterium. In contrast, the fields do not have to be
invariant under this transformation.

4. Symbols printed in boldface denote vectors.
5. In addition to particle numbers, other conserved quantities are momentum

and energy. Momentum conservation needs to be taken into account if forces
act on the system or are created within the system. The source terms in the
continuity equation reflect in this case external forces. For systems operating at
constant temperature, the continuity equation for energy does not lead to additional
independent equations.

6. The diffusion limited association rate constant for two spherical reactants
freely diffusing in three dimensions is given by ka = (4πDρk)

(k+4πDρ) (Noyes, 1961), D

is the sum of the molecules’ diffusion constants, ρ is the reaction radius, and k

is the association rate constant at the reaction boundary. When k � 4πDρ, the
reaction is strictly diffusion controlled and ka = 4πDR (von Smoluchowski, 1917)
. The dissociation rate constant kd is similarly diffusion controlled kd = (4πDρλ)

(k+4πDρ)

(Berg, 1978b), whereas the equilibrium constant Kd = kd

ka
= λ

k is independent of
the rate of diffusion. Here, λ is the microscopic dissociation rate constant.
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10 Biological Data Acquisition for System Level

Modeling—An Exercise in the Art of

Compromise

Zoltan Szallasi

Most of the actual modeling of biological systems will be performed by researchers
with strong foundations in the quantitative sciences. One of the most significant
adjustments these experts have to make when entering the field of modeling of
cellular systems is understanding and accepting the limitations of biological data.
The system to be modeled, in most cases the living cell, is extremely complex, has
rather limited observability and may be governed by principles that are beyond our
current understanding. Most relevant to this book is the fact that we are trying to
produce predictions for an entire system while only a subset of the variables can be
measured, often with rather limited accuracy. It will probably take several years of
intensive research to estimate the constraining effect of measurement techniques on
system level modeling. This chapter reviews the various biological data acquisition
techniques and compares their capabilities to the data requirements of various
modeling techniques and to the estimated complexity of intracellular regulatory
networks.

10.1 Chapter Overview

Most chapters in this volume are dedicated to the theoretical foundations and prac-
tical realization of complex system modeling. To a significant extent these consid-
erations are independent from the fact that our intention is to model biological
systems. The general rules or limitations of ODE-based models (see chapter 6) are
basically the same when modeling the cell cycle or weather patterns. In fact, it
is an exciting and open question, whether biological networks display any specific
systemic property that would sharply set them apart from other complex networks
(Milo et al., 2004b, 2002). It is currently rather certain, however, that the overall
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nature of biological networks, such as robustness, or the limitations of accuracy
while measuring parameters will restrict the models in such a way that will have
an impact on both the theoretical and practical aspects of biological modeling. In
terms of theory, the remarkable robustness of biological networks may restrict com-
plex networks of ODEs in such a way that the predictive power based on them
may enable the meaningful modeling of large subcellular networks (Stelling et al.,
2004b). In terms of practical limitations, insufficient accuracy or coverage of bio-
logical parameter estimations may prevent models from producing any meaningful
predictions. Therefore, it is important for the prospective modeler to get familiar
with several relevant aspects of biological data acquisition including:

A) The overall size and complexity of intracellular networks: This includes
estimating the overall size of the genome in terms of active biochemical units, the
number of relevant biochemical derivatives per gene and the average connectivity
of the network. It must be also emphasized that deciphering the active part of
the genome, especially for higher organisms, is far from being complete, and this
dynamic research field yielded several major surprises during the last couple of
years leading to a significant reevaluation of our understanding of how the genome
is organized in functional terms.

B) The general principles of biological measurements – their technical and con-
ceptual limitations: The various modeling approaches rely on rather different data
requirements. Therefore, clear estimates on the accuracy, coverage, and sensitivity
of a given data acquisition technology will determine its suitability for a given com-
putational task. Graph theoretic approaches or flux balance analysis, for example,
usually involve a significant part of the entire intracellular networks without a need
for estimating kinetic parameters or concentrations. Ordinary differential equation–
based dynamic modeling, on the other hand, is usually performed on rather limited
subnetworks, with its success highly dependent on accurately estimating kinetic pa-
rameters and concentrations. The very crux of data acquisition in systems biology
is the current trade-off between coverage and accuracy.

C) Concentration measurement versus kinetic parameter measurements: Al-
though the detection technology is the same for both types of measurements, es-
timating kinetic parameters relies on time-dependent measurements, and they are
also highly dependent on the experimental environment, whether, for example, the
measurement was performed in free solution or directly in the intracellular environ-
ment. Consequently, determining kinetic parameters that reflect the intracellular
reality will take more specialized approaches than those applied for concentration
measurements.

D) The actual target of the measurements: Averaging biological measurements
across cell populations, as most currently applied methods require, will mask
important aspects of regulatory interactions in the individual cells. Therefore, the
prospective modeler should be aware of situations when single cell measurements
provide more relevant data.
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10.2 The Estimated Size and Complexity of Intracellular Regulatory Networks

As we will see in chapter 15, modeling large dynamic networks leads to formidable
computational challenges. Therefore, it is desirable to start with the least complex
network, or with the smallest subset of a large network that provides correct
predictions or helps answer a set of specific questions. However, it is not known how
large a segment of the entire network has to be modeled in order to be able to predict
a certain cellular behavior. This is also a context–dependent problem: a dynamic cell
cycle model of limited complexity may provide a good description of the behavior of
normal cells but may fail to provide a meaningful description of the neoplastic cell
cycle, which may involve several regulatory interactions that can be ignored in the
normal cell. For example, the BCR-ABL fusion protein is never present in normal
cells and gets created during chromosomal translocation, a hallmark mechanism of
cancer cells. This abnormal protein, which is not part of the mechanistic description
of the normal cell cycle, has a significant regulatory input on some parts of the cell
cycle machinery in leukemia (Gesbert et al., 2000). A modular view of biology has
been proposed to alleviate some of the computational problems associated with
system level modeling (Hartwell et al., 1999; Stelling et al., 2004b). However, the
existence of modular structure in biological networks is far from being resolved (see
chapter 3). Therefore, it is worth providing some quantitative estimates on the size
and complexity of the entire intracellular regulatory network.

10.2.1 The Inventory of Biochemical Entities in an Intracellular

Regulatory Network

A reasonable starting point for estimating the size of intracellular networks is
the number of active genes in a given cell. This can be fairly well estimated for
prokaryotes. The genome of these relatively simple unicellular organisms contains
from 500 up to 6,000–7,000 genes, which are rather tightly packed and free of
the complexities observed in higher organisms, such as introns or splice variants
(Brown, 2002). The vast majority of transcribed genes code for proteins, therefore
the number of potentially relevant network variables can be relatively safely deduced
from the number of genes for these organisms.

Estimating the total size of the intracellular network of higher organisms is a
significantly more difficult task, especially in the light of several recent unexpected
discoveries. The first pass analysis of the recently finished genomes focused on
the identification of protein coding regions and other widely studied nonprotein
coding genes such as ribosomal RNA or micro RNAs. This yielded an estimate
for the total number of genes between 6,000 for yeast and about 20,000–25,000
genes for humans (Brown, 2002) although this latter number is still changing
considerably. First it was being adjusted from a much higher number to a lower
level (International Human Genome Sequencing Consortium, 2004), then new
experimental evidence suggested that several thousand genes were missed by earlier
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analysis (Saha et al., 2002). Despite these uncertainties, it is generally accepted that
for most organisms the number of protein coding genes will not exceed 30,000–
35,000 (Johnson et al., 2005). However, three surprising lines of evidence suggest
that protein coding genes may not be the full story and we might be considerably
underestimating both the total number of genes and the active part of the genome.
First, a significant portion of all genes seems to be transcribed in the antisense
direction, in addition to the sense transcription, both in prokaryotes and eukaryotes.
In human cells, for example, up to 20% of genes may be transcribed in the antisense
direction as well (Lehner et al., 2002; Yelin et al., 2003). Second, splice variants will
considerably increase the overall diversity of the transcriptome of most eukaryotes,
especially higher organisms. It is estimated that at least half of the human genes
are alternatively spliced and a single gene may have a large number of potential
splice variants (Modrek et al., 2001). Third, a recent set of papers employed the
so-called “tiling” microarray technology, in which large regions of entire genomes are
expression profiled using oligonucleotide microarray probes that cover the genome
at regular, closely placed intervals. These probes are designed in an unbiased fashion
and cover intronic and intergenic regions of the genome in addition to the usually
examined exonic regions. Surprisingly, a large number of nonexonic probes showed
significant expression levels, suggesting the existence of a large number of thus far
unidentified RNA species (Johnson et al., 2005). It remains to be seen whether
these regions of the genome code for proteins or regulatory RNA. Nevertheless, the
recent, revolutionary impact of short regulatory RNA for biological research should
serve as ample warning that we should be prepared for further surprises (Bartel,
2004).

Actively transcribed distinct RNA sequences comprise only the first layer of
complexity of intracellular biological networks. RNA strands associated with protein
coding genes are transported to the ribosomes where they serve as templates
for protein production. This, however, is only the starting point for a series
of posttranslational modifications that are necessary for proteins to exert their
respective effects. It should be noted that a whole series of regulatory events exists
between the transcription of a certain gene and the various active protein derivatives
of the same gene, and these regulatory events often receive multiple conditional
inputs from an array of other elements in the network. Therefore, a given protein-
coding gene may have several biochemical derivatives, which may require separate
introduction into a given model (Hoffmann et al., 2002; Schoeberl et al., 2002). A
demonstrative example is shown in Figure 10.1 for the several steps involved from
the production of mRNA of a transcription factor until the production of mRNA
of a downstream-regulated gene.

The protein product of the gene “relA” is part of the NF-κB transcription factor
complex, either with another identical RELA molecule as a homodimer, or with
one of several other proteins as a heterodimer (Karin et al., 2002) (small letters
usually designate RNA whereas capital letters are used for the protein product of
the same gene). We start at the state when the mRNA of relA is already produced.
In addition to the transcriptional regulation, the level of mRNA of this gene can
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Figure 10.1 Independently regulated derivatives of the relA gene. (For details see text.)
The black arrows indicate independent regulatory inputs.

be regulated by the stabilization or destabilization of mRNA. The level of protein
production will be proportional to the net amount of relA mRNA and not only
to the transcriptional activation of this gene alone. mRNA is the first regulated
derivative of the relA gene. All proteins are produced in the cytoplasm in a non-
modified form, and the RELA protein has to be first translocated to the nucleus
to exert its transcriptional activity. The non-phosphorylated cytoplasmic and non-
phosphorylated nuclear RELA protein, therefore, can be considered as two further
derivatives of the relA gene, since the IκB proteins will regulate the localization of
the NFκB complex in a conditional manner (Karin et al., 2002). The activity of
the nuclear RELA protein is further regulated by phosphorylation at various serine
residues (Duran et al., 2003). Therefore, the nuclear phosphorylated form of RELA
can be considered as an additional derivative, since both the function and the regu-
lation by stabilization differ for the phosphorylated and non-phosphorylated form.
As shown in Figure 10.1, the gene relA has at least four independently regulated
derivatives: its mRNA, the non-phosphorylated cytoplasmic, non-phosphorylated
nuclear, and the phosphorylated nuclear forms. When building a dynamic model,
these derivatives have to be entered into the model as separate entities (Hoffmann
et al., 2002).

Therefore, the second step in determining the overall size of intracellular regula-
tory networks is estimating the number of relevant posttranslational modifications
per protein. Various estimates put the number of distinct posttranslational forms of
a given protein in yeast to about 3 and in humans to 3–6 (Banks et al., 2000; Papin
et al., 2005). For prokaryotes, this number seems to be less than two. These are obvi-
ously rough and preliminary estimates, and high quality, manually curated protein
databases will certainly provide more reliable numbers in the future (O’Donovan
et al., 2001; Peri et al., 2003).



206 Biological Data Acquisition for System Level Modeling

These numbers will be further increased by the fact that the same protein
may have to be accounted for according to various, relevant localizations, as
certainly seems to be the case for membrane associated receptors or nuclear proteins
(Schoeberl et al., 2002; Smith et al., 2002)

The above-described rather staggering complexity seems to dwarf the more
moderately sized collection of small molecules in a cell, which is commonly referred
to as the metabolome. The total number of small molecules in any given organism,
including humans, will probably not exceed 2,000–2,500 (Kell, 2004).

Taken together, based on the collection of genes and their derivatives, it seems
that the number of independently regulated biochemical species will be between a
few thousand for the simplest organisms and several hundreds of thousands for
more complex organisms, such as humans. These numbers will probably elicit
a wide variety of responses in the newcomers to the field, varying from total
hopelessness to cautious optimism. On the one hand, even a relatively small network
of ordinary differential equations can get out of hand rapidly (see chapter 6).
On the other hand, the various constrained models, such as flux balance analysis
(see chapter 5), provide meaningful predictions about biological systems based on
networks of approximately a thousand metabolites (Edwards et al., 2001a). Control
theoreticians also like to point out that a Boeing 777 contains about 150,000
subsystem modules, significantly more than the number of “relevant parts” that
seem to be in a simple bacterium (Csete and Doyle, 2002). We are, probably, far
from certain whether this is a fair comparison. The effect of stochasticity in biology
(see chapter 8), and the implications of human, control theory–based design (see
chapter 12) need to be accounted for and understood before a modeler gets carried
away by such an optimistic comparison.

It may also be informative to take a look at the total number and the dynamic
range of macromolecules per cell. From the size and dry weight content of cells and
the average size of proteins or RNA, one may easily arrive at the following estimates
(see for example www.dur.ac.uk/biological.sciences/Staff/Croy/GENNET1.HTM).
A large cell, such as a hepatocyte (liver cell) is estimated to contain about 8*109

protein molecules. This number is distributed amongst 10,000 different types of
proteins with a dynamic range of about 5 orders of magnitude.

10.2.2 The Inventory of Regulatory Interactions in Intracellular

Networks

In addition to the “number of parts,” (nodes in graph representations, see chapter 7),
the number of regulatory interactions (edges in a graph), is also an important
characteristic of intracellular regulatory networks. These interactions can be derived
by a wide variety of large-scale measurement techniques that detect various types of
regulatory interactions. In principle, any method can be (and has been) used, which
can produce some measurable phenotype on a large enough number of genes. Some
types of interactions are directly probed by an actual measurement and readily
interpretable in biochemical terms, such as protein binding. Others are derived
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indirectly by computational analysis of other data sets. For example, regulatory
interactions have been postulated for genes that are coregulated in a large number
of perturbed microarray based gene expression profiles (Ihmels et al., 2002; Tirosh
and Barkai, 2005), or between genes that show synthetic lethality in double genetic
knock-outs (Tong et al., 2004). In these latter cases it is often difficult to directly
identify the actual biochemical mechanism(s) behind the postulated regulatory
interactions.

Thanks to the accessibility of appropriate data, large protein interaction networks
have been extensively studied, and cross-validating the various data sets has led to
reliable estimates on the number of these interactions. Experimental data were
produced both by small-scale protein interaction assays deposited in databases
such as the Database of Interacting Proteins (DIP), and Human Protein Reference
Database (Peri et al., 2003) and by high throughput technologies such as yeast
two-hybrid measurements, high throughput mass spectrometry, etcetera. (see for
example (Lee et al., 2004)). For yeast, most recent estimates suggest on the order of
30,000–35,000 interactions for the entire genome, yielding roughly 6–7 interactions
per protein.

Human data sets are currently more sparse and biased (remember we do not even
know the total number of human protein coding genes, let alone their identity). It
may still be informative that the existing, supervised data sets currently contain
3–4 interactions per protein (Peri et al., 2003).

In summary, intracellular regulatory networks for the various organisms can be
probably visualized by graphs with a total node number between a few thousand
and perhaps a few hundreds of thousands, and with an average connectivity of less
than 10.

10.3 Classifying Measurement Techniques from a Computational Modeling

Perspective

The purpose of the following classification is to provide guidelines for prospective
modelers when looking for or intending to produce appropriate data sets for a given
modeling problem. An appropriate classification will reflect both the needs of a given
modeling approach and the capabilities of the various measurement techniques (see
Figure 10.2).

10.3.1 The Target of the Measurement

Section 10.2 is essentially a “list of parts” of intracellular networks. The most nu-
merous group of relevant quantifiable variables comprises, of course, the genes and
their derivatives. They can be measured at the DNA level, RNA level, and the
various levels of protein modifications along with their localization. Metabolic net-
work analysis requires the quantification of metabolites. The recently popularized
suffixes -omics or -ome describe the measurement or cataloging of an entire collec-
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tion of one type of biochemical molecules. The “genome” refers to the entire genetic
information stored in the DNA strands of a given organism, “transcriptome” com-
prises all the genetic information that gets transcribed into RNA, etcetera. From
a practical point of view, it is worth noting that all members of a given “-ome”
can be usually measured by the same type of technology, whereas measurement
technologies usually transfer poorly between the various “-omes.” For example, a
given oligonucleotide-based microarray platform can be, at least in principle, used
for the measurement for any RNA species. On the other hand this technology is
not suitable for the measurement of, for example, phosphoproteins. Merging data
sets across various “-omes” and across various technologies is not an obvious task
(Luscombe et al., 2004) and usually requires well thought-out, specialized methods
such as Bayesian approaches (see chapter 4) (Lee et al., 2004).

10.3.2 Concentration versus Interaction Measurements

Concentration measurements can be performed accurately in a “context indepen-
dent” manner. After destroying the cell, a necessary preparative step in many
cases, the number of molecules can still be counted accurately by any of the well-
established measurement technologies as outlined below. Measuring molecular in-
teractions, however, is dependent on the “cellular context.” An interaction detected
in free solution may never occur inside the cell. Therefore, measurement techniques
that reflect the reality of the inside of the cell had to be developed.

10.3.3 The Information Content of Measurements

In order to perform a given computational modeling task, a certain amount of
experimental information is needed. For example, one can estimate the amount
of data that is necessary to reverse engineer a given regulatory network (see
chapter 11) (Andrec et al., 2005; Sontag et al., 2004). The accuracy and sensitivity of
measurement techniques along with the strategy of selecting appropriate conditions
or time points of the samples to be quantified all have a profound impact on the
useful information content of an experiment (Szallasi, 1999). Therefore, one might
be able to estimate whether a given experimental technique is suitable to produce
appropriate data for a modeling approach. Some of the experimental techniques
are mainly able to identify biochemical molecules without the power of providing
anything more than semi-quantitative concentration estimates. Mass spectrometry–
based proteomics without isotope labeling is an example that is discussed later
on. However, these measurements, even without a quantitative dimension, can
be used for topological understanding and modeling of protein networks (Lee
et al., 2004). Other measurements, such as gene expression microarrays, provide
information about the direction and magnitude of gene expression changes. Whereas
the direction of changes seems to be rather reliable, the ratio of changes seems to be
compressed in an intensity dependent manner (Yuen et al., 2002). Finally, several
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low throughput techniques, such as Western blot analysis (see below), provide
accurate measurements with an error rate well within 10–15%.

Figure 10.2 Different biological data acquisition technologies produce results with
rather different measurement accuracy. The precision of the method will determine its
potential utility for a given modeling approach.

10.4 Low Throughput, Accurate Measurements of Gene Derivative Concentrations

The history of biochemical measurements has been a long struggle for increased
specificity and sensitivity. In order to describe a biological system at the quantitative
level, one would like to measure the various biochemical derivatives, such as the
various posttranslational modifications of the relevant genes at various localizations
within the cell, preferably with a reasonable time resolution. Needless to say, this
is hard to achieve, and current methods involve various levels of trade-offs between
the number of biochemical species to be quantified and accuracy.

Measuring the concentration of a single, well-defined biochemical species in a solu-
tion is well within the capabilities of modern molecular biology. Most high precision
methods are based on the combination of size separation and the application of a
specific, high affinity reporter system. Size separation methods are usually based
either on gel or capillary electrophoresis, where the macromolecules of various sizes
are driven through a molecular sieve by electrostatic potential. The sieve is formed
of polymers such as polyacrylamide or agarose, that are cross-linked to produce the
appropriate pore size that is best suited to separate the molecular weight range of
the molecules of interest. Gel electrophoresis produces only a rather limited size
resolution, therefore high specificity reporters are needed for accurate identification
and quantification. As outlined later, for certain types of biopolymers, in particular
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nucleic acid chains, highly specific reporters can be produced with relative ease,
whereas for others, such as polypeptide chains, the availability of specific reporters
(antibodies) still depends on processes that cannot be easily controlled.

DNA or RNA fragments are first size separated by agarose gels during Southern
and Northern blot analysis, respectively. The specificity of reporters is based
on the Watson-Crick pairing. Under appropriate experimental conditions, a long
enough nucleotide sequence with limited sequence homology to other parts of the
genome will hybridize only to its target sequence. The probes are labeled by the
incorporation of radioactive or fluorescently labeled nucleotides, which, in turn, will
produce readily measurable signals that could be used for quantifying the DNA or
RNA fragment in question. The experimental error is usually below or around
10–20% in the hands of an experienced user, and detection limits, thanks to new
technology such as quantum dots, are in the sub-femtomolar range (Liang et al.,
2005). This should allow the quantification of RNA molecules that are expressed
at the level of 1 molecule per cell. This is, in fact, a necessary level of sensitivity
because a significant number of transcripts are expressed at this level (Holland,
2002).

Quantitative RT-PCR also exploits the specificity of Watson–Crick pairing. In
this case, two specific, most often fluorescently labeled PCR primers are used that
will initiate the amplification of only the target nucleotide sequence. This process is
kinetically measured and can be reliably used to estimate the starting concentration
of the target sequence. It has a similar accuracy to Northern blots, and it was used to
measure the concentration of RNA species below the concentration of one molecule
per cell (Holland, 2002).

Protein concentrations are routinely quantified by Western blot analysis. In
this, a protein mix is first size separated by polyacrylamide gel electrophoresis
(Laemmli, 1970), then the specific reporter system is applied. For proteins, no
convenient method similar to the Watson-Crick pairing exists to produce highly
specific probes. It took decades and a great deal of ingenuity to work out effective
methods to produce antibodies for analytical purposes (Harlow and Lane, 1988).
Quite remarkably, today’s antibodies provide highly specific probes not only for
individual proteins but for the various posttranslational modifications, such as
specific phosphorylation states, of a given protein as well (Czernik et al., 1991).
Several ordinary differential equation–based modeling studies took advantage of
the specificity and accuracy of data produced by such antibodies in Western
blot analysis (Hoffmann et al., 2002; Schoeberl et al., 2002). The accuracy and
sensitivity is similar to Northern blots. However, it should be noted that the
production of specific antibodies against a large number of diverse proteins is still
a significantly more labor-intensive experimental project than producing probes
against nucleic acid sequences, which, to some extent, could be reduced to a
computational problem.

From a modeling perspective, it is important to note that the above–described
low throughput methods usually produce reliable, specific and rather accurate
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measurements. Hence their popularity for parameter fitting in dynamic models
(Hoffmann et al., 2002; Schoeberl et al., 2002).

It should be also remembered, however, that in most cases the high specificity
and accuracy of the above described methods relies heavily on the actual analyt-
ical conditions applied, which should be carefully adjusted for each probe sepa-
rately. Antibody and nucleotide probe concentrations, salt concentrations of the
hybridization and washing buffers, and hybridization temperatures should all be
carefully optimized for maximum specificity. These parameters will of course vary
significantly from target to target, and this fact already forecasts the difficulties
encountered with high throughput methods, such as microarrays, that are based on
multiplexing the above-described methods.

In principle, given high specificity probes, one can eliminate the size-separation
step. In this, the so-called dot blot technique, one can immobilize either the probes
or the sample mixture to solid support and then hope that there is only one
biochemical entity binding to the probe (Maniatis et al., 1982). In traditional
biochemistry, this approach was rather marginally applied – results always looked
more convincing when supported by the correct size information. Interestingly, this
method started a second, spectacularly successful life in the form of microarray
technology.

10.5 High Throughput Measurements and Low Accuracy—A Necessary

Compromise?

10.5.1 High Throughput Gene Expression Measurements

In principle, given enough manpower and financial support, every biochemical
measurement can be scaled up in a massively parallel fashion even to genomic scale.
In fact, the current interest in system level modeling was started by the introduction
of massively parallel measurement techniques, such as gene expression microarrays
(Schena et al., 1995). These are essentially highly efficient multiplexed dot blots,
enabled by microfabrication and automatization. Varying and patenting essential
experimental details led to the development of a large number of alternative
microarray platforms (Hardiman, 2004). Nevertheless, microarray based RNA or
DNA quantification methods are all based on the same basic principles. Nucleotide
probes of varying lengths, from 25 base pairs up to hundreds of base pairs, are either
immobilized or in situ synthesized on solid support. The RNA or DNA mixture to
be quantified is labeled, most often by fluorescent dyes, and then hybridized to the
microarray chips. An enormous amount of work, thousands of publications, went
into working out both the experimental and computational analytical details of
optimal microarray analysis. These efforts were often hindered by legal interference
from manufacturers (Rouse and Hardiman, 2003) and the unavailability of essential
information, such as microarray probe sequences, for the research community
(Mecham et al., 2004). The inordinate number of relevant technical publications
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suggests a rather limited satisfaction with the accuracy of microarray technology.
Here we can summarize only the most relevant concerns, and we have to refer to
appropriate reviews for further details (Jordan, 2004; Draghici et al., 2006).

Due to low cost efficiency, the estimated accuracy of microarray measurements
is only sparsely supported by independent verification data. A typical microarray
platform contains thousands or tens of thousands of probes, but most studies will
verify the quantification provided by microarrays only for a much smaller number
of genes, typically less than one hundred (see for example (Gold et al., 2004; Hol-
land, 2002)). A few recent studies quantified gene expression levels by quantitative
RT-PCR from several hundred to over a thousand genes and a couple of interinsti-
tutional efforts are also underway to perform similar validation (Czechowski et al.,
2004; Holland, 2002). However, the overall level of accuracy by microarray mea-
surements is far from being established(Draghici et al., 2006).

The lack of independent verifications was intended to be replaced by cross–
platform comparison of RNA aliquots, which is, however, an imperfect tool with
which to validate microarray platforms. Lack of consistency can be caused by the
inferior performance of either one or both platforms, without clear indication of their
relative merit. On the other hand, highly similar results across platforms could be
simply caused by consistent cross-hybridization patterns without either platform
measuring the true level of expression. Current experience in the field suggests
that short oligo based microarray platforms show a rather good correlation, with
a Pearson correlation coefficient of about 0.7 or better (Bammler et al., 2005; Woo
et al., 2004; Yauk et al., 2004). cDNA microarray–based results, however, have a
more limited correlation with short oligonucleotide based platforms, around 0.5 on
average (Bammler et al., 2005; Mecham et al., 2004; Woo et al., 2004). It must be
noted that these correlations are always based on gene expression ratios between
two different RNA samples. Despite some optimistic reports (Hekstra et al., 2003),
absolute levels of gene expression can hardly be estimated using only microarray
data. This problem is best exemplified when looking at microarray data produced
by a platform, for example, the Affymetrix gene chip, that uses multiple probes
against the same transcript. Probes that are producing signals by hybridizing
to the same transcript may show orders of magnitude variations in their signal
intensity(Draghici et al., 2006). Surface chemistry, significantly different free energy
binding values between probes, cross hybridization, or the efficiency of labeled
nucleotide incorporation probably each have an effect on the poorly understood
correlation between signal intensity and target concentration. As a consequence,
while gene expression ratios can be estimated with reasonable certainty for a
significant number of genes, measuring absolute concentrations in a comprehensive
fashion is currently beyond the capabilities of microarray technology.

Microarray analysis is based on a strong, although rarely discussed, assumption:
most microarray probes on a given platform produce sufficiently specific signals un-
der a single, rather permissive hybridization condition(see Figure 10.3). Increasing
evidence suggests that this might be true only for a subset of probes on any mi-
croarray platform (Zhang et al., 2005). Consequently, while gene expression ratios
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Figure 10.3 Massively parallel measurement technologies, such as gene expression mi-
croarrays, are usually run under a single experimental condition, which is not ideal for
most of the individual reactions. Each microarray probe can be associated with an ideal
hybridization condition determined by the hybridization temperature, salt concentra-
tions, etcetera. This is expected to produce the most specific signal with minimal cross-
hybridization. The ideal hybridization temperatures (Ti) and salt concentrations ([Na+]i)
are usually probe-sequence dependent, producing different values for the two microarray
probes highlighted in the figure. Nevertheless, gene chips are routinely run under a single
set of conditions (Tchip, [Na+]chip). A similar one-size-fits-all strategy is often implemented
for economic reasons.

might be estimated for some genes with an error of less than 20–30%, the error for
other genes may be far greater than that. There is only little, if any, guidance in the
literature that would help with predicting the accuracy of a microarray measure-
ment for a given gene in a particular experimental setting. The general expectation
is that two-fold changes in gene expression can be reliably measured across the
board. The detection limit of current microarray technology is around 10 copies of
mRNA per cell (Holland, 2002; Kane et al., 2000). It should also be noted, that this
level of sensitivity may be insufficient to detect relevant changes in low abundance
genes, such as transcription factors (Holland, 2002).

A possible compromise between the relatively inaccurate microarray technology
and low throughput, high precision methods is running a large number of quan-
titative real-time PCR reactions in a parallel fashion using, for example, 384-well
optical plates. A recent study quantified 1,400 genes in Arabidopsis with high re-
producibility and high sensitivity (0.001 mRNA copies per cell) over a six-orders-
of-magnitude dynamic range (Czechowski et al., 2004). It remains to be seen to
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what extent the increased accuracy and sensitivity may be able to offset the impact
of lower coverage and higher initial labor cost of PCR primer design.

10.5.2 High Throughput Protein Quantification

Soon after the runaway success of gene chip technology, antibodies were arrayed
on solid phase support in order to develop protein microarrays (Haab et al., 2001).
For proteins, unfortunately, neither sample labeling nor probe preparation is as
straightforward as in the case of nucleic acids. This resulted in a much slower
development, when researchers had to try several alternative detection methods
(MacBeath, 2002). The detection limits of protein microarrays are perhaps not
much worse or are similar to that of gene chips (1 part in 1,000,000), especially
when preceded by fractionation, in which the relative concentration of the protein
of interest is increased at the expense of other proteins. For example, high-speed
centrifugation can remove the abundant cytoskeletal, structural proteins, which,
this way, will be prevented from interfering with the quantification of soluble
proteins. There has not been a large enough body of experience published yet
that would provide a comprehensive estimate on the accuracy antibody microarray
measurements. A consistent and reliable detection of 2-fold changes would perhaps
satisfy most current users.

Detecting proteins with high specificity on protein microarrays depends on
“luck” whether an appropriate antibody can be developed for a given protein.
This and other, detection–related, problems associated with protein microarrays
were probably not lost on experts who were developing alternative technologies
for high throughput quantification of protein mixes. By far the most powerful
and most widely used of these methods is mass spectrometry–based proteomics.
Identification of proteins is based on measuring the mass-to-charge ratio of ionized
protein fragments, and their quantification is based on counting the numbers of a
given ionized fragment reaching the detector. Mass spectrometry requires by far the
most complex sample processing and instrumentation of all the methods discussed
so far. First, protein mixes are usually fractioned in order to reduce the complexity
of the sample. This is rather important, because abundant proteins may outnumber
rare proteins by four to five orders of magnitude, thus obscuring the signals obtained
from less abundant proteins. Then, the fractionated protein mix is subjected to
tryptic digestion in order to produce smaller fragments that are later ionized. The
peptide fragments are then separated by liquid chromatography. These fragments
are ionized and then analyzed by, usually, two tandem mass spectrometry analyses.
The second mass spectrometry is run on fragments derived from a single mass-to-
charge peak derived from the first mass spectrometry step. For each of these steps
a multitude of techniques exist with their relative advantages and disadvantages
reviewed by (Aebersold and Mann, 2003). Here we will review only those aspects
of mass spectrometry that are relevant for system level modeling.

Standard mass spectrometry is not appropriate for accurate quantifications with-
out the further modifications discussed below. Qualitative modeling methods, such
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as graph theoretic interpretations of intracellular regulatory networks, can take ad-
vantage even of these non-quantitative data. For example, a significant portion of
the yeast “interactome” was mapped out recently by the mass spectrometric analysis
of protein complexes that were isolated by several thousand various tagged “bait”
proteins (Gavin et al., 2002; Ho et al., 2002). (In this case the tag is a short peptide
sequence attached to the end of the native amino acid sequence that allows a high
affinity separation of the bait protein and its interacting partners. While “protein-
tagging” is a widely used and efficient technology it must be noted that the tag
may influence the behavior of the tagged protein.) The mass spectrometry–based
interactomes were combined with other types of interactome data sets yielding a
probabilistic functional network of yeast, mapping out potential modules or clusters
for further analysis (Lee et al., 2004). Although the principle of protein identifica-
tion may sound deceptively simple, its associated difficulties become apparent upon
closer inspection. Tryptic digestion fragments rarely have a unique mass-to-charge
ratio (Alterovitz et al., 2006). Hence the need for a second mass spectrometry step
on the fragment ions of a given peptide peak identified in the first step. However,
the fragment ion spectra cannot be readily converted into peptide sequences solely
based on theoretically expected distributions. Instead, the spectra generated during
the second mass-spectrometry step are usually compared to comprehensive protein
sequence databases. Therefore the success of protein sequencing will highly depend
on the quality of reference databases. A large number of “machine learning”–inspired
methods have been suggested to overcome this problem with varying success (Al-
terovitz et al., 2006). Nevertheless, considering the speed of the development of mass
spectrometry based proteomics, there is little doubt that for organisms with com-
prehensive lists of sequence information, protein identification by this technology
will be achieved within the foreseeable future.

Quantifying ratios of protein concentrations by mass spectrometry involves an-
other dimension of technical challenges and usually relies on stable isotope labeling.
In this, one protein mixture (for example, cancer tissue), is isotope labeled by one
of several appropriate methods (Aebersold and Mann, 2003) while the other sam-
ple (for example, normal tissue), is left unchanged. The normal and cancer samples
are then mixed. Since the chemical properties of a given peptide are still the same
after isotope labeling, a mixture of the isotope labeled and native peptide can be
co-analyzed by the mass analyzer. The difference in mass due to isotope incor-
poration will yield two different mass-to-charge peaks and the difference in the
area under those peaks will provide an estimate for the relative expression level of
that protein in the two samples. A wide variety of ingenious isotope tagging tech-
niques have been developed, targeting various peptide side-chains such as sulfhydril
groups (Gygi et al., 1999), amino groups (Munchbach et al., 2000), etcetera. The ac-
tual side-chain targeted and the protein purification techniques preceding the mass
spectrometry will restrict the number of different proteins quantified in a given
experiment (Gygi et al., 1999).

The accuracy of these technologies usually allows the reliable identification of
at least 1.5- to 2-fold changes, although this estimate probably applies only to
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more abundantly expressed proteins (Gygi et al., 1999). The actual sensitivity
of this technology is highly dependent on the purification steps preceding the
actual mass spectrometry analysis. In absolute terms, the detection limit of proteins
isolated from polyacrilamide gel electrophoresis bands and then subjected to mass
spectrometry is in the femtomole range, or on a weight basis, it is in the low
nanogram range (1–5 ng). This would roughly translate into a detection limit of 1
part per million. This ratio may reflect very different sensitivity levels in terms of
copy number per cell depending on the pre-electrophoresis fractionation.

10.5.3 Further Uses of Mass-spectrometry

The universal principle underlying this technology offers itself to a wide variety
of exploitations. In fact, given appropriate sample preparation methods and ad-
equate mass spectrometry databases (to which the mass–to–charge peaks can be
compared), any biologically relevant molecule can be, at least in principle, identified
and quantified. Whether mass spectrometry is applied to a given task, it is highly
dependent on cost efficiency, ease of use, and other practical considerations. For
example, although nucleic acids can be just as well analyzed by mass spectrometry
as proteins (Jurinke et al., 2004), for the average end user microarray analysis offers
a cheaper and easier alternative. While the mass spectrometric analysis of a single
biopolymer (that is a single band after gel purification) costs around one hundred
dollars, a cheaper microarray platform may quantify several thousand genes for
the same cost. When no such easily scaleable alternative technique exists, mass
spectrometry provides an excellent general tool for high throughput biochemical
measurements. It has been used for the quantitative analysis of the metabolome
(Allen et al., 2003), identification and to some extent the quantification of tyro-
sine phosphorylation (Rush et al., 2005), protein ubiquitination (Peng et al., 2003),
etcetera. These recently developed applications, however, currently belong to the
realm of semi-quantitative methods.

10.6 Detecting Regulatory Interactions and Quantifying Kinetic Parameters

As we saw in section 10.4, concentration measurements can be rather accurately
performed on a wide variety of intracellular molecules. Under certain experimental
conditions this accuracy can be transferred to other types of measurements as well,
since measuring kinetic parameters can be reduced into a time-series of concen-
tration measurements, and detecting regulatory interactions can be reduced into
a combination of appropriately modified concentration measurements. However, in
many cases seemingly accurate measurements may provide misleading data about
the actual intracellular conditions.
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10.6.1 Detecting Regulatory Interactions

These measurements are usually based on simple modifications of several, above–
discussed methods. One member of the interacting molecules is designated as the
“bait,” which is used to separate the entire macromolecular complex. The success of
the method depends on whether the bait molecule can be targeted with sufficient
specificity. If yes, for example, by using an appropriate antibody, then the whole
complex is isolated and its members are identified or quantified by standard meth-
ods. Protein-protein or chromatin co-immunoprecipitation are such techniques. In
the former, by using an appropriate antibody, a specific protein, such as a tran-
scription factor, is isolated, and then other proteins interacting with it can be deter-
mined. In the latter, the same antibody can be used to pull down the transcription
factor and with it the DNA regulatory regions to which the transcription factor is
binding. The nucleotide sequence of this regulatory region can then be determined.
In order to preserve the intracellular regulatory interactions, chemical cross linkers
are often applied. These molecules have two highly reactive moieties. Within a cer-
tain distance, called “spacer arm length” (measured in Ångströms), these molecules
tend to cross-link their target macromolecules by covalent binding. Therefore, when
the cross-linkers are applied to the cell, interactions between proteins, for example,
are fixed and carried over to subsequent analytic steps performed in free solution
(Agou et al., 2004).

10.6.2 Quantifying Kinetic Parameters

Dynamic, for example ODE-based, models require accurate kinetic parameters that
are usually determined by direct biochemical experimentation. In most published
models these parameters are usually extracted from the literature. These models
are usually based on individual gene derivatives and not, for example, on functional
modules. Therefore, the kinetic parameters have to reflect the dynamic interaction
between individual genes and proteins. For example, an ODE-based model of the
epidermal growth factor (EGF) receptor pathway requires measuring the affinity
between EGF and its receptor, the kinetic parameters of the tyrosine phosphoryla-
tion of the EGF receptor, etcetera (Schoeberl et al., 2002). Most often these kinetic
parameters are determined in experiments containing a more or less purified pop-
ulation of the interacting proteins in free solution (that is not measured inside the
cell.) Parameter optimization (Mendes and Kell, 1998) acknowledges the fact that
the thus obtained kinetic parameters may often be misestimated relative to the true
values reflecting intracellular conditions. In order to obtain more accurate estimates
on these parameters, direct measurements on intracellular protein levels, without
disrupting the cellular structure, were introduced. The actual tool, as so often the
case in biology, was provided by nature itself in the form of fluorescent proteins
(Tsien, 1998). The first of these, the green fluorescent protein was isolated from a
jellyfish that, for reasons not entirely clear, produces this highly efficient protein
fluorophore. The emphasis here is on the fact that this is an ordinary protein in
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terms of production and processing. Therefore, when cloned and fused to a pro-
tein in an experimental organism, the thus labeled protein starts to glow, emitting
measurable signals allowing direct quantification. A remarkable diversity of fluores-
cent proteins have been developed recently, emitting signals at various wavelengths
(Hawley et al., 2001). It should be noted that fusing the rather sizable fluorescent
proteins to the target may have profound effects on the production rate or function
of the labeled protein. The ease and efficiency with which one can label proteins in
prokaryotes has led to several interesting applications, such as reverse engineering
of bacterial regulatory networks (Ronen et al., 2002).

10.6.3 High Throughput Detection of Regulatory Interactions

By now the observant reader must have realized that novel methods in biological
data acquisition more often involve the ingenious combination of existing technolo-
gies than the introduction of truly novel measurement principles. The ChIP-chip
technology is an elegant combination of chromatin immunoprecipitation and gene
expression microarrays (hence the name) (Ren et al., 2000). In the first step, a
tagged transcription factor is used to isolate the upstream DNA regulatory regions
it is binding to. Then a DNA microarray containing probes for a large number of
upstream gene regulatory regions, in the case of yeast for the entire genome (Ren
et al., 2000), is used to determine which of the regions have been enriched during the
first step. This will then constitute a microarray–based approach that will determine
which regions a given transcription factor is binding to under a given experimental
condition. This will effectively map out a network of putative regulatory interac-
tions between gene expression regulators and regulated genes (Lee et al., 2002).
Obviously, the experimental noise of the two technologies will be compounded, re-
quiring various computational methods to produce reliable measurements by using
independent supporting evidence from other data sources, such as the coregulatory
patterns of genes (Bar-Joseph et al., 2003).

10.7 Population Averaged versus Single Cell Measurements

Although single molecule measurements may just be around the corner (Chan
et al., 2004), the detection limits of currently applied measurement techniques in
systems biology, especially the massively parallel technologies, require the presence
of millions of a given molecular species for reliable quantification. Such a high
number of molecules can be derived from at least tens of thousands or more cells.
Consequently, most of the above-described methods will yield population averaged
values. The potential risk of using population averaged data is well exemplified by
an interesting study by the group of Ferrell (Bagowski and Ferrell Jr., 2001). In
this study they showed that in individual Xenopus oocytes the activation of the
kinase JNK shows a steep dose response curve with a Hill coefficient of around
100. In population averaged measurements using hundreds of oocytes, the way
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these experiments are usually performed, the same dose response curve shows
no cooperativity with an apparent Hill coefficient of 1. This means that the
ultrasensitive bistable switch of JNK activation can be detected only in single cell
measurements, and a very different kinetic model would be built based on the
population averaged data. In such cases, single cell measurements produce a more
accurate description.

The experiments described above involve the isolation of material for Western blot
analysis from individual oocytes and thus require a significant amount of meticulous
bench-work to obtain information about each individual cell. Fortunately, fluores-
cent proteins (see section 10.6) provide a convenient experimental tool for relatively
high throughput single cell measurements. Sometimes the genomic sequence of a
given fluorescent protein is simply inserted behind a transcriptional promoter of
interest. In these cases the expression level of the reporter protein serves as a surro-
gate marker for promoter activity and can be quantified in hundreds or thousands
of individual cells by direct measurement of fluorescent intensity (Elowitz et al.,
2002; Raser and O’Shea, 2004). This relatively simple experimental arrangement
has already produced interesting results by directly demonstrating the stochasticity
of gene expression in individual cells (Elowitz et al., 2002) and also by quantifying
the noise of transcriptional and translational activity (Blake et al., 2003; Raser and
O’Shea, 2004). A further level of experimental complexity can be achieved by fusing
fluorescent proteins to other proteins of biological interest. For example, in a rather
intriguing study the two members of the p53-Mdm2 feedback loop were labeled
individually by fluorescent proteins of different colors (Lahav et al., 2004). Surpris-
ingly, the study showed that in human cancer cells p53 was expressed in discrete
pulses after DNA damage, with the number of pulses differing between individual
cells. This is a potentially relevant and rather unexpected observation regarding
the function of one of the most studied tumor suppressor genes, p53, which could
not have been detected by population averaged measurements.

The number of various fluorescent proteins and the procedure required to fuse
them to other proteins of interest limits the number of proteins that can be stud-
ied simultaneously in a single cell. A recent approach combining the application of
fluorescently labeled antibodies with multiparameter flow cytometry (Irish et al.,
2004) may increase the number of quantified parameters of single cell measurements
by one to two orders of magnitudes. A causal protein-signaling network was recon-
structed from such measurements using Bayesian network inference (see chapter 11)
on eleven key signaling proteins in T lymphocytes (Sachs et al., 2005). Again, the
ability to measure changes in the signaling proteins in single cells as opposed to
population averaged measurements was essential to the success of this approach.

10.8 Conclusions: A Final Look at Experimental Design

Researchers applying ordinary differential equations based models to intracellu-
lar networks are well aware of the importance of accurate parameter estimations.
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Therefore, these studies usually apply high accuracy, low throughput measurements
for parameter optimization (Hoffmann et al., 2002; Schoeberl et al., 2002). However,
not every chemical species can be measured accurately, therefore, these studies rely
on measurements of only a subset of the variables represented in the model. Conse-
quently, a set of interesting theoretical questions arises with practical implications.
How many variables should be quantified for reliable parameter optimization of a
network with a given size? By what strategy should this subset of parameters be
selected? How does the inaccuracy of measurements propagate back to parame-
ter estimation in a robust dynamic network (see chapter 11)? Problems like these
demonstrate well the intricate relationship between theory, modeling and experi-
mental biology.



