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Preface to the Second Edition

In this second edition, we have included additional material for use in modern
applications of stochastic calculus in finance and biology; in particular, the
section on infinitely divisible distributions and stable laws in Chap. 1, Lévy
processes in Chap. 2, the Itô–Lévy calculus in Chap. 3, and Chap. 4. Finally,
a new appendix has been added that includes basic facts about semigroups of
linear operators.

We have also made an effort to improve the presentation of parts already
included in the first edition, and we have corrected the misprints and errors
we have been made aware of by colleagues and students during class use of the
book in the intervening years. We are very grateful to all those who helped us
in detecting them and suggested possible improvements. We are very grateful
to Giacomo Aletti, Enea Bongiorno, Daniela Morale, Stefania Ugolini, and
Elena Villa for checking the final proofs and suggesting valuable changes.

Enea Bongiorno deserves special mention for his accurate editing of the
book as you now see it.

Tom Grasso from Birkhäuser deserves acknowledgement for encouraging
the preparation of a second, updated edition.

Milan, Italy Vincenzo Capasso
David Bakstein
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Preface to the First Edition

This book is a systematic, rigorous, and self-contained introduction to the
theory of continuous-time stochastic processes. But it is neither a tract nor
a recipe book as such; rather, it is an account of fundamental concepts as
they appear in relevant modern applications and the literature. We make no
pretense of its being complete. Indeed, we have omitted many results that
we feel are not directly related to the main theme or that are available in
easily accessible sources. Readers interested in the historical development of
the subject cannot ignore the volume edited by Wax (1954).

Proofs are often omitted as technicalities might distract the reader from a
conceptual approach. They are produced whenever they might serve as a guide
to the introduction of new concepts and methods to the applications; other-
wise, explicit references to standard literature are provided. A mathematically
oriented student may find it interesting to consider proofs as exercises.

The scope of the book is profoundly educational, related to modeling real-
world problems with stochastic methods. The reader becomes critically aware
of the concepts involved in current applied literature and is, moreover, pro-
vided with a firm foundation of mathematical techniques. Intuition is always
supported by mathematical rigor.

Our book addresses three main groups of readers: first, mathematicians
working in a different field; second, other scientists and professionals from a
business or academic background; third, graduate or advanced undergraduate
students of a quantitative subject related to stochastic theory or applications.

As stochastic processes (compared to other branches of mathematics) are
relatively new, yet increasingly popular in terms of current research output
and applications, many pure as well as applied deterministic mathematicians
have become interested in learning about the fundamentals of stochastic the-
ory and modern applications. This book is written in a language that both
groups will understand and in its content and structure will allow them to
learn the essentials profoundly and in a time-efficient manner. Other scientist-
practitioners and academics from fields like finance, biology, and medicine
might be very familiar with a less mathematical approach to their specific

VII



VIII Preface to the First Edition

fields and thus be interested in learning the mathematical techniques of mod-
eling their applications.

Furthermore, this book would be suitable as a textbook accompanying a
graduate or advanced undergraduate course or as secondary reading for stu-
dents of mathematical or computational sciences. The book has evolved from
course material that has already been tested for many years in various courses
in engineering, biomathematics, industrial mathematics, and mathematical fi-
nance.

Last, but certainly not least, this book should also appeal to anyone who
would like to learn about the mathematics of stochastic processes. The reader
will see that previous exposure to probability, though helpful, is not essential
and that the fundamentals of measure and integration are provided in a self-
contained way. Only familiarity with calculus and some analysis is required.

The book is divided into three main parts. In Part I, comprising Chaps. 1–
4, we introduce the foundations of the mathematical theory of stochastic
processes and stochastic calculus, thereby providing the tools and methods
needed in Part II (Chaps. 5 and 6), which is dedicated to major scientific ar-
eas of application. The third part consists of appendices, each of which gives
a basic introduction to a particular field of fundamental mathematics (e.g.,
measure, integration, metric spaces) and explains certain problems in greater
depth (e.g., stability of ODEs) than would be appropriate in the main part of
the text.

In Chap. 1 the fundamentals of probability are provided following a stan-
dard approach based on Lebesgue measure theory due to Kolmogorov. Here
the guiding textbook on the subject is the excellent monograph by Métivier
(1968). Basic concepts from Lebesgue measure theory are also provided in
Appendix A.

Chapter 2 gives an introduction to the mathematical theory of stochastic
processes in continuous time, including basic definitions and theorems on pro-
cesses with independent increments, martingales, and Markov processes. The
two fundamental classes of processes, Poisson and Wiener, are introduced as
well as the larger, more general, class of Lévy processes. Further, a signifi-
cant introduction to marked point processes is also given as a support for the
analysis of relevant applications.

Chapter 3 is based on Itô theory. We define the Itô integral, some fun-
damental results of Itô calculus, and stochastic differentials including Itô’s
formula, as well as related results like the martingale representation theorem.

Chapter 4 is devoted to the analysis of stochastic differential equations
driven by Wiener processes and Itô diffusions and demonstrates the con-
nections with partial differential equations of second order, via Dynkin and
Feynman–Kac formulas.

Chapter 5 is dedicated to financial applications. It covers the core economic
concept of arbitrage-free markets and shows the connection with martingales
and Girsanov’s theorem. It explains the standard Black–Scholes theory and
relates it to Kolmogorov’s partial differential equations and the Feynman–Kac
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formula. Furthermore, extensions and variations of the standard theory are
discussed as are interest rate models and insurance mathematics.

Chapter 6 presents fundamental models of population dynamics such as
birth and death processes. Furthermore, it deals with an area of important
modern research—the fundamentals of self-organizing systems, in particular
focusing on the social behavior of multiagent systems, with some applications
to economics (“price herding”). It also includes a particular application to the
neurosciences, illustrating the importance of stochastic differential equations
driven by both Poisson and Wiener processes.

Problems and additions are proposed at the end of the volume, listed
by chapter. In addition to exercises presented in a classical way, problems
are proposed as a stimulus for discussing further concepts that might be of
interest to the reader. Various sources have been used, including a selection
of problems submitted to our students over the years. This is why we can
provide only selected references.

The core of this monograph, on Itô calculus, was developed during a series
of courses that one of the authors, VC, has been offering at various levels in
many universities. That author wishes to acknowledge that the first drafts of
the relevant chapters were the outcome of a joint effort by many participating
students: Maria Chiarolla, Luigi De Cesare, Marcello De Giosa, Lucia Mad-
dalena, and Rosamaria Mininni, among others. Professor Antonio Fasano is
due our thanks for his continuous support, including producing such material
as lecture notes within a series that he coordinated.

It was the success of these lecture notes, and the particular enthusiasm of
coauthor DB, who produced the first English version (indeed, an unexpected
Christmas gift), that has led to an extension of the material up to the present
status, including, in particular, a set of relevant and updated applications that
reflect the interests of the two authors.

VC would also like to thank his first advisor and teacher, Professor Grace
Yang, who gave him the first rigorous presentation of stochastic processes and
mathematical statistics at the University of Maryland at College Park, always
referring to real-world applications. DB would like to thank the Meregalli
and Silvestri families for their kind logistical help while he was in Milan.
He would also like to acknowledge research funding from the EPSRC, ESF,
Socrates–Erasmus, and Charterhouse and thank all the people he worked with
at OCIAM, University of Oxford, over the years, as this is where he was based
when embarking on this project.

The draft of the final volume was carefully read by Giacomo Aletti, Daniela
Morale, Alessandra Micheletti, Matteo Ortisi, and Enea Bongiorno (who also
took care of the problems and additions) whom we gratefully acknowledge.
Still, we are sure that some odd typos and other, hopefully noncrucial, mis-
takes remain, for which the authors take full responsibility.

We also wish to thank Professor Nicola Bellomo, editor of the “Model-
ing and Simulation in Science, Engineering and Technology” series, and Tom
Grasso from Birkhäuser for supporting the project. Last but not least, we
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cannot neglect to thank Rossana (VC) and Casilda (DB) for their patience
and great tolerance while coping with their “solitude” during the preparation
of this monograph.

Milan, Italy Vincenzo Capasso
David Bakstein
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3.3 Itô Integrals of Multidimensional Wiener Processes . . . . . . . . . . 190
3.4 The Stochastic Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
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and the Generalized Itô Formula . . . . . . . . . . . . . . . . . . . . . . 207
3.10 Exercises and Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.1 Existence and Uniqueness of Solutions . . . . . . . . . . . . . . . . . . . . . 213
4.2 Markov Property of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.3 Girsanov Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.4 Kolmogorov Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
4.5 Multidimensional Stochastic Differential Equations . . . . . . . . . . 251
4.6 Stability of Stochastic Differential Equations . . . . . . . . . . . . . . . . 254
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Part I

Theory of Stochastic Processes





1

Fundamentals of Probability

We assume that the reader is already familiar with the basic motivations and
notions of probability theory. In this chapter we recall the main mathematical
concepts, methods, and theorems according to the Kolmogorov approach
(Kolmogorov, 1956) by using as main references the books by Métivier (1968)
and Neveu (1965). An interesting introduction can be found in Gnedenko
(1963). We shall refer to Appendix A of this book for the required theory on
measure and integration.

1.1 Probability and Conditional Probability

Definition 1.1. A probability space is an ordered triple (Ω,F , P ), where Ω
is any set, F a σ-algebra of subsets of Ω, and P : F → [0, 1] a probability
measure on F such that

1. P (Ω) = 1 (and P (∅) = 0).
2. For all A1, . . . , An, . . . ∈ F with Ai ∩ Aj = ∅, i �= j:

P

(⋃
i

Ai

)
=
∑
i

P (Ai).

The set Ω is called the sample space, ∅ the empty set , the elements of F are
called events, and every element of Ω is called an elementary event.

Definition 1.2. A probability space (Ω,F , P ) is finite if Ω has finitely many
elementary events.

Remark 1.3. If Ω is finite, then it suffices to only consider the σ-algebra of
all subsets of Ω, i.e., F = P(Ω).

Definition 1.4. Every finite probability space (Ω,F , P ) with F = P(Ω) is
an equiprobable or uniform space if

V. Capasso and D. Bakstein, An Introduction to Continuous-Time
Stochastic Processes, MSSET, DOI 10.1007/978-0-8176-8346-7 1,
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4 1 Fundamentals of Probability

∀ω ∈ Ω : P ({ω}) = k (constant),

i.e., its elementary events are equiprobable.

Remark 1.5. Following the axioms of a probability space and the definition of
a uniform space, if (Ω,F , P ) is equiprobable, then

∀ω ∈ Ω : P ({ω}) = 1

|Ω| ,

where | · | denotes the cardinal number of elementary events in Ω, and

∀A ∈ F ≡ P(Ω) : P (A) =
|A|
|Ω| .

Intuitively, in this case we may say that P (A) is the ratio of the number of
favorable outcomes divided by the number of all possible outcomes.

Example 1.6. Consider an urn that contains 100 balls, of which 80 are red and
20 are black but which are otherwise identical, from which a player draws a
ball. Define the event

R : The first drawn ball is red.

Then

P (R) =
|R|
|Ω| =

80

100
= 0.8.

Definition 1.7. We shall call any event F ∈ F such that P (F ) = 0, a null
event.

Conditional Probability

Let (Ω,F , P ) be a probability space and A,B ∈ F , with P (B) > 0. Under
these assumptions the following equality is trivial:

P (A ∩B) = P (B)
P (A ∩B)

P (B)
.

In general one cannot expect that

P (A ∩B) = P (A)P (B),

in which case we would have

P (A ∩B)

P (B)
= P (A).
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This special case will be analyzed later. In general it makes sense to consider
the following definition.

Definition 1.8. Let (Ω,F , P ) be a probability space and A,B ∈ F ,
P (B) > 0. Then the probability of A conditional on B, denoted by P (A|B),
is any real number in [0, 1] such that

P (A|B) =
P (A ∩B)

P (B)
.

This number is left unspecified whenever P (B) = 0.

We must at any rate notice that conditioning events of zero probability
cannot be ignored. See later a more detailed account of this case in connection
with the definition of conditional distributions.
Remark 1.9. Suppose that P (B) > 0. Then the mapping

PB : A ∈ F 	→ PB(A) =
P (A ∩B)

P (B)
∈ [0, 1]

defines a probability measure PB on F . In fact, 0 ≤ PB(A) ≤ 1 and PB(Ω) =
P (B)
P (B) = 1. Moreover, if A1, . . . , An, . . . ∈ F , Ai ∩ Aj = ∅, i �= j, then

PB

(⋃
n∈N

An

)
=
P (

⋃
nAn ∩B)

P (B)
=

∑
n P (An ∩B)

P (B)
=
∑
n

PB(An).

From the preceding construction it follows that the probability measure
PB is an additional probability measure on F that in particular satisfies

PB(B) = 1,

and for any event C ∈ F such that B ⊂ C we have

PB(C) = 1,

while if C ∩B = ∅, then
PB(C) = 0.

It makes sense, then, to introduce the following definition.

Definition 1.10. Let (Ω,F , P ) be a probability space and A,B ∈ F ,
P (B) > 0. Then the probability measure PB : F → [0, 1], such that

∀A ∈ F : PB(A) :=
P (A ∩B)

P (B)
,

is called the the conditional probability on F given B.
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Proposition 1.11. If A,B ∈ F , then

1. P (A ∩B) = P (A|B)P (B) = P (B|A)P (A).
2. If A1, . . . , An ∈ F , then

P (A1∩· · ·∩An) = P (A1)P (A2|A1)P (A3|A1∩A2) · · ·P (An|A1∩· · ·∩An−1).

Proof . Statement 1 is obvious. Statement 2 is proved by induction. The propo-
sition holds for n = 2. Assuming it holds for n− 1, (n ≥ 3), we obtain

P(A1 ∩ · · · ∩An)

= P (A1 ∩ · · · ∩ An−1)P (An|A1 ∩ · · · ∩ An−1)

= P (A1) · · ·P (An−1|A1 ∩ · · · ∩ An−2)P (An|A1 ∩ · · · ∩ An−1);

thus it holds for n as well. Since n was arbitrary, the proof is complete. �

Definition 1.12. Two events A and B are independent if

P (A ∩B) = P (A)P (B).

Thus A is independent ofB if and only ifB is independent ofA, and vice versa.

Proposition 1.13. Let A,B be events and P (A) > 0; then the following two
statements are equivalent:

1. A and B are independent.
2. P (B|A) = P (B).

If P (B) > 0, then the statements hold with interchanged A and B as well.

Example 1.14. Considering the same experiment as in Example 1.6, we define
the additional events (x, y) with x, y ∈ {B,R} as, e.g.,

BR : The first drawn ball is black, the second red,

·R : The second drawn ball is red.

Now the probability P (·R|R) depends on the rules of the draw.

1. If the draw is with subsequent replacement of the ball, then, due to the
independence of the draws,

P (·R|R) = P (·R) = P (R) = 0.8.

2. If the draw is without replacement, then the second draw is dependent on
the outcome of the first draw, and we have

P (·R|R) = P (·R ∩R)
P (R)

=
P (RR)

P (R)
=

80 · 79 · 100
100 · 99 · 80 =

79

99
.

Definition 1.15. Two events A and B are mutually exclusive if A ∩B = ∅.
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Proposition 1.16.

1. Two events cannot be both independent and mutually exclusive, unless one
of the two is a null event.

2. If A and B are independent events, then so are A and B̄, Ā and B, and
Ā and B̄, where Ā := Ω \A is the complementary event.

Definition 1.17. The events A,B,C are independent if

1. P (A ∩B) = P (A)P (B)
2. P (A ∩ C) = P (A)P (C)
3. P (B ∩C) = P (B)P (C)
4. P (A ∩B ∩ C) = P (A)P (B)P (C)

This definition can be generalized to any number of events.

Remark 1.18. If A,B,C are events that satisfy point 4 of Definition 1.17, then
it is not true in general that it satisfies points 1–3 and vice versa.

Example 1.19. Consider a throw of two distinguishable, fair six-sided dice, and
the events

A: the roll of the first dice results in 1, 2, or 5,

B: the roll of the second dice results in 4, 5, or 6,

C: the sum of the results of the rolls of the dice is 9.

Then P (A) = P (B) = 1/2 and P (A ∩ B) = 1/6 �= 1/4 = P (A)P (B). But
since P (C) = 1/9 and P (A ∩B ∩ C) = 1/36, we have that

P (A)P (B)P (C) =
1

36
= P (A ∩B ∩C).

On the other hand, consider a uniformly shaped tetrahedron that has the
colors white, green, and red on its separate surfaces and all three colors on
the fourth. If we randomly choose one side, the events

W: the surface contains white,

G: the surface contains green,

R: the surface contains red

have the probabilities P (W ) = P (G) = P (R) = 1/2. Hence P (W ∩ G) =
P (W )P (G) = 1/4, etc., but P (W )P (G)P (R) = 1/8 �= 1/4 = P (W ∩G ∩R).

Definition 1.20. Let C1, . . . , Ck be subfamilies of the σ-algebra F . They
constitute k mutually independent classes of F if

∀A1 ∈ C1, . . . , ∀Ak ∈ Ck : P (A1 ∩ · · · ∩ Ak) =

k∏
i=1

P (Ai).
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Definition 1.21. A family of elements (Bi)i∈I of F , with I ⊂ N, is called a
(countable) partition of Ω if

1. I is a countable set
2. i �= j ⇒ Bi ∩Bj = ∅
3. P (Bi) �= 0 for all i ∈ I
4. Ω =

⋃
i∈I Bi

Theorem 1.22(Total law of probability). Let (Bi)i∈I be a partition of
Ω and A ∈ F ; then

P (A) =
∑
i∈I

P (A|Bi)P (Bi).

Proof .

∑
i

P (A|Bi)P (Bi) =
∑
i

P (A ∩Bi)

P (Bi)
P (Bi) =

∑
i

P (A ∩Bi)

= P

(⋃
i

(A ∩Bi)

)
= P

(
A ∩

⋃
i

Bi

)

= P (A ∩Ω) = P (A).

�
The following fundamental Bayes theorem provides a formula for the ex-

change of conditioning between two events; this is why it is also known as the
theorem for probability of causes.

Theorem 1.23 (Bayes). Let (Bi)i∈I be a partition of Ω and A ∈ F , with
P (A) = 0; then

∀i ∈ I : P (Bi|A) =
P (Bi)

P (A)
P (A|Bi) =

P (A|Bi)P (Bi)∑
j∈I P (A|Bj)P (Bj)

.

Proof . Since A =
⋃k

j=1(Bj ∩ A), then

P (A) =
k∑

j=1

P (Bj)P (A|Bj).

Also, because

P (Bi ∩A) = P (A)P (Bi|A) = P (Bi)P (A|Bi)

and by the total law of probability, we obtain
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P (Bi|A) =
P (Bi)P (A|Bi)

P (A)
=

P (Bi)P (A|Bi)∑k
j=1 P (A|Bj)P (Bj)

.

�
Example 1.24. Continuing with the experiment of Example 1.6, we further
assume that there is a second indistinguishable urn (U2) containing 40 red
balls and 40 black balls. Randomly drawing one ball from one of the two urns,
we make a probability estimate about which urn we had chosen:

P (U2|B) =
P (U2)P (B|U2)∑2
i=1 P (Ui)P (B|Ui)

=
1/2 · 1/2

1/2 · 1/5 + 1/2 · 1/2 =
5

7
;

thus P (U1|B) = 2/7.

1.2 Random Variables and Distributions

A random variable is the concept of assigning a numerical magnitude to ele-
mentary outcomes of a random experiment, measuring certain of the latter’s
characteristics. Mathematically, we define it as a function X : Ω → R on
the probability space (Ω,F , P ) such that for every elementary ω ∈ Ω it as-
signs a numerical value X(ω). In general, we are then interested in finding the
probabilities of events of the type

[X ∈ B] := {ω ∈ Ω|X(ω) ∈ B} ⊂ Ω (1.1)

for every B ⊂ R, i.e., the probability that the random variable will assume
values that will lie within a certain range B ⊂ R. In its simplest case, B can
be a possibly unbounded interval or union of intervals of R. More generally,
B can be any subset of the Borel σ-algebra BR, which is generated by the
intervals of R. This will require, among other things, the results of measure
theory and Lebesgue integration in R. Moreover, we will require the events
(1.1) to belong to F , and so to be P -measurable. We will later extend the
concept of random variables to generic measurable spaces.

Definition 1.25. Let (Ω,F , P ) be a probability space. A real-valued random
variable is any Borel-measurable mapping X : Ω → R such that for any
B ∈ BR : X−1(B) ∈ F . It will be denoted by X : (Ω,F) → (R,BR). If X
takes values in R̄, then it is said to be extended.

Definition 1.26. If X : (Ω,F) → (R,BR) is a random variable, then the
mapping PX : BR → R, where

PX(B) = P (X−1(B)) = P ([X ∈ B]), ∀B ∈ BR,

is a probability on R. It is called the probability law of X .
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If a random variable X has a probability law PX , we will use the notation
X ∼ PX .

The following proposition shows that a random variable can be defined in
a canonical way in terms of a given probability law on R.

Proposition 1.27. If P : BR → [0, 1] is a probability, then there exists a
random variable X : R → R such that P is identical to the probability law PX

associated with X.

Proof . We identify (R,BR, P ) as the underlying probability space so that the
mapping X : R → R, with X(s) = s, for all s ∈ R, is a random variable, and
furthermore, denoting its associated probability law by PX , we obtain

PX(B) = P (X−1(B)) = P (B) ∀B ∈ BR.

�

Definition 1.28. Let X : (Ω,F) → (R,BR) be a random variable; the
σ-algebra FX := X−1(BR) is called the σ-algebra generated by X.

Lemma 1.29. (Doob–Dynkin). If X,Y : Ω → R
d then Y is FX-measurable

if and only if there exists a Borel measurable function g : Rd → R
d such that

Y = g(X).

Definition 1.30. Let X be a random variable. Then the mapping

FX : R → [0, 1],

with
FX(t) = PX(]−∞, t]) = P ([X ≤ t]) ∀t ∈ R,

is called the partition function or cumulative distribution function of X .

Proposition 1.31.

1. For all a, b ∈ R, a < b: FX(b)− FX(a) = PX(]a, b]).
2. FX is right-continuous and increasing.
3. limt→+∞ FX(t) = 1, limt→−∞ FX(t) = 0.

Proof . Points 1 and 2 are obvious, given that PX is a probability. Point 3 can
be demonstrated by applying points 2 and 4 of Proposition A.24. In fact, by
the former we obtain

lim
t→+∞FX(t) = lim

t→+∞PX(]−∞, t]) = lim
n
PX(]−∞, n])

= PX

(⋃
n

]−∞, n]

)
= PX(R) = 1.

Analogously, by point 4 of Proposition A.24 we get limt→−∞ FX(t) = 0. �
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Proposition 1.32. Conversely, if we assign a function F : R → [0, 1] that
satisfies points 2 and 3 of Proposition 1.28, then by point 1 we can define a
probability PX : BR → R associated with a random variable X whose cumula-
tive distribution function is identical to F .

Definition 1.33. If the probability law PX : BR → [0, 1] associated with
the random variable X is endowed with a density with respect to Lebesgue
measure1 μ on R, then this density is called the probability density of X .
If f : R → R+ is the probability density of X , then

∀t ∈ R : FX(t) =

∫ t

−∞
fdμ and lim

t→+∞FX(t) =

∫ +∞

−∞
fdμ = 1,

as well as

PX(B) =

∫
B

fdμ ∀B ∈ BR.

We may notice that the Lebesgue–Stieltjes measure, canonically associated
with FX as defined in Definition A.51, is identical to PX .

Definition 1.34. A random variable X is continuous if its cumulative distri-
bution function FX is continuous.

Remark 1.35. X is continuous if and only if P (X = x) = 0 for every x ∈ R.

Definition 1.36. A random variable X is absolutely continuous if FX is
absolutely continuous or, equivalently, if PX is defined through its density.2

Proposition 1.37. Every absolutely continuous random variable is continu-
ous, but the converse is not true.

Example 1.38. Let F : R → [0, 1] be an extension to the Cantor function
f : [0, 1] → [0, 1], given by

∀x ∈ R : F (x) =

⎧⎨
⎩

1 if x > 1,
f(x) if x ∈ [0, 1],
0 if x < 0,

where f is endowed with the following properties:

1. f is continuous and increasing.
2. f ′ = 0 almost everywhere.
3. f is not absolutely continuous.

1See Definition A.53.
2See Proposition A.57.
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Hence X is a random variable with continuous but not absolutely continuous
distribution function F .

Remark 1.39. Henceforth we will use “continuous” in the sense of “absolutely
continuous.”

Remark 1.40. If f : R → R+ is a function that is integrable with respect to
Lebesgue measure μ on R and ∫

R

fdμ = 1,

then there exists an absolutely continuous random variable with probability
density f . Defining

F (x) =

∫ x

−∞
f(t)dt ∀x ∈ R,

then F is a cumulative distribution function.

Example 1.41. (Continuous probability densities).

1. Uniform [its distribution denoted by U(a, b)]:

∀x ∈ [a, b] : f(x) =
1

b− a
, a, b ∈ R, a < b.

2. Standard normal or standard Gaussian [its distribution denoted by N(0, 1)
or Φ(x)]:

∀x ∈ R : ϕ(x) =
1√
2π

exp

{
−1

2
x2
}
. (1.2)

3. Normal or Gaussian [its distribution denoted by N(m,σ2)]:

∀x ∈ R : f(x) =
1

σ
√
2π

exp

{
−1

2

(
x−m

σ

)2
}
, σ > 0,m ∈ R.

4. Log-normal:

∀x ∈ R
∗
+ : f(x) =

1

xσ
√
2π

exp

{
−1

2

(
lnx−m

σ

)2
}
, (1.3)

where σ > 0,m ∈ R.
5. Exponential [its distribution denoted by E(λ)]:

∀x ∈ R+ : f(x) = λe−λx,

where λ > 0.
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6. Gamma [its distribution denoted by Γ (λ, α)]:

∀x ∈ R+ : f(x) =
e−λx

Γ (α)
λ(λx)α−1,

where λ, α ∈ R
∗
+. Here

Γ (α) =

∫ ∞

0

yα−1e−ydy

is the gamma function, which for n ∈ N
∗ is (n − 1)!, i.e., a generalized

factorial.
7. Standard Cauchy [its distribution denoted by C(0, 1)]:

∀x ∈ R : f(x) =
1

π

1

1 + x2
.

8. Cauchy [its distribution denoted by C(a, h)]:

∀x ∈ R : f(x) =
1

π

h

h2 + (x− a)2
.

Definition 1.42. Let X be a random variable and let D denote an at most
countable set of real numbers D = {x1, . . . , xn, . . .}. If there exists a function
p : R → [0, 1], such that

1. For all x ∈ D : p(x) > 0
2. For all x ∈ R \D : p(x) = 0
3. For all B ∈ BR:

∑
x∈B p(x) < +∞

4. For all B ∈ BR: PX(B) =
∑

x∈B p(x)

then X is discrete and p is the (discrete) distribution function of X . The set D
is called the support of function p.

Because of 1 and 2, in 3 and 4 we clearly mean
∑

x∈B =
∑

x∈B∩D.
Remark 1.43. Let p denote the discrete distribution function of the random
variable X, having support D. The following properties hold:

1.
∑

x∈D p(x) = 1.
2. For all B ∈ BR such that D ∩B = ∅, PX(B) = 0.
3. For all x ∈ R:

PX({x}) =
{
0 if x /∈ D,
p(x) if x ∈ D.

Hence PX corresponds to the discrete measure associated with the “masses”
p(x), x ∈ D.

Example 1.44. (Discrete probability distributions).
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1. Uniform: Given n ∈ N
∗, and a set of n real numbers D = {x1, . . . , xn},

p(x) =
1

n
, x ∈ D.

2. Poisson [denoted by P (λ)]: Given λ ∈ R
∗
+,

p(x) = exp {−λ} λ
x

x!
, x ∈ N,

(λ is called intensity).
3. Binomial [denoted by B(n, p)]: Given n ∈ N

∗, and p ∈ [0, 1],

p(x) =
n!

(n− x)!x!
px(1− p)n−x, x ∈ {0, 1, . . . , n} .

Remark 1.45. The cumulative distribution function FX of a discrete random
variable X is a right-continuous with left limit (RCLL) function with an at
most countable number of finite jumps. If p is the distribution function of
X , then

p(x) = FX(x)− FX(x−) ∀x ∈ D

or, more generally,

p(x) = FX(x)− FX(x−) ∀x ∈ R.

1.2.1 Random Vectors

The concept of random variable can be extended to any function defined on
a probability space (Ω,F , P ) and valued in a measurable space (E,B), i.e., a
set E endowed with a σ-algebra B of its parts.

Definition 1.46. Every measurable function X : Ω → E, with X−1(B) ∈ F ,
for all B ∈ B, assigned on the probability space (Ω,F , P ) and valued in (E,B)
is a random variable. The probability law PX associated with X is defined
by translating the probability P on F into a probability on B, through the
mapping PX : B → [0, 1], such that

∀B ∈ B : PX(B) = P (X−1(B)) ≡ P (X ∈ B).

Definition 1.47. Let (Ω,F , P ) be a probability space and (E,B) a measur-
able space. Further, let E be a normed space of dimension n, and let B be
its Borel σ-algebra. Every measurable map X : (Ω,F) → (E,B) is called a
random vector. In particular, we can take (E,B) = (Rn,BRn).
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Remark 1.48. The Borel σ-algebra on R
n is identical to the product σ-algebra

of the family of n Borel σ-algebras on R: BRn =
⊗

n BR.

Proposition 1.49. Let (Ω,F , P ) be a probability space and X : Ω → R
n a

mapping. Moreover, let, for all i = 1, . . . , n, πi : R
n → R be the ith projection,

and thus Xi = πi ◦ X, i = 1, . . . , n, be the ith component of X. Then the
following statements are equivalent:

1. X is a random vector of dimension n.
2. For all i ∈ {1, . . . , n}, Xi is a random variable.

Proof . The proposition is an obvious consequence of Proposition A.18. �

Definition 1.50. Under the assumptions of the preceding proposition, the
probability measure

Bi ∈ BR 	→ PXi(Bi) = P (X−1
i (Bi)) ∈ [0, 1], 1 ≤ i ≤ n,

is called the marginal law of the random variable Xi. The probability PX

associated with the random vector X is called the joint probability of the
family of random variables (Xi)1≤i≤n.

Remark 1.51. If X : (Ω,F) → (Rn,BRn) is a random vector of dimension n
and if Xi = πi ◦ X : (Ω,F) → (R,BR), 1 ≤ i ≤ n, then, knowing the
joint probability law PX, it is possible to determine the marginal probability
PXi , for all i ∈ {1, . . . , n}. In fact, if we consider the probability law of Xi,
i ∈ {1, . . . , n}, as well as the induced probability πi(PX) for all i ∈ {1, . . . , n},
then we have the relation

PXi = πi(PX), 1 ≤ i ≤ n.

Therefore, for every Bi ∈ BR, we obtain

PXi(Bi) = PX(π−1
i (Bi)) = PX(X1 ∈ R, . . . , Xi ∈ Bi, . . . , Xn ∈ R)

= PX(CBi), (1.4)

where CBi is the cylinder of base Bi in R
n. This can be further extended

by considering, instead of the projection πi, the projections πS , where S ⊂
{1, . . . , n}. Then, for every measurable set BS , we obtain

PXS (BS) = PX(π−1
S (BS)).

Notice that in general the converse is not true; knowledge of the marginals
does not imply knowledge of the joint distribution of a random vectorX unless
further conditions are imposed (see Remark 1.61).

Definition 1.52. Let X : (Ω,F) → (Rn,BRn) be a random vector of dimen-
sion n. The mapping FX : Rn → [0, 1], with
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t = (t1, . . . , tn) : FX(t) := P (X1 ≤ t1, . . . , Xn ≤ tn) ∀t ∈ R
n,

is called the joint cumulative distribution function of the random vector X.

Remark 1.53. Analogous to the case of random variables, FX is increasing
and right-continuous on R

n. Further, it is such that

lim
xi→+∞,∀i

F (x1, . . . , xn) = 1,

and for any i = 1, . . . , n:

lim
xi→−∞F (x1, . . . , xn) = 0.

Conversely, given a distribution function F satisfying all the preceding proper-
ties, there exists an n-dimensional random vector X with F as its cumulative
distribution function. The underlying probability space can be constructed in
a canonical way. In the bidimensional case, if F : R2 → [0, 1] satisfies the
preceding conditions, then we can define a probability P : BR2 → [0, 1] in the
following way:

P (]a,b]) = F (b1, b2)− F (b1, a2) + F (a1, a2)− F (a1, b2)

for all a,b ∈ R
2, a = (a1, a2), b = (b1, b2). Hence there exists a bidimensional

random vector X with P as its probability.

Remark 1.54. LetX : (Ω,F) → (Rn,BRn) be a random vector of dimension n,
let Xi = πi◦X, 1 ≤ i ≤ n, be the nth component of X, and let FXi , 1 ≤ i ≤ n,
and FX be the respective cumulative distribution functions of Xi and X. The
knowledge of FX allows one to infer FXi , 1 ≤ i ≤ n, through the relation

FXi(ti) = P (Xi ≤ ti) = FX(+∞, . . . , ti, . . . ,+∞),

for every ti ∈ R.

Definition 1.55. Let X : (Ω,F) → (Rn,BRn) be a random vector of di-
mension n. If the probability law PX : BRn → [0, 1] with respect to X is
endowed with a density with respect to the Lebesgue measure μn on R

n (or
product measure of Lebesgue measures μ on R), then this density is called the
probability density of X. If f : Rn → R+ is the probability density of X, then

FX(t) =

∫ t

−∞
fdμn ∀t ∈ R

n,

and moreover,

PX(B) =

∫
B

f(x1, . . . , xn)dμn ∀B ∈ BR.
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Proposition 1.56. Under the assumptions of the preceding definition, defin-
ing Xi = πi ◦X, 1 ≤ i ≤ n, then PXi is endowed with density with respect to
Lebesgue measure μ on R and its density function fi : R → R+ is given by

fi(xi) =

∫ i

f(x1, . . . , xn)dμn−1,

where we have denoted by
∫ i

the integration with respect to all variables but
the ith one.

Proof . By (1.4) we have that for all Bi ∈ BR

PXi(Bi) = PX(CBi) =

∫
CBi

f(x1, . . . , xn)dμn

=

∫
R

dx1 · · ·
∫
Bi

dxi · · ·
∫
R

f(x1, . . . , xn)dxn

=

∫
Bi

dxi

∫ i

f(x1, . . . , xn)dμn−1.

By setting fi(xi) =
∫ i
f(x1, . . . , xn)dμn−1, we see that fi is the density of

PXi . �
Remark 1.57. The definition of a discrete random vector is analogous to
Definition 1.42.

1.3 Independence

Definition 1.58. The random variables X1, . . . , Xn, defined on the same
probability space (Ω,F , P ), are independent if they generate independent
classes of σ-algebras. Hence

P (A1 ∩ · · · ∩ An) =
n∏

i=1

P (Ai) ∀Ai ∈ X−1
i (BR).

What follows is an equivalent definition.

Definition 1.59. The componentsXi, 1 ≤ i ≤ n, of an n-dimensional random
vector X defined on the probability space (Ω,F , P ) are independent if

PX =
n⊗

i=1

PXi ,

where PX and PXi are the probability laws of X and Xi, 1 ≤ i ≤ n, respec-
tively (see Proposition A.44.)
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To show that Definitions 1.59 and 1.58 are equivalent, we need to show
that the following equivalence holds:

P (A1 ∩ · · · ∩An) =

n∏
i=1

P (Ai) ⇔ PX =

n⊗
i=1

PXi ∀Ai ∈ X−1
i (BR).

We may recall first that PX =
⊗n

i=1 PXi is the unique measure on BRn that
factorizes on rectangles, i.e., if B =

∏n
i=1Bi, with Bi ∈ BR, we have

PX(B) =
n∏

i=1

PXi(Bi).

To prove the implication from left to right, we observe that if B is a rectangle
in BRn as defined above, then

PX(B) = P (X−1(B)) = P

(
X−1

(
n∏

i=1

Bi

))
= P

(
n⋂

i=1

X−1
i (Bi)

)

=

n∏
i=1

P (X−1
i (Bi)) =

n∏
i=1

PXi(Bi).

Conversely, for all i = 1, . . . , n:

Ai ∈ X−1
i (BR) ⇒ ∃Bi ∈ BR, so that Ai = X−1

i (Bi).

Thus, since A1 ∩ · · · ∩An =
⋂n

i=1X
−1
i (Bi), we have

P (A1 ∩ · · · ∩An) = P

(
n⋂

i=1

X−1
i (Bi)

)
= P (X−1(B)) = PX(B)

=

n∏
i=1

PXi(Bi) =

n∏
i=1

P (X−1
i (Bi)) =

n∏
i=1

P (Ai).

Proposition 1.60.

1. The real-valued random variables X1, . . . , Xn are independent if and only
if, for every t = (t1, . . . , tn)

′ ∈ R
n,

FX(t) := P (X1 ≤ t1 ∩ · · · ∩Xn ≤ tn) = P (X1 ≤ t1) · · ·P (Xn ≤ tn)

= FX1 (t1) · · ·FXn(tn).

2. Let X = (X1, . . . , Xn)
′ be a real-valued random vector with density f and

probability PX that is absolutely continuous with respect to the measure μn.
The following two statements are equivalent:
• X1, . . . , Xn are independent.
• f = fX1 · · · fXn almost surely a.s.
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Remark 1.61. From the previous definition it follows that if a random vector
X has independent components, then their marginal distributions determine
the joint distribution of X.

Example 1.62. Let X be a bidimensional random vector with uniform density
f(x) = c ∈ R for all x = (x1, x2)

′ ∈ R. If R is, say, a semicircle, then X1

and X2 are not independent. But if R is a rectangle, then X1 and X2 are
independent.

Proposition 1.63. Let X1, . . . , Xn be independent random variables defined
on (Ω,F , P ) and valued in (E1,B1), . . . , (En,Bn). If the mappings

gi : (Ei,Bi) → (Fi,Ui), 1 ≤ i ≤ n,

are measurable, then the random variables g1(X1), . . . , gn(Xn) are indepen-
dent.

Proof . Defining hi = gi(Xi), 1 ≤ i ≤ n, gives

h−1
i (Ui) = X−1

i (g−1
i (Ui)) ∈ X−1

i (Bi)

for every Ui ∈ Ui. The assertion then follows from Definition 1.58. �

Sums of Two Random Variables

Let X and Y be two real-valued, independent, continuous random variables
on (Ω,F , P ) with densities f and g, respectively. Defining Z = X + Y , then
Z is a random variable, and let FZ be its cumulative distribution. It follows
that

FZ(t) = P (Z ≤ t) = P (X + Y ≤ t) = P(X,Y )(Rt),

whereRt =
{
(x, y) ∈ R

2|x+ y ≤ t
}
. By Proposition 1.60 (X,Y ) is continuous

and its density is f(X,Y ) = f(x)g(y), for all (x, y) ∈ R
2. Therefore, for all t ∈ R:

FZ(t) = P(X,Y )(Rt) =

∫ ∫
Rt

f(x)g(y)dxdy

=

∫ +∞

−∞
dx

∫ t−x

−∞
f(x)g(y)dy =

∫ +∞

−∞
f(x)dx

∫ t

−∞
g(z − x)dz

=

∫ t

−∞
dz

∫ +∞

−∞
f(x)g(z − x)dx ∀z ∈ R.

Hence, the function

fZ(z) =

∫ +∞

−∞
f(x)g(z − x)dx (1.5)

is the density of the random variable Z.



20 1 Fundamentals of Probability

Definition 1.64. The function fZ defined by (1.5) is the convolution of f
and g, denoted by f ∗ g. Analogously it can be shown that if f1, f2, f3 are the
densities of the independent random variables X1, X2, X3, then the random
variable Z = X1 +X2 +X3 has density

f1 ∗ f2 ∗ f3(z) =
∫ +∞

−∞

∫ +∞

−∞
f1(x)f2(y − x)f3(z − y)dxdy

for every z ∈ R. This extends to n independent random variables in an anal-
ogous way.

1.4 Expectations

Definition 1.65. Let (Ω,F , P ) be a probability space and X : (Ω,F) →
(R,BR) a real-valued random variable. Assume that X is P -integrable, i.e.,
X ∈ L1(Ω,F , P ); then

E[X ] =

∫
Ω

X(ω)dP (ω)

is the expected value or expectation of the random variable X .

Remark 1.66. By Proposition A.29 it follows that if X is integrable with
respect to P , then its expected value is given by

E(X) =

∫
R

IR(x)dPX (x) :=

∫
xdPX .

Remark 1.67. If X is a continuous real-valued random variable with density
function f of PX , then

E[X ] =

∫
xf(x)dμ.

On the other hand, if f is discrete with probability function p, then

E[X ] =
∑

xp(x).

Proposition 1.68. If X : (Ω,F) → (E,B) is a random variable with prob-
ability law PX and H : (E,B) → (F,U) a measurable function, then, defining
Y = H◦X = H(X), Y is a random variable. Furthermore, if H : (E,B) → (R,
BR), then Y ∈ L1(P ) is equivalent to H ∈ L1(PX) and

E[Y ] =

∫
H(x)PX(dx).
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Corollary 1.69 Let X = (X1, . . . , Xn)
′ be a random vector defined on

(Ω,F , P ) whose components are valued in (E1,B1), . . . , (En,Bn), respectively.
If h : (E1 × · · · × En,B1 ⊗ · · · ⊗ Bn) → (R,BR), then Y = h(X) ≡ h ◦X is a
real-valued random variable. Moreover,

E[Y ] =

∫
h(x1, . . . , xn)dPX(x1, . . . , xn),

where PX is the joint probability of the vector X.

Proposition 1.70. Let X be a real, P -integrable random variable on the
space (Ω,F , P ). For every α, β ∈ R, E[αX + β] = αE[X ] + β.

Definition 1.71. A real-valued P -integrable random variable X is centered
if it has an expectation zero.

Remark 1.72. If X is a real, P -integrable random variable, then X−E[X ] is a
centered random variable. This follows directly from the previous proposition.

Definition 1.73. Given a real P -integrable random variable X , if E[(X −
E[X ])n] < +∞, n ∈ N, then it is the nth centered moment. The second
centered moment is the variance, and its square root, the standard deviation
of a random variable X , denoted by V ar[X ] and σ =

√
V ar[X ], respectively.

Proposition 1.74. Let (Ω,F) be a probability space and X : (Ω,F) →
(R,BR) a random variable. Then the following two statements are equivalent:

1. X is square-integrable with respect to P (Definition A.62).
2. X is P -integrable and V ar[X ] < +∞.

Moreover, under these conditions,

V ar[X ] = E[X2]− (E[X ])2. (1.6)

Proof .

1⇒2: Because L2(P ) ⊂ L1(P ), X ∈ L1(P ). Obviously, the constant E[X ] is
P -integrable; thus X − E[X ] ∈ L2(P ) and V ar[X ] < +∞.

2⇒1: By assumption, E[X ] exists and X − E[X ] ∈ L2(P ); thus X = X −
E[X ] + E[X ] ∈ L2(P ). Finally, due to the linearity of expectations,

V ar[X ] = E[(X − E[X ])2] = E[X2 − 2XE[X ] + (E[X ])2]

= E[X2]− 2(E[X ])2 + (E[X ])2 = E[X2]− (E[X ])2.

�

Proposition 1.75. If X is a real-valued P -integrable random variable and
V ar[X ] = 0, then X = E[X ] almost surely with respect to the measure P .
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Proof . V ar[X ] = 0 ⇒
∫
(X −E[X ])2dP = 0. With (X −E[X ])2 nonnegative,

X − E[X ] = 0 almost everywhere with respect to P ; thus X = E[X ] almost
surely with respect to P . This is equivalent to

P (X �= E[X ]) = P ({ω ∈ Ω|X(ω) �= E[X ]}) = 0.
�

Proposition 1.76 (Markov’s inequality). Let X be a nonnegative real
P -integrable random variable on a probability space (Ω,F , P ); then

P (X ≥ λ) ≤ E[X ]

λ
∀λ ∈ R

∗
+.

Proof . The cases E[X ] = 0 and λ ≤ 1 are trivial. So let E[X ] > 0 and λ > 1;
then setting m = E[X ] results in

m =

∫ +∞

0

xdPX ≥
∫ +∞

λm

xdPX ≥ λmP (X ≥ λm),

thus P (X ≥ λm) ≤ 1/λ. �

Proposition 1.77 (Chebyshev’s inequality). If X is a real-valued and
P -integrable random variable with variance V ar[X ] (possibly infinite), then

P (|X − E[X ]| ≥ ε) ≤ V ar[X ]

ε2
.

Proof . Apply Markov’s inequality to the random variable (X − E[X ])2. �
More in general, the following proposition holds.

Proposition 1.78. Let X be a real-valued random variable on a probability
space (Ω,F , P ), and let h : R → R+; then

P (h(X) ≥ λ) ≤ E[h(X)]

λ
∀λ ∈ R

∗
+.

Proof . See, e.g., Jacod and Protter (2000, p. 22). �
Example 1.79.

1. If X is a P -integrable continuous random variable with density f , where
the latter is symmetric around the axis x = a, a ∈ R, then E[X ] = a.

2. If X is a Gaussian variable, then E[X ] = m and V ar[X ] = σ2.
3. If X is a discrete, Poisson-distributed random variable, then E[X ] = λ,
V ar[X ] = λ.

4. If X is binomially distributed, then E[X ] = np, V ar[X ] = np(1− p).
5. If X is continuous and uniform with density f(x) = I[a,b](x)

1
b−a , a, b ∈ R,

then E[X ] = a+b
2 , V ar[X ] = (b−a)2

12 .
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6. If X is a Cauchy variable, then it does not admit an expected value.

Definition 1.80. Let X : (Ω,F) → (Rn,BRn) be a vector of random variables
with P -integrable components Xi, 1 ≤ i ≤ n. The expected value of the vector
X is

E[X] = (E[X1], . . . , E[X2])
′.

Proposition 1.81. Let (Xi)1≤i≤n be a real, P -integrable family of random
variables on the same space (Ω,F , P ). Then

E[X1 + · · ·+Xn] =
n∑

i=1

E[Xi].

Further, if αi, i = 1, . . . , n, is a family of real numbers, then

E[α1X1 + · · ·+ αnXn] =

n∑
i=1

αiE[Xi].

Definition 1.82. If X1, X2, and X1X2 are P -integrable random variables,
then

Cov[X1, X2] = E[(X1 − E[X1])(X2 − E[X2])]

is the covariance of X1 and X2.

Remark 1.83. Due to the linearity of the E[·] operator, if E[X1X2] < +∞,
then

Cov[X1, X2] = E[(X1 − E[X1])(X2 − E[X2])]

= E[X1X2 −X1E[X2]− E[X1]X2 + E[X1]E[X2]]

= E[X1X2]− E[X1]E[X2].

Proposition 1.84.

1. If X is a square-integrable random variable with respect to P , and a, b ∈ R,
then

V ar[aX + b] = a2V ar[X ].

2. If both X1 and X2 are in L2(Ω,F , P ), then

V ar[X1 +X2] = V ar[X1] + V ar[X2] + 2Cov[X1, X2].
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Proof .

1. Since V ar[X ] = E[X2]− (E[X ])2, then

V ar[aX + b] = E[(aX + b)2]− (E[aX + b])2

= a2E[X2] + 2abE[X ] + b2 − a2(E[X ])2 − b2 − 2abE[X ]

= a2(E[X2]− (E[X ])2) = a2V ar[X ].

2.

V ar[X1] + V ar[X2] + 2Cov[X1, X2]

= E[X2
1 ]−(E[X1])

2+E[X2
2 ]−(E[X2])

2 + 2(E[X1X2]− E[X1]E[X2])

= E[(X1 +X2)
2]− 2E[X1]E[X2]− (E[X1])

2 − (E[X2])
2

= E[(X1 +X2)
2]− (E[X1 +X2])

2 = V ar[X1 +X2].
�

Definition 1.85. If X1 and X2 are square-integrable random variables with
respect to P , having the respective standard deviations σ1 > 0 and σ2 > 0,
then

ρ(X1, X2) =
Cov[X1, X2]

σ1σ2
is the correlation coefficient of X1 and X2.

Remark 1.86. If X1 and X2 are L2(Ω,F , P ) random variables, then, by the
Cauchy–Schwarz inequality (1.20),

|ρ(X1, X2)| ≤ 1;

moreover,

|ρ(X1, X2)| = 1 ⇔ ∃a, b ∈ Rso that X2 = aX1 + b, a.s.

Proposition 1.87. If X1 and X2 are real-valued independent random vari-
ables on (Ω,F , P ) and endowed with finite expectations, then their product
X1X2 ∈ L1(Ω,F , P ) and

E[X1X2] = E[X1]E[X2].

Proof . Given the assumption of independence of X1 and X2, it is a tedious
though trivial exercise to show that X1, X2 ∈ L1(Ω,F , P ). For the second
part, by Corollary 1.69:

E[X1X2] =

∫
X1X2dP(X1X2) =

∫
X1X2d(PX1 ⊗ PX2)

=

∫
X1dPX1

∫
X2dPX2 = E[X1]E[X2].

�
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Remark 1.88. From Definition 1.82 and Remark 1.83 it follows that the co-
variance of two independent variables is zero.

Proposition 1.89. If two random variables X1 and X2 are independent, then
the variance operator V ar[·] is additive, but not homogeneous. This follows
from Proposition 1.84 and Remark 1.88.

Proposition 1.90. Suppose X and Y are independent real-valued random
variables such that X + Y ∈ L2(P ); then both X and Y are in L2(P ).

Proof . We know that

X2 + Y 2 ≤ (X + Y )2 + 2|XY |;

because of independence we may state that

E[|XY |] ≤ E[|X |]E[|Y |].

It will then be sufficient to prove that both X,Y ∈ L1(P ).
Since |Y | ≤ |x| + |x + Y |, if by absurd E[|Y |] = +∞, this would imply

E(|x + Y |) = +∞, for any x ∈ R, hence E[|X + Y |] = +∞, against the
assumption that X + Y ∈ L2(P ). �

Characteristic Functions

Let X be a real-valued random variable defined on the probability space
(Ω,F , P ), and let PX be its probability law. For any t ∈ R, the random
variables cos tX and sin tX surely belong to L1; hence their expected values
are well defined:

E[eitX ] = E[cos tX + i sin tX ] ∈ C.

Definition 1.91. The characteristic function associated with the random
variable X is defined as the function

t ∈ R 	→ φX(t) = E[eitX ] =

∫
R

eitxPX(dx) ∈ C.

Example 1.92. The characteristic function of a standard normal random vari-
able X is

φX(s) = E
[
eisX

]
=

1√
2π

∫ ∞

−∞
eisxe−

1
2x

2

dx

= e−
s2

2
1√
2π

∫ ∞

−∞
e−

1
2 (x−is)2dx = e−

s2

2 .
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Proposition 1.93 (Properties of a characteristic function).

1. φX(0) = 1.
2. |φX(t)| ≤ 1 for all t ∈ R.
3. φX is uniformly continuous in R.
4. For a, b ∈ R, let X = aY + b. Then φX(t) = eibtφY (at), t ∈ R.

Proof . See, e.g., Métivier (1968). �

Theorem 1.94 (Inversion theorem). Let φ : R → C be the characteristic
function of a probability law P on BR; then for any points of continuity a, b ∈ R

of the cumulative distribution function associated with P , with a < b, the
following holds:

P ((a, b]) = lim
c→+∞

∫ c

−c

e−ita − e−itb

it
φ(t)dt.

Further, if φ ∈ L1(ν1) (where ν1 is the usual Lebesgue measure on BR), then
P is absolutely continuous with respect to ν1, and the function

f(x) =

∫ +∞

−∞
e−itxφ(t)dt x ∈ R

is a probability density function for P . The density function f is continuous.

Proof . See, e.g., Lukacs (1970, pp. 31–33). �
As a direct consequence of the foregoing result, the following theorem

holds, according to which a probability law is uniquely identified by its char-
acteristic function.

Theorem 1.95. Let P1 and P2 be two probability measures on BR, and let
φP1 and φP2 be the corresponding characteristic functions. Then

P1 = P2 ⇔ φP1(t) = φP2 (t), t ∈ R.

Proof . See, e.g., Ash (1972). �

Theorem 1.96. Let φ : R → C be the characteristic function of a probability
law on BR. For any x ∈ R the limit

p(x) = lim
T→∞

∫ T

−T

e−itxφ(t)dt

exists and equals the amount of the jump of the cumulative distribution func-
tion corresponding to φ at point x.

Corollary 1.97 Let φ : R → C be the characteristic function of a continuous
probability law on BR. Then for any x ∈ R,
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lim
T→∞

∫ T

−T

e−itxφ(t)dt = 0.

Corollary 1.98 A probability law on R is purely discrete if and only if its
characteristic function is almost periodic (Bohr 1947, p. 60). In particular,
if φ : R → C is the characteristic function of a Z-valued random variable X,
then for any x ∈ Z,

P (X = x) =
1

2π

∫ π

−π

e−itxφ(t)dt.

Proof . See, e.g., Lukacs (1970, pp. 35–36) and Fristedt and Gray (1997,
p. 227). �

Characteristic Functions of Random Vectors

Let X = (X1, . . . , Xk) be a random vector defined on the probability space
(Ω,F , P ) and valued in R

k, for k ∈ N, k ≥ 2, and let PX be its joint probability
law on BRk .

Given t,x ∈ R
k, let t · x := t1x1 + · · · tkxk ∈ R be their scalar product.

Definition 1.99. The characteristic function associated with the random
vector X is defined as the function

φX(t) := E[eit·X] ∈ C, t ∈ R
k. (1.7)

A uniqueness theorem holds in this case too.

Theorem 1.100. Let PX and PY be two probability laws on BRk having the
same characteristic function, i.e., for all t ∈ R

k,

φX(t) =

∫
· · ·

∫
Rk

eit·xPX(dx) =

∫
· · ·

∫
Rk

eit·yPY(dy) = φY(t).

Then X ∼ Y, i.e., PX ≡ PY.

The characteristic function of a random vector satisfies the following prop-
erties, the proof of which is left as an exercise.

Proposition 1.101. Let φX : Rk → C be the characteristic function of a
random vector X : (Ω,F) → (Rk,BRk); then

1. φX(0) = φX((0, · · · , 0))) = 1.
2. |φX(t)| ≤ 1, for any t ∈ R

k.
3. φX is uniformly continuous in R

k.
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4. Let Y be a random vector of dimension k such that for any i ∈ {1, . . . , k},
Yi = aiXi + bi, with a,b ∈ R

k. Then, for any t = (t1, . . . , tk) ∈ R
k,

φY(t) = eib·t φX(a1t1 + · · ·aktk).

An interesting consequence of the foregoing results is the following one.

Corollary 1.102 Let φX : Rk → C be the characteristic function associ-
ated with a random vector X = (X1, . . . , Xk) : (Ω,F) → (Rk,BRk); then the
characteristic function φXi associated with the ith component Xi : (Ω,F) →
(R,BR) for i ∈ {1, . . . , k} is such that

φXi(t) = φX(t(i)), t ∈ R,

where t(i) = (t
(i)
j )1≤j≤k ∈ R

k is such that, for any j = 1, . . . , k,

t
(i)
j =

{
0, se j �= i;
t, se j = i.

The following theorem extends to characteristic functions the factorization
property of the joint distribution of independent random variables.

Theorem 1.103. Let φX : R
k → C be the characteristic function of the

random vector X = (X1, . . . , Xk) : (Ω,F) → (Rk,BRk), and let φXi : R → C

be the characteristic function of the component Xi : (Ω,F) → (R,BR), i ∈
{1, . . . , k}. A necessary and sufficient condition for the independence of the
random variables X1, . . . , Xk is

φX(t) =
k∏

i=1

φXi(ti)

for any t = (t1, . . . , tk) ∈ R
k.

Proof . We will limit ourselves to proving that the condition is necessary. Let
us then assume the independence of the components Xi, per i = 1, . . . , k.
From (1.7) we obtain

φX(t) = E
[
eit·X

]
= E

[
ei

∑
i tiXi

]

= E

[
k∏

i=1

eitiXi

]
=

k∏
i=1

E
[
eitiXi

]

=

k∏
i=1

φXi(ti).

�
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Corollary 1.104 Let X = (X1, . . . , Xk) be a random vector with independent
components. Let φX and φXi , for i= 1, . . . , k, be the characteristic functions
associated with X and its components, respectively. Consider the random vari-
able sum of the components

S :=
k∑

i=1

Xi : (Ω,F) → (R,BR);

then the characteristic function φS associated with it is such that

φS(t) =

k∏
i=1

φXi(t) = φX((t, t, . . . , t)), t ∈ R.

In the case of identically distributed random variables we may further state
the following corollary.

Corollary 1.105 Let Xi, i = 1, . . . , n be a family of independent and identi-
cally distributed (i.i.d.) random variables.

a. If X =

n∑
i=1

Xi, then

φX(t) = (φX1(t))
n .

b. If X̄ =
1

n

n∑
i=1

Xi, then

φX̄(t) =

(
φX1

(
t

n

))n

.

Example 1.106. An easy way, whenever applicable, to identify the probability
law of a random variable is based on the uniqueness theorem of characteristic
functions associated with probability laws.

An interesting application regards the distribution of the sum of indepen-
dent random variables.

1. The sum of two independent binomial random variables distributed as
B(r1, p) and B(r2, p) is distributed as B(r1 + r2, p) for any r1, r2 ∈ N

∗

and any p ∈ [0, 1].
2. The sum of two independent Poisson variables distributed as P (λ1) and
P (λ2) is distributed as P (λ1 + λ2) for any λ1, λ2 ∈ R

∗
+.

3. The sum of two independent Gaussian random variables distributed as
N(m1, σ

2
1) and N(m2, σ

2
2) is distributed as N(m1 +m2, σ

2
1 + σ2

2) for any
m1,m2 ∈ R and any σ2

1 , σ
2
2 ∈ R

∗
+. Note that

aN(m1, σ
2
1) + b = N(am1 + b, a2σ2

1).



30 1 Fundamentals of Probability

4. The sum of two independent Gamma random variables distributed as
Γ (α1, λ) and Γ (α2, λ) is distributed as Γ (α1 + α2, λ).

Definition 1.107. A family of random variables is said to be reproducible if
it is closed with respect to the sum of independent random variables. Corre-
spondingly, their probability distributions are called reproducible.

We may then state that binomial, Poisson, Gaussian, and Gamma distri-
butions are reproducible.
Remark 1.108. Exponential distributions are not reproducible. In fact the sum
of two independent exponential random variables X1 ∼ exp {λ} and X2 ∼
exp {λ} is not exponentially distributed, though it is Gamma distributed:

X = X1 +X2 ∼ Γ (2, λ) .

The following theorem, though an easy consequence of the previous results,
is of great relevance.

Theorem 1.109 (Cramér–Wold theorem). Consider the random vec-
tor X = (X1, . . . , Xk), valued in R

k, and the vector of real numbers c =
(c1, . . . , ck) ∈ R

k. Let Yc be the random variable defined by

Yc := c ·X =
k∑

i=1

ciXi,

and let φX and φYc be the characteristic functions associated with the random
vector X and the random variable Yc, respectively. Then

i. φYc(t) = φX(t c) for any t ∈ R.
ii. φX(t) = φYt(1) for any t ∈ R

k.

As a consequence the distribution of Yc is determined by the joint distri-
bution of the vector X and, conversely, the joint distribution of vector X is
determined by the distribution of Yc by varying c ∈ R

k.

1.5 Gaussian Random Vectors

The Cramér–Wold theorem suggests the following definition of Gaussian ran-
dom vectors, also known as multivariate normal vectors.

Definition 1.110. A random vector X = (X1, . . . , Xk)
′, valued in R

k, is
said to be multivariate normal or a Gaussian vector if and only if the scalar
random variable, valued in R, defined by

Yc := c ·X =

k∑
i=1

ciXi,
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has a normal distribution for any choice of the vector c = (c1, . . . , ck)
T ∈ R

k.

Given a random vector X = (X1, . . . , Xk)
′, valued in R

k, and such that
Xi ∈ L2, i ∈ {1, . . . , k}, it makes sense to define the vectors of the means

μX = E(X) := (E(X1), . . . ,E(Xk))
′

and the variance-covariance matrix

�ΣX := cov(X) := E[(X− μX)(X− μX)′].

It is trivial to recognize that �ΣX is a symmetric and positive semidefinite
square matrix; indeed, in the nontrivial cases it is positive definite.

Recall that a square matrix A = (aij) ∈ R
k×k is said to be positive

semidefinite on R
k if, for any vector x = (x1, . . . , xk)

T ∈ R
k, x �= 0, it results

in

x · Ax =

k∑
i=1

k∑
j=1

xiaijxj ≥ 0.

The same matrix is said to be positive definite if the last inequality is
strict (>).

From the theory of matrices we know that a positive definite square matrix
is nonsingular, hence invertible, and its determinant is positive; in this case
its inverse matrix is positive definite too. We will denote by A−1 the inverse
matrix of A.

Let X be a multivariate normal vector valued in R
k for k ∈ N

∗ such that
X ∈ L2. If μX ∈ R

k is its mean vector, and �ΣX ∈ R
k×k is its variance-

covariance matrix, then we will write

X ∼ N(μX, �ΣX).

Theorem 1.111. Let X be a multivariate normal vector valued in R
k for

k ∈ N
∗, and let X ∈ L2. If μX ∈ R

k, and �ΣX ∈ R
k×k is a positive definite

matrix, then the characteristic function of X is as follows:

φX(t) = e
i t′μX − 1

2
t′ �ΣX t

, t ∈ R
k.

Further, X admits a joint probability density given by

fX(x) =

(
1

(2π)k det �ΣX

) 1
2

e−
1
2 (x−μX)′ 
ΣX

−1 (x−μX)

for x ∈ R
k.

Proof . See, e.g., Billingsley (1986). �
The following propositions are a consequence of the foregoing results
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Proposition 1.112. If X is a multivariate normal vector valued in R
k for

k ∈ N
∗, then its components Xi, per i = 1, . . . , k, are themselves Gaussian

(scalar random variables).
The components are independent normal random variables if and only if

the variance-covariance matrix of the random vector X is diagonal.

Proposition 1.113. Let X be a multivariate normal vector valued in R
k for

k ∈ N
∗ such that X ∼ N(μX, �ΣX). Given a matrix D ∈ R

p×k, with p ∈ N
∗,

and a vector b ∈ R
p, the random vector Y = DX + b is itself a Gaussian

random vector:
Y ∼ N(DμX + b, D �ΣXD

T ).

Proof . The proof is not difficult and is left as an exercise. We may at any rate
notice that, for well-known properties of expected values and covariances,

E(Y) = DμX + b,

whereas
�ΣY = D �ΣXD

T .

We may now notice that, if Σ is a positive-definite square matrix, from the
theory of matrices it is well known that there exists a nonsingular square
matrix P ∈ R

k×k such that
Σ = P PT .

We may then consider the linear transformation

Z = P−1 (X− μX),

which leads to
E(Z) = P−1

E(X− μX) = 0,

while

�ΣZ = P−1 �ΣX (P−1)T

= P−1PPT (P−1)

= (P−1P )(P−1P )T

= Ik,

having denoted by Ik the identity matrix of dimension k. From Theorem 1.111
it follows that Z ∼ N(0, Ik), so that its joint density is given by

fZ(z) =

(
1

2π

) k
2

e−
1
2z

′z

for z ∈ R
k. It is thus proven that the random vector Z has all its components

i.i.d. with distribution N(0, 1). �
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A final consequence of the foregoing results is the following proposition.

Proposition 1.114. Let X = (X1, . . . , Xn)
′ for n ∈ N

∗ be a multivariate
normal random vector such that all its components are i.i.d. normal random
variables, Xj ∼ N(μ, σ2) for any j ∈ {1, . . . , n}; then any random vector
that is obtained by applying to it a linear transformation is still a multivariate
normal random vector, but its components may not necessarily be independent.

1.6 Conditional Expectations

Let X,Y : (Ω,F , P ) → (R,BR) be two discrete random variables with joint
discrete probability distribution p. There exists an, at most countable, subset
D ⊂ R

2 such that
p(x, y) �= 0 ∀(x, y) ∈ D,

where p(x, y) = P (X = x ∩ Y = y). If, furthermore, D1 and D2 are the
projections of D along its axes, then the marginal distributions of X and Y
are given by

p1(x) = P (X = x) =
∑
y

p(x, y) �= 0 ∀x ∈ D1,

p2(y) = P (Y = y) =
∑
x

p(x, y) �= 0 ∀y ∈ D2.

Definition 1.115. Given the preceding assumptions and fixing y ∈ R, then
the probability of y conditional on X = x ∈ D1 is

p2(y|x) =
p(x, y)

p1(x)
=
P (X = x ∩ Y = y)

P (X = x)
= P (Y = y|X = x).

Furthermore,
y → p2(y|X = x) ∈ [0, 1] ∀x ∈ D1

is called the probability function of y conditional on X = x.

Definition 1.116. Analogous to the definition of expectation of a discrete
random variable, the expectation of Y , conditional on X = x, is ∀x ∈ D1,

E[Y |X = x] =
∑
y

yp2(y|x)

=
1

p1(x)

∑
y

yp(x, y) =
1

p1(x)

∑
y∈R

yp(x, y)

=
1

p1(x)

∫ ∫
Rx

ydP(X,Y )(x, y)

=
1

P (X = x)

∫
[X=x]

Y (ω)dP (ω),
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with Rx = {x} × R.

Definition 1.117. Let X : (Ω,F) → (E,B) be a discrete random variable
and Y : (Ω,F) → (R,BR) P -integrable. Then the mapping

x→ E[Y |X = x] =
1

P (X = x)

∫
[X=x]

Y (ω)dP (ω) (1.8)

is the expected value of Y conditional on X , defined on the set x ∈ E with
PX(x) �= 0.

Remark 1.118. It is standard to extend the mapping (1.8) to the entire set
E by fixing its value arbitrarily at the points x ∈ E where P ([X = x]) = 0.
Hence there exists an entire equivalence class of functions f defined on E such
that

f(x) = E[Y |X = x] ∀x ∈ E such that PX(x) �= 0.

An element f of this class is said to be defined on E almost surely with respect
to PX . A generic element of this class is denoted by E[Y |X = ·], E[Y |·], or
EX [Y ]. Furthermore, its value at x ∈ E is denoted by E[Y |X = x], E[Y |x],
or EX=x[Y ].

Definition 1.119. Let X : (Ω,F) → (E,B) be a discrete random variable
and x ∈ E so that PX(x) �= 0, and let F ∈ F . The indicator of F , denoted by
IF : Ω → R, is a real-valued, P -integrable random variable. The expression

P (F |X = x) = E[IF |X = x] =
P (F ∩ [X = x])

P (X = x)

is the probability of F conditional upon X = x.

