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PREFACE 
 
 
Applying mathematics to biology has a long history, but only recently has there been an 

explosion of interest in the field. Some reasons for this include: the explosion of data-rich 
information sets, due to the genomics revolution, which are difficult to understand without the 
use of analytical tools, recent development of mathematical tools such as chaos theory to help 
understand complex, nonlinear mechanisms in biology, an increase in computing power 
which enables calculations and simulations to be performed that were not previously possible, 
and an increasing interest in in silico experimentation due to the complications involved in 
human and animal research. Applying mathematics to biology has a long history, but only 
recently has there been an explosion of interest in the field. Some reasons for this include: the 
explosion of data-rich information sets, due to the genomics revolution, which are difficult to 
understand without the use of analytical tools, recent development of mathematical tools such 
as chaos theory to help understand complex, nonlinear mechanisms in biology, an increase in 
computing power which enables calculations and simulations to be performed that were not 
previously possible, and an increasing interest in in silico experimentation due to the 
complications involved in human and animal research. 

Chapter 1 presents mathematical models of infectious disease transmission, which add a 
new dimension of information to assist in public health policy for disease control. They are 
useful for understanding complex nonlinear systems of transmission and to predict future 
epidemic trajectories based on different intervention or resource allocation strategies. The 
science of mathematical and computational population biology that advances this 
understanding uses various forms of models that vary from deterministic compartmental 
models, to stochastic models, to dynamically evolving contact networks between individuals. 
All models require realistic detail and realistic parameter values. For practitioners in this field 
to make a real-world difference and influence public health policy, policy-makers and/or 
medical experts must be consulted or heavily involved to ensure realism of model structure 
and most importantly appropriate parameter estimates. Detailed mathematical analyses are 
generally of very little real-world importance but uncertainty and sensitivity analyses are a 
highly under-developed component of current models and must be utilized to a much greater 
extent (such methodology is clearly presented here in a manner for implementation by any 
quantitative practitioner). Instead of bringing specific quantitative tools to the research arena, 
one should determine the important research questions in need of investigation and then use 
(or obtain) the necessary tools to address the specific key research issues. Additionally, the 
incorporation of data analysis tools within mechanistic causal models is also important for 
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future innovative modeling in this field. Above all, the clear and powerful presentation of 
results in various forms, including effective communication to disseminate results to key 
authorities, is essential if modeling is to be used insightfully and influentially in designing (or 
changing) policy decisions.  

The theory of metabolism can be subdivided in two main fields: dynamic theory and 
structural theory. Dynamic theory attempts to produce a description of the systemic 
dynamic behavior from as little experimental information as possible. Structural theory 
provides ways of decomposing complex networks in ways that reveal inherent functional 
relationships between the parts of the system. Since metabolic systems function out of 
equilibrium, due to the permanent input of material and energetic fluxes, dynamic theory 
has to deal with non-linearities. On the other hand, structural theory analyses the null-space 
of a matrix of relationships (usually, the stoichimetric matrix, giving rise to stoichiometric 
analysis) and therefore it belongs to either linear or convex analysis. Chapter 2 provides a 
new dynamic theory that generalizes some others, such as Metabolic Control Analysis 
(MCA) and Biochemical Systems Theory (BST), to time-varying external fluxes of any 
form, and provides a straighforward way of connecting the non-linear dynamics of 
metabolic systems to their stoichiometric structure, by means of a set of new properties. In 
particular, the non-linear response is described in terms of a generalized perturbation theory 
whose main coefficients are the susceptibilities (much in the same way as in non-linear 
optics). These coefficients are time-dependent (on one or more perturbation times) and 
become translationally invariant in time as the system approaches a steady state (the main 
realistic state of metabolic networks, apart from oscillatory behavior). Hence they can be 
integrated into constant coefficients, the responsivities, that provide a set of constrains 
connecting the dynamics and the stoichiometry of the network. As a consequence, the 
number of stoichiometric degrees of freedom can be reduced because of the dynamics of a 
specific system. This result, is illustrated by means of examples. The theory presented 
herein falls in the field of functional analysis, since the susceptibilities are functional 
derivatives of the response with respect to complete time-courses of the input fluxes, which 
work as the excitations of the metabolic network and can be manipulated in experiments. 
Hence, the constraints provided by the theory should help simplify highthroughput 
experiments.  

In Chapter 3, the authors develop a mathematical model describing the haptotactic 
migration of cells in a pre necrotic avascular tumour. Initially, the model which involves a 
moving boundary is developed for general three dimensional geometry and then modified for 
the specific multicell tumour spheroid geometry. A full nondimensionalisation is performed 
and the model is mapped to a fixed domain to facilitation numerical simulation. Numerically 
calculated solution profiles are then presented to provide predictions of the behaviour of cells 
in pre necrotic multicell tumour spheroids. Attention is paid to both passively migrating cells, 
and cells that respond to gradients in a simultaneously constructed extracellular matrix that is, 
cells that migrate haptotactically. The model solutions are used to propose biologically 
relevant hypotheses about the behaviour of cells in pre necrotic avascular tumours and the 
extracellular matrix in which they reside.  

Cholera is a gastrointestinal disease caused by a gram negative coma shaped bacterium 
of the genus Vibrio cholerae. It is often associated with poor hygiene of drinking water, 
food preparations and waste disposal particularly feaces. It rapidly causes diarrhea, 
vomiting and dehydration which could be fatal if not medically attended to timeously. The 
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diarrhea is caused by a toxin produced by the bacterium. This toxin causes the efflux of 
salts and water into the gastrointestinal tract. Cholera as a disease is a serious public health 
problem in the developing world, and since the first recorded cases, it has spread rapidly 
across continents, resulting in numerous deaths. The aim of Chapter 4 is to use 
mathematical modeling to analyze the dynamics of this disease with and without treatment. 
Thus, the authors present a single-season deterministic model for cholera transmission 
dynamics with carriers in a human population and a pool of pathogens. The mathematical 
features such as the epidemic threshold, equilibria and stabilities are determined. A 
Lyapunov functional approach is used to analyse the stabilities of equilibria. The authors 
qualitatively analyse positivity and boundedness of solutions. In the absence of treatment, 
the trivial equilibrium is shown to be a saddle, while the two biologically meaningful 
equilibria, namely the disease-free is globally asymptotically stable provided certain 
conditions are met, and the endemic equilibrium state is only locally stable. The epidemic 
threshold is used to assess the effectiveness of treatment in controlling cholera in a 
community. Conditions for cholera containment and persistence are derived using 
comprehensive analytical and numerical techniques. It is shown from the study that 
treatment of cholera sufferers reduces the burden of the disease in the community. Further, 
it is also shown that as long as the pathogen is present in the environment, it will be 
difficult to eradicate cholera and the existence of carriers may remain a challenge in the 
control of the epidemic in settings with treatment of cholera sufferers.  

The functioning of the immune system involves tightly regulated proliferation, 
differentiation and death processes of heterogeneous cell populations, including 
T lymphocytes, B lymphocytes, antigen presenting cells, etc. To quantify the turnover 
kinetics of specific subsets of immune cells under normal conditions and during infections, 
labeling techniques (e.g., with fluorescent markers CFSE or BrdU) in conjunction with flow 
cytometry analysis (FACS) are used in experimental and clinical immunology. To obtain 
information about the kinetic structure of the cellular responses of heterogenous cell 
populations from data that in addition to experimental fluctuations (noise) exhibit 
considerable variation between different study animals, careful computational analysis is 
needed. The primary objectives of Chapter 5 are: (i) to introduce mathematical models in the 
form of hyperbolic partial differential equations (PDEs) which allow direct reference to single 
or double label histograms of cell distributions, (ii) to illustrate the potential of the modeling 
and parameter identification technology by representative examples from CFSE and BrdU 
labeled T cell proliferation studies, and (iii) to compare the proposed PDE models with 
alternative modeling approaches which are based upon the use of ordinary differential 
equations. 

In Chapetr 6 the authors review a number of immunological models of HIV as well as the 
contribution of mathematical immune modeling of HIV to understanding of HIV. The authors 
also review a number of epidemiological models, particularly those of HIV. The focus of this 
review is the development of novel immuno-epidemiological models which link 
immunological and epidemiological models. The authors first review a simple 
immunoepidemiological model of transient disease (a disease where infected individuals 
necessarily recover), and then they introduce an immuno-epidemiological model of HIV. The 
authors discuss the drawbacks of this simple immuno-epidemiological model as well as 
methods to address them. They introduce and discuss several other models and their 
advantages and disadvantages. In the discussion the authors focus on the types of questions 



Lachlan B. Wilson x 

that can be addressed with immuno-epidemiological models and how those can contribute for 
the development of mathematical biology.  

As presented in Chapter 7, the development of physical and mathematical models dealing 
with the deposition and bronchial clearance of aerosol particles in the human respiratory tract 
has its origin in the 1970s. Theoretical approaches of this time were usually based on an 
airway geometry being either approximated by a sequence of straight cylindrical tubes or by a 
single, variable cross-section channel resembling a trumpet shape. The branching network of 
lung airways was initially described by a fully symmetrical tree structure (e.g. Weibel’s lung 
model A), within which tubes of the same airway generation were characterized by identical 
geometric parameters (i.e. diameters, lengths, branching and gravity angles). As a further 
consequence of this symmetry pathways leading from the trachea to the closing alveolar sacs 
consisted of the same number of tubes, representing a remarkable simplification for the 
simulation of deposition and clearance scenarios. 

In reality, the human tracheobronchial tree is marked by a significant asymmetry due to 
the variation of airway geometry within a given generation. Since the end of the 1970s and 
the early 1980s increased attention was paid to this important fact by the construction of a 
five-lobe lung model, where intrasubject variation of bronchial geometry was still limited to 
the first three or four bifurcations. A better approach of the variability of airway properties 
took place by the formulation of a stochastic model of the human respiratory tract in the 
middle of the 1980s. With this model both asymmetry and randomness could be well 
approximated on the basis of available morphometric data. In addition, computation of 
deposition and bronchial clearance was improved due to a variation in the number of 
bifurcations leading from the proximal to the distal end of the bronchial pathway. 

Currently, stochastic lung models represent the state of the art in simulating deposition 
and clearance of inhaled particles. In recent years, computation of particle deposition was 
successively refined by numerical approaches, enabling the determination of exact particle 
trajectories within single, double, and triple bifurcations. Bronchial clearance was improved 
by generation-specific variations of mucus thickness and mucus production, causing a 
remarkable variability of mucus velocity. Additionally, slow bronchial clearance 
mechanisms were defined, with the help of which particle residence times > 24 hours could 
be explained. 

Chapter 8 starts by introducing a brief review of the history of interdisciplinary research 
in biology, as well as some of basic concepts from molecular biology. Then, the authors 
present a survey of the philosophy and goals of a new area of interdisciplinary research: 
systems biology. Finally, the authors review their efforts of the past few years to understand, 
via mathematical modeling, the dynamic behavior of one of the most studied gene regulatory 
networks in bacteria: the tryptophan operon, and offer new results.  

In Chapter 9 the authors consider the impacts of two factors, namely the form of the 
nonlinearity of the infectious disease transmission rate the and mortality associated with a 
disease, on the dynamics of this infectious disease in a population. The authors consider a 
very simple discrete-step compartment epidemiological models and a very general form of the 
nonlinear transmission assuming that the transmission is governed by an arbitrary function 
constrained by a few biologically feasible conditions. The authors show that when the 
population size can be considered constant, these models exhibit asymptotically stable steady 
states. Precisely, the authors demonstrate that the concavity of the disease transmission 
function with respect to the number of infective individuals is a sufficient condition for this 
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stability: in this case the models have either an unique and stable endemic equilibrium state, 
or no endemic equilibrium state at all; in the latter case the infection-free equilibrium state is 
stable. 

The authors demonstrate that under some circumstances the mortality inflicted by the 
disease is able to destabilise endemic equilibrium state and can lead to a supercritical Hopf 
bifurcation in the system. However, it appears that for the majority of human infections the 
threshold for this bifurcation is too high to be realistic.   

Human and animal locomotion represent a highly complex control problem. Internal and 
external disturbances increase these difficulties to maintain or achieve stability in static and 
dynamic situations. Two kinds of stability can be distinguished: on the one hand the stability 
is achieved by reflexes and control with neural feedback, and on the other hand stability is 
based on mechanical properties and the geometrical configuration of muscles and tendons 
within the musculoskeletal system. The present article is mainly interested in the latter one, 
which is called selfstability. Biological systems adapt the pure mechanical properties of 
muscles and passive structures to support stability and to cope with disturbances. In the 
following, the authors mainly restrict ourselves to one joint with a pair of antagonistic 
muscles; in particular, the authors will focus on the human elbow joint. The authors describe 
the most important mechanical properties of muscles and summarize them in a model of a 
general joint with antagonistic muscles. This model is a system of ordinary differential 
equations for the joint angle and its angular velocity. 

If the antagonistic muscles are activated in a certain relation, then the joint is in an 
equilibrium state. The definition of stability in the mathematical sense is given using the 
framework of dynamical systems. The eigenvalues of the linearization at the equilibrium give 
a detailed characterization of solutions near the equilibrium: real and complex eigenvalues 
lead to qualitatively different behavior of solutions, and the absolute value of their real part 
tells us how fast the equilibrium state is approached after a small perturbation. 

Can the authors quantify the stability of an equilibrium point? The authors would surely 
assume the equilibrium point to be the “more stable” the larger its basin of attraction is. The 
basin of attraction consists of all perturbations which are led back to the equilibrium. Is an 
equilibrium also the “more stable” the faster small perturbations are corrected? The 
mathematical analysis will show that the answer depends on the situation.  

Besides an overview over the problems and results of mathematical stability analyses in 
biomechanics, in Chapter 10 the authors apply the theory to a specific situation. More 
precisely, the authors consider a waiter holding a glass of water. The task is not to spill the 
water in the glass under perturbations. The question is, whether less water is spilled by a high 
or a low co-activation of the elbow muscles. The mathematical analysis will show that the 
answer depends on the position of the upper arm. 

There is a great interest for a mechanistic understanding of molecular transport across 
biological and reconstituted membranes due to its potential applications to the development of 
news methodologies in medical biotechnology, such as gene therapy and drug delivery. In the 
first part of Chapter 11, the authors present the behavior of the liposomes under osmotic 
stress. Because of the mechanical tension induced by osmotic flow, the liposomes expand, 
triggering transient lipidic pores that fluctuate at the nanoscopic level until their death. The 
authors report here that this is a periodic process. Such a liposome, also called a pulsatory 
liposome, is characterized by the number of successive pores, the time interval between two 
successive pores, and the amount of exchanged material through a single transmembrane 



Lachlan B. Wilson xii 

pore. The diffusion of water through the liposomal membrane is analyzed in detail. In the 
second part of this paper, the authors develop a theoretical model for analyzing experimental 
data, facilitating information about the diffusion and exchange through spherical interfaces. 
The effects of experimental parameters, including the bilayer stiffness and the viscosity of the 
internal fluid, are analyzed and discussed as well.  
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BIOLOGICAL COMPLEXITY BY NATURAL SELECTION
AND SELF-ORGANIZATION: A GAME OF SURVIVAL

C. Hui
Centre of Excellence for Invasion Biology,

University of Stellenbosch

Since the beginning of biology, a debate has existed between selectionists and neutralists.
Fisher (1930) formulized Darwin’s idea of natural selection and proved that the fitness of a
species will be maximized in a pure-line population. This is equivalent to saying that if the
natural selection really happens along billions of years of evolution, polymorphism in species
will cause genetic load and therefore should be rare in nature. Counter-intuitively, this is not
the case. Haldane (1930) and Wright (1930) at the same time criticized Fisher’s arguments by
the prevalence of polymorphism in species. According to the neutral theory (Kimura 1983),
natural selection is almost futile at the molecular level as most genes are neutral in terms of
the fitness of an organism. The result of this debate was the compromise on the unit of natural
selection, i.e. at the individual level (although later a theory of group selection also emerged),
and further put Darwin’s evolution through natural selection into an awkward situation.
However, allowed me to postulate: merging of functioning clusters of DNA sequences (gene)
could be through the self-organization formed by the positive feedback between its products
(protein) and the gene (or other genes) [proteins help genes to make proteins]. This co-
evolved process (positive feedback) between particular DNA and protein could be interlinked
with other similar processes and self-organized together forming a higher level of complexity,
i.e. life itself.

At a larger scale, a similar story was retold. Clements (1916) asserted that under
disturbance a community can converge onto a single, stable, mesophytic equilibrium
(monoclimax), which determined by the regional climate (a superorganism). In other words,
succession in an ecosystem is a universal, orderly process of progressive change. The real
king will eventually return. Patten (1971) also regarded the ecosystem as an evolutionary
entity. Gleason (1926) rejected this superorganism idea by an individualistic view. Egler
(1954) rephrased this individualistic as this: succession is on a high level of sociologic
integration, not a matter of individual species, i.e. a (instead of ‘the’) king will come. Drury
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and Nisbet (1973) indicated that the first steps toward theories of succession should be based
directly on properties of organisms, rather than emergent properties of ecosystems. My
question is: (A) does a community (or an ecosystem) have its own identity or is it just a
concoction of millions of individuals with thousands of species? (B) How can we test such an
argument?

To test whether a community is a functioning team or a mere conglomerate, two ways lie
ahead. One is to judge by its consequences, i.e. the macroecological patterns generated.
MacArthur and Wilson (1967) found that the species-area relationship on islands can be
largely explained by a colonization-extinction process. Hubbell (2001) also showed the
extreme closeness of the abundance rank curve in a neutral community to a real one. Range
size distribution and many other patterns in macroecology have found their enlightenments in
the neutral theory. However, Tilman (2004) argued that the niche theory (the beloved son of
natural selection in ecology) can also perform realistic patterns in community. The debate has
far from ended.

The other way to test the ‘meaning’ of a community has an obvious application in
conservation, especially under the pressure of globalization. These early studies identified the
characters of a ‘pioneer’ species as those with great seed production, high speed mobility,
high light requirements (for plants) and ability to tolerate disturbed environments, high
colonizing and dispersal ability, an opportunist, or a fugitive. All these characters fit the
description of a perfect invader, i.e. for an alien species to establish and expand in an endemic
community. According to Clements’ superorgansim theory, an alien species that has the same
trait (or function) as an endemic species will be difficult to invade due to the resilience (or
competitive exclusion). Yet, Gleason’s and Hubbell’s neutral theory implies that an alien
species with a similar niche as some endemic species will be easy to invade with the help of
disturbance. We can only find out which one is true at the future synthesizing stage of
invasion biology.

As far as I am concerned, two processes play an important role in the shaping and
emerging of biological patterns (or complexity): natural selection and self-organization.
Translated into ecology, these two processes become the niche and the neutral theory. Of
course, to observe such a biological pattern, statistic artifacts and sampling prejudice come in
and make a picture through our lenses. Like making a movie, the niche theory (natural
selection) decides who will be the actors and what role (function) each actor will play. The
neutral theory (self-organization) decides what kind of story they will tell and organizes
species in a certain way to generate the community pattern. Statistic artifacts and sampling
prejudice suggest that each one will have different feelings or responses to the movie.
However, let’s forget those artifacts and prejudice for a while and only focus on the real
patterns beneath.

There are five hierarchies of biological complexity. First, from biochemistry (physics) to
life (self-organized replicating molecular system). Natural selection chooses which
functioning clusters (of molecules) should interlink or compete with each other. Self-
organization (such as crystal formation and reproduction) holds different functioning clusters
together and generates the basic “self-replicating” character of life systems. Although the
evolution of genetic code (DNA and RNA) and the emerging of advanced function in
unicellular organisms could be far more complicated, the key process could be captured by
natural selection and self-organization. Second, from simple life unit (cell) to organism. Will
a self-organized cell clusters have a greater selection advantage than a single cell? Organism
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development and metabolic allometry provide a possible start. Third, the population 
formation, its behavior and culture. Natural selection surly becomes an obvious process at this 
level. Behavior, such as altruism, and culture can be formed through ecological imprints and 
niche construction, accompanied by particular spatial patterns in time and in space. Fourth, 
speciation and the formation of a community. The species concept is crucial to the study of 
the evolution of complexity and biodiversity. The ecological interactions, such as resource 
competition, predation and migration (or dispersal) play an important role in the process of 
speciation. Meanwhile, evolutionary processes, such as mutation and gene drift, also affect 
this process. A community could be the necessary consequence of the speciation and 
ecological process (the evolutionary equilibrium might not be achieved in community). The 
boundary of a community could be just an artifact, as a community only generates patterns, 
without a clear function. Finally, the formation of ecosystem function and the self-containing 
of the whole biosphere. Individuals and species in the community are entangled with all kinds 
of biological interactions, which give rise to the new properties at the ecosystem and global 
level. Ecosystem service supports each species (including humans). The earth living system 
can self-sustain itself (Gaia theory). Energy and matter (such carbon cycle) flow in-and-out 
and interact with the abiotic sphere on earth. This is the final level of biological complexity.  

I would like to end here by describing a game of survival. It simplifies the coevolved 
biological system by natural selection and self-organization. The game starts with twelve 
people who don’t know each other. During one week of living together (on an isolated 
island), each one comes to know the others in terms of their personality, common interests, 
etc. Therefore, friendship begins to make clusters and divisions in these twelve people (a 
process of self-organization). At the end of each week, one person will be voted out (a 
process of natural selection), as each one plays double roles in the game, an actor and a judge. 
Guess who will win in the end. This game perfectly captures the essential characters of an 
adaptive (or a co-evolved) biological system. If it’s a closed system, there will be only one 
who finally wins the game. Can we predict who will be? If it’s an open system (i.e. each week 
we add a new person in the game), can you predict who will be there after many weeks? It is 
surly not a random game, but its direction (destiny) is an unfolding one. 
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Chapter 1

EPIDEMIOLOGICAL MODELING
FOR THE REAL WORLD

David P. Wilson*

National Centre in HIV Epidemiology and Clinical Research, Faculty of Medicine
University of New South Wales, Sydney, Australia

Abstract

Mathematical models of infectious disease transmission add a new dimension of
information to assist in public health policy for disease control. They are useful for
understanding complex nonlinear systems of transmission and to predict future epidemic
trajectories based on different intervention or resource allocation strategies. The science of
mathematical and computational population biology that advances this understanding uses
various forms of models that vary from deterministic compartmental models, to stochastic
models, to dynamically evolving contact networks between individuals. All models require
realistic detail and realistic parameter values. For practitioners in this field to make a real-
world difference and influence public health policy, policy-makers and/or medical experts
must be consulted or heavily involved to ensure realism of model structure and most
importantly appropriate parameter estimates. Detailed mathematical analyses are generally of
very little real-world importance but uncertainty and sensitivity analyses are a highly under-
developed component of current models and must be utilized to a much greater extent (such
methodology is clearly presented here in a manner for implementation by any quantitative
practitioner). Instead of bringing specific quantitative tools to the research arena, one should
determine the important research questions in need of investigation and then use (or obtain)
the necessary tools to address the specific key research issues. Additionally, the incorporation
of data analysis tools within mechanistic causal models is also important for future innovative
modeling in this field. Above all, the clear and powerful presentation of results in various
forms, including effective communication to disseminate results to key authorities, is essential
if modeling is to be used insightfully and influentially in designing (or changing) policy
decisions.

                                                       
* E-mail address: Dwilson@nchecr.unsw.edu.au; Ph: +61 2 9385 0896; Fax: +61 2 9385 0920
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1. Brief History of Epidemic Modeling for Public Health

The application of mathematics to the study of infectious disease was initiated by Daniel
Bernoulli in 1760, presented at the Royal Academy of Sciences in Paris [1]. Aiming to
influence public health policy, he used mathematical techniques to evaluate the potential
effectiveness of universal variolation against smallpox [1, 2]. Smallpox was widespread in
many parts of Europe where it affected a significant proportion of the population, accounting
for large death rates. Bernoulli used Edmund Halley’s Life Table ‘data’ [3] for expected
survival (including smallpox mortality) along with his equations to calculate the number of
people surviving if smallpox was eradicated. He showed that universal smallpox inoculations
would lead to an increase in life expectancy from a mere 26.5 years at the time, during the
endemic smallpox epidemic, to approximately 30 years [1, 2]. He was far ahead of his time in
terms of utilizing quantitative techniques, and specifically mathematical modeling, to
influence public health policy [2, 4]. After Bernoulli, only rare instances of similar techniques
were employed (for example, in 1840 William Farr fitted a normal curve to smoothed
quarterly data on deaths from smallpox in England and Wales over the period 1837-1839 to
track the progress of the epidemic [5]). From the time of Bernoulli it would be approximately
150 years before any significant progress was made in this field. It was not until 1906 that
conceptual ideas started to be considered that would form the basis of modern mathematical
epidemiology. At that time, Hammer postulated that the course of an epidemic depends on the
rate of contact between susceptible and infectious individuals [6]. This notion has become one
of the most important concepts in population biology; it is the mass-action principle
(sometimes called pseudo-mass action) in which the net rate of spread of infection is assumed
to be proportional to the product of the density of susceptible people multiplied by the density
of infectious individuals. The law of mass-action was already widely applicable in many areas
of science and goes back at least as far as Boyle (c. 1674) in the theory of reactant materials
in chemistry. The mass-action concept was used by Kermack and McKendrick in 1927 who
began to provide a firm theoretical framework for the investigation of observed patterns of the
course of an epidemic [7]. Kermack and McKendrick’s framework has evolved to become the
classic SIR model for studying population biology, and their framework could be considered
the birth of modern mathematical epidemiology. The interested reader could refer to Bailey
[8] or Anderson & May [9] for more on the development of mathematical frameworks for the
spread of epidemics.

In most sciences, research questions are answered from planned repeated experiments.
But for infectious diseases, experimenting in communities is not ethical or possible in many
instances. Instead, we rely on retrospective epidemiologic data which are neither timely nor
capable of predicting future outcomes.  Mathematical models for transmission of infection are
the most sophisticated and useful tools to aid policy formulation, and have been repeatedly
proven to be accurate (although not always). They add a new dimension of information to the
control of communicable diseases and provide a dynamic picture of disease transmission. The
complex nonlinear systems of epidemics can be understood by models that contain explicit
mechanisms linking individual-level behaviors with population-level outcomes (such as
incidence and prevalence). These models are used to forecast disease epidemics and trends in
disease transmission under various intervention scenarios, and therefore they are highly
relevant to planning vaccination programs and predicting the behavior of other interventions
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at the population level. Epidemic trajectory forecasting has been particularly used in HIV
where the models have been used with varying success [10-16]. The increased trust and
popularity of modeling is illustrated by the fact that the World Health Organization responded
to the SARS outbreak in 2003 by calling on leading mathematical modelers from the UK to
help determine optimal control strategies. Currently, mathematical modelers are key
committee members for countless government and other institutions (such as the World
Health Organization, the United States Center for Disease Control, the Central Intelligence
Agency, etc.). Potential bioterrorism, emerging infectious diseases, current localized and
global endemic epidemics, and many more public health problems are being addressed by
real-world biomathematical modelers (e.g., [17-27]). Public health decisions, for a wide
variety of diseases (e.g., [9, 28-34]) are being made as a direct result of mathematical models
of disease transmission. Any discussion of public health policy should include careful
evaluation of potential risks. The utility of modeling in public policy is most evident when
costs and benefits require balancing or when it must be decided how to focus and administer
resources; a tradeoff between positive and negative outcomes in such decision making makes
the modeling process more important, and indeed much more interesting in estimating when
such potential risks could outweigh the benefits.

Our field owes a lot of the acceptance by the health and medical community over the last
few decades to the modern ‘godfathers’ of the field, Anderson and May. Anderson and May
were prominent in effectively bridging the gap between theoretical models and the
health/medical/policy communities, bringing about greater insight and influencing change
with their models [9, 35-37]. They are still very active in the scientific community. Their
influence has spread to other renowned researchers that are not only bridging communities,
but making great strides of influence into the mainstream scientific arena. Most notably
amongst the more applied modelers are Blower and Garnett (but there are many others).
There are various other key ‘players’ (many of whom are cited in this chapter) and on their
theoretical and applied foundations will disease transmission modeling continue to advance
and provide bases for more informed influences in health policy decisions.

2. Epidemic Modeling Approaches

2.1. Deterministic Models

In the approach of deterministic models all individuals in the population of interest are
generally segmented into various compartments, related to risk factor, disease, or
immunological status etc. Schematic flow diagrams illustrate the possible movement of
people from one compartment to another. Approximations to the true, integer-valued numbers
of individuals involved in an epidemic, allow the derivation of difference or differential
equations governing the process to describe this movement and track the number of people in
each population segment as a continuous variable over time. If changes in the model
population occur as a smooth continuous process then differential calculus is employed,
whereas discrete models reflect the change over an entire time step. The interactions allowing
the spread of infections occur continuously and so most models are usually continuous.
Infection outcomes in these models are not subject to randomness, thus they are
“deterministic”; the system develops according to laws similar to those for dynamical
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systems. The results of a deterministic process are approximations to the mean of a random
process. Mathematical analysis of these underlying stochastic processes that lead to
appropriate differential equation models is well illustrated by Diekmann & Heesterbeck [38].

The classical (but still highly relevant) Kermack-McKendrick SIR model [7] considers
the total population to be taken as constant, and attempts to describe the spread of infection in
a population as a function of time when a small group of infected individuals is introduced. A
simple early version of the SIR model is constructed by considering a disease which, after
recovery, confers immunity (or if lethal, includes deaths – but dead individuals are still
counted). The host population is divided into 3 classes of individuals, namely, susceptible (S)
who can catch the disease, infected (I) who have the disease and can transmit it, and
recovered (R) who have had the disease and recovered, immune, or isolated from
(re)infection. The progress of individuals is schematically represented in Figure 1.

Figure 1. Schematic flow diagram of the simplest form of the SIR model.

This translates into the differential equations:

dS S
dt

λ= −

dI S I
dt

λ α= −

dR I
dt

α= ,

where the ‘force of infection’, Iλ β= , is the rate at which susceptible people become
infected ( β is the overall transmission probability per infected person and includes contact
rates), and α is the rate of recovery. An SIR model incorporating births and deaths was
formulated in 1929 by Soper [39] and extended in 1932 by Kermack and McKendrick [40].
The SIR model and variations of the model have been studied very extensively (for example,
[41-43]).

The number and type of categories in these types of models depends on the disease.
Usually the modeling process commences, as is demonstrated simplistically above with the
SIR model, with the drawing of schematic diagrams to reflect the biology of the particular
epidemic and disease progression in infected individuals. Then, differential equations are
written to describe the rate of change in the number of people in each compartment. There are
countless examples of models in the literature that are based on these approaches. Since this
section is not a textbook chapter on developing such models but an overview of the
commonly-used approaches, further information and detail will not be provided.
Straightforward descriptions of how to construct simple compartmental deterministic models
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can be found elsewhere (e.g. [32, 38, 41]). Although individual-level elements are not
specifically tracked in these models, individual-level issues must be incorporated in the
equations for consistency, especially for sexually transmitted models (for example, balancing
the number of male/females partnerships if it is a heterosexual model, including
assortative/disassortative partnership mixing, sex budgets, patterns of sexual behavior, and
transmission probabilities as they relate to the number of acts and types of protection etc. [9,
44-56]).

2.2. Stochastic Models

The spread of an infectious disease is a random process. In a small group of people in which
one has a cold, such as in a classroom or a family, some will become infected while others
will not. When the number of individuals is very large, it is customary and most appropriate
to characterize the infection process deterministically, but deterministic models are unsuitable
for small populations. Stochastic models entered the epidemic modeling arena around the
same time as deterministic models (e.g., [39, 57]). The most influential early model was the
chain binomial model of Reed and Frost, presented in 1928 but not published until later and
was described by others [58-60]. The evolution of this epidemic process is stochastic in the
sense that randomness is incorporated and different epidemic trajectories will result from the
same initial conditions.

The Reed-Frost model is based on the assumption that, in a group of tS  susceptible

people and tI  infected people at times 0,1, 2,t = … , infection is based on ‘adequate’ contact
of an infectious (infected) person with a susceptible person in a relatively short time interval

( ),t t t+ Δ at the beginning of each period. Discrete-time models are appropriate if the

infectious period is relatively short in comparison to the latent period, with the latent period
as the unit of time. The newly infected individuals 1tI + will themselves become infectious in

( )1, 1t t t+ + + Δ , while the current number of infected people tI will then be removed. Each

susceptible individual is assumed to independently have the same probability, p , of not

making adequate contact with any one given infected person, or tIp of not making adequate

contact with any of the tI infected people during ( ),t t t+ Δ . Therefore, the probability of

infection for each susceptible is 1 tIp− . Assuming independence of each susceptible, the

probability that there will be 1tI + infected people at time 1t +  is taken to be the binomial
probability:

{ } ( ) ( )1 1

1 1
1

, , 1 t t
t t

I St I I
t t t t
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P S I S I p p

S
+ +

+ +
+

⎛ ⎞
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⎝ ⎠

,

where 1 1t t tS S I+ += + . The structure of an epidemic model path is then
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{ } { } { }1 1 0 0 2 2 1 1 3 3 2 2, , , , , ,P S I S I P S I S I P S I S Iχ = … ,

that is, the product of a chain of binomials.
The famous Kermack-McKendrick deterministic model was formulated into its general

stochastic analog by Bartlett in 1949, and since that time the number of stochastic models has
increased very rapidly and become highly popular (see [61, 62] for reviews of such epidemic
models). There are numerous ways to allow the events in a stochastic model to be influenced
by chance, but the most common approach is Monte Carlo simulation. Here, the possible
events that could occur are defined with probabilities associated with them. Random number
generators calculate when events will occur and which of the possible events will occur next
[63]. These stochastic models allow an exploration of the ability of a model to explain certain
observed patterns, with a single set of parameter estimates. Further, stochastic models in
continuous time are an extension of the simple discrete time models, in which the main
features of the deterministic epidemic model in continuous time also hold. Normally the
processes involved are simplistically assumed to be Markovian. The reader is referred to other
sources for a description of this approach [64-70].

2.3. Other Approaches

An important distinction in modeling of infectious diseases is whether the population is
represented by various compartments with rates of progression through the different
compartmental states or whether individuals and their contacts are explicitly tracked; these
are the two extremes of model approaches. Discrete individuals rather than continuous
populations are the basic units of analysis in individual-level models. Based on a distribution
of properties for each person, stochastic events are simulated. As an extension, network
models posit fixed relationships during which contacts that transmit infection occur. In the
simplest of network models, every individual has a fixed number of linkages to other
individuals, and contacts that can transmit infection occur within those linkages at a constant
rate. Tracking individuals provides a potentially powerful tool in which microstructures of the
dynamic network of contacts is included through which infections spread [71-76]. This could
provide a more thorough identification of risks for acquiring and also transmitting infection.
Analysis of network models is yielding basic theory just like the basic theory of deterministic
compartmental models [77-79]. One example of the new concepts coming out of network
models is that of partnership concurrency or the existence of simultaneous linkages with
multiple individuals in which transmission can occur. This concept is foreign to deterministic
compartmental models. Concurrency of partnerships has been shown to be highly important
[73, 80]. Another important effect captured by network models that is not captured well by
compartmental models is the influence of social networks that can have powerful effects on
the speed and extent of infection dissemination in a population [81]. However, the potential of
this approach can rarely be achieved, and if it actually can it is unlikely to be in a timely and
meaningful fashion. The quality of data on network structures will always be limited and
biased. It is also extremely difficult to identify and to obtain parameter values for individual-
level network models.
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There is no restriction on the type of approaches that can be used. Quantitative techniques
have been applied to a very diverse set of applications in other fields. There is no reason why
many of these techniques cannot be brought across into infectious disease epidemiology if
they will adequately represent the specific problem and context in question. For example,
Kaplan and colleagues have used a variety of methods, such as operations research and
economic modeling, to address diverse and important infectious disease transmission
questions [19, 27, 82-86]. Operations research techniques have also been applied to important
resource allocation problems in HIV research [87-89]. The discipline of operations research
incorporates mathematical modeling, statistics, queuing theory, decision analysis, and
computer science and  are usually used in contexts to optimize profit, output, or performance
of operations within an industry, production line, or organization [90-92] but can be extended
to dynamic optimal control problems associated with disease [93-95]. Nonlinear and dynamic
programming [96] are among the techniques often used in optimization [97, 98]. These
numerical methods are appropriate in many real-world problems that cannot be solved
analytically as they contain non-linear dependencies and the problems often have various
constraints that must be taken into consideration. Adopting operations research approaches is
one of the most exciting developments in quantitative population biology and epidemiology.
Game theory has also been used in recent years and has provided valuable and interesting
insights, especially in terms of vaccination strategies [99-101]. This is another approach that
could be utilized more frequently. Problems can be simplified and investigated with risk
equations [102]. There is no limit in the diversity of innovative methods that can be extended
in the field of quantitative epidemiology or introduced to the field, but new angles at looking
at interesting problems can sometimes be restricted by practitioners. Instead of bringing
specific quantitative tools to the research arena, one should determine the important research
questions in need of investigation and then use (or obtain) the necessary tools to address the
specific key research issues. Look at important problems from novel perspectives; for
example in geographical models of disease, instead of modeling the conventional spatial
diffusion of disease, model the spatial diffusion of treatment to the locations of disease [88];
be creative and willing to go outside conventional boxes and develop new approaches that
will be most appropriate to address the most interesting and important research questions.

2.4. Which Approach Should Be Taken?

Deterministic compartmental modeling is by far the most common approach to theoretical
population biology. These models are simple to develop and they enable the use of a powerful
set of analytic tools (such as elegant algebraic relationships). Although deterministic
compartmental models are often adequate and are probably the most appropriate approach in
most circumstances of established epidemics, these models have their limitations and
inappropriate assumptions [103]. They are certainly not appropriate for addressing
circumstances for which there are only a ‘handful’ of individuals or when individual-level
intervention strategies (such as contact tracing) is the focal question for investigation. There
are times in which the stochastic elements are essential to be modeled explicitly. Recently an
intermediate step between continuous deterministic compartmental models and discrete
individual models has been developed that maintains compartments, and notions of random
mixing, but discrete individuals are the basic entities. Stochastic compartmental models retain
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all the compartmental structure of deterministic compartmental models. But if there are large
populations and the epidemic is well-established, the stochastic models do not provide any
more insight than deterministic models, except they provide more variability in the outcome
trajectories.

The trade-off between using simple or complex models for investigating transmission
dynamics, and which approaches should generally be adopted, is highly contentious. Most
models are constructed using radically simplifying assumptions so that they can stand on their
own and provide insight to broad audiences. These models are widely criticized for being
unrealistically simple. But such simple model analyses have been largely informative,
including the small selected subset [13, 28, 35, 36, 104-122]. Using only simple models may
limit the growth of infection transmission science [103], and also the inclusion of many of the
realistic and important details necessary to reflect the situation being modeled. Various
questions can only be addressed through detailed and complex models. Complex models have
recently also usefully addressed a diversity of infection control problems [52, 123-126].

In areas where there are many very intelligent academics that hold strongly opposing
views it is wise not to stick too strongly to a closed view and assert definitively that one
approach is best. Most practitioners have their preferred approach, including myself. I have
strong preference for simple models and good reasons for maintaining this approach to
address most practical real-world problems (although the best approach should always to be
evaluated on a case-by-case basis for each research problem). Basically, it is extremely
difficult as it is to obtain reliable parameter estimates for simple models, let alone for
complex ones. In the complex models there are many-fold more parameters to be estimated
and many of them cannot be linked easily to an actual biologically or socially measurable
outcome. For the majority of parameters that are epidemiologically meaningful, there is often
no reliable data available for obtaining appropriate estimates. Furthermore, the complex
models essentially become ‘computer games’ – there are thousands upon thousands of lines
of code implementing the model and no one knows how the program really works, or can
explain the mechanisms and reasons for the observed specific simulated scenarios. It is
difficult to ascertain how a given output is a function of any input variable. Also because the
models are computationally expensive, it is unwieldy and somewhat infeasible to explore a
large input parameter space. For many of these models small numbers of scenario analyses
are run with just specific point parameters. Yet these models actually require a much more
extensive parameter uncertainty analysis. Because of the large investment in development and
implementation of the complex models, the practitioners are less likely to adapt or start afresh
to meet new research problems but desire to use their existing model and find a problem to
which it could be applied. Although there are many considerations that must be evaluated
when one is developing a model, one must choose the approach that is most appropriate for
the situation at hand. There is not a single approach that is best in all circumstances; each
approach has value for different purposes. One should identify the fundamental and important
research questions and then decide on the best way to address the problem. It must be ensured
that there is sufficient detail in the model to adequately reflect the situation but that the model
is tractable enough to sufficiently analyze it and explore the complete relevant parameter
space.

As a final word regarding simple models, consider the main aims of epidemic modeling:
to better understand the mechanisms by which diseases spread; to predict the future course of
the epidemic; and to understand how we may control the spread of an epidemic. The simplest
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models can usually address these aims; for example, the simple Kermack-McKendrick model
showed us that (i) the initial number of susceptible must exceed the relative removal rate for
an epidemic to grow, (ii) if 0S ρ ν= + is the number of susceptible at the start of the

epidemic and ν ρ<<  (where ρ α β=  is the relative removal rate), then we can expect

approximately S ρ ν∞ = −  susceptible people at the end of the epidemic and a total of
2ν affected individuals, (iii) reducing the number of susceptible people, by immunization for
example, to below ρ would reduce the epidemic considerably in size.

3. Meaningless Mathematics

Some readers may consider this section a little cynical, and in some respects it is intended as
such. But I believe that the message of this section is desperately required to reach into the
depths of all the university basements containing mathematicians that consider themselves
‘applied’, and jolt them toward more purposeful ‘applied’ research pursuits. This section may
be irrelevant to many other readers that already have a real world applied approach to
population biology.

Almost every time I present my research within a mathematics department, including
applied mathematics departments mind you, one of the first questions I am asked is
something along the lines of ‘Have you performed detailed mathematical analysis on the
equations or can you include more nonlinear terms to find any interesting anomalies and
features of the model’? In my opinion, this exemplifies the entirely incorrect mindset of many
‘applied’ mathematicians. Frankly, I ensure that my model equations do not have any
‘mathematically interesting’ phenomena. Applied mathematicians will sometimes look for
‘blips’ in their models under certain limits or perturbations and present these ‘big results’ as
possibly explaining strange phenomena that should occur in the biology (if one looked hard
enough). Six, twelve, eighteen months of research time could be spent analyzing such a
model, resulting in a publication in the Journal of Biomathematical Meaningless or
whichever similar journal, never to be read by a single ‘real-world’ biologist or public-health
policy maker. If one looks through the results sections of journals containing such papers, one
would continually find integral equations. I am sorry to state that equations containing
integrals are not results! At least not results of any utility or meaning to a non-mathematician.
If a paradoxical result is presented in some of these biomathematical papers and a biologist
happens to come across it and enquires as to how such a seemingly paradoxical result occurs,
the response is often some esoteric and obscure mathematical description, alienating the
biologist even further from this field. Although the model may have been useful in
entertaining the mathematician analyzing it, more than likely the model was simply incorrect
– not representing the real biology, investigated only in the vicinity of unrealistic parameter
values, or presented in an way that appears unapproachable, rendering it entirely unhelpful in
influencing any scientific experimentation or public health policy.

A biological concept familiar to epidemiologists and modelers of disease transmission is
the basic reproduction number, symbolized simply as R0. The basic reproduction number is
‘‘the average number of secondary infections produced when one infected individual is
introduced into a host population where everyone is susceptible’’[9]. This quantity sounds
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like it is something that can be measured from models and actually means something in the
real world. Further, if modeling could show how R0 could be reduced below unity, one would
have a theoretical intervention strategy to eradicate the epidemic in question. Consequently,
most dynamic transmission models are analyzed in an attempt to obtain a closed-form
mathematical expression for R0. The dominant tradition in infection transmission modeling
pursues simple models designed to make clear the nature of nonlinear dynamics. The
crowning achievement of such analyses are simple relational expressions such as 0R cDβ=
[9], which translates as the number of transmissions that an infected individual generates over
the course of their infection, when all of their contacts are susceptible, equals the product of
the contact rate of individuals, their transmission probability, and the duration of their
infection. In the pursuit of such elegance, detailed, realistic data affected by a myriad of
peculiarities in the situation where the data are collected is viewed as obscuring that essence.
Countless articles, books, and entire PhD theses have been written addressing the calculation
of R0. Of course, the more complex the model, the more complicated the expression for R0.
Expressions for R0 for many models are often unwieldy and just plain daunting. Every model
will have a different representation for R0.

Bifurcation analysis of the ODE models yield threshold parameters [127] (often
presented as R0). These ‘R0’ parameters are only valid to determine the threshold (when R0

=1); that is, the break-even point between an endemic epidemic and one that fizzles out [9,
128]. According to the definition of R0, it is a measure at the individual level, not at a
population level: R0 is the average number of infections produced per individual person. But
the typical population-level differential equation models describe the dynamics (disease
transmission and progression rates) of the number of people in various disease stages and do
not track individuals. The parameters of the ODE models may have a complex relationship to
individual-level processes or the relationships are unknown. Further, population-level data
cannot verify individual-level modeling assumptions. As Breban and colleagues [128, 129]
have shown us, it is possible to establish individual-level models that identically reflect
population-level dynamic models but the way that the rules are set up in the individual
models can vary extensively, each yielding different values for R0. The individual-level and
the population-level approaches may produce very different values for R0. Individual-level
approaches calculate R0, whilst population-level models calculate the value of a threshold
parameter. The issue of how well they match has been previously studied [130, 131] and it
has been shown that R0 values obtained from different individual-level models do not
necessarily agree with those obtained from mean-field ODE models. Essentially, the actual
value of ‘R0’ for a dynamic ODE model is irrelevant if it is above one, the importance of the
‘R0’ is just that it is above one. A larger R0 for one disease relative to another also does not
necessarily mean anything, because they will have different durations of infection. An R0 of
approximately 2 for HIV over an entire infectious duration of approximately 10 years, is quite
different to an R0 of 2 or 3 for influenza or SARS over an infectious period of a couple of
weeks [17, 18, 132, 133]. Regardless of the disease or method for estimating R0, all estimates
in the literature of R0 for most diseases will almost always be reported to be around the same
of 2-3 anyway! Further, how is an expression of ‘R0’= complex function of model parameters
going to change policy? It is argued that if we know this expression, then we can determine
how much we need to reduce certain key parameters in order to eliminate an epidemic. There
is certainly value in this, and I do not want to denounce this line of investigation, but there is
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also a lot of uncertainty, heterogeneity and other variation in the parameters to start with, and
unless this variation is dealt with appropriately in a meaningful parameter space of the real
uncertainty the result is less helpful. But I also implore practitioners to stop obsessing about
‘R0’! ‘R0’ is emphasized disproportionately in our field. Instead, there are direct comparisons
of policies and interventions that could be investigated with much greater thoroughness and
this will prove to be much more directly useful in influencing public health policy.

In order to understand what questions are of greatest importance and interest for
investigation, move outside the mathematics department. Ask the real-world policy makers;
get them involved in the process as expert consultants for parameter ranges and the structure
of the model. Include public health experts, clinicians, field officers etc., as middle authors in
manuscripts as required to obtain more credibility in the real world and to obtain the expert
information necessary for supporting the model. But of course the more practitioners, the
more complex the discussions could become. It is important that the practitioners have some
understanding and appreciation of modeling and will be synergistic. Additionally, choose to
work with the best people, the people most recognized for their knowledge in the application.
Another avenue modeling practitioners must pursue further is to attend the leading
conferences in the application area and gain an appreciation for the current most important
questions that need addressing or pre-empt such questions.

Mathematical biology, by virtue of the fundamental tool (mathematics), is inclined to be
largely theoretical. It is very important to understand the properties of the models, to
understand their stability and threshold conditions. But once one is satisfied that the model
does not behave strangely and that the model adequately describes the epidemic in question,
with appropriate parameter estimates, that is all the mathematical analysis that is required.
The mathematical analysis is not necessarily a result; not a result of any utility to influence
public policy, but only a preliminary step in the model development process prior to its use in
investigation. Occasionally, there are a few instances where simple models that have exact
mathematical solutions can provide powerful insight into the relation between parameter
values and results and such relationships can be the most precise and elegant conceptual
understanding; this is exemplified by some models of the impact of vaccines [134-136]. But
most of the time parameter relationships as a mathematical expression are not terribly
informative.

It is of utmost importance that modeling projects always have the bigger public health
goals in mind and clearly present the important practical results to the appropriate community
of influence, without esoteric rhetoric of mathematical details. Simply, it is important that
models do not have strange phenomena but accurately reflect the actual epidemic being
modeled. Also, as models increase in complexity, only numerical solutions are possible. This
leads into the very important topic of model calibration and estimating parameter values.

4. Parameter Estimation

One of the greatest torments in mathematical modeling is that parameter values are rarely
known precisely [2]. Typically, one of the longest components of any modeling exercise
(from the conception of the first model design through to preparing results, writing and
submitting a manuscript) is the process of parameterization. This is also probably the most
important part of the process. It cannot be over-emphasized how important realistic parameter
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values are in using a model appropriately. Consequently, this part of the process cannot be
taken lightly. Data must be incorporated wherever it is possible, but with or without data
models will always require calibration to ensure they reflect realism as much as possible.
There are many different definitions of validation, verification and calibration in the literature
[137-140]. Irrespective of the precise definitions, models should be tested (either formally or
informally) for realism in parameter estimates and in the output they generate. Since there are
likely to be considerable unknowns in parameter estimates, an appropriate uncertainty
analysis should always be considered and not scenario analyses.

4.1. Incorporating Data

One of the most elementary ways of making projections in a population is to fit some
theoretical curve to the known empirical data and then extrapolate this curve to predict new
cases in the next one or two years. This involves no epidemic model of infection: the
theoretical model is chosen because it seems likely to fit the data. Practically speaking, the
prediction can only be made for a short period of time ahead, since the conditions which have
held in the past for the known data may alter over a longer period, and the statistical curve-
fitting has no mechanistic basis and considers no conditions for saturation or other limiting
factors. Analyzing surveillance data and trends with curve-fitting models or other statistical
techniques to handle data has considerable value. But such models shed little light upon the
specific causes of spread and do not include the detail required to provide insight into
interventions. Mathematical models can never replace good surveillance data, but they can be
used as a framework for certain data analysis exercises. More importantly mathematical
models can help to explain underlying mechanistic reasons for the observed data. It is
extremely rare to come across a mechanistic model that incorporates available
epidemiological surveillance data. Data analysis and inference methods using models of
nonlinear infection transmission dynamics only appear sporadically in the literature [141-
145]. There is a much greater need to incorporate more real data in transmission models. This
is a future direction in the field requiring expansion. The fault for the disconnect between
causal models and data-analysis models lies as much (or more) on infection transmission
modeling traditions as it does on the data analysis traditions of epidemiologists. The gap must
be bridged. Although good data can be difficult to come by, the primary reason for not
incorporating data in causal models is probably not the lack of data but an attitude of
approach that considers the exercise to be a purely theoretical modeling one. However, if for
example there is data on the number of new diagnoses over time, there is no need to model a
variable of the number of new diagnoses – that data is already available. One could
incorporate a statistical interpolating function of the diagnoses data into the rest of the
modeling framework, obviating the need to include additional variables and parameters that
will undoubtedly not truly reflect what is currently known or been measured. Data should be
used as much as possible within transmission models.

If time course data cannot be used directly in epidemic models, it is essential to know
how well the models will fit the available data. This is particularly important if reliable
predictions are to be made. Example accounts of the fitting of various models to data for
epidemics are given in [8, 9, 141, 146]. The standard method is to minimize the sum of
squares of the differences between the observed and model estimates of the outcome of
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interest, to fit for unknown parameter values. Calibration techniques used in transmission
modeling commonly include maximum likelihood, Bayesian techniques, and basic regression
techniques. Also, using a variety of assumptions, Generalized Linear Models have been
employed for parameter estimation [17, 141], or to estimate HIV incidence and prevalence
[147-149]. Bayesian methods are increasingly being used for parameter estimation. Under the
Bayesian framework, all parameters of interest (known and unknown) are considered to be
random variables described using probability distributions [150]. According to prior
knowledge these distributions are initially specified, and then they are updated with epidemic
data and a model to more accurately specify the (posterior) distributions. This method allows
one to make probability statements about model parameters. The Bayesian approach has been
applied to various disease transmission models [151-155] and within-host models [156, 157].
Rigorous Bayesian statistics to estimate uncertainty in model parameters (as carried out by
Elderd et al. [145],for example), will be the way of the future. Likelihood based approaches
are also gaining in popularity in population dynamic models [147, 158]. To obtain an accurate
estimate of the probability distribution for certain parameters, bootstrapping approaches are
also becoming more common [159, 160]. Bootstrapping provides a reliable way to construct a
confidence interval for a parameter by resampling from the original data to create replicate
datasets.

In order to calibrate a model (particularly complex ones) one often needs detailed
empirical data. If the necessary data are limited or unavailable, sensitivity analyses should be
used to determine the impact of parameter estimation uncertainty on results [161]. Although
data fitting should be incorporated much more in transmission models, care must be taken
with estimating parameters by fitting to data. Local minima in the sum of squares may
produce a set of estimates for unknown parameters that are not representative of the true
values of the parameters – multiple sets of parameter values in different regions of parameter
space may produce similar (minimal) sum of square errors but only one set (or none of them)
may reflect the true values. Furthermore, the fact that the model fits the data does not
necessarily validate the model. By just adding extra parameters to be fitted for, it is possible
to fit almost any data [162]. As John von Neumann once famously stated, “With four
parameters I can fit an elephant and with five I can make him wiggle his trunk [163].” A
model might provide an excellent fit to the data at hand, but because its parameter estimates
are quite variable the model will generalize poorly to novel data sets. Hence, inference from
unparsimonious, over-fitted models is hazardous and should be avoided. Of course, a model
that captures relatively little structural information (that is, an under-fitted model) is also not
well suited for inference. Ideally, inference should be based on simple models that describe
the data well.

4.2. Model Calibration and Validation

It is highly important to obtain realistic parameter ranges from whatever empirical sources
and clinical experience as possible. But there will almost always be some parameters that are
unknown. The key is to estimate them appropriately. There are many instances in which no
data is available in which to fit the model to determine parameter estimates. It is likely that
there are a few different regions in parameter space that will fit the data appropriately. But
this does not mean that each of these parameter regions is correct. With more parameters



David P. Wilson22

there is also more uncertainty in the model and the less meaning each one will have. Thus, it
is highly important to spend considerable time calibrating the model and checking that input
parameters appear appropriate and that outcomes are realistic and match the (measured or
expected) reality. Calibration is this process of using a model with its input and output
information to adjust or estimate input parameters for which data are typically poor or
unavailable [146]. One must typically adjust (or “calibrate”) model inputs to observed
outcomes in most models. Even when parameter estimates are based on the best available
data, calibration procedures can be used to reduce parameter uncertainty. That is, although
uncertainty analysis is a separate process to calibration, they should be conducted
simultaneously [164]. Calibration is an iterative process involving feedbacks to assist refine
the uncertainty analysis. Calibration can be conducted formally statistically [164-166] but
often it is not possible or feasible and thus calibration must be done informally as a check that
the output uncertainty matches approximately what is expected in the modeled population.
Simulations could also be checked against certain predefined criteria (such as population
prevalence must be between x% and y%) and if any simulation fails to pass such a criterion it
is rejected [167]. If simulations are rejected, analysis of the parameter conditions that lead to
passing/failing the criteria is worth investigating (especially to ensure that the parameter sets
remaining are not biased due to the removals). This is known as Monte Carlo filtering [168,
169]. Essentially, calibration searches for regions of the constrained parameter space that
yield model outputs consistent with predefined criteria and observations [170].

In order to make reasonable predictions and develop methods of control, one must be
confident that the model captures the essential features of the course of an epidemic. Thus, it
becomes very important to validate models, whether deterministic or stochastic, by checking
whether they fit the observed data (or by forcing them to fit the data by fitting a parameter).
Validation determines the degree to which a model accurately represents the “real-world”, in
terms of the intended uses of the model [137-139]. It is important to define how models will
be validated, even though there is no single, accepted statistic or test of model validity. Model
structure is inextricably linked to the purpose of the model and to knowledge about the
processes being modeled. Therefore, it is essential to collaborate with infectious disease
experts to ensure biological and medical correctness of the processes modeled. Assumptions
of the models should be checked against available empirical data and by consulting with
experts. Data quality and input parameters are made explicit. Models are constructed to
provide an adequate picture of reality, consider all relevant aspects, and omit those that do not
alter results or conclusions significantly. Absence of data is not a justification for simplifying
important issues [137]. In the cases where useful data is not available, thorough and
convincing explanations of the causes of results, important factors, assumptions, and
parameter estimates that contributed to the results will often have to suffice. Assumptions
should be made explicit so that they can be challenged, and the impact of any assumptions
explored. Often the data available to decisions makers are inadequate, as for example in the
case of interventions for HIV/AIDS in Africa or South East Asia. Yet policies still need to be
formulated, even if only on the basis of rough qualitative measures. Accurate data may be
impossible to obtain, but one should always be in a position to minimize the cost of a policy
or to compare one policy to another, however approximately.

There is still much to understand with respect to the determinants of infection. To
understand these determinants further, disease transmission scientists must gather more varied
and extensive empirical data and integrate it effectively with theory. Sometimes important
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insight can be gained from model analyses that use minimal amounts of data. But without
data, progress will be limited. The future of the field will involve the incorporation of the best
data analysis techniques with mechanistic models. The dominant data-analysis models, such
as stratified comparison of risks, logistic regression, and proportionate hazards models,
estimate parameters that relate exposure to disease to individuals. Transmission models, in
contrast, relate individuals to each other using parameters that express contact rates or
transmission probabilities. The data models assume that contact rate and transmission
probability parameters have a value of zero – they assume that the outcome in one individual
is independent of the outcome in other individuals. Therefore, although the techniques need to
be integrated much more extensively, great care should be taken before extensive use so that
the same individual-level/population-level problems that have occurred with parameter
definitions such as R0 do not carry across to interpretation of population-level parameters
from individual-level data analysis.

Biomathematics is, by nature, interdisciplinary between biology and mathematics.
Therefore, one would be foolish not to explore interdisciplinary collaborations to obtain
outside expertise for the modeling projects. This will not only provide better parameter
estimates but also assure realism and relevance to the community for which the work is
intended to impact. One should try to associate with the best people, who understand the
medical, biological, clinical, and public health literature as well as possible but who also can
appreciate the approach of theoretical modeling. Of course, connecting in a productive
working relationship is also essential. But even through tapping into the best expertise
available, it is almost invariably the case that all model parameters will either have only been
estimated imprecisely or not known at all. The way in which mathematical modelers now deal
with these difficulties is to use sophisticated uncertainty and sensitivity analyses. These
analyses explore parameter ranges rather than simply focusing on specific parameter values.
Each input parameter can be defined to have an appropriate probability density function
associated with it. Then, the model can be simulated by sampling one value from each
parameter’s distribution. Many simulations should then be run, producing variable output
variable values. The variation in the output can then be explored as it relates to the variation
in the input.

5. Uncertainty Analyses

Sally Blower has pioneered the use of transmission models as health policy and predictive
tools by coupling them with uncertainty and sensitivity analyses [13, 15, 102, 108, 109, 161,
171-183]. This is necessary in exploring the behavior of many complex models due to the
complexity in their structure and the large degree of uncertainty or heterogeneity in values of
many input parameters. Uncertainty analyses assess the variability in the outcome variables
due to the variability in the input parameters [184]. Little attention has been given to how
uncertainty in parameter estimates might affect model predictions. The real uncertainty in
parameter estimates due to lack of data, heterogeneity, and other unknowns or confounders
has important implications for intervention strategies and formal uncertainty estimation
should play a key role in planning for epidemics. One approach to establishing an uncertainty
analysis is to use a full factorial sampling design; this sampling scheme uses every value of
each parameter and forms every possible combination of parameter values. This approach has
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the best possible advantage of exploring the entire parameter space, but this method is
extremely computationally inefficient and time-consuming. This is not feasible for basically
every model. If there are M parameters and each one has N values (or its distribution is
divided into N equiprobable intervals), then the total number of parameter sets and model
simulations is NM (even just 100 samples per distribution and 20 parameters would result in
1040 unique combinations, entirely unfeasible for all models). At the other extreme, one could
fix M-1 parameters and vary the Mth parameter over a specified range. This type of univariate
sensitivity analysis is highly efficient but has some major flaws, as only one dimension of the
M-dimensional parameter space is explored and each of the fixed parameters are required to
be estimated with a high degree of precision. Ideally one should vary all parameters
simultaneously in the M-dimensional parameter space but in an efficient manner. The first
obvious approach is to randomly sample each parameter N times independently from its
respective distribution. This generally leads to vast sampling improvements over both
univariate approaches and full factorial designs, but it is not the most efficient way to sample
the parameter space. More efficient and refined statistical techniques have been applied to
sampling in a variety of fields. Currently, the standard sampling technique employed is Latin
Hypercube Sampling and was introduced to epidemiology modeling by Blower [185]. Latin
Hypercube Sampling is a type of stratified Monte Carlo sampling [186, 187] that is an
extension of Latin Square sampling [188, 189]. Although McKay et al. originally proposed
the concept [190], it was Iman et al. [184, 186, 187] who developed and introduced this
method. Probability density functions (pdfs) are defined for each parameter; each of these
pdfs is then stratified (into N equiprobable intervals) and the value of each input parameter is
randomly chosen. But each input value is used only once in the entire sampling analysis and
so this is a very efficient sampling design [184, 185, 191, 192]. Distributions of the outcome
variables can then be derived directly by running the model N times with each of the sampled
parameters.

The minimum number of simulations required to be performed has not been determined.
Most practitioners currently use N=1000 (as done by Blower in most of her analyses).
However, if the model has additional complexity I suggest that 10,000 simulations be
performed. The number carried out is arbitrary, but it is important to ensure that a sufficient
number are run to capture the appropriate distribution in the outcome variables and relate it to
the variability in input distributions.

The algorithm for the Latin Hypercube Sampling methodology is described clearly by
Blower & Dowlatabadi [185], complete with an example from HIV epidemic modeling. For
completeness of this chapter, a brief description of the algorithm is given here. Each
parameter’s distribution is divided into N equiprobable serial intervals and each interval is
assigned an index. The limits of each interval ( )min max,i iα α are to be determined. If the pdf of

parameter α  is ( )f α , and ( )F α  is the integral of ( )f α , the function should be

normalized such that ( ) ( )max min 1F Fα α− = , where maxα is the upper bound on  'sα
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Therefore, the upper limit of each interval can be calculated based on the calculation of
the previous interval (acknowledging that the upper limit of the previous interval becomes the
lower limit of the following interval and the lower limit of the first interval is the lower limit
of the distribution). The upper limit of each interval is calculated by

( )( )1
max min 1/ .i iF F Nα α−= +

This is demonstrated schematically in Figure 2 for the case of two sample parameters and
N=10 samples. Once the intervals are established for all parameters, N iterations are
performed, each randomly selecting an interval of each parameter without replacement.
Therefore, each and every interval will be chosen once for each parameter (see Figure 3). The
specific parameter value to be used in the computational simulations from each interval can
be chosen as the mid-point of the interval, the median of the interval, or a randomly selected
value from the interval (the latter has been chosen for illustrative purposes in Figures 2 and 3
and this is generally what is done in practice).

Figure 2. Schematic Diagram of the Method of Latin Hypercube Sampling. Here, two parameter
distributions are defined: all as a Gaussian distribution with mean ( 0μ = ) and standard deviation

( 1σ = ), and beta as a Gamma distribution with shape parameter ( 2k = ) and scale parameter
( 1θ = ). The probability density functions and cumulative density functions are shown and their
division into N=10 equiprobable intervals. A computer-generated Latin hypercube sampling scheme is
indicated by the diamond points.
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Given an appropriate number of parameter sets from Latin Hypercube Sampling, or
another sampling technique, and model calibration has been performed, the parameter sets
should each be used in model simulations to generate outcome variables. According to the
variability in the input, there will be variability in the output. The simulated data can be
treated like real measured/observed data and standard statistical methods can be used to
investigate the relationships between the input parameters and the outcome variables. This is
the essence of sensitivity analyses.

Figure 3. The resulting computer-generated N=10 samples from the 2-dimensional parameter space as
defined in Figure 2. The sampled parameter sets are random ordered and indicated by ordinal counts.

6. Sensitivity Analyses

Sensitivity analysis is the study of how the uncertainty in the output of complex models can
be apportioned to sources of uncertainty in the model inputs [185, 193]. It has been argued
that sensitivity analyses are not required for analytical solutions where the influence of
changing a parameter is explicit within the model solution [32]. An equation may well
describe the full extent of influence but generally such equations are meaningless (unless they
are extremely simple) to most people. Equations are also uninformative without the definition
of the parameter space over which the equations are valid. Sensitivity analysis involves
investigating how an outcome variable responds to changes in input variables. Formal
sensitivity analyses (statistically) evaluate how important each parameter is in influencing
model outcomes. The simplest form of sensitivity is scenario analyses, in which illustrative
results are shown with very specific point estimates of single parameter sets. All parameters
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are fixed as constants and one parameter is changed in value and the changed trajectories are
plotted or different outcomes compared. This is an awful way of carrying out a sensitivity
analysis, especially if there is a lot of heterogeneity and uncertainty in numerous model
parameters. However, it does demonstrate differences in single epidemic trajectories for
changes in, usually a single parameter but can be any number of changes in, specific model
parameters. Such univariate sensitivity analyses apply only to that very specific set of
parameter values and results outside these parameter estimates cannot be determined
accurately. These trajectories are also heavily dependent on the structure of the transmission
model.