11 Methods to Identify Cellular Architecture

and Dynamics from Experimental Data
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A system-level understanding of the functioning behavior of a cell requires an accu-
rate representation of the underlying complex networks of gene and protein inter-
actions. Advances in molecular biology have provided a glimpse of such complexity
through diverse measurements of cellular activities. In systems biology, the goal
of network inference or reverse engineering problems is to reconstruct the complex
network of regulatory interactions from available measurements using a mathemat-
ical framework. Here, the reverse engineering effort faces two daunting problems:
network size and complexity, and incomplete and inaccurate measurements. In ad-
dition, complete knowledge of a cellular network entails the identification of not
only the network architecture (topology) but also its dynamics. Indeed, implicit
in the term regulation is the importance of dynamics of these interactions. Net-
work inference from experiments has been extensively investigated in the field of
engineering, which is known as system identification. In addition, many concepts
in engineering, such as robustness (see chapter 2), modularity (see chapter 3), and
optimality, have been observed in many biological systems. For these reasons, en-
gineering approaches have been instrumental in the reverse engineering effort. This
chapter highlights the methodologies and challenges in the reverse engineering of
cellular networks, in particular the identification of network dynamics using engi-
neering approaches.

11.1 Introduction

At the turn of the century, scientists successfully sequenced the human (Interna-
tional Human Genome Sequencing Consortium, 2001) and other genomes, enabled
by advances in high throughput measurements in molecular cell biology. The com-
plete human genome provides the blueprint of human cells and creates opportunities
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Figure 11.1 A hypothetical biological network topology. Each node in the graph can
represent a biological entity such as genes, transcripts, or proteins. The edges show the
interactions, such as activation/inhibition. In contrast, the dynamics describes the nature
of each interconnection, for example, a Hill-type kinetics. The topology and dynamics
completely characterize a network behavior.

to advance our understanding of cellular functions. The success of genomics ush-
ers in a new era that is characterized by a shift from a reductionist approach of
molecular cell biology research in the past, to a systemic or integrated approach:
systems biology. The emphasis in a systemic approach is to ascertain the complex
interactions in the network of genes and proteins that produce the observed cellular
phenotypes under different conditions and/or stimuli. Here, the function of a gene
or protein is described in the context of its dynamical interactions with other ele-
ments in the network. This chapter introduces the methods and challenges in one
aspect of systems biology, namely the identification of the cellular networks from
experiments. This area of research is also known as reverse engineering or network
inference.

Biological networks can be categorized according to the cellular functions that
they describe, such as protein-protein network, transcriptional network, metabolic
network, and signal transduction pathway. There exist two primary facets in
a typical biological network, its topology and dynamics (kinetics). The former
describes the interconnections among the parts of the network (genes, transcripts,
proteins), while the latter gives the nature of these interactions. The dynamics can
be as simple as a linear function, or a nonlinear function such as Michaelis-Menten
kinetics. A schematic of a hypothetical biological network is shown in figure 11.1.
The goals of reverse engineering such complex networks are also multi-faceted,
including: (i) hypothesis generation, (ii) design of experiment, (iii) understanding
of cellular function, and (iv) unraveling design principles.

The sources of experimental data for the reverse engineering problems include
large scale deletion projects, high throughput DNA microarray experiments, and
chromatin immunoprecipitation assays (ChIP-on-chip) (see chapter 10 for more
complete discussions on the data acquisition techniques for systems biology). The
utility of these data, however, is limited by many factors, such as high level of
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noise, low sampling frequency, type of experimental protocol, and other issues
as highlighted in chapter 10. The noise inversely correlates with the amount of
information in the data, while the low sampling frequency restricts the identification
of dynamics in the network. Because of the wide variety of modeling objectives
and the heterogeneous sources of data, there exist a wide spectrum of modeling
approaches in the reverse engineering of cellular networks, as described in these
reviews (D’haeseleer et al., 2000; Ideker and Lauffenburger, 2003; Stelling, 2004;
Barabási and Oltvai, 2004). The highest level of the spectrum, and hence the
most abstract, involves models that mostly describe the network topology with
little or no dynamics, such as signed directed graphs or Bayesian networks. The
identification of network topology benefits greatly from these models as they can
efficiently handle highly complex networks. The lower level models incorporate
the physicochemical details into the network topology, which greatly increases the
difficulty of reverse engineering problems (Ronen et al., 2002). Such models typically
consist of differential equations such as those described in chapter 6, though they
can be as simple as Boolean networks.

One of the simplest representations of a cellular network is a directed graph
(similar to the network shown in figure 11.1, but the edges have directions/arrows).
The directed edges convey the flow of influence in the network. For example, a node
A with a directed edge to a node B implies that A directly influences the activity
of B. Such model structure mostly captures the network topology, which can be
effectively reconstructed from gene perturbation data (Wagner, 2001). A step down
in the modeling spectrum is a signed directed graph (SDG), which is also a graph
node with directed edges. However, the edges here can assume positive or negative
values based on the influences, that is, activation or inhibition, respectively. The
network inference problem of this model structure uses comparative methods on
gene expression of wild-type and mutants created from deletion experiments (Kyoda
et al., 2004).

Another model structure with a directed graph architecture is a Boolean network,
which is also a graph node with directed edges. Here, the nodes assume binary
numbers representing high or low levels (1 or 0, respectively). In a gene network,
high level represents activated/expressed, while low indicates inactive/suppressed.
Each directed edge corresponds to a Boolean logic function describing the influence
of one gene to another. The inference problem of this model structure utilizes
steady state gene expression levels from perturbation experiments of gene deletion
or overexpression (Ideker et al., 2000).

Bayesian networks use a probabilistic approach to modeling cellular networks
with a directed acyclic graph, in the same spirit as chapter 4. Here, each node
represents a random variable characterized by a conditional probability with respect
to its immediate parent nodes (that is, the start nodes of incoming edges). Thus,
the state of the network is described by the joint probability

P (X1, ...,XN ) =
N∏

i=1

P (Xi|XJ) (11.1)
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where N is the total number of nodes in the network, P (Xi|XJ) is the conditional
probability of the i-th node to assume the value Xi given the values of its parents
nodes Xj , j ∈ J such that J is the set of indices of the parent nodes. This
steady state model structure does not provide the dynamics of the network but can
explicitly account for the noise from experimental measurements, protocols, and the
inherent stochastic nature of gene expression. As in the previous model structures,
the reverse engineering using Bayesian networks utilizes data from perturbed gene
expression profiles (Pe’er et al., 2001).

The more detailed model structures involve detailed dynamics of each interaction,
such as the S-systems (Savageau, 1988). This model structure is based on mass
action kinetics, in which the dynamics of interaction is described using nonlinear
polynomial functions:

dxi

dt
= αi

N∏
j=1

x
gi,j

j − βi

N∏
j=1

x
hi,j

j (11.2)

where xi is the state variable describing the concentration of cellular molecules
(genes, proteins), αi and βi are the rate constants, and gi,j and hi,j are the kinetic
orders. This framework is flexible enough to capture common dynamics in cellular
functions such as Michaelis-Menten kinetics. As expected, the inference problem of
this model structure is computationally intensive because of the need to simulate
highly nonlinear differential equations (Kimura et al., 2005). In addition, the reverse
engineering of network dynamics (that is, estimating the model parameters αi, βi,
gi,j , and hi,j) requires time-series data, whenever available.

One model structure, based on Petri nets, attempts to combine the graph repre-
sentation of the network and the detailed dynamics of differential equations. This
hybrid functional Petri net (HFPN) architecture supports different cellular enti-
ties using various primitive data types (Boolean, string, real), types of interactions
(discrete/stochastic, continuous, generic), and prior knowledge of the system (Mat-
suno et al., 2000; Nagasaki et al., 2004). Here, the nodes are connected to each
other by connectors (arcs), and the dynamics are described by mappings associated
with each connector. Because of its flexibility, the reverse engineering of this model
structure can potentially accommodate any type of data, including gene expression
and biological facts.

The complete reverse engineering of a cellular network needs to identify both
the topology and dynamics of interactions. The challenges in this problem are
multiple, starting from the selection of model structures to the identification of
model parameters from noisy measurements. In particular, the inference of network
dynamics is difficult due to the data quantity and quality and the parameter
identifiability issues, which will be discussed in greater detail in section 11.3. The
underlying reason for the difficulty is the mismatch between the available and
the required data to uniquely identify a model structure. Indeed, the selection of
model structure determines the types and amount of data necessary for a complete
reconstruction of the network (Selinger et al., 2003). For example, to identify p
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number of parameters in a set of nonlinear differential equations, one theoretically
needs 2p+1 number of randomly chosen experiments (assuming zero measurement
noise) (Sontag, 2002). When only the network topology is desired, the number
needed reduces to r + 1 experiments, where r is the total number of possible
connections.

The purpose of this chapter is to provide a conceptual overview of the issues
involved in the reverse engineering of cellular networks with emphasis on the
dynamical characterization. This chapter complements and extends a previous
review that emphasized the inference of network topology (D’haeseleer et al.,
2000). The next section gives a motivating example, which highlights some of
the difficulties in a cellular network inference problem. Section 11.3 discusses the
different issues and methodologies in reverse engineering with respect to both the
topology and dynamics. Tutorials are presented in the form of case studies involving
a metabolic network in E. coli and a signal transduction pathway in a caspase-
activated apoptosis. Finally, open research problems in this area are identified based
on the analysis of the case studies.

11.2 A Motivating Example

High throughput gene expression profiles can provide system-wide level measure-
ments for reverse engineering of genetic regulatory networks in the cells. The efficacy
of these measurements for inferring the network information, such as the kinetic
parameters, depends on the complexity of the underlying gene network as well as
the quality and quantity of measurement data. These issues were addressed using
a formal identifiability analysis by Zak et al. (2003), whose results will be summa-
rized here. In particular, the analysis considers two types of identifiability: a priori
identifiability and practical identifiability, as a function of the input perturbations
and the fluctuations in the gene expression due to the inherent stochastic nature of
the process. A priori identifiability is concerned with the ability to uniquely identify
model parameters from noise-free experimental data, given a particular model and
a particular input-output experiment. On the other hand, practical identifiability is
concerned with the accuracy of parameter values that can be estimated from noisy
measurements.

In the aforementioned study, an in silico genetic regulatory network was con-
structed from an arrangement of common regulatory motifs: cascade, mutual re-
pression, auto-activation and sequestration, and agonist-induced receptor down-
regulation (Zak et al., 2003). The model consists of 44 species with a total of
97 parameters involved in 118 reactions, including promoter binding/unbinding,
transcription, transcript degradation, translation, protein monomer degradation,
protein dimerization/undimerization, and dimer degradation processes. The net-
work exhibits multiple steady state behavior depending on the presence of a ligand
input (see figure 11.2). The identifiability analyses were performed on the in sil-
ico network as a function of the ligand perturbations: a step, a 1-hour pulse, and



226 Methods to Identify Cellular Architecture and Dynamics from Experimental Data

Figure 11.2 In silico genetic regulatory network. Dashed arrows represent chemical
reactions (not regulation). The dotted nodes (F, EQ, Q) exist only when the ligand Q is
present in the system. In the presence of the ligand Q, the genes B, D, F, G, J, and K are
fully expressed (HIGH state), while genes A, C, E, and H are suppressed (LOW state).
On the other hand, the absence of the ligand drives the genes A, C, E, and H to HIGH
and the genes B, D, G, J, and K to LOW states.

two 1-hour pulses 1 day apart. In addition, as single-cell gene expression profiling
is realizable (Hemby et al., 2002), the number of cells collected in each sampling
time is also treated as an experimental variable. Two approaches, deterministic and
stochastic, were used in the simulations of the in silico network with the parameter
estimates from published values for genes and proteins with similar roles to those
in the network.

11.2.1 Methodologies

A priori identifiability analysis utilizes the correlation matrix of the parameters,
Mc (Beck and Arnold, 1977)

Mc(i, j) = Vp(i, j) (Vp(i, i)Vp(j, j))
−1/2 (11.3)

where Vp(i, j) is the (i, j)-th element of the parameter covariance matrix. The
covariance matrix quantifies the degree of (co)variability in random variables (such
as noise in the measurements, parameter inaccuracies), which is given by the
expected value:

Vw = E[(w − w̄)(w − w̄)T ] (11.4)

where w denotes the vector of random variables, w̄ denotes the mean values
of w, and E[·] represents the expected value operator. The (i, j)-th element of
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the symmetric Mc conveys the degree of correlation between the i-th and j-th
parameters where a value of 1 (−1) implies a perfect (opposite) correlation (the
diagonal elements of Mc are exactly 1 since a parameter is perfectly correlated
with itself). For example, consider the following simple system:

y = (p1 + p2) u (11.5)

where y is the output and u is the input. From the measurements of y (given
u), one can only identify the sum of parameters (p1 + p2), but not p1 and p2

independently. Here, the two parameters are said to have a perfect correlation (in
this case, a correlation coefficient of 1). Thus the parameters that have correlations
between -1 and 1 (that is, −1 < Mc(i, j) < 1) can be independently identified
from experimental data (assuming perfect measurements). Thus a parameter that
has a perfect correlation only to itself is said to be a priori identifiable. Further,
the parameters that do not satisfy this condition can be reduced to a smaller set
of identifiable parameters through an iterative parameter reduction process (Zak
et al., 2003).

Practical identifiability analysis uses the Fisher information matrix (FIM) as a
measure of the informativeness of noisy measurement data for estimating the model
parameters. The inverse of FIM provides the lower bound for the variances of the
parameter estimates (or the upper bound for accuracy) based on the Cramer-Rao
inequality (Ljung, 1999a). If the noise in the data follows the Gaussian distribution,
the FIM reduces to

FIM =

N∑
i=1

ST
I (ti)V

−1
μ SI(ti) (11.6)

where SI is the sensitivity matrix with respect to the a priori identifiable parameters
(Varma and Palsson, 1994) and Vμ is the covariance of the measurements (a
measure of noise in the data). The lower bounds of the parameter variances are
given by

σ2
pi

≥ [FIM−1]ii, (11.7)

from which the 95% confidence interval for each parameter pi can be defined as

[pi − 1.96σpi
, pi + 1.96σpi

] (11.8)

In this example, a parameter is called practical identifiable when its estimated value
is non-zero within a 95% confidence. The level of confidence interval for practical
identifiability can be varied to include or exclude more parameters.

The Gaussian assumption may not apply for gene expression as this process
involves very low copy numbers of chemical species, which makes it behave as a
discrete stochastic system (see chapter 8 for the mathematical description of such
system). With a lower bound of zero for the number of copies, for instance, the
distribution will not be symmetric and the noise in the system can become non-
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Gaussian (such as log-normal or bimodal distributions). Nevertheless, the FIM can
still be evaluated using a direct analysis of the chemical master equation (Gunawan
et al., 2005). Here, the Fisher information matrix is expressed as the variance of the
score function (Cover and Thomas, 1991). For discrete stochastic systems, the FIM
can be evaluated by simulating the master equation for the joint probability density
function of the states. This simulation uses a Monte Carlo approach such as the
stochastic simulation algorithm (Gillespie, 1976) or its approximate accelerated
algorithm as discussed in chapter 16. The score function is equivalent to the
normalized sensitivity of the joint distribution function with respect to the model
parameters.

11.2.2 Insights from Identifiability

A priori identifiability analysis applied to the in silico network revealed that one-
third to over half of the parameters in the network are not a priori identifiable,
where the step ligand input performed the worst among the three perturbations.
A major fraction of these parameters belonged to promoter binding/unbinding and
transcription factor dimerization/undimerization, of which many exhibited perfect
correlations. This result suggested that some of these parameters can be combined
by equilibrium assumption for these processes by setting the forward and reverse
rates equal. After removal of the parameters that can be combined or measured
directly from experiments such as mRNA degradation rates (Wang et al., 2002),
the step ligand input only allowed 3/4 of the parameters to be a priori identifiable,
while the pulse experiments allowed 8/9 of all parameters.

Further analysis of the model using the FIM showed that only about half of
the parameters were practically identifiable, of which the double pulse experiment
performed the best among the three. In addition, the number of cells sampled
in each experiment, which was captured using discrete stochastic simulations of
the network, affected the fraction of identifiable parameters in a nonlinear man-
ner. Increasing cell count in each sample reduced the noise in the measurements
and improved the practical identifiability in a diminishing return trend. The term
noise here relates to the inherent (discrete) stochastic nature of gene expression,
which differs from the more common data noise arising from the measurement de-
vices. The impact of cell sampling was especially pronounced in the identifiability
of transcriptional interactions (differences between bound and unbound transcrip-
tional parameters). Here, the step perturbation gave a higher fraction of identifiable
parameters at a lower number of cell sampling while the double pulse input became
more efficient at higher cell sampling.

This example highlights a number of difficulties in reverse engineering a cellular
network. The first analysis showed that even with prior structural knowledge of
the network and noise-free experimental data, a priori identifiability of the full set
of parameters remained elusive. This finding signified the importance of obtaining
good prior estimates of the model parameters and avoiding over-parametrization
of the network through model reduction such as the equilibrium assumption.
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In addition, the practical identifiability analysis underscored the importance of
designing the experiment protocol, such as the type of ligand perturbation used in
this study, to produce the most informative experimental data (see section 11.4.2).
In general, a perturbation that is rich in dynamics can more effectively excite
the system for accurate estimation of the kinetic parameters. Also, the intrinsic
stochastic nature of gene expression can play an important role in the practical
identifiability of the parameters when only few cells are collected at each time
point. This effect, however, was diminished with increasing number of collected
cells.

11.3 Issues for Network Inference

The problem of network inference or reverse engineering has long been an active
research area in control theory, known as system identification (Ljung, 1999a). In
addition to control theoretic approaches, research in other fields such as computer
science and statistics (known as machine learning and statistical learning, respec-
tively) have also made significant contributions to this problem (Bock and Gough,
2003; Perrin et al., 2003). However, the reverse engineering of cellular networks
pushes the envelope on many approaches in these fields because of the characteris-
tics of these networks: large size and high nonlinearity. As such, the modeling efforts
have focused on capturing both aspects: (i) network complexity, and (ii) level of de-
tail (Stelling, 2004). Unfortunately, identification of models that embody both high
complexity and details of a cellular network is an untenable problem, and thus,
one major issue in reverse engineering as well as in data acquisition is to select the
appropriate model structure that balances the network complexity and the detail
of interactions. This selection depends on the type of network and organism, the
available experimental data, and the intended use of the resulting model.

Many conceptual approaches from system identification have found appropriate
uses in the identification of cellular networks. For example, a singular value decom-
position was used to identify all possible networks that are consistent with given
gene expression profiles (Yeung et al., 2002). When choosing the solution among
the candidate networks, this approach also assumed that the biological networks
are sparse. Using a similar assumption, Gardner and colleagues (Gardner et al.,
2003) proposed a network inference algorithm based on linear regression of gene
expression profiles. Here, each gene is assumed to have only k connectivities, where
k is (much) fewer than the total number of genes in the network. The solution is
then chosen to minimize the mismatch between the model prediction and experi-
mental data. Further, an iterative approach was proposed by Tegner et al. (2003)
to identify the network connections from gene perturbation data. At each iteration,
the algorithm ranks the genes based on the variance of predicted connectivities
from all consistent solutions. The gene that has the highest variance, that is, the
most uncertainty, will be selected for the next perturbation experiment. Again, the
network was assumed sparsely connected as in the other approaches.
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A significant challenge of constructing the cellular network from experiments,
especially for a gene network model, is the large number of nodes, on the order
of 10, 000, that renders the inference problem practically intractable (for example,
determination of 108 parameters of interactions). Fortunately, cellular networks are
tremendously sparse and highly structured (Wagner, 2002), such that the actual
interactions to be identified are orders of magnitude fewer. In addition, these
networks are not randomly connected, but highly modular and structured with
regular hierarchies, motivating the use of a structured approach to the identification
of such networks (Zak et al., 2005). One hierarchical decomposition of the network is
to call the top level a network which is comprised of regulatory motifs of 2-4 genes
(Lee et al., 2002; Shen-Orr et al., 2002; Zak et al., 2003). By searching through
biological networks for common motifs, one can find the frequencies with which
each simple motif occurs in the network. The much higher occurrences of these
motifs in cells than in randomized networks (Shen-Orr et al., 2002) give support to
a postulation that these are the basic building blocks of cellular networks. Many
of these motifs have direct analogs in system engineering architectures, such as the
three dominant motifs in E. coli: (i) feedforward loop, (ii) single input module, and
(iii) densely overlapping regulon (Shen-Orr et al., 2002). At the lowest level of the
hierarchy is the module that represents transcriptional regulation, of which a nice
example is given by Barkai and Leibler (2000). The existence of structures in the
complex cellular network creates an opportunity for reverse engineering methods to
incorporate this knowledge by constraining the search methods or exploiting prior
knowledge in Bayesian frameworks.

The interconnections between the nodes in a cellular network are not static. In
fact, dynamic behavior is an essential property of complex biophysical networks
(Zaslaver et al., 2004) that must be captured in the modeling efforts. There exist
preliminary ideas in capturing network behavior using dynamic models in both
discrete time (Hartemink et al., 2002) and continuous (Zak et al., 2004). The
problems associated with the curse of dimensionality as noted above are more
pronounced when one augments the dynamics with the network interconnections,
especially for a full continuum model. Here, one major issue is the challenge of
uniquely identifying the kinetic parameters from experimental data, typically gene
expression profiling. This issue, known as parameter identifiability in control theory
(Ljung, 1999a), deals with the informativeness of the data: the quantity and quality
of the measurements with respect to the model parameters. The example in the
previous section revealed that full knowledge of gene interconnections and perfect
measurements still could not guarantee full identifiability of gene interactions.

Coupled to this, the noise in measurements and the inherent stochastic nature of
gene expression make practical identification of genetic regulatory networks difficult.
In practice, the reverse-engineering of a gene network should involve a careful design
of experiment using prior knowledge of the system to obtain the most informative
measurements. As described by the cycle of knowledge in chapter 1, this process
should be iterative, in which the result from each trial is used to better design the
next experiment. Here, a measure of informativeness of data, such as the Fisher
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Figure 11.3 Fisher information matrix-based optimality criteria. The axes represent the
model parameters where the origin describes the best parameter estimates. For simplicity,
only two parameters are shown. In a system with three or more parameters, these ellipses
are projections of the higher dimensional ellipses (hyperellipsoids) onto two-parameter
axes. (a) The ellipse of information. The ellipsoidal axes are defined by the FIM eigenvalues
and eigenvectors. The area quantifies the amount of information, while the shape indicates
the distribution of information for each parameter. D-optimality design aims to maximize
the area/volume of information (as indicated by the arrows), which is proportional to
the determinant of FIM. (b) The ellipse of parameter uncertainty. The lengths of the
ellipsoidal axes are equal to the inverse of the eigenvalues of FIM. A-optimal design aims
to reduce the region of parameter uncertainty (shown by the arrows), which is measured
by the sum of the parameter variances.

information matrix, can help in formulating the optimal experiment design into a
(nonlinear) optimization problem. The Fisher information matrix (FIM) takes into
account the noise in the measurements and also gracefully handles the stochastic
effect of gene expression. In addition, the FIM allows flexibility in choosing the
appropriate criterion for optimality depending on the goal of model identification.
Figure 11.3 illustrates the two most effective FIM-based optimality criteria, D-
optimal and A-optimal, in designing experiments (Emery and Nenarokomov, 1998).
D-optimal design aims to maximize the degree of informativeness in data by
maximizing the determinant of FIM, which corresponds to the area/volume of the
information hyperellipsoid (figure 11.3a). On the other hand, A-optimal design is
equivalent to reducing the hyperellipsoid of uncertainty in parameter estimates
(figure 11.3b).

The iterative nature of this framework for model development and refinement of
experimental protocol necessitates a termination criterion, which typically consists
of a model validation test. The selection of tests to use still remains an open
research problem because of the difficulty in comparing the performance of different
algorithms. In the application domain of systems engineering, it is understood that
for certain experimental data, it is not possible to absolutely confirm whether
a model is valid. Typically, the converse test is implemented, that is, whether
the given data contradict the model prediction (Poola et al., 1994). Such model
(in)validation tests for reverse engineering problems can be formulated based on
the difference between predicted and observed output with some statistics about
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Figure 11.4 A schematic diagram of an observer. In a physical system, the complete
state information is usually not available. Further, the measurements typically represent
functions of only part of the states. An observer uses (inexact) knowledge of the system
dynamics f (x,u, t) and the input u to “guess” the states from the available measurements
y.

these differences. These statistics limit the degree of model errors using, for example,
maximum absolute value, mean value, and variance.

Aside from the aspect of the quality of data, another practical limitation in most
(if not all) attempts to reverse engineer cellular networks is the limited quantity
of data, both in terms of sampling frequency and number of independent measure-
ments. For example, although gene expression profiling can provide high throughput
data to estimate interactions among thousand of genes, this method still does not
depict the protein-mediated regulatory effects. As noted in chapter 10, current sys-
tem level modeling efforts face the challenge of compromising data quantity and
quality (low throughput, accurate measurements versus high throughput, relatively
inaccurate measurements). In many cases, parameter estimation from limited mea-
surements suffers from stringent computational requirement and degeneracy, where
many parameter combinations give similar agreement to the observed behavior.
Here, measurement selection procedures can help identify the combination of mea-
surements that give the best identifiability. Also, an observer can provide estimates
of all system states (gene, transcript, protein levels) from limited measurements.

The concept of an observer is described in figure 11.4. The purpose of an ob-
server is to infer the states of a system (for example, internal energy, entropy) from
the measurements (such as temperature, pressure). For this reason, an observer
is also known as a state estimator in control systems theory. There exist multi-
ple approaches for designing an observer for biological systems, including extended
Kalman filters (Stephanopoulos and San, 1984; Gee and Ramirez, 1996), artificial
neural network (Glassey et al., 1997; Simutis and Lübbert, 1997), and state regula-
tor problem (SRP) (see Section 11.4.2) (Gadkar et al., 2005b). The state regulator
problem approach builds on dynamic flux balance analysis (dFBA) described in this
chapter to estimate the unknown variables in a biological system from dynamical
measurements. The dFBA extends traditional flux balance analysis (Varma and
Palsson, 1994) to allow the estimation of dynamic fluxes in a given metabolic net-
work. The SRP observer is formulated as a constrained optimization problem where
the gene network is assumed to operate optimally by minimizing unnecessary accu-
mulation of intermediates (states) and fluxes (reactions) in the framework of dFBA.
Given the full estimates of the network states and fluxes, the parameter estimation
becomes decoupled and thus computationally efficient with lower probability for
degeneracy.
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11.4 Case Studies

The case studies derive from the applications of engineering approaches to the
reverse engineering of cellular networks, in particular to identify the dynamics
of biological networks. In the first example, an optimization-based approach is
demonstrated for estimating the dynamic behavior of a metabolic network in E.
coli from experiments (Mahadevan et al., 2002). The second example introduces a
framework for iterative network inference to identify a signal transduction pathway
in a caspase-activated apoptosis (Fussenegger et al., 2000).

11.4.1 Dynamic Flux Balance Analysis

As recent developments in genomics provide information of the cellular architecture,
the logical next step is to study the dynamic behavior of the cellular network. A
primary bottleneck for this is the lack of kinetic information of the intracellular
reactions. The flux balance analysis approach in chapter 5 utilizes the known
stoichiometry to predict the flux distributions in the network without requiring
the kinetic information (Varma and Palsson, 1994). However, the approach can
be used to study only the steady state operations of the network, preventing its
applicability in situations where dynamic reprogramming of the metabolic network
is important. In this case study, a dynamic Flux Balance Analysis (dFBA) approach
is discussed that is capable of predicting the dynamics of the metabolic network
with modest requirements of experimental data.

To motivate the concept, we consider the diauxic growth of Escherichia coli.
Using the metabolic network of E. coli, the extreme pathways are identified with
glucose, acetate, and oxygen as input and acetate and biomass as output. From the
extreme pathways, four primary pathways are determined, based on the biomass
yield, to represent both aerobic and anaerobic growth on glucose and aerobic
utilization of acetate. These pathways are expressed as a simplified network shown
in figure 11.5. A dynamic model for the prediction of the time profiles for the batch
bioreactor based on the simplified network is represented in the equations,

dGlcxt

dt
= StGlcxtvX

dAc

dt
= StAcvX

dO2

dt
= StO2vX + kla(O∗

2 − O2)

dX

dt
= (v1 + v2 + v3 + v4)X (11.9)

where X represents the biomass concentration, StGlcxt, StAc, StO2 are the rows of
the stoichiometric matrix associated with glucose, acetate, and oxygen, respectively,
v is the vector of reaction fluxes, and kla is the mass transfer coefficient for oxygen
(7.5 hr−1) and O∗

2 is the oxygen concentration in the gas phase (0.21 mM).
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Figure 11.5 The simplified metabolic network of the diauxic growth in E. coli with
glucose, acetate, and oxygen as inputs and biomass and acetate as outputs.

To determine the dynamic profiles of the metabolite levels, the dynamic fluxes
need to be determined. With the absence of kinetic information that relates the
fluxes to concentrations, dynamic optimization is proposed for determining the
fluxes and metabolite concentrations. It is based on an assumption that the cellular
processes are performed optimally in order to achieve a cellular objective. Similar
assumptions are made in the FBA approach (Edwards et al., 2001a) and in the
cybernetic modeling approach (Varner and Ramkrishna, 1999). For the dFBA
approach considered here, maximizing the instantaneous growth rate is proposed
as the built-in cellular objective. Other candidate objective functions which have
shown good fit of experimental data include maximization of biomass (Burgard
and Maranas, 2003) or minimization of total fluxes (known as the principle of flux
minimization) (Holzhütter, 2004).

The dFBA approach involves an optimization over the entire time period of
interest to obtain time profiles. The optimization problem is shown below:

max
v(t)

M∑
j=0

tf∫
t0

X(t)

X0eμavgt
δ(t − tj)dt (11.10)

such that

dz

dt
= F (v, z) (11.11)

|v̇| ≤ v̇max; z ≤ z0; c(v, z) ≤ 0 ∀ t ∈ [t0, tf ] (11.12)

z(t0) = z0 (11.13)

tj = t0 + j
tf − t0

M
j = 0, · · · ,M (11.14)

The time period of interest is divided into finite number of intervals (equation
11.14). The optimization maximizes the growth rate at each of these intervals.
The objective function is scaled such that all points are equally weighed. Equation
11.11 is the matrix representation of equation 11.9 and represents the mass balance



11.4 Case Studies 235

Figure 11.6 An example of a system with two fluxes and two constraints A and B
(aside from the positivity of fluxes). Each inequality constraint is shown in each shaded
region. The combination of the two constraints A+B limits the feasible space of flux pairs
for the dFBA optimization.

and continuity constraints. The rate of change of flux constraint, the non-negative
metabolite level constraint, and the additional nonlinear constraints are imposed
by equation 11.12. As discussed in chapter 5, these constraints reduce the feasible
search space for the fluxes that maximize the objective function, as illustrated in
figure 11.6. Equation 11.13 represents the initial conditions of all species.

In most cases, limited fermentation data are available. Substrate and oxygen
uptake rates and product formation rates are usually calculated. These limited
experimental data are used as additional constraints to the dynamic optimization
problem. For this case study, the glucose uptake rate, and oxygen uptake rates are
bound by the additional constraints shown below:

StGlcxtv ≤ vGlcxt
max Glcxt

Km + Glcxt
(11.15)

StO2v ≤ vO2

max (11.16)

The glucose uptake is bounded by the Michaelis-Menten kinetic involving the
glucose concentration, and the oxygen uptake is bounded by a maximum possible
flux. The unknown constants in the above equations are determined from the
available experimental data (vGlcxt

max =10 mmol/gdw-h (Varma and Palsson, 1994);
Km=0.015 mM (Wong et al., 1997); vO2

max=15 mmol/gdw-h (Varma and Palsson,
1994)).

The dynamic optimization is solved by parameterizing the dynamic equations
through the use of orthogonal collocation on finite elements (Cuthrell and Biegler,
1987). Details of solving the dynamic optimization problem are discussed by Ma-
hadevan et al. (2002). Figure 11.7 shows the profiles of the the metabolite levels
suggesting that the dFBA approach accurately predicted the dynamics of the di-
auxic growth on glucose and acetate. The dFBA also correctly predicted the re-
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Figure 11.7 Model predictions using the dFBA. Glucose, acetate, and biomass con-
centrations from the model predictions (solid lines) are compared to experimental data
(squares) (Varma and Palsson, 1994).

utilization of the acetate, which was not possible with the classical FBA approach
(Varma and Palsson, 1994).

The dFBA approach does not require kinetic information of the intracellular
reactions; it could, however, incorporate available kinetic information into the con-
straints of the dynamic optimization. Further, it allows the dynamic formulation
of the objective function describing characteristics, such as, reduction of transi-
tion time between two steady states or end-point optimization into the rigorous
mathematical framework. The primary drawback of the approach is that it typi-
cally requires solving a nonlinear optimization problem. As the size of the network
increases the computation burden could become infeasible. However, the use of a
simplified form of the important pathways as done here assists in capturing the dy-
namics of the crucial components of the network. In summary, the dFBA approach
provides a useful tool for the quantitative study of the dynamic reprogramming of
metabolic networks to obtain a better understanding of the behavior of the network.

11.4.2 Iterative Model Identification

As mentioned in the previous section, the reverse engineering of a cellular network
should involve an iterative process. One possible framework for this process is
depicted in figure 11.8. The model identification step is decoupled into two parts.
The first part uses the limited measurements to give estimates of time profiles for all
concentrations and reaction rates. These full estimates of system variables allow for
an efficient parameter estimation in the second part. When a model (in)validation
step necessitates further model refinement, an optimal experiment design and/or
an optimal measurement set is determined to guide the next experiment.

The application of the framework is demonstrated for the model identification
of caspase function in cell apoptosis. The schematic of this system is shown in
figure 11.9, which was developed by Varner and co-workers (Fussenegger et al.,
2000). This model with the published parameters is assumed as the “real” system.
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a priori

State regulator
problem

Figure 11.8 Iterative scheme for model identification.

The network topology and the mechanism of the interactions are assumed to be
known. The model can be represented in a very general form:

ẋ = Ax + Br + C (11.17)

r = f(x,p) (11.18)

where the vectors x and r represent the states and reaction rates, respectively.
The matrices A and C describe the degradation and auto-generation respectively,
whereas the matrix B represents the stoichiometry of the network. The nonlinear
function f(x,p) represents the reaction rate equations. Further details of this model
representation are included in Gadkar et al. (2005b). A discrete version for the
continuous time invariant affine system is derived using a standard technique known
as the zero-order hold (Brogan, 1991). The discrete model equation is represented
as:

x(k + 1) = Āx(k) + B̄r(k) + C̄ (11.19)

where

Ā = eAΔT ,

B̄ = (eAΔT − 1)A−1B,

C̄ = (eAΔT − 1)A−1C.

The goal of this case study is to identify the kinetic parameters p in the nonlinear
reaction rates.
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Figure 11.9 Caspase-activated apoptosis mechanism. The model includes two triggers
for the activation of cell suicide mechanism, extracellular death ligand and stress-related
factor (Fussenegger et al., 2000). The cell death occurs when executioner caspase is
activated by caspase-8 (ligand effector) or caspase-9 (stress-related effector).

A possible first step in the model identification framework is the measurement
selection. Parameter identifiability is crucial prior to the parameter estimation from
experimental data. Practical identifiability of parameters discussed in section 11.2
is used for the selection of measurements that minimize the confidence interval
(equation 11.8) for the model parameters. In this case study, the efficacy of model
refinement by changing the experiment design or by improving the measurement
set is compared. Thus, the first iteration in this case study is carried out with a
suboptimal measurement set. The details of parameter confidence intervals for both
optimal and suboptimal sets are included in (Gadkar et al., 2005a).

The model identification is decoupled into two parts: a state regulator problem
(SRP) based estimator and a parameter estimation step. The SRP estimator
uses the limited measurements to determine the time profiles of all unknown
concentrations and reaction rates. It is based on a premise, similar to the dFBA
approach, that cellular processes have evolved regulatory structures to optimally
use the cellular resources. This translates into two postulates: (1) network flows
are managed to minimize intracellular accumulation and (2) networks are managed
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to minimize the number of edges carrying flux. The estimator is formulated as a
quadratic optimization problem as shown below:

min
r(k),··· ,r(k+h−1)

h−1∑
j=0

[x(k + j + 1)T Wxx(k + j + 1) + r(k + j)T Wrr(k + j)] (11.20)

subject to:

x(k + j + 1) = Āx(k + j) + B̄r(k + j) + C̄ ∀ j = 0, · · · , h − 1 (11.21)

x(k + j + 1) ≥ 0 ∀ j = 0, · · · , h − 1 (11.22)

|x(k + j + 1) − x∗(k + j + 1)| ≤ Δtol ∀ j = 0, · · · , h − 1 (11.23)

The objective function consists of two terms: the first represents the accumula-
tion of the intracellular species, and the second describes the flux utilization. The
terms Wx and Wr are the matrices of weights associated with these two terms.
The SRP optimization is subject to constraints of mass balance (equation 11.21),
non-negativity of concentrations (equation 11.22), and constraints imposed by the
available measurements (equation 11.23). The term x∗ represents the measurements
and Δtol denotes the tolerance around the measurement describing the measure-
ment error. Finally, the variable h denotes the prediction horizon of the SRP es-
timator. The optimization problem is solved for each sampling time to determine
the profiles of all fluxes and species concentrations.

The SRP estimates of all system variables allow for efficient determination of the
parameter values by decoupling the full parameter estimation into multiple sets,
each with fewer parameters. The kinetic parameters associated with a reaction rate
are determined independently from the others using a Bayesian approach, known
as maximum a posteriori estimation (Gunawan et al., 2003). In this formulation,
the difference between the SRP rate estimate and that predicted by the rate
equation (equation 11.18) is minimized. Further, the deviations of parameter values
from those obtained in the previous iteration are penalized. The formulation is
represented as:

min
p

[(
r̂i − ri(x̂,p)

)T
V−1

ε

(
r̂i − ri(x̂,p)

)
+ (p − p0)T V−1

p (p − p0)
]

(11.24)

∀ i = 1, · · · , NR

where r̂i and x̂ are the SRP estimates of the i-th reaction rate and the concen-
trations, respectively, NR represents the total number of reactions in the network,
p0 is the vector of parameter values obtained in the previous iteration, and Vε

and Vp are the variances of the reaction rates and the parameters, respectively.
The parameter variances are determined using equation 11.7, and the reaction rate
variances are determined from the noise in the measurements from which the rates
were estimated. The second term in the objective function of equation 11.24 is zero
in the first iteration.

An important step in the iterative approach is the model refinement method. In
this work, the model refinement is achieved by an optimization of the experiment



240 Methods to Identify Cellular Architecture and Dynamics from Experimental Data

protocol or an optimal selection of the measurement set. The optimal experiment
design maximizes the number of identifiable parameters, which is determined using
the orthogonal procedure of McAuley and colleagues (Yao et al., 2003). When there
exist multiple experiment designs with the same number of identifiable parameters,
the selection is done to maximize the data informativeness by maximizing the D-
optimality criterion. Mathematically, the optimal experiment design determination
is given by:

max det(FIM) (11.25)

s.t.

[
max
E∈E

Np̃

]
where E denotes the parameterized space of experiment protocol and Np̃ denotes
the number of identifiable parameters.
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Figure 11.10 Model predictions of a few of the concentrations and reaction rates of
the apoptosis model. Reaction 1 involves the binding of the FADD to the FAS-FASL
complex; reaction 2 involves the activation of executioner procaspase by caspase-8. Solid
line: real system; dashed line: prediction with estimated parameters after first iteration
(suboptimal experiment with suboptimal measurements); dash-dotted line: prediction
with estimated parameters after second iteration (suboptimal experiment with optimal
measurements); dotted line: prediction with estimated parameters after second iteration
(optimal experiment with suboptimal measurements).

Figure 11.10 presents the time profiles of a few species concentrations and reaction
rates predicted by the models identified by the iterative framework, which show the
improvements in model predictions with each iteration. As model identification is
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closely related to the parameter identifiability, the improvements are better when
using the optimal experiment design than the optimal measurement set (Gadkar
et al., 2005a).

This case study demonstrates an iterative framework for model identification
to study quantitatively the dynamics of cellular pathways. It shows tremendous
potential in improving the predictive capabilities for biological systems, especially
in cases where experimental data is available but the kinetic parameters involved
in the pathway reactions are unknown.

11.5 Summary and Future Directions

The reverse engineering of cellular networks represents a crucial aspect of a systemic
approach for biological discovery in the post-genomic era. The major hurdle in
this task is the high complexity of cellular networks, implying models with large
numbers of nodes and interactions. Fortunately, the cellular networks appear to
have structures (that is, they are not random) that are shared with engineered
systems (see chapter 3). This may be one reason for why the application of
engineering methods, in particular systems identification, has shown to be fruitful
in approaching these problems.

In brief, the challenges in the cellular network inference condense to the inte-
gration between experimental and modeling efforts. Advances in molecular biology
have allowed high throughput measurements of the interactions, but the data may
not carry sufficient information to (uniquely) identify the network interactions, as
shown in one of the examples above. In addition, the large size of network mod-
els renders the inference problem practically intractable. The case studies in the
chapter demonstrate attempts to solve these problems by building an estimator for
the network and formulating an iterative model identification framework. Here, the
experiments and models are coupled together through a model-based experiment
design and a Bayesian approach to incorporate prior knowledge of the network.
Such engineering method and other approaches from engineering, computer sci-
ence, and statistics have found great successes in their domains and will likely find
greater application in systems biology as experimental methods are refined and
closer collaborations are developed between modelers and experimentalists.

There still exist many open research problems in the reverse engineering of cellular
networks. On the experimental front, the challenges are: (i) to improve the signal-
to-noise ratio in the measurements, (ii) to develop new tools for measuring the
cellular concentrations, fluxes, and interactions in both space and time, and (iii)
to incorporate model-based design of experiment protocol. All of these will allow
efficient and accurate dynamical modeling of the networks. The efforts here can
benefit from existing models to identify the most useful type of measurements,
for example, using information from sensitivity analysis. As experimental data will
come from different measurements, data preprocessing may become necessary to
extract relevant information before the inference step.



242 Methods to Identify Cellular Architecture and Dynamics from Experimental Data

On the modeling front, the main challenge still remains in the formulation of
model structures that can exploit the characteristics of cellular networks: sparsity,
hierarchy, robustness, and optimality. Decomposition methodologies can exploit
these characteristics and reduce the network inference problem to a reasonable
scope. Categorically, these methods fall into either horizontal or vertical decompo-
sition. The horizontal approaches focus on the topology of the network by dividing
the network into building blocks (such as the aforementioned motifs and modules).
The vertical approaches decompose the network based on the time scale of intercon-
nections (that is, dynamics). There exists a need to integrate the two approaches
in systems biology to obtain integrated system models. As noted above, the goal
is to strike a balance between the size and level of detail, that is, a model struc-
ture that can sufficiently capture the dynamical behavior of a cellular network and
is also amendable for numerical simulation and analysis in model identification.
There may be no universal model for all cellular systems and purposes, but rather
a tailored model structure for each system and use. Again, the modeling research
should be integrated with the experimental efforts such that advances in each area
will improve the other.
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Much work has been devoted to determining the responses of biochemical networks
to changes in their environment or their internal components. These studies have
been motivated both by direct application to metabolic engineering and pharma-
ceutics as well as by the desire to improve our understanding of the behavior of
these systems. This sensitivity analysis has focused primarily on the steady state
(asymptotic) response of a system to constant (step) changes in parameters; see
also chapter 1. However, there are cases in which a dynamic analysis of system
response is crucial. This is clearly the case for mechanisms whose nominal behavior
is time-varying, for example, the cell cycle. Moreover, investigations of the transient
behavior invoked in signal transduction networks or the role of Ca2+ oscillations as
a second messenger demand a dynamic analysis. This chapter presents a framework
which is ideally suited to analysis of dynamic systems. Tools from control theory
can be applied to elucidate the functioning of self-regulating (homeostatic) systems
and to predict the effect of perturbations.

12.1 Linear Systems and the Frequency Response

We begin with an introduction to the framework of linear systems and one of the
primary tools for describing their behavior: the frequency response. These ideas can
be seen as a natural extension of a standard approach to analysis of biochemical
systems: parametric sensitivity analysis.

Analytic tools for the study of the sensitivity of biochemical systems have
been developed within the fields of Metabolic Control Analysis (MCA) (Kacser
and Burns, 1973; Fell, 1992; Hofmeyr, 2000) and Biochemical Systems Theory
(BST) (Savageau, 1976; Voit, 2000). This analysis is carried out in a linear (or
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log-linear) regime in which only small perturbations are addressed. This restriction
is necessary since it is only after linearization that the analysis becomes tractable.

The same approach is taken here – the linearized response of a biochemical system
is considered. The sensitivity analysis is extended by considering the response not
just to constant parameter changes, but also to time-varying perturbations. This
is achieved through a frequency domain analysis that describes the response of
the system to a canonical set of inputs (sinusoids). The response to arbitrary
perturbations can be reconstructed by use of the Fourier transform. This analysis
can be interpreted as an extension of MCA as presented by Ingalls (2004).