Remark 1.120. Let X : (Ω,F) → (E,B) be a discrete random variable. If we
define EX = {x ∈ E|PX(x) �= 0}, then for every x ∈ EX the mapping

P (·|X = x) : F → [0, 1],

so that

P (F |X = x) =
P (F ∩ [X = x])

P (X = x)
∀F ∈ F

is a probability measure on F , conditional on X = x. Further, if we arbitrarily
fix the value of P (F |X = x) at the points x ∈ E where PX is zero, then we
can extend the mapping

x ∈ EX → P (F |X = x)

to the whole of E, so that P (·|X = x) : F → [0, 1] is again a probability
measure on F , defined almost surely with respect to PX .
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Definition 1.121. The family of functions (P (·|X = x))x∈E is called a
regular version of the conditional probability with respect to X .

Proposition 1.122. Let (P (·|X = x))x∈E be a regular version of the condi-
tional probability with respect to X. Then, for any Y ∈ L1(Ω,F , P ):∫

Y (ω)dP (ω|X = x) = E[Y |X = x], PX-a.s.

Proof . First, we observe that Y , being a random variable, is measurable.3

Now from (1.8) it follows that

E[IF |X = x] = P (F |X = x) =

∫
IF (ω)P (dω|X = x)

for every x ∈ E, PX(x) �= 0. Now let Y be an elementary function so that

Y =

n∑
i=1

λiIFi .

Then, for every x ∈ EX :

E[Y |X = x] =

n∑
i=1

λiE[IFi |X = x] =

n∑
i=1

λi

∫
IFi(ω)P (dω|X = x)

=

∫ (
n∑

i=1

λiIFi

)
(ω)P (dω|X = x) =

∫
Y (ω)dP (ω|X = x).

If Y is a positive real-valued random variable, then, by Theorem A.14, there
exists an increasing sequence (Yn)n∈N of elementary random variables so that

Y = lim
n→∞Yn = sup

n∈N

Yn.

Therefore, for every x ∈ E:

E[Y |X = x] = sup
n∈N

E[Yn|X = x] = sup
n∈N

∫
Yn(ω)dP (ω|X = x)

=

∫ (
sup
n∈N

Yn

)
(ω)dP (ω|X = x) =

∫
Y (ω)dP (ω|X = x),

where the first and third equalities are due to the property of Beppo–Levi
(Proposition A.29). Lastly, if Y is a real-valued, P -integrable random variable,
then it satisfies the assumptions, being the difference between two positive
integrable functions. �

A notable extension of the preceding results and definitions is the subject
of the following presentation.

3This only specifies its σ-algebras, not its measure.
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Expectations Conditional on a σ-Algebra

Proposition 1.123. Let (Ω,F , P ) be a probability space and G a σ-algebra
contained in F . For every real-valued random variable Y ∈ L1(Ω,F , P ), there
exists a unique element Z ∈ L1(Ω,G, P ) such that for all G ∈ G:∫

G

Y dP =

∫
G

ZdP.

Proof . First we consider Y nonnegative. The mapping ν : G → R+ given by

ν(G) =

∫
G

Y (ω)dP (ω) ∀G ∈ G

is a bounded measure and absolutely continuous with respect to P on G. In
fact, for G ∈ G

P (G) = 0 ⇒ ν(G) = 0.

Since P is bounded, thus σ-finite, then, by the Radon–Nikodym Theo-
rem A.54, there exists a unique Z ∈ L1(Ω,G, P ) such that

ν(G) =

∫
G

ZdP ∀G ∈ G.

The case Y of arbitrary sign can be easily handled by the standard decompo-
sition Y = Y + − Y −. �

Definition 1.124. Let (Ω,F , P ) be a probability space and G a σ-algebra
contained in F . Given a real-valued random variable Y ∈ L1(Ω,F , P ), any
real-valued random variable Z ∈ L1(Ω,G, P ) that satisfies the condition∫

G

Y dP =

∫
G

ZdP, ∀G ∈ G (1.9)

will be called a version of the conditional expectation of Y given G and will
be denoted by E[Y |G] or by EG [Y ].

Definition 1.125. Let now X : (Ω,F) → (Rk,BRk) be a random vector, and
let FX ⊂ F be the σ-algebra generated by X . Given a real-valued random
variable Y ∈ L1(Ω,F , P ), we define the conditional expectation of Y given X
the real-valued random variable such that

E[Y |X ] = E[Y |FX ].

Again thanks to the Radon–Nikodym theorem, the following proposition
can be shown directly.
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Proposition 1.126. Let X : (Ω,F) → (Rk,BRk) be a random vector and
Y : (Ω,F) → (R,BR) a P -integrable random variable. Then there exists a
unique class of real-valued h ∈ L1(Rk,BRk , PX) such that∫

X−1(B)

Y (ω)dP (ω) =

∫
B

hdPX , ∀B ∈ BRk . (1.10)

By known results about integration with respect to image measures
(change of integration variables), we may rewrite Equation (1.10) as follows:∫

X−1(B)

Y (ω)dP (ω) =

∫
X−1(B)

(h ◦X)(ω)dPX , ∀B ∈ BRk . (1.11)

By direct comparison of (1.11) and (1.9), uniqueness implies that

E[Y |X ] = h ◦X.

The usual interpretation of h is as follows. Given x ∈ R
k,

h(x) = E[Y |X = x], PX -a.s.

We can then finally state that, for ω ∈ Ω,

E[Y |X ](ω) = E[Y |X = X(ω)], P -a.s.

Remark 1.127. We may obtain the preceding liaison E[Y |X ] = h ◦ X as
above by referring to the Doob–Dynkin Lemma 1.29. The quantity E[Y |X ] =
E[Y |FX ] surely is FX-measurable; hence there exists a unique class of real-
valued h ∈ L1(Rk,BRk , PX) such that E[Y |X ] = h(X) (Jeanblanc et al. 2009,
p. 9).

Proposition 1.128. Let G be a sub-σ-algebra of F . If Y is a real G-
measurable random variable in L1(Ω,G, P ), then

EG [Y ] = Y.

More generally, if Y is a real G-measurable random variable and both Z and
Y Z are two real-valued random variables in L1(Ω,F , P ), then

EG [Y Z] = Y EG [Z].

Proof . The first statement follows from the fact that for all G ∈ G :
∫
G
Y dP =∫

G Y dP , with Y G-measurable and P -integrable.
For the second statement see, e.g., Métivier (1968). �

Proposition 1.129 (tower law). Let Y ∈ L1(Ω,F , P ). For any two subal-
gebras G and B of F such that G ⊂ B ⊂ F , we have
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E[E[Y |B]|G] = E[Y |G] = E[E[Y |G]|B].

Proof . For the first equality, by definition, we have∫
G

E[Y |G]dP =

∫
G

Y dP =

∫
G

E[Y |B]dP =

∫
G

E[E[Y |B]|G]dP

for all G ∈ G ⊂ B, where comparing the first and last terms completes the
proof. The second equality is proven along the same lines. �

Definition 1.130. Let (Ω,F , P ) be a probability space, and let G be a sub-
σ-algebra of F . We say that a real random variable Y on (Ω,F , P ) is inde-
pendent of G with respect to the probability measure P if

∀B ∈ BR, ∀G ∈ G : P (G ∩ Y −1(B)) = P (G)P (Y −1(B)).

Proposition 1.131. Let G be a sub-σ-algebra of F ; if Y ∈ L1(Ω,F , P ) is
independent of G, then

E[Y |G] = E[Y ], a.s.

Proof . Let G ∈ G; then, by independence,∫
G

Y dP =

∫
IGY dP = E[IGY ] = E[IG]E[Y ] = P (G)E[Y ] =

∫
G

E[Y ]dP,

from which the proposition follows. �

Proposition 1.132. Let (Ω,F , P ) be a probability space and F ′ a sub-σ-
algebra of F . Furthermore, let Y and (Yn)n∈N be real-valued random variables,
all belonging to L1(Ω,F , P ). The following properties hold:

1. E[E[Y |F ′]] = E[Y ];
2. E[αY + β|F ′] = αE[Y |F ′] + β a.s. (α, β ∈ R).
3. (Extended monotone convergence theorem) Assume |Yn| ≤ Z for all n ∈

N, with Z ∈ L1(Ω,F , P ); if Yn ↑ Y a.s., then E[Yn|F ′] ↑ E[Y |F ′] a.s.
4. (Fatou’s lemma) Assume |Yn| ≤ Z for all n ∈ N, with Z ∈ L1(Ω,F , P );

lim supn→∞E[Yn|F ′] ≤ E[lim supn→∞ Yn|F ′] almost surely.
5. (Dominated convergence theorem) Assume |Yn| ≤ Z for all n ∈ N, with

Z ∈ L1(Ω,F , P ); if Yn → Y a.s., then E[Yn|F ′] → E[Y |F ′] almost surely.
6. If φ : R → R is convex and φ(Y ) P -integrable, then φ(E[Y |F ′]) ≤

E[φ(Y )|F ′] almost surely (Jensen’s inequality).

Proof .

1. This property follows from Proposition 1.123 with B′ = Ω.
2. This is obvious from the linearity of the integral.

3–5. These properties can be shown as the corresponding ones without con-
ditioning as they derive from classical measure theory.
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6. Here we use the fact that every convex function φ is of type φ(x) =
supn(anx + bn). Therefore, defining ln(x) = anx + bn for all n, we have
that

ln(E[Y |F ′]) = E[ln(Y )|F ′] ≤ E[φ(Y )|F ′]

and thus

φ(E[Y |F ′]) = sup
n
ln(E[Y |F ′]) ≤ E[φ(Y )|F ′].

�

Proposition 1.133. If Y ∈ Lp(Ω,F , P ), then E[Y |F ′] is an element of
Lp(Ω,F ′, P ) and

‖E[Y |F ′]‖p ≤ ‖Y ‖p (1 ≤ p <∞). (1.12)

Proof . With φ(x) = |x|p being convex, we have that |E[Y |F ′]|p ≤ E[|Y |p|F ′]
and thus E[Y |F ′] ∈ Lp(Ω,F , P ), and after integration we obtain (1.12). �

Proposition 1.134. The conditional expectation E[Y |F ′] is the unique F ′-
measurable random variable Z such that for every F ′-measurable X : Ω → R,
for which the products XY and XZ are P -integrable, we have

E[XY ] = E[XZ]. (1.13)

Proof . From the fact that E[E[XY |F ′]] = E[XY ] (point 1 of Propo-
sition 1.132) and because X is F ′-measurable, it follows from Proposi-
tion 1.128 that E[E[XY |F ′]] = E[XE[Y |F ′]]. On the other hand, if Z is
an F ′-measurable random variable, so that for every F ′-measurable X , with
XY ∈ L1(Ω,F , P ) and XZ ∈ L1(Ω,F , P ), it follows that E[XY ] = E[XZ].
Taking X = IB, B ∈ F ′ we obtain∫

B

Y dP = E[Y IB] = E[ZIB] =

∫
B

ZdP

and hence, by the uniqueness of E[Y |F ′], Z = E[Y |F ′] almost surely. �

Theorem 1.135. Let (Ω,F , P ) be a probability space, F ′ a sub-σ-algebra
of F , and Y a real-valued random variable on (Ω,F , P ). If Y ∈ L2(P ), then
E[Y |F ′] is the orthogonal projection of Y on L2(Ω,F ′, P ), a closed subspace
of the Hilbert space L2(Ω,F , P ).

Proof . By Proposition 1.133, from Y ∈ L2(Ω,F , P ) it follows that

E[Y |F ′] ∈ L2(Ω,F ′, P )
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and, by equality (1.13), for all random variables X ∈ L2(Ω,F ′, P ), it holds
that

E[XY ] = E[XE[Y |F ′]],

completing the proof, by recalling that (X,Y ) → E[XY ] is the scalar product
in L2. �
Remark 1.136. We may interpret the foregoing theorem by stating that
E[Y |F ′] is the best mean square approximation of Y ∈ L2(Ω,F , P ) in
L2(Ω,F ′, P ).

Definition 1.137. A family of random variables (Yn)n∈N is uniformly inte-
grable if

lim
m→∞ sup

n

∫
|Yn|≥m

|Yn|dP = 0.

Proposition 1.138. Let (Yn)n∈N be a family of random variables in L1.
Then the following two statements are equivalent:

1. (Yn)n∈N is uniformly integrable.
2. supn∈NE[|Yn|] < +∞, and for all ε there exists δ > 0 such that A ∈ F ,

P (A) ≤ δ ⇒ E[|YnIA|] < ε.

Proposition 1.139. Let (Yn)n∈N be a family of random variables dominated
by a nonnegative X ∈ L1 on the same probability space (Ω,F , P ), so that
|Yn(ω)| ≤ X(ω) for all n ∈ N. Then (Yn)n∈N is uniformly integrable.

Theorem 1.140. Let Y ∈ L1 be a random variable on (Ω,F , P ). Then the
class (E[Y |G])G⊂F , where G are sub-σ-algebras, is uniformly integrable.

Proof . See, e.g., Williams (1991). �

Theorem 1.141. Let (Yn)n∈N be a sequence of random variables in L1 and

let Y ∈ L1. Then Yn
L1

→ Y if and only if

1. Yn
P−→
n
Y .

2. (Yn)n∈N is uniformly integrable.

Proof . See, e.g., Williams (1991). �
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1.7 Conditional and Joint Distributions

Let (Ω,F , P ) be a probability space, X : (Ω,F , P ) → (E,B) a random vari-
able, and F ∈ F . Following previous results, a unique element E[IF |X = x] ∈
L1(E,B, PX) exists such that for any B ∈ B

P (F ∩ [X ∈ B]) =

∫
[X∈B]

IF (ω)dP (ω) =

∫
B

E[IF |X = x]dPX(x). (1.14)

We can write
P (F |X = ·) = E[IF |X = ·].

Remark 1.142. By (1.14) the following properties hold:

1. For all F ∈ F : P (F |X = x) ≥ 0, almost surely with respect to PX .
2. P (∅|X = x) = 0, almost surely with respect to PX .
3. P (Ω|X = x) = 1, almost surely with respect to PX .
4. For all F ∈ F : 0 ≤ P (F |X = x) ≤ 1, almost surely with respect to PX .
5. For all (An)n∈N ∈ FN collections of mutually exclusive sets:

P

(⋃
n∈N

An|X = x

)
=
∑
n∈N

P (An|X = x), PX -a.s.

If, for a fixed x ∈ E, points 3, 4, and 5 hold simultaneously, then P (·|X = x) is
a probability, but in general they do not. For example, it is not in general the
case that the set of points x ∈ E, PX(x) �= 0, for which 4 is satisfied, depends
upon F ∈ F . Even if the set of points for which 4 does not hold has zero
measure, their union over F ∈ F will not necessarily have measure zero. This
is also true for subsets F ′ ⊂ F . Hence, in general, given x ∈ E, P (·|X = x) is
not a probability on F , unless F is a countable family, or countably generated.
If it happens that, apart from a set E0 of PX -measure zero, P (·|X = x) is a
probability, then the collection (P (·|X = x))x∈E−E0 is called a regular version
of the conditional probability with respect to X on F .

Definition 1.143. Let X : (Ω,F) → (E,B) and Y : (Ω,F , P ) → (E1,B1) be
two random variables. We denote by FY the σ-algebra generated by Y , hence

FY = Y −1(B1) =
{
Y −1(B)|B ∈ B1

}
.

If there exists a regular version (P (·|X = x))x∈E of the probability conditional
on X on the σ-algebra FY , denoting by PY (·|X = x) the mapping defined on
B1, then

PY (B|X = x) = P (Y ∈ B|X = x) ∀B ∈ B1, x ∈ E.

This mapping is a probability, called the distribution of Y conditional on X ,
with X = x.
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Remark 1.144. From the properties of the induced measure it follows that

E[Y |X = x] =

∫
Y (ω)dP (ω|X = x) =

∫
Y dPY (Y |X = x).

Existence of Conditional Distributions

The following proposition shows the existence of a regular version of the con-
ditional distribution of a random variable in a very special case.

Proposition 1.145. Let X : (Ω,F) → (E,B) and Y : (Ω,F) → (E1,B1) be
two random variables. Then the necessary and sufficient condition for X and
Y to be independent is:

∀A ∈ B1 : P (Y ∈ A|·) = constant(A), PX-a.s.

Therefore,
P (Y ∈ A|·) = P (Y ∈ A), PX-a.s.,

and if Y is a real-valued integrable random variable, then

E[Y |·] = E[Y ], PX -a.s.

Proof . The independence of X and Y is equivalent to

P ([X ∈ B] ∩ [Y ∈ A]) = P ([X ∈ B])P ([Y ∈ A]) ∀A ∈ B1, B ∈ B,

or ∫
[X∈B]

I[Y ∈A](ω)P (dω) = P (Y ∈ A)

∫
IB(x)dPX(x)

=

∫
B

P (Y ∈ A)dPX(x),

and this is equivalent to affirming that

P (Y ∈ A|·) = P (Y ∈ A), PX -a.s., (1.15)

which is a constant k for x ∈ E. If we can write

P (Y ∈ A|·) = k(A), PX -a.s.,

then

∀B ∈ B :

∫
[X∈B]

I[Y ∈A](ω)dP (ω) =

∫
B

k(A)dPX(x) = k(A)P (X ∈ B),

from which it follows that
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∀B ∈ B : P ([X ∈ B] ∩ [Y ∈ A]) = k(A)P (X ∈ B).

Therefore, for B = E we have that

P (Y ∈ A) = k(A)P (X ∈ E) = k(A).

Now, we observe that (1.15) states that there exists a regular version of the
probability conditional on X , relative to the σ-algebra F ′ generated by Y ,
where the latter is given by

P (Y ∈ A|·) = PY (A) ∀x ∈ E.

Hence, by Remark 1.144, it can then be shown that E[Y |·] = E[Y ]. �
We have already shown that if X is a discrete random variable, then the

real random variable Y has a distribution conditional on X . The following
theorem provides more general conditions under which this conditional distri-
bution exists.

Theorem 1.146. Let Y be a real-valued random variable on (Ω,F , P ), and
let G ⊂ F be a σ-algebra; there always exists a regular version PY (· | G) of
the conditional distribution of Y given G.
Proof . See, e.g., Ash (1972, p. 263). �

A further generalization to Polish spaces is possible, based on the following
definition (Klenke 2008, p. 184).

Definition 1.147. Two measurable spaces (E,BE) and (E1,BE1) are called
isomorphic if there exists a measurable bijection ϕ : (E,BE) → (E1,BE1)
such that its inverse ϕ̃ is also measurable ϕ̃ : (E1,BE1) → (E,BE).

Definition 1.148. Two measure spaces (E,BE , μ) and (E1,BE1 , μ1) are
called isomorphic if (E,BE) and (E1,BE1) are isomorphic measurable spaces
and μ1 = ϕ(μ).

In either case, ϕ is called an isomorphism.

Definition 1.149. A measurable space (E,BE) is called a Borel space if
there exists a Borel set B ∈ BR such that (E,BE) and (B,BB) are isomorphic
measurable spaces.

The following theorem holds.

Theorem 1.150. If E is a Polish space and E is its Borel σ-algebra, then
(E, E) is a Borel space.

Proof . See, e.g., Ash (1972, Sect. 4.4, Problem 8). �

Theorem 1.151. Let (Ω,F , P ) be a probability space, and let Y : (Ω,F) →
(Ω′,F ′), where (Ω′,F ′) is a Borel space. Then there exists a regular version
of the conditional distribution of Y with respect to any sub-σ-algebra G ⊂ F .
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Proof . Let (Ω′,F ′) be isomorphic to (R,BR), and let ϕ : (Ω′,F ′) → (R,BR)
be the corresponding isomorphism. Consider the sub-σ-algebra G ⊂ F , and let

B ∈ BR 	→ Q0(B) ≡ P (ϕ(Y ) ∈ B | G)

be a regular version of the conditional probability of the real-valued random
variable ϕ(Y ) : (Ω,F) → (R,BR) given G.

Now let A ∈ F ′; from the foregoing discussion we obtain

P (Y ∈ A|G) = P (ϕ(Y ) ∈ ϕ(A)|G) = Q0(ϕ(A)) = Q(A)

if we denote Q = ϕ−1(Q0). In fact,

Q(A) = Q0((ϕ
−1)−1(A)) = Q0(ϕ(A)).

Since Q0 is a probability measure on BR, the same will be Q on ϕ−1

(BR) = F ′. �
As a consequence of the preceding results, the following theorem holds.

Theorem 1.152 (Jirina). Let X and Y be two random variables on
(Ω,F , P ) with values in (E,B) and (E1,B1), respectively. If E and E1 are
complete separable metric spaces with respective Borel σ-algebras B and B1,
then there exists a regular version of the conditional distribution of Y given X.

Definition 1.153. Given the assumptions of Definition 1.143, if PY (·|X = x)
is defined by a density with respect to the measure μ1 on (E1,B1), then
this density is said to be conditional on X , written X = x, and denoted by
fY (·|X = x).

Proposition 1.154. Let X = (X1, . . . , Xn) : (Ω,F) → (Rn,BRn) be a
vector of random variables whose probability is defined through the density
fX(x1, . . . , xn) with respect to Lebesgue measure μn on R

n. Fixing q =
1, . . . , n, we can consider the random vectors

Y = (X1, . . . , Xq) : (Ω,F) → R
q

and
Z = (Xq+1, . . . , Xn) : (Ω,F) → R

n−q.

Then Z admits a distribution conditional on Y for almost every Y ∈ R defined
through the function

f(xq+1, . . . , xn|x1, . . . , xq) =
fX(x1, . . . , xq, xq+1, . . . , xn)

fY(x1, . . . , xq)
,

with respect to Lebesgue measure μn−q on R
n−q. Hence, fY(x1, . . . , xq) is the

marginal density of Y at (x1, . . . , xq), given by

fY(x1, . . . , xq) =

∫
fX(x1, . . . , xn)dμn−q(xq+1, . . . , xn).
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Proof . Writing y = (x1, . . . , xq) and x = (x1, . . . , xn), let B ∈ BRq and
B1 ∈ BRn−q . Then

P ([Y ∈ B] ∩ [Z ∈ B1]) = PX((Y,Z) = X ∈ B ×B1) =

∫
B×B1

fX(x)dμn

=

∫
B

dμq(x1, . . . , xq)

∫
B1

fX(x)dμn−q(xq+1, . . . , xn)

=

∫
B

fY(x)dμq

∫
B1

fX(x)

fY(y)
dμn−q

=

∫
B

dPY

(∫
B1

fX(x)

fY(y)
dμn−q

)
,

where the last equality holds for all points y for which fY(y) �= 0. By the
definition of density, the set of points y for which fY(y) = 0 has zero measure
with respect to PY, and therefore we can write in general

P ([Y ∈ B] ∩ [Z ∈ B1]) =

∫
B

dPY(y)

∫
B1

fX(x)

fY(y)
dμn−q.

Thus the latter integral is an element of P (Z ∈ B1|Y = y). Hence∫
B1

fX(x)

fY(y)
dμn−q = P (Z ∈ B1|Y = y) = PZ(B1|Y = y),

from which it follows that fX(x)
fY(y) is the density of P (·|Y = y). �

Example 1.155. Let fX,Y (x, y) be the density of the bivariate Gaussian dis-
tribution. Then

fX,Y (x, y) = k exp

{
−1

2
(a(x−m1)

2 + 2b(x−m1)(y −m2) + c(y −m2)
2)

}
,

where

k =
1

2πσxσy
√
1− ρ2

, a =
1

(1− ρ2)σ2
x

,

b =
−ρ

(1− ρ2)σxσy
, c =

1

(1− ρ2)σ2
y

.

The distribution of Y conditional on X is defined through the density

fY (Y |X = x) =
fX,Y (x, y)

fX(x)
, where fX(x) =

1

σx
√
2π

exp

{
−1

2

(
x−m

σx

)2
}
.

From this it follows that
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fY (Y |X = x)

=
1

σy
√
2π(1− ρ2)

exp

⎧⎨
⎩− 1

2(1− ρ2)

(
y −m2 − σy

σx
(x−m1)

σy

)2
⎫⎬
⎭ .

Therefore, the conditional density is normal, but with mean

E[Y |X = x] =

∫
ydPY (y|X = x) =

∫
yfY (y|X = x)dy = m2 + ρ

σy
σx

(x−m1)

and variance (1−ρ2)σ2
y . The conditional expectation in this case is also called

the regression line of Y with respect to X .

Remark 1.156. Under the assumptions of Proposition 1.145, two generic ran-
dom variables defined on the same probability space (Ω,F , P ) with values
in (E,B) and (E,B1), respectively, are independent if and only if Y has a
conditional distribution with respect to X = x, which is independent of x:

PY (A|X = x) = PY (A), PX -a.s., (1.16)

which can be rewritten to hold for every x ∈ E. If X and Y are independent,
then their joint probability is given by

P(X,Y ) = PX ⊗ PY .

Integrating a function f(x, y) with respect to P (X,Y ) by Fubini’s theorem
results in∫

f(x, y)P(X,Y )(dx, dy) =

∫
dPX(x)

∫
f(x, y)dPY (y). (1.17)

If we use (1.16), then (1.17) can be rewritten in the form∫
f(x, y)P(X,Y )(dx, dy) =

∫
dPX(x)

∫
f(x, y)dPY (y|X = x).

The following proposition asserts that this relation holds in general.

Proposition 1.157 (Generalization of Fubini’s theorem). Let X and
Y be two generic random variables defined on the same probability space
(Ω,F , P ) with values in (E,B) and (E,B1), respectively. Moreover, let PX

be the probability of X and PY (·|X = x) the probability of Y conditional on
X = x for every x ∈ E. Then, for all M ∈ B ⊗ B1, the function

h : x ∈ E →
∫
IM (x, y)PY (dy|x)

is B-measurable and positive, resulting in
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P(X,Y )(M) =

∫
PX(dx)

(∫
IM (x, y)PY (dy|x)

)
. (1.18)

In general, if f : E × E1 → R is P(X,Y )-integrable, then the function

h′ : x ∈ E →
∫
f(x, y)PY (dy|x)

is defined almost surely with respect to PX and is PX -integrable. Thus we
obtain ∫

f(x, y)P(X,Y )(dx, dy) =

∫
h′(x)PX (dx). (1.19)

Proof . We observe that if M = B ×B1, B ∈ B, and B1 ∈ B1, then

P(X,Y )(B ×B1) = P ([X ∈ B] ∩ [Y ∈ B1]) =

∫
B

P (Y ∈ B1|X = x)dPX(x),

and by the definition of conditional probability

P(X,Y )(B ×B1) =

∫
IB(x)PY (B1|x)dPX (x)

=

∫
dPX(x)

∫
PY (dy|x)IB(x)IB1 (y).

This shows that (1.18) holds for M = B × B1. It is then easy to show that
(1.18) holds for every elementary function on B⊗B1. With the usual limiting
procedure, we can show that for every B⊗B1-measurable positive f we obtain∫ ∗

f(x, y)dP(X,Y )(x, y) =

∫ ∗
dPX(x)

∫ ∗
f(x, y)PY (dy|x).

As usual, we have denoted by
∫ ∗

the integral of a nonnegative measurable
function, independently of its finiteness. If, then, f is measurable as well as
both P(X,Y )-integrable and positive, then∫ ∗

dPX(x)

∫ ∗
f(x, y)PY (dy|x) <∞,

where ∫ ∗
f(x, y)PY (dy|x) <∞, PX -a.s.,x ∈ E.

Thus h′ is defined almost surely with respect to PX and (1.19) holds. Finally,
if f is P(X,Y )-integrable and of arbitrary sign, applying the preceding results
to f+ and f−, we obtain that∫

f(x, y)PY (dy|x) =
∫
f+(x, y)PY (dy|x)−

∫
f−(x, y)PY (dy|x)

is defined almost surely with respect to PX , and again (1.19) holds. �



48 1 Fundamentals of Probability

1.8 Convergence of Random Variables

Tail Events

Definition 1.158. Let (An)n∈N ∈ FN be a sequence of events and let

σ(An, An+1, . . .), n ∈ N

and

T =
∞⋂

n=1

σ(An, An+1, . . .)

be σ-algebras. Then T is the tail σ-algebra associated with the sequence
(An)n∈N, and its elements are called tail events.

Example 1.159. The essential supremum

lim sup
n

An =

∞⋂
n=1

∞⋃
i=n

Ai

and essential infimum

lim inf
n

An =

∞⋃
n=1

∞⋂
i=n

Ai

are both tail events for the sequence (An)n∈N. If n is understood to be time,
then we can write

lim supAn = {An i.o.} ,
i.e., An occurs infinitely often (i.o.), thus, for infinitely many n ∈ N. On the
other hand we may write

lim inf An = {An a.a.} ,

i.e., An occurs almost always (a.a.), thus for all but finitely many n ∈ N.

Theorem 1.160 (Kolmogorov’s zero-one law). Let (An)n∈N ∈ FN be a
sequence of independent events. Then for any A ∈ T :, P (A) = 0 or P (A) = 1.

Lemma 1.161. (Borel–Cantelli).

1. Let (An)n∈N ∈ FN be a sequence of events. If
∑

n P (An) < +∞, then

P

(
lim sup

n
An

)
= 0.

2. Let (An)n∈N ∈ FN be a sequence of independent events. If
∑

n P (An) =
+∞, then

P

(
lim sup

n
An

)
= 1.

Proof . See, e.g., Billingsley (1968). �



1.8 Convergence of Random Variables 49

Almost Sure Convergence and Convergence in Probability

Definition 1.162. Let (Xn)n∈N be a sequence of random variables on the
probability space (Ω,F , P ) and X a further random variable defined on the

same space. (Xn)n∈N converges almost surely to X , denoted by Xn
a.s.−→
n
X or,

equivalently, limn→∞Xn = X almost surely if

∃S0 ⊂ Ω such that P (S0) = 0 and ∀ω ∈ Ω \ S0 : lim
n→∞Xn(ω) = X(ω).

Definition 1.163. (Xn)n∈N converges in probability (or stochastically) to X ,

denoted by Xn
P−→
n
X or, equivalently, P − limn→∞Xn = X if

∀ε > 0 : lim
n→∞P (|Xn −X | > ε) = 0.

Theorem 1.164. A sequence (Xn)n∈N of random variables converges in prob-
ability to a random variable X if and only if

lim
n→∞E

[
|Xn −X |

1 + |Xn −X |

]
= 0.

Proof . See, e.g., Jacod and Protter (2000, p. 139). �

Theorem 1.165. Consider a sequence (Xn)n∈N of random variables and an
additional random variable X on the same probability space, and let f : R → R

be a continuous function. Then

(a) Xn
a.s.−→
n
X ⇒ f(Xn)

a.s.−→
n
f(X)

(b) Xn
P−→
n
X ⇒ f(Xn)

P−→
n
f(X)

Proof . See, e.g., Jacod and Protter (2000, p. 142). �

Convergence in Mean of Order p

Definition 1.166. Let X be a real-valued random variable on the probability
space (Ω,F , P ). X is integrable to the pth exponent (p ≥ 1) if the random
variable |X |p is P -integrable; thus |X |p ∈ L1(P ). By Lp(P ) we denote the
whole of the real-valued random variables on (Ω,F , P ) that are integrable to
the pth exponent. Then, by definition,

X ∈ Lp(P ) ⇔ |X |p ∈ L1(P ).
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The following results are easy to show.

Theorem 1.167.

X,Y ∈ Lp(P ) ⇒

⎧⎪⎪⎨
⎪⎪⎩
αX ∈ Lp(P ) (α ∈ R),
X + Y ∈ Lp(P ),
sup {X,Y } ∈ Lp(P ),
inf {X,Y } ∈ Lp(P ).

Theorem 1.168. If X ∈ Lp(P ), Y ∈ Lq(P ) with p, q > 1 and 1
p + 1

q = 1,

then XY ∈ L1(P ).

Corollary 1.169 If 1 ≤ p′ ≤ p, then Lp(P ) ⊂ Lp′
(P ).

Proposition 1.170. Setting Np(X) = (
∫
|X |pdP )

1
p for X ∈ Lp(P ) (p ≥ 1),

we obtain the following results.

1. Hölder’s inequality: If X ∈ Lp(P ), Y ∈ Lq(P ) with p, q > 1 and 1
p+

1
q = 1,

then N1(XY ) ≤ Np(X)Nq(Y ).
2. Cauchy–Schwarz inequality:∣∣∣∣

∫
XY dP

∣∣∣∣ ≤ N2(X)N2(Y ), X, Y ∈ L2(P ). (1.20)

3. Minkowski’s inequality:

Np(X + Y ) ≤ Np(X) +Np(Y ) for X,Y ∈ Lp(P ), (p ≥ 1).

Proposition 1.171. The mapping Np : Lp(P ) → R+ (p ≥ 1) has the follow-
ing properties:

1. Np(αX) = |α|Np(X) for X ∈ Lp(P ), α ∈ R

2. X = 0 ⇒ Np(X) = 0

By 1 and 2 of Proposition 1.171 as well as 3 of Proposition 1.170, we can
assert that Np is a seminorm on Lp(P ), but not a norm.

Definition 1.172. Let (Xn)n∈N be a sequence of elements of Lp(P ) and let
X be another element of Lp(P ). Then the sequence (Xn)n∈N converges to X

in mean of order p (denoted by Xn
Lp

−→
n
X) if limn→∞ ‖Xn −X‖p = 0.
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Convergence in Distribution

Now we will define a different type of convergence of random variables that is
associated with its partition function [see Loève (1963) for further references].
We consider a sequence of probabilities (Pn)n∈N on (R,BR) and present the
following definitions.

Definition 1.173. The sequence of probabilities (Pn)n∈N converges weakly to
a probability P if the following conditions are satisfied:

∀f : R → R continuous and bounded: lim
n→∞

∫
fdPn =

∫
fdP.

We write
Pn

W−→
n→∞P.

Definition 1.174. Let (Xn)n∈N be a sequence of random variables on the
probability space (Ω,F , P ) and X a further random variable defined on the
same space. (Xn)n∈N converges in distribution to X if the sequence (PXn)n∈N

converges weakly to PX . We write

Xn
d−→

n→∞X

or
Xn ⇒

n→∞X.

Theorem 1.175. Let (Xn)n∈N be a sequence of random variables on the prob-
ability space (Ω,F , P ) and X another random variable defined on the same
space. The following propositions are equivalent:

(a) (Xn)n∈N converges in distribution to X
(b) For any continuous and bounded f : R → R:

limn→∞ E[f(Xn)] = E[f(X)]
(c) For any Lipschitz continuous f : R → R:

limn→∞ E[f(Xn)] = E[f(X)]
(d) For any uniformly continuous f : R → R:

limn→∞ E[f(Xn)] = E[f(X)]

Theorem 1.176. Denoting by F the partition function associated with X,
then, for every n ∈ N, with FXn being the partition function associated with
Xn, the following two conditions are equivalent:

1. For all f : R → Rcontinuous and bounded: limn→∞
∫
fdPXn =

∫
fdPX .

2. For all x ∈ R such that F is continuous in x : limn→∞ FXn(x) = F (x).
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We will henceforth denote the characteristic functions associated with the
random variables X and Xn by φX and φXn , for all n ∈ N, respectively.

Theorem 1.177 (Lévy’s continuity theorem). Let (Pn)n∈N be a se-
quence of probability laws on R and (φn)n∈N the corresponding sequence of
characteristic functions. If (Pn)n∈N weakly converges to a probability law P
having the characteristic function φ, then for all t ∈ R : φn(t)−→

n
φ(t).

If there exists φ : R → C such that for all t ∈ R : φn(t)−→
n
φ(t) and,

moreover, φ is continuous in zero, then φ is the characteristic function of a
probability P on BR such that (Pn)n∈N converges weakly to P .

A trivial consequence of the foregoing theorem is the following result.

Corollary 1.178 Let (Pn)n∈N be a sequence of probability laws on R and
(φn)n∈N the corresponding sequence of characteristic functions; let P be an
additional probability law on R and φ the corresponding characteristic func-
tion.

Then the following two statements are equivalent

(a) (Pn)n∈N weakly converges to P .
(b) For all t ∈ R : φn(t)−→

n
φ(t).

Theorem 1.179 (Polya). If FX is continuous and for all t ∈ R:

lim
n→∞FXn(t) = FX(t),

then (φXn)n∈N converges pointwise to φX and the convergence is uniform on
all the bounded intervals [−T, T ].

Relationships Between Different Types of Convergence

Theorem 1.180. The following relationships hold:

1. Almost sure convergence ⇒ convergence in probability ⇒ convergence in
distribution.

2. Convergence in mean ⇒ convergence in probability.
3. If the limit is a degenerate random variable (i.e., a deterministic quantity),

then convergence in probability ⇔ convergence in distribution.

The following theorems represent a kind of converses with respect to the
preceding implications.

Theorem 1.181. Consider a sequence (Xn)n∈N of random variables and an
additional random variable, X, on the same probability space; and suppose

Xn
P−→
n
X; then there exists a subsequence (Xnk

)k∈N such that Xnk

a.s.−→
k
X.
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Proof . See, e.g., Jacod and Protter (2000, p. 141). �

Theorem 1.182 (Dominated convergence). Consider a sequence
(Xn)n∈N of random variables and an additional random variable, X, on

the same probability space; suppose Xn
P−→
n
X and that there exists a random

variable Y ∈ Lp such that |Xn| ≤ Y for all n ∈ N; then Xn, X ∈ Lp and

Xn
Lp

−→
n
X.

Proof . See, e.g., Jacod and Protter (2000, p. 142). �

Theorem 1.183 (Skorohod representation theorem). Consider a se-
quence (Pn)n∈N of probability measures and a probability measure P on

(Rk,BRk) such that Pn
W−→

n→∞P . Then there exists a sequence of random vari-

ables (Yn)n∈N and a random variable Y defined on a common probability space
(Ω,F , P ), with values in (Rk,BRk), such that Yn has probability law Pn, Y
has probability law P , and

Yn
a.s.−→

n→∞Y.

Proof . See, e.g., Billingsley (1968). �

Laws of Large Numbers for Independent Random Variables

Consider a sequence (Xn)n∈N−{0} of i.i.d. random variables on the same prob-
ability space (Ω,F , P ).

The sequence of cumulative sums of (Xn)n∈N is

S0 = 0, Sn = X1 + · · ·+Xn, n ∈ N− {0} ,

so that the sequence of its arithmetic means is

Xn =
1

n
Sn, n ∈ N− {0} .

Theorem 1.184 [Weak law of large numbers (WLLN) for independent and
identically distributed random variables] Let (Xn)n∈N−{0} be a sequence of
independent and identically distributed (i.i.d.) random variables on the same
probability space (Ω,F , P ). Suppose that they all belong to L2(Ω,F , P ), and
denote m = E[X1]; then

Xn
P−→
n
m.

Proof . This is a trivial consequence of Chebyshev’s inequality. �
Actually, the existence of the second moment is not a necessary condition

for the WLLN; indeed a stronger result holds.
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Theorem 1.185 (Strong law of large numbers (SLLN) for i.i.d.
random variables). Let (Xn)n∈N−{0} be a sequence of i.i.d. random vari-
ables on the same probability space (Ω,F , P ). Then

Xn
a.s.−→
n
a,

for some real constant a ∈ R, if and only if all elements of the sequence of
random variables belong to L1(Ω,F , P ).

Under this condition a = m.

Proof . See, e.g., Tucker (1967). �
Due to Theorem 1.180 it is now clear that for a WLLN the only require-

ment of existence of the first moment is sufficient.
A fundamental result for statistical applications is the well-known

Glivenko–Cantelli theorem, sometimes called the Fundamental Theorem of
Statistics.

Given a sequence (Xn)n∈N−{0} of independent and identically distributed
(i.i.d.) random variables on the same probability space (Ω,F , P ), its empirical

distribution function F̂n is defined as

F̂n(x) =
1

n

n∑
j=1

I[Xj≤x], x ∈ R.

Theorem 1.186 (Glivenko–Cantelli theorem). Let (Xn)n∈N−{0} be a se-
quence of i.i.d. random variables with arbitrary common distribution function
F . Then

sup
x∈R

|F̂n(x) − F (x)| a.s.−→
n

0.

Proof . See, e.g., Tucker (1967, P. 127). �

The Central Limit Theorem for Independent Random Variables

Theorem 1.187 (Central limit theorem for i.i.d. random variables).
Let (Xn)n∈N be a sequence of i.i.d. random variables in L2(Ω,F , P ) with
m = E[Xi], σ

2 = V ar[Xi], for all i, and

Sn =
1
n

∑n
i=1Xi −m

σ/
√
n

=

∑n
i=1Xi − nm

σ
√
n

.

Then
Sn

d−→
n→∞N(0, 1),

i.e., if we denote by Fn = P (Sn ≤ x) and the cumulative distribution function
of Sn,
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Φ(x) =

∫ x

−∞

1√
2π
e−

1
2 y

2

dy, x ∈ R,

then limn Fn = Φ, uniformly in R, and thus

sup
x∈R

|Fn(x)− Φ(x)| −→
n

0.

A generalization of the central limit theorem that does not require the
random variables to be identically distributed is possible.

Consider an independent array of centered random variables, i.e., for any
n ∈ N−{0} consider a family (Xn1, . . . , Xnn) of independent random variables
in L2(Ω,F , P ), with E[Xnk] = 0, for all k = 1, . . . , n. Let

σ2
nk := V ar[Xnk] = E[X2

nk] > 0, k = 1, . . . , n,

be such that
n∑

k=1

σ2
nk = 1.

Take

Sn :=

n∑
k=1

Xnk, n ∈ N− {0} ;

Fnk := P (Xnk ≤ x), x ∈ R, n ∈ N− {0} , k = 1, . . . , n.

Given the cumulative function of the standard normal distribution

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2y

2

dy, x ∈ R,

denote

Φnk(x) = Φ

(
x

σnk

)
, x ∈ R.

We now introduce the following two conditions:

(L) [Lindeberg] for all ε > 0 :

n∑
k=1

∫
|x|>ε

x2dFnk(x) −→
n→∞ 0;

(Λ) for all ε > 0 :

n∑
k=1

∫
|x|>ε

| x | | Fnk(x)− Φnk(x) | dx −→
n→∞ 0.

Theorem 1.188. In general

(i) (L) ⇒ (Λ),
but
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(ii) if max
1≤k≤n

E[X2
nk] −→n→∞ 0 (Feller condition),

then (Λ) ⇒ (L).

Proof . See, e.g., Shiryaev (1995). �

Theorem 1.189. Within the preceding framework,

(Λ) ⇐⇒ Sn
d−→

n→∞N(0, 1).

Proof . See, e.g., Shiryaev (1995). �
Thanks to the foregoing results, the Lindeberg theorem for noncentered

random variables is a trivial corollary.

Corollary 1.190 (Lindeberg theorem). Let (Xn)n∈N be a sequence of in-
dependent random variables in L2(Ω,F , P ) with mn = E[Xn], σ

2
n = V ar[Xn].

Denote

Sn :=

n∑
k=1

Xk, n ∈ N− {0}

and

V 2
n = V ar[Sn] =

n∑
k=1

σ2
k.

If for all ε > 0

lim
n

1

V 2
n

n∑
k=1

∫
|Xk−mk|≥εVn

|Xk −mk|2dP −→
n→∞ 0,

then
Sn − E[Sn]√

V arSn

d−→
n→∞N(0, 1).

Theorem 1.191. Let (Xn)n∈N be a sequence of i.i.d. random variables, with
m = E[Xi] σ

2 = V ar[Xi] for all i, and let (Vn)n∈N be a sequence of N-valued
random variables such that

Vn

n

P−→
n

1.

Then

1√
Vn

n∑
i=1

Xi
P−→
n
N
(
m,σ2

)
.

Proof . See, e.g., Chung (1974). �
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Note

For proofs of the various results, see also, e.g., Ash (1972), Bauer (1981), or
Métivier (1968).

1.9 Infinitely Divisible Distributions

We will consider first the case of real-valued random variables; the treatment
can be extended to the multidimensional case with suitable modifications.

Definition 1.192. Let X be a real-valued random variable on a probability
space (Ω,F , P ), having cumulative distribution function (cdf) F and charac-
teristic function φ. We say that X (or F or φ) is infinitely divisible (i.d.) iff,
for any n ∈ N− {0}, there exists a characteristic function φn such that

φ(t) = [φn(t)]
n, t ∈ R.

In other words, for any n ∈ N− {0}, X has the same distribution as the sum
of n i.i.d. random variables.

Proposition 1.193. The following three propositions are equivalent.

(a) The random variable X is i.d.
(b) For any n ∈ N− {0}, the probability law PX of X is the convolution of n

identical probability laws on BR.
(c) For any n ∈ N−{0}, the characteristic functionφX of X is the nth power

of a characteristic function of a real-valued random variable.

Proof . This is an easy consequence of the definition (e.g., Applebaum 2004,
p. 23). �

Proposition 1.194. If φ is an i.d. characteristic function, it never vanishes.

Proof . See, e.g., Ash (1972, p. 353), and Fristedt and Gray (1997, p. 294). �

Corollary 1.195 The representation of an i.d. characteristic function in
terms of the power of a characteristic function is unique.

Corollary 1.196 If PX is the probability law of an i.d. random variable,
then for any n ∈ N− {0}, there exists a unique probability law PY such that

PX = (PY )
∗n.
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Example 1.197.

1. Poisson random variables.
The characteristic function of a Poisson random variable X with param-
eter λ > 0 is

φX(t) = exp
{
λ(eit − 1)

}
, t ∈ R,

so that it can be rewritten as

φX(t) =

(
exp

{
λ

n
(eit − 1)

})n

, t ∈ R,

for any n ∈ N− {0}. Hence, for any n ∈ N− {0}

φX(t) = (φY (t))
n, t ∈ R,

where φY is the characteristic function of a Poisson random variable Y
with parameter λ/n. So we may claim that a Poisson random variable
is i.d.

2. Gaussian random variables.
The characteristic function of a Gaussian random variable X ∼ N(m,σ2)
with parameters m ∈ R, σ2 > 0 is

φX(t) = exp

{
imt− 1

2
σ2t2

}
, t ∈ R,

so that it can be rewritten as

φX(t) =

(
exp

{
i
m

n
t− 1

2

σ2

n
t2
})n

, t ∈ R,

for any n ∈ N− {0}. Hence, for any n ∈ N− {0}

φX(t) = (φY (t))
n, t ∈ R,

where φY is the characteristic function of a Gaussian random variable Y
with parameters m/n, σ2/n. So we may claim that a Gaussian random
variable is i.d.

Theorem 1.198. Let X be a real-valued random variable; the following two
propositions are equivalent.

(a) X is i.d.
(b) There exists a triangular array (Xn1, . . . , Xnn), n ∈ N − {0} of i.i.d.

random variables such that
n∑

k=1

Xnk
d−→

n→∞X.
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Proof .

(a) ⇒ (b) : If X is i.d., then for any n ∈ N − {0}, we may choose a family
(Xn1, . . . , Xnn), of i.i.d. random variables such that

n∑
k=1

Xnk = X ;

the consequence is obvious.
(b) ⇒ (a) : The proof of this part is a consequence of the Prohorov theorem

on relative compactness B.87 (Ash 1972, p. 350).

�

Theorem 1.199. The weak limit of a sequence of i.d. probability measures is
itself an i.d. probability measure.

Proof . See Ash (1972, p. 352) or Lukacs (1970, p. 110). �

Compound Poisson Random Variables

Definition 1.200. We say that X is a real-valued compound Poisson random
variable if it can be expressed as

X =
N∑

k=0

Yk,

where N is a Poisson random variable with some parameter λ ∈ R
∗
+, and

(Yk)k∈N∗ is a family of i.i.d. random variables, independent of N ; it is assumed
that Y0 = 0, a.s. If PY denotes the common law of any Yk, then we write
X ∼ P (λ, PY ).

Proposition 1.201. If X is a compound Poisson random variable, then it
is i.d.

Proof . Let PY denote the common law of the sequence of random variables
(Yk)k∈N∗ defining X , and let φY denote the corresponding characteristic func-
tion. By conditioning and independence, the characteristic function of X will
be, for any t ∈ R,

φX(t) =
∑
n∈N

E

[
exp

{
it

N∑
k=0

Yk

}
|N = n

]
e−λλ

n

n!
,

= e−λ
∑
n∈N

[λφY (t)]
n

n!

= exp {λ(φY (t)− 1)} .
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As a consequence,

φX(t) = exp

{∫
R

λ(eiyt − 1)PY (dy)

}
, t ∈ R.

It is then clear that X ∼ P (λ, PY ) is an i.d. random variable; for any
n ∈ N− {0}

φX(t) = (φ
X

(n)
j

(t))n, t ∈ R, j ∈ {1, . . . , n} ,

where φ
X

(n)
j

is the characteristic function of a compound Poisson random

variable X
(n)
j ∼ P (λn , PY ). �

Theorem 1.202. Any i.d. probability measure can be obtained as the weak
limit of a sequence of compound Poisson probability laws.

Proof . Let φ be the characteristic function of an i.d. law PX on BR, and let

P
1
n

X denote the probability law associated with the characteristic function φ
1
n

for any n ∈ N− {0}.
Define

φn(t) = exp
{
n(φ

1
n − 1)

}
= exp

{∫
R

n(eiyt − 1)P
1
n

X (dy)

}
,

so that φn is the characteristic function of a compound Poisson distribution.
We may easily observe that

φn(t) = exp
{
n(e

1
n lnφ(t) − 1)

}
= exp

{
lnφ(t) + no(

1

n
)

}
,

which converges to φ(t) as n→ ∞.
The result follows from Levy’s Continuity Theorem. �

Theorem 1.203. Let μ be a finite measure on BR. Define

φ(t) = exp

{∫
R

(eitx − 1− itx)
1

x2
μ(dx)

}
, t ∈ R. (1.21)

Then φ is the characteristic function of an i.d. law on R with mean 0 and
variance μ(R).

Proof . We recall that, for any n ∈ N, and for any x ∈ R,∣∣∣∣∣eix −
n∑

k=0

(ix)k

k!

∣∣∣∣∣ ≤ min

{
|x|n+1

(n+ 1)!
, 2

|x|n
n!

}
;

the first term on the right provides a sharp estimate for |x| small, whereas the
second one provides a sharp estimate for |x| large.
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As a consequence,

|eitx − 1− itx| ≤ min

{
1

2
t2x2, 2|tx|

}
,

so that, for x ↓ 0 (using n = 1),

|(eitx − 1− itx)
1

x2
| ≤ 1

2
t2,

and so the integrand in (1.21) is integrable.
Moreover, since (using n = 2)

|e
itx − 1− itx

x2
+

1

2
t2| ≤ 1

6
|x|,

we may claim that the integrand tends to − 1
2 t

2 for x ↓ 0; we may then assume
for continuity that this is its value at 0.

We may further observe that if μ is purely atomic with a unique atom
at 0, with mass μ({0}) = σ2, then (1.21) is the characteristic function of a
N(0, σ2) distribution.

On the other hand, if μ is purely atomic with a unique atom at x0 �= 0,
having mass μ({x0}) = λx20, for λ ∈ R

∗, then (1.21) is the characteristic
function of the random variable x0(X − λ), where X ∼ P (λ).

Consequently, if μ is purely atomic with a finite number of atoms on the
real line, then φ in (1.21) can be written as the product of a finite number
of characteristic functions like those above, so that it is still a characteristic
function.

We may now proceed with the general case. If μ ≡ 0, then the result is
trivial. If μ(R) > 0, then we may consider a discretization of μ by means of a
sequence of atomic measures {μk, k ∈ N}, each of which has masses

μk(j2
−k) = μ((j2−k, (j + 1)2−k]),

for j = 0,±1,±2, . . . ,±2k.
It can be shown that μk tends to μ for k tending to ∞, so that, for k

sufficiently large, 0 < μk(R) < +∞. If we take μk instead of μ in (1.21), then
we will obtain a sequence {φk, k ∈ N} of characteristic functions such that

φk(t) → φ(t), for any t ∈ R.

By the Levy Continuity Theorem we may then claim that φ is itself a
characteristic function.

As far as the infinite divisibility is concerned, let us take, for any n ∈ N
∗,

ψn defined by (1.21), but with 1
nμ instead of μ; then

φ(t) = (ψn(t))
n, for any t ∈ R.
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The rest of the proof is a trivial consequence of the differentiability of φ
at 0 up to the second order. �

Further examples and additional important characterizations of i.d. distri-
butions are left as exercises (Sect. 1.11).

In what follows we will consider an independent triangular array (Xn1, . . .
, Xnn), n ∈ N − {0}, of random variables, i.e., for any n ∈ N − {0},
(Xn1, . . . , Xnn) is a family of i.i.d. random variables.

We will further consider the following assumptions:

(H1) E[Xnk] = 0, σ2
nk = E[X2

nk] < +∞ for any n ∈ N− {0}, 1 ≤ k ≤ n

(H2) sup
n

n∑
k=1

σ2
nk < +∞

(H2) lim
n

max
1≤k≤n

σ2
nk = 0

Theorem 1.204. Let X be an i.d. real-valued random variable, having mean
zero and finite variance. Then there exists an independent triangular array
{(Xnk)1≤k≤n, n ∈ N− {0}}, satisfying conditions (H1)–(H3) such that

n∑
k=1

Xnk ⇒
n→∞X.

Proof . If X is an i.d. real-valued random variable, then for each n ∈ N− {0}
we may find a family (Xnk)1≤k≤n of i.i.d. random variables such that X ∼
n∑

k=1

Xnk. Then clearly

n∑
k=1

Xnk ⇒
n→∞X.

Moreover, for each n ∈ N− {0} and any 1 ≤ k ≤ n we have

E[Xnk] = 0; V ar[Xnk] = E[X2
nk] =

σ2

n
,

so that (H1)–(H3) are automatically satisfied. �

Theorem 1.205. Let {(Xnk)1≤k≤n, n ∈ N− {0}} be an independent trian-
gular array, satisfy conditions (H1)–(H3), and denote by Fnk the cumulative
distribution function of the random variable Xnk. Consider the sequence of
finite measures {μn, n ∈ N− {0}} such that

μn((−∞, x]) =

n∑
k=1

∫
y≤x

y2dFnk(y), x ∈ R. (1.22)
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Note that, by setting s2n =
∑n

k=1 σ
2
nk, we have, because of (H2), supn μn(R) =

supn s
2
n < +∞.

Under the foregoing circumstances, the following two propositions are
equivalent.

(a) Sn :=

n∑
k=1

Xnk converges in distribution to a random variable having a

characteristic function of the form (1.21), where μ is a finite measure
on R.

(b) The sequence of finite measures {μn, n ∈ N− {0}} defined in (1.22)
weakly converges to the measure μ.

Proof .

(a) ⇒ (b) If we denote by φn the characteristic function of Sn, then under (a)
we may state that

φn(t) →
n→∞ φ(t), for any t ∈ R. (1.23)

Since μn(R) = s2n is uniformly bounded for n ∈ N−{0}, by Helly’s theorem
we can state that from {μn, n ∈ N− {0}} we may extract a subsequence
{μnm , m ∈ N− {0}} weakly convergent to some finite measure ν on BR.
Because of the convergence (1.23) it must then also be

φ(t) = ψ(t) = exp

{∫
R

(eitx − 1− itx)
1

x2
ν(dx)

}
, t ∈ R.

The same should hold for the derivatives

φ′′(t) = ψ′′(t), t ∈ R,

i.e., ∫
R

eitxμ(dx) =

∫
R

eitxν(dx), t ∈ R.

By the uniqueness theorem for characteristic functions we may finally
state that

μ = ν.

(b) ⇒ (a) If
μn ⇒

n→∞μ,

then, by known results,

φn(t) →
n→∞ φ(t), t ∈ R,

which implies (a).

�
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1.9.1 Examples

1. The Central Limit Theorem

The case
Sn ⇒

n→∞N(0, 1)

corresponds, by Theorem 1.205, to the Dirac measure at 0 in (1.21):

μ = ε0.

In fact, let us recall that we have taken as the value of the integrand at 0

in (1.21) the quantity − t2

2 , so that

φ(t) = exp

{∫
R

(eitx − 1− itx)
1

x2
δ0(x)dx

}
= exp

{
− t

2

2

}
, t ∈ R.

If we suppose s2n = 1 for any n ∈ N− {0}, condition (b) in Theorem 1.205
becomes the Lindeberg condition

(L) [Lindeberg] for all ε > 0 :

n∑
k=1

∫
|x|>ε

x2dFnk(x) −→
n→∞ 0,

so that the result follows from Theorems 1.188 and 1.189.

2. The Poisson Limit

Let {(Znk)1≤k≤n, n ∈ N− {0}}, be an independent triangular array in L2. If
we denote mnk = E[Znk], then we take

Xnk := Znk −mnk, 1 ≤ k ≤ n, n ∈ N− {0} .

According to Theorem 1.205,

n∑
k=1

Xnk ⇒
n→∞Zλ − λ,

with Zλ ∼ P (λ), if and only if

μn ⇒
n→∞ λ ε1, (1.24)

where ε1 denotes the Dirac measure at 1.
If we assume that σ2

n →
n→∞λ, then condition (1.24) is equivalent to

μn([1− ε, 1 + ε]) →
n→∞λ for any ε > 0

or to
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n∑
k=1

∫
|Znk−mnk−1|>ε

(Znk −mnk)
2dP →

n→∞ 0 (1.25)

for any ε > 0.
Suppose that both

s2n →
n→∞ λ and

n∑
k=1

mnk →
n→∞λ

hold; then (1.25) becomes a necessary and sufficient condition for

n∑
k=1

Znk ⇒
n→∞Zλ ∼ P (λ).

This case includes the circumstance that, for any n ∈ N − {0}, and 1 ≤
k ≤ n, Znk ∼ B(1, pnk), with

max
1≤k≤n

pnk →
n→∞ 0 and

n∑
k=1

pnk →
n→∞λ;

hence the well-known convergence of a sequence of binomial variables B(n, pn)
to a Poisson variable P (λ) is also included once pn →

n→∞ 0 and npn →
n→∞λ.

1.10 Stable Laws

An important subclass of i.d. distributions is that of stable laws, which we
will later relate to a corresponding subclass of Lévy processes. We will limit
ourselves to the scalar case for simplicity; the interested reader may refer
to excellent monographs such as Samorodnitsky and Taqqu (1994) and Sato
(1999).

Definition 1.206. A real random variable X is defined as stable if for any
two positive real numbers A and B there exist a real positive number C and
a real number D such that

AX1 +BX2 ∼ CX +D, (1.26)

where X1 and X2 are two independent random variables having the same
distribution as X (as usual the symbol ∼ means equality in distribution).
A stable random variable X is defined as strictly stable if D = 0 for any choice
of A and B; it is defined as symmetric if its distribution is symmetric with
respect to zero.

Remark 1.207. A stable symmetric random variable is strictly stable.

A second equivalent definition for the stability of real-valued random vari-
ables is as follows.
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Definition 1.208. A real random variable X is defined as stable if for any
n ≥ 2 there exist a positive real number Cn and a real number Dn such that

X1 +X2 + . . .+Xn ∼ CnX +Dn,

where X1, X2, . . . , Xn are a family of i.i.d. random variables having the same
distribution as X . A stable random variable X is defined as strictly stable if
Dn = 0 for all n.

The preceding definition implies the following result.

Proposition 1.209. With reference to Definition 1.208 there exists a real
number α ∈ (0, 2] such that

Cn = n
1
α .

The number α is called the stability index or characteristic exponent.
A stable random variable X having index α is called α-stable.

Example 1.210. If X is a Gaussian random variable with mean μ ∈ R and
variance σ2 ∈ R+ − {0} (X ∼ N(μ, σ2)), then X is stable with α = 2 since

AX1 +BX2 ∼ N((A+B)μ, (A2 +B2)1/2σ2),

i.e., (1.26) is satisfied for C = (A2 +B2)1/2 and D = (A+B − C)μ.
It is trivial to recognize that a Gaussian random variable X ∼ N(μ, σ2) is
symmetric if and only if μ = 0.

The following theorems further characterize stable laws.

Theorem 1.211. A random variable X is stable if and only if it admits
a domain of attraction, i.e., there exist a sequence of i.i.d. random variables
(Yn)n∈N−{0}, a sequence of positive real numbers (An)n∈N−{0}, and a sequence
of real numbers (Bn)n∈N−{0} such that

Y1 + Y2 + . . .+ Yn
An

−Bn ⇒
n→∞X,

where ⇒ denotes a convergence in law.

Theorem 1.212. A random variable X is stable if and only if there exist
parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and a real number μ such that its
characteristic function is of the following form:

E
[
eisX

]
=

⎧⎪⎪⎨
⎪⎪⎩
exp

{
−σα |s|α

(
1− iβ (sign s) tan

(πα
2

))
+ iμs

}
, if α �= 1,

exp

{
−σ |s|

(
1 + iβ

2

π
(sign s) ln |s|

)
+ iμs

}
, if α = 1,

for s ∈ R. The parameter α is the stability index of random variable X.
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Here

sign s =

⎧⎨
⎩

1, if s > 0,
0, if s = 0,
−1, if s < 0.

Proof . See, e.g., Chow and Teicher (1988, p. 449). �
Theorem 1.212 shows that a stable random variable is characterized by

the four parameters α, β, σ, and μ. This is why an α-stable random variable
X is denoted by

X ∼ Sα (σ, β, μ) .

We have already stated that α is the stability index of the stable random
variable X. As far as the other parameters are concerned, one can show the
following results.

Proposition 1.213. Let X ∼ Sα (σ, β, μ), and let a be a real constant. Then
X + a ∼ Sα (σ, β, μ+ a).

We may then state that μ is a parameter of location of the distribution
of X .

Proposition 1.214. Let X ∼ Sα (σ, β, μ), and let a �= 0 be a real number.
Then

aX ∼ Sα (σ |a| , sign(a)β, aμ) , for α �= 1,

aX ∼ S1

(
σ |a| , sign(a)β, aμ− 2

π
a(ln |a|)σβ

)
, for α = 1.

The preceding proposition characterizes σ as a scaling parameter of the
distribution of X.

Proposition 1.215. For any α ∈ (0, 2],

X ∼ Sα (σ, β, 0) ⇔ −X ∼ Sα (σ,−β, 0) .

X ∼ Sα (σ, β, μ) is symmetric if and only if β = 0 and μ = 0. It is symmetric
with respect to μ if and only if β = 0.

The preceding proposition characterizes β as a parameter of asymmetry of
the distribution of X.

We usually write
X ∼ SαS

to denote that X is a symmetric α-stable random variable, i.e., when
β = μ = 0.

As a consequence of Theorem 1.212 we may recognize that the character-
istic function of an α-stable law is such that, for some c ∈ R,

|φ(s)| = exp {−c|s|α} , s ∈ R.
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It is then easy to show that φ ∈ L1(ν1), so that, because of Theorem 1.94, we
may finally state the following.

Proposition 1.216. Any stable random variable is absolutely continuous.

Unfortunately, the probability densities of stable random variables do not
have in general a closed form, but for a few exceptions.

(i) Gaussian distributions: X ∼ N(μ, 2σ2) = S2 (σ, 0, μ) with density

f(x) =
1

2σ
√
π
exp

(
− (x− μ)2

4σ2

)
.

(ii) Cauchy distributions: X ∼ Cauchy(σ, μ) = S1 (σ, 0, μ) with density

f(x) =
σ

π ((x− μ)2 + σ2)
.

(iii) Lèvy distributions: X ∼ Lèvy(σ, μ) = S1/2 (σ, 1, μ) with density

f(x) =
( σ

2π

)1/2 1

(x− μ)3/2
exp

{
− σ

2(x− μ)

}
.

Proposition 1.217. A stable random variable is i.d.

Remark 1.218. In general the converse of Proposition 1.217 does not hold.
For example, a Poisson random variable is i.d. but not stable.

With reference to Definition 1.107 the following proposition holds.

Proposition 1.219. A stable random variable is reproducible.

Remark 1.220. The converse does not hold in general; in fact, we know that
a Poisson distribution is not stable, though it is reproducible (Exercise 1.22).

1.10.1 Martingales

What follows extends the concept of sequences of random variables and intro-
duces the concepts of (discrete-time) processes and martingales. The latter’s
continuous equivalents will be the subject of the following chapters.

Let (Ω,F , P ) be a probability space and (Fn)n≥0 a filtration, that is, an
increasing family of sub-σ-algebras of F :

F0 ⊆ F1 ⊆ · · · ⊆ F .

We define F∞ := σ(
⋃

n Fn) ⊆ F . A process X = (Xn)n≥0 is called adapted
to the filtration (Fn)n≥0 if for each n, Xn is Fn-measurable.

Definition 1.221. A sequence X = (Xn)n∈N of real-valued random variables
is called a martingale (relative to (Fn, P )) if
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• X is adapted
• E[|Xn|] <∞ for all n (⇔ Xn ∈ L1)
• E[Xn|Fn−1] = Xn−1 almost surely (n ≥ 1)

Proposition 1.222. If (Xn)n∈N is a martingale, then its expected value is
constant, i.e., for all n ∈ N, E[Xn] = E[X0].

Example 1.223.

1. Show that if (Xn)n∈N is a sequence of independent random variables with
E[Xn] = 0 for all n ∈ N, then Sn = X1 +X2 + · · · +Xn is a martingale
with respect to (Fn = σ(X1, . . . , Xn), P ) and F0 = {∅, Ω}.

2. Show that if (Xn)n∈N is a sequence of independent random variables with
E[Xn] = 1 for all n ∈ N, then Mn = X1 ·X2 · · · · ·Xn is a martingale with
respect to (Fn = σ(X1, . . . , Xn), P ) and F0 = {∅, Ω}.

Definition 1.224. A sequence X = (Xn)n∈N of real-valued random vari-
ables is called a submartingale (respectively a supermartingale) (relative to
(Fn, P )) if

• X is adapted
• E[|Xn|] <∞ for all n (⇔ Xn ∈ L1)
• E[Xn|Fn−1] ≥ Xn−1 (respectively E[Xn|Fn−1] ≤ Xn−1) almost surely

(n ≥ 1)

Theorem 1.225 (Doob decomposition). Let (Xn)n≥0 be a submartin-
gale. Then X admits a decomposition

X = X0 +M +A,

where M is a martingale null at n = 0 and A is a predictable increasing
process null at n = 0. Moreover, such decomposition is a.s. unique, in the
sense that if X = X0 + M̃ + Ã is another such decomposition, then

P (Mn = M̃n, An = Ãn, ∀n) = 1.

Proof . See, e.g., Jacod and Protter (2000, p. 216). �

Theorem 1.226. Let (Xn)n∈N be an adapted process with Xn ∈ L1 for all n.
Prove that X admits an a.s. unique decomposition

X = X0 +M +A,

where M is a martingale null at n = 0 and A is a predictable process null at
n = 0. (Xn)n≥0 is a submartingale if and only if A is a predictable increasing
process, in the sense that
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P (An ≤ An+1, ∀n) = 1.

Proof . See, e.g., Williams (1991, p. 120). �
A discrete-time process C = (Cn)n≥1 is called predictable if

Cn is Fn−1-measurable (n ≥ 1).

We define

(C •X)n :=

n∑
k=1

Ck(Xk −Xk−1).

Proposition 1.227 (Stochastic integration theorem). If C is a bounded
predictable process and X is a martingale, then (C •X) is a martingale null
at n = 0.