A good sensitivity analysis will extend an uncertainty analysis by identifying which
parameters are important (due to the variability in their uncertainty) in contributing to the
variability in the outcome variable [184]. These analyses allow identification of the models’
parameters and processes that exert the most leverage on the models’ outputs [161]. As
Hornberger and Spear [194] mention:

“…most simulation models will be complex, with many parameters, state-variables and
nonlinear relations. Under the best circumstances, such models have many degrees of
freedom and, with judicious fiddling, can be made to produce virtually any desired behaviour,
often with both plausible structure and parameter values.”

 It is therefore essential to determine the underlying assumptions in parameter estimates
and key influencing factors and interaction effects by conducting a thorough sensitivity
analysis. Different understandings of sensitivity analysis are used in different modeling
communities (e.g. [195-202]). Methodology for implementing some of the standard
sensitivity analyses currently within epidemic modeling is now presented, along with the
presentation of some new methodologies from other disciplines that could be usefully brought
across to the field of epidemic modeling.

6.1. Pearson, Spearman, and Partial Rank Correlation Coefficients

We are often concerned with the association, or relationship, between two different kinds of
measurements. The standard measure of ascertaining such associations is the correlation
coefficient. A correlation coefficient is a number between -1 and 1 which measures the degree
to which two variables are linearly related. If the relationship is perfectly linear (such that all
data points lie perfectly on a straight line), the correlation coefficient is 1 if there is a positive
correlation/slope and the correlation coefficient is -1 if the line has a negative slope. A
correlation coefficient of zero means that there is no linear relationship between the variables.
It must also be noted that the existence of a significant correlation between two factors does
not in itself necessarily imply a direct causal link. Scientific significance can be determined
once statistical significance is obtained but it cannot be automatically assumed. There are
various means of determining the appropriate correlation coefficient, dependent upon the type
of data (and distribution of the data).

The normal (or Gaussian) distribution is often a fair representation of particular kinds of
data, and there are theoretical reasons for expecting this distribution to turn up in practice.
Similarly, when there are two variables, we often find that a bivariate normal distribution is a
reasonable description of the data. Again, there are theoretical reasons for expecting this
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distribution to occur, at least approximately. The analog of the normal
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with means xμ  and yμ , and variances 2
xσ  and 2

yσ . Here, the parameter ρ  is the

correlation coefficient between X and Y. Note, that intrinsic in the definition of this
correlation coefficient is the assumption that both data sets can be assumed to be normally
distributed. This correlation coefficient is known as the Pearson product-moment correlation
coefficient (PCC). Given data ( ),i ix y , the Pearson correlation coefficient ρ  is estimated by
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Although there are various ways of interpreting the meaning of a correlation coefficient
in absolute terms, it is firstly important to know whether the value is significantly different
from zero. This is highly important for real data, especially when sample sizes are relatively
small. For simulated data from mathematical or computational algorithms in which very large
numbers of simulations can be run, the correlation coefficient will almost certainly be
significantly different from zero (extremely small p-value) and thus the significance test is of
little importance in this case. To test the hypothesis that the correlation coefficient is equal to
zero, the Student’s t-test with 2n−  degrees of freedom is used with the test statistic
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As an extension for the measure of the association between X and Y, the coefficient of
determination (R2) is determined; it is the proportion of the variability in the data set that is
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accounted for by the statistical model. For example, if r=0.9, then r2=81% of the variance of
Y can be accounted for by changes in X and the linear relationship between X and Y.

As noted above, the PCC is only valid if the two variables are jointly approximately
normally distributed. When this assumption is not justified, a non-parametric measure such as
the Spearman Rank Correlation Coefficient (SRCC) [203, 204] may be more appropriate.
Additionally, the PCC can be misleadingly small when there is a relationship between the
variables but it is a nonlinear one, whereas the SRCC may also be a better indicator that a
relationship exists between two variables if the relationship is nonlinear. This is also usually
calculated when it is not convenient or possible to allocate actual values to variables but only
to assign a rank order to instances of each variable. By assigning ranks to data (positioning
each datum point on an ordinal scale in relation to all other data points), any outliers can also
be incorporated without heavily biasing the calculated relationship. The SRCC assesses how
well an arbitrary monotonic function could describe the relationship between two variables,
without making any assumptions about the frequency distribution of the variables. Any
standard statistical software package will evaluate the full product-moment form, but an
accepted short-cut (assuming no tie) is to determine the differences d between the ranks of
each paired observation of the two variables and then the SRCC is given by
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To test whether the SRCC is significantly different from zero, a permutation test is
performed to calculate the probability that ρ would be greater than or equal to r, given the null
hypothesis. However, if the data set is very large so that a permutation test is not
computational realistic, traditional methods can be used involving tables (if available) or
alternatively using the approximation to the Student’s t-distribution. For sample sizes greater
than approximately 30, the test statistic is the essentially the same as that for the PCC.

These methods for determining correlation are extremely powerful when only a single
pair of variables is to be investigated. However, quite often measurements of different kinds
will occur in batches. This is especially the case in the analysis of epidemic models that have
many input parameters and various outcome variables. Here, the relationship between each
input parameter with each outcome variable is desired. Specifically, each relationship should
be ascertained whilst also acknowledging that there are various other contributing factors
(input parameters). Simple correlation or regression analyses could be carried out by taking
the variables two at a time, but it would be unwieldy and would fail to reveal more
complicated patterns of relationships that might exist between several variables
simultaneously. Therefore, an extension of previous methods is required. The appropriate
extension for handling groups of variables is partial correlation.

Firstly, some notation will be designated. The true correlation coefficient between two
variables, 12ρ , can be estimated by 12r (using the methods above). This correlation coefficient
is the total coefficient (as distinct from ‘partial’ coefficients). If one is interested in the
correlation of factors A and B, irrespective of any influence factor C might have, the total
coefficient ( 12r ) is calculated. However, one may want to know how A was related to B when
the effect of C had been specifically excluded. For this, the calculation of a partial correlation
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coefficient (PCC) is required (and represented here by 12,3ρ ). The PCC, 12,3r , is determined by

first calculating the total correlation coefficients for the various pairing combinations of
variables ( 12r , 13r , and 23r ) and then evaluated by

( )( )
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If two factors are to be specifically excluded then the calculation is extended to
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This can similarly be extended for the exclusion of >2 factors. The PCCs should also be
tested for significance and this is done with the test statistic:
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using the Student’s t-distribution with 1n m− −  degrees of freedom, where m  is the number
of independent variables in the analysis. This methodology is valid under the assumption that
the variables follow (at least approximately) a multivariate normal distribution.

Because normality cannot be assumed for some variables or the variables could have
outliers that may act as highly influential points to distort the correlation, often partial rank
correlation coefficients (PRCCs) are calculated. Here, the variable values are replaced by
their numerical rank for the variable and the methodology for calculating PCCs is employed.
Calculating PRCCs is currently the best method for determining statistical association
between two sets of variables in a large system (such as the relation between one input
parameter (out of many input parameters) on a particular outcome variable) [184, 185, 205].
However, usually there are a reasonably large set of parameters and also potentially a large
number of outcome variables of interest in computational and mathematical models.
Calculating separate PRCCs for each input-output variable pairing can become unwieldy. In
such cases, PRCCs can be determined for each input variable and each outcome variable by
the following algorithm. Firstly, assign an n m×  matrix (A) of input parameters, where ‘m’ is
the number of input variables (each with ‘n’ values, for the n simulations or data points). For
PRCCs, the values in the matrix will be the ordinal numbers representing the rank (1 to n) of
each value relative to each other value for that variable (column). Secondly, rank the n values
of the outcome variable of interest and augment a vector of these outcome values as an
( )1m + th column to the matrix. Thirdly, define the ( 1) ( 1)m m+ × +  symmetric matrix B as
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The test of significance is the same as for PCCs.
The method of calculating PRCCs for the purpose of sensitivity analysis was first

developed for risk analysis in various systems [186-189, 206]. Blower pioneered its
application to deterministic transmission models [161, 171, 172, 175-180]. It is now standard
to calculate the  PRCC between each independent parameter, and each outcome variable of
interest that have been simulated during the uncertainty analysis, or evaluated from derived
analytically calculated equilibrium outcomes [161]. Because the outcome variables can often
be time-dependent, PRCCs can be calculated over the outcome timecourse and determined
whether they change substantially with time. This is a tool that allows identification of
monotonic relationships. Thus, it is also important to examine scatterplots of each model
parameter versus each predicted outcome variable to check for monotonicity and
discontinuities [161, 188, 207]. PRCCs are useful for identifying the most important
parameters but not for identifying the significance of how much change in parameters
contributes to change in outcomes. PRCCs are also useful for identifying monotonic
relationships but not for non-monotonic. These issues can be explored with regression and
response hypersurfaces.

6.2. Regression and Response Hypersurfaces

Correlation coefficients are useful in determining associations when the relationship between
variables is monotonic, but they will not always be adequate. This is the case if the
relationship is non-monotonic, or one of the measurements is arbitrarily or irregularly
distributed. In such circumstances regression analysis is more appropriate. Regression
analysis also provides further information, and is especially useful if the behavior of a second
measurement in relation to the first is of primary importance. If relationships are monotonic,
PRCCs can be used in conjunction with regression analysis. PRCCs can determine the most
important explanatory variables (input parameters) and then these variables can be fed into
the regression analysis to make it more tractable. Alternatively, regression analyses can be
built by themselves as a sensitivity analysis. A regression equation provides an expression of
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the relationship between two (or more) variables algebraically and indicates the extent to
which a dependent variable can be predicted by knowing the values of other variables, or the
extent of the association with other variables. Multiple linear regression aims to find a linear
relationship between a response variable and several potential predictor variables, and
nonlinear regression aims to describe a nonlinear relationship. One of the values of regression
analysis is that results can be appreciated to a greater extent visually. If there is only a single
explanatory (or predictor) input variable, then the regression equation can be plotted
graphically as a curve; if there are two explanatory variables then a three dimensional surface
can be plotted. For greater than two explanatory variables the resulting regression equation is
a hypersurface. Although hypersurfaces cannot be shown graphically, contour plots can be
generated by taking level slices, fixing certain parameters. However, obtaining the values of
the coefficients of the regression equation can also prove to be quite insightful. Another
benefit of regression analysis is that the resulting equation can provide more meaningful
sensitivity than correlation coefficients; it can be shown that an x% decrease in one parameter
can be offset by a y% increase/decrease in another, simply by exploring the regression
equation. Further, complex relationships and interactions between outputs and input
parameters are simplified in an easily interpreted manner [208, 209]. Cross-products of input
parameters reveal interaction effects of model input parameters, and squared or higher order
terms allow curvature of the hypersurface.

Regression analysis comprises a group of statistical techniques for empirical model
building and model exploitation. It seeks to relate a response, or output variable, to a number
of predictors, or input variables, that affect it. Although higher-order polynomial expressions
can be used, constructing quadratic response surfaces is recommended. This is in order to
include direct effects of each input variable and also variable cross interactions and
nonlinearities. The generalized form of the full second-order response surface models is:

1
2

0
1 1 1 1

m m m m

i i ii i ij i j
i i i j i

Y X X X Xβ β β β
−

= = = = +

= + + +∑ ∑ ∑ ∑ ,

where Y is the dependent response variable, the Xi’s are the predictor (input parameter)
variables, and the β’s are unstandardized regression coefficients.

In order to calculate the unstandarized regression coefficients, generally a linear least
squares approach is adopted. The quadratic terms in the regression equation can be

transformed to linear terms by defining new variables (for example, 2
i iZ X= and

ij i jW X X= ). For a system of m variables, there will be

( )1 2 ( 1) 2M m m m= + + − coefficients to determine. The least squares methodology is

used to find the values b0, b1, …, bM that minimize:

( ) [ ]( )2
0 1 2 0 1 1 2 2

1

, , , ,
N

M i M M
i

F Y X X Xβ β β β β β β β
=

= − + + +∑… … ,

which are the solutions to the M+1 normal equations,
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0 1 1 2 2i i M iM ib N b X b X b X Y+ + + + =∑ ∑ ∑ ∑…

2
0 1 1 1 2 1 2 1 1i i i i M i iM i ib X b X b X X b X X X Y+ + + + =∑ ∑ ∑ ∑ ∑…

2
0 1 1 2 2iM iM i iM i M iM iM ib X b X X b X X b X X Y+ + + + =∑ ∑ ∑ ∑ ∑… .

In matrix notation,

= +Y Xb ε ,

where [ ]1 2, , , T
NY Y Y= …Y , [ ]0 1, , , T

kb b b= …b , [ ]1 2, , , T
Nε ε ε= …ε  and

11 12 1

21 22 2

31 32 3

1 2

1
1
1

1

M

M

M

N N NM

X X X
X X X
X X X

X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X .

Then,

( ) 1T T−
=b X X X Y .

In most circumstances it is inefficient and memory intensive to calculate the inverse of a
matrix such as TX X . Therefore, LU-, QR-decomposition, or some other form of Gaussian
elimination is recommended. The usual test of the significance of the fitted regression
equation is a test of the null hypothesis that all values of ib  (except 0b ) are zero, versus at

least one value of ib  is not zero. Assuming normality of the errors, the test statistic is

( )
( )
/ 1mean square regression

mean square residual /
SSR M

F
SSE N M

−
= =

−
,

where T T TSSE  - =Y Y b X Y  is the sum of squares of the residuals,

( )
2

SSR
i

i

Y⎡ ⎤= −⎣ ⎦∑ Xb (where Y is the mean of Y) is the sum of squares due to

regression, and 
 

SST SSE SSR= +  is the total sum of squares. The test statistic is
compared with the F-distribution with M - 1 and N - M degrees of freedom on the numerator
and denominator, respectively ( , 1,p N pFα − − ).
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The proportion of the variability in the data set that is explained by the fitted model, the
coefficient of determination, is calculated by

2 SSR
SST

R = ;

but some people prefer the adjusted 2R  statistic

( )2 2SSE ( ) 11 1 1
SST (N-1)A

N M NR R
N M

− −⎛ ⎞= − = − − ⎜ ⎟−⎝ ⎠ .

Although regression analysis can be useful to predict a response based on the values of
the explanatory variables, the coefficients of the regression expression are not meaningful nor
do they indicate which parameters are most influential in affecting the outcome variable. This
is due to differences in the magnitudes of values, different amounts of variability, and also
different units in the explanatory variables. A regression analysis run on original,
unstandardized variables yields unstandardized coefficients. The same analysis can be
performed from the original variables, but standardized so that they have variances of one,
producing standardized coefficients [210]. Before fitting the multiple regression equation, all
variables (predictor and response) can be standardized by subtracting the mean and dividing
by the standard deviation. The standardized coefficients represent the change in the response
variable that result from a change of one standard deviation in the corresponding explanatory
variable. However, it must be noted that this is somewhat deceptive in that there is no reason
why a change of one standard deviation in one variable should be comparative to one
standard deviation in another variable. But whereas the unstandardized coefficients cannot be
compared directly or easily, the standardized coefficients determine the order of importance
of each parameter (in much the same way as PRCCs). A standardized coefficient of +1 means
that the predictor variable perfectly describes the response variable and a value of zero means
that the predictor variable has no influence in predicting the response variable (just in the
same ways as PRCC value of +1 and zero, respectively). This should not be confused as
equivalence of standardized regression coefficients and PRCCs. They both are evaluated on
the same range, can be used to determine parameter importance, and have similar
interpretations at the extremes but they are evaluated differently and measure different
quantities. Consequently, their values will differ when analyzing the same data. Standardized
regression coefficients will typically be lower than PRCCs and should not solely be used
when there are large numbers of explanatory variables.

6.3. Logistic Regression

Binomial logistic regression is a form of regression which is used when the response variable
is dichotomous (but the independent predictor variables can be of any type). Logistic
regression is used very extensively in the medical, biological, and social sciences [211-215].
Any dichotomous response (0/1) can use logistic regression analysis; for example, whether or
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not disease or death occurs (or analyzing rejected simulations from the process of model
calibration). In an epidemic model with large uncertainty ranges, one could examine the set of
parameters that lead to an endemic epidemic versus no epidemic. Other response outcomes
could include outputs above/below a certain threshold or when an outcome variable is better
for women than for men, for example. In logistic regression, one calculates the probability of
an event occurring, given the values of various predictors. The logistic regression analysis
determines the importance of each predictor in influencing the particular outcome.

The ‘odds’ of an event is defined as the ratio of the probability that an event occurs to the
probability that it fails to occur. Thus,

Pr(indicator=1)Odds(indicator=1) = 
1 Pr(indicator=1)−

.

Probabilities are constrained to lie between 0 and 1, with 1/2 as a neutral value for which
both outcomes are equally likely. The constraints at 0 and 1 make it impossible to construct a
linear equation for predicting probabilities. The odds lie between 0 and ∞, with 1 as the
neutral value. Taking the (natural) logarithm of the odds (the ‘log odds’) will result in a range
of possible values between -∞ and ∞.  Then, the coefficients of a normal regression equation
on the log odds can be interpreted in the usual way, namely, they represent the change in log
odds of the response per unit change in the predictor. Logistic regression is a generalized
linear model that uses the logit link function,

( ) 0 1 1, 2 2, ,logit ln
1

i
i i i m m i

i

pp X X X
p

β β β β
⎛ ⎞

= = + + + +⎜ ⎟−⎝ ⎠
… , 1i n= … ,

where ( ) ( )Pr 1i i ip E Y X Y= = =  and the X’s are the covariates. This is equivalent to the

model:

( )0 1 1, 2 2, ,

1Pr(event)= 
1 expi

i i m m i

p
X X Xβ β β β

=
⎡ ⎤+ − + + + +⎣ ⎦…

.

As with normal multiple regression analysis, it is also possible to test a range of models
by applying stepwise inclusion or elimination of predictors. The β coefficients are to be found
that maximize the conditional log-likelihood of the model given the data:

( ) ( ) ( )
1

log 1 log 1
N

i i i i
i

l Y p Y p
=

= + − −⎡ ⎤⎣ ⎦∑β .

In order to maximize ( )l β , the first order partial derivatives of  ( )l β
 

are set to zero

and solved according to Newton-Raphson iterations. In matrix notation, this is solved by:
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( ) ( )

( )

1

1

new old T T

T T

−

−

= + −

=

X WX X Y p

X WX X Wz

β β

where ( )oldβ= −-1z X + W Y p , ( )old
ip β=p X , and W is defined as an N × N diagonal

matrix of weights with the ith element ( ) ( )( )1old old
i ip pβ β−X X . Here, if z is viewed

as a response and X is the input matrix then 
newβ is the solution to a weighted least squares

problem:

( ) ( )min Tnew →← − −z X z X
β

β β β ;

z is referred to as the adjusted response and the algorithm is referred to as iteratively
reweighted least squares.

There is no precise way to calculate R2 for logistic regression models. There are various
measures for a pseudo-R2, with no real consensus on preferred methods. They are not percent
of variance explained, but rather an attempt to measure strength of association. These pseudo-
R2 values for logistic regression are typically always low in magnitude and this is a problem
when reporting to audiences accustomed to seeing linear regression values. Thus, one must
interpret the pseudo-R2 more carefully and appropriately, or do not report them at all as
Hosmer and Lemeshow suggest [215]. Cox and Snell's R2 is an attempt to imitate the
interpretation of the ordinary least squares R2  based on the likelihood, but its maximum is
usually less than one [216]. Nagelkerke's R2 is a further modification of the Cox and Snell
coefficient to ensure that it can vary from 0 to 1, by dividing the Cox and Snell R2 by its
potential maximum [217]. Among other alternatives, one could also carry out bivariate
regression on the observed dependent values and predicted values and use the R2 from this
ordinary regression [218].

6.4. Smirnov Test

Like binomial logistic regression, the Smirnov two-sample test (two-sided version) [194, 219-
221] can also be used when the response variable is dichotomous or upon dividing a
continuous or multiple discrete response into two categories. It is applicable when a
qualitative definition of a model outcome can be defined in two different categories, e.g.
through a set of constraints, thresholds, or ceilings. All model outputs are classified according
to the specification of the ‘acceptable’ model behavior; each simulation is allocated to either
set A if the model output lies within the specified constraints, and set to A′  otherwise. The
Smirnov two-sample test (two-sided version) is performed for each predictor variable
independently, analyzing the maximum distance maxd between the cumulative distributions of

the A and A′  sets (see Figure 4). The test statistic is maxd and is used to test the null
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hypothesis that the distribution functions of the populations from which the samples have
been drawn are identical. Formally,

( ) ( )
( ) ( )

0

1

:

:
i i

i i

H f x A g x A

H f x A g x A

′=

′≠

and ( ) ( ) ( )max supi i id x F x A G x A′= − , where F and G are marginal cumulative

probability functions and f and g are the empirical density functions.
P-values for the test statistics are calculated by permutation of the exact distribution

whenever possible [221-223]. All values of ix , from A A′∪ , are randomly sorted (without

replacement) into two groups B and B′ , equivalent in respective sizes to A and A′ . The
maximum distance between the cumulative distributions of B and B′  is determined,

( )max
j

id x ; index j denotes the jth permutation. This procedure is then repeated over every

possible permutation for sorting ix values into B and B′ . Then, the p-value is calculated by

( ) ( )( )max max1 Pr j
i ip d x d x= − < .

The smaller the p-value (or equivalently the larger ( )max id x ), the more important is the

parameter, ix , in driving the behavior of the model. Despite some limitations, such as
possible lack in statistical power  [224]  and that any covariate structure is not detected by the
univariate maxd  statistic, the Smirnov test is useful for distinguishing the importance of
parameters in contributing to dichotomous outcomes.

Figure 4. Graphical representation of the Smirnov test for checking the separation of the distributions
under the A and ′A  sets.
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6.5. Factor Prioritization by Reduction of Variance

Factor prioritization is a broad term denoting a school of statistical methodologies to rank the
importance of variables in contributing to particular outcomes. There are many statistical
measures that could be used in defining factors of importance, each measure producing its
own ranking. These different measures should result in similar rankings, but not always
identical. To avoid confusion, the practitioner of sensitivity analyses should decide
beforehand what definition of factor importance is relevant for the analysis in question.
Variance-based measures are some of the most popular in sensitivity analyses of other fields
[195-202] and are appropriate for the output of uncertainty analyses of disease transmission
models. However, as far as I am aware, variance-based measures have never been used in
performing sensitivity analysis for disease models. Practitioners of other disciplines have
come up with various measures of sensitivity or sensitivity indices related to these variance
statistics [225, 226].

The objective of reduction of variance is to identify the factor which, if determined (that
is, fixed to its true, albeit unknown, value), would lead to the greatest reduction in the
variance of the output variable of interest, and then the second most important factor in
reducing the outcome is determined etc., until all independent input factors are ranked. The
concept of importance is thus explicitly linked to a reduction of the variance of the outcome.
Reduction of variance can be described conceptually by the following question: for a generic
model,

( )1, , MY f X X= … ,

what would happen to the uncertainty in Y if a particular independent variable Xi  could be

fixed as a constant? This resultant variation is defined as ( )*
~i i iV Y X x=X . One could

expect that having fixed one source of variation ( )iX , the resulting variance

( )*
~i i iV Y X x=X  would be smaller than the total or unconditional variance ( )V Y . Hence,

( )*
~i i iV Y X x=X  could be used as a measure of the importance of Xi ; the smaller

( )*
~i i iV Y X x=X , the more Xi is influential. However, this is based on sensitivity as a

measure from the position of a single point *
i iX x= for each input variable, and also it is

possible to design a model for which ( )*
~i i iV Y X x=X  at particular *

ix  values is greater

than the unconditional variance, ( )V Y  [227].

In general, it is also not possible to obtain a precise factor prioritization, as this would
imply knowing the true value of each factor. The purpose of the reduction of variance
methodology is then to allow a rational choice of ranking importance under uncertainty. Since
the true value is not known, the factor of greatest importance is chosen as the one which, on
average, causes the greatest reduction in variance. “On average” specifies in this case that the
variation of the outcome factor should be averaged over the defined distribution of the
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specific input factor, removing the dependence on *
ix . This is written as

( )( )~iX i iE V Y XX and will always be less than or equal to V(Y); in fact,

( )( ) ( )( )~ ~ ( )
i iX i i X i iE V Y X V E Y X V Y+ =X X  [226].

A small ( )( )~iX i iE V Y XX , or a large ( )( )~iX i iV E Y XX  will imply that iX  is an

important factor. Note that ( )( )~ ( )
iX i iV E Y X V Y≤X . Then, a first order sensitivity index

of iX  on Y can be defined as

( )( )~

( )
iX i i

i

V E Y X
S

V Y
=

X
.

The sensitivity index is conveniently between 0 and 1. A high value of iS  implies that

iX  is an important variable. Variance based measures, such as the sensitivity index just
defined, are concise, easy to understand and to communicate. This is a proper measure of
sensitivity to use to rank the input factors in order of importance even if the input factors are
correlated [228].

The first order variance and sensitivity can be extended to a general variance
decomposition scheme, proposed by Sobol [229] where the total unconditional variance for a
model with M factors can be decomposed as:

123...( ) i ij M
i i j i

V Y V V V
>

= + + +∑ ∑∑ … ,

where ( )( | )i iV V E Y X=  are the first order terms, ( )( | , )ij i j i jV V E Y X X V V= − − , are
second order terms and higher order terms are calculated by the same pattern. If there are M

terms of first order, then there are ( 1) 2M M −  second order terms, and a total of 2 1M −
teams. Evaluating every term is unwieldy and typically not done; it has been referred to by
Rabitz as “the curse of dimensionality”[230]. Usually just the first order terms are calculated.

The second order ijV  terms capture that part of the effect of Xi and Xj not described by the
first order terms and can be calculated to determine interaction effects on variability.
Different versions of variance measures for sensitivity can be found in various reviews [230-
232].

One other complementary measure of variance, denoted ( )( )| jV E Y −X , is the  total

contribution to the variance of Y that is due to all of the variables except Xj [233]. This

implies that the difference ( )( )( ) | jV Y V E Y −− X  is equal to all the terms in the variance
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decomposition that include Xj. The ratio of this difference to the total unconditional variance
is known as the total effects sensitivity index, T

jS . For demonstration, for the case of M=3,

( )( )

( )( )

1
1

1
1 12 13 123

( ) |
( )

|
,

( )

T V Y V E Y
S

V Y
E V Y

S S S S
V Y

−

−

−
=

= = + + +

X

X

where, for example, ( )( )1 1| ( )S V E Y X V Y= . Similarly, 2
TS  and 3

TS  can be calculated.
The total effects terms can be useful because they give information about the non-additive
parts of the model [226].

In terms of practical implementation, the unconditional variance can be easily calculated
from the output data of a model. However, the conditional variances based on fixing
parameters cannot be calculated as simply. If the model is simple (such as if the output
variable can be expressed in a closed mathematical form) then the conditional variances can
each be calculated directly from the model. But ideally a sensitivity analysis would be
performed purely on the input and output data without need to refer back to the model used to
generate the output from the input. In order to generate conditional variances efficiently for
this sensitivity analysis, it is appropriate to use a regression model. The regression model
must fit the data very well though (a high coefficient of determination R2); arbitrarily, an R2

value of at least 0.7 should be obtained from a regression model in order to use it in a
reduction in variance sensitivity scheme.

6.7. Concluding Comments about Sensitivity Analyses

In order to simplify model sensitivity analyses, there are times when non-influential factors
can be fixed as constants [229]. The objective of this setting is to identify the variable or the
subset of input variables that can be fixed at any given value over their range of uncertainty
without reducing significantly the output variance. If such a set is identified, then the
remaining factors effectively explain almost all of the unconditional variance. The non-
influential factors can be fixed anywhere in their range of variation without significant loss of
information in the model.

One should also keep in mind that an unpleasant (or pleasant, depending on the
viewpoint) feature of sensitivity analysis is that it may falsify the analysis altogether by, for
example, showing that the model cannot answer the fundamental research question given the
uncertainties, or that the model is irrelevant, or that the variation in the output of interest is
insensitive to the available policy options given the uncertainties. An example that shows how
sensitivity analysis can falsify a model as applied to policy-making is described in [234].
However, clearly this should not deter anyone from carrying out sensitivity analyses as it is
essential in ensuring the science is performed rigorously [235].
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7. Presenting Results

Remember that modeling is, by definition, applied science. Basic science has the purpose of
pursuing knowledge that is unknown and applied science has a different goal, of attaining
greater understanding for the purpose of more immediate and direct applied benefit. In order
to make modeling investigations applicable and influence change, nothing is more important
than effective communication. Clearly written manuscripts are the most obvious means. My
rule of thumb is that an epidemic modeling manuscript should be written so that any
intelligent person outside the field (and outside academia) can understand clearly what the
investigation did, the basic constructs of how results were obtained, what the key results are,
and the reasons behind these results. Effective communication also occurs directly with “real-
world” field workers or policy makers throughout, and after, the investigation. But the most
effective way of conveying results, around which the text of manuscripts direct dialogue
should be based, is the development of high-impact, visual, clear figures.

I once heard a quote from a Professor of Applied Mathematics: “I am a mathematician; I
do not draw cartoons”. The inference and surrounding opinion was that more pure thought
can be represented through mathematics and this was not to be defiled with pictures, figures,
or cartoons. However, frankly, this professor is out of touch with reality and his research is
very unlikely to influence real public health. Results must be conveyed in the most effective
means. This means well thought out illustrations and figures are essential. Otherwise, the best
models and results will often be in vain and the message will be much more difficult to
receive by people in need of it outside the biomathematics field. A visual representation of an
analytical relationship or a good numeric-based figure is valuable in conveying the point of a
piece of work. Figures and the discussion around the figures are often the influential aspects
of a good scientific manuscript. As the saying goes… a picture is worth a thousand words (or
Greek symbols). Lastly, generate figures that are easily understood. For example, to reach the
medical community use plots that they are familiar with, such as Kaplan Meier curves for
example. The amount of simulated data that can be produced, especially from full uncertainty
and sensitivity analyses, is massive. Accordingly, we are able to produce many colorful and
descriptive plots. We should do so, but ensure that they are not too cluttered, are easy to
understand, and make a clear and powerful point.

Color can also be greatly utilized to distinguish features of the plot. When one prints in
black and white, the figures should still be interpretable. Since colorblindness is fairly
common (one in twelve Caucasians, one in twenty Asians, and one in twenty-five Africans)
[236], it is also essential to take certain colors into consideration to avoid alienating this
relatively large group (see http://jfly.iam.u-tokyo.ac.jp/color/); for example, instead of using
red-green use magenta-green.

8. Conclusions

Epidemiology of infectious diseases is no longer purely dominated by identifying aetiological
agents and risk factors, but has moved more towards understanding the complex mechanisms
involved in controlling the distribution of diseases in populations [237]. Mathematical disease
transmission models provide an ideal framework for theoretical investigation of these
mechanisms. However, the language of mathematics can be intimidating for non-
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mathematicians. This can lead to both extremes of reception of modeling investigations:
either being ignored, or accepted uncritically. Modelers are required to present the models in
a balanced manner somewhere between describing the full complexity of irrelevant details
and presenting a “black box” without outlining its critical assumptions. Being
interdisciplinary by nature, practitioners of biomathematics require exceptional
communication skills in order to effectively convey modeling investigations to the
appropriate “real-world” audience where they will hopefully inform, guide, and assist in
influencing and changing public health policy.

One of the paradoxes in infectious disease modeling is that although the approach is
quantitative in nature, often the results and conclusions that are drawn from investigations can
only provide qualitative insights. But valid qualitative insights can assist in the development
or changing of public health policy. A primary purpose of modeling is to predict the
consequences of changes due to different interventions. Accordingly, the models provide a
tool to translate theoretical intervention strategies into meaningful patterns and trends to
inform policy-makers. Infection transmission modeling has provided valuable insight into the
nonlinear dynamics that spread infection. To further influence public policy, models should
(i) improve the intuitions of policy makers to the ways that their decisions affect the behavior
of the transmission system; (ii) deal explicitly with all the issues that the policy makers see as
important to making their decision; and (iii) allow the policy makers to locate reality as they
see it within the model structure so that they feel confident that the results they are looking at
are relevant to their decision [103]. Effective modeling should always be an iterative process,
with dialogue between modelers, experimentalists, field workers, and policymakers. In order
for epidemic models to be investigated most appropriately for application, less emphasis
should be placed on the equations and more on the parameters of the model equations. To
treat this issue thoroughly, not only should interdisciplinary experts be consulted frequently,
but rigorous uncertainty and sensitivity analyses should be conducted. Complete
methodologies and algorithms for standard and novel uncertainty and sensitivity analyses
have been provided in this chapter. The application of these techniques may have
considerable utility in a wide variety of applied mathematical applications. But this current
standard set of methods is by no means complete; there is plenty of room for expansion of the
suite of tools used in the field, drawing from any quantitative framework (whether it be
statistics, economics, computer science, risk analysis, or the plethora of other related
disciplines).
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Abstract

The theory of metabolism can be subdivided in two main fields: dynamic theory
and structural theory. Dynamic theory attempts to produce a description of the sys-
temic dynamic behavior from as little experimental information as possible. Structural
theory provides ways of decomposing complex networks in ways that reveal inher-
ent functional relationships between the parts of the system. Since metabolic sys-
tems function out of equilibrium, due to the permanent input of material and energetic
fluxes, dynamic theory has to deal with non-linearities. On the other hand, structural
theory analyses the null-space of a matrix of relationships (usually, the stoichimetric
matrix, giving rise to stoichiometric analysis) and therefore it belongs to either linear
or convex analysis. This paper provides a new dynamic theory that generalizes some
others, such as Metabolic Control Analysis (MCA) and Biochemical Systems Theory
(BST), to time-varying external fluxes of any form, and provides a straighforward way
of connecting the non-linear dynamics of metabolic systems to their stoichiometric
structure, by means of a set of new properties. In particular, the non-linear response
is described in terms of a generalized perturbation theory whose main coefficients are
the susceptibilities (much in the same way as in non-linear optics). These coefficients
are time-dependent (on one or more perturbation times) and become translationally
invariant in time as the system approaches a steady state (the main realistic state of
metabolic networks, apart from oscillatory behavior). Hence they can be integrated
into constant coefficients, the responsivities, that provide a set of constrains connect-
ing the dynamics and the stoichiometry of the network. As a consequence, the number
of stoichiometric degrees of freedom can be reduced because of the dynamics of a
specific system. This result, is illustrated by means of examples. The theory presented
herein falls in the field of functional analysis, since the susceptibilities are functional
derivatives of the response with respect to complete time-courses of the input fluxes,
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which work as the excitations of the metabolic network and can bemanipulated in
experiments. Hence, the constraints provided by the theory should help simplify high-
throughput experiments.

1. Introduction

Metabolic networks operate far from equilibrium, due to the existence of permanent input
fluxes, while, at the same time, avoiding explosive accumulation of metabolites and achiev-
ing homeostasis. For modelling purposes, the input fluxes are often considered to be either
constant or such that they consume a so-called external metabolite whose concentration is
constant. The latter case is usually a good approximation when the substrate of a metabolic
pathway proceeds from an inexhaustible source of material. These two extreme approxi-
mations, although frequently correct, are not universal. For example, predators often feed
discontinuously, only when preys can be found. Because of this, it is essential to understand
metabolic responses to variable fluxes of material.

Several approaches to the modelling of the dynamics of metabolic networks exists that
can, in principle, be applied when fluxes vary. Models based on differential balance equa-
tions are widespread and are considered to be fundamental, as they contain very detailed
information of enzyme rates and parameters. However, this is not only their strength, but
also their weakness, since practical experimental determination of kinetic parameters is of-
ten difficult if not impossible. A known problem is that parameters measured in vitro are
often unreliable when used in the context of the network, because of the many interations
present in vivo that disappear when dealing with isolated enzymes [1].

An alternative, frequently encountered in metabolic engineering, is to use black-box
approaches, in which only the relationships between inputs and selected outputs are con-
sidered. The problem then is not of parameter measurement, but of system identification.
Usually, extremely general transfer functions are defined, that can be determined experi-
mentally. Transfer functions allow, by applying appropriate operators, to convert inputs
into outputs as if the fluxes were nothing more than chemical signals, transformed through
metabolic filters [2–4]. The relationships between transfer functions for different responses
can then be analysed, in order to gain some insight into the internal structure of the network.

Yet another possibility is to use some perturbative approach. The goal is to obtain
general purpose sensitivity coefficients that can be used as parameters of a simplified model.
A successful theory based on this idea is Biochemical Systems Theory (BST) [5–7]. There
are several flavors of the theory. Particularly useful are S-systems [8, 9], as they group
all terms producing a given metabolite and all those consuming it in two respective mass-
action-like rates, thus making the treatment of the differential equations extremely simple
in a logarithmic space. The theory is, essentially, a linearization with respect to fractional
variations (hence the logarithmic space).

The main goal of BST is to describe the dynamics of the network. A related approach
with a different aim is Metabolic Control Analysis (MCA) [10, 11]. In this theory, the
foremost goal is to understand control and regulation. For reviews, see [12, 13]. The main
sensitivity coefficients of the theory are the control coefficients. For example, the flux
control coefficients are
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CJ0
ij =

e0
j

J0
j

dJi

dej
, (1)

whereJi is a steady state flux through reaction ratei, ej is the enzyme concentration for
enzymej and0 denotes a reference state. The control coefficients express the sensitivity
of some observable with respect to a parameter. They satisfy summation theorems, under
certain assumptions, particularly homogeneity of the reaction rates with respect to enzyme
concentrations and constant concentration of initial and final metabolites of the pathways.
Some of the assumptions can be lifted, leading to more general expressions for the theorems
[14].

Control coefficients are global quantities, as they quantify variations of systemic prop-
erties, like fluxes. Other coefficients of the theory, the elasticities,

εx0
ij =

x0
j

J0
j

∂vi

∂xj
, (2)

wherex is a concentration andv is a reaction rate, are local properties, since they refer to
rates of particular reactions in the network. Control coefficients and elasticities are related
by what is known as connectivity theorems. The exponents in the mass-action-like rates of
BST are identical to the elasticities in MCA. Both theories are, therefore, closely related.

Dynamics is only one of the two fundamental aspects of metabolic networks. The
other one is the network structure. Both aspects are tightly intertwined, as a seminal paper
by Reder showed [15] in the context of MCA. The structure of the network is frequently
represented by the stoichiometric matrix, i.e. the matrix of coefficients of the balance equa-
tions in differential equation models. Since metabolic networks remain, as already men-
tioned, in a homeostatic state, there is special interest in understanding the space of possible
steady states, which depends strongly on the structure. This question has been answered by
Metabolic Pathway Analysis [16–19], among other approaches. By using convex analysis,
a unique set of elementary modes, that appears to be related to metabolic funcion [20], can
be obtained. A more basic approach is to use conventional linear analysis. Convex analysis
has some advantages over linear analysis. First, the basis of possible flux distributions is
unique, so interpretation is straightforward. Second, irreversibility can be dealt with in a
natural way. Nevertheless, linear analysis is the fundamental technique to find the set of
admissible steady states, so it is still useful to derive fundamental theorems.

Despite all the available theories, there are fundamental problems that have not been
solved yet. In particular, both MCA and BST are linear approximations (in logarithmic
spaces) and, although some non-linear extensions of MCA exist [21, 22], the coefficients
do not allow the calculation of transient responses to finite time-dependent excitations. For
this, a more general approach is needed in which the sensitivity coefficients are not constant
but time-dependent. This idea is in line with black-box approaches. The main purpose of
this chapter is to show how the concept of transfer function can be extended to non-linear
dynamics of metabolic systems. For this, susceptibility functions, analogous to those found
in non-linear optics [23], will be used.

A second problem presently found is that stoichiometric analysis of metabolic networks
produces the set of admissible steady state fluxes, but does not provide a way of predict-
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ing what the coefficients of the linear combinations of flux modes will be under particular
excitations and for specified network kinetics. To deal with this, we will introduce the
responsivities of the system. These are sensitivity coefficients related to the dynamic sus-
ceptibilities.

The organization of the chapter is as follows. In section 2., the dynamic part of the
theory will be presented. First, a general way of dealing with excitations in terms of fluxes
of concentrations will be discussed, in section 2.1.. Next, a representation of responses
using functional analysis will be proposed and the susceptibilities will be defined. The
linear approximation will be used in section 2.3. to compare the present approach and MCA
coefficients. A practical algorithm for computing susceptibilities will be given in section
2.4.. It will be illustrated by a simple analytical calculation of the first two susceptibilities of
an irreversible Michaelis enzyme. The connection of the susceptibilities with stoichiometric
analysis will be derived in section 3.1., where the responsivities of metabolic systems will
be defined. The constraints that the network structure imposes on the responsivities will
be obtained in section 3.2.. They will be applied to two simple examples of unbranched
(section 3.3.1.) and branched (section 3.3.2.) networks. The chapter will conclude with
some general comments about the advantages and limitations of the approach, and with an
appendix where functionals are briefly introduced for non-mathematicians.

2. Dynamic Responses

2.1. Excitations

We start be showing that input fluxes are a general way of representing material excita-
tions in metabolic networks. It is useful to consider the case of instantaneous variations of
concentrations. Suppose first that the metabolic network was originally subject to some ex-
citation that keeps it out of equilibrium and at a steady state. We call this state the reference
state and label it as “ref”. An experimenter has access tow metabolites, via variations of
the fluxes that the system was already receiving at its reference state. Let these input flux
variations be∆J i

in(t), i = 1, . . . , w, or simply∆Ji(t). These fluxes represent all the free-
dom that the experimenter has to influence the behavior of the system. Input fluxes will be
a completely general form of excitation if any perturbation of the system can be represented
using them.

The simplest possible perturbation is the instantaneous change of the concentration of
a metabolitei, ∆S0

i at timet0. In terms of differential equations, it can be written as:

d∆Si

d∆t
= 0 with ∆Si(t0) = ∆S0

i , (3)

where∆S(t0) is the variation of concentration of the external metaboliteS at “initial” time,
t0, with ∆t = t − t0. This is a typical initial-concentration experiment, like those used to
determine kinetic parameters of enzymes and, apparently, it does not involve fluxes.

However, the same experiment can be represented, using an input flux, as:

d∆S

dt
= ∆S0δ(t − t0) with ∆S(t0) = 0. (4)



Structure-Dynamic Relationships of Metabolic Networks 59

whereδ(t− t0) is aDirac’s delta. In this representation, there is no explicit variation of the
concentration. Instead, the reference input flux is changed by means of an impulse. This
approach is harder to implement in practice, but nevertheless there is an exact mathematical
equivalence between Eqs. (3) and (4). To prove it, it suffices to check that both equations
share the same Laplace transform (sis the conjugate variable of time),

sL [S] = ∆S0e
t0s, (5)

and therefore have the same solution. The linearity of the Laplace operator guarantees that
the equivalence is true for any system in which external fluxes are additive.

Moreover, using the sifting property of Dirac’s delta,any time-dependent excitation,
∆Jin(t), can be represented in terms of impulses,

∆Jin(t) =

∫ t

0
∆Jin(τ)δ(t − τ)dτ. (6)

2.2. Responses

The equivalence between initial-concentration and impulse-perturbation experiments opens
a way to the generalization of perturbation theory that we are pursuing: Eqs. (3) and (4)
relate impulses to finite changes of concentration at specified times, and eq. (6) shows a
connection between excitations of any form and impulse excitations. We would like to be
able to obtain responses to those excitations.

For example, the basic experiment of MCA, the determination of a control coefficient,
consists of changing (infinitesimally) the concentration of an enzyme and measuring the
change of flux that results. This is exactly what Eq. (3) represents, but, of course, the
consequences of such a change will be highly non-linear, due to the kinetics of metabolic
systems. More generally, we would like to know what the response of the system would
be if, instead of changing the enzyme concentration by a constant value at a given time,
we allow it to be time-dependent. Suppose, for instance, that there are fluxes of synthesis
and degradation of the enzyme that must be accounted for. This problem is harder than
just introducing time-dependence in the values of the parameters (in this MCA example, an
enzyme concentration), because the response of the network to changes is, in general, not
instantaneous, even if the excitation is.

The response to the excitations∆Ji(t) can be stated, very formally, as a transformation
F , such that the variation of a variable of interest,∆V (t) is

∆V (t) = F [∆J1(t), . . . ,∆Jw(t)]. (7)

Mathematically,F is a functional (see Appendix A.). In most applications of biochemical
interest,F is non-linear and a closed form solution is not known.

For the particular case of impulse excitations,∆Skδ(t − tk0), with k the index of a per-
turbed metabolite, the functional reduces to an ordinary function of the impulse intensities,
∆Sk, and of the times elapsed since the perturbation,∆tk = t − tk0,

∆Vδ(t) = f(∆S1, . . . ,∆Sw; ∆t1, . . . ,∆tw) (8)
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This function is the progress curve of the variableV (usually, a rate,v, or a concentra-
tion, S) resulting from a typical initial velocity experiment, when the system is allowed to
relax completely to the reference state. Therefore, it is generally accessible from experi-
ment. In fact, similar data are routinely used to determine kinetic parameters of enzymes.

If the system has linear kinetics, which is a common approximation when enzymes
operate well below the saturation point, the form of functionalF is just the linear superpo-
sition law

∆V (t) =
w
∑

i=1

∫ t

0
χ

(1)
i (t; t1)∆Ji(t1)dt1, (9)

whereχ
(1)
i (t; t1) is the first order susceptibility, defined as the functional derivative of the

functionalF with respect to the input flux of metabolitei:

χ
(1)
i (t; t1) ≡

δ∆F [∆Ji(t)]

δ∆Ji(t1)

∣

∣

∣

∣

∣

∆Ji(t1)=0

(10)

The susceptibilities are evaluated at the reference state and are, therefore, sensitivity
coefficients of the system at that state. The significance of Eq. (9) is that, in linear systems,
it produces the transition from the initial state to any other state induced by thefinite exci-
tations,∆Ji(t). The integration limits in Eq. (9) reflect the fact that meaningful systems
are causal. In systems whose behavior doesn’t change in time, i.e. if the implicit kinetic
parameters remain constant, the susceptibilities have the time-independence property:

χ
(1)
i (t; t1) = χ

(1)
i (t − t1; 0) (11)

In general, in a non-linear metabolic system there is no known closed-form equivalent
of Eq. (9). Therefore, approximations are needed. The generalization of the concept of
susceptibility to higher orders leads to a functional Taylor expansion, which can be used to
obtain such approximations. For a system with only one input, the series is

∆V (t) =

∫ t

0
χ(1)(t; t1)∆Jin(t1)dt1

+

∫ t

0

∫ t

0
χ(2)(t; t1, t2)∆Jin(t1)∆Jin(t2)dt1dt2

+ · · · (12)

with nonlinear susceptibilities of the form

χ(ρ)(t; t1, . . . , tρ) ≡
1

ρ!

δ(ρ)∆F [∆Jin(t)]

δ∆Jin(t1) · · · δ∆Jin(tρ)

∣

∣

∣

∣

∣∆Jin(ti)=0
i=1,...,ρ

(13)

Before writing the general expansion for several inputs, it is important to note that, in Eqs.
(12) and (13), the nonlinear terms contain several evaluations of the same excitation,∆Jin,
at as many perturbation times as the order of the corresponding term,ρ, rather than sev-
eral different excitations. In the general case, when several external metabolites exist, the
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susceptibilities can be defined with respect to different orders for each separateinput. This
slighly complicates the notation and it is essential to understand it fully before proceeding
further. The most general expression for the susceptibilities of metabolic systems is

χ(ρ)
p1,...,pw

(t; t1, . . . , tρ) ≡

1

ρ!

δ(ρ)∆F [∆J1(t), . . . ,∆Jw(t)]

δ∆J1(t1) · · · δ∆J1(tp1) · · · δ∆Jw(tρ−pw+1) · · · δ∆Jw(tρ)

∣

∣

∣

∣

∣∆Ji(tj)=0

i=1,...,w
j=1,...,ρ

, (14)

where the vector of metabolite orders,p ≡ (pi, . . . , pw), is one of the non-negative inte-
ger solutions to the equation

∑w
i=1 pi = ρ. Because somepi can be zero, not all external

metabolites need to take part in a particular susceptibility. For instance, the second order
susceptibilities of a two-input system areχ

(2)
2,0, χ(2)

1,1 andχ
(2)
0,2, i.e. the second-order suscepti-

bility with respect to metabolite 1, the first-order one in both 1 and 2, and the second-order
one in 2, respectively. Thus, the total number ofρ-th order susceptibilities in a system with
w inputs isSρ,w = (w + ρ − 1)!/[(w − 1)!ρ!].

Each perturbation time is associated with a single impulse perturbation, and each may
correspond to a different external metabolite. For instance, in a system with three external
metabolites, in the 4-th order susceptibilityχ

(4)
2,1,1(t; t1, t2, t3, t4), the first two perturbation

times correspond to metabolite 1, whereas the last two correspond to metabolites 2 and
3, respectively. This has implications on the intrinsic symmetry of the function [24]: inter-
changing timest1 andt2 leavesχ(4)

2,1,1 unchanged, but all other times cannot be interchanged
without affecting the value of the susceptibility.

With the aid of Eq. (14), the general functional Taylor expansion for a metabolic system
with w inputs is

∆V (t) =
∞
∑

ρ=1

∑

p

∫ t

0
· · ·

∫ t

0
χ

(ρ)
p (t; t1, . . . , tρ)

× ∆J1(t1) · · ·∆J1(tp1) · · ·∆Jw(tρ−tw+1) · · ·∆Jw(tρ)dt1 . . .dtρ (15)

In this representation of the functional, the susceptibilities characterize the system, and they
allow to evaluate the response to arbitrary inputs. From the definition, Eq. (14), it would
seem that each susceptibility requires data from a different type of experiment, namely,
double impulse perturbation experiments for a second-order susceptibility, et cetera. Fortu-
nately, it will be shown below (section 2.4.) that composition of responses can reduce the
amount of necessary experimental data significantly.

2.3. Linear Approximation and the Connection to Elasticities

Eqs. (9), (12) and (15) are finite increments with respect to the reference state. Thus,
they represent finite responses. In order to make a comparison of the present approach and
other metabolic theories, such as MCA and BST, let us consider the first-order infinitesimal
variation of a rate instead. The appropriate differential expression is analogous to Eq. (9),
but it is valid also in non-linear systems:
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δ∆vi(t) =
∑

j

∫

δ∆Fvi
[∆J1, . . . ,∆Jw](t)

δ∆Jj(t′)

∣

∣

∣

∣

∣

ref

δ∆Jj(t
′)dt′, (16)

∆Fvi
is the representation of thei-th rate as a functional of the input fluxes. Both the

functional and the fluxes are still finite variations with respect to the reference state, but the
functional derivative must be evaluated at ref for the expression to hold.

Rates depend on the vector of concentrations (again, variations with respect to the ref-
erence state), which depend themselves on the external fluxes, and hence the functional
derivative can be rewritten as

δ∆Fvi
[∆J1, . . . ,∆Jw](t)

δ∆Jj(t′)

∣

∣

∣

∣

∣

ref

=
∑

k

∫

δ∆Fvi
(t)

δ∆Sk(t′′)

δ∆Sk(t
′′)

δ∆Jj(t′)

∣

∣

∣

∣

∣

ref

dt′′, (17)

In the particular case in which rates can be expressed as functions of the instantaneous
concentrations at real timet (the most frequent situation in practice), it holds that

δ∆Fvi
[∆J1, . . . ,∆Jw](t)

δ∆Jj(t′)

∣

∣

∣

∣

∣

ref

=
∑

k

∫

∂∆Fvi
(∆S1, . . . ,∆Sw)

∂∆Sk(t′′)
δ(t − t′′)

δ∆Sk(t
′′)

δ∆Jj(t′)

∣

∣

∣

∣

∣

ref

dt′′

=
∑

k

∂∆Fvi
(∆S1, . . . ,∆Sw)

∂∆Sk(t)

δ∆Sk(t)

δ∆Jj(t′)

∣

∣

∣

∣

∣

ref

(18)

Thefactors

ε∗i,j ≡
∂∆Fvi

∂∆Sj

∣

∣

∣

∣

∣

ref

(19)

areunscaled elasticity coefficients of the ratei with respect to the concentrationj. Thus,
Eq. (18) shows how the functional differential Eq. (16) is connected to MCA and BST,
through common coefficients of all three theories.

If the reference state is a steady state, the elasticities, Eq. (19), are constant coeffi-
cients. If, on the other hand, the reference is a time-dependent transition, time-dependent
coefficients result, much in the same way as in previous theories [25]. The other factors,

χS
i,j(t, t

′) ≡
δ∆Si(t)

δ∆Jj(t′)
, (20)

areconcentration susceptibilities of metabolitei with respect to a flux through metabolite
j. They express a complete time-course of the concentration after a perturbation at timet′,
not just the immediate response at the excitation time.

If i = j, i.e. if the external flux and the measured concentration correspond to the same
metabolite, and if, in addition, the metabolite is not consumed in any reaction, Eq. (20) is
a step function, i.e. the concentration remains constant after the initial perturbation. This
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is the usual situation when dealing with the susceptibilities of enzymes in the context of
MCA. In this particular case,εi,jχ

S
j,j(t, t

′) ∝ εi,j for t ≥ t′, with a proporcionality constant
equal to one in most cases. This reduces many of the terms in Eq. (18) to the equivalent
MCA elasticity coefficient, but the functional differential contains cross-terms as well, that
account for the sensitivity of a rate to metabolite concentrations which do not immediately
participate in a particular reaction. Such delayed responses make the present theory imme-
diately time-dependent and, as such, it is a generalization of previous approaches.

2.4. Computation of Susceptibilities by an Iterative Procedure

Before computing a susceptibility, appropriate excitations have to be specified. There is no
loss of generality in always choosing fluxes, rather than concentrations or other variables,
because, as section 2.1. shows, material excitations in metabolic systems can always be
represented as input fluxes of metabolites. Furthermore, dimensional analysis of one of the
definitions of the functional derivative, Eq. (62), shows that, if the excitation is a flux, the
impulses necessary to disturb the system must have dimensions of concentration. This is
convenient because concentrations are easily accessible experimentally, whereas rates are
not. On the other hand, the response (i.e. the functional), unlike the excitations, can be
any variable of interest, regardless of its dimensions. The two most frequent instances are
concentrations and rates, which depend on one another. For instance, Eq. (18) shows a
relationship between rate and concentration susceptibilities (to a first order approximation).

Although the formal definition of the susceptibilities is given in Eq. (62), a practi-
cal method for obtaining them from experimental data is necessary. A general method of
computation as multivariate partial derivatives has been proposed [24], but that basic ap-
proach is extremely expensive. It requires determining a great number of multidimensional
functions of the impulse intensities. The amount of required experimental data grows com-
binatorially, even for a single input. The purpose of this section is to show that impulses
exerted on the same metabolite concentration are indeed not independent. This reduces the
experimental effort enormously.

To see how experimental data can be reused, consider the case of a system with a sin-
gle input. The corresponding susceptibilities are given by Eq. (13). If the derivatives are
computed directly, a discretization of theρ-th order susceptibility inτ time-intervals would
requireR

∏ρ
i=1

(τ−1)!
(i−1)!(τ−i)!

(ρ−1)!
(i−1)!(ρ−i)!

∏i
j=1(pj + 1) separate multiple perturbation experi-

ments, withR a constant factor depending on the numerical method used to compute partial
derivatives, and withpj including all possible solutions of

∑i
j=1 pj (for details, see [24]).

In other words, the unrefined problem scales combinatorially with the time discretization
and with the time order, and polynomially with the partial-derivative orders.

Suppose, however, that time-independence properties like Eq. (11) hold. This is the
case when the implicit parameters of the system do not depend in time. In differential-
equation-based models, this is equivalent to say that the coefficients do not depend on time.
We observe that, under such premise, the responses to multiple-perturbation experiments
can be composed, as shown in Fig. 1, from single-perturbation data.

The line of argument which leads to this conclusion is as follows. The definition of
the susceptibilities, Eq. (13), implies that, in order to determine a second-order response,
the system must be perturbed twice, at timest1 andt2, with impulses of intensities∆S1
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Figure 1. Composition of responses for determining susceptibilities. At timet1, a first
impulse of intensitya is introduced. The system then relaxes (dashed line) until, at timet2,
a second impulse of intensityc − b is applied. The final relaxation (solid line) can be used
for computing a second-order functional derivative with respect to the two intensities. The
procedure can be extended to higher-order derivatives.

and∆S2, respectively. If the response of a concentration to impulses, denoted∆Sδ after
Eq. (8), is known, and provided thatt1 ≤ t2, it holds that∆Sδ(t2) = ∆Sδ(∆S1; t2 − t1).
Consequently, at the time the second impulse is introduced, the concentration of the external
metabolite is made of two terms: the intensity of the second impulse and the concentration
remaining after the first one,∆S2 + ∆Sδ(∆S1; t2 − t1). As a result, the response aftert2
can be expressed as

∆Sδ(∆S2 + ∆Sδ(∆S1; t2 − t1); t − t2). (21)

The second-order susceptibility results from taking partial derivatives with respect to∆S1

and∆S2. Such a procedure can be trivially extended to third- and higher-order derivatives
by simple iteration of the response to impulses. If the response of interest is an enzyme
velocity,∆v, Eq. (21) would change to

∆vδ(∆S2 + ∆S(∆S1; t2 − t1); t − t2). (22)

where the response of the velocity to impulses∆vδ is used only at the most external iteration
level.

Since the susceptibilities can be expressed as partial derivatives of expressions like Eqs.
(21) and (22), they will obviously depend only on the partial derivatives of the responses
to impulses. The amount of data that a numerical computation will require is therefore
proportional to the order of the susceptibility, with the same constant factorR, dependent
on the differentiation algorithm, as above. One may wonder how it is possible that the ba-
sic algorithm, of combinatorial complexity, has been reduced to a linear-scaling algorithm.
The answer is that the explicit development of the susceptibilities in terms of derivatives of
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∆Sδ, et cetera, produces expressions of growing complexity. It is well known that partial
derivatives are related to partition problems [26]. The first few derivatives of iterated ex-
pressions of the form of Eq. (21) have been given elsewhere [27] and are reproduced here
for completeness:

χ
(1)
F

(t; t1) = ∂F1 (23)

χ
(2)
F

(t; t1, t2) =
(

∂S1∂
2
F2

)

/2! (24)

χ
(3)
F

(t; t1, t2, t3) = [∂S1 (∂S2)
2 ∂3

F3

+ ∂S1∂
2S2∂

2
F3

]

/3! (25)

χ
(4)
F

(t; t1, t2, t3, t4) = [∂S1 (∂S2)
2 (∂S3)

3 ∂4
F4

+ 3∂S1 (∂S2)
2 ∂S3∂

2S3∂
3
F4

+ ∂S1∂
2S2 (∂S3)

2 ∂3
F4

+ ∂S1 (∂S2)
2 ∂3S3∂

2
F4

+ ∂S1∂
2S2∂

2S3∂
2
F4

]

/4! (26)

· · · · · ·

where the notation

∂r
Fn ≡

∂r∆Fδ(∆S0, ∆tn)

∂∆S0

∣

∣

∣

∣

ref

, (27)

hasbeen used.F indicates that the notation is valid for the functional representation of any
variable of interest, and∆Fδ shows that responses to impulses (functions, not functionals)
are used. The dummy subscriptn refers to the index of the corresponding perturbation time
(always an increment with respect to the first impulse in the equivalent multiple impulse
experiment) that must be used in Eqs. (23)-(26).

These expressions are universally correct, for systems with one input and for terms in
the multiple-input expansion Eq. (15) other than the cross-terms, and do not depend on the
nature of either the system, the excitation or the response. Because they only depend on the
partial derivatives of responses to impulses, they emphasize the fundamental importance
of this kind of experiments, well-known in linear systems theory, but less recognized in
non-linear theory. Thus, in biochemistry, initial-concentration and initial-rate experiments
are essential, not only in equilibrium theory, to determine kinetic parameters, but also in
far-from-equilibrium conditions.

It should be mentioned that Eqs. (23)-(26) are extensions of existing standard Faà di
Bruno formulas [28], but a general formula for the multiply iterated problem has not been
found yet. Cross-terms in multiple impulse systems also depend on impulse responses, but
more general functions, of the form of Eq. (8), must be used to iterate and take derivatives.

2.4.1. Example

Let us compute the first two susceptibilities of the rate of an irreversible Michaelis-Menten
enzyme,v = V S/(K + S), with respect to the input of the substrateS. The parameters
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of the enzyme are the maximum velocity,V , andthe half-saturation Michaelis constant,
K. For simplicity, we restrict ourselves to the empty reference state, so thatSref = 0.
Consequently, the notation can be simplified by omitting the∆′s.

A comprehensive derivation was given elsewhere [27], but the method there was ex-
act for the expression of∆Sδ. Here, we derive a much simpler expression of the impulse
response, valid only to obtain the first two susceptibilities, with the aim of clarifying the
significance of the iterative procedure. The computation of the first susceptibilities pre-
sented below is, however, exact, as can be checked by comparison with the comprehensive
method. Whereas that method is frequently not affordable analytically in most systems, the
simplified approach used in this section should be feasible more generally, although it can
produce only the first few sensitivities.

We start with the corresponding differential equation for the system:

dS

dt
= Jin −

V S

K + S
. (28)

This equation cannot be integrated explicitly in terms of usual functions, as is the case in
most metabolic systems, due to non-linearities . Fortunately, the computation of the first two
susceptibilities only requires a second-order solution. Therefore, the rate can be expanded
in a Taylor series, so that

dS

dt
' Jin −

V S

K
+

V S2

K2
. (29)

The impulse response of the concentration corresponds exactly to the solution of an
initial concentration problem, that is, of Eq. (29) withJin = 0. After rearrangement, the
formal solution

K

V

∫ S

S1

(

S′ − S′2/K
)

−1
dS′ ' −∆t = t1 − t (30)

results. The initial concentration has been labelledS1 for convenience. Eq. (30) can be
integrated, after decomposition in fractions of polynomials, to yield

S(S1; ∆t) '
S1K exp (−V ∆t/K)

K − S1 {1 − exp (−V ∆t/K)}
. (31)

The key simplification here has been the expansion of the original rate equation in
series, and truncation beyond order two, so that an integral could be calculated, whose
solution could be rearranged to yield the explicit concentration decay. A second expansion
of the implicit solution (up to order two) would also contain all the information necessary
to calculate the first two susceptibilities and could be attempted in other systems, when it is
not possible to express the solution explicitly.

Taking partial derivatives of Eq. (31), the first-order susceptibility of the enzyme rate
results:

χ(1)(t; t1) =
δv(t)

δJin(t1)

∣

∣

∣

∣

Jin(t1)=0
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=
∂v

∂S

∂S

∂S1

∣

∣

∣

∣

S1=0

= (V/K) exp(−V ∆t/K), t ≥ t1 (32)

Note that the second line is an expression of the form of Eq. (18), where the first factor
is an unscaled elasticity and the second, a concentration susceptibility, has been replaced
by the corresponding partial derivative of the initial concentration decay. Even when the
enzyme rate is known, as in this example, this factor should be determined, in general, from
experiment, because it can be affected by network connectivities.

The derivation of the second-order susceptibility is more interesting. As mentioned in
the previous section, it requires data from double-impulse experiments, that is, the excita-
tion must be of the formJin(t) = S1δ(t − t1) + S2δ(t − t2), with t2 ≥ t1.

As usual, it is preferable to consider thatJin(t) = 0 and to introduce the excitation
as finite variations of the concentration. As explained above, this is achieved by iterating
Eq. (31), so that the evolution of the concentrationafter t2 is S(S1, S2; t − t2) = S(S2 +
S(S1; t2 − t1); t − t2).

The second-order susceptibility is now easy to compute:

χ(2)(t; t1, t2) =
1

2

δ2v(t)

δJin(t1)δJin(t2)

∣

∣

∣

∣

Jin(ti)=0,

i=1,2

=
1

2

∂2v

∂S1∂S2

∣

∣

∣

∣

S1=S2=0

= (V/K2) {exp [−V ∆t/K]

− 2 exp [−V (2∆t − ∆t1)/K]}

(33)

The time increments are∆t = t − t1 and∆t1 = t2 − t1, with t ≥ t2 ≥ t1 ≥ 0. The
fact that the susceptibilities can be expressed as functions of time increments with respect
to the first perturbation time,t1, means that the system is time-invariant. In other words,
the kinetic parameters do not depend on time. (For a more rigorous general definition, see
[24].)