12.1.1 Linear Input/Output Models of Biochemical Networks

A network consisting of n chemical species involved in m reactions is modeled.
The n-vector s is composed of the concentrations of each species. The r-vector p

is composed of the (external) parameters of interest in the model. The m-vector
valued function v = v(s,p) describes the rate of each reaction as a function of
species concentrations and parameter values. Finally the n by m stoichiometry
matrix N describes the network: component Ni,j is equal to the net number of
individuals of species i produced or consumed in reaction j; see chapter 5. The
network can then be modeled by the ordinary differential equation

d

dt
s(t) = Nv(s(t),p(t)) for all t ≥ 0 (12.1)

The vector p contains any external parameters which have a direct effect on the
rates of the reactions (including, for example, kinetic constants of enzymes and
external effectors).

For the purposes of this presentation, we will assume that the species concen-
trations are not constrained by any structural conservations (as when there are
conserved moieties), and so the matrix N has full row rank. For a treatment of the
general case, see (Ingalls, 2004).

Local analysis of system 12.1 will be carried out in the neighborhood of a steady
state (s0,p0) of interest. This point is brought to the origin by a change of variables
in the states: x(t) = s(t)−s0, and in the parameters: u(t) = p(t)−p0. The n-vector
x and the m-vector u indicate the deviation from the nominal state and parameter
values of system 12.1, respectively. The linearized system then takes the form

ẋ(t) =

[
N

∂v

∂s

]
x(t) +

[
N

∂v

∂p

]
u(t) (12.2)

where the derivatives are taken at (s0,p0). By construction, this linearized system
has steady state (x,u) = (0,0).

The behavior of the original system 12.1 is approximated by that of the linearized
system 12.2 near the nominal operating point. In particular, the linearized model
faithfully represents the response of the original system to small changes in the
parameters (for which the function u(·) remains near zero). Standard sensitivity
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analysis involves gauging the response of system 12.2 to constant (step) changes in
the parameter levels. In extending this analysis to nonconstant perturbations, it is
useful to introduce the notations used in systems and control theory for analyzing
such systems.

The standard model of a linear time-invariant input-output system has the form

ẋ(t) = Ax(t) + Bu(t) (12.3)

y(t) = Cx(t) + Du(t) (12.4)

where x is an n-vector, u is an r-vector, y is a q-vector, and A, B, C, and D are
matrices of appropriate dimensions. The dynamics of the linearized model 12.2 take
this form with

A = N
∂v

∂s

∣∣∣∣
s=s0,p=p0

and B = N
∂v

∂p

∣∣∣∣
s=s0,p=p0

(12.5)

The components of the input vector u can play a number of roles in the system.
In control engineering, three of the most common are: reference input (providing an
external signal to which the system should respond), control input (by which one
subnetwork might regulate the activity of another), and disturbance (to incorporate
the effect of perturbations).

The vector y is referred to as the system output and represents a function of
the state and input which is of specific interest. In addressing biochemical systems,
there are several outputs which may be of interest, including species concentrations,
reaction rates, pathway fluxes, transient times, and rates of entropy production
(cf. section 5.8.1 of (Heinrich and Schuster, 1996)). In what follows, two output
vectors of primary interest will be addressed.

The first is the vector of independent species concentrations, or more precisely,
the deviations of these concentrations from the nominal level. In the linearized
model 12.2, these deviations are described by the state x. This choice of output is
thus characterized by

y(t) = x(t) (12.6)

which correspond to the choice C = I (the n × n identity matrix) and D = 0.
The second output of interest is the vector of reaction rates. Again, it is the

deviation from the nominal rates which is the natural choice for y. This is approxi-
mated by the linearization of the reaction rate function v(·, ·) at the nominal point
as follows:

y(t) =
∂v

∂s
x(t) +

∂v

∂p
u(t) (12.7)

where the derivatives are evaluated at (s0,p0). This output takes the form of
equation 12.4 with C = ∂v

∂s
and D = ∂v

∂p
.
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12.1.2 Frequency Response

Sensitivity analysis is concerned with determining the steady state response of
a system to constant disturbances, for example, to an instantaneous change in
the activity of an enzyme from one constant level to another. Extending that
analysis to determination of the asymptotic response to arbitrary time-varying
perturbations may seem a daunting task. Indeed, this is an intractable problem
in general. However, when restricting to linear systems, a satisfactory result can be
achieved.

There are two features of linear systems that can be exploited in this analysis.
The first is simply the linear nature of their input-output behavior which implies an
additive property: provided the system starts with initial condition x(0) = 0 (which
corresponds to the nominal steady state of the biochemical network), the output
produced by the sum of two inputs is the sum of the outputs produced independently
by the two inputs. That is, if input u1(·) elicits output y1(·) and input u2(·) yields
output y2(·), then input u1(·) + u2(·) leads to output y1(·) + y2(·).

The additive property allows a reductionist approach to the analysis of system
response: if a complicated input can be written as a sum of simpler signals, the
response to each of these simpler inputs can be addressed separately and the
original response can be found through a straightforward summation. This leads to
a satisfactory procedure provided one is able to find a family of “simple” functions
with the following two properties: 1) the family has to be “complete” in the sense
that an arbitrary signal can be decomposed into a sum of functions chosen from
this family; and 2) it must enjoy the property that the asymptotic response of a
linear system to inputs chosen from the family is easily characterized. The family
of sinusoids (sines and cosines) satisfies both of these conditions.

The decomposition of a signal f(t) into a combination of sinusoids is the founda-
tion of Fourier analysis (Strang, 1986; Lynn, 1982), which allows the description of
f(t) in terms of its Fourier transform F (ω) defined as a function of frequency ω by

F (ω) =
1

2π

∫ ∞

−∞

f(t)e−iωt dt. (12.8)

The transform provides a record of the frequency content of f(t) and is an
alternative characterization of the original function. While complete recovery of
a signal from its transform is difficult to achieve, important aspects of the nature of
the signal can be gleaned directly from the graph of the transform. In particular, one
can determine what sort of variations dominate the signal (low frequency or high
frequency) by comparing the content at various frequencies. Quickly-varying signals
have transforms with most of their content at high frequencies, while slowly-varying
functions show primarily low-frequency content.

The second crucial property of linear systems that will be used is that, as
mentioned above, their response to sinusoidal inputs can be easily described. Indeed,
it is this property of sines and cosines which makes Fourier analysis a useful tool
for analyzing linear time-invariant systems.
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Consider the case of a system for which the input and output are scalars, referred
to as Single-Input-Single-Output (SISO) systems. For such systems, a sinusoidal
input of frequency ω, for example, u(t) = sin(ωt), generates an output which is,
after an initial transient, a sinusoid of the same frequency: y(t) = A sin(ωt + φ).
This response can be described by two numbers: A, the amplitude of the oscillatory
output, known as the system gain; and φ, the phase of the oscillatory output,
known as the phase shift. For systems which are not SISO, there is one such pair of
numbers which characterizes the response of each output channel (or component)
to each input channel. The particular gain and phase shift which correspond to each
frequency ω can be conveniently described by the assignment of a single complex
number Aeiφ (with modulus A and argument φ) to each frequency. The resulting
complex-valued function is called the frequency response. The frequency response
for system 12.3 is

H(iω) = C(iωI − A)−1B + D, for all real ω (12.9)

This function will in general be matrix-valued but is scalar-valued in the SISO case.
The frequency response can be derived through an algebraic calculation involving
the Laplace transform of the system (Morris, 2001). The Laplace transform is
a standard tool in the analysis of linear systems. It allows a linear differential
equation, stated in the time domain, to be restated as an algebraic equation,
in the Laplace domain – the complex plane. The behavior of the system in the
Laplace domain is characterized by its transfer function, which is recovered from
equation 12.9 by replacing the purely imaginary argument iω with a general complex
variable s.

In addressing biochemical networks, system response can be described as in
equation 12.9. Recall, the matrices A and B describing the dynamics were derived
in equation 12.5. If the independent species concentrations are chosen as output we
have (from equation 12.6) C = I and D = 0, and so the frequency response takes
the form

Hs(iω) = (iωI − N
∂v

∂s
)−1N

∂v

∂p
(12.10)

Alternatively, for the reaction rate output, equation 12.7 gives C = ∂v
∂s

and D = ∂v
∂p

,
so that

Hv(iω) =
∂v

∂s
(iωI − N

∂v

∂s
)−1N

∂v

∂p
+

∂v

∂p
(12.11)

Each element of these matrix-valued frequency responses is a scalar-valued func-
tion which describes the response of one output channel to one input channel. For
each such input/output channel pair, the complex-valued function which describes
the system behavior can be plotted in a number of ways. Perhaps the most useful
of these visualizations is the Bode plot, in which the magnitude and argument of
the frequency response are plotted separately. The magnitude of the function value
(the system gain) is plotted on a log-log scale, where the gain is measured in deci-
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bels (dB) (defined by r = 20 log10 r dB; note that 0 dB corresponds to a gain of
one). The argument of the function value (the phase shift) appears on a semi-log
plot, with log frequency plotted against phase in degrees. Bode plots will be used
to illustrate frequency responses in the remainder of this chapter.

The response of a system to a constant input (which can be thought of as a
sinusoid with frequency zero) is characterized by the frequency response at ω = 0.
Making this substitution into equations 12.10 and 12.11 the response of the system
is found as

Hs(0) = −(N
∂v

∂s
)−1N

∂v

∂p
and Hv(0) = −∂v

∂s
(N

∂v

∂s
)−1N

∂v

∂p
+

∂v

∂p
(12.12)

These expressions can be derived from a standard sensitivity analysis of the system,
such as that provided by MCA.

12.1.3 Illustration of the Frequency Response

The effect of negative feedback will be illustrated by an analysis of the bacterial
trp operon, which is responsible for tryptophan production. A number of models of
bacterial tryptophan biosynthesis have appeared in the literature, originating with
the work of Goodwin (1965). The model of Xiu et al. (1997) will be considered here.
A more complete model, including explicit time delays, has also appeared (Santillán
and Mackey, 2001).

The Xiu model involves three state variables: the concentration of tryptophan P ,
the concentration of mRNA transcribed from the trp operon M , and the amount of
expressed enzyme E. (It is an abstraction of the model that tryptophan synthesis
is catalyzed by a single enzyme.) The dynamics of the model describe production
of mRNA, enzyme, and tryptophan, as well as the degradation and dilution (due
to cell growth) of each of these species. Cellular consumption of tryptophan is
also included. In addition, two negative feedbacks are incorporated. The first is the
inhibition of enzyme E by tryptophan. The second is the repression of transcription
of mRNA, also tryptophan dependent. This genetic regulation is achieved through
the activity of a repressor molecule R which, when bound to two units of tryptophan,
interacts with an operator region of the operon, thus blocking transcription.

The dynamics, indicated in figure 12.1 can be described by the equations

dx

dt
=

z + 1

1 + (1 + r)z
− (α1 + u)x (12.13)

dy

dt
= x − (α2 + u)y (12.14)

dz

dt
= y

k2
i

k2
i + z2

− (α3 + u)z − α4
z

z + 1
− α5(1 + α6u)u

z

z + k
(12.15)

α1 = 0.9, α2 = 0.02, α3 = 0, α4 = 0.024, α5 = 430,

α6 = −7.5, u = 0.00936, ki = 2283, k = 0.05.
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Figure 12.1 Tryptophan biosynthesis: reaction scheme.

where x, y, and z are dimensionless concentrations of mRNA, enzyme, and trypto-
phan respectively. The dimensionless parameters are described by Xiu et al. (1997).
The behavior of the system under changes in the value of α5 will be addressed, with
a nominal value of α5 = 430. The effect of the enzyme inhibition on this response
will be illustrated by considering two values of the parameter r: strong feedback is
exhibited with r = 10, while weaker feedback will be addressed by taking r = 5.
The concentration of tryptophan (z) is taken as the output of the system. The
magnitude frequency responses to changes in α5 are shown in figure 12.2.
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Figure 12.2 Frequency response for trp operon model.

In this model, α5 describes the effect of cellular demand for tryptophan (Xiu et al.,
1997). The behavior shown in the figure is typical of a negative feedback system.
With weak feedback (r = 5), the effect of the input on asymptotic tryptophan
levels decreases monotonically as the frequency grows larger. Strengthening the
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feedback (to r = 10) has two effects. The first is that the low frequency response
is improved: as a standard sensitivity analysis would show, increasing the feedback
reduces the effect of perturbations on the output. The other feature of stronger
negative feedback is an increase in sensitivity at higher frequencies – to the point
that the feedback actually makes the system more sensitive to disturbances over a
certain frequency range.

The knowledge that negative feedback can introduce such resonance effects is
crucial to the design of feedback systems. The trade-off between improved response
at low frequencies and increased sensitivity at higher frequencies can be made
explicit (for certain linear systems) by a constraint known as Bode’s integral
formula (Bode, 1945). System designers work around this “performance constraint”
by implementing feedback that introduces increased sensitivity only at frequency
ranges over which the system is unlikely to be excited. One could postulate that
the same is true of feedback mechanisms within the cell: they have been crafted by
natural selection in such a way that a trade-off is made between improved response
to common low-frequency inputs and amplification of rare disturbances at higher
frequencies.

Having illustrated the effect of negative feedback on the frequency response, we
now turn to a more complete description of feedback strategies, highlighting the
critical role of integral feedback.

12.2 Integral Feedback Control: From Homeostasis to Chemotaxis

Homeostasis is the dynamic self-regulation of a system to maintain essential vari-
ables within limits necessary for acceptable performance in the presence of unex-
pected disturbances. It is one of the defining features of living organisms. Home-
ostasis is achieved through countless control systems that regulate the multiplicity
of biological processes. This intricate control network ensures robustness in the
constantly changing real world; see chapter 2.

A related phenomenon is that of sensory adaptation in which the sensory system
adjusts itself to changing environmental conditions for peak performance. For
example, one’s vision can adapt to the ambient background light intensity (bright
or dim) so that there is sufficient contrast to detect objects. In signal transduction
pathways, negative feedback regulation causes the output to return toward its
prestimulus value after the application of a step increase in the input. During
movement toward a chemical signal (chemotaxis), this type of adaptation facilitates
the sensing of chemical gradients over a wide range of concentrations.

In this section we will discuss how one particular type of control system, integral
feedback control, plays a crucial role in both homeostasis and sensory adaptation.
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12.2.1 Negative Feedback Control

The most fundamental control system is negative feedback control. In such a system,
the controller measures the difference between the current output and the desired
output and based on this error takes some control action that reduces the error (see
figure 12.3A). Negative feedback promotes regulation around a set point, stability,
and robustness when performing some task. An important goal of the controller is
to minimize the effect of the disturbances d1 and d2 on the output y. As shown
in section 12.3, positive feedback increases the difference between the current and
previous output, and thereby acts as an amplifier, but with potentially destabilizing
consequences.

C

P y

d2d1

ui

uc

+ +
+ +

-

Controller

Output

Input

Control

Action

Disturbances

k
u +

-

∫

y
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x

Figure 12.3 A) Block diagram of typical control system. The system to be controlled,
which is usually referred to in control engineering as the “plant,” P , takes an input ui

and converts it into an output y, which is typically normalized to represent the deviation
between the current output and the desired output (that is, the error). The disturbances
d1 and d2 perturb the input and output, respectively. The controller measures the error
and takes an appropriate control action to reduce y. B) Block diagram of integral feedback
control system. The input is u, the gain of the plant is k, and the controller is an integrator.
From this diagram, it is clear that the feedback term x = ydt. Thus, dx/dt = y and at
steady state, y → 0 as long as the system is stable.

One can classify controllers according to the mathematical operations used
to convert the error signal into a control action. In today’s world of ultrafast
computers, one can design fancy digital controllers that implement arbitrarily
complex strategies. In the past, however, control engineers resorted to three basic
types of feedback control: (1) proportional control: the error term is multiplied
by a constant before being fed back; (2) integral control: error is integrated; or
(3) derivative control: error is differentiated. Each type of feedback has beneficial
features. Proportional control corrects for “current” errors. One can adjust the
amount of feedback by increasing or decreasing the constant factor. Higher feedback
gain is better at rejecting disturbances, but it also causes the system to become less
stable. Integral control eliminates steady state errors. Finally, derivative control
provides “anticipation” of upcoming changes, which increases damping, improves
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Controller Controller Closed-loop
Type (time domain) (Laplace domain) transfer function

Proportional uc(t) = kP y(t) Uc(s) = kP Y (s) P (s)
1+kP P (s)

Integral uc(t) = kI y(t)dt Uc(s) = kI

s
Y (s) sP (s)

s+kIP (s)

Derivative uc(t) = kD( dy
dt

) Uc(s) = skDY (s) P (s)
1+skDP (s)

Table 12.1 Controller types with time- and frequency-domain descriptions. The last
column shows the transfer function from D(s) to U(s).

stability, and decreases transient errors. Mathematically, we can represent these
controllers as in table 12.1.

By substituting these controllers into the feedback system shown in figure 12.3A,
one can calculate the relationship (transfer function) between the disturbance inputs
and the output using the block diagram and some simple algebra. The transfer
function from d1 to y, found in table 12.1, represents the sensitivity of the system
to the disturbance.
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Figure 12.4 A) Time course of response of three control systems to a unit step
disturbance (d1 = 1/s, kP = kI = kD = 1). Proportional (solid), integral (dashed), and
derivative (dotted) control systems are depicted. (B) Bode plot of the sensitivity function
Y (s)/D1(s). Recall that 0 dB corresponds to an output that has the same magnitude as
the input; that is, a system with unity gain.

From these transfer functions one can run simulations of the output responses to
an input disturbance signal and compare the three controllers. Applying a unit
step disturbance at d1(t) (D1(s) = 1/s) produces the time histories shown in
figure 12.4A. Proportional control attenuates the disturbance at both short and
long time scales; integral control completely neutralizes step disturbances at steady
state but has little effect early on; derivative control is the opposite, blocking
the immediate change but showing no attenuation at steady state. An alternative
representation of these dynamics in the frequency domain is possible by taking
the Fourier transform of the time domain signals. This frequency response of the
transfer function or Bode plot offers perhaps a simpler depiction of the above
comparison: one readily observes the disturbance attenuation at low frequencies
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by integral control, attenuation at high frequencies by derivative control, and
attenuation at all frequencies by proportional control.

To capture the properties of all three controllers, one can combine them into
a proportional-integral-derivative (PID) control system. The transfer function for
a PID controller is written as PID(s) = kP + kI/s + kDs. One can obtain the
desired performance by tuning the parameters kP , kI , and kD to obtain the best
balance of steady state error, transient behavior, and stability. From a Bode plot
perspective, manipulating the three coefficients allows one to shape the Bode plot
to obtain the optimal disturbance attenuation at the critical frequencies. Thinking
in terms of transfer functions, the PID controller offers sufficient flexibility to place
the dominant pole(s)1 of the system at appropriate location(s) for the desired
system behavior.

Although the above analysis, based on transfer functions, is for linear feedback
systems, the general lessons also apply to nonlinear systems. Indeed, it is helpful
to think about complex digital controllers in these simpler terms in order to gain
intuition. In addition, PID controllers are still widely used for systems possessing
slower dynamics, such as in process control.

12.2.2 Primer on Integral Control

Now we will focus our attention on integral feedback control because of the
remarkable property of perfect regulation at steady state against step disturbances.
More importantly, this regulation is robust to internal and external perturbations.
For example, the presence of an additional disturbance d2 does not affect the perfect
regulation of the step disturbance d1. Likewise, the steady state output is robust
to variations in the parameters of the plant. Thus, integral control ensures the
robust tracking of a specific steady state value so that the error approaches zero
despite uncertainty in internal and external conditions. Exceptions arise in the case
of higher-order unstable disturbance inputs (for example, ramp inputs) or when the
controller itself is perturbed.

Integral controllers are ubiquitous in man-made systems. For example, the cruise
control in a car uses integral control to maintain robustly the speed of the vehicle
at the set point despite disturbances such as the wind or a hill. In an airplane,
integral control loops are found at every level from CPUs to instruments to the
entire vehicle. A single oil refinery possesses more than 10,000 integral feedback
loops.

A block diagram of a simple linear system with integral feedback illustrates its
chief features; see figure 12.3B. The plant or network, represented by the block with
gain k (P (s) = k), takes the input u and produces the output y1. The difference
between the output y1 and the desired steady state output y0 is the error term y.
Then, y is integrated and fed back into the system. The key to integral control is
that the feedback term x =

∫
y so that

dx

dt
= y (12.16)
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At steady state the time derivatives of the variables go to 0, so that y → 0 as
t → ∞ independent of the values of the input u and the gain k. Hence, the error
asymptotically approaches zero as long as the system is stable. It is important to
note that this analysis does not depend on the fact that the system is linear; the
perfect regulation property of integral feedback also applies to nonlinear systems.

Transfer function and state-space interpretations. As we described above,
for a typical linear feedback system with plant P (s) and controller C(s), the
sensitivity transfer function from the disturbance input D1(s) to the output is
S(s) = P (s)/(1 + P (s)C(s)). We can then prove that if the input signal is a step
of size A, then the output will approach zero asymptotically in time if and only if
the sensitivity function has a zero at the origin (Doyle et al., 1992).

In transfer function form, a step input of size A is described by Ui(s) = A/s.
This leads to the output Y (s) = Ui(s)S(s) = AS(s)/s. If the feedback system is
stable, then by the final value theorem (Doyle et al., 1992), y(t) → AS(0) as t → ∞.
Clearly, the right-hand side is zero if and only if S(0) = 0. An integral feedback
system possesses such a zero at the origin: S(s) = sP (s)/(s + P (s)).

Alternatively, one can represent the dynamics of a system in state-space form as
a set of first order differential equations:

dx

dt
= f(x, u), and y = g(x, u) (12.17)

The vector x is the state of the system (typically describing the concentrations of
the species) and u is the input. For a linear system, we can simplify this description
to the matrix form of equation 12.3. One can introduce a new integral feedback
state z with the dynamics

dz

dt
= Cx + Du = y (12.18)

In this manner, integral feedback is implemented, and these dynamics guarantee
that the steady state error approaches zero no matter what the values of u, A, B,
C, and D as long as the system is stable.

12.2.3 Necessity of Integral Control and the Internal Model Principle

The previous section demonstrated the sufficiency of integral control for robust
perfect regulation. What about necessity? Is it true that any system exhibiting
robust perfect regulation must contain integral feedback? A simple necessity proof
for linear systems is provided that relies on the state-space description given above.

At steady state, dx/dt = 0, so that x = −A−1Bu and y = (D−CA−1B)u. Thus,
y = 0 at steady state for all constant u, if and only if either

[
C D

]
= 0, or det

[
A B

C D

]
= 0 (12.19)
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The former is the trivial case when y(t) = 0 for all t, and the latter holds if and
only if there exists a k �= 0 such that

k
[
A B

]
=
[
C D

]
(12.20)

Thus, defining z = kx, we have dz/dt = kẋ = k(Ax + Bu) = Cx + Du = y, which
is the standard integral control equation.

This necessity statement suggests that integral control is prevalent at all levels
of biology from cellular regulation to organismal physiology to ecosystem balance.
Just as integral feedback is used ubiquitously in man-made systems, it must also be
a common control strategy in biological systems given the requirement that internal
variables maintain constant steady state values despite step disturbance changes.

The necessity of integral control applies to step changes. The internal model
principle (IMP) generalizes this notion. The principle states that the robust tracking
of an arbitrary signal requires a model of that signal to be in the controller.
The intuition is that the internal model counteracts the external signal so that
y(t) → 0 as t → ∞ even in the presence of parameter perturbations. For example,
a controller containing an integrator (C(s) = 1/s) is necessary to track robustly
a step signal (U(s) = 1/s). Francis and Wonham (1976) proved IMP for linear
systems. Isidori and Byrnes (1990) have established a general framework for IMP
in nonlinear systems using techniques from differential geometry. Sontag (2003)
has provided a succinct statement of IMP relevant to biological systems. However,
these topics are beyond the scope of this chapter. It is important to appreciate
that living systems are subject not only to constant, or step, changes, but also
to perturbations that involve steadily rising or falling signals, and to even more
complex disturbance behaviors (for example, neural signals). In order to maintain
homeostasis, the feedback control system implemented by the biological network
must contain an internal model of the disturbance according to IMP. An area for
future research is cataloging these control structures and addressing the question
of how biology builds these internal models.

12.2.4 Examples of Integral Control in Biology

Here we illustrate two biological examples of integral control. One is in the area of
blood calcium homeostasis and the other is in the area of sensory adaptation.

Blood calcium regulation. The level of calcium in the blood is carefully reg-
ulated against disturbances in calcium utilization and uptake. The two compounds
parathyroid hormone (PTH) and vitamin D (VitD) play a central role in this reg-
ulation. They control how much calcium is introduced into the blood from the
intestine (vitamin D) and from the bone (PTH). El-Samad and Khammash have
formulated a model, illustrated schematically in figure 12.5A, of these dynamics in
mammals (El-Samad et al., 2002).

A disturbance d1 affects the rate at which calcium is taken up or removed from
the blood; this disturbance is compensated for by the action of PTH and vitamin
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Figure 12.5 A) Model of blood calcium regulation (El-Samad et al., 2002). A distur-
bance, d1, in calcium dynamics is attenuated by the control action uc, mediated by PTH
and vitamin D, which is produced by the block C representing a PI controller. The error y
is the current level of calcium, [Ca], minus the set point level of calcium, [Ca]0. B) Model of
regulation of bacterial chemoreceptors. Receptor activity depends on the ligand aspartate
as well as the degree of receptor methylation (feedback term). An integral controller is
implemented because CheB only demethylates active receptors. This control system en-
sures that the steady state level of receptor activity is constant despite changes in ligand
concentration or in receptor numbers.

D, uc : d[Ca]/dt = uc + d1. The error is the deviation from the steady state blood
calcium level (y = [Ca] − [Ca]0). It is known from physiological measurements
that the level of PTH is proportional to this error (y ∝ [PTH]). In addition,
the rate of production of vitamin D is proportional to the concentration of PTH,
and assuming that vitamin D has a slow degradation rate on the time scales of
interest, we have d[VitD]/dt = k[PTH]. Thus, we can calculate the error in terms
of [PTH] or [VitD]: y = k1[PTH] = k2d[VitD]/dt. Finally, if we approximate the
rate of calcium absorption from the intestine or bone as linear functions of [VitD]
and [PTH], respectively, we have the following equation for the control action:
uc = k3[PTH] + k4[VitD] = kP y + kI

∫
y. Thus, this system exhibits proportional-

integral (PI) control.
Bacterial chemotaxis signaling pathway. Bacteria are able to sense gra-

dients of attractants and repellents. The signal transduction pathway responsible
for this behavior possesses several special features to ensure both exquisite sensi-
tivity and wide dynamic range. One such feature is perfect adaptation: the output
of the pathway (flagellar rotation) exactly returns to its prestimulus value even
in the presence of continuous stimulation so that the steady state level of output
activity asymptotically approaches a constant value independent of the attractant
concentration. The bacterial chemotaxis system is a two-component signaling sys-
tem (Stock et al., 1991). The receptor complex, which consists of the receptor, the
histidine kinase CheA, and the adaptor protein CheW, phosphorylates the response
regulator CheY. Phosphorylated CheY interacts with the flagellar motor to induce
clockwise (CW) rotation and tumbling behavior. The attractant inhibits the re-
ceptor complex resulting in counterclockwise (CCW) flagellar rotation and straight
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runs. Receptor complex activity is regulated by methylation, which mediates adap-
tation. Methylation by CheR increases receptor activity; demethylation by CheB
decreases activity. Although there is no direct evidence, we assume that CheB senses
the activity state of the receptor by only demethylating active receptor complexes.
This assumption results in an important negative feedback loop; see figure 12.5B.

Robust versus non-robust perfect adaptation. An important question is
whether perfect adaptation in bacterial chemotaxis is robust to changes in internal
and external conditions. Alon, Leibler, and colleagues experimentally tested the
robustness of perfect adaptation to dramatic changes in the concentration of key
components of this pathway (Alon et al., 1999). They demonstrated that as the
methylase CheR was varied over a 50-fold range, the adaptation precision remained
close to perfect. They went on to show that perfect adaptation was robust not only
to changes in levels of CheR, but also to changes in the concentration of CheB,
receptor, and CheY.

Is it possible to model perfect adaptation in bacterial chemotaxis? Most models
in the literature indeed were able to reproduce perfect adaptation, but only through
fine-tuning of the model parameters. Perfect adaptation is nonrobust in these
models because altering a parameter disrupts perfect adaptation. This can be
evaluated by systematically varying the model parameters and testing for perfect
adaptation using continuation methods (Yi et al., 2000). For example, varying
the total receptor concentration over a 100-fold range in a particular model of
bacterial chemotaxis (Spiro et al., 1997), one observes perfect adaptation for only
one particular receptor concentration, 8μM. This is an example of non-robust
perfect adaptation.

Alternatively, one can imagine that perfect adaptation is a structural property of
the system, insensitive to parameter variation, perhaps resulting from a particular
feedback control mechanism. For example, perfect adaptation was robust to a 100-
fold change in receptor concentration in another model by Barkai-Alon-Leibler
(BAL) (Barkai and Leibler, 1997). Varying the levels of several other components
in the model did not disrupt perfect adaptation. The necessity of integral control
argues that an integral control mechanism must be present in the BAL model to
explain this robust regulation.

Implementation of integral control in the bacterial chemotaxis system.

How is integral control implemented in the BAL model of the chemotaxis system?
A simplified version of the derivation is shown here. The variable x represents the
methylation state of the receptor. The change in x: dx/dt, equals the methyla-
tion rate r minus the demethylation rate. Using the assumption that CheB only
demethylates active receptor complexes so that the demethylation rate is propor-
tional to A, we obtain the following: dx/dt = r − bA. At steady state, x = 0,
r = bA, and hence the steady state activity level A0 = r/b. We can rewrite this
as the familiar dx/dt = −b(A − A0) = −by. The key point is that if r and b are
independent of u, then this system will exhibit perfect adaptation that is robust to
changes in the system parameters.
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12.3 Feedback in Cellular Communication

In the previous section we saw how integral control can be used to achieve robust
perfect adaptation in the signaling pathway regulating chemotaxis in E. coli. We
now consider other uses of feedback mechanisms in cell signaling pathways.

12.3.1 Signal Detection: Fast Excitation, Slow Inhibition

One of the roles of the integral feedback mechanism employed in E. coli chemotaxis
is that it allows the cell to determine the rate at which the chemoattractant
concentration is varying temporally around the cell. Thus, the objective of the
integral feedback control is not necessarily to reject the step disturbances, but to
generate signals that mirror the rate of change in the external signal.

An alternative role of the mechanism can be envisioned (Koshland Jr. et al., 1982;
Sontag, 2003). A cell may need to monitor the external environment for sudden
changes, to which it can then adapt. A mechanism for achieving signal detection is
then required so that the cell can alter its behavior in response to this change.

A digital logic mechanism demonstrating how this monitoring can take place is
shown in figure 12.6. The current state of the environment is sensed continuously
and compared to the previous state through an exclusive-or gate (x-or). This
circuit has a “low” output if the two inputs coincide, but a “high” if they differ.
Thus, if the present and past states of the environment differ, a transient signal is
generated that can trigger a response.

Delay

environment
response

x

y

z

A

x

y

z

time

B

Figure 12.6 Signal detection scheme. A) Changes in the external environment can be
detected by the scheme outlined here. The environmental signal, x, is compared with
stored copies of this signal, y, using an x-or signal. This generates a pulse whenever the
present state does not match the previous one. B) Sample signal levels. The two changes
in the environment lead to two response pulses.

For biological signaling, a similar transient response can be effected by a mecha-
nism in which the current state of the environment generates a fast excitory signal
that stimulates a response regulator (Koshland Jr. et al., 1982; Levchenko and
Iglesias, 2002); see figure 12.7. The environment also generates a slower inhibitory
signal on this same response regulator. Whenever the state of the environment is
constant, the positive and negative influences balance and the response returns to
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basal levels. Recently, this scheme was used to create a synthetic gene network to
allow cell-to-cell communication in E. coli (Basu et al., 2004).

E
I
R

E(t)

I(t)

R(t)

time

time

time

Figure 12.7 Fast excitation, slow inhibition. Biochemical scheme for implementing the
signal detection scheme of figure 12.6 (Insert). As seen in the time courses, a rise in
the excitation signal, E, stimulates an inhibitory signal, I, whose level rises slowly. The
excitation leads to a response, R, which is then attenuated by the inhibitor. Together this
leads to a short pulse in the response.

A mathematical model that effects this general mechanism is given by

dI

dt
= −k−1I + k1E

dR

dt
= −k−2IR + k2E

A change in the environmental signal, E, leads to both a fast increase in the
response, R, as well as a slower buildup in inhibition, I; see figure 12.7. At steady
state,

I = (k1/k−1)E and R = (k2/k−2)
E

I
(12.21)

Together, these two equations imply that, at steady state,

R → R� =
k2k−1

k−2k1
(12.22)

ensuring that the level of response is independent of that of E.
Though the system looks like a purely feedforward control mechanism, integral

feedback is still being employed. Rewriting the differential equation as

dR

dt
= −k−2I

(
R − k2

k−2

E

I

)
= −k−2I

(
R − R� +

k2

k−2

(
k−1I − k1E

k1I

))
= −k−2I

(
R − R� + D

)
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Figure 12.8 Integral control mechanism. A) The fast excitation, slow inhibition mecha-
nism described in the text can be expressed in block-diagram form. A signal consisting of
the response, R, plus a transient signal, D, is compared against a constant reference signal,
R∗. After scaling by the time-varying gain k2I(t), the error is integrated. B) The magni-
tude Bode plot of the linearized model of this mechanism exhibits the low frequency rise
proportional to frequency that is characteristic of a closed-loop system that has integral
control. Parameters used: k2 = 5, k−1 = 0.01, and k−2I0 = 1.

where

D =
k2

k1k−2

(
dI/dt

I

)
(12.23)

approaches zero as t → ∞ provided that I > 0. Hence, the system can be redrawn
as in figure 12.8A where the integral control feedback is evident.

This can also be observed by computing the transfer function of the linearized
model of this system. In particular, the closed-loop transfer function between the
environment and the output is

R(s)

E(s)
=

k2s

(s + k−1)(s + k−2I0)
(12.24)

where I0 is the inhibitor concentration about the operating point. The frequency
response of this transfer function is shown in figure 12.8B. This transfer function
demonstrates that the system has two poles, corresponding to the off-rates for the
inhibitor (k−1) and response-regulator (k−2I0) equations. It also has a zero at s = 0,
which is a consequence of a closed-loop system that has integral feedback.
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12.3.2 Amplifying the Signal through Positive Feedback

The adaptive property of the fast excitation, slow inhibition mechanism is not
affected by model parameter values; it is clear from the discussion above that
the kinetic coefficients can be altered, but that the response, after a change in
the stimulus, will return to its prestimulus concentration. These concentrations,
however, will be affected by the parameter values, echoing the results obtained in
bacterial chemotaxis models (Alon et al., 1999; Yi et al., 2000). However, it is also
known that the external gradient is not amplified with this single mechanism and
hence cannot explain all the observed response of chemotaxing eukaryotic cells, such
as neutrophils and the amoeba D. discoideum. To amplify the effect of the stimulus,
several mechanisms have been proposed (Iglesias and Levchenko, 2002; Levchenko
and Iglesias, 2002).

One means of amplifying the response is to add a positive feedback loop down-
stream, as shown in figure 12.9A. Suppose that the response of the sensing mecha-
nism activates a downstream autocatalytic effector according to:

dX

dt
= −k−3X + k3R +

kfXn

1 + ksXn
(12.25)

The parameter kf , as well as the Hill coefficient, n, denote the strength of the
positive feedback. For now, assume that n = 1. In the absence of this feedback
(kf = 0) the concentration of X is proportional to that of R, with proportionality
constant equal to 1/k−3. Now, assume that kf ≥ 0 and that ksX � 1. Then
X is, once again, proportional to R, but the proportionality constant is now
1/(k−3 − kf ) > 1/k−3. This can be arbitrarily large if kf ≈ k−3. In this situation,
of course, saturation conditions exist; see figure 12.9B.

12.3.3 Positive Feedback and Cooperativity: Hysteretic Behavior

More interesting behavior can arise if the Hill coefficient of the feedback term is
greater than one. In this case, the response does not vary significantly for small
changes in the stimulus; see figure 12.9C. However, once a threshold value is reached,
the response changes abruptly to a higher level. At this point, the response is
once again relatively insensitive of the stimulus. To return to prestimulus levels,
a significant decrease in the stimulus is needed. This hysteretic response arising
from a bistable system is common in engineering circuits. For example, the Schmitt
trigger implements a bistable circuit by closing a positive feedback loop around
an operational amplifier (Sedra and Smith, 2004). There is experimental evidence
that cells also rely on bistability for regulation (Xiong and Ferrell Jr., 2003).
Synthetic biological switches have also been designed and built based on these
principles (Hasty et al., 2000; Ozbudak et al., 2004).

Several models based on bistable signaling systems have been proposed to account
for the large chemoattractant-induced responses in cells (Meinhardt, 1999; Narang
et al., 2001; Postma and Van Haastert, 2001). However, because of the hysteretic
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Figure 12.9 Amplification through positive feedback. A) To amplify the response to an
external environmental signal, the sensing mechanism of figure 12.7 can be followed by an
amplification mechanism that relies of positive feedback. B) Steady state concentration
of X for the system described by equation 12.25 as a function of the input concentration
R. For comparison, the response of the system assuming linear feedback, n = 1 (solid) is
plotted alongside that of the open-loop system, kf = 0, (dotted line). Coefficients used
are k−3 = k3 = kf = 1 and ks = 0.01. C) Hysteretic behavior observed when n = 2
(solid). When the input concentration is low, R � 5, or high, R � 8, the system exhibits
only one steady state response. For intermediate values, two stable (solid lines), as well
as one unstable (dashed line), steady states are present. This bistable system can lead to
discontinuous behavior. When the input is increased beyond the transition level, a sudden
rise in the output can be observed, as the system moves from the low level of response to
the higher level, shown by the arrow. To return to the lower level, the input signal must
be reduced significantly. The response in the absence of feedback is shown for comparison
(dotted).

nature of their response, these models cannot account for the behavior seen in
unpolarized D. discoideum cells. These unpolarized amoebae are equally sensitive
around the whole membrane, and so when they are subjected to sudden changes in
the concentration gradient, these cells can rapidly respond (Iglesias and Levchenko,
2002; Devreotes and Janetopoulos, 2003). A hysteretic switch, however, could
account for the response of polarized cells, which “remember” their polarization.
These cells, when subjected to a change in the chemoattractant gradient, tend to
turn.

More recently, a means for amplifying the response to an external signal has been
suggested in which parallel sensing mechanisms, acting independently, cooperate
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to produce an amplified response to the chemoattractant stimulus (Ma et al.,
2004b). The advantage of such a mechanism for amplifying the signal is that it
employs a redundant mechanism. If, for some reason, one of the two pathways is
impeded, the cell can still detect stimuli. Such mechanisms have been demonstrated
experimentally in D. discoideum cells in which one of the two pathways is disrupted,
either through knockout mutations or pharmacological inhibitors. These cells are
still able to sense external stimuli, though chemotaxis is partially impaired (Iijima
and Devreotes, 2002; Funamoto et al., 2002).

12.3.4 Oscillations: Positive and Negative Feedback Work Together

Besides providing for strong amplification, one of the uses of positive feedback is as
a means of obtaining oscillatory behavior. This was first used in engineering around
1915 (Bennett, 1979).

In biology, oscillatory systems are ubiquitous, from the circadian rhythms to
genetic oscillators to the wave pattern observed in D. discoideum cell-to-cell com-
munication (Goldbeter, 2002; Kruse and Jülicher, 2005). Many of these systems
rely on the interplay of positive and negative feedback loops.

Figure 12.10 Positive feedback through autocrine loop. In D. discoideum cells, the
pathway that senses extracellular cAMP also stimulates the production of intracellular
cAMP, which is then secreted from the cell. In doing so, a positive feedback loop is closed.

Autocrine loops arise when a cell secretes a chemical that stimulates the secretory
cell itself. For example, receptor binding of extracellular cAMP in the amoeba D.
discoideum induces the activation of adenylyl cyclase of aggregation (ACA). This
leads to the synthesis of intracellular cAMP from ATP. This cAMP is then secreted
into the extracellular medium where it can diffuse away and thereby signal nearby
cells. However, the secreted cAMP may also find its way back to the cell. In doing
so it closes a positive feedback loop involving the chemoattractant sensory system;
see figure 12.10.
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A thorough analysis of autocrine loops requires that the stochastic nature of the
diffusion of the signaling molecule be considered (Batsilas et al., 2003). However, if
we ignore the spatial considerations of the diffusion, the analysis of the autocrine
loop is relatively straightforward. The positive feedback path is coupled to the
negative feedback mechanism, described above, that provides adaptation. Together,
these intertwined positive and negative feedback loops lead to the formation of
cAMP waves that can propagate as circular or spiral wave forms (Kessin, 2001).

Several models have been proposed to describe the oscillatory behavior found
in cAMP signaling in D. discoideum (Halloy et al., 1998; Laub and Loomis, 1998;
Nagano, 2000; Iglesias, 2003). While these models differ in the biochemical identities
of activators and inactivators, they all rely on an interplay between positive and
negative feedback to achieve this periodic oscillation.

Here we take a systems-level approach to the analysis of the autocrine loop and
thereby demonstrate the use of several control-theoretic analysis techniques. Using
the scheme described in figure 12.10, we assume that the production of intracellular
cAMP is governed by

dY

dt
= −k−4Y + k4X (12.26)

and that this changes the extracellular concentration as:

dE

dt
= −k−5E + k5Y (12.27)

The parameter k5 can be used to describe the strength of the feedback loop.
The system can now be treated as in figure 12.11A. Here, a linear system is

found in feedback with a discontinuous nonlinear element, which can serve as an
approximate model for the hysteretic bistable system described in section 12.3.3.
This type of feedback system has been studied extensively in the control literature,
where it is sometimes known as a relay or relaxation oscillator (Tsypkin, 1984;
Varigonda and Georgiou, 2001). In these cases, the describing function method can
be used (Khalil, 2002) to determine whether oscillatory behavior is possible.

The analysis is predicated in computing an equivalent gain through the nonlinear
system. Suppose that the input to the nonlinearity is the sinusoid x(t) = A sin(ω0t)

and assume that the output y(t) is also periodic. It can then be described by the
Fourier series. For example, if the nonlinearity involved is the hysteresis function
described in figure 12.11A, then the sinusoidal input leads to a square wave output
with Fourier series

y(t) =
ε

π

∞∑
k=0

sin ([2k + 1][w0(t − t0)])

2k + 1
, sin(ω0t0) =

δ

A
(12.28)

If we focus on the fundamental frequency, k = 0, the nonlinearity has a gain
equivalent to:

η(A) =
ε

Aπ
e−iω0t0 (12.29)
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Figure 12.11 Describing function technique. A) The linear, time-invariant system with
transfer function G(iω) is placed in feedback with a nonlinear system. If the system
exhibits oscillatory behavior, then a sinusoidal input to the nonlinear system, x, gives
rise to the square wave output y(t). The frequency of this output matches that of the
input, though the hysteretic nature of the nonlinearity gives rise to a phase shift. In the
describing function analysis technique, the square wave is expressed as a Fourier series,
and an effective gain, η(A) is computed. B) To determine whether oscillatory behavior is
predicted, a polar plot of the linear system’s transfer function is obtained. Here, the real
and imaginary parts of G(iω) are plotted as a function of ω (solid). On the same axes, the
function 1/η(A) is plotted as a function of A (dotted). Points of intersection correspond to
frequencies ω0 and amplitudes A where 1−G(ω0)η(A) = 0. These are predicted magnitudes
and frequencies of oscillation. C) Limit cycle oscillation arising from the system described
in panel B.

If there is oscillatory behavior, then the loop gain at the frequency ω0 must be one;
that is 1 = G(iω0)η(A). Thus, by plotting G(iω) as a function of ω and 1/η(A)

as a function of A, we can seek for points where this equation is satisfied; see
figure 12.11B. These points predict the existence of an oscillation with the given
frequency and magnitude.

The describing function technique is one means of studying oscillatory behavior
analytically. Other techniques and methods include the use of bifurcation analysis
(Ma and Iglesias, 2002).
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12.4 Discussion

Control theory originated to meet the needs from a variety of engineering disciplines.
In its essence, it facilitates the analysis and design of dynamical systems that are
used to regulate the performance of a larger system. Almost always, these systems
involve considerable feedback loops which can endow them with excellent robustness
properties, but can also make them vulnerable; see chapter 2.

In this chapter we have attempted to introduce readers to several of these
tools. Because many of the techniques used in the analysis and design of control
systems are based on linear analysis, we have emphasized this. While it is true
that “real systems” are not linear, it is also true that considerable insight can be
obtained regarding the dynamical behavior of nonlinear systems near equilibria by
considering their linearizations (Khalil, 2002). This approach is especially fruitful
when applied to systems whose architecture ensures they will spend most of their
time near a steady state, including systems governed by homeostasis. We have
shown how, by considering linear systems, powerful frequency-domain and transfer-
function tools are available for analysis.