Definition 1.228. Let N = N ∪ {+∞} . A random variable T : (Ω,F) →
(N,B

N
) is a stopping time if and only if

∀n ∈ N : {T ≤ n} ∈ Fn.

Proposition 1.229. Let X be a martingale with respect to the natural filtra-
tion (Ft)n∈R+ and let T be a stopping time with respect to the same filtration;
then the stopped process XT ; = (Xn∧T (ω))n≥0 is a martingale with the same
expected value of X.

Proof . Hint: Consider the predictable process Cn = I(T≥n) and apply the
preceding results to the process (XT −X0)n = (CT •X)n. �

Proposition 1.230 (Martingale convergence theorem). Let (Xn)n∈N

be a nonnegative submartingale, or a martingale bounded above or bounded
below; then the limit Xn

a.s.−→
n
X exists, and X ∈ L1.

Proof . See, e.g., Jacod and Protter (2000, p. 226). Warning: we are not

claiming that Xn
L1

−→
n
X, and indeed this is not true in general. �

Theorem 1.231 (Martingale convergence theorem). Let (Xn)n∈N be a

uniformly integrable martingale; then the limit Xn
a.s.−→
n
X exists, X ∈ L1, and,

additionally, Xn
L1

−→
n
X.

Moreover, Xn = E[X | Fn].

Proof . See, e.g., Jacod and Protter (2000, p. 232). �

Theorem 1.232 (Martingale central limit theorem). Let (Xn)n∈N∗ be a
sequence of real-valued random variables on a given probability space (Ω,F , P )
endowed with a filtration (Fn)n∈N. Assume that
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• E[Xn|Fn−1] = 0 almost surely (n ≥ 1)
• E[X2

n|Fn−1] = 1 almost surely (n ≥ 1)
• E[X3

n|Fn−1] ≤ K < +∞ almost surely (n ≥ 1) for a K > 0

Consider

S0 = 0; Sn =

n∑
i=1

Xi.

Then 1√
n
Sn

d−→
n
N(0, 1).

Proof . See, e.g., Jacod and Protter (2000, p. 229). �

1.11 Exercises and Additions

1.1. Prove Proposition 1.16.

1.2. Prove all the points of Example 1.79.

1.3. Show that the statement of Example 1.62 is true.

1.4. Prove all points of Example 1.106 and, in addition, the following: Let
X be a Cauchy distributed random variable, i.e., X ∼ C(0, 1); then Y =
a+ hX ∼ C(a, h).

1.5. Give an example of two random variables that are uncorrelated but not
independent.

1.6. If X has an absolutely continuous distribution with pdf f(x), its entropy
is defined as

H(X) = −
∫
D

f(x) ln f(x)dx,

where D = {x ∈ R|f(x) > 0} .

1. Show that the maximal value of entropy within the set of nonnegative
random variables with a given expected value μ is attained by the expo-
nential E(μ−1).

2. Show that the maximal value of entropy within the set of real random
variables with fixed mean μ and variance σ2 is attained by the Gaussian
N(μ, σ2).

1.7. Show that an i.d. characteristic function never vanishes.

1.8. Let φ be an i.d. characteristic function. Show that (φ)α is an i.d. charac-
teristic function for any real positive α. The converse is also true.
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1.9. Let ψ be an arbitrary characteristic function, and suppose that λ is a
positive real number. Then

φ(t) = exp {λ[ψ(t) − 1]} , t ∈ R,

is an i.d. characteristic function.

1.10. 1. Show that the negative binomial distribution is i.d.
2. Show that the exponential distribution E(λ) is i.d.
3. Show that the characteristic function of a Gamma random variable X ∼
Γ (α, β) is i.d.

4. Show that the characteristic function of a Cauchy random variable is i.d.
5. Show that the characteristic function of a uniform random variable X ∼
U(0, 1) is not i.d.

1.11. Show that any linear combination of independent i.d. random variables
is itself an i.d. random variable (the reader may refer to Fristedt and Gray
1997, p. 294).

1.12 (Kolmogorov). Show that a function φ is an i.d. characteristic function
with finite variance if and only if

lnφ(s) = ias+

∫
R

eisx − 1− isx

x2
G(dx) for any s ∈ R,

where a ∈ R and G is a nondecreasing and bounded function such that
G(−∞) = 0. The representation is unique (the reader may refer to Lukacs
1970, p. 119).

1.13 (Lévy–Khintchine). Show that a function φ is an i.d. characteristic
function if and only if

lnφ(s) = ias− σ2s2

2
+

∫
R−{0}

(eisx − 1− isχ(x))λL(dx) for any s ∈ R,

where a ∈ R, σ2 ∈ R
∗
+,

χ(x) = −I]−∞,1](x) + xI]−1,1[(x) + I[1,+∞[,

and λL is a Lévy measure, i.e., a measure defined on R
∗ such that∫

R∗
min

{
x2, 1

}
λL(dx) < +∞.

The triplet (a, σ2, λL) is called a generating triplet of the i.d. characteristic
function φ. (The reader may refer to Fristedt and Gray 1997, p. 295.)

1.14. With reference to Problem 1.13 show that in the generating triplet
(a, σ2, λL)
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(i) For a Gaussian random variable N(a, σ2), a equals the mean, σ2 equals
the variance, and λL = 0.

(ii) For a Poisson random variable P (λ), a = 0, σ2 = 0, and λL = λε1, where
ε1 is the Dirac measure concentrated in 1.

(iii) For a compound Poisson random variable P (λ, μ), a = 0, σ2 = 0, and
λL = λμ.

1.15. Show that φ is the characteristic function of a stable law if and only if
for any a1 and a2 in R

∗
+ there exist two constants a ∈ R

∗
+ and b ∈ R such that

φ(a1s)φ(a2s) = eibsφ(as).

1.16. Show that if φ is the characteristic function of a stable law that is
symmetric about the origin, then there exist c ∈ R

∗
+ and α ∈]0, 2] such that

φ(s) = e−c|s|α for any x ∈ R.

1.17. A stable random variable is symmetric if and only if its characteristic
function is real. From Theorem 1.212 it may happen if and only if β = 0 and
μ = 0.

1.18. A stable symmetric random variable is strictly stable, but the converse
is not true.

1.19. Let X1 and X2 be independent stable random variables such that Xi ∼
Sα (σi, βi, μi), for i = 1, 2. Then X1 +X2 ∼ Sα (σ, β, μ), where

σ = (σα
1 + σα

2 )
1/α ,

β =
β1σ

α
1 + β2σ

α
2

σα
1 + σα

2

,

μ = μ1 + μ2.

1.20. Let X1, . . . , Xn be a family of i.i.d. stable random variables Sα (σ, β, μ);
then

X1 + . . .+Xn
d
= n1/αX1 + μ

(
n− n1/α

)
, if α �= 1,

and

X1 + . . .+Xn
d
= n1/αX1 +

2
πσβn lnn, if α = 1.

1.21. Show that every stable law is i.d. What about the converse?

1.22. Show that a Poisson random variable is i.d. but not stable.

1.23. If φ1(t) = sin t and φ2(t) = cos t are characteristic functions, then give
an example of random variables associated with φ1 and φ2, respectively.

Let φ(t) be a characteristic function, and describe a random variable with
characteristic function |φ(t)|2.
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1.24. Let X1, X2, . . . , Xn be i.i.d. random variables with common density f ,
and

Yj = jth smallest of theX1, X2, . . . , Xn, j = 1, . . . , n.

It follows that Y1 ≤ · · · ≤ Yj ≤ · · · ≤ Yn. Show that

fY1,...,Yn =

{
n!
∏n

i=1 f(yi), if y1 < y2 < · · · < yn,
0, otherwise.

1.25. Let X and (Yn)n∈N be random variables such that

X ∼ E(1), Yn(ω) =

{
n, if X(ω) ≤ 1

n ,
0, otherwise.

Give, if it exists, the limit lim
n→∞Yn:

• In distribution
• In probability
• Almost surely
• In mean of order p ≥ 1

1.26. Let (Xn)n∈N be a sequence of uncorrelated random variables with com-
mon expected value E[Xi] = μ and such that supV ar[Xi] < +∞.

Show that
∑n

i=1

Xi

n
converges to μ in mean of order p = 2.

1.27. Give an example of random variables X,X1, X2, . . . such that (Xn)n∈N

converges to X

• In probability but not almost surely
• In probability but not in mean
• Almost surely but not in mean and vice versa
• In mean of order 1 but not in mean of order p = 2 (generally p > 1)

1.28. Let (Xn)n∈N be a sequence of i.i.d. random variables such that Xi ∼
B(p) for all i. Let Y be uniformly distributed on [0, 1] and independent of
Xi for all i. If Sn = 1

n

∑n
k=1(Xk − Y )2, show that (Sn)n∈N converges almost

surely, and determine its limit.

1.29. Let (Xn)n∈N be a sequence of i.i.d. random variables; determine the
limit almost surely of

1

n

n∑
k=1

sin

(
Xi

Xi+1

)

in the following case:

• Xi = ±1 with probability 1/2.



1.11 Exercises and Additions 75

• Xi is a continuous random variable and its density function fXi is an even
function.

(Hint: Consider the sum on the natural even numbers.)

1.30 (Large deviations). Let (Xn)n∈N be a sequence of i.i.d. random vari-
ables and suppose that their moment-generating function M(t) = E[etX1 ]
exists and is finite in [0, a], a ∈ R

∗
+. Prove that for any t ∈ [0, a]

P (X̄ > E[X1] + ε) ≤ (e−t(E[X1]+ε)M(t))n < 1,

where X̄ denotes the arithmetic mean of X1, . . . , Xn, n ∈ N.
Apply the preceding result to the cases X1 ∼ B(1, p) and X1 ∼ N(0, 1).

1.31 (Chernoff). Let (Xn)n∈N be a sequence of i.i.d. simple (finite-range)
random variables, satisfying E[Xn] < 0 and P (Xn > 0) > 0 for any n ∈ N,
and suppose that their moment-generating function M(t) = E[etX1 ] exists
and is finite in [0, a], a ∈ R

∗
+. Show that

lim
n→∞

1

n
lnP (X1 + · · ·+Xn ≥ 0) = ln inf

t
M(t).

1.32 (Law of iterated logarithms). Let (Xn)n∈N be a sequence of i.i.d.
simple (finite-range) random variables with mean zero and variance 1. Show
that

P

(
lim sup

n

Sn√
2n ln lnn

= 1

)
= 1.

1.33. Let X be a d-dimensional Gaussian vector. Prove that for every Lip-
schitz function f on R

d, with ‖f‖Lip ≤ 1, the following inequality holds for
any λ ≥ 0:

P (f(X)− E[f(X)] ≥ λ) ≤ e−
λ2

2 .

1.34. Let X be an n-dimensional centered Gaussian vector. Show that

lim
r→+∞

1

r2
lnP

(
max
1≤i≤n

Xi ≥ r

)
= − 1

2σ2
.

1.35. Let (Yn)n∈N be a family of random variables in L1; then the following
two statements are equivalent:

1. (Yn)n∈N is uniformly integrable.
2. supn∈NE[|Yn|] < +∞, and for all ε there exists a δ > 0 such that A ∈ F ,
P (A) ≤ δ ⇒ E[|YnIA|] < ε.

(Hint:
∫
A
|Yn| ≤ rP (A) +

∫
|Yn|>r

Yn for r > 0.)

1.36. Show that the random variables (Yn)n∈N are uniformly integrable if and
only if supnE[f(|Yn|)] < ∞ for some increasing function f : R+ → R+ with
f(x)/x→ ∞ as n→ ∞.
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1.37. Show that for any Y ∈ L1 the family of conditional expectations
{E[Y |G], G ⊂ F} is uniformly integrable.

1.38. Show that if (Xn)n∈N is a sequence of independent random variables
with E[Xn] = 0 for all n ∈ N, then Sn = X1 +X2 + · · ·+Xn is a martingale
with respect to (Fn = σ(X1, . . . , Xn), P ) and F0 = {∅, Ω}.

1.39. Show that if (Xn)n∈N is a sequence of independent random variables
with E[Xn] = 1 for all n ∈ N, then Mn = X1 · X2 · · · · · Xn is a martingale
with respect to (Fn = σ(X1, . . . , Xn), P ) and F0 = {∅, Ω}.

1.40. Show that if {Fn : n ≥ 0} is a filtration in F and ξ ∈ L1(Ω,F , P ), then
Mn ≡ E[ξ|Fn] is a martingale.

1.41. An urn contains white and black balls; we draw a ball and replace it
with two balls of the same color; the process is repeated many times. Let Xn

be the proportion of white balls in the urn before the nth draw. Show that
the process (Xn)n≥0 is a martingale.

1.42. Consider the model

ΔXn = Xn+1 −Xn = pXn +ΔMn,

where Mn is a zero-mean martingale. Prove that

p̂ =
1

n

n∑
k=1

1

Xj
ΔXj

is an unbiased estimator of p (i.e., E[p̂] = p). (Hint: Use the stochastic inte-
gration theorem.)
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Stochastic Processes

2.1 Definition

We commence along the lines of the founding work of Kolmogorov by
regarding stochastic processes as a family of random variables defined on
a probability space and thereby define a probability law on the set of tra-
jectories of the process. More specifically, stochastic processes generalize the
notion of (finite-dimensional) vectors of random variables to the case of any
family of random variables indexed in a general set T . Typically, the latter
represents “time” and is an interval of R (in the continuous case) or N (in the
discrete case). For a nice and elementary introduction to this topic the reader
may refer to Parzen (1962).

Definition 2.1. Let (Ω,F , P ) be a probability space, T an index set, and
(E,B) a measurable space. An (E,B)-valued stochastic process on (Ω,F , P )
is a family (Xt)t∈T of random variables Xt : (Ω,F) → (E,B) for t ∈ T .

(Ω,F , P ) is called the underlying probability space of the process (Xt)t∈T ,
while (E,B) is the state space or phase space. Fixing t ∈ T , the random
variable Xt is the state of the process at “time” t. Moreover, for all ω ∈ Ω,
the mapping X(·, ω) : t ∈ T → Xt(ω) ∈ E is called the trajectory or path of
the process corresponding to ω. Any trajectory X(·, ω) of the process belongs
to the space ET of functions defined in T and valued in E. Our aim is to
introduce a suitable σ-algebra BT on ET that makes the family of trajectories
of our stochastic process a random function X : (Ω,F) → (ET ,BT ).

More generally, let us consider the family of measurable spaces (Et,Bt)t∈T

(as a special case, all Et may coincide with a unique E) and define WT =∏
t∈T Et. If S ∈ S, where S = {S ⊂ T | S is finite}, then the product σ-algebra

BS =
⊗

t∈S Bt is well defined as the σ-algebra generated by the family of
rectangles with sides in Bt, t ∈ S.

Definition 2.2. If A ∈ BS, S ∈ S, then the subset π−1
ST (A) is a cylinder in

WT with base A, where πST is the canonical projection of WT on WS .

V. Capasso and D. Bakstein, An Introduction to Continuous-Time
Stochastic Processes, MSSET, DOI 10.1007/978-0-8176-8346-7 2,
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It is easy to show that if CA and CA′ are cylinders with bases A ∈ BS and
A′ ∈ BS′

, S, S′ ∈ S, respectively, then CA ∩CA′ , CA ∪CA′ , and CA \CA′ are
cylinders with base inWS∪S′

. From this it follows that the set of cylinders with
a finite-dimensional base is a ring of subsets of WT (or, better, an algebra).
We denote by BT the σ-algebra generated by it (See, e.g., Métivier 1968).

Definition 2.3. The measurable space (WT ,BT ) is called the product space
of the measurable spaces (Et,Bt)t∈T .

From the definition of BT we have the following result.

Theorem 2.4. BT is the smallest σ-algebra of the subsets of WT that makes
all canonical projections πST measurable.

Furthermore, the following lemma is true.

Lemma 2.5. The canonical projections πST are measurable if and only if
π{t}T for all t ∈ T are measurable as well.

Moreover, from a well-known result of measure theory, we have the follow-
ing proposition.

Proposition 2.6. A function f : (Ω,F) → (WT ,BT ) is measurable if and
only if for all t ∈ T the composite mapping π{t}T ◦ f : (Ω,F) → (Et,Bt) is
measurable.

For proofs of Theorem 2.4, Lemma 2.5, and Proposition 2.6, see, e.g.,
Métivier (1968).
Remark 2.7. Let (Ω,F , P, (Xt)t∈T ) be a stochastic process with state space
(E,B). Since the function space ET =

∏
t∈T E, the mapping f : Ω → ET ,

which associates every ω ∈ Ω with its corresponding trajectory of the process,
is (F − BT )-measurable, and in fact we have that

∀t ∈ T : π{t}T ◦ f(ω) = π{t}T (X(·, ω)) = Xt(ω),

where π{t}T ◦ f = Xt, which is a random variable, is obviously measurable.

Definition 2.8. A function f : Ω → ET defined on a probability space
(Ω,F , P ) and valued in a measurable space (ET ,G) is called a random func-
tion if it is (F -G)-measurable.

How can we define a probability law PT on (ET ,BT ) for the stochastic
process (Xt)t∈T defined on the probability space (Ω,F , P ) in a coherent way?
We may observe that from a physical point of view, it is natural to assume
that in principle we are able, from experiments, to define all possible finite-
dimensional joint probabilities

P (Xt1 ∈ B1, . . . , Xtn ∈ Bn)

for any n ∈ N, for any {t1, . . . , tn} ⊂ T , and for any B1, . . . , Bn ∈ B,
i.e., the joint probability laws PS of all finite-dimensional random vectors
(Xt1 , . . . , Xtn), for any choice of S = {t1, . . . , tn} ⊂ S, such that
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PS(B1 × · · · ×Bn) = P (Xt1 ∈ B1, . . . , Xtn ∈ Bn).

Accordingly, we require that, for any S ⊂ S,

PT (π−1
ST (B1 × · · · ×Bn)) = PS(B1 × · · · ×Bn) = P (Xt1 ∈ B1, . . . , Xtn ∈ Bn).

A general answer comes from the following theorem. Having constructed
the σ-algebra BT on ET , we now define a measure μT on (WT ,BT ), supposing
that, for all S ∈ S, a measure μS is assigned on (WS ,BS). If S ∈ S, S′ ∈ S,
and S ⊂ S′, we denote the canonical projection of WS′

on WS by πSS′ , which
is certainly (BS′

-BS)-measurable.

Definition 2.9. If, for all (S, S′) ∈ S × S ′, with S ⊂ S′, we have that
πSS′(μS′) = μS , then

(WS ,BS, μS , πSS′)S,S′∈S;S⊂S′

is called a projective system of measurable spaces and (μS)S∈S is called a
compatible system of measures on the finite products (WS ,BS)S∈S .

Theorem 2.10 (Kolmogorov–Bochner). Let (Et,Bt)t∈T be a family of
Polish spaces (i.e., metric, complete, separable) endowed with their respective
Borel σ-algebras, and let S be the collection of finite subsets of T and, for
all S ∈ S with WS =

∏
t∈S Et and BS =

⊗
t∈S Bt, let μS be a finite mea-

sure on (WS ,BS). Under these assumptions the following two statements are
equivalent:

1. There exists a μT measure on (WT ,BT ) such that for all S ∈ S : μS =
πST (μT ).

2. The system (WS ,BS, μS , πSS′)S,S′∈S;S⊂S′ is projective.

Moreover, in both cases, μT , as defined in 1, is unique.

Proof . See, e.g., Métivier (1968). �

Definition 2.11. The unique measure μT of Theorem 2.10 is called the pro-
jective limit of the projective system (WS ,BS, μS , πSS′)S,S′∈S;S⊂S′ .

As a special case consider a family of probability spaces (Et,Bt, Pt)t∈T . If,
for all S ∈ S, we define PS =

⊗
t∈S Pt, then (WS ,BS, PS , πSS′)S,S′∈S;S⊂S′ is

a projective system and the projective probability limit
⊗

t∈T Pt is called the
probability product of the family of probabilities (Pt)t∈T .

With respect to the projective system of finite-dimensional probability
laws PS =

⊗
t∈S PXt of a stochastic process (Xt)t∈R+ , the projective limit

will be the required probability law of the process.

Theorem 2.12. Two stochastic processes (Xt)t∈R+ and (Yt)t∈R+ that have
the same finite-dimensional probability laws have the same probability law.



80 2 Stochastic Processes

Definition 2.13. Two stochastic processes are equivalent if and only if they
have the same projective system of finite-dimensional joint distributions.

A more stringent notion follows.

Definition 2.14. Two real-valued stochastic processes (Xt)t∈R+ and (Yt)t∈R+

on the probability space (Ω,F , P ) are called modifications or versions of one
another if,

for any t ∈ T, P (Xt = Yt) = 1.

Remark 2.15. It is obvious that two processes that are modifications of one
another are also equivalent.

An even more stringent requirement comes from the following definition.

Definition 2.16. Two processes are indistinguishable if

P (Xt = Yt, ∀t ∈ R+) = 1.

Remark 2.17. It is obvious that two indistinguishable processes are modifica-
tions of each other.

Example 2.18. Let (Xt)t∈T be a family of independent random variables
defined on (Ω,F , P ) and valued in (E,B). [In fact, in this case, it is sufficient
to assume that only finite families of (Xt)t∈T are independent.] We know that
for all t ∈ T the probability Pt = Xt(P ) is defined on (E,B). Then

∀S = {t1, . . . , tr} ∈ S : PS =

r⊗

k=1

Ptk for some r ∈ N
∗,

and the system (PS)S∈S is compatible with its finite products (ES ,BS)S∈S .
In fact, let S, S′ ∈ S, with S = {t1, . . . , tr} ⊂ S′ = {t1, . . . , tr′} ; if B is a
rectangle of BS, i.e., B = Bt1 × · · · ×Btr , then

PS(B) = PS(Bt1 × · · · ×Btr ) = Pt1(Bt1) · · · · · Ptr (Btr )

= Pt1(Bt1) · · · · · Ptr (Btr )Ptr+1(E) · · · · · Ptr′ (E)

= PS′(π−1
SS′(B)).

By the extension theorem we obtain that PS = πSS′(PS′ ). As anticipated
above, in this case we will write PT =

⊗
t∈T Pt.

Remark 2.19. The compatibility condition PS = πSS′(PS′), for all S, S′ ∈ S
and S ⊂ S′, can be expressed in an equivalent way by either the distribution
function FS of the probability PS or its density fS. For E = R we obtain,
respectively,

1. For S, S′ ∈ S, with S = {t1, . . . , tr} ⊂ S′ = {t1, . . . , tr′} ; and for
(xt1 , . . . , xtr ) ∈ R

S :
FS(xt1 , . . . , xtr ) = FS′(xt1 , . . . , xtr ,+∞, . . . ,+∞).
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2. For S, S′ ∈ S, with S = {t1, . . . , tr} ⊂ S′ = {t1, . . . , tr′} ; and for
(xt1 , . . . , xtr ) ∈ R

S :
fS(xt1 , . . . , xtr ) =

∫ · · · ∫ dxtr+1 · · · dxtr′ fS′(xt1 , . . . , xtr , xtr+1 , . . . , xtr′ ).

Definition 2.20. A real-valued stochastic process (Xt)t∈R+ is continuous in
probability if

P − lim
s→t

Xs = Xt, s, t ∈ R+.

Definition 2.21. A function f : R+ → R is right-continuous if for any
t ∈ R+, with s > t,

lim
s↓t

f(s) = f(t).

Instead, the function is left-continuous if for any t ∈ R+, with s < t,

lim
s↑t

f(s) = f(t).

Definition 2.22. A stochastic process (Xt)t∈R+ is right-(left-)continuous if
its trajectories are right-(left-)continuous almost surely. A stochastic process
is continuous if its trajectories are continuous almost surely

Proposition 2.23. A stochastic process that is continuous a.s. is continuous
in probability. A stochastic process that is L2-continuous is continuous in
probability.

Definition 2.24. A stochastic process (Xt)t∈R+ is said to be right-continuous
with left limits (RCLL) or continu à droite avec limite à gauche (càdlàg)
if, almost surely, it has trajectories that are RCLL. The latter is denoted
Xt− = lims↑tXs.

Theorem 2.25. Let (Xt)t∈R+ and (Yt)t∈R+ be two RCLL processes. Xt and
Yt are modifications of each other if and only if they are indistinguishable.

As discussed in Doob (1953, p. 51) and in Billingsley (1986, p. 551),
the finite-dimensional distributions, which determine the existence of the
probability law of a stochastic process according to the Kolmogorov–Bochner
theorem, are not sufficient to determine the properties of the sample paths of
the process. On the other hand, it is possible, under rather general conditions,
to ensure the property of separability of a process, and from this property var-
ious other desirable properties of the sample paths follow, such as continuity
for the Brownian paths.

Definition 2.26. A real-valued stochastic process (Xt)t∈R+ on the
probability space (Ω,F , P ) is called separable if
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• There exists a T0 ⊂ R+, countable and dense everywhere in R+

• There exists an A ∈ F , P (A) = 0 (negligible)

such that

• For all t ∈ R+ : there exists (tn)n∈N ∈ TN

0 such that limn→∞ tn = t.
• For all ω ∈ Ω \A : limn→∞Xtn(ω) = Xt(ω).

The subset T0 of R+, as defined previously, is called the separating set.

Theorem 2.27. Let (Xt)t∈R+ be a separable process, having T0 and A as
its separating and negligible sets, respectively. If ω /∈ A, t0 ∈ R+, and
limt→t0 Xt(ω) for t ∈ T0 exists, then so does the limit limt→t0 Xt(ω) for
t ∈ R+, and they coincide.

Proof . See, e.g., Ash and Gardner (1975). �

Theorem 2.28. Every real stochastic process (Xt)t∈R+ admits a separable
modification, almost surely finite, for any t ∈ R+.

Proof . See, e.g., Ash and Gardner (1975). �
Remark 2.29. By virtue of Theorem 2.28, we may henceforth only consider
separable processes.

In general, it is not true that a function f(ω1, ω2) is jointly measurable
in both variables, even if it is separately measurable in each of them. It is
therefore required to impose conditions that guarantee the joint measurability
of f in both variables. Evidently, if (Xt)t∈R+ is a stochastic process, then for
all t ∈ R+ : X(t, ·) is measurable.

Definition 2.30. Let (Xt)t∈R+ be a stochastic process defined on the proba-
bility space (Ω,F , P ) and valued in (E,BE). The process (Xt)t∈R+ is said to
be measurable if it is measurable as a function defined on R+ × Ω (with the
σ-algebra BR+ ⊗F) and valued in E.

Proposition 2.31. If the process (Xt)t∈R+ is measurable, then the trajectory
X(·, ω) : R+ → E is measurable for all ω ∈ Ω.

Proof . Let ω ∈ Ω and B ∈ BE. We want to show that (X(·, ω))−1(B) is an
element of BR+ . In fact,

(X(·, ω))−1(B) = {t ∈ R+|X(t, ω) ∈ B} =
{
t ∈ R+|(t, ω) ∈ X−1(B)

}
,

meaning that (X(·, ω))−1(B) is the path ω of X−1, which is certainly
measurable, because X−1(B) ∈ BR+ ⊗ F (as follows from the properties of
the product σ-algebra). �
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If the process is measurable, then it makes sense to consider the integral
∫ b

a X(t, ω)dt along a trajectory. By Fubini’s theorem, we have
∫

Ω

P (dω)

∫ b

a

dtX(t, ω) =

∫ b

a

dt

∫

Ω

P (dω)X(t, ω).

Definition 2.32. The process (Xt)t∈R+ is said to be progressively measurable
with respect to the filtration (Ft)t∈R+ , which is an increasing family of subal-
gebras of F , if, for all t ∈ R+, the mapping (s, ω) ∈ [0, t] ×Ω → X(s, ω) ∈ E
is (B[0,t] ⊗ Ft)-measurable. Furthermore, we henceforth suppose that Ft =
σ(X(s), 0 ≤ s ≤ t), t ∈ R+, which is called the generated or natural filtration
of the process Xt.

Proposition 2.33. If the process (Xt)t∈R+ is progressively measurable, then
it is also measurable.

Proof . Let B ∈ BE. Then

X−1(B) = {(s, ω) ∈ R+ ×Ω|X(s, ω) ∈ B}

=

∞⋃

n=0

{(s, ω) ∈ [0, n] ×Ω|X(s, ω) ∈ B} .

Since

∀n : {(s, ω) ∈ [0, n] ×Ω|X(s, ω) ∈ B} ∈ B[0,n] ⊗Fn,

we obtain that X−1(B) ∈ BR+ ⊗F . �

Theorem 2.34. Let (Xt)t∈R+ be a real stochastic process continuous in prob-
ability; then it admits a separable and progressively measurable modification.

Proof . See, e.g., Ash and Gardner (1975). �

Definition 2.35. A filtered complete probability space (Ω,F , P, (Ft)t∈R+)
is said to satisfy the usual hypotheses if

1. F0 contains all the P -null sets of F .
2. Ft =

⋂
s>t Fs, for all t ∈ R+, i.e., the filtration (Ft)t∈R+ is right-

continuous.

Henceforth we will always assume that the usual hypotheses hold, unless
specified otherwise.

Definition 2.36. Let (Ω,F , P, (Ft)t∈R+) be a filtered probability space. The
σ-algebra on R+ ×Ω generated by all sets of the form {0} ×A, A ∈ F0, and
]a, b] × A, 0 ≤ a < b < +∞, A ∈ Fa, is said to be the predictable σ-algebra
for the filtration (Ft)t∈R+ .

Definition 2.37. A real-valued process (Xt)t∈R+ is called predictable with
respect to a filtration (Ft)t∈R+ , or Ft-predictable, if as a mapping from R+ ×
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Ω → R it is measurable with respect to the predictable σ-algebra generated
by this filtration.

Definition 2.38. A simple predictable process is of the form

X = k0I{0}×A +

n∑

i=1

kiI]ai,bi]×Ai
,

where A0 ∈ F0, Ai ∈ Fai , i = 1, . . . , n, and k0, . . . , kn are real constants.

Proposition 2.39. Let (Xt)t∈R+ be a process that is Ft-predictable. Then,
for any t > 0, Xt is Ft−-measurable.

Lemma 2.40. Let (Xt)t∈R+ be a left-continuous real-valued process adapted
to (Ft)t∈R+ . Then Xt is predictable.

Lemma 2.41. A process is predictable if and only if it is measurable
with respect to the smallest σ-algebra on R+ × Ω generated by the adapted
left-continuous processes.

Proposition 2.42. Every predictable process is progressively measurable.

Proposition 2.43. If the process (Xt)t∈R+ is right-(left-)continuous, then it
is progressively measurable.

Proof . See, e.g., Métivier (1968). �
Let (Xt)t∈R+ be an R

d-valued stochastic process defined on the probability
space (Ω,F , P ).

We say it is continuous (resp. right-continuous, left-continuous) if, for
almost all ω ∈ Ω, the trajectory (Xt(ω))t∈R+ is continuous (resp. right-
continuous, left-continuous) with respect to t.

We say it is F-adapted (or simply adapted) if, for every t ∈ R+, Xt is
F -measurable.

We say it is measurable if the function (t, ω) ∈ R+ × Ω �→ Xt(ω) ∈ R
d is

BR+ ×F -measurable.
We say it is progressively measurable or progressive if, for every T ∈ R+,

the function (t, ω) ∈ [0, T ] ×Ω �→ Xt(ω) ∈ R
d is B[0,T ] ×FT -measurable.

Let O (resp. P) be the smallest σ-algebra on R+ × Ω with respect
to which every càdlàg-adapted process (resp. left-continuous process) is a
measurable function of (t, ω). We say that the stochastic process (Xt)t∈R+

is optional (resp. predictable) if the process regarded as a function of (t, ω) is
O-measurable (resp. P-measurable).

We say that a real-valued stochastic process (Xt)t∈R+ is an increasing
process if, for almost all ω ∈ Ω, Xt(ω) is nonnegative nondecreasing right-
continuous with respect to t ∈ R+.
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We say it is a process of finite variation if it can be decomposed as Xt =
Xt − X̂t, with both Xt and X̂t increasing processes.

It is obvious that processes of finite variation are cadlag. Hence adapted
processes of finite variation are optional.

The relations among various properties of stochastic properties are
summarized below.

continuous adapted continuous adapted adapted increasing
⇓ ⇓ ⇓

left-continuous adapted cadlag adapted ⇐ adapted finite variation
⇓ ⇓

predictable ⇒ optional
⇓

progressive ⇒ adapted
⇓

measurable

2.2 Stopping Times

In what follows we are given a probability space (Ω,F , P ) and a filtration
(Ft)t∈R+ on F .

Definition 2.44. A random variable T defined on Ω (endowed with the
σ-algebra F) and valued in R̄+ is called a stopping time (or Markov time)
with respect to the filtration (Ft)t∈R+ , or simply an Ft-stopping time, if

∀t ∈ R+ : {ω|T (ω) ≤ t} ∈ Ft.

The stopping time is said to be finite if P (T = ∞) = 0.

Remark 2.45. If T (ω) ≡ k (constant), then T is always a stopping time. If T
is a stopping time with respect to the filtration (Ft)t∈R+ generated by the
stochastic process (Xt)t∈R+ , t ∈ R+, then T is called the stopping time of the
process.

Definition 2.46. Let T be an Ft-stopping time. A ∈ F is said to precede T
if, for all t ∈ R+ : A ∩ {T ≤ t} ∈ Ft.

Proposition 2.47. Let T be an Ft-stopping time, and let

FT = {A ∈ F|A precedes T } ;

then FT is a σ-algebra of the subsets of Ω. It is called the σ-algebra of
T-preceding events.

Proof . See, e.g., Métivier (1968). �
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Theorem 2.48. The following relationships hold:

1. If both S and T are stopping times, then so are S ∧ T = inf {S, T } and
S ∨ T = sup {S, T }.

2. If T is a stopping time and a ∈ [0,+∞[, then T ∧ a is a stopping time.
3. If T is a finite stopping time, then it is FT -measurable.
4. If both S and T are stopping times and A ∈ FS, then A∩ {S ≤ T } ∈ FT .
5. If both S and T are stopping times and S ≤ T , then FS ⊂ FT .

Proof . See, e.g., Métivier (1968). �

Theorem 2.49. Let (Xt)t∈R+ be a progressively measurable stochastic process
valued in (S,BS). If T is a finite stopping time, then the function

X(T ) : ω ∈ Ω → X(T (ω), ω) ∈ E

is FT -measurable (and hence a random variable).

Proof . We need to show that

∀B ∈ BE : {ω|X(T (ω)) ∈ B} ∈ FT ,

hence

∀B ∈ BE , ∀t ∈ R+ : {ω|X(T (ω)) ∈ B} ∩ {T ≤ t} ∈ Ft.

Fixing B ∈ BE we have

∀t ∈ R+ : {ω|X(T (ω)) ∈ B} ∩ {T ≤ t} = {X(T ∧ t) ∈ B} ∩ {T ≤ t} ,

where {T ≤ t} ∈ Ft, since T is a stopping time. We now show that

{X(T ∧ t) ∈ B} ∈ Ft.

In fact, T ∧ t is a stopping time (by point 2 of Theorem 2.48) and is
FT∧t- measurable (by point 3 of Theorem 2.48). But FT∧t ⊂ Ft and thus T ∧t
is Ft-measurable. Now X(T ∧ t) is obtained as a composite of the mapping

ω ∈ Ω → (T ∧ t(ω), ω) ∈ [0, t] ×Ω, (2.1)

with

(s, ω) ∈ [0, t] ×Ω → X(s, ω) ∈ E. (2.2)

The mapping (2.1) is (Ft − B[0,t] ⊗ Ft)-measurable (because T ∧ t is Ft-
measurable) and the mapping (2.2) is (B[0,t] ⊗ Ft − BE)-measurable since X
is progressively measurable. Therefore, X(T ∧ t) is Ft-measurable, completing
the proof. �
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2.3 Canonical Form of a Process

Let (Ω,F , P, (Xt)t∈T ) be a stochastic process valued in (E,B) and, for every
S ∈ S, let PS be the joint probability law for the random variables (Xt)t∈S

that is the probability on (ES ,BS) induced by P through the function

XS : ω ∈ Ω → (Xt(ω))t∈S ∈ ES =
∏

t∈S

E.

Evidently, if

S ⊂ S′(S, S′ ∈ S), XS = πSS′ ◦XS′
,

then it follows that

PS = XS(P ) = (πSS′ ◦XS′
)(P ) = πSS′(PS′),

and therefore (ES ,BS, PS , πSS′)S,S′∈S,S⊂S′ is a projective system of
probabilities.

On the other hand, the random function f : Ω → ET that associates
every ω ∈ Ω with a trajectory of the process in ω is measurable (following
Proposition 2.6). Hence we can consider the induced probability PT on BT ,
PT = f(P ); PT is the projective limit of (PS)S∈S . From this it follows
that (ET ,BT , PT , (πt)t∈T ) is a stochastic process with the property that,
for all S ∈ S, the random vectors (πt)t∈S and (Xt)t∈S have the same joint
distribution.

Definition 2.50. The stochastic process (ET ,BT , PT , (πt)t∈T ) is called the
canonical form of the process (Ω,F , P, (Xt)t∈T ).

Remark 2.51. From this it follows that two stochastic processes are equivalent
if they admit the same canonical process.

2.4 Gaussian Processes

Definition 2.52. A real-valued stochastic process (Ω,F , P, (Xt)t∈R+) is
called a Gaussian process if, for all n ∈ N

∗ and for all (t1, . . . , tn) ∈ R
n
+, the n-

dimensional random vector X = (Xt1 , . . . , Xtn)′ has a multivariate Gaussian
distribution, with probability density

ft1,...,tn(x) =
1

(2π)n/2
√

detK
exp

{

−1

2
(x −m)′K−1(x−m)

}

, (2.3)

where
{
mi = E[Xti ] ∈ R, i = 1, . . . , n,
Kij = Cov[Xti , Xtj ] ∈ R, i, j = 1, . . . , n.
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The covariance matrix K = (σij) is taken as positive-definite, i.e., for all
a ∈ R

n :
∑n

i,j=1 aiKijaj > 0).
The existence of Gaussian processes is guaranteed by the following

remarks. By assigning a real-valued function

m : R+ → R,

and a positive-definite function

K : R+ × R+ → R,

thanks to well-known properties of multivariate Guassian distributions, we
may introduce a projective system of Gaussian laws (PS)S∈S (where S is the
set of all finite subsets of R+) of the form (2.3) such that, for S = {t1, . . . , tn} ,

mi = m(ti), i = 1, . . . , n,

Kij = K(ti, tj), i, j = 1, . . . , n.

Since R is a Polish space, by the Kolmogorov–Bochner Theorem 2.10,
we can now assert that there exists a Gaussian process (Xt)t∈R+ having the
preceding (PS)S∈S as its projective system of finite-dimensional distributions.

Example 2.53. The standard Brownian Bridge is a centered Gaussian process
(Xt)t∈[0,1] on R such that

{∀t ∈ [0, 1] : E[Xt] = 0;
∀(s, t) ∈ [0, 1] × [0, 1], s ≤ t : Cov[Xs, Xt] = s(1 − t).

2.5 Processes with Independent Increments

Definition 2.54. The stochastic process (Ω,F , P, (Xt)t∈R+), with state space
(E,B), is called a process with independent increments if, for all n ∈ N and
for all (t1, . . . , tn) ∈ R

n
+, where t1 < · · · < tn, the random variables Xt1 , Xt2 −

Xt1 , . . . , Xtn −Xtn−1 are independent.

Theorem 2.55. If (Ω,F , P, (Xt)t∈Rt) is a process with independent
increments, then it is possible to construct a compatible system of proba-
bility laws (PS)S∈S , where again S is a collection of finite subsets of the
index set.

Proof . To do this, we need to assign a joint distribution to every random
vector (Xt1 , . . . , Xtn) for all (t1, . . . , tn) in R

n
+ with t1 < · · · < tn. Thus, let

(t1, . . . , tn) ∈ R
n
+, with t1 < · · · < tn, and μ0, μs,t be the distributions of X0
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and Xt −Xs, for every (s, t) ∈ R+ × R+, with s < t, respectively. We define

Y0 = X0,

Y1 = Xt1 −X0,

. . .

Yn = Xtn −Xtn−1 ,

where Y0, Y1, . . . , Yn have the distributions μ0, μ0,t1 , . . . , μtn−1,tn , respectively.
Moreover, since the Yi are independent, (Y0, . . . , Yn) have joint distribution
μ0 ⊗μ0,t1 ⊗ · · · ⊗μtn,tn−1 . Let f be a real-valued,

⊗n B-measurable function,
and consider the random variable f(Xt1 , . . . , Xtn). Then

E[f(Xt1 , . . . , Xtn)]

= E[f(Y0 + Y1, . . . , Y0 + · · · + Yn)]

=

∫

f(y0 + y1, . . . , y0 + · · · + yn)d(μ0 ⊗ μ0,t1 ⊗ · · · ⊗ μtn−1,tn)(y0, . . . , yn).

In particular, if f = IB , with B ∈ ⊗n B, we obtain the joint distribution of
Xt1 , . . . , Xtn :

P ((Xt1 , . . . , Xtn) ∈ B) = E[IB(Xt1 , . . . , Xtn)]

=

∫

IB(y0+y1, . . . , y0+ · · ·+yn)d(μ0 ⊗ μ0,t1 ⊗ · · · ⊗ μtn−1,tn)(y0, . . . , yn).

(2.4)

Having obtained PS , where S = {t1, . . . , tn}, with t1 < · · · < tn, we show
that (PS)S∈S is a compatible system. Let S, S′ ∈ S;S ⊂ S′, S = {t1, . . . , tn},
with t1 < · · · < tn and S′ = {t1, . . . , tj , s, tj+1, . . . , tn}, with t1 < · · · < tj <
s < tj+1 < · · · < tn. For B ∈ BS and B′ = π−1

SS′(B), we will show that
PS(B) = PS′(B′).

We can observe, by the definition of B′, that

IB′(xt1 , . . . , xtj , xs, xtj+1 , . . . , xtn)

does not depend on xs and is therefore identical to IB(xt1 , . . . , xtn). Thus
putting U = Xs −Xtj and V = Xtj+1 −Xs, we obtain

PS′(B′) =

∫

IB′(y0 + y1, . . . , y0 + · · · + yj, y0 + · · · + yj + u, y0 + · · ·
+yj + u+ v, . . . , y0 + · · · + yn)d(μ0 ⊗ μ0,t1 ⊗ · · ·
⊗μtj,s ⊗ μs,tj+1 ⊗ · · · ⊗ μtn−1,tn)(y0, . . . , yj, u, v, yj+2, . . . , yn)

=

∫

IB(y0 + y1, . . . , y0 + · · · + yj , y0 + · · · + yj + u+ v, y0 + · · ·
+u+ v + yj+2, . . . , y0 + · · · + yn)d(μ0 ⊗ μ0,t1 ⊗ · · ·
⊗μtj,s ⊗ μs,tj+1 ⊗ · · · ⊗ μtn−1,tn)(y0, . . . , yj, u, v, yj+2, . . . , yn).
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Integrating with respect to all the variables except u and v, after applying
Fubini’s theorem, we obtain

PS′(B′) =

∫

h(u + v)d(μtj ,s ⊗ μs,tj+1 )(u, v).

Letting yj+1 = u+ v we have

PS′(B′) =

∫

h(yj+1)d(μtj ,s ∗ μs,tj+1)(yj+1).

Moreover, we observe that the definition of yj+1 = u + v is compatible with
the preceding notation Yj+1 = Xtj+1 −Xtj . In fact, we have

u+ v = xs − xtj + xtj+1 − xs = xtj+1 − xtj .

Furthermore, for the independence of (Xtj+1 −Xs) and (Xs −Xtj ) the sum
of random variables

Xtj+1 −Xs +Xs −Xtj = Xtj+1 −Xtj

must have the distribution μtj ,s ∗ μs,tj+1 , where ∗ denotes the convolution
product. Therefore, having denoted the distribution of Xtj+1 −Xtj by μtj ,tj+1 ,
we obtain

μtj ,s ∗ μs,tj+1 = μtj ,tj+1 .

As a consequence we have

PS′(B′) =

∫

h(yj+1)dμtj ,tj+1(yj+1).

This integral coincides with the one in (2.4), and thus

PS(B′) = P ((Xt1 , . . . , Xtn) ∈ B) = PS(B).

If now S′ = S ∪ {s1, . . . , sk}, the proof is completed by induction. �

Definition 2.56. A process with independent increments is called time-
homogeneous if

μs,t = μs+h,t+h ∀s, t, h ∈ R+, s < t.

If (Ω,F , P, (Xt)t∈R+) is a homogeneous process with independent increments,
then as a particular case we have

μs,t = μ0,t−s ∀s, t ∈ R+, s < t.

Definition 2.57. A family of measures (μt)t∈R+ that satisfy the condition

μt1+t2 = μt1 ∗ μt2

is called a convolution semigroup.

Remark 2.58. A time-homogeneous process with independent increments is
completely defined by assigning it a convolution semigroup.
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2.6 Martingales

Extension of the concept of continuous-time martingales is mainly due to P.A.
Meyer and his coworkers (Meyer (1966)).

Definition 2.59. Let (Xt)t∈R+ be a real-valued family of random variables
defined on the probability space (Ω,F , P ), and let (Ft)t∈R+ be a filtration.
The stochastic process (Xt)t∈R+ is said to be adapted to the family (Ft)t∈R+

if, for all t ∈ R+, Xt is Ft-measurable.

Definition 2.60. The stochastic process (Xt)t∈R+ , adapted to the filtration
(Ft)t∈R+ , is a martingale with respect to this filtration, provided the following
conditions hold:

1. Xt is P -integrable for all t ∈ R+.
2. For all (s, t) ∈ R+ × R+, s < t : E[Xt|Fs] = Xs almost surely.

(Xt)t∈R+ is said to be a submartingale (supermartingale) with respect to
(Ft)t∈R+ if, in addition to condition 1 and instead of condition 2, we have:

2′. For all (s, t) ∈ R+ × R+, s < t : E[Xt|Fs] ≥ Xs (E[Xt|Fs] ≤ Xs) almost
surely.

Remark 2.61. When the filtration (Ft)t∈R+ is not specified, it is understood to
be the increasing σ-algebra generated by the random variables of the process
(σ(Xs, 0 ≤ s ≤ t))t∈R+ . In this case we can write E[Xt|Xr, 0 ≤ r ≤ s], instead
of E[Xt|Fs].

Example 2.62. The evolution of a gambler’s wealth in a game of chance,
the latter specified by the sequence of real-valued random variables (Xn)n∈N,
will serve as a descriptive example of the preceding definitions. Suppose that
two players flip a coin and the loser pays the winner (who guessed head or
tail correctly) the amount α after every round. If (Xn)n∈N represents the
cumulative fortune of player 1, then after n throws he holds

Xn =
n∑

i=0

Δi.

The random variables Δi (just like every flip of the coin) are independent and
take values α and −α with probabilities p and q, respectively. Therefore, we
see that

E[Xn+1|X0, . . . , Xn] = E[Δn+1 +Xn|X0, . . . , Xn]

= Xn + E[Δn+1|X0, . . . , Xn].

Since Δn+1 is independent of every
∑k

i=0Δi, k = 0, . . . , n, we obtain

E[Xn+1|X0, . . . , Xn] = Xn + E[Δn+1] = Xn + α(p− q).
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• If the game is fair, then p = q and (Xn)n∈N is a martingale.
• If the game is in player 1’s favor, then p > q and (Xn)n∈N is a

submartingale.
• If the game is to the disadvantage of player 1, then p < q and (Xn)n∈N is

a supermartingale.

Example 2.63. Let (Xt)t∈R+ be (for all t ∈ R+) a P -integrable stochastic
process on (Ω,F , P ) with independent increments. Then (Xt −E[Xt])t∈R+ is
a martingale. In fact4:

E[Xt|Fs] = E[Xt −Xs|Fs] + E[Xs|Fs], s < t,

and recalling that Xs is Fs-measurable and that (Xt −Xs) is independent of
Fs, we obtain that

E[Xt|Fs] = E[Xt −Xs] +Xs = Xs, s < t.

Proposition 2.64. Let (Xt)t∈R+ be a real-valued martingale. If the function
φ : R → R is both convex and measurable and such that

∀t ∈ R+ : E[|φ(Xt)|] < +∞,

then (φ(Xt))t∈R+ is a submartingale.

Proof . Let (s, t) ∈ R+ × R+, s < t. Following Jensen’s inequality and the
properties of the martingale (Xt)t∈R+ , we have that

φ(Xs) = φ(E[Xt|Fs]) ≤ E[φ(Xt)|Fs].

Letting

Vs = σ(φ(Xr), 0 ≤ r ≤ s) ∀s ∈ R+

and with the measurability of φ, it is easy to verify that Vs ⊂ Fs for all
s ∈ R+, and therefore

φ(Xs) = E[φ(Xs)|Vs] ≤ E[E[φ(Xt)|Fs]|Vs] = E[φ(Xt)|Vs].

�

Lemma 2.65. Let X and Y be two positive real random variables defined on
(Ω,F , P ). If X ∈ Lp(P ) (p > 1) and if, for all α > 0,

αP (Y ≥ α) ≤
∫

{Y≥α}
XdP, (2.5)

4For simplicity, but without loss of generality, we will assume that E[Xt] = 0, for
all t. In the case where E[Xt] �= 0, we can always define a variable Yt = Xt −E[Xt],
so that E[Yt] = 0. In that case (Yt)t∈R+ will again be a process with independent
increments, so that the analysis is analogous.
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then Y ∈ Lp(P ) and ‖Y ‖p ≤ q‖X‖p, where 1
p + 1

q = 1.

Proof . We have

E[Y p] =

∫

Ω

Y p(ω)dP (ω) =

∫

Ω

dP (ω)p

∫ Y (ω)

0

λp−1dλ

= p

∫

Ω

dP (ω)

∫ ∞

0

λp−1I{λ≤Y (ω)}(λ)dλ

= p

∫ ∞

0

dλλp−1

∫

Ω

dP (ω)I{λ≤Y (ω)}(λ)

= p

∫ ∞

0

dλλp−1P (λ ≤ Y ) = p

∫ ∞

0

dλλp−2λP (Y ≥ λ)

≤ p

∫ ∞

0

dλλp−2

∫

{Y≥λ}
XdP

= p

∫

Ω

dP (ω)X(ω)

∫ ∞

0

dλλp−2I{Y (ω)≥λ}(λ)

= p

∫

Ω

dP (ω)X(ω)

∫ Y (ω)

0

dλλp−2 =
p

p− 1

∫

Ω

dP (ω)X(ω)Y p−1(ω)

=
p

p− 1
E[Y p−1X ],

where, throughout, λ denotes the Lebesgue measure, and when changing the
order of integration we invoke Fubini’s theorem. By Hölder’s inequality, we
obtain

E[Y p] ≤ p

p− 1
E[Y p−1X ] ≤ p

p− 1
E[Xp]

1
pE[Y p]

p−1
p ,

which, after substitution and rearrangement, gives

E[Y p]
1
p ≤ qE[Xp]

1
p ,

as long as E[Y p] < +∞ (in such a case we may, in fact, divide the left- and

right-hand sides by E[Y p]
p−1
p ). But in any case we can consider the sequence

of random variables (Y ∧n)n∈N (Y ∧n is the random variable defined letting,
for all ω ∈ Ω, Y ∧ n(ω) = inf {Y (ω), n}); since, for all n, Y ∧ n satisfies
condition (2.5), then we obtain

‖Y ∧ n‖p ≤ q‖X‖p,
and in the limit

‖Y ‖p = lim
n→∞ ‖Y ∧ n‖p ≤ q‖X‖p.

�

Proposition 2.66. Let (Xn)n∈N∗ be a sequence of real random variables
defined on the probability space (Ω,F , P ), and let X+

n be the positive part of
Xn.
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1. If (Xn)n∈N∗ is a submartingale, then

P

(

max
1≤k≤n

Xk > λ

)

≤ 1

λ
E[X+

n ], λ > 0, n ∈ N
∗.

2. If (Xn)n∈N∗ is a martingale and if, for all n ∈ N
∗, X ∈ Lp(P ), p > 1, then

E

[(

max
1≤k≤n

|Xk|
)p]

≤
(

p

p− 1

)p

E[|Xn|p], n ∈ N
∗.

(Points 1 and 2 are called Doob’s inequalities.)

Proof .

1. For all k ∈ N
∗ we put Ak =

⋂k−1
j=1 {Xj ≤ λ}∩{Xk > λ} (λ > 0), where all

Ak are pairwise disjoint and A = {max1≤k≤nXk > λ}. Thus it is obvious
that A =

⋃n
k=1 Ak. Because in Ak, Xk is greater than λ, we have

∫

Ak

XkdP ≥ λ

∫

Ak

dP.

Therefore,

∀k ∈ N
∗, λP (Ak) ≤

∫

Ak

XkdP,

resulting in

λP (A) = λP

(
n⋃

k=1

Ak

)

= λ

n∑

k=1

P (Ak)

≤
n∑

k=1

∫

Ak

XkdP =
n∑

k=1

∫

Ω

XkIAk
dP =

n∑

k=1

E[XkIAk
]. (2.6)

Now we have

E[X+
n ] =

∫

Ω

X+
n dP

≥
∫

A

X+
n dP =

n∑

k=1

∫

Ak

X+
n dP =

n∑

k=1

∫

Ω

X+
n IAk

dP

=
n∑

k=1

E[X+
n IAk

] =
n∑

k=1

E[E[X+
n IAk

|X1, . . . , Xk]]

=

n∑

k=1

E[IAk
E[X+

n |X1, . . . , Xk]] ≥
n∑

k=1

E[IAk
E[Xn|X1, . . . , Xk]],
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where the last row follows from the fact that IAk
is σ(X1, . . . , Xk)-

measurable. Moreover, since (Xn)n∈N∗ is a submartingale, we have

E[X+
n ] ≥

n∑

k=1

E[IAk
Xk]. (2.7)

By (2.6) and (2.7), E[X+
n ] ≥ λP (A), and this completes the proof of 1.

We can also observe that

n∑

k=1

E[IAk
X+

n ] =

n∑

k=1

E[E[X+
n IAk

|X1, . . . , Xk]]

≥
n∑

k=1

E[IAk
E[Xn|X1, . . . , Xk]] ≥

n∑

k=1

E[IAk
Xk] ≥ λP (A),

and therefore

λP

(

max
1≤k≤n

Xk > λ

)

≤
n∑

k=1

E[IAk
X+

n ]. (2.8)

2. Let (Xn)n∈N∗ be a martingale such that Xn ∈ Lp(P ) for all n ∈ N
∗.

Since φ = |x| is a convex function, it follows from Proposition 2.64 that
(|Xn|)n∈N∗ is a submartingale. Thus from (2.8) we have

λP

(

max
1≤k≤n

|Xk| > λ

)

≤
n∑

k=1

E[IAk
|X+

n |] =

n∑

k=1

E[IAk
|Xn|]

=

n∑

k=1

∫

Ak

|Xn|dP =

∫

A

|Xn|dP (λ > 0, n ∈ N
∗).

Putting X = max1≤k≤n |Xk| and Y = |Xn|, we obtain

λP (X > λ) ≤
∫

A

Y dP =

∫

{X>λ}
Y dP,

and from Lemma 2.65 it follows that ‖X‖p ≤ q‖Y ‖p. Thus E[Xp] ≤
qpE[Y p], proving 2.

�
Remark 2.67. Because

max
1≤k≤n

|Xk|p =

(

max
1≤k≤n

|Xk|
)p

,

by point 2 of Proposition 2.66 it is also true that

E

[

max
1≤k≤n

|Xk|p
]

≤
(

p

p− 1

)p

E[|Xn|p].
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Corollary 2.68. If (Xn)n∈N∗ is a martingale such that Xn ∈ Lp(P ) for all
n ∈ N

∗, then

P

(

max
1≤k≤n

|Xk| > λ

)

≤ 1

λp
E[|Xn|p], λ > 0.

Proof . From Proposition 2.64 we can assert that (|Xn|p)n∈N∗ is a submartin-
gale. In fact, φ(x) = |x|p, p > 1, is convex. By point 1 of Proposition 2.66, it
follows that

P

(

max
1≤k≤n

|Xk|p > λp
)

≤ 1

λp
E[|Xn|p],

which is equivalent to

P

(

max
1≤k≤n

|Xk| > λ

)

≤ 1

λp
E[|Xn|p].

�

Lemma 2.69. The following statements are true:

1. If (Xt)t∈R+ is a martingale, then so is (Xt)t∈I for all I ⊂ R+.
2. If, for all I ⊂ R+ and I finite, (Xt)t∈I is a (discrete) martingale, then so

is (Xt)t∈R+ .

Proof .

1. Let I ⊂ R+, (s, t) ∈ I2, s < t. Because (Xr)r∈R+ is a martingale,

Xs = E[Xt|Xr, 0 ≤ r ≤ s, r ∈ R+].

Observing that

σ(Xr, 0 ≤ r ≤ s, r ∈ I) ⊂ σ(Xr , 0 ≤ r ≤ s, r ∈ R+)

and remembering that in general

E[X |B1] = E[E[X |B2]|B1], B1 ⊂ B2 ⊂ F ,
we obtain

E[Xt|Xr, 0 ≤ r ≤ s, r ∈ I]

= E[E[Xt|Xr, 0 ≤ r ≤ s, r ∈ R+]|Xr, 0 ≤ r ≤ s, r ∈ I]

= E[Xs|Xr, 0 ≤ r ≤ s, r ∈ I]

= Xs.

The last equality holds becauseXs is measurable with respect to σ(Xr, 0 ≤
r ≤ s, r ∈ I).

2. See, e.g., Doob (1953).

�
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Proposition 2.70. Let (Xt)t∈R+ be a stochastic process on (Ω,F , P ) valued
in R.

1. If (Xt)t∈R+ is a submartingale, then

P

(

sup
0≤s≤t

Xs > λ

)

≤ 1

λ
E[X+

t ], λ > 0, t ≥ 0.

2. If (Xt)t∈R+ is a martingale such that, for all t ≥ 0, Xt ∈ Lp(P ), p > 1,
then

E

[

sup
0≤s≤t

|Xs|p
]

≤
(

p

p− 1

)p

E[|Xt|p].

Proof . See, e.g., Doob (1953). �

Definition 2.71. A subset H of L1(Ω,F , P ) is uniformly integrable if

lim
c→∞ sup

Y ∈H

∫

{|Y |>c}
|Y |dP = 0.

Theorem 2.72. A martingale is uniformly integrable if and only if it is of the
form Mn = E[Y |Fn], where Y ∈ L1(Ω,F , P ). Under these conditions {Mn}n
converges almost surely and in L1.

Proof . See, e.g., Baldi (1984). �
The subsequent proposition specifies the limit of a uniformly integrable

martingale.

Proposition 2.73. Let Y ∈ L1(Ω,F , P ), {Fn}n be a filtration and F∞ =⋃
n Fn the σ-algebra generated by {Fn}n . Then

lim
n→∞E[Y |Fn] = E[Y |F∞] almost surely and in L1.

Proof . See, e.g., Baldi (1984). �

Doob–Meyer Decomposition
In the sequel, whenever not explicitly specified we will refer to the natural
filtration of a process, suitably completed.

Proposition 2.74. Every martingale has a right-continuous version.

Theorem 2.75. Let Xt be a supermartingale. Then the mapping t → E[Xt]
is right-continuous if and only if there exists an RCLL modification of Xt.
This modification is unique.
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Proof . See, e.g., Protter (1990). �

Definition 2.76. Consider the set S of stopping times T , with P (T <∞) = 1,
of the filtration (Ft)t∈R+ . The right-continuous adapted process (Xt)t∈R+ is
said to be of class D if the family (XT )T∈S is uniformly integrable. Instead,
if Sa is the set of stopping times with P (T ≤ a) = 1, for a finite a > 0, and
the family (XT )T∈Sa is uniformly integrable, then it is said to be of class DL.

Proposition 2.77. Let (Xt)t∈R+ be a right-continuous submartingale. Then
Xt is of class DL under either of the following two conditions:

1. Xt ≥ 0 almost surely for every t ≥ 0.
2. Xt has the form

Xt = Mt +At, t ∈ R+,

where (Mt)t∈R+ is a martingale and (At)t∈R+ an adapted increasing
process.

Lemma 2.78. If (Xt)t∈R+ is a uniformly integrable martingale, then it is
of class D.

If (Xt)t∈R+ is a martingale, or it is bounded from below, then it is
of class DL.

Definition 2.79. Let (Xt)t∈R+ be an adapted stochastic process with RCLL
trajectories. It is said to be decomposable if it can be written as

Xt = X0 +Mt + Zt,

where M0 = Z0 = 0, Mt is a locally square-integrable martingale and Zt has
RCLL-adapted trajectories of bounded variation.

Theorem 2.80 (Doob–Meyer). Let (Xt)t∈R+ be an adapted right-continu-
ous process. It is a submartingale of class D, with X0 = 0 almost surely if and
only if it can be decomposed as

∀t ∈ R+, Xt = Mt +Ata.s.,

where Mt is a uniformly integrable martingale with M0 = 0 and At ∈ L1(P )
is an increasing predictable process with A0 = 0. The decomposition is unique
and if, in addition, Xt is bounded, then Mt is uniformly integrable and At is
integrable.

Proof . See, e.g., Ethier and Kurtz (1986). �

Corollary 2.81. Let X = (Xt)t∈R+ be an adapted right-continuous sub-
martingale of class DL; then there exists a unique (up to indistinguishability)
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right-continuous increasing predictable process A adapted to the same filtration
as X, with A0 = 0 almost surely, such that

Mt = Xt −At, t ∈ R+

is a martingale, adapted to the same filtration as X.

Definition 2.82. Resorting to the notation of Theorem 2.80, the process
(At)t∈R+ is called the compensator of Xt.

Proposition 2.83. Under the assumptions of Theorem 2.80, the compensator
At of Xt is continuous if and only if Xt is regular in the sense that for every
predictable finite stopping time T we have that E[XT ] = E[XT− ].

Definition 2.84. A stochastic process (Mt)t∈R+ is a local martingale with
respect to the filtration (Ft)t∈R+ if there exists a “localizing” sequence (Tn)n∈N

such that for each n ∈ N, (Mt∧Tn)t∈R+ is an Ft-martingale.

Definition 2.85. Let (Xt)t∈R+ be a stochastic process. Property P is said
to hold locally if

1. There exists (Tn)n∈N, a sequence of stopping times, with Tn < Tn+1.
2. limn Tn = +∞ almost surely.

such that XTnI{Tn>0} has property P for n ∈ N
∗.

Theorem 2.86. Let (Mt)t∈R+ be an adapted and RCLL stochastic process,
and let (Tn)n∈N be as in the preceding definition. If MTnI{Tn>0} is a martin-
gale for each n ∈ N

∗, then Mt is a local martingale.

Lemma 2.87. Any martingale is a local martingale.

Proof . Simply take Tn = n for all n ∈ N
∗. �

Theorem 2.88 (Local form Doob–Meyer). Let (Xt)t∈R+ be a nonnega-
tive right-continuous Ft-local submartingale with (Ft)t∈R+ a right-continuous
filtration. Then there exists a unique increasing right-continuous predictable
process (At)t∈R+ such that A0 = 0 almost surely and P (At < ∞) = 1 for all
t > 0, so that Xt −At is a right-continuous local martingale.

Definition 2.89. A martingale M = (Mt)t∈R+ is square-integrable if, for all
t ∈ R+, E[|Mt|2] < +∞.

We will denote by M the family of all right-continuous square-integrable
martingales.

Remark 2.90. If M ∈ M, then M2 satisfies the conditions of Corollary 2.81;
let < M > be the increasing process given by the theorem with X = M2.
Then 〈M0〉 = 0, and M2

t − 〈Mt〉 is a martingale.
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Definition 2.91. For two martingales M and N, in M the process

〈M,N〉 =
1

4
(〈M +N〉 − 〈M −N〉)

is called the predictable covariation of M and N . Evidently 〈M,M〉 = 〈M〉,
and so it is called the predictable variation of M.

Remark 2.92. Hence 〈M,N〉 is the unique finite variation predictable RCLL
process such that 〈M,N〉0 = 0 and MN − 〈M,N〉 is a martingale. Further-
more, if 〈M,N〉 = 0, then the two martingales are said to be orthogonal. Thus
M and N are orthogonal if and only if MN is a martingale.

Definition 2.93. A martingale M is said to be a purely discontinuous mar-
tingale if and only if M0 = 0 and it is orthogonal to any continuous martingale.

Definition 2.94. Two local martingales M and N are said to be orthogonal
if and only if MN is a local martingale.

Definition 2.95. A local martingale M is said to be a purely discontinuous
local martingale if and only if M0 = 0 and it is orthogonal to any continuous
local martingale.

Having denoted by M the family of all right-continuous square-integrable
martingales, let Mc ⊂ M denote the family of all continuous square integrable
martingales, and let Md ⊂ M denote the family of all purely discontinuous
square-integrable martingales.

Theorem 2.96. Any local martingale M admits a unique (up to indistin-
guishability) decomposition

M = M0 +M c +Md,

where Mc is a continuous local martingale and Md is a purely discontinuous
local martingale, with M c

0 = Md
0 = 0.

Proof . See, e.g., Jacod and Shiryaev (1987, p. 43). �
Remark 2.97. The reader has to be cautious about the meaning of the term
“purely discontinuous”; it is indeed referring just to an orthogonality property
with respect to the continuous case, but is does refer to the kind of disconti-
nuities of its trajectories (e.g., Jacod and Shiryaev 1987, p. 40).

Proposition 2.98. Let X = (Xt)t∈R+ be a right-continuous martingale.
Then there exists a right-continuous increasing process, denoted by [X ], such

that for each t ∈ R+, and each sequence of partitions (t
(n)
k )n∈N,0≤k≤n of [0, t],



2.7 Markov Processes 101

with maxk(t
(n)
k+1 − t

(n)
k )

n→ ∞:

∑

k

(X(t
(n)
k+1) −X(t

(n)
k ))2

P−→
n→∞[X ](t). (2.9)

If X ∈ M, then the convergence in (2.9) is in L1. If X ∈ Mc, then [X ] can
be taken to be continuous.

Proof . See, e.g., Ethier and Kurtz (1986). �

Definition 2.99. The process [X ] introduced above is known as the quadratic
variation process associated with X .

Proposition 2.100. If M ∈ M, then M2 − [M ] is a martingale.

Remark 2.101. If M ∈ Mc, then, by Proposition 2.9, [M ] is continuous,
and Proposition 2.100 implies, by uniqueness, that [M ] =< M >, up to
indistinguishability.

Proposition 2.102. Let M ∈ Mc. Then < M >= 0 if and only if M is
constant, i.e., Mt = M0, a.s., for any t ∈ R+.