The susceptibilities (32) and (33) can now be used to find approximations to the re-
sponse of the enzyme rate,∆v. Let ∆V be the functional representation of the response
and∆V (ρ) its ρ-th order contribution. Since the perturbation times have been chosen to
follow a fixed, ordered sequence, the general term of Eq. (12) can be computed as

∆V
(ρ) = ρ!

∫ t

0
dt1

∫ t

t1

dt2 · · ·

∫ t

tρ−1

dtρχ
(ρ)(t; t1, . . . , tρ)

× ∆Jin(t1) · · ·∆Jin(tρ). (34)

It should be noted that the lower integration limits are no longer zero, but are limited by the
previous perturbation time. Thus, the integral corresponds to just one permutation of the
perturbation times. To account for all permutations, the prefactorρ! has to be introduced.
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Figure 2. Response of an irreversible Michaelis-Menten enzyme (V= 1.0, K = 2.0)
for Jin = 0.25, starting at the empty state. Thick solid-line: exact (numerical) response;
crosses: second-order approximation; dashed line: first-order contribution; dashed-dotted
line: second-order contribution.

A simple computation yields the first two contributions to the enzyme rate for a constant
excitationJin(t) = J , namely

∆V
(1) = J [1 − exp(−V ∆t/K)] (35)

and

∆V
(2) = 2J2

[(

V −1 − K−1∆t
)

exp(−V ∆t/K)

− V −1 exp(−2V ∆t/K)
]

. (36)

An example of application of Eqs. (35) and (36) is displayed in Fig. 2. As shown, the
prediction of the response is quite good, even for large excitations (e.g. 25%V and is
improved by using the second-order term of the functional series. Third- and higher-order
terms would improve the approximation even further and may be necessary when the en-
zyme is close to the maximum velocity, in which limit the expansion is expected to diverge,
since at saturation a steady state can not be achieved.

3. Stoichiometric Analysis

3.1. Responsivities and Asymptotic Behavior

As the excitations approach asymptotically a constant value,∆J ss
i , realistic metabolic net-

works, that is, those adapted to preserve homeostasis, will approach a steady state (ss) or, if
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the concentrations oscillate, their average will. In the limitt → ∞, a necessary condition
for a steady state to be possible is that the susceptibilities become time-invariant, i.e. that the
timest, t1, t2, . . . can be replaced by time increments,∆t = t− t1, ∆ti = ti+1 − t1, where
t1 is the first perturbation time. This is required even if the network is not time-invariant
in the transient regime. In the time-invariant limit, the susceptibilities can be written as
χ(ρ)(∆t; ∆t1, . . . ,∆tρ−1) and the functional Taylor expansion reduces to the algebraic se-
ries. For example, in a single-input system, Eq. (12) becomes

∆vss =
∑

i

R
(i) × (∆J ss

in)i . (37)

The notation∆vss indicates that the steady state is no longer a functional, but a function
(of the asymptotically steady input fluxes). The constant coefficients of the asymptotic
expansion,

R
(ρ) =

∫

∞

0
d∆t

∫

∞

0
d∆t1 · · ·

∫

∞

0
d∆tρ−1

× χ(ρ)(∆t; ∆t1, . . . ,∆tρ−1), (38)

are the responsivities of the system (mathematically, the hypervolumes under the suscepti-
bilities). They provide a way of relating external fluxes, accessible to the experimentalist,
to internal variables at steady state.

In simple situations, e.g. an unbranched pathway without feedback, the ratio
∆vss/∆J ss

in is determined only by the overall stoichiometry of the pathway and is therefore
usually constant. This implies that the non-linear responsivities are zero,R(ρ) = 0, ρ > 1.
It can be checked, by integrating the susceptibilities of section 2.4.1., that this is the case,
for instance, for the rate of an isolated Michaelis-Menten enzyme with respect to the input
of substrate. This is true even though the enzyme has non-linear kinetics. In a complex
network, however, the nonlinear responsivities of each enzyme depend on those of the rest.
As shown in the next section, the values that the responsivities can take are determined by
the stoichiometric properties of the network, but also by the kinetics.

3.2. Network Analysis

The dynamics of metabolic networks are usually represented, in terms of differential equa-
tions, as

ds

dt
= Nv, (39)

wheres andv arethe vectors of concentrations and velocities, respectively, andN is the
stoichiometric matrix.

We are interested in finding the constraints that the network stoichiometry imposes on
the responsivities. Because the external fluxes can be manipulated at will, the constraints
should depend on them. To see how, let us split the vector of velocities in the partition

v =
[

j
r

]

, wherer is the vector of internal rates, withm components, andj is the vector of
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external fluxes, withn components.Consequently, the stoichiometric matrix can be split as
N =

[

Nj Nr
]

.
The partition of velocities allows to expressrss (a flux distribution) in terms of the

inputsjss and of the responsivities. This is done by integrating Eq. (15) in the limitt → ∞,
which yields:

rss
i =

∞
∑

ρ=1

Sρ,n
∑

j=1

R
(ρ)
i,j × (∆J ss

1 )p1 · · · (∆J ss
n )pn . (40)

This equation expresses the steady state internal rates in terms of external fluxes, as desired.
Notably, there is no need to assume a particular model in order to obtain this relationship.
Here, rss

i , i = 1, ..., m, is the i-th element ofrss and ∆J ss
k , k = 1, ..., n, is the k-th

element ofjss. The exponentspk satisfy the usual condition
∑n

k=1 pk = ρ, which generates
Sρ,n = (n + ρ − 1)!/[(n − 1)!ρ!] combinations (hence the second sum). Finally, theρ-th

order responsivityR(ρ)
i,j belongs to thei-th rate and thej-th combination of input fluxes.

Letting q
(ρ)
j be the j-th element of the vectorq(ρ) of products of the form

(∆J ss
1 )p1 · · · (∆J ss

n )pn andR(ρ) the matrix ofρ-th order responsivities, Eq. (40) can be
written asrss =

∑

∞

ρ=1 R(ρ)q(ρ). At steady state,Nvss = 0, and consequently

[

Nj Nr
]

[

jss

R(1)jss +
∑

∞

ρ=2 R(ρ)q(ρ)

]

= 0. (41)

This is a polynomial equation and should, in principle, be solved as such, for a set of
specified input fluxes. However, the susceptibilities, and hence the responsivities, depend
only on the reference state and not on the excitations. Therefore, if the system achieves
steady states for a continuous range of fluxes, as is usually the case, Eq. (41) will have a
solution only if the coefficients are identically zero. For this reason, the constraints that
metabolic systems satisfy are

δ1ρN
j + NrR(ρ) = 0, (42)

whereδij is the usual Kronecker’s delta.
Eq. (42) shows that the first order responsivities obey special relationships, different

from those of the rest of the orders. This is of paramount importance when determining
how many degrees of freedom a network actually has. Eq. (42) states that the non-linear
responsivities belong to the kernel ofNr, whereas the linear ones are solutions of an inho-
mogeneous equation that involves the stoichiometry of the inputs. As the examples below
will show, it is entirely possible that a system with non-linear kinetics (and therefore with
non-trivial susceptibilities) has nevertheless null responsivities. This usually implies that
the network has less degrees of freedom than the stoichiometry would suggest.

3.3. Examples

3.3.1. Unbranched Pathway

As a first example, consider an unbrached metabolic pathway composed of three metabo-
lites and three enzymes (Fig. 3). Assuming that inputs are allowed through metabolites 1
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Figure 3. Unbranched metabolic pathway with two inputs (dashed lines,J1 andJ2), three
metabolites (X) and three internal rates (solid lines,v). Rates may be reversible.

and 3, the stoichiometric matrices are

Nj =





1 0 0
0 0 0
0 0 1



 , Nr =





−1 0 0
1 −1 0
0 1 −1



 . (43)

The dimension of the null space ofNr is zero and, as a result, the nonlinear responsivities
are also zero, irrespective of the kinetics. The linear responsivities are

R(1) =





1 0 0
1 0 0
1 0 1



 . (44)

The first column is the relative flux distribution of the pathway when the flux excites the
system through metabolite 1. Similarly, the third column shows that, when the excitation
enters through metabolite 3, only the third rate is non-trivial. The implication is that, in
that case, enzymes 1 and 2 will reach equilibrium. Importantly, this is true regardless of
the reversibility of the enzymes. The second column is zero, of course, as no input is
allowed via metabolite 2. This is a very fundamental example that shows how the linear
responsivities in particular are related to other theories, like stoichiometric analysis.

3.3.2. Branched Pathway

Let us consider the network shown in Fig. 4. It consists of three external metabolites and
five enzymes, only one of which is external. Metabolites 2 and 3 share the same input flux.
This is similar to the aldolase reaction in glycolysis, where glyceraldehyde 3-phosphate
and dihydroxyacetone phosphate are both produced from fructose 1,6-bisphosphate and are
interconverted by triose phosphate isomerase. The stoichiometric matrices for this system
are

Nj =









1 0 0
0 1 0
0 1 0
0 0 1









(45)
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Figure 4. Branched metabolic pathway with three inputs (dashed lines,J), three metabolites
(X) and six internal enzymatic rates (solid lines,v). One of the inputs (J2) affects two
metabolites and the external “metabolite” for another (J3) is an enzyme (E4). Enzymes 2
and 3 are isoenzymes. Rates may be reversible.

and

Nr =









−1 0 0 −1 0 0
1 −1 −1 0 0 0
0 1 1 1 −1 0
0 0 0 0 0 −1









. (46)

From Eq. (42), the matrix of first order responsivities results. It is of the form

R(1)=
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(1)
13

R
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(1)
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(1)
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(1)
12 − R
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(1)
13 − R

(1)
23

1 − R
(1)
11 −R

(1)
12 −R

(1)
13

1 2 0
0 0 1





















(47)

In this example, the dimension ofKer(Nr) is two. This is, in principle, the number
of degrees of freedom of the unexcited system. One possible basis for the kernel iskT

1 =
(1, 0, 1, −1, 0, 0) andkT

2 = (0, −1, 1, 0, 0, 0). In this basis, the coefficients of a
vector ofρ-th order responsivities, withρ ≥ 2, are the responsivities of enzymes 1 and 2,
so that the columns ofR(ρ), ρ ≥ 2 have the following structure:

(

R
(ρ)
1i , R

(ρ)
2i , R

(ρ)
1i − R

(ρ)
2i , −R

(ρ)
1i , 0, 0

)T

(48)

Eqs. (47) and (48) express the maximum freedom of the system compatible with the stoi-
chiometric constraints. Hence, they establish a link between the dynamics of the network,
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described by the susceptibilities, and its stoichiometry, determined by the stoichiometric
matrix. In this example, out of a maximum of 18 responsivities per order, only 6 (dimen-
sion of the kernel× number of input fluxes) are independent and need to be measured.

Let us now specify an example of kinetics, so that the responsivities can be evaluated
numerically. Suppose that the rates of the network are as follows:

v1 =
V1X

2
1

K2
1 + X2

1

(49)

v2 =
V2X2

K2 + X2
(50)

v3 =
V3X2

K3 + X2
(51)

v4 =
V4X1

K4 + X1
(52)

v5 = koutX3 (53)

v6 = kdegE4 (54)

with the parametersV1 = 5,V2 = 3, V3 = 2, V4 = 2, K1 = 2, K2 = 1, K3 = 1, K4 = 2,
kout = 10 andkdeg = 5 (arbitrary units). Concentrations are denoted with the symbol for
the corresponding species. Eq. (49) is a Hill equation and corresponds to a cooperative
enzyme. Eqs. (50)-(52) are simple Michaelis enzymes. Eq. (53) is the output rate of the
network and is non-saturable. Finally, Eq. (54) is the degradation rate of enzyme 4. The
reference state in all calculations is the steady state obtained by integrating the balance
equations

dX1

dt
= J1 − v1 − v4 (55)

dX2

dt
= J2 + v1 − v2 − v3 (56)

dX3

dt
= J2 + v2 + v3 + v4 − v5 (57)

dE4

dt
= J3 − v6 (58)

with the fluxesJ1 = 0.5, J2 = 0 andJ3 = 25. We restrict ourselves to independent
excitations through single input fluxes, so as to ignore cross-terms. The first- and second-
order responsivities of the velocities with respect to each input flux, calculated using the
code described in [24], are compiled in Table 1.

It is straightforward to check that, except for small numerical errors, the responsivities
satisfy Eqs. (47) and (48). However, the most interesting details of this example are the
second-order responsivities with respect toJ2 and the null value of the first-order respon-
sivity for v5 with respect toJ3.

We discuss the responsivities with respect toJ2 first. It is a somewhat surprising re-
sult that a whole column of the non-linear responsivities is zero, when Eq. (48) allows for
much greater variability. In particular, since all enzymes have non-linear kinetics, it would
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Table 1. Responsivities of the branched network shown in Fig. 4

ρ = 1 ρ = 2

J1 J2 J3 J1 J2 J3

v1 0.047 0 −3.7 × 10−4 0.105 0 2.9 × 10−5

v2 0.028 0.6 −2.2 × 10−4 0.063 0 1.7 × 10−5

v3 0.019 0.4 −1.5 × 10−4 0.042 0 1.2 × 10−5

v4 0.952 0 3.7 × 10−4 −0.105 0 −2.9 × 10−5

v5 1 2 0 0 0 0
v6 0 0 1 0 0 0

be reasonable to expect that the non-linear responsivities forv2 andv3 would be non-null.
They are zero, however, because the Michaelis constants of these two enzymes are identical
and therefore the rates are proportional to each other at all times. The transient behavior
(not shown) is clearly non-linear. For example, the response times [29] increase as the in-
put flux approaches saturation. However, if a steady state is achieved, it depends only on
the first-order responsivities. The parameters of this example were chosen specifically to
illustrate the point that, although the stoichiometric analysis provides an upper limit for the
flexibility of the system, much less freedom might happen in practice due to what could be
called kinetic locking. As the example illustrates, this should be expected in branched path-
ways with simple Michaelis kinetics at the branching point and with Michaelis constants of
similar magnitude. In fact, it has been observed before that Michaelian enzymes, although
formally non-linear, display clearly linear features in aspects like oscillation transmission
[30], even for large variations of the fluxes. In particular, branched pathways are often
equivalent to unbranched pathways when oscillations are present [31]. Notice, however,
that enzymesv1 andv4 have non-zero non-linear responsivities, because, althouh they also
have the same Michaelis constants,v1 is allosteric. Therefore, in this case one could expect
to be able to control the ratio of fluxes through each branch by simply modifying the input
flux of X1.

As to the responsivityR(1)
53 , it is equivalent to a control coefficient in that it reflects the

infinitesimal (first-order) variation of a flux as a consequence of the infinitesimal variation
of the concentration of an enzyme (E4). However, the coefficient is zero, and the same
result would have been obtained if the concentration of any of the other enzymes had been
considered external. This is an example in which MCA cannot be applied directly, since
all control coefficients are zero and summation theorems do not hold. It could be argued
that, due to the degradation flux,v6, the enzyme does not accumulate in the long term (for
an impulse perturbation, like the ones used to calculate susceptibilities), thus explaining the
null coefficient. In fact, MCA was developed for persistent, though infinitesimal, variations
of enzyme concentrations (or other parameters). However, it should be emphasized that
the coefficient is identically zero under any kinetics, as shown in Eq. (48), meaning that a
persistent change of the enzyme concentration would have no effects on the overall steady
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state flux either. The reason why MCA does not hold in this example is the following.An
implicit assumption of that theory is that the external concentrations are kept constant. Con-
versely, here, and in many practical situations, it is the flux, rather than the concentration,
that is kept constant (or even variable). Due to the stoichiometric constraints, the overall
output flux is independent of the enzyme levels. However, this is not the case for other
rates (see, for example,v1 andv4). Such robust response of metabolic networksto fluxesis
likely to have played a role in the achievement of homeostasis and could in fact be related
to the observation that most experimental measurements of control coefficients yield very
low values [32].

To summarize, this example illustrates how the present perturbative approach is able to
connect stoichiometry and kinetics. In particular, stoichiometric analysis provides a set
of admissible steady state fluxes, but leaves the coefficients of the linear combinations
unsolved. Thus, the responsivities complement stochiometric analysis by providing such
coefficients as a function of external perturbations and, implicitly, of the internal kinetics.

4. Conclusion

This chapter presents a sensitivity analysis that can be applied to study and characterize
metabolic responses. It has several advantages over previously existing approaches. First,
because it uses functional analysis, time-dependent excitations can be dealt with in a very
natural way. Furthermore, there is no need to choose time-dependent reference states, as
done in other sensitivity theories, notably, in extensions to MCA [25, 33]. As a conse-
quence, transients can be studied with reference to steady states, which are usually easier
to achieve and measure, and are more reproducible. A second advantage is that approxima-
tions are systematically improvable by simply keeping extra terms of a generalized Taylor
series. Non-linear extensions of other approaches, notably MCA [21, 22], exist, but each
new improvement has to be worked out separately.

The main coefficients of the theory are the susceptibilities. These are multidimensional
functions of increasing order but, as this chapter shows, they can be determined from simple
initial-concentration experiments, in which one or more concentrations are taken out of the
reference state and left to decay. By composition of responses, it is possible to reduce the
amount of required experimental data to be proportional to the order of the approximation.
It should be mentioned that robust algorithms exist to calculate accurate derivatives from
noisy data, such as the Savitzky-Golay filters [34].

The susceptibilities have connections with MCA quantities. In particular, the suscepti-
bilities of rates are global quantities, whose value depends, in principle, on the properties
of the whole system. This is similar to control coefficients. The example in section 3.3.2.
shows that, when the external “metabolite” is an enzyme, the interpretation of the suscep-
tibilities relates to that of (unscaled) flux control coefficients. However, susceptibilities
are more general in that they describe transient behavior and in that they do not require
an assumption of constant affinity, i.e. of constant concentration of the external metabo-
lites. Without this assumption, there are situations in which the summation theorems of
MCA do not hold, but the present approach can still be used. Another connection between
the susceptibilities and MCA and BST is the relationship between rate and concentration
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susceptibilities, Eqs. (18) and (19). Factors appear that are equivalentto elasticities, and re-
late global (susceptibilities) and local (rate equations) properties of the metabolic network.
However, it must be emphasized that the present approach is not a control theory, since
the aim is to reproduce responses, rather than to analyze the regulation. In that sense, it
complements but does not replace MCA.

One limitation of the representation of responses as functional Taylor expansions is that
bifurcations in the phase space are represented by non-invertible functionals [35], so that
expansions are not possible at or through bifurcation points. This limitation is common to
many sensitivity analyses [21]. The use of functionals to represent responses is, however,
completely general. Thus, a future line of research is to find alternative approximations to
the functional that can account for transitions through unstable states, such as the transition
from steady states to and oscillatory, or even chaotic, regime.

The other important coefficients of the present theory are the responsivities. They con-
nect the dynamics of a metabolic network and its stoichiometric structure. It has been shown
that, whereas stoichiometric analysis and other related theories give an upper bound of the
admissible space of steady state fluxes, the responsivities can in fact be more restrictive.
Since they are defined from the susceptibilities, they implicitly contain kinetic information,
but must also satisfy stoichiometric constrains. They are, therefore, a very interesting new
tool for analysing the degrees of freedom of a metabolic network. As such, they should be
useful in reducing the amount of experimental effort in high-throughput experiments.

This work was partially supported by a grant from DGICYT, Ministerio de
Ciencia y Tecnoloǵıa, Spain, BMC2000-0554. The author was a recipient of
a fellowship from the FPU program of the Ministerio de Educación, Cultura y
Deporte of Spain. Additional support from the Ramón Areces Foundation is
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helpful discussions.

A. Functionals and Functional Derivatives

A functionalF can be viewed as a generalization of a multivariate function,f(j1, . . . , jN ),
when the number of variables,N , tends to infinity. The argument ofF , say Jin(t),
is, therefore, afunction of time, corresponding to the continuous version of the vector
(j1, . . . , ji, . . . , jN ), whose indexi becomes real timet in the continuous limit. In addition
to Jin(t), F may depend explicitly on time, in which case it can be denoted asF [Jin; t].
Moreover, the functional may accept several arguments, i.e.F [J1

in, . . . , J
w
in; t], where, in

the context of this chapter,w is the number of independent excitations.
The generalization of the derivative of a function to that of a functional is a functional

derivative. A definition of the latter results from the total differential of a multivariate
function about a reference point, ref,

df =
∂f

∂j1

∣

∣

∣

∣

∣

ref

dj1 + · · · +
∂f

∂jN

∣

∣

∣

∣

∣

ref

djN , (59)

which can be rewritten, by trivially introducing a time increment,∆t, as
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N
∑

i=1

(

1

∆t

∂f

∂ji

)

ref

dji ∆t. (60)

AsN tends to infinity,f tends toF , ji toJin(t), total and partial differentials to a functional
differential,δJin(t

′), and∆t to dt. In the limit, partial derivatives lead to the notation of
thefunctional derivative,

1

∆t

∂f

∂ji
→

δF [Jin(t)]

δJin(t′)
, (61)

where the differential of time that comes from∆t remains implicit. This should be taken
into account in dimensional analysis. Note that the functional differential of the function,
δJin, is evaluated at timet′, not t. This means that functional differentiation introduces a
new variable.

Alternatively, putting∂ji = limλ→0 λ/∆t in Eq. (61), the standard definition of a
partial derivative leads to

δF [Jin(t)]

δJin(t′)

∣

∣

∣

∣

∣

ref

=
∂F [J ref

in (t) + λδ(t − t′)]

∂λ

∣

∣

∣

∣

∣

λ=0

. (62)

Eq. (62) involves impulse perturbations, so thatλ is the intensity of the excitation. For
dimensional consistency, if the perturbation is a metabolic flux,λ is a concentration. Eq.
(60) leads naturally to the functional differential of the functionalF :

δF = F [J ref
in + δJin] − F [J ref

in ]

≡

∫

δF [Jin(t)]

δJin(t′)

∣

∣

∣

∣

∣

ref

δJin(t
′)dt′ (63)

By repeated differentiation, functional derivatives of higher orders can be obtained. From
them, the generalized functional Taylor expansion results, either in one excitation, Eq. (12),
or in several, Eq. (15). It should be noted that, in functional Taylor expansions, all func-
tional differentials are replaced by increments, in exact correspondence to the usual alge-
braic Taylor expansions.
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Chapter 3

HAPTOTAXIS IN PRE-NECROTIC AVASCULAR

TUMOURS

D.G. Mallet and G.J. Pettet
School of Mathematical Sciences

Queensland University of Technology

Abstract

We develop a mathematical model describing the haptotactic migration of cells in a
pre necrotic avascular tumour. Initially, the model which involves a moving boundary
is developed for general three dimensional geometry and then modified for the spe-
cific multicell tumour spheroid geometry. A full nondimensionalisation is performed
and the model is mapped to a fixed domain to facilitation numerical simulation. Nu-
merically calculated solution profiles are then presented to provide predictions of the
behaviour of cells in pre necrotic multicell tumour spheroids. Attention is paid to
both passively migrating cells, and cells that respond to gradients in a simultaneously
constructed extracellular matrix that is, cells that migrate haptotactically. The model
solutions are used to propose biologically relevant hypotheses about the behaviour
of cells in pre necrotic avascular tumours and the extracellular matrix in which they
reside.

1. Introduction

In this chapter a mathematical model is developed to provide a description of the haptotactic
migration of cells in a pre-necrotic avascular tumour. Initially, the model is developed for
general three-dimensional geometry before more considering the more specific geometry of
a multicell tumour spheroid. Numerically calculated solution profiles are then presented to
provide predictions of the behaviour of cells in a pre-necrotic avascular tumour. Attention is
paid to both passively migrating cells, and cells that respond to gradients in a simultaneously
constructed extracellular matrix — that is, cells that migrate haptotactically. Finally, the
model solutions are used to propose hypotheses about the behaviour of cells in pre-necrotic
avascular tumours and the extracellular matrix in which they reside.

As stated above, two classes of cells are considered in the model — those deemed to
be in a proliferative state that migrate due to passive mechanisms only and are henceforth
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known asproliferating cells, and those whose proliferation has been stalled due to a lack
of nutrient and undergo active migration mediated by the extracellular matrix. Cells of
this second type will be referred to as themigrating cells. The diffusion and consumption
of a generic nutrient are also considered in the model, along with the production of the
extracellular matrix by the two types of tumour cells. In particular, the nutrient species
is considered in a similar way to Greenspan [2], Byrne and Chaplain [1], Thompson and
Byrne [14], Pettet et al. [12], and Landman and Please [5], using a quasi-steady diffusion
equation where the nutrient is consumed by the cells.

Also considered in this model are two possibilities for the production of the extracel-
lular matrix — production by the proliferating cells, and production by actively migrating
cells. The experimental literature indicates that the type of cell, proliferating or migrating,
responsible for the production of the extracellular matrix is actually cell-line specific. As
such both are considered and their respective effects are investigated.

Appropriate kinetic functions are proposed to model conversion between the two cell
types and also for the processes of cell death and mitosis. Similarly to Pettet et al. [12], the
rates of cell death, mitosis and cell-type conversions are taken to depend on the local nutri-
ent levels. The migratory behaviour of the two cell types is also considered and a distinct
treatment offered for the migrating cells by specifying an altered cell velocity. While the
proliferating cell velocity is influenced by cell death and loss, the haptotactically-migrating
cells are assumed to undergo a further response, that due to gradients in the extracellular
matrix density, modelling their haptotactic migration. Finally, it is also assumed that the
outer boundary of the avascular tumour is moving with the same velocity as the actively
migrating cells on the outer rim of the tumour.

The model is used to consider the behaviour of cells and the effect of the extracellular
matrix for multicell tumour spheroids. After specifying the model in spherically symmetric
geometry and nondimensionalising the model equations, the problem is mapped to a fixed
domain to allow numerical solutions to be calculated. Numerical solutions are presented
for a variety of parameter specifications to demonstrate the applicability of the model to de-
scribing haptotaxis in avascular tumours. Comments are made on the distribution through-
out the tumour of the two cell types for the different extracellular matrix production sources.
The evolution of tumours to steady state is considered and related to the system parameters.
The different velocity profiles of the two cell types are also considered.

Numerous unusual observations are made when investigating the numerical solutions
of the model. Particularly, it is shown that it is possible for the tumour to contract when
the extracellular matrix is produced by the actively migrating cells. For such tumours, it
is shown that a proportion of the proliferating cells that initially dominate just the outer
regions of the tumour, may be displaced to the centre of the tumour by the migrating cells,
effectively splitting the proliferating cell population. The model is also capable of simu-
lating the usual behaviour of pre-necrotic avascular multicell spheroids. That is, an outer
rim of proliferating cells and in inner region of cells in a quiescent state, with the tumour
evolving to a steady state size after periods of exponential and then slowed linear growth.
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2. Mathematical Model for Haptotaxis in Avascular Tumours

Themodel developed in this section describes the haptotactic migration of cells in avascular
tumours of arbitrary three dimensional geometry consisting entirely of cell matter with no
void space or extracellular water. Also present in the system are extracellular matrix fibres
and nutrients such as oxygen, which are assumed to occupy negligible space in the avascular
tumour. Figure 1 shows a rough schematic of the biological situation of interest.

Figure 1. Schematic of the biological components in the model. Shown are two types
of cells with a background matrix of ECM fibres and a continuous field of nutrient and
extracellular water.

IntroducingE(x, t) andC(x, t) to represent the density of the extracellular matrix and
the local oxygen concentration at some spatial positionx and at some timet, respectively,
the following conservation equations are proposed:

∂E

∂t
= −∇ · JE + fE , (1)

∂C

∂t
= −∇ · JC + fC , (2)

whereJE andJC represent the ECM and nutrient flux terms, andfE andfC represent as yet
unspecified functions governing the production and degradation of ECM and the production
and consumption of the nutrient, respectively.

The ECM is assumed to be a large immobile matrix of proteins and as such, migration
of the extracellular matrix is neglected in equation (1) to give

∂E

∂t
= fE . (3)

Furthermore,it is assumed that the nutrient undergoes passive migration due to Fickian
diffusion only, and that this diffusion is rapid when compared with the rate of growth of the
tumour. Thus equation (2) may be reduced to the quasi-steady equation

0 = D∇2C + fC , (4)
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whereD is the constant diffusion coefficient for the nutrient species.
In this study of haptotactic migration in multicell spheroids, we consider two distinct

sub-populations of cells which combine to form the spheroid. First, denote byκ(x, t) the
volume fraction of haptotactically migrating, non-proliferating cells at some spatial position
x and at some timet. Then denote byψ(x, t) the volume fraction of actively proliferating
cells at some spatial positionx and at some timet. These cells are assumed to display no
haptotactic response.

In a manner similar to Pettet et al. [12], it is assumed that all cells are in either one of the
two aforementioned states, or are dead cells that occupy no space. It is further assumed that
all live cells are incompressible and closely packed. Given that the entire tumour consists
of cells with no void space, the total volume fraction of all cells, denotedN(x, t) is then
governed by

N(x, t) = κ(x, t) + ψ(x, t). (5)

Since the tumour consists of tightly packed cells, the total volume fraction of cells at
a point does not change spatially, or over time, regardless of whether or not the tumour
expands or contracts. That is

∇N(x, t) = 0, and

∂N

∂t
= 0, (6)

and hence equation (5) becomes

N0 = κ(x, t) + ψ(x, t), (7)

whereN0 is the constant, total volume fraction of cells.
Conservation equations are now introduced for the volume fraction of each type of cell.

The conservation equation for haptotactically-migrating cells is given by

∂κ

∂t
+ ∇ · (uκκ) = fκ, (8)

wherefκ represents any source or sink of migrating cells anduκ is the migrating cell
velocity.

For proliferating cells the equation takes the form

∂ψ

∂t
+ ∇ · (uψψ) = fψ, (9)

wherefψ represents any source or sink of proliferating cells anduψ is the proliferating cell
velocity.

In this model, the two subpopulations of cells undergo distinctly different migratory
processes. Essentially, it is assumed that proliferating cells are subject to passive migration
processes only. Passive migration occurs due to, for example, pressure differences through-
out the tumour mass. Here, this passive migration is caused by proliferation and death of
cells. Actively migrating cells also undergo passive migration, but since they are not ac-
tively involved in proliferation, they are also able to respond to gradients in the extracellular
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matrix density and thus undergo haptotactic migration. To reflect this differencein cell sub-
population velocities it is assumed that the velocity of actively migrating cells is equal to
the sum of the proliferating cell velocity and a haptotactic term, such that

uκ = uψ + η∇E, (10)

whereη is the haptotactic coefficient which here is assumed to be constant. The haptotactic
term is taken to be of the form of similar terms in the cell fluxes of other haptotaxis models
such as those due to Maini [6] and Murray [8], and is of a similar form to the chemotaxis
term employed in the multicell spheroid model of Pettet et al. [12] where cells respond to
gradients in nutrient concentration.

Differentiating equation (7) with respect to time gives

∂κ

∂t
= −

∂ψ

∂t
. (11)

Addingequations (8) and (9), and using (7) and (11) gives

∇ · (uψN0 + η(N0 − ψ)∇E) = fκ + fψ.

By applying the divergence operator above, the above equation may be expanded and
rearranged to give

∇ · uψ =
1

N0
(fκ + fψ) −

η

N0
∇ · ((N0 − ψ)∇E) . (12)

Since the tumour may be growing or shrinking, it is necessary to define a condition
for the outer boundary of the tumour. It is assumed that the outer boundary will move at
the same velocity as the cells located at the boundary. To derive a condition on the outer
boundary position, first consider the following equation for the conservation of total cell
volume:

∂N

∂t
+ ∇ · (uNN) = fN , (13)

whereuN is the cell velocity andfN is an unspecified source/sink of cells.
All cells are in either a proliferative or actively migrating state, and thus any source or

sink in the total cell volume will be given by the sum of the source/sink functions of the two
cell types. That is

fN = fψ + fκ.

Using the above equation, along with equations (5) and (6), and substituting into equa-
tion (13) gives

∇ · (uN (ψ + κ)) = fψ + fκ. (14)

Also, adding equations (8) and (9) and using equation (11) gives

∇ · (uψψ + uκκ)) = fψ + fκ. (15)

Hence, comparing equations (14) and (15) and rearranging gives

uN =
uψψ + uκκ

ψ + κ
.
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Using equation (10) to replace the migrating cell velocity produces

uN = uψ + η
κ

N0
∇E.

Finally, since the outer boundary of the tumour moves at the same velocity as the cells
located there, the equation of motion is given by

dB(t)

dt
= uψ(B(t), t) + η

κ

N
∇E

∣

∣

∣

x=B(t)
, (16)

alongwith some initial tumour size

B(0) = B0,

whereB(t) is the position of the boundary at timet.
At this point the model is complete, with the exception of appropriately assigned bound-

ary and initial conditions which generally speaking, depend on the geometry of the spatial
domain. The solution of the model requires the solution of equation (3) for the extracellular
matrix density, equation (4) for the nutrient concentration, equation (12) for the velocity of
the proliferating cells, and equation (9) for the distribution of proliferating cells. Equations
(7) and (10) may then be used to determine the distribution of migrating cells and their
velocity, respectively.

In the sections to follow, we consider the application of the model to the geometry of
the multicell tumour spheroid. The model is nondimensionalised and mapped to a fixed
spatial domain to allow for the calculation of numerical solutions. Variations in the model
parameters are made and the resulting effects on the solution behaviour are explained. In
particular, the effects of different sources of ECM production on the internal characteristics
and growth of the tumour will be considered.

3. Haptotaxis in a Spherical Tumour

In this section, the model developed in Section 2. is used to describe the migration of cells
in a tumour with geometry that is assumed to be spherically symmetric. In this way a
description of cell migration in a multicell spheroid is given where it is assumed that the
dependent variables vary only with distance from the tumour centre. This is similar to the
models of McElwain and Pettet [7], Please et al. [13], Pettet et al. [12], and Landman and
Please [5]. A schematic of the spherically symmetric tumour geometry is given in Figure 2.
Below, the governing equations are stated for spherically symmetric geometry with spatial
coordinater, before a nondimensionalisation and fixed domain mapping are performed.
Numerical solutions are then presented to demonstrate the ability of the model to predict
the behaviour of cells in multicell spheroids.

It is unclear which type of cells (proliferating or migrating) is active in producing the
extracellular matrix. The scarce sources in the literature seem to suggest that the production
may at least depend on the cell type in question. For example, Nedermanet al. [9] claim
that for U-118MB cells the ECM is denser towards the core of a tumor, while for HTh-7
the matrix is roughly uniform throughout the tumor. Kelm [3] also discusses an extensive
ECM associated with lab-grown multicell spheroids, particularly at the spheroid surface.
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r = 0 r = R(t)

r

Figure 2. Schematic of a spherically symmetric tumour. Variations are assumed to occur
only with distance from the centre of the tumour. The distance from the centre of the tumour
is denotedr and the outer radius of the tumour, which may vary over time, is denotedR(t).

With such conflicting evidence related to the cell type responsible for ECM production,
it is first assumed in applying the model of Section 2. to a multicell spheroid, that both
migrating and proliferating cells may form ECM but at varying rates,k1 andk2 respectively,
and up to the maximum level of ECM, denoted bŷE. Thus for the spherical tumour,
equation (3) becomes

∂E

∂t
= k1(N0 − ψ)(Ê − E) + k2ψ(Ê − E).

Furthermore, it is assumed that initially the ECM is distributed according to the condi-
tion

E(r, 0) = E0(r),

wherer is the radial coordinate representing distance from the centre of the tumour.
With all cells consuming nutrient at a rate proportional to the local nutrient concentra-

tion, for a spherically symmetric tumour, equation (4) becomes

1

r2
∂

∂r

(

r2
∂C

∂r

)

=
k3N0

D
C,

wherek3 is the constant rate of nutrient consumption. Furthermore, the boundary conditions
are given by

∂C

∂r
(0, t) = 0, (17)

C(R(t), t) = C0, (18)
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with equation (17) indicating that, due to spherical symmetry, nutrient cannot flow through
the centre of the tumour atr = 0. Equation (18) represents the assumption that the spheroid
is growing in a nutrient-rich medium, where the nutrient concentration outside of the tumour
is C = C0. R(t) is introduced to denote the position of the outer boundary of the tumour,
which may expand or shrink over time.

The following forms for the kinetic functions,fψ andfκ, are now introduced. The birth
of new cells and the conversion of migrating cells to proliferating cells are taken to be pro-
portional to the nutrient level with rate constantskB andkψ, respectively. Further, the rates
of nutrient-related cell death and conversion from the proliferating to the haptotactically
migrating cell type are assumed to be large for low nutrient concentrations, while the rates
decrease linearly to zero for the external nutrient levelC = C0, with rate constantskD for
cell death andkκ for cell-type conversion. Hence the kinetic functions take the form

fκ = kκ(C0 − C)ψ − kψCκ− kD (C0 − C)κ, (19)

fψ = kBCψ − kκ(C0 − C)ψ + kψCκ. (20)

It should be noted that in the absence of cell type conversion, the tumour will undergo
unbounded growth due to the presence of the proliferation term in the proliferating cell
kinetics without any compensating cell death term. Furthermore, with rates proportional to
the difference between the local nutrient level and that at the outer boundary, it is assumed
that cell death and conversion occur throughout the tumour. It is possible to specify other
forms for these rates that do not depend on the external nutrient level, although these are
not considered here for the sake of clarity and so as not to introduce further assumptions to
the model.

In spherically symmetric geometry and assuming the kinetic forms given by equa-
tions (19) and (20), equation (12) may be written as

1

r2
∂

∂r
(r2uψ) =

1

N0
(kBCψ − kD (C0 − C) (N0 − ψ))

−
η

N0

1

r2
∂

∂r

(

r2(N0 − ψ)
∂E

∂r

)

,

whereuψ representsthe velocity of proliferating cells, with a positive velocity indicative of
motion away from the centre of the tumour. Due to symmetry, cells cannot move across the
centre of the spheroid atr = 0, and as such the proliferating cells have a zero velocity at
r = 0. That is

uψ(0, t) = 0.

In spherically symmetric geometry and again assuming the same kinetic forms given by
equations (19) and (20) for the one-dimensional tumour, the proliferating cell conservation
equation becomes

∂ψ

∂t
+

1

r2
∂

∂r

(

r2uψψ
)

= kBCψ − kκ(C0 − C)ψ + kψC(N0 − ψ).

It is assumed that initially, the volume fraction of proliferating cells is given by

ψ(r, 0) = ψ0(r).
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Again, due to symmetry at the centre of the spheroid, there is no flux of proliferating
cellsat r = 0. This gives the boundary condition

∂ψ

∂r
(0, t) = 0.

Equation (16) is used to determine the position of the outer radius of the tumour. Hence,
given the velocity of the proliferating cells, the following equation may be used to determine
the position of the outer radius of the tumour

dR(t)

dt
= uψ(R(t), t) + η

(

N0 − ψ

N0

)

∂E

∂x

∣

∣

∣

∣

r=R(t)

,

whereinitially the outer boundary of the tumour is given by

R(0) = R0.

Finally, equations (7) and (10) may be rewritten as

κ(r, t) = N0 − ψ(r, t),

uκ(r, t) = uψ(r, t) + η
∂E

∂r
,

allowing for the calculation of the migrating cell distribution and velocity.

3.1. Nondimensionalisation

To proceed with the solution of the model for haptotaxis in a multicell tumour spheroid, the
governing equations are now nondimensionalised. The equations are scaled by a timescale,
T , associated with cell proliferation at the outer surface and a length scale,L, associated
with the diffusion of the nutrient. That is,

T =
1

kBC0
, L =

√

D

k3N0
.

This scaling gives the following dimensionless variables

E∗ =
E

Ê
, C∗ =

C

C0
, N∗ =

N

N0
, ψ∗ =

ψ

N0
,

r∗ =
r

L
, R∗ =

R

L
, t∗ =

t

T
, u∗ψ =

uψT

L
,

whereasterisks denote dimensionless variables.
Upon dropping the asterisks for notational simplicity, a dimensionless model formed by

the following equations and conditions is obtained. First, for the extracellular matrix

∂E

∂t
= k1(1 − ψ)(1 − E) + k2ψ(1 − E),

where initially

E(r, 0) =
1

Ê
E0(r).
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For the concentration of the nutrient

1

r2
∂

∂r

(

r2
∂C

∂r

)

= C,

whereat the centre of the tumour
∂C

∂r
(0, t) = 0,

and on the outer radius of the tumour

C(R(t), t) = 1.

For the velocity of the proliferating cells

1

r2
∂

∂r
(r2uψ) = Cψ − kD(1 − C)(1 − ψ) − η

1

r2
∂

∂r

(

r2(1 − ψ)
∂E

∂r

)

,

wherethe cell velocity is zero at the centre of the tumour. That is

uψ(0, t) = 0.

In terms of dimensionless variables, the volume fraction of proliferating cells is gov-
erned by

∂ψ

∂t
+

1

r2
∂

∂r
(r2ψuψ) = Cψ − kκψ(1 − C) + kψC(1 − ψ),

where initially

ψ(r, 0) =
1

N0
ψ0(r),

andat the centre of the spherically symmetric tumour

∂ψ

∂r
(0, t) = 0.

Finally, the outer boundary of the tumour is determined using

dR(t)

dt
= uψ(R(t), t) + η(1 − ψ)

∂E

∂r

∣

∣

∣

∣

r=R(t)

,

where

R(0) =

√

k3N0

D
R0.

In the above equations for a spherical tumour, the dimensionless parameters are given
by

k1 =
k1N0

kBC0
, k2 =

k2N0

kBC0
, η =

ηN0k3Ê

C0kBD
,

kD =
kD

kB
, kκ =

kκ

kB
, kψ =

kψ

kB
,

wherek1 andk2 are the rates of ECM production relative to the rate of cell mitosis at the
outerradius, due to actively migrating and proliferating cells, respectively. The dimension-
less haptotaxis coefficient is represented byη, while the rates of cell death and conversion
betweencell types, relative to the mitosis rate, are represented bykD, kκ andkψ, respec-
tively.
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3.2. Landau Transformation

In order to produce numerical solutions it is necessary to map the moving boundary problem
to a fixed domain using the method of Landau [4] . Hence the following change of variables
is introduced

ξ =
r

R(t)
,

τ = t,

suchthat ξ represents the distance from some point in the tumour to the spheroid centre,
scaled by the outer radius of the tumour at that point in time.

Upon changing variables, the conservation equation for the ECM density becomes

∂E

∂τ
−
ξ

R

dR

dτ

∂E

∂ξ
= k1(1 − ψ)(1 − E) + k2ψ(1 − E), (21)

where initially

E(ξ, 0) =
1

Ê
E0(ξ). (22)

For the concentration of the nutrient

1

ξ2
∂

∂ξ

(

ξ2
∂C

∂ξ

)

= CR2, (23)

whereat the centre of the tumour

∂C

∂ξ
(0, τ) = 0,

and at the outer surface,ξ = 1,
C(1, τ) = 1.

For the velocity of the proliferating cells

1

ξ2
∂

∂ξ
(ξ2uψ) = R

(

Cψ − kD(1 − C)(1 − ψ)
)

−
η

R

1

ξ2
∂

∂ξ

(

ξ2(1 − ψ)
∂E

∂ξ

)

, (24)

wherethe cell velocity is zero at the centre of the tumour. That is

uψ(0, τ) = 0.

The volume fraction of proliferating cells is governed by

∂ψ

∂τ
−
ξ

R

dR

dτ

∂ψ

∂ξ
+

1

R

1

ξ2
∂

∂ξ
(ξ2ψuψ) = Cψ − kκψ(1 − C) + kψC(1 − ψ), (25)

where initially

ψ(ξ, 0) =
1

N0
ψ0(ξ),

andat the centre of the tumour
∂ψ

∂ξ
(0, τ) = 0.
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Finally, the outer radius of the tumour is determined as before, using the ordinarydif-
ferential equation

dR(τ)

dτ
= uψ(1, τ) + η(1 − ψ)

∂E

∂ξ

∣

∣

∣

∣

ξ=1

, (26)

alongwith the initial condition

R(0) =

√

k3N0

D
R0.

3.3. Numerical Simulations

The simulations presented in this section are calculated using NAG routine D03PCF [11] to
solve, at each time step, equations (21), (23), (24), and (25) for the ECM density, nutrient
concentration, velocity and volume fraction of proliferating cells. An Euler scheme is then
used to solve equation (26) and hence, update the position of the tumour boundary, also at
each time step. The NAG routine is again implemented with a timestep ofδτ = 0.1 and
mesh size∆ξ = 0.005.

Unless otherwise noted, the model parameters are given by

kψ = 0.05, kD = 0.3, kκ = 0.9, R0 = 1, η = 1.

This typical parameter set is similar to that used by Pettet et al. [12] in their description
of chemotaxis in multicell spheroids, and will therefore be of particular relevance in the
next section of this chapter. Pettet et al.make a number observations of likely relationships
in selecting their parameters. In particular, they state that the cell death rate is expected to
be small compared with the proliferation rate, and that the cells are expected to convert from
the proliferative state to the migrating state more quickly than the reverse. The parameter
values are also based on general time- and length-scales associated with the problem and
this is discussed in detail by Pettet et al.. For example, the time-scale is associated with
the cell cycle time of cells in the proliferative state which is known to be between 8 and 24
hours [15]. Hence, while the exact values for the parameters are unknown, these values are
taken to be reasonable given the limited information.

Considered below are the effects on the numerical solutions of varying the system pa-
rameters. Since there is little information available regarding the distribution and source of
production of the extracellular matrix in multicell spheroids, variations in the parameters
of equation (21) are made so as to form predictions regarding the resulting ECM distribu-
tions. In particular, spheroids in which proliferating cells secrete the extracellular matrix
are considered, and then the different behaviour exhibited by spheroids in which the matrix
proteins are secreted by actively migrating cells is also examined. The effects of varying
the cell death and conversion parameters, as well as the initial spheroid size and haptotactic
migration coefficient, will also be outlined.

3.3.1. ECM Production by Proliferating Cells

The secretion of ECM proteins is first considered to be carried out by those cells which
are in the proliferative state. That is, in equation (21)k1 is set to zero andk2 is varied to
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Figure 3. Haptotaxis in a multicell spheroid with low ECM production by proliferatingcells
for dimensionless timest = 25 (· · · · ·), t = 50 (– – – –),t = 100 (– · – · –), t = 200
(——–), t = 250 (thick ——–). Parameter values used arek1 = 0, k2 = 0.01, kψ = 0.05,
kD = 0.3, kκ = 0.9, η = 1, R(0) = 1. Initial conditions used areE(r, 0) = 0.5 and
ψ(r, 0) = 1.

consider the effects of different levels of extracellular matrix production. Also considered
below are the effects of different initial ECM profiles on the size of the spheroid and the
solution profiles for the cell populations and velocities. All simulations shown below use
the initial condition

ψ(r, 0) = 1,

although very little variation in the solutions of the model is observed with the initial pop-
ulation of proliferating cells set to zero.

With an initially constant extracellular matrix profile, condition (22) becomes

E(r, 0) = a,

wherea is a positive constant, and for the numerical simulations carried out here,a = 0.5.
For early times, as shown in Figure 3, the migrating and proliferating cell populations

undergo rapid changes from the initial conditions. Due to the form of the nutrient profile,
a high population of migrating cells resides in the inner regions of the spheroid where
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Figure 4. Evolution of the outer radius of a multicell spheroid with low ECM production
by proliferating cells,for dimensionless timet = 0 to t = 250. Parameter values and initial
conditions used as in Figure 3.

nutrient levels are low, while at the outer edges where there is a high level of nutrient, the
proliferating cells dominate. This arrangement of the two cell populations persists over time
and leads to the increased production of ECM proteins at the outer regions of the spheroid
and the subsequent creation of a positive ECM gradient.

Considering the plot ofuκ(r, t), early in the development of the spheroid, the matrix
gradient is slight, and causes only a small amount of haptotactic migration. Hence, for
smallt, the velocities of migrating and proliferating cells are similar. As the ECM gradient
becomes greater, the outward migration due to haptotaxis dominates the inward migration,
particular towards the outer boundary of the tumour, resulting in the more positive velocity
for actively migrating cells throughout the spatial domain.

Figure 4 shows the evolution of the outer radius of the spheroid with the same param-
eters as Figure 3. The spheroid appears to follow the same three phase growth described
by Greenspan [2]. There is an initial phase of rapid growth, followed by a slowed, linear
growth phase, and finally a dormant phase where the spheroid has attained a steady-state
size. In this simulation, the dimensionless steady-state spheroid radius isRs ≈ 9.

Using the same initial conditions as above and varying the extracellular matrix produc-
tion coefficient leads to only slight changes in the solution profiles. In fact, the steady-state
radius is relatively unaffected by such changes, although it is attained more slowly than for
the low production rate (where haptotactic migration aids the tumour in attaining its dor-
mant size). The final distributions of actively migrating and proliferating cells also appear
similar to those in Figure 3. Increasing the ECM production coefficient results in changing
the position of the positive ECM gradient and this, in turn, causes the actively migrat-
ing cells to respond to the matrix at different spatial locations throughout the spheroid. As
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Figure 5. Haptotaxis in a multicell spheroid with high ECM production by proliferating
cells for dimensionless timest = 20 (· · · · ·), t = 40 (– – – –),t = 60 (– · – · –), t = 80
(——–), t = 100 (thick ——–). Parameter values used arek1 = 0, k2 = 10, kψ = 0.05,
kD = 0.3, kκ = 0.9, η = 1, R(0) = 1. Initial conditions used areE(r, 0) = 0.5 and
ψ(r, 0) = 1.

shown in Figure 5, when the value ofk2 is large enough (herek2 = 10), the ECM is quickly
constructedto its carrying capacity ofE(r, t) = 1, and there is no gradient in the matrix
density. This results in a population of actively migrating cells which cannot undergo hap-
totactic migration, and the model reduces to considering two cell populations with identical
migratory responses (as demonstrated in the plots ofuκ anduψ) — a situation similar to
that considered by Ward and King who discussed cell populations with identical velocities
and differing kinetic functions [16]. Note that in Figure 6, the tumour takes longer to reach
its eventual steady state size when compared with the case shown in Figure 4 where the
cells are able to migrate haptotactically.

An initially linear extracellular matrix profile with a slight positive gradient has also
been considered. Under this assumption, equation (22) becomes

E(r, 0) = br + a,

wherea andb are positive constants, and for the numerical simulations carried out here,
a = 0.5 andb = 0.02.
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Figure 6. Evolution of the outer radius of a multicell spheroid with high ECM production
by proliferating cells,for dimensionless timet = 0 to t = 100. Parameter values and initial
conditions used as in Figure 5.

Comparing the ECM profile of Figure 7 with that of Figure 3, the inner spheroid re-
gions now demonstrate a relatively steep, positive ECM density gradient. This results in the
actively migrating cells undergoing dominantly haptotactic migration throughout the devel-
opment of the spheroid. As shown in Figure 8, this leads to an increase in the steady-state
radius toRs ≈ 9.8.

When the extracellular matrix production coefficient is increased tok2 = 0.1, an inter-
estingeffect is noticed in a plot of the outer radius location,R(t). Initially, similar growth
to that shown in Figures 7 and 8 is exhibited, where the spheroid grows towardsR(t) ≈ 9.8.
However, as the proliferating cells continue to produce extracellular matrix, the ECM dis-
tribution throughout the spheroid begins to resemble that of a spheroid where the initial
ECM distribution is uniform. As a result, the velocity due to proliferative pressure begins
to dominate that due to haptotaxis and the actively migrating cells at the outer radius be-
gin to move towards the interior of the spheroid. This continues until the haptotactic and
proliferative pressure-related velocities balance, and the steady-state radius ofRs ≈ 9 is
again reached. That is, initially the tumour exceeds its eventual steady-state radius, before
settling back to the smaller dormant size,Rs ≈ 9.

Finally, the case where the initial ECM profile takes on a negative gradient was consid-
ered. In particular, equation (22) becomes

E(r, 0) = −br + a,

wherea andb are positive constants, and again for the numerical simulations carried out
here,a = 0.5 andb = 0.02.

Figure 11 shows the evolution of the ECM density, nutrient concentration, proliferating
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Figure 7. Haptotaxis in a multicell spheroid with low ECM production by proliferatingcells
for dimensionless timest = 50 (· · · · ·), t = 100 (– – – –),t = 200 (– · – · –), t = 400
(——–), t = 500 (thick ——–). Parameter values used arek1 = 0, k2 = 0.001, kψ = 0.05,
kD = 0.3, kκ = 0.9, η = 10, R(0) = 1. Initial conditions used areE(r, 0) = 0.02r + 0.5
andψ(r, 0) = 1.

and actively migrating cell velocities and populations, for a spheroid with the low ECM
production coefficientk2 = 0.001, and an initially linear ECM distribution with a slight
negative gradient. This case predicts that the ECM density for such a tumour evolves to
a distribution with high levels of ECM at the outer edge and inner regions of the spheroid
— indicating that it may be possible for haptotactic migration to lead to a splitting of the
population of actively migrating cells. Given that, for a majority of the time over which
the spheroid grows the migrating cell velocity is negative, the resulting dormant spheroid
size is smaller than for any of the previous simulations. In fact, for this caseRs ≈ 8.2.
Furthermore, when comparing the cell volume fractions in Figure 11 with those in Figure 9,
there is not such a distinct separation between the two cell types. Further investigation may
confirm that measurements of the separation of the cell types can be used to predict the
potential size of the tumour.

Note that for higher extracellular matrix production rates, the ECM distribution is
quickly built to a form which is qualitatively similar to that for an initially constant ECM
profile. Hence, simulations with negative-gradient, linear, initial ECM profiles and largek2
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Figure 8. Evolution of the outer radius of a multicell spheroid with low ECM production
by proliferating cells,for dimensionless timet = 0 to t = 500. Parameter values and initial
conditions used as in Figure 7.

values produce spheroids with dormant sizes that are similar to those produced by simula-
tions using an initially constant ECM profile.

3.3.2. ECM Production by Actively Migrating Cells

Now, consider the secretion of ECM proteins to be carried out by those cells which are
haptotactically migrating. That is, in equation (21),k2 = 0 andk1 is varied to consider
the effects of different levels of extracellular matrix production. Again considered below
are the effects of different initial ECM profiles on the size of the spheroid and the solution
profiles for the cell populations and velocities. All simulations shown below use the initial
condition

ψ(r, 0) = 1.

The solutions of the model here with the initial proliferating cell volume fraction set to zero
are again similar to those observed with an initial volume fraction of one.

With an initially constant extracellular matrix profile, equation (22) becomes

E(r, 0) = a,

wherea is a positive constant, and for the numerical simulations carried out here,a = 0.5.
Initially, as shown in Figures 13 and 14, the spheroid size increases toward the steady-

state level observed in Figures 4 and 6. As the production of the extracellular matrix by
the actively migrating cells continues, mainly in the inner regions of the spheroid, the ECM
density gradient becomes increasingly negative. As a result, the actively migrating cells
undergo inward migration resulting in a contraction of the spheroid radius. The above
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Figure 9. Haptotaxis in a multicell spheroid with low ECM production by proliferatingcells
for dimensionless timest = 40 (· · · · ·), t = 80 (– – – –),t = 120 (– · – · –), t = 200
(——–), t = 250 (thick ——–). Parameter values used arek1 = 0, k2 = 0.1, kψ = 0.05,
kD = 0.3, kκ = 0.9, η = 10, R(0) = 1. Initial conditions used areE(r, 0) = 0.02r + 0.5
andψ(r, 0) = 1.

behaviour is also observed when the ECM production coefficient is increased and when
considering a spheroid with an initially linear ECM density with a negative gradient. As the
ECM density reaches its maximum level, the effects of haptotaxis diminish, the velocities
of the two cell types balance at the outer boundary, and the tumour reaches a dormant size.

When considering an initially linear ECM density with a positive gradient, the pro-
duction of the ECM by migrating cells results in solution profiles such as those shown in
Figure 15. The spheroid radius grows quickly towardsR = 12.5 before undergoing signif-
icant contraction, as shown in Figure 16. Also, there is unusual behaviour in the plots of
ψ(ξ, t) andκ(ξ, t). As was discussed earlier, by considering haptotaxis it may be possible to
observe the splitting of one of the cell populations into two distinct regions of high density.
As a result of the shape of the ECM profiles shown in Figure 15, actively migrating cells on
the left-side of the maximum-ECM-density location attempt to migrate up the gradient in
extracellular matrix, while those to the right are converted to proliferating cells due to the
high nutrient levels. This results in the formation of a “hump” of actively migrating cells
around the location of the ECM maximum. This causes an increase in the volume fraction
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Figure 10. Evolution of the outer radius of a multicell spheroid with low ECM production
by proliferating cells,for dimensionless timet = 0 to t = 250. Parameter values and initial
conditions used as in Figure 9.

of proliferating cells at both the outer rim and, unusually, towards the centre of the spheroid.
That is, the population of proliferating cells has been split into two almost distinct regions
— one at the outer rim of the spheroid, and the other towards the centre.

The splitting of the cell population occurs here and not in such earlier situations as
shown in Figures 7 and 9 due to the source of ECM production. The location of the migrat-
ing cells and their subsequent production of ECM, leads to the ECM profile that allows for
bidirectional haptotactic migration. When the proliferating cells are producing the ECM, it
is not possible to form an ECM gradient of this structure.

In a study of the growth characteristics of glioblastoma spheroids, Nirmala et al. de-
scribe experiments that resulted in the contraction of the spheroid and subsequent appear-
ance of proliferating cells in the inner regions of the spheroid [10]. Such an observation
is predicted in Figures 15 and 16 and suggests that the spheroids considered in the Nir-
mala et al. experiments were comprised of cells which produced extracellular matrix fibres
when they were in a migrating state, and then responded haptotactically to gradients in the
extracellular matrix.

3.3.3. The Effects of Variations in Other Model Parameters

While the primary focus of the numerical investigation of the multicell spheroid haptotaxis
model is to elucidate the effects on MCS growth of different sources of extracellular matrix
production, the effects of varying other system parameters are also considered. Throughout
the discussion below, it is assumed thatkψ = 0.05, kD = 0.3, kκ = 0.9, η = 1, R0 = 1,
k1 = 0 andk2 = 0.01, unless otherwise noted. These parameters are considered as they
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Figure 11. Haptotaxis in a multicell spheroid with low ECM production by proliferating
cellsfor dimensionless timest = 25 (· · · · ·), t = 50 (– – – –),t = 100 (– · – · –), t = 200
(——–), t = 250 (thick ——–). Parameter values used arek1 = 0, k2 = 0.001, kψ = 0.05,
kD = 0.3, kκ = 0.9, η = 10,R(0) = 1. Initial conditions used areE(r, 0) = −0.02r+0.5
andψ(r, 0) = 1.

allow for reproduction of spheroid growth similar to the classical spheroid development
discussed by Greenspan [2]. The numerical solutions shown in Figure 3, calculated using
the aforementioned parameter set, are also used as a reference point for the simulations
using altered parameters discussed below.

Increasing the coefficient of the cell death rate,kD, causes a decrease in the steady-
statetumour size, while lowerkD values result in larger spheroids. Increasing the cell
deathrate coefficient from the reference value ofkD = 0.3 also increases the level of
proliferating cells throughout the spheroid, and hence increases the rate of ECM production.
This increased ECM production and the subsequent decrease in the period of time over
which haptotactic migration may occur explains the decrease in the steady-state tumour
radius for high cell death rates.

Increases in the migrating-to-proliferating cell conversion coefficient lead to larger tu-
mour sizes and increases in the growth rate towards the steady-state. The volume fraction
of proliferating cells at the outer radius is also increased, giving more evidence for the hy-
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Figure 12. Evolution of the outer radius of a multicell spheroid with low ECM production
by proliferating cells,for dimensionless timet = 0 to t = 250. Parameter values and initial
conditions used as in Figure 11.

pothesis that the level of proliferating cells at the outer boundary of the tumour is directly
related to the steady-state tumour size. For decreased values ofkψ, the steady-state radius
shows little variation from that shown in Figure 4, although the growth rate is decreased.

Increasing the proliferating-to-migrating cell conversion coefficient has the opposite
effect to that described above. For larger values ofkκ, the dormant tumour size is decreased,
asis the proportion of proliferating cells at the outer boundary. Decreasing the parameter
results in larger spheroids and an increase in the proliferating cell population in the outer
regions of the tumour.

Altering the haptotactic coefficient,η, results in similar effects to those discussed for the
one-dimensionalapplication of the cell migration model. That is, the steady-state tumour
radius is not changed, while the internal behaviour of the spheroid cells, in particular the
velocity of the actively migrating cells, does change. This change in cell velocity involves
the greater positive migration response of actively migrating cells, to the gradient in the
extracellular matrix density. Furthermore, variations in the initial tumour radius also make
no effect on the resulting dormant spheroid size. The growth rate is simply altered so as
to decrease the outer radius, in the case of large initial tumour sizes, and increase the outer
radius, in the case of small initial tumour sizes.

4. Conclusions

In this chapter, a mathematical model has been presented that describes the haptotactic
migration of cells in pre-necrotic avascular tumours. As in previous models (see for ex-
ample [2], [5], [7], [12], [14]), the model includes a quasi-steady diffusion equation for the
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Figure 13. Haptotaxis in a multicell spheroid with low ECM production by actively mi-
gratingcells for dimensionless timest = 50 (· · · · ·), t = 100 (– – – –), t = 150 (– ·

– · –), t = 200 (——–), t = 250 (thick ——–). Parameter values used arek1 = 0.01,
k2 = 0, kψ = 0.05, kD = 0.3, kκ = 0.9, η = 1, R(0) = 1. Initial conditions used are
E(r, 0) = 0.5 andψ(r, 0) = 1.

nutrient species, with a sink of the nutrient concentration due to consumption by cells. Two
cell types — proliferating and migrating — are considered to comprise the tumour mass,
with dead cells occupying no space. The two cell types have different velocities due to the
haptotactic response of the migrating cells to gradients in the extracellular matrix density.
Appropriate kinetic functions are also specified to describe conversion between the two cell
types, as well as birth and death of cells, all of which depend on the local nutrient con-
centration. Finally, the density of the extracellular matrix is described using a conservation
equation with ECM sources dependent on the concentrations of proliferating and migrating
cells.

Using spherically symmetric geometry, it was possible to use the model to describe
the migration of cells due to haptotaxis in multicell spheroids. It was possible to simulate
pre-necrotic tumours that follow the familiar structure of a proliferating rim coupled with
a predominantly quiescent interior as shown in Figure 5. Similarly, the usual three growth
phases of multicell spheroids were shown in Figure 6, with an initial exponential growth
phase due to the high rate of cell proliferation in the small, nutrient-rich spheroid. The
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Figure 14. Evolution of the outer radius of a multicell spheroid with low ECM production
by actively migrating cells,for dimensionless timest = 0 to t = 200. Parameter values and
initial conditions used as in Figure 13.

exponential growth phase is followed by a phase of slowed linear growth, as the nutrient
level in the centre of the spheroid drops, and subsequently the rate of proliferation falls. Fi-
nally, when proliferation, death and haptotactic migration are in balance, the outer boundary
reaches a steady state and a period of dormancy follows.

While the usual tumour behaviour was predicted, as mentioned above, other unusual
observations were also made. In Figure 10, it is shown that when the initial ECM profile is
linearly distributed with a positive gradient, it is possible for the tumour radius to initially
overshoot the steady-state radius before settling back down to its eventual dormant size.

Considering the extracellular matrix to be produced by migrating cells rather than by
proliferating cells leads to quite novel observations also, as demonstrated in Figures 13–
16. In particular, the model predicts that while the tumour will initially increase in size
due to the abundance of nutrient and associated high proliferation levels, the development
of a negatively-sloped ECM profile leads to contraction of the tumour due to haptotactic
migration towards the centre of the tumour.

When the initial ECM profile is a positively-sloped linear function, not only does the
tumour contract, but the proliferating cell distribution also appears to split into two almost
distinct bands of high density. That is, the usual band of proliferating cells on the outer
boundary, and another population of proliferating cells in the centre of the tumour. While
low nutrient levels earlier in the tumour development imply that this high density of prolif-
erating cells at the tumour centre would not be possible, the tumour shrinkage allows for
higher levels of nutrient to exist throughout the spheroid. Furthermore, the outward mi-
gration of actively-migrating cells due to the positive ECM gradient displaces proliferating
cells towards the outer-most and inner-most regions of the spheroid. These observations are
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Figure 15. Haptotaxis in a multicell spheroid with low ECM production by actively migrat-
ing cells for dimensionless timest = 20 (· · · · ·), t = 50 (– – – –),t = 100 (– · – · –), t = 150
(——–), t = 200 (thick ——–). Parameter values used arek1 = 0.001, k2 = 0, kψ = 0.05,
kD = 0.3, kκ = 0.9, η = 10, R(0) = 1. Initial conditions used areE(r, 0) = 0.02r + 0.5
andψ(r, 0) = 1.

similar to experimental results due to Nirmala et al. which describe the growth of glioblas-
toma spheroids, that at some point in their development, contracted and developed centrally
located proliferating cells [10].