We have also tried to illustrate how understanding of engineering control sys-
tems can lead to some intuition as to the system behavior of biological systems.
For example, knowledge of the internal model principle helps evaluate models of
perfect adaptation in biology. Similarly, understanding how hysteretic switches and
amplifiers arise out of positive feedback may lead to a better understanding of how
these behaviors arise in biology.

Finally, we note that, historically, control theory first arose out of a need to
understand the behavior of systems (Bennett, 1979). This theory was then used to
design and engineer better systems. It is not difficult to foresee that, in biology,
control theory may follow the same path. At first, we expect that both existing and
new tools will be used to analyze existing biological systems. However, we expect
that these tools will later allow us to design and implement synthetic biological
systems. In fact, we now see the first steps in this process (Hasty et al., 2002).
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Notes

1. For a rational transfer function G(s) = N(s)/D(s) where N(s) and D(s) are
polynomials with no common roots, the poles (respectively zeros) of the transfer
function are the roots of the denominator (respectively numerator) polynomials.
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For example, the transfer function G(s) = (s + 1)/(s2 + 1) has one zero at −1 and
two poles at ±i. Much of classical control theory deals with the use of feedback to
manipulate the location of the poles of the closed-loop transfer function. See (Doyle
et al., 1992) for examples.





13 Synthetic Gene Regulatory Systems

Mads Kærn and Ron Weiss

In parallel with the development of high-throughput technologies fueling systems
biology, advances in modeling of biological systems and in synthesis of long DNA
fragments with arbitrary nucleotide sequences have fostered the emergence of a
nascent field termed synthetic biology. At its core, this field uses recombinant DNA
manipulation techniques to design and embed complex “programmed” functions into
living organisms. An important notion that pervades most of the work in synthetic
biology is the use of mathematical models for forward design. As such, systems and
synthetic biology can be viewed as being two sides of the same coin. While systems
biology attempts to unravel how the set of instructions encoded by an organism’s
DNA orchestrates its phenotypical complexity, synthetic biology aims to create
cells with desirable behaviors through the integration of additional instructions.
This can be achieved by first investigating which network architectures support the
desired outcome and then augmenting the genotype accordingly. The construction
of synthetic gene regulatory systems can thus help understand natural systems
by complementing approaches in which quantitative analysis is used to elucidate
“design principles” underlying the functioning of natural intracellular networks.
Moreover, synthetic systems provide excellent examples of the direct link between
theoretical modeling and biological reality.

13.1 Introduction

During the last few decades, the ability to isolate, sequence, and manipulate DNA
has led to tremendous advances in genetic engineering with numerous benefits to
science, agriculture, and medicine. Typically, genetic engineering is used to endow
a genetically modified organism with a novel trait, such as resistance to certain
pesticides or the ability to efficiently synthesize pharmacological molecules, for
example by transferring a gene from another organism. Gene therapy is another
example. There, a trait lost due to a nonfunctional endogenous gene is typically
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recovered by inserting a normal copy of the gene at a non-specific location within
the genome. Synthetic biology can be viewed as a natural extension of such single-
gene approaches in the sense that entire systems are inserted into the genome of
the host cell.

So far, efforts in synthetic biology have included the construction of novel gene
regulatory networks, signal transduction pathways, metabolic pathways, synthetic
multicellular systems, engineered sensory proteins, and the regulation of proteins
that control intrinsic cell functions. An excellent introductory review of the many
different aspects of synthetic biology is given by Benner and Sismour (2005). Here,
we focus on the mathematical design and experimental implementation of selected
synthetic gene regulatory networks that embody important architectural properties.
Prerequisites for designing and implementing synthetic gene regulatory networks
include understanding how transcriptional regulation works, how transcription
factor proteins regulate the expression of each other within networks, and knowledge
of recombinant DNA technologies. An excellent introduction to the latter is given
by Nicholl (1994).

General aspects of transcriptional regulation and how transcription is modeled are
discussed in sections 13.2 and 13.3, respectively. The remaining sections highlight
how synthetic gene regulatory systems have been designed and implemented in the
bacterium Escherichia coli based on network models constructed from phenomeno-
logical mathematical descriptions of transcriptional regulation. In sections 13.4 and
13.5, we discuss linear transcriptional networks and feedforward networks, respec-
tively. In section 13.6, we provide examples of networks that support bistability
and oscillations by incorporating feedback control. These systems demonstrate how
some of the principles investigated in chapter 6 have been used to create living cells
with complex dynamical properties.

13.2 Transcriptional Regulatory Modules

In order to engineer gene regulatory systems, it is necessary to appreciate some
of the basic elements of gene regulation. Natural genetic circuits are typically
described as circuits of interconnected modules consisting of interacting proteins,
DNA, RNA, and small molecules that regulate the transcription of genes into
mRNA, the translation of mRNA into polypeptides, and the biological activity
of the expressed proteins. While the abundance of an expressed protein can be
controlled by many different mechanisms, the regulation of gene transcription is
one of the most common. In prokaryotes, this type of control is often mediated
through transcription factor proteins that alter the ability of the RNA polymerase
to bind to and initiate transcription from promoter regions located upstream of the
regulated genes.

Prokaryotic transcriptional regulatory modules often consists of four elements: a
promoter region, the gene (or genes) expressed from that promoter, the transcrip-
tion factor proteins that regulate the expression level, and additional regulatory
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Figure 13.1 A. Architecture of a prototypical transcriptional regulatory module. B−C.
Population-averaged signal-response curves measured in E. coli cells expressing a reporter
gene from LacI/PLlacO and TetR/PLtetO modules with fixed concentrations of LacI or
TetR and varying concentrations of the inducers isopropyl-β-D-thiogalactoside (IPTG)
and anhydrotetracycline (aTc), respectively. Based on experimental data from (Lutz and
Bujard, 1997).

molecules that modulate the activity of the transcription factors. A schematic lay-
out of such modules is shown in figure 13.1A. The expression from the regulated
promoter can be measured in single cells by expressing a reporter gene, such as
the gfp, yfp, or cfp genes encoding green (GFP), yellow (YFP) and cyan (CFP)
fluorescent protein, respectively (see chapter 10).

Transcriptional regulatory proteins increase (activators) or decrease (repressors)
the probability that a gene is transcribed into mRNA by binding to stretches of
DNA within or near promoter regions referred to as operators or cis-regulatory
elements (figure 13.1A). While activators may facilitate the binding of RNA poly-
merase to the promoter, repressors often exert their function by competing with the
RNA polymerase for promoter access. Transcription from a promoter containing ap-
propriate cis-regulatory elements can thus be controlled by up- or down-regulating
the cellular abundance of the corresponding transcription factor proteins. In some
cases, external control over such in vivo signals is provided by small molecules
called inducers. These molecules typically function by modulating the activity of a
transcription factor protein. Specifically, when the inducer binds to the protein, it
causes an alteration in its three-dimensional structure that increases or decreases
the affinity between the protein and its cognate cis-regulatory elements. Varying
the inducer concentration thus provides a means of regulating transcription without
altering cellular protein abundances directly.

Figures 13.1B and 13.1C illustrate how expression of a reporter protein from two
engineered transcriptional regulatory modules, LacI/PLlacO and TetR/PLtetO, is
modulated by the inducers isopropyl-β-D-thiogalactoside (IPTG) and anhydrote-
tracycline (aTc), respectively. The PLlacO and PLtetO promoters are obtained by
inserting lacO and tetO operator sequences, corresponding to the binding sites of
LacI and TetR, respectively, into the PL promoter normally repressed by the pro-
tein CI. In both cases, the signal-response curve, in other words, the relationship
between the regulatory input signal (the inducer concentration) and the output
signal (the abundance of the reporter protein), is highly nonlinear and sigmoidal.
The endogenous E. coli promoters Plac and Ptet, which are repressed by LacI and
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Table 13.1 Transcription regulatory modules used frequently to construct synthetic
gene regulatory networks in E. coli. TetR and LacI are repressors that are inactivated
by their inducers. LuxR is an AHL-dependent activator. CI is generally a repressor, but
activates transcription from the PRM promoter.

Regulatory protein Regulated promoters Inducer

TetR Ptet, PLtetO tetracycline

LacI Plac, PLlacO, Ptrc lactose, IPTG

CI PL, PR, PRM, PluxOR

LuxR Plux, PluxOR acyl-homoserine

lactones (AHL)

TetR, respectively, respond to induction in a similar fashion. Additional transcrip-
tional regulatory modules used frequently in synthetic biology are summarized in
table 13.1.

13.3 Modeling Transcriptional Modules

In the remaining sections of this chapter, we discuss how simulation and analysis
of mathematical models have been employed to forward engineer E. coli cells with
novel characteristics and sophisticated computational capabilities by interconnect-
ing the modules in table 13.1 into larger networks. We use a convenient abstraction
to model these biochemical networks with ordinary differential equations (ODEs)
that include basal expression of a protein, protein decay, and Hill function descrip-
tions of gene regulation (see chapter 6).

In general form, the ODE that models the output Z of a genetic module given
the regulatory input S is given by:

d[Z]

dt
= k′ +

k · (Sn/Kn)
μ

1 + (Sn/Kn)
− d · [Z] (13.1)

where the parameter μ is used to distinguish between the cases of repression (μ = 0)
and activation (μ = 1) of transcription by S (see for example, Kuznetsov et al.
(2005) for details). The constants K and n are the Hill constant and Hill coefficient,
respectively. The Hill constant gives the value of the input signal that yields 50%
response, and the Hill coefficient gives the slope of the signal-response curve at this
input signal. The parameter d is the rate constant associated with the decay of the
output reporter protein. Additionally, the parameters k and k′ are the rate constants
associated with signal-independent (basal) and signal-dependent gene expression.
The values of k and k′ are typically correlated, and this interdependence is often
modeled by setting k′ = a · k with 0 ≤ a < 1. With this relationship, the steady
state solution of equation 13.1 is given by:

[Z]ss =
k

d

(
a +

(Sn/Kn)
μ

1 + (Sn/Kn)

)
(13.2)
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Hence, in steady state, the cellular abundance of the reporter protein reflects the
relationship between the regulatory signal and the transcription rate modeled by
the Hill function.

It is noted that equation 13.1 models transcription and translation as a single
step. Because the separation of transcription and translation introduces response
delays, it can be important in models of temporal dynamics to include mRNA as an
independent variable. In this case, a single-input transcriptional regulatory module
is described by the ODEs:

d[M ]

dt
= a · ktr +

ktr · (Sn/Kn)
μ

1 + (Sn/Kn)
− dM · [Z]

d[Z]

dt
= ktl[M ] − d · [Z] (13.3)

where [M ] is the mRNA concentration, ktr is the rate constant associated with
transcription, ktl is the rate constant associated with translation and dM is the
mRNA decay constant. Equation 13.1 is obtained from equation 13.3 by invoking
a steady state assumption for [M ] and defining the constant k by k = ktrktl/dM .
Hence, modeling transcription and translation as a single step does not change the
steady state solution in equation 13.2.

Equation 13.1, or equation 13.3 when mRNA is included, are used to model both
the effect of changing the intracellular concentration of a regulatory protein and
the extracellular concentration of an inducer. For example, the effect of varying
the concentration of a repressor R is modeled by setting the input signal equal
to the repressor concentration, S = [R], with μ = 0. When the concentration of
the repressor is constant, the effect of varying the concentration of its inducer I

is modeled by setting S = [I] and μ = 1. For example, the steady state signal-
response curves in Figs. 13.1B and 13.1C for induction of the LacI/PLlacO and the
TetR/PLtetO modules can be modeled using equation 13.2 with μ = 1 and the
concentrations of IPTG and aTc defining the signal S, respectively. Other input-
output functions are also possible depending on the regulatory role of the protein
and how the inducer affects the activity of this protein. In cases where both repressor
and inducer concentrations vary, the signal S is the concentration of active repressor
molecules. This signal is modeled by setting S = [RT ]/(KnI

I +[I]nI ) with [RT ] being
the total repressor concentration, and KI and nI the Hill constant and coefficient
associated with the repressor-inducer interaction, respectively.

For the purpose of network modeling, we will use the following notations: Each
transcriptional regulator protein is given an index i = 1, 2, . . . N . The concentration
of the transcription factor protein is given by [Ri], and its inducer, if present, by
[Ii]. The gene and mRNA that encode the regulatory protein Ri are denoted r(i)

and Mi, respectively. The rate constant associated with the decay of protein Ri is
given by di. Promoters are identified as follows: P denotes a constitutively active
promoter, Pi a promoter regulated by the protein Ri, and Pij a promoter regulated
by the proteins Ri and Rj . The parameters characterizing the transcription from
each promoter are identified by the same index as the promoter for the parameters
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k and a (or k′), and by the protein index for the Hill constant K and the Hill
coefficient n.

13.4 Linear Networks

Linear transcriptional regulatory networks consist of modules placed in series with
the output of one module acting as the input to the next module. In the simplest
case, a linear network is composed of two modules and one regulatory step. The
LacI/PLlacO and TetR/PLtetO modules discussed in section 13.2 are examples of
such one-step transcriptional cascades because the transcriptional regulator (R1 in
figure 13.1) is expressed at high constant levels from a constitutively active pro-
moter. For clarity, the constitutive promoter (that is, the first transcription module)
is omitted from the diagram in figure 13.1. The construction and analysis of longer
transcriptional cascades, which will be discussed next, is useful for determining how
information flows through transcriptional networks and can help better understand
the rules of module composition. For example, cascades comprised of two and three
regulatory steps have been engineered with the purpose of investigating time delays,
ultrasensitivity in signal-response relationships and stochacticity in transcriptional
regulation (see, for example, Blake et al. (2003); Hooshangi et al. (2005); Rosenfeld
et al. (2005); Pedraza and van Oudenaarden (2005)).

13.4.1 Two-Step Cascades

Figure 13.2 depicts the schematics of a two-step linear repressor cascade obtained
by adding a third transcriptional module to the one-step cascade. The first module
comprises the promoter P with no regulatory inputs; the second module the
repressor R1, its inducer I1, and the promoter P1. The third module comprises
the R2 repressor and the P2 promoter. This configuration provides a mechanism
to measure the behavior of the R2/P2 module. The constitutive promoter P drives
expression of the R1 repressor, which in turn, inhibits the expression of R2. The
inducer I1 can thus be used to determine the input signal to the R2/P2 regulatory
module by modulating the cellular abundance of repressor R2.

Using equation 13.1 with μ = 1 and S = [I1] to model the R1/I1-dependent
expression of R2 and with μ = 0 and S = [R2] to model the inhibition by R2 of
expression from P2, the ODEs describing the two-step linear network are given by:

d[R2]

dt
= a1 · k1 +

k1 · ([I1]/K1)
n1

1 + ([I1]/K1)n1
− d2 · [R2]

d[Z]

dt
= a2 · k2 +

k2

1 + ([R2]/K2)n2
− d · [Z] (13.4)

where the meaning of the parameters were defined in section 13.3. Notice that it is
not necessary to include an equation for R1 because its steady state level is constant.
As discussed in section 13.3, the combined regulatory activity of R1 and I1 can be
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Figure 13.2 A. Architecture of a two-step repressor cascade. B. Population-averaged
rates of reporter protein synthesis from the PR promoter (black points) and the P ∗

R

promoter (grey points) measured at the single-cell level using a two-step repressor cascade.
The broken curves give the standard deviation associated with the measured synthesis
rate, and full curves the fit to a Hill function with μ = 0. The fitted parameter values are:
n = 2.4±0.3, K = 55±10 nM, k = 220±15 min−1 for the PR promoter, and n = 1.7±0.3,
K = 120 ± 25 nM, k = 255 ± 40 min−1 for the P ∗

R promoter (Rosenfeld et al., 2005).

captured phenomenologically in one Hill function to model the relationship between
the inducer concentration and the expression from the regulated promoter.

The steady state solution of equation 13.4 is given by:

[R2]ss =
k1

d2

(
a1 +

([I1]/K1)
n1

1 + ([I1]/K1)n1

)
[Z]ss =

k2

d

(
a2 +

1

1 + ([R2]ss/K2)n2

)
(13.5)

In terms of the overall response of this network, the steady state solution predicts
that the presence of inducer (high input) results in repression of P2 (high R2, low
output) and the absence of inducer (low input) allows transcription from the P2

promoter (low R2, high output).

13.4.2 Characterizing Module Input-Output Functions

The network illustrated in figure 13.2 and described by the model in equation 13.4
can be implemented using different repressor/promoter pairs. Elowitz and col-
leagues (Rosenfeld et al., 2005) implemented a version using the aTc-inducible
TetR/Ptet module to characterize a CI/PR repressor module driving CFP (R1 =
TetR, I1 = aTc, and R2 = CI, Z = CFP). In this implementation, the cI gene is
fused with the yfp gene to synthesize a yellow-fluorescent variant of the CI protein.
This dual-color labeling allows for simultaneous measurements of the input and out-
put signals in single cells. Additionally, using time-lapse microscopy to determine
the rate of change in fluorescence, the dependency of the rate of protein synthesis
on the repressor concentration can be determined at the level of single cells. The
system thus enables a direct investigation of the suitability of the Hill function in
equation 13.1 as a model of the most fundamental signal-response relationship in
gene regulatory systems.
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Figure 13.3 A. Predicted effects on the signal-response curve of the two-step repressor
cascade of decreasing the rate of repressor R2 synthesis (from k1 = 1000 nM/min to
k1 = 100 nM/min) and increasing the Hill constant (from K2 = 10 nM to K2 = 100 nM).
Other parameter values are a1 = a2 = 0.02, d1 = d2 = 0.1 nM/min, k2 = 20 nM/min,
and n = 2. B. Experimentally measured signal-response in two-step repressor cascades
containing altered ribosome binding sites (RBS) of repressor-encoding mRNA to change
k1, or mutations in the regulated promoter (pM) to change K2. Based on experimental
data from (Weiss and Basu, 2002).

Figure 13.3B illustrates the experimentally observed relationship between the
concentration of the CI-YFP protein and the population-averaged rate of CFP
synthesis for the PR promoter and a variant of this promoter, designated P ∗

R, where
one of the CI binding-sites is mutated. Also included are the standard deviations
associated with the average protein synthesis rates and the signal-response curves
obtained by fitting the data to Hill functions.

13.4.3 Matching Kinetic Characteristics

While the two-step cascade composed of the TetR/Ptet and CI/PR modules exhibits
a useful inverse sigmoidal signal-response relationship, it is often the case that
coupling transcriptional regulatory modules does not yield the desired behavior.
Another version of the same network uses the LacI/Plac pair as the inducible module
to control the input to the CI/PR module. However, when initially assembled, no
fluorescence was observed from cells harboring the network regardless of whether the
inducer, in this case IPTG, is absent or present. Apparently, even with maximum
repression of the Plac promoter, CI is synthesized at a sufficiently high level to
fully repress transcription from the PR promoter. Unfortunately, our models are
presently not sufficiently accurate to predict such mismatch problems partially
because accurate in vivo parameter values are difficult to obtain. Hence, it is often
necessary to first construct a network, and then use modeling tools to guide the
correction and fine-tuning of its behavior.

In order to overcome impedance mismatch problems, one can mutate genetic
elements until the desirable network response is obtained. Starting with a non-
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functional or non-optimal network, such mutations can be introduced to affect
biological parameters identified by model analysis as most likely to yield the desired
behavior. For example, Feng et al. (2004) showed how to use global sensitivity
analysis to determine the best genetic targets for mutations that could make
the two-step LacI/Plac, CI/PR cascade functional. The steady state model in
equation 13.5 predicts, as shown in figure 13.3A, that decreasing the value of the
maximal repressor synthesis rate k1 or increasing the Hill constant K2 should confer
a non-responsive network with the desired network properties. The Hill constant
can be modified by mutating one of the CI-binding sites within the PR promoter to
lower the CI-binding affinity, and the maximal CI synthesis rate k1 can be changed
by mutating the ribosome-binding site (RBS) on the CI-encoding mRNA.

That the model correctly predicts the genetic mutations required to obtain a
functional network is shown in figure 13.3B. The experimental results are obtained
with three different cI-RBS sequences yielding lower translation efficiencies than
the original RBS (Weiss and Basu, 2002). The plots show that the systems with
the weakened RBS are able to respond to induction with IPTG, in agreement with
the model predictions. Also shown are the effects of introducing mutations into the
CI-binding site within the PR promoter. These mutations are combined with the
weakest RBS in order to optimize the response.

13.4.4 Interfacing Transcriptional Modules

Once the kinetic characteristics of the individual transcriptional regulatory modules
are appropriately matched, they can be coupled together into larger networks.
This can be accomplished by combining modules at random (Guet et al., 2002)
or rationally to achieve a specific network property. Perhaps the simplest extension
of the two-step cascade is to add an additional repressor module to form a linear
three-step network (figure 13.4A). The experimental investigation of this cascade
highlights interesting properties that are important for the understanding of the
more complex systems discussed in the sections to follow.

An implementation of the three-step linear repressor cascade uses the TetR/PLtetO

module as the inducible input component and the LacI/Plac and CI/PR modules
as the first and second repressor module, respectively (Hooshangi et al., 2005).
Figure 13.4B shows the experimentally measured population-averaged steady state
network outputs at varying concentration of the aTc inducer when a fluorescent
reporter is expressed from the PLtetO (P1), the Plac (P2), and the PR (P3) pro-
moter, respectively. These population-averaged protein abundance curves have the
correlations expected for the network. While the expression from the P1 and P3

promoters show a positive correlation with the input aTc concentration (that is,
high-pass detection), expression from P2 shows a negative correlation (that is,
low-pass detection). When fitted to a Hill function, the Hill coefficients for the
steady state response in the cascades of length one, two, and three are 2.3, 7.0,
and 7.5, respectively. In other words, increased length of transcriptional regula-
tory cascades improves the sensitivity to the input signal by enabling more pro-
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Figure 13.4 A.Architecture of the three-step repressor cascade. B. Population-averaged
steady state expression levels obtained by expressing a fluorescence reporter gene at
different steps in the cascade (P1 = PLtetO, P2=Plac, P3=PR) when the concentration of the
inducer of the first transcriptional module (aTc) is varied. C. Time course of population-
averaged expression levels at the different steps in the cascade following induction. D.
Relative population heterogeneity (standard deviation over the mean) at steps one and
three in the cascade following induction. Based on experimental data from (Hooshangi
et al., 2005).

nounced all-or-nothing steady state responses. This phenomenon can also be found
in naturally occuring regulatory motifs such as signal transduction phosphorylation
cascades (Ferrell Jr., 1996).

It is also interesting to compare the time course of expression induction at the
different steps in the cascade following aTc induction. This is done in figure 13.4C.
While protein synthesis from the first promoter begins immediately after addition
of aTc, there is a significant time lag in the repression and activation of the second
and third promoter, respectively. The abundance of the protein expressed from
PLtetO (P1) reaches the 50% of maximal abundance after ∼15 minutes, and it takes
about 200 and 300 minutes for the proteins expressed from the Plac (P2) and the
PR (P3) promoters to pass the 50% mark. While a model based on equation 13.1
predicts such delays, the experiments give an idea of the relative time scale involved
in transcriptional regulation and the response-delay introduced as the regulatory
signal propagates through the network. Specifically, the cell division time for E. coli
is typically ∼45–120 minutes depending on the strain and the growth conditions,
meaning it may take several generations for a full transcriptional response to be
realized.

Another important observation that can be deduced from the time series experi-
ment is that the regulatory signal propagates through the cascade at very different
rates in individual cells. Figure 13.4D compares the relative variability in fluores-
cence among cells, measured as the standard deviation over the mean, and changes
following induction in the cascades of length one and three. While the cell-to-cell
variability changes little as time progresses for the one-step cascade, indicative of
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a fairly homogenous response, it changes significantly for the three-step cascade
and reaches a peak value after about 200 minutes. At this time, which roughly
corresponds to the point where expression from the PR promoter is initiated, the
cell population is highly heterogeneous. Hence, the increased steady state sensitiv-
ity in the longer cascade comes at the cost of a response that initially is highly
asynchronous. An implication of this in terms of regulatory robustness is discussed
further in section 13.6 in the context of feedback networks.

13.5 Feedforward Networks

Genetic feedforward networks are circuits in which transcriptional regulatory mod-
ules are configured with a common input that propagates through parallel cascades,
and ultimately converge to regulate a shared downstream promoter. Several endoge-
nous feedforward motifs have been documented (Lee et al., 2002) and three-gene
networks with this architecture appear more frequently in cellular regulation than
expected based on randomized networks (Shen-Orr et al., 2002). Modeling predicts
that the three-gene feedforward networks support a variety of properties ranging
from transcriptional response delay and filtering to the generation of transient pulses
of gene expression (Mangan and Alon, 2003). Here, we limit our discussion to feed-
forward networks engineered in E. coli by interconnecting transcriptional regulatory
modules in table 13.1. The first feedforward network (section 13.5.1) is composed of
three genes and is designed to generate a transient pulse in response to a persistent
inducing signal. The second network is composed of five genes and enables cells to
respond to an inducing signal when the inducer concentration is within a specific
range (section 13.5.2).

13.5.1 Pulse-Generating Network

When the downstream promoter in a feedforward network receives both an activat-
ing and a repressing signal, a transcriptional pulse can be generated if the repressing
signal is delayed compared to the activating signal. Such a delay is realized if the
repressing signal has to propagate through a higher number of transcriptional mod-
ules than the activating signal (see figure 13.4B). Hence, the feedforward network
depicted in figure 13.5A should be able to generate a gene expression pulse. In
this network, an inducing input signal (S1) activates the transcription of a reporter
gene from a multi-input promoter (P12) and as well as the expression from the P1

promoter of a repressor (R2) of the P12 promoter.
Ignoring basal expression and modeling the expression from the P12 promoter as

a product of an activating and a repressing Hill function, the feedforward network
can be described by the following ODEs:

d[R2]

dt
=

k1 · sn1

1 + sn1
− d2 · [R2]

d[Z]

dt
=

k12

1 + ([R2]/K2)n2
· sn1

1 + sn1
− d · [Z] (13.6)
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Figure 13.5 A. Architecture of the pulse-generating network. B−D. Simulations of the
network model demonstrating the effect of changing parameters (panel B) at full induction
(H = 1), the level of induction (panel C) and the rate of inducer accumulation (panel
D). Unless otherwise indicated, parameter values are (in nM/min): k1 = 5, k12 = 20,
d2 = 0.01, d = 0.04, (in nM): K1 = 1, K2 = 100, and n1 = n2 = 3. Inducer accumulation
is modeled by setting s(t) = ks · t with ks being the rate of accumulation.

where s = S1/K1 is the inducing signal of P1 (that is, dependent on the inducer
concentration [I1]). As before, it is not necessary to include the concentration of
the R1 protein because its concentration can be assumed constant.

Without resorting to computer simulations, let us see if we can generate intuition
about the network dynamics directly from the ODEs. To do this, we define the
induction level H as H = sn1/(1 + sn1) and find the steady states of the system.
They are given by:

[R2]ss =
k1

d2
· H

[Z]ss =
k12

d
· Kn2

2 · H
Kn2

2 + [R2]
n2
ss

(13.7)

Let us consider the case where the induction level is constant and the lifetime of
the repressor is so long that its decay can be assumed negligible. In this case, the
accumulation of repressor following induction at t = 0 is given by [R2](t) = k1 ·H ·t.
This reduces equation (13.7) to a time-dependent ODE for the output concentration
that is given by:

d[Z]

dt
=

k12

1 + (k1 · H · t/K2)n2
− d · [Z] (13.8)

This equation captures the initial high transcription rate from P12, which leads to
an overshoot of the steady state in equation (13.7), and the decrease in this rate as
repressor accumulates with time. It also indicates that the duration of the pulse (and
hence its magnitude) is linked to the maximal rate of repressor synthesis k1, the
Hill constant K2 and the concentration of the induction level H. Specifically, a 50%
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decrease in transcription occurs after a time period given by t0.5 = K2/(k1 · H).
Hence, increasing K2 or decreasing k1 is predicted to cause a longer pulse and
higher amplitude. This prediction is validated by the model simulations presented
in figure 13.5B.

Suboptimal induction, that is, values of H less than one, is also predicted to
increase the duration of the pulse. However, because the rate of output protein
synthesis depends on the induction level, suboptimal induction is expected to
decrease the amplitude. Additionally, because the length and the amplitude of the
pulse depend on how fast the repressor accumulates, they should also depend on
the rate at which the inducing signal accumulates. These predictions are validated
by the model simulations presented in figure 13.5C and figure 13.5D, respectively.

The pulse-generating network is implemented experimentally by expressing the
CI repressor from the AHL-activated Plux promoter and GFP from the multi-input
promoter designated PluxOR. This promoter is obtained by inserting a CI binding
site into the Plux promoter to achieve repression of AHL-activated transcription by
CI (Basu et al., 2004). The experimental observations reflect well the results of the
above analysis. Figure 13.6A shows population-averaged temporal responses of four
E. coli strains harboring networks constructed with different rates of CI synthesis
(cI-RBS mutations) and different binding affinities of CI to the PluxOR promoter
(operator mutations) following induction with saturating AHL concentrations. It is
seen that the effects of the mutations are in agreement with the model predictions.
Due to a high repressor synthesis rate (high k1) and strong repressor binding to the
PluxOR promoter (K2), a pulse is not generated in the original network. Mutations
that decrease the repressor synthesis rate or the operator binding strength yield a
pulse with intermediate duration and amplitude. The best network performance is
obtained when these mutations are combined.

In a second set of experiments, the temporal response was measured after
induction with different AHL concentrations using the network with the best
performance. As shown in figure 13.6B, at AHL concentrations below 47 nM, the
pulse amplitude is decreased and its duration shortened. At an AHL concentration
of 4.7 nM, the pulse can hardly be observed. In other words, the system responds
differently at nonsaturating AHL concentrations as predicted by the model analysis.
A third set of experiments measured the network response to different rates of
AHL accumulation. The results are shown in figure 13.6C. As the rate of AHL
accumulation is decreased, the onset of the pulse is delayed, and its amplitude
decreased. This is also in agreement with the model prediction.

The experimental results in figure 13.6A−C are population-averaged responses
obtained in a well-mixed environment. This leaves open the question of how cells
harboring the feedforward network respond in an environment where signal diffusion
plays an important role. Figure 13.6D illustrates the results of an experiment
designed to determine the spatio-temporal response at the level of single cells.
In these experiments, cells harboring the pulse-generating feedforward network are
placed adjacent to E. coli cells that synthesize and emit AHL. The AHL-emitting
“sender” cells harbor an aTc-inducible promoter controlling the expression of the
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Figure 13.6 A−C. Experimental validations of the model predictions in a pulse-
generating network activated by AHL. The effect of (A) introducing mutations to change
the k1 and K2 parameters, (B) different inducer concentrations, and (C) changing the rate
of inducer accumulation. Based on data from (Basu et al., 2004). D. Responses of pulse-
generating cells placed at different distances from nearby sender cells to AHL synthesized
by the senders. Notice that the response of cells in position 2, which is farther away from
the senders, is delayed, and the maximum pulse amplitude is diminished.

enzyme (LuxI) that synthesizes AHL from common metabolites. As a result, the
sender cells produce AHL when treated with aTc. The inducer subsequently diffuses
into the environment and establishes an AHL concentration gradient. Figure 13.6D
shows the phase-contrast and fluorescence microscopy images of “receiver” cells
harboring the feedforward network taken at different time points and different
distances from a colony of AHL-emitting senders. While there is distinct variability
in the response from one cell to another, it is seen that single cells respond to
increased AHL by generating a pulse of fluorescence. Moreover, AHL-induction
elicits a response in receiver cells that depends on the distance from the senders.
Because of AHL diffusion, the rate of AHL accumulation is slower farther from
the AHL-emitting source. This allows receiver cells to differentiate between signals
originating from nearby and distant senders.

13.5.2 Concentration Band Detection

The pulse-generating system discussed in the previous section is an example of the
complex responses that can be generated from transcriptional networks combining
one-step and two-step linear cascades in a feedforward architecture. In this sec-
tion, we investigate a network in which a two-step and a three-step cascade are
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Figure 13.7 Architecture of the band detection feedforward network obtained by com-
bining a high-pass two-step linear repressor cascade and a low-pass three-step linear re-
pressor cascade. This combination enables the synthesis of the reporter protein only when
the inducer I1 is within a specific range.

activated by the same input and regulate the same output. The resultant five-gene
feedforward system activates the expression of the output gene within a finite con-
centration range of the inducing signal, that is, concentration band detection, and
supports the formation of spatial patterns in response to a gradient in the inducing
signal. These experiments demonstrate a mechanism referred to as the “French flag
model” in developmental biology (Wolpert, 2002) where cells read and respond to
spatial information encoded in a “morphogen” gradient by having sharp induction
thresholds.

Figure 13.7 illustrates the schematics of the five-gene feedforward network. Along
the three-step branch, the inducing signal S1, which is generated by a combination
of the regulator R1 and its inducer I1, activates the expression of the R2, which,
in turn, inhibits the expression of the R3 repressor. In the final step, the repressor
R3 inhibits the transcription of the reporter protein. Along the two-step branch,
the inducing signal activates the expression of the repressor designated R∗

3, which
is functionally equivalent to the R3 repressor (that is, it also inhibits the expression
of the reporter protein).

How will the system respond to different levels of the inducing signal? To answer
this question, we look at the steady state concentration of the output reporter
protein. Since R3 and R∗

3 are assumed to be functionally identical, it is given by:

[Z]ss =
k3

d
· Kn3

3

Kn3

3 + ([R3]ss + [R∗
3]ss)n3

(13.9)

The steady state concentrations of the three repressors are given by:

[R2]ss =
k1

d2

sn1

1 + sn1

[R3]ss =
k2

d3

Kn2

2

Kn2

2 + [R2]
n2
ss

[R∗
3]ss =

k∗
1

d3

sn1

1 + sn1
(13.10)

where k∗
1 is the rate of R∗

3 expression from the P ∗
1 promoter, and the inducing signal

S1 is expressed relative to the value that yields 50% response (s = S1/K1).
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Along the two-step branch, the steady state concentration of R∗
3 rises as the

inducing signal increases and the expression of the output protein is inhibited when
the inducing signal is high. This branch acts as a low-pass detector (see figure 13.4).
The steady state concentration of R3 in the three-step branch shows the opposite
correlation and acts as a high-pass detector. For appropriately matched parameter
values, this may leave a gap in the concentration of the repressors of transcription
from P3 at intermediate values of the inducing signal. It is in this gap that the
output protein is synthesized.

The boundaries in the concentration of the inducing signal between which the
output is expressed can be obtained from the steady states in equation 13.10 as the
values Slow and Shigh where R∗

3 and R3 have 50% of their maximal concentrations,
respectively. They are given by:

Slow = K1 Shigh = K1
n2

√
d2K2

k1 − d2K2
(13.11)

Therefore, a gap in the total concentration of repressors may occur if k1 > 2K2d2.
If a sufficient gap exists, the range of band detection can be shifted by modifying
the value of K1.

The five-gene feedforward network is implemented experimentally (Basu et al.,
2004) using the AHL-activated LuxR/Plux module to regulate the expression of the
CI protein (R2), which, in turn, regulates the expression of the LacI protein (R3)
from the PR (P2) promoter. The system output protein is expressed from the Plac

(P3) promoter. These transcriptional regulatory modules comprise the three-step
branch of the network. Along the two-step branch, AHL activates transcription of
a variant of the lacI gene, designated lacIM1, that differs in its DNA sequence from
that of the lacI gene, but encodes a protein with the same amino-acid sequence.
The protein product encoded by lacIM1 (R∗

3) is thus functionally identical to LacI.
The band detection network is implemented in different versions: one using

the wild-type LuxR protein, designated BD2, the other, designated BD1, with a
mutant variant of LuxR that is hypersensitive to AHL. In the latter, less AHL is
required to achieve the same expression level from the Plux promoter, corresponding
to a decreased value of the Hill constant K1. Accordingly, the range of AHL
concentrations detected by the two versions should be different, with the mutated
LuxR network expressing the output protein of the system at a lower inducer
concentration. Figure 13.8A and figure 13.8B show that this differential response
is also observed experimentally. In figure 13.8A, the measured steady state input-
response of the two-step branch is shown at varying AHL concentrations. It is seen
that the AHL concentration yielding 50% response is decreased more than 10-fold
when the hypersensitive LuxR variant is employed. In figure 13.8B, the observed
steady state input-response of the five-gene band network is shown at varying AHL
concentrations. As predicted by the model, BD1 cells activate the expression of the
system output at a lower range of AHL concentration than BD2 cells.

The different ranges of AHL detected by strains harboring the different band
detection networks enable multicellular pattern formation. Figure 13.8C shows the
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Figure 13.8 A. Population-averaged signal-response curves for cells harboring two
versions of the two-step branches with a wildtype and a hypersensitive LuxR mutant,
respectively. B. Signal-response curves for the five-gene feedforward network with the
wildtype LuxR (strain BD2) and the mutant LuxR (strain BD1). C. Formation of a
target pattern within a bacterial lawn containing a mixture of the BD1 and BD2 strains
in the presence of AHL-emitting cells in the center of the lawn. Data from (Basu et al.,
2004).

formation of a target pattern in an experiment where an AHL-emitting cell strain is
grown at the center of a lawn containing a mixture of BD1 and BD2 cells. The BD2
cells turn on the expression of a fluorescent reporter gene at a short distance from
the AHL-emitting cells, but remain quiescent farther away. On the other hand, the
BD1 cells are quiescent near the center of the lawn and express a differently colored
fluorescent reporter only at a distance from the AHL-emitting cells.

13.6 Feedback Networks

The experiments involving feedforward networks demonstrate how complex dynam-
ics can be generated by combining linear signaling cascades. In natural regulatory
systems, such behaviors are frequently generated in networks incorporating feed-
back loops as an additional control feature. As discussed in chapter 6, feedback
control enables complex dynamics, such as bistability, hysteresis, and oscillations.
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There are numerous examples of such behaviors in natural genetic circuits. For
example, LacI is a key component of a natural genetic feedback network that ex-
hibits bistability (Ozbudak et al., 2004). There are also many examples of gene
regulatory feedback networks supporting dampened or sustained oscillations. They
include, for example, the circadian clocks discussed in chapter 2 and chapter 12,
and the Mdm2-p53 network discussed in chapter 6. A motivation for the implemen-
tation of synthetic gene regulatory feedback systems is to complement the analysis
of mathematical models of natural circuits with investigations of how feedback net-
works behave in vivo. In this section, we discuss several genetic feedback networks
implemented in E. coli to create cells capable of complex temporal dynamics and
the mathematical models used to design or to understand the network properties.

13.6.1 Bistable Networks

Bistability and hysteresis are trademark features of networks that contain positive
feedback or autocatalysis. Here, we investigate two single-gene positive feedback
networks giving rise to hysteresis (Atkinson et al., 2003) and bimodal population
distributions (Isaacs et al., 2003), respectively, and a two-gene system designed
to operate as a bistable genetic toggle switch (Gardner et al., 2000; Kobayashi
et al., 2004). In the single-gene positive feedback system depicted in figure 13.9A,
a transcription activator R1 binds to its own promoter and increases the rate of its
own synthesis. This network can be described by the ODE:

d[R1]

dt
= a1 · k1 + γ

k1[R1]
n1

Kn1 + [R1]n1
− d1 · [R1] (13.12)

where the parameter γ is a measure of the feedback control strength. Because at this
point we are interested in using the model to reveal general trends, it is useful for
the analysis to introduce new dependent variables to reduce the number of unknown
parameters. For equation 13.12, a useful normalization is to use the dimensionless
concentration r1 defined by r1 = [R1]/K1 and dimensionless time τ defined by
τ = d1 · t. This corresponds to expressing the protein concentration relative to
that yielding 50% response and time relative to the protein lifetime, regardless of
the actual value of these parameters. Using the chain rule, the normalized form of
equation 13.12 is obtained as

dr1

dτ
= a · κ1 + γ

κ1 · rn1

1

1 + rn1

1

− r1 (13.13)

where κ1 is defined by κ1 = k1/K1/d1. Similarly normalized equations will be used
in the remaining sections of this chapter.

Figure 13.9B shows a bifurcation diagram obtained by plotting the steady state
solutions of equation (13.13) as a function of the feedback control strength. The
steady state curve has the “S”-shape characteristic of bistable systems. At low
feedback strength, there is little or no activation, and expression occurs essentially at
basal levels. At high feedback strength, the promoter is more or less fully activated
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Figure 13.9 Bistability in single-gene autocatalytic networks. A. Network architecture.
B. Bifurcation diagrams for the network model. Full and broken curves indicate stable
and unstable steady states, respectively. The saddle-node (SN) bifurcations are located
where the stable and unstable steady states collide. Parameter values are: a = 0.1, κ = 5,
and n = 3. C. Bistability and hysteresis observed in a NtrC positive feedback network
when the strength of NtrC-activated transcription is varied with IPTG. Closed and open
squares correspond to cells initially in the low and high states, respectively. Based on
data from (Atkinson et al., 2003). D. Transitions between uni- and bimodal population
distributions observed in a CI/PRM feedback network corresponding to different strengths
of the feedback loop. Based on data from (Isaacs et al., 2003).

and expression takes place at a rate close to maximal. These two states co-exist
at intermediate values of the feedback control strength parameter with the region
of bistability demarcated by two saddle-node bifurcations located at a value of γ

slightly above 0.3 and just just shy of 0.8.
Several synthetic single-gene autocatalytic gene networks have been constructed

with the purpose of generating bistability (Becskei et al., 2001; Isaacs et al., 2003;
Atkinson et al., 2003). One system (Atkinson et al., 2003) is constructed such
that the transcription factor NtrC activates its own expression from a modified
NtrC-responsive PglnA promoter and that of a reporter gene from the promoter of
the glnK gene (PglnK). The modified PglnA promoter is engineered such that the
ability of NtrC to activate transcription is attenuated by LacI. This is achieved by
inserting LacI binding sites such that the repressor competes with the activator
for promoter access. This allows for an indirect means of modulating the feedback
control strength using IPTG. In cells that express LacI at high levels, increasing
the IPTG concentration enables more efficient activation by NtrC of transcription
from the modified PglnA promoter.

Figure 13.9C shows the experimentally observed effect of varying the feedback
control strength on the population-averaged expression of cells harboring the IPTG-
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sensitive, NtrC positive feedback system. They are in excellent agreement with the
model predictions. When grown in the absence of IPTG (that is, low feedback
strength), cells express the reporter protein at low levels because of efficient re-
pression by LacI. When these cells are exposed to increased inducer concentrations
(closed squares in figure 13.9C), the measured signal-response curve is fairly flat
below a critical IPTG concentration where the reporter expression changes sharply
from low to high levels. On the other hand, when cells initially grown with high
IPTG concentrations and fully activated (open squares) are exposed to decreased
concentrations of IPTG, expression levels remain high until a critical concentration
where a sharp transition to low expression is observed. At identical intermediate
IPTG concentrations, corresponding to intermediate strength of the feedback con-
trol, cell populations adopt a high or a low expression state depending on the initial
conditions. Hence, the network endows cells with the ability to support bistability
and hysteresis.

Another single-gene positive feedback system engineered to display bistability
(Isaacs et al., 2003) employs the CI-activated PRM promoter to control the ex-
pression of a mutated cI gene (designated cI857) encoding a temperature-sensitive
variant of the CI protein. The CI protein also activates the transcription of a GFP-
encoding gene allowing the measurement of gene expression at the level of single
cells. The temperature-dependent activity of the cI857-encoded CI protein enables
modulation of the feedback strength through temperature variation. The activity
of the CI variant decreases with increased temperature. Hence, a low temperature
corresponds to a high feedback strength and high temperature corresponds to a
low value of this parameter. The model thus predicts a low expression state at
high temperature, a high expression state at low temperature, and bistability at
intermediate temperatures. Figure 13.9D illustrates the population-distribution of
fluorescence from cells harboring the CI/PRM feedback network at three different
temperatures. For low and high temperatures, the population distributions contain
a single peak and cells are in a high state when they are grown at low temperature
and in a low expression state when they are grown at high temperature, respec-
tively. At the intermediate temperature, the population-distribution is bimodal,
indicating that cells transition frequently between the low and the high expression
states due to noise-induced transitions. A detailed model of the circuit where the
deterministic equations are augmented with stochastic terms accounts well for the
observed distributions (Isaacs et al., 2003).

The toggle switch network, which is illustrated in figure 13.10A, is an example of
a two-gene system designed and implemented to allow E. coli cells to be switched
between two distinct expression states in response to external stimuli. This system,
which represents a multi-component motif (Lee et al., 2002) with indirect positive
feedback, is composed of two genes encoding transcription factor proteins, R1

and R2, that inhibit each other’s expression. Because of this mutual repression,
the network can be either in a state with high R1 expression and repressed R2

transcription, or in a state with high R2 expression and repressed R1 transcription.
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Figure 13.10 The bistable toggle switch. A. Architecture of the network. B. Two-
dimensional bifurcation diagrams indicating the boundaries between bistable and monos-
table regions in the κ1, κ2 parameter space at different values of the Hill coefficients.
C−D. Transitions between high and low expression states in the pTAK and the pIKE
toggle switch networks, respectively. The networks, pTAKΔcI, pTAKΔlacI, pIKEΔtetR,
and pTAKΔlacI, are controls in which one of the repressor genes is eliminated. Based on
data from (Gardner et al., 2000).