Proof . See, e.g., Revuz-Yor (1991, p. 119). �

2.7 Markov Processes

Definition 2.103. Let (Xt)t∈R+ be a stochastic process on a probability
space, valued in (E,B) and adapted to the increasing family (Ft)t∈R+ of σ-
algebras of subsets of F . (Xt)t∈R+ is a Markov process with respect to (Ft)t∈R+

if the following condition is satisfied:

∀B ∈ B, ∀(s, t) ∈ R+ × R+, s < t : P (Xt ∈ B|Fs) = P (Xt ∈ B|Xs) a.s.
(2.10)

Remark 2.104. If, for all t ∈ R+, Ft = σ(Xr, 0 ≤ r ≤ t), then condition (2.10)
becomes

P (Xt ∈ B|Xr, 0 ≤ r ≤ s) = P (Xt ∈ B|Xs) a.s.

for all B ∈ B, for all (s, t) ∈ R+ × R+, and s < t.

Proposition 2.105. Under the assumptions of Definition 2.103, the following
two statements are equivalent:

1. For all B ∈ B and all (s, t) ∈ R+ × R+, s < t : P (Xt ∈ B|Fs) = P (Xt ∈
B|Xs)almost surely.

2. For all g : E → R,B-BR-measurable such that g(Xt) ∈ L1(P ) for all t,
for all (s, t) ∈ R

2
+, s < t : E[g(Xt)|Fs] = E[g(Xt)|Xs] almost surely.

Proof . The proof is left to the reader as an exercise. �
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Lemma 2.106. If (Yk)k∈N∗ is a sequence of real, independent random
variables, then, putting

Xn =

n∑

k=1

Yk ∀n ∈ N
∗,

the new sequence (Xn)n∈N∗ is Markovian with respect to the family of σ-
algebras (σ(Y1, . . . , Yn))n∈N∗ .

Proof . From the definition of Xk it is obvious that

σ(Y1, . . . , Yn) = σ(X1, . . . , Xn) ∀n ∈ N
∗.

We thus first prove that, for all C,D ∈ BR, for all n ∈ N
∗:

P(Xn−1 ∈ C, Yn ∈ D|Y1, . . . , Yn−1)

= P (Xn−1 ∈ C, Yn ∈ D|Xn−1) a.s. (2.11)

To do this we fix C,D ∈ BR and n ∈ N
∗ and separately look at the left- and

right-hand sides of (2.11). We get

P(Xn−1 ∈ C, Yn ∈ D|Y1, . . . , Yn−1) = E[IC(Xn−1)ID(Yn)|Y1, . . . , Yn−1]

= IC(Xn−1)E[ID(Yn)|Y1, . . . , Yn−1] = IC(Xn−1)E[ID(Yn)] a.s.,

(2.12)

where the second equality of (2.12) holds because IC(Xn−1) is σ(Y1, . . . , Yn−1)-
measurable, and for the last one we use the fact that ID(Yn) is independent
of Y1, . . . , Yn−1. On the other hand, we obtain that

P (Xn−1 ∈ C, Yn ∈ D|Xn−1) = E[IC(Xn−1)ID(Yn)|Xn−1]

= IC(Xn−1)E[ID(Yn)] a.s. (2.13)

In fact, IC(Xn−1) is σ(Xn−1)-measurable and ID(Yn) is independent of

Xn−1 =
∑n−1

k=1 Yk. For (2.12) and (2.13), (2.11) follows and hence

P((Xn−1, Yn) ∈ C ×D|Y1, . . . , Yn−1)

= P ((Xn−1, Yn) ∈ C ×D|Xn−1) a.s. (2.14)

As (2.14) holds for the rectangles of BR2 (= BR⊗BR), by the measure extension
theorem (e.g., Bauer 1981), it follows that (2.14) is also true for every B ∈ BR2 .
If now A ∈ BR, then the two events

{Xn−1 + Yn ∈ A} = {(Xn−1, Yn) ∈ B} ,
where B ∈ BR2 is the inverse image of A for a generic mapping + : R2 → R

(which is continuous and hence measurable), are identical. Applying (2.14) to
B, we obtain

P (Xn−1 + Yn ∈ A|Y1, . . . , Yn−1) = P (Xn−1 + Yn ∈ A|Xn−1) a.s.,
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and thus

P (Xn−1 + Yn ∈ A|X1, . . . , Xn−1) = P (Xn−1 + Yn ∈ A|Xn−1) a.s.,

and then

P (Xn ∈ A|X1, . . . , Xn−1) = P (Xn ∈ A|Xn−1) a.s.

Therefore, (Xn)n∈N∗ is Markovian with respect to (σ(X1, . . . , Xn))n∈N∗ or,
equivalently, with respect to (σ(Y1, . . . , Yn))n∈N∗ . �

Proposition 2.107. Let (Xt)t∈R+ be a real stochastic process defined on the
probability space (Ω,F , P ). The following two statements are true:

1. If (Xt)t∈R+ is a Markov process, then so is (Xt)t∈J for all J ⊂ R+.
2. If for all J ⊂ R+, J finite: (Xt)t∈J is a Markov process, then so is

(Xt)t∈R+ .

Proof . See, e.g., Ash and Gardner (1975). �

Theorem 2.108. Every real stochastic process (Xt)t∈R+ with independent
increments is a Markov process.

Proof . We define (t1, . . . , tn) ∈ R
n
+ such that 0 < t1 < · · · < tn and t0 = 0.

If, for simplicity, we further suppose that X0 = 0, then Xtn =
∑n

k=1(Xtk −
Xtk−1

). Putting Yk = Xtk − Xtk−1
, then, for all k = 1, . . . , n, the Yk are

independent (because the process (Xt)t∈R+ has independent increments) and
we have that

Xtn =

n∑

k=1

Yk.

From Lemma 2.106 we can assert that

∀B ∈ BR : P (Xtn ∈ B|Xt1 , . . . , Xtn−1) = P (Xtn ∈ B|Xtn−1) a.s.

Thus ∀J ⊂ R+, J finite, (Xt)t∈J is Markovian. The theorem then follows by
point 2 of Proposition 2.107. �

Proposition 2.109. Let (E,BE) be a Polish space endowed with the σ-
algebra BE of its Borel sets. For t0, T ∈ R, with t0 < T, let (Xt)t∈[t0,T ] be an
E-valued Markov process, with respect to its natural filtration.

The function

(s, t) ∈ [t0, T ] × [t0, T ], s ≤ t; x ∈ E; A ∈ BE �→
p(s, x; t, A) := P (Xt ∈ A|Xs = x) ∈ [0, 1] (2.15)

satisfies the following properties:

(i) For all (s, t) ∈ [t0, T ] × [t0, T ], s ≤ t, and for all A ∈ BE, the function
x ∈ E �→ p(s, x, t, A) is BE − BR-measurable.
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(ii) For all (s, t) ∈ [t0, T ] × [t0, T ], s ≤ t, and for all x ∈ E, the function
A ∈ BE �→ p(s, x, t, A) is a probability measure on BE such that

p(s, x, s, A) =

{
1, if x ∈ A,
0, if x /∈ A.

(iii) The function p defined in (2.15) satisfies the so-called Chapman
–Kolmogorov equation, i.e., for all x ∈ E, for all (s, r, t) ∈ [t0, T ] ×
[t0, T ] × [t0, T ], s ≤ r ≤ t, and for all A ∈ BE

p(s, x, t, A) =

∫

R

p(s, x, r, dy)p(r, y, t, A) a.s.

Proof . The proofs of properties (i) and (ii) are trivial consequences of the
definitions (e.g., Ash and Gardner 1975). On the other hand the proof of (iii)
is left to later analysis, after the introduction of the semigroup associated with
the Markov process. �

Definition 2.110. Any nonnegative function p(s, x, t, A) defined for t0 ≤ s ≤
t ≤ T, x ∈ E,A ∈ BE that satisfies conditions (i), (ii), and (iii) is called a
Markov transition probability function.

Definition 2.111. If (Xt)t∈[t0,T ] is a Markov process, then the distribution
P0 of X(t0) is the initial distribution of the process.

Theorem 2.112. An (E,BE)-valued process (Xt)t∈[t0,T ] is a Markov process,
with transition probability function p(r, x, s, A), t0 ≤ r < s ≤ T, x ∈ E,A ∈ BE

and initial distribution P0, if and only if, for any t0 < t1 < · · · < tk, k ∈ N
∗,

and for any family fi, i = 0, 1, . . . , k of nonnegative Borel measurable real-
valued functions

E

[
k∏

i=0

fi(Xti)

]

=

∫

E

P0(dx0)f0(x0)

∫

E

p(0, x0, t1, dx1)f1(x1) · · ·

· · ·
∫

E

p(tk−1, xk−1, tk, dxk)fk(xk).

Proof . See, e.g., Revuz-Yor (1991, p. 76). �

Theorem 2.113. Let E be a Polish space endowed with the σ-algebra BE of
its Borel sets, P0 a probability measure on BE , and p(r, x, s, A), t0 ≤ r < s ≤
T, x ∈ E,A ∈ BE a Markov transition probability function. Then there exists
a unique (in the sense of equivalence) Markov process (Xt)t∈[t0,T ] valued in
E, with P0 as its initial distribution and p as its transition probability.

Proof . See, e.g., Ash and Gardner (1975), Dynkin (1965), Applebaum (2004,
p. 124), and Kallenberg (1997, p. 120). �
Remark 2.114. From Theorem 2.113 we can deduce that

p(s, x, t, A) = P (Xt ∈ A|Xs = x), a.s. t0 ≤ s ≤ t ≤ T, x ∈ E,A ∈ BE .
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Semigroups Associated with Markov Transition Probability
Functions

In this section we will consider the case E = R as a technical simplification.
Let BC(R) be the space of all continuous and bounded functions on R,

endowed with the norm ‖f‖ = supx∈R
|f(x)|(< ∞), and let p(s, x, t, A) be a

transition probability function (t0 ≤ s < t ≤ T, x ∈ R, A ∈ BR). We consider
the operator

Ts,t : BC(R) → BC(R), t0 ≤ s < t ≤ T,

defined by assigning, for all f ∈ BC(R),

(Ts,tf)(x) =

∫

R

f(y)p(s, x, t, dy) = E[f(X(t))|X(s) = x].

Proposition 2.115. The family {Ts,t}t0≤s≤t≤T associated with the transition

probability function p(s, x, t, A) (or with its corresponding Markov process)
is a semigroup of linear operators on BC(R), i.e., it satisfies the following
properties.

1. For any t0 ≤ s ≤ t ≤ T, Ts,t is a linear operator on BC(R).
2. For any t0 ≤ s ≤ T, Ts,s = I (the identity operator).
3. For any t0 ≤ s ≤ t ≤ T, Ts,t 1 = 1.
4. For any t0 ≤ s ≤ t ≤ T, ‖Ts,t‖ ≤ 1 (contraction semigroup).
5. For any t0 ≤ s ≤ t ≤ T, and f ∈ BC(R), f ≥ 0 implies Ts,tf ≥ 0.
6. For any t0 ≤ r ≤ s ≤ t ≤ T, Tr,sTs,t = Tr,t (Chapman–Kolmogorov).

Proof . All the preceding statements, apart from 4 and 6, are a direct
consequence of the definitions that we are going to prove.

Proof of 4: Let t0 ≤ s ≤ t ≤ T, and f ∈ BC(R);

‖Ts,tf‖ = sup
x∈R

|E(f(X(t))|X(s) = x)|
≤ sup

x∈R

E(|f(X(t))| |X(s) = x)

≤ sup
x∈R

|f(x)| sup
x∈R

E(1|X(s) = x)

= ‖f‖ 1 = ‖f‖,

as stated. This fact lets us claim in particular that indeed Ts,t : BC(R) →
BC(R), for t0 ≤ s < t ≤ T.

Proof of 6: Let t0 ≤ r ≤ s ≤ t ≤ T, and f ∈ BC(R); for any x ∈ R
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(Tr,tf)(x) = E[f(X(t))|X(r) = x]

(by the tower property) = E[E[f(X(t))|Fs]|X(r) = x]

(since Fr ⊂ Fs) = E[E[f(X(t))|X(s)]|X(r) = x]

= E[(Ts,tf)(X(s))|X(r) = x]

= (Tr,s(Ts,tf))(x),

as stated. �
As the transition probability function p(s, x, t, A) defines the semigroup

{Ts,t}t0≤s≤t≤T associated with it, conversely we may obtain the transition
probability function from the semigroup, since we may easily recognize that

p(s, x, t, A) = P (Xt ∈ A|Xs = x) = (Ts,tIA)(x) a.s.

for t0 ≤ s ≤ t ≤ T, x ∈ R, A ∈ BR.
We may now finally prove the following proposition.

Proposition 2.116. Let X be a real-valued Markov process, indexed in R;
the function p defined in (2.15) satisfies the so-called Chapman–Kolmogorov
equation, i.e., for all x ∈ R, for all (s, r, t) ∈ [t0, T ]×[t0, T ]×[t0, T ], s ≤ r ≤ t,
and for all A ∈ BR

p(s, x, t, A) =

∫

R

p(s, x, r, dy)p(r, y, t, A) a.s.

Proof . From definitions and Proposition 2.115 we easily obtain

p(s, x, t, A) = (Ts,tIA)(x) = (Ts,r(Tr,tIA))(x)

=

∫

R

(Tr,tIA)(y)p(s, x, r, dy)

=

∫

R

p(s, x, r, dy)p(r, y, t, A) a.s.

�

Definition 2.117. Let (Xt)t∈R+ be a Markov process with transition proba-
bility function p(s, x, t, A), and let {Ts,t} (s, t ∈ R+, s ≤ t) be its associated
semigroup. If, for all f ∈ BC(R), the function

(t, x) ∈ R+ × R → (Tt,t+λf)(x) =

∫

R

p(t, x, t+ λ, dy)f(y) ∈ R

is continuous for all λ > 0, then we say that the process satisfies the Feller
property.
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Theorem 2.118. If (Xt)t∈R+ is a Markov process with right-continuous trajec-
tories satisfying the Feller property, then, for all t ∈ R+, Ft = Ft+, where
Ft+ =

⋂
t′>t σ(X(s), 0 ≤ s ≤ t′), and the filtration (Ft)t∈R+ is right-

continuous.

Proof . See, e.g., Friedman (1975). �
Remark 2.119. It can be shown that Ft+ is a σ-algebra.

Example 2.120. Examples of processes with the Feller property, or simply
Feller processes , include Wiener processes (Brownian motions), Poisson pro-
cesses, and all Lévy processes (see later sections).

Definition 2.121. If (Xt)t∈R+ is a Markov process with transition probabil-
ity function p and associated semigroup {Ts,t}, then the operator

Asf = lim
h↓0

Ts,s+hf − f

h
, s ≥ 0, f ∈ BC(R)

is called the infinitesimal generator of the Markov process (Xt)t≥0. Its domain
DAs consists of all f ∈ BC(R) for which the preceding limit exists uniformly
(and therefore in the norm of BC(R)) (see e.g., Feller 1971).

Remark 2.122. From the preceding definition we observe that

(Asf)(x) = lim
h↓0

1

h

∫

R

[f(y) − f(x)]p(s, x, s + h, dy).

Remark 2.123. Up to this point we have been referring to the space BC(Rd)
of bounded and continuous functions on R

d. Actually, a more accurate anal-
ysis would require us to refer to its subspace C0(Rd) of continuous functions,
which tend to zero at infinity. This one is still a Banach space with the sup
norm. In such a space it can be shown that a Feller semigroup is completely
characterized by its infinitesimal generator (e.g., Kallenberg 1997, p. 317).

Examples of Stopping Times

Let (Xt)t∈R+ be a continuous Markov process taking values in R
v, and suppose

that the filtration (Ft)t∈R+ , generated by the process, is right-continuous. Let
B ∈ BRv \ {∅} , and we define T : Ω → R̄+ as

∀ω ∈ Ω, T (ω) =

{
inf {t ≥ 0|X(t, ω) ∈ B} if the set is �= ∅,
+∞ if the set is = ∅.

This gives rise to the following theorem.

Theorem 2.124. If B is an open or closed subset of Rv, then T is a stopping
time.
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Proof . For B open, let t ∈ R+. In this case it can be shown that

{T < t} =
⋃

r<t,r∈Q+

{ω|X(r, ω) ∈ B} .

Since X(r) is F -measurable,

{ω|X(r, ω) ∈ B} ∈ Fr ⊂ Ft ∀r < t, r ∈ Q
+,

and therefore the (countable) union of such events will be an element of Ft as
well, and thus {T < t} ∈ Ft. Now, fixing δ > 0 and N ∈ N such that δ > 1

N ,
we have that

∀n ∈ N, n ≥ N :

{

T < t+
1

n

}

∈ Ft+δ.

Hence

{T ≤ t} =
∞⋂

n=N

{

T < t+
1

n

}

∈ Ft+δ

and, due to the arbitrary choice of δ, this results in

{T ≤ t} ∈
⋂

δ>0

Ft+δ = F+
t = Ft.

For B closed, for all n ∈ N, we define Vn =
{
x ∈ R

v|d(x, B) < 1
n

}
and

Tn =

{
inf {t ≥ 0|X(t, ω) ∈ Vn} if the set is �= ∅,
+∞ if the set is = ∅.

It can be shown that B =
⋂

n∈N
Vn and {T ≤ t} =

⋂
n∈N

{Tn < t}, and, since
(with Vn open) {Tn < t} ∈ Ft+ , we finally get that {T ≤ t} ∈ Ft+ = Ft. �

Definition 2.125. The stopping time T is the first hitting time of B or,
equivalently, the first exit time from R

v \B.

Definition 2.126. A Markov process (Xt)t∈R+ with transition probability
function p(s, x, t, A) is said to have the strong Markov property if, for any
stopping time T of the process and for all A ∈ BR,

P (X(T + t) ∈ A|FT ) = p(T,X(T ), T + t, A) a.s. (2.16)

Remark 2.127. Equation (2.16) is formally analogous to the Markov property

P (X(t) ∈ A|Fs) = p(s,X(s), t, A) for s < t,

with which it coincides when T = s (constant).



2.7 Markov Processes 109

Proposition 2.128. Equation (2.16) is equivalent to the assertion that for
all f : R → R, measurable, bounded,

E[f(X(T + t))|FT ] = E[f(X(T + t))|X(T )] a.s.

Proof . See, e.g., Ash and Gardner (1975). �
Remark 2.129. By Proposition 2.43 and Theorem 2.49, if (Xt)t∈R+ is right-
continuous and if T is a finite stopping time of the process, then X(T ) is
FT -measurable.

Lemma 2.130. Every Markov process (Xt)t∈R+ that satisfies the Feller prop-
erty has the strong Markov property, at least for a discrete stopping time T .

Proof . Let T be a discrete stopping time of the process (Xt)t∈R+ and {tj}j∈N

its codomain. Fixing a j ∈ N we have {T ≤ tj} ∈ Ftj and {T < tj} =⋃
tl<tj

{T ≤ tl} ∈ Ftj . Therefore,

Gj ≡ {T = tj} = {T ≤ tj} \ {T < tj} ∈ Ftj

and

∀t ∈ R+, Gj ∩ {T ≤ t} =

{ ∅ for tj > t,
Gj for t ≥ tj .

From this we obtain, for all t ∈ R+, Gj ∩ {T ≤ t} ∈ Ft, that is, Gj ∈ FT .
Proving (2.16) is equivalent to showing that if t ∈ R+, A ∈ BR, then:

1. p(T,X(T ), T + t, A) is FT -measurable.
2. For all E ∈ FT , P ((X(T + t) ∈ A) ∩ E) =

∫
E p(T,X(T ), T + t, A)dP.

Before proving point 1, we will show that 2 holds. Let E ∈ FT ; then, by
Ω =

⋃
j∈N

Gj , it follows that

P ((X(T + t) ∈ A) ∩E) =
∑

j∈N

P ((X(T + t) ∈ A) ∩ E ∩Gj)

=
∑

j∈N

P ((X(T + t) ∈ A) ∩ E ∩ (T = tj))

=
∑

j∈N

P ((X(t+ tj) ∈ A) ∩ E ∩ (T = tj))

=
∑

j∈N

P ((X(t+ tj) ∈ A) ∩ E ∩Gj). (2.17)

But

E ∩Gj = E ∩ ({T ≤ tj} \ {T < tj}) ∈ Ftj
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(in fact, E ∩{T ≤ tj} ∈ Ftj following point 4 of Theorem 2.48), and therefore

P ((X(t+ tj) ∈ A) ∩ E ∩Gj) =

∫

E∩Gj

P (X(t+ tj) ∈ A|Ftj )dP.

Moreover, by the Markov property,

P (X(t+ tj) ∈ A|Ftj ) = p(tj , X(tj), tj + t, A) a.s. (2.18)

Using (2.17) and (2.18), we obtain

P ((X(T + t) ∈ A) ∩ E) =
⋃

j∈N

∫

E∩Gj

p(tj , X(tj), tj + t, A)dP

=
⋃

j∈N

∫

E∩{T=tj}
p(tj , X(tj), tj + t, A)dP

=
⋃

j∈N

∫

E∩{T=tj}
p(T,X(T ), T + t, A)dP

=

∫

E

p(T,X(T ), T + t, A)dP.

For the proof of 1, we now observe that, by the Feller property, the mapping

(r, z) ∈ R+ × R →
∫

R

p(r, z, r + t, dy)f(y) ∈ R

is continuous [for f ∈ BC(R)]. Furthermore, T and X(T ) are FT -measurable,
and therefore the mapping

ω ∈ Ω → (T (ω), X(T (ω), ω))

is FT -measurable. Hence the composite of the two mappings

ω ∈ Ω →
∫

R

p(T,X(T ), T + t, dy)f(y) ∈ R

is FT -measurable [for f ∈ BC(R)]. Now let (fm)m∈N ∈ (BC(R))N be a se-
quence of uniformly bounded functions such that limm→∞ fm = IA. Then,
from our previous observations,

∀m ∈ N,

∫

R

p(T,X(T ), T + t, dy)fm(y)

is FT -measurable and, following Lebesgue’s theorem on integral limits, we get
∫

R

p(T,X(T ), T + t, dy)IA(y) = lim
m→∞

∫

R

p(T,X(T ), T + t, dy)fm(y),
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and thus

p(T,X(T ), T + t, A) =

∫

R

p(T,X(T ), T + t, dy)IA(y)

is FT -measurable. �
Before generalizing Lemma 2.130, we assert the following lemma.

Lemma 2.131. If T is a stopping time of the stochastic process (Xt)t∈R+ ,
then there exists a sequence of stopping times (Tn)n∈N such that:

1. For all n ∈ N, Tn has a codomain that is at most countable.
2. For all n ∈ N, Tn ≥ T .
3. Tn ↓ T almost surely for n→ ∞.

Moreover, {Tn = ∞} = {T = ∞} for every n.

Proof . See, e.g., Friedman (1975). �

Theorem 2.132. If (Xt)t∈R+ is a right-continuous Markov process that sat-
isfies the Feller property, then it satisfies the strong Markov property.

Proof . Let T be a finite stopping time of the process (Xt)t∈R+ and (Tn)n∈N

a sequence of stopping times satisfying properties 1–3 of Lemma 2.131 with
respect to T . We observe that, for all n ∈ N, FT ⊂ FTn . In fact, ifA ∈ FT , then

∀t ∈ R+, A ∩ {Tn ≤ t} = (A ∩ {T ≤ t}) ∩ {Tn ≤ t} ∈ Ft,

provided that A ∩ {T ≤ t} ∈ Ft, {Tn ≤ t} ∈ Ft. Just like for Lemma 2.130,
we will need to show that points 1 and 2 of its proof hold in this present
case. Following Proposition 2.128, point 2 is equivalent to asserting that for
all E ∈ FT and all f ∈ BC(R) :

∫

E

f(X(T + t))dP =

∫

E

dP

∫

R

p(T,X(T ), T + t, dy)f(y). (2.19)

Then, by Proposition 2.43, for all n ∈ N, we have that for all E ∈ FTn and
all f ∈ BC(R)

∫

E

f(X(Tn + t))dP =

∫

E

dP

∫

R

p(Tn, X(Tn), Tn + t, dy)f(y).

Moreover, since Tn ↓ T for n → ∞ and by the right-continuity of process X ,
it follows that

X(Tn) → X(T ) for n→ ∞.
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From the continuity5 of the mapping

(λ, x) ∈ R+ × R →
∫

R

p(λ, x, λ+ t, λy)f(y) for f ∈ BC(R),

we have that, for n→ ∞,

∫

R

p(Tn, X(Tn), Tn + t, dy)f(y) →
∫

R

p(T,X(T ), T + t, dy)f(y). (2.20)

On the other hand, if f is continuous, then we also get

f(X(Tn + t)) → f(X(T + t)) for n→ ∞. (2.21)

Therefore, if E ∈ FT and f ∈ BC(R), then E ∈ FTn for all n, and we have

lim
n→∞

∫

E

f(X(Tn + t))dP = lim
n→∞

∫

E

dP

∫

R

p(Tn, X(Tn), Tn + t, dy)f(y).

Since f and p are bounded, following Lebesgue’s theorem, we can take the
limit of the integral and then (2.19) follows from (2.20) and (2.21). The proof
of point 1 is entirely analogous to the proof of Lemma 2.131. �

The preceding results may be extended to more general, possibly uncount-
able, state spaces. In particular, we will assume that E is a subset of Rd for
d ∈ N

∗.

Time-Homogeneous Markov Processes

An important class of Markov processes is the time-homogeneous case.

Definition 2.133. A Markov process (Xt)t∈[t0,T ] is said to be time-homo-
geneous if the transition probability functions p(s, x, t, A) depend on t and s
only through their difference t− s. Therefore, for all (s, t) ∈ [t0, T ]2, s < t, for
all u ∈ [0, T − t], for all A ∈ BR, and for all x ∈ R:

p(s, x, t, A) = p(s+ u, x, t+ u,A) a.s.

Remark 2.134. If (Xt)t∈[t0,T ] is a homogeneous Markov process with transition
probability function p, then, for all (s, t) ∈ [t0, T ]2, s < t, for all A ∈ BR, and
for all x ∈ R, we obtain

p(t0, x, t0 + t− s, A) = p(s, x, t, A) a.s.,

where p(t0, x, t0 + t− s, A) is denoted by p(t̄, x, A), with t̄ = (t− s) ∈ [0, T −
t0], x ∈ R, A ∈ BR.

5By the Feller property.
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If we consider the time-homogeneous case, a Markov process (Xt)t∈R+ on
(E,BE) will be defined in terms of a transition kernel p(t, x, B) for t ∈ R+,
x ∈ E, B ∈ BE , such that

p(h,Xt, B) = P (Xt+h ∈ B|Ft) ∀t, h ∈ R+, B ∈ BE ,

given that (Ft)t∈R+ is the natural filtration of the process. Equivalently, if we
denote by BC(E) the Banach space of all continuous and bounded functions
on E, endowed with the sup norm, then

E[g(Xt+h)|Ft] =

∫

E

g(y)p(h,Xt, dy) ∀t, h ∈ R+, g ∈ BC(E).

In this case the transition semigroup of the process is such that

Ts,t = T0,t−s =: T (t− s)

for any s, t ∈ R+, s ≤ t, which defines a one-parameter contraction semigroup
(T (t), t ∈ R+) on BC(E); it is then such that

T (t)g(x) :=

∫

E

g(y)p(t, x, dy) = E[g(Xt)|X0 = x], x ∈ E,

for any g ∈ BC(E).
Hence in this case the semigroup property reduces to

T (s+ t) = T (s)T (t) = T (t)T (s)

for any s, t ∈ R+.
Up to now we have referred to BC(R), i.e., the family of bounded and

continuous functions on R. For various reasons, as the reader may see later, it
is more convenient to refer to its Banach subspace C0(R), the family of con-
tinuous functions vanishing at infinity, since it has nicer analytical properties.

Definition 2.135. Let (T (t))t∈R+ be the transition semigroup associated
with a time-homogeneous Markov process X = (Xt)t∈R+ . We say that X is a
Feller process if the following statements hold:

(i) T (t)(C0(R)) ⊂ C0(R) for all t ∈ R+.
(ii) limt→0 ‖T (t)f − f‖ = 0 for all f ∈ C0(R).

In this case we say that the semigroup (T (t))t∈R+ is a Feller semigroup.

Proposition 2.136. For any Feller semigroup on C0(R) there exists a unique
time-homogeneous transition probability measure p(t, x, B) on (R,BR) such
that, for all f ∈ C0(R),

T (t)f(x) =

∫

R

f(y)p(t, x, dy), x ∈ R, t ∈ R+.
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Proof . See, e.g., Revuz-Yor (1991, p. 83). �

Definition 2.137. A time-homogeneous transition probability measure
associated to a Feller semigroup is called a Feller transition function.

For time-homogeneous Markov processes the infinitesimal generator will
be time independent. It is defined as

Ag = lim
t→0+

1

t
(T (t)g − g)

for g ∈ D(A), the subset of BC(E) for which the preceding limit exists, in
BC(E), with respect to the sup norm. Given the preceding definitions, it is
obvious that for all g ∈ D(A),

Ag(x) = lim
t→0+

1

t
E[g(Xt) − g(X0)|X0 = x], x ∈ E.

If (T (t), t ∈ R+) is the contraction semigroup associated with a Markov
process, it is not difficult to show that the mapping t → T (t)g is right-
continuous in t ∈ R+ provided that g ∈ BC(E) is such that the mapping
t→ T (t)g is right-continuous in t = 0.

The following properties hold, by considering Riemann integrals and strong
derivatives (Applebaum, 2004, p. 129).

1. For any t ≥ 0 : T (t)D(A) ⊂ D(A).
2. For any t ≥ 0 and for any g ∈ D(A): T (t)Ag = AT (t)g.

3. For any t ≥ 0 and for any g ∈ D(A):

∫ t

0

T (s)gds ∈ D(A).

4. For any t ≥ 0 and for any g ∈ D(A):

T (t)g − g = A
∫ t

0

T (s)gds =

∫ t

0

AT (s)gds =

∫ t

0

T (s)Agds.

5. For any t ≥ 0 and for any g ∈ D(A):

d

dt
[T (t)g] = A[T (t)g] = T (t)[Ag].

6. For any g ∈ D(A), the function t ∈ R+ �→ T (t)g ≡ u(t) ∈ D(A) is a
solution of the following initial value problem in the Banach space BC(Rd):

{
d

dt
u(t) = Au(t),

u(0) = g.

These results justify the notation T (t) = etA.
The following so-called Dynkin’s formula establishes a fundamental link

between Markov processes and martingales (Rogers and Williams 1994,
p. 253).
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Given a process (Xt)t∈R+ , we will denote by (Ft)t∈R+ its natural filtration.

Theorem 2.138. Assume (Xt)t∈R+ is a Markov process on (E,BE), with
transition kernel p(t, x, B), t ∈ R+, x ∈ E, B ∈ BE. Let (T (t), t ∈ R+)
denote its transition semigroup and A its infinitesimal generator. Then, for
any g ∈ D(A), the stochastic process

M(t) := g(Xt) − g(X0) −
∫ t

0

Ag(Xs)ds

is an Ft-martingale (indeed a zero-mean martingale).

Proof . The following equations hold:

E[M(t+ h)|Ft] + g(X0)

= E

[

g(Xt+h) −
∫ t+h

t

Ag(Xs)ds

∣
∣
∣
∣
∣
Ft

]

−
∫ t

0

Ag(Xs)ds.

Now, thanks to the Markov property,

E [g(Xt+h)| Ft] = E [g(Xt+h)|Xt] = T (h)g(Xt),

and

E

[∫ t+h

t

Ag(Xs)ds|Ft

]

=

∫ t+h

t

dsE[Ag(Xs)|Ft]

=

∫ t+h

t

dsE[Ag(Xs)|Xt] =

∫ t+h

t

ds T (s− t)Ag(Xt)

=

∫ h

0

ds T (s)Ag(Xt) =

∫ h

0

dsAT (s)g(Xt)

=

∫ h

0

d[T (s)g(Xt)] = T (h)g(Xt) − T (0)g(Xt)

= T (h)g(Xt) − g(Xt).

As a consequence

E[M(t+ h)|Ft] + g(X0)

= T (h)g(Xt) − T (h)g(Xt) + g(Xt) −
∫ t

0

Ag(Xs)ds

= g(Xt) −
∫ t

0

Ag(Xs)ds = M(t) + g(X0).

�
The next proposition shows that a Markov process is indeed character-

ized by its infinitesimal generator via a martingale problem (e.g., Rogers and
Williams 1994, p. 253).
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Theorem 2.139 (Martingale problem for Markov processes). If an
RCLL Markov process (Xt)t∈R+ is such that

g(Xt) − g(X0) −
∫ t

0

Ag(Xs)ds

is an Ft-martingale for any function g ∈ D(A), where A is the infinitesimal
generator of a contraction semigroup on E, then Xt is equivalent to a Markov
process having A as its infinitesimal generator.

Remark 2.140. Note that, from

M(t) := g(Xt) − g(X0) −
∫ t

0

Ag(Xs)ds

one may derive

g(Xt) − g(X0) =

∫ t

0

Ag(Xs)ds+M(t).

Formally, by a suitable definition of differential of a martingale, this may be
rewritten as

dg(Xt) = Ag(Xt) + dM(t).

Hence, apart from the “noise” M(t), the evolution of any function g(Xt) of a
Markov process {Xt, t ∈ R+} is determined by its infinitesimal generator.

Theorem 2.141. Let {Xt, t ∈ R+} be a Feller process on R having infinitesi-
mal generator A with domain DA. If g ∈ C0(R) and there exists an f ∈ C0(R)
such that

M(t) := g(Xt) − g(X0) −
∫ t

0

f(Xs)ds, t ∈ R+,

is an Ft-martingale, then g ∈ DA, and f = Ag.

Proof . See, e.g., Revuz-Yor (1991, p. 262) �
The preceding results lead to an extension of the concept of infinitesimal

generator called an extended infinitesimal generator (Revuz-Yor 1991, p. 263).

In what follows we shall denote by Cp
K(R), p ∈ R

∗
+, the set of real functions

with compact support, which are continuous with their derivatives up to the
order p.

Theorem 2.142. Let {Xt, t ∈ R+} be a Feller process on R, having infinites-
imal generator A with domain DA, such that C∞

K (R) ⊂ DA. Then
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(i) C2
K(R) ⊂ DA.

(ii) For any relatively compact open set U there exist functions a, b, and c ≤ 0
on U, and a kernel measure N(x,B), x ∈ U, B ∈ R − {0} , which is a
Radon measure for any x ∈ U such that, for f ∈ C2

K(R) and x ∈ U,

(Af)(x) =
1

2
b2(x)

∂2f

∂x2
+ a(x)

∂f

∂x
+ c(x)

+

∫

R−{0}

[

f(y) − f(x) − IU (y)(y − x)
∂f

∂x

]

N(x, dy).

If the process {Xt, t ∈ R+} has continuous paths, then

(Af)(x) =
1

2
b2(x)

∂2f

∂x2
+ a(x)

∂f

∂x
+ c(x).

Proof . See, e.g., Revuz-Yor (1991, p. 267) �
Example 2.143. A Poisson process (see the following section for more details)
is an integer-valued Markov process (Nt)t∈R+ . If its intensity parameter is
λ > 0, then the process (Xt)t∈R+ , defined by Xt = Nt − λt, is a stationary
Markov process with independent increments. The transition kernel of Xt is

p(h, x,B) =
∞∑

k=0

(λh)k

k!
e−λhI{x+k−λh∈B} for x ∈ N, h ∈ R+, B ⊂ N.

Its transition semigroup is then

T (h)g(x) =

∞∑

k=0

(λh)k

k!
e−λhg(x+ k − λh) for x ∈ N, g ∈ BC(R).

The infinitesimal generator is then

Ag(x) = λ(g(x + 1) − g(x)) − λg′(x+).

According to previous theorems,

M(t) = g(Xt) −
∫ t

0

ds(λ(g(Xs + 1) − g(Xs)) − λg′(Xs+)

is a martingale for any g ∈ BC(R) (where g(0) = 0).

Holding Times for a Markov Process

Suppose that a Markov process (Xt)t∈R+ on R starts at a point x. We wish
to evaluate the probability distribution of the holding time at x, i.e., the time
it spends in that state before leaving it:

τx := inf {t ∈ R+ |Xs = x, Xt+s �= x}
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for any given s ∈ R+.
The following proposition holds.

Proposition 2.144. For any right-continuous time-homogeneous Markov
process we have

Fx(t) = P (τx ≤ t) = 1 − exp {−cxt} , t ∈ R+,

for some cx ∈ [0,+∞].

Proof . See, e.g., Lamperti (1977, p. 195). �

Markov Diffusion Processes

Definition 2.145. A Markov process on R with transition probability
function p(s, x, t, A) is called a diffusion process if

1. It has a.s. continuous trajectories.
2. For all ε > 0, for all t ≥ 0, and for all x ∈ R : limh↓0 1

h

∫
|x−y|>ε

p(t, x, t +

h, dy) = 0.
3. There exist a(t, x) and b(t, x) such that, for all ε > 0, for all t ≥ 0, and

for all x ∈ R,

lim
h↓0

1

h

∫

|x−y|<ε

(y − x)p(t, x, t + h, dy) = a(t, x),

lim
h↓0

1

h

∫

|x−y|<ε

(y − x)2p(t, x, t+ h, dy) = b(t, x),

where a(t, x) is the drift coefficient and b(t, x) the diffusion coefficient of the
process.

Lemma 2.146. Conditions 1 and 2 of Definition 2.145 are satisfied if

1.∗ There exists a δ > 0 such that, for all t ≥ 0 and for all x ∈ R,
limh↓0 1

h

∫
R
|x− y|2+δp(t, x, t+ h, dy) = 0.

2.∗ For all t ≥ 0 and for all x ∈ R,

lim
h↓0

1

h

∫

R

(y − x)p(t, x, t + h, dy) = a(t, x),

lim
h↓0

1

h

∫

R

(y − x)2p(t, x, t+ h, dy) = b(t, x).

Proof . We fix ε > 0, x ∈ R, |x− y| > ε⇒ |y − x|2+δ

ε2+δ
≥ 1, and hence

1

h

∫

|x−y|>ε

p(t, x, t+ h, dy) ≤ 1

hε2+δ

∫

|x−y|>ε

|y − x|2+δp(t, x, t+ h, dy)

≤ 1

hε2+δ

∫

R

|y − x|2+δp(t, x, t+ h, dy).
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From this, due to 1∗, point 1 of Definition 2.145 follows. Analogously, for
j = 1, 2,

1

h

∫

|x−y|>ε

|y − x|jp(t, x, t+ h, dy) ≤ 1

hε2+δ−j

∫

R

|y − x|2+δp(t, x, t+ h, dy),

and again from 1∗ we obtain

lim
h↓0

1

h

∫

|x−y|>ε

|y − x|jp(t, x, t+ h, dy) = 0.

Moreover,

lim
h↓0

1

h

∫

R

|y − x|jp(t, x, t+ h, dy) = lim
h↓0

1

h

(∫

|x−y|>ε

|y − x|jp(t, x, t+ h, dy)

+

∫

|x−y|<ε

|y − x|jp(t, x, t+ h, dy)

)

,

which, along with 2∗, gives point 2 of Definition 2.145. �

Proposition 2.147. If (Xt)t∈R+ is a diffusion process with transition proba-
bility function p and drift and diffusion coefficients a(x, t) and b(x, t), respec-
tively, and if As is the infinitesimal generator associated with p, then we have
that

(Asf)(x) = a(s, x)
∂f

∂x
+

1

2
b(s, x)

∂2f

∂x2
,

provided that f is bounded and twice continuously differentiable.

Proof . Let f ∈ BC(R) ∩C2(R). From Taylor’s formula we obtain

f(y) − f(x) = f ′(x)(y − x) +
1

2
f ′′(x)(y − x)2 + o(|y − x|2) (2.22)

for |y − x| < δ (which is in a suitable neighborhood of x), and thus

(Asf)(x) = lim
h↓0

1

h

∫

R

[f(y) − f(x)]p(s, x, s+ h, dy)

= lim
h↓0

1

h

∫

|y−x|<δ

f ′(x)(y − x)p(s, x, s+ h, dy)

+
1

2
lim
h↓0

1

h

∫

|y−x|<δ

f ′′(x)(y − x)2p(s, x, s+ h, dy)

+ lim
h↓0

1

h

∫

|y−x|<δ

o(|y − x|2)p(s, x, s+ h, dy)

+ lim
h↓0

1

h

∫

|y−x|≥δ

[f(y) − f(x)]p(s, x, s+ h, dy).
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Because f ∈ BC(R),

lim
h↓0

1

h

∫

|y−x|≥δ

[f(y) − f(x)]p(s, x, s + h, dy)

≤ lim
h↓0

1

h
c

∫

|y−x|≥δ

p(s, x, s+ h, dy) = 0,

by point 1 of Definition 2.145, where c is a constant. By point 2 of the same
definition:

lim
h↓0

1

h

∫

|y−x|<δ

f ′(x)(y − x)p(s, x, s+ h, dy)

= f ′(x) lim
h↓0

1

h

∫

|y−x|<δ

(y − x)p(s, x, s+ h, dy)

= f ′(x)a(t, x),

as well as

1

2
lim
h↓0

1

h

∫

|y−x|<δ

f ′′(x)(y − x)2p(s, x, s+ h, dy) =
1

2
f ′′(x)b(x, t).

Fixing ε > 0, we finally observe that if we choose δ such that Taylor’s formula
(2.22) holds, so that

|y − x| < δ ⇒ o(|y − x|2)

|y − x|2 < ε,

we get

lim
h↓0

1

h

∫

|y−x|<δ

o(|y − x|2)p(s, x, s+ h, dy)

≤ lim
h↓0

1

h

∫

|y−x|<δ

ε|y − x|2p(s, x, s+ h, dy)

= εb(t, x)

and, from the fact that ε is arbitrary, we conclude that

lim
h↓0

1

h

∫

|y−x|<δ

o(|y − x|2)p(s, x, s+ h, dy) = 0.

�
A detailed account of conditions that ensure a.s. path continuity of the

trajectories of Markov processes can be found in Lamperti (1977, p. 188).
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Markov Jump Processes

Consider a Markov process (Xt)t∈R+ valued in a countable set E (say, N or Z).
In such a case it is sufficient (with respect to Theorem 2.113) to provide the
so-called one-point transition probability function

pij(s, t) := p(s, i, t, j) := P (Xt = j|Xs = i)

for t0 ≤ s < t, i, j ∈ E. It follows from the general structure of Markov
processes that the one-point transition probabilities satisfy the following re-
lations:

(a) pij(s, t) ≥ 0
(b)

∑
j∈E pij(s, t) = 1

(c) pij(s, t) =
∑

k∈E pik(s, r)pkj(r, t)

provided t0 ≤ s ≤ r ≤ t, in R+, and i, j ∈ E. To these three conditions we
need to add

(d)

lim
t→s+

pij(s, t) = pij(s, s) = δij =

{
1 for i = j,
0 for i �= j.

The time-homogeneous case gives transition probabilities (p̃ij(t))t∈R+ such
that

pij(s, t) = p̃ij(t− s), s ≤ t.

Henceforth we shall limit our analysis to the time-homogeneous case whose
transition probabilities will be denoted by (pij(t))t∈R+ . The following theo-
rems hold (Gihman and Skorohod 1974, pp. 304–306).

Theorem 2.148. The transition probabilities (pij(t))t∈R+ of a homogeneous
Markov process on a countable state space E are uniformly continuous in
t ∈ R+ for any fixed i, j ∈ E.

Theorem 2.149. The limit

qi = lim
h→0+

1 − pii(h)

h
≤ +∞

always exists (finite or not), and for arbitrary t > 0:

1 − pii(t)

t
≤ qi.

If qi < +∞, then for all t > 0 the derivatives p′ij(t) exist for any i, j ∈ E and
are continuous. They satisfy the following relations:

1. p′ij(t+ s) =
∑

k∈E p
′
ik(t)pkj(s)

2.
∑

j∈E p
′
ij(t) = 0

3.
∑

j∈E |p′ij(t)| ≤ 2qi
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In the following theorem the condition qi < +∞ is not required.

Theorem 2.150. The limits

lim
t→0+

pij(t)

t
= p′ij(0) =: qij < +∞

always exist (finite) for any i �= j.

As a consequence of Theorems 2.149 and 2.150, provided qi < +∞, we
obtain evolution equations for pij(t):

p′ij(t) =
∑

k∈E

qikpkj(t),

with qii = −qi. These equations are known as Kolmogorov backward equations .
Consider the family of matrices (P (t))t∈R+ , with entries (pij(t))t∈R+ , for i, j ∈
E. We may rewrite conditions (c) and (d) in matrix form as follows:

(c′) P (s+ t) = P (s)P (t) for any s, t ≥ 0
(d′) limh→0+ P (h) = P (0) = I

A family of stochastic matrices fulfilling conditions (c′) and (d′) is called a ma-
trix transition function. If a matrix transition function satisfies the condition

∑

j �=i

qij = −qii ≡ qi < +∞

for any i ∈ E, it is called conservative. The matrix Q = (qij)i,j∈E is called
the intensity matrix . The Kolmogorov backward equations can be rewritten
in matrix form as

P ′(t) = QP (t), t > 0,

subject to

P (0) = I.

If Q is a finite-dimensional matrix, then the function exp {tQ} for t > 0 is
well defined.

Theorem 2.151 (Karlin and Taylor 1975, p. 152). If E is finite, then
the matrix transition function can be represented in terms of its intensity
matrix Q via

P (t) = etQ, t ≥ 0.

Given an intensity matrix Q of a conservative Markov jump process
with stationary (time-homogeneous) transition probabilities, we have that
(Doob 1953)

P (Xu = i ∀u ∈]s, s+ t]|Xs = i) = e−qit
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for every s, t ∈ R+, and state i ∈ E. This shows that the sojourn time in
state i is exponentially distributed with parameter qi. This is independent of
the initial time s ≥ 0.

Furthermore, let πij , i �= j, be the conditional probability of a jump to
state j, given that a jump from state i has occurred. It can be shown (Doob
1953) that

πij =
qij
qi
,

provided that qi > 0. For qi = 0, state i is absorbing, which obviously means
that once state i is entered, the process remains there permanently. Indeed,

P (Xu = i, for all u ∈]s, s+ t]|Xs = i) = e−qit = 1

for all t ≥ 0. A state i for which qi = +∞ is called an instantaneous state. The
expected sojourn time in such a state is zero. A state i for which 0 ≤ qi < +∞
is called a stable state.

Example 2.152. If (Xt)t∈R+ is a homogeneous Poisson process with intensity
λ > 0, then

pij(t) =

{
e−λt (λt)

j−i

(j−i)! for j > i,

0 otherwise.

This implies that

qij = p′ij(0)

⎧
⎨

⎩

λ for j = i+ 1,
−λ for j = i,
0 otherwise.

For the following result we refer again to Doob (1953).

Theorem 2.153. For any x ∈ E there exists a unique RCLL Markov process
associated with a given intensity matrix Q and such that P (X(0) = x) = 1.

Consider a time-homogeneous Markov jump process on a countable state
space E with intensity matrix Q = (qij)i,j∈E . The matrix Q can be seen as a
functional operator on E as follows. For any f : E → R+ define

Q : f → Q(f) =
∑

j∈E

qijf(j) =
∑

j �=i

qij(f(j) − f(i)).

For f bounded in E we may define, for any x ∈ E,

Ex[f(X(t+ s))] − Ex[f(X(t))]

= Ex[EX(t)[f(X(s)) − f(X(0))]]

=
∑

j �=i

(f(j) − f(i))P (X(s) = j|X(0) = i)Px(X(t) = i).
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Assume we may interchange the derivative and sum of the series

d

dt
Ex[f(X(t))] =

∑

j �=i

qij(f(j) − f(i))Px(X(s) = i),

which can be written as

d

dt
Ex[f(X(t))] = Ex[Q(f)(X(t))].

By returning to the integral formulation

Ex[f(X(t))] − Ex[f(X(0))] =

∫ t

0

Ex[Q(f)(X(s))]ds, (2.23)

the preceding formula can be seen as a Dynkin formula for Markov jump
processes in terms of the intensity matrixQ. Indeed, from Rogers and Williams
(1994, pp. 30–37) we obtain the following theorem.

Theorem 2.154. For any function g ∈ C1,0(R+ ×E) such that the mapping

t→ ∂

∂t
g(t, x)

is continuous for all x ∈ E, the process

(

g(t,X(t)) − g(0, X(0)) −
∫ t

0

(
∂g

∂t
+Q(g(s, ·))

)

(s,X(s))ds

)

t∈R+

is a local martingale.

Corollary 2.155. For any real function f defined on E, the process

(

f(X(t)) − f(X(0)) −
∫ t

0

Q(f)X(s)ds

)

t∈R+

(2.24)

is a local martingale. Whenever the local martingale is a martingale, we
recover (2.23).

Proposition 2.156 (Martingale problem for Markov jump processes).
Given an intensity matrix Q, if an RCLL Markov process X ≡ (X(t))t∈R+ on
E is such that the process (2.24) is a local martingale, then Q is the intensity
matrix of the Markov process X.

Further discussions on this topic may be found in Doob (1953) and Karlin
and Taylor (1981) [an additional and updated source regarding discrete-space
continuous-time Markov chains is Anderson (1991)]. For applications, see, for
example, Robert (2003).
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2.8 Brownian Motion and the Wiener Process

A small particle (e.g., a pollen corn) suspended in a liquid is subject to
infinitely many collisions with atoms, and therefore it is impossible to ob-
serve its exact trajectory. With the help of a microscope it is only possible
to confirm that the movement of the particle is entirely chaotic. This type
of movement, discovered under similar circumstances by the botanist Robert
Brown, is called Brownian motion. As its mathematical inventor Einstein had
already observed, it is necessary to make approximations in order to describe
the process. The formalized mathematical model defined on the basis of these
facts is called a Wiener process. Henceforth, we will limit ourselves to the
study of the one-dimensional Wiener process in R, under the assumption that
the three components determining its motion in space are independent.

Definition 2.157. The real-valued process (Wt)t∈R+ is a Wiener process if
it satisfies the following conditions:

1. W0 = 0 almost surely.
2. (Wt)t∈R+ is a process with independent increments.
3. Wt −Ws is normally distributed with N(0, t− s), (0 ≤ s < t).

Remark 2.158. From point 3 of Definition 2.157 it becomes obvious that every
Wiener process is homogeneous.

Proposition 2.159. If (Wt)t∈R+ is a Wiener process, then

1. E[Wt] = 0 for all t ∈ R+

2. K(s, t) = Cov[Wt,Ws] = min {s, t} , s, t ∈ R+

Proof .

1. By fixing t ∈ R, we observe that Wt = W0 + (Wt−W0) and, thus, E[Wt] =
E[W0] + E[Wt −W0] = 0. The latter is given by the fact that E[W0] =
0 (by point 1 of Definition 2.157) and E[Wt − W0] = 0 (by point 3 of
Definition 2.157).

2. Let s, t ∈ R+ and Cov[Wt,Ws] = E[WtWs] − E[Wt]E[Ws], which (by
point 1) gives Cov[Wt,Ws] = E[WtWs]. For simplicity, if we suppose that
s < t, then

E[WtWs] = E[Ws(Ws + (Wt −Ws))] = E[W 2
s ] + E[Ws(Wt −Ws)].

Since (Wt)t∈R+ has independent increments, we obtain

E[Ws(Wt −Ws)] = E[Ws]E[Wt −Ws],
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and by point 1 of Proposition 2.136 (or point 3 of Definition 2.157) it follows
that this is equal to zero, thus

Cov[Wt,Ws] = E[W 2
s ] = V ar[Ws].

If we now observe that Ws = W0 + (Ws − W0) and hence V ar[Ws] =
V ar[W0 + (Ws −W0)], then, by the independence of the increments of the
process, we get

V ar[W0 + (Ws −W0)] = V ar[W0] + V ar[Ws −W0].

Therefore, by points 1 and 3 of Definition 2.157 it follows that

V ar[Ws] = s = inf {s, t} ,
which completes the proof.

�

Proposition 2.160. The Wiener process is a Gaussian process.

Proof . In fact, if n ∈ N
∗, (t1, . . . , tn) ∈ R

n
+ with 0 = t0 < t1 < . . . < tn and

(a1, . . . , an) ∈ R
n, (b1, . . . , bn) ∈ R

n, such that ai ≤ bi, i = 1, 2, . . . , n, then it
can be shown that

P(a1 ≤Wt1 ≤ b1, . . . , an ≤Wtn ≤ bn)

=

∫ b1

a1

· · ·
∫ bn

an

g(0|x1, t1)g(x1|x2, t2 − t1) · · · g(xn−1|xn, tn − tn−1)dxn · · · dx1,
(2.25)

where

g(x|y, t) =
e−

|x−y|2
2t√

2πt
.

In order to prove that the density of (Wt1 , . . . ,Wtn) is given by the inte-
grand of (2.25), by the uniqueness of the characteristic function, it is suffi-
cient to show that the characteristic function φ′ of the n-dimensional real-
valued random vector, whose density is given by the integrand of (2.25),
is identical to the characteristic function φ of (Wt1 , . . . ,Wtn). Thus, let
λ = (λ1, . . . , λn) ∈ R

n. Then

φ(λ) = E
[
ei(λ1Wt1+···+λnWtn )

]

= E
[
ei(λn(Wtn−Wtn−1

)+(λn+λn−1)(Wtn−1
−Wtn−2

)+···+(λ1+···+λn)Wt1 )
]

= E
[
eiλn(Wtn−Wtn−1

)
]
E

[
ei(λn+λn−1)(Wtn−1

−Wtn−2
)
]
· · ·

· · ·E
[
ei(λ1+···+λn)Wt1

]
,
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where we exploit the independence of the random variables Wti − Wti−1 ,
i = 1, . . . , n. Furthermore, because (Wti−Wti−1) is N(0, ti−ti−1), i = 1, . . . , n,
we get

φ(λ) = e
−λ2

n
2 (tn−tn−1)e

−(λn+λn−1)
2

2 (tn−1−tn−2) · · · e−(λ1+···+λn)2

2 t1 .

We continue by calculating the characteristic function φ′:

φ′(λ) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
eiλ·xg(0|x1, t1) · · · g(xn−1|xn, tn − tn−1)dxn · · · dx1

=

∫ +∞

−∞
· · ·

(∫ +∞

−∞
eiλnxng(xn−1|xn, tn − tn−1)dxn

)

· · · dx1.

Because
∫ +∞

−∞
eiλx

1

σ
√

2π
e

−|x−m|2
2σ2 dx = eimλ−λ2σ2

2 , (2.26)

we obtain

φ′(λ) =

∫ +∞

−∞
· · ·

(

eiλnxn−1−λ2
n
2 (tn−tn−1)

)

· · · dx1

= e−
λ2
n
2 (tn−tn−1)

∫ +∞

−∞
· · ·

(∫ +∞

−∞
ei(λn+λn−1)xn−1g(xn−2|xn−1, tn−1 − tn−2)dxn−1

)

· · · dx1.

Recalling (2.26) and applying it to each variable, we obtain

φ′(λ) = e
−λ2

n
2 (tn−tn−1)e

−(λn+λn−1)2

2 (tn−1−tn−2) · · · e−(λ1+...+λn)2

2 t1 ,

and hence φ′(λ) = φ(λ). We now show that g(0|x1, t1) · · · g(xn−1|xn, tn−tn−1)
is of the form

1

(2π)
n
2

√
detK

e−
1
2 (x−m)′K−1(x−m).

We will only show it for the case where n = 2; then

g(0|x1, t1)g(x1|x2, t2 − t1) =
1

2π
√
t1(t2 − t1)

e
− 1

2

[
x2
1

t1
+

(x2−x1)2

t2−t1

]

=
1

2π
√
t1(t2 − t1)

e
− 1

2

[
x2
1(t2−t1)+(x2−x1)2t1

t1(t2−t1)

]
.
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If we put

K =

(
t1 t1
t1 t2

)

(where Kij = Cov[Wti ,Wtj ]; i, j = 1, 2),

then

K−1 =

( t2
t1(t2−t1)

− 1
t2−t1

− 1
t2−t1

1
t2−t1

)

,

resulting in

g(0|x1, t1)g(x1|x2, t2 − t1) =
1

2π
√

detK
e−

1
2 (x−m)′K−1(x−m),

where m1 = E[Wt1 ] = 0,m2 = E[Wt2 ] = 0. Thus

g(0|x1, t1)g(x1|x2, t2 − t1) =
1

2π
√

detK
e−

1
2x

′K−1x,

completing the proof. �
Remark 2.161. By point 1 of Definition 2.157, it follows, for all t ∈ R+, that
Wt = Wt −W0 almost surely and, by point 3 of the same definition, that Wt

is distributed as N(0, t). Thus

P (a ≤Wt ≤ b) =
1√
2πt

∫ b

a

e−
x2

2t dx, a ≤ b.

Proposition 2.162. If (Wt)t∈R+ is a Wiener process, then it is a martingale.

Proof . The proposition follows from Example 2.63 because (Wt)t∈R+ is a
centered process with independent increments. �

Theorem 2.163 (Kolmogorov’s continuity theorem). Let (Xt)t∈R+ be
a separable real-valued stochastic process. If there exist positive real numbers
r, c, ε, δ such that

∀h < δ, ∀t ∈ R+, E[|Xt+h −Xt|r] ≤ ch1+ε, (2.27)

then, for almost every ω ∈ Ω, the trajectories are continuous in R+.

Proof . For simplicity, we will only consider the interval I =]0, 1[, instead of
R+, so that (Xt)t∈]0,1[. Let t ∈]0, 1[ and 0 < h < δ such that t + h ∈]0, 1[.

Then by the Markov inequality and by (2.27) we obtain

P (|Xt+h −Xt| > hk) ≤ h−rkE[|Xt+h −Xt|r] ≤ ch1+ε−rk (2.28)

for k > 0 and ε− rk > 0. Therefore,
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lim
h→0

P
(|Xt+h −Xt| > hk

)
= 0;

namely, the process is continuous in probability and, by hypothesis, separable.
Under these two conditions, it can be shown that any arbitrary countable
dense subset T0 of ]0, 1[ can be regarded as a separating set. Thus we define

T0 =

{
j

2n

∣
∣
∣
∣ j = 1, . . . , 2n − 1;n ∈ N

∗
}

and observe that, by (2.28),

P

(

max
1≤j≤2n−2

∣
∣
∣X j+1

2n
−X j

2n

∣
∣
∣ ≥ 1

2nk

)

≤
2n−2∑

j=1

P

(∣
∣
∣X j+1

2n
−X j

2n

∣
∣
∣ ≥ 1

2nk

)

≤ 2nc2−n(1+ε−rk) = c2−n(ε−rk).

Because (ε−rk) > 0 and
∑

n 2−n(ε−rk) <∞, we can apply the Borel–Cantelli
Lemma 1.161 to the sets

Fn =

{

max
0≤j≤2n−1

∣
∣
∣X j+1

2n
−X j

2n

∣
∣
∣ ≥ 1

2nk

}

,

yielding P (B) = 0, where B = lim supn Fn =
⋂

n

⋃
k≤n Fk. As a consequence,

if ω /∈ B, then ω ∈ Ω \ (
⋂

n

⋃
k≥n Fk), i.e., there exists an N = N(ω) ∈ N

∗

such that, for all n ≥ N,

∣
∣
∣X j+1

2n
(ω) −X j

2n
(ω)

∣
∣
∣ <

1

2nk
, j = 0, . . . , 2n − 1. (2.29)

Now, let ω /∈ B and s be a rational number such that

s = j2−n + a12−(n+1) + · · · + am2−(n+m), s ∈ [j2−n, (j + 1)2−n[,

where either aj = 0 or aj = 1 and m ∈ N
∗. If we put

br = j2−n + a12−(n+1) + · · · + ar2−(n+r),

with b0 = j2−n and bm = s for r = 0, . . . ,m, then

|Xs(ω) −Xj2−n(ω)| ≤
m−1∑

r=0

|Xbr+1(ω) −Xbr(ω)|.

If ar+1 = 0, then [br, br+1[= ∅; if ar+1 = 1, then [br, br+1[ is of the form
[l2−(n+r+1), (l + 1)2−(n+r+1)[. Hence from (2.29) it follows that

|Xs(ω) −Xj2−n(ω)| ≤
m−1∑

r=0

2−(n+r+1)k ≤ 2−nk
∞∑

r=0

2−(r+1)k ≤M2−nk,

(2.30)
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with M ≥ 1. Fixing ε > 0, there exists an N1 > 0 such that, for all n ≥ N1,
M2−nk < ε

3 , and from the fact that M ≥ 1 it also follows that, for all
n ≥ N1, 2−nk < ε

3 . Let t1, t2 be elements of T0 (separating set) such that

|t1 − t2| < min
{

2−N1, 2−N(ω)
}

. If n = max {N1, N(ω)}, then there is at most

one rational number of the form j+1
2n (j = 1, . . . , 2n − 1) between t1 and t2.

Therefore, by (2.29) and (2.30), it follows that

|Xt1(ω) −Xt2(ω)|
≤

∣
∣
∣Xt1(ω) −X j

2n
(ω)

∣
∣
∣ +

∣
∣
∣X j+1

2n
(ω) −X j

2n
(ω)

∣
∣
∣ +

∣
∣
∣Xt2(ω) −X j+1

2n
(ω)

∣
∣
∣

<
ε

3
+
ε

3
+
ε

3
= ε.

Hence the trajectory is uniformly continuous almost everywhere in T0 and
has a continuous extension in [0, 1]. By Theorem 2.27, the extension coincides
with the original trajectory. Therefore, the trajectory is continuous almost
everywhere in ]0, 1[. �

Theorem 2.164. If (Wt)t∈R+ is a real-valued Wiener process, then it has
continuous trajectories almost surely.

Proof . Let t ∈ R+ and h > 0. Because Wt+h −Wt is normally distributed as

N(0, h), if we put Zt,h =
Wt+h−Wt√

h
, then Zt,h has a standard normal distribu-

tion. Therefore, it is clear that there exists an r > 2 such that E[|Zt,h|r] > 0,
and thus E[|Wt+h−Wt|r] = E[|Zt,h|r]h

r
2 . If we write r = 2(1+ε), then we ob-

tain E[|Wt+h −Wt|r] = ch1+ε, with c = E[|Zt,h|r]. The assertion then follows
by Kolmogorov’s continuity theorem. �
Remark 2.165. Since Brownian motion is continuous in probability, then
by Theorem 2.34, it admits a separable and progressively measurable
modification.

Theorem 2.166. Every Wiener process (Wt)t∈R+ is a Markov diffusion
process. Its transition density is

g(x, y; t) =
e−

(x−y)2

2t√
2πt

, for x, y ∈ R, t ∈ R
∗
+.

Its infinitesimal generator is

A =
1

2

∂2

∂x2
, with domain DA = C2(R).

Proof . The theorem follows directly by Theorem 2.108. See also Lamperti
(1977, p. 170) and Revuz-Yor (1991, p. 264) �

Theorem 2.167 (Lévy characterization of Brownian motion). Let
(Xt)t∈R+ be a real-valued continuous random process on a probability space
(Ω,F , P ). Then the following two statements are equivalent:
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1. (Xt)t∈R+ is a P -Brownian motion.
2. (Xt)t∈R+ and (X2

t − t)t∈R+ are P -martingales (with respect to their re-
spective natural filtrations).

Proof . (For example, Ikeda and Watanabe 1989). Here we shall only prove
that statement 1 implies statement 2.

The Wiener process (Wt)t∈R+ is a continuous square-integrable martingale,
with Wt −Ws ∼ N(0, t− s), for all 0 ≤ s < t. To show that W 2

t − t is also a
martingale, we need to show that either

E[W 2
t − t|Fs] = W 2

s − s ∀0 ≤ s < t

or, equivalently, that

E[W 2
t −W 2

s |Fs] = t− s ∀0 ≤ s < t.

In fact,

E[W 2
t −W 2

s |Fs] = E
[

(Wt −Ws)
2
∣
∣
∣Fs

]
= V ar[Wt −Ws] = t− s.

Because of uniqueness, we can say that 〈Wt〉 = t for all t ≥ 0 by indistin-
guishability. �

Additional characterizations are offered by the following proposition.

Proposition 2.168. Let (Xt)t∈R+ be a real-valued continuous process starting
at 0 at time 0, and let FX denote its natural filtration. It is a Wiener process
if and only if either of the following statements applies:

(i) For any real number λ, the process

(

exp

{

λXt − λ2

2
t

})

t∈R+

is an FX -

local martingale.

(ii) For any real number λ, the process

(

exp

{

iλXt +
λ2

2
t

})

t∈R+

is an FX -

local martingale.

Proof . See, e.g., Revuz-Yor (1991). �
We may state the converse of Proposition 2.160 as follows.

Proposition 2.169. Let (Xt)t∈R+ be a real-valued continuous process starting
at 0 at time 0. If the process is a Gaussian process satisfying

1. E[Xt] = 0 for all t ∈ R+

2. K(s, t) = Cov[Xt, Xs] = min {s, t} , s, t ∈ R+

then it is a Wiener process.

Proof . See, e.g., Revuz-Yor (1991, p. 35). �



132 2 Stochastic Processes

Lemma 2.170. Let (Wt)t∈R+ be a real-valued Wiener process. If a > 0, then

P

(

max
0≤s≤t

Ws > a

)

= 2P (Wt > a).

Proof . We employ the reflection principle by defining the process (W̃t)t∈R as

{
W̃t = Wt if Ws < a, ∀s < t,

W̃t = 2a−Wt if ∃s < t such that Ws = a.

The name arises because once Ws = a, then W̃s becomes a reflection of Ws

about the barrier a. It is obvious that (W̃t)t∈R is a Wiener process as well.
Moreover, we can observe that

max
0≤s≤t

Ws > a

if and only if either Wt > a or W̃t > a. These two events are mutually exclusive
and thus their probabilities are additive. As they are both Wiener processes,
it is obvious that the two events have the same probability, and thus

P

(

max
0≤s≤t

Ws > a

)

= P (Wt > a) + P (W̃t > a) = 2P (Wt > a),

completing the proof. For a more general case, see (B.8). �

Theorem 2.171. If (Wt)t∈R+ is a real-valued Wiener process, then

1. P (supt∈R+
Wt = +∞) = 1

2. P (inft∈R+ Wt = −∞) = 1

Proof . For a > 0,

P

(

sup
t∈R+

Wt > a

)

≥ P

(

sup
0≤s≤t

Ws > a

)

= P

(

max
0≤s≤t

Ws > a

)

,

where the last equality follows by continuity of trajectories. By Lemma 2.170:

P

(

sup
t∈R+

Wt > a

)

≥ 2P (Wt > a) = 2P

(
Wt√
t
>

a√
t

)

, for t > 0.

Because Wt is normally distributed as N(0, t), Wt√
t

is standard normal and,

denoting by Φ its cumulative distribution, we get

2P

(
Wt√
t
>

a√
t

)

= 2

(

1 − Φ

(
a√
t

))

.
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By limt→∞ Φ( a√
t
) = 1

2 , it follows that

lim
t→∞ 2P

(
Wt√
t
>

a√
t

)

= 1,

and because
{

sup
t∈R+

Wt = +∞
}

=

∞⋂

a=1

{

sup
t∈R+

Wt > a

}

,

we obtain 1.
Point 2 follows directly from point 1, by the observation that if (Wt)t∈R+

is a real-valued Wiener process, then so is (−Wt)t∈R+ . �

Theorem 2.172. If (Wt)t∈R+ is a real-valued Wiener process, then

∀h > 0, P

(

max
0≤s≤h

Ws > 0

)

= P

(

min
0≤s≤h

Ws < 0

)

= 1.