Finally, this model provides a useful experimental tool for judging which cells in a par-
ticular tumour produce the extracellular matrix. That is, given an extracellular matrix dis-
tribution obtained through an examination of the internal structure of a multicell spheroid,
this could then be compared with simulations of the multicell spheroid haptotaxis model
developed in this chapter. By varying the source of the ECM in the model simulations and
making the appropriate comparisons, the source of the ECM in the experimental spheroid
could then be identified.

The model developed in this research is currently being extended to investigate the
effects of haptotaxis on the internalisation of cells at the spheroid surface. Importantly, this
is related to the possible internalisation of treated cells or microspheres which may aid in
eliminating or decreasing the size of spheroids.
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Figure 16. Evolution of the outer radius of a multicell spheroid with low ECM production
by actively migrating cells,for dimensionless timet = 0 to t = 200. Parameter values and
initial conditions used as in Figure 15.
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Chapter 4

MATHEMATICAL ANALYSIS OF A CHOLERA
MODEL WITH CARRIERS: ASSESSING
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Abstract

Cholera is a gastrointestinal disease caused by a gram negative coma shaped bac-
terium of the genus Vibrio cholerae. It is often associated with poor hygiene of drink-
ing water, food preparations and waste disposal particularly feaces. It rapidly causes
diarrhea, vomiting and dehydration which could be fatal if not medically attended to
timeously. The diarrhea is caused by a toxin produced by the bacterium. This toxin
causes the efflux of salts and water into the gastrointestinal tract. Cholera as a disease
is a serious public health problem in the developing world, and since the first recorded
cases, it has spread rapidly across continents, resulting in numerous deaths. The aim
of this chapter is to use mathematical modeling to analyze the dynamics of this dis-
ease with and without treatment. Thus, we present a single-season deterministic model
for cholera transmission dynamics with carriers in a human population and a pool of
pathogens. The mathematical features such as the epidemic threshold, equilibria and

∗E-mail address: zmukandavire@nust.ac.zw or zmukandavire@gmail.com; Corresponding author: Depart-
ment of Applied Mathematics, Modelling Biomedical Systems Research Group, National University of Science
and Technology, Box AC 939 Ascot, Bulawayo, Zimbabwe
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stabilities are determined. A Lyapunov functional approach is used to analyse the sta-
bilities of equilibria. We qualitatively analyse positivity and boundedness of solutions.
In the absence of treatment, the trivial equilibrium is shown to be a saddle, while the
two biologically meaningful equilibria, namely the disease-free is globally asymptot-
ically stable provided certain conditions are met, and the endemic equilibrium state is
only locally stable. The epidemic threshold is used to assess the effectiveness of treat-
ment in controlling cholera in a community. Conditions for cholera containment and
persistence are derived using comprehensive analytical and numerical techniques. It is
shown from the study that treatment of cholera sufferers reduces the burden of the dis-
ease in the community. Further, it is also shown that as long as the pathogen is present
in the environment, it will be difficult to eradicate cholera and the existence of carriers
may remain a challenge in the control of the epidemic in settings with treatment of
cholera sufferers.

MSC: 92D30, 34K20.

Key words: Vibrio cholerae, cholera, stability, persistence, treatment, epidemic threshold.

1. Introduction

Cholera is a gastrointestinal disease characterized by vomiting, dehydration and diarrhea in
which the stools are rice like in appearance. It is caused by a coma shaped bacterium of
the genus Vibrio cholerae. V. cholerae is naturally found in aquatic plankton particularly
copepods. Water from copepod infested sources if taken by susceptible humans becomes
the cause of the disease [27]. Cholera is rarely spread directly from person to person but
the resulting diarrhea allows bacteria to spread under unsanitary conditions. Cholera is
thus transmitted through ingestion of faecal matter contaminated with the bacterium. The
contamination usually occurs when untreated sewage is released into waterways or into
groundwater, affecting the supply, any foods washed in the water and shellfish living in
the affected waterways [34]. The ability of V. cholerae to cause disease is engineered by a
filamentous phage virus CTXΦ. Any V. cholerae not infected by this virus does nor cause
cholera [22]. V. cholerae colonizes the gastrointestinal tract, where it adheres to villous
absorptive cells via pili, and secretes a binary toxin, called cholera toxin (CT) which is
made of two subunits A and B. The A subunit is catalytic and the B subunit is a membrane
penetration unit of five subunits. The A chain catalyzes the ADP-ribosylation of key signal-
coupling protein, leading to persistent activation of adenylate cyclase. The pentameric B
subunit binds a ganglioside GM1 the cell-surface receptor for this toxin and enables the A
chain to enter the cytosol. The ADP ribosylation of the Gs protein blocks its capacity to
hydrolyze GTP to GDP and so impairs the deactivation device. The Gs protein is locked
in an active form and hence the adenylate cyclase stays persistently activated leading to a
hundred fold build up of cyclic AMP which stimulate the active transport of ions and leads
to very large efflux of Na+ and water into the gut resulting in diarrhea [1, 30].

CT is encoded by the ctxAB genes on a specific filamentous bacteriophage CTXF.
Transduction of this phage is dependent upon bacterial expression of the Toxin Coregu-
lated Pilus (TCP), which is encoded by the V. Cholerae pathogen city island (VPI). VPI
is generally only present in virulent strains and is laterally transferred. VPI was originally
thought to encode a filamentous phage responsible for transfer. This theory was discredited



Mathematical Analysis of a Cholera Model with Carriers... 111

by a study of 46 diverse V. cholerae isolates, which found no evidence of VPI phage produc-
tion. The generalized transduction phage CP-TI has been shown to transduce the entire VPI,
which is integrated at the same chromosomal location [34]. Also, VPI has been shown to
excise and circularize to produce pVPI via a specialized mechanism involving VPI-encoded
recombinases. It is not known whether pVPI is involved in CP-TI transduction or if it is
perhaps a component of an alternative VPI mobilization mechanism. Theoretically, any
mutation on the ctxAB gene can result in the bacterium being non pathogenic but should
the mutation revert to the wild type then such bacterium would become pathogenic again.

Cholera causes serious health problem in many parts of the world, especially in the
developing world where sewage and water treatment systems are barely adequate. It is
an epidemic with seasonal outbreaks occurring mainly during the dry season when water
becomes scarce or when there is excessive rains in poor hygiene communities. Outbreaks
are generally associated with contaminated food and water supplies, and poor hygiene. V.
cholerae was first isolated as the cause of cholera by an Italian anatomist Filippo Pacini in
1854. It is a gram negative bacterium, which resembles Enterobactericae, but it does not
belong to this group. Coastal cholera outbreaks typically follow zooplankton blooms and
this makes cholera a typical zoonosis. If left untreated, it can cause a mortality rate ranging
from 25% to 50%, where those infected often die of dehydration. Infected individuals
whether symptomatic or not can carry and transmit the bacterium up to four weeks after
infection, while a small number of individuals can remain carriers for several months. While
a number of factors conspire to cause a cholera outbreak such as poor hygiene conditions,
overcrowding and lack of safe drinking water, stopping the spread of the disease and treating
patients requires more resources to be mobilized quickly in the communities affected, a
challenging task to the developing world.

The history of cholera outbreak is well documented [34]. Some historical brief cases
are presented here. In Bangladesh, cholera outbreaks occur twice a year with sudden out-
breaks starting simultaneously in many different sites. Cholera has been endemic on the
Indian sub-continent for centuries, with the Ganges River likely serving as a contamination
reservoir. It spread by trade routes (land and sea) to Russia, then to Western Europe, and
from Europe to North America. It is now no longer considered an issue in Europe and
North America, due to filtration and chlorination of the water supply. In 1816-1826 the first
cholera pandemic began in Bengal, and then spread across India by 1820. It extended as
far as China and the Caspian Sea before receding. The second pandemic reached Europe
between 1829-1851, London and Paris in 1832. In London, it claimed 6536 victims; in
Paris, 20,000 succumbed (out of a population of 650,000 with 100,000 victims in all of
France). It reached Russia, Quebec, Ontario and New York in the same year and the Pacific
coast of North America by 1834. The third pandemic, which occurred between 1852 and
1860 mainly, affected Russia, with over a million deaths. In 1853-1854, London’s epidemic
claimed 10,738 lives and in 1854 an outbreak of cholera in Chicago took the lives of 5.5
% of the population. The Soho outbreak in London was stopped by blocking of the Broad
Street pump by John Snow, who is mostly acclaimed to be the first person to diagnose the
disease as associated with water. The fourth pandemic which occurred from 1863-1875
spread mostly in Europe and Africa. In London, a localized epidemic in the East claimed
5,596 lives and in 1892 8,616 people died in Hamburg, causing a major political upheaval,
as control over the City was removed from the City Council which had not updated water
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supplies. The sixth pandemic from 1899-1923 had little effect in Europe because of ad-
vances in public health, but Russia was badly affected again. The seventh pandemic called
El Tor began in Indonesia in 1961-1970, and reached Bangladesh in 1963, India in 1964,
and the USSR in 1966. From North Africa it spread into Italy by 1973. In the late 1970s
there were small outbreaks in Japan and in the South Pacific. From January 1991 to Septem-
ber 1994, there was an outbreak in South America, apparently initiated by discharged ballast
water. In Peru there were 1.04 million identified cases and almost 10,000 deaths. Vibrio
cholerae serogroup O1 had been considered the only causative agent of epidemic cholera
until the emergence of V. cholerae serogroup O139 Bengal in 1992 in southern India. O139
cholera rapidly spread and caused explosive epidemics throughout Bangladesh, India, and
neighboring countries. V. cholerae O139 can disseminate widely, causing severe watery di-
arrhea that is clinically indistinguishable from that caused by V. cholerae O1 strains. Prior
immunity to V. cholerae O1 does not provide protection against infection caused by V.
cholerae O139. In 1993, the first outbreak caused by serogroup O139 strains occurred in
Xinjiang, China, where 200 cases were reported. In 1994, outbreaks of V. cholerae O139
were reported in six Chinese provinces. Although this newly recognized pathogen has not
caused large-scale epidemics, as seen for El Tor, regions in China where sporadic cases
are reported each year have been expanding: a total of 628 cases were reported up to 1999.
Unlike the epidemics seen in Bangladesh and India, where explosive epidemics and reemer-
gence following transient disappearance were observed, O139 cholera in China appeared to
have only rare outbreaks [27].

1.1. Management and Control of the Cholera Epidemic

When a cholera epidemic occurs in a community, three basic disease control measures that
need to be implemented are:

(a) hygienic disposal of human faeces, use of latrines and toilets and covering them from
flies,

(b) an adequate supply of clean drinking water that has been boiled or treated with disin-
fectants,

(c) good food hygiene, and effective food hygiene measures include: cooking food thor-
oughly and eating it while still hot; preventing cooked foods from being contaminated
by contact with raw foods, including water and ice, contaminated surfaces and flies;
avoiding raw fruits and vegetables unless they are first peeled; and washing hands
after defecation and especially before handling food or drinking water is equally im-
portant.

It has been demonstrated that treatment of a community with antibiotics has no effect
on the spread of cholera, nor does restricting travel and trade between countries or between
different regions of a country. Mass chemoprophylaxis with antibiotics has never succeeded
in limiting the spread of cholera, this is because:

(a) infection spreads rapidly, before mass treatment can be organized,
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(b) the effects of the antibiotic only last for 1 − 2 days, after which time the person is
once again fully susceptible to infection,

(c) the entire population at risk would need to be treated simultaneously. However, even
such simultaneous treatment does not prevent reinfection from environmental sources
such as contaminated water, and

(d) it is difficult to persuade all members of a community to take medication, especially
when most of them are in good health.

WHO discourages mass chemoprophylaxis as a mechanism to control cholera [33].
Since cholera is spread from place to place largely by infected persons, most of whom
have no signs of illness, the so-called “carriers”, there is no practical way of identifying
all carriers and it is not feasible to prevent the movement of people. Furthermore, travel
restrictions are very disruptive and often have adverse economic consequences for normal
trade and tourism. In 1973, WHO deleted from the International Health Regulations the
requirement for presentation of a cholera vaccination certificate and currently, no country
requires proof of cholera vaccination as a condition of entry [33]. It may be appropriate,
however, to discourage large gatherings for events such as funerals, fairs and markets when
cholera threatens an area. Infection can spread rapidly during such events through contami-
nated food or water and is then further disseminated when the infected person returns home.
If such events do take place, it is essential to institute safe disposal of excreta, safe practices
for food preparation and to ensure a safe supply of drinking water.

1.2. Signs and Symptoms of Cholera

Infection with cholera has a short incubation period, from less than one day to five days
and produces an enterotoxin that causes a copious, painless, watery diarhhoea that can, in a
matter of a few hours, result in profound, rapidly progressive dehydration and death if treat-
ment is not initiated promptly. Vomiting also occurs in most patients. In severe cases, stool
volume can exceed 250ml/kg body weight in the first 24 hours. If fluids and electrolytes
are not replaced, hypovolaemic shock and death ensue. Muscle cramps due to electrolyte
disturbances are common. The stool has a characteristic appearance; a nonbilious, grey,
slightly cloudy fluid with flecks of mucous, no blood and a sweet, inoffensive odour. It
has been called “rice-water” stool because of its resemblance to the water in which rice has
been washed. Clinical symptoms of cholera parallel those of volume depletion (see [26]):

(a) at 3-5 % loss of normal body weight and thirst develops,

(b) at 5-8 % loss of normal body weight, postural hypotension, weakness, tachycardia
and decreased skin turgor occur, and

(c) at 10 % or more loss of normal body weight oliguria, weak or absent pulses, sunken
eyes (and in infants, sunken fontanelles), wrinkled skin, somnolence and coma can
occur.

Complications of cholera occur from the effects of volume and electrolyte depletion
and may include renal failure, coma and death. Therefore, if the patient is adequately
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treated with fluid and salt, the complications can be averted and the disease process is self-
limiting, resolving in a few days. However, since fluid losses occur extremely rapidly, fluid
replacement needs to be aggressive and be initiated early. It is recommended to start fluid
replacement while taking the patient to the nearest clinic, doctor or hospital.

1.3. Use of Mathematical Models

Mathematical models are powerful tools for the development of epidemiological studies [3].
They can synthesize the current empirical knowledge about the disease into a coherent
mechanistic framework and often provide answers to the following questions: what demo-
graphic, environmental and sociological factors drive disease dynamics? The purpose of
the mathematical modeling is to:

(a) understand what factors govern outbreaks of infectious diseases,

(b) take facts about the disease as inputs and to make predictions about the number of
infected and uninfected people over time as outputs,

(c) develop understanding of the interplay between the variables that determine the
course of, for example, the infection within an individual and the variables that con-
trol the pattern of infections within the communities of people,

(d) to facilitate the indirect assessment of, for example, certain epidemiological parame-
ters,

(e) to clarify what data are required to predict future trends,

(f) to give an insight into what happens in the real world,

(g) help identify the groups of the population at highest risk,

(h) help in planning of intervention programs, and

(i) help governments, public-health agencies and health care providers to determine how
best to allocate scarce resources for say cholera treatment and prevention.

A model is a set of functions that describe the relationships between different vari-
ables. Types of variables are, decision variables (independent variables), input variables,
state variables, exogenous variables (parameters or constants), random variables, and out-
put variables. Mathematical models can be classified as:

(i) Deterministic or stochastic: a deterministic model is based on the premise that if com-
plete information on the system is known at a specific time, then its future behaviour
can be predicted exactly whereas a stochastic model incorporates probabilistic be-
haviour, that is, future behaviour is not completely determined but that there are a
number of possible results and each has a certain probability of occurring.

(ii) Dynamic or static: dynamic models are typically represented by differential or differ-
ence equations, whereas static models do not account for time.
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(ii) Linear or nonlinear: a linear model is one in which the operators in the model are
linear. If not linear it is considered as nonlinear.

In the modeling of infectious diseases, deterministic models have the advantage that
they can be more complex than stochastic models but still possible to analyze, at least when
numerical solutions are adequate yet for a stochastic epidemic model to be mathemati-
cally manageable it has to be quite simple and thus not entirely realistic. When analysis of
stochastic models is possible there are several reasons to suggest that stochastic models are
to be preferred. Firstly, the most natural way to describe the spread of disease is stochastic;
one defines the probability of disease transmission between two individuals, rather than stat-
ing with certainty whether or not transmission will occur. Deterministic models describe the
spread of disease under the mass action law, thus relying on the law of large numbers [12].
Secondly, there are phenomena which are genuinely stochastic and do not satisfy the law of
large numbers. Thirdly, knowledge about uncertainty in estimates requires stochastic mod-
els, and an estimate is not much of use without some knowledge of its uncertainty. Lastly,
stochastic models also provide more information, for example, means, variances and co-
variances. Stochastic models have the disadvantage that, no matter how much one knows
about the system at a given time, it is impossible to determine with absolute certainty the
nature of the system for future times. Models must be developed based on detailed under-
standing of the components of the disease dynamics. Predictions and recommendations for
control stem from the mathematical and numerical analysis of models. Being able to make
predictions about disease dynamics is really helpful for public health. If we know there
will be an outbreak, we can prepare for it and alternatively, if we have a reliable model, we
can study how to prevent an outbreak and save lives by changing the factors we can control
using public health means. Some of the factors include education, quarantine regulations
and health treatment strategies.

Mathematical models go back to 1760 when Daniel Bernoulli used mathematical meth-
ods to study techniques of protection against smallpox [4]. Further concepts on math-
ematical modeling of epidemics were developed by Ronald Ross [28] and his students
Kermack and Mackendrick [18–20, 23]. The 1927 SIR (Susceptible-Infectives-Removed)
model in [18] used to understand the cholera epidemic was and is still famous among re-
searchers. Here, the form of the mathematical model is a system of ordinary differen-
tial equations which track the levels of each of the susceptible, exposed, infective and the
pathogen population. The model is a Susceptible-Exposed-Infected model (for the human
population) coupled to an aquatic population of V.cholerae. The objective of this chapter
is to carry out detailed qualitative mathematical analysis of a single-season deterministic
cholera model with carriers and assessing the effects of treatments of cholera sufferers us-
ing comprehensive analytical and numerical techniques. The role of the aquatic reservoir
on the persistence of the endemic cholera as well as conditions for the development of epi-
demic and endemic cholera will be established. An epidemic is a disease that affects many
individuals in a population and is generally defined as a widespread disease. It can be en-
demic or non-endemic depending on the time period it occurs. An epidemic is endemic if it
persists in a population in the long term without reintroduction of the disease from outside,
during which there is a renewal of susceptibles by birth or recovery from temporary or per-
manent immunity and is non-endemic if it occurs for a short period of time and it is called
a pandemic if it is widely distributed in space. There has not been much studies on cholera
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models, at least from the mathematical world. Nevertheless, this disease demands a high
level of interest and contribution from both the epidemiology as well as the mathematics
communities in order to combine efforts in determining conditions under which the disease
will die out. Since cholera is mainly a disease related to hygiene, awareness is therefore
paramount to the spread or reduction of an outbreak. In this regard, the contribution of
each individual to the population of V.cholerae is a bio-social parameter which cannot be
easily measured, but if regarded as the awareness factor, heuristic values can be assigned to
it. Thus, the model includes parameters related to the behavioral pattern of individuals. In
the last decades, attention to cholera epidemiology increased as cholera epidemics became
a worldwide health problem. Detailed investigation of V.cholerae interactions with its host
and with other organisms in the environment suggests that cholera dynamics is much more
complex than previously thought.

2. Basic Model

The basic cholera model divides the human population into three classes: S(t) denoting the
population density of susceptible individuals, this compartment contains individuals who
are not infected with the bacterium, E(t) denoting the population density of exposed indi-
viduals, this compartment contains individuals who are infected with the bacterium but are
asymptomatic and not yet suffering from the disease (referred to as carriers in this chapter),
I(t) denoting the population density of infected individuals, this class contains individuals
who are infected with the bacterium and are symptomatic and suffering from the disease
(referred to as sufferers in this chapter), and the pathogen population, i.e., the V.cholerae
pool is denoted by P (t). According to [4], a major complication of many diseases is the
existence of the so-called “carriers” that are individuals who although apparently healthy
themselves are already infected and are capable of transmitting the infection to others. In
fact, they are not themselves usually recognized as actual cases.

It is assumed that, at any moment in time, new individuals enter the susceptible human
population at a rate η(1 − S(t)

K ) proportional to individuals in that class where η > 0 is
the constant intrinsic growth and K > 0 is the environmental carrying capacity of humans.
Susceptible individuals, acquire infection at a time dependent rate aP (t)

H+εP (t) , where a > 0
is the maximal rate of exposure, H is the half saturation constant, and ε is the limitation of
the growth velocity of V.cholerae with the increase of cases (exposed and sufferers) [16].
In the absence of the pathogen, the human population follows a logistic growth, while the
functional response of the susceptibles to the pathogen given by P (t)S(t)

H+εP (t) is of the modified
Holling’s type-II response (also known as the Michaelis-Menten function when ε = 1), and
the response refers to the change in density of the susceptibles per unit time per pathogen
as the susceptible population density changes. Upon becoming infected with the bacterium,
a proportion p of the infected individuals move into the class of carriers, E(t) and the com-
plimentary proportion (1 − p) move into class I(t) of infected individuals. Carriers can
eventually suffer from cholera and enter the class I(t) of individuals suffering from the
disease at a rate φ > 0. It is assumed that carriers and infectives can recover naturally at
constant rates γ1 > 0 and γ2 > 0 respectively and become susceptible again. The natural
death rate of humans in each class is assumed to be µH > 0 and infected individuals have
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an additional disease-induced (cholera-induced) mortality rate, δ > 0. The growth rate of
V.cholerae is assumed to be a constant c > 0 and proportional to P (t). Susceptibles, in-
fected and exposed individuals contribute to pathogen population growth at rates σ1, σ2, σ3

respectively with σ1 < σ2 < σ3 suggesting that carriers contribute more to the growth
of the pathogen population than other classes. The natural death rate of the pathogen is
assumed to be µP > 0. Transmission of infection is assumed to be only through the en-
vironment. The model does not account for interactions between susceptible and exposed,
susceptible and infective individuals as the etiological agent infects susceptibles through a
third party (namely, contaminated food or water). The model structure, which greatly im-
proves on the work of Codeco [9], is shown in Figure 1. In Figure 1, the dashed arrows
indicate the indirect contribution of the human population in the growth of the pathogen.

Figure 1. Flow diagram of the basic cholera model.

Putting the above formulations and assumptions together gives the following system of
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differential equations (where a dot represents differentiation with respect to time),

˙S(t) = η(1− S(t)
K )S(t) + γ1E(t) + γ2I(t)− aP (t)S(t)

H+εP (t) − µHS(t),

˙E(t) = ap P (t)S(t)
H+εP (t) − (µH + φ + γ1)E(t),

˙I(t) = a(1− p) P (t)S(t)
H+εP (t) + φE(t)− (µH + δ + γ2)I(t),

˙P (t) = cP (t) + σ1S(t) + σ2I(t) + σ3E(t)− µP P (t).

(1)

The initial condition for system (1) is given by,




S(θ) = ϕ1(θ), E(θ) = ϕ2(θ),

I(θ) = ϕ3(θ), P (θ) = ϕ4(θ),

ϕi(θ) ≥ 0, ϕi(0) > 0, i = 1, 2, 3, 4.

(2)

We define,

Ω =
{

(S, E, I, P ) ∈ IR4|S ≥ 0, E ≥ 0, I ≥ 0, P ≥ 0
}

, (3)

to be the epidemiologically and mathematically feasible region.

2.1. Positivity of Solutions

Model system (1) describes the dynamics of a human population and a pathogen population,
therefore it is very important to prove that the susceptibles, exposed, infected and pathogen
populations are positive for all time, thus in this section we prove solutions of model system
(1) with positive initial data will remain positive for all t > 0.

Theorem 1. Let the initial data be S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, P (t) ≥ 0. Then,
solutions of S(t), E(t), I(t), P (t) of system (1) are positive for all t ≥ 0.

Proof. The plane S = 0 of IR4 is invariant for model system (1). Considering the variable
P (t) in [0, T ], then for t ∈ [0, T ] the fourth equation of model system (1) can be written as,

˙P (t) ≥ −(µP − c)P (t),∀t ∈ [0, T ]. (4)

By direct integration of (4) we obtain

P (t) ≥ P (0)e−(µP−c)t ≥ 0, (5)

as t ∈ [0, T ] and as long as µP − c < +∞. For variable I(t), from model system (1)
equation three, we have

˙I(t) ≥ −(µH + δ + γ2)I(t). (6)

This gives,
I(t) ≥ I(0)e−(µH+δ+γ2)t ≥ 0, (7)
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also for variable E(t), from model system (1), we obtain

˙E(t) ≥ −(µH + φ + γ1)E(t), (8)

and integrating (8) gives,

E(t) ≥ E(0)e−(µH+φ+γ1)t ≥ 0. (9)

Thus, the non-negativity of S(t), P (t) implies that of E(t) and I(t) are positive if
t ≥ 0. This shows that for initial conditions (2) the corresponding solution of (1) is such
that min{S(t), E(t), I(t), P (t)} ≥ 0 in its interval of existence.

2.2. Existence of Solutions

Theorem 2. A solution of model system (1) is feasible.

Proof. It is necessary to show that system (1) is dissipative, that is, all feasible solutions
are uniformly bounded in Ω ⊂ IR4. Let

{
(S(t), E(t), I(t), P (t)) ∈ IR4

}
be any solution of

system (1) with non-negative initial conditions. Since

˙S(t) ≤ η
(
1− S(t)

K

)
S(t)− µHS(t), (10)

then, lim supS(t)︸ ︷︷ ︸
t−→∞

≤ M , where M = max(S0,K). Let W (t) = S(t)+E(t)+I(t)+P (t),

then

˙W (t) = η
(
1− S(t)

K

)
S(t) + γ1E(t) + γ2I(t)− aP (t)S(t)

H + εP (t)
− µHS(t) + pa

P (t)S(t)
H + εP (t)

−(µH + φ + γ1)E(t) + a(1− p)
P (t)S(t)

H + εP (t)
+ φE(t)

−(µH + δ + γ2)I(t) + cP (t) + σ1S(t) + σ2I(t) + σ3E(t)− µP P (t),

=
(
η
(
1− S(t)

K

)
+σ1 − µH

)
S(t) + (σ3 − µH)E(t) + (σ2 − δ − µH)I(t) + (c− µP )P (t),

≤ (η + σ1 − µH + 1)S(t)− S(t)− (µH − σ3)E(t)− (µH + δ − σ2)I(t)− (µP − c)P (t),

≤ (η + σ1 − µH + 1)M −mW (t),
(11)

where m = min{(µH − σ3, µH + δ − σ2, µP − c, 1)}. Thus,

˙W (t) + mW (t) ≤ (η + σ1 − µH + 1)M. (12)

Equation (12) is a first order linear differential inequality [5], with the solution given by

0 < W (S, E, I, P ) ≤ (η + σ1 − µH + 1)M
m

+ W (S0, E0, I0, P0)e−mt (13)
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as t−→∞, we have

0 < W (S,E, I, P ) ≤ (η + σ1 − µH + 1)M
m

. (14)

Therefore, all solutions of the system (1) enter the feasible region,

Ω =
{

(S(t), E(t), I(t), P (t)) ∈ IR4
+ : W ≤ (η + σ1 − µH + 1)M

m
+ ς,∀ς > 0

}
. (15)

This completes the proof of the theorem.

We illustrate the phase plane portraits of model system (1) in Figures 2 (a) and 2 (b).
Figures 2 (a) and 2 (b) illustrate that solutions of model system (1) starting in Ω will stay in
Ω and are positively invariant and are unique thus are mathematically and epidemiologically
well posed.

(a) (b)

Figure 2. (a) A typical phase plane portrait for the cholera model in the SI phase plane,
(b) A typical phase plane portrait for the cholera model in the SE phase plane, for η =
0.0001, K = 12878000, γ1 = 0.1, γ2 = 0.05, a = 0.2143,H = 109, ε = 0.5, µH =
0.0000675, p = 0.8, φ = 0.005, δ = 0.015, c = 0.73, σ1 = 10, σ2 = 100, σ3 = 200, µP =
0.33 with varying initial conditions. We considered general cases for illustration.

2.3. Equilibrium States and Stability

Model system (1) admits three steady states, that are

(a) the trivial equilibrium

E0 = (S0, E0, I0, P 0) = (0, 0, 0, 0), (16)

(b) the disease-free equilibrium

E1 = (S1, E1, I1, P 1) =
((

1− µH

η

)
K, 0, 0, 0

)
, and (17)

this equilibrium exists when η > µH suggesting that the intrinsic human population
growth rate should be greater than the human population death rate.
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(c) the endemic equilibrium
E2 = (Se, Ee, Ie, P e), (18)

where,

Se =
K(η−µH)+

r
K2(η−µH)2− 4aKηλe

P
(δφ+(1−p)γ1(δ+µH )+µH (δ+φ+pγ2+µH ))

(φ+γ1+µH )(δ+γ2+µH )

2η ,

Ee =
apλe

p

φ + γ1 + µH
,

Ie =
aλe

p(φ + (1− p)γ1 + (1− p)µH)
(φ + γ1 + µH)(δ + γ2 + µH)

and,

P e = 1
c−µP

[
σ3E

e + σ2I
e − σ1S

e
]
,

(19)

with λe
P =

P eSe

H + εP e
. This equilibrium exists when c > µP suggesting that the intrinsic

V.cholerae growth rate should be greater than the death rate.
It is important to note that the cholera model (1) is of varying population sizes (hu-

man and pathogen populations) and consequently, the trivial (or extinction) equilibrium in
general is not feasible. Even though this equilibrium is not biologically relevant, we shall
analyse its stability whenever it exists. The asymptotic dynamics of the steady states is
determined by the following Jacobian matrix of model system (1),

J =




η(1− 2S(t)
K )− aP (t)

H+εP (t) − µH γ1 γ2
−aHS(t)

(H+εP (t))2

apP (t)
H+εP (t) −(µH + φ + γ1) 0 apHS(t)

(H+εP (t))2

a(1−p)P (t)
H+εP (t) φ −(µH + δ + γ2)

a(1−p)HS(t)
(H+εP (t))2

σ1 σ3 σ2 c− µP


 .

(20)

2.3.1. Trivial Equilibrium and Stability

Theorem 3. The trivial equilibrium E0 if it exists is a saddle point.

Proof. Evaluating the Jacobian matrix (20) at the trivial equilibrium point E0 gives,

JE0 =




η − µH γ1 γ2 0
0 −(µH + φ + γ1) 0 0
0 φ −(µH + δ + γ2) 0
σ1 σ3 σ2 c− µP


 . (21)

The resulting characteristic equation from (21) is,

((η − µH)− λ)(−(µH + φ + γ1)− λ)(−(µH + δ + γ2)− λ)((c− µP )− λ) = 0. (22)
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The eigenvalues are λ1 = c − µP , λ2 = −(µH + δ + γ2), λ3 = −(µH + φ + γ1) and
λ4 = η−µH . Two of them are positive, while the other two are negative, thus E0 is a saddle
point. Consequently, the determinant 4, say, of the matrix in (21) is negative [25]. This
can be shown by a little re-arrangement as follows:

4 = (µH + φ + γ1)(µH + δ + γ2){ηc− (ηµP + cµH + σγ2)}. (23)

Obviously, {ηc− (ηµP +cµH +σγ2)} < 0 and E0 will be stable iff the intrinsic growth
rates c and η are both negative.

2.3.2. Disease-Free Equilibrium and Stability

The most important equilibrium state from the biomedical point of view is the disease-
free equilibrium, E1. The linear stability of the disease-free equilibrium E1 is governed by
the basic reproductive number R0 (see [2, 6, 8, 14]). Mathematically, R0 is defined as the
spectral radius [10, 32] and it is the threshold quantity for disease control which defines
the number of new infectives generated by a single infected individual in a completely
susceptible population [2]. The basic reproductive number R0 measures the power of a
disease to invade a population under conditions that facilitate maximal growth. The stability
of this equilibrium will be investigated using the next generation operator [10, 32]. Using
the notation in [32] on model system (1), the matrices F and V , for the new infection terms
and the remaining transfer terms are respectively given by,

F =




0 0 0 0

0 0 0
apK(1−µH

η
)

H

0 0 0
a(1−p)K(1−µH

η
)

H
0 0 0 0




, and (24)

V =




−η(1− µH
η ) γ1 γ2 −aK(1−µH

η
)

H

0 −(µH + φ + γ1) 0 0
0 φ −(µH + δ + γ2) 0
σ1 σ3 σ2 c− µP


 . (25)

It follows that the basic reproduction number denoted by R0 is,

R0 = ρ(FV−1)

=
(aK(γ1((γ2+p(δ+µH ))σ1+(1−p)(η−µH )σ2)+γ2((φ+(1−p)µH )σ1+p(η−µH )σ3)+(η−µH )((φ+(1−p)µH )σ2+p(δ+µH )σ3)))

((φ+γ1+µH )(δ+γ2+µH )(−cHη+HηµP +aKσ1)) .

(26)

Using Theorem 2 in [32], the following result is established.

Lemma 1. The disease-free equilibrium of model system (1) is locally-asymptotically stable
if R0 < 1 and unstable if R0 > 1.

Thus, Lemma 1 implies that cholera can be eliminated from the community (whenR0 < 1)
if the initial sizes of the sub-populations of the model are in the basin of attraction of the
disease-free equilibrium E1.
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2.4. Effects of Cholera Carriers

The partial derivative of the basic reproduction number with respect to the proportion of
carriers p is

∂R0
∂p = (aK(γ1((δ+µH))σ1+(−η+µH)σ2)+(η−µH)(−µhσ2+(δ+µH)σ3)+γ2(ησ3−µH(σ1+σ3)))

((φ+γ1+µH)(δ+γ2+µH)(−cHη+HηµP +aKσ1)) > 0.
(27)

From equation (27) we have ∂R0
∂p > 0 suggesting that increase in the number of cholera

carriers speeds up the spread of the disease. If there are no carriers (p = σ3 = E(t) = 0),
the reproductive number becomes,

R∗0 = aK(γ2σ1+σ2(η−µH))
(δ+γ2+µH)(Hη(µP−c)+aKσ1) . (28)

Expression (26) for R0 can be written as

R0 =

aK

�
γ1((γ2 + p(σ + µH))σ1 + (1− p)(η − µH)σ2) + pσ3(η − µH)(1 + σ + µH)

�
(φ + γ1 + µH)(σ + γ2 + µH)(ηH(µP − c) + aKσ1)

(29)

+
(φ + (1− p)µH)

(φ + γ1 + µH)
R∗0 (30)

which can be written as

R0 = G1 + G2R∗0. (31)

Here,

G1 =

aK

�
γ1((γ2 + p(σ + µH))σ1 + (1− p)(η − µH)σ2) + pσ3(η − µH)(1 + σ + µH)

�
(φ + γ1 + µH)(σ + γ2 + µH)(ηH(µP − c) + aKσ1)

G2 =
(φ + (1− p)µH)

(φ + γ1 + µH)
.

(32)

Equation (31) gives R∗0 = R0−G1
G2

which implies that R∗0 < R0 ∀ (G1, G2) > 0.
Figure 3 illustrates the relationship and behaviour ofR0 and R∗0 for increasing σ2 (number
of bacteria shed into the environment by one cholera sufferer per day) using parameter
values in Table 1. Figure 3 suggest that the presence of carriers in a community increases
the number of cholera secondary infections.
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Figure 3. Trend R0 and R∗0 of the reproductive numbers for increasing σ2 with other
parameter values as given in Table 1.

Setting the reproductive numberR0 = 1 and solving for p gives the critical threshold of the
proportion of individuals becoming carriers below which cholera can be eradicated,

pc =
(φ + γ1 + µH)[(δ + γ2 + µH)(−cHη + HηµP + aKσ1)− aK(γ2σ1 + (η − µH)σ2)]
aK[(γ1(δ + µH)− γ2µH)σ1 − (η − µH)(γ1 + µH)σ2 + (η − µH)(δ + γ2 + µH)σ3]

.

(33)

Theorem 4. The disease-free equilibrium E1 of model system (1) is globally asymptotically
stable if it is feasible.

Proof. Let S − S1 > 0, E = E1 = 0, I = I1 = 0, P = P 1 = 0. Consider an average
Lyapunov function of the form,

L(S,E, I, P ) = Sν1Eν2Iν3P ν4 . (34)

with νi > 0, i = 1, 2, 3, 4.
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L′
L

= Ψ(S, E, I, P ),

=
ν1S

ν1−1Eν2Iν3P ν4S′ + ν2E
ν2−1Sν1Iν3P ν4E′ + ν3I

ν3−1Sν1Eν2P ν4I ′ + ν4P
ν4−1Sν1Eν2Iν3P ′

Sν1Eν2Iν3P ν4
,

= ν1
S′

S
+ ν2

E′

E
+ ν3

I ′

I
+ ν4

P ′

P
,

= ν1

�
η(1− S

K
) + γ1

E

S
+ γ2

I

S
− aP

H + εP
− µH

�
+ν2

�
pa

PS

E(H + εP )
− (µH + φ + γ1)

�
+ν3

�
a(1− p)

PS

I(H + εP )
+ φ

E

I
− (µH + δ + γ2)

�
+ν4

�
c + σ1

S

P
+ σ2

I

P
+ σ3

E

P
− µP

�
,

≤ −ν1

�
η

�
S

K
− 1

�
+µH

�
−ν2[(µH + φ + γ1)]− ν3[(µH + δ + γ2)]− ν4[µP − c].

(35)

The expression −ν1[η( S
K − 1) + µH ] in equation (35) is negative only if S > K(1 −

µH
η ), S − S1 > 0 and E − E1 = I − I1 = P − P 1 = 0. Since all model parameters are

nonnegative from equation (35), L′ ≤ 0 for S − S1 > 0, with inequality holding only at
E1 = ((1 − µH

η )K, 0, 0, 0). In this case the lyapunov function satisfies L′ ≤ 0 and hence
the disease-free state is globally asymptotically stable for S − S1 > 0. If S> 0, then
(S,E, I, P ) −→ (S∞, 0, 0, 0) for E = I = P = 0.

From the epidemiological point of view, this implies that the disease can be eradicated from
the population (when R0 < 1) if the initial sizes of the subpopulations are in the basin of
attraction of E1.

2.4.1. Endemic Equilibrium and Stability

Expressing the endemic equilibrium for model system (1) in terms of the reproductive num-
ber R0 gives

Se =
K(η − µH) + (R0−1)A2

aKA1−(φ+γ1+µH)(δ+γ2+µH)A2

√
A3

2η
,

Ee =
apλP (R0 − 1)(δ + γ2 + µH)A2

aKA1 − (φ + γ1 + µH)(δ + γ2 + µH)A2
,

Ie =
aλP (φ + (1− p)γ1 + (1− p)µH)(R0 − 1)A2

aKA1 − (φ + γ1 + µH)(δ + γ2 + µH)A2
and,

P e = 1
c−µP

[σ3E
e + σ2I

e − σ1S
e] for c > µP ,

(36)

here,
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A1 = γ1((γ2 + p(δ + µH))σ1 + (1− p)(η − µH)σ2) + γ2((φ + (1− p)µH)σ1

+p(η − µH)σ3 + (η − µH)((φ + (1− p)µH)σ2 + p(δ + µH)σ3)),

A2 = (−cHη + HηµP + aKσ1), and

A3 = K(φ + γ1 + µH)(δ + γ2 + µH)[K(η − µH)2 − 4aηλP (δφ + (1− p)γ1(δ + µH)

+µH(δ + φ + pγ2 + µH))].
(37)

We note that Se, Ee and Ie are always positive if A1 > 0, A2 > 0 and the denominator,

aKA1 − (φ + γ1 + µH)(δ + γ2 + µH)A2 > 0, (38)

which can be written as

aKA1 > (φ + γ1 + µH)(δ + γ2 + µH)A2 (39)

aKA1

(φ + γ1 + µH)(δ + γ2 + µH)A2
> 1, (40)

which results in the expression R0 > 1. Therefore from the expressions for Se, Ee and Ie

the endemic equilibrium point is positive if and only if R0 > 1. We summarise the result
in Lemma 2.

Lemma 2. The endemic equilibrium E2 exists and is positive if and only if R0 > 1.

Theorem 5. The endemic equilibrium E2 of model system (1) is unstable if it is feasible.

Proof. The proof follows Lyapunov’s second method. Let S − Se > 0, E − Ee > 0
I − Ie > 0, P − P e > 0. Defining a suitable positive Lyapunov function V (S,E, I, P )
(see [21]) such that V (Se, Ee, Ie, P e) = 0 by,

V (S, E, I, P ) = c1

(
S − Se − Se ln

S

Se

)
+c2

(
E −Ee − Ee ln

E

Ee

)

+c3

(
I − Ie − Ie ln

I

Ie

)
+c4

(
P − P e − P e ln

P

P e

)
,

(41)

where ci′s, i = 1, 2, 3, 4 are non-negative constants to be determined. V is a positive
definite function in the set Ω, except at E2 where it is zero. The rate of change of V along
the solution of system (1) is given by
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V̇ = c1(S − Se)
Ṡ

S
+ c2(E −Ee)

Ė

E
+ c3(I − Ie)

İ

I
+ c4(P − P e)

Ṗ

P
,

= −c1(S − Se)
[
η

S

K
+

aP

H + εP
+ µH

]
−c2(E − Ee)[µH + φ + γ1]

−c3(I − Ie)[µH + δ + γ2]− c4(P − P e)µP

+c1(S − Se)
[
η +

γ1E

S
+

γ2I

S

]
+apc2(E −Ee)

PS

E(H + εP )

+c3(I − Ie)
[a(1− p)PS

I(H + εP )
+ φ

E

I

]
+c4(P − P e)

[
c +

σ1S

P
+

σ2I

P
+

σ3E

P

]
.

(42)

Then V̇ < 0 iff,

c1(S − Se)
[
η + γ1E

S + γ2I
S

]
+apc2(E −Ee) PS

E(H+εP )

+c3(I − Ie)
[

a(1−p)PS
I(H+εP ) + φE

I

]
+c4(P − P e)

[
c + σ1S

P + σ2I
P + σ3E

P

]
= 0.

(43)

For simplicity, assume c3 < 0 and c4 < 0, then V̇ < 0 iff,

ηc1

apc2
= −E − Ee

S − Se

[ PS

E(H + εP )

(
1 +

γ1E

ηS
+

γ2I

ηS

)]
. (44)

But ap, η > 0 and consequently, one of c1 or c2 must be negative. This has the effect
of changing the sign of one of the expressions in V̇ . Therefore, constants c1 > 0, c2 > 0,
c3 < 0 and c4 < 0 cannot be found such that V̇ < 0. In poor communities E2 is certainly
unstable and is probably a saddle.

2.5. Permanence of the System

System (1) is said to be permanent if the boundary (including infinity) is a repellor, i.e.

if there exists a compact set Q∈ ◦Ω, the interior of Ω, such that whenever initially x ∈ ◦Ω,
then x(t) ∈ Q for t sufficiently large. After a transient phase, all densities are uniformly
bounded away from 0 (see [7]). This notion captures a basic idea in ecology of viewing
an ecosystem as stable even if it exhibits violent oscillations, as long as its species remain
safe from extinction. If S0 = 0, then, (S(t), E(t), I(t), P (t))−→ (0, 0, 0, P∞) irrespec-
tive of the initial values of E(t), I(t), P (t)≥ 0, but will not stay there. If S(t) > 0,
then, ((S(t), E(t), I(t), P (t))−→ (S∞, 0, 0, 0) for E(t) = I(t) = P (t) = 0, while
((S(t), E(t), I(t), P (t))−→ (Se, Ee, Ie, P e) enters Ω and stays there otherwise.

2.6. Persistence

Lemma 3. Cholera will persist as long as the pathogen, V.cholerae is present.
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Proof. Assuming that outbreaks occur whenever the level of the pathogen reaches its initial
level. Re-arranging the fourth equation in system (1) gives

˙P (t)− (c− µP )P (t) = σ1S(t) + σ2I(t) + σ3E(t), (45)

integration yields,

P (t) = P (0) + e(c−µP )t

∫ t

0
e−(c−µP )τ

[
σ1S(τ) + σ2I(τ) + σ3E(τ)

]
dτ. (46)

Cholera will emerge whenever P (t) = P (0). Which means that,

e(c−µP )t

∫ t

0
e−(c−µP )τ

[
σ1S(τ) + σ2I(τ) + σ3E(τ)

]
dτ = 0, (47)

which implies that e−(c−µP )t = 0, this implies, t = ∞. This means that cholera will emerge
infinitely many times, except when adequate measures are taken. This is biologically a
challenging problem because as long as humans continue to contaminate the environment
it is difficult to eradicate the pathogen. A V.cholerae-free environment is feasible only if
local communities are educated on the need for safe disposal of waste products and proper
hygiene methods are practiced.

We illustrate the intrinsic dynamic of the cholera model for the human and the pathogen
populations in Figure 4 (a) and 4 (b). Numerical simulations of the model systems (1) were
carried out using a set of reasonable parameter values given in Table (1).

(a) (b)

Figure 4. (a) Simulation results showing the dynamics of the human population; (b) Simu-
lation results showing the dynamics of the pathogen population with time for model system
(1). We assume initial condition: S(0) = 100, E(0) = 39, I(0) = 20, P (0) = 215 using
parameter values in Table 1.

In Figure 4 (a) graph S(t) denotes the susceptible population which is increasing in a pe-
riod between 0-18 days and begin to fall from the period between 18-35 days attaining an
equilibrium state. The graph E(t) in Figure 4 (a) denotes the exposed population which
begins by falling in a period between 0-18 days and starts to increase to a maximum point
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in the period between 18-30 days and eventually falls to an equilibrium state. The graph
I(t) in Figure 4 (a) denotes the population of sufferers which begins by falling in the pe-
riod between 0-20 days and increases to a maximum in the period between 20-45 days and
falls slowly attaining an equilibrium state. Figure 4 (b) shows the graph of the pathogen
population P (t) which is showing exponential growth.

3. Cholera Model with Treatment

In this section, model system (1) is extended to incorporate treatment of cholera sufferers
(I(t)) at a rate α into a new class T (t) of treated individuals. It is assumed that treated
individuals do not die from the disease and they recover at a rate w into the class, S(t) of
susceptible individuals. When cholera occurs in an unprepared community, case-fatality
rates may be as high as 50 % usually because there are no facilities for treatment or be-
cause treatment is given too late. However, cholera is simple to treat and only the rapid
and adequate replacement of fluids, electrolytes and base is required. The mortality rate
for appropriately treated disease is usually less than 1 %. Most cases of diarrhoea caused
by V.cholerae can be treated using oral rehydration solutions such as that recommended
by the WHO/UNICEF [26, 31, 33]. During an epidemic, most (80-90 %) of patients can
be treated using oral rehydration therapy alone, but severely dehydrated patients need the
administration of intravenous fluids such as half-strength Darrows solution or Ringers Lac-
tate. Patients with mild or moderate dehydration who can drink should be rehydrated with
an oral rehydration solution about 75ml/kg body weight in 4 hours. The composition of
the WHO/UNICEF [26, 31, 33] oral rehydration solution (made up to one litre with clean
water) is shown in the following table.

Sodium chloride 3.5g

Trisodium citrate 2.9g

Potassium chloride 1.5g

Glucose 20g

The solution is safe, even for infants, if its intake is alternated with the consumption of
sodium-free fluids or breast milk. If this solution is not immediately available, home-made
sugar and salt solutions may be used to maintain hydration and prevent further dehydration
while taking the patient to the nearest clinic for medical attention. Home-made sugar and
salt solutions may also be prepared and the mixture is made up 1 level teaspoon of table
salt added to 8 level tea-spoons of sugar. The mixture is dissolved in 1 litre of boiled and
cooled water. Commercial oral rehydration solutions may also be used and are convenient
and easy to make-up using boiled and cooled water. Note that antidiarrhoeal medicines
such as those containing loperamide are not recommended.

The model structure for the cholera model with treatment is shown in Figure 5. In
Figure 5, the dashed arrows indicate the indirect contribution of the human population in
the growth of the pathogen.
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Figure 5. Flow diagram of the cholera model with treatment.

The flow diagram in Figure (5) depicts the model, which is described by the following
system of differential equations,

˙S(t) = η(1− S(t)
K )S(t) + γ1E(t) + γ2I(t) + wT (t)− aP (t)S(t)

H+εP (t) − µHS(t),

˙E(t) = ap P (t)S(t)
H+εP (t) − (µH + φ + γ1)E(t),

˙I(t) = a(1− p) P (t)S(t)
H+εP (t) + φE(t)− (µH + δ + γ2 + α)I(t),

˙T (t) = αI(t)− (w + µH)T (t),

˙P (t) = (c− µP )P (t) + σ1S(t) + σ2I(t) + σ3E(t).

(48)

The initial condition for model system (48) is given by,





S(θ) = ϕ1(θ), E(θ) = ϕ2(θ),

I(θ) = ϕ3(θ), T (θ) = ϕ4(θ),

P (θ) = ϕ5(θ), ϕi(θ) ≥ 0,

ϕi(0) > 0, i = 1, 2, 3, 4, 5.

(49)
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We define,

ΩT =
{

(S,E, I, T, P ) ∈ IR5|S ≥ 0, E ≥ 0, I ≥ 0, T ≥ 0, P ≥ 0
}

,
(50)

to be the epidemiologically and mathematically feasible region.

3.1. Existence of Solutions

Theorem 6. A solution of model system (48) is feasible.

Proof. Let
{

(S(t), E(t), I(t), T (t), P (t)) ∈ IR5
}

be any solution of system (48) with non-
negative initial conditions. Since

˙S(t) ≤ η
(
1− S(t)

K

)
S(t)− µHS(t), (51)

then, lim supS(t)︸ ︷︷ ︸
t−→∞

≤ M , where M = max(S0,K). Let Z(t) = S(t) + E(t) + I(t) +

T (t) + P (t), then

˙Z(t) = η(1− S(t)
K

)S(t) + γ1E(t) + γ2I(t) + wT (t)− aP (t)S(t)
H + εP (t)

− µHS(t) + pa
P (t)S(t)

H + εP (t)

−(µH + φ + γ1)E(t) + a(1− p)
P (t)S(t)

H + εP (t)
+ φE(t)− (µH + δ + γ2 + α)I(t)

+αI(t)− (w + µH)T (t) + cP (t) + σ1S(t) + σ2I(t) + σ3E(t)− µP P (t),

= (η(1− S(t)
K

) + σ1 − µH)S(t) + (σ3 − µH)E(t) + (σ2 − δ − µH)I(t) + (c− µP )P (t)

≤ (η + σ1 − µH + 1)S(t)− S(t)− (µH − σ3)E(t)− (µH + δ − σ2)I(t)

−µHT (t)− (µP − c)P (t),

≤ (η + σ1 − µH + 1)M −mW (t),
(52)

where m = min{(µH − σ3, µH + δ − σ2, µH , µP − c, 1)}. Thus,

˙Z(t) + mZ(t) ≤ (η + σ1 − µH + 1)M. (53)

Equation (53) is a first order linear differential inequality [5], with the solution given
by,

0 < Z(S, E, I, T, P ) ≤ (η + σ1 − µH + 1)M
m

+ Z(S0, E0, I0, T0, P0)e−mt (54)
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as t −→∞, we have

0 < Z(S,E, I, T, P ) ≤ (η + σ1 − µH + 1)M
m

. (55)

Therefore, all solutions of model system (2) enter the feasible region,

ΩT =
{

(S(t), E(t), I(t), T (t), P (t)) ∈ IR5
+ : Z ≤ (η + σ1 − µH + 1)M

m
+ ς,∀ς > 0

}
.

(56)
This completes the proof of the theorem.

3.2. Positivity of Solutions

Theorem 7. Let the initial data be S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, T (t) ≥ 0, P (t) ≥ 0.
Then, solutions of S(t), E(t), I(t), T (t), P (t) of system (48) are positive for all t ≥ 0.

Proof. The plane S = 0 of IR5 is invariant for model system (48). Considering the variable
T (t) in [0, T ], then for t ∈ [0, T ] the fourth of equations (48) can be written as,

˙T (t) ≥ −(w + µH)T (t),∀ t ∈ [0, T ]. (57)

By direct integration, we obtain

T (t) ≥ T (0)e−(w+µH)t ≥ 0, (58)

as t ∈ [0, T ] and as long as w + µH < +∞.

We illustrate the phase plane portrait of model system (48) in Figures 6 (a) and 6 (b). Figures
6 (a) and 6 (b) illustrate that solutions of model system (48) starting in ΩT will stay in ΩT

and are positively invariant and are unique thus are mathematically and epidemiologically
well posed.

(a) (b)

Figure 6. (a) A typical phase plane portrait for the cholera model with treatment in the SI
phase plane, (b) A typical phase plane portrait for the cholera model with treatment in the
ST phase plane, for η = 0.0001,K = 12878000, γ1 = 0.1, γ2 = 0.05, a = 0.2143,H =
109, ε = 0.5, µH = 0.0000675, p = 0.8, φ = 0.005, δ = 0.015, c = 0.73, σ1 = 10, σ2 =
100, σ3 = 200, α = 0.5, w = 0.2, µP = 0.33 with varying initial conditions. We consid-
ered general cases for illustration.
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3.3. Equilibrium States

Model system (48) has a disease-free equilibrium given by,

E1 = (S1, E1, I1, T 1, P 1) =
(
K

(
1− µH

η

)
, 0, 0, 0, 0

)
. (59)

and an endemic equilibrium given by,

E2 = (Se, Ee, Ie, T e, P e), (60)

where,

Se =
K(η − µH) +

√
K2(η − µH)2 − 4aKηλe

P c2
(w+µH)(φ+γ1+µH)(δ+γ2+µH)

2η
,

Ee =
apλe

p

φ + γ1 + µH
,

Ie =
aλe

p(φ + (1− p)γ1 + (1− p)µH)
(φ + γ1 + µH)(δ + γ2 + µH + α)

,

T e =
aαλe

p(φ + (1− p)γ1 + (1− p)µH)
(w + µH)(φ + γ1 + µH)(δ + γ2 + µH + α)

and,

P e = 1
c−µP

[
σ3E

e + σ2I
e − σ1S

e
]

for c > µP ,

(61)

with,

c2 = (wδφ + (1− p)γ1(wδ + µH(w + α + δ + µH)) + µH(w(pα + δ
+(w + α + δ)φ + pγ2(w + µH) + µH(w + α + δ + φ + µH)), and

λe
P =

P eSe

H + εP e
.

(62)

3.4. Stability and Reproductive Numbers

The Jacobian matrix of model (48) is given by,

J =

0BBBBBB@
η(1− 2S(t)

K
)− aP (t)

H+εP (t)
− µH γ1 γ2 w

−aHS(t)

(H+εP (t))2

apP (t)
H+εP (t)

−(µH + φ + γ1) 0 0
apHS(t)

(H+εP (t))2

a(1−p)P (t)
H+εP (t)

φ −(µH + δ + γ2 + α) 0
a(1−p)HS(t)

(H+εP (t))2

0 0 0 −(w + µH) 0
σ1 σ3 σ2 0 c− µP

1CCCCCCA .

(63)

Evaluating the Jacobian matrix (63) at the disease-free equilibrium gives,
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J =

0BBBBBBB@
−η + µH γ1 γ2 w

−aK(1−µH
η

)

H

0 −(µH + φ + γ1) 0 0
aKp(1−µH

η
)

H

0 φ −(µH + δ + γ2 + α) 0
aK(1−p)(1−µH

η
)

H
0 0 0 −(w + µH) 0
σ1 σ3 σ2 0 c− µP

1CCCCCCCA . (64)

Using the method of van den Driessche and Watmough [32] to compute the basic re-
productive number for model system (48) gives,

F =

0BBBBB@
0 0 0 0 0

0 0 0 0
apK(1−µH

η
)

H

0 0 0 0
a(1−p)K(1−µH

η
)

H

0 0 0 0 0
0 0 0 0 0

1CCCCCA , and (65)

V =

0BBBBB@
−η(1− µH

η
) γ1 γ2 w −aK(1−µH

η
)

H

0 −(µH + φ + γ1) 0 0 0
0 φ −(µH + δ + γ2 + α) 0 0
0 0 0 −(w + µH) 0
σ1 σ3 σ2 0 c− µP

1CCCCCA .

(66)

It follows that the treatment-induced reproductive number is given by

RT =

(aK(γ1((γ2+p(α+δ+µH ))σ1+(1−p)(η−µH )σ2)+γ2((φ+(1−p)µH )σ1+p(η−µH )σ3)+(η−µH )((φ+(1−p)µH )σ2+p(α+δ+µH )σ3)))
((φ+γ1+µH )(α+δ+γ2+µH )(−cHη+HηµP +aKσ1)) .

(67)

The following result follows from van den Driessche and Watmough [32] (using Theo-
rem 2).

Lemma 4. The disease-free equilibrium of model system (1) is locally-asymptotically stable
if RT < 1 and unstable if RT > 1.

Thus, Lemma 4 implies that cholera can be eliminated from the community with treatment
(when RT < 1) if the initial sizes of the sub-populations of the model are in the basin of
attraction of the disease-free equilibrium E1.

The reproductive number with treatment can be written as,

RT = R0
(δ + γ2 + µH)

(δ + γ2 + µH + α)
[1−N1] (68)

where,

N1 =
apαK((µH − η)σ3 − γ1σ1)

(φ + γ1 + µH)(δ + γ2 + µH)(−cHη + HηµP + aKσ1)R0
, (69)
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∀ α > 0. Equation (68) reduces to R0, the productive number in the absence of treatment
in the community when α = 0. Equation (68) can be written as,

RT

R0
=

(δ + γ2 + µH)
(δ + γ2 + µH + α)

[1−N1], (70)

since the right hand side of equation (70) is always less than unit, thus

RT

R0
< 1 (71)

which gives,
RT < R0. (72)

Figure 7 illustrates the relationship and behaviour of R0 and RT for increasing σ2

(number of bacteria shed into the environment by one cholera sufferer per day) using pa-
rameter values in Table 1.

Figure 7. Trend R0 and RT of the reproductive numbers for increasing σ2 with other
parameter values as given in Table 1.

The spectral radiusRT defines the number of secondary infections in the presence of treat-
ment and is the reproductive number with treatment of model system (48). Setting the
reproductive number RT = 1 and solving for p and α gives the critical threshold at which
cholera can be eradicated,

pTc = (φ+γ1+µH)[(δ+γ2+µH+α)(−cHη+HηµP +aKσ1)−aK(γ2σ1+(η−µH)σ2)]
aK[(γ1(δ+µH+α)−γ2µH)σ1−(η−µH)(γ1+µH)σ2+(η−µH)(δ+γ2+µH+α)σ3] > 0,

αc = (φ+γ1+µH)(δ+γ2+µH)(−cHη+HηµP +aKσ1)
(φ+γ1+µH)(−cHη+HηµP +aKσ1)+aKp(γ1σ1+(η−µH)σ3) [R0 − 1] > 0.

(73)

The threshold pTc exists when

(δ + γ2 + µH + α)(−cHη + HηµP + aKσ1) > aK(γ2σ1 + (η − µH)σ2), (74)
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and

γ1(δ+µH+α)−γ2µH)σ1−(η−µH)(γ1+µH)σ2+(η−µH)(δ+γ2+µH+α)σ3 > 0. (75)

The threshold αc exists when R0 > 1 and (−cHη + HηµP + aKσ1) > 0.

If R0 < 1, cholera cannot develop into an epidemic. For R0 > 1 it is necessary to
determine the necessary condition for slowing down the spread of cholera. Following Hsu
Schmitz [15],

∆v : = R0 −RT ,

= R0 − R0(δ + γ2 + µH)
(δ + γ2 + µH + α)

[1−N1],

= R0[1−N2(1−N1)],

(76)

for which ∆v > 0 is expected for slowing down the spread of cholera at population level.
Note that

N2 =
(δ + γ2 + µH)

(δ + γ2 + µH + α)
< 1. (77)

Differentiating RT in equation (67) partially with respect to α gives,

∂RT

∂α
= −

[ aK(φ + (1− p)γ1 + (1− p)µH)(γ2σ1 + (η − µH)γ2)
(φ + γ1 + µH)(α + δ + γ2 + µH)2(−cHη + HηµP + aKσ1)

]
< 0, (78)

where the expression in square brackets (78) is always positive for η > µH and ηH(µP −
c) + aσ1K > 0. From equations (78) it can be seen that treatment slows down the spread
of cholera. If µP > c and η > µH are not satisfied, then cholera will remain endemic in the
population.

Theorem 8. The disease-free equilibrium E1 of model system (48) is globally stable if it is
feasible.

Proof. Let S−S1 > 0, E = E1 = 0, I = I1 = 0, T = T 1 = 0,P = P 1 = 0, Considering
an average Lyapunov function of the form,

L(S, E, I, T, P ) = Sν1Eν2Iν3T ν4P ν5 , (79)

with νi > 0, i = 1, 2, 3, 4, 5.
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L′
L

= Ψ(S, E, I, T, P )

=
1

Sν1Eν2Iν3T ν4P ν5

�
ν1S

ν1−1Eν2Iν3T ν4P ν5S′ + ν2E
ν2−1Sν1Iν3T ν4P ν5E′

+ν3I
ν3−1Sν1Eν2T ν4P ν5I ′ + ν4T

ν4−1Sν1Eν2Iν3P ν5T ′ + ν5P
ν5−1Sν1Eν2Iν3T ν4P ′

�
,

= ν1
S′

S
+ ν2

E′

E
+ ν3

I ′

I
+ ν4

T ′

T
+ ν5

P ′

P
,

= ν1

�
η

�
1− S

K

�
+γ1

E

S
+ γ2

I

S
+ w

I

S
− aP

H + εP
− µH

�
+ν2

�
pa

PS

E(H + εP )
− (µH + φ + γ1)

�
+ν3

�
a(1− p)

PS

I(H + εP )
+ φ

E

I
− (µH + δ + γ2 + α)

�
+ν4

�
α

I

T
− (w + µH)

�
+ν5

�
c + σ1

S

P
+ σ2

I

P
+ σ3

E

P
− µP

�
,

≤ −ν1

�
η(

S

K
− 1) + µH

�
−ν2[(µH + φ + γ1)]− ν3[(µH + δ + γ2) + α]− ν4[w + µH ]

−ν5[µP − c].
(80)

The expression −ν1

[
η( S

K − 1) + µH

]
in equation (80) is negative only if S > K(1−

µH
η ), S > S1 and E −E1 = I − I1 = T − T 1 = P −P 1 = 0. Since all model parameters

are nonnegative from equation (80), L′ ≤ 0 for S − S1 > 0, with inequality holding only
at E1 = ((1 − µH

η )K, 0, 0, 0, 0). In this case the Lyapunov function satisfies L′ ≤ 0 and
hence the disease-free state is globally asymptotically stable for S−S1 > 0. If S> 0, then,
(S,E, I, T, P ) −→ (S∞, 0, 0, 0, 0) for E = I = T = P = 0.

Theorem 9. The endemic equilibrium E2 of model system (48) is unstable if it is feasible.

Proof. The proof follows Lyapunov’s second method. Let S − Se > 0, E − Ee > 0
I − Ie > 0, T − T e > 0, P − P e > 0. Defining a suitable positive Lyapunov function
V (S, E, I, T, P ) such that V (Se, Ee, Ie, T e, P e) = 0 by,

V (S, E, I, T, P ) = c1

(
S − Se − Se ln

S

Se

)
+c2

(
E −Ee − Ee ln

E

Ee

)

+c3

(
I − Ie − Ie ln

I

Ie

)
+c4

(
T − T e − T e ln

T

T e

)

+c5

(
P − P e − P e ln

P

P e

)
,

(81)

where ci′s, i = 1, 2, 3, 4, 5 are constants to be determined. V is a positive definite function
in the set ΩT , except at E2 where it is zero. The rate of change of V along the solution of
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system (48) is given by,

V̇ = c1(S − Se)
Ṡ

S
+ c2(E −Ee)

Ė

E
+ c3(I − Ie)

İ

I
+ c4(T − T e)

Ṫ

T
+ c5(P − P e)

Ṗ

P

= −c1(S − Se)
[
η

S

K
+

aP

H + εP
+ µH

]
−c2(E − Ee)[µH + φ + γ1]

−c3(I − Ie)[µH + δ + γ2 + α]− c4(T − T e)[w + µH ]

−c5(P − P e)µP + c1(S − Se)
[
η +

γ1E

S
+

γ2I

S
+

wT

S

]

+apc2(E − Ee)
PS

E(H + εP )
+ c3(I − Ie)

[ aPS

I(H + εP )
+ φ

E

I

]

+c4(T − T e)
[αI

T

]
+c5(P − P e)

[
c +

σ1S

P
+

σ2I

P
+

σ3E

P

]
.

(82)
Then, V̇ < 0 iff

c1(S − Se)
[
η + γ1E

S + γ2I
S + wT

S

]
+apc2(E − Ee) PS

E(H+εP )

+c3(I − Ie)
[

aPS
I(H+εP ) + φE

I

]
+c4(T − T e)

[
αI
T

]
+c5(P − P e)

[
c + σ1S

P + σ2I
P + σ3E

P

]
= 0.