The experimental implementation of the toggle switch network is guided by the
analysis of the dimensionless ODEs (Gardner et al., 2000):

dr1

dτ
=

κ2

1 + rn2

2

− r1,
dr2

dτ
=

κ1

1 + rn1

1

− r2 (13.14)

where the repressor concentrations are expressed relative to the appropriate Hill
constant and time relative to the protein lifetime (which is assumed to be the
same for the two repressors). Conditions that make bistability more likely are
high maximal expression levels (that is, high values of κ1 and κ2) and high Hill
coefficients. This can be seen from the bifurcation diagrams in figure 13.10B, which
show the location of saddle-node bifurcations, that is, the boundaries between
mono- and bistability, in the κ1, κ2 parameter plane for different values of the Hill
coefficients. Increased values of the Hill coefficients enlarge the bistable region in
the κ1, κ2 parameter space, and an increased value of one of the maximal expression
rates allows for bistability in a wider range of values of the other.

The toggle switch network is implemented experimentally using different tran-
scriptional regulatory modules. Gardner et al. (2000) constructed two versions; one
employs the LacI/Ptrc and the TetR/PLtetO modules and is designated as pIKE.
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Figure 13.11 Extending the toggle switch network. A. The pTAK toggle switch is
augmented with the AHL-activated LuxR/Plux to convert the network into a AHL sensor.
B. Flipping between stable expression state by application of AHL to activate LacI
expression or IPTG to activate CI expression. C. Hysteresis is observed when cells initially
in the low (open circles) or high (closed circles) expression states are exposed to AHL at
varying concentrations. Based on data from (Kobayashi et al., 2004).

The other employs the LacI/Ptrc and the temperature-sensitive CI/PL modules and
is designated as pTAK. The expression state is monitored by co-expressing GFP
with the cI857 gene (pTAK) or the tetR gene (pIKE). Two variants of the pIKE
network with strong and weak lacI-RBS sequences demonstrate that the maximal
rate of expression, in agreement with model predictions, is an important parameter
for the emergence of bistability. Figure 13.10B shows the effect of treating cells in
the high LacI state with IPTG to activate TetR expression. Both variants respond
by expressing the reporter protein. When IPTG is removed, cells harboring the
network with the weaker lacI-RBS maintain the high expression state while those
harboring the variant with the stronger lacI-RBS revert to the low expression state.
The cells that remain in the high TetR state require addition of aTc to reactivate
LacI expression. Hence, only the network with the weak lacI-RBS supports bista-
bility. Four variants of the pTAK network, also with different RBS sequences, all
exhibit bistability. This is shown in figure 13.10C. Addition of IPTG to inhibit LacI
induces a transition to a high expression state (low LacI/high CI), and the latter is
maintained when IPTG inducer is removed. A subsequently applied transient tem-
perature increase (to deactivate CI) induces a transition back to the low expression
state (high LacI/low CI).
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In an extension to the toggle switch (Kobayashi et al., 2004), mathematical
modeling is used to guide the experimental implementation of “programmable” cells
in which the pTAK toggle responds to signals from other gene regulatory networks.
In one of the implementations, the LuxR/Plux module is used to drive additional
synthesis of LacI. The resultant five-gene network is depicted in figure 13.11A.
In this system, the toggle switch can be flipped back and forth by adding AHL
to increase the LacI synthesis rate and IPTG to increase the CI synthesis rate.
This is illustrated in figure 13.11B, which shows population-averaged expression
levels following induction with AHL and IPTG. Cells initially switch to the high
expression state (high CI) following IPTG treatment and remain in this state when
IPTG is removed. A transition to the low expression state (high LacI) occurs when
these cells subsequently are treated with AHL, and the low state is maintained
when AHL is removed. These cells are still responsive, and a second treatment with
IPTG induces a transition to the high expression state.

The system in figure 13.11A also supports hysteresis. Figure 13.11D shows the
result of an experiment where cells that were initially prepared in the high CI
state (high fluorescence) or the high LacI state (low fluorescence), respectively, are
exposed to AHL at varying concentrations. The high LacI state is, as expected,
unaffected by AHL, and cells remain in the low fluorescence state regardless of the
AHL concentration. However, the high CI state is sensitive to AHL. At inducer
concentrations less than 20 nM, cells remain in the high expression state. On
the other hand, at inducer concentrations higher than 40 nM, all the cells have
switched to the low expression state. At intermediate inducer concentrations, the
cell population contains a mixture of cells in high and low expression states. This
bimodal response presumably arises from a combination of differences in induction
threshold and noise-induced transitions, which are more likely to occur when the
system is closer to the saddle-node bifurcation.

13.6.2 Oscillatory Networks

The discussion in the previous section provides examples of two complex properties,
bistability and hysteresis, supported by genetic networks incorporating feedback
regulation. Other complex behaviors that arise in feedback control systems are
dampened and sustained oscillations. An example of a synthetic gene regulatory
system capable of generating oscillations is obtained by adding a negative feedback
to a three-step linear repressor cascade. The resultant system, which is referred
to as the Repressilator (Elowitz and Leibler, 2000), is illustrated schematically in
figure 13.12A. In the network, repressor R1 inhibits the expression of repressor R2,
repressor R2 inhibits the expression of repressor R3, and repressor R3 inhibits the
expression of repressor R1.

The implementation of the Repressilator network is based on the analysis of
a model describing the dynamics of repressor mRNA and protein concentrations.
The concentration of mRNA is included explicitly because the separation of tran-
scription and translation contributes to a response delay that is important for the
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emergence of oscillations. Hence, equation 13.3 is used as the basis of the network
model rather than equation 13.1, which, as described in section 13.3, assumes that
the mRNA concentration is always in a steady state. To ease the analysis, it is
assumed that each transcriptional module is characterized by the same set of pa-
rameters and that the rate constant associated with translation is equal to that
associated with repressor decay. With these assumptions, the network is described
by the following dimensionless equations (Elowitz and Leibler, 2000):

dmi

dτ
= aκ +

κ

1 + rn
j

− mi,
dri

dτ
= ε(mi − ri) (13.15)

where mi and ri represents the concentration of repressor Ri mRNA and protein,
respectively, and rj the concentration of repressor Rj regulating the expression of
repressor Ri. The parameter ε is proportional to the ratio of the mRNA and the
protein lifetimes.

What makes sustained oscillations possible in the Repressilator network? The
answer to this question can be obtained by considering the dynamics of the linear
three-step repressor network in section 13.4.4. Recall that in the linear network,
the transcription of the R1 repressor leads to increased expression from the P3

promoter after a time delay. In the Repressilator, the R1 repressor is expressed
from the P3 promoter. Hence, the network can be viewed as a negative feedback
system with time delay (transcription of R1 from the P3 promoter eventually causes
down-regulation of its own expression). The time delay in repression allows for
the accumulation of protein product beyond the steady state level and, when
the repression kicks in, for the subsequent decay in protein concentration. The
mechanism causing oscillations in the Repressilator network is thus somewhat
analogous to that leading to circadian clock oscillations as discussed in chapter 2
and chapter 12.

The conditions that make oscillations more likely to occur are high Hill coeffi-
cients, low basal expression levels, and short protein lifetimes. This is illustrated
by the bifurcation diagrams in figure 13.12B, which show the location of the Hopf-
bifurcations in the κ, ε parameter space that separate regions of oscillatory and
steady state dynamics for different sets of parameter values. When the Hill coeffi-
cients are low and basal expression high, oscillations occur at intermediate values
of κ when ε is greater than a critical value. In this case, the protein lifetime needs
to be comparable to that of mRNA in order for oscillations to occur. Decreasing
the basal expressions rate and increasing the Hill coefficients relax this requirement
and allow oscillations to occur for a broader range of κ and ε values.

The Repressilator network is implemented experimentally by interconnecting the
LacI/PLlacO, the CI/PR, and the TetR/PLtetO modules such that LacI (R1) is
expressed from PR (P3), TetR (R2) is expressed from PLlacO (P1), and CI (R3) is
expressed from PLtetO (P2). To decrease the lifetime of the repressor proteins, the
repressor genes are “tagged” with a DNA sequence that targets the expressed protein
for degradation. Figure 13.12C illustrates the temporal oscillations in fluorescence
of a single cell measured when a fluorescent protein is expressed from a second
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Figure 13.12 The Repressilator. A. Architecture of the three-gene network. B. Bi-
furcation diagram of the Repressilator model showing the regions of monostability and
oscillations in the κ, ε parameter plane for different values of a and n. C. Time series
of fluorescence emitted by a single cell harboring the Repressilator network. D. Com-
parison of the single-cell time series in C with those generated by its siblings. Based on
experimental data from (Elowitz and Leibler, 2000).

PLtetO promoter. At least 40% of cells oscillate with a period of 160±40 minutes.
This period is significantly longer than the average cell division time. Hence, an
oscillation initiated in a mother cell is completed in a daughter cell, and the
oscillation phase is passed down from one generation to the next. However, as shown
in figure 13.12D, siblings display marked differences in their progression through
the oscillation cycle, and the network fails to support coherent oscillations at the
population level.

The Repressilator network fails to support coherent oscillations partly because
of the significant differences in the rate at which the regulatory signal propagates
through the three regulatory steps. Recall from section 13.4.4 that cells harboring
the three-step linear cascade show marked variability in the onset of expression from
the P3 promoter. This is expected to translate directly into significant differences in
the oscillation period as the differences in response times in the linear cascade are
equivalent to differences in delay times in the feedback network. Hence, the number
of steps in the network makes it especially susceptible to stochastic effects.

There are network architectures that generate oscillations with increased robust-
ness against stochastic effects (Vilar et al., 2002). One example is a design, il-
lustrated in figure 13.13A, where a transcriptional activator R1 enhances its own
expression from the multi-input promoter P12 and that of a repressor R2 from the
P1 promoter. The R2 repressor in turn attenuates the transcription of the activator
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Figure 13.13 Mixed positive and negative feedback oscillator. A. Architecture of the
network. B. Example of oscillations generated in simulations of the network model with
parameter values κ1 = 10, κ12 = 100, n = 3, a = 10−3, and ε = 0.1. C. Bifurcation
diagram showing the regions of monostability, bistability and oscillations in the κ12, κ1

plane for different values of ε for a = 10−3 and n = 3. D. Coherent dampened oscillations
observed in cell populations carrying two variants of the network differing approximately
four-fold in the level of expression from the P12 promoter. Based on experimental data
from (Atkinson et al., 2003).

by binding to the P12 promoter. Using the same assumptions as in the model of the
Repressilator, the network can be modeled by the following dimensionless ODEs:
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A simulation of the system for parameters yielding sustained oscillations is given
in figure 13.13B. They arise because of a time delay between the activation and the
repression of transcription from the P12 promoter. When the repressor concentration
is initially low, the positive feedback causes an increase in both activator and
repressor expression. However, because the negative feedback involves an additional
step, the expression of the repressor is delayed. As a result, and akin to the pulse-
generating network discussed in section 13.5.1, the activator accumulates to high
levels before the repressor can reach a concentration that is sufficiently high to
shut down the expression from the P12 promoter. Once this occurs, activator
expression ceases and the activator concentration declines. This in turn causes the
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rate of repressor expression to decrease. The system subsequently returns to the low
repressor state and a new cycle is initiated. Figure 13.13C shows the bifurcation
diagram indicating the regions of monostability, bistability, and oscillations in the
κ1, κ12 parameter space. The bistability is associated with the positive feedback
and is more likely to occur in the absence of the negative feedback (that is, for
κ1 = 0).

The network illustrated in figure 13.13A is implemented experimentally by aug-
menting the bistable NtrC single-gene positive feedback network discussed in sec-
tion 13.6.1 with a negative feedback (Atkinson et al., 2003). Recall that in this
network the strength of the positive NtrC feedback is dependent on LacI as the
modified NtrC-activated PglnA promoter (P12 in figure 13.13A) contains lacO op-
erators. Hence, a negative feedback is readily added to the network by expressing
LacI from a second NtrC-activated promoter (P1 in figure 13.13A). Figure 13.13D
shows two time series of the population-averaged expression level in cells harboring
two different variants of the oscillator network that have an approximately four-fold
difference in the expression rate from the modified PglnA promoter. In both cases,
the population-averaged expression level exhibit dampened oscillations with a pe-
riod of 10–12 hours. The dampening of the oscillations is not due to cells becoming
desynchronized. Measurements of the expression of a fluorescence reporter protein
in individual cells (data not shown, see (Atkinson et al., 2003)) indicate that the
dampening also occurs at the level of single cells. Given that the cells divide about
once per hour, the coherence of the oscillations, which appears to be maintained for
the duration of the experiments, that is, 40–50 generations, is quite remarkable. It
confirms the prediction that a network architecture combining positive and negative
feedback should be more robust against noise.

13.7 Conclusions

In this chapter, we have discussed selected synthetic gene regulatory systems im-
plemented experimentally in E. coli to investigate the dynamics of transcriptional
regulatory networks in vivo and to create strains with novel characteristics. These
systems support a range of non-trivial behaviors such as cellular memory, pulse
generation, spatial pattern formation, and oscillatory gene expression. In all the
examples, the networks are designed with the aid of mathematical models based on
fairly simple, phenomenological descriptions of relationships between input and out-
put signals. These models are used to predict systems properties and how changes in
DNA sequence affect performance and dynamics. In all cases, an excellent agreement
between model predictions and experimental results is obtained. This demonstrates
the close link between the current modeling methodologies and biological reality.
Consequently, there is good reason to believe these methodologies are also useful
for the analysis of the more complex regulatory systems found in nature. Indeed,
the systems presented and analyzed elsewhere in this book strongly indicate that
this is the case.





14 Multilevel Modeling in Systems Biology:

From Cells to Whole Organs

Denis Noble

Successful physiological systems analysis requires that we understand the functional
interactions between the key components of cells, organs, and physiological systems,
and how these interactions change in disease states. This information resides neither
in the genome nor even in the individual proteins that genes code for since no genes
code for interactions as such. It lies at the level of protein network interactions
within the context of sub-cellular, cellular, tissue, organ, and system structures.
There is therefore no alternative to copying nature and computing these interactions
to determine the logic of healthy and diseased states. The rapid growth in biological
databases; models of cells, tissues, and organs; and the development of powerful
computing hardware and algorithms have made it possible to explore functionality
in a quantitative manner all the way from the level of genes to whole organs and
systems. This chapter discusses the philosophy of multilevel modeling and illustrates
this development in the case of the heart. Systems physiology of the 21st century is
set to become highly quantitative, and therefore one of the most computationally-
intensive disciplines.

14.1 Introduction: The Philosophy of Multilevel Simulation

The emphasis in recent decades of biological research has been on breaking cells,
organs, and systems down into their smallest components: the genes, proteins, and
other molecules whose interactions are essential to life. We have succeeded so well
that the amount of molecular data generated by the new technologies has completely
overwhelmed our ability to understand it. Genomics has provided us with a massive
“parts catalog” for the human body, the 25,000 or so genes, while proteomics seeks
to define these individual “parts” and the structures they form in detail. The
parts catalog still needs a lot of annotating (gene ontology), and the proteomics
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side is still in its infancy, being much more challenging than sequencing genomes
(see chapter 10). But, from the viewpoint of those interested in understanding cells,
tissues, organs, and systems, there is as yet no “user’s guide” describing how these
parts are put together to allow those interactions that sustain life or cause disease.
The project to model at multiple levels between cells and organs, which is the
Human Physiome Project (Crampin et al., 2004; Hunter et al., 2002), can be seen
to aim precisely to achieve this.

We have a long way to go because, in many cases, the cellular, organ, and
system functions of genes and proteins are unknown, though clues sometimes
come from homology in the gene sequences and other patterns being investigated
by bioinformatics. Moreover, even when we understand function at the protein
level, successful intervention, for example in drug therapy, depends on knowing
how a protein behaves in context, as it interacts with the rest of the relevant
cellular machinery to generate function at a higher level. Without this integrative
knowledge, we may not even know in which disease states a receptor, enzyme,
or transporter is relevant, and we will certainly encounter side effects that are
unpredictable from molecular information alone. This is a major problem for the
drug industry. My field of cardiac simulation is central to this problem since nearly
half the compounds developed by the industry interact with the heart, sometimes
with fatal effect (Muzikant and Penl, 2000).

Inspecting genome databases alone will not get us very far in addressing these
problems. The reason is simple. Genes code for protein sequences. They do not
explicitly code for the interactions between proteins and other cell molecules and
organelles that generate function. As the geneticist Gabriel Dover (2000) remarks
“We don’t have a theory of interactions and until we do we cannot have a theory
of development or a theory of evolution.” The challenge of developing a theory of
interactions, which must be one of the major goals of systems biology, therefore also
has implications for biology as a whole. We need to lead the way towards biology
maturing as a science to join the physical sciences as a fully quantitative science,
with fully-fledged theories within which computational biology can be embedded.
Otherwise, what we do will be piecemeal, not integrated together.

A major part of the difficulty is that much of the logic of the interactions in
living systems is implicit. Wherever possible, nature leaves the interactions to the
chemical properties of the molecules themselves and to the highly serendipitous
way in which these properties have been exploited during evolution as nature has
plundered its treasure chest of old genes to recruit new functions. It is as though
the function of the genetic code is to build the components of a computer, which
then self-assembles to run programs about which the genetic code knows nothing.
The genetic code alone is not a program (Coen, 1999). Sydney Brenner (1998)
expressed this very effectively when he wrote: “Genes can only specify the properties
of the proteins they code for, and any integrative properties of the system must be
‘computed’ by their interactions.” Brenner meant not only that biological systems
themselves “compute” these interactions but also that in order to understand them



14.2 Cellular Models of the Heart 299

we need to compute them, and he concluded “this provides a framework for analysis
by simulation.”

Brenner also coined the term that is being used to describe multilevel modeling,
when he referred to it as “middle-out” (Novartis Foundation, 2001). An exhaustive
“bottom-up” reconstruction is impossible (“I know one approach that will fail, which
is to start with genes, make proteins from them and to try to build things bottom-
up” (Novartis Foundation, 2005)). The approach that can work is to start modeling
at any of the levels at which the data is sufficient to generate a model and then
to reach out to lower and higher levels. In this way we can avoid the problems of
information overload and combinatorial explosion (Feytmans et al., 2005).

In this chapter I will show how far we have advanced in using simulation to
understand these interactions between the levels of genes, proteins, cells, and organs.
I will refer mostly to the case of the heart since this is the organ in which such
simulation is currently most advanced.

14.2 Cellular Models of the Heart

Many of the characteristic functions of the heart reside in the properties of the
cells. Cells generate electrical signals that initiate a cascade of events leading to
muscular contraction. Some of them also generate repetitive activity and so act
as pacemakers. They also contain receptors that respond to neural and hormonal
control to speed up or slow down the rhythm and to increase or decrease the force
of contraction. Finally some, but not all, arrhythmic mechanisms can be found
at the cellular level. Not surprisingly, therefore, modeling work in heart systems
physiology has nearly always started at the cellular level.

The first cardiac cell models (Noble, 1960, 1962) sought insight into the most
obvious difference between electrical activity in heart and nerve: the duration of
the action potential. A nerve action potential may last only 1 msec. Its function is
to encode information as rapidly as possible. A human ventricular action potential
may last 400 msec, during which time many events are triggered that initiate and
control mechanical contraction.

Weidmann’s (1951) pioneering work showed that the conductance during the
action potential is very low. The experimental reason for this became clear with the
discovery of the inward-rectifier potassium channel current, IK1 (Carmeliet, 1961;
Hall et al., 1963; Hutter and Noble, 1960) (see figure 14.1, top). The permeability
of this channel falls almost to zero during strong depolarization. These experiments
were also the first to show that there are at least two K+ channels in the heart,
IK1 and IK(referredto as IK2 in early work, but now known to consist of IKr and
IKs (Noble and Tsien, 1969; Sanguinetti and Jurkiewicz, 1990)). The 1962 model
(Noble, 1960, 1962), (figure 14.1, bottom) was constructed to determine whether
this combination of K+ channels, together with a Hodgkin-Huxley type sodium
channel (a channel protein showing voltage-dependent activation and inactivation
processes) could explain all the classical Weidmann experiments on conductance
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changes. The model not only succeeded in doing this, it also demonstrated that an
energy-conserving plateau mechanism was an automatic consequence of the inward-
rectifying properties of IK1. This has featured in all subsequent models, and it is
a very important insight. The main advantage of a low conductance is minimizing
energy expenditure.

Unfortunately, however, nature achieved a low conductance plateau at the cost
of making the recovery (repolarization) process fragile. Pharmaceutical companies
today are struggling to deal with evolution’s answer to this problem, which was to
entrust repolarization to the potassium channel iKr. This channel protein, hERG
(Novartis Foundation, 2005), is one of the most promiscuous receptors known:
large ranges of drugs can enter the channel mouth to block it, and even more
interact with the G-protein coupled receptors that control it. The consequence can
be failed repolarization, and the triggering of potentially fatal disorders of cardiac
rhythm, called arrhythmias (see http://georgetowncert.org/qtdrugs_torsades.asp).
Computer simulation is now playing a role in attempting to find a way around this
difficult and seemingly intractable problem (Bottino et al., 2005; Fink et al., 2005;
Muzikant and Penl, 2000).

The main defect of the 1962 model was that it included only one voltage-gated
inward channel current, INa. There was a good reason for this. Calcium channels
had not then been discovered. There was, nevertheless, a clue in the model that
something important was missing. The only way in which the model could be made
to work was to greatly extend the voltage range of the sodium current by reducing
the voltage dependence of the sodium activation process. In effect, the sodium
current was made to serve the function of both the sodium and calcium channels
so far as the plateau is concerned. There was a clear prediction here: either sodium
channels in the heart are quantitatively different from those in nerves, or other
inward current-carrying channels must exist. Both predictions are correct.

The first successful measurements of ion channel activity under controlled mem-
brane potential conditions (using the technique known as the voltage clamp) came
in 1964 (Deck and Trautwein, 1964) and they rapidly led to the discovery of the
cardiac calcium current (Reuter, 1967). By the end of the 1960s, therefore, it was
already clear that the 1962 model needed replacing. However, the insights it gave on
the behavior of the potassium currents are still valid. Systems biology can proceed
in a stepwise fashion, in which different parts of an integrative analysis get clarified
at different stages of the iteration between simulation and experiment.

In addition to the discovery of the calcium current, the early voltage clamp
experiments also revealed multiple components of IK (Noble and Tsien, 1969), now
referred to as IKr and IKs (Sanguinetti and Jurkiewicz, 1990). We also showed that
these slow gated currents in the plateau range of potentials were quite distinct from
those near the resting potential, that is, that there were two separate voltage ranges
in which very slow conductance changes could be observed (Noble and Tsien, 1969).
These experiments formed the basis of the McAllister, Noble, and Tsien (MNT)
model (McAllister et al., 1975).
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Figure 14.1 Top: experimental basis of the first analysis of the integrative role of
potassium channels. Redrawn (Noble, 2002b) from (Hall et al., 1963). The solid line shows
the total membrane current recorded in cardiac cells (from the conducting system of the
heart called Purkinje fibres) in a sodium-depleted solution. The inward-rectifying current
was identified as iK1, which is extrapolated here as nearly zero at positive potentials. The
outward-rectifying current, IK, is now known to be mostly formed by the component IKr.
The horizontal arrow indicates the trajectory at the beginning of the action potential,
while the vertical arrow indicates the time-dependent activation of IK , which initiates
repolarization. Bottom: Sodium and potassium conductance changes computed from the
1962 model of the Purkinje fibre. Two cycles of activity are shown. The conductances are
plotted on a logarithmic scale to accommodate the large changes in sodium conductance.
Note the persistent level of sodium conductance during the plateau of the action potential,
which is about 2% of the peak conductance. Note also the rapid fall in potassium
conductance at the beginning of the action potential. This is attributable to the properties
of the inward rectifier channel iK1.
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The MNT model reconstructed a much wider range of experimental results, and
it did so with great accuracy in some cases. A good example of this was the re-
construction of the paradoxical effect of small current pulses on the pacemaker
depolarization in Purkinje fibres—paradoxical because brief depolarizations (pos-
itive voltage deflections) slow the process and brief hyperpolarizations (negative
voltage deflections) greatly accelerate it. This is paradoxical since the pacemaker
potential itself is a positive deflection so that one would expect positive deflections
to accelerate it. Reconstructing paradoxical or counterintuitive results is, of course,
a major function of modeling work. This is one of the roles of modeling in unraveling
complexity in biological systems.

But the MNT model also contained the seeds of a spectacular failure. Following
the experimental evidence (Noble and Tsien, 1968) it attributed the slow conduc-
tance changes near the resting potential to a slow gated potassium current, IK2. In
fact, what became the “pacemaker current,” or If , is an inward current activated
by hyperpolarization (DiFrancesco, 1981), not an outward current activated by de-
polarisation. At the time it seemed hard to imagine a more serious failure than
getting both the current direction and the gating by voltage completely wrong.
There cannot be much doubt therefore that this stage in the iterative interaction
between experiment and simulation created a major problem of credibility. Perhaps
cardiac electrophysiology was not really ready for modeling cellular systems to be
successful?

This is the point at which to emphasize one of the important points about the
philosophy of simulation: it is one of the functions of models to be wrong. Of course,
there are many ways of being wrong, and I am not talking here of failing in arbitrary
or purely contingent ways, but in ways that advance our understanding by exploring
the possible logics of complex systems and determining which are most accurate.
Again, this situation is familiar to those working in simulation studies in engineering
or cosmology or in many other physical sciences. And, in fact, the failure of the MNT
model is one of the most instructive examples of experiment-simulation interaction
in physiology, and of subsequent successful model development (see Noble (1984)).

The MNT model was also the point of departure for the ground-breaking work
of Beeler and Reuter (1977) who developed the first ventricular cell model. (Ven-
tricular cells are the real workhorse of the heart; they form the mass of muscle that
does all the pumping into the arterial blood system.) As they wrote of their model:
“in a sense, it forms a companion presentation to the recent publication of McAllis-
ter et al. (1975) on a numerical reconstruction of the cardiac Purkinje fibre action
potential. There are sufficiently many and important differences between these two
types of cardiac tissue, both functionally and experimentally, that a more or less
complete picture of membrane ionic currents in the myocardium must include both
simulations.” For a recent assessment of this model and the subsequent Luo-Rudy
models see Noble and Rudy (2001).
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14.3 Connecting to Ion Pumps and Calcium Cycling

New ground in modeling cardiac cells was broken with the DiFrancesco-Noble model
(DiFrancesco and Noble, 1985). The incorporation not only of ion channels (follow-
ing the Hodgkin-Huxley paradigm of voltage-dependent gated channel proteins) but
also of ion exchangers, such as Na-K exchange (the sodium pump), Na-Ca exchange,
the SR calcium pump, and, more recently, the transporters involved in controlling
cellular pH (Ch’en et al., 1998), was a fundamental advance since these are essen-
tial to the study of some disease states such as weak contraction (congestive heart
failure) (Winslow et al., 1999) and impaired blood supply (ischaemic heart disease).

The greatly increased complexity of the DiFrancesco-Noble model, which for the
first time also represented intracellular events by incorporating a model of calcium
release from the sarcoplasmic reticulum, increased both the range of predictions
and the opportunities for failure. Here I will limit myself to one example of each.

The most influential prediction was that relating to the sodium-calcium ex-
changer. In the early 1980s it was still widely thought that the electrically neutral
stoichiometry (Na:Ca = 2:1) derived from early flux measurements was correct. The
DiFrancesco-Noble model achieved two important conclusions. The first was that,
with the experimentally known Na+ gradient, there simply was not enough energy
in a neutral exchanger to keep resting intracellular calcium levels below 1 μM, that
is, at a level low enough to permit relaxation to occur. Switching to a stoichiom-
etry of 3:1 readily allowed resting calcium to be maintained below 100 nM. This
automatically led to the prediction that there must be a current carried by the Na-
Ca exchanger and that, if this exchanger was activated by intracellular calcium, it
must also be strongly time-dependent since intracellular calcium varies by an order
of magnitude during each action potential. Even as the model was being published,
experiments demonstrating the current INaCa were being performed (Kimura et al.,
1986), and the variation of this current during activity was being revealed either
as a late component of inward current or as a current tail on repolarization (Egan
et al., 1989).

This prediction has turned out to have very important consequences for the
elucidation of some of the mechanisms of cardiac arrhythmia in disease states in
which cells accumulate sodium and calcium, either through loss of energy supply,
as in ischaemia, or as a consequence of reduced activity of the Na-K ATPase (Na
pump) as in treatment with cardiac glycosides. At a critical level of sodium and
calcium accumulation, calcium release occurs spontaneously and becomes repetitive
between sodium concentrations around 13 and 22 mM (Ch’en et al., 1998; Varghese
and Winslow, 1994; Winslow et al., 1999)—see figure 14.2—a phenomenon also seen
experimentally. Each calcium release activates inward current carried by sodium-
calcium exchange which, if large enough, can trigger additional (ectopic) action
potentials (Noble, 2002a) as shown in figure 14.6.

The main defect of the DiFrancesco-Noble model was that the intracellular
calcium transient was far too large, mainly because the model did not represent
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Figure 14.2 Calcium oscillations computed in a model of the Purkinje fibre during the
rise in intracellular sodium [Na]i following blockage of the sodium-potassium ATPase.
Each oscillation of intracellular calcium [Ca]i triggers inward sodium-calcium exchange
current iNaCa (Ch’en et al., 1998). These computations were done under voltage clamp
conditions.

the attachment of calcium to intracellular proteins. This signaled the need to
incorporate intracellular calcium buffering.

This deficiency was tackled in the Hilgemann-Noble (Hilgemann and Noble, 1987)
modeling of the atrial action potential. Although this was directed towards atrial
cells, it also provided a basis for modeling ventricular cells in species (rat, mouse)
with short ventricular action potentials, and many of its features were adopted in
later ventricular cell models of species with high plateaus (Luo and Rudy, 1994,
1991; Noble et al., 1991, 1998).

The Hilgemann-Noble model addressed a number of integrative systems questions
concerning calcium balance:

1. When does the calcium that enters during each action potential return to the
extracellular space? Does it do this during the rest period between contractions
(as most people had presumed) or during the contraction itself, that is, during,
not after, the action potential? Hilgemann (Hilgemann, 1986) showed that the
recovery of extracellular calcium (in intercellular clefts) occurs remarkably quickly
(see figure 14.3, inset). In fact, net calcium efflux is established as soon as 20 msec
after the beginning of the action potential, which at that time was considered to be
surprisingly soon. Calcium activation of efflux via the Na-Ca exchanger achieved
this in the model (see figure 14.3 – compare the computed trace [Ca]o with the
experimental trace labeled [Ca]o).
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Figure 14.3 The first reconstruction of calcium balance in cardiac cells. The Hilgemann-
Noble model (Hilgemann and Noble, 1987) incorporated complete calcium cycling, such
that intracellular and extracellular calcium levels returned to their original state after each
cycle and that the effects of sudden changes in frequency could be reproduced. Left: com-
puted action potential (AP), intracellular calcium transient, contraction (represented by
cross-bridge formation), and extracellular calcium transient. Inset: experimental recording
of action potential (AP), cell motion, and extracellular calcium transient.

2. Where was the current that this would generate and did it correspond to the
quantity of calcium that the exchanger needed to pump? Mitchell et al. (1984) had
shown that replacement of sodium with lithium removes the late plateau. This was
the first experimental evidence that the late plateau in action potentials with this
shape might be maintained by sodium-calcium exchange current. The Hilgemann-
Noble model showed that this is precisely what one would expect.

3. Could a model of the SR that reproduces at least the major features of Fabiato’s
experiments (Fabiato, 1983) showing calcium-induced calcium release (CICR) be
incorporated into the cell models and integrate with whatever were the answers
to questions 1–2? This was a major challenge. The model followed as much of
the Fabiato data as possible, but the conclusions were that the modeling, while
broadly consistent with the Fabiato work, could not be based on that alone. It is an
important function of simulation to reveal when experimental data needs extending.

4. Were the quantities of calcium, free and bound, at each stage of the cycle
consistent with the properties of the cytosol buffers? The answer here was a
very satisfactory yes. The great majority of the cytosol calcium is bound so that,
although much more calcium movement was involved, the free calcium transients
were much smaller, within the experimental range.
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There were, however, some gross inadequacies in the calcium dynamics. An
additional voltage-dependence of Ca release was inserted to obtain a fast calcium
transient. This was a compromise that requires more detailed modeling of the
spaces immediately between the cell membrane and the intracellular machinery—a
space where calcium channels and the ryanodine receptors interact—a problem
later tackled by Jafri, Rice and Winslow (1998) and by Noble et al. (1998).
Another problem was how the conclusions would apply to action potentials with
high plateaus. This was tackled both experimentally (LeGuennec and Noble, 1994)
and computationally (Noble et al., 1998). The answer is that the high plateau in
ventricular cells of guinea pig, dog, human, and so forth greatly delays the reversal
of the sodium calcium exchanger so that net calcium entry continues for a longer
fraction of the action potential. This property is important in determining the way
in which the force of contraction varies with the frequency of the heart beat.

Intracellular calcium dynamics have now become a major focus of simulation
work (Coombes et al., 2004; Eisner et al., 2000; Hinch, 2004; Jafri et al., 1998;
Puglisi et al., 2004; Soeller and Cannell, 2004). So also has the modeling of active
transport and cardiac energetics (Matsuoka et al., 2004; Smith and Crampin, 2004),
and the regulation by cell signaling networks (Saucerman and McCulloch, 2004).
These developments are opening up the way for major developments in the use
of cardiac models in understanding disease states, where calcium dynamics, active
transport, and cell signaling are often affected.

14.4 Linking to the Genetic Level

An important strength of models based on reconstructing the functional properties
of proteins in cellular structural contexts is that it is possible for the models to reach
down to the genetic level, for example by reconstructing the effects of particular
mutations when these are characterized by changes in protein function (Noble,
2002d).

An example of this approach is the use of state-specific Markov models of the
cardiac sodium channel (Clancy and Rudy, 1999) simulating the behavior of the
wild-type and of a mutant sodium channel. The simulated mutation was the Δ KPQ
mutation, a three-amino-acid deletion that affects the channel inactivation and is
associated with a congenital form of the long-QT syndrome, known as LQT3. The
simulations showed that mutant channel reopenings from the inactivated state and
channel bursting due to a transient failure of inactivation generate a persistent
inward sodium current during the action potential plateau in the mutant cell. This
causes major prolongation of repolarization and the development of arrhythmogenic
early-after-depolarizations at slow pacing rates, a behavior that is consistent with
the clinical presentation of bradycardia-related arrhythmogenic episodes during
sleep or relaxation in LQT3 patients.

Another sodium channel mutation that has been, at least partially, reconstructed
is a mis-sense mutation that affects the voltage dependence of sodium channel inac-
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tivation and which is responsible for one form of idiopathic ventricular fibrillation.
In this case, small shifts of the voltage dependence of inactivation generate early-
after-depolarizations that may underlie fatal arrhythmia (Noble and Noble, 2000).
Simulation can also unravel the way in which the effects of these genetic mutations
interact with drugs to explain why some people are particularly prone to arrhythmic
side effects of many drugs (Noble, 2003b).

Early after-depolarizations are also responsible for the arrhythmias of congestive
heart failure. Winslow et al. (2001) have modeled this process based on experimen-
tally determined changes in gene expression levels for several of the transporter
proteins involved.

These examples highlight the ability of cellular models to predict the arrhythmo-
genic consequences of genetic and ion channel abnormalities either of behavior or of
expression levels. Given the present explosion of genetic information, such studies
will continue to be at the forefront of modeling efforts in the next decade. Con-
necting the genome to physiology is one of the exciting prospects for computational
systems biology.

14.5 Linking to Biochemistry: Counterintuitive Predictions

Complex systems are characterized by the fact that the results of modeling them
are frequently counterintuitive. Beyond a certain degree of complexity, armchair
(qualitative) thinking is not only inadequate, it can even be misleading. A good
example of this comes from the extension of cellular models to include some of the
biochemical changes that occur during ischaemia (Ch’en et al., 1998). This work
succeeds in reconstructing arrhythmias attributable to delayed after-depolarizations
that arise as a consequence of intracellular calcium oscillations in conditions of
sodium-calcium overload. These oscillations generate an inward current carried
by the sodium-calcium exchanger which can lead to premature excitation. This
work has led to some interesting counterintuitive predictions concerning up- and
down-regulation of sodium-calcium exchange in disease states (Noble, 2002c). This
transporter is currently a focus of anti-arrhythmia drug therapy. Simulation is
playing an important role in clarifying and assessing the mechanism of action of
such drugs.

Another area in which modeling has been rich in counterintuitive results is
that of mechano-electric feedback. Kohl and Sachs (2001) describe the extent to
which this feedback mechanism has been unraveled in elegant experimental and
computational work. Some of the results, particularly on the actions of changes in
cell volume (which are important in many disease states) are unexpected and have
been responsible for determining the next stage in experimental work. Indeed, it
is hard to see how such unraveling of complex physiological processes can occur
without the iterative interaction between experiment and simulation.
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14.6 Linking to Pharmacology: Assessing and Predicting Drug Actions

Most drugs act on proteins such as receptors, channels, transporters, and enzymes.
Models that reach down to the protein level are therefore relevant to assessing and
predicting drug actions. Cardiac simulations have already been used in assessing
drug action by the Food and Drug Administration in the United States, and we
can expect this kind of use of biological models to increase as their complexity
and power grows. An example of the detailed use of cardiac cell models in drug
development can be found in Bottino et al. (2005) who used reverse engineering to
determine the profile of action of drugs on ion channels from information on their
effects on the action potential. I have reviewed some of these developments in more
detail elsewhere (Noble and Colatsky, 2000; Noble et al., 1999). One obvious use
in the case of the heart is in assessing the cardiac safety of drugs. Around half
the drug withdrawals that have occurred in the United States post-launch since
1998 have been attributable to cardiac side effects, often in the form of effects
on the electrocardiogram and consequent arrhythmias. This is a large and very
expensive form of attrition. Since virtually all the ion transporters involved in
cardiac repolarization are now modeled and very realistic simulations of the T wave
of the electrocardiogram can be obtained, when these models are incorporated into
3-dimensional cardiac tissue models it is possible to use in silico screens for drug
development. One of the reasons that this is necessary is that the electrocardiogram
is, unfortunately, an unreliable indicator of potential arrhythmogenicity. Similar
changes in form of the electrocardiogram can be induced by very different molecular
and cellular effects, some benign, others dangerous. We need to understand and
predict the mechanisms all the way from individual channel properties through
to the electrocardiogram. This goal is within reach, particularly as we acquire
more experience of the incorporation of accurate cellular models into anatomically
detailed organ models (see below).

Another use of simulation in drug discovery will be in screening drugs for multiple
actions. Very few drugs that act on the heart bind to just one receptor. It is much
more common for 2, 3 or, even more receptors or channels to be affected. This is
particularly true for drugs that act on the sodium-calcium exchanger (Watanabe
and Kimura, 2000). An important point to realize here is that multisite action may
actually be beneficial. The reviews referred to above give examples of multireceptor
drug actions that would be expected to be beneficial. I predict that this will in fact
be one of the ways in which more rational discovery of anti-arrhythmic drugs may
occur. In regulating cardiac function, nature has developed many multiple-action
processes, particularly those regulated by G-protein coupled receptors. In seeking
for more “natural” ways of intervening in disease states, we should also be seeking to
play the orchestra of proteins in more subtle ways. We need simulation to guide us
through the complexity and to understand multiple action functionality. Examples
of this approach to combinatorial drug action in computational biology of the heart
now exist (Noble, 2003b; Noble and Colatsky, 2000).
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14.7 Linking to Tissues and Organs

In the case of the heart, in addition to the data-rich cellular level, there is also
data-rich modeling of the 3-dimensional geometry of the whole organ (Costa et al.,
1996; LeGrice et al., 2001). Connecting this level to that of cell modeling has been
an exciting venture (Crampin et al., 2004; Kohl et al., 2000; Smith et al., 2001).
Anatomically detailed models of the ventricles, including fiber orientations and
sheet structure, have been used to incorporate the cellular models in an attempt to
reconstruct the electrical and mechanical behavior of the whole organ.

Figure 14.4 Spread of the electrical activation wavefront in an anatomically detailed
cardiac model. Earliest activation occurs at the left ventricular endocardial surface near
the apex (left). Activation then spreads in endocardial-to-epicardial direction (outwards)
and from the apex towards the base of the heart (upwards, middle frames). The activation
sequence is strongly influenced by the fibrous-sheet architecture of the myocardium, as
illustrated by the non-uniform transmission of excitation. Black = activation wavefront;
white = endocardial surface.

Figure 14.4 shows stills from a simulation in which the spread of the activation
wavefront is reconstructed. This is heavily influenced by cardiac ultra-structure,
with preferential conduction along the fiber-sheet axes, and the result corresponds
well with that obtained from multi-electrode recording from dog hearts in situ.
Accurate reconstruction of the depolarization wavefront promises to provide recon-
struction of the largest phases of the electrocardiogram. Other parts of the organ,
including the pacemaker region (sinus node), the atrium (the chambers receiving
venous blood), and the specialized conducting system are now being incorporated
into the model heart so that we can look forward to the first example of reconstruc-
tion of a complete physiological process from the level of protein function right up
to routine clinical observation. Work is in progress in a number of laboratories on
simulation of the sinus node (Boyett et al., 2003, 1999; Dobrzynski et al., 2003;
Garny et al., 2003) and atrium (Blanc et al., 2001; Garny et al., 2000; Harrild and
Henriquez, 2000). The whole ventricular model has already been incorporated into
a virtual torso (Bradley et al., 1997), including the electrical conducting properties
of the different tissues, to extend the external field computations to reconstruction
of multiple-lead chest and limb recording.
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14.8 Coronary Circulation

Ischaemic heart disease is a major cause of serious incapacity and mortality. It
is also a good example of the fact that most disease states are multifactorial.
Very few diseases are attributable to single gene or protein malfunction. As noted
above, cellular reconstructions of the metabolic and electrophysiological processes
that occur following deprivation of the energy supply to cardiac cells have already
advanced to the point at which some arrhythmic mechanisms can be reproduced.
The initiating process in such energy deprivation is restriction or blockage of
coronary arteries. This is another example where modeling at different data-rich
levels is holding out the prospect of very exciting integration of function. Figure 14.5
shows some of the spectacular modeling of the coronary circulation (Smith et al.,
2000, 2001). These are stills from a simulation in which the blood flow through
an anatomically-detailed model of the coronary circulation is computed while the
ventricles are beating. The simulation therefore also included the deformation that
occurs as mechanical events influence blood flow.

Figure 14.5 Flow calculations coupled to the deforming myocardium. The color coding
represents transmural pressure acting on the coronary vessels from the myocardial stress
(dark gray = zero pressure, light gray = peak pressure). The deformation states are (from
left to right) zero pressure, end-diastole, early systole, and late systole.

This model has already been used to investigate the changes in blood flow that
occur following constriction or block of one of the main arterial branches, and work
is in progress to connect this to the modeling of ischaemia at the cell and tissue
level (see figure 14.6). If we can also connect the cellular mechanisms of arrhythmia
to the processes by which regular excitation breaks down into the multiple wavelets
of ventricular fibrillation (Panfilov and Kerkhof, 2004) then yet another “grand
challenge” for integrative physiological computation will come within range: the
full-scale reconstruction of a coronary heart attack.

This is a suitable point at which to note that I chose the term grand challenge
deliberately. This kind of work requires massive computer power. The whole organ
simulations described here require many hours of computation using supercom-
puters. (By contrast, the single cell models can be run faster on a PC or laptop
than in real time.) Future progress will be determined partly by the availability of
computing capacity.
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Figure 14.6 Left: the coronary circulation model shown in figure 14.5 has been subjected
to a constriction of one of the main branches leading to blocked blood flow in the regions
colored black. (Figure kindly provided by Nic Smith.) Right: simulation of ectopic beats
using the DiFrancesco-Noble 1985 Purkinje fiber model (Noble, 2002a) in conditions of
calcium overload of the kind that occurs in ischaemic tissue. To simulate sodium/calcium
overload, [Na]i was increased from 8 to 12 mM (see figure 14.2). Oscillatory calcium
changes (bottom) induce inward sodium-calcium exchange current (middle) leading to
initiation of action potentials (above). The first action potential is evoked by a current
pulse. The second two are initiated by calcium oscillations. Note that the rise in [Ca]i and
the flow of inward Na-Ca exchange current occur before the depolarization. Linking these
two levels of modeling to create a complete model of coronary heart attack is one of the
“grand challenges” requiring massive computer power.

Blood flow within the chambers of the heart, including the movement of valves,
has been elegantly modeled by Peskin and McQueen (1993) and this has been
extended to the study of diastolic mechanical function (Kovacs et al., 2001).

14.9 The Future: From Genome to Proteome to Physiome

Integrative multilevel modeling of biological systems is an important technique for
organizing and integrating vast amounts of biological information. Although this
article has focused on modeling of the heart, it is important to note that multilevel
biological simulation is now being done for a wide range of pathways, cells, and
systems. The role of in silico biology in medical and pharmaceutical research is
likely to become increasingly prominent as we seek to exploit the data generated
through rapid gene sequencing and proteomic mapping through to creating the
physiome.