Moreover, for almost every ω ∈ Ω the process (Wt)t∈R+ has a zero (i.e.,
crosses the spatial axis) in ]0, h] for all h > 0.

Proof . If h > 0 and a > 0, then it is obvious that

P

(

max
0≤s≤h

Ws > 0

)

≥ P

(

max
0≤s≤h

Ws > a

)

.

Then, by Lemma 2.170,

P

(

max
0≤s≤h

Ws > a

)

= 2P (Wh > a) = 2P

(
Wh√
h
>

a√
h

)

= 2

(

1 − Φ

(
a√
h

))

.

For a → 0, 2(1 − Φ( a√
h

)) → 1, and thus P (max0≤s≤hWs > 0) = 1.

Furthermore,

P

(

min
0≤s≤h

Ws < 0

)

= P

(

max
0≤s≤h

(−Ws) > 0

)

= 1.

Now we can observe that

P

(

max
0≤s≤h

Ws > 0, ∀h > 0

)

≥ P

( ∞⋂

n=1

(

max
0<s≤ 1

n

Ws > 0

))

= 1.

Hence

P

(

max
0≤s≤h

Ws > 0, ∀h > 0

)

= 1
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and, analogously,

P

(

min
0≤s≤h

Ws < 0, ∀h > 0

)

= 1.

From this it can be deduced that for almost every ω ∈ Ω the process (Wt)t∈R+

becomes zero in ]0, h] for all h > 0. On the other hand, since (Wt)t∈R+ is a
time-homogeneous Markov process with independent increments, it has the
same behavior in ]h, 2h] as in ]0, h], and thus it has zeros in every interval. �

Theorem 2.173. Almost every trajectory of the Wiener process (Wt)t∈R+ is
nowhere differentiable.

Proof . Let D = {ω ∈ Ω|Wt(ω)be differentiable for at least one t ∈ R+}. We
will show that D ⊂ G, with P (G) = 0 (obviously, if P is complete, then
D ∈ F). Let k > 0 and

Ak =

{

ω

∣
∣
∣
∣
∣
lim sup

h↓0

|Wt+h(ω) −Wt(ω)|
h

< k for at least one t ∈ [0, 1[

}

.

Then, if ω ∈ Ak, we can choosem ∈ N sufficiently large such that j−1
m ≤ t < j

m

for j ∈ {1, . . . ,m} , and for t ≤ s ≤ j+3
m , W (s, ω) is enveloped by a cone with

slope k. Then, for an integer j ∈ {1, . . . ,m}, we get
∣
∣
∣W j+1

m
(ω) −W j

m
(ω)

∣
∣
∣ ≤

∣
∣
∣W j+1

m
(ω) −Wt(ω)

∣
∣
∣ +

∣
∣
∣−Wt(ω) +W j

m
(ω)

∣
∣
∣

<

(
j + 1

m
− j − 1

m

)

k +

(
j

m
− j − 1

m

)

k

=
2k

m
+
k

m
=

3k

m
. (2.31)

Analogously, we obtain that
∣
∣
∣W j+2

m
(ω) −W j+1

m
(ω)

∣
∣
∣ ≤ 5k

m
(2.32)

and
∣
∣
∣W j+3

m
(ω) −W j+2

m
(ω)

∣
∣
∣ ≤ 7k

m
. (2.33)

Because
Wt+h−Wt√

h
is distributed as N(0, 1), it follows that

P (|Wt+h −Wt| < a) = P

( |Wt+h −Wt|√
h

<
a√
h

)

=

∫ a√
h

− a√
h

1√
2π

exp

{

−x
2

2

}

dx

≤ 1√
2π

2
a√
h

=
2a√
2πh

.
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Putting Am,j = {ω|(2.31),(2.32),(2.33) are true}, because the process has in-
dependent increments, we obtain

P (Am,j) = P ({ω|(2.31) is true})P ({ω|(2.32) is true})P ({ω|(2.33) is true})

≤ 8

(
2π

m

)− 3
2 3k

m

5k

m

7k

m
,

and thus P (Am,j) ≤ cm− 3
2 , j = 1, . . . ,m. Putting Am =

⋃m
j=1 Am,j, then

P (Am) ≤
m∑

j=1

P (Am,j) ≤ cm− 1
2 .

Now let m = n4 (n ∈ N
∗); we obtain P (An4) ≤ cn−2 = c

n2 and thus

∑

n

P (An4) ≤ c
∑

n

1

n2
<∞.

Therefore, by the Borel–Cantelli Lemma 1.161,

P

(

lim sup
n

An4

)

= 0.

It can now be shown that

Ak ⊂ lim inf
m

Am ≡
⋃

m

⋂

i≥m

Ai ⊂ lim inf
n

An4 ⊂ lim sup
n

An4 ,

hence Ak ⊂ A
′′
n4 and P (A

′′
n4) = 0. Let

D0 = {ω|W (·, ω) is differentiable in at least one t ∈ [0, 1[} .
Then D0 ⊂ ⋃∞

k=1 Ak = G0, which means that D0 is contained in a set of
probability zero, namely, D0 ⊂ G0 and P (G0) = 0. Decomposing R+ =⋃

n[n, n+ 1[, since the motion is Brownian and of independent increments,

Dn = {ω|W (·, ω) is differentiable in at least one t ∈ [n, n+ 1[} ,
analogously to D0, will be contained in a set of probability zero, i.e., Dn ⊂ Gn

and P (Gn) = 0. But D ⊂ ⋃
nDn ⊂ ⋃

nGn, thus completing the proof. �
A trivial consequence of the preceding theorem is the following corollary.

Corollary 2.174. Almost every trajectory of a Wiener process (Wt)t∈R+ is
of unbounded variation on any finite interval.

An important property of the trajectories of a Brownian motion is their
Hölder continuity. We may recall that a real function f defined on a real
line satisfies a Hölder condition, or is Hölder continuous, when there are
nonnegative real constants C,α such that
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|f(y) − f(x)| ≤ C|y − x|α

for all x and y in the domain of f . The number α is called the exponent or
order of the Hölder condition.

The following theorem holds.

Theorem 2.175. Almost every trajectory of a Wiener process (Wt)t∈R+ is

Hölder continuous for any order α <
1

2
.

Almost every trajectory of a Wiener process (Wt)t∈R+ is not Hölder con-

tinuous for any order α ≥ 1

2
.

Proof . See, e.g., http://math.nyu.edu/faculty/varadhan/processes.

html. �

Proposition 2.176. Let (Wt)t∈R+ be a Wiener process; then the following
properties hold:

(i) (Symmetry) The process (−Wt)t∈R+ is a Wiener process.

(ii) (Time scaling) The time-scaled process (W̃t)t∈R+ defined by

W̃t = tW1/t, t > 0, W̃0 = 0

is also a Wiener process.
(iii) (Space scaling) For any c > 0, the space-scaled process (W̃t)t∈R+ de-

fined by

W̃t = cWt/c2 , t > 0, W̃0 = 0,

is also a Wiener process.

Proof . See, e.g., Karlin and Taylor (1975). �

Proposition 2.177. If (Wt)t∈R+ is a Wiener process, then the process

Xt = Wt − tW1, t ∈ [0, 1]

is a Brownian bridge.

Proof . See, e.g., Revuz-Yor (1991, p. 35). �
We may observe that X0 = X1 = 0, from which the name follows.

Proposition 2.178 (Strong law of large numbers). Let (Wt)t∈R+ be a
Wiener process. Then

Wt

t
→ 0, as t→ +∞, a.s.

Proof . See, e.g., Karlin and Taylor (1975). �

http://math.nyu.edu/faculty/varadhan/processes.html
http://math.nyu.edu/faculty/varadhan/processes.html
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Proposition 2.179 (Law of iterated logarithms). Let (Wt)t∈R+ be a
Wiener process. Then

lim sup
t→+∞

Wt√
2t ln ln t

= 1, a.s.,

lim inf
t→+∞

Wt√
2t ln ln t

= −1, a.s.

As a consequence, for any ε > 0 there exists a t0 > 0 such that for any t > t0
we have

−(1 + ε)
√

2t ln ln t ≤Wt ≤ (1 + ε)
√

2t ln ln t, a.s.

Moreover,

P (Wt ≥ (1 + ε)
√

2t ln ln t, i.o.) = 0;

while

P (Wt ≥ (1 − ε)
√

2t ln ln t, i.o.) = 1.

Proof . See, e.g., Breiman (1968, p. 266). �

Proposition 2.180. For almost every ω ∈ Ω the trajectory (Wt(ω))t∈R+ of

a Wiener process is locally Hölder continuous with exponent δ if δ ∈ (0,
1

2
).

But for almost every ω ∈ Ω it is nowhere Hölder continuous with exponent δ

if δ >
1

2
.

Wiener Process Started at x

Let (Wt)t∈R+ be a Wiener process. For any x ∈ R the process (W x
t )t∈R+ ,

defined by

W x
t := x+Wt t ∈ R+,

is called a Wiener process started at x. It is such that for any t ∈ R+ and any
B ∈ BR

P (W x
t ∈ B) =

1√
2πt

∫

B

e−
(y−x)2

2t dy.

Reflected Brownian Motion

If (Wt)t∈R+ is a Wiener process, the process (|Wt|)t∈R+ is valued in R+; its
transition density is
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g(x, y; t) =
1√
2πt

[

exp

{

− (y − x)2

2t

}

+ exp

{

− (y + x)2

2t

}]

,

for x, y ∈ R+, t ∈ R
∗
+.

It is known as reflected Brownian motion.
Its infinitesimal generator is

A =
1

2

∂2

∂x2
, with domain DA =

{
f ∈ C2(R+) | f ′(0) = 0

}

(Lamperti 1977, pp. 126 and 173).

Absorbed Brownian Motion

Let (Wt)t∈R+ be a Wiener process; for a given a ∈ R let τa denote the first
passage time of the process started at W0 = 0. The stopped process (Xt)t∈R+

defined by

Xt = Wt, for 0 ≤ t ≤ τa

Xt = a, for t ≥ τa,

is called absorbed Brownian motion.
Its cumulative probability distribution is given by

P (Xt ≤ y) =

⎧
⎨

⎩

1√
2πt

∫ y

−∞
e−

z2

2t dz −
∫ +∞

2a−y

e−
z2

2t dz for y < a,

1 for y ≥ a,

for any t ∈ R+ and any y ∈ R.
Its infinitesimal generator is

A =
1

2

∂2

∂x2
,

with domain DA =
{
f ∈ C2(R+) | f(x) = 0, for x ≥ a

}
(Schuss 2010, p. 58).

Brownian Motion After a Stopping Time

Let (W (t))t∈R+ be a Wiener process with a finite stopping time T and FT the
σ-algebra of events preceding T . By Remark 2.165 and Theorem 2.49, W (T )
is FT -measurable and, hence, measurable.

Remark 2.181. Brownian motion is endowed with the Feller property and
therefore also with the strong Markov property (This can be shown using the
representation of the semigroup associated with (W (t))t∈R+ .).
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Theorem 2.182. Resorting to the previous notation, we have that

1. The process y(t) = W (T + t)−W (T ), t ≥ 0, is again a Brownian motion.
2. σ(y(t), t ≥ 0) is independent of FT .

(Thus a Brownian motion remains a Brownian motion after a stopping time.)

Proof . If T = s (s constant), then the assertion is obvious. We now suppose
that T has a countable codomain (sj)j∈N and that B ∈ FT . If we consider
further that 0 ≤ t1 < · · · < tn and that A1, . . . , An are Borel sets of R, then

P (y(t1) ∈ A1, . . . , y(tn) ∈ An, B)

=
∑

j∈N

P (y(t1) ∈ A1, . . . , y(tn) ∈ An, B, T = sj)

=
∑

j∈N

P ((W (t1 + sj) −W (sj)) ∈ A1, . . .

. . . , (W (tn + sj) −W (sj)) ∈ An, B, T = sj).

Moreover, (T = sj) ∩ B = (B ∩ (T ≤ sj)) ∩ (T = sj) ∈ Fsj (as observed
in the proof of Theorem 2.49), and since a Wiener process has independent
increments, the events ((W (t1+sj)−W (sj)) ∈ A1, . . . , (W (tn+sj)−W (sj)) ∈
An) and (B, T = sj) are independent; therefore,

P (y(t1) ∈ A1, . . . , y(tn) ∈ An, B)

=
∑

j∈N

P ((W (t1 + sj) −W (sj)) ∈ A1, . . .

. . . , (W (tn + sj) −W (sj)) ∈ An)P (B, T = sj)

=
∑

j∈N

P (W (t1) ∈ A1, . . . ,W (tn) ∈ An)P (B, T = sj)

= P (W (t1) ∈ A1, . . . ,W (tn) ∈ An)P (B),

where we note that W (tk + sj) −W (sj) has the same distribution as W (tk).
From these equations (having factorized) follows point 2. Furthermore, if we
take B = Ω, we obtain

P (y(t1) ∈ A1, . . . , y(tn) ∈ An) = P (W (t1) ∈ A1, . . . ,W (tn) ∈ An).

This shows that the finite-dimensional distributions of the process (y(t))t≥0

coincide with those of W . Therefore, by the Kolmogorov–Bochner theorem,
the proof of 1 is complete.

Let T be a generic finite stopping time of the Wiener process (Wt)t≥0

and (as in Lemma 2.131) (Tn)n∈N a sequence of stopping times such that
Tn ≥ T, Tn ↓ T as n→ ∞ and Tn has an at most countable codomain. We put,
for all n ∈ N, yn(t) = W (Tn + t) −W (Tn) and let B ∈ FT , 0 ≤ t1 ≤ · · · ≤ tk.
Then, because for all n ∈ N, FT ⊂ FTn (see the proof of Theorem 2.132) and
for all n ∈ N, the theorem holds for Tn (as already shown above), we have
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P (yn(t1) ≤ x1, . . . , yn(tk) ≤ xk, B) = P (W (t1) ≤ x1, . . . ,W (tk) ≤ xk)P (B).

Moreover, since W is continuous, from Tn ↓ T as n → ∞, it follows that
yn(t) → y(t) a.s. for all t ≥ 0. Thus, if (x1, . . . , xk) is a point of continuity
of the k-dimensional distribution Fk of (W (t1), . . . ,W (tk)), we get by Lévy’s
continuity Theorem 1.177

P (y(t1) ≤ x1, . . . , y(tk) ≤ xk, B)

= P (W (t1) ≤ x1, . . . ,W (tk) ≤ xk)P (B). (2.34)

Since Fk is continuous almost everywhere (given that Gaussian distributions
are absolutely continuous with respect to the Lebesgue measure and thus
have density), (2.34) holds for every x1, . . . , xk. Therefore, for every Borel set
A1, . . . , Ak of R, we have that

P (y(t1) ∈ A1, . . . , y(tk) ∈ Ak, B) = P (W (t1) ∈ A1, . . . ,W (tn) ∈ Ak)P (B),

completing the proof. �

Definition 2.183. The real-valued process (W1(t), . . . ,Wn(t))′t≥0 is said to
be an n-dimensional Wiener process (or Brownian motion) if

1. For all i ∈ {1, . . . , n}, (Wi(t))t≥0 is a Wiener process
2. The processes (Wi(t))t≥0, i = 1, . . . , n, are independent

(thus the σ-algebras σ(Wi(t), t ≥ 0), i = 1, . . . , n, are independent).

Proposition 2.184. If (W1(t), . . . ,Wn(t))′t≥0 is an n-dimensional Brownian
motion, then it can be shown that

1. (W1(0), . . . ,Wn(0)) = (0, . . . , 0) almost surely.
2. (W1(t), . . . ,Wn(t))′t≥0 has independent increments.
3. (W1(t), . . . ,Wn(t))′ − (W1(s), . . . ,Wn(s))′, 0 ≤ s < t, has multivariate

normal distribution N(0, (t − s)I) (where 0 is the null vector of order n
and I is the n× n identity matrix).

Proof . The proof follows from Definition 2.183. �

2.9 Counting, and Poisson Processes

Whereas Brownian motion and the Wiener process are continuous in space
and time, there exists a family of processes that are continuous in time, but
discontinuous in space, admitting jumps. The simplest of these is a counting
process, of which the Poisson process is a special case. The latter also allows
many explicit results. The most general process admitting both continuous
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and discontinuous movements is the Lévy process, which contains both Brow-
nian motion and the Poisson process. Finally, a stable process is a particular
type of Lévy process, which reproduces itself under addition.

Definition 2.185. Let (τi)i∈N∗ be a strictly increasing sequence of positive
random variables on the space (Ω,F , P ), with τ0 ≡ 0. Then the process
(Nt)t∈R̄+

given by

Nt =
∑

i∈N∗
I[τi,+∞](t), t ∈ R̄+,

valued in N̄, is called a counting process associated with the sequence (τi)i∈N∗ .
Moreover, the random variable τ = supi τi is the explosion time of the process.
If τ = ∞ almost surely, then Nt is nonexplosive.

We may easily notice that, due to the following equality, which holds for
any t1, t2, . . . , tn ∈ R+,

P (τ1 ≤ t1, τ2 ≤ t2, . . . , τn ≤ tn) = P (N(t1) ≥ 1, N(t2) ≥ 2, . . . , N(tn) ≥ n),

we may claim that it is equivalent to knowledge of the probability law of
(Nt)t∈R+ and that of (τn)n∈N∗ .

Theorem 2.186. Let (Ft)t∈R̄+
be a filtration that satisfies the usual hypothe-

ses (Definition 2.35). A counting process (Nt)t∈R̄+
is adapted to (Ft)t∈R̄+

if
and only if its associated random variables (τi)i∈N∗ are stopping times.

Proof . See, e.g., Protter (1990, p. 13). �
The following proposition holds (Protter 1990, p. 16).

Theorem 2.187. Let (Nt)t∈R+ be a counting process. Then its natural filtra-
tion is right-continuous.

Hence, by a suitable extension, we may consider as underlying filtered
space the given probability space (Ω,F , P ) endowed with the natural filtration
Ft = σ {Ns|s ≤ t} .

With respect to the natural filtration, the jump times τn for n ∈ N
∗ are

stopping times.

Remark 2.188. A nonexplosive counting process is RCLL. Its trajectories
are right-continuous step functions with upward jumps of magnitude 1 and
N0 = 0 almost surely.

Proposition 2.189. An RCLL process may admit at most jump discontinu-
ities.

Definition 2.190. We say that a process (Xt)t∈R+ has a fixed jump at a time
t if P (Xt �= Xt−) > 0.
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Poisson Process

Definition 2.191. A counting process (Nt)t∈R+ is a Poisson process if it is
a process with time-homogeneous independent increments.

Theorem 2.192(Çynlar 1975, p. 71; Protter 1990, p. 13). Let (Nt)t∈R+

be a Poisson process. Then a λ > 0 exists such that, for any t ∈ R+, Nt has
a Poisson distribution with parameter λt, i.e.,

P (Nt = n) = e−λt (λt)n

n!
, n ∈ N.

Moreover (Nt)t∈R+ is continuous in probability and does not have explosions.

Proposition 2.193 (Chung 1974). Let (Nt)t∈R+ be a Poisson process.
Then

P (τ∞ = ∞) = 1,

namely, almost all sample functions are step functions.

The following theorem specifies the distribution of the random variable
Nt, t ∈ R+.

Theorem 2.194. Let (Nt)t∈R+ be a Poisson process of intensity λ > 0. Then
for any t ∈ R+, E[Nt] = λt, V ar[Nt] = λt, its characteristic function is

φNt(u) = E
[
eiuNt

]
= e−λt(1−exp{iu}),

and its probability-generating function is

gNt(u) = E
[
uNt

]
= eλt(u−1), u ∈ R

∗
+.

Proof . All formulas are a consequence of the Poisson distribution of Nt for
any t ∈ R+:

E[Nt] =

∞∑

n=0

n
(λt)n

n!
e−λt = λt

∞∑

n=0

(λt)n−1

(n− 1)!
e−λt = λt,

E
[
N2

t

]
=

∞∑

n=0

n2 (λt)n

n!
e−λt = λt

∞∑

n=0

((n− 1) + 1)
(λt)n−1

(n− 1)!
e−λt

= (λt)2 + λt,

V ar[Nt] = E
[
N2

t

]− (E[Nt])
2
,

E
[
eiuNt

]
=

∞∑

n=0

eiun
(λt)n

n!
e−λt = e−λt(1−exp{iu})

∞∑

n=0

(
λteiu

)n

n!
e−λt exp{iu}

= e−λt(1−exp{iu}),

E
[
uNt

]
=

∞∑

n=0

un
(λt)n

n!
e−λt = eλt(u−1)

∞∑

n=0

(uλt)n

n!
e−uλt = eλt(u−1).

�
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Due to the independence of the increments, the following theorem holds.

Theorem 2.195. A Poisson process (Nt)t∈R+ is an RCLL Markov process.

Proposition 2.196 (Rolski et al. 1999, p. 157; Billingsley 1986,
p. 307). Let (Nt)t∈R+ be a counting process. From the definition, τn =
inf {t ∈ R+ : Nt ≥ n}; we denote by Tn = τn − τn−1, for n ∈ N \ {0} , the
interarrival times. The following statements are all equivalent:

P 1 : (Nt)t∈R+ is a Poisson process with intensity parameter λ > 0.
P 2 : Tn are independent exponentially distributed random variables with pa-

rameter λ.
P 3 : For any t ∈ R+, and for any n ∈ N − {0} , the joint conditional distri-

bution of (T1, . . . , Tn), given {Nt = n} , has density

n!

tn
1{0<t1<···<tn}

with respect to the Lebesgue measure, i.e., it has the same distribution of
the order statistics of n independent real random variables having uniform
law on [0, t].

P 4 : For any 0 < t1 < · · · < tk the increments Nt2 −Nt1 , . . . , Ntk −Ntk−1
are

independent and each of them is Poisson distributed:

Nti −Nti−1 ∼ P (λ(ti − ti−1)).

P 5 : (Nt)t∈R+ has time-homogeneous independent increments and, as h ↓ 0,

P (Nh = 1) = λh+ o(h),

P (Nh ≥ 2) = o(h);

moreover, (Nt)t∈R+ has no fixed jumps.

Theorem 2.197. A process (Nt)t∈R+ with stationary increments has a
version in which it is constant on all sample paths except for upward jumps
of magnitude 1 if and only if there exists a parameter λ > 0 so that its char-
acteristic function

φNt(u) = E
[
eiuNt

]
= e−λt(1−exp{iu})

or, equivalently, Nt ∼ P (λt).

Proof . See, e.g., Breiman (1968). �
Remark 2.198. Let us consider a Poisson process (Nt)t∈R+ with intensity
parameter λ > 0; for any a, b ∈ R+, a < b we denote

N((a, b]) = Nb −Na. (2.35)
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Due to the fact that (Nt)t∈R+ is nondecreasing and càdlàg, with N(0) = 0, by
means of (2.35) it will generate a random measure on BR+ in the usual way.
It is such that, for any B ∈ BR+ ,

N(B) = � {n ∈ N
∗|τn ∈ B} .

It is not difficult to show that N(B) is a Poisson random variable with
parameter λν1(B), where ν1 denotes the usual Lebesgue measure on BR+ .

A particular consequence of this is the fact that a Poisson process (Nt)t∈R+

cannot have a fixed jump at any t0 ∈ R+ since

P (Nt0 −Nt0−) = P (N({t0} > 0) = 1 − e−λν1({t0}) = 1 − 1 = 0.

Theorem 2.199. Let (Nt)t∈R+ be a Poisson process of intensity λ. Then
(Nt − λt)t∈R+ and ((Nt − λt)2 − λt)t∈R+ are martingales.

Remark 2.200. Because Mt = (Nt − λt)2 − λt is a martingale, by uniqueness,
the process (λt)t∈R+ is the predictable compensator of (Nt−λt)2, i.e., 〈(Nt −
λt)2〉 = λt, for all t ∈ R+, as well as the compensator of the Poisson process
(Nt)t∈R+ directly.

The following theorem, known as the Watanabe characterization, provides
the converse of Theorem 2.199 (e.g., Bremaud 1981, p. 25).

Theorem 2.201. Let (Nt)t∈R+ be a counting process. Suppose that a deter-
ministic λ ∈ R

∗
+ exists such that (Nt−λt)t∈R+ is a martingale with respect to

the natural filtration of the process; then (Nt)t∈R+ is a Poisson process.

Corollary 2.202 (Çynlar 1975, p. 76). Let (Nt)t∈R+ be an integer-valued
stochastic process such that its trajectory almost surely satisfies the following
statements:

1. It is nondecreasing.
2. It increases by jumps only.
3. It is right continuous.
4. N0 = 0.

Then (Nt)t∈R+ is a Poisson process with (deterministic) intensity λ ∈ R
∗
+ if

and only if

(a) Almost surely each jump of the process is of unit magnitude.
(b) For any s, t ∈ R+

E[Nt+s −Nt|Ft] = λs a.s.

Theorem 2.201 can be extended to the nonhomogeneous case.

Theorem 2.203. Let (Nt)t∈R+ be a counting process, and let λ : R+ → R+

be a locally integrable function such that (Nt −
∫ t

0
λ(s)ds)t∈R+ is a martingale

with respect to the natural filtration of the process; then (Nt)t∈R+ is a Poisson
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process, with nonhomogeneous intensity λ(t), i.e., for all 0 ≤ s ≤ t, Nt −Ns

is a Poisson random variable with parameter
∫ t

s λ(τ)dτ, independent of Fs.

Definition 2.204. A counting process (Nt)t∈R+ is simple if

P (Nt −Nt− ∈ {0, 1} for any t ∈ R+) = 1.

Definition 2.205. A counting process (Nt)t∈R+ is orderly if

lim
h↓0

1

h
P (Nt ≥ 2) = 0.

Proposition 2.206. A Poisson process with intensity λ > 0 is orderly and
simple.

Proof . A Poisson process has time-homogeneous increments; since it is orderly,
it is also simple by Proposition 3.3.VI in Daley and Vere-Jones (1988, p. 48).
Further, since λ is finite, simplicity implies orderliness by Dobrushin’s lemma
(e.g., Daley and Vere-Jones 1988, p. 48). �

Theorem 2.207. Let (Nt)t∈R+ be a simple counting process on R+ adapted
to Ft. If the Ft-compensator (At)t∈R+ of (Nt)t∈R+ is a continuous and F0-
measurable random process, then (Nt)t∈R+ is a doubly stochastic Poisson pro-
cess (with stochastic intensity), directed by At, also known as a Cox process.

Proof . For u ∈ R let

Mt(u) = eiuNt−(exp{iu}−1)At .

Then, using the properties of stochastic integrals, it can be shown that

E[Mt(u)|F0] = E
[
eiuNt−(exp{iu}−1)At

∣
∣
∣F0

]
= 1.

Because At is assumed to be F0-measurable,

E
[
eiuNt |F0

]
= e(exp{iu}−1)At ,

representing the characteristic function of a Poisson distribution with
(stochastic) intensity At. �

2.10 Marked Point Processes

2.10.1 Random Measures

Consider a Polish space (E,BE); we denote by N the family of all σ-finite
integer-valued measures on (E,BE); we define the measurable space (N ,BN )
by assigning BN as the smallest σ-algebra on N with respect to which all maps
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μ ∈ N �→ {
μ(B) ∈ N , B ∈ BE

}

are measurable.

Definition 2.208. Given a probability space (Ω,F , P ), a random (point)
measure is any measurable function

N : (Ω,F) → (N ,BN ).

Definition 2.209. Given a probability space (Ω,F , P ), a Poisson random
measure is a random (point) measure N such that

(i) For any B ∈ BE , N(B) is an integer valued random variable on (Ω,F , P ),
admitting a Poisson distribution, i.e.,

P (N(B) = k) = e−Λ(B) (Λ(B))k

k!
, k ∈ N,

where Λ is a deterministic σ-finite measure on BE . An obvious consequence
is that

Λ(B) = E[N(B)], B ∈ BE ;

(ii) For any B1, B2 ∈ BE , such that B1∩B2 = ∅, the random variables N(B1)
and N(B2) are independent.

Theorem 2.210. Given a deterministic σ-finite measure Λ on a Polish space
(E,BE), there exists a Poisson random measure N on (E,BE) such that for
any B ∈ BE

Λ(B) = E[N(B)].

Proof . See, e.g., Ikeda and Watanabe (1989, p. 42). �
For a more detailed updated account on random measures and point pro-

cesses the reader may refer to Daley and Vere-Jones (2008).

2.10.2 Stochastic Intensities

We will now generalize the notion of a compensator (Definition 2.82) to a
larger class of counting processes, including the so-called marked point pro-
cesses. For this we will commence with a point process on R+,

N =
∑

n∈N∗
ετn ,

defined by the sequence of random times (τn)n∈N∗ on the underlying proba-
bility space (Ω,F , P ). Here εt is the Dirac measure (also called point mass)
on R+, i.e.,
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∀A ∈ BR+ : εt(A) =

{
1 if t ∈ A,
0 if t /∈ A.

The corresponding definition of the same process as a counting process was
given in Definition 2.185.

Definition 2.211. (A∗): Let Ft = σ(Ns, 0 ≤ s ≤ t), t ∈ R+, be the natural
filtration of the counting process (Nt)t∈R+ . We assume that

1. The filtered probability space (Ω,F , (Ft)t∈R+ , P ) satisfies the usual hy-
potheses (Definition 2.35).

2. E[Nt] < ∞ for all t ∈ R+, i.e., avoiding the problem of exploding
martingales in the Doob–Meyer decomposition (Theorem 2.88).

Proposition 2.212. Under assumption (A∗) of Definition 2.211, there exists
a unique increasing right-continuous predictable process (At)t∈R+ such that

1. A0 = 0.
2. P (At <∞) = 1 for any t > 0.
3. The process (Mt)t∈R+ defined as Mt = Nt−At is a right-continuous zero-

mean martingale.

The process (At)t∈R+ is called the compensator of the process (Nt)t∈R+ .

Proposition 2.213 (Bremaud 1981; Karr 1986). For every nonnegative
Ft-predictable process (Ct)t∈R+ , by Proposition 2.212, we have that

E

[∫ ∞

0

CtdNt

]

= E

[∫ ∞

0

CtdAt

]

. (2.36)

Theorem 2.214. Given a point (or counting) process (Nt)t∈R+ satisfying as-
sumption (A∗) of Definition 2.211 and a predictable random process (At)t∈R+ ,
the following two statements are equivalent:

1. (At)t∈R+ is the compensator of (Nt)t∈R+ .
2. The process Mt = Nt −At is a zero-mean martingale.

Remark 2.215. In infinitesimal form, (2.36) provides the heuristic expression

dAt = E[dNt|Ft−],

giving a dynamical interpretation to the compensator. In fact, the increment
dMt = dNt − dAt is the unpredictable part of dNt over [0, t[, also therefore
known as the innovation martingale of (Nt)t∈R+ .

In the case where the innovation martingale Mt is bounded in L2, we may
apply Theorem 2.90 and introduce the predictable variation process 〈M〉t,
with 〈M〉0 = 0 and M2

t −〈M〉t being a uniformly integrable martingale. Then
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the variation process can be compensated in terms of At by the following
theorem.

Theorem 2.216 (Karr 1986, p. 64). Let (Nt)t∈R+ be a point process on
R+ with compensator (At)t∈R+ , and let the innovation process Mt = Nt −At

be an L2-martingale. Defining ΔAt = At −At−, then

〈M〉t =

∫ t

0

(1 −ΔAs)dAs.

Remark 2.217. In particular, if At is continuous in t, then ΔAt = 0, so that
〈M〉t = At. Formally, in this case we have

E
[
(dNt − E[dNt|Ft−])2|Ft−

]
= dAt = E[dNt|Ft−],

so that the counting process has locally and conditionally the typical behavior
of a Poisson process.

Let N be a simple point process on R+ with a compensator A, satisfying
the assumptions of Proposition 2.212.

Definition 2.218. We say that N admits an Ft-stochastic intensity if a
(nontrivial) nonnegative, predictable process λ = (λt)t∈R+ exists such that

At =

∫ t

0

λsds, t ∈ R+.

Remark 2.219. Due to the uniqueness of the compensator, the stochastic
intensity, whenever it exists, is unique.

Formally, from

dAt = E[dNt|Ft−]

it follows that

λtdt = E[dNt|Ft−],

i.e.,

λt = lim
Δt→0+

1

Δt
E[ΔNt|Ft−],

and, because of the simplicity of the process, we also have

λt = lim
Δt→0+

1

Δt
P (ΔNt = 1|Ft−),

meaning that λtdt is the conditional probability of a new event during [t, t+dt],
given the history of the process over [0, t].
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Example 2.220. (Poisson process). A stochastic intensity does exist for a
Poisson process with intensity (λt)t∈R+ and, in fact, is identically equal to the
latter (hence deterministic).

A direct consequence of Theorem 2.216 and of the previous definitions is
the following theorem.

Theorem 2.221 (Karr 1986, p. 64). Let (Nt)t∈R+ be a point process satis-
fying assumption (A∗) of Definition 2.211 and admitting stochastic intensity
(λt)t∈R+ . Assume further that the innovation martingale

Mt = Nt −
∫ t

0

λsds, t ∈ R+

is an L2-martingale. Then for any t ∈ R+ :

〈M〉t =

∫ t

0

λsds.

An important theorem that further explains the role of the stochastic
intensity for counting processes is as follows (Karr 1986, p. 71).

Theorem 2.222. Let (Ω,F , P ) be a probability space over which a simple
point process with an Ft-stochastic intensity (λt)t∈R+ is defined. Suppose that
P0 is another probability measure on (Ω,F) with respect to which (Nt)t∈R+ is
a stationary Poisson process with rate 1. Then P << P0, and for any t ∈ R+

we have

dP

dP0
|Ft = exp

{∫ t

0

(1 − λs)ds+

∫ t

0

lnλsdNs

}

. (2.37)

Conversely, if P0 is as above and P a probability measure on (Ω,F), absolutely
continuous with respect to P0, then there exists a predictable process λ such
that N has stochastic intensity λ with respect to P [and (2.37) holds].

Marked Point Processes

We will now consider a generic Polish space endowed with its σ-algebra (E, E)
and introduce a sequence of (E, E)-valued random variables (Zn)n∈N∗ in addi-
tion to the sequence of random times (τn)n∈N∗ , which are R̄+-valued random
variables.

Definition 2.223. The random measure on R̄+ × E,

N =
∑

n∈N∗
ε(τn,zn),
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is called a marked point process with mark space (E, E). zn is called the mark
of the event occurring at time τn. The process

Nt = N([0, t] × E), t ∈ R+,

is called the underlying counting process of the processN . As usual, we assume
that the process (Nt)t∈R+ is simple.

For B ∈ E the process

Nt(B) := N([0, t] ×B) =
∑

n∈N∗
I[τn≤t,Zn∈B](t), t ∈ R+,

represents the counting process of events occurring up to time t with marks
in B ∈ E . The history of the process up to time t is denoted as

Ft := σ(Ns(B)|0 ≤ s ≤ t, B ∈ E).

We will assume throughout that the filtered space (Ω,F , (Ft)t∈R+ , P ) satisfies
the usual hypotheses (Definition 2.35).

Remark 2.224. Note that, for any n ∈ N
∗, while τn is Fτn−-measurable, Zn

is Fτn-measurable but not Fτn−-measurable, i.e.,

Fτn = σ ((τ1, Z1), . . . , (τn, Zn)) ,

whereas

Fτn− = σ ((τ1, Z1), . . . , (τn−1, Zn−1), τn) .

Hence τn is an (Ft)t∈R+ stopping time.

By a reasoning similar to that employed for regular conditional proba-
bilities in Chap. 1, the following theorem can be proved, which provides an
extension of Theorem 2.214 to marked point processes.

Theorem 2.225 (Bremaud 1981; Karr 1986; Last and Brandt 1995).
Let N be a marked point process such that the underlying counting process
(Nt)t∈R+ satisfies the assumptions of Proposition 2.212. Then there exists a
unique random measure Λ on R+ × E such that

1. For any B ∈ E, the process Λ([0, t] ×B) is Ft-predictable.
2. For any nonnegative Ft-predictable process C on R+ × E:

E

[∫

C(t, z)N(dt× dz)

]

= E

[∫

C(t, z)Λ(dt× dz)

]

.

The random measure ν introduced in the preceding theorem is called the
Ft-compensator of the process N . The preceding theorem again suggests that
formally the following holds:

Λ(dt× dz) = E [N(dt× dz)|Ft−] .
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The following propositions mimic the corresponding results for the unmarked
point processes.

Proposition 2.226. For any B ∈ E, the process

Mt(B) := Nt(B) − Λ([0, t] ×B), t ∈ R+,

is a zero-mean martingale.

We will call the process M = (Mt(B))t∈R+,B∈E the innovation process of
N . Henceforth let us denote At(B) := Λ([0, t] ×B).

Proposition 2.227 (Karr 1986, p. 65). Let N be a marked point process
on R+ ×E, with compensator Λ, and let B1 and B2 be two disjoint sets in E
for which Mt(B1) and Mt(B2) are L2-martingales. Then

〈Mt(B1),Mt(B2)〉t = −
∫ t

0

ΔAs(B1)ΔAs(B2)ds.

Hence, if (At(B))t∈R+ is continuous in t for any B ∈ E, then the two martin-
gales Mt(B1) and Mt(B2) are orthogonal.

Definition 2.228. Let N be a marked point process on R+×E. We say that
(λt(B))t∈R+,B∈E is the Ft-stochastic intensity of N provided that

1. For any t ∈ R+ the map

B ∈ E → λt(B) ∈ R+

is a random measure on E .
2. For any B ∈ E the process (λt(B))t∈R+ is the stochastic intensity of the

counting process

Nt(B) =
∑

n∈N∗
I[τn≤t,Zn∈B](t);

i.e., for any t ∈ R+, B ∈ E :

At(B) =

∫ t

0

λs(B)ds,

in which case the process (At(B))t∈R+,B∈E is known as the cumulative stochas-
tic intensity of N .

In the presence of the absolute continuity (hence the continuity) of the
process At(B) as a function of t, the following proposition is an obvious con-
sequence of Proposition 2.227.

Proposition 2.229. Let N be a marked point process on R+ with mark space
(E, E) and stochastic intensity (λt(B))t∈R+,B∈E . Let B1 and B2 be two disjoint
sets in E such that the corresponding innovation martingales are bounded in
L2. Then M(B1) and M(B2) are orthogonal, i.e.,

〈Mt(B1),Mt(B2)〉t = 0 for any t ∈ R+.
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Representation of Point Process Martingales

Let N be a point process on R+ with F -compensator A. From the section on
martingales we know that if M = N − A is the innovation martingale of N
and H is a bounded predictable process, then

M̃t =

∫ t

0

H(s)dMs, t ∈ R+,

is also a martingale. In fact, the converse also holds, as stated by the following
theorem, which extends an analogous result for Wiener processes to marked
point processes.

Theorem 2.230 (Martingale representation). Let N be a marked point
process on R+ with mark space (E, E), and letM be its innovation process with
respect to the internal history (Ft)t∈R+ . Suppose the assumptions of Propo-

sition 2.212 are satisfied, and let (M̃t)t∈R+ be a right-continuous and uni-
formly integrable Ft-martingale. Then there exists a process (H(t, x))t∈R+,x∈E

such that

M̃t = M̃0 +

∫

[0,t]×E

H(s, x)Ms(dx).

Proof . See Last and Brandt (1995, p. 342). �

The Marked Poisson Process

A marked Poisson process is a marked point process such that any univariate
point process counting its points with a mark in a fixed Borel set is Poisson.
It turns out that these processes are necessarily independent whenever the
corresponding mark sets are disjoint. Consider a marked point process N on
R+ × E, and let Λ be a σ-finite deterministic measure on R+ × E. Then,
formally, we have the following definition.

Definition 2.231. N is a marked Poisson process if, for any s, t ∈ R+, s < t
and any B ∈ E ,

P (N(]s, t] ×B) = k|Fs) =
(Λ(]s, t] ×B))k

k!
exp {−Λ(]s, t] ×B)} ,

for k ∈ N, almost surely with respect to P .

In the preceding case the intensity measure Λ is such that

Λ(]s, t] ×B) = E[N(]s, t] ×B)]
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for any s, t ∈ R+, s < t and any B ∈ E . It is the (deterministic) compensator
of the marked Poisson process, formally:

Λ(dt× dx) = E[N(dt× dx)|Ft−] = E[N(dt× dx)],

thereby confirming the independence of increments for the marked Poisson
process. Now the following theorem is a consequence of the definitions.

Theorem 2.232. Let N be a marked Poisson process and B1, . . . , Bm ∈ E
for m ∈ N

∗ mutually disjoint sets. Then N(· × B1), . . . , N(· × Bm) are inde-
pendent Poisson processes with intensity measures Λ(· × B1), . . . , Λ(· × Bm),
respectively.

Proof . See Last and Brandt (1995, p. 182). �
The underlying counting process of a marked Poisson process N(]0, t] ×

E) is itself a univariate Poisson process with intensity measure Λ̄(]s, t]) =
Λ(]s, t]×E) for any s, t ∈ R+, s < t. The intensity measure may be chosen to
be continuous, in which case Λ̄({t}) = 0, or even absolutely continuous with
respect to the Lebesgue measure on R+, so that

Λ̄([0, t]) =

∫ t

0

λ(s)ds,

where λ ∈ L1(R+).

Time-Homogenous Marked Poisson Process

A particular case of interest for our subsequent analysis is the following one.

Definition 2.233. A marked Poisson process N on R+ × E is time-homo-
genous if there exists a σ-finite deterministic measure ν on E such that the
intensity measure Λ of N is given by

Λ(]s, t] ×B) = E[N(]s, t] ×B)] = (t− s) ν(B)

for any s, t ∈ R+, s < t and any B ∈ E .

Formally:

E[N(dt× dx)|Ft−] = E[N(dt× dx)] = dt ν(dx).

We will have in particular

E[N([0, t] ×B)] = t ν(B)

for any t ∈ R+ and any B ∈ E and

ν(B) = E[N1(B)] = E[N([0, 1] ×B)]

for any B ∈ E .
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Proposition 2.234. For any B ∈ E, the process

Mt(B) := Nt(B) − tν(B), t ∈ R+

is a zero-mean martingale.

The random measure N(dt × dx) − dt ν(dx) is usually called the com-
pensated Poisson measure. The measure ν is called the characteristic of the
time-homogeneous marked Poisson measure.

As a consequence of the preceding theorems we may state the following.

Proposition 2.235. If N is a Poisson random measure with intensity mea-
sure Λ(]s, t] ×B) = E[N(]s, t] ×B)] = (t− s) ν(B), then for any B ∈ E ,
• Nt(B) =

∫ t

0

∫
B
N(dt × dx), t ∈ R+ is a Poisson process, with intensity

t ν(B).
• Nt(B) is independent of Nt(B

′) if B ∩B′ = ∅ for any t ∈ R+.

Theorem 2.236. Given a deterministic σ-finite measure ν on a Polish space
(E,BE), there exists a time-homogeneous marked Poisson process N on R+×
E having characteristic measure ν.

Proof . See, e.g., Ikeda and Watanabe (1989, p. 44). �

2.11 Lévy Processes

Definition 2.237. Let (Xt)t∈R+ be an adapted process with X0 = 0 almost
surely. If Xt

1. has independent increments,
2. has stationary increments,

3. is continuous in probability so that Xs
P−→

s→t
Xt,

then it is a Lévy process.

Proposition 2.238. Both the Wiener and the Poisson processes are Lévy
processes.

Theorem 2.239. Let (Xt)t∈R+ be a Lévy process. Then it has an RCLL
version (Yt)t∈R+ , which is also a Lévy process.

Proof . See, e.g., Kallenberg (1997, p. 235). �
For Lévy processes we can invoke examples of filtrations that satisfy the

usual hypotheses.
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Theorem 2.240. Let (Xt)t∈R+ be a Lévy process and Gt = σ(Ft,N ), where
(Ft)t∈R+ is the natural filtration of Xt and N the family of P -null sets of Ft.
Then (Gt)t∈R+ is right-continuous.

Proof . See, e.g., Protter (2004, p. 22). �
Remark 2.241. Because, by Theorem 2.239, every Lévy process has an RCLL
version, by Proposition 2.189, the only type of discontinuity it may admit is
jumps.

Definition 2.242. Taking the left limit Xt− = lims→tXs, s < t, we define

ΔXt = Xt −Xt−

as the jump at t. If supt |ΔXt| ≤ c almost surely, c ∈ R+, constant and
nonrandom, then Xt is said to have bounded jumps.

Theorem 2.243. Let (Xt)t∈R+ be a Lévy process with bounded jumps. Then

E [|Xt|p] <∞, i.e., Xt ∈ Lp for any p ∈ N
∗.

Proof . See, e.g., Protter (2004, p. 25). �

Theorem 2.244. Let (Xt)t∈R+ be a Lévy process. Then

(i) If Xt ∈ L1 for some t ∈ R+, then Xt ∈ L1 for any t ∈ R+, and

E[Xt] = tE[X1].

(ii) If Xt ∈ L2 for some t ∈ R+, then Xt ∈ L2 for any t ∈ R+, and

V ar[Xt] = tV ar[X1].

Proof . See, e.g., Mikosch (2009, p. 338). �

Theorem 2.245. Let (Xt)t∈R+ be a Lévy process. Then it has an RCLL
version without fixed jumps (Proposition 2.189).

Proof . See, e.g., Kallenberg (1997). �
We proceed with the general representation theorem of a Lévy process,

commencing with the analysis of the structure of its jumps. Along the lines
of the definition of counting and Poisson processes, let Λ ∈ BR, such that 0
is not in Λ̄, the closure of Λ. For a Lévy process (Xt)t∈R+ we also, as before,
define the random variables

τΛi+1 = inf
{
t > τΛi |ΔXt ∈ Λ

}
, i = 0, . . . , n; τΛ0 ≡ 0.



156 2 Stochastic Processes

Because (Xt)t∈R+ has RCLL paths and 0 /∈ Λ, it is easy to demonstrate that

{
τΛn ≥ t

} ∈ Ft+ = Ft;

thus (τΛi )i∈N∗ are stopping times, and moreover, τΛi > 0 almost surely as well
as limn→∞ τΛn = +∞ almost surely. If we now define

NΛ
t =

∑

0<s≤t

I{Λ}(ΔXs) ≡
∞∑

i=1

I[τΛ
i ≤t](t),

then (NΛ
t )t∈R+ is a nonexplosive counting process, and, more specifically, we

have the following theorem.

Theorem 2.246. Let Λ ∈ BR, with 0 /∈ Λ̄. Then (NΛ
t )t∈R+ is a time-

homogeneous Poisson process with intensity

ν(Λ) = E
[
NΛ

1

]
.

Remark 2.247. If the Lévy process (Xt)t∈R+ has bounded jumps, then ν(Λ) <
+∞.

Theorem 2.248. For any t ∈ R+ the mapping

Λ→ Nt(Λ) ≡ NΛ
t , Λ ∈ BR; 0 /∈ Λ̄,

is a random (counting) measure. Furthermore, the mapping

Λ→ ν(Λ), Λ ∈ BR; 0 /∈ Λ̄,

is a σ-finite measure.

Proof . See, e.g., Protter (2004, p. 26). �

Definition 2.249. The measure ν given by

ν(Λ) = E

⎡

⎣
∑

0<s≤1

I{Λ}(ΔXs)

⎤

⎦ , Λ ∈ BR\{0},

is called the Lévy measure of the Lévy process (Xt)t∈R+ .

It can be shown that the following proposition holds.

Proposition 2.250. The Lévy measure ν is a measure on R \ {0} such that

∫

R\{0}
min

{
1, x2

}
ν(dx) < +∞.

Proof . See, e.g., Medvegyev (2007, p. 481). �
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Hence (Nt)t∈R+ is a Poisson random measure on BR\{0}, with intensity
measure ν (see also Sect. 2.10).

Theorem 2.251. Under the assumptions of Theorem 2.248, let f be a
measurable function, finite on Λ. Then

∫

Λ

f(x)Nt(dx) =
∑

0<s≤t

f(ΔXs)I{Λ}(ΔXs).

Because by Theorem 2.246 (NΛ
t )t∈R+ is a time-homogeneous Poisson

process, we also have the following proposition.

Proposition 2.252. Under the assumptions of Theorem 2.251, the process
(
∫
Λ
f(x)Nt(dx))t∈R+ is a Lévy process. In particular, if f(x) = x, then the

process is nonexplosive almost surely for any t ∈ R+.

Proof . See, e.g., Protter (2004, p. 27). �

Theorem 2.253. Let Λ ∈ BR, 0 /∈ Λ̄. Then the process
(

Xt −
∫

Λ

f(x)Nt(dx)

)

t∈R+

is a Lévy process.

Now, if we define

Jt =

∫

{|x|≥1}
xNt(dx) =

∑

0<s≤t

ΔXsI{|ΔXs|≥1}(|ΔXs|),

then because (Xt)t∈R+ has RCLL paths for each ω ∈ Ω, its trajectory has
only finitely many jumps bigger than 1 during the interval [0, t]. Therefore
(Jt)t∈R+ has paths of finite variation on compacts.

Both (Jt)t∈R+ (by Proposition 2.252) and Vt = Xt−Jt (by Theorem 2.253)
are Lévy processes, where in particular the latter has jumps bounded by 1.
Hence all moments of (Vt)t∈R+ exist and are finite. Because E[V1] = μ (and
E[V0] = 0), we have E[Vt] = μt, by the stationarity of the increments. If
we define Yt = Vt − E[Vt], for all t ∈ R+, then (Yt)t∈R+ has independent
increments and mean zero. Hence it is a martingale. If we further define Zt =
Jt + μt, then the following decomposition theorem holds.

Theorem 2.254. Let (Xt)t∈R+ be a Lévy process. Then it can be decom-
posed as

Xt = Yt + Zt,

where Yt and Zt are both Lévy processes and, furthermore, Yt is a martingale
with bounded jumps and Yt ∈ Lp, for all p ≥ 1, whereas Zt has trajectories of
finite variation on compacts.
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Proposition 2.255. Let (Xt)t∈R+ be a Lévy process and ν its Lévy measure.
Then for any a ∈ R

∗
+

Zt =

∫

{|x|<a}
x[Nt(dx) − tν(dx)] (2.38)

is a zero-mean martingale.

By Theorem 2.199, the process (Nt − λt)t∈R+ is also a zero-mean martin-
gale and (Zt)t∈R+ can be interpreted as a mixture of compensated Poisson
processes.

Theorem 2.256. Let (Xt)t∈R+ be a Lévy process with jumps bounded by
a ∈ R

∗
+, and let

Vt = Xt − E[Xt] ∀t ∈ R+.

Then (Vt)t∈R+ is a zero-mean martingale that can be decomposed as

Vt = Zc
t + Zt ∀t ∈ R+,

where Zc
t is a martingale with continuous paths and Zt as defined in (2.38).

In fact, Zc
t = Wt is Brownian motion.

Theorem 2.256 can be interpreted by saying that a Lévy process with
bounded jumps can be decomposed as the sum of a continuous martingale
(Brownian motion) and another martingale that is a mixture of compensated
Poisson processes. More generally, a third component would be due to the
presence of unbounded jumps.

An updated detailed account of the preceding equations can be found in
Medvegyev (2007, Chap. 7); an additional and important general reference is
Bertoin (1996).

Theorem 2.257 (Lévy-Itô decomposition). Let (Xt)t∈R+ be a Lévy
process and μ ∈ R. Then

Xt = σWt + μt+

∫

{|x|<1}
x[Nt(dx) − tν(dx)] +

∑

0<s≤t

ΔXsI{|ΔXs|≥1}

= Wt + μt+

∫

{|x|<1}
x[Nt(dx) − tν(dx)] +

∫

{|x|≥1}
xNt(dx),

where

1. Wt is a standard Brownian motion.
2. For any set Λ ∈ BR\{0}, 0 /∈ Λ̄:

• NΛ
t ≡ ∫

Λ
Nt(dx) is a Poisson process independent of Wt.

• NΛ
t is independent of NΛ′

t if Λ ∩ Λ′ = ∅.
• NΛ

t has intensity t ν(Λ).
• ν is a measure on R \ {0} such that

∫
R\{0} min

{
1, x2

}
ν(dx) < +∞.
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Proof . See, e.g., Sato (1999, p. 119), and Medvegyev (2007, p. 480). �
Remark 2.258. In the preceding formula we may notice that the process

∫

{|x|≥1}
xNt(dx), t ∈ R+,

describing the “large jumps” of a Levy process, is a compound Poisson process.
We may further notice that while the process

Xt −
∫

{|x|≥1}
xNt(dx), t ∈ R+,

has finite moments of any order, the process
∫
{|x|≥1} xNt(dx), t ∈ R+, may

have no finite moments (e.g., Applebaum 2004, p. 110).

Proposition 2.259.

(i) Let X = (Xt)t∈R+ be a Lévy process. For any t ∈ R+, the distribution of
Xt is infinitely divisible.

(ii) For any infinitely divisible law P one can construct a Lévy process X =
(Xt)t∈R+ such that X1 has law P.

Proof . See Exercise 2.30. �

Proposition 2.260. The characteristic function of a Lévy process X =
(Xt)t∈R+ at time t ∈ R+ admits the following representation:

φXt(u) = (φX1(u))t, u ∈ R.

Proof . See, e.g., Mikosch (2009, p. 343). �
The following result is a trivial consequence of the foregoing proposition

(see also Exercise 1.13).

Theorem 2.261 (Lévy–Khintchine formula). Under the assumptions of
Theorem 2.257, the characteristic function of a Lévy process X = (Xt)t∈R+

at time t ∈ R+ is given by

φXt(u) = E
[
eiuXt

]
= exp {−tψ(u)} , u ∈ R

where ψ is the characteristic exponent of X1,

ψ(u) =
1

2
σ2u2 − iμu+

∫

{|x|<1}
(1 − exp {iux} + iux)ν(dx)

+

∫

{|x|≥1}
(1 − exp {iux})ν(dx),
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having the same ingredients as in Theorem 2.257. Further, the triplet (μ, σ2, ν)
characterizes the probability law of the Lévy process (Xt)t∈R+ in a unique way.

Proof . See, e.g., Mikosch (2009, p. 344) and references therein. �
This is why the triplet (μ, σ2, ν) is called the characteristic triplet of the

Lévy process X = (Xt)t∈R+ .
The following result is a natural consequence of Theorems 2.257 and 2.261.

Theorem 2.262. Any Lévy process X = (Xt)t∈R+ can be decomposed as
follows:

Xt = μt+ σW (t) + S(t), t ∈ R+, (2.39)

where μ ∈ R and σ ∈ R+ are constants and W (t) is a standard Brownian
motion independent of the process S.

Notice that the component (μt+σW (t))t∈R+ has continuous sample paths
almost surely, while (S(t))t∈R+ has almost surely discontinuous sample paths
(for any t ∈ R+, S(t) can be obtained as the weak limit of a sequence of
compound Poisson random variables); this is why S is called the pure jump
process of X, and the Lévy measure ν is known as the jump measure of X .

Corollary 2.263. Let X = (Xt)t∈R+ be a Lévy process. If Xt ∈ L2 for
t ∈ R+, then

∫

|x|≥1

|x|2ν(dx) < +∞,

and the representation (2.39) can be written more explicitly as

X(t) = μ1t+ σW (t) +

∫

R−{0}
x[Nt(dx) − tν(dx)], t ∈ R+, (2.40)

with μ1 = μ+
∫
|x|≥1

xν(dx).

Proof . See, e.g., Di Nunno et al. (2009, p. 162). �
Using the notations of marked point processes, the Poisson random mea-

sure N = (Nt)t∈R+ on R \ {0} can be seen as

Nt(B) =

∫ t

0

∫

B

N(dt, dx) B ∈ BR, 0 /∈ B̄, t ∈ R+.

Consequently we may introduce the compensated measure

Ñ(dt, dx) = N(dt, dx) − dtν(dx).

Accordingly, (2.40) may be rewritten as

X(t) = μ1t+ σW (t) +

∫ t

0

∫

R−{0}
xÑ(dt, dx), t ∈ R+. (2.41)
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Translation-Invariant Semigroup

Let, for a ∈ R, τa denote the translation operator

f ∈ BC(R) �→ τaf ∈ BC(R)

such that

(τaf)(x) = f(x− a), for any x ∈ R.

Definition 2.264. Given a one-parameter semigroup (Tt)t∈R+ on BC(R), we
say that it is translation invariant if, for any a ∈ R and any t ∈ R+,

Ttτa = τaTt.

According to Definition 2.56 and the following remark, since a Lévy process
X = (Xt)t∈R+ is a time-homogenous process with independent increments
(with X0 = 0), it is completely characterized by the convolution semigroup of
the probability laws μt = PXt .

Thanks to Theorem 2.108 we may state the following proposition.

Proposition 2.265. Any Lévy process is a Markov process; further, it is a
Feller process.

Proof . See, e.g., Applebaum (2004, p. 126). �

Theorem 2.266. Let (Xt)t∈R+ be a Lévy process and T a stopping time.
Then the process (Yt)t∈R+ , given by

Yt = XT+t −XT ,

is a Lévy process on the set ]T,∞[, adapted to FT+t. Furthermore, Yt is in-
dependent of FT and has the same distribution as Xt.

Proof . See, e.g., Protter (2004, p. 23). �
The following result is a consequence of the stationarity and independence

of increments of a Lévy process.

Theorem 2.267. The one-parameter semigroup (Tt)t∈R+ associated with a
Feller process X such that X(0) = 0 is translation invariant if and only if X
is a Lévy process.

Proof . See, e.g., Bauer (1981, p. 410) and Applebaum (2004, p. 137). �
In particular, if (μt)t∈R+ denotes the convolution semigroup of probability

measures associated with the Lévy process (Xt)t∈R+ ,

μt(B) = P (Xt ∈ B), B ∈ BR, t ∈ R+,

then the following relation holds:
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μt(B − x) = P (Xt+s ∈ B|Xs = x), B ∈ BR, x ∈ R, s, t ∈ R+.

As a consequence, the transition semigroup of a Lévy process X =
(Xt)t∈R+ is a one-parameter contraction semigroup (Tt)t∈R+ given by

(T (t)f)(x) =

∫

R

f(x+ y)μt(dx), x ∈ R,

for any BC(R) (e.g., Bauer 1981, p. 405).
If the characteristic triplet of the Lévy process is (μ, σ2, ν), then one can

show (e.g., Sato 1999, p. 208 and references therein) that the infinitesimal
generator A of the semigroup (Tt)t∈R+ is well defined on BC(R)∩C2(R), and
it is given by

(Af)(x) = −μf ′(x) +
1

2
σ2f ′′(x)

+

∫

R

(f(x+ y) − f(x) − I[|y|<1] y f
′(x)) ν(dy), x ∈ R. (2.42)

The following examples are trivial consequences of (2.42).

Example 2.268. For the standard Brownian motion the triplet is (0, 1, 0), so
that the infinitesimal generator is

(Af)(x) =
1

2
f ′′(x), x ∈ R,

for f ∈ BC(R) ∩ C2(R).

Example 2.269. For a Brownian motion with drift the triplet is of the form
(μ, σ2, 0), so that the infinitesimal generator is

(Af)(x) = −μf ′(x) +
1

2
σ2f ′′(x), x ∈ R,

for f ∈ BC(R) ∩ C2(R).

Example 2.270. For a Poisson process with triplet (0, 0, λε1) the infinitesimal
generator is

(Af)(x) = λ(f(x + y) − f(x)), x ∈ R,

for f ∈ C0(R).

Example 2.271. For a compound Poisson process with triplet (0, 0, ν) the
infinitesimal generator is

(Af)(x) =

∫

R

(f(x+ y) − f(x))ν(dy), x ∈ R,

for f ∈ C0(R).
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Stable Lévy Processes

As a particular important subclass of Lévy processes we will briefly mention
the case of stable Lévy processes.

Definition 2.272. A Lévy process X = (Xt)t∈R+ is stable if, for any t ∈ R+,
Xt is a stable random variable.

According to Definition 1.212 and Proposition 1.215, symmetric stable
distributions have a characteristic function of the form

φ(u) = exp {−σα|u|α} , u ∈ R,

for σ ∈ R
∗ and α ∈ (0, 2]. The case α= 2 corresponds to the Normal

distribution N(0, 2σ2).

Corollary 2.273. A Lévy symmetric stable process (Xt)t∈R+ has the scaling

property, i.e., the rescaled process (t
1
αXt)t∈R+ has the same probability law as

(Xt)t∈R+ . This is a generalization of the specific case for the Wiener process
(for which α = 2) of Proposition 2.176.

This is one reason why Lévy symmetric stable processes are so important in
applications. Another reason why general Lévy stable processes are important
in applications is that they exhibit heavy tails, i.e., for any t ∈ R+, P (|Xt| >
y) ∝ y−α for y → +∞, as opposed to the exponential decay of the Gaussian
case (e.g., Applebaum 2004 and references therein).

2.12 Exercises and Additions

2.1. Let (Ft)t∈R+ be a filtration on the measurable space (Ω,F). Show that
Ft+ =

⋂
u>t Fu is a σ-algebra (Theorem 2.118 and Remark 2.119).

2.2. Prove that two processes that are modifications of each other are equiv-
alent.

2.3. A real-valued stochastic process, indexed in R, is strictly stationary if
and only if all its joint finite-dimensional distributions are invariant under a
parallel time shift, i.e.,

FXt1 ,...,Xtn
(x1, . . . , xn) = FXt1+h,...,Xtn+h

(x1, . . . , xn)

for any n ∈ N, any choice of t1, . . . , tn ∈ R and h ∈ R, and any x1, . . . , xn ∈ R.

1. Prove that a process of i.i.d. random variables is strictly stationary.
2. Prove that a time-homogeneous process with independent increments is

strictly stationary.
3. Prove that a Gaussian process (Xt)t∈R is strictly stationary if and only if

the following two conditions hold:
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(a) E[Xt] = constant for any t ∈ R.
(b) Cov[s, t] = K(t− s) for any s, t ∈ R, s < t.

2.4. An L2 real-valued stochastic process indexed in R is weakly stationary if
and only if the following two conditions hold:

(a) E[Xt] = constant for any t ∈ R.
(b) Cov[s, t] = K(t− s) for any s, t ∈ R, s < t.

1. Prove that an L2 strictly stationary process is also weakly stationary.
2. Prove that a weakly stationary Gaussian process is also strictly stationary.

2.5. Show that Brownian motion is not stationary.

2.6 (Prediction). Let (Xr−j , . . . , Xr) be a family of random variables repre-
senting a sample of a (weakly) stationary stochastic process in L2. We know
that the best approximation in L2 of an additional random variable Xr+s,
for any s ∈ N

∗, in terms of (Xr−j, . . . , Xr) is given by E[Y |Xr−j, . . . , Xr].
The evaluation of this quantity is generally a hard task. On the other hand,
the problem of the best linear approximation can be handled in terms of the
covariances of the random variables Xr−j, . . . , Xr, Xr+s, as follows.

Prove that the best approximation of Xr+s in terms of a linear function
of (Xr−j , . . . , Xr), is given by

X̂r+s =

j∑

k=0

akXr−k,

where the ak satisfy the linear system

j∑

k=0

akc(|k − i|) = c(s+ i) for 0 ≤ i ≤ j.

Here we have denoted c(m) = Cov[Xi, Xi+m].

2.7. Refer to Proposition 2.47. Prove that FT is a σ-algebra of the subsets
of Ω.

2.8. Prove all the statements of Theorem 2.48.

2.9. Prove Lemma 2.131 by considering the sequence

Tn =

∞∑

k=1

k2−nI(k−1)2−n≤T≤k2−n .

2.10. Let (Ft)t∈R+ be a filtration and prove that T is a stopping time if and
only if the process Xt = I{T≤t} is adapted to (Ft)t∈R+ . Show that if T and S
are stopping times, then so is T + S.
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2.11. Show that any (sub- or super-) martingale remains a (sub- or super-)
martingale with respect to the induced filtration.

2.12. Let (Xt)t∈R+ be a martingale in L2. Show that its increments on
nonoverlapping intervals are orthogonal.

2.13. Prove Proposition 2.105. (Hint: To prove that 1⇒2, it suffices to use the
indicator function on B; to prove that 2⇒1, it should first be shown for simple
measurable functions, and then the theorem of approximation of measurable
functions through elementary functions is invoked.)

2.14. Prove Remark 2.122.

2.15. Verify Example 2.152.

2.16. Determine the infinitesimal generator of a time-homogeneous Poisson
process.

2.17. We say that (Zt)t∈R+ is a compound Poisson process if it can be ex-
pressed as

Z0 = 0

and

Zt =

Nt∑

k=1

Yk for t > 0,

where Nt is a Poisson process with intensity parameter λ ∈ R
∗
+ and (Yk)k∈N∗

is a family of i.i.d. random variables, independent of Nt. Show that the com-
pound Poisson process (Zt)t∈R+ is a stochastic process with time-homogeneous
(stationary) independent increments.

2.18. Show that

1. The Brownian motion and the compound Poisson process are both almost
surely continuous at any t ≥ 0.

2. The Brownian motion is sample continuous, but the compound Poisson
process is not sample continuous.

Hence almost sure continuity does not imply sample continuity.

2.19. In the compound Poisson process, assume that the random variables Yn
are i.i.d. with common distribution

P (Yn = a) = P (Yn = −a) =
1

2
,

where a ∈ R
∗
+.

1. Find the characteristic function φ of the process (Zt)t∈R+ .
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2. Discuss the limiting behavior of the characteristic function φ when
λ→ +∞ and a→ +∞ in such a way that the product λa2 is constant.

2.20. An integer-valued stochastic process (Nt)t∈R+ with stationary (time-
homogeneous) independent increments is called a generalized Poisson process.

1. Show that the characteristic function of a generalized Poisson process
necessarily has the form

φNt(u) = eλt[φ(u)−1]

for some λ ∈ R
∗
+ and some characteristic function φ of a nonnegative

integer-valued random variable. The Poisson process corresponds to the
degenerate case φ(u) = eiu.

2. Let (N
(k)
t )t∈R+ be a sequence of independent Poisson processes with re-

spective parameters λk. Assume that λ =
∑+∞

k=1 λk < +∞. Show that the
process

N
(k)
t =

+∞∑

k=1

kN
(k)
t , t ∈ R+,

is a generalized Poisson process, with characteristic function

φ(u) =

+∞∑

k=1

λk
λ
eiku.

3. Show that any generalized Poisson process can be represented as a com-
pound Poisson process. Conversely, if the random variables Yk in the com-
pound Poisson process are integer-valued, then the process is a generalized
Poisson process.