(83)
For simplicity, assume c3 < 0, and c5 < 0, then V̇ < 0 iff

ηc1(S − Se)
[
1 + γ1E

ηS + γ2I
ηS + wT

ηS

]
+apc2(E − Ee) PS

E(H+εP ) + αc4(T − T e)
[

I
T

]
= 0,

(84)
and can be written as,

ηc1

αc4

(B1

B3

)
+

apc2

αc4

(B2

B3

)
= −1 (85)

here,
B1 = (S − Se)

(
1 + γ1E

ηS + γ2I
ηS + wT

ηS

)
> 0,

B2 = (E −Ee)
(

PS
E(H+εP )

)
> 0,

B3 = (T − T e)
(

I
T

)
> 0,

(86)

and η > 0, ap > 0, α > 0. Therefore, c1 > 0, c2 > 0, c4 > 0, c3 < 0, c5 < 0, cannot be
found such that V̇ < 0. The endemic equilibrium is globally asymptotically unstable.

We illustrate the dynamic of the cholera model for the human and the pathogen populations
in Figure 8 (a) and 8 (b). Numerical simulations of the model systems (48) were carried out
using a set of reasonable parameter values given in Table (1)
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(a) (b)

Figure 8. (a) Simulations trends showing the dynamics of human population; (b) Simu-
lation results showing the dynamics of the pathogen population with time for model sys-
tem (48). We assume initial condition:S(0) = 101, E(0) = 39, I(t) = 19, T (t) =
40, P (t) = 526 using parameter values in Table 1.

In Figure 8 (a) graph S(t) denotes the trend for the susceptible population which is in-
creasing in a period of between 0-20 days and begins to fall from the period between 20-38
days attaining an equilibrium state. The graph E(t) in Figure 8 (a) denotes the exposed
population which begins by falling in a period between 0-20 days and starts to increase to a
maximum point in the period between 20-38 days attaining an equilibrium state. The graph
T (t) in Figure 8 (a) denotes the class of treated individuals which begins by falling in the
period between 0-35 days attaining an equilibrium state. The graph I(t) in Figure 8 (a)
denotes the population of sufferers which begins by falling to a nearly constant value in the
period between 0-20 days and increases to a maximum point in the period between 20-35
days attaining an equilibrium state. Figure 8 (b) shows the graph of the pathogen population
P (t) which is showing exponential growth.

4. Numerical Simulations

Numerical simulations of the model systems (1) and (48) are carried out to investigate the
effects of treating cholera cases in a community using parameter values given in Table 1.
The parameter values in Table 1 are obtained from published data and others are reasonable
estimates. We use a fourth order Runge-Kutta numerical scheme coded in C++ program-
ming language for the numerical simulations. The obtained results from the numerical sim-
ulation of model system (1) and (48) for the susceptibles, exposed, infectives and pathogen
are illustrated in Figures 9 (a), 9 (b), 9 (c) and 9 (d) respectively. In Figures 9 (a), 9 (b),
9 (c) and 9 (d), each figure consists of two graphs, one for the basic cholera model (1) and
the other for the cholera model (48) with treatment. The subsript N and T in these figures
denotes the graphs for a case with no treatment (for the basic model (1)) and for a case with
treatment (model system (48)).
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Table 1. Model parameters and their interpretations

η human intrinsic growth rate 0.0001/day Estimate

K environmental carrying capacity of humans 12.878M [33]

γ1 recovery rate of carriers 0.1/day Estimate

γ2 recovery rate of cholera sufferers 0.05/day Estimate

who do not receive treatment

w recovery rate of cholera sufferers 0.2/day Estimate

who receive treatment

H V.cholerae biomass level at which 109 cells/L [9]

half of the contacts with

contaminated water produce infection

a maximal rate of exposure 0.2143/day [13]

ε limitation of the growth velocity of V.cholerae 0.5 Estimate

µH natural human mortality rate 0.0000675/day [24]

p proportion of carriers 0.8/day Estimate

φ per capita rate at which 0.005/day Estimate

carriers eventually become infected

δ per capita mortality rate from cholera infection 0.015/day [29]

c per capita growth rate of V.cholerae bacteria 0.73/day Estimate

σ1 number of bacteria shed into the 10 cells/L-pers-day Estimate

environment by one susceptible individual per day

σ2 number of bacteria shed into the 100 cells/L-pers-day [17]

environment by one cholera sufferer per day

σ3 number of bacteria shed into the 200 cells/L-pers-day Estimate

environment by one carrier per day

µP mortality rate for bacteria 0.33/day [9]

α treatment rate of cholera sufferers 0.5 /day Estimate
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(a) (b)

(c) (d)

Figure 9. Simulation results showing the effect of treatment on: (a) Susceptible population,
(b) Exposed population, (c) Infected population, (d) Pathogen population. Where: ST

is the susceptible population where there is treatment, SN is the susceptible population
where there is no treatment, ET is the exposed population where there is treatment, EN

is the exposed population where there is no treatment, IT is the infected population where
there is treatment, IN is the infected population where there is no treatment, PT is the
pathogen population where there is treatment, PN is the pathogen population where there
is no treatment. The initial conditions used in the simulations are : SN (0) = ST (0) = 10,
EN (0) = ET (0) = 10, IN (0) = IT (0) = 10, T (0) = 0, PN (0) = PT (0) = 10.

In Figure 9 (a), the results obtained illustrate that treatment of cholera infected individuals
results in an increase in the susceptible population (graph for ST always greater than graph
for SN ). The results in Figure 9 (b) show that treatment of cholera sufferers (I(t)) result in
an increase of the number of carriers (E(t)) with time. In Figure 9 (c), the obtained results
illustrate that, treatment of cholera sufferers reduces the number of individuals suffering
from cholera, thus treatment of cholera sufferers in the community reduces the burden of the
disease. We also note from the results in Figure 9 (d) that treatment of cholera sufferers in a
community reduces the growth of the pathogen population since the gradient of graph PN is
always greater than that of graph PT for all time. We note from the numerical analysis that,
treatment of cholera sufferers in the community reduces the number of infected individuals
but does not reduce the number of carriers. Thus, the existence of carriers may remain
a challenge in the control of the epidemic in settings with treatment targeted to cholera
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sufferers only since carriers can not be identified.

5. Conclusion

We formulated and analyzed a cholera-pathogen model with and without treatment, and
evaluated the impact of treatment. The model is analyzed qualitatively to determine criteria
for control of a cholera epidemic and is used to compute the threshold treatment rate
necessary for community-wide control of cholera. The mathematical features such as the
epidemic threshold, equilibria and stabilities were determined. We used a Lyapunov func-
tional approach to show the global stability of the disease-free and endemic equilibrium.
Positivity and boundedness of solutions were presented. The epidemic threshold, which
depends solely on parameters associated with the model, is used to assess the effectiveness
of treatment in controlling cholera in a community.

In the absence of treatment, the origin (or trivial equilibrium) is a saddle, while the
two biologically meaningful equilibria, namely the disease-free is globally asymptotically
stable provided certain conditions are met (the public health implication of this is that
cholera can be eradicated, but not without adopting strict and proper sanitation rules), and
the endemic steady state is only locally stable. This is important as it shows that persistence
is temporal or seasonal and from the public health point of view, in between two outbreaks,
adequate measures could be put in place to combat the resurgence of the epidemic. The
periodic nature of the epidemic outbreaks may dictate the reason why global stability is
not achieved, and consequently, this suggests a natural extension of the model to include
seasonal effects. This will be introduced elsewhere as well as vaccination and quarantine,
with the hope that our simulation results will show that the dynamic of the disease depends
on the amplitude of the seasonally varying contact rate. Migration of infectives even
though most of the patients are too sick too travel will also be given prominence, because
in some rural settings, especially in Sub-Saharan Africa where health care facilities are
not available or inadequate, infected individuals are often moved to communities where
such services are provided. One other way to extend this study is to further investigate the
stability of the endemic equilibrium for the phenomenon of backward bifurcation, where it
may co-exist with the disease-free steady state.

It is shown from the study that treatment slows down the spread of the epidemic.
As long as the pathogen is present in the environment, it will be difficult to eradicate
cholera in poor settings where clean water is not available. Numerical simulations
qualitatively show the benefits of treatment and we note from the simulation analysis that,
treatment of cholera sufferers in the community reduces the number of infected individuals
but does not reduce the number of carriers. Thus, the existence of carriers may remain
a challenge in the control of the epidemic in settings with treatment targeted to cholera
sufferers only since they can not be identified. An important question to address for cholera
is sanitation related (non-pharmaceutical measure) and the cost effectiveness of vaccine.
Despite the availability of preventive vaccines, cholera still inflicts substantial morbidity,
mortality, and socio-economic costs and remains a major public health problem in the
developing world. Here we ask: Can a strategic use of effective vaccines controls the
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spread of cholera? We shall address this question elsewhere by constructing a deterministic
mathematical model to study the transmission dynamics of cholera and the combined
effects of vaccination and treatment.
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Abstract

The functioning of the immune system involves tightly regulated proliferation, dif-
ferentiation and death processes of heterogeneous cell populations, including T lym-
phocytes, B lymphocytes, antigen presenting cells, etc. To quantify the turnover kinet-
ics of specific subsets of immune cells under normal conditions and during infections,
labeling techniques (e.g., with fluorescent markers CFSE or BrdU) in conjunction with
flow cytometry analysis (FACS) are used in experimental and clinical immunology. To
obtain information about the kinetic structure of the cellular responses of heterogenous
cell populations from data that in addition to experimental fluctuations (noise) exhibit
considerable variation between different study animals, careful computational analysis
is needed. The primary objectives of this chapter are: (i) to introduce mathematical
models in the form of hyperbolic partial differential equations (PDEs) which allow di-
rect reference to single or double label histograms of cell distributions, (ii) to illustrate
the potential of our modeling and parameter identification technology by representa-
tive examples from CFSE and BrdU labeled T cell proliferation studies, and (iii) to
compare the proposed PDE models with alternative modeling approaches which are
based upon the use of ordinary differential equations.
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1. Introduction

Theheterogeneity of the turn-over kinetics of cell populations in living systems can be de-
scribed in terms of a wide range of characteristics, such as the number of divisions since
the administration of a label, the position in the cell cycle, the cellular mass, expression
of cellular antigens, or the doubling time and death rate. To quantify this heterogeneity of
cell labeling techniques in conjunction with the flow cytometry are widely used in today’s
experimental and clinical immunology. Flow cytometry is a technique based on the use of
fluorescence activated cell sorter (FACS) for a quantitative single-cell analysis of suspen-
sions of cells labeled with fluorescent substance(s). There exists a wide range of labeling
techniques for the analysis of cell proliferation in response to stimuli inducing cell division:

• in vitro cytoplasmic labeling with carboxy-fluorescein diacetate succinimidyl ester
(CFSE). After labeling, cells can be re-transferred into study animals for analysis of
in vivo behavior. Labeled cells distribute their CFSE contents approximately equally
onto their two daughter cells. CFSE can thus be used in combination with flow cy-
tometry to trace cell populations over time and count the number of divisions they
undergo, see Fig. 1.

• bromodeoxyuridine (BrdU) can - in animal studies - be administered through the food
or intravenously and is incorporated into the newly synthesized DNA strands of all
dividing cells in the organism. After the labeling phase (in the absence of BrdU)
dividing cells dilute their BrdU contents by a factor of 2 during each division. BrdU
contents can be analyzed by FACS.

• deuterated glucose (2H-glucose) is non-toxic and can therefore be used in human
subjects. Like BrdU, it is incorporated into the newly synthesized DNA strands of
dividing cells but evaluating the2H-glucose contents of labeled cell populations re-
quires mass-spectroscopic measurement on the DNA of many cells and does therefore
not allow single-cell analysis.

• [3H] thymidine incorporation by dividing cells.

• fluorescent antibody labeling of the nuclear Ki-67 antigen that is expressed by cycling
cells in lateG1, theS, G2 andM phases of the cell cycle. Ki67 is detectable by
flow cytometry for a few days after the last division. It is commonly used to assess
the fraction of cells that have divided during the last 3-5 days, the so-called growth
fraction of a given cell population.

FACS allows researchers to analyze up to a dozen parameters per cell at rates of up to
105 cells per second [1, 33]. The high throughput FACS technology provides a researcher
with large amounts of data on the evolution of labeled cell distributions with time. But to
make reliable inferences about the kinetic structure of the cellular responses of heteroge-
nous cell populations from data that in addition to their inherent complexity exhibit ex-
perimental fluctuations (noise) and considerable variation between different study animals,
specific computational analysis is needed. The existing mathematical approaches to model
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Figure 1. The proliferation associated dilution of CFSE label.

and analyzeflow cytometry data take into account two aspects of the heterogeneity of pro-
liferating cells: the number (j) of divisions the cells have undergone since the adminstration
of the label and the age (s) of the cell (progression through the division cycle). The math-
ematical models were developed to describe the dynamics of cell populations labeled with
CFSE. The corresponding models consist of systems of either ordinary- (ODE), or delay-
(DDE), or (age-structured) partial differential (PDE) equations [2,9,11,12,14,15,21].
(i) An ODE model. The general linear compartmental model considered in [21] describes
the rates of change in the numbers of cellsNj(t) having undergonej divisions and in the
number of dead but yet not disintegrated cells,D(t), at timet. The scheme of the model is
shown in Fig. 2.

The model assumes that the rates of cell proliferation and death,αj andβj , respectively,
are division number dependent. In generic form, the model equations are as follows:

dN0

dt
(t) = −(α0 + β0)N0(t),

dNj

dt
(t) = 2αj−1Nj−1(t) − (αj + βj)Nj(t), j = 1, . . . , J, (1.1)

dD

dt
(t) =

J
∑

k=0

βkNk(t) − δD(t).

In the original application, the birth-, death- and disintegration (δ) rate parameters were
estimated usingin vitro data on the growth of CFSE labeled T lymphocytes.
(ii) A model based on DDEs. A well-known biological model for cell cycle data analysis is
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Figure 2. The compartmental model of labeled cell proliferation assay.X0 standsfor the
initial label intensity per cell att0.

the Smith-Martin model, which lumps the different phases of the cell cycle into two states.
The first state (calledA) corresponds to theG1 phase of cycle, and the second one (stateB)
represents theS − G2 − M phases of the cell cycle [32]. The progression through the cell
cycle is assumed to have a stochastic component (the recruitment of cells from stateA into
B) and a deterministic component (a progression with a fixed time-lag through theB state).
In a recent study [12] a DDE-type model was proposed which describes the rate of change
of the population of T lymphocytes in theA andB states that have undergonej divisions:

dA0

dt
(t) = −(α0 + β0)A0(t),

dA1

dt
(t) = 2α0A0(t − τ0) exp−βBτ0 −(α1 + βA)A1(t),

dAj

dt
(t) = 2α1Aj−1(t − τ) exp−βBτ −(α1 + βA)Aj(t), j = 1, . . . ,∞, (1.2)

B0(t) = α0

∫ τ0

0
A0(t − s) exp−βBs ds,

Bj(t) = α1

∫ τ

0
Aj(t − s) exp−βBs ds, j = 1, . . . ,∞.

The parameters of the model characterize separately the division rates and the time lags
of transit through theB state of naive and divided cells as well as the death rates of cells
in theA andB states. In [12] the model variablesAj(ti) + Bj(ti) were fitted toin vivo
data (extracted from the CFSE histograms) on T-lymphocyte distributions with respect to
the division number.
(iii) PDE model.A model describing explicitly the progression through the B state of the
cell cycle as an age-structured process (s∈ [0, τ ] being the age variable) was analyzed
in [15]. For data fitting, the authors considered the population of cells that have undergone
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j divisions in theA stateand in theB state, the latter being defined using the time distri-

bution of cells at time t in theB statebj(t, s): Bj(t) =

∫ τ

0
bj(t, s)ds. The corresponding

equations read

dAj

dt
(t) = 2bj−1(t, τ) − (α + βA)Aj(t),

∂bj

∂t
(t, s) +

∂bj

∂s
(t, s) = −βBbj(t, s), j = 1, . . . ,∞. (1.3)

To estimate the parameters of the PDE version of the Smith-Martin model, three differ-
ent parameter estimation approaches (direct fitting, indirect fitting and rescaling method)
were examined [15]. The model proved to be consistent with thein vivodata characterizing
the CFSE profile of transgenic T-lymphocyte adoptively transferred into irradiated mice.

A more general age-structured PDE model considering the age-distribution of the rest-
ing (nj(t, s)) and proliferating (pj(t, s)) cells which have undergonej divisions was exam-
ined in [9]. The equations of the model are

∂pj

∂t
(t, s) +

∂pj

∂s
(t, s) = −γpj(t, s),

∂nj

∂t
(t, s) +

∂nj

∂s
(t, s) = −(µ + β)nj(t, s), (1.4)

pj(t, 0) = β

∫

∞

0
nj(t, s)ds, nj(t, 0) = 2pj(t, τ), j = 1, . . . , J.

Extending the deterministic treatment, a number of recently proposed models take into
account that the cell division time is a random variable and is distributed in the cell popu-
lation [17, 20, 34]. All the above modeling approaches focus on the generation structure of
proliferating cell populations and were developed for the analysis of the CFSE cell systems
in vitro and in vivo. Although other labeling techniques (BrdU and2H-glucose) are exten-
sively used to quantify lymphocyte turnover in vivo, the mathematical models proposed for
such data analysis are(i) based exclusively on systems of ODEs and(ii) reduce the hetero-
geneity of the labeled cell populations to two subsets, i.e. labeled (above some threshold)
and unlabeled cells, see e.g. [18,25,27].

None of the above approaches considered the label intensity as a structure variable.
Therefore, they require preprocessing of the raw data by assigning a division number to cells
in a CFSE profile. This interpretation can be subject to significant errors. The present study
introduces mathematical models which allow a direct reference to data on distributions
of fluorescence label intensities. First, we formulate a basic hyperbolic PDE model for a
single label structured population and apply it to numerically approach the inverse problem
using original data coming from CFSE proliferation in vitro. The model performance is
compared to that of the ODE model (1.1). As many of the in vivo lymphocyte turnover
experiments employ two and more labels, we then extend the basic model to the double-
labeled cell populations (e.g. CFSE/BrdU). Finally, we propose a generalization of a simple
ODE model of T lymphocyte homeostasis that is formulated as a large-scale system of
ODEs. This model is used for the parameter estimation of lymphocyte division and death
in the analysis of BrdU/Ki-67 labeling experiments in SIV infected monkeys.
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2. Single Label-Structured Cell Population Model

Figure 3. The original CFSE histograms giving the counts (number of fluorescence events
of various intensities) obtained by FACS at days 3-7. The vertical lines at the top of the
figure indicate the intervals of CFSE intensity which correspond to distinct cell generations
(Data provided by S. Ehl).

CFSE histograms (see Fig. 3) give information about the distribution of cellsn(t, x) at
a given timet with respect to the fluorescence intensityx. In a standard approach, the CFSE
histograms are used to evaluate the fractions of cells that have completed certain numbers
of divisions using various deconvolution techniques implemented in commercial software
such as ModFit (Verify Software), CFSE Modeler (ScienceSpeak), CellQuest (Becton Dick-
inson) and others. The corresponding lumped CFSE distribution data, characterizing cell
populations in terms of the mean fluorescence intensity per generation, can be subject to sig-
nificant errors if the peaks corresponding to cells of different generations have large overlap.
We formulate a mathematical model using a first order hyperbolic PDE which allows us to
quantitatively describe and interpret the dynamics of CFSE labeled cell populations.

We consider a population of cells that are distinguishable from each other in terms of
their fluorescence intensity with the distribution functionn(t, x), characterizing the number
of cells at timet which have a label intensity betweenx andx+dx. The total number of cells

in a system is then given byN(t) =

∫ xmax

0
n(t, x)dx. We assume that(i) at the beginning

of the experiment, the cells are labeled with a distribution functionn(0, x) and(ii) some
proliferation inducing stimuli are provided starting at timet0 = 0. We assume that the level
of stimulation remains uniform during the experiment. Under the above assumptions, the
cell population dynamics can be modeled by the following population balance hyperbolic
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PDE:

∂n

∂t
(t, x)− v(x)

∂n

∂x
(t, x) = −(α(x) + β(x))n(t, x) + 2γα(γx)n(t, γx), t > t0, (2.1)

where

α(γx) =

{

α(γx), xmin ≤ x ≤ xmax/γ
0, xmax/γ ≤ x ≤ xmax.

The advection term on the left-hand side,v(x)∂n(t,x)
∂x

, describesthe natural decay of the
CFSE fluorescence intensity of the labeled cells with the ratev(x) (UI/day). The compos-
ite term on the right-hand side,−(α(x) + β(x))n(t, x), describes the local disappearance
of cells with the CFSE intensityx due to the division associated CFSE dilution and the
death with the functionsα(x) ≥ 0 andβ(x) ≥ 0 characterizing the proliferation and death
rates, respectively (1/hour). The last term2γα(γx)n(t, γx) represents the birth of two
cells due to division of the mother cell with the label intensityγx. The factor 2 accounts
for the doubling of numbers and the coefficientγ accounts for the difference in the size
of the CFSE intervals to which daughter and mother cells belong. Indeed, those cells who
originate from division of cells with CFSE in the range(γx, γ(x+dx)) enter into the range
(x, x + dx). Notice that under the assumption of equal partition of the label between the
two daughter cells and no death during the division one expects thatγ = 2. This would en-
sure conservation of CFSE label, similar to the conservation of volume/size in well known
size-structured models, see [8, 13, 31]. However, we allow the label partitioning parameter
γ to take values smaller than 2 so thatx < γx ≤ 2x, in order to check the consistency
of the assumptions with experimental data. The above consideration applies to cells with
levels of CFSE below the maximal initial stainingxmax/γ. The population dynamics of
the cells withxmax/γ < x ≤ xmax is governed by the equation without the source term.
The cell division, death and label loss rates,α(x), β(x) andv(x), of the heterogeneous cell
population are assumed to be functions of the CFSE intensity1. The precise dependence on
x is not known a priori and is estimated from the CFSE FACS data.

The initial-boundary conditions for model (2.1) are specified as follows

• n(t0, x) = n0(x), x ∈ [xmin, xmax], which describes the distribution of cells at
time t0. This can be either the cell distribution at the start of the experiment,t0 = 0,
or at some later time,t0 > 0.

• n(t, xmax) = 0, t > t0, reflecting the fact that there is some maximum CFSE
staining per cell,xmax, for all t > t0.

3. Computational Approach to the Direct and Inverse Problems

The model of CFSE labeled cell proliferation (2.1) allows one to predict the outcome of
CFSE experiments if(i) the initial-boundary conditions are specified and(ii) the birth-,
death- and advection rate functions are known. This type of prediction based on a math-
ematical model is known as the direct problem. When the data on the time evolution of
the CFSE distribution are measured, the model can be used to identify the turnover rates

1Noticethat given a non-homogeneous initial labeling this may be problematic
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of the cells, giving rise to the inverse problem. In general, the treatment of the directand
inverse problems for the models (2.1) relies on the use of computational techniques. We
implemented our computational approach in MATLAB [24].

3.1. Numerical Treatment of the Direct Problem

For the numerical solution of the cell population balance model (2.1) with specified initial-
boundary conditions we used the MATLAB routinehpde developed by Shampine [30].
The routine is designed for first order hyperbolic PDEs in one space variable. It imple-
ments the second order Richtmeyer’s two-step variant of the Lax-Wendroff scheme. The
method can be fully vectorized, which allows to speed up computations in MATLAB sig-
nificantly. This is important feature for data fitting problems in which the initial-boundary
value problem has to be solved repeatedly to minimize the least-squares function.

The CFSE histograms obtained by flow cytometry use the base 10 logarithm of the
marker expression level. Therefore, for computational analysis we reformulate model (2.1)
using thez = log10(x) coordinate:

∂n

∂t
(t, z) − ν(z)

∂n

∂z
(t, z) = −(α(z) + β(z))n(t, z)

+ 2γα(z + log10(γ))n(t, z + log10(γ)), t > t0, (3.1)

whereν(z) = v(10z)/ ln(10)10z.
To compute the solution of (3.1), a uniform discretization meshZ := [z0, z1, . . . , zN ]

was used with∆z := zj − zj−1, j = 1, . . . , N . The Courant-Friedrichs-Lewy condition
with safety factor 0.9 was employed to compute the time step in the PDE discretization:

∆t = 0.9∆z/ max
z∈Z

ν(z). (3.2)

The solution of the transformed equation (3.1) with the shifted argument (z + log10 γ) was
evaluated between the discretization mesh points using a third order interpolation polyno-
mial so that the second order accuracy of the Lax-Wendroff scheme was preserved. The
initial datan0(zj), specified on some meshZ0, which is in general unrelated to the PDE
discretization, was recomputed on the meshZ using the MATLAB codeinterp1 imple-
menting a shape-preserving piecewise monotone cubic interpolation.

3.2. Numerical Treatment of the Inverse Problem

3.2.1. Parametrization of the Unknown Rate Functions

The population balance model (3.1) depends on the unknown rate functions of cell division
α(z), deathβ(z) and the label lossν(z), so thatn(t, z) ≡ n(t, z; α(z), β(z), v(z), γ). To
identify these functions from the observed CFSE histograms, we parameterize them fol-
lowing a general approach to the numerical treatment of the function estimation problem
in distributed parameter systems [4–7,10,29]. The cell turnover rate functions are approxi-
mated using finite expansions with cubic interpolation polynomialsφj(z) as basis functions

αL1
(z) =

L1
∑

j=1

ajφ
(1)
j (z), βL2

(z) =

L2
∑

j=1

bjφ
(2)
j (z), z ∈ [zmin, zmax]. (3.3)



Mathematical Models and Parameter Estimation... 155

The basis functions are constructed using sets of the knot sequences(z̃k1
, ak1

)
and (z̃k2

, bk2
), respectively, wherẽzk1

, z̃k2
∈ [zmin, zmax], k1 = 1, . . . , L1, k2 =

1, . . . , L2, z̃L1
= z̃L2

= zmax, so thatαL1
(z̃k1

) = ak1
, k1 = 1, . . . , L1, βL2

(z̃k2
) = bk2

,
k2 = 1, . . . , L2.

It is important that different mesheszk and z̃k are used for the numerical solution of
PDE model (3.1) and the parametrization of the unknown functions. This approach allows
one to estimate

• the expansion coefficients, i.e. the elements of the unknown parameter vectorsa =
{ak1

}L1

1 , b = {bk2
}L2

1 . This is the case when the parametrization meshz̃k1
, z̃k2

is
fixed ad hoc;

• both the expansion coefficients and the knots of the parametrization mesh,a =

{ak1
}L1

1 , z̃(1) = {z̃
(1)
k1

}L1−1
1 , b = {bk2

}L2

1 , z̃(2) = {z̃
(2)
k2

}L2−1
1 .

For the advection rate function we consider two choices:

ν(z) ≡ c or v(x) ≡ c, c ∈ R
+. (3.4)

The first case assumes that the rate of label decay is directly proportional to the amount
of label expressed in the cell:v(x) = cx log 10, while the second option implies that the
CFSE loss does not depend on its level in the cells.

The above parametrization reduces the original infinite dimensional function identifica-
tion problem to a finite dimensional parameter estimation problem for the following vector
of parameters,

p = [a, b, γ, c] ∈ R
Q1 or p = [a, z̃(1), b, z̃(2), γ, c] ∈ R

Q2 , (3.5)

with Q1 = L1 + L2 + 2 or Q2 = 2L1 + 2L2, respectively.

3.2.2. Maximum Likelihood Parameter Estimation

Our objective is to find the parameter valuesp? such that the corresponding model solution
n(t, z;p) is qualitatively consistent with the available data on the evolution of CFSE his-
tograms of cell distributions, i.e. with the time seriesni ≡ {ni,j}

Mi

j=1. Here the subscripts
i, j specify the observation timesti and the particular CFSE intensity bin which can range
from 1 to someMi, corresponding to the CFSE fluorescencezj .

For optimal estimation of parameter values, we seek to maximize the likelihood that the
data arose from the model [3, 16]. To apply the maximum likelihood approach, we further
assume that(i) the observational errors, i.e., the residuals defined as a difference between
observed and model-predicted values, are normally distributed;(ii) the errors in observa-
tions at successive times are independent;(iii) the errors in cell counts for consecutive
label bins are independent;(iv) the variance of observation errors (σ2) is the same for all
the state variables, observation times and label expression level. Note that(ii)−(iii) imply
that the errors in the components of the state vector are independent. Then the correspond-
ing likelihood function is

L(p) =
M
∏

i=1

1
√

(2πσ2)Mi

exp{−
1

2
[n(ti, zi;p) − ni]

T σ−2[n(ti, zi;p) − ni]}. (3.6)



156 Gennady Bocharov, Tatyana Luzyanina, Dirk Roose et al.

The maximization of the log-likelihood function

ln(L(p;σ)) = −0.5
(

nd ln(2π) + nd ln(σ2) + σ−2Φ(p)
)

(3.7)

is equivalent to the minimization of the ordinary least-squares functionΦ(p):

Φ(p) =
4

∑

i=1

Mi
∑

j=1

(ni,j − n(ti, zi,j ;p))2, (3.8)

provided thatσ2 is assigned the valueσ∗
2

= Φ(p∗)/nd, wherep∗ is the vector which
gives a minimum toΦ(p) andnd :=

∑M
i=1 Mi is the total number of scalar measurements.

To find numerically the minimum of the objective function, we used the MATLAB code
fminsearch implementing the Nelder-Mead direct search simplex method.

3.3. Application to CFSE Proliferation Assay

The original data on CFSE labeled cell growth kinetics in vitro were provided by S. Ehl [21].
The experiment is briefly summarized below. Peripheral blood mononuclear cells were
labeled with CFSE. The mitogen stimulator phytohenmagglutinin (PHA) was added to the
PBMC sample in vitro to induce proliferation of T cells present in the sample. At regular
times after stimulation the cells are harvested, stained with antibodies to CD4 and CD8 and
analyzed by flow cytometry. The absolute number of live cells per well was determined by
microscopy. Overall, the data characterize the kinetics of PHA-induced T cell proliferation.

3.3.1. Preprocessing of CFSE Data

The set of CFSE histograms in Fig. 3 represents the distribution of the CD3+ T lymphocytes
(both CD4 and CD8 subsets) with respect to the CFSE expression level at days 3 to 7. When
the initial cell labeling is fairly homogeneous, each CFSE peak represents a cohort of cells
that proceed synchronously through the division rounds. As cells proliferate, the whole
distribution moves from right to left reflecting sequential dilution of CFSE fluorescence
with time.

Each of the histograms of CFSE-labeled cell counts at timesti, i = 0, 1, . . . , M , is a
two-dimensional array consisting of vectorszi := [zi,1, . . . , zi,Mi

], ci := [ci,1, . . . , ci,Mi
] ∈

R
Mi , which correspond to thelog10 of the measured marker expression level, and the cor-

responding count numbers. HereMi stands for the number of mesh points at which the
CFSE histogram at timeti is specified. To translate the flow cytometry counts data to cell
numbers considered in the model, the following transformation is used,

ni,j =
ci,jNi

Fi
, Fi =

∫ zmax

zmin

c̃i(z)dz, i = 0, 1, . . . , M, j = 1, . . . , Mi, (3.9)

whereNi is the total number of cells at timeti andc̃i is a continuous approximation of the
vectorci defined on the histogram meshzi. Fi is the total number of cell counts at timeti.
Figure 4 shows the resulting set of histograms of CFSE cell distributions.



Mathematical Models and Parameter Estimation... 157

Figure 4. The CFSE-labeled cell distribution histograms at days 3-7. The vertical linesat
the top of the figure indicate intervals of the CFSE intensity corresponding to the sequential
generations of cells which have undergone0, 1, . . . , 7 divisions.

3.3.2. Results of Parameter Estimation for the PDE Model

The best-fit solution of the distributed parameter model (3.1) and the underlying data set are
presented in Fig. 5. Both the CFSE-labeled cell distributions at 96, 120, 144 and 168 hours,
and the overall pattern of cell population surface are consistently reproduced by the model.
The computed best-fit value of the objective function isΦ ≈ 6.84× 1011 being about 2.4%
of the squaredl2-norm of the original data values arrayn, ‖n‖2

2 =
∑4

i=1

∑Mi

j=1(ni,j)
2.

The best-fit continuous approximation to the birth rate functionα(z) is presented in
Fig. 6. It appears to be bell-shaped. To translate the identified functionα(z) into bio-
logically meaningful division rate estimates, which may depend on the generation number
j, with each generation specified by the CFSE range[sj , sj+1], see Fig. 6, we used the
following ”averaging” procedure,

α̃j =
1

sj − sj+1

∫ sj+1

sj

α(z)dz, j = 0, 1, . . . , 7, s8 = 0. (3.10)

The birth rate functionα(z) was parameterized with four terms in the expansion (3.3)
(L1 = 4) and both the expansion coefficientsa and the knots̃z(1) were estimated. Notice
that for the considered CFSE data there exists somez∗ such that there are no dividing cells
with the marker intensityz < z∗ for the time range 3 to 7 days of the proliferation assay.
To take into account this feature in our computations, we setαL1

(z) = 0 for z < z∗.
Therefore, for defining the basis functions in parametrization (3.3), the following range of
the log-transformed marker intensity[z∗, zmax] with z∗ = 1.15 was considered.
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Figure 5. The experimental data set (cf. histograms in fig. 4) and the model solution cor-
responding to the best-fit parameter estimates. Two first rows: Experimental data (black
curves) and the best-fit solution of model (3.1) (red curves). The last row presents the cell
population surface: experimental data (left) and the model solution (right) as functions of
time and thelog10-transform of the marker expression level.

Figure 6 shows the95% confidence intervals (CIs) for the best-fit parametersak, k =
1, . . . , 4, computed by the profile-likelihood approach (see [21] for comparison with other
approaches). The uncertainty in the parameter estimates is larger for larger values ofz, but
decreases asz decreases. Indeed, the CIs fora1 anda2, determining the left part ofα(z)
are relatively small. A large CI for the expansion parametera4 (determining the right tail
of α(z)) is likely to be due to the fact that the number of naive cells and of cells that have
undergone few divisions (1 or 2) by days 4 to 7 is rather small as compared to the size of
the population. Thus it might be subject to a large observation error. Therefore, the PDE
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Figure 6. The estimated birth rate functionα(z) of the PDE model (3.1) (solid curve)
and the estimated birth rate parametersαj , j = 0, 1, . . . , 6, of the ODE model (3.11)
(diamonds). The best-fit estimatesak, k = 1, . . . , L = 4, defining the functionα(z),
are indicated by bullets. Stars denoteα̃j , computed by (3.10). The valuesαj andα̃j are
placed in the middle of the CFSE intervals (the boundaries of which are denoted bysj , j =
0, 1, . . . , 7) corresponding to subsequent division numbers starting from 0. Vertical lines
indicate approximations to95% confidence intervals for the estimated parametersαj , j =
0, 1, . . . , 6, andak, k = 1, . . . , 4.

model allows to identify reliably the rate functionα(z) for small values ofz, corresponding
to a large number of cell divisions.

Following the proposed parametrization of the rate functions, the best-fit approximation
to the death rate functionβ(z) appears to be independent ofz, see Fig. 7 (left).

For the CFSE decay rateν(z), the second version of the parametrization (3.4) provides
a better fit to the data by the model, with the best-fit estimate of the rate parameterc ≈ 0.15.
Finally, the best estimate for the CFSE dilution parameter associated with cell divisionγ
appeared to be smaller than 2,γ ≈ 1.91. The difference suggests that the CFSE molecules
bonded to protein upon release from cells dying in the process of division can be taken up
actively by, or adhere to the live cells.

The kinetics of the total cell growth observed experimentally and predicted by the
model (the integral of the distribution density over the observed label intensity range,
∫ zmax

0 n(t, z)dz) are shown in Fig. 7 (right). The heterogeneous PDE model consistently
reproduces the kinetics of T cell population growth.
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Figure 7. Left: The estimated death rate functionβ(z) of the PDE model (3.1) (solid curve)
and the death rate parametersβj , j = 0, 1, . . . , 7, of the ODE model (3.11) (diamonds).
The valuesβj are placed in the middle of the CFSE intervals (the boundaries of which
are denoted bysj , j = 0, 1, . . . , 7) corresponding to subsequent division numbers starting
from 0. Vertical lines indicate the95% confidence interval for the estimated parameters
βj , j = 4, 5. The dashed lines indicate the95% confidence interval for the estimatedβ(z).
Right: The kinetics of the total number of live lymphocytes for the CFSE data set (circles)
predicted by the ODE and PDE models (dashed and solid curves, respectively).

3.3.3. Compartmental ODE Model

Usually, the CFSE fluorescence histograms are used to quantify the fractions of cells that
have completed a certain number of divisions [17,23]. This type of ’mean fluorescence in-
tensity’ data can be obtained either manually or by using various deconvolution techniques.
The number of divisions which can be followed is limited by the autofluorescence of unla-
beled cells. For the data that we consider, the division peaks resolution is not possible after
about 7 division cycles. Using a uniform spacing between the consecutive cell generations,
as shown in Fig. 4, the CFSE histogram data suggest for the kinetics of the division number
structured cell distributions presented in table 1. This table specifies the total number of
live cells,N(ti), and the number of cells divided thatj times,Nj(ti), j = 0, 1, . . . , 7, at
the indicated timeti, i = 0, 1, . . . , 4.

These data on the generation structure of proliferating cells can be used to estimate
the division and death rate parameters using simpler ODE models of cell proliferation.
We consider the following compartmental model of cell population growth of a Kendall
type [21]. The rate of change of the population of live lymphocytes having undergonej
divisions (which define thej-th compartment),Nj(t), is modeled by the following system
of ODEs,

dN0

dt
(t) = −(α0 + β0)N0(t), t > t0,

dNj

dt
(t) = 2αj−1Nj−1(t) − (αj + βj)Nj(t), j = 1, . . . , J, t > t0.

(3.11)

The model assumes that the per capita proliferation and death rates of T lymphocytes,
αj and βj , depend on the number of divisions the lymphocytes performed. The term
2αj−1Nj−1(t) for j ≥ 1 represents the cell birth (influx from the previous compartment
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Table 1. The total number of live lymphocytes, Ni, and the distribution of
lymphocytes with respect to the number of divisions they have undergone, NJ

i , at the
indicated times ti.

Time Total
(days) number of Numbers of cells w.r.t. the number of divisions(j) they underwent
ti live cells Nj(ti)

N(ti) 0 1 2 3 4 5 6 7
3 1.4 × 105 29358 22876 43372 39970 5208 98 14 0
4 2.5 × 105 16050 12600 22650 57025 96350 46950 2500 25
5 4.4 × 105 14476 14784 25344 58652 141460 156290 32076 440
6 5.0 × 105 13500 12150 24150 55000 137850 188950 69450 2150
7 5.7 × 105 13509 12198 21603 51927 140560 232160 96102 3420

because of division), whereas the(αj +βj)Nj(t) representscell loss (outflux from the com-
partment) due to division and death. The population size at timet0 is specified by initial
dataNj(t0) with t0 = 72 hours (i.e., data at day 3, cf. table 1). Model (3.11) allows an
analytical solution which was used in the parameter estimation procedure.

The best-fit solution of the model (3.11) and the data set are shown in Fig. 8. The ki-
netics of cells which have undergone more than two divisions is consistently reproduced by
the ODE model. The observed discrepancy between the model and data for undivided cells
and cells with one or two divisions can be due to a large experimental and modeling error.
In terms of the total population size the model perfectly matches the observed kinetics, see
Fig. 7 (right). The computed best-fit value of the objective function isΦ ≈ 1.27 × 109

which is about 0.59%of the squaredl2-norm of the data
∑4

i=1

∑7
j=0(N

i
j)

2. The best-fit es-
timates and their 95%CIs for the birth ratesαj are presented in Fig. 6. The model predicts
that the division rate depends on the division age of the cells so that the discrete function
(αj , j = 0, 1, . . . , 5) is bell-shaped. The estimated death ratesβj are shown in Fig. 7 (left).
Our results suggest that a reliable estimation of the compartmental model parameters (αj

andβj) is limited to those cell generations with the division age being two divisions less
than the maximum number quantified in the CFSE assay. For example, the parametersα6

andα7 characterizing the division rate of cells that have undergone 6 and 7 divisions cannot
be identified reliably from the finite series of data covering the division range from 0 to 7:
the obtained best-fit estimatesα6 = 0.0226, α7 = 1.37 are characterized by extremely
large uncertainty intervals (a7 is not shown in Fig. 6).

Two major conclusions can be drawn from the comparison of the PDE and ODE based
CFSE data analysis:(i) the label-structured cell population balance model allows one a
direct analysis of the raw CFSE histograms, and(ii) the accuracy of the parameter estimates
(CIs) is much higher for the distributed PDE model.
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Figure 8. Experimental data set (cf. table 1) and the best-fit solution of the compartmental
ODE model(3.11) for the generation structure of the dividing population. Experimental
data are denoted by circles, the best-fit solution is denoted by solid lines.Nj is the number
of cells that dividedj times.

4. Modeling Cell Populations Structured by Two Fluorescence
Markers

In order to understand the homeostatic turnover of cells in the immune system under nor-
mal conditions and during chronic infections, in vivo DNA labeling combined with multi-
parameter flow cytometry are used to follow the kinetics of activated cells in various tissues.
An extensively documented example is provided by the non-human primate/SIV infection
model [19,28]. To quantify the short- and long-term in vivo dynamics of T-lymphocytes in
SIV infection, two complementary labeling approaches are used in tandem:

• In vivo pulsing with the thymidine analogue BrdU, followed by quantification of
BrdU+ lymphocytes. BrdU incorporation allows precise determination of the frac-
tion of cells in S-phase during the labeling period and their division rate. Tracing
the numbers of labeled cells over time provides information on the survival and post-
labeling proliferation and migration of the cells. The cycling cells can then be distin-
guished from non-cycling cells due to the successive loss of BrdU fluorescence with
each cell division. Labeled cells are also characterized phenotypically by tagging
them with antibodies that bind various cell surface molecules and counting cells with
different markers using FACS analysis;

• Quantification of T cells expressing the cell-cycle associated nuclear antigen Ki-67.
The expression of Ki-67 is more diffuse than that of BrdU, and gradually disappears
after the last division cycle.

The kinetics of labeled cell subsets in blood and other tissues was monitored during la-
beling and post-labeling (data provided by L. Picker). Two-dimensional dot-plots of labeled
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T lymphocytes in SIV infected monkeys at various days following a 1.5 day BrdU infusion
areshown in Fig. 9 using a scaled colormapping, with red colors reflecting larger cell num-
bers. The plots characterize the BrdU/Ki-67 distribution of cells assessed by a combination
of a short term BrdU labeling and the use of antibodies against BrdU and Ki-67 antigen for
differential FACS counting.
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Figure 9. The evolution of BrdU/Ki-67 distributions of T-lymphocytes in blood of SIV
infectedmonkey generated by flow cytometry analysis. The dot-plots of BrdU-labeled cells
stained with antibodies against Ki-67 protein following 1.5 days BrdU labeling in vivo
characterize the topography of cell distributions. (Data provided by L. Picker)

The simultaneous measurement of BrdU and Ki-67 allows one to discriminate the con-
tributions of proliferative dilution versus cell death. The interpretation of such cell popu-
lation data in mechanistic terms requires mathematical modeling and multi-parameter esti-
mation. So far, the mathematical models developed for the parameter estimation of BrdU
labeled cell populations were based upon a simple discrete classification of labeled or un-
labeled cells, see for a review of such models for labeled and unlabeled cell population
dynamics [18,27].

To characterize the true heterogeneity of T-lymphocyte populations with respect to the
expression of BrdU and Ki-67 for the in vivo labeling experiments, a finer resolution models
are needed. To set up such a model, two approaches can be implemented:(i) a large set
of ODEs, each describing the dynamics of a single subset of labeled cells characterized by
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the same mean intensity of the marker, and(ii) hyperbolic PDEs of the type presented in
the previous sections. In the next section we extend the basic single label-structured PDE
model to two-fluorescence markers.

4.1. PDE Model for Double Labeled Cell Population

Let the vectorx = [x1, x2] denote the fluorescence intensity of BrdU and Ki-67, and let the
state functionn(t,x) = n(t, x1, x2) represent the cell number distribution at timet with
the expression level of BrdU and Ki-67 labels betweenx andx + dx. The total number of

cells is defined by the integralN(t) =

∫ x1,max

0

∫ x2,max

0
n(t, x1, x2)dx2dx1. The dynamics

of the state distribution function of the initially BrdU-labeled population can be described
with the following model (withγx ≡ [γ1x1, γ2x2])

∂n

∂t
(t,x) − v1(x)

∂n

∂x1
(t,x) + v2(x)

∂n

∂x2
(t,x) =

− (α(x) + β(x))n(t,x) + 2α(γx)γ1γ2n(t, γx),

α(γx) =

{

α(γx), 0 ≤ x1 ≤ x1,max/γ1

0, x1,max/γ1 ≤ x ≤ x1,max.

(4.1)

The structure of the model, which is a scalar hyperbolic PDE with two ”space” vari-
ables, is similar to that we have already described, i.e. (2.1). The loss and accumula-
tion of the labels is characterized by the rate functionsv1(·) and v2(·). γ1 and γ2 are
the parameters defining the relative decrease and increase in the level of expression of
the BrdU and Ki-67 labels, respectively, on the daughter cells compared to the mother
cells after one division. The fundamental assumption is that Ki-67 expression is am-
plified during divisionmultiplicatively by some factorγ2. The biology further suggests
that the advection rate functions and the dilution coefficients have the following properties
vi(x) ≥ 0, xi ∈ (0, xi,max], vi(0) = 0, i = 1, 2, and1 < γ1 ≤ 2, 0 < γ2 < 1.

4.2. The (Forward) Prediction Problem

To use the above model of BrdU dilution for predictions, the initial-boundary conditions
have to be provided. We illustrate how they can be plausibly constructed.

• The initial condition at timet = 0 has to be specified in the domain

[0, x1,max] × [0, x2,max].

If we assume that at the beginning of the experiment cells express only the first label,
x1, and no labelx2, then the corresponding initial condition reads

n(0, x1, 0) 6= 0, n(0, x1, x2) = 0, x2 > 0.

• Two boundary conditions have to be given. For thefirst boundary conditionwe refer
to the time dependence of cells, which do not express Ki-67 antigen but are BrdU
labeled

n(t, x1, 0) = N0f(x1)e
−ast, t > 0. (4.2)
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HereN0 ∈ R
+ is thetotal number of cells att = 0. It is assumed to decline exponen-

tially at some rateas, related to the kinetics of entering the S phase in which the label
x2 (Ki-67) is expressed. The functionf(x1) characterizes the distribution of BrdU
labeled cells starting the division, e.g. it could be described as a bell-shaped function
around some valuex1 close tox1,max, see Fig. 10.

Figure 10. The localized initial conditionn(0, x1, 0) for model 4.1

For thesecond boundary conditionwe consider the following one,

n(t, x1,max, x2) = 0, t > 0. (4.3)

It says that for allt > 0 there are no cells expressing more thanx1,max units of BrdU
molecules, irrespectively ofx2.

For the numerical solution of the initial-boundary value problem for the model (4.1),
an extension of the Lax-Wendroff scheme to 2D hyperbolic PDEs can be used. It was
implemented following the approach described in [26]. The CFL stability condition in this
case reads

(v1∆t

∆x1

)2
+

(v2∆t

∆x2

)2
≤ 1. (4.4)

To illustrate the performance of the model, we present here the simulated evolution of
the two labels-structured cell population using the following parameter values:

v1 = 0.1, v2 = 1, α = 0.1, β = 0.01, γ1 = 2, γ2 = 0.5, x1,max = 20, x2,max = 10.

The initial condition was taken as

n(0, x1, 0) =
1

1 + y2
, y =

35x1

x1,max
− 32, n(0, x1, x2 > 0) = 0.
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The boundary conditions fort > 0 were

n(t, x1, 0) =
e−0.1t

1 + y2
, y =

35x1

x1,max
− 32,

n(t, x1,max, x2) = 0.

The model solutions computed fort = 5, 10, 20, 30 are shown as two-dimensional
cell distribution functions in Fig. 11. We observe the cohort-type behavior of cells that
is characterized by the acquisition of the second label (Ki-67) going in parallel with the
dilution of the first label (BrdU).

Figure 11. Solutions of model (4.1) at timest = 5, 10, 20, 30 computed using the uniform
2D mesh[0 : 0.2 : 20] × [0 : 0.2 : 10]. The corresponding parameter values and the
initial-boundary conditions are described in the text.

4.3. Large-Scale ODE Model for the Microdynamics of Double-Labeled Cell
Populations

Here we give an example of a simple compartmental model that investigates the dynamics
of cells that had been labeled in vivo with BrdU and then were traced, with high resolution
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in terms of their BrdU content and level of Ki67 expression. The immunology underlying
theburst-type model has been recently discussed in [19]. The biological model considers
the population dynamics of the restingR(t), activatedA(t), and differentiated effector
cellsE1(t), E2(t), E3(t), differing in the degree of their differentiation. The set of ODEs
describing the steady-state kinetics of these cell subsets is

dR

dt
= rE3 − aR

dA

dt
= aR + pA − (e1 + e2 + e3)A

dE1

dt
= e1A − d1E1

dE2

dt
= e2A − d2E2

dE3

dt
= e3A − (d3 + r)E3.

(4.5)

Closeexamination of the flow cytometry data for each functionally defined cell com-
partment shows that in every cell population, not only the cell numbers but also the dis-
tributions of intensities of incorporated BrdU and expressed Ki-67 are changing with time
and their dynamics provides information regarding rates of division and of elimination of
these cells. The heterogeneity of intensities is modeled by a subdivision into a number
of subcompartments, each corresponding to a different narrow interval of BrdU and Ki-67
levels. The typical range of BrdU expression observed in SIV infected monkeys after short
term labeling allows subdivision into 8 bins, corresponding to 7 two-fold dilution steps (7
division cycles), and Ki-67 intensities are divided into 7 bins. Therefore, the dot-plot data
on cell distributions can be approximated by a set of 8x7 cell compartments differing in the
fluorescence intensities, see Fig. 12.

The corresponding fine resolution model is thus formulated by splitting the cell popula-
tionsY ≡ [R, A, E1, E2, E3] into 56 subsets, each parameterized by the BrdU and Ki-67
bin identifiersb = 0, 1, . . . , 7, k = 0, 1, . . . , 6 asRb,k, Ab,k, E1b,k, E2b,k, E3b,k. The set
of equations (4.5) thus expands into a system of 280 ODEs describing the microdynamics
of the labeled cell compartments. This high-dimensional system of equations describes the
BrdU labeling and Ki-67 antigen expression of turning over T-lymphocytes and takes into
account the differences in the fluorescence intensities of these cells.

Let t1 be the duration of labeling and letε be the sum of the rates at which activated
cells become effectors:ε := e1 + e2 + e3. Furthermore, we define asLj the probability for
a cell to become labeled with sufficient BrdU to be in BrdU binj upon division during the
labeling phase (t < t1). Cj =

∑j−1
k=0 Lk, j = 0, 1, ..., 7 is the probability of obtaining less

BrdU than required for binj. Finally, letd be the rate at which cells that stopped dividing
go from one Ki-67 bin to the next lower one (that is,d is the discretized Ki-67 decay rate).



168 Gennady Bocharov, Tatyana Luzyanina, Dirk Roose et al.

The large-scale ODE system then reads as

R′

i,0 = −aRi,0 + dRi,1 + rE3i,0, i = 0, 1, . . . 7,

R′

i,j = −(a + d)Ri,j + dRi,j+1 + rE3i,j , i = 0, 1, . . . 7, j = 1, . . . 5,

R′

i,6 = −(a + d)Ri,6 + rE3i,6, i = 0, 1, . . . 7,

A′

i,0 = −(ε + p)Ai,0 + dAi,1 + aRi,0, i = 0, 1, . . . 7,

A′

i,j = −(ε + p + d)Ai,j + dAi,j+1 + aRi,j , i = 0, 1, . . . 7, j = 1, . . . 5,

A′

0,6 = −(ε + p + d)A0,6 + aR0,6 + 2p
(

L0

6
∑

k=0

A0,k + C1

6
∑

k=0

A1,k

)

, if t ≤ t1,

A′

0,6 = −(ε − p + d)A0,6 + aR0,6 + 2p
(

5
∑

k=0

A0,k +
6

∑

k=0

A1,k

)

, otherwise,

A′

i,6 = −(ε + p + d)Ai,6 + aRi,6 + 2p

6
∑

k=0

(

Li

i
∑

j=0

Aj,k + Ci+1Ai+1,k

)

, i = 1, . . . , 6, if t ≤ t1,

A′

i,6 = −(ε − p + d)Ai,6 + aRi,6 + 2p

6
∑

k=0

Ai+1,k, i = 1, . . . , 6, otherwise,

A′

7,6 = −(ε + p + d)A7,6 + aR7,6 + 2pL7

7
∑

i=0

6
∑

k=0

Ai,k, if t ≤ t1,

A′

7,6 = −(ε − p + d)A7,6 + aR7,6, otherwise,

E1′i,0 = −d1E1i,0 + dE1i,1 + e1Ai,0, i = 0, 1, . . . 7,

E1′i,j = −(d1 + d)E1i,j + dE1i,j+1 + e1Ai,j , i = 0, 1, . . . 7, j = 1, . . . 5,

E1′i,6 = −(d1 + d)E1i,6 + e1Ai,6, i = 0, 1, . . . 7,

E2′i,0 = −d2E2i,0 + dE2i,1 + e2Ai,0, i = 0, 1, . . . 7,

E2′i,j = −(d2 + d)E2i,j + dE2i,j+1 + e2Ai,j , i = 0, 1, . . . 7, j = 1, . . . 5,

E2′i,6 = −(d2 + d)E2i,6 + e2Ai,6, i = 0, 1, . . . 7,

E3′i,0 = −(d3 + r)E3i,0 + dE3i,1 + e3Ai,0, i = 0, 1, . . . 7,

E3′i,j = −(d3 + r + d)E3i,j + dE3i,j+1 + e3Ai,j , i = 0, 1, . . . 7, j = 1, . . . 5,

E3′i,6 = −(d2 + r + d)E3i,6 + e3Ai,6, i = 0, 1, . . . 7.

(4.6)

Here the sign′ denotes the derivative. The steady state assumption on the populations
imposes the following constraint on the parameter values:

p = ε −
re3

d3 + r
. (4.7)

The complete vector of estimated parameters of the large scale model includes a number
of additional parameters, which represent the transition probabilities between the subcom-
partments after single division.
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Figure 12. Example of cell compartments associated with different levels of BrdUand Ki-
67 fluorescence intensities in blood of SIV infected monkey. A) Each dot represents a single
cell with a specific intensity of Ki67 and BrdU staining B) Microdynamics of individual cell
compartments. C) Macrodynamics of the lumped cell compartments

Figure 13 shows the flow cytometry data and the model prediction of the short-term
labeling kinetics for some roughly estimated set of parameter values:r = 0.94, a = 0.041,
d = 2.67, e1 = 1.44, e2 = 0.074, e3 = 0.43, d1 = 0.24, d2 = 0.034, d3 = 0.13,
Lj = 0.125, j = 0, ..., 7. The homeostatic proliferation ratep takes the value∼ 1.56.
The labeling data represent the sum of the functionally distinct cell compartments with the
same fluorescence intensityb, k.

5. Conclusion

The major objective of our study, inspired by the development and broad application of the
labeling and flow cytometry experimental tools, was to advance PDE based mathematical
modeling of the kinetics of heterogeneous cell populations and to facilitate the estimation of
cell turnover parameters. Using an original CFSE data set, we demonstrated the biological
consistency of the proposed single label-structured model and compared its predictions to
the predictions of the ODE compartmental model (see for further details [21, 22]). The
(single- and double-) label structured models offer the following potential advantages with
respect to existing compartmental models:(i) they allow to estimate the kinetic parameters
of cell proliferation and death as functions of the label or marker expression level (and hence
of the number of cell divisions) directly from the distributions of labeled cells followed
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Figure 13. Flow cytometry data and the prediction by the large-scale model (smooth curves)
of the (A) microdynamics and (B) macrodynamics of T-lymphocytes heterogeneous with
respect to BrdU and Ki-67 label intensity in SIV infected monkeys.

over time by flow cytometry;(ii) they do not require ad hoc estimates of the relationship
between the label expression level and the number of divisions that cells have undergone.
Note that this is an important advantage for a long-term follow-up of labeled populations as
the correspondence between the marker intensity range and the division generation becomes
increasingly blurred by the overall loss of the label over time and by the initial heterogeneity
of the labeled cell population.

Modeling with hyperbolic PDEs, in the context of data-driven parameter identification,
presents a significant computational challenge due to the hyperbolic nature of the equations
and to the large size of the discretized problem. To our knowledge, no publicly avail-
able software packages exist which deal with optimization of hyperbolic PDE models. We
formulated a computational methodology for modeling and parameter estimation of single-
label structured cell populations. The numerical treatment of both the direct and inverse
problems for heterogeneous cell populations, structured by two labels, is computationally
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more challenging. The time required to solve the initial-boundary value problem withan
extension of the Lax-Wendroff scheme for a hyperbolic PDE with two space dimensions
is few orders of magnitude larger than for a single label hyperbolic PDE model. Therefore
further research is necessary to develop a more efficient solver for the two-dimensional PDE
models to be used in real-life parameter estimation problems.
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Abstract

In this article we review a number of immunological models of HIV as well as the
contribution of mathematical immune modeling of HIV to understanding of HIV. We
also review a number of epidemiological models, particularly those of HIV. The fo-
cus of this review is the development of novel immuno-epidemiological models which
link immunological and epidemiological models. We first review a simple immuno-
epidemiological model of transient disease (a disease where infected individuals nec-
essarily recover), and then we introduce an immuno-epidemiological model of HIV.
We discuss the drawbacks of this simple immuno-epidemiological model as well as
methods to address them. We introduce and discuss several other models and their ad-
vantages and disadvantages. In the discussion we focus on the types of questions that
can be addressed with immuno-epidemiological models and how those can contribute
for the development of mathematical biology.

Keywords: HIV, AIDS, immunology, epidemiology, immuno-epidemiology, nested mod-
els.

AMS Subject Classification:92D30

1. Introduction

Mathematical modeling of within-host dynamics (Immunology) and between-host dynam-
ics (Epidemiology) was treated separately for a long time. Within-host models explore the
natural selection within a single host where pathogens compete for uninfected host cells
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whereas the epidemiological models explore the competition between pathogens forunin-
fected hosts. But the most successful pathogens are those that are able to balance trade-offs
between intra-host virulence and inter-host transmission [9]. Successful invasion and colo-
nization of a single host by a parasite does not necessarily imply that it can optimally spread
in the uninfected host population. Thus both immunological and epidemiological models
are limited in terms of biological realism. To incorporate further biological realism and also
to allow for proper mathematical analysis, researchers developed the nested models struc-
tured by the age-since-infection. This approach strings together both these interdependent
scales of host-parasite co-evolution. Immunological and epidemiological aspects ofmicro-
parasitic infections were first considered together by Anderson in [13]. But Gilchrist and
Sasaki [4] introduced the nested model approach where the epidemiological model is an
SIR model structured according to the age-since-infection and the immunological model is
a simple prey-predator model. Early immuno-epidemiological models were developed to
studymacro-parasitic diseases. For instance, R. J. Quinnell’s paper studies human hook-
worm infection. These studies, structured by host age, represent community-based surveil-
lance of immune responses, mounting of protective immunity, and re-infections. In this
context immuno-epidemiology is the study of the distribution of immune responses and
infection in populations, and of the factors influencing this distribution. In other words,
immuno-epidemiology represents taking an epidemiological approach to immunology [14].
In this paper we consider immunological, epidemiological and immuno-epidemiological
models addressing the advantages and disadvantages of each as discussed in the review
articles of Bonhoeffer, Coffin and Nowak [1], Hethcote [5] and others. We discuss the suit-
ability of the classical within-host and between-host models when applied to HIV/AIDS
and the possibility to include further details of this disease. We study the characteristics
of a simple nested model as in the paper of Gilchrist and Sasaki [4], and propose possible
modifications to suit HIV.

2. Typical “Building Blocks”: Immunological and Epidemiolog-
ical Models

Most generally within-host immunological models include state variables such as virus
load, uninfected cells, infected cells and also differentiated elements of the immune re-
sponse, i.e. T-cells, B-cells, antibodies etc. These models deal with a single infection
where the initial pathogenic load and immune status is arbitrarily assigned. The difference
between an innate immune response and an adaptive immune memory response developed
through prior exposure to the pathogen is often ignored. These models typically assume
density dependent transmission and homogeneous mixing of host cells, which is necessary
to allow proper analysis. More importantly they ignore the different amounts of virus that
is transmitted during infection, superinfections and coinfections. Consider a simple exam-
ple of a within-host model for HIV [1] including state variables,x for density of infectible
(susceptible) cells (this variable describes the number of activated CD4 cells),y for density
of virus producing cells. Furthermore, the parameters for the various rates are: rate of cre-
ation of infectible cells -λ, rate of infection of uninfected cells -β, natural death rate of
susceptible cells -d, and death rate of infected cells -a. The model takes the form:
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x′ = λ − dx − βxy

y′ = βxy − ay − pyz

z′ = ky − bz

(2.1)

wherep is the killing rate of virus producing cells by Cytotoxic T Lymphocytes (CTL),z is
the density of the CTL response against the virus infected cells,k is the rate of stimulation
of CTL, andb is death rate of CTL. Analysis of this model under definite conditions reveal
that individuals with a weak CTL response have a less reduction of virus load compared
to the ones with high CTL response under a certain drug therapy [1]. Mathematical mod-
eling of the in-vivo dynamics of HIV/AIDS has influenced our understanding of the HIV
pathogenesis [8]. Before modeling was applied, AIDS was thought to be a slow progressing
disease in which delayed treatment was not a major problem. Hence patients were mon-
itored only once every six months. But application of quite trivial mathematics created a
revolution about the perception of HIV. Calculations in [8] have concluded that at least1010

virus particles are produced and released into bodily fluids in a single day within an average
HIV infected person. Considering the calculated virus generation time of about 1.8 days,
HIV can go through 200 replication cycles per year inside a single host with a possibility
of mutation at each replication. This easily explains the rapid evolution of HIV. This result
showed that a single drug intended for a few mutations was not going to be sufficient ever,
and hence the present concept of a combination of antiretroviral drugs was applied to the
treatment of HIV. Also the necessity of initiating treatment at the earliest after diagnosis
was established. Hugely increased interest in this topic and extensive study soon exposed
the limitations of these models. From [10] we know that coinfection is an important aspect
in HIV and [11] indicates possibility of superinfection in HIV. The epidemiological aspects
of these two mechanisms cannot be incorporated within immunological models. When con-
sidering application of medicine to HIV patients, Perelson and Nelson [8] have not included
the spatial and compartmental aspects of the body and have implicitly assumed that the drug
is available everywhere at a constant effectiveness. Parts of the body like the brain, where
the immune system has limited access and the testes, where drug penetration is poor, can
act like sanctuaries for the virus. Inclusion of these aspects would complicate the model to
a great extent.

The population levelepidemiological models are mostly used to study population im-
munity and various vaccination-related results obtained from these are important to public
health projects. These models include a susceptible class and may include several recovered
classes such as immune class, vaccinated class etc. according to the need of the disease be-
ing modeled [5]. Some models incorporate the differences in the immune status of the hosts
by dividing the host population into classes according to different levels of parasite-specific
immunity and cross immunity. This, however, leads to models which are not analyzable
to a great extent. Now we consider a basic epidemic model consisting of the number of
individuals in the susceptible class-S, the number of individuals in the infectious classI,
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and the number of individuals in recovered classR. Themodel is given by

S′ = −β
SI

N

I ′ = −β
SI

N
− γI

R′ = γI

(2.2)

together with the following initial conditions:S(0) = S0, I(0) = I0, R(0) = R0. The total
population numberN is given byN(t) = S(t) + I(t) + R(t). In addition,β is the rate of
infection andγ is the rate of recovery [5]. Here we do not consider the passively immune
infants and the exposed class as separate classes. Similar population level models have been
extensively studied for HIV. May and Anderson have considered age-structured models
for HIV and have calculated the basic reproduction ratioR0 for simple HIV transmission
models [6]. They have also studied the demographic effects of AIDS in African countries
[7]. HIV models often unrealistically assume that the population is uniform and there is
homogeneous interaction. Transmissible interaction in the population, however, depends on
age. HIV being a sexually transmitted disease, horizontal (host-to-host) transmission only
takes place among adults, and children are usually vertically (mother-to-child) infected.
There is also a greater chance of infection among people who share needles for taking
drugs. Moreover, different geographic and socio-economic groups have different contact
rates, which is especially true for HIV.