However, progress will be significantly enhanced by enabling ever greater numbers
of researchers to use and verify models in the course of their everyday experimental
work. It has been extremely difficult to transfer models between research centers
or to extend existing models so that more complex models can be constructed
in an object-oriented or modular fashion. This process will be enhanced by the
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development of uniform standards for representing and communicating the content
of models and by the wide distribution of software tools that permit even non-
modelers to access, execute, and improve existing models. Increasingly, publication
of models is accompanied by their availability on Web sites. And the process of
establishing standards of communication and languages is developing (Lloyd et al.,
2004).

Once this is achieved, we can confidently predict an explosion in the development
of integrated model cells, organs, and systems. In a few years we shall all wonder
how we ever managed to do without them in biological research. So far as drug
development is concerned, there will certainly be a major change as these tools
come on line and rapidly increase in their power. This will grow in a nonlinear way
with the degree of biological detail that is incorporated. The number of interactions
modeled increases much faster than the number of components. Biology is set to
become highly quantitative in the 21st century. It will become a computer-intensive
discipline.

Acknowledgments

Work in the author’s laboratory is funded by the BHF, EPSRC, MRC, and
Wellcome Trust.



IV COMPUTATIONAL MODELING





15 Computational Constraints on Modeling in

Systems Biology

Vipul Periwal

Computational power has followed Moore’s Law quite well, and modeling in biology
has taken full advantage of this. Nevertheless, as models get bigger and more aspects
of the models need to be inferred, many techniques that are applicable for small
scale models become inapplicable. A review of basic aspects of algorithms and
data structures is provided, along with a summary of the computational aspects of
sorting, searching, dynamic programming, graph theory, dynamical systems, and
noise reduction algorithms.

15.1 Introduction

How many interacting species of molecules can one realistically mathematically
model? Quite apart from the question of comprehending the interactions of several
hundred thousand molecular species, there are limitations on systems biology
that arise from simple combinatorics coupled with the lack of precise biological
knowledge of the properties in vivo of most molecules.

The only way to overcome such limitations is to incorporate as much biological
knowledge as possible. The task of modeling without using biological knowledge
is, frankly, computationally impossible. As a simple example, consider a set of ten
independent hypothetical interactions. In a eukaryotic system, a single protein may
well have about ten splice sites or interactions. Our task is to ascertain which
of these hypotheses is present or absent, given some experimental data. We are
immediately faced with the task of generating 210 = 1, 028 independent models,
to fit each individual model with the data, and then determine the correct model
by looking at some goodness-of-fit criterion. If this is the case for a single protein,
consider the situation for modeling the complete proteome. This is an example of
the combinatorial explosion of modeling in the face of partial knowledge and limited
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observability. Of course, there are sampling strategies that one can attempt to use
to lessen the burden in this particular example, but in general, in biology, one must
use as much biological information as possible to reduce the number of models that
need to be evaluated.

Many properties, such as adaptability and robustness (chapter 2), are apparent
only in dynamical simulations with limited changes in inputs and/or environment
leading to no qualitative change in behavior in the case of adaptability, or limited
changes in reaction rates or deletions of a few species producing no qualitative
change in the case of robustness. Even if we know in advance which qualitative
feature of the dynamical behaviour we wish to preserve (and this is rarely the case),
there is no simple way to infer which changes will or will not preserve the qualitative
feature from the static properties of a mathematical model, unless the model
is specifically constructed in accord with standard techniques in control theory
(chapter 12) and robust design. Is a model so designed mimicking biology at the
biochemical level? Not necessarily. This underscores the fact that a mathematical
model is, first and foremost, a model. It is useful as an attempted abstraction
and simplification (chapter 3) of the essential features of the phenomenon being
modeled and as a hypothesis-generating tool for further experiments, but it is
not computationally feasible to make models that are in silico exact replicas of
biochemistry in vivo for anything beyond a trivial scale.

Much has been made of the availability of large-scale data sets in systems biology.
While it is certainly true that these cell- or organ-level complete coverage data sets
allow screening of most of the relevant factors in any given biological phenomenon,
none of the results of such screening can be translated directly into mathematical
models, for several reasons:

1. Cellular localization information is absent (chapter 11).

2. Due to resource and experimental limitations, the time scales of measurement
are rarely fine enough to allow observation of both very quick transient initial or
priming responses and enough detail of following longer term behavior (chapter 6).

3. Determinations of the interactions of proteins oftentimes have large false-positive
and false-negative rates (chapter 10).

4. The models are too large and have too much missing information (reaction rates,
localization, concentrations) to be computationally tractable, even on massively
parallel supercomputers.

While new and improving technologies will alleviate these problems in the fullness of
time, predictive modeling at the present juncture requires cognizance of this reality.
This chapter is concerned with an overview of various computational algorithms
that are relevant for systems biology, with the specific aim of fleshing out (4) above.
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15.2 Algorithms

Algorithms for solving computational problems, either discrete (such as finding
cliques in graphs) or continuous (parameter optimization for a dynamical model),
are judged on correctness, efficiency, and ease of implementation. A heuristic, on
the other hand, is probably intuitively clear in the way it approaches a problem,
but does not come with any guarantee of correctness (Rawlins, 1991; Knuth, 1997).

There are two main ways to compare algorithms. One corresponds to the random-
access-machine (RAM) model of computation, and the other is an asympototic
analysis of worst case complexity. The RAM model counts computational and
memory access steps, but is somewhat simplistic in that it assumes that all basic
and arithmetic operations take equal amounts of time. This is not true for real
processors, of course, but anything more detailed would be processor-dependent,
and therefore not of as much utility in comparing algorithms. The RAM model
tells us how an algorithm might work on a given input, but it does not give an
indication of how the algorithm might fare on a typical input, or the worst or best
case scenarios for different inputs. These are important issues, especially if we do
not know too well the kinds of data we might obtain in biological experiments.

The growth rate of an algorithm gives us an idea of how big an input we can
realistically compute with it. The growth rate is computed by counting all the steps
needed to carry out the algorithm, with each computation or memory access step
counting as one step, for a given input size n, which might, for example, be the
number of protein nodes in a graph of yeast-2-hybrid predictions of protein-protein
interactions.

1. An algorithm whose growth rate is n! becomes useless before n = 20.

2. An algorithm whose growth rate is 2n becomes useless before n = 40.

3. An algorithm whose growth rate is n2 will work reasonably up to n = 100,

but will rapidly become impractical beyond this. For n = 105, such an algorithm
requires 1010 steps.

4. An algorithm whose growth rate is n will likely be useful up to n = 109, and
this holds even for algorithms with logarithmic corrections such as n log n.

5. An algorithm whose growth rate is log n will be useful forever. There are such
algorithms, for example, binary search.

There are usually constant multiplicative factors associated with these growth rates,
and they make some difference to assessments of the viability of the algorithms for
small values of n, but for asymptotically large values of n, these constants are
usually irrelevant. Algorithms of types 1 and 2 are not relevant for the scale of
problems usually of interest in systems biology. For problems of type 3, bigger and
faster computers will make a difference.

To understand which algorithm to use, we must describe the modeling problem
in a manner such that we are able to look in repositories of algorithms and find
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appropriate results. The common terms used in formal descriptions of algorithms are
abstract structures such as graphs, permutations, trees, and sets. Permutations are
relevant if the problem requires different arrangements, orderings, or sequences. An
example in systems biology is system identification, when we do not know the order
in which molecules appear in a pathway, or in what temporal order the molecules
interact with each other. Sets are relevant when the problem seeks a cluster, a
collection, or any selection from a set of items. Trees appear in problems with
hierarchical relationships. Submodules embedded in modules (chapter 3) might be
one example in hierarchical dynamical models. Graphs appear in problems involving
networks, circuits, or webs. Points representing locations in some space appear
in problems like protein conformations or protein localization in a cell. Strings
appear in problems involving patterns or labels. Finding consensus sequences for
transcription factor binding sites upstream of a set of genes is a prototypical string
matching problem.

Data structures are the flip side of the computational cost coin. The organization
of the data impacts algorithm performance greatly. A basic understanding of the
types of common data types used in computer science is helpful in deciding the
storage of experimental data. While biologists typically will not need the detailed
implementations of the data structures introduced below, an acquaintance may
facilitate communications with collaborators in other sciences.

A container is a data type which permits storage and retrieval of data irrespective
of the content of the data. Such a data type has access only through insertion or
retrieval operations, and might be implemented as a stack (permitting last-in-first-
out (LIFO) retrieval)

↔ [Itemn][Itemn−1][Itemn−2] . . . [Item1][Item0] (15.1)

as a queue (permitting first-in-first-out (FIFO) retrieval

→ [Itemn][Itemn−1][Itemn−2] . . . [Item1][Item0] → (15.2)

useful for algorithms where the order of the stored data is important) or as a table
(permitting retrieval indexed by position, as in an array)

0 1 2 . . . n

↓ ↓ ↓ ↓ ↓
[Item0] [Item1] [Item2] . . . [Itemn]

(15.3)
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A dictionary is a data type suited for accessing data by content. Thus a dictionary
has keys and data referred to by the keys. Dictionaries permit search for data given
a key, insertion, and deletion.

Key0 → Value0

Key1 → Value1

Key2 → Value2

...
...

...

Keyn → Valuen

(15.4)

Structures that can implement the dictionary data type include linked lists (con-
stant time insertion and deletion but more computational steps for search), arrays
(constant time search but longer insertion and deletion times), binary search trees,
or hash tables. Binary search trees store data in a tree structure with each node
having 0, 1, or 2 offspring. If the keys in the dictionary have an ordering (in other
words, for any two keys we can decide if x < y or y < x; an example of an ordering
is alphabetical ordering), when we search for the data labeled by a key x, we search
from the root node up the tree, taking the left branch if the key at the root node is
larger than x and the right branch otherwise, and proceeding onwards recursively.

K1 K5 K4 K0

↖ ↗ ↖ ↗
K2 K3

↖ ↗
root

(15.5)

If the items were inserted more or less at random, the search will involve about
log n steps. As an example of the difference between worst-case performance and
average performance, notice that if the items were inserted in an ordered fashion,
the search will take n steps instead.

While containers and dictionaries are the most common data types, more spe-
cialized data types are valuable when the data to be stored has more structure.
Examples of such data structures are suffix trees to store strings, kd-trees to store
geometric objects, adjacency lists (lists of pairs of connected vertices) or adjacency
matrices (matrices indexed by the vertices in the graph, with non-zero entries corre-
sponding to vertices linked by an edge) to store sparse or densely connected graphs
respectively, and set data stored as hypergraphs or in the form of dictionaries asso-
ciated with subsets.
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15.3 Sorting

Sorting is a basic building block of algorithm design and takes about n log n steps
for sorting a set of n elements. Thus, sorting is the type of building block in an
algorithm that can be used for fairly large sets of items. One should use sorting as
much as necessary without worrying about rendering the problem computationally
intractable. Sorting is the basis for

A. Searching: After sorting the keys, one can test for the presence of an item in a
dictionary in log n time.

B. Closest pair: To find the closest pair of numbers, sort the numbers and then do
a linear time scan through the sorted list. Total time required (including sorting):
n log n.

C. Selection: What is the kth largest item in a set? Sort the set and look at the kth

position.

Two general principles of algorithms are divide and conquer and randomization.
Divide and conquer is the principle of dividing the original problem into several
smaller ones, solving the smaller problems, then combining the solutions of the
smaller problems into a solution of the original problem. This is typically possible
in a recursive fashion. Randomization is the principle of randomizing the input
data in order to ensure with high probability that a given algorithm’s good average
behavior is utilized, as opposed to (possibly) much worse worst-case behavior.

A sorting algorithm called mergesort is a good example of divide and conquer.
The data to be sorted is split into two subpiles, each of which is then sorted.

M E R G E S O R T

↙ ↘
M E R G E S O R T

↓ ↓
E E G M R O R S T

G M R E E O R S T

M R E E G O R S T

R E E G M O R S T

R E E G M O R S T

E E G M O R R S T

E E G M O R R S T

(15.6)

We then merge the two sorted subpiles by comparing the first (lowest) elements in
each sorted subpile. The lowest of the two elements is removed, leaving the next
lowest element as the lowest element in one of the two subpiles, and so on. This
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merging process takes on the order of n steps, and the recursion into smaller subpiles
takes on the order of log n, so the total running time of this algorithm is n log n.

Quicksort is another sorting algorithm, in which we pick an arbitrary element x

of the data set. The rest of the data is separated into the elements larger than x

and the elements smaller than x, and each of these subsets is sorted. The complete
sorted set is then obtained by merging the results with x inserted in between.

Q U I C K S O R T

↙ ↘
I C K O Q U S R T

↓ ↓
C I K O Q R S T U

C I K O Q R S T U

(15.7)

The total cost is on the order of n log n steps on average since x is more likely to
be closer to the center of the sorted set than to the edges. However, if x happens to
be at either end, the number of steps will be more like n2. To ensure the average
good behavior is obtained with high probability, we use randomization along with
quicksort.

If we know more about the distribution of the data, we can apply more specialized
algorithms like distribution sort. The key point to note here is that the specialized
algorithms may perform much worse if our hypothesis about the distribution
happens to be incorrect.

15.4 Dynamic Programming

Dynamic algorithms (Denardo, 2003) are algorithms which solve problems by
solving and storing the solutions to small problems, and then combining these
solutions into a solution of the larger problem. There is, of course, a trade-off:
memory is traded for speed. The memory requirements must be kept in mind
for such algorithms. An important feature of dynamic programming algorithms
is optimal sub-structure: the sub-problems which are the solution to the problem
posed are themselves optimal solutions. In other words, all future steps depend
only on which state the algorithm is in, not on how the algorithm got to that state.
Dynamic programming is, in a sense, the opposite of recursion.

Thus, the entire focus in looking for a dynamic programming solution is to
establish what are the appropriate steps in the solution, what are the decisions at
any step, and what are the states that are associated with each step. The decision
at any step must determine the next state, given the state you are in. Dynamic
programming is particularly useful in cases where there is a natural ordering to each
input such as the left-to-right ordering of bases in a DNA sequence. The reason is
that the number of partial solutions found must stay bounded. If the order of the
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input did not matter, there would be an exponential explosion in possible states
which we would not be able to store in memory. The traveling salesman problem,
for example, has no inherent order in the vertices, and results in an exponential
sized set of states.

For example: Fibonacci numbers are defined by a simple two-term relation:
fn = fn−1 + fn−2, with f0 = 0, f1 = 1. They can be computed recursively,
but in exponential time because each recursive step branches into more recursive
steps: fn = fn−2 + 2fn−3 + fn−4 and so on. This requires no storage. A dynamic
programming algorithm, directly iterating over the definition, runs in linear time,
but stores the last two values computed as it runs. As another example, binomial
coefficients can be computed recursively

Cn
m = Cn−1

m + Cn−1
m−1 (15.8)

(with Cn
m = 1 if m = 0 or n = m) in exponential time, or dynamically from the

last computed row of Pascal’s triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

in n2 time, but using n integers to store the last computed row.
Dynamic programming is a standard technique in sequence analysis, for example:

given two sequences of symbols, find the longest subsequence of symbols that
appears in both the given sequences. This problem takes about mn steps, where m,n

are the lengths of the two sequences and uses two m×n arrays to store the partial
results. From the perspective of biological modeling, a more interesting application
of dynamic programming is for stochastic control . Model-free control theory may
be particularly interesting as a way to make progress in predicting the response of
a biological system in the absence of a complete model of its biochemistry. A recent
review of applications of dynamic programming to stochastic control is Lee and Lee
(2004).

15.5 Graphs

A graph is, simply put, a set of relationships between objects. Networks of protein
interactions are graphs, with the relationship being the evidence for interaction
between two proteins, for example from a yeast-2-hybrid screeen. Many complex
systems can be described in terms of the relationships between their parts. Hence
graph theory appears prominently in many attempts to find common structures
in large-scale data sets, for example expression array measurements, and is likely
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to become even more prominent as dynamical models are expressed as graphs of
interactions and molecular species.

Several common graph problems are directly relevant to biology. For example,
one might want to know if a graph of interactions remains connected if one deletes a
certain set of interactions (edges in the graph) (Jeong et al., 2000). One might want
to find the number of paths of length less than 5 connecting two given proteins. One
might want to find the set of shortest paths that still connect all the proteins—this
corresponds to a minimal spanning tree. In computer science, a graph with costs
associated with the edges is termed a network. In biological examples, one might
consider the − log(probability) of a given interaction being a true positive as the
cost associated with the interaction. Then one might want to consider the cheapest
paths from protein A to protein B.

The solutions to many graph problems require the use of a class of algorithms
termed greedy , in which a solution can be found by using only knowledge possessed
at the time the next choice is made. A characteristic of these algorithms is that they
are short-sighted, in other words, they take the step that seems intuitively to be the
best one for the next step, but eventually their steps converge to the best solution.
From a heuristic perspective this makes greedy algorithms intuitive, but it is often
difficult to prove that they actually will lead to a correct solution without getting
trapped in a sub-optimal solution. For example, finding the shortest path that goes
through all the nodes in a graph (the traveling salesman problem) might intuitively
require adding the nearest node to the path at any given step, but this will not
usually lead to a solution of the problem. Greedy algorithms are particularly useful
in problems with an exponentially or factorially growing search space, for example
the number of possible interaction graphs for n proteins, or the graph of models
obtained by elaborating or simplifying reactions in a dynamical model (chapter 4
and chapter 11). Searching in the latter graph is an important problem in biological
system identification.

Examples of greedy algorithms are the algorithms that find the solution to the
minimum spanning tree problem, the problem of finding the subgraph in a graph
such that every node in the graph is a node in the subgraph, and there are no
cycles (closed loops) in the subgraph. For sparse graphs, which are graphs with the
number of nodes roughly equal to the number of edges, the best algorithm runs in
about n log log n steps. Are graphs of biological interest sparse? Scale-free graphs
have the number of edges roughly proportional to the number of nodes, for example.

Many uses for information present in a graph require a traversal of the graph.
Such traversals are usually depth-first, that is, visit all nodes attached to a node
attached to a starting node, before visiting all the nodes attached to a second node
attached to the starting node and so on (as numbered below),
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1

/ \

2 7

/ \ / \

3 4 8 9

/ \

5 6

or breadth-first (as numbered below),

1

/ \

2 3

/ \ / \

4 5 6 7

/ \

8 9

that is, visit all the nodes attached to the starting node first, then proceed outwards
to the next-nearest neighbors and so on. Both these traversals of graphs take on the
order of (number of nodes + number of edges) time steps, but different applications
require different traversals. For example, traversing the graph of possible models
mentioned above should probably be a breadth-first search, at least initially.

15.6 Search

Search algorithms depend on the search problem (Russell and Norvig, 2003). Search-
ing amounts to locating an item in a set by probing elements in the set. In detail, it is
a protean problem: the probe may be inaccurate (experimental uncertainty); probes
may have unequal costs (for example, protein mass spectroscopy versus expression
measurements); the search space may be infinite or very large (for example, param-
eter optimization for a large system of differential equations); the item to be located
may not be uniquely identifiable (for example, there may be two dynamical models
consistent with the data); resources for the search may be limited (for example,
there may be a limited amount of extract available for expression measurements);
or some combination of all these characteristics. Accordingly, there are many dif-
ferent types of search algorithms, most of which are variants or combinations of a
few basic strategies.

The simplest strategy might be termed generate-and-test. It is usually simple
to implement, and it will clearly find the solution. It may, however, take a long
time to find the solution in a problem with even a modest amount of complexity.
Improvements on this algorithm include hill-climbing (adding a heuristic distance
function to guide the generation of solutions that minimize the distance from the
desired state) and adding stochasticity (avoiding entrapment in a local minimum
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of the distance function by adding some stochasticity to the distance function, and
reducing the amplitude of the stochasticity as the search proceeds).

An improved combination of depth-first search and breadth-first search is called
best-first search. The search problem is formulated as a graph. Every node in the
graph represents a model. A queue of nodes is set up. The current node is at the
head of the queue. If the current node is not the solution of the search problem,
all its nearest neighbor nodes are added to the queue, and the current node is
removed from the queue. The queue is re-ordered according to a (possibly heuristic)
distance function. The lowest node in the queue is made the current node and the
algorithm repeats. Thus the search always tries the best move available from its
list of possible moves, regardless of whether the move is a horizontal or vertical
move. Only horizontal moves (breadth-first search) avoid getting trapped in dead
ends but may end up searching all the nodes, while only vertical moves (depth-first
search) avoid searching all the nodes but can get trapped in dead ends. Best-first
search avoids the pitfalls of both breadth-first and depth-first searches by hopping
around in the search graph between areas more likely to contain the desired model.

Perhaps the most popular search algorithm is A∗ search. A difference between
best-first and A∗ search is that the heuristic function is the sum of two contributions.
One is an underestimate of the distance from the current node to the goal of the
search, and the other measures the distance from the current node to the putative
next node. The heuristic behind this summation is that this sum (by the triangle
inequality) is an estimate of the distance from the putative next node to the goal, the
underestimation in the heuristic function compensating for the triangle inequality
approximately. Having chosen a new current node, if the node chosen is not the
goal, then this node and all its nearest neighbors are removed from the queue,
another difference from best-first search. All these search algorithms have a worst-
case performance proportional to the number of nodes in the graph, but A∗ search
will out-perform the others by about an order of magnitude on typical problems.

For the iterative modeling that is needed in systems biology, another search
heuristic is useful: means-ends analysis. This allows both backwards and forwards
searching, so it is possible to iteratively refine models from gross features to more
detailed features. It should be obvious that any application of this algorithm to
modeling requires detailed biological input, so we give here only a rough sketch of
the search strategy. The strategy examines the current state (the present dynamical
model), the desired state (the present data), and the differences between them. The
difference is used to iterate over adding additional interactions to the model that
may bring the model closer to the desired predictions. If the data is organized in
a hierarchical fashion, the resulting model will have a hierarchical structure. The
model remains, of course, a model, in that the actual organization of biochemical
interactions in the cell may not mirror the mathematical interactions incorporated
into the model.

In search problems with uncertainty, it is often interesting to pose the prob-
lem as a constraint satisfaction problem (chapter 5). Multiple alignments of DNA
sequences are an example of constraint satisfaction problems, with biological knowl-
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edge guiding which alignments are good. Another example would be to apply con-
straint satisfaction heuristics to modeling the response of various related cell-lines
to different stimuli—we do not want totally different models for each cell-line. We
would like the models to be roughly “aligned,” just as in the sequence alignment
problem, with biology dictating the meaning of a good alignment—for example,
the timescales for corresponding parts of a particular response may be different
between cell-lines so models which reproduce this difference should be regarded as
“aligned.” The constraints in this example might be modeled as statements off the
form: “The time at which transcription factor X concentration rises precedes the
time at which genes with upstream binding sites for X are expressed.”

15.7 Identification, Simulation and Optimization of Dynamical Models

Dynamical models of biological systems usually have unknown parameters such as
reaction rates and initial concentrations for molecules not observed. The experi-
mental data is used to constrain such unknown parameters. This process typically
involves searching through different values of the unknown parameters, solving the
dynamical system with a given set of values of these parameters, then adjusting the
values of these parameters trying to improve the fit to experimental data.

Dynamical systems come in many varieties, ranging from entirely stochastic de-
scriptions of molecular dynamics (chapter 8 and chapter 16) to systems of ordinary
differential equations expressing smooth variation (chapter 6 and chapter 12). If we
have a system of m differential equations governing the dynamics of m molecular
concentrations that we need to fit to T data points, with a certain time resolu-
tion, the number of computational steps required is roughly proportional to mT,

with a proportionality constant depending on the accuracy required and the com-
putational complexity of the system of equations. If every species interacts with
every other species, the computational complexity may be of the order of m or
higher, but if only a few molecules interact with any given molecule with simple
Michaelis-Menten dynamics, the complexity will be independent of m.

These two extremes reflect a major consideration in modeling. One has a choice:
one can model a large number of molecular species with a few interactions per
species, or one can model only a few marker species with complicated interactions
between possibly all the other marker species. Given a good understanding of the
fundamental interactions, it would appear from this discussion that the crossover
point between the two approaches occurs at about (number of markers)2 ≈ (number
of molecules). These are, however, not the only considerations. One almost never
has detailed and accurate knowledge of the fundamental interactions of molecules
in vivo so available data is used for finding likely values of reaction rates, which
adds greatly to the computational burden. In addition, one usually cannot obtain
many time-points for a large number of molecules due to resource constraints,
which implies that the data used to constrain the reaction rates has low dynamical
resolution. Another problem is that incomplete biochemical information may lead
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to finding a model that matches the data but only because important reactions
are unknown—predictions for the effects of novel perturbations from such a model
may be wrong. On the other hand, if one opts for using more accurately and more
frequently sampled marker concentrations, one has to infer the whole complex of
effective interactions, since many fundamental interactions are subsumed into the
set of signals propagating from one marker molecule to another. This means that
many more effective reaction rates need to be determined per marker molecule.
Furthermore, one has to have enough biological knowledge to select the marker
species, or factor in the cost of exploratory experiments to determine markers.

From a larger perspective, modelers are interested in deducing dynamics from
data (chapter 11). Experimental time series data is often noisy, reflecting both
underlying stochasticity and experimental systematic variation. Noise reduction
in time series is an extensively studied topic (Kostelich and Schreiber, 1993).
A considerable part of the literature deals with systems characterized as low-
dimensional chaos which is not generally the case for biological systems. Rarely
does a biologist have the resources to make measurements over many periods of the
asymptotic behavior of a given system. Nevertheless, some techniques have broader
applicability.

One of the most flexible and robust techniques is a variant on the Takens time-
delay-embedding method (Kostelich and Schreiber, 1993), usually called singular
spectrum analysis (Golyandina et al., 2001). In this procedure, the available time
series xi, i = 1, . . . , N is used to construct a set of vectors vi, i = 1, . . . , N − L + 1

defined as

vi = (xi, xi+1 . . . xi+L−1) (15.9)

The v vectors are used to construct a matrix M of size (N − L + 1) × L with the
vectors serving as the columns of M. A Hankel matrix is a matrix with entries
that are constant along anti-diagonals, so M is an example of a Hankel matrix.
A singular value decomposition of M results in M = Y1 + Y2 + . . . with each Xi

corresponding to a particular singular value. While this is an exact decomposition,
the noise reduction is achieved by using only the Yi that correspond to the largest
few singular values and add up to an approximately Hankel matrix. The final
step is to add the chosen Yi and derive a noise-reduced time series by averaging
over the anti-diagonal elements, thereby inverting the process by which M was
initially formed from the experimental time series xi. The value of this technique
is that it works without assuming anything about the underlying signal, unlike
Fourier analysis or other noise filters based on specific special functions. The only
assumption in singular spectrum analysis is the choice of the window length L. A
rough rule of thumb is to pick a value of L in a range where small changes in L do
not affect the noise-reduced time series, while keeping N − L considerably larger
than L.

Time series data has an advantage over a permutable data set, in that there is
a definite time ordering to the data. How does one exploit the time ordering to
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help in the noise reduction? A simple approach, adapted from a procedure applied
in chaotic systems (Kostelich and Schreiber, 1993), is applicable if the time series
experiment has been repeated three times or more: We can use an interpolation of
the form xn = an,n−1xn−1 + an,n+1xn+1 + bn to find coefficients an,n−1, an,n+1, bn

(for example, by a least-squares fit to the replicates) and use these coefficients to
compute a noise-reduced value x̂n for the time series. The procedure can even be
carried out with only two samples in conjunction with a Bayesian marginalization
(chapter 4) over the coefficients. This procedure reduces the noise in the time series
for all save the first and last points. The caveats are that the interpolation may not
be an accurate description of the dynamics, and there may be some sensitivity to
outliers in the data if fewer repetitions of the data are available.

Optimization of parameters is a search problem dealing with continuous families
of parameters. As such, more methods are available to guide the search procedure.
Optimization algorithms are broadly divided into searches that take derivatives of
an objective cost function to find paths in the parameter space that minimize the
cost, and searches that do not require derivatives of the cost function. Often in
biological modeling, one does not know the character of the landscape associated
with the cost function. If the cost varies smoothly with the parameter values simple
ideas like going down the path of steepest descent may find the minimum. More
likely, the cost function may have multiple local minima, and getting trapped in the
vicinity of a local minimum will trap local optimization strategies such as steepest
descent. A more global approach to finding a minimum of the cost function uses
simulated annealing, where the size of a step in parameter space that the algorithm
takes as it searches for a global minimum is gradually reduced so that the algorithm
avoids getting trapped in a wrong local minimum. Simulated annealing is much
slower than gradient descent type methods but is much more likely to avoid false
minima. Deterministic global optimization methods like branch and bound are
computationally too demanding for most interesting biological modeling problems.
Evolutionary strategies are search strategies that apply the biological example of
evolution to searching by evolving a population consisting of different points in the
parameter space according to how the points lower the cost function. A detailed
description of the algorithms is beyond the scope of this chapter, but results by
Moles et al. (2003) suggest that such strategies are the only ones capable of finding
the true minimum in biological modeling. Since evolutionary strategies are generally
the best suited to multimodal optimization problems, a possible implication is that
cost function landscapes in biological systems may be multimodal. However, it is
important to note that von Dassow et al. (2000) found that within the Drosophila
stripe formation module, the parameter optimization problem was remarkably easy
to solve, suggesting a quite different picture of the cost function landscape, provided
that one has the right model. This suggests that model search should include ease of
optimization as a criterion. A speculative hypothesis is that preferring a model that
is easy to optimize is a computational analog of one kind of evolutionary pressure.
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15.8 Summary

It may not be entirely obvious that a given problem of biological interest has
a solution expressed as an algorithm studied before in an abstracted setting.
Nevertheless, it is extremely important to make sure that there is no relevant
abstract problem in computer science that has been studied prior to embarking
on one’s own reinvention of the wheel. As the examples given in this chapter show,
brute force large-scale computation to solve problems in systems biology is a still-
born endeavor. Even worse, ideas with conceptual merit may be dismissed as
computationally impractical if one does not look for efficient algorithms suited to
the task.

An important consideration for modeling is the idea of relaxing the requirements
in order to find approximate solutions in a reasonable amount of time. Given that
a lot of biological information is uncertain or unavailable, probabilistic algorithms
are a useful tool. These algorithms will find the correct answer usually, but they
will always give an answer quickly. A simple example of a probabilistic approach
in system inference, for example, is to generate a variety of different models
constrained by available knowledge, and without parameter optimization, just
check the qualitative agreement between the data and the models. One can then
do the computationally expensive step of parameter optimization for the best of
the generated models, if needed. The point here is that we made no attempt to
exhaustively enumerate and test all the possible models, given a set of hypotheses.
We figuratively threw a bunch of models all at once at the experimental data and
picked the model that came closest for further evaluation. We could be wrong, and
this would be something we could check by repeatedly running this algorithm and
comparing the common features of the selected models. A probabilistic model is
not always right, while a proven algorithm is not always fast.

For the scale of problems of interest in systems biology, for the foreseeable future
there will be no such thing as “unlimited computational power.” This does not
imply that systems biology is impossible. It does imply that the results obtained
by computer scientists in the past must be utilized just as much as known biology
in order to make effective use of the large-scale data sets now becoming available.





16 Numerical Simulation

for Biochemical Kinetics

Daniel T. Gillespie and Linda R. Petzold

In chemical systems formed by living cells, the small numbers of molecules of a few
reactant species can result in dynamical behavior that is discrete and stochastic,
rather than continuous and deterministic (McAdams and Arkin, 1999, 1997; Arkin
et al., 1998; Elowitz et al., 2002; Fedoroff and Fontana, 2002). By “discrete,” we
mean the integer-valued nature of small molecular populations, which makes their
representation by real-valued (continuous) variables inappropriate. By “stochastic,”
we mean the random behavior that arises from the lack of total predictability in
molecular dynamics. In this chapter we introduce some concepts and techniques
that have been developed for mathematically describing and numerically simulat-
ing chemical systems that take proper account of discreteness and stochasticity.
Throughout, we shall make the simplifying assumption that the system is well-
stirred or spatially homogeneous. In practice this assumption is often justified, and
it allows us to specify the state of the system simply by giving the molecular popu-
lations of the various chemical species. But in some circumstances the well-stirred
assumption will not be justified; then the locations of the molecules and the dy-
namics of their movement must also be considered. Some approaches to this more
computationally challenging situation are described in chapter 8.

16.1 Chapter Overview

We begin in section 16.2 by outlining the foundations of “stochastic chemical
kinetics” and deriving the chemical master equation (CME), the time-evolution
equation for the probability function of the system’s state. Unfortunately, the CME
cannot be solved, either analytically or numerically, for any but the simplest of
systems. But we can generate numerical realizations (sample trajectories in state
space) of the stochastic process defined by the CME by using a Monte Carlo strategy
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called the stochastic simulation algorithm (SSA). The SSA is derived and discussed
in section 16.3. Although the SSA is an ideal algorithm in the sense that it provides
exact realizations of the CME, there is a computational price for this: Because the
SSA simulates every reaction event, it will be painfully slow for systems that involve
enormous numbers of such events, which most real chemical systems do. This has
motivated a search for algorithms that give up some of the exactness of the SSA in
return for greater simulation speed.

One such approximate accelerated algorithm is known as tau-leaping, and it is
described in section 16.4. In tau-leaping, instead of advancing the system to the
time of the next reaction event, the system is advanced by a pre-selected time τ ,
which typically encompasses more than one reaction event. The number of times
each reaction fires in time τ is approximated by a Poisson random variable, and we
explain why that can be done in section 16.4. In section 16.5 we show how, under
certain conditions, tau-leaping further approximates to a stochastic differential
equation called the chemical Langevin equation (CLE), and then how the CLE can
in turn sometimes be approximated by an ordinary differential equation called the
reaction rate equation (RRE). Tau-leaping, the CLE, and the RRE are successively
coarser-grained approximations which usually become appropriate as the molecular
populations of the reacting species are made larger and larger.

In the past, virtually all chemically reacting systems were analyzed using the
deterministic RRE, even though that equation is accurate only in the limit of
infinitely large molecular populations. Near that limit though, the RRE practically
always provides the most efficient description. One reason for this is the extensive
theory that has been developed over the years for efficiently solving ordinary
differential equations, especially those that are stiff. A stiff system of ordinary
differential equations is one that involves processes occurring on vastly different
time scales, the fastest of which is stable. Stiff RREs arise for chemical systems
that contain a mixture of fast and slow reactions, and many if not most cellular
systems are of this type. The practical consequence of stiffness is that, even though
the system itself is stable, naive simulation techniques will be unstable unless they
proceed in extremely small time steps. In section 16.6 we describe the problem
of stiffness in a deterministic (RRE) context, along with its standard numerical
resolution: implicit methods.

Given the connections described above between tau-leaping, the CLE, and the
RRE, it should not be surprising that stiffness is also an issue for tau-leaping
and the CLE. In section 16.7 we describe an implicit tau-leaping algorithm for
stochastically simulating stiff chemical systems. We conclude in section 16.8 by
describing and illustrating yet another promising algorithm for dealing with stiff
stochastic chemical systems, which we call the slow-scale SSA.
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16.2 Foundations of Stochastic Chemical Kinetics and the Chemical Master

Equation

We consider a well-stirred system of molecules of N chemical species {S1, . . . , SN}
interacting through M chemical reaction channels {R1, . . . , RM}. The system is
assumed to be confined to a constant volume Ω, and to be in thermal (but
not necessarily chemical) equilibrium at some constant temperature. With Xi(t)

denoting the number of molecules of species Si in the system at time t, we want to
study the evolution of the state vector X(t) = (X1(t), . . . , XN (t)), given that the
system was initially in some state X(t0) = x0.

Each reaction channel Rj is assumed to be “elemental” in the sense that it de-
scribes a distinct physical event which happens essentially instantaneously. Elemen-
tal reactions are either unimolecular or bimolecular; more complicated chemical re-
actions (including trimolecular reactions) are actually coupled sequences of two or
more elemental reactions.

Reaction channel Rj is characterized mathematically by two quantities. The first
is its state-change vector νj = (ν1j , . . . , νNj) , where νij is defined to be the change
in the Si molecular population caused by one Rj reaction; thus, if the system is in
state x and an Rj reaction occurs, the system immediately jumps to state x + νj .
The array {νij} is commonly known as the stoichiometric matrix.

The other characterizing quantity for reaction channel Rj is its propensity func-
tion aj . It is defined so that aj(x) dt gives the probability, given X(t) = x, that
one Rj reaction will occur somewhere inside Ω in the next infinitesimal time in-
terval [t, t + dt). This probabilistic definition of the propensity function finds its
justification in physical theory (Gillespie, 1992b,a). If Rj is the unimolecular re-
action Si → products, the underlying physics is quantum mechanical, and implies
the existence of some constant cj such that aj(x) = cjxi. If Rj is the bimolecular
reaction Si + Si′ → products, the underlying physics implies a different constant
cj , and a propensity function aj(x) of the form cjxixi′ if i �= i′, or cj

1
2xi(xi − 1) if

i = i′. The stochasticity of a bimolecular reaction stems from the fact that we do
not know the precise positions and velocities of all the molecules in the system, so
we can predict only the probability that an Si molecule and an Si′ molecule will
collide in the next dt and then react according to Rj .

It turns out that cj for a unimolecular reaction is numerically equal to the reaction
rate constant kj of conventional deterministic chemical kinetics, while cj for a
bimolecular reaction is equal to kj/Ω if the reactants are different species, or 2kj/Ω

if they are the same (Gillespie, 1976, 1992b,a). But it would be wrong to infer from
this that the propensity functions are simple heuristic extrapolations of the rates
used in deterministic chemical kinetics; in fact, the inference flow actually goes the
other way. The existence and forms of the propensity functions follow directly from
molecular physics and kinetic theory, and not from deterministic chemical kinetics.

The probabilistic nature of the dynamics described above implies that the most
we can hope to compute is the probability P (x, t |x0, t0) that X(t) will equal x,
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given that X(t0) = x0. We can deduce a time-evolution equation for this function
by using the laws of probability to write P (x, t + dt |x0, t0) as:

P (x, t + dt |x0, t0) = P (x, t |x0, t0) × [1 −
M∑

j=1

aj(x)dt]

+
M∑

j=1

P (x − νj , t |x0, t0) × aj(x − νj)dt

The first term on the right is the probability that the system is already in state
x at time t, and no reaction of any kind occurs in [t, t + dt). The generic second
term is the probability that the system is one Rj reaction removed from state x

at time t, and one Rj reaction occurs in [t, t + dt). That these M + 1 routes from
time t to state x at time t + dt are mutually exclusive and collectively exhaustive
is ensured by taking dt so small that no more than one reaction of any kind can
occur in [t, t + dt). Subtracting P (x, t |x0, t0) from both sides, dividing through by
dt, and taking the limit dt → 0, we obtain (McQuarrie, 1967; Gillespie, 1992b)

∂P (x, t |x0, t0)

∂t

=
M∑

j=1

[aj(x − νj)P (x − νj , t |x0, t0) − aj(x)P (x, t |x0, t0)] (16.1)

This is the chemical master equation (CME). In principle, it completely determines
the function P (x, t |x0, t0). But the CME is really a set of nearly as many coupled
ordinary differential equations as there are combinations of molecules that can exist
in the system. So it is not surprising that the CME can be solved analytically
for only a very few very simple systems, and numerical solutions are usually
prohibitively difficult.

One might hope to learn something from the CME about the behavior of averages
like 〈f (X(t))〉 ≡ ∑

x f(x)P (x, t |x0, t0), but this too turns out to pose difficulties
if any of the reaction channels are bimolecular. For example, it can be proved from
equation 16.1 that

d 〈Xi(t)〉
dt

=
M∑

j=1

νij 〈aj (X(t))〉 (i = 1, . . . , N)

If all the reactions were unimolecular, the propensity functions would all be linear
in the state variables, and we would have 〈aj (X(t))〉 = aj (〈X(t)〉). The above
equation would then become a closed set of ordinary differential equations for the
first moments, 〈Xi(t)〉 . But if any reaction is bimolecular, the right hand side will
contain at least one quadratic moment of the form 〈Xi(t)Xi′(t)〉 , and the equation
then becomes merely the first of an infinite, open-ended set of coupled quations for
all the moments.
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In the hypothetical case that there are no fluctuations, we would have 〈f (X(t))〉 =

f (X(t)) for all functions f . The above equation for 〈Xi(t)〉 would then reduce to

dXi(t)

dt
=

M∑
j=1

νij aj(X(t)) (i = 1, . . . , N) (16.2)

This is the reaction rate equation (RRE) of traditional deterministic chemical
kinetics—a set of N coupled first-order ordinary differential equations for the Xi(t),

which are now continuous (real) variables. The RRE is more commonly written in
terms of the concentration variables Xi(t)/Ω, but that scalar transformation is
inconsequential for our purposes here. Examples of RREs in a biological context
abound in Chapter 6.

Although the deterministic RRE would evidently be valid in the absence of
fluctuations, it is not clear what the justification and penalty might be for ignoring
fluctuations. We shall later see how the RRE follows more deductively from a series
of physically transparent approximating assumptions to the stochastic theory.

16.3 The Stochastic Simulation Algorithm

Since the CME (eq. 16.1) is rarely of much use in computing the probability density
function P (x, t |x0, t0) of X(t), we need another computational approach. One
approach that has proven fruitful is to construct numerical realizations of X(t),
that is, simulated trajectories of X(t)-versus-t . This is not the same as solving the
CME numerically, as that would give us the probability density function of X(t)

instead of samplings of that random variable. However, much the same effect can
be achieved by either histogramming or averaging the results of many realizations.
The key to generating simulated trajectories of X(t) is not the CME or even the
function P (x, t |x0, t0), but rather a new function, p(τ, j |x, t) (Gillespie, 1976). It
is defined so that p(τ, j |x, t) dτ is the probability, given X(t) = x, that the next
reaction in the system will occur in the infinitesimal time interval [t + τ, t + τ + dτ),
and will be an Rj reaction. Formally, this function is the joint probability density
function of the two random variables “time to the next reaction” (τ) and “index of
the next reaction” (j).

To derive an analytical expression for p(τ, j |x, t), we begin by noting that if
P0(τ |x, t) is the probability, given X(t) = x, that no reaction of any kind occurs
in the time interval [t, t + τ), then the laws of probability imply the relation

p(τ, j |x, t) dτ = P0(τ |x, t) × aj(x)dτ

The laws of probability also imply

P0(τ + dτ |x, t) = P0(τ |x, t) × [1 −
M∑

j′=1

aj′(x)dτ ]
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An algebraic rearrangement of this last equation and passage to the limit dτ → 0

results in a differential equation whose solution is easily found to be P0(τ |x, t) =

exp (−a0(x) τ), where

a0(x) ≡
M∑

j′=1

aj′(x) (16.3)

When we insert this result into the equation for p, we get

p(τ, j |x, t) = aj(x) exp (−a0(x) τ) (16.4)

Equation 16.4 is the mathematical basis for the stochastic simulation approach. It
implies that the joint density function of τ and j can be written as the product of the
τ -density function, a0(x) exp (−a0(x)τ), and the j-density function, aj(x)/a0(x).
We can generate random samples from these two density functions by using the
inversion method of Monte Carlo theory (Gillespie, 1992a). Draw two random
numbers r1 and r2 from the uniform distribution in the unit-interval, and select
τ and j according to

τ =
1

a0(x)
ln

(
1

r1

)
(16.5a)

j = the smallest integer satisfying
j∑

j′=1

aj′(x) > r2 a0(x) (16.5b)

Thus we arrive at the following version of the stochastic simulation algorithm (SSA)
(Gillespie, 1976, 1977):

1. Initialize the time t = t0 and the system’s state x = x0.

2. With the system in state x at time t, evaluate all the aj(x) and their sum a0(x).

3. Generate values for τ and j according to equations 16.5a and b.

4. Effect the next reaction by replacing t ← t + τ and x ← x + νj .

5. Record (x, t) as desired. Return to step 2, or else end the simulation.

The X(t) trajectory that is produced by the SSA might be thought of as a
“stochastic version” of the trajectory that would be obtained by solving the RRE .
But note that the time step τ in the SSA is exact and is not a finite approximation
to some infinitesimal dt, as is the time step in most numerical solvers for the RRE.
If it is found that every SSA-generated trajectory is practically indistinguishable
from the RRE trajectory, then we may conclude that microscale fluctuations are
ignorable. But if the SSA trajectories deviate noticeably from the RRE trajectory,
then we must conclude that microscale fluctuations are not ignorable, and the
deterministic RRE does not provide an accurate description of the system’s real
behavior.
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The SSA and the CME are logically equivalent to each other; yet even when the
CME is completely intractable, the SSA is quite straightforward to implement. The
problem with the SSA is that it is often very slow. The source of this slowness can
be traced to the factor 1/a0(x) in the τ equation 16.5a: a0(x) can be very large if
the population of one or more reactant species is large, and that is often the case
in practice.

There are variations on the above method for implementing the SSA that make
it more computationally efficiency (Gibson and Bruck, 2000b; Cao et al., 2004a).
But any procedure that simulates every reaction event one at a time will inevitably
be too slow for most practical applications. This prompts us to look for ways of
giving up some of the exactness of the SSA in return for greater simulation speed.