2.21. Let (Xn)n∈N ⊂ E be a Markov chain, i.e., a discrete-time Markov jump
process, where E is a countable set. Let i, j ∈ E be states of the process; j
is said to be accessible from state i if for some integer n ≥ 0, pij(n) > 0,
i.e., state j is accessible from state i if there is positive probability that in a
finite number of transition states j can be reached starting from state i. Two
states i and j, each accessible to the other, are said to communicate, and we
write i↔ j. If two states i and j do not communicate, then

pij(n) = 0 ∀n ≥ 0,

pji(n) = 0 ∀n ≥ 0,

or both relations are true.
We define the period of state i, written d(i), as the greatest common divisor

of all integers n ≥ 1 for which pii(n) > 0 (if pii(n) = 0 for all n ≥ 1, define
d(i) = 0).
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1. Show that the concept of communication is an equivalence relationship.
2. Show that, if i↔ j, then d(i) = d(j).
3. Show that if state i has period d(i), then there exists an integer N de-

pending on i such that for all integers n ≥ N

pii(nd(i)) > 0.

2.22.

1. Consider two urns A and B containing a total of N balls. A ball is selected
at random (all selections are equally likely) at time t = 1, 2, . . . from among
the N balls. The drawn ball is placed with probability p in urn A and with
probability q = 1 − p in urn B. The state of the system at each trial is
represented by the number of balls in A. Determine the transition matrix
for this Markov chain.

2. Assume that at each time t there are exactly k balls in A. At time t+1 an
urn is selected at random proportionally to its content (i.e., A is chosen
with probability k/N and B with probability (N − k)/N). Then a ball is
selected either from A with probability p or from B with probability 1−p
and placed in the previously chosen urn. Determine the transition matrix
for this Markov chain.

3. Now assume that at time t+1 a ball and an urn are chosen with probability
depending on the contents of the urn (i.e., a ball is chosen from A with
probability p = k/N or from B with probability q; urn A is chosen with
probability p and B with probability q). Determine the transition matrix
of the Markov chain.

4. Determine the equivalence classes in parts 1, 2, and 3.

2.23. Let (Xn)n∈N be a Markov chain whose transition probabilities are pij =
1/[e(j− i)!] for i = 0, 1, . . . and j = i, i+1, . . .. Verify the martingale property
for

• Yn = Xn − n
• Un = Y 2

n − n
• Vn = exp {Xn − n(e − 1)}
2.24. Let (Xt)t∈R+ be a process with the following properties:

• X0 = 0.
• For any 0 ≤ t0 < t1 < · · · < tn the random variables Xtk − Xtk−1

(1 ≤
k ≤ n) are independent.

• If 0 ≤ s < t,Xt −Xs is normally distributed with

E(Xt −Xs) = (t− s)μ, E
[
(Xt −Xs)

2
]

= (t− s)σ2

where μ, σ are real constants (σ �= 0).

The process (Xt)t∈R+ is called a Brownian motion with drift μ and variance
σ2. (Note that if μ = 0 and σ = 1, then Xt is the so-called standard Brownian
motion.) Show that Cov(Xt, Xs) = σ2 min {s, t} and (Xt−μt)/σ is a standard
Brownian motion.
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2.25. Show that if (Xt)t∈R+ is a Brownian motion, then the processes

Yt = cXt/c2 for fixed c > 0,

Ut =

{
tX1/t for t > 0,
0 for t = 0,

and

Vt = Xt+h −Xh for fixed h > 0

are all Brownian motions.

2.26. Let (Xt)t∈R+ be a Brownian motion; given a ∈ R, let τa denote the first
passage time of the process started at X(0) = 0.

1. Show that for any t ∈ R+

P (τa ≤ t) =
2√
2πt

∫ +∞

a

exp

{

−y
2

2t

}

dy.

Conclude that the first passage time through any given point is a.s. finite,
but its mean value is infinite.

2. Use the preceding result to show that one-dimensional Brownian motion
is recurrent, in the sense that, for any x ∈ R and any T ∈ R+,

P (Wt = x for some t > T ) = 1.

This means that a Brownian motion returns to every point infinitely many
times, for arbitrary large times.

2.27. Let (Xt)t∈R+ be a Brownian motion, and let Mt = max0≤s≤tXs. Prove
that Yt = Mt −Xt is a continuous-time Markov process. (Hint: Note that for
t′ < t

Y (t) = max

{

max
t′≤s≤t

{(Xs −Xt′)} , Yt′
}

− (Xt −Xt′).)

2.28. Let T be a stopping time for a Brownian motion (Xt)t∈R+ . Then the
process

Yt = Xt+T −XT , t ≥ 0,

is a Brownian motion, and σ(Yt, t ≥ 0) is independent of σ(Xt, 0 ≤ t ≤ T ).
(Hint: At first consider T constant. Then suppose that the range of T is a

countable set and finally approximate T by a sequence of stopping times such
as in Lemma 2.131.)
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2.29. Let (Xt)t∈R+ be an n-dimensional Brownian motion starting at 0, and
let U ∈ R

n×n be a (constant) orthogonal matrix, i.e., UUT = I. Prove that

X̃t ≡ UXt

is also a Brownian motion.

2.30. Let (Xt)t∈R+ be a Lévy process:

1. Show that the characteristic function of Xt is infinitely divisible.
2. Suppose that the law of X1 is PX1 = μ. Then, for any t > 0 the law of Xt

is PX1 = μt.
3. Given two Lévy processes (Xt)t∈R+ and (X ′

t)t∈R+ , if PX1 = PX′
1
, then the

two processes are identical in law.

We call μ = PX1 the infinitely divisible distribution of the �Lévy process
(Xt)t∈R+ .

2.31. Consider a Lévy process X = (Xt)t∈R+ . Show that the finite-
dimensional distributions of X are determined by the one-dimensional
marginal
distributions.

2.32. A Lévy process (Xt)t∈R+ is a subordinator if it is also a real and non-
negative process.

1. Show that sample paths of a subordinator are increasing.
2. Show that a Lévy process (Xt)t∈R+ is a subordinator if and only if X1 ≥ 0

almost surely.

2.33. Show that Brownian motions with drift, i.e.,

Xt = σWt + αt for α, σ ∈ R,

are the only Lévy processes with continuous paths.

2.34. Consider two sequences of real numbers (αk)k∈N and (βk)k∈N such that∑
k∈N

β2
kαk < +∞. Let Nk

t be a sequence of Poisson processes with intensities
αk and k ∈ N, respectively.

Then the process

Xt =
∑

k∈N

βk(Nk
t − αkt), t ∈ R+,

is a Lévy process having ν as its Lévy measure.

2.35. Show that

1. Any Lévy process is a Markov process.
2. Conversely, any stochastically continuous and temporarily homogeneous

Markov process on R is a Lévy process.
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2.36. According to, e.g., Grigoriu (2002), we define as a classical semimartin-
gale any adapted RCLL process Xt that admits the following decomposition:

Xt = X0 +Mt +At,

where Mt is a local martingale and At is a finite variation (on compacts)
RCLL process such that M0 = A0 = 0.

1. Show that any Lévy process is a semimartingale.
2. Show that the Poisson process is a semimartingale.
3. Show that the square of a Wiener process is a semimartingale.

2.37 (Poisson process and order statistics). Let X1, . . . , Xn denote a
sample, i.e., a family of nondegenerate i.i.d. random variables with common
cumulative distribution function F . We define an ordered sample as the family

Xn,n ≤ · · · ≤ X1,n,

so that Xn,n = min {X1, . . . , Xn} and X1,n = max {X1, . . . , Xn}. The random
variable Xk,n is called the k-order statistic.

Let N = (Nt)t∈R+ be a homogeneous Poisson process with intensity λ > 0.
Prove that the arrival times Ti of N in ]0, t], conditionally upon {Nt = n},
have the same distribution as the order statistics of a uniform sample on ]0, t[
of size n, i.e., for all Borel sets A in R+ and any n ∈ N we have

P ((T1, T2, . . . , TNt) ∈ A|Nt = n) = P ((Un,n, . . . , U1,n) ∈ A).

2.38. (Self-similarity). A real-valued stochastic process (Xt)t∈R+ is said to
be self-similar with index H > 0 (H -ss) if its finite-dimensional distributions
satisfy the relation

(Xat1 , . . . , Xatn)
d
=aH(Xt1 , . . . , Xtn)

for any choice of a > 0 and t1, . . . , tn ∈ R+. Show that a Gaussian process with
mean function mt = E[Xt] and covariance function K(s, t) = Cov(Xs, Xt) is
H -ss for some H > 0 if and only if

mt = ctH , and K(s, t) = s2HC(t/s, 1)

for some constant c ∈ R and some nonnegative definite function C. As a
consequence, show that the standard Brownian motion is 1/2-ss. Also, show
that any α-stable process is 1/α-ss.

2.39 (Affine processes). Let Φ = (Φt)t∈R+ be a process on a given probabil-
ity space (Ω,F , P ) such that E[‖Φt‖] < +∞ for each t ∈ R+. The past-future
filtration associated with Φ is defined as the family

Fs,T = σ {Φu|u ∈ [0, s] ∪ [T,+∞[} .
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We shall call Φ an affine process if it satisfies

E[Φt|Fs,T ] =
T − t

T − s
Φs +

t− s

T − s
ΦT , s < t < T.

Show that the preceding condition is equivalent to the property that for s ≤
t < t′ ≤ u the quantity

E

[
Φt − Φt′

t− t′

∣
∣
∣
∣Fs,u

]

=
Φu − Φs

u− s

and, hence, does not depend on the pair (t, t′).

2.40. Prove that Brownian motion is an affine process.

2.41. Let X = (Xt)t∈R+ be a Lévy process such that E[‖Xt‖] < +∞ for each
t ∈ R+. Show that X is an affine process.

2.42. Consider a process M = (Mt)t∈R+ that is adapted to the filtration
(Ft)t∈R+ on a probability space (Ω,F , P ) and satisfies

E[‖Mt‖] < +∞ and E

[∫ t

0

du|Mu|
]

< +∞ for any t > 0.

Prove that the following two conditions are equivalent:

1. M is an Ft-martingale.
2. For every t > s,

E

[
1

t− s

∫ t

s

duMu

∣
∣
∣
∣Fs

]

= Ms.

2.43 (Empirical process and Brownian bridge). Let U1, . . . , Un, . . . , be
a sequence of i.i.d. random variables uniformly distributed on [0, 1]. Define
the stochastic process b(n) on the interval [0, 1] as follows:

b(n)(t) =
√
n

(
1

n

n∑

k=1

I[0,t](Uk) − t

)

, t ∈ [0, 1].

1. For any s and t in [0, 1], compute E[b(n)(t)] and Cov[b(n)(s), b(n)(t)].
2. Prove that, as n→ ∞, the finite-dimensional distributions of the process

(b(n)(t))t∈[0,1] converge weakly toward those of a Gaussian process on [0, 1]

whose mean and covariance functions are the same as those of b(n).
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The Itô Integral

3.1 Definition and Properties

The remaining chapters on the theory of stochastic processes will focus
primarily on Brownian motion, as it is by far the most useful and applicable
model and allows for many explicit calculations and, as was demonstrated in
the pollen grain example, arises naturally. Continuing the formal analysis of
this example, suppose that a small amount of liquid flows with the macroscopic
velocity a(t, u(t)) [where u(t) is its position at time t]. Then a microscopic par-
ticle that is suspended in this liquid will, as mentioned, display evidence of
Brownian motion. The change in the particle’s position u(t+ dt)− u(t) over
the time interval [t, t+ dt[ is due to, first, the macroscopic flow of the liquid,
with the latter’s contribution given by a(t, u(t))dt. But, second, there is the
additional molecular bombardment of the particle, which contributes to its
dynamics with the term b(t, u(t))[Wt+dt −Wt], where (Wt)t≥0 is Brownian
motion. Summing the terms results in the equation

du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

which, however, in the current form does not make sense because the trajec-
tories of (Wt)t≥0 are not differentiable. Instead, we will try to interpret it in
the form

∀ω ∈ Ω : u(t)− u(0) =

∫ t

0

a(s, u(s))ds+

∫ t

0

b(s, u(s))dWs,

which requires us to give meaning to an integral
∫ b

a
f(t)dWt that, as will be

demonstrated, is not of the Lebesgue–Stieltjes6 or, hence, of the Riemann–
Stieltjes type.

6For a revision, see the appendix A or, in addition, e.g., Kolmogorov and Fomin
(1961).
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Definition 3.1. Let F : [a, b] → R be a function and Π the set of partitions
π : a = x0 < x1 < · · · < xn = b of the interval [a, b]. Putting

∀π ∈ Π : VF (π) =
n∑

i=1

|F (xi)− F (xi−1)|,

then F is of bounded variation if

sup
π∈Π

VF (π) <∞.

Also, VF (a, b) = supπ∈Π VF (π) is called the total variation of F in the interval
[a, b].

Remark 3.2. If F : [a, b] → R is monotonic, then F is of bounded variation and

VF (a, b) = |F (b)− F (a)|.

Lemma 3.3. Let F : [a, b] → R. Then the following two statements are
equivalent:

1. F is of bounded variation.
2. There exists an F1 : [a, b] → R, and there exists an F2 : [a, b] → R

monotonically increasing, such that F = F1 − F2.

Lemma 3.4. If F : [a, b] → R is monotonically increasing, then F is λ almost
everywhere differentiable in [a, b] (where λ is the Lebesgue measure).

Corollary 3.5. If F : [a, b] → R is of bounded variation, then F is differen-
tiable almost everywhere.

Definition 3.6. Let f : [a, b] → R be continuous and F : [a, b] → R of
bounded variation, for all π ∈ Π, π : a = x0 < x1 < · · · < xn = b. We will fix
points ξi arbitrarily in [xi−1, xi[, i = 1, . . . , n and construct the sum

Sn =

n∑
i=1

f(ξi)[F (xi)− F (xi−1)].

If for maxi∈{1,...,n}(xi−xi−1) → 0 the sum Sn tends to a limit (which depends
neither on the choice of the partition nor on the selection of the points ξi within
the partial intervals of the partition), then this limit is the Riemann–Stieltjes
integral of f with respect to the function F over [a, b] and is denoted by the

symbol
∫ b

a
f(x)dF (x).

Remark 3.7. By Theorem 2.173 and by Corollary 3.5, it can be shown that a

Wiener process is not of bounded variation, and hence
∫ b

a
f(t)dWt cannot be

interpreted in the sense of Riemann–Stieltjes.
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Definition 3.8. Let (Wt)t≥0 be a Wiener process defined on the probability
space (Ω,F , P ) and C the set of functions f(t, ω) : [a, b] × Ω → R satisfying
the following conditions:

1. f is B[a,b] ⊗F -measurable
2. For all t ∈ [a, b], f(t, ·) : Ω → R is Ft-measurable, where Ft = σ(Ws, 0 ≤
s ≤ t)

3. For all t ∈ [a, b], f(t, ·) ∈ L2(Ω,F , P ) and ∫ b

a
E[|f(t)|2]dt <∞

Remark 3.9. Condition 2 of Definition 3.8 stresses the nonanticipatory nature
of f through the fact that it only depends on the present and the past history
of the Brownian motion, but not on the future.

Definition 3.10. Let f ∈ C. If there exist both a partition π of [a, b], π : a =
t0 < t1 < · · · < tn = b, and some real-valued random variables f0, . . . , fn−1

defined on (Ω,F , P ), such that

f(t, ω) =

n−1∑
i=0

fi(ω)I[ti,ti+1[(t)

(with the convention that [tn−1, tn[= [tn−1, b]), then f is a piecewise function.

Remark 3.11. By condition 2 of Definition 3.8 it follows that, for all i ∈
{0, . . . , n}, fi is Fti-measurable.

Definition 3.12. If f ∈ C, with f(t, ω) = ∑n−1
i=0 fi(ω)I[ti,ti+1[(t), is a piece-

wise function, then the real random variable Φ(f) is a (stochastic) Itô integral
of process f, where

∀ω ∈ Ω : Φ(f)(ω) =

n−1∑
i=0

fi(ω)(Wti+1 (ω)−Wti(ω)).

Φ(f) is denoted by the symbol
∫ b

a
f(t)dWt, henceforth suppressing the explicit

dependence on the trajectory ω wherever obvious.

Lemma 3.13. Let f, g ∈ C be piecewise functions. Then they have the prop-
erties that

1. E[
∫ b

a
f(t)dWt] = 0,

2. E[
∫ b

a f(t)dWt

∫ b

a g(t)dWt] =
∫ b

a E[f(t)g(t)]dt.

Proof .

1. Let f(t, ω) =
∑n−1

i=0 fi(ω)I[ti,ti+1[(t). Then
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E

[∫ b

a

f(t)dWt

]
= E

[
n−1∑
i=0

fi(Wti+1 −Wti)

]

= E

[
n−1∑
i=0

E[fi(Wti+1 −Wti)|Fti ]

]

= E

[
n−1∑
i=0

fiE[Wti+1 −Wti |Fti ]

]
,

where the last step follows from Remark 3.11. Now, because (Wt)t≥0

has independent increments, (Wti+1 −Wti) is independent of Fti . Hence
E[Wti+1 −Wti |Fti ] = E[Wti+1 −Wti ], and the completion of the proof
follows from the fact that the Wiener process has mean zero.

2. The piecewise functions f and g can be represented by means of the
same partition a = t0 < t1 < · · · < tn = b of the interval [a, b]. For
this purpose it suffices to choose the union of the partitions associated
with f and g, respectively. Thus let f(t, ω) =

∑n−1
i=0 fi(ω)I[ti,ti+1[(t) and

g(t, ω) =
∑n−1

i=0 gi(ω)I[ti,ti+1[(t). Then

E

[∫ b

a

f(t)dWt

∫ b

a

g(t)dWt

]

= E

⎡
⎣n−1∑

i=0

fi(Wti+1 −Wti)

n−1∑
j=0

gj(Wtj+1 −Wtj )

⎤
⎦

= E

⎡
⎣n−1∑

i=0

n−1∑
j=0

figj(Wti+1 −Wti)(Wtj+1 −Wtj )

⎤
⎦

= E

⎡
⎣n−1∑

i=0

n−1∑
j=0

E[figj(Wti+1 −Wti)(Wtj+1 −Wtj )|Fti∨tj ]

⎤
⎦ ,

where ti∨ tj = max {ti, tj}. If i < j, then ti < tj , and therefore Fti ⊂ Ftj ,
resulting in fi being Ftj -measurable (already being Fti-measurable) and
(Wti+1 −Wti) being Ftj -measurable (already being Fti+1-measurable with
ti+1 ≤ tj). Finally, by Remark 3.11, gj is Ftj -measurable. Thus

E[figj(Wti+1 −Wti)(Wtj+1 −Wtj )|Ftj ]

= figj(Wti+1 −Wti)E[Wtj+1 −Wtj |Ftj ]

= 0,

given that (Wtj+1 −Wtj ) is independent of Ftj ((Wt)t≥0 having indepen-
dent increments) and E[Wtj+1 −Wtj ] = 0.
Instead, if i = j, then
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E[figi(Wti+1 −Wti)(Wti+1 −Wti)|Fti ] = figiE[(Wti+1 −Wti)
2|Fti ]

= figiE[(Wti+1 −Wti)
2].

But since (Wti+1 −Wti) is normally distributed as N(0, ti+1 − ti),

E[(Wti+1 −Wti)
2] = ti+1 − ti

and therefore

E[figi(Wti+1 −Wti)
2|Fti ] = figi(ti+1 − ti).

Putting parts together, we obtain

E

[∫ b

a

f(t)dWt

∫ b

a

g(t)dWt

]
= E

[
n−1∑
i=0

figi(ti+1 − ti)

]

=
n−1∑
i=0

E[figi](ti+1 − ti) =

∫ b

a

E[f(t)g(t)]dt.

�

Corollary 3.14. If f ∈ C is a piecewise function, then

E

⎡
⎣
(∫ b

a

f(t)dWt

)2
⎤
⎦ =

∫ b

a

E
[
(f(t))2

]
dt <∞.

Lemma 3.15. If S denotes the space of piecewise functions belonging to the
class C, then S ⊂ L2([a, b]×Ω) and Φ : S → L2(Ω) is linearly continuous.

Proof . By point 3 of the characterization of the class C, it follows that S ⊂
L2([a, b] × Ω), whereas by Corollary 3.14, it follows that Φ takes values in
L2(Ω). The linearity and continuity of Φ can be inferred from Definition 3.12
and, again, from Corollary 3.14, respectively, the latter by observing that if
f ∈ S, then

‖f‖2L2([a,b]×Ω) =

∫ b

a

E
[
(f(t))2

]
dt,

‖Φ(f)‖2L2(Ω) = E
[
(Φ(f))2

]
= E

⎡
⎣
(∫ b

a

f(t)dWt

)2
⎤
⎦ .

Thus ‖Φ(f)‖2L2(Ω) = ‖f‖2L2([a,b]×Ω), which guarantees the continuity of the

linear mapping Φ.7 �
7For this classical result of analysis, see, e.g., Kolmogorov and Fomin (1961).
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Lemma 3.16. C is a closed subspace of the Hilbert space L2([a, b]×Ω) and
is therefore a Hilbert space as well. The scalar product is defined as

〈f, g〉 =
∫ b

a

∫
Ω

f(t, ω)g(t, ω)dP (ω)dt =

∫ b

a

E[f(t)g(t)]dt.

Hence Φ has a unique linear continuous extension in the closure of S in C
(which we will continue to denote by Φ), i.e., Φ : S̄ → L2(Ω).

Lemma 3.17. S is dense in C.
Proof . See, e.g., Dieudonné (1960). �

Theorem 3.18. The (stochastic) Itô integral Φ : S → L2(Ω) has a unique

linear continuous extension in C. If f ∈ C, then we denote Φ(f) by
∫ b

a
f(t)dWt.

Remark 3.19. Due to Theorem 3.18, if f ∈ C and (fn)n∈N ∈ SN is such that

fn
n→ f in L2([a, b]×Ω), then

1. Φ(fn)
n→ Φ(f) in L2(Ω) (by the continuity of Φ)

2. Φ(fn)
n→ Φ(f) in L1(Ω)

3. Φ(fn)
n→ Φ(f) in probability

In fact, as was already mentioned, with P being a finite measure, conver-
gence in L2(Ω) implies convergence in L1(Ω) and, furthermore, convergence
in L1(Ω) implies convergence in probability, by Theorem 1.180.

Proposition 3.20. If f, g ∈ C, then
1. E[

∫ b

a f(t)dWt] = 0

2. E[
∫ b

a
f(t)dWt

∫ b

a
g(t)dWt] =

∫ b

a
E[f(t)g(t)]dt

3. E[(
∫ b

a f(t)dWt)
2] =

∫ b

a E[(f(t))2]dt (Itô isometry)

Proof .

1. Let f ∈ C; then there exists (fn)n∈N ∈ SN such that limn→∞ fn = f in
L2([a, b]×Ω). Because of Remark 3.19 we also have that

lim
n→∞E

[∣∣∣∣∣
∫ b

a

(f(t)− fn(t))dWt

∣∣∣∣∣
]
= 0,

from which it follows that

lim
n→∞E

[∫ b

a

(f(t)− fn(t))dWt

]
= 0,
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and from the linearity of both the stochastic integral and its expectation
we obtain

lim
n→∞E

[∫ b

a

fn(t)dWt

]
= E

[∫ b

a

f(t)dWt

]
.

Now item 1 follows from point 1 of Lemma 3.13.
2. Let f, g ∈ C. Then

∃(fn)n∈N ∈ SN such that fn
n→ f in L2([a, b]×Ω);

∃(gn)n∈N ∈ SN such that gn
n→ g in L2([a, b]×Ω).

By the continuity of the scalar product (in L2([a, b]×Ω)),

〈fn, gn〉 n→ 〈f, g〉,
and thus

lim
n→∞

∫ b

a

E[fn(t)gn(t)]dt =

∫ b

a

E[f(t)g(t)]dt. (3.1)

Moreover, by point 2 of Lemma 3.13,
∫ b

a

E[fn(t)gn(t)]dt = E

[∫ b

a

fn(t)dWt

∫ b

a

gn(t)dWt

]
. (3.2)

From the fact that fn
n→ f in L2([a, b]× Ω) it also follows that Φ(fn)

n→
Φ(f) in L2(Ω) (by the continuity of Φ) and, analogously, since gn

n→ g

in L2([a, b] × Ω), it follows that Φ(gn)
n→ Φ(g) in L2(Ω). Then, by the

continuity of the scalar product in L2(Ω), we get

〈Φ(fn), Φ(gn)〉 n→ 〈Φ(f), Φ(g)〉,
and hence

lim
n→∞E

[∫ b

a

fn(t)dWt

∫ b

a

gn(t)dWt

]
= E

[∫ b

a

f(t)dWt

∫ b

a

g(t)dWt

]
.

(3.3)
The assertion finally follows from (3.1)–(3.3).

Point 3 is a direct consequence of point 2. �
An extension of the concept of a stochastic integral is as follows.

Definition 3.21. Let C1 be the set of functions f : [a, b]× Ω → R such that
conditions 1 and 2 of the characterization of the class C are satisfied, but
instead of condition 3, we have

P

(∫ b

a

|f(t)|2dt <∞
)

= 1. (3.4)
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Remark 3.22. It is obvious that C ⊂ C1, and thus S ⊂ C1. We will show that
it is also possible to define a stochastic integral in C1 that, in C, is identical
to the (stochastic) Itô integral as defined above.

Lemma 3.23. If f ∈ S ⊂ C1, then for all c > 0 and for all N > 0:

P

(∣∣∣∣∣
∫ b

a

f(t)dWt

∣∣∣∣∣ > c

)
≤ P

(∫ b

a

|f(t)|2dt > N

)
+
N

c2
. (3.5)

Proof . See, e.g., Friedman (1975). �

Lemma 3.24. If f ∈ C1, then there exists (fn)n∈N ∈ SN such that

lim
n→∞

∫ b

a

|f(t)− fn(t)|2dt = 0 a.s.

Proof . See, e.g., Friedman (1975). �
Remark 3.25. Resorting to the same notation as in the preceding lemma,

we also have that P − limn→∞
∫ b

a |fn(t) − f(t)|2dt = 0 because almost sure
convergence implies convergence in probability. Let f ∈ C1. Then, by the

preceding lemma, there exists (fn)n∈N ∈ SN such that limn→∞
∫ b

a |f(t) −
fn(t)|2dt = 0 a.s. Let (n,m) ∈ N×N. Then, because (a+ b)2 ≤ 2(a2+ b2), we
obtain

∫ b

a

|fn(t)− fm(t)|2dt ≤ 2

(∫ b

a

|fn(t)− f(t)|2dt+
∫ b

a

|fm(t)− f(t)|2dt
)
,

and hence limm,n→∞
∫ b

a
|fn(t)− fm(t)|2dt = 0 a.s. Consequently

P − lim
n→∞

∫ b

a

|fn(t)− fm(t)|2dt = 0.

But (fn − fm) ∈ S ∩ C1 (for all n,m ∈ N), and by Lemma 3.23, for all ρ > 0
and all ε > 0

P

(∣∣∣∣∣
∫ b

a

(fn(t)− fm(t))dWt

∣∣∣∣∣ > ε

)
≤ P

(∫ b

a

|fn − fm|2dt > ρε2

)
+ ρ.

Finally, by the arbitrary nature of ρ, we have that

lim
m,n→∞P

(∣∣∣∣∣
∫ b

a

(fn(t)− fm(t))dWt

∣∣∣∣∣ > ε

)
= 0.
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Hence the sequence of random variables (
∫ b

a
fn(t)dWt)n∈N is Cauchy in

probability and therefore admits a limit in probability [see, e.g., Baldi (1984)

for details]. This limit will be denoted by
∫ b

a f(t)dWt.

Definition 3.26. If f ∈ C1 and (fn)n∈N ∈ SN such that limn→∞
∫ b

a |f(t) −
fn(t)|2dt = 0 a.s., then the limit in probability to which the sequence of ran-

dom variables (
∫ b

a
fn(t)dWt)n∈N converges is the (stochastic) Itô integral of f.

Remark 3.27. The preceding definition is well posed because it can be shown

that
∫ b

a f(t)dWt is independent of the particular approximating sequence
(fn)n∈N. [See, e.g., Baldi (1984) for details.]

Theorem 3.28. If f ∈ C1, then (3.5) applies again.

Proof . See, e.g., Friedman (1975). �

Theorem 3.29. Let f ∈ C1 and (fn)n∈N ∈ CN
1 . If

P − lim
n→∞

∫ b

a

|fn(t)− f(t)|2dt = 0,

then

P − lim
n→∞

∫ b

a

fn(t)dWt =

∫ b

a

f(t)dWt.

Proof . Fixing c > 0, ρ > 0, by Theorem 3.28, we obtain

P

(∣∣∣∣∣
∫ b

a

(fn(t)− f(t))dWt

∣∣∣∣∣ > c

)
≤ P

(∫ b

a

|fn(t)− f(t)|2dt > c2ρ

)
+ ρ.

Now, the proof follows for n→ ∞. �
Now we are able to show that the stochastic integral in C1 of Definition 3.26

is identical to that of Theorem 3.18 in C. In fact, for f ∈ C, because S is dense
in C, there exists (fn)n∈N ∈ SN such that

lim
n→∞E

[∫ b

a

|fn(t)− f(t)|2dt
]
= 0. (3.6)

Putting Xn =
∫ b

a
|fn(t)− f(t)|2dt for all n ∈ N, by the Markov inequality we

obtain

∀λ > 0: P (Xn ≥ λE[Xn]) ≤ 1

λ
(n ∈ N),
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and thus P (Xn ≥ ε) ≤ E[Xn]
ε for ε = λE[Xn]. But by (3.6), limn→∞E[Xn] = 0,

and therefore also limn→∞ P (Xn ≥ ε) = 0 and

P − lim
n→∞

∫ b

a

|fn(t)− f(t)|2dt = 0. (3.7)

From (3.7) and by Theorem 3.29, it follows that

P − lim
n→∞

∫ b

a

fn(t)dWt =

∫ b

a

f(t)dWt, (3.8)

where the limit
∫ b

a f(t)dWt is the stochastic integral of f in C1. But, on the

other hand, (3.6) implies, by point 2 of Remark 3.19, that Φ(fn)
n→ Φ(f) in

probability (Φ is the linear continuous extension in C), and thus again

P − lim
n→∞

∫ b

a

fn(t)dWt =

∫ b

a

f(t)dWt. (3.9)

Now by (3.8) and (3.9), as well as the uniqueness of the limit, the proof is
complete.

Remark 3.30. If f ∈ C1 and P (
∫ b

a
|f(t)|2dt = 0) = 1, then

∀N > 0: P

(∫ b

a

|f(t)|2dt > N

)
= 0

and, by Theorem 3.28,

P

(∣∣∣∣∣
∫ b

a

f(t)dWt

∣∣∣∣∣ > c

)
= 0 ∀c > 0,

so that

P

(∣∣∣∣∣
∫ b

a

f(t)dWt

∣∣∣∣∣ = 0

)
= 1.

Theorem 3.31. If f ∈ C1 and continuous for almost every ω, then, for every

sequence (πn)n∈N of the partitions πn : a = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = b of the

interval [a, b] such that

|πn| = sup
k∈{0,...,n}

∣∣∣t(n)k+1 − t
(n)
k

∣∣∣ n→ 0,

we have

P − lim
n→∞

n−1∑
k=0

f
(
t
(n)
k

)(
W

t
(n)
k+1

−W
t
(n)
k

)
=

∫ b

a

f(t)dWt.
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Proof . By definition of the piecewise function

f(t, ω) =

n−1∑
k=0

fk(ω)I[tk,tk+1[(t),

we have that

n−1∑
k=0

f
(
t
(n)
k

)(
W

t
(n)
k+1

−W
t
(n)
k

)
=

∫ b

a

fn(t)dWt.

Now by Theorem 3.29 all that needs to be shown is that

P − lim
n→∞

∫ b

a

|fn(t)− f(t)|2dt = 0,

which follows by the continuity of f for almost every ω. �

Proposition 3.32. Let (πn)n∈N be a sequence of the partitions πn : a =

t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = b of the interval [a, b] such that |πn| n→ 0, and for

all n ∈ N, let Sn =
∑n−1

j=0 (Wt
(n)
j+1

−W
t
(n)
j

)2, i.e., the quadratic variation of

(Wt)t∈[a,b] with respect to the partition πn. Then we have that

1. E[Sn] = b− a for all n ∈ N;

2. V ar[Sn] = E[(Sn − (b − a))2]
n→ 0.

Proof .

1.

E[Sn] =

n−1∑
j=0

E

[(
W

t
(n)
j+1

−W
t
(n)
j

)2
]
=

n−1∑
j=0

V ar
[
W

t
(n)
j+1

−W
t
(n)
j

]

=

n−1∑
j=0

(
t
(n)
j+1 − t

(n)
j

)
= b− a.

2. Because Brownian motion, by definition, has independent increments, we
have that

V ar[Sn] =
n−1∑
j=0

V ar

[(
W

t
(n)
j+1

−W
t
(n)
j

)2
]
.

Writing δj =W
t
(n)
j+1

−W
t
(n)
j

, then, by (1.6),

n−1∑
j=0

V ar
[
(δj)

2
]
=

n−1∑
j=0

(
E
[
(δj)

4
]− (

E
[
(δj)

2
])2) ≤

n−1∑
j=0

E
[
(δj)

4
]
.
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Now, by the definition of Brownian motion, the increments δj are Gaus-
sian, i.e., N(0, tj+1 − tj), and direct calculation results in

E
[
(δj)

4
]
=

∫ +∞

−∞
(δj)

4
exp

{
− (δj)

2

2(tj+1−tj)

}
√
2π(tj+1 − tj)

dδj = 3(tj+1 − tj)
2 n→ 0.

�
Remark 3.33. Given the hypotheses of the preceding proposition, by the
Chebyshev inequality,

P (|Sn − (b− a)| > ε) ≤ V ar[Sn]

ε2
n→ 0 (ε > 0).

It follows that P − limn→∞ Sn = b − a. On the other hand, if we compare it
to the classical Lebesgue integral, we obtain

lim
n→∞

n−1∑
j=0

(
t
(n)
j+1 − t

(n)
j

)2

≤ lim
n→∞ |πn|

n−1∑
j=0

(
t
(n)
j+1 − t

(n)
j

)
= lim

n→∞ |πn|(b − a) = 0.

Remark 3.34. Since the Brownian motion (Wt)t≥0 is a continuous square-
integrable martingale, due to Proposition 3.32, we may state that its quadratic
variation process is

[W ](t) =< W > (t) = t, t ≥ 0.

Remark 3.35. Because the Brownian motion (Wt)t≥0 is continuous for almost
every ω, we can apply Theorem 3.31 with f(t) = Wt, obtaining the result of
Proposition 3.36.

Proposition 3.36.
∫ b

a WtdWt =
1
2 (W

2
b −W 2

a )− b−a
2 .

Proof . Let (πn)n∈N be a sequence of the partitions πn : a = t
(n)
0 < t

(n)
1 <

· · · < t
(n)
n = b of the interval [a, b] such that |πn| n→ 0. Then, by Theorem 3.31,

we have ∫ b

a

WtdWt = P − lim
n→∞

n−1∑
k=0

W
t
(n)
k

(
W

t
(n)
k+1

−W
t
(n)
k

)
. (3.10)

Because, in general, a(b− a) = 1
2 (b

2 − a2 − (b− a)2), therefore

W
t
(n)
k

(
W

t
(n)
k+1

−W
t
(n)
k

)
=

1

2

(
W 2

t
(n)
k+1

−W 2

t
(n)
k

−
(
W

t
(n)
k+1

−W
t
(n)
k

)2
)
.

Substitution into (3.10) results in
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∫ b

a

WtdWt = P − lim
n→∞

1

2

n−1∑
k=0

(
W 2

t
(n)
k+1

−W 2

t
(n)
k

−
(
W

t
(n)
k+1

−W
t
(n)
k

)2
)

=
1

2
(W 2

b −W 2
a )− P − lim

n→∞
1

2

n−1∑
k=0

(
W

t
(n)
k+1

−W
t
(n)
k

)2

=
1

2
(W 2

b −W 2
a )− P − lim

n→∞
1

2
Sn =

1

2
(W 2

b −W 2
a )−

b− a

2
,

by Remark 3.33. �

Remark 3.37. The classical Lebesgue integral results in
∫ b

a
tdt = b2−a2

2 . How-

ever, in the (stochastic) Itô integral we obtain an additional term (− b−a
2 ).

Generally, in certain practical applications involving stochastic models, the

Stratonovich integral is employed. In the latter, t
(n)
k is replaced by r

(n)
k =

t
(n)
k +t

(n)
k+1

2 , thereby eliminating the additional term (− b−a
2 ). Therefore, in gen-

eral, one obtains a new family of integrals by varying the chosen point of the
partition. In particular, the Stratonovich integral has the advantage that its
rules of calculus are identical with those of the classical integral. But, nonethe-
less, the Itô integral is often a more appropriate model for many applications.

3.2 Stochastic Integrals as Martingales

Theorem 3.38. If f ∈ C and, for all t ∈ [a, b], X(t) =
∫ t

a
f(s)dWs, then

(Xt)t∈[a,b] is a martingale with respect to Ft = σ(Ws, 0 ≤ s ≤ t).

Proof . Initially, let f ∈ C ∩ S. Then there exists a π, a partition of [a, b],
π : a = t0 < t1 < · · · < tn = b, such that

f(t, ω) =

n−1∑
i=0

f(ti, ω)I[ti,ti+1[(t), t ∈ [a, b], ω ∈ Ω,

and for all t ∈ [a, b]

X(t) =

∫ t

a

f(s)dWs =
k−1∑
i=0

f(ti)(Wti+1 −Wti) + f(tk)(Wt −Wtk)

for k such that tk ≤ t < tk+1. Because for all i ∈ {0, . . . , k}, f(ti) is
Fti-measurable (by Remark 3.11), X(t) is obviously F -measurable for all
t ∈ [a, b]. Now, let (s, t) ∈ [a, b] × [a, b] and s < t. Then it needs to be shown
that

E[X(t)|Fs] = X(s) a.s.
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and thus
E[X(t)−X(s)|Fs] = 0 a.s.

We observe that

X(t)−X(s)

=

∫ t

s

f(u)dWu =

k−1∑
i=0

f(ti)(Wti+1 −Wti)

+f(tk)(Wt −Wtk)−
h−1∑
j=0

f(tj)(Wtj+1 −Wtj )− f(th)(Ws −Wth)

if th ≤ s < th+1 and tk ≤ t < tk+1, where h ≤ k. Therefore,

X(t)−X(s)

=
k−1∑
i=h

f(ti)(Wti+1 −Wti) + f(tk)(Wt −Wtk)− f(th)(Ws −Wth)

=

k−1∑
i=h+1

f(ti)(Wti+1 −Wti) + f(tk)(Wt −Wtk) + f(th)(Wth+1
−Ws).

Because s < ti, for i = h+ 1, . . . , k, thus Fs ⊂ Fti , and by the properties of
conditional expectations we obtain

E[X(t)−X(s)|Fs]

=

k−1∑
i=h+1

E[f(ti)(Wti+1 −Wti)|Fs]

+E[f(tk)(Wt −Wtk)|Fs] + E[f(th)(Wth+1
−Wts)|Fs]

=

k−1∑
i=h+1

E[E[f(ti)(Wti+1 −Wti)|Fti ]|Fs]

+E[E[f(tk)(Wt −Wtk)|Ftk ]|Fs] + E[f(th)(Wth+1
−Wts)|Fs]

=

k−1∑
i=h+1

E[f(ti)E[Wti+1 −Wti |Fti ]|Fs]

+E[f(tk)E[Wt −Wtk |Ftk ]|Fs] + f(th)E[Wth+1
−Wts |Fs]

=

k−1∑
i=h+1

E[f(ti)E[Wti+1 −Wti ]|Fs]

+E[f(tk)E[Wt −Wtk ]|Fs] + f(th)E[Wth+1
−Wts ]

= 0

since E[Wt] = 0 for all t and (Wt)t≥0 has independent increments. This com-
pletes the proof for the case f ∈ C ∩ S.
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Now, let f ∈ C; then ∃(fn)n∈N ∈ (C ∩ S)N such that limn→∞
∫ b

a
|f(t) −

fn(t)|2dt = 0 a.s., by Lemma 3.24. We put

Xn(t) =

∫ t

a

fn(s)dWs ∀n ∈ N, ∀t ∈ [a, b],

for which we have just shown that ((Xn(t))t∈[a,b])n∈N is a sequence of martin-
gales. Now, let (s, t) ∈ [a, b]× [a, b] and s < t. Then it will be shown that

E[X(t)−X(s)|Fs] = 0 a.s. (3.11)

We obtain for all n ∈ N

E[X(t)−X(s)|Fs]

= E[X(t)−Xn(t)|Fs] + E[Xn(t)−Xn(s)|Fs] + E[Xn(s)−X(s)|Fs].

Because (Xn(t))t∈[a,b] is a martingale, E[Xn(t) − Xn(s)|Fs] = 0. We also
observe that

E
[
(E[X(t)−Xn(t)|Fs])

2
]

≤ E
[
E
[ |X(t)−Xn(t)|2

∣∣Fs

]]
= E

[|X(t)−Xn(t)|2
]

= E

[∣∣∣∣
∫ t

a

(f(u)− fn(u))dWu

∣∣∣∣
2
]
=

∫ t

a

E
[|f(u)− fn(u)|2

]
du

n→ 0,

following the properties of conditional expectations and by point 3 of Propo-
sition 3.20. Hence E[X(t) − Xn(t)|Fs] converges to zero in L2(Ω), as does,
analogously, E[X(s) − Xn(s)|Fs], proving (3.11). Finally, we need to show
that X(t) is Ft-measurable for t ∈ [a, b]. This follows from the fact that Xn(t)
is Ft-measurable for n ∈ N and, moreover,

E
[|X(t)−Xn(t)|2

]
=

∫ t

a

E
[|f(u)− fn(u)|2

]
du

n→ 0,

following the preceding derivation. Hence Xn(t) → X(t) in L2(Ω). �
Note that the integral in C1 is not in general a martingale. It is, however,

a local martingale [e.g., Karatzas and Shreve (1991) p. 146].

Proposition 3.39. Resorting to the notation of the preceding theorem, the
martingale (Xt)t∈[a,b] is continuous (in L2(Ω), and in probability).

Proof . If t, s ∈ [a, b], then

lim
t→s

E
[|X(t)−X(s)|2] = lim

t→s
E

[∣∣∣∣
∫ t

s

f(u)dWu

∣∣∣∣
2
]

= lim
t→s

∫ t

s

E
[
(f(u))2

]
du = 0,
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by point 3 of Proposition 3.20 and following the continuity of the Lebesgue
integral. �

Theorem 3.40. If f ∈ C1, then (Xt)t∈[a,b] admits a continuous version and
thus admits a modified form, with almost every trajectory being continuous.

Proof . See, e.g., Baldi (1984) or Friedman (1975). �
Following Theorems 2.28 and 3.40, henceforth we can always consider con-

tinuous and separable versions of (Xt)t∈[a,b]. If f ∈ C and X(t) =
∫ t

a
f(u)dWu,

t ∈ [a, b], then because (by Theorem 3.38) (Xt)t∈[a,b] is a martingale, it satis-
fies Doob’s inequality (Proposition 2.70), and the following proposition holds.

Proposition 3.41. If f ∈ C, then
1. E[maxa≤s≤b |

∫ s

a f(u)dWu|2] ≤ 4E[| ∫ b

a f(u)dWu|2] = 4E[
∫ b

a |f(u)|2du];
2. P (maxa≤s≤b |

∫ s

a
f(u)dWu| > λ) ≤ 1

λ2E[
∫ b

a
|f(u)|2du], λ > 0.

Proof . Point 1 follows directly from point 2 of Proposition 2.66 with p = 2.
Point 2 follows by continuity

(
max
a≤s≤b

∣∣∣∣
∫ s

a

f(u)dWu

∣∣∣∣
)2

= max
a≤s≤b

∣∣∣∣
∫ s

a

f(u)dWu

∣∣∣∣
2

;

therefore

P

(
max
a≤s≤b

∣∣∣∣
∫ s

a

f(u)dWu

∣∣∣∣ > λ

)
= P

((
max
a≤s≤b

∣∣∣∣
∫ s

a

f(u)dWu

∣∣∣∣
)2

> λ2

)

= P

(
max
a≤s≤b

∣∣∣∣
∫ s

a

f(u)dWu

∣∣∣∣
2

> λ2

)

and the proof follows from point 1 of Proposition 2.70. �
Remark 3.42. Generally, maxa≤s≤bXs, almost everywhere with respect to P ,
is defined due to the continuity of Brownian motion.

Fractional Brownian Motion

Based on the preceding definition of a stochastic integral with respect to a
Wiener process, we may introduce the fractional Brownian motion as follows.

For H ∈ (0, 1) ⊂ R, the fractional Brownian motion (BH
t )t∈R+ is given by

BH
t :=

1

Γ (H + 1
2 )

(

∫ 0

−∞
[(t − s)H−1/2 − (−s)H−1/2]dWs

+

∫ t

0

(t− s)H−1/2dWs), t ∈ R+.
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It can be proved that a fractional Brownian motion is self-similar
with Hurst parameter H , i.e., for any a > 0 the processes (BH

at)t∈R+ and
(aHBH

t )t∈R+ have the same system of finite-dimensional distributions.
The usual Brownian motion (Wiener process) is recovered for H = 1

2 .
For any t ∈ R+, V ar(B

H
t ) = VHt

2H , where VH > 0 is a constant that can
be reduced to 1 by normalization; we usually refer to BH = (BH

t )t∈R+ as the
normalized fractional Brownian motion, for which the variance is t2H . As for
the standard Brownian motion, a normalized fractional Brownian motion is
characterized by the following properties.

1. BH = 0.
2. BH has stationary increments.
3. BH

t has a Gaussian distribution, with mean E[BH
t ] = 0 and variance

V ar(BH
t ) = t2H for any t ∈ R+.

In general a fractional Brownian motion does not have independent incre-
ments.

From the preceding properties we may derive that the covariance function
for 0 < s ≤ t

Cov[BH
s B

H
t ] =

1

2
[t2H + s2H − (t− s)2H ].

The fractional Brownian motion is discussed in the pioneering work
by Mandelbrot and van Ness (1968) and has important applications in finance,
physics, communication engineering, and bioengineering [e.g., Franke et al.
(2011, p. 347)].

Stochastic Integrals with Stopping Times

Let f ∈ C1([0, T ]), (Wt)t∈R+ a Wiener process, and τ1 and τ2 two random
variables representing stopping times such that 0 ≤ τ1 ≤ τ2 ≤ T. Then

∫ τ2

τ1

f(t)dWt =

∫ τ2

0

f(t)dWt −
∫ τ1

0

f(t)dWt.

Lemma 3.43. Defining the characteristic function as

χi(t) =

{
1 if t < τi,
0 if t ≥ τi,

i = 1, 2,

we have that

1. χi(t) is Ft = σ(Ws, 0 ≤ s ≤ t)-measurable (i = 1, 2);

2.
∫ τ2
τ1
f(t)dWt =

∫ T

0
χ2(t)f(t)dWt −

∫ T

0
χ1(t)f(t)dWt.

Proof . See, e.g., Friedman (1975). �
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Theorem 3.44. Let f ∈ C1([0, T ]) and let τ1 and τ2 be two stopping times
such that 0 ≤ τ1 ≤ τ2 ≤ T. Then

1. E[
∫ τ2
τ1
f(t)dWt] = 0

2. E[(
∫ τ2
τ1
f(t)dWt)

2] = E[
∫ τ2
τ1

|f(t)|2dt]

Proof . By Lemma 3.43, we get

∫ τ2

τ1

f(t)dWt =

∫ T

0

(χ2(t)− χ1(t))f(t)dWt,

and after applying Proposition 3.20 the proof is completed. This theorem is,
in fact, just a generalization of Proposition 3.20. �

The following lemma is very useful in applications.

Lemma 3.45. For any T > 0, let f ∈ C1([0, T ]), with respect to a Wiener
process (Wt)t∈R+ , and assume further that

P

(∫ ∞

0

f2(t)dWt = ∞
)

= 1.

Then the random process

zs =

∫ τs

0

ftdWt, s ∈ R+,

with τs = inf
{
t ∈ R+|

∫ t

0
f2(u)du > s)

}
is a Wiener process, and

P

(
lim

t→+∞

∫ t

0 fudWu∫ t

0
f2(u)du

= 0

)
= 1.

Proof . See, e.g., Lipster and Shiryaev (2010), p. 235. �

3.3 Itô Integrals of Multidimensional Wiener Processes

We denote by R
mn all real-valued m× n matrices and by

W(t) = (W1(t), . . . ,Wn(t))
′, t ≥ 0,

an n-dimensional Wiener process. Let [a, b] ⊂ [0,+∞[, and we put

CW([a, b])

=
{
f : [a, b]×Ω → R

mn|∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n : fij ∈ CWj ([a, b])
}
,

C1W([a, b])

=
{
f : [a, b]×Ω → R

mn|∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n : fij ∈ C1Wj ([a, b])
}
,
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where CWj ([a, b]) and C1Wj ([a, b]) correspond to the classes C([a, b]) and
C1([a, b]) respectively, as defined in Sect. 3.1.

Definition 3.46. If f : [a, b] × Ω → R
mn belongs to C1W([a, b]), then the

stochastic integral with respect to W is the m-dimensional vector defined by

∫ b

a

f(t)dW(t) =

⎛
⎝ n∑

j=1

∫ b

a

fij(t)dWj(t)

⎞
⎠

′

1≤i≤m

,

where each of the integrals on the right-hand side is defined in the sense of
Itô.

Proposition 3.47. If (i, j) ∈ {1, . . . , n}2 and

fi : [a, b]×Ω → R belongs to CWi([a, b])and

fj : [a, b]×Ω → R belongs to CWj ([a, b]),

then

E

[∫ b

a

fi(t)dWi(t)

∫ b

a

fj(t)dWj(t)

]
= δijE

[∫ b

a

fi(t)fj(t)dt

]
,

where δij = 1, if i = j or δij = 0, if i �= j, is the Kronecker delta.

Proof . Suppose i �= j. Then the processes (Wi(t))t≥0 and (Wj(t))t≥0 are
independent, as are hence, the σ-algebras F (i) = σ(Wi(s), s ≥ 0) and F (j) =
σ(Wj(s), s ≥ 0). Moreover, for all t ∈ [a, b] : fi(t) is F (i)-measurable, fj(t) is

F (j)-measurable, and F (i)
t = σ(Wi(s), 0 ≤ s ≤ t) ⊂ F (i) as well as F (j)

t =
σ(Wj(s), 0 ≤ s ≤ t) ⊂ F (j). Therefore, fi = (fi(t))t∈[a,b] and fj = (fj(t))t∈[a,b]

are independent, as are
∫ b

a
fi(t)dWi(t) and

∫ b

a
fj(t)dWj(t), and therefore

E

[∫ b

a

fi(t)dWi(t)

∫ b

a

fj(t)dWj(t)

]

= E

[∫ b

a

fi(t)dWi(t)

]
E

[∫ b

a

fj(t)dWj(t)

]
= 0,

by Proposition 3.20. If instead i = j, then the proof immediately follows by
Proposition 3.20. �

Proposition 3.48. Let f : [a, b]×Ω → R
mn and g : [a, b]×Ω → R

mn. Then

1. If f ∈ CW([a, b]), then

E

[∫ b

a

f(t)dW(t)

]
= 0 ∈ R

m;
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2. If f, g ∈ CW([a, b]), then

E

[(∫ b

a

f(t)dW(t)

)(∫ b

a

g(t)dW(t)

)′]
= E

[∫ b

a

(f(t))(g(t))′dt

]
;

3. If f ∈ CW([a, b]), then

E

⎡
⎣
∣∣∣∣∣
∫ b

a

f(t)dW(t)

∣∣∣∣∣
2
⎤
⎦ = E

[∫ b

a

|f(t)|2dt
]
,

where

|f |2 =
m∑
i=1

n∑
j=1

(fij)
2

and ∣∣∣∣∣
∫ b

a

f(t)dW(t)

∣∣∣∣∣
2

=
m∑
i=1

⎛
⎝ n∑

j=1

∫ b

a

fij(t)dWj(t)

⎞
⎠

2

.

Proof .

1. Let f ∈ CW([a, b])(⊂ C1W([a, b])). Then

E

[∫ b

a

f(t)dW(t)

]
=

⎛
⎝E

⎡
⎣ n∑
j=1

∫ b

a

fij(t)dWj(t)

⎤
⎦
⎞
⎠

′

1≤i≤m

=

⎛
⎝ n∑

j=1

E

[∫ b

a

fij(t)dWj(t)

]⎞
⎠

′

1≤i≤m

= 0 ∈ R
m,

by Proposition 3.20.
2. Let f, g ∈ CW([a, b]) and (1, k) ∈ {1, . . . ,m}2 . Then

E

[(∫ b

a

f(t)dW(t)

)(∫ b

a

g(t)dW(t)

)′]

lk

= E

⎡
⎣
⎛
⎝ n∑

j=1

∫ b

a

flj(t)dWj(t)

⎞
⎠
⎛
⎝ n∑

j′=1

∫ b

a

gj′k(t)dWj′ (t)

⎞
⎠
⎤
⎦

=

n∑
j=1

n∑
j′=1

E

[∫ b

a

flj(t)dWj(t)

∫ b

a

gj′kdWj′ (t)

]
=

n∑
j=1

E

[∫ b

a

flj(t)gjk(t)dt

]

= E

⎡
⎣ n∑
j=1

∫ b

a

flj(t)gjk(t)dt

⎤
⎦ = E

⎡
⎣
∫ b

a

n∑
j=1

(flj(t)gjk(t))dt

⎤
⎦

= E

[∫ b

a

((f(t))(g(t))′)lkdt

]
,
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by Proposition 3.47. With each of the components verified, the proof of
point 2 is complete.

3. Let f ∈ CW([a, b]). Then by point 2 we have

E

[(∫ b

a

f(t)dW(t)

)(∫ b

a

f(t)dW(t)

)′]
= E

[∫ b

a

(f(t))(f(t))′dt

]
.

(3.12)
Furthermore, it is easily verified that if a generic b ∈ R

mn, then

|b|2 =

m∑
i=1

n∑
j=1

(bij)
2 = trace(bb′),

and if a generic a ∈ R
m, then

|a|2 =
m∑
i=1

(ai)
2 = trace(aa′).

Therefore, if in (3.12) we consider the trace of both the former and the
latter term, we obtain point 3.

�

3.4 The Stochastic Differential

Definition 3.49. Let (u(t))0≤t≤T be a process such that for every (t1, t2) ∈
[0, T ]× [0, T ], t1 < t2:

u(t2)− u(t1) =

∫ t2

t1

a(t)dt+

∫ t2

t1

b(t)dWt, (3.13)

where (a)1/2 ∈ C1([0, T ]) and b ∈ C1([0, T ]). Then u(t) is said to have the
stochastic differential

du(t) = a(t)dt+ b(t)dWt (3.14)

on [0, T ].

Remark 3.50. If u(t) has the stochastic differential in the form of (3.14), then
for all t > 0, we have

u(t) = u(0) +

∫ t

0

a(s)ds+

∫ t

0

b(s)dWs.

Hence

1. The trajectories of (u(t))0≤t≤T are continuous almost everywhere
(see Theorem 3.40).
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2. For t ∈ [0, T ], u(t) is Ft = σ(Ws, 0 ≤ s ≤ t)-measurable, thus u(t) ∈
C1([0, T ]).

Example 3.51. The stochastic differential of (W 2
t )t≥0 is given by

dW 2
t = dt+ 2WtdWt. (3.15)

In fact, if 0 ≤ t1 < t2, then, by Proposition 3.36, it follows that

∫ t2

t1

WtdWt =
1

2
(W 2

t2 −W 2
t1)−

t2 − t1
2

.

Therefore,W 2
t2 −W 2

t1 = t2− t1+2
∫ t2
t1
WtdWt, which is of the form (3.13) with

a(t) = 1 and b(t) = 2Wt, t ≥ 0.

Example 3.52. The stochastic differential of the process (tWt)t≥0 is given by

d(tWt) =Wtdt+ tdWt. (3.16)

Let 0 ≤ t1 < t2 and (πn)n∈N be a sequence of partitions of [t1, t2], where

πn : t1 = r
(n)
1 < · · · < r

(n)
n = t2, such that |πn| n→ 0. Then, by Theorem 3.31,

∫ t2

t1

tdWt = P − lim
n→∞

n−1∑
k=1

r
(n)
k

(
W

r
(n)
k+1

−W
r
(n)
k

)
. (3.17)

Moreover, because (Wt)t≥0 is continuous almost surely, we can consider∫ t2
t1
Wtdt, obtaining

∫ t2

t1

Wtdt = lim
n→∞

n−1∑
k=1

W
r
(n)
k+1

(
r
(n)
k+1 − r

(n)
k

)
a.s.

But since almost sure convergence implies convergence in probability, we have

∫ t2

t1

Wtdt = P − lim
n→∞

n−1∑
k=1

W
r
(n)
k+1

(
r
(n)
k+1 − r

(n)
k

)
. (3.18)

Combining the relevant terms of (3.17) and (3.18) we obtain

∫ t2

t1

tdWt +

∫ t2

t1

Wtdt = P − lim
n→∞

n−1∑
k=1

(
r
(n)
k+1Wr

(n)
k+1

− r
(n)
k W

r
(n)
k

)

= t2Wt2 − t1Wt1 ,

which is of the form (3.13) with a(t) =Wt and b(t) = t, proving (3.16).
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Proposition 3.53. If the stochastic differential of (ui(t))t∈[0,T ] is given by

dui(t) = ai(t)dt+ bi(t)dWt, i = 1, 2,

then (u1(t)u2(t))t∈[0,T ] has the stochastic differential

d(u1(t)u2(t)) = u1(t)du2(t) + u2(t)du1(t) + b1(t)b2(t)dt, (3.19)

and thus, for all 0 ≤ t1 < t2 < T

u1(t2)u2(t2)− u1(t1)u2(t1)

=

∫ t2

t1

u1(t)a2(t)dt+

∫ t2

t1

u1(t)b2(t)dWt

+

∫ t2

t1

u2(t)a1(t)dt+

∫ t2

t1

u2(t)b1(t)dWt +

∫ t2

t1

b1(t)b2(t)dt. (3.20)

Proof . (See, e.g., Baldi (1984)):

Case 1: ai, bi constant on [t1, t2], i.e., ai(t) = ai, bi(t) = bi, for all t ∈
[t1, t2], i = 1, 2, ai, bi in C1([0, T ]). Then

u1(t2) = u1(t1) + a1(t2 − t1) + b1(Wt2 −Wt1), (3.21)

u2(t2) = u2(t1) + a2(t2 − t1) + b2(Wt2 −Wt1). (3.22)

The proof of formula (3.20) is complete by employing Equations (3.15),
(3.16), (3.21), and (3.22) and the definitions of both the Lebesgue and
stochastic integrals.

Case 2: It can be shown that (3.20) holds for ai, bi, i = 1, 2, which are piece-
wise functions.

Case 3: Ultimately it can be shown that (3.20) holds for any ai, bi (ai, bi ∈ C,
i = 1, 2).

�
Remark 3.54. Generally, if u(t), b(t) ∈ C1([0, T ]), then, by the Cauchy–
Schwarz inequality (see Proposition 1.170), u(t)b(t) ∈ C1([0, T ]) as well, and

so
∫ T

0
u(t)b(t)dWt is well defined.

Remark 3.55. If f : R → R is a continuous function, then f(Wt) ∈ C1([0, T ]);
in fact, the trajectories of (f(Wt))t∈[0,T ] are continuous almost everywhere,
and thus condition (3.4) is certainly verified. In particular, we have

(Wn
t )t∈[0,T ] ∈ C1([0, T ]) ∀n ∈ N

∗.

Corollary 3.56. For every integer n ≥ 2 we get

d(Wn
t ) = nWn−1

t dWt +
1

2
(n− 1)nWn−2

t dt.
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Proof . The proof follows from Proposition 3.53 by induction. �

Corollary 3.57. For every polynomial P (x):

dP (Wt) = P ′(Wt)dWt +
1

2
P ′′(Wt)dt. (3.23)

Remark 3.58. The second derivative of P (Wt) is required for its differential.

Proposition 3.59. If f ∈ C2(R), then

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt.

Proof . Given the integration-by-parts formula

f(x) = f(0) + f ′(0)x+

∫ x

0

(x− y)f ′′(y)dy, (3.24)

and because f ∈ C2(R), it follows that f ′′ ∈ C0(R). Then, by the Weierstrass
theorem, we can approximate it with polynomials. Hence

∃(qn(x))n∈N, (3.25)

a sequence of polynomials uniformly converging to f ′′ on compacts. If we now
write

Qn(x) = f(0) + f ′(0)x+

∫ x

0

(x − y)qn(y)dy, n ∈ N,

it is evident that Qn(x) is a polynomial with Q′′
n = qn(x); thus (Q′′

n(x))n∈N

uniformly converges to f ′′ on compacts. Moreover, Qn(x)
n→ f(x), Q′

n(x)
n→

f ′(x) uniformly on its compacts. In fact, by (3.25), it is possible to replace
the limit with the integral in (3.24). Applying (3.23) to the polynomials Qn,
we obtain that for t1 < t2

Qn(Wt2 )−Qn(Wt1 ) =

∫ t2

t1

Q′
n(Wt)dWt +

1

2

∫ t2

t1

Q′′
n(Wt)dt. (3.26)

Therefore, we observe that

Qn(Wt2 )
n→ f(Wt2) a.s. (and thus in probability),

Qn(Wt1 )
n→ f(Wt1) a.s. (and thus in probability),

1

2

∫ t2

t1

Q′′
n(Wt)dt

n→ 1

2

∫ t2

t1

f ′′(Wt)dt a.s. (and thus in probability),

and also

lim
n→∞

∫ t2

t1

[Q′
n(Wt)− f ′(Wt)]

2dt = 0 a.s. (and thus in probability).
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Hence, by Theorem 3.29, we have that

P − lim
n→∞

∫ t2

t1

Q′
n(Wt)dWt =

∫ t2

t1

f ′(Wt)dWt.

Finally, by (3.26),

f(Wt2)− f(Wt1) =

∫ t2

t1

f ′(Wt)dWt +
1

2

∫ t2

t1

f ′′(Wt)dt.

�

3.5 Itô’s Formula

As one of the most important topics on Brownian motion, Itô’s formula
represents the stochastic equivalent of Taylor’s theorem about the expansion
of functions. It is the key concept that connects classical and stochastic theory.

Proposition 3.60. If u(t, x) : [0, T ]×R → R is continuous with the deriva-
tives ux, uxx, and ut, then

du(t,Wt) =

(
ut(t,Wt) +

1

2
uxx(t,Wt)

)
dt+ ux(t,Wt)dWt. (3.27)

Proof .

Case 1: We suppose u(t, x) = g(t)ψ(x), with g ∈ C1([0, T ]) and ψ ∈ C2(R).
Then, by Proposition 3.59,

dψ(Wt) = ψ′(Wt)dWt +
1

2
ψ′′(Wt)dt,

and, by formula (3.19), we obtain an expression for (3.27), namely,

d(g(t)ψ(Wt)) = g(t)ψ′(Wt)dWt +
1

2
g(t)ψ′′(Wt)dt+ ψ(Wt)g

′(t)dt.

Case 2: If

u(t, x) =

n∑
i=1

gi(t)ψi(x), g ∈ C1([0, T ]), ψ ∈ C2(R), i = 1, . . . , n,

(3.28)
then (3.27) is an immediate consequence of the first case.
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Case 3: If u is a generic function, satisfying the hypotheses of the proposition,
then it can be shown that there exists (un)n∈N, a sequence of functions of
type (3.28), such that for all K > 0

lim
n→∞ sup

|x|≤K

sup
t∈[0,T ]

{|un − u|+ |(un)t − ut|+ |(un)x
−ux|+ |(un)xx − uxx|} = 0.

Therefore, we can approximate u uniformly through the sequence un, and
the proof follows from the second case.

�
Remark 3.61. Contrary to what is obtained for an ordinary differential,
Equation (3.27) contains the additional term 1

2uxx(t,Wt)dt. This is due to
the presence of Brownian motion.

Remark 3.62. If u(t, z, ω) : [0, T ]×R×Ω → R is continuous with the deriva-
tives uz, uzz, and ut such that, for all (t, z), u(t, z, ·) is Ft = σ(Ws, 0 ≤ s ≤ t)-
measurable, then formula (3.27) holds for every ω ∈ Ω.

Theorem 3.63 ( Itô’s formula). If du(t) = a(t)dt+b(t)dWt, and if f(t, x) :
[0, T ] × R → R is continuous with the derivatives fx, fxx, and ft, then the
stochastic differential of the process f(t, u(t)) is given by

df(t, u(t)) =

(
ft(t, u(t)) +

1

2
fxx(t, u(t))b

2(t) + fx(t, u(t))a(t)

)
dt

+fx(t, u(t))b(t)dWt. (3.29)

Proof . See, e.g., Karatzas and Shreve (1991). �

3.6 Martingale Representation Theorem

Theorem 3.38 stated that, given a process (ft)t∈[0,T ] ∈ C([0, T ]), the Itô in-

tegral
∫ t

0
fsdWs is a zero-mean L2-martingale. The martingale representation

theorem establishes the relationship between a martingale and the existence
of a process converse.

Theorem 3.64 (Martingale representation theorem I). Let (Mt)t∈[0,T ]

be an L2-martingale with respect to the Wiener process (Wt)t∈[0,T ] and
to (Ft)t∈[0,T ], its natural filtration. Then there exists a unique process
(ft)t∈[0,T ] ∈ C([0, T ]), so that

∀t ∈ [0, T ] : M(t) =M(0) +

∫ t

0

f(s)dWs a.s. (3.30)
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Theorem 3.65 (Martingale representation theorem II). Let
(Mt)t∈[0,T ] be a martingale with respect to the Wiener process (Wt)t∈[0,T ]

and to (Ft)t∈[0,T ], its natural filtration. Then there exists a unique process
(ft)t∈[0,T ] ∈ C1([0, T ]), so that (3.30) holds.

The martingale representation theorems are a direct consequence of the
following theorem (Øksendal 1998).

Theorem 3.66 (Itô representation theorem). Let X ∈ L2(Ω,FT , P ) be a
random variable. Then there exists a unique process (ft)t∈[0,T ] ∈ C([0, T ]) such
that

X = E[X ] +

∫ t

0

f(s)dWs.

For the proof of the Itô representation theorem we require the following
lemma.

Lemma 3.67. The linear span of random variables of the Doléans exponential
type

exp

{∫ T

0

h(t)dWt − 1

2

∫ T

0

(h(t))2dt

}

for a deterministic process (ht)t∈[0,T ] ∈ L2([0, T ]) is dense in L2(Ω,FT , P ).

Proof of Theorem 3.66. Initially suppose that X has the Doléans exponential
form

X = exp

{∫ T

0

h(s)dWs − 1

2

∫ T

0

(h(s))2ds

}
∀t ∈ [0, T ]

for a deterministic process (ht)t∈[0,T ] ∈ L2([0, T ]). Also define

Y (t) = exp

{∫ t

0

h(s)dWs − 1

2

∫ t

0

(h(s))2ds

}
∀t ∈ [0, T ].