In general, the epidemiological models are used in calculating the reproduction number
which in turn could provide an estimate of the herd immunity for a certain disease. This and
other information derived from the epidemiological level models have proved crucial for ap-
plication of vaccines in public health projects for several infectious diseases. In the case of
HIV though, the within-host parasite situation is intertwined with the transmission between
hosts; hence finding accurate vaccine related results from epidemiological HIV models is
difficult. Epidemiological HIV models can be structured by the time-since-infection as the
infectivity of an individual is dependent on how long that person has been infected. In case
of HIV, an individual is most infective during the period it shows symptoms, which is usu-
ally 2 to 6 weeks after getting infected. In models of other diseases, the time-since-recovery
is sometimes used as the structure to account for the loss of immunity with time. This is
immaterial for HIV since immunity for HIV is apparently present only in a negligible frac-
tion of the world population, and recovery is not known, hence can be ignored. However,
epidemiological HIV models are unable to incorporate the virus load and the dependence
of transmissibility of HIV on this virus load. Besides, the dynamic nature of host-parasite
co-evolution that influences the genetic variability of the parasite population and its trans-
missibility is not accounted for.

3. One Scale vs Multi-Scale Models

Immunological and epidemiological models give dynamical description of the living world
on two different scales: the within-host scale where the participants are cells and virus
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particles, and the epidemiological scale where participants are complex multicellularor-
ganisms. Because of the complexity of structure and function on each level, this concentra-
tion of modeling to one scale is very typical. The investigations are restricted to the given
scale and different scales are often studied by different biological disciplines. Mathemati-
cal modeling has strongly paralleled that. Ordinary and partial differential equations have
contributed enormously to the understanding of biological systems, particularly at a given
scale. The body of literature applying such models to understanding the immunology, and
epidemiology, each at their own scale, is immense.

Many biological processes, however, involve several levels of organization. Phenom-
ena on each level have impact on phenomena on other levels. In infectious diseases,
pathogens change their genetic and antigenic characteristics (mutate) during replication
within a cell. This causes an individual’s immune system to shift from experienced to
naive. The pathogen strain that dominates on a population level depends on which of the
mutants has had the ability to evade the particular host’s immune system and has transmitted
better. Biological processes, whose outcome depends on multiple cross-scale mechanisms,
have to be investigated through mathematical models that involve linking multiple scales
with different dynamical variabilities. Such multi-scale dynamic models are seldom devel-
oped, particularly so in regard to infectious diseases. The main approach used most often
in multi-scale modeling is computational. Simple dynamic models that link several scales,
e.g. immunological and epidemiological, can lead to simple principles just as early simple
models lead to the concept of the reproduction number [15].

4. Immuno-Epidemiology

Immuno-epidemiology bridges the gap between immunology and epidemiology in the em-
pirical studies and mathematical and theoretical approaches. It investigates the influence of
population immunity on epidemiological patterns. Immuno-epidemiology seeks to trans-
late individual characteristics like immune status and virus load to population level and
traces their epidemiological significance [2]. It can also help to understand the dynamics
of recurrent diseases and the dynamic variability of the immunity acquired due to previous
exposure to the disease within the host population. Gilchrist and Coombs [9] try to under-
stand the conditions where the within-host and between-host selection are not in conflict.
Their results show that the usual assumption that both virulence and transmission increase
with increase in parasite load does not always cause conflict in the selection priorities in the
between-host and within-host levels.

Generally a nested immuno-epidemiological model consists of a simple ODE model of
the within host immune response with compartments for the parasite load, immune response
(T or B cells) and/or immune memory cell load as considered before in Section 2. Consider
a simple example from [4]. Letτ be the time since infection,P (τ) - the within host size of
parasite population,B(τ) - the immune response cells which recognize the parasite (T or B
cells). The immunological model is then given by:

P ′ = (r − eB)P
B′ = aBP

(4.3)
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Parameters are:r- percapita parasite within-host replication rate,a - immune response
activation rate,e - parasite mortality rate caused by immune response cells.

A simple PDE system structured by the time-since-infectionτ is considered for the
epidemiological model. The disease under consideration leads to recovery which is mod-
eled typically by a model of the SIR type. Denoting byS the susceptible individuals, by
I(τ, t) the density of infected individuals structured by the time-since-infectionτ , by R

- the recovered individuals, and byN - the total population size, we have the following
epidemiological model:

dS

dt
= bN − S

∫ T

0
β(τ)I(τ, t)dτ − dS

∂I

∂t
+

∂I

∂τ
= −(α(τ) + ι(τ) + d)I

I(0, t) = S

∫ T

0
β(τ)I(τ, t)dτ

dR

dt
= I(T, t) − dR

(4.4)

The parameters are:b - per capita population level birth rate,d -per capita population
level natural death rate andT - maximal infection-age, that is the time of recovery. The
immunological and epidemiological scales are linked through the age-since-infection. We
note that hereS andR are functions of time, but the infectious classI(τ, t) is a function of
both time t and the age since infectionτ . We consider an infectious host recovered when
the age of infectionτ is equal toT , that is the present model is a discrete lag model. For
the epidemiological model it is assumed that the time scale of the infection is very small
compared to the lifespan of the host. Infection of the host by multiple strains of the same
parasite is not possible. Finally, it is assumed that recovery induces permanent immunity.

The variables and parameters of the immunological and the epidemiological models are
linked in the following way. The transmission coefficient of parasitic infectionβ(τ), is
proportional to the parasite load at a given age-since-infectionτ ,

β(τ) = cP (τ),

wherec is the transmission rate. Again the disease virulence depends on the parasite load
and immune system resource use. Hence we have,

α(τ) = δrP (τ)

where,α(τ) gives the additional host mortality due to the parasite andδ is the parasite
cost coefficient which is equal to the increase in host mortality rate caused by a single unit
of parasite reproducing at rater = 1. Also the additional host mortality due to immune
responseι(τ), is proportional to the immune response cell proliferation rate. Thus,

ι(τ) = µ
dB

dτ

whereµ is the immune response coefficient. From equation (4.3) we can derive that,

ι(τ) = µ
dB

dτ
= µaPB.
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From this set of equations we can analyze the optimal host immune response rateand
the optimal parasite replication rate to predict a co-evolutionary behavior of the system. The
nested model approach requires assumptions regarding the nature of host immune system
activation and the process of transmission of the disease between hosts. Thus, we can
modify it to suit the specific requirements of a disease. For example, in the case of HIV
we can easily incorporate the fact that it is a sexually transmitted disease by altering the
assumptions about the underlying within-host model. Again, since the relation between the
transmission rate and the additional host mortality is calculated from the within host model,
this approach is much more biologically realistic than the single scale disease modeling. In
the immuno-epidemiological model above the rate of change of B is always positive but for
other models it could be negative or of changing sign, in which caseι(τ) would have to be
defined differently. The epidemiological reproduction number of the infectionR0 can be
expressed in terms of the parasite load or immune response cells.

Among other advantages of the age-since-infection model is the fact that it allows for
increase in complexity of the immunological model to a great extent, without this increase
in complexity leading to mathematical difficulties with the epidemiological model. It is
also easy to incorporate parasite genetic diversity with a competitive exclusion outcome
of the competition of the genetically distant variants of the parasite. From [12] we see
that by using a detailed model of virus dynamics in conjunction with a simple SI between
host model, it can be established that a strong competitor strain could be competitively
excluded by a weaker within host strain which was more efficient in transmitting at the
early stages of infection. Using nested immuno-epidemiological models it is also possi-
ble to study coinfection and superinfection. Nested models are used extensively to study
host-parasite co-evolution in [4]. More complex models than the one here can incorporate
a lot of experimental and clinical details and produce more accurate results regarding a spe-
cific disease. Another advantage of the nested immuno-epidemiological models, coupled
through the age-since-infection, is that the age-since-infection model has been well studied
over the years and many things about its dynamics are already known.

There are also certain drawbacks of the age-since-infection approach. Due to the inclu-
sion of minute details about the disease in question, a unique model has to be created for
every disease. For instance, the model above is not adequate to model diseases with great
variability in the time till recovery such as Tuberculosis, or diseases without recovery, such
as HIV. For diseases with recovery, the main disadvantage of this immuno-epidemiological
model is that the host immune status upon recovery is not retained, i.e. each new infection
has to start with the same immune status. Ideally, for diseases that allow repeated infections
we would like to retain the immune status, so that upon reinfection the immune system can
mount a more efficient response and clear the pathogen faster. Upon primary infection the
virus load should lead to full-blown infection, modeled by a peak of the virus load. On
the other hand, upon secondary infections the virus should be cleared from the body with-
out causing infection, modeled by a steady decline in the virus load. These two possible
scenarios for the virus load are described in Figure 1.
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Figure 1. The top figure illustrates that upon a primary infection the virus load first
increasesand then decreases signifying a viable infection with the pathogen. The bottom
figure illustrates that upon a secondary infection the virus load decreases signifying that the
pathogen is cleared before causing infection.

5. Immuno-Epidemiological Models for HIV

The models in the above section are not adequate to model HIV. There is usually no acquired
immunity from HIV and at each new infection with HIV the immune system is weakened
and the overall immunity of the body declines. In addition, model (4.3-4.4) assumes a fixed
duration of infection T which is relatively short. This is also a hindrance for HIV models,
since the infection can take as long as 10 years before it progresses to AIDS. To allow
proper analysis of the model (4.3-4.4) the natural death rate d is taken to be zero [4]. This is
also unrealistic in the case of HIV, since in the span of a decade of chronic infection, there
is a high chance that the patient dies by accident, old age or other unrelated reason.

We build an immuno-epidemiological model of HIV by linking immunological model
of HIV and a simple epidemiological model of SI type. In this immuno-epidemiological
model of HIV we incorporate an important characteristic of the HIV pathogen, i.e., shed-
ding. There are some pathogens which multiply in an infected host continuously, using up
all the resources available till the host dies, which results in the immediate death of all the
pathogens living in that host. This situation is not a desirable one from the evolutionary
aspect of a pathogen, considering the fact that all its new and evolved generation is killed
all at once. HIV, being a more ’advanced’ pathogen, takes recourse to shedding. In this
case, the pathogen is emitted from the infected host throughout the period of infection.
This may contribute to the host’s survival as an infected/infective for a really long time,
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even to becoming a sanctuary for the pathogen, but not dying. It is this amountof shedding
from an infected host which determines the infectivity. The possibility that an infected host
will infect a susceptible individual upon intimate contact is directly related to the amount
of virus present in the host at that very moment. Thus when creating a model for HIV,
we have to consider this shedding of virus particles as a negative factor in the dynamics of
the virus load, which is distinctively different from the other factors. It is also particularly
important to consider it as a separate factor since these shed pathogens are the elements
causing infection at the epidemiological level. To build a nested age-since-infection model
for HIV/AIDS infection, letx be the number of susceptible cells which are being produced
at a fixed rater and they die at the rateµ. The amount of virus in the blood is given by
V (τ). Healthy cells are infected by the virusV at the rateβ and become infected cellsy.
The infected cells die at a rated and produceν viruses at bursting. The virus dies at the rate
δ and is shed at the rates. The within-host model takes the form [17]:

dx

dτ
= r − βV x − µx

dy

dτ
= βV x − dy

dV

dτ
= νdy − (δ + s)V − βV x.

(5.5)

We write the differential equations with respect toτ , the time-since-infection. Simple
mathematical computation gives the within host reproduction number as

< =
νβ r

µ

δ + s + β r
µ

.

The infection persists in the host to become chronic only if< > 1. Since HIV is
a persistent infection it is natural to assume< > 1. In the epidemiological model the
population is structured into a susceptible classS(t), wheret is the chronological time.
The infected individuals in the infected class are structured by the time-since-infectionτ of
the within host dynamics andt, described by the density functioni(τ, t). The transmission
of the disease from the infected individuals to the susceptible individuals occurs at a rate
which is proportional to the virus load of the infected person. We assume thats denotes the
shedding at the cellular level. Thus,sV (τ) is the rate at which the shedding occurs. Ifc is
the fraction of those pathogens shedded which succeed in infecting another host thencsV

is the transmission rate [16]. Thus the dynamics of the susceptible hosts is given by,

dS

dt
= Λ −

S

N

∫ ∞

0
csV (τ)i(τ, t)dτ − m0S.

Here,Λ is the total recruitment rate andm0 = m(0) is the natural death rate of sus-
ceptible hosts at zero virus load. Here we assume that all susceptible individuals have
approximately the same equilibrium level of healthy cells. Also the infected hosts die at
a variable rate dependent on their virus loadm(V (τ)). This gives the dynamics of the
infected class as

∂

∂t
i(τ, t) +

∂

∂τ
i(τ, t) = −m(V (τ))i(τ, t).
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Figure 2. Characteristic behavior of the virus load obtained as a solution of (2.1).

Thereforethe probability that a host survives from the time of initial infection, time0
to time-since-infectionτ can be given by

e−
�

τ

0
m[V (σ)]dσ.

Also under the given assumptions we impose the following initial condition:

i(0, t) =
S

N

∫ ∞

0
csV (τ)i(τ, t)dτ.

The total populationN is given by

N(t) = S(t) +

∫ ∞

0
i(τ, t)dτ.

An SI model captures to a large extent HIV infections since recovered class does not
exist. The epidemiological reproduction number<0 for this system, which depends on the
immunological characteristics through the virus load, is given by

<0 =

∫ ∞

0
csV (τ)e−

�
τ

0
m[V (σ)]dσdτ.

The immunological model has been analyzed in [18], which suggests that the solutions
approach an equilibrium, or a periodic orbit. There are certain aspects of this model that
could lead to a critique of the model and should be addressed and rectified. The first ob-
servation is that when the solutions giving the virus load of the immunological model are
graphed they do not produce the sudden increase in virus load depicting progression to
AIDS after the initial stabilizing. A typical solution of the model (4.3) looks like the graph
in Figure 2. For a long time it was thought that immunological models of HIV cannot
produce the the characteristic spike in the virus load at the time of progression to AIDS.

M. A. Nowak and R. M. May [25, 27] have been successful in creating immunological
mathematical model which under certain conditions can produce the graph with the sud-
den rise of virus load depicting progression to AIDS. The authors are able to incorporate
the fact that any one strain can be suppressed by its strain specific immune response and
cross-reactive immune response, but for the virus as a whole cross-reactive immunity is not
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enough. The virus over course of time changes its surface proteins (mutates)and is thus
able to invade the host immune system better. This results in antigenic variation which
does not allow strain specific immune response to make difference anymore. With time
the antigenic variation is so high that immune response is totally ineffective and virus load
increases without bound causing the rise in the graph and the progression to AIDS. If the
immunological models of this type are included into the immuno-epidemiological model
then the progression to AIDS can be accounted for while an individual is still in the infec-
tious class. Another approach is to introduce a separate AIDS class into the epidemiological
model [26].

6. Multigroup Immuno-Epidemiological Models

Another drawback in the model (4.3-4.4) is that it assumes that all individuals in the popula-
tion have the same immune response. It has been observed in case of antiretroviral therapy
that patients with a stronger immune system respond better to treatment [1]. In addition, the
optimum virus load at which the pathogen starts shedding may well vary according to the
strength of the CTL response of an individual host. The immune response of an individual
and the resulting virus loads are unique to each patient. But, for the purpose of modeling,
we can divide the population inton groups according to their immunological characteristics
and their virus load. The within-host dynamics of the pathogen of each group of infecteds
is described by the following within-host model:

dx

dτ
= r − βVx − µx

dy

dτ
= βVx − dy

dV

dτ
= νdy − (δ + s)V − βVx

wherethe number of healthy cells isx and they are produced at a constant rater and die
at a rateµ. Healthy cells are infected by the virusV in the th group of individuals at a
rateβ and become infected celly. Infected cells die at a rated and produceν virions
at bursting. The virus dies at a rateδ and is shed at the rates. Hence the within host
reproduction number of the infection in theth group is

< =
νβ

r
µ

δ + s + β
r
µ

.

Epidemiologicallythe population will be structured into a susceptible classS(t) andn

immunologically heterogeneous groups of infected classes. Infected individuals in each
infected class are structured by the time-since-infection of the within-host dynamicsτ,

chronological timet and described by density functionı(τ, t). The transmission of infec-
tion to susceptibles occurs at a rate proportional to the virus load of the infected individuals
in theth group:csV(τ) and may occur from an individual with any of the immunological
groups. Thus the dynamics of the susceptibles is described by
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dS

dt
= Λ −

S

N
Σ

∫ ∞

0
csV(τ)i(τ, t)dτ − m0S.

Here also,Λ is the total recruitment rate andm0 = m(0) is the natural death rate of
susceptible hosts. We assume that all the susceptible individuals have approximately the
same equilibrium level of healthy cells. The infected hosts die at a variable rate dependent
on the virus load of theth class, given bym(V(τ)). Thus the dynamics is given by

∂

∂t
i(τ, t) +

∂

∂τ
i(τ, t) = −m(V(τ))i(τ, t),  = 1, 2, . . . , n

Susceptible individuals who may become infected by an infectious individual in any of
the immunological groups moves to theth immunological class with probabilityp:

i(0, t) = p
S

N

∑

k

∫ ∞

0
ckskVk(τ)ik(τ, t)dτ.

Here,p is the probability that a susceptible individual who becomes infected has immuno-
logical dynamics of type. Since all newly infected individuals enter an infectious class
with a certain immunological dynamics, we must have

∑

 p = 1. The total populationN
is the sum of all the classes given by

N(t) = S(t) +
∑

k

∫ ∞

0
ik(τ, t)dτ.

7. Multi-Strain Immuno-Epidemiological Models

HIV has a very inaccurate reverse transcription process during which recombination takes
place. In a single infected individual many replicated virus particles are produced from a
single cell. Moreover, the virus tends to adapt itself to the specific immune response of the
individual, and to suite itself to the different cells the HIV is capable of infecting [19, 20,
25]. Due to this constant supply of varied stranded versions of the virus, superinfection and
coinfection with multiple variants of the virus is inevitable.

Biologically superinfection is often defined as the following: suppose an individual is
infected by a certain strain of the virus, sayx, and has established an immune response
against it. Then if this person gets infected by another strain of the same virus, sayy, while
still being infected byx, then the individual is said to be superinfected by two strains. The
term superinfection does not necessarily imply thaty is a stronger strain thanx [11]. Sim-
ilarly, in the biological sense coinfection is defined to be the state when an individual gets
infected by strainx and by strainy simultaneously or before any immune response againstx

has been initiated by the body, irrespective of their relative virulence [11]. In our case, how-
ever, we define these two modes of reinfection somewhat differently but along the lines they
have been defined in [21, 22]. That is, superinfection will be the case when strainy is more
virulent than strainx and strainy actually overtakes strainx after infecting, as in [21]. And
coinfection will signify coexistence of strainsx andy in the same host without excluding
each other, as in [22]. Hence we basically study the two ’opposite extremes’ in situations
where hosts experience multiple infection with different strains [22]. Nowak and May [21]
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find that superinfection causes an overall rise in the virulence level of the parasiteHIV. In
fact this rise could be way above the optimum desirable limit for maximum reproduction.
It is generally observed that parasites try to increase their virulence to reach an equilibrium
level of reproduction, which is disturbed to a great extent by superinfection. It is reasoned
in [21] that the cause for this is the development of intra-host competition between strains
leading to high virulence and decrease in overall transmission rates. Superinfection can ac-
tually sustain strains with a very high virulence level. A strain with virulence level which is
too high cannot exist in an uninfected host population for long as it ends up killing the first
hosts it infects without getting enough time to transmit to a large number of other hosts,
resulting in its own destruction. However, the conditions produced by superinfection make
it possible for high-virulence strains to persist in the population. Thus, superinfection is one
of the key factors which make formulation of an effective vaccine that much more difficult.
To analyze this scenario mathematically, we reformulate the previously presented model as
a two-strain superinfection model.

The following model assumes that the immune response against HIV is capable of con-
trolling the progression of the disease at least in the initial stages of the infection. It also
assumes that HIV continuously mutates as long as it is in an infected individual and some of
the strains are capable of escaping the immune response. The most significant assumption
regarding HIV, which is the root of all problems for finding a successful treatment, is that
it can harm the immune system of an individual. That is, it can actually kill CD4+ T helper
cells which initiate the immune response of the body against any foreign attack. To intro-
duce the model, letV1(τ) andV2(τ) be the virus load of the first and second strain of HIV
virus with i1(τ, t) and i2(τ, t) being the density of infected individuals by the respective
strain viruses. In addition, lets1 ands2 denote the shedding of the two strains. We assume
that strain 1 can superinfect and replace strain 2. Then the infectivity of all individuals
infected with strain 1 is measured by

∫ ∞

0
cs1V1(τ)i1(τ, t)dτ.

The susceptibility of those infected with strain 2 is assumed constant with respect to
time-since-infection and rescaled to unity. Then the equations for the first infected class are
as follows

∂

∂t
i1(τ, t) +

∂

∂τ
i1(τ, t) = −m(V1(τ))i1(τ, t) + i2(τ, t)

∫ ∞

0
cs1V1(τ)i1(τ, t)dτ.

The boundary condition becomes

i1(0, t) = (N − I1 − I2)

∫ ∞

0
cs1V1(τ)i1(τ, t)dτ.

where(N − I1 − I2) is the total susceptible population and the total number of infected
individuals with straini, i = 1, 2, is given by

Ii(t) =

∫ ∞

0
ii(τ, t)dτ.
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For the second strain the dynamics of the infected class can be represented bythe fol-
lowing equation.

∂

∂t
i2(τ, t) +

∂

∂τ
i2(τ, t) = −m(V2(τ))i2(τ, t) − i2(τ, t)

∫ ∞

0
cs1V1(τ)i1(τ, t)dτ.

In this case the boundary condition is

i2(0, t) = (N − I1 − I2)

∫ ∞

0
cs2V2(τ)i2(τ, t)dτ.

The basic reproduction number for a strain gives the expected number of secondary
infections an infectious individual can produce in its entire lifetime as an infectious indi-
vidual when introduced in a completely susceptible population. It has been observed [23]
that the strain with the largest reproduction number will dominate in the population in the
case when there is no coexistence of strains and only one of the strains will survive exclud-
ing all the others. However, articles [22] and [3] suggest that if we consider the case where
coexistence is possible, the strain with the highest reproduction number might not be able
to persist at all. The possibility of a strain dominating in a population cannot be understood
completely by studying the initial dynamics of a pathogen when introduced in a completely
susceptible host population as determined by the basic reproduction number. The ability
of a strain to invade a host population in which a different strain is already existing at an
equilibrium is measured by a quantity called theinvasion reproduction number, <y

x. The
invasion reproduction number<y

x gives the expected number of secondary infections pro-
duced by one infectious individual infected by strainx introduced in a population already
at equilibrium with strainy [24]. For the system with two strains and superinfection we can
calculate the invasion reproduction numbers for the two strains. The invasion reproduction
number of the second strain when the first strain is at equilibrium is calculated to be

<1
2 = (N − I∗1 )

∫ ∞

0
cs2V2(τ)π2(τ)e−v∗

1
τdτ

where

v∗1 =

∫ ∞

0
cs1V1i

∗
1(τ)dτ,

i∗1(τ) is the equilibrium value of strain 1, andI∗1 is the integral of that equilibrium distri-
bution. The invasion reproduction number of the first strain when the second strain is at
equilibrium is calculated as

<2
1 = (N−I∗2 )

∫ ∞

0
cs1V1(τ)π1(τ)dτ+i∗2(0)

∫ ∞

0
cs1V1(τ)

∫ τ

0
e−

�
τ

σ
m(V1(η))dηπ2(σ)dσdτ

where,
πi(τ) = e−

�
τ

0
m(Vi(τ))dτ , i = 1, 2

andi∗2(0) is the equilibrium value of strain 2 when time-since-infectionτ is zero. These
results give for the first time epidemiological invasion criteria that depend on the immuno-
logical dynamics through the virus load of each strain.
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Typically, the conditions<1
2 < 1 and<2

1 > 1 imply that strain 2 cannot invade the
equilibrium of strain 1 which leads to competitive exclusion of strain 2 by strain 1. Similarly
<2

1 < 1 and<1
2 > 1 mean that strain 1 cannot invade the equilibrium of strain 2. Thus,

under these conditions strain 2 will competitively exclude strain 1. When<1
2 < 1 and

<2
1 < 1 neither of the strains can overcome the other one. The resulting domination will

depend on the initial conditions. Finally,<1
2 > 1 and<2

1 > 1 describes the situation when
both the strains can invade the other strain’s equilibrium, resulting in coexistence [24].

8. Conclusion

Immuno-epidemiology is a fairly new concept in modeling compared to the immunologi-
cal or epidemiological modeling. A good amount of important information was obtained
from the single scale models which was path-breaking at the beginning of bio-mathematical
modeling. The single scale immunological and epidemiological models form the basis for
the development of the nested models. However, the within-host evolution of a parasite and
the between-host evolution of the disease were never independent phenomena for any dis-
ease. Although the initial motivation for the development of the age-since-infection struc-
tured immuno-epidemiological model was to understand the host-parasite co-evolution, the
model could also be adapted for HIV/AIDS case-study.

A different approach to multi-scale immuno-epidemiological modeling which will lead
to more realistic models are the individual based models. These are the models which study
the immunological dynamics of each infected individual separately instead of considering
classes as in the immuno-epidemiological models considered here. At the population level
individual-based network models trace the possible contacts between any pair of individuals
in the population and therefore formulate the most accurate map of the disease progression.
Although this approach is closer to reality than any other model, individual based models
are mostly simulational. In fact, they seldom have closed mathematical form which makes
drawing general conclusions about the global scenarios difficult. Moreover, getting accu-
rate data for parameter estimation for a general slice of the population may be impossible.
The immuno-epidemiological models we build here by embedding an ODE immunological
model into a PDE epidemiological model can give more insight into the general principles
of disease dynamics and transmission in the global sense. The parameters can be estimated
from various statistical Public Health data concerning HIV/AIDS epidemiology while the
immunological parameters can be estimated from direct measurements or the research lit-
erature.

One question of interest to be addressed with nested immuno-epidemiological mod-
els is how the transient immunological dynamics affects the epidemiology of the disease.
The transient immunological dynamics is linked to the epidemiology of the disease through
the transmission rate which depends on the age-since-infection via its dependence on the
virus load. It is well known about age-since-infection dependent epidemiological mod-
els that considering infection-age-dependent infectivity structure leads to destabilization
of the endemic equilibrium and sustained oscillations in the dynamics of the infected in-
dividuals [26]. However, in the nested immuno-epidemiological models we consider, the
time-since-infection dependent transmission rate is not arbitrary as is the case with age-
since-infection dependent epidemiological models. In the nested immuno-epidemiological
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models the transmission rate has predetermined shape which is dependent on theimmuno-
logical parameters. It is interesting to investigate whether and when the transient immuno-
logical dynamics can destabilize the epidemiological disease-dynamics.

In general, we expect that the immuno-epidemiological models will help us understand
the mutual interdependence between the immunology and epidemiology of an infectious
disease. In particular, these models will advance our knowledge on how the epidemiol-
ogy of a disease impacts the within-host dynamics. Conversely, immuno-epidemiological
models will advance our knowledge on the impact of immunology on the disease and its
distribution on the population level. We would also like to investigate the evolution of vir-
ulence depending on the ability of a virus to use host immune defense resources keeping in
mind the trade-off theory. Another interesting direction of study is the evolution of host re-
sistance on immunological level and lifting it to the epidemiological level. The correlation
between the virulence and epidemiological transmission of HIV is also a question of inter-
est. The overall aim would be to identify the host (human)-pathogen (HIV) co-evolution.
It is important to acknowledge that previous modeling attempts have provided useful infor-
mation for development of treatment strategies for AIDS. However, we are still far from
being able to eradicate HIV from an infected individual. Further analysis of the proposed
models and modifications should throw light into these questions. Understanding the pro-
gression of HIV to AIDS and possible directions of advancement of treatment could also
be approached with immuno-epidemiological mathematical models.
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Abstract

The development of physical and mathematical models dealing with the deposition and
bronchial clearance of aerosol particles in the human respiratory tract has its origin in the
1970s. Theoretical approaches of this time were usually based on an airway geometry being
either approximated by a sequence of straight cylindrical tubes or by a single, variable cross-
section channel resembling a trumpet shape. The branching network of lung airways was
initially described by a fully symmetrical tree structure (e.g. Weibel’s lung model A), within
which tubes of the same airway generation were characterized by identical geometric
parameters (i.e. diameters, lengths, branching and gravity angles). As a further consequence of
this symmetry pathways leading from the trachea to the closing alveolar sacs consisted of the
same number of tubes, representing a remarkable simplification for the simulation of
deposition and clearance scenarios.

In reality, the human tracheobronchial tree is marked by a significant asymmetry due to
the variation of airway geometry within a given generation. Since the end of the 1970s and the
early 1980s increased attention was paid to this important fact by the construction of a five-
lobe lung model, where intrasubject variation of bronchial geometry was still limited to the
first three or four bifurcations. A better approach of the variability of airway properties took
place by the formulation of a stochastic model of the human respiratory tract in the middle of
the 1980s. With this model both asymmetry and randomness could be well approximated on
the basis of available morphometric data. In addition, computation of deposition and bronchial
clearance was improved due to a variation in the number of bifurcations leading from the
proximal to the distal end of the bronchial pathway.

Currently, stochastic lung models represent the state of the art in simulating deposition
and clearance of inhaled particles. In recent years, computation of particle deposition was
successively refined by numerical approaches, enabling the determination of exact particle
trajectories within single, double, and triple bifurcations. Bronchial clearance was improved
by generation-specific variations of mucus thickness and mucus production, causing a
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remarkable variability of mucus velocity. Additionally, slow bronchial clearance mechanisms
were defined, with the help of which particle residence times > 24 hours could be explained.

Introduction

During the past three decades mathematical models have increasingly come into vogue in
various fields of biological and medical science. While in molecular biology theoretical
approaches to the structures of highly complex macromolecules have made a stir in
professional circles, in ecology diverse population models have remarkably helped to increase
our knowledge on the function of ecosystems controlled by a wide net of environmental
factors. In the meantime the importance of biological modelling has found its expression in
numerous scientific articles and monographs giving a review on various aspects which are
essential for the preparation of reliable mathematical approaches to biological processes [1-4].

Concerning medical science first modelling attempts date back to the 1960s, whereby the
scientific branch of pneumology has adopted a leading role in this context [5]. Based on the
circumstance that exposure to various airborne particles, either being attached by radioactive
elements or not, could cause serious lung diseases ranging from chronic bronchitis over
different kinds of fibrosis to lung cancer, enhanced efforts were invested to elucidate the
intricate morphology of the human respiratory system and the behaviour of inhaled particulate
matter. In the following decades three main fields of activity for mathematical modelling
were established. The first group of models mainly focused on an appropriate description of
the lung structure, whose geometry was successively decoded by the production and precise
measuring of lung casts [6]. Although being advised of the asymmetric structure of the human
lung, preliminary approaches of the geometry were based on deterministic airway paths and
thus contained high uncertainties. One of the milestones in lung modelling was the
substitution of this symmetrical lung model by a stochastic approach describing the multiple-
path geometry of the human respiratory tract in a more satisfactory way [7-9]. Mathematical
approaches to the lung structure formed the basis for any further modelling purposes
introduced in the following.

The second group of mathematical models concentrated on the simulation of particle
deposition in the human lungs and thereby mainly tried to follow the questions, at which sites
of the respiratory tract and to which extent deposition of inhaled particles takes place [5]. In
the case of radioactive aerosols the approaches should additionally help to estimate the
radioactive dose, to which specific lung regions (e. g. the bronchi and the alveoli) are
exposed. The microdosimetric aspects standing behind the theoretical description of particle
deposition in single respiratory compartments have forfeit nothing of their significance until
today [10,11] and represent a main driving force in present and future model development.

At the same time, when first attempts of deposition modelling were made, pneumologists
and biophysicists also started to decode and simulate those mechanisms which stand behind
the clearance of particles from the human respiratory tract [5,12]. Hence clearance models
became the third field of modelling activity that has lost nothing of its former attraction due to
many questions being unsolved hitherto. Similar to the deposition models also the theoretical
approaches to lung clearance have continuously increased in complexity during the past
decades, whereby actual efforts are dedicated to the clearance in diseased lungs and in
children [13-16].
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In this chapter, main principles of particle deposition and bronchial clearance modelling
that have been developed during the past decades will be subject to a brief description, and
future aspects of theoretical models in lung medicine will be discussed. For the sake of
completeness, however, the overview is preceded by a section including basic properties of
aerosols as well as principles standing behind the inhalation, deposition, and clearance of
particles in the human respiratory tract. This should help the non-expert to find a fast entrance
into the topic.

Aerosol Particle Deposition and Clearance in the Human
Respiratory Tract – Basic Considerations

General Characteristics of Aerosols

In general, aerosols are defined as solid particles or liquid drops suspended in a gaseous
system. In the atmosphere, numerous kinds of aerosols can be detected, ranging from haze
particles that are formed over vegetation, mineral dusts, and volcanic ashes to the important
group of bioaerosols [17-19]. Biological aerosols are characterized by high variability in size,
including viruses (~20 – 100 nm), bacteria (0.5 – 1 µm), spores, and pollen of coniferous
trees and angiosperms (– 100 µm). Besides the natural aerosols listed above, also numerous
aerosols of anthropogenic origin are distributed in the atmosphere. These include artificial
dusts, i.e. solids formed by disintegration processes such as crushing, grinding, blasting, and
drilling, fumes, which are produced by physiochemical reactions such as combustion,
sublimation, and distillation (e.g. metallurgical fumes of PbO, ZnO, or Fe2O3), as well as
smoke, defining a cloud of particles produced by the burning of coal, oil, wood, or other
carbonaceous fuels [17].

Since a specific aerosol in the atmosphere always occurs as a collection of particles, an
important feature of risk assessment is to indicate, whether the particles are all alike or are
dissimilar. For an appropriate solution of this question, the definitions of monodisperse,
polydisperse, and homogeneous aerosols have been introduced into the scientific literature
[17]. While a monodisperse aerosol contains only particles of exactly the same size, a
condition which is very rare in nature, a polydisperse aerosol contains particles of more than
one size. Homogeneous aerosols consist of particles which are marked by identical chemical
compositions. For investigating the deposition of aerosols in the human respiratory system,
basic knowledge of their morphological and physical properties is indispensable.

Besides the size of particles or liquid drops, which is usually described by the median
aerodynamic diameter (e.g. AMAD = activity median aerodynamic diameter, MMAD = mass
median aerodynamic diameter), the shape of aerosol particles plays an important role
concerning their respirability and deposition in the lung. As a major simplification in recent
lung models, aerosol particles are usually defined as spheres. However, with the exception of
liquid droplets, which are always spherical, many particle shapes have been described in the
literature due to extensive microscopic investigations. Generally, these shapes can be
subdivided into the following three classes: 1) Isometric particles are characterized by a
similarity (polyhedral particles) or even equality of the three dimensions (spherical particles).
Most knowledge regarding aerosol behaviour in the environment and the human body
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pertains mainly to isometric particles. 2) Platelets are defined as particles that have two long
dimensions and a small third dimension. Aerodynamic properties of these specific particles
are not well understood until now, because applying knowledge derived from studying
isometric particles to platelets is not possible without further ado. Classical examples for
platelets are graphite particles as well as small dust particles produced by mechanical friction.
3) Fibres are particles marked by great length in one dimension and much smaller lengths in
the other two dimensions. Contrary to platelets, much information on the behaviour of fibres
in the air has been collected during the last decades [20-22]. This increased scientific interest
was mainly prompted by the fact that inhalation of asbestos fibres, the most important particle
species of this class, has been recognized as a considerable health hazard, being responsible
for numerous lung diseases (e.g. asbestosis, lung cancer). Further particle properties, which
are of interest for scientific studies, are the specific weight (g cm-3), surface characteristics,
which is important concerning chemical reactions, possible electric charges, hygroscopic
growth, radioactivity as well as the light scattering and absorption behaviour.

The uptake of specific aerosols by inhalation can bear considerable health risks. Besides
the above described asbestos fibres, the deposition of numerous other particle types (e.g.
tobacco smoke, mineral dusts, radioactive particles, bioaerosols) in the respiratory tract can
be responsible for short-term or long-term (i.e. chronic) lung diseases. In the last decades, the
main interest of aerosol science has been focused on the investigation of radioactive particles
in the atmosphere, their inhalation and deposition in the human lung as well as possible
transport routes (e.g. blood, lymph system) in the human body. The studies were chiefly
initiated by well documented observations on uranium mine workers in the middle of the last
century, who showed a significantly increased rate of lung cancer with respect to the
remaining population. For an appropriate assessment of health risks due to the inhalation of
radioactive aerosols (e.g. radon progeny), several models calculating their deposition
distribution in the human lung have been developed in the meantime [5].

In medical science, aerosols have found a wide application concerning the inhalation
therapy of specific lung diseases (e.g. asthma, bronchitis, pneumonia, cystic fibrosis), but also
concerning the medical treatment of several metabolic insufficiencies (e.g. diabetes) [23,24].
For both cases, the effectiveness of inhalation therapy has to be optimized by producing a
maximum deposition of medical aerosols in the respective target region of the human
respiratory tract (e.g. bronchial region for asthma or bronchitis, alveolar region for diabetes).

The Human Respiratory System

The organization of the human respiratory tract is illustrated in Fig. 1. Generally, the
respiratory system can be subdivided into an extrathoracic part including the nose, mouth
cavity, oropharynx, nasopharynx, and larynx as well as a thoracic part consisting of the
tracheobronchial tree and the alveolar compartment. In the naso- and oropharynx, both very
small (nm-size) and very large particles (> 10 µm) are already filtered with high efficiency
and therefore penetrate into the deeper lung only in small amounts. Besides its high
importance as a particle filter, the nasopharynx also adapts the temperature of the inhaled air
to body temperature. Within the thoracic part of the respiratory tract, the tracheobronchial tree
(i.e. conducting zone) can be defined as a sequence of airway bifurcations and consists of
three main units: a) the trachea, b) the bronchi, and c) the bronchioli [5,25,26].
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Figure 1. Illustration of the respiratory system with its extrathoracic part containing oro-, nasopharynx,
and larynx as well as its thoracic part including the tracheobronchial tree and the alveolar system.

The trachea (airway generation 0) represents the connecting link between the extrathorcic
system and the lungs. In adults, it has a length between 10 and 12 cm and a diameter of about
2 cm. A specific property of the trachea is the development of horseshoe-like hyaline
cartilage, guaranteeing an increased stability of this airway. The bronchi are usually defined
as airway generations 1 to 8. Similar to the trachea, these airways are stabilized by platelets
and sponges of hyaline cartilage. At the hili, the two main bronchi (primary bronchi) enter the
lungs (Fig. 1) and subsequently divide into five lobar bronchi (secondary bronchi), two in the
left lung and three in the right lung. The bronchioli represent the airway generations 9 to 16
and are, contrary to the trachea and the bronchi, characterized by the absence of any hyaline
cartilage. The diameters of these airways typically range from about 0.5 to 1.5 mm. By
definition, the bronchiolus terminalis is the last non-alveolated airway within a pre-defined
bronchial path, while the bronchiolus respiratorius already contains some alveoli and thus
defines the transitional zone of the lung. Finally, the respiratory bronchiolus divides into the
alveolar ducts, where gas exchange takes place (respiratory zone).

The main histology of the bronchial tubes is very similar among the different airway
generations and is schematically illustrated in Fig. 2. In general, the bronchial airway wall can
be subdivided into several histological units, including the airway epithelium, fibroelastic
connective tissue (lamina propria) with nerves, capillaries, and lymph vessels, subepithelial
gland tissue as well as smooth muscle tissue [5,25,26]. As already mentioned above, in
airway generations 0 to 8 this basic histology is extended by a stabilizing cartilage tissue. The
airway epithelium is usually covered by a liquid film (mucus layer), containing a low-viscous
sol layer and a high-viscous gel phase. The mucus layer plays an important role concerning
the defense against bacterial infections and the fast removal of deposited particles out of the
tracheobronchial tree. The airway epithelium itself consists of several cell types which are
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e.g. responsible for mucus movement (ciliated cells), mucus production (globlet cells) and the
release of transmitters (endocrine cells). The organization is completed by brush cells with
apical microvilli and the basal cells, from which all other epithelial cell types are generated.
The thickness of single tissue types decreases significantly from the trachea to the terminal
bronchioli [5,27].

Figure 2. Sketch illustrating the general morphology of the bronchial airway wall. As shown in the
upper right picture, each bronchus consists of the airway epithelium (E), which is covered by the mucus
layer (ML), connective tissue (CT), and a smooth muscle layer (SM). Depending on the airway
generation, the bronchus is additionally stabilized by pieces of elastic cartilage. The mucus layer is
characterized by specific discontinuities (MD), whose number is thought to increase significantly from
proximal to terminal airways. Further abbreviations: P...deposited particle, G...subepithelial gland,
AM...airway macrophage. The arrow indicates the flow direction of the mucus.

In the alveoli, O2 is transferred from the inhaled air to the blood and CO2 from the blood
to the expired air. The basic histology of the alveolar system contains an epithelial layer,
whose thickness is reduced to 0.5 – 1 µm, and an interstitium (fibroelastic tissue) including
lots of capillaries. Diffusion of gases takes place along the following path: 1) epithelial
cytoplasm, 2) epithelial basal membrane, 3) basal membrane of the associated capillary, 4)
capillary endothelium, and 5) erythrocyte membrane (blood-air barrier). The alveolar
epithelium consists of thin platelet cells (type-I pneumocytes) as well as granular cells (type-
II pneumocytes) which are able to differentiate to type-I cells and additionally produce the
surfactant covering the alveolar wall and reducing the surface tension for a faster uptake of O2

molecules. Clearance within the alveoli is mainly guaranteed by alveolar macrophages that
phagocytize any deposited material. After losing their ability of particle uptake, the cells are
transported out of the lung via the tracheobronchial tree or the interstitium [27,28-30].
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Inhalation and Deposition of Aerosol Particles

A basic requirement for the inhalability of aerosol particles is their size. Therefore, particles
with diameters >100 µm are not able to enter the respiratory tract due to their increased mass
causing an immediate drop out of the inhaled air stream. For particle sizes between 10 µm
and 100 µm, the respirability (i.e. the probability to enter the lungs) decreases considerably
with increasing diameter because of an enhanced deposition in extrathoracic compartments
(e.g. oropharynx or nasopharynx) [5,8,31].

Figure 3. The three main deposition mechanisms in airways of the tracheobronchial tree. a) Inertial
impaction, b) Sedimentation, c) Brownian diffusion.
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Assuming a laminar air stream in the tracheobronchial tree, deposition of aerosol
particles is caused by three main mechanisms (Fig. 3): a) Brownian diffusion, b) inertial
impaction, and c) sedimentation [5,31-33]. Important deposition forces can be also generated
by the occurrence of secondary air flows at the carinal sites of airway bifurcations. At the
moment, this additional mechanism can be only simulated for single airway generations.
Brownian diffusion is regarded as the main deposition mechanism of small and ultrafine
particles (< 0.5 µm). By a permanent collision with surrounding air molecules, such particles
are transferred along stochastic trajectories that are mainly oriented perpendicular to the
direction of the airflow. Where the trajectories hit the airway wall, particles are deposited.
Concerning molecule-sized particles (~ 1 nm), interaction with surrounding gas molecules
reaches a minimum (Knudson number >> 1) and deposition occurs very immediately (i.e. in
the first airway generations). Impaction expresses the inertial behaviour of particles in the air
stream and is most important for particle diameters > 3 µm. Such large particles show a high
probability to leave their trajectories after a rapid change of the airflow direction (e.g. at
carinal sites of airway bifurcations) and tend to continue along their original paths, causing a
deposition in pre-defined discrete areas (‘hot spots’) [34].

Deposition efficiency by inertial impaction can mainly be recognized in the proximal
airway generations, where flow velocities of the inhaled air are rather high. For large aerosol
particles, which are transported in a slow air stream, deposition by sedimentation is of high
importance. Contrary to inertial impaction, deposition efficiency due to this specific
mechanism mainly occurs in small peripheral airways, where flow velocities reach a
minimum and thus particles have enough time to settle down by gravitation.

Figure 4. Total deposition in the human respiratory tract (extrathoracic and thoracic compartment) as a
function of particle size (see e.g. [9]). While deposition of small and ultrafine particles (<0.5 µm) is
mainly caused by Brownian diffusion, deposition of µm-sized particles is chiefly controlled by
impaction and sedimentation. Particle sizes around 0.5 µm show a deposition minimum due to the
absence of a favourite deposition mechanism.
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In Fig. 4, total deposition (i.e. extrathoracic and thoracic deposition) is illustrated as a
function of particle size. The graph shows a minimum for particle sizes around 0.5 µm. Such
particles are too big for an efficient deposition by Brownian diffusion and, on the other hand,
too small for deposition by inertial impaction or sedimentation and are therefore marked by
low deposition probabilities in the respiratory tract.

Clearance of Deposited Particles

Figure 5. Scheme representing possible clearance mechanisms of inhaled particles deposited in the lung
(from [35], modified). Insoluble particles are persistent to biological dissolution processes, e.g.
intracellular lysis, whereas soluble particles are metabolized within a rather short period of time.

During evolution, the human lung has developed several clearance mechanisms for an
efficient evacuation of deposited aerosol particles out of the lungs. In general, the conducting
zone (i.e. tracheobronchial tree) and respiratory zone (i.e. alveolar region) are characterized
by different clearance mechanisms, which are summarized in Fig. 5 [35]. For a
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comprehensive overview, specific clearance types of both insoluble and soluble particles are
illustrated. At the moment, the modelling of clearance scenarios is chiefly limited to insoluble
particles which are not or only insignificantly affected by lytic reactions or other cellular
decomposition processes.

Figure 6. Schematic illustration of a cilia beating cycle. During the effective stroke (1 – 5), the cilium
dips into the gel layer. Due to its viscoelastic behaviour, this phase is subsequently driven towards the
trachea. During the recovery stroke (6 – 10), the cilium moves only in the sol layer and therefore avoids
any movement of the gel layer in the opposite direction.

Concerning the tracheobronchial tree, deposited particles are mainly cleared by the so-
called mucociliary escalator, where a mucus layer covering the airway walls is transported
towards the larynx due to the permanent beating of epithelial cilia (n ∼ 20 Hz) [5,36]. For
optimizing this beating activity, the mucus layer is subdivided into a low-viscous periciliary
sol phase and a superposed high-viscous gel phase, on which deposited material is transported
(Fig. 6). According to the classical hypothesis, dipping of single cilia into the gel layer causes
a local increase of its viscosity (viscoelastic liquid) and, as a consequence, its movement
along the epithelial surface. To avoid an ineffective movement of the mucus in both
directions, each beating cycle of a single cilium consists of an effective stroke and a recovery
stroke (Fig. 6). Based on numerous experimental data [37-40], mucociliary clearance is
assumed to take place within the first 24 hours after dust exposure. This is underlined by
mucus velocity measurements in the trachea which range from 3 mm min-1 to about 20 mm
min-1. Besides the fast mucus clearance, also several slower clearance mechanisms play an
important role in the bronchial airways. As a basic requirement for the occurrence of slow
bronchial clearance, particles have to reach the sol phase either by penetrating the gel layer
[36,41] or by passing through a mucus discontinuity. Possible slow clearance mechanisms are
illustrated in Fig. 7 and include 1) the  re-transfer of particles onto the gel layer due to the
beating activity of adjacent cilia, 2) the phagocytosis of particles by airway macrophages, and
3) the transepithelial transfer (transcellular or intercellular) of particulate matter and
subsequent uptake in blood or lymph vessels [5]. Each of these mechanism depends on the
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size of the deposited material and is characterized by specific half-times, ranging from several
days to a few months.

Figure 7. a) Illustration of the bronchial epithelium with its diverse cell types, including ciliated cells
(CC), globlet cells (GC), basal cells (BC), and brush cells (BC). The three main mechanisms of slow
bronchial clearance are also shown: 1) transepithelial transfer, 2) re-transfer onto the gel layer, and 3)
uptake by airway macrophages (AM). Abbreviations: P…particle, GL…gel layer, SL…sol layer. b)
Schematic illustration of an airway macrophage with its numerous pseudopodia.
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Within the alveolar region, clearance of deposited particles mainly takes place by
alveolar macrophages which penetrate through the epithelium, after their differentiation in the
interstitium has been finished [12]. Orientation and mobility of single macrophages is
controlled by chemotaxis (i.e. movement along a concentration gradient). Each macrophage
has a certain particle loading capacity, determining its motility and lifetime [42]. After their
phagocytotic activity in the alveoli, macrophages either emigrate into the bronchial
compartment, where they are transported on the mucus layer towards the larynx, or penetrate
back into the alveolar interstitium. As suggested in Fig. 7, smaller particle fractions may also
be endocytized by epithelial cells and evacuated via the lymph system. The role of the
surfactant as a possible alveolar clearance mechanism is not fully understood until now [43].

Models of Particle Deposition in the Human Lungs

Development of Deterministic and Probabilistic Deposition Models

Basic requirements for the calculation of particle deposition in the lungs are, besides the
creation of an appropriate structure of the lungs, the simulation of aerosol transport in the
compartments of the respiratory tract, and the estimation of specific deposition mechanisms
with mathematical equations. These formulae are either empirically derived from related
experimental data or obtained from theoretical considerations. Airway geometry is usually
approximated either by a sequence of straight cylindrical tubes [6,31,44], by a channel with
exponentially increasing cross section resembling a trumpet shape [45], or by a sequence of
Y-shaped bifurcations with geometric correlation between parental and daughter airways
[7,8]. While the second approximation was limited to a rather short period of usage, the
remaining two geometries are frequently applied in modern mathematical approaches. In
early models of the lung structure, airway dimensions including length, diameter, number of
airways per generation, and branching and gravity angles were not treated statistically. These
among other resulted in a fully symmetric structure of the branching network of the
tracheobronchial tree (Fig. 8) [6].

Symmetric or deterministic lung models and mathematical equations describing particle
behaviour in straight and bent tubes (Fig. 9) were used in theoretical approaches to aerosol
deposition until the middle of the 1990s. As a main drawback standing behind the assumption
of a symmetric lung architecture all tubes of the same airway generation were characterized
by identical geometric parameters. Furthermore, each pathway leading to the closing sacs
consisted of the same number of tubes. As a consequence of this simulation of particle
deposition provided constant values which could be only varied by a change of breathing and
particle parameters. Intrasubject variability describing the partly significant variation of
airway geometry within a given lung generation was not considered at this stage of model
development.

To overcome the deficit of an inaccurate simulation of the lung structure in a first step the
human lungs were subdivided into five compartments representing the five lung lobes [31].
Each lobe was marked by a specific geometry of the first three or four bronchial generations,
resulting in an intrasubject variation of the proximal part of the tracheobronchial tree. The
following airway generations were again defined according to the deterministic construction
principle. Hence, variation of particle deposition showed a progress with respect to earlier
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models but was still subject to remarkable limits. In another approach the constant length of
airway paths, representing another problem of symmetric lung structures, was tried to be
solved by the assumption that airways may branch into daughter tubes belonging to different
generations. Geometric parameters within a generation were still kept constant [44].

a

b

Figure 8. a) Model of the tracheobronchial tree as numerous sequences of airway bifurca-tions,
including half of the parent tube and half of the daughters (D...diameter, L...airway length,
Θ...branching angle). b) Symmetric (left) and asymmetric (right) lung geometry.
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Figure 9. Deposition formulae for cylindrical tubes [31] which are used in the stochastic deposition
model of Koblinger and Hofmann [7].

A more promising approximation to the realistic lung structure and its application to
particle deposition succeeded in the 1980s with the extensive statistical treatment of
morphometric lung data [46-48]. Preliminary approaches were still based on Weibel’s lung
model [6]. Although they could provide geometric variations for each bronchial airway
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generation and in a following step also for the acinar region, the concept of symmetric
branching, where a parent tube branches into two geometrically identical daughter tubes, was
still preserved. A complete break with the deterministic lung model was reached for the first
time in the middle of the 1980s and should results in a revolutionary progress concerning the
simulation of particle deposition [6,7,49,50]. A stochastic model was defined which
expressed the randomness of the bronchial and acinar airway system by means of probability
density functions of all relevant geometric parameters. Within a given lung generation size
and orientation of a single airway was determined by the random selection of parameters from
the related distributions. The distributions were derived from detailed morphometric
measurements of the bronchial tree [51] and the acinar region [52].

Although intrasubject variablity was considered in an appropriate way in the first
stochastic lung and deposition models, prediction were only valid for a standard subject but
not for a population, where aerosol deposition may be characterized by high differences
between two individuals. This circumstance is commonly termed intersubject variability and
is routinely expressed by a large number of scaling factors which are implemented into the
model. First approximations to this problem date back to the early 1980s [53,54]. In more
recent times intersubject variability could be simulated with more success due to a continuous
increase of available morphometric data [5].

Open Questions in Recent Deposition Modelling

Currently, deposition modelling concentrates upon three main questions: First, the exact
behaviour of particles in single, double and triple airway bifurcations is tried to be decoded
with the help of numerical simulations [55-57]. Any findings derived from these models are
implemented into the deposition models of the entire lung and therefore increase the accuracy
and reliability of deposition predictions. Numeric simulation of the whole tracheobronchial
tree recently fails due to the lack of computer power but will be a main topic in future. The
second question in deposition modelling concerns the behaviour of particles in diseased
lungs. Here models among other help to increase the deposition efficiency of therapeutic
aerosols by the adjustment of particle parameters and to develop breathing techniques, with
the help of which the aerosol is more effectively transported to the target site of the lung [58-
60]. The third question concerns the deposition of nonspherical particles in the human lungs.
A continuous increase of our knowledge concerning this problem is important, since most
inhalable aerosols do not have spherical but fibrous, platelet-like or irregular shape.
Modelling studies show that nonspherical particles behave in a different way compared to
spheres and partly represent important occupational hazards [22,61-63].

Currently Used Deposition Models – Two Examples

At present, both deterministic and stochastic particle deposition models are used, whereby the
preference of a model strongly depends on which kind of statement is made. For giving
coarse predictions the deterministic model is preferably applied due to a limited parameter
input, whereas for more precise predictions application of the stochastic model is
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insurmountable. In the following, the two most frequently used mathematical approaches,
namely LUDEP© and IDEAL, are subject to a brief description.

The computer model LUDEP© was primarily developed to estimate regional (i. e.
extrathoracic, bronchial, and alveolar) deposition for a wide range of particle sizes. Further,
fractions of radioactivity in breathing air which are deposited in the anatomical lung
regions of exposed individuals should be estimated [5]. From a mathematical point of view
the approach represents a multicompartment model including compartments for the
extrathoracic airways (ET1, ET2) and the thoracic airways (BB, bb, AI). Deposition in the
extrathoracic airways is simulated according to an empirical method based on experimental
data [64,65], whereby deposition efficiencies are subsequently scaled by anatomical
dimensions to obtain reliable results for women and children [73]. Modelling of thoracic
deposition and gas transport is realized by the implementation of theoretical results of the
1970s and 1980s [66-68] dealing with gas transport and particle deposition in the single
lung regions and their dependence on a subject’s lung size and breathing rate [5]. Also a
mixing of tidal with residual air in the alveoli is considered, and aerosol deposition is
calculated from the combined effects of inertial impaction, sedimentation, and Brownian
diffusion. In general, computation of deposition takes place on the basis of a semiempirical
approach using rather simple algebraic formulae that can be looked up in the related
publication of the ICRP [5].

In the stochastic deposition model IDEAL (Inhalation, Deposition, and Exhalation of
Aerosols in the Lung) outlined by Koblinger and Hofmann [7], the path of an inhaled
particle is selected randomly (‘random walk’). By application of a Monte Carlo method, the
pathways of a large number of particles are simulated, selecting a new transport trajectory
for each particle. For improving the statistics of the Monte Carlo calculations, the statistical
weight method is used, where a unit weight is assigned to particles entering the trachea.
This initial value is subsequently multiplied by (1 – p) at each bifurcation with p denoting
the bifurcation-specific deposition probability. The contribution to the deposition fraction is
finally given by the product of the actual weight and the respective deposition probability.
Generation-specific probabilities of deposition are usually computed by deterministic
formulae. Within bronchial airways, Brownian motion, inertial impaction, and
sedimentation are considered as the primary deposition mechanisms. Inertial impaction is
calculated for a bent tube, where the bend angle equals the branching angle and the flow
velocity is an average value of all velocities in a bifurcation unit [31]. For an appropriate
calculation of particle deposition in the alveoli, these structures are approximated by
spheres or parts of spheres with identical diameters. Deposition in alveoli strongly depends
on whether total air mixing is assumed in the respective spheres or not. However, relevant
deposition mechanisms are sedimentation and Brownian diffusion. Deposition calculation
is based on the input of numerous parameters regarding lung volumes, breathing, and
particle properties. The model allows a prediction of particle deposition for each airway
generation [9,69].
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Mathematical Approaches to Bronchial Clearance of Insoluble
Particles from the Lungs

Development of Clearance Models Based on Symmetric and Asymmetric
Lung Structures

Similar to deposition modelling, numerous mathematical approximations of tracheobronchial
particle clearance have been published during the last three decades. In the 1970s and 1980s,
main interest was focused on the development of appropriate models describing only
mucociliary clearance in the bronchial airway generations and using mainly deterministic
lung geometry (‘typical-path models’). Estimations of bronchial mucus velocities, which are
necessary for the description of a continuous particle transport from the site of deposition to
the larynx, were uniformly based on 1) velocity measurements in the trachea and 2)
geometrical considerations like cross section ratios between parent and daughter airways in a
selected bifurcation [70]. Computed velocity data based on these assumptions were published
by a great number of scientific groups [71-73]. At the end of the 1980s physicists succeeded
in the generation of a retention curve for the tracheobronchial region and the calculation of
clearance time of deposited particles in each airway generation [74] which meant a
considerable break-through on this field.

Results produced by the deterministic clearance models stated above were adopted by
national and international committees for a more reliable risk assessment of hazardous
particles. The ICRP [5] for instance used selected models [72-74] for the computation of
mucus velocities in the first 9 airway generations and assumed a constant clearance rate of 2
day-2 for the remaining generations. The NCRP [75], on the other hand, developed an
approach similar to that of Cuddihy & Yeh [74] and was able to generate mucus velocities for
the entire lung.

Approximation of mucus clearance in a stochastic lung structure was attempted for the
first time by Yeh & Schum [31] who divided the lung into five lobes with symmetric
geometry (‘lobar-specific typical-path model’). This improvement caused a significant
derivation of particle clearance taking place along an average pathway which was a main
drawback of earlier models. A better consideration of the complex lung structure was finally
realized in various stochastic clearance models based on the assumption of a steady-state
steady-flow of mucus in the tracheobronchial tree [70] or, in a more simplified approach, the
circumstance of an exponential velocity decrease from proximal to terminal airways [76].

The consideration of slow bronchial clearance, being of high importance for small
particles (100 nm – 1 µm), was necessary, after numerous inhalation experiments confirmed
the existence of clearance mechanisms requiring much more time than few hours [35,36,41].
A respective slow bronchial clearance fraction was implemented into the multicompartment
model outlined by the ICRP in the middle of the 1990s [5] and into more current models [76],
whereas a more detailed theoretical formulation of slow bronchial clearance was carried out
with the compartment model introduced by Sturm & Hofmann [77].
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The Multicompartment Clearance Model of the ICRP

In general, the model of the of the ICRP [5] assumes that particulate matter deposited in the
respiratory tract is cleared by three main routes, i. e. into cardiovascular system by absorption,
in the gastrointestinal tract (GIT) via the pharynx, and to regional lymph nodes (LN) via
lymphatic channels. Clearance by these routes takes place from four regions, namely the
extrathoracic compartment (ET), the bronchi (BB), the bronchioli (bb), and the alveoli (AI).
Clearance kinetics are expressed in terms of transfer rates (in d-1) between specific
compartments which are independent of any particle properties and take values between
0.00002 and 100 d-1 [5].

Figure 10. Multicompartmental clearance model proposed by the ICRP [5]. The model already
considers a slow bronchial clearance phase represented by the compartments BB2, BBseq, bb2, and bbseq.
Transfer rates between two compartments are given in days-1.

Based on numerous experimental data, a slow bronchial clearance fraction, fs, is defined
representing the fraction of deposited particles which are exclusively cleared by slow
mechanisms (epithelial/macrophage uptake etc.). The respective slow bronchial clearance
phase is implemented into the multicompartmental clearance model. For the bronchial
(generations 1 – 8) and bronchiolar (generations 9 – 16) regions, this phase is expressed by
the compartments BB2, BBseq, bb2, and bbseq. A scheme of the ICRP model with its single
compartments and related transfer rates (in d-1) is presented in Fig. 10. In the
multicompartment approach a dependence of fs on the aerodynamic diameter, dae, of particles
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deposited in the tracheobronchial tree is assumed. For spherical particles with dae < 2.5 µm fs

is believed to amount to a constant value of 0.5, i. e. 50 % of the particulate matter deposited
on the airway walls is subject to slow clearance mechanisms, while for spheres with dae > 2.5
µm an exponential decrease of fs with particle size is taken into account. In addition, the
deposition fraction as a function of dae is different in the bronchial and bronchiolar lung
region, resulting in different slow clearance fractions in these specific compartments [5].
There can be no doubt that the model provided by the ICRP represented an important
milestone concerning the theoretical treatment of particle clearance in the middle of the
1990s. Meanwhile certain processes attributing to slow bronchial clearance have been
decoded more in detail, so that a refinement of the model seems to be justified.

Conclusion

In this chapter main developments concerning the theoretical simulation of particle deposition
and clearance in the human respiratory tract have been illustrated. As could be exhibited in
detail, the complexity of such models has continuously increased during the past decades, so
that currently used approaches mostly provide precise and highly realistic predictions. A
significant part of this progress is indeed based on the rapid development of the computer
technology which represented a main limiting factor in the 1970s and 1980s but enables
highly intricate numeric calculations at present. Future improvements of lung models will
mainly concern the extrathoracic architecture as well as the geometric variability of the
alveoli during the breathing cycle. Also structural changes of the lung due to specific diseases
such as chronic bronchitis, asthma or cystic fibrosis will find increased attention. Regarding
particle deposition, influences of asymmetric and asynchronous filling of the lung with air
will be an important topic in future, because these phenomena play a significant role in the
diseased lung and therefore need a reliable mathematical description. Finally, the application
of therapeutic aerosol will attract main attention of biophysicists and mathematicians, because
theoretical deposition models act as excellent tools for the maximization of deposition
efficiencies hitherto. This very positive co-operation between physics and
medical/pharmaceutical science will be further strengthened in the following years.
Concerning particle clearance out of the human respiratory tract, slow clearance mechanisms
still representing some kind of enigma will be successively decoded by experiments. This will
finally result in a more complete and realistic approach describing the evacuation of
particulate matter from the lungs. Additionally, clearance modelling will follow the same
questions as deposition modelling and thus will increasingly concentrate on the insufficient
lung.
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Abstract

We start by introducing a brief review of the history of interdisciplinary research in
biology, as well as some of basic concepts from molecular biology. Then, we present a
survey of the philosophy and goals of a new area of interdisciplinary research: systems
biology. Finally, we review our efforts of the past few years to understand, via math-
ematical modeling, the dynamic behavior of one of the most studied gene regulatory
networks in bacteria: the tryptophan operon, and offer new results.

1. Introduction

The knowledge of the complete genome of a given species is just a small piece of the
information thought to be useful in the understanding of one of the most complicated and
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important puzzles in science: “How does a biological system work?”. To fullyunderstand
the behavior of an organism, an organ, or even a single cell, we need to understand the
underlying gene regulatory dynamics. Given the complexity of even a single cell, answering
this questions is impossible at the moment and will remain so for the foreseeable future.
However, by analyzing the simplest genetic regulatory systems we may be able to develop
the mathematical techniques and procedures required to tackle ever more complex genetic
networks in the future.

In this paper, we review our efforts of the past few years to understand, via mathemati-
cal modeling, the dynamic behavior of one of the most studied gene regulatory networks in
bacteria: the tryptophan operon. As we shall see, it is possible to obtain valuable informa-
tion with relatively simple models, despite all of the assumptions underlying them.

2. A Brief Historical Review

During the Enlightenment, in the latter part of the 18th and early part of the 19th Centuries,
scientific disciplines started to be hierarchically classified. This classification into the so
called exact sciences(physics and mathematics) and those of thelife sciences(biology
and medicine) has led to the notion that these two broad divisions have evolved following
distinct, separate, and sometimes even contradictory or conflicting pathways. The truth,
however, is far different. Since the origins of modern science, there have been people mak-
ing important contributions to both the exact and life sciences as well as the very interface
between them. William Harvey discovered blood circulation with the aid of a mathemati-
cal model. Electrodynamics started with the work of Galvani and Volta (both physicians)
on animal electricity. Later, Helmholtz (also a physician, but better known for his contri-
butions to physics) invented the myograph and the ophthalmoscope, recorded for the first
time the velocity of a nervous impulse, discovered the first law of thermodynamics (based
on metabolic considerations), and helped to settle the foundations of all modern theories of
resonance with his studies on auditory physiology.