16.4 Tau-Leaping

One approximate accelerated simulation strategy is tau-leaping (Gillespie, 2001).
It advances the system by a pre-selected time τ which encompasses more than one
reaction event. In its simplest form, tau-leaping requires that τ be chosen small
enough that the following leap condition is satisfied: The expected state change
induced by the leap must be sufficiently small that no propensity function changes
its value by a significant amount.

We recall that the Poisson random variable P(a, τ) is by definition the number of
events that will occur in time τ given that adt is the probability that an event will
occur in any infinitesimal time dt, where a can be any positive constant. Therefore,
if X(t) = x, and if we choose τ small enough to satisfy the leap condition, so that
the propensity functions stay approximately constant during the leap, then reaction
Rj should fire approximately Pj (aj(x), τ) times in [t, t + τ). Thus, to the degree
that the leap condition is satisfied, we can leap by a time τ simply by taking

X(t + τ)
.
= x +

M∑
j=1

νj Pj (aj(x), τ) (16.6)

Doing this evidently requires generating M Poisson random numbers for each leap
(Press et al., 1986). It will result in a faster simulation than the SSA to the degree
that the total number of reactions leapt over,

∑M
j=1 Pj (aj(x), τ), is large compared

to M .
In order to use this simulation technique efficiently, we obviously need a way

to estimate the largest value of τ that is compatible with the leap condition.
One possible way of doing that (Gillespie and Petzold, 2003) is to estimate the
largest value of τ for which no propensity function is likely to change its value
during τ by more than εa0(x), where ε (0 < ε � 1) is some pre-chosen accuracy-
control parameter. Whatever the method of selecting τ , the (explicit) tau-leaping
simulation procedure goes as follows (Gillespie, 2001; Gillespie and Petzold, 2003):
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1. In state x at time t, choose a value for τ that satisfies the leap condition.

2. For each j = 1, . . . , M , generate the number of firings kj of reaction Rj in time
τ as a sample of the Poisson random variable P (aj(x), τ).

3. Leap, by replacing t ← t + τ and x ← x +
M∑

j=1

kj νj .

In the limit that τ → 0, tau-leaping becomes mathematically equivalent to the
SSA. But tau-leaping also becomes very inefficient in that limit, because all the kj ’s
will approach zero, giving a very small time step with usually no reactions firing.
As a practical matter, tau-leaping should not be used if the largest value of τ that
satisfies the leap condition is less than a few multiples of 1/a0(x), the expected
time to the next reaction in the SSA, since it would then be more efficient to use
the SSA.

Tau-leaping has been shown to significantly speed up the simulation of some
systems (Gillespie, 2001; Gillespie and Petzold, 2003). But it is not as foolproof as
the SSA. If one takes leaps that are too large, bad things can happen; for example,
some species populations might be driven negative. If the system is stiff, meaning
that it has widely varying dynamical modes with the fastest mode being stable,
the leap condition will generally limit the size of τ to the time scale of the fastest
mode, with the result that large leaps cannot be taken. Stiffness is very common in
cellular chemical systems and will be considered in more detail later.

It is tempting to try to formulate a “higher-order” tau-leaping formula by extend-
ing higher-order ODE methods in a straightforward manner for discrete stochastic
simulation. However, doing this correctly is much harder than it might at first ap-
pear. Most such extensions are not even first order accurate for the stochastic part
of the system. An analysis of the consistency, order, and convergence of tau-leaping
methods is given by Rathinam et al. (2005), where it is shown that the tau-leaping
method defined above, and the “implicit” tau-leaping method to be described in
section 16.7, are both first-order accurate as τ → 0.

16.5 Transitioning to the Macroscale: The Chemical Langevin Equation and the

Reaction Rate Equation

Suppose we can choose τ small enough to satisfy the leap condition, so that
approximation 16.6 is good, but nevertheless large enough that

aj(x) τ � 1 for all j = 1, . . . , M (16.7)

Since aj(x)τ is the mean of the random variable Pj (aj(x), τ), the physical signifi-
cance of condition 16.7 is that each reaction channel is expected to fire many more
times than once in the next τ . It will not always be possible to find a τ that satisfies
both the leap condition and condition 16.7, but it usually will be if the populations
of all the reactant species are sufficiently large.



16.5 Transitioning to the Macroscale: The Chemical Langevin Equation and the Reaction Rate Equation 339

When condition 16.7 does hold, we can make a useful approximation to the tau-
leaping formula 16.6. This approximation stems from the purely mathematical fact
that the Poisson random variable P(a, τ), which has mean and variance aτ , can be
well approximated when aτ � 1 by a normal random variable with the same mean
and variance. Denoting the normal random variable with mean m and variance σ2

by N (m,σ2), it thus follows that when condition 16.7 holds,

Pj (aj(x), τ)
.
= Nj (aj(x)τ, aj(x)τ) = aj(x)τ + (aj(x)τ)

1/2 Nj(0, 1)

the last step following from the fact that N (m,σ2) = m + σN (0, 1). Inserting this
approximation into equation 16.6 gives (Gillespie, 2000, 2002)

X(t + τ)
.
= x +

M∑
j=1

νjaj(x)τ +

M∑
j=1

νj

√
aj(x)Nj(0, 1)

√
τ (16.8)

where the Nj(0, 1) are statistically independent normal random variables with
means 0 and variances 1. Equation 16.8 is called the Langevin leaping formula.
It evidently expresses the state increment X(t + τ) − x as the sum of two terms:
a deterministic drift term proportional to τ , and a fluctuating diffusion term
proportional to

√
τ . It is important to keep in mind that equation 16.8 is an

approximation, which is valid only to the extent that τ is (i) small enough that no
propensity function changes its value significantly during τ , yet (ii) large enough
that every reaction fires many more times than once during τ . The approximate
nature of equation 16.8 is underscored by the fact that X(t) therein is now a
continuous (real-valued) random variable instead of a discrete (integer-valued)
random variable; we lost discreteness when we replaced the integer-valued Poisson
random variable with a real-valued normal random variable. The Langevin leaping
formula 16.8 gives faster simulations than the tau-leaping formula 16.6 not only
because condition 16.7 implies that very many reactions get leapt over at each
step, but also because the normal random numbers that are required by equation
16.8 can be generated much more easily than the Poisson random numbers that are
required by equation 16.6 (Press et al., 1986).

The “small-but-large” character of τ in equation 16.8 marks that variable as
a “macroscopic infinitesimal.” If we subtract x from both sides and then divide
through by τ , the result can be shown to be the following (approximate) stochastic
differential equation, which is called the chemical Langevin equation (CLE) (Gille-
spie, 2000, 2002):

dX(t)

dt

.
=

M∑
j=1

νj aj (X(t)) +
M∑

j=1

νj

√
aj (X(t)) Γj(t) (16.9)

The Γj(t) here are statistically independent “Gaussian white noise” processes sat-
isfying 〈Γj(t) Γj′(t′)〉 = δjj′ δ(t − t′), where the first delta function is Kronecker’s
and the second is Dirac’s. The CLE (equation 16.9) is mathematically equivalent to
the Langevin leaping formula (equation 16.8), and is subject to the same conditions
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for validity. Stochastic differential equations arise in many areas of physics, but the
usual way of obtaining them is to start with a macroscopically inspired drift term
(the first term on the right side of the CLE) and then assume a form for the diffu-
sion term (the second term on the right side of the CLE) with an eye to obtaining
some pre-conceived outcome. So it is noteworthy that our derivation here of the
CLE did not proceed in that ad hoc manner; instead, we used careful mathematical
approximations to infer the forms of both the drift and diffusion terms from the
premises underlying the CME/SSA.

Molecular systems become “macroscopic” in what physicists and chemists call the
thermodynamic limit. This limit is formally defined as follows: the system volume
Ω and the species populations Xi all approach ∞, but in such a way that the
species concentrations Xi/Ω all remain constant. The large molecular populations in
chemical systems near the thermodynamic limit generally mean that such systems
will be well described by the Langevin formulas 16.8 and 16.9. To discern the
implications of those formulas in the thermodynamic limit, we evidently need to
know the behavior of the propensity functions in that limit. It turns out that all
propensity functions grow linearly with the system size as the thermodynamic limit
is approached. For a unimolecular propensity function of the form cjxi this behavior
is obvious, since cj will be independent of the system size. For a bimolecular
propensity function of the form cjxixi′ this behavior is a consequence of the fact
that bimolecular cj ’s are always inversely proportional to Ω, reflecting the fact that
two reactant molecules have a harder time finding each other in larger volumes.

It follows that, as the thermodynamic limit is approached, the deterministic drift
term in equation 16.8 grows like the size of the system, while the fluctuating diffusion
term grows like the square root of the size of the system, and likewise for the CLE.
This establishes the well known rule-of-thumb in chemical kinetics that relative
fluctuation effects in chemical systems typically scale as the inverse square root of
the size of the system.

In the full thermodynamic limit, the size of the second term on the right side of
equation 16.9 will usually be negligibly small compared to the size of the first term,
in which case the CLE reduces to the RRE. Thus we have derived the RRE as a
series of limiting approximations to the stochastic theory that underlies the CME
and the SSA. The tau-leaping and Langevin-leaping formulas evidently provide a
conceptual bridge between stochastic chemical kinetics (the CME and SSA) and
conventional deterministic chemical kinetics (the RRE), enabling us to see how the
latter emerges as a limiting approximation of the former.

16.6 Stiffness in Deterministic Reaction Rate Equations

Stiffness can be defined roughly as the presence of widely varying time-scales in
a dynamical system, the fastest of which is stable. It poses special problems for
the numerical solution of both deterministic ordinary differential equations (ODEs)
and stochastic differential equations (SDEs), particularly in the context of chemical
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kinetics. Stiffness also impacts both the SSA and the tau-leaping algorithm equation
16.6. In this section we will describe the phenomenon of stiffness for deterministic
systems of ODEs, and show how it restricts the timestep size for all “explicit”
methods. Then we will show how the use of “implicit” methods overcomes this
restriction.

Consider the deterministic ODE system

dx

dt
= f(t,x) (16.10)

In simplest terms, this system is said to be “stiff" if it has a strongly damped, or
“superstable” mode. To get a feeling for this concept, consider the solutions x(t)

of an ODE system starting from various initial conditions. For a typical nonstiff
system, if we plot a given component of the vector x-versus-t we might get a family
of curves resembling those shown in figure 16.1a: The curves either remain roughly
the same distance apart as t increases, as in the figure, or they might show a
tendency to merge very slowly. But when such a family of curves is plotted for a
typical stiff system, the result looks more like what is shown in figure 16.1b: The
curves merge rapidly to one or more smoother curves, with the deviation from the
smoother curves becoming very small as t increases.

0 5 10 15 20
−1

0

1

2

3

4

5

t

y

(a)

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

t

y
(b)

Figure 16.1 A system of ODEs is said to be “stiff” if its solutions show strongly damped
behavior as a function of the initial conditions. The family of curves shown in (a) represents
the behavior of solutions to a nonstiff system for various initial conditions. In contrast,
solutions to the stiff system shown in (b) tend to merge quickly.

Stiffness in a system of ODEs corresponds to a strongly stable behavior of the
physical system being modeled. At any given time the system will be in a sort
of equilibrium, although not necessarily a static one, and if some state variable
is perturbed slightly, the system will respond rapidly to restore the equilibrium.
Typically, the true solution x(t) of the ODE system does not show any rapid
variation, except possibly during an initial transient phase. But the potential for
rapid response is always present and will manifest itself if we perturb x out of
equilibrium. A stiff system has (at least) two time scales. There is a long (slow)
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timescale for the quasi-equilibrium phase, and a short (fast) timescale for the
transient phase following a perturbation. The more different these two time scales
are, the stiffer the system is said to be.

The smallest (fastest) timescale in a stiff system manifests itself in another way
when we try to carry out a numerical solution of the system. Solution by an explicit
time stepping method, such as the simple explicit Euler method

xn = xn−1 + τ f(tn−1,xn−1) (16.11)

where tn = tn−1 + τ and xn is the numerical approximation to x(tn), will produce
very inaccurate results unless the time stepsize τ is kept smaller than the smallest
time scale in the system.

To see why this is so, let us consider a simple example: the reversible isomerization
reaction, S1

c1

�
c2

S2. Let xT denote the (constant) total number of molecules of

the two isomeric species, and x(t) the time-varying number of S1 molecules. The
deterministic RRE for this system is the ODE

dx

dt
= −c1x + c2(xT − x) = −(c1 + c2)x + c2xT (16.12)

The solution to this ODE for the initial condition x(0) = x0, is given by

x(t) =
c2xT

c1 + c2
+

(
x0 − c2xT

c1 + c2

)
e−(c1+c2)t

From the form of this solution, we can see that if the initial value x0 differs from the
asymptotic value c2xT

c1+c2
, the solution will relax to that asymptotic value in a time

of order (c1 + c2)
−1; therefore, if (c1 + c2) is very large, this system will be stiff. In

figure 16.2 we show the exact solution of the reversible isomerization reaction 16.12
along with numerical solutions obtained using the explicit Euler method (equation
16.11) with two different stepsizes τ . Note that the smaller stepsize Euler solution
is accurate, but the larger stepsize solution is unstable.

To see why this instability arises, let us write down the explicit Euler method
(equation 16.11) with stepsize τ for the ODE (equation 16.12):

xn = xn−1 − τ(c1 + c2)xn−1 + τc2xT (16.13)

If we expand the true solution x(t) in a Taylor series about tn−1, we get

x(tn) = x(tn−1) − τ(c1 + c2)x(tn−1) + τc2xT + O(τ2) (16.14)

Subtracting 16.14 from 16.13, and defining the error en = xn − x(tn), we obtain

en = en−1 − τ(c1 + c2)en−1 + O(τ2) (16.15)

Thus, en is given by the recurrence formula

en = (1 − τ(c1 + c2)) en−1 + O(τ2) (16.16)
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Figure 16.2 Exact solution of equation 16.12 (solid line) and its explicit Euler approxi-
mations for stepsizes 0.2 (asterisks) and 1.1 (triangles) with c1 = c2 = 1 and xT = 2×105.
The fast time constant for this problem is (c1 + c2)

−1 = 0.5.

If τ > 2(c1 + c2)
−1, then |1 − τ(c1 + c2)| will be greater than 1, and we will

have |en| > |en−1|. The recurrence will then be unstable. In general, to ensure the
stability of an explicit method, we must restrict the stepsize to the timescale of the
fastest mode, even though much larger stepsizes might seem perfectly acceptable
for getting an adequate resolution of the solution curve.

The restriction of the explicit Euler method to timesteps τ that are on the order
of the short (fast) timescale makes the method very slow for stiff systems. So it is
natural to ask if there are other solution methods for which the timesteps are not
restricted by stability, but only by the need to resolve the solution curve. It is now
widely recognized that a general way of doing this is provided by implicit methods
(Ascher and Petzold, 1998), the simplest of which is the implicit Euler method. For
the ODE (equation 16.10), it reads

xn = xn−1 + τ f(tn,xn) (16.17)

In contrast to the explicit Euler formula (equation 16.11), this method is implicit
because xn is not defined entirely in terms of past values of the solution; instead, it
is defined implicitly as the solution of the (possibly nonlinear) equation 16.17. We
can write this system abstractly as

F(u) = 0 (16.18)

where u = xn and F(u) = u − xn−1 − τ f(tn,u). Usually, the most efficient way to
numerically solve equation 16.18 is by Newton iteration: One iterates the formula(

∂F

∂u

)
[u(m+1) − u(m)] = −F(u(m)) (16.19)

over m, where u(m) is the mth iterated approximation to the exact root of F , and the
Jacobian matrix ∂F/∂u is evaluated at u(m). This is a linear system of equations,
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which is to be solved at each iteration for um+1. Newton’s method converges in one
iteration for linear systems, and the convergence is quite rapid for most nonlinear
systems given a good initial guess. The initial guess is usually obtained by evaluating
a polynomial that coincides with recent past solution values at tn. In practice,
the Jacobian matrix is usually not reevaluated at each iteration; also, it is often
approximated by numerical difference quotients rather than evaluated exactly. The
use of an approximate Jacobian matrix that is fixed throughout the iteration is
called modified Newton iteration. On first glance, it might seem that the expense
of solving the nonlinear system at each time step would outweigh the advantage
of increased stability; however, this is usually not so. For stiff systems, implicit
methods are usually able to take timesteps that are so much larger than those of
explicit methods that the implicit methods wind up being much more efficient.

To see why the implicit Euler method does not need to restrict the step size to
maintain stability for stiff systems, let us consider again the reversible isomerization
reaction (equation 16.12). For it, the implicit Euler method reads (cf. equation
16.13)

xn = xn−1 − τ(c1 + c2)xn + τc2xT (16.20)

Expanding the true solution in a Taylor series about tn, we get (cf. equation 16.14)

x(tn) = x(tn−1) − τ(c1 + c2)x(tn) + τc2xT + O(τ2) (16.21)

Subtracting 16.21 from 16.20, we find that the error en = xn − x(tn) now satisfies
(cf. equation 16.15)

en = en−1 − τ(c1 + c2)en + O(τ2) (16.22)

Solving this for en, we get

en =
en−1

1 + τ(c1 + c2)
+ O(τ2) (16.23)

In contrast to the error eq. 16.16 for the explicit Euler method, the error for the
implicit Euler method remains small for arbitrarily large values of τ(c1 + c2), as
seen in figure 16.3.

For the general ODE system (eq. 16.10), the negative eigenvalues of the matrix
J = ∂f/∂x play the role of (c1 + c2). For stiff systems, the eigenvalues λ of J will
include at least one with a relatively large negative real part, corresponding in the
case of an RRE to the fastest reactions. The set of complex numbers τλ satisfying
|1 + τλ| < 1 is called the region of absolute stability of the explicit Euler method.
The corresponding region for the implicit Euler method is given by 1/|1− τλ| < 1,
and it will be much larger.

A great deal of work has gone into the numerical solution of stiff systems of
ODEs (and of ODEs coupled with nonlinear constraints, called differential algebraic
equations (DAEs)). There is extensive theory and highly efficient and reliable
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Figure 16.3 The implicit Euler method overcomes a weakness of the explicit Euler
method in that it does not need to restrict the step size to provide stable solutions for stiff
systems. The figure shows the true solution of the deterministic reversible isomerization
reaction 16.12 (solid line), and the numerical solution by the implicit Euler method for
stepsizes 0.2 (asterisks) and 1.1 (triangles) with c1 = c2 = 1 and xT = 2 × 105. Note
the excellent agreement, in contrast to the case with the explicit Euler method shown in
figure 16.2.

software which adapts both the method order and the timestep to the given
problem. See Ascher and Petzold (1998), for more details.

16.7 Stiffness in Stochastic Chemical Kinetics: The Implicit Tau-Leaping Method

When stochasticity is introduced into a chemical system that has fast and slow
time scales, with the fast mode being stable as before, we may still expect there
to be a slow manifold corresponding to the equilibrium of the fast reactions. But
stochasticity changes the picture in a fundamental way: once the system reaches
the slow manifold, naturally occurring fluctuations will drive it back off, leading to
persistent random fluctuations transverse to the slow manifold. If these fluctuations
are negligibly small, then an implicit scheme which takes large steps (on the time
scale of the slow mode) will do just fine. But if the fluctuations off the slow
manifold are noticeable, then an implicit scheme that takes steps much larger than
the time scale of the fast dynamics will dampen the fluctuations, and thus fail to
reproduce them correctly. Fortunately, this failing can usually be corrected by using
a procedure called down-shifting, which we will describe shortly.

The original tau-leaping method (equation 16.6) is explicit because the propensity
functions aj are evaluated at the current (known) state, so the future (unknown)
random state X(t + τ) is given as an explicit function of X(t). It is this explicit
nature of equation 16.6 that leads to stability problems when stiffness is present,
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just as with ordinary differential equations. One way of making the explicit tau-
leaping formula 16.6 implicit is to modify it as follows (Rathinam et al., 2003):

X(t + τ)
.
= X(t) +

M∑
j=1

νjaj(X(t + τ)) τ

+
M∑

j=1

νj [Pj(aj(X(t)), τ) − aj(X(t)) τ ] (16.24)

Since the random variables Pj(aj(X(t), τ) here can be generated without knowing
X(t+τ), then once values for those random variables are set, equation 16.24 becomes
an ordinary implicit equation for the unknown state X(t + τ), and X(t + τ) can
then be found by applying Newton iteration to equation 16.24.

Just as the explicit tau method segues to the explicit Euler methods for SDEs
and ODEs, the implicit tau method segues to the implicit Euler methods for SDEs
and ODEs. In the SDE regime we get, approximating Poissons random variables
by normal random variables, the implicit version of the Langevin leaping formula :

X(t + τ)
.
= X(t) + τ

M∑
j=1

νjaj(X(t + τ)) +

M∑
j=1

νj

√
aj(X(t))Nj(0, 1)

√
τ (16.25)

Here, the Nj(0, 1) are, as in eq. 16.8, independent normal random variables with
mean zero and variance 1. And in the thermodynamic limit, where the random
terms in eq. 16.25 may be ignored, it reduces to the implicit Euler method

X(t + τ)
.
= X(t) + τ

M∑
j=1

νjaj(X(t + τ)) (16.26)

for the deterministic RRE .
We noted earlier that the implicit tau method, when used with a relatively large

timestep, will dampen the natural fluctuations of the fast variables. Thus, although
the implicit tau-leaping method computes the slow variables with their correct
distributions, it computes the fast variables with the correct means but with spreads
about those means that are too narrow. Fortunately, a time-stepping strategy called
down-shifting can restore the overly-damped fluctuations in the fast variables. The
idea is to interlace the implicit tau-leaps, each of which is on the order of the
time scale of the slow variables and hence “large,” with a sequence of much smaller
time steps on the time scale of the fast variables, these being taken using either
the explicit tau method or the SSA. This sequence of smaller steps “regenerates”
the correct statistical distributions of the fast variables. Further details on implicit
tau-leaping and down-shifting can be found in Rathinam et al. (2003).



16.8 Stiffness in Stochastic Chemical Kinetics: The Slow-Scale SSA 347

16.8 Stiffness in Stochastic Chemical Kinetics: The Slow-Scale SSA

Another way to deal with stiffness in stochastic systems is to use the recently
developed (Cao et al., 2005) slow-scale SSA (ssSSA). The first step in setting up the
ssSSA is to divide (and reindex) the M reaction channels {R1, . . . , RM} into fast and
slow subsets,

{
Rf

1, . . . , R
f

Mf

}
and

{
Rs

1, . . . , R
s

Ms

}
, where Mf +Ms = M . We initially

do this provisionally (subject to possible later change) according to the following
criterion: the propensity functions of the fast reactions, af

1, . . . , a
f

Mf
, should usually

be very much larger than the propensity functions of the slow reactions, as
1, . . . , a

s

Ms
.

The broad result of this partitioning will be that the time to the occurrence of the
next fast reaction will usually be very much smaller than the time to the occurrence
of the next slow reaction.

Next we divide (and reindex) the N species {S1, . . . , SN} into fast and slow
subsets,

{
Sf

1, . . . , S
f

Nf

}
and

{
Ss

1, . . . , S
s

Ns

}
, where Nf + Ns = N . This gives rise to

a like partitioning of the state vector X(t) =
(
Xf(t),Xs(t)

)
, and also the generic

state space variable x =
(
xf,xs

)
, into fast and slow components. The criterion for

making this partitioning is simple: a fast species is any species whose population
gets changed by some fast reaction; all the other species are called slow. Note the
asymmetry in this definition: a slow species cannot get changed by a fast reaction,
but a fast species can get changed by a slow reaction. Note also that af

j and as
j can

both depend on both fast and slow variables. The state-change vectors can now be
re-indexed

ν
f

j ≡ (
νff

1j , . . . , ν
ff

Nfj

)
, j = 1, . . . , Mf,

ν
s

j ≡ (
νfs

1j , . . . , ν
fs

Nfj , ν
ss

1j , . . . , ν
ss

Nsj

)
, j = 1, . . . , Ms,

where νσρ
ij denotes the change in the number of molecules of species Sσ

i (σ = f, s)
induced by one reaction Rρ

j (ρ = f, s). We can regard ν
f
j as a vector with the same

dimensionality (Nf) as Xf, because νsf
ij ≡ 0 (slow species do not get changed by fast

reactions).
The next step in setting up the ssSSA is to introduce the virtual fast process

X̂f(t). It is composed of the same fast species state variables as the real fast process
Xf(t), but it evolves only through the fast reactions; that is, X̂f(t) is Xf(t) with all
the slow reactions switched off. To the extent that the slow reactions don’t occur
very often, we may expect X̂f(t) and Xf(t) to be very similar to each other. But
from a mathematical standpoint there is an profound difference: Xf(t) by itself
is not a Markov (past-forgetting) process, whereas X̂f(t) is. Since the evolution
of Xf(t) depends on the evolving slow process Xs(t), Xf(t) is not governed by a
master equation of the simple Markovian form (equation 16.1); indeed, the easiest
way to find Xf(t) would be to solve the Markovian master equation for the full
process X(t) ≡ (

Xf(t),Xs(t)
)
, which is something we have tacitly assumed cannot

be done. But for the virtual fast process X̂f(t), the slow process Xs(t) stays fixed at
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some constant initial value xs
0; therefore, X̂f(t) evolves according to the Markovian

master equation,

∂P̂ (xf, t |x0, t0)

∂t

=

Mf∑
j=1

[
af

j(x
f − ν

f

j ,x
s

0)P̂ (xf − ν
f

j , t |x0, t0) − af

j(x
f,xs

0)P̂ (xf, t |x0, t0)
]

wherein P̂ (xf, t |x0, t0) is the probability that X̂f(t) = xf, given that X(t0) = x0.
This master equation for X̂f(t) will be simpler than the master equation for X(t)

because it has fewer reactions and fewer species.
Finally, in order to apply the ssSSA, we require that two conditions be satisfied.

The first condition is that the virtual fast process X̂f(t) be stable, in the sense that
it approaches a well defined, time-independent random variable X̂f(∞) as t → ∞;
thus, we require the limit

lim
t→∞

P̂ (xf, t |x0, t0) ≡ P̂ (xf,∞|x0)

to exist. P̂ (xf,∞|x0) can be calculated from the stationary form of the time-
dependent master equation,

0 =

Mf∑
j=1

[
af

j(x
f − ν

f

j ,x
s

0)P̂ (xf − ν
f

j ,∞|x0) − af

j(x
f,xs

0)P̂ (xf,∞|x0)
]

which will be easier to solve since it is purely algebraic. The second condition we
impose is that the relaxation of X̂f(t) to its stationary asymptotic form X̂f(∞)

happen very quickly on the time scale of the slow reactions. More precisely, we
require that the relaxation time of the virtual fast process be very much less than
the expected time to the next slow reaction.

These two conditions will generally be satisfied if the system is stiff. If satisfying
them can be accomplished only by making some changes in the way we originally
partitioned the reactions into fast and slow subsets, then we do that, regardless
of propensity function values. But if these conditions cannot be satisfied, we must
conclude that the ssSSA is not applicable.

Given the forgoing definitions and conditions, it is possible to prove the slow-scale
approximation(Cao et al., 2005): if the system is in state (xf,xs) at time t, and if
Δs is a time increment that is very large compared to the relaxation time of X̂f(t)

but very small compared to the expected time to the next slow reaction, then the
probability that one Rs

j reaction will occur in the time interval [t, t + Δs) can be
well approximated by ās

j(x
s;xf)Δs, where

ās

j(x
s;xf) �

∑
xf′

P̂ (xf
′

,∞|xf,xs) as

j(x
f
′

,xs) (16.28)
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We call ās
j(x

s;xf) the slow-scale propensity function for reaction channel Rs
j because

it serves as a propensity function for Rj on the timescale of the slow reactions.
Mathematically, it is the average of the regular Rs

j propensity function over the
fast variables, treated as though they were distributed according to the asymptotic
virtual fast process X̂f(∞).

The slow-scale SSA is an immediate consequence of this slow-scale Approxima-
tion. The idea is to move the system forward in time in the manner of the SSA one
slow reaction at a time, updating the fast variables after each step by randomly
sampling X̂f(∞) (Cao et al., 2005).

To illustrate how the ssSSA works, consider the simple reaction set

S1

c1

�
c2

S2
c3−→ S3 (16.29)

under the condition

c2 � c3 (16.30)

Here, an S2 molecule is most likely to change into an S1 molecule, a change that
is relatively unimportant since it will eventually be reversed. On rare occasions,
though, an S2 molecule will instead change into an S3 molecule, a potentially
more important change since it is irreversible. This simple model has been used to
help understand certain features of the heat shock response mechanism in E. Coli
(El-Samad and Khammash, 2006). Roughly, S2 can be thought of as the active
form of an enzyme which either gets deactivated via reaction R2 (and subsequently
reactivated via reaction R1), or gets bound to a DNA promoter site via reaction
R3 to allow the transcription of an important gene. In the heat shock model, we
are particularly interested in the case in which the average number of S2 molecules
is very small, even less than 1.

We shall take the fast reactions to be R1 and R2, and the slow reaction to be R3.

Then the fast species will be S1 and S2, and the slow species S3. The virtual fast
process X̂f(t) will be the S1 and S2 populations undergoing only the fast reactions
R1 and R2. Unlike the real fast process, which gets affected whenever R3 fires, the
virtual fast process obeys the conservation relation

X̂1(t) + X̂2(t) = xT (constant) (16.31)

This relation greatly simplifies the analysis of the virtual fast process, since it
reduces the problem to a single independent state variable.

Eliminating X̂2(t) in favor of X̂1(t) by means of equation 16.31, we see that given
X̂1(t) = x′

1, X̂1(t + dt) will equal x′
1 − 1 with probability c1x

′
1dt, and x′

1 + 1 with
probability c2(xT − x′

1)dt. X̂1(t) is therefore what is known mathematically as a
“bounded birth-death” Markov process. It can be shown (Gillespie, 2002) that this
process has, for any initial value x1 ∈ [0, xT], the asymptotic stationary distribution

P̂ (x′
1,∞|xT) =

xT!

x′
1! (xT − x′

1)!
qx′

1(1 − q)xT−x′

1 , (x′
1 = 0, 1, . . . , xT) (16.32)
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where q ≡ c2/(c1 + c2). This tells us that X̂1(∞) is the binomial random variable
B(q, xT), whose mean and variance are given by〈

X̂1(∞)
〉

= xTq =
c2xT

c1 + c2
(16.33a)

var
{

X̂1(∞)
}

= xTq(1 − q) =
c1c2xT

(c1 + c2)2
(16.33b)

It can also be shown (Cao et al., 2005) that X̂1(t) relaxes to X̂1(∞) in a time of
order (c1 + c2)

−1.

The slow scale propensity function for the slow reaction R3 is, according to
equation 16.28, the average of a3(x) = c3x2 with respect to X̂f(∞). Therefore,
using equations 16.31 and 16.33a,

ā3(x3;x1, x2) = c3

〈
X̂2(∞)

〉
=

c3c1(x1 + x2)

c1 + c2
(16.34)

Since the reciprocal of ā3(x3;x1, x2) estimates the average time to the next R3

reaction, the condition that the relaxation time of the virtual fast process be very
much smaller than the mean time to the next slow reaction is

c1 + c2 � c3c1(x1 + x2)

c1 + c2
(16.35)

This condition will be satisfied if the inequality 16.30 is sufficiently strong. In that
case, the slow-scale SSA for reactions 16.29 goes as follows:

1. Given X(t0) = (x10, x20, x30), set t ← t0 and xi ← xi0 (i = 1, 2, 3).

2. In state (x1, x2, x3) at time t, compute ā3(x3;x1, x2) from equation 16.34.

3. Draw a unit-interval uniform random number r, and compute

τ =
1

ā3(x3;x1, x2)
ln

(
1

r

)
4. Advance to the next R3 reaction by replacing t ← t + τ and

x3 ← x3 + 1, x2 ← x2 − 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

With xT = x1 + x2

x1 ← sample of B
(

c2

c1 + c2
, xT

)
x2 ← xT − x1

5. Record (t, x1, x2, x3) if desired. Then return to step 2 or else stop.

In step 4, the x3 update and the first x2 update actualize the R3 reaction. The
bracketed procedure then “relaxes” the fast variables in a manner consistent with the
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(b) Slow-Scale SSA
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Figure 16.4 Two simulations of reactions 16.29 using the parameter values 16.36. Graph
(a) shows an exact SSA run in which the populations are plotted essentially after each R3

reaction (see text for details). Over 23 million reactions make up this run, the overwhelming
majority of which are R1 and R2 reactions. Graph (b) shows an approximate ssSSA run in
which only R3 reactions, which totaled 587, were directly simulated, and the populations
are plotted after each of those. The ssSSA simulation ran over 1,000 times faster than the
SSA simulation.

stationary distribution in equation 16.32 and the new value of xT. See Press et al.
(1986), for a way to generate samples of the binomial random variable B(q, xT).

Figure 16.4a shows the results of an exact SSA run of reactions 16.29 for the
parameter values

c1 = 10, c2 = 4 × 104, c3 = 2; x10 = 2000, x20 = x30 = 0 (16.36)
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The S1 and S3 populations here are plotted out immediately after each R3 reaction.
The S2 population, which is shown on a separate scale, is plotted out at a like
number of equally spaced time intervals; this gives a more typical picture of the S2

population than plotting it immediately after each R3 reaction because R3 reactions
are more likely to occur when the S2 population is larger.

For the parameter values 16.36, condition 16.35 is satisfied by 4 orders of
magnitude initially, and even more so as the total population of S1 and S2 declines;
therefore, this reaction set should be amenable to simulation using the slow-scale
SSA. Figure 16.4b shows the results of such a simulation, plotted after each R3

reaction. We note that all the species trajectories in this approximate ssSSA run
agree very well with those in the exact SSA run of figure 16.4a; even the behavior
of the sparsely populated species S2 is accurately replicated by the ssSSA. But
whereas the SSA run in figure 16.4a had to simulate over 23 million reactions, the
slow-scale SSA run in figure 16.4b simulated only 587 reactions, with commensurate
differences in their computation times.

16.9 Concluding Remarks

In this chapter we have discussed two broad themes. The first is the “logical bridge”
that connects the chemical master equation (CME) and stochastic simulation
algorithm (SSA) on one side with the reaction rate equation (RRE) on the other
side. Under the well-stirred (spatially homogeneous) assumption, the CME/SSA
provides a mathematical description that is exact, discrete, and stochastic. If the
system is such that the leap condition can be satisfied, the CME/SSA can be
approximated by the Poissonian tau-leaping formula (equation 16.6) to obtain a
description that is approximate, discrete, and stochastic. Further, if the reactant
populations are large enough that the Poissonian tau-leaping formula can be
approximated by the Gaussian tau-leaping formula (equation 16.8), which in turn
is equivalent to the chemical Langevin equation (CLE) (equation 16.9), we obtain
a description that is approximate, continuous, and stochastic. And finally, in the
thermodynamic limit of an infinitely large system, the random terms in the CLE
usually become negligibly small compared to the deterministic terms, and the CLE
reduces to the RRE, which is approximate, continuous, and deterministic.

This progression—from the CME and SSA to tau-leaping to the CLE to the
RRE—in which each successive level is an approximation of the preceding level,
would, along with the corresponding numerical methods at each level, give us all the
tools we need to efficiently simulate spatially homogeneous systems were it not for
the multiscale nature of most biochemical systems: Both the species populations and
the rates of the various chemical reactions typically span many orders of magnitude.
As a consequence, in most cases the system as a whole does not fit efficiently into one
level of description exclusive of the others. The second theme of our development in
this chapter has been to describe two strategies for coping with multiscale problems:
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implicit tau-leaping, and the slow-scale SSA. But much more remains to be done
on the problem of multiscale.
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Until recently, the majority of computational models in biology were implemented
in custom programs and published as statements of the underlying mathematics.
However, to be useful as formal embodiments of our understanding of biological
systems, computational models must be put into a consistent form that can be
communicated more directly between the software tools used to work with them.
In this chapter, we describe the Systems Biology Markup Language (SBML), a
format for representing models in a way that can be used by different software
systems to communicate and exchange those models. By supporting SBML as an
input and output format, different software tools can all operate on an identical
representation of a model, removing opportunities for errors in translation and
assuring a common starting point for analyses and simulations. We also take this
opportunity to discuss some of the resources available for working with SBML as
well as ongoing efforts in SBML’s continuing evolution.

17.1 Introduction

The chapters of this book testify to the rising importance of computational modeling
in biological research as a means of helping to better understand biological function.
The increasing interest in this approach, coupled with our modern ability to
generate ever-more complex models more rapidly than ever before, make it clear
that practical computational modeling requires the use of software tools.

Until recently, the majority of models were implemented in custom programs
and published only as statements of the underlying mathematics (that is, intended



356 Software Infrastructure for Effective Communication and Reuse of Computational Models

for human consumption). However, to be useful as formal embodiments of our
understanding of biological systems (Bower and Bolouri, 2001), computational
models must be put into a consistent form that can be communicated more directly
between the software tools used to work with them. This format must help overcome
a number of problems facing a systems biologist:

Users often need to work with complementary resources from multiple software
tools in the course of a project because different tools have different strengths and
capabilities. For example, one tool may have a good model editing interface, another
tool may provide novel facilities for analyzing system properties, yet another may
implement an advanced simulation capability but lack a good graphical interface,
etcetera. If the tools do not share a common model storage format, users are forced
to re-encode their models in each tool separately, a time-consuming and error-prone
practice.

Models published in peer-reviewed journals are sometimes accompanied by in-
structions for obtaining the definitions in electronic form. However, because each
author may use a different software environment (and associated model representa-
tion language), such definitions are often not straightforward to examine, test, and
reuse. Researchers who wish to use a published model typically must transcribe it
manually into a format compatible with their particular software.

When simulation software packages are no longer supported, models developed
in those systems can become stranded and unusable. This has already happened
on a number of occasions, with a resulting loss of usable models to the research
community. Continued innovation and development of new tools will only aggravate
this problem unless the issue of standard formats is addressed.

Reuse of existing models requires that those models can be clearly identified, easily
retrieved, and related to their published descriptions in the scientific literature.
Moreover, because of the increasing size and complexity of models continually being
developed, the model structure should be documented to allow for efficient handling
and sound modification.

We developed the Systems Biology Markup Language (SBML) in an effort to
address these problems. SBML is a format for representing computational models
in a way that can be used by different software systems to communicate and
exchange those models (Finney and Hucka, 2003; Hucka et al., 2003, 2004). By
supporting SBML as an input and output format, different software tools can all
operate on an identical representation of a model, removing opportunities for errors
in translation and assuring a common starting point for analyses and simulations.
SBML is by no means a perfect format, but it has proven useful and achieved
widespread acceptance within the domain of modeling at the level of biochemical
reaction networks. Over 90 open-source and commercial software tools support
SBML as of November 2005.

A gratifying by-product of the SBML project has been the way it has catalyzed a
community of interested researchers, developers, and users who are now collaborat-
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ing on evolving SBML and creating new resources around it. This is undoubtedly
a reflection of an urgent need in the community for any format such as SBML to
address issues of interoperability. At the same time, we suspect that the challenges
faced by the SBML community and the solutions that are arising have underlying
components that would be faced by any effort to define a similar standard exchange
format. We discuss two examples in this chapter. One is the difficulty of balancing
ease of language implementation against representational power. Today this is be-
ing answered by progress towards SBML Level 2 Version 2, which is expected to
be ratified in 2005, and the modular SBML Level 3, which is expected in 2006. A
second is the unexpected difficulty of ensuring correct interpretation of SBML by
different software applications. We describe our current attempts to address this
problem using a combination of (i) a carefully-designed software library, libSBML,
which among other features provides rule-based model consistency testing, and (ii)
a semantic validation suite for testing correct interpretation of SBML constructs
by software applications.

17.2 Software Assistance for Biological Modeling

As an example of how software technologies such as SBML assist modelers today,
consider the following hypothetical (but still quite plausible) sequence of events.

A computationally-savvy biologist named Albert is investigating one of the

mitogen-activated protein kinase (MAPK) cascades. The MAPK pathways lead

from growth factor receptors on cell membranes to effector molecules located in

the cell cytoplasm and nucleus. This family of signaling pathways is one that

has received much attention in both experimental (Seger and Krebs, 1995) and

computational biology (Schoeberl et al., 2002).

Our hypothetical biologist might begin with a body of experimental data

gathered by himself and other members of the laboratory in which he works.

In order to understand his experiments in the context of other data and other

published results, he decides to develop a computational model so that he can

integrate different sources of existing knowledge and his own hypotheses into a

common, formalized framework. Since the MAPK system is a popular topic of

study, he has no trouble finding related work in the literature, including existing

computational models. He chooses to begin with a relatively simple model by

Kholodenko (Kholodenko, 2000). The original publication gives a complete listing

of the mathematical equations that define Kholodenko’s model, but no software

implementation. (Even though that particular article is from this decade, it still

predates the development of SBML and most of today’s software tools.) The model

is not complex, but he knows that recreating a model from a research paper will

take time, so before starting, he visits the BioModels Database (BioModels Team,

2005) to check if the model is available in a machine-readable format. He searches

the database and quickly finds an existing implementation (figure 17.1), which he

can download in SBML format.
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Figure 17.1 Screenshot of a model display page in the BioModels Database (BioModels
Team, 2005).

Once he has the SBML file, Albert starts up his favorite Windows-based model

editing package, JDesigner (Sauro et al., 2003). This package provides a friendly,

graphical diagram view of a model (figure 17.2). He spends a significant amount of

time experimenting with the model running time-course simulations to examine the

behavior under different conditions, as well as making modifications and exploring

the results. After becoming familiar with the Kholodenko model, he next begins to

make modifications based on his own experimental work and that of his colleagues.

Eventually, Albert’s model grows and becomes substantially different from the

original. He reaches a point where he has to find values for parameters in the

model that are not directly measurable, but he believes he has enough converging

evidence from other data that he can search for plausible values by a process

known as parameter estimation. This is a resource-intensive task requiring many

repeated simulation runs and analyses—more than he can comfortably run on his

laptop computer. Albert enlists the aid of a colleague, Bernadette, who works

at another institution and who has access to clusters of computers on which

she can quickly perform large computations. Bernadette is less a biologist and

more a computational scientist, but she has had enough exposure to biological

modeling that she can perform the parameter estimation tasks for Albert. Despite

the geographical distance separating them and the fact that Bernadette is adamant

about using Linux rather than Windows as her computer operating system of choice,

Albert has no difficulty conveying an unambiguous model definition to Bernadette
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Figure 17.2 Screenshot of JDesigner (Sauro et al., 2003), a free computational modeling
system for biochemical reaction networks. It runs on the Microsoft Windows operating
system.

because JDesigner can produce SBML output and Bernadette has at her disposal

several software tools that can read SBML.

Bernadette writes command scripts in Linux that take Albert’s model and his

experimental data (which he stored in ordinary comma-delimited tabular format)

and perform parameter estimation using an optimization package written in MAT-

LAB (The Mathworks, Inc., 2005). To convert the SBML model into appropriate

MATLAB data structures, she uses one of the free MATLAB toolboxes available

for this purpose (Keating, 2005). After some iterations back and forth with Al-

bert to clarify his goals, and many computer runs, the pair eventually determine

best-estimate values for the unknown parameters in Albert’s model. Bernadette

also performs a large number of additional simulation and analysis runs on her

Linux computers using COPASI (Mendes, 2003) to explore the behaviors of the

model. The results enable Albert to continue further with his research, comparing

his predictions to experimental data and refining his model to incorporate new hy-

potheses. The model and its results are novel enough that Albert writes an article

about them with Bernadette. They also submit the SBML model to the BioModels

Database, where the curators annotate the model and enter it into the database for

other researchers to use and build upon.

Some time after the article is published, a researcher working at a pharmaceutical

company reads Albert and Bernadette’s paper on MAPK signaling. It turns out
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Figure 17.3 Screenshot of TERANODE Design Suite (TERANODE, Inc., 2005), an
example of a modern commercial software package using SBML and integrating model
editing, analysis, and simulation.

that this researcher, Carl, has been investigating novel therapeutic interventions

on this same pathway. Thanks to the availability of the model in SBML form,

Carl is able to quickly obtain and try out the model in his software tool of his

choice (figure 17.3), a full-featured commercial package called TERANODE Design

Suite (TERANODE, Inc., 2005). The model’s structure and behavior are consistent

with his own findings, and moreover, it provides new insights that could lead to

an investigation of new pharmacological agents. Carl is interested in pursuing this

further. The copyright on the model stipulates that commercial users must contact

the authors, so he contacts Albert and Bernadette and begins a promising new

collaboration.