Then, invoking Itô’s formula, we obtain

dY (t)

= Y (t)

(
h(t)dWt − 1

2
(h(t))2dt

)
+

1

2
Y (t)(h(t))2dt = Y (t)h(t)dWt.

(3.31)

Therefore,

Y (t) = 1 +

∫ t

0

Y (s)h(s)dWs, t ∈ [0, T ],

and in particular

X = Y (T ) = 1 +

∫ T

0

Y (s)h(s)dWs,
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so that, after taking expectations, we obtain E[X ] = 1. Now by Lemma 3.67,
we may extend the proof to any arbitrary (Xt)t∈[0,T ] ∈ L2(Ω,FT , P ). To prove
that the process (ft)t∈[0,T ] is unique, suppose that two processes f1

t , f
2
t ∈

C([0, T ]) exist with

X(T ) = E[X ] +

∫ T

0

f1(t)dWt = E[X ] +

∫ T

0

f2(t)dWt.

Subtracting the two integrals and taking expectation of the squared difference,
we obtain

E

⎡
⎣
(∫ T

0

(
f1(t)− f2(t)

)
dWt

)2
⎤
⎦ = 0,

and using the Itô isometry we obtain

∫ T

0

E
[
f1(t)− f2(t)

]2
dt = 0,

implying that f1
t = f2

t a.s. for all t ∈ [0, T ]. �
Proof of Theorem 3.64. Take T ≡ t and X ≡ Mt. By Theorem 3.66, there
exists a unique process (f (t)) ∈ C([0, T ]) such that

Mt = E[Mt] +

∫ t

0

f (t)(s)dWs.

Since, by assumption, M is a martingale, we may then claim

Mt = E[M0] +

∫ t

0

f (t)(s)dWs.

In particular, this will apply to any time t2, for some f (t2),

Mt2 = E[M0] +

∫ t2

0

f (t2)(s)dWs.

Take now an additional time t1 < t2; by the martingale property, we get

Mt1 = E[Mt2 | Ft1 ] = E[M0] + E[

∫ t2

0

f (t2)(s)dWs | Ft1 ]

= E[M0] +

∫ t1

0

f (t2)(s)dWs,

but we will also have

Mt1 = E[M0] +

∫ t1

0

f (t1)(s)dWs
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for some f (t1). Thus, because of uniqueness, f (t2) = f (t2). We may then take
f = f (T ) to obtain, finally,

Mt = E[M0] +

∫ t

0

f(s)dWs. (3.32)

To conclude, we may notice that from (3.32) we easily derive

M0 = E[M0] + 0,

which completes the proof. �

3.7 Multidimensional Stochastic Differentials

Definition 3.68. Let (ut)0≤t≤T be an m-dimensional process and

a : [0, T ]×Ω → R
m, a ∈ C1W([0, T ]),

b : [0, T ]×Ω → R
mn, b ∈ C1W([0, T ]).

The stochastic differential du(t) of u(t) is given by

du(t) = a(t)dt+ b(t)dW(t)

if, for all 0 ≤ t1 < t2 ≤ T ,

u(t2)− u(t1) =

∫ t2

t1

a(t)dt +

∫ t2

t1

b(t)dW(t).

Remark 3.69. Under the assumptions of the preceding definition, we obtain
for 1 ≤ i ≤ m

dui(t) = ai(t)dt+

n∑
j=1

(bij(t)dWj(t)).

Example 3.70. Suppose that the coefficients a11 and a12 of the system

{
du1(t) = a11(t)u1(t)dt+ a12(t)u2(t)dt,
du2(t) = a21(t)u1(t)dt+ a22(t)u2(t)dt

(3.33)

are subject to the noise

a11(t)dt = a011(t)dt+ ã11(t)dW1(t),

a12(t)dt = a012(t)dt+ ã12(t)dW2(t).
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The first equation of (3.33) becomes

du1(t)

= (a011(t)u1(t) + a012(t)u2(t))dt + ã11(t)u1(t)dW1(t) + ã12(t)u2(t)dW2(t)

= ā1(t)dt+ b11(t)dW1(t) + b12(t)dW2(t),

where the meaning of the new parameters ā1, b11, and b12 is obvious. Now, if
both a21 and a22 are affected by the noise

a21(t)dt = a021(t)dt+ ã21(t)dW3(t),

a22(t)dt = a022(t)dt+ ã22(t)dW4(t),

then the second equation of (3.33) becomes

du2(t) = ā2(t)dt+ b23(t)dW3(t) + b24(t)dW4(t).

In this case the matrix

b =

(
b11 b12 0 0
0 0 b23 b24

)

is of order 2× 4, but, in general, it is possible that m > n.

Theorem 3.71 (Multidimensional Itô formula). Let f(t,x) : R+ ×
R

m → R be continuous with the derivatives fxi, fxixj , and ft. Let u(t) be an
m-dimensional process, endowed with the stochastic differential

du(t) = a(t)dt + b(t)dW(t),

where a = (a1, . . . , am)′ ∈ CW([0, T ]) and b = (bij)1≤i≤m,1≤j≤n ∈ CW([0, T ]).
Then f(t,u(t)) has the stochastic differential

df(t,u(t)) =

(
ft(t,u(t)) +

m∑
i=1

fxi(t,u(t))ai(t)

+
1

2

n∑
l=1

m∑
i,j=1

fxixj (t,u(t))bil(t)bjl(t)

⎞
⎠ dt

+
n∑

l=1

m∑
i=1

fxi(t,u(t))bil(t)dWl(t). (3.34)

If we put aij = (bb′)ij , i, j = 1, . . . ,m, introduce the differential operator

L =
1

2

m∑
i,j=1

aij
∂2

∂xi∂xj
+

m∑
i=1

ai
∂

∂xi
+
∂

∂t
,
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and introduce the gradient operator

∇x =

(
∂

∂x1
, . . . ,

∂

∂xm

)′
,

then, in vector notation, (3.34) can be written as

df(t,u(t)) = Lf(t,u(t))dt +∇xf(t,u(t)) · b(t)dW(t), (3.35)

where ∇xf(t,u(t)) · b(t)dW(t) is the scalar product of two m-dimensional
vectors.

Proof . Employing the following two lemmas the proof is similar to the
one-dimensional case. [See, e.g., Baldi (1984).] �

Lemma 3.72. If (W1(t))t≥0 and (W2(t))t≥0 are two independent Wiener
processes, then

d(W1(t)W2(t)) =W1(t)dW2(t) +W2(t)dW1(t). (3.36)

Proof . Since W1(t) and W2(t) are independent, it is easily shown that Wt =
1√
2
(W1(t) +W2(t)) is also a Wiener process. Moreover, for a Wiener process

W (t) we have

dW 2(t) = dt+ 2W (t)dW (t). (3.37)

Hence from

W1(t)W2(t) =W 2(t)− 1

2
W 2

1 (t)−
1

2
W 2

2 (t)

it follows that W1(t)W2(t) is endowed with the differential

d(W1(t)W2(t))

= dW 2(t)− 1

2
dW 2

1 (t)−
1

2
dW 2

2 (t)

= dt+ 2W (t)dW (t) − 1

2
dt−W1(t)dW1(t)− 1

2
dt−W2(t)dW2(t)

= 2

(
1

2
W1(t)dW1(t) +

1

2
W1(t)dW2(t) +

1

2
W2(t)dW1(t) +

1

2
W2(t)dW2(t)

)

−W1(t)dW1(t)−W2(t)dW2(t),

completing the proof. �

Lemma 3.73. If W1, . . . ,Wn are independent Wiener processes and

dui(t) = ai(t)dt+

n∑
j=1

(bij(t)dWj(t)), i = 1, 2,
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then

d(u1u2)(t) = u1(t)du2(t) + u2(t)du1(t) +

n∑
j=1

b1jb2jdt. (3.38)

Proof . It is analogous to the proof of Proposition 3.53 (e.g., Baldi 1984). Use
(3.36), (3.37), and (3.16) and approximate the resulting polynomials. �
Remark 3.74. Equation (3.37) is not a particular case of (3.36) (in the latter,
independence is not given), whereas (3.38) generalizes both.

Remark 3.75. The multidimensional Itô formula (3.35) asserts that the pro-
cesses

f(t,u(t))− f(0,u(0))

and ∫ t

0

Lf(s,u(s))ds +
∫ t

0

∇xf(s,u(s)) · b(s)dW(s)

are stochastically equivalent. They are both continuous, and so their trajec-
tories coincide a.s. Taking expectations on both sides, we therefore get

E[f(t,u(t))]− E[f(0,u(0))] = E

[∫ t

0

Lf(s,u(s))ds
]
.

3.8 The Itô Integral with Respect to Lévy Processes

Motivated by the representation (2.41) of a Lévy process, it seems natural to
consider more general processes (X(t))t∈R+ , admitting an integral represen-
tation of the form

X(t) = x+

∫ t

0

α(s)ds +

∫ t

0

β(s)dWs +

∫ t

0

∫
R−{0}

γ(s, z)Ñ(ds, dz), t ∈ R+,

(3.39)
where x ∈ R for a suitable choice of the stochastic processes α, β, and γ.

Here (Wt)t∈R+ is a usual Wiener process, while Ñ(ds, dz) is a compensated
random Poisson measure.

Since we already know about the stochastic integral with respect to the
Wiener process, we shall concentrate on the stochastic integrals

∫ t

0

∫
R−{0}

γ(s, z)Ñ(ds, dz)

by adopting the approach by Gihman and Skorohod (1972, p. 253ff ) [see
also Skorohod (1982, p. 34)].
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Since we are dealing with R− {0} , for the associated Borel σ-algebra we

take B0 = σ

(⋃
ε>0

Bε

)
, where, for any ε > 0, we take

Bε = σ

{
B ∈ BR|B ⊂

{
x ∈ R| ε ≤| x |≤ 1

ε

}}
.

Assume we are given a probability space (Ω,F , P ) and a filtration (Ft)t∈R+

subject to the usual assumptions.
As for the compensated random Poisson measure, we take first a random

Poisson measure N(ds, dz) such that

(a) For any B ∈ B0 and for any t ∈ R+ the random variable N([0, t], B) =∫ t

0

∫
B N(ds, dz) is Ft-measurable.

(b) The compensating measure ν(B) = E[N([0, 1], B)] is finite on any B ∈ BR

such that 0 /∈ B̄.
(c) For any t ∈ R+ the family of random variables

{N((t, t+ h), B);B ∈ B0, h > 0}
is independent of Ft.

Take now a given time T > 0. As far as the integrand process

{γ(t, z); t ∈ R+, z ∈ R}
is concerned, we assume that the function {γ(ω, t, z); ω ∈ Ω, t ∈ R+, z ∈ R}
is measurable with respect to all variables ω, t, z.

(d) For any z ∈ R, γ(t, z) is Ft-measurable;

further, either

(e) ∫ T

0

∫
R−{0}

E[γ2(t, z)]ν(dz)) < +∞

or

(e′)

P (

∫ T

0

∫
R−{0}

γ2(t, z)ν(dz)) < +∞) = 1.

In cases (d) and (e), we say that γ ∈ H(ν); in cases (d) and (e′), we say
that γ ∈ H2(ν). In either case, γ can be approximated by a sequence (γn)n∈N

of stepwise processes with respect to time, all belonging to H(ν), in the mean
square topology, i.e.,

∫ T

0

∫
R−{0}

E[|γ(t, z)− γn(t, z)|2]ν(dz)) n→ 0.
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For any n ∈ N the integral
∫ T

0

∫
R−{0}

γn(t, z)Ñ(dt, dz) =

n∑
k=1

∫
R−{0}

γn(tk−1, z)Ñ(tk − tk−1, dz)

is well defined, so that we may extend this to any γ ∈ H(ν) as follows:
∫ T

0

∫
R−{0}

γ(t, z)Ñ(dt, dz) =
L2

lim
n→∞

∫ T

0

∫
R−{0}

γn(t, z)Ñ(dt, dz).

For the more general case γ ∈ H2(ν), provided (γn)n∈N in H(ν) approximates
γ in the following sense∫ T

0

∫
R−{0}

[|γ(t, z)− γn(t, z)|2ν(dz)) P−→
n→∞ 0, (3.40)

we may define∫ T

0

∫
R−{0}

γ(t, z)Ñ(dt, dz) =
P

lim
n→∞

∫ T

0

∫
R−{0}

γn(t, z)Ñ(dt, dz). (3.41)

Clearly, if (γn)n∈N approximates γ in H(ν) in the mean square sense,
then (3.40) will also hold, and consequently (3.41) applies, too. The fol-
lowing result holds.

Theorem 3.76. If γ ∈ H(ν), then the process

t ∈ [0, T ] �→ Φ(t) :=

∫ t

0

∫
R−{0}

γ(s, z)Ñ(ds, dz)

is an Ft-martingale, and for any s, t ∈ R+, s < t,

E[|Φ(t)− Φ(s)|2|Fs] =

∫ t

s

dτ

∫
ν(dz)R−{0}

E[γ2(τ, z)|Fs].

Remark 3.77. The definition of Φ allows its extension to a separable process,
a.s. bounded, without discontinuities of the second kind.

Further, the following inequalities can be proved.

Theorem 3.78. If γ ∈ H(ν), then, for any a > 0,

P ( sup
0≤t≤T

| Φ(t) |> a) ≤ 1

a2

∫ T

0

dt

∫
R−{0}

ν(dz)E[γ2(t, z)],

E( sup
0≤t≤T

| Φ(t) |2) ≤ 4

∫ T

0

dt

∫
R−{0}

ν(dz)E[γ2(t, z)].

Theorem 3.79. If γ ∈ H2(ν), then, for any a > 0,K > 0,

P ( sup
0≤t≤T

| Φ(t) |> a) ≤ K

a2
+ P (

∫ T

0

dt

∫
R−{0}

ν(dz)γ2(t, z) > K).
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3.9 The Itô–Lévy Stochastic Differential
and the Generalized Itô Formula

Within the framework established in the previous section, we are now ready
to generalize the concept of stochastic differential so as to give a rigorous
meaning to (3.39).

We are given an underlying probability space (Ω,F , P ) and a filtration
(Ft)t∈R+ subject to the usual assumptions. Consider a real-valued Wiener
process (Wt)t∈R+ such that for any t ∈ R+, Wt is Ft-measurable; consider a
random Poisson measure N(ds, dz) satisfying Conditions (a)–(c) of the previ-
ous section, with respect to the filtration (Ft)t∈R+ .

Consider now the processes (α(t))t∈R+ , (β(t))t∈R+ such that (α)1/2 and β
belong to C1, with respect to the filtration (Ft)t∈R+ ; further, take a process γ ∈
H2(ν), where ν is the compensating measure of the random Poisson measure
N(ds, dz). Finally, take X(0), a given random variable on the probability
space (Ω,F , P ), independent of (Ft)t∈R+ .

Thanks to the definition of the Itô–Lévy integral introduced in the previous
section, it makes sense to consider the process (X(t))t∈[0,T ] defined, for any
t ∈ [0, T ], by

X(t) = X(0)+

∫ t

0

α(s)ds+

∫ t

0

β(s)dWs+

∫ t

0

∫
R−{0}

γ(s, z)Ñ(ds, dz). (3.42)

Any process defined as in (3.42) is called an Itô–Lévy process.
Under the preceding assumptions, if the process (X(t))t∈[0,T ] satisfies

(3.42), then we say that it admits, on [0, T ], the (generalized) stochastic
differential

dX(t) = α(t)dt + β(t)dWt +

∫
R−{0}

γ(t, z)Ñ(dt, dz).

We are now ready to state a main theorem of the Lévy–Itô calculus.

Theorem 3.80. Under the preceding assumptions, let the process
(X(t))t∈[0,T ] satisfy (3.42), let f ∈ C1,2(R∗ × R, and define

Y (t) := f(t,X(t)), t ∈ R+ .

Then the process (Y (t))t∈R+ is itself an Itô–Lévy process, and its stochastic
differential is given by

dY (t)=
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))α(t)dt +

∂f

∂x
(t,X(t))β(t)dWt

+
1

2

∂2f

∂x2
(t,X(t))β2(t)dt

+

∫
R−{0}

[
f(t,X(t) + γ(t, z))− f(t,X(t))− ∂f

∂x
(t,X(t))γ(t, z)

]
ν(dz)dt

+

∫
R−{0}

[
f(t,X(t−) + γ(t, z))− f(t,X(t−))

]
Ñ(dt, dz).
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Proof . See, e.g., Gihman and Skorohod (1972, p. 272), Medvegyev (2007,
p. 394), Di Nunno et al. (2009, p. 163). �

3.10 Exercises and Additions

3.1. Show that, if W is a scalar Wiener process, and f ∈ C([a, b]) is a given
process on [a, b] ⊂ R, then for all c > 0

P

(∣∣∣∣∣
∫ b

a

f(t)dWt

∣∣∣∣∣ > c

)
≤

∫ b

a E[|f(t)|2]dt
c2

.

3.2. Show that, if W is a scalar Wiener process, and f ∈ L2([a, b]) is a deter-
ministic real-valued function on [a, b] ⊂ R, then

∫ b

a

f(t)dWt ∼ N

(
0,

∫ b

a

|f(t)|2dt
)
.

Hint: The proof is based on the following result [see also Arnold (1974)]. Let
(Xn)n∈N be a sequence of Gaussian random variables, i.e., Xn ∼ N(μn, σ

2
n),

for any n ∈ N. If
(μn, σ

2
n)

n→ (μ,Σ),

with μ ∈ R, and Σ > 0, then

Xn ⇒
n→∞N(μ,Σ).

3.3. Let (Xt)t∈R+ be the Itô integral

Xt =

∫ t

0

f(t)dWt,

where (Wt)t∈R+ is a Brownian motion, and f ∈ CW (0, T ).

1. Give an example to show that X2
t , in general, is not a martingale.

2. Prove that

Mt = X2
t −

∫ t

0

|f(t)|2ds

is a martingale. Hence the process 〈X〉t =
∫ t

0
|f(t)|2ds is the quadratic

variation process of the martingale Xt.

3.4. Prove Lemma 3.45.

3.5. Let (Xt)t∈R+ be a Brownian motion in R, X0 = 0. Prove directly from
the definition of Itô integrals that

∫ t

0

X2
sdXs =

1

3
X3

t −
∫ t

0

Xsds.
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3.6. Prove Corollary 3.56.

3.7. Prove Lemma 3.73.

3.8. Prove the multidimensional Itô formula (3.35).

3.9. Let (Wt)t∈R+ denote an n-dimensional Brownian motion, and let f :
R

n → R be C2. Use Itô’s formula to prove that

df(Wt) = ∇f(Wt)dWt +
1

2
�f(Wt)dt,

where ∇ denotes the gradient, and � =
∑n

i=1
∂2

∂x2
i
is the Laplace operator.

3.10. Let (Wt)t∈R+ be a one-dimensional Brownian motion with W0 = 0.
Using Itô’s formula, show that

E[W k
t ] =

1

2
k(k − 1)

∫ t

0

E[W k−2
s ]ds, k ≥ 2, t ≥ 0.

Further, for any k ∈ N,

E[W 2k
t ] = O(tk),

whereas

E[W 2k+1
t ] = 0.

3.11. Use Itô’s formula to write the following stochastic process ut in the
standard form

dut = a(t)dt+ b(t)dWt

for a suitable choice of a ∈ R
n, b ∈ R

nm, and dimensions n,m:

1. u1(t,W1(t)) = 3 + 2t+ e2W1(t) [W1(t) is one-dimensional];
2. u2(t,Wt) =W 2

2 (t) +W 2
3 (t) [Wt = (W2(t),W3(t)) is two-dimensional];

3. u3(t,Wt) = ln(u1(t)u2(t));

4. u4(t,Wt) = exp
{

u1(t)
u2(t)

}
;

5. u5(t,Wt) = (5 + t, t+ 4Wt) (Wt is one-dimensional);
6. u6(t,Wt) = (W1(t)+W2(t)−W3(t),W

2
2 (t)−W1(t)W2(t)+W3(t)) [Wt =

(W1(t),W2(t),W3(t)) is three-dimensional].

3.12. Let (Wt)t∈R+ be an n-dimensional Brownian motion starting at x �= 0.
Are the processes

ut = ln
(|Wt|2

)

and

vt =
1

|Wt|
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martingales? If not, find two processes (ut)t∈R+ , (vt)t∈R+ such that

ut − ut

and
vt − vt

are martingales.

3.13 (Exponential martingales). Let dZt = αdt+βdWt, Z0 = 0 where α, β
are constants and (Wt)t∈R+ is a one-dimensional Brownian motion. Define

Mt = exp

{
Zt −

(
α+

1

2
β2

)
t

}
= exp

{
−1

2
β2t+ βWt

}
.

Use Itô’s formula to prove that

dMt = βMtdWt.

In particular, M = (Mt)t∈R+ is a martingale.

3.14. Let (Wt)t∈R+ be a one-dimensional Brownian motion, and let φ ∈
L2
loc[0, T ] for any T ∈ R+. Show that for any θ ∈ R

Xt := exp

{
iθ

∫ t

0

φ(s)dWs +
1

2
θ2
∫ t

0

φ2(s)ds

}

is a local martingale.

3.15. With reference to the preceding Problem 3.14, assume now that

P

(∫ +∞

0

φ2(s)ds = +∞
)

= 1,

and let

τt := min

{
uR+|

∫ u

0

φ2(s)ds ≥ t

}
, t ∈ R+.

Show that (Xτt)t∈R+ is an Fτt-martingale.

3.16. With reference to Problem 3.15, let

Zt :=

∫ t

0

φ(s)dWs, t ∈ R+.

Show that (Zτt)t∈R+ has independent increments and Zτt −Zτs ∼ N(0, t−s)
for any 0 < s < t < +∞. (Hint: Show that if F ′ ⊂ F ′′ ⊂ F are σ-fields on
the probability space (Ω,F , P ) and Z is an F ′′-measurable random variable
such that

E
[
eiθZ

∣∣F ′] = e−θ2σ2/2,

then Z is independent of F ′ and Z ∼ N(0, σ2).)



3.10 Exercises and Additions 211

3.17. With reference to Problem 3.16, show that the process (Zτt)t∈R+ is a
standard Brownian motion.

3.18. Let (Wt)t∈R+ be a one-dimensional Brownian motion. Formulate suit-
able conditions on u, v such that the following holds:

Let dZt = utdt+ vtdWt, Z0 = 0 be a stochastic integral with values in R.
Define

Mt = exp

{
Zt −

∫ t

0

[
us +

1

2
vsv

′
s

]
ds

}
.

Then M = (Mt)t∈R+ is a martingale.

3.19. Let (Wt)t∈R+ be a one-dimensional Brownian motion. Show that for
any real function that is continuous up to its second derivative the process

(
f(Wt)− 1

2

∫ t

0

f ′′(Ws)ds

)
t∈R+

is a local martingale.

3.20. Let X be a time-homogeneous Markov process with transition probabil-
ity measure Pt(x, A), x ∈ R

d, A ∈ BRd , with d ≥ 1. Given a test function ϕ,
let

u(t,x) := Ex[ϕ(X(t))] =

∫
Rd

ϕ(y)Pt(x, dy), t ∈ R+, x ∈ R
d.

Show that, under rather general assumptions, the function u satisfies the
so-called Kolmogorov equation

∂

∂t
u(t,x)

=
1

2

d∑
i,j=1

qij(x)
∂2

∂xi∂xj
u(t,x)

+

d∑
j=1

fj(x)
∂

∂xj
u(t,x)

+

∫
Rd

⎛
⎝u(t,x+ y)− u(t,x)− 1

1 + |y|2
d∑

j=1

yj
∂

∂xj
u(t,x)

⎞
⎠ ν(x, dy)

for t > 0, x ∈ R
d, subject to the initial condition

u(0,x) = φ(x), x ∈ R
d.

Here f and Q are functions with values being, respectively, vectors in R
d

and symmetric, nonnegative d × d matrices, f : Rd → R
d and Q := (qij) :
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R
d → L+(R

d,Rd), and ν is a Lévy measure, i.e., ν : Rd → M(Rd \ {0}), with
M(Rd \ {0}) being the set of nonnegative measures on R

d \ {0} such that

∫
Rd

(|y2| ∧ 1)ν(x, dy) < +∞.

The functions f,Q, and ν are known as the drift vector, diffusion matrix, and
jump measure, respectively. Show that the process X has continuous trajec-
tories whenever ν ≡ 0.



4

Stochastic Differential Equations

4.1 Existence and Uniqueness of Solutions

Let (Wt)t∈R+ be a Wiener process on the probability space (Ω,F , P ),
equipped with its natural filtration (Ft)t∈R+ , Ft = σ(Ws, 0 ≤ s ≤ t). Further-
more, let a(t, x), b(t, x) be deterministic measurable functions in [t0, T ] × R

for some t0 ∈ R+. Finally, consider a real-valued random variable u0; we will
denote by Fu0 the σ-algebra generated by u0, and we assume that Fu0 is
independent of (Ft) for t ∈ (t0,+∞). We will denote by Fu0,t the σ-algebra
generated by the union of Fu0 and Ft for t ∈ (t0,+∞).

Definition 4.1. The stochastic process (u(t))t∈[t0,T ] (T ∈ (t0,+∞)) is said
to be a solution of the stochastic differential equation (SDE)

du(t) = a(t, u(t))dt+ b(t, u(t))dWt, t0 ≤ t ≤ T, (4.1)

subject to the initial condition

u(t0) = u0 a.s. , (4.2)

if

1. u(t) is measurable with respect to the σ-algebra Fu0,t, t0 ≤ t ≤ T .

2. |a(·, u(·))| 12 , b(·, u(·)) ∈ C1([t0, T ]).
3. The stochastic differential of u(t) in [t0, T ] is
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,
thus
u(t) = u(t0) +

∫ t
t0
a(s, u(s))ds+

∫ t
t0
b(s, u(s))dWs, t ∈ [t0, T ].

Remark 4.2. If u(t) is the solution of (4.1) and (4.2), then it is nonantic-
ipating (by point 3 of the preceding definition and as already observed in
Remark 3.50).

The following lemma will be of interest for the proof of uniqueness of the
solution of (4.1).
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Lemma 4.3. (Gronwall). If φ(t) is an integrable, nonnegative function,
defined on t ∈ [0, T ], with

φ(t) ≤ α(t) + L

∫ t

0

φ(s)ds, (4.3)

where L is a positive constant and α(t) is an integrable function, then

φ(t) ≤ α(t) + L

∫ t

0

eL(t−s)α(s)ds.

Proof . Putting ψ(t) = L
∫ t
0
φ(s)ds, as well as z(t) = ψ(t)e−Lt, then z(0) =

ψ(0) = 0, and, moreover,

z′(t) = ψ′(t)e−Lt − Lψ(t)e−Lt = Lφ(t)e−Lt − Lψ(t)e−Lt

≤ Lα(t)e−Lt + Lψ(t)e−Lt − Lψ(t)e−Lt.

Therefore, z′(t) ≤ Lα(t)e−Lt and, after integration, z(t) ≤ L
∫ t
0
α(s)e−Lsds.

Hence

ψ(t)e−Lt ≤ L

∫ t

0

α(s)e−Lsds⇒ ψ(t) ≤ L

∫ t

0

eL(t−s)α(s)ds,

but, by (4.3), ψ(t) = L
∫ t
0
φ(s)ds ≥ φ(t)− α(t), completing the proof. �

In the sequel, unless explicitly specified, we take t0 = 0 to reduce the
complexity of notations.

Theorem 4.4 (Existence and uniqueness). Suppose constants K∗,K
exist such that the following conditions are satisfied:

1. For all t ∈ [0, T ] and all (x, y) ∈ R×R: |a(t, x)−a(t, y)|+|b(t, x)−b(t, y)| ≤
K∗|x− y|.

2. For all t ∈ [0, T ] and all x ∈ R: |a(t, x)| ≤ K(1+|x|), |b(t, x)| ≤ K(1+|x|).
3. E[|u0|2] <∞.

Then there exists a unique (u(t))t∈[0,T ] solution of (4.1) and (4.2) such that

• (u(t))t∈[0,T ] is continuous almost surely (thus almost every trajectory is
continuous).

• (u(t))t∈[0,T ] ∈ C([0, T ]).

Remark 4.5. If (u1(t))t∈[0,T ] and (u2(t))t∈[0,T ] are two solutions of (4.1)
and (4.2) that belong to C([0, T ]), then the uniqueness of a solution is un-
derstood in the sense that

P

(

sup
0≤t≤T

|u1(t)− u2(t)| = 0

)

= 1.
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Proof of Theorem 4.4.

STEP 1: Uniqueness. Let u1(t) and u2(t) be solutions of (4.1) and (4.2) that
belong to C([0, T ]). Then, by point 3 of Definition 4.1,

u1(t)− u2(t)

=

∫ t

0

[a(s, u1(s)) − a(s, u2(s))]ds +

∫ t

0

[b(s, u1(s))− b(s, u2(s))]dWs

=

∫ t

0

ã(s)ds+

∫ t

0

b̃(s)dWs, t ∈]0, T ],

where ã(s) = a(s, u1(s)) − a(s, u2(s)) and b̃(s) = b(s, u1(s))− b(s, u2(s)).
Because, in general, (a+ b)2 ≤ 2(a2 + b2), we obtain

|u1(t)− u2(t)|2 ≤ 2

(∫ t

0

ã(s)ds

)2

+ 2

(∫ t

0

b̃(s)dWs

)2

,

and by the Cauchy–Schwarz inequality,

(∫ t

0

ã(s)ds

)2

≤ t

(∫ t

0

|ã(s)|2ds
)

,

therefore

E

[(∫ t

0

ã(s)ds

)2
]

≤ tE

[∫ t

0

|ã(s)|2ds
]

.

Moreover, by assumption 2,

E

[∫ T

0

(b(s, ui(s)))
2ds

]

≤ E

[∫ T

0

(K(1 + |ui(s)|))2ds
]

≤ 2K2E

[∫ T

0

(1 + |ui(s)|2)ds
]

< +∞

for i = 1, 2 and because ui(s) ∈ C. Now, this shows b(s, ui(s)) ∈ C for
i = 1, 2, and thus b̃(s) ∈ C. Then, by Proposition 3.20,

E

[(∫ t

0

b̃(s)dWs

)2
]

= E

[∫ t

0

(b̃(s))2ds

]

,

from which it follows that

E[(u1(t)− u2(t))
2] ≤ 2tE

[∫ t

0

(ã(s))2ds

]

+ 2E

[∫ t

0

(b̃(s))2ds

]

.
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By assumption 1, we have that

|ã(s)|2 ≤ (K∗)2|u1(s)− u2(s)|2,
|b̃(s)|2 ≤ (K∗)2|u1(s)− u2(s)|2,

and therefore, by Fubini’s theorem,

E[|u1(t)− u2(t)|2]

≤ 2t(K∗)2
∫ t

0

E[|u1(t)− u2(t)|2]ds+ 2(K∗)2
∫ t

0

E[|u1(t)− u2(t)|2]ds

≤ 2T (K∗)2
∫ t

0

E[|u1(t)− u2(t)|2]ds+ 2(K∗)2
∫ t

0

E[|u1(t)− u2(t)|2]ds

= 2(K∗)2(T + 1)

∫ t

0

E[|u1(t)− u2(t)|2]ds.

Since, by Gronwall’s Lemma 4.3,

E[|u1(t)− u2(t)|2] = 0 ∀t ∈ [0, T ],

we get
u1(t)− u2(t) = 0, P -a.s. ∀t ∈ [0, T ]

or, equivalently, for all t ∈ [0, T ]:

∃Nt ⊂ Ω,P (Nt) = 0 such that ∀ω /∈ Nt : u1(t)(ω)− u2(t)(ω) = 0.

Because we are considering separable processes, there exists anM ⊂ [0, T ],
a separating set of (u1(t)−u2(t))t∈[0,T ], countable and dense in [0, T ], such
that for all t ∈ [0, T ]

∃(tn)n∈N ∈MN such that lim
n
tn = t,

and
lim
n
(u1(tn)− u2(tn)) = u1(t)− u2(t), P -a.s.

(and the empty set A, where this does not hold, does not depend on t).
Putting N =

⋃
t∈M Nt, we obtain P (N) = 0 and

∀ω /∈ N : u1(t)− u2(t) = 0, t ∈M,

hence
∀t ∈ [0, T ], ∀ω /∈ N ∪A : u1(t)− u2(t) = 0,

and thus

P

(

sup
0≤t≤T

|u1(t)− u2(t)| = 0

)

= 1.
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STEP 2: Existence. We will prove the existence of a solution u(t) by the
method of sequential approximations. We define

{
u0(t) = u0,

un(t) = u0 +
∫ t
0 a(s, un−1(s))ds+

∫ t
0 b(s, un−1(s))dWs, ∀t ∈ [0, T ], n ∈ N

∗.

Take u0 F0-measurable; by assumption 3, it is obvious that u0 ∈ C([0, T ]).
By induction, we will now show both that

∀n ∈ N : E[|un+1(t)− un(t)|2] ≤ (ct)n+1

(n+ 1)!
, (4.4)

where c = max
{
4K2(T + 1)(1 + E[|u0|2]), 2(K∗)2(T + 1)

}
, and

∀n ∈ N : un+1 ∈ C([0, T ]). (4.5)

By assumptions 1 and 2, we obtain

E[|b(s, u0)|2] ≤ E[K2(1 + |u0|)2] ≤ 2K2(1 + E[|u0|2]) < +∞,

where we make use of the generic inequality

(|x|+ |y|)2 ≤ 2|x|2 + 2|y|2, (4.6)

and thus
b(s, u0) ∈ C([0, T ]).

Analogously, a(s, u0) ∈ C([0, T ]), resulting in u1 being nonanticipatory
and well posed. As a further result of (4.6) we have

|u1(t)− u0|2 =

∣
∣
∣
∣

∫ t

0

a(s, u0)ds+

∫ t

0

b(s, u0)dWs

∣
∣
∣
∣

2

≤ 2

∣
∣
∣
∣

∫ t

0

a(s, u0)ds

∣
∣
∣
∣

2

+ 2

∣
∣
∣
∣

∫ t

0

b(s, u0)dWs

∣
∣
∣
∣

2

,

and by the Schwarz inequality,

∣
∣
∣
∣

∫ t

0

a(s, u0)ds

∣
∣
∣
∣

2

≤ t

∫ t

0

|a(s, u0)|2ds ≤ T

∫ t

0

|a(s, u0)|2ds.

Moreover, by Itô’s isometry (Proposition 3.20), we have

E

[∣
∣
∣
∣

∫ t

0

b(s, u0)dWs

∣
∣
∣
∣

2
]

= E

[∫ t

0

|b(s, u0)|2ds
]

.

Therefore, as a conclusion and by assumption 2,
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E[|u1(t)− u0|2] ≤ 2TE

[∫ t

0

|a(s, u0)|2ds
]

+ 2E

[∫ t

0

|b(s, u0)|2ds
]

≤ 2TE

[∫ t

0

K2(1 + |u0|)2ds
]

+ 2E

[∫ t

0

K2(1 + |u0|)2ds
]

= (2TK2 + 2K2)E

[∫ t

0

(1 + |u0|)2ds
]

= 2K2(T + 1)tE[(1 + |u0|)2]
≤ 4K2(T + 1)t(1 + E[|u0|2]) = ct,

where the last inequality is a direct result of (4.6). Hence (4.4) holds for
n = 1, from which it follows that u1 ∈ C([0, T ]).

STEP 3: Suppose now that (4.4) and (4.5) hold for n ∈ N; we will show that
this implies that they also hold for n + 1. By the induction hypotheses,
un ∈ C([0, T ]). Then, by assumption 2, and proceeding as before, we obtain
that

a(s, un(s)) ∈ C([0, T ]) and b(s, un(s)) ∈ C([0, T ]).
Therefore, un+1 is well posed and nonanticipatory. We thus get

|un+1(t)− un(t)|2 ≤
(∫ t

0

|a(s, un(s)) − a(s, un−1(s))|ds

+

∣
∣
∣
∣

∫ t

0

(b(s, un(s))− b(s, un−1(s)))dWs

∣
∣
∣
∣

)2

≤ 2

(∫ t

0

|a(s, un(s))− a(s, un−1(s))|ds
)2

+2

(∫ t

0

(b(s, un(s))− b(s, un−1(s)))dWs

)2

,

and by the Schwarz inequality,
(∫ t

0

|a(s, un(s))− a(s, un−1(s))|ds
)2

≤ t

∫ t

0

|a(s, un(s))− a(s, un−1(s))|2ds

≤ T (K∗)2
∫ t

0

|un(s)− un−1(s)|2ds,

where the last inequality is due to assumption 2. Moreover, by Itô’s isom-
etry (Proposition 3.20),

E

[(∫ t

0

(b(s, un(s))− b(s, un−1(s)))dWs

)2
]

= E

[∫ t

0

|b(s, un(s))− b(s, un−1(s))|2ds
]

≤ (K∗)2E
[∫ t

0

|un(s)− un−1(s)|2ds
]

,
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again by point 1. Now we obtain

E[|un+1(t)− un(t)|2] ≤ 2T (K∗)2E
[∫ t

0

|un(s)− un−1(s)|2ds
]

+2(K∗)2E
[∫ t

0

|un(s)− un−1(s)|2ds
]

≤ cE

[∫ t

0

|un(s)− un−1(s)|2ds
]

≤ c

∫ t

0

(cs)n

n!
ds =

(ct)n+1

(n+ 1)!
,

where the last inequality is due to the induction hypotheses. Hence the
proof of (4.4) is complete, and so un+1 ∈ C([0, T ]).

STEP 4: From (4.6) it follows that

sup
0≤t≤T

|un+1(t)− un(t)|2 ≤ 2 sup
0≤t≤T

(∫ t

0

|a(s, un(s))− a(s, un−1(s))|ds
)2

+2 sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(b(s, un(s))− b(s, un−1(s)))dWs

∣
∣
∣
∣

2

,

where, after taking expectations and recalling point 1 of Proposition 3.41,

E

[

sup
0≤t≤T

|un+1(t)− un(t)|2
]

≤ 2E

⎡

⎣

(∫ T

0

|a(s, un(s))− a(s, un−1(s))|ds
)2
⎤

⎦

+8E

[∫ T

0

|b(s, un(s))− b(s, un−1(s))|2ds
]

≤ 2T (K∗)2E

[∫ T

0

|un(s)− un−1(s)|2ds
]

+8(K∗)2E

[∫ T

0

|un(s)− un−1(s)|2ds
]

= 2T (K∗)2
∫ T

0

E[|un(s)− un−1(s)|2]ds

+8(K∗)2
∫ T

0

E[|un(s)− un−1(s)|2]ds

≤ (cT )n

n!
(2(K∗)T 2 + 8(K∗)2T ),

where the last equality is due to assumption 1, as well as the Schwarz
inequality, and the last inequality is due to (4.4). Hence

E

[

sup
0≤t≤T

|un+1(t)− un(t)|2
]

≤ c∗
(cT )n

n!
, (4.7)
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with c∗ = 2(K∗)2T 2 + 8(K∗)2T . Because the terms are positive,

sup
0≤t≤T

|un+1(t)− un(t)|2 =

(

sup
0≤t≤T

|un+1(t)− un(t)|
)2

,

and therefore

P

(

sup
0≤t≤T

|un+1(t)− un(t)| > 1

2n

)

= P

(

sup
0≤t≤T

|un+1(t)− un(t)|2> 1

22n

)

≤ E

[

sup
0≤t≤T

|un+1(t)− un(t)|2
]

22n

≤ c∗
(cT )n

n!
22n,

where the last two inequalities are due to the Markov inequality and (4.7),

respectively. Because the series
∑∞

n=1
(cT )n

n! 22n converges, so does

∞∑

n=1

P

(

sup
0≤t≤T

|un+1(t)− un(t)| > 1

2n

)

,

and, by the Borel–Cantelli Lemma 1.161, we have that

P

(

lim sup
n

{

sup
0≤t≤T

|un+1(t)− un(t)| > 1

2n

})

= 0.

Therefore, putting A = lim supn

{
sup0≤t≤T |un+1(t)− un(t)| > 1

2n

}
, for

all ω ∈ (Ω −A):

∃N = N(ω) such that ∀n ∈ N,n ≥ N(ω) ⇒ sup
0≤t≤T

|un+1(t)−un(t)| ≤ 1

2n
,

and u0 +
∑∞

n=0(un+1(t) − un(t)) converges uniformly on t ∈ [0, T ]
with probability 1. Thus, given the sum u(t) and observing that u0 +∑n−1

k=0 (uk+1(t) − uk(t)) = un(t), it follows that the sequence (un(t))n of
the nth partial sum of u0 +

∑∞
n=0(un+1(t)− un(t)) has the limit

lim
n→∞un(t) = u(t), P -a.s., uniformly on t ∈ [0, T ]. (4.8)

Analogous to the property of the processes un, it follows that the trajec-
tories of u(t) are continuous a.s. and nonanticipatory.

STEP 5: We will now demonstrate that u(t) is the solution of (4.1) and (4.2).
By point 1 of the same theorem, we have

∣
∣
∣
∣

∫ t

0

a(s, un−1(s))ds −
∫ t

0

a(s, u(s))ds

∣
∣
∣
∣ ≤ K∗

∫ t

0

|un−1(s)− u(s)|ds,
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and since we can take the limit of (4.8) inside the integral sign,

∫ t

0

a(s, un−1(s))ds
n→
∫ t

0

a(s, u(s))ds, P -a.s., uniformly on t ∈ [0, T ],

and therefore also in probability. Moreover,

|b(s, un−1(s)) − b(s, u(s))|2 ≤ (K∗)2|un−1(s)− u(s)|2,
and thus
∫ t

0

|b(s, un−1(s))− b(s, u(s))|2ds n→ 0, P -a.s., uniformly on t ∈ [0, T ],

and therefore also in probability. Hence, by Theorem 3.29, we also have

P − lim
n→∞

∫ t

0

b(s, un−1(s))dWs =

∫ t

0

b(s, u(s))dWs.

Then if we take the limit n→ ∞ of

un(t) = u0 +

∫ t

0

a(s, un−1(s))ds +

∫ t

0

b(s, un−1(s))dWs, (4.9)

by the uniqueness of the limit in probability, we obtain

u(t) = u0 +

∫ t

0

a(s, u(s))ds+

∫ t

0

b(s, u(s))dWs,

with u(t) as the solution of (4.1) and (4.2).
STEP 6: It remains to show that

E[u2(t)] <∞, for all t ∈ [0, T ].

Because, in general, (a+ b+ c)2 ≤ 3(a2+ b2+ c2), by (4.9), it follows that

E[u2n(t)] ≤ 3

(

E[(u0)2] + E

[∣
∣
∣
∣

∫ t

0

a(s, un−1(s))ds

∣
∣
∣
∣

2
]

+E

[∣
∣
∣
∣

∫ t

0

b(s, un−1(s))dWs

∣
∣
∣
∣

2
])

≤ 3

(

E[(u0)2] + TE

[∫ t

0

|a(s, un−1(s))|2ds
]

+E

[∫ t

0

|b(s, un−1(s))|2ds
])

,

where the last relation holds due to the Schwarz inequality as well as
point 3 of Proposition 3.20. From assumption 2 and inequality (4.6) it
further follows that
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|a(s, un−1(s))|2 ≤ K2(1 + |un−1(s)|)2 ≤ 2K2(1 + |un−1(s)|2),
|b(s, un−1(s))|2 ≤ K2(1 + |un−1(s)|)2 ≤ 2K2(1 + |un−1(s)|2).

Therefore,

E[u2n(t)] ≤ 3

(

E[(u0)2] + 2K2(T + 1)

∫ t

0

(1 + E[|un−1(s)|2])ds
)

≤ 3

(

E[(u0)2] + 2K2T (T +1)+2K2(T +1)

∫ t

0

E[|un−1(s)|2]ds
)

≤ c(1 + E[(u0)2]) + c

∫ t

0

E[|un−1(s)|2]ds,

where c is a constant that only depends on K and T . Continuing with the
induction, we have

E[u2n(t)] ≤
(

c+ c2t+ c3
t2

2
+ · · ·+ cn+1 t

n

n!

)

(1 + E[(u0)2]),

and taking the limit n→ ∞,

lim
n→∞E

[
u2n(t)

] ≤ cect
(
1 + E

[
(u0)2

]) ≤ cecT
(
1 + E

[
(u0)2

])
.

Therefore, by Fatou’s Lemma A.27 and by assumption 3, we obtain

E
[
u2(t)

] ≤ cecT
(
1 + E

[
(u0)2

])
< +∞, (4.10)

and hence (u(t))t∈[0,T ] ∈ C([0, T ]), completing the proof.

�
Remark 4.6. By (4.10), it also follows that

sup
0≤t≤T

E
[
u2(t)

] ≤ cecT
(
1 + E

[
(u0)2

])
< +∞.

Remark 4.7. Theorem 4.4 continues to hold if its Hypothesis 1 is substituted
by the following local condition.

1′. For all n > 0 there exists a Kn > 0 such that, for all (x1, x2) ∈ R
2, |xi| ≤ n

i = 1, 2:

|a(t, x1)− a(t, x2)| ≤ Kn|x1 − x2|,
|b(t, x1)− b(t, x2)| ≤ Kn|x1 − x2|.

(See, e.g., Friedman 1975 or Gihman and Skorohod 1972, pp. 45–47.)

Remark 4.8. If the functions a and b in Theorem 4.4 are defined on the whole
[t0,+∞), and if the assumptions of the theorem hold on every bounded subin-
terval [t0, T ], then the SDE (4.1) admits a unique solution defined on the entire



4.1 Existence and Uniqueness of Solutions 223

half-line [t0,+∞). In this case we say that the SDE (4.1) admits a global so-
lution (in time) (See, e.g., Arnold 1974, p. 113.).

The assumptions in Remark 4.8 hold in particular in the case of
autonomous SDEs, i.e., in the case where the coefficients a and b do not
depend explicitly on time.

Proposition 4.9 Consider the following autonomous SDE:

du(t) = a(u(t))dt + b(u(t))dWt, t0 ≤ t ≤ +∞, (4.11)

subject to the initial condition

u(t0) = u0, (4.12)

where u0 is a random variable satisfying the same assumptions as in Theorem
4.4 and a and b satisfy the following global Lipschitz condition; there exists a
positive real constant K such that for any x, y ∈ R

|a(x)− a(y)|+ |b(x)− b(y)| ≤ K|x− y|.

Then (4.11), subject to the initial condition (4.12), admits a unique global
solution on the entire [t0,+∞).

Proof . See, e.g., Arnold (1974, p. 113). �
Example 4.10. We suppose that in (4.1) a(t, u(t)) = 0 and b(t, u(t)) = g(t)u(t).
Then the SDE

{
u(t0) = u0,
du(t) = g(t)u(t)dWt

has the solution

u(t) = u0 exp

{∫ t

t0

g(s)dWs − 1

2

∫ t

t0

g2(s)ds

}

.

In fact, by introducing

X(t) =

∫ t

0

g(s)dWs − 1

2

∫ t

0

g2(s)ds

and Y (t) = exp {X(t)} = f(X(t)), then u(t) = u0Y (t) and, thus, du(t) =
u0dY (t). We will further show that u0dY (t) = g(t)u(t)dWt. Because

dX(t) = −1

2
g2(t)dt+ g(t)dWt,

with the help of Itô’s formula, we obtain
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dY (t) =

(

−1

2
g2(t)fx(X(t)) +

1

2
g2(t)fxx(X(t))

)

dt+ g(t)fx(X(t))dWt

=

(

−1

2
g2(t) exp {X(t)}+ 1

2
g2(t) exp {X(t)}

)

dt+ g(t) exp {X(t)} dWt

= Y (t)g(t)dWt,

resulting in du(t) = u0Y (t)g(t)dWt = u(t)g(t)dWt.

Example 4.11. (Linear time-homogeneous stochastic differential equations).
Three important SDEs that have wide applicability, for instance in financial
modeling, are

1. Arithmetic Brownian motion:

du(t) = adt+ bdWt.

2. Geometric Brownian motion:

du(t) = au(t)dt+ bu(t)dWt.

3. The (mean-reverting) Ornstein–Uhlenbeck process:

du(t) = (a− bu(t))dt+ cdWt.

Since all three cases are time-homogeneous, we may assume 0 as the initial
time, impose an initial condition u(0) = u0, and look for solutions in R+. The
derivations of the solutions of 1–3 resort to a number of standard solution
techniques for SDEs.

1. Direct integration gives

u(t) = u0 + at+ bWt,

so that we can take the expectation and variance directly to obtain

E[u(t)] = u0 + at, V ar[u(t)] = b2t.

2. We calculate the stochastic differential d lnu(t) with the help of Itô’s for-
mula (3.29) and obtain

d lnu(t) =

(

a− 1

2
b2
)

dt+ bdWt.

We can integrate both sides directly, which results in

lnu(t) = lnu0 +

(

a− 1

2
b2
)

t+ bWt
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or

u(t) = u0 exp

{(

a− 1

2
b2
)

t+ bWt

}

. (4.13)

To calculate its expectation, we will require the expected value of ũ(t) =
exp {bWt}. We apply Itô’s formula to calculate the latter’s differential as

d exp {bWt} = dũ(t) = bũ(t)dWt +
1

2
b2ũ(t)dt,

which after direct integration, rearrangement, and the taking of expecta-
tions results in

E[ũ(t)] = 1 +

∫ t

0

1

2
b2E[ũ(s)]ds.

Differentiating both sides with respect to t gives

dE[ũ(t)]

dt
=

1

2
b2E[ũ(t)],

which, after rearrangement and integration, results in

E[ũ(t)] = e
1
2 b

2t.

Therefore, for a deterministic initial condition, the expectation of (4.13)
is

E[u(t)] = u0e(a−
1
2 b

2)tE
[
ebWt
]
= u0eat.

For the variance we employ the standard general result (1.6), so that we
only need to calculate E[(u(t))2]:

(u(t))2 = (u0)2 exp
{
(2a− b2)t+ 2bWt)

}
,

as previously E[exp {2bWt}] = exp
{
2b2t
}
, and by easy computations the

variance of (4.13) is

V ar[u(t)] = E[u(t)2]− E[u(t)]2 = (u0)2 exp {2at} [exp{b2t}− 1].

3. To find the solution of the Ornstein–Uhlenbeck process, we require an
integrating factor φ = exp {bt}, so that

d(φu(t)) = φ(bu(t) + du(t)) = φ(adt+ cdWt).

Because the drift term, which depended on u(t), has dropped out, we can
integrate directly and, after rearrangement, obtain

u(t) =
a

b
+ u0 exp {−bt}+ c

∫ t

0

exp {−b(t− s)} dWs. (4.14)
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Therefore, for a deterministic initial condition the expectation of (4.14) is

E[u(t)] =
a

b
+ u0 exp {−bt} ,

and for the variance we again resort to (1.6), so that we require E[(u(t))2].
Squaring (4.14) and taking expectations yields

E[(u(t))2] =
(a
b
+ u0e−bt

)2
+ E

[(

c

∫ t

0

e−b(t−s)dWs

)2
]

= (E[u(t)])2 + c2
∫ t

0

e−2b(t−s)ds,

where the last step is due to the Itô isometry (point 3 of Proposition 3.20).
Hence the variance of (1.6) is

V ar[u(t)] = (E[u(t)])2 + c2
∫ t

0

exp {−2b(t− s)} ds− (E[u(t)])2

=
c2

2b
(1− exp {−2bt}).

Proposition 4.12. Let (Xt)t be a process that is continuous in probability,
stationary, Gaussian, and Markovian. Then it is of the form Yt + c, where Yt
is an Ornstein–Uhlenbeck process and c is a constant.

Proof . See Breiman (1968). �
Example 4.13. (A generalized Ornstein–Uhlenbeck time-inhomogeneous SDE
(See, e.g., Kloeden and Platen 1999, p. 110ff)). Consider the SDE

du(t) = (a1(t)u(t) + a2(t))dt+ c(t)dWt. (4.15)

Consider the linear ODE

dz(t) = a1(t)z(t)dt;

its fundamental solution is

Φ(t, t0) = exp

{∫ t

t0

a1(s)ds

}

.

Apply the Itô formula to Φ(t, t0)u(t), where u(t) is the solution of (4.15), so
to obtain

d(Φ−1(t, t0)u(t)) =

(
dΦ−1(t, t0)

dt
u(t) + (a1(t)u(t) + a2(t))Φ

−1(t, t0)

)

dt

+c(t)Φ−1(t, t0)dWt

= a2(t)Φ
−1(t, t0)dt+ c(t)Φ−1(t, t0)dWt (4.16)
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since
dΦ−1(t, t0)

dt
= −Φ−1(t, t0)a1(t).

By integration of (4.16) we obtain

u(t) = Φ(t, t0)

(

u(t0) +

∫ t

t0

a2(s)Φ
−1(t, t0)ds+

∫ t

t0

c(s)Φ−1(s, t0)dWs

)

(4.17)
as the solution of (4.15), subject to an initial condition u(t0).

Remark 4.14. The solution (4.17) is a Gaussian process whenever the initial
condition u(t0) is either deterministic or a Gaussian random variable (Prob-
lem 4.16).

We saw in the proof of Theorem 4.4 that if E[(u0)2] < +∞, then
E[(u(t))2] < +∞. This result can be generalized as follows.

Theorem 4.15. Given the hypotheses of Theorem 4.4, if E[(u0)2n] < +∞
for n ∈ N, then

1. E[(u(t))2n] ≤ (1 + E[(u0)2n])ect

2. E[sup0≤s≤t |u(s)− u0|2n] ≤ c̄(1 + E[(u0)2n])tnect

where c and c̄ are constants that only depend on K, T , and n.

Proof . For all N ∈ N we put

u0N(ω) =

{
u0(ω) for |u0(ω)| ≤ N,
Nsgn

{
u0(ω)

}
for |u0(ω)| > N ;

aN(t, x) =

{
a(t, x) for |x| ≤ N,
a(t, Nsgn {x}) for |x| > N ;

bN(t, x) =

{
b(t, x) for |x| ≤ N,
b(t, Nsgn{x}) for |x| > N,

and we denote by uN (t) the solution of

{
uN (0) = u0N ,
duN (t) = aN (t, uN (t))dt+ bN (t, uN (t))dWt

(the solution will exist due to Theorem 4.4). Then, applying Itô’s formula to
f(uN(t)) = (uN (t))2n, we obtain

d(uN (t))2n

= (n(2n− 1)(uN (t))2n−2b2N(t, uN (t))

+2n(uN(t))2n−1aN (t, uN (t)))dt+ 2n(uN (t))2n−1bN(t, uN (t))dWt.
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Hence

(uN(t))2n

= (u0N )2n + n(2n− 1)

∫ t

0

(uN (s))2n−2b2N(s, uN (s))ds

+2n

∫ t

0

(uN (s))2n−1aN (s, uN (s))ds+ 2n

∫ t

0

(uN (s))2n−1bN (s, uN(s))dWs.

Since uN (t) = u0N+
∫ t
0 aN (s, uN (s))ds+

∫ t
0 bN(s, uN (s))dWs, E[(u0N)2n] < +∞

and both aN (t, x) and bN (t, x) are bounded, we have

E[(uN (t))2n] < +∞,

meaning8 (uN (t))n ∈ C([0, T ]). By 2 of Theorem 4.4 and by (a+b)2 ≤ 2(a2+b2)
it follows that

|aN(s, un(s))| ≤ K(1 + |uN (s)|),
|bN(s, un(s))|2 ≤ 2K2(1 + |uN (s)|2).

Moreover, because (uN (t))n ∈ C([0, T ]), we have

E

[

2n

∫ t

0

|uN(s)|2n−1|bN (s, uN(s))|dWs

]

= 0,

and therefore

E[uN(t)2n] = E[(u0N )2n] +

∫ t

0

E[(2nuN(s)aN (s, uN (s))

+n(2n− 1)b2N (s, uN(s)))uN (s)2n−2]ds

≤ E[(u0N )2n] + n(2n+ 1)

∫ t

0

E[(uN (s)aN (s, uN(s))

+b2N(s, uN (s)))uN (s)2n−2]ds

≤ E[(u0N )2n] + n(2n+ 1)K2

∫ t

0

E[(1 + u2N(s))uN (s)2n−2]ds,

where the first inequality follows when condition 2 of Theorem 4.4 is substi-
tuted by xa(t, x) + b2(t, x) ≤ K2(1 + x2) for all t ∈ [0, T ], and all x ∈ R. Now
since, in general, x2n−2 ≤ 1 + x2n, we have

uN(s)2n−2(1 + u2N (s)) ≤ 1 + 2uN(s)2n.

8It suffices to make use of the following theorem for

E

[(∫ t

0
bN(s, uN (s))dWs

)2n
]
:
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Therefore,

E[uN(t)2n] ≤ E[(u0N )2n] + n(2n+ 1)K2

∫ t

0

E[1 + 2uN(s)2n]ds,

and, by putting φ(t) = E[uN(t)2n], we can write

φ(t) ≤ φ(0) + n(2n+ 1)K2

∫ t

0

(1 + 2φ(s))ds

= φ(0) + n(2n+ 1)K2t+ 2n(2n+ 1)K2

∫ t

0

φ(s) = α(t) + L

∫ t

0

φ(s)ds,

where α(t) = φ(0) + n(2n + 1)K2t and L = 2n(2n + 1)K2. By Gronwall’s
Lemma 4.3, we have that

φ(t) ≤ α(t) + L

∫ t

0

eL(t−s)α(s)ds,

and thus

E[uN(t)2n]

≤ E[(u0N )2n] +
L

2
t+ L

∫ t

0

eL(t−s)

(

E[(u0N )2n] +
L

2
s

)

ds

= E[(u0N )2n] +
L

2
t− E[(u0N )2n] + E[(u0N )2n]eLt + LeLt

∫ t

0

e−LsL

2
sds

=
L

2
t+ E[(u0N )2n]eLt − L

2
t− 1

2
eLt(e−Lt − 1) ≤ eLt(1 + E[(u0N)2n]).

Therefore, point 1 holds for uN(t) (N ∈ N
∗) and, taking the limit N → ∞, it

also holds for u(t). For the proof of 2, see, e.g., Gihman and Skorohod (1972).
�

Remark 4.16. The preceding theory provides only sufficient conditions for the
global (in time) existence of solutions to SDEs. It is interesting to realize that,
for example, the linear growth condition on the coefficients is not necessary
for global existence. We will report here two interesting examples from the
literature, one regarding an application to finance and the other to biology.

Application: A Highly Sensitive Mean-Reverting
Process in Finance

According to Chan et al. (1992) and Nowman (1997), a large class of mod-
els regarding the short-term riskless interest rate R(t) are included in the
following model:

dR(t) = λ(μ −R(t))dt+ σRγ(t)dWt, (4.18)
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for suitable choices of the parameters λ, μ, σ, and γ; W denotes a standard
Wiener noise.

Statistical analysis carried out by the aforementioned authors evidence
that the most suited models of this kind are those that allow a high sensitivity
of the volatility to the interest rate, i.e., γ > 1. The problem is that these
values for γ imply that the diffusion coefficient does not satisfy the linear
growth condition, so that the preceding theory cannot be applied to show
global existence at the time of the solutions to (4.18) and the boundedness of
its moments. However, Wu et al. (2008) have been able to show the following
important result.

Theorem 4.17. For any set of parameters λ > 0, μ > 0, σ > 0, γ > 1, and
any nontrivial initial condition R(0) > 0, there exists a unique solution R(t),
global in time, of (4.18) that stays, almost surely, in R

∗
+, for all times t ∈ R+.

Further, the solution R(t) of (4.18) satisfies the bounds

E[R(t)] ≤ R(0) + μ, t ∈ R+

and
lim sup
t→+∞

E[R(t)] ≤ μ.

Application: A General Lotka–Volterra Model

A mathematical problem of interest in population dynamics in presence of
Wiener noise has been discussed in Mao et al. (2002).

A general Lotka–Volterra model for a system of n ∈ N − {0} interacting
components appears in the form

ẋ(t) = diag(x1(t), . . . , xn(t))[b +Ax(t)], (4.19)

where x(t) = (x1(t), . . . , xn(t))
′ is the vector of the component populations,

b = (b1, . . . , bn)
′ is a vector of real coefficients, and A = (ai,j)1≤i,j≤n is the

real-valued interaction matrix; diag(x1(t), . . . , xn(t)) denotes a diagonal n×n
matrix having on the diagonal the elements x1(t), . . . , xn(t).

If we assume that the matrix parameters are perturbed by a Wiener noise
W , i.e.,

aijdt→ aijdt+ σijdWt,

System (4.19) becomes a system of SDEs

dx(t) = diag(x1(t), . . . , xn(t))[b +Ax(t)]dt + σx(t)dWt , (4.20)

where σ = (σi,j)1≤i,j≤n is subject to the following condition:

(H1) σi,i > 0 for 1 ≤ i ≤ n; and σi,j ≥ 0 for 1 ≤ i, j ≤ n, i �= j.
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Now, system (4.20) does not satisfy the linear growth condition, though
it satisfies the local Lipschitz condition; according to the theory, the solution
of (4.20) might explode in a finite time, and indeed the authors, in Mao
et al. (2002), have shown that this is the case as far as the solution of the
corresponding deterministic system (4.19) is concerned, but they have also
shown the following interesting result, according to which they might claim
that environmental noise suppresses explosion.

Theorem 4.18. Under Hypothesis (H1), for any system parameters b ∈
R

n, A ∈ R
n×n and any nontrivial initial condition, there exists a unique

solution, global in time, of system (4.20) that stays, almost surely, in R
n
+ for

all times t ∈ R+.

Remark 4.19. (Weak Solutions of Stochastic Differential Equations).
In the analysis carried out in Sect. 4.1 with respect to the SDE

du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

the probability space (Ω,F , P ), the Wiener process W , and the coefficients
a(t, x) and b(t, x) were all given in advance, and then conditions were given
for the existence and uniqueness of the solution. Such a solution is known
as a strong solution. Existence and uniqueness theorems may also hold by
assigning only the coefficients of the SDE, leaving open the problem of finding
a suitable Wiener process and the corresponding filtration. In this case we
speak of a weak solution. Clearly a strong solution is also a weak solution, but
the converse does not hold (Rogers and Williams, 1994).

Two solutions (either strong or weak) are called weakly unique if they
possess the same probability law, i.e., if their finite-dimensional distributions
are equal.

4.2 Markov Property of Solutions

In the preceding section we showed that if a(t, x) and b(t, x) are measurable
functions on (t, x) ∈ [0, T ]×R that satisfy conditions 1 and 2 of Theorem 4.4,
then there exists a unique solution in C([0, T ]) of

{
u(0) = u0 a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

(4.21)

provided that the random variable u0 is independent of FT = σ(Ws, 0 ≤ s ≤
T ) and E[(u0)2] < +∞. Analogously, for all s ∈]0, T ], there exists a unique
solution in C([s, T ]) of

{
u(s) = us a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

(4.22)
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provided that the random variable us is independent of Fs,T = σ(Wt−Ws, t ∈
[s, T ]) and E[(us)

2] < +∞. (The proof is left to the reader as a useful exercise.)
Now, let t0 ≥ 0 and c be a random variable with u(t0) = c almost surely

and, moreover, c be independent of Ft0,T = σ(Wt−Wt0 , t0 ≤ t ≤ T ) as well as
E[c2] < +∞. Under conditions 1 and 2 of Theorem 4.4 there exists a unique
solution {u(t), t ∈ [t0, T ]} of (4.21) with the initial condition u(t0) = c almost
surely, and the following holds.

Lemma 4.20. If h(x, ω) is a real-valued function defined for all (x, ω) ∈ R×Ω
such that

1. h is BR ⊗F-measurable.
2. h is bounded.
3. For all x ∈ R : h(x, ·) is independent of Fs for all s ∈ [t0, T ],

then

∀s ∈ [t0, T ] : E[h(u(s), ·)|Fs] = E[h(u(s), ·)|u(s)] a.s. (4.23)

Proof . We limit ourselves to the case of h being decomposable of the form

h(x, ω) =

n∑

i=1

Yi(x)Zi(ω), (4.24)

with the Zi independent of Fs. In that case

E[h(u(s), ·)|Fs] =

n∑

i=1

E[Yi(u(s))Zi(·)|Fs] =

n∑

i=1

Yi(u(s))E[Zi(·)|Fs],

because Yi(u(s)) is Fs-measurable. Therefore

E[h(u(s), ·)|Fs] =
n∑

i=1

Yi(u(s))E[Zi(·)],

and recapitulating, because σ(u(s)) ⊂ Fs, we have

E[h(u(s), ·)|Fs] =

n∑

i=1

Yi(u(s))E[Zi(·)|u(s)]

=
n∑

i=1

E[Yi(u(s))Zi(·)|u(s)] = E[h(u(s), ·)|u(s)].

It can be shown that every h that satisfies conditions 1, 2, and 3 can be
approximated by functions that are decomposable as in (4.24). �

Theorem 4.21. If (u(t))t∈[t0,T ] is the solution of the SDE problem (4.22)
on [t0, T ], then it is a Markov process with respect to the filtration Ut =
σ(u(s), t0 ≤ s ≤ t), i.e., it satisfies the condition
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∀B ∈ BR, ∀s ∈ [t0, t[: P (u(t) ∈ B|Us) = P (u(t) ∈ B|u(s)) a.s. (4.25)

Proof . Putting Ft = σ(c,Ws, t0 ≤ s ≤ t), then u(t) is Ft-measurable, as can
be deduced from Theorem 4.4. Therefore, σ(u(t)) ⊂ Ft and thus Ut ⊂ Ft. In
order to prove (4.25), it is now sufficient to show that

∀B ∈ BR, ∀s ∈ [t0, t[: P (u(t) ∈ B|Fs) = P (u(t) ∈ B|u(s)) a.s. (4.26)

Fixing B ∈ BR and s < t, we denote by u(t, s, x) the solution of (4.22)
with the initial condition u(s) = x a.s. (x ∈ R), and we define the mapping
h : R×Ω → R as

h(x, ω) = IB(u(t, s, x;ω)) for (x, ω) ∈ R×Ω.

h is bounded and, moreover, for all x ∈ R, h(x, ·) is independent of Fs, because
so is u(t, s, x;ω) (given that u(s) = x ∈ R is a certain event). Furthermore,
observe that if t0 < s, s ∈ [0, T ], we obtain by uniqueness

u(t, t0, c) = u(t, s, u(s, t0, c)) for t ≥ s, (4.27)

where c is the chosen random value. Equation (4.27) states the fact that
the solution of (4.21) with the initial condition u(t0) = c is identical to the
solution of the same equations with the initial condition u(s) = u(s, t0, c)
for t ≥ s (e.g., Baldi 1984). Equation (4.27) is called the semigroup property
or dynamic system. (The proof of the property is left to the reader as an
exercise.) Now, because h(x, ω) = IB(u(t, s, x;ω)) satisfies conditions 1, 2,
and 3 of Lemma 4.20 and by (4.27), we have h(u(s), ω) = IB(u(t;ω)). Then,
by (4.23), we obtain

P (u(t) ∈ B|Fs) = P (u(t) ∈ B|u(s)) a.s.,
completing the proof. �
Remark 4.22. By (4.27) and (4.26), we also have

P (u(t) ∈ B|u(s)) = P (u(t, s, u(s)) ∈ B|u(s))
and, in particular,

P (u(t) ∈ B|u(s) = x) = P (u(t, s, u(s)) ∈ B|u(s) = x), x ∈ R.