During the 20th century, electrophysiology (the science that studies the interactions
between biological tissues and electromagnetic fields) advanced enormously. Archibald
V. Hill, Bernard Katz, Max Planck, Walter Nernst, Kenneth S. Cole, Alan L. Hodgkin,
Andrew, F. Huxley, Erwin Neher, and Haldan K. Hartline, among others, made important
contributions to its progress. Some remarkable events in the history of electrophysiology
were: the explanation for the origin of the action potential, elucidated by Hodgkin and
Huxley with the aid of highly sophisticated mathematical models; the Huxley cross-bridge
model for muscle contraction; and the invention of the patch clamp technique by Neher.

Charles Darwin published his theory of evolution through natural selection in 1859.
From the beginning, it was clear that this theory lacked proper statistical foundations, and
this was its main weakness. Indeed, an apparent contradiction between Darwinism and
Mendel’s laws of inheritance arose immediately after the Mendelian laws were rediscovered
in 1900. This gap was closed through the work of many mathematicians who, between
1860 and 1940, developed the necessary statistical tools to fuse genetics and Darwinism.
The result is what we know today as population genetics or neo-Darwinism. Some of
the most important contributors to this success were: Fleeming Jenkin, Francis Galton,
Karl Pearson, Raphael Weldon, Godfrey H. Hardy, Ronald A. Fisher, Sewall Wright, and
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Theodosius Dobzhansky. Interestingly, Godfrey H. Hardy and Ronald A.Fisher are well
known in the mathematical community for their contributions to real analysis and number
theory [Hardy], and probability and statistics [Fisher].

Molecular biology consolidated between 1940 and 1960, and until 1970 two different
schools were recognized: the structural and the informatics schools. The physicists W. H.
Bragg and W. L. Bragg (father and son) founded the structural school in Cambridge. They
invented X-ray crystallography in 1912, and the structural analysis of biological molecules
soon started in their lab. Some of the best known structuralists were W. T. Astbury , John
D. Bernal, Max Perutz, and John C. Kendrew (all of them from Cambridge), as well as
Linus Pauling from Caltech. The structuralists were convinced that no new physical laws
were required to explain vital phenomena. They endeavored to explain the function of
biomolecules (and so of tissues and organs) from their inner structure. The secondary pro-
teinic structure known as the alpha helix, and the structures of hemoglobin and myoglobin
are some of the most important discoveries from this school.

Inspired on the uncertainty principle of quantum mechanics, Niels Bohr proposed that
new principles from physics may be necessary to understand life. With this assertion, Bohr
founded the informatics school of molecular biology. Max Delbrück and Erwin Schr̈odinger
(both physicists) were two of the most important spokesmen for this school. When the Nazis
took power in Germany, Delbrück moved to the USA were he started a very successful
collaboration with Salvador Luria on bacteriophage research. This collaboration greatly
advanced our knowledge of the molecular basis of genetics. On the other hand, Schrödinger
had to move to Dublin after the Nazis invaded Austria, and there he published a little book
entitledWhat is life?, which was tremendously influential on the development of molecular
biology.

Some of those recruited by Schrödinger’s book were James Watson and Francis Crick
(who later discovered the structure of DNA in 1953), Maurice Wilkins (who provided es-
sential physical data to Watson and Crick), Seymour Benzer (who sequenced the first gene),
and François Jacob (who discovered mRNA and, together with Jacques Monod, the regula-
tory mechanisms of thelac operon.

During the second half of the 20th Century, biomathematics, also known as mathemat-
ical biology, developed as a branch of applied mathematics. Biomathematics is an active
field of research and interest in it is accelerating as is the number of individuals working on
it. It is essentially dedicated to mathematical modeling biological phenomena. Biomath-
ematicians have made important contributions to ecology (through population dynamics),
epidemiology, pattern formation (through the study of reaction diffusion equations), molec-
ular biology, integrative physiology, and medicine. Some of the most best known biomathe-
maticians are B. van der Pol, A. J. Lotka, V. Volterra, A. Turing, J. M. Smith, A. T. Winfree,
etc. Readers interested in learning more about the common history of biology, mathematics,
and physics are recommended to read References [1, 2, 3, 4, 5, 6].

3. Systems Biology

A new designation for an area of interdisciplinary research in biology, currently termed
systems biology, emerged a few year ago; it continues with the long tradition described in
the previous section, and especially with the long tradition of an integrative approach in
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physiology. The closest ancestors to what is called systems biology are systemstheory and
cybernetics. Since systems biology inherits part of the philosophy and the goals of both, it
is interesting to briefly review these latter two.

Systems theory is an interdisciplinary field which studies relationships between systems
as a whole. It was founded in the 1950s and focuses on organization and interdependence of
relationships. Systems dynamics is a central part of systems theory; it provides methods for
understanding the dynamic behavior of complex systems. Such methods rely on the recog-
nition that the structure of any system—the multi-circular, interlocking, sometimes time-
delayed relationships among its components—is often just as important in determining its
behavior as the individual components themselves. Indeed, in many cases, it is impossible
to explain the behavior of the whole system in terms of the behavior of its separated parts
only. Examples are chaos theory and social dynamics.

Cybernetics is the study of communication and control, typically involving regulatory
feedback, in living organisms, in machines, and in combinations of the two. It is an ear-
lier but still-used generic term for many of the subject areas that are subsumed under the
headings of adaptive systems, artificial intelligence, complex systems, complexity theory,
control theory, decision support systems, dynamical systems, information theory, learning
organizations, mathematical systems theory, operations research, simulation, and systems
engineering.

Contemporary cybernetics began in the 1940s as an interdisciplinary study connecting
the fields of control theory, electrical network theory, logic modeling, neuroscience, and
human physiology. The emphasis of cybernetics is on the functional relations that hold
between the different parts of a system; rather than the parts themselves. These relations
include the transfer of information, and circular relations (feedback) that result in emergent
phenomena such as self-organization. The name cybernetics was coined by its intellectual
father, Norbert Wiener, to denote the study of “teleological mechanisms” (i.e. machines
with corrective feedback) and was popularized through his bookCybernetics, or Control
and Communication in the Animal and Machine(1948). Wiener was, incidently, one of the
most influential and original mathematicians of the first half of the 20th century.

Systems biology is an academic field that seeks to integrate different levels of informa-
tion, and so to understand how biological systems work. By studying the relationships and
interactions between various parts of a biological system (e.g., gene and protein networks
involved in cell signalling, metabolic pathways, organelles, cells, physiological systems, or-
ganisms, etc.) it is hoped that eventually a comprehensive model of the whole system can be
developed. As the intellectual grandchild of what was originally called human physiology
it endeavors to expand physiology to include biochemistry as well as molecular biology.

In contrast to much of molecular biology, systems biology does not seek to break down
a system into all of its parts and to study each part of the process at a time with the hope of
being able to reassemble all the parts into a whole again. Systems biology begins with the
study of genes and proteins in an organism using high-throughput techniques to quantify
changes in the genome and proteome in response to a given perturbation. These techniques
include microarrays to measure the changes in mRNAs and mass spectrometry, which is
used to identify proteins, detect protein modifications, and quantify protein levels. How-
ever, systems biology is much more since it balances these molecular details against whole
system performance and behavior. Using this integrated knowledge, the system biologist
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can formulate hypotheses that explain a system’s behavior. Importantly, thesehypotheses
can be used to mathematically model the system. Models are then used to predict how
different changes in the environment affect the system itself, and so they can be iteratively
tested for their validity.

Recent analysis has revealed that cell signals do not necessarily propagate linearly. In-
stead, cellular signalling networks can be used to regulate multiple functions in a context
dependent fashion. Because of the magnitude and complexity of the interactions inside the
cell, it is often impossible to understand intuitively thesystems behaviorof these networks.
Rather, it has become necessary to develop mathematical models and analyze the behavior
of these models, both to develop a systems-level understanding and to obtain experimentally
testable predictions.

New approaches to these problems are constantly being developed by quantitative sci-
entists, such as computational biologists, statisticians, mathematicians, computer scientists,
engineers, and physicists, to improve our ability to create, refine, and retest the models until
the predicted behavior accurately reflects the seen phenotype.

The reader interested in reading more about the definition and philosophy of systems
biology may find References [7, 8, 4, 9, 5, 10, 11, 12] appealing.

4. The Central Dogma of Molecular Biology

The central dogma of molecular biology deals with the information flow between DNA,
RNA, and proteins. The standard information-flow pathway can be summarized in a very
short and oversimplified manner as follows: DNA→ RNA → proteins. Proteins in turn
facilitate the previous two steps, as well as the replication of DNA. This whole is therefore
broken down into three steps: transcription, translation, and replication. Nevertheless, in-
formation can flow backwards in some steps; see Figure 1. Below, two of the processes
accounted for by the central dogma (transcription and translation) are briefly reviewed.

Transcription

Transcription is the process through which a DNA amino acid sequence is copied by an
enzyme known as RNA polymerase to produce a complementary RNA. In other words, it
is the transfer of genetic information from DNA into RNA. In the case of protein-encoding
DNA, transcription is the beginning of the process that ultimately leads to the translation of
the genetic code (via the mRNA intermediate) into a functional peptide or protein.

In prokaryotic cells, like bacteria, transcription initiation takes place through the fol-
lowing steps:

• RNA polymerase (RNAP) recognizes and specifically binds to a DNA segment
known as the promoter. At this stage, the DNA is double-stranded and (closed).
This RNAP/wound-DNA structure is referred to as the closed complex.

• The DNA is unwound and becomes single-stranded (open) in the vicinity of the ini-
tiation site. This RNAP/unwound-DNA structure is called the open complex.

• The RNA polymerase transcribes DNA into RNA.
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Figure 1. The 1970 version of the Central Dogma. The arrows representthe flow of infor-
mation. Solid arrows representprobableinformation flow, while dotted arrows represent
possibleinformation flow. Note that information flow from proteins to RNA or DNA is
regarded as impossible

Promoters can differ instrength; that is, how actively they promote transcription of their
adjacent DNA sequence. Promoter strength is in many (but not all) cases, a matter of how
tightly RNA polymerase and its associated accessory proteins bind to their respective DNA
sequences. The more similar the sequences are to a consensus sequence, the stronger the
binding is.

Translation

In prokaryotic cells, a nascent messenger RNA (mRNA) molecule is bound by a ribosome,
where it is translated. The mRNA is read by the ribosome as triplet nucleotide sequences
(codons). Complexes of initiation factors and elongation factors bring aminoacylated trans-
fer RNAs (tRNAs) into the ribosome-mRNA complex, matching the codon in the mRNA
to the anti-codon in the transfer RNA (tRNA), thereby adding the correct amino acid in the
sequence encoding the gene. As the amino acids are linked into the growing peptide chain,
they begin folding into the correct conformation. This folding continues until the nascent
polypeptide chains are released from the ribosome as a mature protein.

5. The Tryptophan Operon

An operon is a DNA segment that includes an operator, a common promoter, and one or
more structural genes. All of these structural genes are controlled as a single unit to produce
messenger RNA (mRNA). Operons occur primarily in very simple organisms as prokary-
otes and nematodes. The operon concept was introduced by François Jacob and Jacques
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Monod in 1961, though their studies on what is now known as the lactose operon.
A promoter is a short DNA sequence that provides a site for RNA polymerase to bind

and initiate transcription; thus, it is located before the structural genes. Close to the pro-
moter, and usually beside it, lies an operator sequence. An operator is a segment of DNA
that regulates the activity of the operon promoter by interacting with a specific protein. This
protein can act either as a repressor or as an activator. The operon may also contain regu-
latory genes, such as a repressor gene, which codes for a protein that binds to the operator
and inhibits transcription.

Tryptophan (Trp) is one of the 20 main amino-acids in the genetic code (codon UGG).
It is an essential amino acid because it cannot be synthesized by mammals, and therefore
must be part of our day-to-day diet. Among other important substances, tryptophan is a
precursor for serotonin (a neurotransmitter) and melatonin (a neurohormone).

Tryptophan can be synthesized by bacteria likeE. coli through a series of catalysed re-
actions. The catalyzing enzymes inE. coli are made up of the polypeptides encoded by the
tryptophan operon genes:(trpE, trpD, trpC, trpB, andtrpA). These genes are transcribed
from trpE to trpA. Finally, transcription is initiated at promotertrpP, which is indeed lo-
cated just before the genetrpE.

The trp operon is regulated by three different negative-feedback mechanisms: repres-
sion, transcription attenuation, and enzyme inhibition. Below, these regulatory mechanisms
are briefly reviewed. It is convenient for this to refer to Figure 2.

The trp operon is a repressible operon. This happens because there is an operatortrpO
overlapping with the operon promoter,trpP. When an active repressor is bound totrpO
it blocks the binding of a mRNA totrpP and prevents transcription initiation. Thetrp
repressor normally exists as a dimeric protein (called thetrp aporepressor) and may or may
not be complexed with tryptophan (Trp). Each portion of thetrp aporepressor has a binding
site for tryptophan.

When not complexed with tryptophan, thetrp aporepressor cannot bind tightly to the
operatortrpO. However, if two tryptophan molecules bind to their respective binding sites,
the trp aporepressor is converted into the functional repressor. The resulting functional
repressor complex can bind tightly to thetrp operator, and so the synthesis of tryptophan
catalyzing enzymes is prevented. This fact completes the repression negative-feedback
mechanism: An increase in the concentration of tryptophan induces an increase in the con-
centration of the functional repressor complexes, thus preventing the synthesis of trypto-
phan.

Transcription attenuation works by promoting an early termination of mRNA transcrip-
tion, see Figure 3. The transcription starting site in thetrp operon is separated fromtrpE
by a leader region responsible for attenuation control. The transcript of this leader region
consists of four segments which can form three stable hairpin structures between consecu-
tive segments. The first segment contains two tryptophan codons in tandem. If there is an
abundance of tryptophan, and thus of loaded tRNATrp, the ribosome rapidly finishes transla-
tion of the first two segments, and so it promotes the formation of a stable hairpin structure
between the last two segments. mRNA polymerase molecules recognize this hairpin struc-
ture as a termination signal, and transcription is prematurely terminated. However, if the
ribosome stalls in the first segment due to lack of tryptophan, hairpin development between
Segments 2 and 3 (the antiterminator) is facilitated, and transcription proceeds until the end.
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Figure 2. Schematic representation of thetrp operonregulatory mechanisms.

Finally, anthranilate synthase is the first enzyme to catalyze a reaction in the catalytic
pathway that leads to the synthesis of tryptophan from chorismate. This enzyme is a het-
erotetramer consisting of two TrpE and two TrpD polypeptides. Anthranilate synthase is
inhibited by tryptophan by negative-feedback. This feedback inhibition is achieved when
the TrpE subunits in anthranilate synthase are individually bound by a tryptophan molecule.
Therefore, an excess of intracellular tryptophan inactivates most of the anthranilate synthase
protein, avoiding the production of more tryptophan.

We recommend References [13, 14, 15] for those interested in reading more about the
regulatory mechanisms in thetrp operon.

6. Mathematical Modelling

The tryptophan operon has been the object of intensive studies for more than fifty years. The
detailed knowledge we have today regarding the regulatory mechanisms in this operon is
impressive. We mainly owe this knowledge to the research carried out at Charles Yanofsky’s
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Promoter
Leading
Region

Structural
Genes

mRNA
Ribosome

A

B C D

Transcriptional Attenuation

Figure 3. A) In the tryptophan operon there is a leading region between the promoterand
the structural genes. The transcript (cyan) of thetrp leading region comprises four equally
large segments, which can fold to form three different hairpin structures. B) After Segments
1 (purple) and two (green) have been transcribed, they form a hairpin (the Hairpin 1:2) and
it causes the polymerase to stop. A ribosome may then bind to the nascent mRNA and
starts translation; transcription is resumed when the ribosome disrupts Hairpin 1:2. C)
Segment 1 contains two Trp codons in tandem. Hence, under conditions of low tryptophan,
there is a reduced number of loaded tRNATrp, and so the ribosome gets stacked in Segment
1. Transcription continues anyway, so that Segment 2 forms a hairpin with Segment 3
(yellow) when the latter is transcribed. Hairpin 2:3 is recognized as an antiterminator by
the polymerase, and so transcription proceeds until the end of the structural genes. D)
Conversely, if there is an abundance of tryptophan, the ribosome rapidly starts translation
of Segment 2, and precludes formation of Hairpin 2:3. Then, when Segments 3 and 4
are transcribed, they form a hairpin that is recognized as a terminator; it destabilizes the
polymerase-DNA complex and prematurely aborts transcription.

lab at Stanford University. However, there are still some open questions concerning the
dynamic tryptophan operon behaviour. One of this questions is why the tryptophan operon
involves three, apparently redundant, negative feedback regulatory mechanisms: repression,
transcriptional attenuation, and enzyme inhibition. Together with other groups, we have
addressed this question from a mathematical modelling perspective to try to gain more
insight. The rest of this section describes our results.

We have developed a mathematical model of the tryptophan operon regulatory path-
ways, which takes into account all three known regulatory mechanisms: repression, tran-
scription attenuation, and enzyme inhibition. The model equations are presented in Table 1.
These equations govern the dynamic evolution of the concentration of mRNA,M ; enzyme,
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Table 1. Mathematical model of the tryptophan operon. These equationsgovern the
dynamic evolution of the concentration of mRNA,M ; enzyme,E; and intracellular
tryptophan, T . The positive terms on the right-hand side of the equations stand for
the production rates of the corresponding variables, while the negative terms stand

for loss due to dilution (due to cell growth) and degradation. The termρT/(Kρ + T )
represents tryptophan consumption during the synthesis of all proteins. The constant
kM is the rate of transcription initiation per promoter, kE is the rate of translation

initiation per mRNA, and kT is the rate of tryptophan production per enzymeE. The
terms γM , γE and γT are the dilution plus degradation rates. Finally, the functions

RR(T ), RA(T ), andRI(T ) are all nonlinear decreasing functions ofT , and
respectively represent the three different regulatory mechanisms present in the

tryptophan operon: repression, transcription attenuation, and enzyme inhibition.

dM

dt
= kMDRR(T )RA(T ) − γMM,

dE

dt
= kEM − γEE,

dT

dt
= kT ERI(T ) − ρ

T

Kρ + T
− γT T,

RR(T ) =

P

KP

1 +
P

KP
+

R

KR

(

T

T + KT

)2 ,

RA(T ) =
1 + 2α

T

KG + T
(

1 + α
T

KG + T

)2 ,

RI(T ) =

(

KI

T + KI

)2

.

E; andintracellular tryptophan,T . The positive right-hand-side terms at the equations stand
for the production rates of the corresponding variables, while the negative terms stand for
loss due to dilution (due to cell growth) and degradation. The termρT/(T + Kρ) repre-
sents tryptophan consumption during the synthesis of all types of proteins. The constant
kM is the rate of transcription initiation per promoter,kE is the rate of translation initiation
per mRNA, andkT is the rate of tryptophan production per enzymeE. The termsγM ,
γE , andγT are the dilution plus degradation rates. Finally, the functionsRR(T ), RA(T ),
andRI(T ) are all nonlinear decreasing functions ofT , and respectively represent the three
different regulatory mechanisms present in the tryptophan operon: repression, transcription
attenuation, and enzyme inhibition. To derive these functions we took into consideration
all of the biochemical reactions underlying the regulatory mechanisms described above,
used chemical kinetics, and made quasi-steady state assumptions for all fast processes. The
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meaning of the parameters in the functionsRR(T ), RA(T ), andRI(T ) is as follows:P
represents the intracellular mRNA polymerase (mRNAP) concentration,KP is the dissocia-
tion constant for the mRNAP-promoter complex formation reaction,KR is the dissociation
rate for the repressor-operator complex formation reaction,KT is the dissociation constant
for the reaction in which a tryptophan binds one of its corresponding binding sites in the
aporepressor,α is a constant associated to the strength of transcription attenuation,KG is
the dissociation rate for the tryptophan-tRNATrp complex formation reaction, andKI is the
dissociation rate for the reaction in which a tryptophan molecule binds one of its binding
sites in the anthranilate synthase enzyme.

It is important to mention that, although not introduced here, special attention was given
to the estimation of all the model parameters from reported experimental data. The esti-
mated parameter values are tabulated in Table 2. The reader interested in the derivation
of the model equations, as well as in the estimation of the model parameters, may consult
Reference [16].

Table 2. The model parameters as estimated in Reference [16]

µ ≈ 2.3 × 10−2 min−1 P ≈ 1, 500 mpb O ≈ 2 mpb
R ≈ 400 mpb KT ≈ 20, 000 mpb KR ≈ 0.1 mpb

KP ≈ 22.5 mpb α ≈ 18.5 KG ≈ 2, 500 mpb
KI ≈ 2, 050 mpb γM ≈ 0.69 min−1 γE ≈ 0.01 min−1

ρ ≈ 1.2 × 105 mpb Kρ ≈ 5, 000 mpb τE ≈ 1min
kM ≈ 5.1 min−1 kE ≈ 30 min−1 kT ≈ 3.2 × 104 min−1

7. Dynamic Influence of the Three Regulatory Mechanisms in
the trp Operon

Once we had the model, the next step was to analyze the dynamic influence of the three
different regulatory mechanisms. To test the effect of enzyme inhibition, the model was
modified to mimic a tryptophan operon in which enzyme inhibition is the only regulatory
system, as well as a trp operon lacking enzyme inhibition. Then, we simulated derepression
experiments, in which a bacterial culture that has grown for a long time in a medium rich in
tryptophan (to shut the trp operon off) is suddenly shifted to a tryptophan-free medium (so
the operon is reactivated).

After carrying out these simulations we observed that, when enzyme inhibition reg-
ulates Trp production by its own, the enzyme activity returns to its steady state almost
immediately [16]. Thus, this mechanism is quite efficient, from the viewpoint of control
theory, in maintaining a steady state. Apparently, the reason for this high controlling effi-
ciency is that when Trp concentration is high, tryptophan acts as a buffer which captures the
enzymes that catalyze Trp production, and these enzymes are rapidly released when the Trp
concentration decreases. On the other hand, in the simulations in which enzyme inhibition
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is absent, we observed that the operon produces enzymes at high rates, andthis results in
an overshoot of Trp production; approximately sixty times the production in normal condi-
tions [17]. In our interpretation, this overshot is due to the much longer characteristic times
of repression and attenuation. In conclusion, it seems that enzyme inhibition increases the
operon stability because, due its rapid response, it relieves the system from the necessity to
synthesize large amounts of polypeptide under conditions of tryptophan starvation.

It is known that regulation by transcription attenuation is exercised over the range from
mild to extreme tryptophan depletion, while repression regulates over the range from excess
tryptophan to mild Trp starvation. Thus, transcription attenuation increases the trp operon
sensitivity to changes that alter the need for endogenous tryptophan. To investigate whether
or not this system has any other dynamic effects, an operon reactivation simulation was
carried out with atrp operon lacking transcription attenuation. The results were then com-
pared with those of the normal operon. Our observations indicate that transcription attenu-
ation makes the system reactivate sooner. Thus, this mechanism accelerates the trp operon
response to nutritional shifts, by increasing its sensitivity range. In conclusion, enzyme
inhibition and transcription attenuation provide the trp operon with important dynamic ad-
vantages. Enzyme inhibition increases the system stability, and transcription attenuation
speeds up its response to nutritional shifts.

We further investigated the stability of the tryptophan operon model by means of the
second Lyapunov method to generalize the results described previously [17]. First, we
proved that the unique fixed point of the system is stable for a wide range of the parame-
ters that determine the intensity of transcription attenuation and enzyme inhibition. After-
wards, we proceeded to analyze the stability strength in thewild-type, inhibition-lessand
attenuation-lessbacterial strains. From this, we concluded, in agreement with the numeri-
cal results, that both regulatory mechanisms strengthen the system stability. Nevertheless,
while the lack of enzyme inhibition greatly weakens the stability of the system fixed-point,
the dynamic influence of transcription attenuation is much less important, since it speeds
up the operon response but only slightly. In conclusion, enzyme inhibition is very impor-
tant from a dynamic viewpoint. Conversely, the main effect of transcription attenuation
is increasing the trp-operon sensitivity range to nutritional shifts, whereas its effect on the
system stability is much weaker.

8. Comparison with Experimental Results and Model Improve-
ment

As we said in the previous section, ourtrp operon model allowed us to study the dynamic
influence of its three different regulatory mechanisms, and analyze them from an evolu-
tionary perspective. However, we still need to test the model feasibility, by comparing it
with reported experimental dynamic results, before we can be completely confident about
its predictions. In this respect, there are some experiments carried out by Yanofsky’s group
in which a bacterial culture that had grown for a long time in a medium rich in tryptophan
—to shut the trp operon off— was suddenly shifted to a tryptophan-free medium, and the
temporal evolution of the corresponding genes’ expression level was measured [18]. These
experiments will be referred to as derepression experiments. On the other hand, Bliss et al.
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[19] carried out derepression experiments with anE. coli mutant strain in which enzyme
inhibition is attenuated. They observed that the phase-space trajectories do not converge to
the steady state but oscillate in a limit cycle.

We simulated the derepression experiments of Yanofsky and Horn [18] and compare
them with the model results in Figure 4A). Notice that, according to our model, the operon
activity level should recover more slowly than it actually does. Moreover, we were also
unable to reproduce the oscillatory behaviour observed by Bliss et al. by modifying the
parameters corresponding to the enzyme inhibition regulatory function (to mimic their mu-
tant E. coli straint). At this point, we could have started to arbitrarily modify the model
parameters to fit the experimental results, but instead we decided to trust our estimations
and wondered whether some important aspect in the biology had been neglected.
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Figure 4. Plots of enzyme countvs. timeresulting from derepression experiments simulated
with the model introduced in [16] (A), with the same model but considering the time delays
due to transcription and translation (B), and the modified model that considers the existence
of three different operators, including the time delays (C).

Transcription and translation are not instantaneous processes. Compared with all the
other biochemical processes involved in thetrp operon regulatory pathways, they take long
times to occur. In a previous work [17] we estimated the time delays associated with tran-
scription (τM ' 1 s) and translation (τE < 1 min), but dismissed them apriori because of
their shortness. Here, we take them into consideration to explicitly test their effect on the
system dynamics. To do that, we have to modify the differential equations governing the
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dynamics ofM andE asfollows:

dM

dt
= kMDRR(TτM

)RA(TτM
) − γMM,

dE

dt
= kEMτE

− γEE,

wherethe notationXτ means that variableX is delayed a timeτ , i.e.Xτ (t) = X(t−τ). We
then numerically solved these modified equations with the aid of the programxppaut. The
results are plotted in Figure 4B, where we usedτE = 12 s. Notice how, by simply taking
into account such rather short time delays, there is a much better agreement between the
model predictions and the experimental results of Yanofsky and Horn. On the other hand,
despite this success, we were still unable to reproduce the oscillatory behaviour observed by
Bliss et al. [19] by modifying the parameters associated to the enzyme inhibition regulatory
function.

There is one further level of complexity in thetrp operon regulatory pathway that we
have not taken into account in our previous models. Namely the DNA regulatory region
upstream of genetrpE contains three different repressor binding sites, denoted as O1, O2,
and O3, and two repressors can cooperatively bind O1 and O2 [20]. This can be taken into
account by modifying the functionRR(T ) as follows (see the Appendix):

RR(T ) =

P
KP

(

1 + R2T

K1

R

) (

1 + R2T

K2

R

) (

1 + R2T

K3

R

)

+
R2

2T

K1

R
K2

R

(

1 + R2T

K3

R

)

(

kcop− 1
)

+ P
KP

,

where

R2T = R

(

T

T + KT

)2

is theamount of active repressor,Ki
R (i = 1, 2, 3) is the dissociation constant for theR2T -

Oi complex formation reaction, andkcop > 1 is a constant accounting for the cooperativity
between Operators O1 and O2. The parameters for this new repression function are also
estimated in the Appendix, and their values are as follows:

K1
R = 0.625 mpb, K2

R = 7.9 mpb, K3
R = 100.0 mpb,

KP = 2 mpb, kcop = 11.1125.

All the other parameters remain set at the values estimated in Table 2.
After modifying the model to take into account the existence of three operators and

the cooperativity observed between Operators O1 and O2, we simulated the derepression
experiments of Yanofsky and Horn [18] with a time delayτE = 6 s; the results are shown
in Figure 4C. Notice that, again, there is an excellent agreement between the model results
and the experimental data.

As mentioned above, Bliss et al. [19] carried out derepression experiments with an
E. coli mutant strain in which the enzyme anthranilate synthase cannot be inhibited by
tryptophan, and observed an oscillatory expression of thetrp operon genes. After modifying
the model to account for the time delays due to transcription and translation and the three



Systems Biology of the Tryptophan Operon 231

repressor binding sites, we were able to reproduce the oscillations observedby Bliss et al..
For this, we reset:

KI = 5 × 107 mpb.

The results of these new simulations are plotted in Figure 5. Although there is a good
qualitative agreement between the model simulations and the model results of Bliss et al.,
we obtained a longer oscillation period. We conclude from this that, most probably, there
are still some important aspects of repression which are not accounted for in the improved
model.
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Figure 5. Plots of mRNA (A), enzyme (B), and tryptophan (C) molecule count resulting
from derepression experiments simulated with the modified version of the model, which
takes into account the time delays due to transcription and translation and the existence of
three repressor binding sites.

9. Conclusions

We have reviewed out past efforts to understand the dynamic behaviour of thetrp operon
from a mathematical modelling approach. To develop the model we took into account the
three different known mechanisms in the operon regulatory pathway. Special attention was
paid to the estimation of the model parameters from reported experimental data. Among
other things, the model was used to analyze the influence of the three different regulatory
mechanisms (in thetrp operon) over the system dynamic behaviour. These studies suggest
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that the system has three redundant negative-feedback regulatory mechanismsto guarantee
a rapid response to variation on the growing medium. On the other hand, as seen in Figure
4A, the agreement of the model simulations with the experiments of Yanofsky and Horn
[18] is rather poor. Besides, it is impossible to reproduce the oscillatory behaviour observed
by Bliss et al. while carrying out derepression experiments with mutantE. coli strain in
which anthranilate synthase cannot be inhibited.

Given that our models take into account the chemical details of all the regulatory mech-
anisms, and that all the parameters were estimated from experimental results, we interprete
the consistent disagreement observed between the model results and the experiments of
Yanofsky and Horn as a deficiency in the model. Then, we looked in the literature and
found that there are indeed some important aspects which we did not consider. Namely
there are three repressor binding sites, two of which interact cooperatively, and the pro-
cesses of transcription and translation involve non-negligible time delays. Once the model
was modified accordingly, it could reproduce the experiment results of Yanofsky and Horn,
as well as the oscillatory data observed by Bliss et al..

An interesting conclusion, arising from the results discussed in the previous paragraph,
is that the time delays have a strong influence on the system transient behaviour, despite
their rather small value. In our opinion this is important because small time delays are
usually neglected by employing the argument that they do not have an important effect
on the dynamic system behaviour. If we were only interested on the system stationary
behaviour, we could indeed neglect short time delays because only the long ones can cause
bifurcations. However, if the transients are biologically meaningful (as in this case), no
time delay should be ignored, regardless its value.

Finally, these results and conclusions reveal, in our opinion, the importance of devel-
oping detailed models whenever the biological information is available. With them, it is
possible to gain a deeper insight into the system dynamics than with simpler phenomeno-
logical models.

A. Modelling the Three trp Operators

Repression Function

Up to three active repressors,R2T , and one polymerase,P , can bind to thetrp DNA regu-
latory region through the following reactions:

R2T + O
K1

R

� O1
R, R2T + O

K2
R

� O2
R, R2T + O

K3
R

� O3
R,

R2T + O1
R

K2
R/kcop

� O12
2R, R2T + O1

R

K3
R

� O13
2R, R2T + O2

R

K3
R

� O23
2R,

R2T + O12
2R

K3
R

� O123
3R . P + O

KP

� OP ,

These these are not all the possible chemical reactions. However, the equilibrium equa-
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tions arising from them, plus the conservation equation for thetrp DNA regulatory region,
form a complete system and therefore there is no need to consider more reactions. In the
above reactions,O, Oi

R, Oij
2R, O123

3R , andOP respectively denote the states in which all
operators are free, in which only Operator Oi is bound by an active repressor, in which
Operators Oi and Oj are both bound by active operators, in which all three operators are
repressor-bounded, and in which a polymerase is bound to the promoter. Furthermore,Ki

R

andKP are the dissociation constants for the Oi:R2T and promoter-polymerase complex
formation reactions, respectively. Finally,kcop > 1 denotes the cooperativity between Op-
erators O1 and O2.

The equilibrium equations for these reactions are:

R2T O = K1
RO1

R, R2T O = K2
RO2

R, R2T O = K3
RO3

R,

R2T O1
R = K2

RO12
2R/kcop, R2T O1

R = K3
RO13

2R, R2T O2
R = K3

RO23
2R,

R2T O12
2R = K3

RO123
3R .

From these equations, and the conservation equation for the total concentration of the
trp DNA regulatory region, we have:

O + O1
R + O2

R + O3
R + O12

2R + O13
2R + O23

2R + O123
3R + OP = OTot,

It then follows that:

RR(T ) =
OP

OTot

=

P
KP

(

1 + R2T

K1

R

) (

1 + R2T

K2

R

)(

1 + R2T

K3

R

)

+
R2

2T

K1

R
K2

R

(

1 + R2T

K3

R

)

(

kcop− 1
)

+ P
KP

.

ParameterEstimation

According to [20], an active repressor moleculeR2T can bind to three different operator
sites (O1, O2, and O3) all of which overlap thetrp promoter. Additionally, two repressors
bound to O1 and O2 interact in such a way that the corresponding binding energy is larger
than the sum of the binding energies of single repressors separately binding to O1 and
O2. Grillo et al. also report several measurements from which the following dissociation
constants can be estimated:

K1
R ' 0.625 mpb,

K2
R ' 7.9 mpb,

K3
R ' 100 mpb.

Ki
R denotes the dissociation constant for the reaction in which a repressor molecule binds

the operator Oi alone. Since Grillo et al. also measured the binding energy when Operators
O1 and O2 are simultaneously bound by repressor molecules, the following cooperativity
constant can also be estimated from their experiments:

kcop ' 11.13.
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Finally, we used the fact that the operon activity decreases60 times due to re-
pression when there is abundance of tryptophan in the growing medium [13] (that is,
R(0)/R(T ∗

max) ' 60) to estimate parameterKP :

KP ' 5, 000 mpb.

T ∗
max is the maximum steady-state intracellular concentration of tryptophan, and according

to Bliss et al. [19] it is
T ∗

max ' 20, 000 mpb.
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Abstract

In this chapter we consider the impacts of two factors, namely the form of the non-
linearity of the infectious disease transmission rate the and mortality associated with a
disease, on the dynamics of this infectious disease in a population. We consider a very
simple discrete-step compartment epidemiological models and a very general form of
the nonlinear transmission assuming that the transmission is governed by an arbitrary
function constrained by a few biologically feasible conditions. We show that when the
population size can be considered constant, these models exhibit asymptotically stable
steady states. Precisely, we demonstrate that the concavity of the disease transmission
function with respect to the number of infective individuals is a sufficient condition for
this stability: in this case the models have either an unique and stable endemic equilib-
rium state, or no endemic equilibrium state at all; in the latter case the infection-free
equilibrium state is stable.

We demonstrate that under some circumstances the mortality inflicted by the dis-
ease is able to destabilise endemic equilibrium state and can lead to a supercritical
Hopf bifurcation in the system. However, it appears that for the majority of human
infections the threshold for this bifurcation is too high to be realistic.
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1. Introduction

Numerous deterministic mathematical models for the spread of infectious diseases in a
population, where transmission of the infection is governed by the principle of mass action,
have asymptotically stable equilibria, and consequently the level of the infected population
exhibits damped oscillations toward an equilibrium level [1]. This stability of the equi-
librium state is in striking contradiction with the available clinical data on a number of
diseases, which demonstrate that if an infection persists in a population endemically then
it maintains self-sustained oscillations in the number of infected. These oscillations are of
almost constant period, and the magnitudes of the infectious level variations are generally
too high to suggest that they simply reflect stochastic perturbations [1, p. 44]. Moreover,
observed changes in disease incidence occur more regularly through time than can be ex-
pected on the basis of chance fluctuations alone.

A number of authors have suggested that a specifically chosen nonlinear disease trans-
mission function (or incidence rate) can lead to a system with an unstable endemic equilib-
rium state. There is a variety of reasons for nonlinear transmission to be used in modelling.
The first is that the principle of mass action is based on the underlying assumptions of
homogeneous mixing of the population and of homogeneous environment; either of these
assumptions may be invalid. In this case it is best to introduce the necessary population
structure and represent heterogeneous mixing directly using a specific form of the non-
linear incidence rate function. Incidence rates that increase more gradually than linear in
numbers of the infective and the susceptible individuals can also arise from saturation ef-
fects: if the number of infectives is very high, so that exposure to the disease agent is
virtually certain, the incidence rate may respond more slowly than linear to increase in the
number of infectives. This effect was encountered in clinical observations as well as in lab-
oratory experiments, e.g. see [5, 7]. Furthermore, the details of transmission of infectious
diseases are generally unknown, and may vary for different conditions; this observation
justifies the growing interest to the models with incidence rates of more general form.

Another phenomenon which appears to be able to affect the system behaviour is mor-
tality associated with the disease.

In this chapter we consider the impact of these two factors, namely non-linear disease
transmission and mortality caused by the disease, on the disease dynamics. We show that,
disregarding the reasons that can cause the non-linearity of the disease transmission and,
under the assumption that the population size is constant, any nonlinear disease transmis-
sion function satisfying certain biologically reasonable conditions leads to a system with an
asymptotically stable equilibrium. However, the mortality caused by the disease is generally
a destabilising factor reducing the system stability by decreasing the associated Lyapunov



Non-linear Disease Transmission Mortality 239

exponents. Under some circumstances it can even lead to a supercritical Hopfbifurcation
and thus may cause self-sustained oscillations in the number of infected. However, for the
majority of human infections (with perhaps such exceptions as AIDS) the threshold value
of the mortality for this bifurcation is too high to be biologically feasible.

In Section 2 we describe the basic discrete-generation model we use in this work. In
Section 3 we consider some examples of nonlinear transmission. In Section 4 we analyse
stability of equilibrium states of a general model with nonlinear transmission. The impact
of mortality associated with the disease is considered in Section 5, while in Section 6 we
estimate the threshold values of mortality for some of the specific models considered earlier
in Section 3. Finally, in Section 7 we make some additional observations.

2. Basic Discrete-Generation Model

To study the impacts of non-linear transmission and the mortality inflicted by the dis-
ease, we consider a very simple discrete-generation epidemiological model. This model
can be viewed as a special case of discrete-time models. Discrete-time models are not
new for mathematical epidemiology: difference equations have been used by Soper [23],
Bartlett [4], Hoppensteadt [12, 13, 14] and others.

Following the classical assumptions of mathematical epidemiology, we assume that
a population of sizeN is partitioned into a number of compartments. In this case we
assume that the population is composed from susceptiblesS, infectedI, and removed (or
recovered)R compartments, that isN = S + I + R. After infection an individual moves
from the class of susceptibles into the class of infected and then into the class of removed
as a result of recovery, death or isolation. Recovery implies life-long immunity, that is no
return from the removed compartment into the susceptibles compartment is possible; thus
we are considering aSIR model.

We will denote the number of individuals in a compartment in a generation by a capital
letter with a subindex, e.g.In, Sn+1 etc. Let us assume that an infected individual is
introduced into an entirely susceptible population, that is in the first generationI1 = 1
andS1 = N − 1. This infected individual infectsR0 individuals who form the second
generation of infected,I2 = R0I1. HereR0 is the basic reproduction number, that is,
the average number of secondary cases produced by a single infective introduced into an
entirely susceptible population. TheseI2 infected produce, in turn,I3 infected in the third
generation, etc.

We assume that the population size is constant, that during one generation there arebN
new births all of whom come into the susceptibles compartment, and that the probability
for a susceptible to die during a generation from natural causes isc. Then, if at thenth
generation there areSn susceptibles,In infected andRn recovered, and if theseIn infected
produceIn+1 infected of the(n + 1)th generation, we have for the susceptible population
the equation

Sn+1 = Sn + bN − In+1 − cSn. (2.1)

Theprinciple of mass actionassumes homogeneous mixing and takes into account that
an infective comes into contact with and might infectR0 individuals some of whom may be
already infected or recovered and therefore clinically unaffected by the contact. Then the
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Figure 1. Schematic representation of recovery. Here the curve A is typical observed data,
the curve B is for recovery of all infected after a definite period of time (a generation) and
the curve C is for continuous-rate recovery.

number of infective contacts in thenth generation is

En = R0
InSn

N
. (2.2)

Assumingthat the number of infectives in the(n + 1)th generation is equal to the number
of infective contacts, we obtain the equations

In+1 = R0In
Sn

N
(2.3)

for the infected population. The constant population size assumption allows us to omit the
third equation which describes dynamics of the removed populationR.

The main advantage of such a model compared with continuous-time models is its nat-
ural time scaling which leads to important consequences. Firstly, the model ensures that
all infected recover after a definite period of time. This implies a natural approximation of
the recovery process by a step function (Fig. 1, curve A, B), whereas for continuous-time
models, unless we use integro-differential equations or equations with a time delay, we are
to postulate that “continuous recovery” arises from the standard assumption that motion
from exposed to the infectious class and then to the recovery class occurs at constant rates
(Fig. 1, curve C). This last assumption, while mathematically convenient, is rarely realistic
and can lead to results contradicting observations (see, for example [15]). Secondly, since in
the discrete generation model we consider disease transmission not as a continuous process
but in terms of secondary cases produced by an infective for a generation, we do not have
any need for the time delay associated with the incubation or the latent state; neither do we
have need for an exposed class (as for aSEIR model) to incorporate the delay between the
event of infection and the moment when the infected host becomes actually infectious into
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the model. The third (but not the least important) advantage of this model is that it allows
natural interpretation of all model parameters and data obtained.

An apparent drawback of the generation model is that generations may overlap in time,
and the infected individuals of several generations coexist. Nevertheless, it is obvious that
the model preserves the dynamic properties of discrete-time or continuous time models.
The system (2.1), (2.3) may be considered as a discrete-time model with a time step equal
to a generation (implying by this term the average time interval which commences when a
susceptible host is exposed to an infective dose, includes the period during which the host
passes infection and ends when the host is fully recovered, isolated or dead).

3. Non-linear Transmission

A model based on the principle of mass action is deficient in some aspects. The main
deficiency is that according to the principle the probability for a susceptible individual to be
infected during a generation (the “infection probability”) is not limited and can be larger that
one (Fig. 2). This feature is completely unrealistic, and it leads to the unrealistic behaviour
of the system: when the numbers of infectives and susceptibles are large enough but still
biologically feasible, some phase trajectories leave the positive quadrant of theSI space
(that is the positive quadrant is not an invariant set of discrete-time or discrete-step models).

This unlimited growth of the infection probability occurs because by the principle of
mass action for a finite time interval a susceptible may receive an infective dose from more
than one infective and will be counted eventually as several infectives in the next generation.
We have to stress that this is not a consequence of the length discrete time step: it is easy
to see that for transmission governed by the bilinear form with any transmission rate there
are such values ofS andI which give the infection probability that is larger that 1. This
unlimited growth of the infection probability is a specific feature of discrete-time systems
exclusively, and that the bilinear incidence rate associated with the principle of mass action
is adequate for continuous-time models.

Furthermore, the principle of mass action assumes homogeneous mixing of the popu-
lation and homogeneous environment, which can be unrealistic in some cases. To avoid
these and other problems, other forms of transmission can be suggested. We now consider
a number of examples.

Example 3.1. Bartlett [4] assumed that infective contacts are distributed binomially, and,
instead of the infection probabilityR0In/N , given by the principle of mass action, he used
the expression

1 − (1 − R0/N)In .

This function reduces to the standard mass action form whenR0In/N is very small. This
infection probability leads to the equations

Sn+1 = bN + Sn

(

1 −
R0

N

)In

− cSn,

In+1 = Sn − Sn

(

1 −
R0

N

)In

.
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Figure 2. The probability for a susceptible to be infected during a generation fordifferent
transmission functions. Here (a) is the data for the principle of mass action; (b) and (c)
are for binomial and Poisson distributions of infective contacts (these curves practically
coincide); (d) to (h) are for negative binomial distribution withm = 0.1, 0.5, 1.0, 5.0, 10.0
respectively. All data forN = 106 andR0 = 10.

Example 3.2. Infectious contacts are rare events (compared with the population size), and
hence we can assume that the number of contacts is a Poisson variate. According to the
principle of mass action, the average number of infective contacts per susceptible (the ex-
pectation) is

µ = R0In/N.

If the infective contacts have a Poisson distribution, then the probability for a susceptible
to escape infection isexp(−µ), which leads us to the infection probability

1 − exp(−R0I/N),

and to the disease transmission functionS − S exp(−R0I/N). The corresponding system
is

Sn+1 = bN + Sn exp(−R0In/N) − cSn,

In+1 = Sn − Sn exp(−R0In/N).

A transmission function of this form was used by Cullenet al. [8] and Hoppensteadt [12,
13] (who did not mention that this transmission function is due to the Poisson distribution
of infectious contacts).

Example 3.3. To examine the impact of spatial heterogeneity due, for example, to de-
mographic, social or geographical factors, the negative binomial distribution of infective
contacts can be used. Specifically, the negative binomial distribution has been used to de-
scribe variation in the environment and diversity leading to a qualitative change in system
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behaviour [22, p. 94]. The stabilisation of the Nicholson-Bailey host-parasitoidsystem (see
Hassell [11] for details) is the classical example.

Let x be a random variable having a Poisson distributionµke−µ/k! (k = 0, 1, 2, . . .)
which is the probability that a susceptible hask infective contacts. Inhomogeneity, whether
due to social or geographical factors, can be captured ifµ > 0 is itself considered as a
random variable with probability density function

P (µ) =
αm

Γ(m)
µm−1e−αµ,

wherem, α > 0 are constant parameters. Then the probability thatx takes the valuek is

Q(k) =

∫

∞

0

µke−µ

k!
P (µ) dµ

=

∫

∞

0

µke−µ

k!

αm

Γ(m)
µm−1e−αµ dµ

=

(

α

1 + α

)m
(

−m
k

)

(−1)k

(1 + α)k
.

This is the negative binomial distribution with meanm/α and variancem(1 + α)/α2.
The parameterα can be eliminated by assuming that the mean is the average number of
infective contacts per susceptible, that is

m

α
=

R0In

N
.

Thenthe probability of a susceptible escaping infection is

Q(0) =

(

1 +
1

α

)

−m

=

(

1 +
R0In

mN

)

−m

,

which leads to the transmission function

S

[

1 −

(

1 +
R0I

Nm

)

−m
]

,

andto the model equations

Sn+1 = bN + Sn

(

1 +
R0I

mN

)

−m

− cS,

In+1 = Sn

[

1 −

(

1 +
R0I

mN

)

−m
]

.

Thetransmission function of this form was used by Cullenet al. [9].

Example 3.4. Cullen et al. [8] suggested to consider the susceptibles as a collection of
marbles in a bag, and each contact with an infective is equivalent to taking a marble out of
the bag and then replacing it in the bag. The total number of times a marble is withdrawn
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from the bag (the total number of trials) equals the total number of contacts betweeninfec-
tives and susceptibles during a generation and is assumed to be given by the mass action
principle (2.2). The probability that a particular marble is not withdrawn on any particular
trial is (S − 1)/S. Hence the probability that a particular marble is not withdrawn on any
of the trials during a generation is

(

S − 1

S

)R0
IS

N

,

andthe number of susceptibles (marbles) that remain uninfected at the end of the generation
is

S

(

S − 1

S

)R0
IS

N

.

This leads to the transmission function

S − S

(

S − 1

S

)k

, wherek = R0
IS

N
,

andto the system of difference equations

Sn+1 = bN + Sn

(

Sn − 1

Sn

)k

− cSn,

In+1 = Sn − Sn

(

Sn − 1

Sn

)k

.

Figure2 shows the probability for a susceptible to be infected during a generation as a
function ofI for different transmission functions. Note that the infection probability under
the principle of mass action grows linearly withI, and can be larger that one. We would like
to note that the binomial and Poisson distributions of infective contacts provide practically
indistinguishable infection probabilities.

4. Stability of a General Model with Nonlinear Transmission

If we assume that disease transmission is governed by an unspecified function of the general
form F (S, I, N), then

Sn+1 = Sn − F (Sn, In, N) + bN − cSn,

In+1 = F (Sn, In, N). (4.4)

To be a disease transmission function, the functionF (S, I, N) must satisfy the condi-
tions

F (S, I, N) > 0 for all S, I > 0 (4.5)

and
F (S, 0, N) = F (0, I, N) = 0. (4.6)

Also for all S, I, N > 0 the functionF (S, I, N) must satisfy the conditions

∂F

∂S
> 0,

∂F

∂I
> 0,

∂F

∂N
≤ 0. (4.7)
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Since the number of infectives in the(n+1)th generation can not exceed the number of
susceptibles in thenth generation, the functionF (S, I, N) must also satisfy the condition

In+1 = F (Sn, In, N) < Sn. (4.8)

Since the probability for a susceptible to be infected for a generation is less than one,
we must expect that the increase of the susceptible population by one person will lead to
the increase of the next generation infected population by less than one individual, that is
the condition

∂F (S, I, N)

∂S
< 1 (4.9)

holds.Note that the condition (4.8) follows from the condition (4.9).
Furthermore, for a finite time interval a susceptible may come into infective contact a

number of times and may be considered as a number of infectives in the next generation. To
avoid “multiple” infection of a susceptible, a transmission function must necessarily satisfy
the condition

∂2F (S, I, N)

∂I2
< 0, for all S, I, N > 0. (4.10)

Note that the mass action model (2.3) does not satisfy condition (4.10) and what is
more important, conditions (4.8) and (4.9) do not hold for this model. All examples of
transmission functions given in Section 3. satisfy conditions (4.5)–(4.9); condition (4.10)
holds for all these functions as well.

The basic reproduction numberR0 of the system may be defined as

R0(N) = lim
S→N,I→0

∂F (S, I, N)

∂I
.

It is easy to see that for all the above examples of transmission function this limit is
equal toR0 indeed. We also define the “effective reproduction number”

ρ = lim
S,I→Q0

∂F (S, I, N)

∂I
.

It is easy to see thatρ = R0 (andS0 = N ) whenc = b, and thatρ = b
c
R0 when

transmissiondepends linearly onS.

If c 6= 0, the system (4.4) has an infection-free equilibrium stateQ0 = (bN/c, 0). Apart
from this, the system can have endemic equilibrium states satisfying

I∗ = bN − cS∗, F (S∗, I∗, N) = I∗. (4.11)

Condition (4.8) implies thatS∗ ≥ bN ≥ I∗ (in fact, for most infectious diseases of
humansS∗ ≈ N/R0 � bN ).

Lemma 4.1. If ∂2F (S,I,N)
∂I2 ≤ 0 holdsfor all S, I, N > 0, then∂F (S∗,I∗,N)

∂I
≤ 1.
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Figure 3. Transmission functionF (S, I, N) as a function ofI (see text for details).

Proof. Assume that
∂F (S∗, I∗, N)

∂I
> 1. (4.12)

Then,by (4.6) and (4.11), and by the mean value theorem, there exists a point(S∗, I1),
I1 ∈ (0, I∗) such that

∂F (S∗, I1, N)

∂I
=

F (S∗, I∗, N) − F (S∗, 0, N)

I∗ − 0
= 1.

Applying the mean value theorem to the functiong(I) = ∂F (S∗,I,N)
∂I

, we get that,
if (4.12) holds, then there exists a point(S∗, I0), I0 ∈ (I1, I

∗) such that

∂2F (S∗, I0, N)

∂I2
=

∂F (S∗,I∗,N)
∂I

−
∂F (S∗,I1,N)

∂I

I∗ − I1
> 0.

This contradicts the hypothesis of this Lemma, and hence∂F (S∗,I∗,N)
∂I

≤ 1. Further-

more, under condition (4.10) the strict equality∂F (S∗,I∗,N)
∂I

= 1 holdsonly if ∂2F (S∗,I,N)
∂I2 =

0 for all I ∈ (0, I∗). Figure 3 shows a function with∂
2F (S,I,N)

∂I2 < 0 anda function with
∂2F (S,I,N)

∂I2 = 0.

Conditions (4.7) and (4.10) ensure that the endemic equilibrium state is unique.

Lemma 4.2. If
∂2F (S, I, N)

∂I2
≤ 0

holds for all S, I, N > 0, and ρ > 1, then, apart from the infection-free equilibrium
stateQ0, there exists an unique positive endemic equilibrium stateQ∗ satisfying equalities
(4.11). Ifρ ≤ 1 then the infection free equilibrium state is the only non-negative equilibrium
of the system.
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Proof. Let us consider the curves defined by the equalities (4.11) on theSI plane, denoting
them byh1 andh2 respectively (Fig. 4).

The first equality,I + cS = bN, defines a negatively-sloped straight lineh1. Existence
of the curveh2, defined by the equalityF (S, I, N) − I = 0, is ensured by the implicit

function theorem and by the condition
∂F (S, I)

∂S
> 0. For the slope of the curveh2 we

have

h′

2 =
dS∗

dI∗
=

1 − ∂F
∂I

∂F
∂S

.

Lemma4.1 holds for allS, I satisfying the equalityF (S, I, N)−I = 0, and hence the curve
h2 is positively sloped (or at least, non-negatively sloped). Therefore, ifS∗ = h2(0) <
S0 = bN/m = h1(0), then there is an unique point of intersection of the curvesh1 andh2.
Otherwise, that is ifS∗ > S0, the curvesh1 andh2 do not intersect.

The valueS∗ = h2(0) is either a minimal value ofS such that
∂F (S, 0)

∂I
= 1 holds,

or, if such a value does not exist (for example, if
∂F (S, 0)

∂I
is unlimited for all S > 0,

as in the case of an exponent),S∗ ≡ 0. By (4.6) and (4.7),
∂F (S, 0)

∂I
is anon-decreasing

function of S, and hence the condition
∂F (S0, 0)

∂I
> 1 is sufficient to ensure thatS∗ <

S0 = bN/c.

The following theorem is a straightforward consequence of Lemma 4.1.

Theorem 4.3. If ρ > 1 and
∂2F (S, I, N)

∂I2
≤ 0

for all S, I, N > 0, then the endemic equilibrium stateQ∗ of the system (4.4) is asymptoti-
cally stable. Ifρ ≤ 1, then the system has no positive equilibrium state, and the infection-
free equilibrium is asymptotically stable.
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Proof. The Jacobian of the system (4.4) is

J =

[

1 − c − ∂F
∂S

−∂F
∂I

∂F
∂S

∂F
∂I

]

.

Thecharacteristic equation of the Jacobian is

λ2 − a1λ + a2 = 0,

wherea2 = detJ = (1 − c)
∂F

∂I
anda1 = trJ =

∂F

∂I
+ 1 − c −

∂F

∂S
. Sincec is the prob-

ability for a susceptible to die during a generation,a2 > 0. Depending on the sign of
a1 = λ1 + λ2 > 0, there are three possibilities:

(i) both roots of the characteristic equation are complex conjugate;
(ii) both roots of the characteristic equation are real and positive (in this casea1 > 0);
(iii) both roots of the characteristic equation are real and negative (in this casea1 < 0).
By Lemma 4.1, at the endemic equilibrium stateQ∗ = (S∗, I∗), a2 < 1. Therefore,

if the roots are complex conjugate, then|λ| =
√

a2 ≤ 1 (where strict equality holds only

when c = 0 and ∂2F (S∗,I)
∂I2 = 0 for all I ∈ (0, I∗)), and hence the equilibrium state is

asymptotically stable in this case. If the roots are real and positive (a1 > 0 holds in this
case) then we note that atQ∗, by Lemma 4.1,a1 < 1 + a2, and hence

λ1 =
a1 +

√

a2
1 − 4a2

2
<

1 + a2 +
√

(1 + a2)2 − 4a2

2
= 1,

and

λ2 =
a1 −

√

a2
1 − 4a2

2
< λ1 < 1.

Therefore, the equilibrium stateQ∗ is asymptotically stable in this case. If the roots are
real and negative, thena1 < 0 holds, and we note that, by (4.9),

|a1| =

∣

∣

∣

∣

∂F

∂I
+ 1 − c −

∂F

∂S

∣

∣

∣

∣

< c < 1.

Hence,

|λ2| =

∣

∣

∣

∣

∣

∣

a1

2
−

√

a2
1 − 4a2

2

∣

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

a1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

√

a2
1

2

∣

∣

∣

∣

∣

∣

= |a1| < m < 1

and

|λ1| =

∣

∣

∣

∣

∣

∣

a1

2
+

√

a2
1 − 4a2

2

∣

∣

∣

∣

∣

∣

< |λ2| .

Hencethe equilibrium stateQ∗ is asymptotically stable in this case as well.
At the infection-free equilibriumQ0, a2 = (1 − c)ρ anda1 = ρ + 1 − c. For this equi-

librium statea2
1 − 4a2 = (ρ + c − 1)2, and henceλ1 = ρ andλ2 = 1 − c < 1. That is, the

infection free equilibriumQ0 is a stable node whenρ < 1, and a saddle point whenρ > 1.
This completes the proof.
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It is remarkable that stability of the equilibrium states is independent of how the trans-
missionrate depends on the number of susceptibles.

All examples of disease transmission functions given in Section 3. satisfy condi-
tions (4.5)–(4.10). Therefore, according to Theorem 4.3, all these transmission functions
lead to the systems having asymptotically stable endemic equilibria states. We now proceed
to analyse the impact of mortality caused by the disease on this disease dynamics.

5. Disease-Induced Mortality

The dynamics of a host-microparasite system depends on the size of the host population,
and that varies in time because, firstly, the host population varies as a consequence of or-
dinary demographic processes (growth or decline of a population), and secondly, a disease
itself may cause population size variations. For most human infections (with a very few
exceptions the most notorious of which is HIV) the demographic processes are slow com-
pared with epidemic processes. That is, in other words, the characteristic time scale of the
demographic process is considerably longer than that for the epidemic process. Therefore
a system combining both demographic and epidemic processes is a “slow-fast” (or “singu-
larly perturbed”) system, where the demographic process is “slow” whereas the epidemic
process is “fast”. A traditional approach to such a system is to consider in the first instance
the so-called “frozen” system, that is a system where the slow process is neglected, and the
corresponding slow-varying variables (the population size in this case) are postulated con-
stant. For epidemic models this leads to the traditional constant population size assumption.

However, while for the demographic processes the constant population size assumption
is a well posed and sound assumption, it is questionable for the population variation caused
by the disease: in this case variations in the population size, however small they are, co-
incide in their occurrence with disease outbreak, and hence their characteristic time-scales
coincide. For this reason the variation of the population caused by the disease cannot be
omitted so easily as the “slow” demographic variations.

While the influence of “slow” demographic variation of the population size has been
considered by a number of authors, the impact of the disease-induced variations of the pop-
ulation size on the disease dynamics has so far not been studied systematically. Here we
attempt to investigate the impact of the mortality caused by a disease on the disease dy-
namics, and we come to the conclusion that under some circumstances this mortality, even
if small, may affect the system by destabilising an otherwise stable endemic equilibrium
state.

The direct consequence of disease-induced mortality is a reduction of the population
size, which can affect behaviour of the system in two different ways. Firstly, disease-
induced deaths directly decrease the birth of new susceptibles which is usually assumed to
be proportional to the population size (we call this Effect A). Secondly, the probability for
a susceptible to come into an infective contact and to be infected is inversely proportional
to the population size, and hence decreasing the population size can effectively increase the
disease transmission (we call this Effect B).

N.T.J. Bailey was probably the first scientist who made an attempt to consider the im-
pact of disease-induced mortality on disease dynamics and come to the conclusion that it
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may affect the system stability [3, p. 142]. He considered aSIR model for a disease as-
sumed to be lethal to all those contracting it and sufficiently virulent to suppress any live
births amongst circulating infectives. Thus all removals are in fact deaths, and make no
further contribution to the life of the community, and all new susceptible births therefore
arise solely from the susceptible group itself, i.e. reproduction of new susceptibles in this
case is proportional to the number of susceptiblesS only. Under these assumptions the
SIR model equations are [3, p. 142]

Ṡ = γS − βSI, İ = βSI − σI, (5.13)

whereI andS are numbers of infected and susceptibles respectively,β is incidence rate,
γ is host reproduction rate andσ is rate of removals. The system (5.13) is the Lotka-
Volterra prey-predator system where the “prey” are the susceptibles and the “predators” are
the infected. This system is known to be neutrally stable and structurally unstable. The
phase trajectories of the system (5.13) are an one-parameter family of closed curves given
by its first integral

V (S, I) = S − S∗ lnS + I − I∗ ln I,

whereS∗ = σ/β, I∗ = γ/β are the equilibrium levels of the susceptibles and the infected
respectively [10, 22].

Bailey’s analysis is not complete: of the two effects mentioned above he considered
only Effect A and disregarded dependence of the incidence rate on the population size.
That is. However even this incomplete analysis indicates that the mortality associated with
the disease may affect the system stability: for a lethal disease Effect A alone is able to put
the system on the edge of stability.

It may appear at first that incorporating the disease-induced mortality into an epidemic
model does not greatly affect its analysis. However, with the constant population size as-
sumption we can reduce the system dimension by one, so if this assumption is omitted then
we must consider the full system whose dimension is equal to the number of compartments.
This leads to unexpected complications. Firstly, such a system may either have no non-zero
equilibrium states at all, or have a continuum of these. Secondly, as we have mentioned
already the natural growth or decline of the population is a slow process compared with the
epidemic processes, and hence they should be considered separately.

Here we apply an approach adopted from perturbation theory. Let us assume that as a
consequence of the disease a portion of infectivesδ in thenth generation dies (that is0 ≤

δ ≤ 1 is a mortality expectation). We assume that in absence of the disease the population
is static or varies slowly enough to justify the constant population size assumption. Then
the population size in thenth generation is

Nn+1 = Nn − δIn = N0 − δ
n
∑

i=0

Ii. (5.14)

We further assume that the magnitudes of the variations of the population size caused
by the disease are small compared with the population size itself. This may be due to a
comparatively low number of cases or a low value of the mortality expectationδ. Then we
can assume that

Nn = N = const, (5.15)
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while at the same time, according to equation (5.14),

∂Nn

∂In
= −δ,

∂Nn

∂Sn
= 0. (5.16)

We have to stress that the assumptions (5.15) and (5.16) are independent assumptions.
As a result of the incorporation of disease-induced mortality given by equations (5.14)–

(5.16) into the system (2.3), the system behaviour can change remarkably: a supercritical
Hopf bifurcation may occur in the system, the stable equilibrium can reverse its stability
and a stable limit cycle can arise. The approach used here is intuitively straightforward, but
it may appear to be not rigorous enough. The justification of this approach is given in the
Appendix.

Remark5.1. In discrete-time systems the appearance of a closed invariant curve surround-
ing a fixed point while a pair of complex multipliers crosses the unit circle is sometimes
referred to as aNeimark-Sacker bifurcation, rather than Hopf bifurcation; the latter term is
reserved for a similar bifurcation in continuous-time systems [18, ch. 4]. However, here we
prefer to use the term Hopf bifurcation as it is more familiar to the majority of readers.

Theorem 5.2. There is a critical valueδcr ≥ 0 such that the endemic equilibrium stateQ∗

of the system (2.3) with disease-associated mortality defined by the equations (5.14)–(5.16)
is asymptotically stable for all0 ≤ δ < δcr and unstable for allδ > δcr.

Proof. According to (5.14),N depends onI, and hence, by (5.16),

dF

dI
=

∂F

∂I
+

∂F

∂N

∂N

∂I
=

∂F

∂I
− δ

∂F

∂N
.

TheJacobian of the system (4.4) is now

J =

[

1 − c − ∂F
∂S

−δb − ∂F
∂I

+ δ ∂F
∂N

∂F
∂S

∂F
∂I

− δ ∂F
∂N

]

. (5.17)

Herethe term−δ ∂F
∂N

is dueto Effect B; the term−δb reflects the contribution of Ef-
fect A. The characteristic equation is

λ2 − a1λ + a2 = 0,

where

a2 = detJ = (1 − c)
∂F

∂I
+ δ

(

b
∂F

∂S
− (1 − c)

∂F

∂N

)

and

a1 = trJ =
∂F

∂I
− δ

∂F

∂N
+ 1 − c −

∂F

∂S
.

Thecharacteristic multipliersλ1, λ2 are complex conjugate ifD = a2
1−4a2 < 0 holds.

The fixed pointQ∗ reverses its stability when the pair of complex conjugate multipliersλ, λ̄
crosses the unit circle in the complex plane, i.e. when|λ| = 1. This condition holds when
a2 = 1, that is at

δcr =
1 − (1 − c)∂F

∂I

b∂F
∂S

− (1 − c) ∂F
∂N

. (5.18)
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At δ = δcr, a2 = 1, and hence

∂F

∂I
− δ

∂F

∂N
= c

∂F

∂I
− δ

(

b
∂F

∂S
+ c

∂F

∂N

)

and

D(δcr) = a2
1 − 4a2 =

(

1 − c

(

1 −
∂F

∂I

)

− δc
∂F

∂N
− (1 + δb)

∂F

∂S

)2

− 4.