17.3 The SBML Representation of Models

The SBML project is not an attempt to define a universal language for representing
quantitative models; the rapidly evolving views of biological function, coupled
with the vigorous rates at which new computational techniques and individual
tools are being developed today, are incompatible with a one-size-fits-all idea of a
universal language. A more realistic alternative is to acknowledge the diversity of
approaches and methods being explored by different software tool developers, and
seek a common intermediate format—a lingua franca—enabling communication of
the most essential aspects of the models.
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17.3.1 Brief Summary of the Form and Features of SBML

SBML is a machine-readable model definition language defined neutrally with re-
spect to programming languages and software encoding. It is defined using a subset
of UML, the Unified Modeling Language (Eriksson and Penker, 1998; Oestereich,
1999), and in turn, this definition is used to create an XML Schema (Biron and Mal-
hotra, 2000; Fallside, 2000; Thompson et al., 2000) for SBML. The XML Schema
specifies how SBML can be expressed using XML, the eXtensible Markup Lan-
guage (Bosak and Bray, 1999; Bray et al., 2000). XML is a simple and portable
text-based substrate that has been gaining widespread acceptance in computational
biology and bioinformatics (Achard et al., 2001; Augen, 2001).

The main focus of SBML is encoding models consisting of biochemical entities
(species) linked by reactions to form biochemical networks. An important principle
in SBML is that models are decomposed into explicitly-labeled constituent elements,
the set of which resembles a verbose rendition of chemical reaction equations.
The representation deliberately does not cast the model directly into a set of
differential equations or other specific mathematical frameworks. This explicit,
modeling-framework-agnostic decomposition makes it easier for different software
tools to interpret the model and translate the SBML form into whatever internal
form each tool actually uses.

SBML is being developed in levels, with each higher SBML level adding richness
to the model definitions that can be represented by the language. Level 2 is the
highest level of SBML currently defined; it represents an incremental evolution of
the language resulting from the practical experiences of many users and developers
working with Level 1 since its introduction in the year 2001. A definition of a model
in SBML Level 2 consists of lists of one or more of the following components:

compartment : a container of finite dimensions where one or more chemical sub-
stances (well-mixed) are located;

species: a pool of a chemical substance located in a specific compartment (a species
represents the concentration or amount of a substance and not a single molecule);

reaction: a statement describing some transformation, transport or binding pro-
cess that can change one or more species (each reaction is characterized by the
stoichiometry of its products and reactants and optionally by a rate equation);

parameter : a quantity that has a symbolic name;

unit definition: a name for a unit used in the expression of quantities in a model;

rule: a mathematical expression that is added to the model equations constructed
from the set of reactions (rules can be used to set parameter values, establish
constraints between quantities, etcetera.);

function: a named mathematical function that can be used in place of repeated
expressions in rate equations and other formulas; and

event : a set of mathematical formulas evaluated at a specified moment in the time
evolution of the system.
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<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">

<model id="EnzymeKinetics">
<listOfCompartments>

<compartment id="Cell" size="1"/>
</listOfCompartments>
<listOfSpecies>

<species id="S" compartment="Cell" initialAmount="1" boundaryCondition="true"/>
<species id="E" compartment="Cell" initialAmount="1"/>
<species id="ES" compartment="Cell" initialAmount="0.01"/>
<species id="P" compartment="Cell" initialAmount="0.01" boundaryCondition="true"/>

</listOfSpecies>
<listOfReactions>

<reaction id="Reaction1">
<listOfReactants>

<speciesReference species="S"/>
<speciesReference species="E"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="ES"/>
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply> <minus/>

<apply> <times/> <ci> k_1 </ci> <ci> S </ci> <ci> E </ci> </apply>
<apply> <times/> <ci> k_r </ci> <ci> ES </ci> </apply>

</apply>
</math>
<listOfParameters>

<parameter id="k_1" value="3"/>
<parameter id="k_r" value="6"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction id="Reaction2" reversible="false">

<listOfReactants>
<speciesReference species="ES"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="E"/>
<speciesReference species="P"/>

</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply> <times/> <ci> k_2 </ci> <ci> ES </ci> </apply>

</math>
<listOfParameters>

<parameter id="k_2" value="9"/>
</listOfParameters>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

Figure 17.4 Simple SBML Level 2 model of a system of reactions involving enzyme
kinetics.

Additional features in SBML Level 2 include support for a systematic way of
including metadata, and support for delay functions. The latter are useful for
representing biological processes having a delayed response, but where the details
of the processes and the actual delay mechanism are not relevant to the operation
of the model.

To make this discussion concrete, figure 17.4 gives the complete SBML Level 2
listing of a simple model of enzyme kinetics, E + S � ES → P , where E, S,
and P represent the enzyme, substrate, and product species, respectively, and ES
is an intermediate complex formed during the reaction. In this particular SBML
rendition, the system is represented as two reaction structures: the reversible
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reaction E+S � ES, here defined with a forward reaction rate of k1∗[S]∗[E] and a
reverse reaction rate of kr ∗ES, and the irreversible reaction ES → P , here defined
with a forward reaction rate of k2 ∗ [ES]. The symbols E, S, and ES, when used in
rate expressions (SBML’s kineticLaw elements), stand for the concentrations of
the different species, and the parameters k1, kr, and k2 are set to values k1 = 3,
kr = 6, and k2 = 9. When specific units are omitted from quantities in an SBML
model (as they are here), the model is assumed to use the default units for those
quantities, which in SBML are moles for substance amounts and liters for volumes.
Other formulations of this model might, for example, express this system explicitly
as three irreversible reactions, change the units on quantities to be millimoles and
microliters, and so on. This model is presented here only to give a sense for the
structure of SBML and the relative simplicity, and we reiterate that people are not
meant to edit models directly at this level; instead, software tools read and write
this kind of representation on the user’s behalf.

SBML’s representational power extends far beyond the kind of simple enzyme
kinetics model used here as an illustration. Its simple formalisms allow a wide
range of biological phenomena to be modeled, including cell signaling, metabolism,
gene regulation, and more. There is no assumption about the kinds of kinetics or
interactions or network organizations that can be represented. Significant flexibility
and power come from the ability to define arbitrary formulas for the rates of change
of variables as well as the ability to express other constraints mathematically.

17.3.2 Relationships to Other Efforts

Many XML-based formats have been proposed for representing data and models
in biology; however, we know of only two XML-based formats that are suitable for
representing compartmental reaction network models with sufficient mathematical
depth that the descriptions can be used as direct input to simulation software. The
two are SBML and CellML (Hedley et al., 2001b,a; Lloyd et al., 2004).

CellML is built around an approach of composing systems of equations by linking
together the variables in those equations; this is augmented by features for declaring
biochemical reactions explicitly, as well as encapsulating arbitrary components into
modules. Its focus is on a component-based architecture to facilitate reuse of models
and parts of models, and the mathematical description of models. By contrast,
SBML provides constructs that are more similar to the internal data objects
used in many contemporary simulation/analysis software packages specialized for
biochemical networks.

These differences notwithstanding, the SBML and CellML efforts share much in
common and represent somewhat different approaches to solving the same general
problems. They were initially developed independently, but the primary developers
of both languages are actively engaged in exchanges of ideas and are seeking ways
of making the languages more interoperable. SBML Level 2 borrows a number of
approaches from CellML, making it that much easier to translate between the two
formats.
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17.4 The Continued Evolution of SBML

The need for a language like SBML was manifest during the first Workshop
on Software Platforms for Systems Biology, held at the California Institute of
Technology in early 2000. The two or three dozen attendees at the time represented
less than a dozen software projects, yet even within this small group, it proved
impossible to share models without having to re-encode them anew in each software
tool. This needless impediment to collaboration directly inspired the SBML effort.

Defining a language such as SBML and encouraging its use by other groups has
always involved balancing conflicting demands. For example, there is pressure to
include a wide variety of features to support the various kinds of modeling and
analysis capabilities being explored in different tools. But if the capabilities are
too advanced or too specialized for most tools, then few if any software packages
will implement support for the entire language specification, with the consequence
that most tools will still not be able to exchange models in a meaningful way.
On the other hand, if SBML does not expand quickly enough to support features
satisfying more advanced research efforts, then SBML risks losing the groups’
patience, potentially leading to the creation of incompatible dialects of the language.

In an attempt to help achieve this balance, we are proceeding with a staged
approach to SBML development, embodied in the already-mentioned concept of
SBML levels. Each higher SBML level adds richness to the model definitions that
can be represented by the language. By delimiting sets of features at incremen-
tal stages, the SBML development process provides software authors with stable
standards, and the community can gain experience with the language definitions
before new features are introduced. Two levels have been defined so far (Finney
et al., 2002; Hucka et al., 2001). Level 1 is simpler (but less powerful) than Level 2.
The separate levels are intended to coexist; SBML Level 2 does not render Level 1
obsolete. Software tools that cannot support higher levels can go on using lower
levels; tools that can read higher levels are assured of also being able to interpret
models defined in the lower levels. The open-source software infrastructure we have
been developing around SBML (see Section 17.5) allows developers to support both
Levels 1 and 2 in their software with a minimum amount of effort.

17.4.1 Community Involvement

One component of SBML’s success has been the community-oriented method of
its continued evolution. SBML’s popularity has led to the formation of an active
international group of researchers and software developers who are now working
together to push SBML in new directions. As is the case with many projects
today, the primary mode of interaction between members is electronic mail, with
discussions taking place on the community mailing list, sbml-discuss@caltech.edu.
The list currently contains over 200 members coming from academic, commercial
and private environments, from all continents. Besides discussions over the list,
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another important mode of interaction has been regular face-to-face meetings during
the Workshops on Software Platforms for Systems Biology (also known informally
as the SBML Forum meeting), held since mid-2000.

These meetings serve many vital functions. First, they provide a forum where
proposals for potential new SBML features can be presented and where consensus
decisions can be made about the development of SBML, with the aim of enabling
SBML to support a wider range of model paradigms and modes of interoperability.
Second, they ensure that systems biology software interoperability is maximized by
discussing the correct use of SBML and (related to this) exposing software devel-
opers to issues in the correct interpretation and handling of SBML in all software.
Third, they inform developers of the latest developments in software infrastruc-
ture for SBML. And finally, they educate the systems biology community about
the range of modeling paradigms that are being used to understand biological phe-
nomena. The ninth SBML Forum meeting was held on October 14–15, 2004, in
Heidelberg, Germany, and was attended by 49 representatives of different interna-
tional research groups. All presentation materials from SBML meetings are made
publicly available on the project Web site (SBML Team, 2005b).

In 2003, a new type of meeting was instituted: SBML Hackathons, in which
software developers gather together to work simultaneously on their software next
to other developers, discovering and resolving interoperability problems as they go.
The third SBML Hackathon was held on May 9–10, 2005, at the National Museum
of Emerging Science and Innovation in Tokyo, Japan, and was attended by 45
delegates, nearly three times as many as attended the first SBML Hackathon in
2003.

17.4.2 SBML Level 2 Version 2

As a practical consequence of how SBML develops and evolves, it reflects how the-
oreticians and software developers conceptualize and structure their computational
models of biochemical reaction networks. The exact form of the language matters
less than the representational elements comprising the language. Though the incre-
mental development path taken for SBML has led to a less-than-elegant structure,
it is fair to say that SBML represents a consensus view of how computational
models of reaction networks are understood today. The dedicated community of
interested researchers has kept up the evolution of SBML and continues to result
in improvements to meet increasingly sophisticated needs.

The next specification of SBML is expected to be an incremental update, Level 2
Version 2, to be followed closely by SBML Level 3, which has been in development
for over a year. The following are illustrative of the enhancements likely to be
introduced in SBML Level 2 Version 2 and the reasons for them.

SpeciesType. In SBML, the amount (concentration or molecular count) of every
chemical species must be defined with respect to a location. Locations in SBML
are represented as compartments, where a compartment can represent a physical



366 Software Infrastructure for Effective Communication and Reuse of Computational Models

structure such as “cytoplasm” or a purely theoretical location used solely for
modeling expediency. If the same kind of species appears in more than one location
(for example, both inside a cell’s cytoplasm and outside the cell), this must be
represented as two different species, each having separate identifiers in the model.
The reason is that when SBML models are translated into typical computational
forms, those species are represented as variables (again, either concentrations or
molecular counts) whose values can change over time. Species located in different
compartments are assumed to comprise different pools of the species—that is the
logical point of having compartments in the first place. However, a number of
software developers have expressed the need for specifying that two species variables
in SBML refer to the same kind or type of chemical irrespective of compartmental
location. Therefore, one of the changes planned for SBML Level 2 Version 2 is
the introduction of a SpeciesType data structure for this purpose. This will make
it possible for a model to define a list of SpeciesType structures. Each species
definition will then be able to refer to a particular SpeciesType definition, stating,
in effect, that it is “of this species type.” For example, a model could contain a
SpeciesType for aspartate, and could have multiple species definitions, one for
aspartate located in the cytosol and others for mitochondrial matrix compartments.
The species representing the different pools of aspartate would have different
identifiers (for instance, “aspartate_cytosol” and “aspartate_mitochon”), but each
would refer to the common aspartate SpeciesType.

Nested Unit Definitions. Not all software tools provide a means of changing the
units of measurement used for the numerical quantities in a user’s model; they
often assume specific units for different quantities and rely on users to adjust
numerical values as necessary when encoding models in the software environment.
Unfortunately, sometimes different tools make different unit assumptions; thus,
some capability for redefining units in SBML is necessary in addition to specifying
default units. We thought that a small, simple scheme would serve best, and this is
what we attempted in the first definition of SBML (Level 1 Version 1). The scheme
turned out to be too limited; for example, it did not allow for the definition of
some types of units that are not in the SI unit system, and it was significantly
less capable than the unit scheme in CellML, making it difficult to translate some
models between CellML and SBML. The consensus in the SBML community was
that more definitional power was warranted, so SBML Level 2 Version 1 introduced
a fuller unit scheme. Arguably the one feature it lacked was a provision to allow unit
definitions to be defined in terms of other defined units rather than solely in terms
of the base units. The reason was our continuing attempts to make the unit scheme
simple—after all, what use is it if many software tools don’t support it? But in the
end, the consensus of users was that it should not be up to the SBML language to
arbitrarily limit the capabilities in this area because it impacts a researcher’s ability
to represent their intentions precisely. The SBML community felt that tools that
lack adequate support for units should either be enhanced appropriately, or else
that unit manipulation functionality could be encoded in separate software tools
and libraries such as libSBML (Section 17.5).
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ConstraintRule. It is sometimes important to be able to express the idea that
certain model conditions should hold true and if, during a simulation, the conditions
are exceeded, then the user should be alerted that the model is operating outside the
assumptions made by the model’s author. Although SBML has always had facilities
for expressing mathematical relationships between quantities, it lacked a provision
for expressing these kinds of constraints. SBML Level 2 Version 2 will extend the
types of SBML rules available to include ConstraintRule. This structure will allow
the statement of mathematical expressions whose values evaluate to a Boolean value
(true or false). If at some point in time during a time-course evaluation of the model,
the expression evaluates to false, the constraint is not satisfied. The ConstraintRule
will contain an optional note (in XHTML format) that can contain a message to be
displayed to the user if the constraint expression evaluates to false. An example of
the application of this rule would be to make explicit the assumptions of an Henri-
Michaelis-Menten rate law about relative species concentrations between product
and substrate as well as between enzyme and substrate.

17.4.3 SBML Level 3

As a language that is an intersection rather than a union of features needed
by all tools, SBML currently cannot support all the representational capabilities
that all software systems offer to users. Some tools offer features that have no
explicit equivalent in SBML Level 2, and those tools currently can only store those
features as annotations in an SBML model. But in many cases those features could
potentially be used by more than one tool, and thus it would be appropriate to
have some representation for them in SBML. Using Level 2 as a starting point, the
SBML community has been developing proposals and prototype implementations
of many new capabilities that will become part of SBML Level 3. The main current
areas of interest are:

Diagram layout: enabling the inclusion of diagrammatic renditions of a model of
the sort visible in the screenshots of figures 17.2 and 17.3.

Model composition: allowing construction of models from instances of submodels

Multicomponent species: allowing species to be composed from instances of
species types, enabling such things as the representation of complexes of phos-
phorylated proteins and generalized reactions acting on them

Arrays: allowing models to contain indexed collections of objects of the same type

Spatial features: allowing the representation of the geometric features of compart-
ments, the diffusion rates of species and the spatial distribution of model parameters
and boundary conditions

Constraints: enabling the definition of constraints on model variables

It is unreasonable to expect a tool to support every feature planned for Level 3 in
order to be called Level 3 compatible. One of the challenges for SBML Level 3 will
be to design a modular feature set. The idea is to enable a model to contain explicit
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information about which capabilities are necessary to interpret it correctly, so that
tools encountering the model may reject it gracefully if they do not possess the
necessary facilities. For reasons of efficiency and correctness, an explicit indication
is preferable to requiring tools to read and interpret the entire model and inferring
the capabilities needed.

We anticipate that Level 3 will take the form of a core, consisting of minimal
extensions to Level 2, and a set of Level 3 modules, each encapsulating the definition
of one of the major features listed above. One of the extensions making up the
Level 3 core will be explicit feature indicators, such that each of the modules has a
corresponding feature tag which will appear in a list at the beginning of the model
definition. The presence of a feature tag will signal to software tools reading the
model that the model uses that particular feature. The software tool may then
make a decision about whether it can handle the model or whether it should alert
the user to a problem.

17.5 Enabling Efficient and Correct Interpretation of SBML Using a Dedicated

Software Library

To make it easier for software developers and users to work with SBML, and more
generally to promote the language’s use as a common exchange format, our group
has released and continues to develop a number of open-source SBML software tools.
Here we describe one, libSBML, that many projects are using for implementing
support for SBML in their software applications.

17.5.1 General Characteristics of libSBML

LibSBML is an application programming interface (API) library for reading, writ-
ing, and manipulating files and data streams containing SBML content. Developers
can embed the library in their applications, saving themselves the work of imple-
menting their own parsing, manipulation, and validation software. At the API level,
the library provides the same interface to data structures independently of whether
the model originated in SBML Level 1 or 2. The library currently also offers the
ability to translate SBML Level 1 models to SBML Level 2.

LibSBML is written in ISO standard C and C++ and is highly portable. It is
currently supported on the Linux, Solaris, MacOS X, and Microsoft Windows oper-
ating systems. The library provides language bindings for C, C++, Java, Python,
Perl, MATLAB, and Common Lisp, with support for other languages planned for
the future. We distribute the package in both source-code form and as precompiled
dynamic libraries for the Microsoft Windows, Linux, and Apple MacOS X operating
systems; they are available under terms of the LGPL (Free Software Foundation,
1999) from the sbml project on SourceForge.net (SourceForge.net, 2002), the world’s
largest open-source software repository and project hosting service. LibSBML is at
release version 2.3.4 as of October 2005.
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17.5.2 Advantages of a Dedicated Library for SBML

An often-repeated question is, why not simply use a generic XML parsing library?
After all, SBML is usually expressed in XML, and there exist plenty of XML parsers,
so why not simply tell people to use one of them, rather than develop a specialized
library? The answer is: while it is true that developers can use general-purpose
XML libraries, there are many reasons why using a system such as libSBML is a
vastly better choice.

One of the features of libSBML is its facilities for manipulating mathematical
formulas supporting differences in representation between SBML Level 1 and SBML
Level 2. As discussed in more detail below, libSBML provides an API that allows
working with formulas in both text-string and MathML (Ausbrooks et al., 2001)
form, and to interconvert mathematical expressions between these forms. The utility
of this facility extends beyond converting between SBML Level 1 and 2. Many
software packages provide users with the ability to express formulas for such things
as reaction rate expressions, and these packages’ interfaces often let users type in
the formulas directly as text strings. LibSBML saves application programmers the
work of developing formula manipulation and translation functionality. It makes
it possible to translate those formula strings directly into Abstract Syntax Trees
(ASTs), manipulate them using AST operations, and write them out in the MathML
format of SBML Level 2.

As discussed in Section 17.5.5, another feature of libSBML is the validation it
performs on SBML inputs at the time of parsing files and data streams. This helps
verify the correctness of models in a way that goes beyond simple syntactic valida-
tion. Still another invaluable feature of libSBML is the domain-specific operations
it provides beyond simple SBML-specific accessor facilities. Examples of such op-
erations include obtaining a count of the number of boundary condition species,
determining the modifier species of a reaction (assuming the reaction provides ki-
netics), and constructing the stoichiometric matrix for all reactions in a model.

Finally, libSBML is solidly written and tested. The entire library has been written
by seasoned, professional software engineers using the test-driven approach (Beck,
2002). The libSBML source code currently has 760 unit tests and over 3,400
individual assertions. It represents a robust and well-tested system that others can
build upon.

17.5.3 Manipulating Mathematical Formulas

In SBML Level 1, mathematical formulas are represented as text strings using a
C-like syntax. We chose this representation because of its simplicity, widespread fa-
miliarity, and use in applications such as Gepasi (Mendes, 1997) and Jarnac (Sauro,
2000), whose authors contributed to the initial design of SBML. For SBML Level 2,
there was a need to expand the mathematical vocabulary of Level 1 to include
additional functions (both built-in and user-defined), mathematical constants, log-
ical operators, relational operators, and a special symbol to represent time. Rather
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than growing the simple C-like syntax into something more complicated and eso-
teric in order to support these features, and consequently having to manage two
standards in two different formats (XML and text string formulas), we chose to
leverage an existing standard for expressing mathematical formulas in Level 2: the
content portion of MathML (Ausbrooks et al., 2001).

Using MathML in SBML has at least two advantages. First, instead of reinventing
the wheel, we are building upon an existing and well-established W3C standard.
Second, since the entirety of a model is expressed in XML, SBML is now more
amenable to tools that can process, manipulate, and store XML, such as (for
example) XSLT (Clark and DeRose, 1999), XQuery (Fernández et al., 2005),
XPath (Fernández et al., 2005), and other XML technologies. That said, there are
some disadvantages to using MathML. By introducing MathML part-way through
the evolution of SBML, we have created a legacy support problem by having
two formula representations with which to contend and interconvert. Also, most
simulator packages cannot parse and understand MathML directly (but, we should
point out the same would hold true had we chosen to expand the lowest-common-
denominator C-like syntax of Level 1). Overcoming both of these disadvantages is
easy with libSBML.

Abstract Syntax Trees (ASTs) are well-known in the computer science commu-
nity; they are simple recursive data structures useful for representing the syntactic
structure of sentences in certain kinds of languages (mathematical or otherwise).
Much as libSBML allows programmers to manipulate SBML at the level of domain-
specific objects, regardless of SBML level or version, it also allows programmers to
work with mathematical formula at the level of ASTs regardless of whether the
original format was C-like infix notation or MathML. LibSBML goes one step fur-
ther by allowing programmers to work exclusively with infix formula strings and
instantly convert them to the appropriate MathML whenever needed.

LibSBML ASTs provide a canonical, in-memory representation for all mathe-
matical formulas regardless of their original format (that is, C-like infix strings or
MathML). In libSBML, an AST is a collection of one or more ASTNodes. ASTNodes
represent the most basic, indivisible part of a mathematical formula and come in
many types. For instance, there are node types to represent numbers (with subtypes
to distinguish integer, real, and rational numbers), names (for example, constants
or variables), simple mathematical operators, logical or relational operators, and
functions. Each ASTNode node may have none, one, two, or more child ASTNodes
depending on its type. For instance, table 17.1 illustrates how the mathematical ex-
pression 1 + 2, is represented as an AST with one plus node with two integer child
nodes for the numbers 1 and 2, and the corresponding MathML representation.

17.5.4 Performance of LibSBML

XML parsers come in two popular varieties: Document Object Model (DOM)
based and event-based. DOMs (Le Hors et al., 2000) are very generic in-memory
structures that nearly duplicate the tree-like structure of the XML on disk. Using
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Infix AST MathML

1 + 2 ⇐⇒ ⇐⇒

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<plus/>
<cn type="integer"> 1 </cn>
<cn type="integer"> 2 </cn>

</apply>
</math>

Table 17.1 Illustration of a simple mathematical expression represented in both
libSBML’s AST structure and MathML (Ausbrooks et al., 2001).

a DOM simply moves the parsing bump under the rug. Instead of parsing a file,
one now has to parse an in-memory data structure. Moreover, because DOMs are
generic, needing to handle any XML that comes their way, one pays a penalty in
terms of large memory consumption. Event-based parsers, on the other hand, allow
programmers to intercept specific XML events (tags) and act on them. Event-based
parsers are memory-efficient, but are often too low-level and fined-grained. They
therefore lack the convenience of manipulating XML data in larger logical units.

LibSBML aims to strike a balance between DOM and event-based models of
XML parsing. It provides the conveniences of a domain-specific object model while
keeping memory usage to a minimum. Below, we compare the performance of
libSBML, which uses the Xerces-C++ (Apache Software Foundation, 2004) event-
based SAX parser under the hood, to parsing SBML with the Xerces-C++ DOM.

We obtained memory consumption statistics by writing two simple programs to
read an SBML model from file into memory. One program used libSBML to read the
model into domain-specific SBML objects and the other program used Xerces-C++
2.6 to read the model into the W3C XML DOM format (Le Hors et al., 2000). Each
program recorded its total resident memory consumption immediately before and
after reading the model and reported the difference between these two numbers.

Total resident memory gives an estimate not only of the size of the model in
memory, but also the size of the library and all supporting code that must be
loaded into memory (often of concern to programmers). LibSBML was compiled
with Xerces 2.6, so the amount of memory consumed by the Xerces library itself is
the same for both programs.

We ran both programs over the 10,000+ models in the SBML Test Suite (SBML
Team, 2005a) and models used in the first SBML Hackathon. Individual file sizes
varied from 600 bytes to 5.76 MBytes. The runs were performed on computers
running SuSE Linux 9.1 (Novell, Inc., 2005) with dual 64-bit AMD Opteron 2.2 GHz
processors (Advanced Micro Devices, Inc., 2005).

Figure 17.5 shows a plot of the file size on disk versus the object model size
in memory. While the Xerces-C++ 2.6 DOM is more efficient than previous
implementations, the DOM consumed nearly five times as much memory for large
multi-megabyte files. For small files (under five kilobytes), the DOM is ever so
slightly more efficient. This is likely because Xerces uses string pooling and other
reference counting techniques to optimize memory usage. For SBML files larger



372 Software Infrastructure for Effective Communication and Reuse of Computational Models

than five kilobytes and especially files larger than one megabyte, libSBML is the
clear performance winner.
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Figure 17.5 A plot of memory consumption by libSBML (solid line) and the Xerces-
C++ Document Object Model (dotted line), when each is used to read SBML models into
computer memory. Data are based on over 10,000 sample models taken from the SBML
Semantic Validation Suite and the first SBML Hackathon of 2003. File sizes (horizontal
axis) varied from 600 bytes to 5.76 MBytes.

17.5.5 Helping Ensure Correctness and Consistency

Syntactic validation involves verifying that the SBML input is well-formed, and, for
example, that data values are of the correct types. Consistency checking involves
verifying the contents of an SBML model for self-consistency, referential integrity,
and adherence to the SBML specifications. The tests are implemented as individual
constraints within libSBML; the library reports back validation failures to the call-
ing application via the libSBML API. The constraint checking system is modular,
and the constraint set can be easily extended. We describe the design and intent of
the constraint syntax below.

The design of SBML is driven by data models instead of the specifics of XML
representation. To that end, the SBML specification is first described using UML
static class diagrams. These class descriptions are mapped to XML representations
using SCHUCS (Hucka, 2000), a technique we developed, tailored to producing effi-
cient, reasonably succinct, and quasi-human-readable XML. We wanted to parallel
our emphasis on data over representation, with a declarative language to express
SBML model constraints (declarative languages state the what without specifying
the how). For this, we took inspiration from the UML community and its develop-
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ment of OCL, the Object Constraint Language (Object Management Group, Inc.,
2002; Warmer and Kleppe, 2003).

Although libSBML consistency checks are not expressed directly in OCL, we have
created an OCL-like language on top of the libSBML C++ API. This language
balances the readability of OCL with the efficiency and expressiveness of C++,
which is sometimes necessary for more complicated validation procedures. The
language allows the manipulation of only constant C++ objects, which much
like OCL, guarantees operations will be side-effect free. Further, this guarantee
is enforced at compile time. Being side-effect free is an important property as we
do not want the process of consistency checking to change the state of a model. An
example will help make these concepts more clear.

One of the 50 consistency checks currently implemented ensures that if a model
author overrides the default definition of the substance unit, a special unit name
in SBML, the resulting unit definition is consistent with the notion of a substance.
The consistency check constraint is written as:

START_CONSTRAINT (1202, UnitDefinition, ud)
{

msg =
"A ’substance’ UnitDefinition must simplify to a single "
"Unit of kind ’mole’ or ’item’ with an exponent of ’1’ "
"(L2v1 Section 4.4.3).";

pre( ud.getId() == "substance" );

inv( ud.getNumUnits() == 1 );
inv( ud.getUnit(0).isMole() || ud.getUnit(0).isItem() );
inv( ud.getUnit(0).getExponent() == 1 );

}
END_CONSTRAINT

The START_CONSTRAINT macro takes three arguments. The first is a number that
uniquely identifies this constraint (that is, 1202). Assigning such identifiers to each
constraint facilitates traceability and allows programmers to easily determine which
rules have been violated. The next two parameters indicate the type of SBML object
to which this rule applies (that is, UnitDefinition) and a shorthand name to use
for the object being checked (that is, ud).

The body of the constraint consists of a message (msg) to be logged should the
SBML object fail the check. After the message, zero or more preconditions (pre)
may be listed. In order for the rule to apply to the SBML object in question, all
preconditions must hold (in the order listed). If a precondition does not hold, the
check is aborted without logging either a passage or failure. Finally, assuming all
preconditions hold, the object’s state must adhere to a set of one or more invariants
(inv). Should any invariant fail, the constraint immediately fails and a message is
logged.

In the above example, notice that preconditions and invariants are specified on
the (lib)SBML object model. Each method invocation (operation) does not change
the state of the model and specifies what not how (with apologies made for the
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standard names used for getter methods, for example, getUnit(), which arguably
describes how and not what ; even OCL falls victim to this slight, purely esthetic
inconsistency.)

Finally, it’s worth describing a case where OCL-like statements are not enough
and having the full expressive power of C++ to write rules is advantageous. In
SBML, compartments may be nested inside one another, with the limitation that
this nesting may not be cyclic (an example of a cycle: compartment A is in B which
is in C which is in A). While it is relatively easy to encode this constraint in the
OCL-like language demonstrated above, reporting a user-friendly error message is
another matter. Upon violation of this constraint, instead of simply stating that a
cycle exists, it is better to indicate the chain of compartments that was followed
to detect this cycle, thereby enabling the model author to quickly track down the
cause of the error. Constructing such an informative error message is awkward in a
purely declarative language like OCL. However, in C++, with its built-in Standard
Template Library (STL) strings, sets, and the ability to iterate over collections,
constructing an informative error message is straightforward.

17.5.6 Open-Source Development

We note with satisfaction that the open-source model of software development has
been yielding dividends for libSBML. The user community has contributed not only
several bug fixes, but new code as well. These include: support for the Expat parser
library (Drake and Clark, 2005), a full Perl API, a full Lisp API, and an extension
to support the use of a provisional SBML standard for storing model diagrams (see
Section 17.4.3).

The libSBML open-source license allows it to be incorporated freely into other
programs in whole or part. Several simulator programs and projects developed in
academia already make use of libSBML to support both SBML import and export.
Such simulator programs include: Gepasi (Mendes, 1997), COPASI (Mendes, 2003),
Jarnac (Sauro, 2000), and the DARPA Bio-SPICE project (Kumar and Feidler,
2003). It is worth mentioning that since libSBML is distributed under the terms of
the Lesser GNU Public License (LGPL) it may also be used without restriction in
commercial applications (Free Software Foundation, 1999). We currently know of
two commercial software applications using libSBML.

17.6 Validating Application Behavior

When we first developed SBML, we expected that most of the difficulties faced by
developers in implementing software support would stem from issues of constructing
and parsing valid model structures. We knew it would be impossible to write
perfectly clear specifications for the language, but we expected that once issues of
ambiguities and other problems in SBML’s definition were overcome, interchange of
models between software tools would naturally follow. And to a surprising extent,
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this was true for a few early applications such as Jarnac and Gepasi—exactly the
same applications that informed the definition of SBML in the first place. It was not
until a large number of other software developers began working with SBML that it
became clear the community faced more subtle issues of model interpretation and
consensual agreement about expected behaviors of simulation tools.

17.6.1 Types of Validation

At the highest level, we can partition the question of validity into two main
categories:

1. Syntactic: does the software accept well-formed SBML input, and reject all
syntactically invalid SBML input? (Note that a software package may reject some
valid SBML inputs because it detects the presence of constructs it is not designed
to handle. For the purposes of syntactic verification, such behavior is acceptable
and presumably can be distinguished from a failure to accept well-formed SBML.)

2. Semantic: does the software interpret well-formed SBML correctly? This can be
further divided:

(a) Model structure: does the software construct the correct model structure
based on the SBML input, independent of what it does with that structure?

(b) Model behavior : does the software correctly interpret or generate the
intended model behavior?

The difference between the two types of semantic validation is about structure
versus dynamics. Going beyond verification of conformance to SBML syntax, the
semantic interpretation of a model involves both creating the intended constructs
based on the SBML and analyzing or simulating the model in the intended way. In
both cases, correctness is something that has to be carefully specified.

Some models can only be evaluated based on their structure. For example,
molecular interaction models may not contain any kinetic information, so it is not
clear that there is a definable model behavior per se. In that case, the model may
be only evaluable based on the model structure. Other models have dynamics,
and software tools can be evaluated based on whether they produce agreed-upon
simulation or analysis results.

17.6.2 A Problem Not Addressed by Definitions Alone

The problem of achieving “agreed-upon simulation and analysis results” goes deeper
than stipulating the required syntactic and semantic aspects of SBML and providing
model structure-based verification of consistency of the sort now available in
libSBML (Section 17.5.5). At least two issues must be addressed. One is the problem
of reaching a consensus in a community about how to to interpret different classes
of models. This is a problem of education and communication, which in the case
of SBML is being helped tremendously by the biannual SBML face-to-face events
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(SBML Forums and Hackathons). A second problem is providing a way for software
developers to verify the behaviors of their software tools vis-a-vis the consensus view
of simulator behaviors. This requires testing the behavior of software that interprets
and manipulates models encoded in SBML.

To help address this latter problem, we have recently introduced the first version
of the SBML Semantic Validation Suite, described in the next section.

17.6.3 The SBML Semantic Validation Suite

The Semantic Validation Suite consists of (1) a set of valid SBML models each with
representative, simulated time-course data, and (2) a scripted, automated testing
framework for running software tools through the suite. This suite is designed to
be used by software developers to check that their simulators produce results that
are consistent with the SBML standard and thus with each other.

In the general case, verifying the interpretation of SBML by an arbitrary software
package is an extremely challenging problem, since different applications use models
in different ways, generate different types of outputs, and provide different user
interfaces. The only realistic way to approach this problem systematically is to
tackle different application types separately, treating ODE-based simulators as one
type, stochastic simulators as another, pathway analysis tools as another, etcetera.
We chose to develop tests for ODE-based simulators first because: (a) this kind
of simulation software makes up a significant proportion of the applications that
support SBML; (b) simulation is one of the more complex types of analysis that
can be applied to SBML; and (c) apart from metadata, almost all SBML features
impact a model’s behavior in simulation.

The set of models in the SBML Semantic Validation Suite is still incomplete,
but the current version covers the majority of SBML features. The suite is divided
into categories of tests, where each category deals with a set of related features of
SBML. The scripts in the suite allow a simulator to be tested systematically against
the test set. Each test in the suite comes with: (1) the correct simulation output
in a consistent documented format; (2) plots of correct simulation output, and (3)
documentation for the test. The beta version of the test suite was announced in
October 2004. Several developers have begun using the suite as part of their work
and communicating feedback to us about the suite itself; this feedback process is
helping us to improve every aspect of it.

Our long-term goal in this effort is to eventually produce a highly automated
software evaluation system. We hope to be able to generate an in-depth guide that
categorizes different tools along different dimensions related to their purposes and
coverage of SBML features. This will be an important aid both to potential users
(who will be able to easily compare the functionality of different software packages)
and to developers (who will be able to use the evaluation tools to help guide their
implementation of SBML support during software development). We also believe
the content will be useful for researchers wishing to understand SBML on its own.



17.7 Summary 377

17.7 Summary

Computational modeling is becoming crucial for making sense of the vast quantities
of complex experimental data that are now being collected. The systems biology
community needs agreed-upon information standards if models are to be shared,
evaluated, and developed cooperatively. The Systems Biology Markup Language
(SBML) is an XML-based format for representing computational models in a way
that can be used by different software systems to communicate and exchange those
models. It is supported today by over 80 software tools worldwide and a vibrant
community of modelers and software authors. A variety of resources are available for
working with SBML; there is also an Internet MIME type defined for SBML (Kovitz,
2004) and a new public database of models based around SBML (BioModels Team,
2005).

In support of SBML and its community, we continue to develop and make avail-
able software infrastructure, including programming libraries, conversion utilities,
interface packages for commonly-used software environments, and easy-to-access
online tools. All of our software development follows the open-source tradition to
maximize the accessibility and utility of the products.

The success of SBML has led to requests from the community for new features
and continued evolution of the language. We view our role as organizers and editors
in the development and evolution of SBML; the process is open and crucially
dependent on the involvement of others in the computational modeling field. We
invite interested individuals and groups to join the SBML Forum, the informal
community of SBML users and developers, to participate in the process and help
us improve SBML and its capacity for acting as a common exchange format for
computational modeling software in systems biology. Information on this and other
aspects of the SBML project is available on the project Web site (SBML Team,
2005b).
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A Software Tools for Biological Modeling

The software tools favored by the contributors to this book, all active researchers
in biological modeling, are listed in this chapter. The selection is eclectic, practical,
and is presented here more as a guide for intrepid readers to help them get their
feet wet than as a complete list of canonical tools. We apologize for any omissions
but note that any tool used frequently in publications will not want for users. Keep
in mind that advances in software occur faster than advances in science. It follows
that tools will either evolve in sophistication or users will migrate upwards. For
users, open standards (see chapter 17) for model interchange are therefore crucial
to avoid being in thrall to an out-dated program.

A.1 Genetic Network Analyzer: GNA

Description: GUI with network visualization, model editor and visualization of
simulation results (de Jong et al., 2003b)

System requirements: Java, runs under Windows, Unix, Solaris, MacOS

Features: Qualitative analysis: modeling, simulation, and analysis of genetic reg-
ulatory networks described by piecewise-linear differential equation models supple-
mented by parameter inequality constraints

Website: http://www-helix.inrialpes.fr/gna

A.2 Gene Interaction Network Simulator: GINsim

Description: GUI with network visualization, model editor, and visualization of
simulation results (Chaouiya et al., 2003)

System requirements: Java, runs under Windows, Unix, Solaris, MacOS

Features: Qualitative analysis: modeling, simulation, and analysis of genetic
regulatory networks described by discrete, logical models

Website: http://www.esil.univ-mrs.fr/~chaouiya/GINsim
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A.3 Discrete Dynamics Lab: DDLab

Description: GUI with model editor and visualization of network dynamics
(Wuensche, 2003)

System requirements: Written in C, runs under DOS, Unix, Linux, Irix

Features: Tools for researching cellular automata, random boolean networks,
multi-value discrete dynamical networks

Website: http://www.ddlab.com

A.4 Cellerator

Description: Cell model generation and simulation, from reaction descriptions,
within a powerful computer algebra system (Shapiro et al., 2003)

System requirements: Mathematica package

Features: Quick, easy model construction with palette; ODEs shown and solved
Luxuriously supports the power math user Extensible: Biologists can add new
reaction types (e.g. kMech add–on package for enzyme kinetics)

Website: http://www.igb.uci.edu/servers/sb.html

A.5 Sigmoid

Description: Pathway modeling database and web pathway simulation environ-
ment (Cheng et al., 2005)

System requirements: Java (1.4+), runs under Windows, Unix, Solaris, MacOS

Features: Web GUI access to Cellerator and pathway model database; scalability
in organizing the great variety of biological mechanisms; flexible mapping from “bi-
ological reaction type hierarchy” to “mathematical reaction model type hierarchy”;
UML specification of reaction types and reactant types

Website: http://www.sigmoid.org

A.6 Metatool

Description: Structural network analysis for studying metabolic networks (Pfeiffer
et al., 1999)

System requirements: Java, runs under Windows, Unix, Solaris, MacOS

Features: Conservation relations; null space analysis; calculation of elementary
modes
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Website:
http://pgrc-03.ipk-gatersleben.de/tools/phpMetatool/index.php

A.7 FluxAnalyzer

Description: Structural network analysis completely embedded in a GUI with
(optional) network visualisation (interactive flux maps) (Klamt et al., 2003)

System requirements: Matlab

Features: Calculation of graph-theoretical path lengths and network diameter;
null space analysis; conservation relations; metabolic flux analysis; flux balance
analysis; calculation and detailed analysis of elementary modes and extreme path-
ways

Website: http://www.mpi-magdeburg.mpg.de/projects/fluxanalyzer

A.8 ScrumPy

Description: Simulator for general biochemical systems (Poolman et al., 2003)

System requirements: Python, mixture of command-line tools and GUIs

Features: Conservation relations; null space analysis; calculation of elementary
modes

Website: http://bms-mudshark.brookes.ac.uk/ScrumPy

A.9 Jarnac

Description: Simulator for general biochemical systems (Sauro, 2000).

System requirements: Windows 95/98, NT, 2000

Features: Jarnac is a language for describing and manipulating cellular system
models and can be used to describe metabolic, signal transduction, and gene
networks, or in fact any physical system which can be described in terms of a
network and associated flows.

Website: http://www.cds.caltech.edu/~hsauro/Jarnac.htm

A.10 Gepasi

Description: GUI simulator for general biochemical systems (Mendes, 1997).

System requirements: Windows 95 and up; Linux under Wine
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Features: Gepasi is a software package for modeling biochemical systems. It
simulates the kinetics of systems of biochemical reactions and provides a number of
tools to fit models to data, optimize any function of the model, perform metabolic
control analysis and linear stability analysis.

Website: http://www.gepasi.org

A.11 MesoRD

Description: MesoRD is a tool for stochastic and deterministic simulation of
reaction-diffusion systems. Reads SBML model descriptions. (Hattne et al., 2005)

System requirements: Linux, Mac OS X, NetBSD, Solaris and Windows XP

Features: Implements the next subvolume method; explicit unit handling; con-
structive solid geometry is used for compartment geometry descriptions; MathML
reaction rate expressions are automatically restructured for fast evaluation; evalu-
ated reaction rates are hashed; licensed under the GNU GPL.

Website: http://mesord.sourceforge.net

A.12 Ingeneue

Description: Genetic network construction software (Meir et al., 2002)

System requirements: Java, runs under Windows, Unix, Solaris, MacOS

Features: Ingeneue is a general-purpose program designed to construct and ana-
lyze models of genetic networks, designed so that it can be used by a biologist with
only a minimal amount of mathematical training.

Website: http://ingeneue.org

A.13 XPPAUT

Description: Simulation and exploration of models of dynamical system (Ermen-
trout, 2002)

System requirements: All platforms

Features: Xppaut is a program designed specifically for the needs of dynamical
systems. It has many options for integrators and numerical algorithms and includes
Auto for simple bifurcation continuations. It has a simple file format for the input
of models and versatile graphing capabilities.

Website: http://www.math.pitt.edu/~bard/xpp/xpp.html
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A.14 BioSens

Description: GUI for methods to identify cellular architecture and dynamics from
experimental data (Taylor et al., 2005)

System requirements: Windows, partial installation on Linux using XPP

Features: Dynamical sensitivity analysis; Fisher information matrix; FIM-based
measurement selection

Website:
http://www.chemengr.ucsb.edu/~ceweb/faculty/doyle/biosens/BioSens.htm

A.15 JigCell

Description: Building models, simulation, comparison to experimental data, pa-
rameter estimation (Vass et al., 2004)

System requirements: Java, runs under Windows, Unix, Solaris, MacOS

Features: SBML input

Website: http://jigcell.biol.vt.edu

A.16 Oscill8

Description: Simulation and advanced bifurcation analysis

System requirements: Windows, Linux, Mac OS X

Features: Oscill8 is a suite of tools for analyzing large systems of ODEs, partic-
ularly with respect to understanding how the high dimensional parameter space
controls the dynamics of the system.

Website: http://oscill8.sourceforge.net/

A.17 Madonna

Description: Simulation, sensitivity analysis, optimization

System requirements: Windows, Mac OS X

Features: Berkeley Madonna is a general purpose differential equation solver
for the modeling and analysis of dynamical systems. Developed on the Berkeley
campus under the sponsorship of NSF and NIH, it is currently used for constructing
mathematical models for research and teaching.

Website: http://www.berkeleymadonna.com/
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A.18 Systems Biology Workbench

Description: General frameworks for computational modules: Systems Biology
Workbench, Matlab, Mathematica, Maple, Scilab, Octave

System requirements: All operating systems

Features: The Systems Biology Workbench is software that uses SBML (chap-
ter 17) to allow communications between diverse software modules. A host of soft-
ware packages are compatible with SBW (http://www.sys-bio.org). Maple, Math-
ematica, Matlab, Octave, and Scilab are general purpose mathematical analysis
software packages, with Maple and Mathematica more adept at algebraic manip-
ulations and Matlab and Scilab more adept at numerical computations. Octave,
Scilab, and the Systems Biology Workbench are free for use while the others are
commercial.

Website: http://sbml.org/index.psp
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