Therefore,D < 0 (and hence the multipliersλ1, λ2 are complex conjugate) if
∣

∣

∣

∣

δc
∂F

∂N

∣

∣

∣

∣

< 1 + (1 + δb)
∂F

∂S
(5.19)

holdsat Q∗. This condition holds for all realistic models, sinceδ, c < 1 and ∂F
∂N

< ∂F
∂S

for
all biologically feasibleS, I andN , includingQ∗. It is easy to see that this condition holds
for all models given in Section 3..

Furthermore,
∂F

∂N
≤ 0 ensures

∂a2

∂δ
> 0, andhence the absolute value of the character-

istic multipliers grows withδ. That is the bifurcation is supercritical (the fixed point loses
its stability asδ grows).

This completes the proof.

Theorem 5.2 states only that asδ increases,the stability of the fixed pointQ∗ of the
system reverses. However, this theorem does not provide a necessary condition for a su-
percritical Hopf bifurcation, i.e. for existence of a stable limit cycle in the phase space of
the system forδ > δcr. For the Hopf bifurcation to occur in the system (and for the limit
cycle to appear) an additional condition, namely that atδ = δcr the fixed point is a weak
attractor [18, 19, p. 23], is necessary. In practice, this condition holds for robust systems [2,
p. 93]. However, pathological cases, such that atδ = δcr the fixed point is neutrally stable,
are possible. Andronov’s theorem [2, p. 93] states that for any structurally unstable sys-
tem there are “close” structurally stable systems such that a supercritical Hopf bifurcation
occurs at the same, or a close value of the bifurcation parameter.

While δ grows further beyondδcr, one more bifurcation of the fixed pointQ∗ can occur:
an unstable focus can bifurcate into an unstable node.

6. Stability and Bifurcation of the Specific Models

Though Theorem 5.2 ensures that the positive valueδcr exists for all disease transmission
functionsF (S, I, N) satisfying conditions (4.7)–(4.11), onlyδ ≤ 1 is biologically realistic.
For human populationsb, c � 1, and the divisor in the equation (5.18), namely

b
∂F (S∗, I∗)

∂S
− (1 − c)

∂F (S∗, I∗)

∂N
,

is a very small value. For instance, for the mass action model,S∗ = N/R0, I∗ =
(R0b − c)N/R0, and

∂F (S∗, I∗)

∂I
= 1,

∂F (S∗, I∗)

∂S
= R0b − c,

∂F (S∗, I∗)

∂N
= −

R0b − c

R0
.
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Hence the divisor is

b(R0b − c) + (1 − c)
R0b − c

R0
= b + R0b

2 − 2bc −
c

R0
+

c2

R0
≈ b.

It can differ for other models, however it is easy to see that it is of the same order for all
disease transmission functions mentioned in Section 3., and we may expect that it will be
of the same order for all realistic disease transmission functions. Therefore,δcr ≤ 1 holds
only for transmission functionsF (S, I, N) such that1 − (1 − c)∂F (S∗,I∗)

∂I
is of the same

order as the denominator. Generally,δcr grows with the difference.
For the mass action model

a2 = (1 − c) + δ
1

R0
(R0b − c) (R0b + 1 − c) ,

and

δcr =
R0c

(R0b − c)2 + (R0b − c)
.

It is easy to see thatδcr depends on two constants,A1 = R0c andA2 = R0b − c, and
is independent of the population sizeN. Furthermore,δcr grows asc grows, andδcr = 0
whenc = 0. However, since we may expect thatc does not exceedb, δcr < 1.

It is easy to see that for any modelδcr grows monotonically withc, and henceδcr is
minimal whenc = 0. In the casec = 0, for the model with Poisson distribution of infective
contacts

I∗ = bN, S∗ =
bN

1 − exp(−R0b)
,

and the disease transmission function satisfies

∂F (S∗, I∗)

∂I
= R0b

exp(−R0b)

1 − exp(−R0b)
,

∂F (S∗, I∗)

∂S
= 1 − exp(−R0b),

∂F (S∗, I∗)

∂N
= −R0b

2 exp(−R0b)

1 − exp(−R0b)
.

(Note that the condition (5.19) that the multipliers are complex conjugate holds for this
model.) Denotingσ = δb, σcr = δcrb andε = R0b, we obtain

a2 = ε(1 + σ)
exp(−ε)

1 − exp(−ε)
+ σ(1 − exp(−ε))

and

σcr =
1 − (1 + ε) exp(−ε)

(1 − exp(−ε))2 + ε exp(−ε)
.

In the casec = 0, a2 and consequentlyδcr depend on the parametersb andR0 only
and this makes further calculations comparatively simple. The functionσcr(ε) satisfies
limε→0 σcr = 0 and limε→∞ σcr = 1, and increases monotonically on the positive semi-
axesε > 0 ensuring that there is aσcr ∈ (0, 1) for all ε > 0 (Fig. 5).
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Figure 5.σcr versusε for c = 0 for Poisson distribution of infective contacts.

However, since for the majority of human infectionsb � 1, only very small values of
σ andε are of the interest. In the vicinity of zero the estimation

1

2
ε −

1

3
ε2 < σcr <

1

2
ε

holds.Consequently, for small values ofε, δcr is of the same order asR0 which is too large
a value for the typical mortality expectationδ. In fact, recalling thatR0 ∼ 10, we come
to the condition that, in the case of the Poisson distribution of infective contacts,b ∼ 10−1

should hold in order to ensureδcr ≤ 1. Such values ofb are too high for the majority of
human infections. Forc > 0, δcr is even higher.

6.1. Negative Binomial Distribution

In the case of the negative binomial distribution of infective contacts forc = 0,

I∗ = bN, S∗ =
bN

1 − (1 + R0b/m)−m
,

and the transmission function satisfies

∂F (S∗, I∗)

∂I
= R0b

(

1 +
R0b

m

)

−(m+1)
/(

1 −

(

1 +
R0b

m

)

−m
)

,

∂F (S∗, I∗)

∂S
= 1 −

(

1 +
R0b

m

)

−m

,

∂F (S∗, I∗)

∂N
= −R0b

S∗

N

(

1 +
R0b

m

)

−(m+1)

= −R0b
2 (1 + R0b/m)−(m+1)

1 − (1 + R0b/m)−m
.
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Hence, usingε, σ notation,

a2 = ε(1 + σ)
(1 + ε/m)−(m+1)

1 − (1 + ε/m)−m
+ σ

(

1 − (1 + ε/m)−m
)

and

σcr =
1 − (1 + ε/m)−m − ε(1 + ε/m)−(m+1)

(1 − (1 + ε/m)−m)2 + ε(1 + ε/m)−(m+1)
.

Again as for the Poisson distribution both the parametersa2 and δcr depend on the
constantsb andR0 only which makes further calculations comparatively simple. As in
the case of the Poisson distribution, the functionσcr(ε) satisfieslimε→0 σcr = 0 and
limε→∞ σcr = 1. (In contrast with the Poisson distribution the functionσcr(ε) does not
grow monotonically reaching a maximum on the axesε ∈ (0,∞).) In the vicinity of zero
for the functionσcr(ε) the inequalities

1
2m(m + 1)ε − 1

3(m + 1)(m + 2)ε2

m2
< σcr <

1

2

m + 1

m
ε

hold. Therefore for smallε values in the case of the negative binomial distribution the value
of δcr is even higher than for the Poisson distribution, approaching the latter asm → ∞.

7. Discussion and Conclusion

In this paper we assume that a disease transmission functionF (S, I, N) satisfies the condi-
tion

∂2F (S, I, N)

∂I2
≤ 0.

This condition ensures uniqueness and stability of the endemic equilibrium state of the
models considered. We should stress that this result is valid for autonomous models with
the assumption of constant population size.

It also follows from this result that to have an unstable equilibrium the transmission
functionF (S, I, N) must necessarily be a convex function with respect to the variableI at
least at some points. This leads us to the question whether a transmission function convex
with respect to the variableI is biologically feasible. In the case of continuous-time models
convexity of the incidence rate may be associated with some form of cooperation or com-
munity effect [16]. However for discrete-time models the situation is completely different:
for such models to avoid a multiple infection and to have realistic limited infection prob-
ability (see Section 3.) a disease transmission function must necessarily be concave with
respect toI (that is satisfy (4.10)). The same result, a concave disease transmission func-
tion, can be obtained by the introduction of a non-homogeneous population structure; for
example, the negative binomial distribution is associated with a distinctively concave trans-
mission function. It is remarkable that the properties of the steady-states are completely
independent of how the transmission rate depends on the number of susceptibles.

We would like to note that the same result, that is stability of the endemic equilibrium
states of models with incidence rates concave with respect toI, holds for continuous-time
models as well [16].
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In the case of the system (4.4), disease-induced mortality affects the system stability
in two ways: through decrease of the total births due to the reduction of population size
(Effect A) and through intensification of disease transmission due to the rise of the infective
contact probability (Effect B). Though much more sophisticated models — continuous-time
or discrete-time — can be considered, Effects A and B remain the most important factors
for the system dynamics.

In the case of the system (4.4), by equation (5.18) the contributions of these two effects
toward instability areδb∂F (S∗,I∗)

∂S
and−δ(1− c)∂F (S∗,I∗)

∂N
(rememberthat ∂F

∂N
< 0) respec-

tively. For example, in the case of mass action (2.3) Effect A (birth rate decline) contributes
δb(R0b−c) toward instability, and Effect B (increase of infective contacts probability) adds
δ(1−c)(b−c/R0). For other possible disease transmission functions, such as those given in
Section 3., the values of the partial derivatives∂F (S∗,I∗)

∂S
and∂F (S∗,I∗)

∂N
candiffer from those

for mass action, however they are of the same order (at least for the transmission functions
given in Section 3.), and hence we can expect that the contribution of these Effects will be
of the same order as well.

For human communities the birth ratiob is fairly small: humans reproduce with rate
about 2–3% of a population size per annum while for the majority of infections there are
tens of generations per year; that isb ∼ 10−3. Though for endemically persistent diseases
the basic reproduction numberR0 > 1 always, it never reaches or exceeds 100. Con-
sequently, for the majority of human diseasesR0b ∼ 10−2 andR0b � 1; therefore for
human communities and for the mass action model (2.3), of the two factors, Effect B (in-
crease of the disease transmission) prevails. For the majority of domestic and wild animals
the host reproduction numberb is considerably higher than that for humans and can reach
(for rodents) values of order10−1. Furthermore, for many social animals the disease re-
production numberR0 can be higher than that for humans. Then the impact of Effects A
and B can be comparable, or even Effect A can prevail. Whether each of these two effects
manifests itself in a specific case depends on the infection in question.

The analysis of specific models shows that for the Poisson distribution and negative
binomial distributionδcr tends to be larger than one, whereas for mass actionδcr ∼ c/b. As
we already have mentioned, for animals a value of the divisor

b
∂F (S∗, I∗)

∂S
− (1 − c)

∂F (S∗, I∗)

∂N

is considerablyhigher than for humans, and since the probability of death due to a disease
for animals is higher than that for humans, disease-induced mortality would more often lead
to self-sustained oscillations in animal populations.

Bubonic plague is an example of infection when mortality can affect the system sta-
bility. Bubonic plague is in a fact a rat disease. Humans contact it as a consequence of
disease outbreak in rat communities. For rats the host reproduction rateb as well as the
basic reproduction numberR0 are much higher than for humans. Since the mortality ratioδ
for bubonic plague is high (tends to 1.0), we can expect that high magnitude self-sustained
oscillations caused by disease-induced mortality can occur in an infected rat community.

It is noteworthy that the characteristic multipliers of the system decrease and the critical
valueδcr grows as the susceptible mortality ratec increases. This can explain an observed
phenomenon that, in spite of the difference in the quality of public health systems, in the
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prevaccination era the magnitudes of measles epidemics in England and Wales werehigher
than in India and Bangladesh.

The approach applied in this paper can be used for more sophisticated discrete-time and
continuous-time models. Though for specific models critical values of death expectation
can differ, the qualitative result will be the same, namely that disease-induced mortality is
a destabilising factor.

Appendix

We are interested in the stability of the system

Sn+1 = Sn − F (Sn, In, Nn) + bNn − cSn,

In+1 = F (Sn, In, Nn),

Nn+1 = Nn − δIn = N0 − δ
n
∑

i=0

Ii.

It is easy to see that for an endemically persistent infection (that is forI > 0) this system
has no fixed points for allδ 6= 0. However, we may consider the stability of the phase
orbit initiated at the point(S∗, I∗, N0), whereS∗ andI∗ are the coordinate of the endemic
equilibrium stateQ∗ of the system withδ = 0 (we will denote this orbit byγ0).

It is obvious that forδ 6= 0 the population sizeN monotonically decreases, and we
are interested whether the phase orbits initiated near the point(S∗, I∗, N0) will approach
the orbitγ0. Therefore, instead of stability of the three-dimensional system, we consider a
projection of the system to theSI plane. The behaviour of such a projection is governed by
the equations

Sn+1 = Sn − F

(

Sn, In, N0 − δ
n
∑

i=0

Ii

)

+ b

(

N0 − δ
n
∑

i=0

Ii

)

− cSn,

In+1 = F

(

Sn, In, N0 − δ
n
∑

i=0

Ii

)

.

In is easy to see that these equations do not depend onN. Linearising this system in the
vicinity of the orbitγ0, we obtain the Jacobian (5.17) and Theorem 5.2.
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Abstract

Human and animal locomotion represent a highly complex control problem. Inter-
nal and external disturbances increase these difficulties to maintain or achieve stability
in static and dynamic situations. Two kinds of stability can be distinguished: on the
one hand the stability is achieved by reflexes and control with neural feedback, and on
the other hand stability is based on mechanical properties and the geometrical config-
uration of muscles and tendons within the musculoskeletal system. The present article
is mainly interested in the latter one, which is called selfstability. Biological systems
adapt the pure mechanical properties of muscles and passive structures to support sta-
bility and to cope with disturbances. In the following, we mainly restrict ourselves
to one joint with a pair of antagonistic muscles; in particular, we will focus on the
human elbow joint. We describe the most important mechanical properties of muscles
and summarize them in a model of a general joint with antagonistic muscles. This
model is a system of ordinary differential equations for the joint angle and its angular
velocity.

If the antagonistic muscles are activated in a certain relation, then the joint is in
an equilibrium state. The definition of stability in the mathematical sense is given
using the framework of dynamical systems. The eigenvalues of the linearization at
the equilibrium give a detailed characterization of solutions near the equilibrium: real
and complex eigenvalues lead to qualitatively different behavior of solutions, and the
absolute value of their real part tells us how fast the equilibrium state is approached
after a small perturbation.

Can we quantify the stability of an equilibrium point? We would surely assume
the equilibrium point to be the “more stable” the larger its basin of attraction is. The
basin of attraction consists of all perturbations which are led back to the equilibrium.
Is an equilibrium also the “more stable” the faster small perturbations are corrected?
The mathematical analysis will show that the answer depends on the situation.

∗E-mail address: p.a.giesl@sussex.ac.uk. (Corresponding author.)
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Besides an overview over the problems and results of mathematicalstability anal-
yses in biomechanics, we apply the theory to a specific situation. More precisely, we
consider a waiter holding a glass of water. The task is not to spill the water in the
glass under perturbations. The question is, whether less water is spilled by a high or a
low co-activation of the elbow muscles. The mathematical analysis will show that the
answer depends on the position of the upper arm.

1. Introduction

Considering the large degree of freedom as well as the complexity of our locomotion system
it seems to be hopeless for engineers to control bipedal walking machines. Internal and
external disturbances increase these difficulties. One strategy to cope with disturbances
is to change behavior, i.e. to change the motor program. But thinking about jogging on
some uneven terrain one might imagine the enormous dataflow and the high demands on
the accuracy which are necessary to cope with all variations via the central nervous system.

Therefore it seems to be advantageous to use an “intelligent” mechanical system which
unburdens the central nervous system [2]. The mechanical system itself should be stable
with respect to small perturbations, e.g. the mechanical arrangement of the three segments
of legs supports the global stability of locomotion [15]. Human locomotion is based on
muscular contractions. From this viewpoint, muscles are reduced to simple force genera-
tors. Within the last few years, however, several studies have shown that the musculoskeletal
system acts not only as a simple force generator but as a controller which selfstabilizes the
locomotion, cf. [19], [17], [4], [18], [22], [5], [13], [14], [23], [1] and [24].

First indications that the properties of muscles may stabilize an envisioned movement
were achieved from simulation studies, cf. [21] and [3]. Here, the reactions of the system
following a perturbation were more stable if physiological muscles were included in the
model compared to simple moment driven models.

Several different models exist to describe the force production of musculoskeletal sys-
tems. They range from very simple models describing the muscles as springs up to highly
complex models, cf. [9], [26], [11], or three-dimensional models based on finite elements
theory FEM, cf. [20], [10], [12]. Therefore a model to describe an envisioned situation must
be adapted properly to the situation.

To discuss stability in a mathematical sense we use the framework of dynamical sys-
tems and apply it to biological musculoskeletal systems. To investigate the selfstabilizing
properties of single muscle contractions, quick-release contractions can be used as a simple
perturbation test [16]. Here, a muscle contracts isometrically when suddenly the external
load is released and the muscle contracts. From experiments and simulations we found that
the muscle tends toward a new asymptotically stable equilibrium; the muscle properties
provide a selfstabilized system because stability was achieved in experiments and in the
model without neural feedback. As a next step, it is necessary to analyze the interaction
between muscle properties and the geometry of a joint.

In this article, we are interested in the stabilizing properties of muscles and the skeleton
in general. Therefore, we consider the most important components of muscle force produc-
tion, i.e. force length relationfl, force velocity relationH and the geometry of the jointh.
The activationE(t) = E of each muscle is assumed to remain constant for this article. We



Mathematical Stability Analysis in Biomechanical Applications 263

study a general joint with one extensor and one flexor muscle, in particular weconsider the
human elbow joint. For a detailed description of the model and the dependency on a weight
in the hand as a model for acrobatics cf. [6].

In this setting we give the mathematical definition of stability of an equilibrium point.
By the mathematical tool of linearization around the equilibrium one can decide whether
the equilibrium is stable. The eigenvalues of the linearization around the equilibrium will
provide this information. Moreover, they give a more detailed characterization of solutions
near the equilibrium: real and complex eigenvalues lead to qualitatively different behavior
of solutions [25], and the absolute value of their real part tells us how fast the equilibrium
state is approached after a small perturbation. The linearization, however, will not provide
information about the basin of attraction consisting of all initial conditions of perturbation
which will tend to the equilibrium point, since it can only give local information near the
equilibrium. The basin of attraction of an equilibrium can be analyzed using a Lyapunov
function [8] or with other methods [7].

As an interesting application we show that the optimal stability strategy may depend on
the circumstances. As a simple example we consider a waiter with a glass filled with water.
The task is not to spill the water in the glass under perturbations, and we ask for the optimal
strategy of the waiter. One may think, that a high co-activation of the elbow muscles result-
ing in a stiff characteristic of the elbow joint is the best strategy to cope with perturbations.
The mathematical analysis, however, will show that the answer depends on the position of
the upper arm. In some situations a low co-activation of the elbow muscles minimizes the
amount of spilled water. This simple example shows that the mathematical analysis of the
stability in biomechanics is not only an important and interesting interdisciplinary subject,
but also provides unexpected insights into the biomechanics of movements.

2. Model

We present a model for a general joint connecting two bones, in particular, we will consider
the elbow joint. The model will be sketched here, for more details cf. [6]. The upper arm is
assumed to be fixed, e.g. by other muscles, whereas the lower arm is assumed to be a solid
rod of uniform density which can only move in a fixed plane. We will later consider the two
cases of a plane parallel or orthogonal to the ground level, cf. Figure 1. Then the position of
the system is totally described by the angle between upper and lower arm, which we denote
by x, and its angular velocityv = ẋ. We obtain the following equation of motion:

{

ẋ = v

v̇ = 1
J
T̃ (x, v) =: T (x, v)

(1)

whereJ = 1
3ml2 denotesthe moment of inertia,m denotes the mass of the upper arm, and

l is the length of the upper arm.
We assume that the joint has two antagonistic muscles (which may summarize groups of

muscles), namely the extensor muscle extending the angle and the flexor muscle decreasing
the angle. In the case of the elbow joint, the most important muscles are the extensor muscle
triceps brachii and the flexor muscles biceps and brachioradialis. The torque

T̃ (x, v) = T̃grav(x) + T̃e(x, v) + T̃f (x, v) (2)
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X
X

A B

Figure 1. The task of a waiter is not to spill the water in the glass while walking. A. The
movement is restricted to the horizontal plane. B. The arm movement is restricted to the
sagittal plane. In both cases the flexion anglex describes the position of the arm.

consists of three parts corresponding to the gravitational force and to the forces generated
by the extensor and the flexor muscles.

While the torque corresponding to the gravitational force depends on the position of the
plane within which the upper arm is allowed to move, the torque for the flexor muscle is
given byT̃f (x, v) = Af · flf (x) · Hf (hf (x)v) · hf (x), and similarily for the torque of the
extensor musclẽTe. Here,fl denotes the dependency of the muscle on its length,H denotes
the Hill-function modelling the dependency of the muscle on its velocityhf (x)v, andh

denotes the effective moment arm, reflecting the geometry of the joint. The productfl(x) ·
H(h(x)v) · h(x) represents the maximal torque which can be generated, andA ∈ [0, 1]
denotes the activation level of the muscle which is assumed to be constant. For the explicit
formulas of the force-length functionfl, the Hill-functionH and the effective moment arm
h cf. [6].

3. Stability

In this section we analyze the conditions for stability as given in [23]. For a general system
of differential equations as (1), the theory of dynamical systems defines an equilibrium point
to be a solution which is constant in time. An equivalent condition for an equilibrium point
(x0, v0) is that it is a zero of the right-hand side, i.e. in our casev0 = 0 andT (x0, 0) = 0.
This corresponds to a situation, where the torques sum up to zero. In view of (2), this is
equivalent to a certain dependency of the activationAe on Af cf. (3) or, alternatively, the
other way round.

Ae(Af ) = − T̃grav(x0)

fle(x0)He(0)he(x0)
−

flf (x0)Hf (0)hf (x0)

fle(x0)He(0)he(x0)
· Af (3)

The concept of stability describes the behavior of solutions of the differential equation
with initial conditions near the equilibrium. If the equilibrium is asymptotically stable,
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then these solutions tend towards the equilibrium as time tends to infinity, and they stay
nearthe equilibrium. This behavior corresponds to perturbations of the equilibrium which
are corrected by the system, and thus describes a selfstable situation. If the equilibrium is
unstable, then there are perturbations which lead away from the equilibrium. Hence, this
would force the human to change the muscle activations in order to keep the equilibrium
position.

Mathematically the stability of an equilibrium can be analyzed using the linearized
system at the equilibrium or in other words the Jacobian matrix of first derivatives of the
right hand side of the differential equation. The eigenvalues of this matrix give us the
following information about the stability of the equilibrium and the behavior of solutions
near the equilibrium:

• Stability: the equilibrium is asymptotically stable, if the real parts of all eigenvalues
are strictly negative, and unstable, if the real part of at least one eigenvalue is strictly
positive.

• Qualitative behavior: critically damped if the eigenvalues are real and oscillating if
they are complex.

• Quantitative information: the largest real part of all eigenvalues, denoted by Reλ1,
indicates how fast the equilibrium is approached≈ exp(tReλ1). Note that the in-
fluence of the other eigenvalues is exponentially small compared to this term, if the
eigenvalues are distinct.

In our case, we calculate the Jacobian of the right hand side of (1). It reads
(

0 1
Tx(x0, 0) Tv(x0, 0)

)

, where the subscriptsx and v denote the respective par-

tial derivatives (cf. Appendix). The eigenvalues of the matrix are given byλ1,2 =
1
2

[

Tv(x0, 0) ±
√

Tv(x0, 0)2 + 4Tx(x0, 0)
]

. Because of (2), (3) and the negative slope of

the Hill-function H (force-velocity relation), i.e.H ′(w) < 0 for all w ∈ R, we obtain
Tv(x, v) < 0 for all x andv. Hence, in this special case we can distinguish between the dif-
ferent cases of stability and the qualitative behavior depending onTx(x0, 0) andTv(x0, 0):

• Stability: if Tx(x0, 0) < 0, then the equilibrium is asymptotically stable, and if
Tx(x0, 0) > 0, then the equilibrium is unstable.

• Qualitative behavior: ifTv(x0, 0)2 + 4Tx(x0, 0) > 0, then the behavior is critically
damped, and ifTv(x0, 0)2 + 4Tx(x0, 0) < 0, then the behavior is oscillating.

All these information are of local nature, i.e. they apply only to a possibly very small
neighborhood of the equilibrium point. The mathematical reason is that they are properties
of the linearized system, which is derived from the original, nonlinear one by means of
linearization at the equilibrium.
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4. Results

We distinguish between different cases by the angle of the (fixed) upper arm with respect
to the ground (Figure 1). We consider only the two extreme cases, namely0◦ and90◦.
The corresponding equation of motion is of the form (1), whereTgrav has to be chosen
appropriately.

The first case corresponds to the upper arm extended to the side and the lower arm
moves in the horizontal plane (Figure 1A). In this situation the task of spilling as few wa-
ter as possible means to minimize the maximal acceleration of the arm, i.e. to minimize
maxt≥0 |ẍ(t)|. Indeed, consider a totally filled glass: no water is spilled for all anglesx.
Since, as a first approximation, the water surface is orthogonal on the vector of force given
by the muscle and gravitational force, the amount of spilled water depends on the absolute
value of acceleration̈x.

The second case corresponds to the upper arm near the body and the glass moving in
the sagittal plane (Figure 1B). The task this time is to minimize the maximal deflection,
i.e. to minimizemaxt≥0 |x(t) − x0|, where(x0, 0) is the equilibrium position. Again,
the water surface is orthogonal on the acceleration vector. In this situation, however, as a
first approximation, the acceleration caused by the muscle forces does not make the water
fall out of the glass due to the position of the glass which is fixed to the lower arm by
assumption. Only the gravitational force has an influence on the amount of spilled water,
again due to the position of the glass: it depends monotonously on the deflection|x(t)−x0|.

For the mathematical analysis (cf. Appendix) we fix an equilibrium point(x0, 0). The
initial condition (x0, v0), wherev0 is small, is derived from a short pat to enable a com-
parison between the different situations. We deal with the linearized equations, since we
consider an initial condition near the equilibrium, so that the derived tendency also holds
for the original system for a neighborhood of the equilibrium. The proof for this fact uses
that the equilibrium is asymptotically stable, i.e. that fort → ∞ the solution tends towards
the equilibrium point. For finite times we use the smoothness of the flow. In the following
we denotey(t) := x(t) − x0, such thaṫy = ẋ andÿ = ẍ.

How to minimize the maximal acceleration of the glass?

For the maximal accelerationamax := maxt≥0 |ẍ(t)| we distinguish between the cases
Tx(x0, 0) + Tv(x0, 0)2 ≥ 0 (case 1) andTx(x0, 0) + Tv(x0, 0)2 < 0 (case 2). In case 1 the
eigenvalues can be either real or complex and in case 2 they are complex.

In case 1 the maximal acceleration is attained at the initial timet = 0, whereas in the
case 2 the maximal acceleration is attained at a timet > 0. For typical evolutions of̈x = ÿ,
cf. Figure 2. The maximal accelerationamax divided by the initial velocity is given by

∣

∣

∣

∣

amax

v0

∣

∣

∣

∣

= |Tv(x0, 0)| in case 1, and by
∣

∣

∣

∣

amax

v0

∣

∣

∣

∣

=
√

Tx(x0, 0) ·

exp

(

Tv(x0, 0)

ω
arctan

(

− ω(Tx(x0, 0) + Tv(x0, 0)2)

Tv(x0, 0)(3Tx(x0, 0) + Tv(x0, 0)2)

))

in case 2

where we denoteω :=
√

−4Tx(x0, 0) − Tv(x0, 0)2.



Mathematical Stability Analysis in Biomechanical Applications 267

–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

0

0.2 0.4 0.6 0.8 1 1.2

–0.04

–0.03

–0.02

–0.01

0

1 2 3 4

–0.015

–0.01

–0.005

0

0.005

1 2 3 4 5 6
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Figure 2. Schematical representation of typical reactions following a perturbationin ar-
bitrary units (linearized equation). left: the accelerationÿ(t) = ẍ(t) if 4Tx(x0, 0) +
Tv(x0, 0)2 ≥ 0 (real, case 1); middle: the accelerationÿ(t) = ẍ(t) if 4Tx(x0, 0) +
Tv(x0, 0)2 < 0 and Tx(x0, 0) + Tv(x0, 0)2 ≥ 0 (complex, case 1). For case 1 the
maximal acceleration is attained fort = 0; right: the acceleration̈y(t) = ẍ(t) if
Tx(x0, 0) + Tv(x0, 0)2 < 0 (complex, case 2). The maximal acceleration is attained for
t > 0.

How to minimize the maximal deflection of the glass?

Now we consider the maximal deflectiondmax. We defineC := 1 + 4 Tx(x0,0)
Tv(x0,0)2

; note

that Tv(x0, 0) 6= 0 due to the Hill-function in our model. The sign ofC distinguishes
between three different cases:

• C > 0: the eigenvalues of the matrix are real.

• C < 0: the eigenvalues are complex.

• C = 0: a double real eigenvalue.

The maximal deflectiondmax divided by the initial velocity is given by

∣

∣

∣

∣

dmax

v0

∣

∣

∣

∣

=
2

|Tv(x0, 0)|
(

1 −
√

C
)

−1+1/
√

C

2

(

1 +
√

C
)

−1−1/
√

C

2

for C > 0

∣

∣

∣

∣

dmax

v0

∣

∣

∣

∣

=
2

|Tv(x0, 0)| exp(−1) for C = 0

∣

∣

∣

∣

dmax

v0

∣

∣

∣

∣

=
1

√

−Tx(x0, 0)
exp

(

−arctan(
√
−C)√

−C

)

for C < 0

For typical evolutions ofy(t) = x(t) − x0 in different cases, cf. Figure 3.
The only value a person can change at fixed angle is the co-activation of the muscles.

More precisely, the anglex0 and the flexor activationAf determine the extensor activation
Ae by the condition that(x0, 0) is an equilibrium, cf. (3). Thus, for the data of a person and
a fixed anglex0, we calculate the maximal deflection as a function of the flexor activation
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Figure 3. Schematical representation of typical reactions following a perturbationin arbi-
trary units (linearized equation). left: the deflectiony(t) = x(t) − x0 for C > 0 (real);
right: the deflectiony(t) = x(t) − x0 for C < 0 (complex).

Af (cf. Figure 4; for the data of the person cf. [6], we consider the movement in the sagittal
plane, cf. Figure 1B). It turns out, that for the first situation the maximal acceleration
is a strictly monotonously increasing function of the flexor activation. To minimize the
spilled amount of water a low activation is optimal. For the second task, however, a similar
analysis shows that the maximal deflection is a strictly monotonously decreasing function
of the flexor activation (cf. Figure 5). To minimize the spilled amount of water in this
situation a high activation is optimal.
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5. Discussion

In our biomechanical model we have described the force production of muscles, and the
equation of motion for different experimental setups is used to study the stability of the
systems. The question was, whether a high or a low co-activation of the elbow muscles
should be used to minimize the maximal acceleration or deflection. Is an equilibrium point
the “more stable” the faster small perturbations are corrected? On a first glance, the equi-
librium might seem the “more stable”, the faster small perturbations are corrected. But, as
we have shown, this depends on the situation: a waiter with a glass will avoid spilling wa-
ter and therefore will try to minimize the maximal acceleration or the maximal deflection,
depending on the position of his upper arm. We have shown that, if the waiter holds the
upper arm in the horizontal plane, a fast reaction means a high acceleration and thus here a
lot of water will be spilled. The optimal behavior in this case is to come back to the original
position as slowly as possible.

To understand the result, note that a high activation makes the arm stiff and causes a
very fast reaction of the arm back to its original position. On the other hand, to minimize
the spilled amount of water with the arm moving in the sagittal plane, a high activation
is optimal. Therefore, the eigenvalues of a biomechanical model alone do not provide
enough information for the optimal strategy concerning stability. This question can only
be answered in relation to the movement task. If a subject is running on rough terrain
with stiff legs, the head will perceive large deflections and accelerations. However, if the
eigenvalues are negative but close to zero, the movement of the head is smooth, which is
more comfortable [1].

If adapted to the envisioned task, the intrinsic properties of the musculoskeletal system
are sufficient to generate self-stabilized movements, e.g. the negative slope of the force-
velocity relation, the ascending limb of the force-length relation, co-activation of antagonis-
tic muscles. The musculoskeletal system should not be reduced to a simple force generator.
Both the intrinsic properties of the musculoskeletal system and the neural feedback system
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provide the stability of the movement. In conclusion, the stability of biomechanical systems
is an interesting and rich area. We have shown in a simple example that high stiffness in
the sense of large (negative real parts of the) eigenvalues is not always the best strategy. In
contrast, the optimal co-activation is task-dependent.

A. Appendix

We will derive the formulas of Section 3 and 4. We consider the solution of the linearized
equation (sety = x − x0)

(

ẏ

v̇

)

=

(

0 1
Tx Tv

)(

y

v

)

with initial conditionsy(0) = 0 andv(0) = v0. Here and in the whole Appendix we use
the abbreviationsTx = Tx(x0, 0) andTv = Tv(x0, 0).

Real case

Let both eigenvalues of the above matrixλ1,2, cf. Section 3., be real and dis-
tinct. Then the solution of the above initial value problem is given byy(t) =

v0

λ1−λ2
(exp(λ1t) − exp(λ2t)), where0 > λ1 > λ2 denote the eigenvalues. For the max-

imal acceleration we consider the border valuest = 0 andt → ∞ and we calculate the
inner maxima via∂3

t y(t∗) = 0. It turns out that|ÿ(t)| is maximal att = 0: comparing

ÿ(t∗) = −v0λ1

∣

∣

∣

λ1

λ2

∣

∣

∣

2λ1+λ2

λ2−λ1 with ÿ(0) = v0(λ1 + λ2) we obtain the result since
∣

∣

∣

λ1

λ2

∣

∣

∣
< 1,

2λ1+λ2

λ2−λ1
> 0 and|λ1| < |λ1 + λ2| by the assumptions on the real case. The maximal deflec-

tion |y(t)| is neither attained fort = 0 nor for t → ∞ since in these casesy is equal to or
tends to zero. In contrast, the maximum of the deflection is attained att∗ = 1

λ1−λ2
ln λ2

λ1
.

Double eigenvalue

Note that in the case of a double eigenvalue, i.e.λ1 = λ2, the eigenspace is only
one-dimensional. Hence, the solution of the initial value problem is given byy(t) =
v0t exp(Tv

2 t). For the maximal acceleration the procedure is the same as in the real case
and the absolute value of the inner extremum, attained att∗ = − 6

Tv
, is smaller than|ÿ(0)|.

Concerning the maximal deflection|y(t)|, the maximum is attained att∗ = − 2
Tv

.

Complexcase

In the complex case, we use the abbreviationω =
√

−4Tx − T 2
v since 4Tx +

T 2
v < 0. The solution of the initial value problem is then given byy(t) =

2v0

ω
exp

(

Tv

2 t
)

sin ω
2 t. Here, local minima and maxima of̈y(t) are attained at the points

tk = 2
ω

(

arctan
(

− ω(Tx+T 2
v )

Tv(3Tx+T 2
v )

)

+ kπ
)

if 3Tx+T 2
v 6= 0 and at the pointstk = 2

ω

(

π
2 + kπ

)

otherwise,wherek ∈ Z. It is clear that the absolute values of the inner extrema decrease as
k increases, since the exponential term decreases.

If Tx + T 2
v < 0, thent0 > 0 and the absolute value of the first inner extremum is larger

than |ÿ(0)| (complex, case 2). Otherwise (complex, case 1) the global maximal absolute
value of the acceleration is attained att = 0.
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We first consider case 2, i.e.Tx + T 2
v < 0, thusalsoTx < 0 and3Tx + T 2

v < 0, so that
Tx+T 2

v

3Tx+T 2
v

> 0 holdsand we havet0 > 0. The first inner extremum att0 is larger than|ÿ(0)|,
sinceÿ(0) and∂3

t y(0) have the same sign.
In case 1, we compare|ÿ(0)| = |v0Tv| to |ÿ(tk)| = |v0|

√

|Tx| exp
(

Tv

2 tk
)

, k = 0, 1.
Note that by case 1 we have|Tv| ≥

√

|Tx|. We consider the three subcases3Tx + T 2
v > 0,

3Tx + T 2
v = 0 and3Tx + T 2

v < 0. If 3Tx + T 2
v > 0, thent0 ≥ 0 and thus

∣

∣

∣

ÿ(t0)
v0

∣

∣

∣
≤

√

|Tx| ≤ |Tv|. If 3Tx + T 2
v = 0, thent0 = π

ω
andthus

∣

∣

∣

ÿ(t0)
v0

∣

∣

∣
=

√

|Tx| exp
(

Tv

2ω
π
)

< |Tv|.

If 3Tx + T 2
v < 0, then note thatt0 ≤ 0 and−π

2 ≤ arctan
(

− ω(Tx+T 2
v )

Tv(3Tx+T 2
v )

)

≤ π
2 , i.e.

exp
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ω

(
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+ π
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≤ exp
(
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ω
π
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< 1. Hence,
∣

∣

∣

ÿ(t1)
v0

∣

∣

∣
<

√

|Tx| ≤
|Tv|.

Concerning the maximal deflection, local minima and maxima ofy(t) are attained at

the pointstk = 2
ω
[arctan

(

− ω
Tv

)

+ kπ] for k = 0, 1, 2, . . . and the global maximal value

of |y(t)| is attained att0 = 2
ω

arctan
(

− ω
Tv

)

.

The dependency on the flexor activation

The formulas forT̃e(x, v) andT̃f (x, v) are, taking into account (3)

T̃f (x, v) = Af · flf (x) · Hf (hf (x)v) · hf (x)

T̃e(x, v) =

[

− T̃grav(x0)

fle(x0) · He(0) · he(x0)
−

flf (x0) · Hf (0) · hf (x0)

fle(x0) · He(0) · he(x0)
· Af

]

·fle(x) · He(he(x)v) · he(x)

Since the torque is given by

JT (x, v) = T̃grav(x) + T̃f (x, v) + T̃e(x, v)

= T̃grav(x) − T̃grav(x0)

fle(x0) · He(0) · he(x0)
· fle(x) · He(he(x)v) · he(x)

+Af

(

flf (x) · Hf (hf (x)v) · hf (x)

−
flf (x0) · Hf (0) · hf (x0)

fle(x0) · He(0) · he(x0)
· fle(x) · He(he(x)v) · he(x)

)

we obtain for the derivatives ofT with respect tox andv, Tx(x0, 0) andTv(x0, 0), respec-
tively, where we denote by∂x and∂v the partial derivatives with respect tox, v.

JTx(x0, 0) = ∂xT̃grav(x0) −
T̃grav(x0)

fle(x0) · He(0) · he(x0)

·[∂xfle(x0) · He(0) · he(x0) + fle(x0) · He(0) · ∂xhe(x0)]

+Af

(

∂xflf (x0) · Hf (0) · hf (x0) + flf (x0) · Hf (0) · ∂xhf (x0)

−
flf (x0) · Hf (0) · hf (x0)

fle(x0) · He(0) · he(x0)
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·[∂xfle(x0) · He(0) · he(x0) + fle(x0) · He(0) · ∂xhe(x0)]

)

JTv(x0, 0) = − T̃grav(x0)

fle(x0) · He(0) · he(x0)
· fle(x0) · H ′

e(0) · h2
e(x0)

+Af

(

flf (x0) · H ′
f (0) · h2

f (x0)

−
flf (x0) · Hf (0) · hf (x0)

fle(x0) · He(0) · he(x0)
· fle(x0) · H ′

e(0) · h2
e(x0)

)

Note that in the first situation the arm is parallel to the ground, i.e.T̃grav(x) = 0,
whereas in the second situation the arm is orthogonal to the ground, i.e.T̃grav(x) =
1
2glm sin x, wherel denotes the length andm the mass of the upper arm, andg is the
gravitational constant. For the formulas of the functionsfl, H andh as well as for the data,
cf. [6].
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Abstract

There is a great interest for a mechanistic understanding of molecular transport across
biological and reconstituted membranes due to its potential applications to the development of
news methodologies in medical biotechnology, such as gene therapy and drug delivery. In the
first part of this paper, we present the behavior of the liposomes under osmotic stress. Because
of the mechanical tension induced by osmotic flow, the liposomes expand, triggering transient
lipidic pores that fluctuate at the nanoscopic level until their death. We report here that this is
a periodic process. Such a liposome, also called a pulsatory liposome, is characterized by the
number of successive pores, the time interval between two successive pores, and the amount
of exchanged material through a single transmembrane pore. The diffusion of water through
the liposomal membrane is analyzed in detail. In the second part of this paper, we develop a
theoretical model for analyzing experimental data, facilitating information about the diffusion
and exchange through spherical interfaces. The effects of experimental parameters, including
the bilayer stiffness and the viscosity of the internal fluid, are analyzed and discussed as well.

                                                       
* E-mail address: lmovilea@physics.syr.edu (The author to whom correspondence should be addressed)
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Introduction

The transport of small molecules and macromolecules through transient transmembrane pores
is a fundamental and ubiquitous process in modern cell biology. The large interest for the
exploration of pores by experimental, computational and theoretical approaches is
dramatically growing not only for a better understanding of molecular traffic across
biomembranes, but also potential applications in medical biotechnology. In general, the
transmembrane pores are either proteinaceous or lipidic. Here, our approach is devoted only
for those pores that transiently appear in the lipid bilayer, and with their wall formed by
phospholipids. Some pores can appear due to structural and dynamic properties of the lipid
bilayer (Popescu et al., 1991; Popescu and Victor, 1991; Popescu and Rucareanu, 1992;
Movileanu and Popescu, 1995, 1996, 1998; Movileanu et al., 1997, 1998; Popescu et al.,
1997). These transient transmembrane pores have a stochastic nature (Popescu et al., 2003;
Movileanu and Popescu, 2004; Movileanu et al., 2006). Recently, in vesicles stretched by
induced tension, a single pore of several micrometers in diameter was observed (Karatekin et
al., 2003). However, in the same vesicle, a few tens of transmembrane pores can appear
successively. In this paper, we show a theoretical approach for demonstrating that a
successive formation of pores can take place in a liposomal membrane.

There are two very interesting biotechnological applications that require the increase of
membrane permeability: gene therapy and targeted drug delivery. In the first one, the
transport of DNA fragments through cellular and nuclear membranes is requested (Varma and
Somia, 1997). The second application uses drug molecules encapsulated in lipid vesicles,
which have to be transported to a targeted place (Lasic and Needham, 1995; Zasadzinski,
1997). In the second application, the lipid vesicle has to release the drug molecules in a well-
controlled and accurate fashion. The appearance of transient transmembrane pores may be
stimulated using chemical and physical methods (Bar-Ziv et al., 1998; Saitoh et al., 1998;
Bernard et al., 2000; Fournier et al., 2003). The chemical methods are based on the addition
of an external agent (Debregeas et al., 1995; Dietrich et al., 1997; Dietrich et al., 1998). Using
physical methods, including electroporation (Weaver and Chizmadzhev, 1996), osmotic
shock (Dvolaitsky et al., 1993), temperature jump (Lasic, 1993), and adhesion on porous or
decorated substrate (Guedeau-Boudeville et al., 1995), one can produce a stretch of the
vesicle membrane, which eventually relaxes, forming transient pores. These pores may reach
diameters up to 10 µm (Sandre et al., 1999).

The appearance of transient pores through the cellular membrane, which are caused by
mechanical tension, is a possibility for the intracellular material to be transported outside the
cell. In article, we present a formalism for analyzing the successively formed transient pores
induced in a vesicle by osmotic stress, and the time interval between two successive pores. In
the first part, we describe the transient pore dynamics. Then, the solute concentration inside
the vesicle, depending on the time elapsed, was calculated. An interesting application in
medicine is discussed: transient pores in liposomes could be used for compensation of
neurotransmitter deficiency in the synaptic cleft. This article is consisted of four parts: 1) the
phenomenological bases of pulsatory liposomes, 2) the internal chemical changes, 3) the pore
dynamics and 4) the numerical results.
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Phenomenological Bases of a Pulsatory Liposome

Let us consider a lipid vesicle filled with aqueous solution containing an impermeable solute.
The vesicle is inserted into an aqueous hypotonic medium. Initially, the vesicle membrane is
smooth and unstretched. Osmotic pressure created by the gradient of solute concentration
determines an influx of water molecules through liposomal membrane. The supplementary
water entered inside the liposome has two consequences: the dilution of the internal solution
and the swelling of the liposome. Also, the surface tension increases in the same time with
with liposomal expansion. The surface tension increases the pressure inside the cell. Under
these experimental conditions, either the liposal membrane may be ruptured or one pore may
appear through its lipid bilayer. If the swelling process is slow enough, the liposome increases
up to a critical size, in which a transient transmembrane pore forms. This event is followed by
two simultaneous processes: the pore dynamics and the leak out of the internal material of the
vesicle, due to Laplace pressure. The pore dynamics consists of two phases: 1) the pore
diameter increases up to the maximum radius, mr , and 2) the pore diameter decreases until
the closure of the pore (Fig. 1). Both phenomena, the increase in the pore diameter and the
leakage of the internal liquid, determine the membrane relaxation due to the reduction in the
mechanical tension of the membrane. As a matter of fact, the pore dynamics is driven by the
difference between the membrane tension and line tension (Fig. 2).

Figure 1. The evolution of a pulsatory liposome during a single cycle.

The membrane tension decreases until it becomes equal to the line tension of the
membrane edge. The internal liquid continues to leak outside the liposome, even after the line
tension equals to the membrane tension. From the time when the line tension equals to the
membrane tension the second part of the pore dynamics starts, and so the pore radius reduces
until the the closure of the pore. Therefore, the liposomes is in its initial size. We can envision
that the dynamics of the vesicle described above can start over. This cyclic process ceases
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when the osmotic gradient becomes smaller that a critical value, which will be discussed
below.

The Change of the Chemical Composition of Internal Solution

Let us suppose at the beginning of its activity the lipid vesicle contains solute and water, with
the molar concentrations 0sc , 0wc , respectively. Due to the influx of water, the vesicle swells

itself and its radius increases from 0R (the smooth and relaxed state) to cR (just before the
appearance of the transient pore) (Fig. 1). The quantity of water entered a lipid vesicle in each
cycle is given by the following expression:
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Where the molar volume of water is noted as wVμ . In the formula presented above, we

introduced the following notations:
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which is the number of moles of water that would fill the stretched vesicle just before the
appearance of the pore, if only water would be present.

Here,
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is the reversal of swelling ratio, that is the ratio between the vesicle volumes in the stretched
state (Vc), just before the pore formation, and in the relaxed state (V0).

The Internal Liquid Composition after Each Cycle

So far, we noticed that in each cycle the liposome supports a swelling process followed by a
relaxation process. Let us analyze the first cycle in both phases.

The swelling stage
At the beginning of the first cycle, the lipid vesicle contains 001 VcN ss =  moles of solute

and 001 VcN ww =  moles of water. At the end of the swelling stage, just before the opening of
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the pore, the same amount of solute is present in the lipid vesicle, but this contains a larger
amount of water:

( )fNVcNNN www −+=+= + 10011 (4)

The new molar concentrations at the end of the first cycle are given by the following
expressions:
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Relaxation stage
After the opening of the pore, the pore radius increases up to a maximum value, then it

decreases, and eventually the pore closes. During this pore dynamics, an amount of internal
liquid leaks out. At the beginning of the second cycle, which is the same with the end of the
first cycle and, the lipid vesicle is in a relaxed state. In this state, the lipid vesicle contains the
following amounts of solute and water, measured in moles:

00102 sss cfVcVN == (7)

( )
w

www V
fVcfVcVN

μ

−
+==

10
00102 (8)

Making the same reasoning as for the first cycle, one can find the following recurrent
formula for characterizing the internal composition of the lipid vesicle at the end of the nth

cycle:
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The n cycles liposome programming
The driving force of a pulsatory liposome is generated by the osmotic gradient through

the lipid bilayer. The internal concentration of the solute decreases along a cycle and with the
cycle rank in sequence. Therefore, the osmotic pressure decreases as well. The lipid vesicle
will swell up to its critical radius, only if the osmotic pressure at the end of the cycle is greater
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than the excess Laplace pressure. Starting with this condition, we can programme a pulsatory
liposome to have n cycles in its life activity by the following condition:

( ) ( )( ) ( )out
sn

in
sn ccThRhR +ℜ≤++− 110σ (11)

where, in
snc  and out

snc  are the solute concentrations at the end of the swelling stage of the n-th
cycle, inside and outside the liposome. Considering that at the beginning of the cycle, the
external concentration of the solute is equal to zero, and the composition of the external
medium is not affected by by the vesicle running, we can take out

snc =0. Taking into account

that in
snc  is equal to snc , the condition mentioned in equation (11) becames:

( ) son
ncTfhRR ℜ≤− 22

02σ (12)

where R is the radius of the sphere between the two monolayers of the liposomal bilayer, 0σ
is the surface tension of the monolayer at the end of the cycle, and 2h is the hydrophobic
thickness of the bilayer. ℜ  is the universal gas constant, and T is the absolute temperature.
For the symmetry of the above formula, we take hRR c += . Therefore, the initial

concentration of solute inside the liposome, sonc  is equal to
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If the initial concentration is known, then we can calculate the number of cycles of
liposome activity from formula (12).

The solute content of the pulse
We have named the quantity of internal material leaked out in a cycle as material pulse,

or simply pulse. Achieving the difference between the solute contained inside the lipid vesicle
after two successive cycles, we obtain the quantity of solute contained in the pulse of internal
solution delivered between the two cycles. Assuming a liposome programmed for n cycles,
the solute content of the p-th puls is:
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The Swelling Time of the Vesicle

The length of a cycle is equal to the sum of the pore lifetime and the swelling time. Here, we
calculate the swelling time of the lipid vesicle. Due to the tonicity difference between the two
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adjacent media separated by the lipid bilayer, the water will diffuse through the lipid bilayer
into the lipid vesicle, which swells up to a critical diameter. The increase of the volume of the
lipid vesicle in a dt time interval is determined by the water molecules that entered the lipid
vesicle. Thereforwe,

dtAVJdV ww μ= (15)

where, V is the internal volume of the lipid vesicle, Jw is the water flow through the internal
surface of the lipid bilayer with area, A , wV μ is the molar volume of water. The relation (15)

may be rewritten as:

 dtVRJdRR wμππ 22 44 w=  (16)

which gives, after simplification, the differential equation for the radius of the lipid vesicle:

dtVJdR ww μ=  (17)

Integrating the differential equation mentioned above from R0 (when the lipid bilayer is
not stretched, σ0 = 0) to Rc (when the liposome is stretched, just before the pore formation)
one can obtain:

τμwwc VJRR =− 0 (18)

where τ is the swelling time of the liposome, which is the time needed by the liposome to
reach its critical state starting from the initial relaxed state. Now, we introduce a mean
concentration of water molecules in the lipid bilayer after the p-th cycle as:

( ) 2in
wp

out
ww ccc += κ (19)

where out
wc and in

wpc are the water concentration outside and inside the lipid vesicle at the

beginning of the p-th cycle, respectively. The constant κ is the partition coefficient of water
within the lipid domain of the vesicle. The flow of water across the lipid bilayer is equal to:

vww cJ = (20)

where v  is the mean transport velocity of water molecules through the lipid bilayer. Taking
into account the relations (18), (19), and (20), the swelling time in the n-th cycle is given by:
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But the out
wc  and in

wnc  are wec  and wnc , respectively. Taking into account that:

1=wweVc μ  (22)

and
 1=+ ssnwwn VcVc μμ (23)

and plugging them into the formula (21), one can obtain the expression for the swelling time
in the n-th cycle of the dynamics of the lipid vesicle:

( )
( )ssn

c
n Vc

RR

μ

τ
−
−

=
2κv

2 0 (24)

The swelling time from the period of pulsatory liposome
Introducing the sonc  formula in the relation (24), one can obtain the formula for swelling

time in the p-th cycle of a lipid vesicle programmed to evolve over n cycles:
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The Pore Dynamics

Energetical Conditions for Pore Appearance

Most of the models describing the formation of a single transient pore in membranes are
based on a simple hypothesis proposed three decades ago by Litster (Litster, 1975).
According to this hypothesis, the membrane free energy change due to the formation of a
transmembrane pore is given by the Litster relation:

σπγπ 22 rrEp −=Δ  (26)

A stochastic pore may tend to open or close, depending on the forces acting on its
boundary (Fig.2). The appearance of a circular pore of radius r, in a membrane with the
surface tension coefficient σ, is determined by the presence of two competing energetic
terms: a reduction in the free energy by a surface tension component (-πr2σ), and an increase
in free energy by a line tension component (+2πrγ). Here, γ is the line tension.
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Figure 2. A cross-sectional view through a lipid bilayer containing a single transmembrane pore. Its
dynamics is determined by the balance of two opposing forces. The opening of the pore is driven by the
force Fσ generated by the membrane tension, whereas the closure of the pore is driven by the force Fγ

due to the line tension.

The height of the free energy barrier is equal to:

σ
γπ

2

max =ΔE (27)

and this is fulfilled for a critical pore radius,

σ
γ

=0r  (28)

The line tension, γ, is caused by the hydrophobic property of phospholipids, and
contributes to the free energy barrier that hinders pore formation. This component is
favourable to the closing of the pore. The surface tension coefficient, σ, reduces the free
energy barrier for the formation of the pore. This component drives an increase in the pore
diameter.

The free energy change due to the bilayer deformation following the appearance of the
pore is lost due to the internal viscosity of the lipid bilayer. Therefore, the free energy change
due to the internal viscosity of the lipid bilayer is given by the following expression:

dt
drhrE mv ηπ4=Δ (29)

Equating the two energy changes of the lipid bilayer, one can obtain a differential
equation for the pore radius:

dt
drrrr sηπγπσπ 222 =−  (30)

dt
drr sηγσ 22 =− (31)



Dumitru Popescu, Liviu Movileanu and Alin Gabriel Popescu284

Here, we introduce the surface viscosity, ms hηη 2= .
The equation (31) describes the pore dynamics. Unfortunately, it is difficult to solve this

equation, because the membrane tension σ  is not a constant. We consider a lipid vesicle in a
relaxed state, when the membrane tension is nil ( 0=σ ), and its radius is R0. If this lipid
vesicle experiences a membrane tension, the radius will be dependent on the surface tension
coefficient σ :

( )
E

RR σσ += 10 (32)

where E is the elastic modulus for surface stretching or compression, and is equal to:

kTR
KE H

2
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In this formula, KH is the Helfrich bending constant and kT is the thermal energy
(Brochard et al., 1976; Brochard et al., 2000).

An analytical expression for the surface tension coefficient σ
Let us suppose that from the initial state with the surface tension coefficient 0=σ and

the radius 0R , the vesicle is stretched up to a critical state, just before the appearance of the

pore. In this critical state, the lipid vesicle has the radius cR , and the membrane tension is

equal to cσ . In any state between these ones, the vesicle is characterized by a radius R

( cRRR <<0 ), and a membrane tension σ ( cσσ <<0 ), which are related by the equation
(32). The surface area in each of the three states is given by the following formulas:

⎟
⎠
⎞

⎜
⎝
⎛ +==⎟

⎠
⎞

⎜
⎝
⎛ +===

E
RRA

E
RRARA c

cc
σππσπππ 1441444 2

0
22

0
22

00 ;;  (34)

After its formation, the pore expands in the first part of its lifetime, then it decreases, and
finally it closes. In the same time, membrane tension decreases from cσ  to zero. The
membrane tension decreases due to two factors: 1) the growth of the pore and 2) the leakage
of internal liquid due to the excess in Laplace pressure. We assume that the lipidic mass from
the membrane is conserved during the pore lifetime. We can imagine a vesicle state at a given
moment from its dynamics, when the pore radius is equal to r, and the lipid bilayer tension is
σ . The following relation may be written:

22
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2 144 r
E

RRc πσππ +⎟
⎠
⎞

⎜
⎝
⎛ +=  (35)
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If one considers the case which internal liquid is gelified, therefore zero leakage, the pore
reaches its maximum radius, named critical pore radius and marked as cr . In this case, the

lipid membrane is in a relaxed state ( 0=σ ), and the following relation is available:

22
0

2 44 cc rRR πππ +=  (36)

Combining the relations (34), (35), (36), an anlitical formula for the membrane tension
can be obtained:
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22

2

2

1
RR
RR

r
r

c

c
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−

−−=
σ
σ

 (37)

The pore hydrodynamics
After the appearance of the pore, the internal liquid comes out and the vesicle decreases

in its size. The flow of the expelled liquid is: Q = π r2v, where r is the radius of the pore, and
v is the mean leak-out velocity of the internal liquid. The flow divided by the time has to be
equal to the rate of change of the volume of the lipid vesicle:

R
V

Q vez

∂
∂

= (38)

The internal liquid is pushed out through the transient pore by a Laplace pressure ΔP:

R
P σ2
=Δ (39)

The force for pushing out is given by the following expression:

2rPFp π⋅Δ= (40)

This force may be equal to the shear viscosity force, which is involved in the outward
flow:

v3 rF lv πη= (41)

Taking into account the above relations (39), (40) and (41), the outward flow velocity of
the internal liquid is:

lR
rv
η
σ

3
2

= (42)
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Introducing the formula (42) in the relation (38), one can obtain an exact equation for the
radius of the lipid vesicle:

dt
dRR

R
r

l

2
3

4
3

2 π
η

πσ
= (43)

The pore dynamics is described by equations (31), (37) and (43). Hence, we will name
them as dynamics pore equations. Their solutions are ( )tr , ( )tσ  and ( )tR .

Lifetime of the Pore

The lifetime of the pore is strongly dependent on the viscosity of the internal liquid of the
lipid vesicle. If the viscosity of the internal liquid is low, then both the radius of the pore and
the lifetime of the pore are small because the liquid is squeezed out very rapidly when the
pore just opens. More interesting is the case when the internal liquid has a slow leakage. In
the slow leak-out regime, both experimental results and theoretical predictions point out a
dependence of the radius of the pore on time as that drawn in Fig. 3.

In this paper, we will use the dynamics pore equations for the calculation of the lifetime
of the pore. The lifetime of the pore is equal with sum of time for pore expansion up to
maximum value of its radius, and the time for its decrease up to its closure.

The expansion time
As one can see, the expansion time is very short. We assume that the internal liquid does

not leak out from the vesicle in this short time. It results that the approximation cRR ≈ is
good and the bilayer tension is given by:

2

2

1
cc r

r
−≈

σ
σ

(44)

So the equation (31) becomes:
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r
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Integrating this differential equation when the radius of the pore runs in the range
],[ mrr0 , one can find the expansion time et :
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We used the following notations:

0

2
σ
ητ s=  (47)

with the initial pore radius 
c

r
σ
γ

=0  (48)

and the maximum radius of the pore mr
When the radius of the pore attains its maximum, γσ =mmr , because 0=dtdr .

It results an equation for mr :
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c r
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(49)

The solution of this equation is:

c
cm rr

σ
γ

2
−≈  (50)

The pore decrease time
After the radius of the pore reached its maximum, the liquid continues to leak out slowly

and the driving force changes its direction: γσ ≤r . The liquid leaking out reduces the
membrane tension, whereas the radius of the pore increases. This is the reason for which the
driving force closing the pore is nearly equal to zero, and the membrane tension increases
slowly:

r
γσ ≈ (51)

Derivating the equation (37), and taking into account that 0≈dtdσ , one can obtain:

dt
drr

dt
dRR =4 (52)

Taking into account the relations (51) and (52), then the equation (31) for the pore
dynamics becomes:

23
2

R
r

dt
dr

lπη
γ−

≅ (53)

We integrate the equation (53):



Dumitru Popescu, Liviu Movileanu and Alin Gabriel Popescu288

∫∫
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and we obtain the decrease time, for the second stage of its dynamics, noted with dt :

0
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πη
=  (55)

The closing time
When the radius of the pore has reached its inital value, the pore closes very quickly. In

this state, the membrane tension is nearly equal to zero. The closing state is decribed by the
equation (31), if we put 0=σ :

sdt
dr

η
γ

2
−

≅ (56)

The closing time results from the integration of the equation (56):

∫∫
−

=
ct

r s

dtdr
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0
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 (57)

Therefore, the closing time ct  is:

γ
η 02 rt s

c = (58)

The Time of the N-Cycle of the Pulsatory Lipid Vesicle

It is easy to see that the periode of the cyclic process experienced by the lipid vesicle under
osmotic stress is composed by the sum of the lifetime of the pore and the swelling time of the
lipid vesicle. Therefore, a cycle with duration nT is given by:

cdenn ttttT +++=  (59)

Replacing all the time intervals with their corresponding expressions, we obtain the time
of the n-th cycle:
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If the pore was programmed a priori to run n cycles, then the period of the p-th cycle of
n-cycles programmed vesicle is:
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Numerical Results and Discussion

We apply our theoretical results mentioned above to the giant vesicles obtained
experimentally (Karatekin et al., 2003). Such giant vesicle has the radius in relaxed state, R0 =
19.7 μm and the value of the critical radius is Rc = 20.6 μm. The thicknees of the lipid bilayer
is of 5 nm (Karatekin et al., 2003). Let us consider a vesicle in a closed chamber that contains
water. The transport velocity through the lipid bilayer is v = 105 Å/s (Sackmann et al., 1978).
The partition coefficient of water in the lipid bilayer is κ= 64 10–6 (Lawaczeck 1979). In fact,
κ must represent the partition coefficient of water in the hydrophobic core of the lipid bilayer.
Also, we consider the maxim value of the bilayer tension, just before the formations of the
pore σ0 = 10–5 N/m (Nardi et al., 1998).

The initial quantity of solute. If one introduces the above values in the formula (13), the
initial concentration of solute inside the vesicle, measured in nM, if this runs over n cycles is:

nns f
N 4512

0
.

= (64)

The calculated value for the reversal swelling coefficient, f, is equal to 0.8746 for the
considered vesicle. The dependence of the initial solute concentration on the programmed
activity life, measured in cycles number is represented in Fig. 3.

Because the fraction 
Tℜ
0σ

appears in all formulae, we have calculated it separately and its

value is equal to 29 .104 −−∗ mmol .
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Figure 3. The dependence of the initial solute concentration on the programmed activity life, measured
in cycles number.

The amount of solute delivered through a single transient pore
We think that it is useful to express the amount of solute delivered through a single pore

in number of molecules than in mols. Introducing all data in formula (14) one obtain:

( )
pnsp f
fN −

−
=Δ

4101425
(65)

We chose a liposome armed to work n cycles. The number of solute molecules leaked out
from liposome through the pth pore of n-sequence is given by formula (65). For a pulsatory
liposome programmed to have 40 cycles, the solute quantity delivered versus p is represented
in Fig. 4.

The activity life of a pulsatory liposome
It is obviously that the pulsatory lipozome life with the sum of all time length cycles.

Therefore, for an n-cycle liposome its life, tn is equal to:

∑
=

=
n

p
npn Tt

1

 (66)

We assume that the pore life time does not depend on the pore rank in the sequence,
although the pore lifetime is influenced by the viscosity of the internal liquid that changes
with the solute dilution. The pore life time is up to 10 sec. For the pulsatory liposome selected
here, the time, measured in minutes, of the p-th cycle is:
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Figure 4. For a pulsatory liposome programmed to have 40 cycles, the solute quantity delivered
versus p.

It is known that the water pass through the lipid bilayer with a very low probability due to
a high free energy barrier for crossing the membrane. We find this situation at the beginning
of the each individual cycle, but more than likely that the water molecules pass through lipid
bilayer the reason that the bilayer is composed from a mixture of lipid molecules. For this
reason, the bilayer is heterogeneous in its own nature, containing microclusters determined by
the selective dynamic association of lipid molecules (Popescu and Victor 1990; Popescu
1993; Movileanu et al., 1997, 1998). The bilayer is neither smooth, nor static, and has a
heterogeneous thickness. As a consequence, the vesicle is deformable in the relaxed state
from the beginning of each cycle. Therfore, it is very possible that very small structural
defects appear in the membrane, and these are used by the water molecules to come into the
lipid vesicle. On the other hand, the pores are very large, up to 10 µm (Karatekin et al., 2003).
Larger molecules, or greater amount of the internal liquid can leak out the lipid vesicle. A
very interesting application of the pulsatory liposomes filled with drugs is in the case of
hepatic cells. The endotethelial pores (also known as fenestrae) control the exchange of
fluids, solutes and particles between the sinusoidal blood and the space of Disse. The free
pulsatory liposomes or those included in other lipid vesicles may reach the hepatocyte due to
hydrodynamic effects of blood circulation (Popescu et al., 2000). The transient pores in
liposomes could be used for compensation of neurotransmitter deficiency in the synaptic cleft
as well (Popescu et al., 2006).
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