Hence
P (u(t) ∈ B|u(s) = x) = P (u(t, s, x) ∈ B), x ∈ R. (4.28)

Theorem 4.23. If (u(t))t∈[t0,T ] is the solution of

{
u(t0) = c a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,
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defining, for all B ∈ BR, all t0 ≤ s < t ≤ T and all x ∈ R:

p(s, x, t, B) = P (u(t) ∈ B|u(s) = x) = P (u(t, s, x) ∈ B),

then p is a transition probability (of the Markov process u(t)).

Proof . We have to show that conditions 1, 2, and 3 of Definition 2.110 are
satisfied.

1. Fixing s and t such that t0 ≤ s < t ≤ T and B ∈ BR,

p(s, x, t, B) = P (u(t) ∈ B|u(s) = x) = E[IB(u(t))|u(s) = x], x ∈ R.

Then, as a property of conditional probabilities, p(s, ·, t, B) is BR-
measurable.

2. is true by the definition of p(s, x, t, B).
3. Fixing s and t such that t0 ≤ s < t ≤ T and x ∈ R, p(s, x, t, B) =
P (u(t, s, x) ∈ B), for all B ∈ BR. This is the induced probability P of
u(t, s, x). Therefore, if ψ : R → R is a bounded BR-measurable function,
then

∫

R

ψ(y)p(s, x, t, dy) =

∫

Ω

ψ(u(t, s, x, ω))dP (ω).

Now, let ψ(y) = p(r, y, t, B) with B ∈ BR, y ∈ R, t0 ≤ r < t ≤ T. Then,
for s < r, we have

∫

R

p(r, y, t, B)p(s, x, r, dy)

=

∫

Ω

p(r, u(r, s, x, ω), t, B)dP (ω)

= E[p(r, u(r, s, x), t, B)] = E[P (u(t) ∈ B|u(r) = u(r, s, x))]

= E[E[IB(u(t))|u(r) = u(r, s, x)]] = E[IB(u(t))|u(s) = x]

= P (u(t, s, x) ∈ B) = p(s, x, t, B).

In fact, u(t) satisfies (4.21) with the initial condition u(s) = x. �
Remark 4.24. By Theorem 2.113, the knowledge of the solution u(t) of

{
u(t0) = c a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt

is equivalent to assigning the transition probability p to the process u(t) and
the distribution P0 of c.

Remark 4.25. Every SDE generates Markov processes in the sense that every
solution is a Markov process.

Implicit in the underlying hypotheses of Theorem 4.4 is the following
theorem.

Theorem 4.26. If the SDE is autonomous of form (4.11), then the Markov
process {u(t, t0, c), t ∈ [t0, T ]} is homogeneous.
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Remark 4.27. The transition measure of the homogeneous process (ut)t∈[t0,T ]

is time-homogeneous, i.e.,

P (u(t+ s) ∈ A|u(t) = x) = P (u(s) ∈ A|u(0) = x)almost surely

for any s, t ∈ R+, x ∈ R, and A ∈ BR.

Theorem 4.28. If for
{
u(t0) = c a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

the hypotheses of Theorem 4.4 are satisfied, with a(t, x) and b(t, x) being con-
tinuous in (t, x) ∈ [0,∞]×R, then the solution u(t) is a diffusion process with
drift coefficient a(t, x) and diffusion coefficient b2(t, x).

Proof . We prove point 1 of Lemma 2.146. Let u(t, s, x) be a solution of the
problem with initial value

u(s) = x a.s., x ∈ R (fixed), t ≥ s (s fixed).

By (4.28):

p(t, x, t+ h,A) = P (u(t+ h, t, u(t)) ∈ A|u(t) = x) = P (u(t+ h, t, x) ∈ A).

Hence p(t, x, t + h,A) is the probability distribution of the random variable
u(t+ h, t, x), and thus

E[f(u(t+ h, t, x)− x)] =

∫

R

f(y − x)p(t, x, t + h, dy)

for every function f(z) such that9 |f(z)| ≤ K(1 + |z|2n), with α ≥ 1, K > 0,
and f(z) continuous. It is now sufficient to prove that

lim
h↓0

1

h
E[|u(t+ h, t, x)− x|4] = 0.

Given that z4 is of the preceding form f(z), the preceding limit follows from

1

h
E[|u(t+ h, t, x)− x|4] ≤ 1

h
Kh2(1 + |x|4)

by point 2 of Theorem 4.15.
Now we prove point 2 of Lemma 2.146. This is equivalent to showing that

lim
h↓0

1

h
E[u(t+ h, t, x)− x] = a(t, x).

9The assumption |f(z)| ≤ K(1 + |z|2n) implies that E[|f(z)|] ≤ K(1 + E[|z|2n])
and, by Theorem 4.15, E[|u(t+ h, t, x)|2n] < +∞. Therefore, f(u(t+ h, t, x)− x) is
integrable.
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Because u(t, t, x) = x almost surely, due to the definition of the stochastic
differential we obtain

E[u(t+ h, t, x)− x] = E

[∫ t+h

t

a(s, u(s, t, x))ds+

∫ t+h

t

b(s, u(s, t, x))dWs

]

.

But since E[
∫ t+h

t b(s, u(s, t, x))dWs] = 0, we get

E[u(t+ h, t, x)− x] = E

[∫ t+h

t

a(s, u(s, t, x))ds

]

= E

[∫ t+h

t

(a(s, u(s, t, x)) − a(s, x))ds

]

+

∫ t+h

t

a(s, x)ds

=

∫ t+h

t

E[a(s, u(s, t, x))− a(s, x)]ds+

∫ t+h

t

a(s, x)ds,

after adding and subtracting the term a(s, x). Moreover, since | · | is a convex
function, by the Schwarz inequality,

∣
∣
∣
∣
∣

∫ t+h

t

E[a(s, u(s, t, x))− a(s, x)]ds

∣
∣
∣
∣
∣

≤
∫ t+h

t

E[|a(s, u(s, t, x)) − a(s, x)|]ds

≤ h
1
2

(∫ t+h

t

(E[|a(s, u(s, t, x)) − a(s, x)|])2ds
) 1

2

≤ h
1
2

(∫ t+h

t

E[|a(s, u(s, t, x))− a(s, x)|2]ds
) 1

2

.

Then, by Hypothesis 1 of Theorem 4.4,

|a(s, u(s, t, x))− a(s, x)|2 ≤ (K∗)2|u(s, t, x)− x|2,

and, by point 2 of Theorem 4.15,

E[|u(s, t, x)− x|2] ≤ Kh(1 + |x|2), K constant, positive,

and thus for h ↓ 0

1

h

∣
∣
∣
∣
∣

∫ t+h

t

E[a(s, u(s, t, x))− a(s, x)]ds

∣
∣
∣
∣
∣
≤ 1

h
h

1
2K∗(hKh(1 + |x|2)) 1

2 → 0.

Hence, as a conclusion, by the mean value theorem for t ≤ r ≤ t+ h,
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lim
h↓0

1

h
E[u(t+ h, t, x)− x] = lim

h↓0
1

h

∫ t+h

t

a(s, x)ds = lim
h↓0

1

h
a(t, x)h = a(t, x).

Lastly, we have to show that the assumptions of Lemma 2.146 are satisfied
(e.g., Friedman 1975). �

Strong Markov Property of Solutions of Stochastic
Differential Equations

Lemma 4.29. By Hypotheses 1 and 2 of Theorem 4.4, we have that

∀R > 0, ∀T > 0 : E

[

sup
r≤t≤T

|u(t, s, x)− u(t, r, y)|2
]

≤ C(|x− y|2 + |s− r|)

for |x| ≤ R, |y| ≤ R, 0 ≤ s ≤ r ≤ T , where C is a constant that depends on
R and T .

Proof . See, e.g., Friedman (1975). �

Theorem 4.30. By Hypotheses 1 and 2 of Theorem 4.4, (u(t, s, x))t∈[s,T ], the
solution of

du(t) = a(t, u(t))dt+ b(t, u(t))dWt

satisfies the Feller property and, hence, the strong Markov property.

Proof . Let f ∈ BC(R). By the Lebesgue theorem, we have

E[f(u(t+ r, s, x))] → E[f(u(t+ s, s, x))] for r → s.

Moreover, by Lemma 4.29, and again by the Lebesgue theorem,

E[f(u(t+ r, r, y))]− E[f(u(t+ r, s, x))] → 0 for y → x, r → s;

therefore,

E[f(u(t+ r, r, y))]− E[f(u(t+ s, s, x))] → 0 for y → x, r → s.

Hence (s, x) → ∫
R
p(s, x, s+ t, dy)f(y) is continuous, and so (u(t, s, x))t∈[s,T ]

satisfies the Feller property and, by Theorem 2.132 (because it is continuous)
has the strong Markov property. �

4.3 Girsanov Theorem

The Girsanov theorem is an interesting result in that it states that the addition
of a drift to a standard Brownian motion with respect to a law P leads to a
Brownian motion with respect to a new probability law Q that is absolutely
continuous with respect to P .
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Lemma 4.31. Let Z be a strictly positive random variable on (Ω,F , P ) with
E[Z] ≡ EP [Z] = 1. Furthermore, define the random measure dQ = ZdP . If
G is a σ-algebra with G ⊆ F , then for any random variable X on (Ω,F) such
that X ∈ L1(Q) we have that

EQ[X |G] = E[XZ|G]
E[Z|G] .

Proof . This easily follows from the definition of conditional expectation of a
random variable with respect to a σ-algebra (e.g., Øksendal 1998, p. 152). �

Lemma 4.32. Let (Ft)t∈[0,T ], for T > 0, be a filtration on the probability
space (Ω,F , P ), and let (Zt)t∈[0,T ] be a strictly positive Ft-martingale with
respect to the probability measure P such that EP [Zt] = 1 for any t ∈ [0, T ].
A sufficient condition for an adapted stochastic process (Yt)t∈[0,T ] to be an
Ft-martingale with respect to the measure dQ = ZTdP is that the process
(ZtYt)t∈[0,T ] is an Ft-martingale with respect to P .

Proof . Because (ZtYt)t∈[0,T ] is an Ft-martingale with respect to P , for s ≤
t ≤ T , by the tower law of probability, we have that

E[ZTYt|Fs] = E[E[ZTYt|Ft]|Fs] = E[YtE[ZT |Ft]|Fs] = E[YtZt|Fs]

= YsZs.

As a consequence we have that

EQ[Yt|Fs] =
E[ZTYt|Fs]

E[ZT |Fs]
=
ZsYs
Zs

= Ys.

�

Proposition 4.33

1. Let ht ∈ L2([0, T ]) be a deterministic function and Wt(ω) a Brownian
motion, and define

Yt(ω) = exp

{∫ t

0

hsdWs(ω)− 1

2

∫ t

0

h2sds

}

, t ∈ [0, T ].

Then, by Itô’s formula [see (3.31)],

dYt = YthtdWt.

2. Let ϑ ∈ C([0, T ]), with T ≤ ∞, and define

Zt(ω) = exp

{∫ t

0

ϑs(ω)dWs(ω)− 1

2

∫ t

0

ϑ2s(ω)ds

}

, t ∈ [0, T ].

Then, by Itô’s formula,
dZt = ZtϑtdWt.
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Lemma 4.34. (Novikov condition). Under the assumptions of point 2 of
Proposition 4.33, if

E

[

exp

{
1

2

∫ T

0

|ϑ(s)|2ds
}]

< +∞,

then (Zt)t∈[0,T ] is a martingale and E[Zt] = E[Z0] = 1.

Theorem 4.35 (Girsanov). Let (Zt)t∈[0,T ] be a P -martingale (i.e., let ϑs
satisfy the Novikov condition). Then the process

Yt =Wt −
∫ t

0

ϑsds

is a Brownian motion with respect to the measure dQ = ZTdP .

Proof . We resort to the Lévy characterization of Brownian motion proving
point 2 in Theorem 2.167. Let Mt = ZtYt. Then, by Lemma 4.32, to prove
that (Yt)t∈[0,T ] is a Q-martingale, it is sufficient to show that (Mt)t∈[0,T ] is a
P -martingale. Assuming that (ϑt)t∈[0,T ] satisfies the Novikov condition and
that (Zt)t∈[0,T ] is a martingale with E[Zt] = 1, by Itô’s formula, we obtain

dMt = ZtdYt + YtdZt + Ztϑtdt = Zt(dWt − ϑtdt) + YtZtϑtdWt + Ztϑtdt

= Zt(dWt + YtϑtdWt) = Zt(1 + ϑtYt)dWt.

Hence (Mt)t∈[0,T ] is a martingale. Further showing that Y 2
t − t is a martingale

is left as an exercise. �
Remark 4.36. The Girsanov theorem implies that for all F1, . . . , Fn ∈ B,
where B is the Borel σ-algebra on the state space of the processes, and for all
t1, . . . , tn ∈ [0, T ]:

Q(Yt1 ∈ F1, . . . , Ytk ∈ Fk) = P (Wt1 ∈ F1, . . . ,Wtk ∈ Fk)

and Q� P as well as with the Radon–Nikodym derivative

dQ

dP
= ZT , on FT .

Furthermore, because by the Radon–Nikodym Theorem A.54

Q(F ) =

∫

F

ZT (ω)P (dω)

and ZT > 0, we have that

Q(F ) > 0 ⇒ P (F ) > 0

and vice versa, so that

Q(F ) = 0 ⇒ P (F ) = 0,

and thus P � Q. Therefore, the two measures are equivalent.
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Application to the Statistics of Stochastic Differential Equations

Consider an SDE of the form

dXt = ϑa(X(t))dt+ dWt, (4.29)

where the parameter is unknown. We wish to estimate such a parameter
based on the observation of the process X(t), solution of (4.29), during a time
interval [0, T ].

If we assume that the real-valued function a belongs to C1 and sat-
isfies a global Lipschitz condition, then Proposition 4.9 assures that for
any given square-integrable random variable X0 independent of the Wiener
process, taken as initial condition, SDE (4.29) admits a unique global solution
X ∈ C([0,+∞)).

If we assume that, for any given T > 0, the function a satisfies the Novikov
condition

E

[

exp

{
1

2
ϑ2
∫ T

0

a2(X((s))ds

}]

< +∞,

we may apply Girsanov’s Theorem 4.35 and state that the process X(t)
solution of (4.29) in the interval [0, T ], subject to the initial condition X0,
is a standard Wiener process with respect to the probability measure

Q = ZTP
ϑ
X

if Pϑ
X is the law of the process X(t) and

Zt = exp

{

−ϑ
∫ t

0

a(X(s))dWs − 1

2
ϑ2
∫ t

0

a2(X(s))ds

}

, t ∈ [0, T ]. (4.30)

If we take into account (4.29), then we may rewrite (4.30) in the following
form:

Zt = exp

{

−ϑ
∫ t

0

a(X(s))dX(s) +
1

2
ϑ2
∫ t

0

a2(X(s))ds

}

, t ∈ [0, T ].

We may now notice that, since ZT > 0, we may state (Lipster and Shiryaev
1977, p. 237) that the two measures Pϑ

X and Q are equivalent on the time
interval [0, T ] , and Z−1

T is the density of Pϑ
X with respect to Q, i.e.,

dPϑ
X

dQ
= Z−1

T .

Since the measure Q is now independent of the unknown parameter ϑ,
while Pϑ

X is the measure associated with the process and depends upon the
parameter, we can claim that Z−1

T may play the role of the likelihood function
with respect to ϑ, i.e., given a trajectory of the process {X(t), t ∈ [0, T ]} ,
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during a finite interval of time, the corresponding (random) likelihood function
is

LT (ϑ,X) = exp

{

ϑ

∫ T

0

a(X(s))dX(s)− 1

2
ϑ2
∫ T

0

a2(X(s))ds

}

.

By maximization, we obtain the maximum likelihood estimator of ϑ

Θ̂(X,T ) =

∫ T
0
a(X(s))dX(s)
∫ T
0
a2(X(s))ds

as a random variable depending on the random process up to time T.
The following theorem holds.

Theorem 4.37. Under the preceding assumptions, the maximum likelihood
estimator Θ̂(X,T ) is consistent for ϑ, i.e., for any ϑ ∈ R,

Pϑ( lim
T→∞

Θ̂(X,T ) = ϑ) = 1.

Proof . See Lipster and Shiryaev (2010, p. 234). �
For a more detailed account of this topic the reader may refer to p. 225

of Lipster and Shiryaev (2010).

4.4 Kolmogorov Equations

This section is devoted to establishing evolution equations for the transition
probabilities of Markov processes that are solutions of SDEs; as a natural fall-
out we obtain the infinitesimal generators of the evolution operators of such
processes.

We will consider the SDE

du(t) = a(t, u(t))dt+ b(t, u(t))dWt (4.31)

and suppose that the coefficients a and b satisfy the assumptions of the exis-
tence and uniqueness Theorem 4.4. We will denote by u(t, x), for s ≤ t ≤ T ,
the solution of (4.31) subject to the initial condition

u(s, s, x) = x a.s. (x ∈ R).

Remark 4.38. Under assumptions 1 and 2 of Theorem 4.4 on the coefficients a
and b, if f(t, x) is continuous in both variables as well as |f(t, x)| ≤ K(1+|x|m)
with k,m positive constants, then it can be shown that

lim
h↓0

1

h

∫ t+h

h

E[f(s, u(s, t, x))]ds = f(t, x), (4.32)

lim
h↓0

1

h

∫ t

t−h

E[f(s, u(s, t, x))]ds = f(t, x).
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The proof employs arguments similar to the proofs of Theorems 4.28 and 4.15.

Lemma 4.39. If f : R → R is a twice continuously differentiable function,
and if there exist C > 0 and m > 0 such that

|f(x)|+ |f ′(x)| + |f ′′(x)| ≤ C(1 + |x|m), x ∈ R,

and if the coefficients a(t, x) and b(t, x) satisfy assumptions 1 and 2 of
Theorem 4.4, then

lim
h↓0

1

h
(E[f(u(t, t− h, x))]− f(x)) = a(t, x)f ′(x) +

1

2
b2(t, x)f ′′(x). (4.33)

Proof . By Itô’s formula, we get

f(u(t, t− h, x))− f(x) =

∫ t

t−h

a(s, u(s, t− h, x))f ′(u(s, t− h, x))ds

+

∫ t

t−h

1

2
b2(s, u(s, t− h, x))f ′′(u(s, t− h, x))ds

+

∫ t

t−h

b(s, u(s, t− h, x))f ′(u(s, t− h, x))dWs,

and after taking expectations

E[f(u(t, t− h, x))]− f(x)

= E

[∫ t

t−h

a(s, u(s, t− h, x))f ′(u(s, t− h, x))ds

+

∫ t

t−h

1

2
b2(s, u(s, t− h, x))f ′′(u(s, t− h, x))ds

]

,

hence

1

h
(E[f(u(t, t− h, x))]− f(x))

=
1

h

∫ t

t−h

E[a(s, u(s, t− h, x))f ′(u(s, t− h, x))]ds

+

∫ t

t−h

E

[
1

2
b2(s, u(s, t− h, x))f ′′(u(s, t− h, x))

]

ds.

Then (4.33) follows from (4.32) because u(t, t, x) = x. �
Remark 4.40. Resorting to the notation of Definitions 2.115 and 2.121, (4.33)
can also be written as

Atf = lim
h↓0

Tt−h,tf − f

h
= a(t, ·)f ′ +

1

2
b2(t, ·)f ′′.
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Moreover, by Theorem 4.28 and Proposition 2.147, we also have

Asf = lim
h↓0

Ts,s+hf − f

h
= a(s, ·)f ′ +

1

2
b2(s, ·)f ′′ (4.34)

if f ∈ BC(R) ∩ C2(R). On the other hand, in the time-homogeneous case we
have

Af = lim
h↓0

Thf − f

h
= a(·)f ′ +

1

2
b2(·)f ′′.

Theorem 4.41. If u(t) is the Markovian solution of the homogeneous
SDE (4.11) and A the associated infinitesimal generator, then for f ∈
BC(R) ∩ C2(R) the process

Mt = f(u(t))−
∫ t

0

[Af ](u(s))ds (4.35)

is a martingale.

Proof . By Itô’s formula, we have that

f(u(t)) = f(u0) +

∫ t

0

[Af ](u(s))ds+
∫ t

0

b(u(s))f ′(u(s))dWs,

which, substituted into (4.35), results in

Mt = f(u0) +

∫ t

0

b(u(s))f ′(u(s))dWs.

Since an Itô integral is a martingale with respect to filtration (Ft)t∈R+ gen-
erated by the Wiener process (Wt)t∈R+ , therefore

E[Mt|Fs] =Ms.

If we now consider the filtration (Mt)t∈[0,T ], generated by (Mt)t∈[0,T ], then

E[Mt|Ms] = E[E[Mt|Fs]|Ms] = E[Mt|Fs] =Ms,

because Fs ⊂ Ms. �
Furthermore, we note that it is valid to reverse the argumentation of The-

orem 4.28, as the following theorem states.

Theorem 4.42. If (u(t))t∈[0,T ] is a diffusion process with drift a(t, x) and
diffusion coefficient c(t, x), where

1. a(t, x) is continuous in both variables as well as |a(t, x)| ≤ K(1 + |x|), K
a positive constant.

2. c(t, x) is continuous in both variables and has continuous as well as
bounded derivatives ∂

∂tc(t, x) and ∂
∂xc(t, x), and, moreover, 1

c(t,x) is

bounded.
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3. There exists a function ψ(x) that is independent of t and where

ψ(x) > 1 + |x|, sup
0≤t≤T

E[ψ(u(t))] < +∞,

as well as
∣
∣
∣
∣

∫

Ω

(y − x)p(t, x, t+ h, dy)

∣
∣
∣
∣+

∣
∣
∣
∣

∫

Ω

(y − x)2p(t, x, t+ h, dy)

∣
∣
∣
∣ ≤ ψ(x)h,

∫

Ω

(|y|+ y2)p(t, x, t+ h, dy) ≤ ψ(x),

then there exists a Wiener process Wt, so that u(t) satisfies the SDE

du(t) = a(t, u(t))dt+
√
c(t, u(t))dWt.

Proof . See, e.g., Gihman and Skorohod (1972). �
Remark 4.43. Equation (4.34) can also be shown by Itô’s formula, as in the
proof of Lemma 4.39.

Proposition 4.44. Let f(x) be r times differentiable and suppose that there
exists an m > 0 such that |f (k)(x)| ≤ L(1 + |x|m). If a(t, x) and b(t, x) both

satisfy the assumptions of Theorem 4.4 and there exist ∂k

∂xk a(t, x),
∂k

∂xk b(t, x),
k = 1, . . . , r, that are continuous, as well as

∣
∣
∣
∣
∂k

∂xk
a(t, x)

∣
∣
∣
∣+

∣
∣
∣
∣
∂k

∂xk
b(t, x)

∣
∣
∣
∣ ≤ Ck(1 + |x|mk), k = 1, . . . , r

(with Ck and mk being positive constants), then the function

φs(z) = E[f(u(t, s, z))]

is r times differentiable with respect to z (i.e., with respect to the initial con-
dition).

Proof . See, e.g., Gihman and Skorohod (1972). �

Theorem 4.45. If the coefficients a(t, x) and b(t, x) are continuous and have
continuous partial derivatives ax(t, x), ax(t, x), bx(t, x), and bxx(t, x), and,
moreover, if there exist a k > 0 and an m > 0 such that

|a(t, x)|+ |b(t, x)| ≤ k(1 + |x|),
|ax(t, x)|+ |axx(t, x)| + |bx(t, x)| + |bxx(t, x)| ≤ k(1 + |x|m),

and furthermore if the function f(x) is twice continuously differentiable with

|f(x)|+ |f ′(x)|+ |f ′′(x)| ≤ k(1 + |x|m),
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then the function

q(t, x) ≡ E[f(u(s, t, x))], 0 < t < s, x ∈ R, s ∈]0, T [,
satisfies the equation

∂

∂t
q(t, x) + a(t, x)

∂

∂x
q(t, x) +

1

2
b2(t, x)

∂2

∂x2
q(t, x) = 0, (4.36)

subject to the condition
lim
t↑s

q(t, x) = f(x). (4.37)

Equation (4.36) is called Kolmogorov’s backward differential equation.

Proof . Since, by the semigroup property, u(s, t− h, x) = u(s, t, u(t, t− h, x)),
and in general E[f(Y (·, X))|X = x] = E[f(Y (·, x))], we have

q(t− h, x) = E[f(u(s, t− h, x))] (4.38)

= E[E[f(u(s, t− h, x))|u(t, t− h, x)]]

= E[E[f(u(s, t, u(t, t− h, x)))|u(t, t− h, x)]]

= E[E[f(u(s, t, u(t, t− h, x)))]] = E[q(t, u(t, t− h, x))].

By Proposition 4.44, q(t, x) is twice differentiable with respect to x, and, by
Lemma 4.39, we get

lim
h↓0

E[q(t, u(t, t− h, x))]− q(t, x)

h
= a(t, x)

∂

∂x
q(t, x) +

1

2
b2(t, x)

∂2

∂x2
q(t, x).

Therefore, by (4.38), the limit

lim
h↓0

q(t, x)− q(t− h, x)

h
= lim

h↓0
q(t, x) − E[q(t, u(t, t− h, x))]

h
,

and thus

∂

∂t
q(t, x) = lim

h↓0
q(t, x) − q(t− h, x)

h
= −a(t, x) ∂

∂x
q(t, x)− 1

2
b2(t, x)

∂2

∂x2
q(t, x).

It can further be shown that ∂
∂tq(t, x) is continuous in t, as are

∂q
∂x as well as

∂2q
∂x2 . We observe that

|E[f(u(s, t, x))− f(x)]| ≤ E[|f(u(s, t, x))− f(x)|],
and, by Lagrange’s theorem (also known as the mean value theorem),

|f(u(s, t, x))− f(x)| = |u(s, t, x)− x||f ′(ξ)|,
with ξ related to u(s, t, x) and x through the assumptions |f ′(ξ)| ≤ k(1+ |ξ|m)
and
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(1 + |ξ|m) ≤
{
1 + |x|m if u(s, t, x) ≤ ξ ≤ x,
1 + |u(s, t, x)|m if x ≤ ξ ≤ u(s, t, x).

Therefore, by both the Schwarz inequality and the fact that

E[(u(s, t, x)− x)2] ≤ L̃(1 + |x|2)(s− t)2,

we obtain

|E[f(u(s, t, x))− f(x)]|
≤ LE[|u(s, t, x)− x|(1 + |x|m + |u(s, t, x)|m)]

≤ L(E[(u(s, t, x)− x)2])
1
2 (E[(1 + |x|m + |u(s, t, x)|m)2])

1
2 ,

where L is a positive constant. Since L̃(1+ |x|2)(s−t)2 → 0 for t ↑ s, it follows
that

lim
t↑s

E[f(u(s, t, x))] = f(x).

�
Remark 4.46. If we put t̃ = s− t for 0 < t < s, then ∂

∂t̃
= − ∂

∂t and the limit
limt↑s is equivalent to limt̃↓0. Hence (4.36) takes us back to a classic parabolic

differential equation with initial condition (4.37) given by limt̃↓0 q(t̃, x) = f(x).

Theorem 4.47 (Feynman–Kac formula). Under the assumptions of The-
orem 4.45, let c be a real-valued, nonnegative continuous function in ]0, T [×R.
Then the function, for x ∈ R,

q(t, x) = E
[
f(u(s, t, x))e−

∫
s
t
c(u(τ,t,x),τ)dτ

]
, 0 < t < s < T, (4.39)

satisfies the equation

∂

∂t
q(t, x) + a(t, x)

∂

∂x
q(t, x) +

1

2
b2(t, x)

∂2

∂x2
q(t, x) − c(t, x)q(t, x) = 0,

subject to the boundary condition limt↑s q(t, x) = f(x). Equation (4.39) is
called the Feynman–Kac formula.

Proof . The proof is a direct consequence of Theorem 4.45 and Itô’s formula,
considering that the process

Z(t) = e−
∫ s
t
c(τ,u(τ,t,x))dτ , 0 < t < s < T, x ∈ R,

satisfies the SDE
dZ(t) = −c(t, u(t, t0, x))Z(t)dt

with initial condition Z(t0) = 1 (see e.g. Pascucci (2008)). �
Remark 4.48. We can interpret the exponential term in the Feynman–Kac
formula as due to a killing process (e.g., Schuss 2010). Suppose that at any
time τ > t the trajectory u(τ, t, x) of a particle subject to the SDE (4.31),
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with initial condition u(t, t, x) = x, may terminate at a rate c(τ, u(τ, t, x))
(probability per unit time independent of past history Fτ ); hence the killing
probability over an interval ]τ, τ + dt] will be equal to c(τ, u(τ, t, x))dt+ o(dt).
Then the survival probability until s is given by

(1−c(t1, u(t1, t, x))dt)(1−c(t2, u(t2, t, x))dt) · · · (1−c(tn, u(tn, t, x))dt)+o(dt),
(4.40)

where t = t0 < t1 < · · · < tn = s, dt = ti+1 − ti, i = 0, 1, . . . , n − 1. As
dt→ 0, (4.40) tends to

e−
∫

s
t
c(τ,u(τ,t,x))dτ .

Hence for any function f ∈ BC(R)

q(t, x) = E[f(u(s, t, x)), killing time > s]

= E[f(u(s, t, x))]P (killing time > s)

= E
[
f(u(s, t, x))e−

∫
s
t
c(τ,u(τ,t,x))dτ

]
.

Introduce the following operator as from (4.36):

L0[·] = 1

2
b2(t, x)

∂2

∂x2
+ a(t, x)

∂

∂x
,

and suppose that (Appendix C)

(A1) There exists a μ > 0 such that b(x, t) ≥ μ for all (x, t) ∈ R× [0, T ].
(B1) a and b are bounded in [0, T ]× R and uniformly Lipschitz in (t, x) on

compact subsets of [0, T ]× R.
(B2) b is Hölder continuous in x and uniform with respect to (t, x) on

[0, T ]× R.

Proposition 4.49. Consider the Cauchy problem:

{
L0[q] +

∂q
∂t = 0 in [0, T [×R,

limt↑T q(t, x) = φ(x) in R,
(4.41)

where φ(x) is a continuous function on R, and there exist A > 0, a > 0 such
that

|φ(x)| ≤ A(1 + |x|a). (4.42)

Under conditions (A1), (B1), and (B2), the Cauchy problem (4.41) admits
a unique solution q(t, x) in [0, T ]× R such that

|q(t, x)| ≤ C(1 + |x|a),

where C is a constant.
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If we denote by Γ ∗
0 (x, s; y, t) the fundamental solution of L0 +

∂
∂s (s < t),

the solution of the Cauchy problem (4.41) can be expressed as follows:

q(t, x) =

∫

R

Γ ∗
0 (x, t; y, T )φ(y)dy. (4.43)

Proof . The uniqueness is shown through Corollary C.7, and existence follows
from Theorem C.10. Then (4.41) follows, by Theorem C.9, with m = 0. The
representation (4.43) follows from TheoremC.10, by replacing t by T−t (Fried-
man 2004, Chap. 6). �

By a direct comparison of the Cauchy problem (4.41) and problem (4.36),
(4.37), because of the uniqueness of the solution of (4.41), we may finally state
the following.

Theorem 4.50. Under the assumptions of Proposition 4.49, the solution of
the Cauchy problem (4.41) is given by

q(t, x) = E[φ(u(T, t, x))] ≡ Et,x[φ(u(T ))]. (4.44)

From (4.44) and (4.43) it then follows that

E[φ(u(t, s, x))] =

∫

R

Γ ∗
0 (x, s; y, t)φ(y)dy

or, equivalently,
∫

R

φ(y)p(s, x, t, dy) =

∫

R

Γ ∗
0 (x, s; y, T )φ(y)dy, (4.45)

and because (4.45) holds for an arbitrary φ that satisfies (4.42), we may state
the following theorem.

Theorem 4.51. Under conditions (A1) of Appendix C and (B1), the transi-
tion probability p(s, x, t, A) = P (u(t, s, x) ∈ A) of the Markov process u(t, s, x)
[the solution of differential equation (4.31)] admits a density. The latter is
given by Γ ∗

0 (x, s; y, t), and thus

p(s, x, t, A) =

∫

A

Γ ∗
0 (x, s; y, t)dy (s < t), for all A ∈ BR. (4.46)

Definition 4.52. The density Γ ∗
0 (x, s; y, t) of p(s, x, t, A) is the transition

density of the solution u(t) of (4.31).

Remark 4.53. By the definition of fundamental solution, we may realize that
the transition density Γ ∗

0 (x, s; y, t) of the Markov process associated with
SDE (4.31) obeys itself to the following Kolmogorov backward equation:

1

2
b2(t, x)

∂2

∂x2
Γ ∗
0 (x, t; y, T ) + a(t, x)

∂

∂x
Γ ∗
0 (x, t; y, T ) +

∂

∂t
Γ ∗
0 (x, t; y, T ) = 0,

(4.47)
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for x ∈ R, t ∈ [0, T ], subject to

lim
t→T

Γ ∗
0 (x, t; y, T ) = δ(x− y).

where we recall that δ denotes the Dirac δ function centered at 0.

As a direct consequence of (4.46), the transition density Γ ∗
0 (x, s; y, t) sat-

isfies the Chapman–Kolmogorov equation.

Corollary 4.54. For any s, r, t ∈ [0, T ] such that s < r < t, the following
holds:

Γ ∗
0 (x, s; y, t) =

∫

R

dz Γ ∗
0 (x, s; z, r)Γ

∗
0 (z, r; y, t).

Example 4.55. The Brownian motion (Wt)t≥0 is the solution of
{
du(t) = dWt,
u(0) = 0 a.s.

We define the operator L0 by 1
2Δ, where Δ is the Laplacian ∂2

∂x2 . The funda-

mental solution Γ ∗
0 (x, s; y, t) of the operator 1

2Δ + ∂
∂t , s < t, corresponds to

the fundamental solution Γ0(y, t;x, s) of the operator 1
2Δ− ∂

∂t , s < t, which,
apart from the coefficient 1

2 , is the diffusion or heat operator. We therefore
find that

Γ ∗
0 (x, s; y, t) = Γ (y, t;x, s) =

1
√
2π(t− s)

e−
(x−y)2

2(t−s) ,

the probability density function of Wt −Ws.

Under the assumptions of Theorem 4.51, the transition probability

p(s, x, t, A) = P (u(t, s, x) ∈ A)

of the Markov diffusion process u(t, s, x), the latter being the solution of the
SDE (4.31), subject to the initial condition u(s, s, x) = x a.s. (x ∈ R), admits
a density Γ ∗

0 (x, s; y, t), which is the solution of system (4.47). Under these
conditions the following theorem also holds (Gihman and Skorohod 1974,
p. 374ff ):

Theorem 4.56. In addition to the assumptions of Theorem 4.51, if the tran-
sition density Γ ∗

0 (x, s; y, t) is sufficiently regular so that there exist continuous
derivatives

∂Γ ∗
0

∂t
(x, s; y, t),

∂

∂y
(a(t, y)Γ ∗

0 (x, s; y, t)),
∂2

∂y2
(b2(t, y)Γ ∗

0 (x, s; y, t)),

then Γ ∗
0 (x, s; y, t), as a function of t and y, satisfies the equation

∂Γ ∗
0

∂t
(x, s; y, t) +

∂

∂y
(a(t, y)Γ ∗

0 (x, s; y, t))−
1

2

∂2

∂y2
(b2(t, y)Γ ∗

0 (x, s; y, t)) = 0

(4.48)
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in the region t ∈]s, T ], y ∈ R, subject to

lim
t→s

Γ ∗
0 (x, s; y, t) = δ(x− y).

Proof . Let g ∈ C2
0 (R) denote a sufficiently smooth function with compact

support. By proceeding as in Lemma 4.39 [see also (4.34)],

lim
h→0

1

h

(∫
g(y)Γ ∗

0 (x, t; y, t+ h)dy − g(x)

)

= a(t, x)g′(x) +
1

2
b2(t, y)g′′(x)

uniformly with respect to x. The Chapman–Kolmogorov equation for the tran-
sition densities is

Γ ∗
0 (x, t1; y, t3) =

∫
Γ ∗
0 (x, t1; z, t2)Γ

∗
0 (z, t2; y, t3)dz for t1 < t2 < t3.

If we take t1 = s, t2 = t, t3 = t+ h, then we obtain

∂

∂t

∫
Γ ∗
0 (x, s; y, t)g(y)dy

=

∫
∂

∂t
Γ ∗
0 (x, s; y, t)g(y)dy

= lim
h→0

1

h

(∫
g(y)Γ ∗

0 (x, s; y, t+ h)dy −
∫
g(z)Γ ∗

0 (x, s; z, t)dz

)

= lim
h→0

1

h

(∫
Γ ∗
0 (x, s; z, t)

(∫
g(y)Γ ∗

0 (z, s; y, t+ h)dy − g(z)

))

dz

=

∫
Γ ∗
0 (x, s; z, t)

(

a(t, z)g′(z) +
1

2
b(t, z)g′′(z)

)

dz.

An integration by parts leads to
∫

∂

∂t
Γ ∗
0 (x, s; y, t)g(y)dy

=

∫ (

− ∂

∂y
(a(t, y)Γ ∗

0 (x, s; y, t)) +
1

2

∂2

∂y2
(b2(t, y)Γ ∗

0 (x, s; y, t))

)

g(y)dy,

which represents a weak formulation of (4.48). �
Equation (4.48) is known as the forward Kolmogorov equation or Fokker–

Planck equation. While the forward equation has a more intuitive interpreta-
tion than the backward equation, the regularity conditions on the functions a
and b are more stringent than those needed in the backward case. The prob-
lem of existence and uniqueness of the solution of the Fokker–Planck equation
is not of an elementary nature, especially in the presence of boundary con-
ditions. This suggests that the backward approach is more convenient than
the forward approach from the viewpoint of analysis. For a discussion on the
subject we refer the reader to Feller (1971, p. 326ff ), Sobczyk (1991, p. 34),
and Taira (1988, p. 9).



4.5 Multidimensional Stochastic Differential Equations 251

4.5 Multidimensional Stochastic Differential Equations

Let a(t,x) = (a1(t,x), . . . , am(t,x))′ and b(t,x) = (bij(t,x))i=1,...,m,j=1,...,n be
measurable functions with respect to (t,x) ∈ [0, T ]× R

n. An m-dimensional
SDE is of the form

du(t) = a(t,u(t))dt + b(t,u(t))dW(t), (4.49)

with the initial condition
u(0) = u0 a.s.,

where u0 is a fixed m-dimensional random vector. The entire theory of the
one-dimensional case translates to the multidimensional case, with the norms
redefined as

|b|2 =

m∑

i=1

|bi|2 if b ∈ R
m,

|b|2 =

m∑

i=1

n∑

j=1

|bij |2 if b ∈ R
mn.

Further, for α = (α1, . . . , αm), we introduce the notation

D|α|
x =

∂α

∂xα
=

∂α1+···+αm

∂xα1
1 · · · ∂xαm

m
, |α| = α1 + · · ·+ αm,

which, as an application of Itô’s formula, gives the following result.

Theorem 4.57. If for a system of SDEs the conditions of the existence and
uniqueness theorem (analogous to Theorem 4.4) are satisfied and if

1. There exist Dα
x a(t,x) and Dα

x b(t,x) continuous for |α| ≤ 2, with

|Dα
x a(t,x)| + |Dα

x b(t,x)| ≤ k0(1 + |x|β), |α| ≤ 2,

where k0, β are strictly positive constants.
2. f : Rm → R is a function endowed with continuous derivatives to second

order, with
|Dα

x f(x)| ≤ c(1 + |x|β′
), |α| ≤ 2,

where c, β′ are strictly positive constants;

then, putting q(t,x) = E[f(u(s, t,x))] for x ∈ R
m and t ∈]0, s[, we have that

qt, qxi , qxixj are continuous in (t,x) ∈]0, s[×R
m and q satisfies the backward

Kolmogorov equation

Lq(x, t) = 0 in ]0, s[×R
m,

lim
t↑s

q(t,x) = f(x) in R
m,

where

L :=
∂

∂t
+

m∑

i=1

ai
∂

∂xi
+

1

2

m∑

i,j=1

(bb′)ij
∂2

∂xi∂xj
. (4.50)
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Applications of Itô’s Formula: Dynkin’s Formula

Following Theorem 3.71, if φ : (x, t) ∈ R
m × R+ → φ(x, t) ∈ R is sufficiently

regular, then we may apply Itô’s formula to obtain

dφ(u(t), t) = Lφ(u(t), t)dt +∇xφ(u(t), t) · b(t,u(t))dW(t).

By integration on the interval [s, t] ⊂ R, we obtain

φ(u(t), t)−φ(u(s), s) =
∫ t

s

Lφ(u(τ), τ)dτ+
∫ t

s

∇xφ(u(τ), τ)·b(τ,u(τ))dW(τ ).

(4.51)
Since the Itô integral is a zero-mean martingale by Theorem 3.44, by applying
expected values to both sides of the preceding formula, we get

E[φ(u(t), t)] − E[φ(u(s), s)] = E

[∫ t

s

Lφ(u(τ), τ)dτ
]

.

In particular, if u(t) is the solution of (4.49) subject to the initial condition
u(s) = x, almost surely, for s ∈ R,x ∈ Ω, then

φ(x, s) = E[φ(u(t), t)] − E

[∫ t

s

Lφ(u(τ), τ)dτ
]

.

Applications of Itô’s Formula: First Hitting Times

Let Ω ⊂ R
m and u(t) be the solution of (4.49) with the initial condition

u(s) = x, almost surely, for s ∈ R,x ∈ Ω. Putting

τx,s = inf {t ≥ s|u(t) ∈ ∂Ω} ,

then τx,s is the first hitting time of the boundary of Ω or the first exit time
from Ω. Because ∂Ω is a closed set, by Theorem 2.113, τx,s is a stopping time.

Following Theorem 3.71, if φ : (x, t) ∈ R
m×R → φ(x, t) ∈ R is sufficiently

regular, then by applying (4.51) on the interval [s, τx,s],

φ(u(τx,s), τx,s) = φ(x, s) +

∫ τx,s

s

Lφ(u(t′), t′)dt′

+

∫ τx,s

s

∇xφ(u(t
′), t′) · b(t′,u(t′))dW(t′),

and after taking expectations

E[φ(u(τx,s), τx,s)] = φ(x, s) + E

[∫ τx,s

s

Lφ(u(t′), t′)dt′
]

. (4.52)
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If we now suppose that φ satisfies the conditions
{Lφ(x, t) = −1 ∀t ≥ s, ∀x ∈ Ω,
φ(x, t) = 0 ∀x ∈ ∂Ω,

(4.53)

then, by (4.52), we get

E[φ(u(τx,s), τx,s)] = φ(x, s) − E[τx,s] + s,

and by (4.53),
E[φ(u(τx,s), τx,s)] = 0.

Thus
E[τx,s] = s+ φ(x, s). (4.54)

Equation (4.54) states in particular that, if φ(x, s) is a finite solution of
problem (4.53) at point (x, s) ∈ Ω × R+, then the mean value E[τx,s] of the
first exit time from Ω, for a trajectory of (4.49) started at point x ∈ Ω at
time s ∈ R+, is finite.

Based on this information, it makes sense to consider the problem of finding
a stochastic representation of the solution ψ(x, s) of the following problem:

{L[ψ](x, t) = 0 ∀t ≥ s, ∀x ∈ Ω,
ψ(x, t) = f(x) ∀x ∈ ∂Ω.

By (4.52), we obtain

φ(x, s) = E[f(u(τx,s), τx,s)], (4.54bis)

which is Kolmogorov’s formula.

Time-Homogeneous Case

If (4.49) is time-homogeneous [i.e., a = a(x) and b = b(x) do not explicitly
depend on time], then the process u(t), namely, the solution of (4.49), is
time-homogeneous. Without loss of generality we can assume that s = 0.
Then (4.54) becomes

E[τx] = φ(x), x ∈ Ω, (4.55)

which is Dynkin’s formula. Notably, in this case, φ(x) is the solution of the
elliptic problem

{
L0[φ] = −1 in Ω,
φ = 0 on ∂Ω,

(4.56)

where L0 =
∑m

i=1 ai
∂

∂xi
+ 1

2

∑m
i,j=1(bb

′)ij ∂2

∂xi∂xj
.

As before, (4.55) states in particular that, if φ(x) is a finite solution of
problem (4.56) at point x ∈ Ω, then the mean value E[τx] of the first exit
time from Ω, for a trajectory of (4.49) started at point x ∈ Ω, at time 0, is
finite.
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Based on this information, it makes sense to consider the problem of find-
ing a stochastic representation of the solution ψ(x) of the following elliptic
problem: {

L0[ψ] = 0 in Ω,
ψ = f on ∂Ω.

For the time-homogenous case (4.52) leads to

ψ(x) = E[f(u(τx))], x ∈ Ω. (4.56bis)

Equations (4.39), (4.44), (4.54bis) and (4.56bis) may suggest so-called Mon-
tecarlo methods for the numerical solution of PDE’s by means of the ap-
proximations of expected values via suitable laws of large numbers (see e.g.
B. Lapeyre, E. Pardoux, R. Sentis 2003).

For a general reference on Dynkin’s formula, and diffusion processes the
reader may refer to Ventcel’ (1996).

4.6 Stability of Stochastic Differential Equations

We consider the autonomous system of SDEs

du(t) = a(u(t))dt + b(u(t))dW(t)

and suppose that b(x) �= 0 (notice that b is a matrix) for all x ∈ Ω̄ (compact
sets of Rm). In this case the operator

L0 =

m∑

i=1

ai
∂

∂xi
+

1

2

m∑

i,j=1

(bb′)ij
∂2

∂xi∂xj

is uniformly elliptic (Appendix C), and the elliptic problem

{
L0[φ] = −1 in Ω,
φ = 0 on ∂Ω

has a bounded solution. Therefore, by Dynkin’s formula E[τx] = φ(x), it
follows that τx < +∞ almost surely, and thus the system exits from Ω (to
which 0 belongs) in a finite time with probability 1 (for all Ω bounded).
Therefore, for any b the system is unstable, even if the associated deterministic
system was asymptotically stable.

We now consider the case in which 0 is also an equilibrium for b. We let
a(0) = 0, b(0) = 0 and look for a suitable definition of stability in this case.
Let {

du(t) = a(t,u(t))dt + b(t,u(t))dW(t), t > t0,
u(t0) = c

(4.57)
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be a system of SDEs, where

1. The conditions of the existence and uniqueness theorem are satisfied glob-
ally on [t0,+∞].

2. a and b are continuous with respect to t.
3. c ∈ R

m is a constant.

Then there exists a unique solution u(t, t0, c), t ∈ [t0,+∞[, which is a Markov
diffusion process with drift a and diffusion matrix bb′. With c being constant,
the moments E[|u(t)|k], k > 0, exist for every t. If we suppose that a(t,0) = 0
and b(t,0) = 0 for all t ≥ t0 and let v : [t0,+∞[×R

m → R be a positive-
definite function equipped with the continuous partial derivatives ∂

∂t ,
∂

∂xi
and

∂2

∂xi∂xj
, then we can apply Itô’s formula to the process V (t) = v(t,u(t, t0, c)),

so that [see (4.50) for the definition of L]

dV (t) = L[v](t,u(t))dt +
m∑

i=1

n∑

j=1

∂

∂xi
v(t,u(t))bij(t,u(t))dWj(t). (4.58)

For the origin to be a stable point we require that for all t ≥ t0: dV (t) ≤ 0 for
every trajectory. But this is not possible due to the presence of the random
term. At least we require that

E[dV (t)] ≤ 0,

and hence
E[L[v](t,u(t))dt] ≤ 0. (4.59)

If
∀t ≥ t0, ∀x ∈ R

m : L[v](t,x) ≤ 0, (4.60)

then condition (4.59) is certainly satisfied. The functions v(t,x) that sat-
isfy (4.60) are the stochastic equivalents of Lyapunov functions. Integrating
(4.58) we obtain

V (t) = v(t0, c) +

∫ t

t0

L[v](r,u(r))dr

+

∫ t

t0

m∑

i=1

n∑

j=1

∂

∂xi
v(r,u(r))bij (r,u(r))dWj(r),

V (s) = v(t0, c) +

∫ s

t0

L[v](r,u(r))dr

+

∫ s

t0

m∑

i=1

n∑

j=1

∂

∂xi
v(r,u(r))bij(r,u(r))dWj(r),
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and subtracting one from the other gives

V (t)−V (s) =

∫ t

s

L[v](r,u(r))dr+
∫ t

s

m∑

i=1

n∑

j=1

∂

∂xi
v(r,u(r))bij(r,u(r))dWj (r).

Putting

H(t) =

∫ t

s

m∑

i=1

n∑

j=1

∂

∂xi
v(r,u(r))bij(r,u(r))dWj (r),

and denoting by Ft the σ-algebra generated by all Wiener processes up to
time t, we obtain

E[V (t)− V (s)|Fs] = E

[∫ t

s

L[v](r,u(r))dr|Fs

]

+ E[H(t)|Fs]. (4.61)

It can be shown that H(t) is a martingale with respect to {Ft, t ∈ R+} (the
proof is equivalent to the scalar case of Theorem 3.38). Therefore,

E[H(t)|Fs] = H(s) = 0.

Then (4.61) can be written as

E[V (t)− V (s)|Fs] = E

[∫ t

s

L[v](r,u(r))dr | Fs

]

,

and by (4.60),
E[V (t)− V (s)|Fs] ≤ 0.

Thus V (t) is a supermartingale with respect to {Ft, t ∈ R+}. By the super-
martingale inequality,

∀[a, b] ⊂ [t0,+∞) : P

(

sup
a≤t≤b

v(t,u(t)) ≥ ε

)

≤ 1

ε
E[v(a,u(a))],

and for a = t0, u(a) = c (constant), b→ +∞ we obtain

P

(

sup
t0≤t≤+∞

v(t,u(t)) ≥ ε

)

≤ 1

ε
v(t0, c) ∀ε > 0, c ∈ R

m.

If we suppose that limc→0 v(t0, c) = 0, then

lim
c→0

P

(

sup
t0≤t≤+∞

v(t,u(t)) ≥ ε

)

≤ 1

ε
v(t0, c) = 0 ∀ε > 0, (4.62)

and hence, for all ε1 > 0, there exists a δ(ε1, t0) such that

∀|c| < δ : P

(

sup
t0≤t≤+∞

v(t,u(t)) ≥ ε

)

≤ ε1.
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If we suppose that
|u(t)| > ε2 ⇒ v(t,u(t)) > ε,

as, for example, if v is the Euclidean norm, then (4.62) can be written as

lim
c→0

P

(

sup
t0≤t≤+∞

|u(t, t0, c)| ≥ ε

)

= 0 ∀ε > 0.

Definition 4.58. Point 0 is a stochastically stable equilibrium of (4.57) if

lim
c→0

P

(

sup
t0≤t≤+∞

|u(t, t0, c)| ≥ ε

)

= 0 ∀ε > 0.

Point 0 is asymptotically stochastically stable if

{
0 is stochastically stable,
limc→0 P (limt→+∞ u(t, t0, c) = 0) = 1.

Point 0 is globally asymptotically stochastically stable if

{
0 is stochastically stable,
P (limt→+∞ u(t, t0, c) = 0) = 1 ∀c ∈ R

m.

Theorem 4.59. The following two statements can be shown to be true (see
also Arnold 1974; Schuss 1980):

1. If L[v](t,x) ≤ 0, for all t ≥ t0, x ∈ Bh (Bh denotes the open ball centered
at 0, with radius h), then 0 is stochastically stable.

2. If v(t,x) ≤ ω(x) for all t ≥ t0, with positive-definite ω(x) and negative-
definite L[v], then 0 is asymptotically stochastically stable.

Example 4.60. Consider, for a, b ∈ R, the one-dimensional linear equation

du(t) = au(t)dt+ bu(t)dW (t),

subject to a given initial condition u(0) = u0. We know that the solution is
given by

u(t) = u0 exp

{(

a− b2

2

)

t+ bW (t)

}

.

By the strong law of large numbers (Proposition 2.178)

W (t)

t
→ 0 a.s. for t→ +∞,
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and we have

• u(t) → 0 a.s., if a− b2

2 < 0

• u(t) → +∞ a.s., if a− b2

2 > 0

If a = b2

2 , then
u(t) = u0 exp {bW (t)} ,

and therefore

P

(

lim sup
t→+∞

u(t) = +∞
)

= 1.

Let us now consider the function v(x) = |x|α for some α ∈ R+ − {0} . Then

L[v](x) =
(

a+
1

2
b2(α− 1)

)

α|x|α.

It is easily seen that if a− b2

2 < 0, then we can choose α such that 0 < α < 1− 2a
b2

and obtain a Lyapunov function v with

L[v](x) ≤ −kv(x)
for k > 0. This confirms the global asymptotic stability of 0 for the SDE.

The result in the preceding example may be extended to the nonlinear
case by local linearization techniques (Gard 1988, p. 139).

Theorem 4.61. Consider the scalar SDE

du(t) = a(t, u(t))dt+ b(t, u(t))dW (t),

where, in addition to the existence and uniqueness conditions, functions a
and b are such that two real constants a0 and b0 exist so that

a(t, x) = a0x+ ā(t, x),

b(t, x) = b0x+ b̄(t, x),

for any t ∈ R+ and any x ∈ R, with ā(t, x) = o(x) and b̄(t, x) = o(x),

uniformly in t. Then, if a0 − b20
2 < 0, the equilibrium solution ueq ≡ 0 of

(4.61) is stochastically asymptotically stable.

Proof . Consider again the function

v(x) = |x|α

for some α > 0. From Itô’s formula we obtain

L[v](x)

=

(

a0 +
ā(t, x)

x
+

1

2
(α− 1)

(

b0 +
b̄(t, x)

x

)2
)

α|x|α

=

(

a0 − b20
2

+
ā(t, x)

x
+

1

2
αb20 + (α− 1)

(

b0
b̄(t, x)

x
+
b̄2(t, x)

2x2

))

α|x|α.
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Choose α > 0 and r > 0 sufficiently small so that for x ∈] − r, 0[∪]0, r[ we
have

∣
∣
∣
∣
ā(t, x)

x

∣
∣
∣
∣+

1

2
αb20 +

∣
∣
∣
∣(α− 1)

(

b0
b̄(t, x)

x
+
b̄2(t, x)

2x2

)∣
∣
∣
∣ <

∣
∣
∣
∣a0 −

b20
2

∣
∣
∣
∣ .

We may then claim that a constant k > 0 exists such that

L[v](x) ≤ −kv(x),
from which the required result follows. �

For an extended treatment of the preceding topic the reader may refer to
Mao (1997).

We now consider the autonomous multidimensional case, i.e., an SDE in
R

n of the form
du(t) = a(u(t))dt + b(u(t))dW(t). (4.63)

The preceding results provide conditions for the asymptotic stability of 0 as
an equilibrium solution. In particular, we obtain that, for a suitable initial
condition c ∈ R

n, we have

lim
t→+∞u(t, 0, c) = 0, a.s.

We may notice that almost sure convergence implies convergence in law of
u(t, 0, c) to the degenerate random variable ueq ≡ 0, i.e., the convergence of
the transition probability to a degenerate invariant distribution with density
δ0(x), the standard Dirac delta function:

P (t,x,B) →
∫

B

δ0(x)dx for any B ∈ BRn .

If (4.63) does not have an equilibrium, we may still investigate the possibility
that an asymptotically invariant (but not necessarily degenerate) distribution
exists for the solution of the SDE; still in terms of a Lyapunov function. The
following theorem (Gard 1988) provides an answer, which is from an analysis
of Has’minskii (1980).

Theorem 4.62. Consider an SDE in R
n:

du(t) = a(t,u(t))dt + b(t,u(t))dW(t), (4.64)

where W(t) is an m-dimensional vector of independent Wiener processes. Let
D and (Dn)n∈N be open sets in R

n such that

Dn ⊂ Dn+1, D̄n ⊂ D,D =
⋃

n

Dn,

and suppose a and b satisfy the conditions of existence and uniqueness for
(4.63), on each set {(t, x)} ∈ {[t0,+∞[×Dn} for some t0 ∈ R+. Suppose
further that a nonnegative function v ∈ C1,2([t0,+∞[×D) exists with
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lim
n→∞ inf

t>t0
x∈D\Dn

v(t, x) = +∞.

Then, for any initial condition c independent of W, such that P (c ∈ D) = 1,
there is a unique solution u(t) of (4.64), subject to u(t0) = c, so that u(t) ∈ D
a.s. for all t > t0. Thus

P (τD = +∞) = 1,

where τD is the first exit time of u(t, t0, c) from D.

For autonomous systems

du(t) = a(u(t))dt + b(u(t))dW(t)

we have the following theorem.

Theorem 4.63. Given the same assumptions as in Theorem 4.62, suppose
further that n0 ∈ N and M,k ∈ R+ \ {0} exist, such that

1.
∑n

i,j=1 (
∑m

k=1 bik(x)bkj(x)) ξiξj ≥M |ξ|2 for all x ∈ D̄n0 , ξ ∈ R
n.

2. L[v](x) ≤ −k for all x ∈ D \ D̄n0 .

Then there exists an invariant distribution P̃ with nowhere-zero density in D,
such that for any B ∈ BRn ,B ⊂ D:

P (t,x,B) → P̃ (B) as t→ +∞,

where P (t,x,B) is the transition probability P (t,x,B) = P (u(t,x) ∈ B) for
the solution of the given SDE.

Application: A Stochastic Food Chain

As a foretaste of the next part on applications of stochastic processes we take
an example from Gard (1988, p. 177). Consider the deterministic system,
representing a food chain,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz1
dt

= z1[a1 − b11z1 − b12z2],

dz2
dt

= z2[−a2 + b21z1 − b22z2 − b23z3],

dz3
dt

= z3[−a3 + b32z2 − b33z3].

If we suppose now that the three species’ growth rates exhibit independent
Wiener noises with scaling parameters σi > 0, i = 1, 2, 3, respectively, i.e.,

ai dt→ ai dt+ σi dWi, i = 1, 2, 3,
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this leads to the following stochastic differential system:

⎧
⎨

⎩

du1 = u1[a1 − b11u1 − b12u2]dt+ u1σ1dW1,
du2 = u2[−a2 + b21u1 − b22u2 − b23u3]dt+ u2σ2dW2,
du3 = u3[−a3 + b32u2 − b33u3]dt+ u3σ3dW3,

(4.65)

subject to suitable initial conditions. This system represents a food chain in
which the three species’ growth rates exhibit independent Wiener noises with
scaling parameters σi > 0, i = 1, 2, 3, respectively. If we assume that all the
parameters ai and bij are strictly positive and constant for any i, j = 1, 2, 3,
it can be shown that, in the absence of noise, the corresponding deterministic
system admits, in addition to the trivial one, a unique nontrivial feasible equi-
librium xeq ∈ R

3
+. This one is globally asymptotically stable in the so-called

feasible region R
3
+ \ {0}, provided that the parameters satisfy the inequality

a1 −
(
b11
b21

)

a2 −
(
b11b22 + b12b21

b21b32

)

a3 > 0.

This result is obtained through the Lyapunov function

v(x) =

n∑

i=1

ci

(

xi − xeqi − xeqi ln
xi
xeqi

)

,

provided that the ci > 0, i = 1, 2, 3, are chosen to satisfy

c1b12 − c2b21 = 0 = c2b23 − c3b32.

In fact, if one denotes by B the interaction matrix (bij)1≤i,j≤3 and C =
diag(c1, c2, c3), the matrix

CB +B′C = −2

⎛

⎝
c1b11 0 0
0 c2b22 0
0 0 c3b33

⎞

⎠

is negative definite. The derivative of v along a trajectory of the deterministic
system is given by

v̇(x) =
1

2
(x− xeq) · [CB +B′C] (x− xeq) ,

which is then negative-definite, thereby implying the global asymptotic sta-
bility of xeq ∈ R

3
+.

Returning to the stochastic system, consider the same Lyapunov function
as for the deterministic case. By means of Itô’s formula, we obtain

L[v](x) = 1

2

(

(x− xeq) · [CB +B′C] (x− xeq) +

3∑

i=1

ciσ
2
i x

eq
i

)

.
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It can now be shown that if the σi, i = 1, 2, 3, satisfy

3∑

i=1

ciσ
2
i xi < 2min

i
{cibiixeqi } ,

then the ellipsoid

(x− xeq) · [CB +B′C] (x− xeq) +

3∑

i=1

ciσ
2
i x

eq
i = 0

lies entirely in R
3
+. One can then take asDn0 any neighborhood of the ellipsoid

such that D̄n0 ⊂ R
3
+, and the conditions of Theorem 4.62 are met. As a

consequence, the stochastic system (4.65) admits an invariant distribution
with nowhere-zero density in R

3
+.

Notice that this is not a realistic model as far as the parameters are con-
cerned (e.g., Mao et al. 2002), since the parameters affected by the Brownian
noise may become negative, though the solution remains positive as required
by the model.

An additional interesting application to stochastic population dynamics
can be found in Roozen (1987).

Application: Invariant Distributions

A direct method for computing the invariant distribution of an SDE is based
on the Fokker–Planck equation. In the time-homogenous case consider the
SDE

du(t) = a(u(t))dt+ b(u(t))dWt. (4.66)

If functions a and b are sufficiently regular, then the Fokker-Planck equa-
tion for the transition density f(x0;x, t) of (4.66) is [see (4.48)]

∂

∂t
f(x0;x, t) = − ∂

∂x
[a(x)f(x0;x, t)] +

1

2

∂2

∂x2
[b2(x)f(x0;x, t)]. (4.67)

A regular time-invariant solution f∞ of (4.67) will satisfy

0 = − d

dx
[a(x)f∞(x)] +

1

2

d2

dx2
[b2(x)f∞(x)].

Under sufficient regularity assumptions we may then state that

− [a(x)f∞(x)] +
1

2

d

dx
[b2(x)f∞(x)] = constant. (4.68)

If we further impose that both f∞(x) and d
dxf∞(x) tend to 0, as x → ±∞,

then the constant = 0, and (4.68) becomes
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1

2

d

dx
[b2(x)f∞(x)] = 2a(x)f∞(x).

By imposing further that b2(x) > 0 and f∞(x) > 0 for x ∈ R, we may easily
find a solution of the form

f∞(x) =
K

b2(x)
exp {−Φ(x)} , (4.69)

with

Φ(x) = −
∫ x

0

2a(y)

b2(y)
dy

and normalizing constant

K =

{∫ +∞

−∞

1

b2(x)
exp {−Φ(x)} dx

}−1

.

Hence the condition for f∞ > 0 in (4.69) is that

0 < K < +∞.

Example 4.64. In the case a(x) = μ ∈ R, and b2(x) = σ2 ∈ R
∗
+, given

constants, we have

Φ(x) = −
∫ x

0

2μ

σ2
dy = −2μ

σ2
x, x ∈ R,

leading to K = 0, so that we do not have a density with the required regular-
ities.

Example 4.65. (Ornstein-Ulenbeck). In the case a(x) = −kx, with k ∈ R
∗
+,

and b2(x) = σ2 ∈ R
∗
+, given constants, we have

Φ(x) =
k

σ2
x2, x ∈ R,

leading to K =
2

σ2

(
π

k/σ2

)− 1
2

, so that

f∞(x) =

(
k

πσ2

) 1
2

exp

{

− k

σ2
x2
}

, x ∈ R,

which is a Gaussian density.

More in general, let us consider the time-homogenous SDE (4.66) in the
state space E = [α, β] ⊂ R.

As above, we denote by f(x0;x, t) the transition density of (4.66), i.e., the
conditional pdf of u(t) at x, given u(0) = x0.
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Definition 4.66. The boundary point α is called accessible from the interior
of E if and only if for any ε > 0 and any x0 ∈ (α, β) there exists a time t > 0

such that
∫ α+ε

α f(x0; y, t)dy > 0. Similarly, an interior point x0 ∈ (α, β) is
called accessible from the boundary point α if and only if for any ε > 0 there
exists a time t > 0 such that

∫ x0+ε

x0−ε f(α; y, t)dy > 0.

Definition 4.67. The boundary point α is called a regular boundary point if
and only if α is accessible from the interior of E and any interior point of E
is accessible from the boundary point α.

Clearly the same definitions apply to the boundary point β. The following
theorem holds.

Theorem 4.68. Let (u(t))t∈R+ be the solution of the time-homogenous SDE
(4.66) in the state space E = [α, β] ⊂ R, and assume that both α and β are
regular boundary points. If the normalized solution g : S → R+ of the equation

−[a(x)g(x)] +
1

2

d

dx
[b2(x)g(x)] = 0

is unique and it satisfies

lim
x→α

[a(x)g(x)] = lim
x→β

[a(x)g(x)] = lim
x→α

[b2(x)g(x)] = lim
x→β

[b2(x)g(x)] = 0,

then g is the density of the unique stationary distribution of the process
(u(t))t∈R+ .

If the preceding conditions hold, the stationary density is given by

g(x) =
K

b2(x)
exp(−Φ(x)),

with

Φ(x) = −
∫ x

0

2a(y)

b2(y)
dy,

and K is the normalizing constant.

Proof . See, e.g., Tan (2002, p. 318). For a general theory the interested reader
may refer to Skorohod (1989). �
Example 4.69. (Diffusion approximation of the Wright model of population
genetics). In the Wright model of population genetics presented in Tan (2002,
pp. 279 and 320) (see also Ludwig 1974, pp. 74–77), given two alleles A and a,
the Markov chain (Xn)n∈N describes the number of A alleles in a large diploid
population of size N.

The rescaled process u(t) = 1
2NX(t), t ∈ R+, in the absence of selection,

is approximated by a diffusion process in the state space E = [0, 1], with drift
parameter

a(x) = −γ1x+ γ2(1 − x)
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and diffusion parameter
b2(x) = x(1− x),

where γi > 0, i = 1, 2, so that both 0 and 1 are regular boundary points.
Under these conditions, the stationary distribution of (u(t))t∈R+ exists and

its density is the Beta distribution given by

g(x) =
1

B(2γ2, 2γ1)
x2γ2−1(1 − x)2γ1−1, x ∈ [0, 1],

where B(·, ·) is the special function Beta.

Example 4.70. (Diffusion approximation of a two-stage model of
carcinogenesis). In a two-stage model of carcinogenesis presented in Tan
(2002, pp. 263 and 323), the number of initiated cells (It)t∈R+ is modeled as
a birth-and-death process with immigration. If the number of normal stem
cells N0 is very large, then the rescaled process u(t) = 1

N0
I(t), t ∈ R+, is

approximated by a diffusion process in the state space E = [0,+∞), with
drift parameter

a(x) = −ξx+ λ

N0
,

and diffusion parameter

b2(x) =
ω

N0
x,

where ξ = d− b, and ω = d+ b, with both b, d > 0, and λ ≥ 0.
Under these conditions, the stationary distribution of (u(t))t∈R+ exists

only under the condition d > b, so that ξ = d − b > 0. The invariant density
is then given by

g(x) =
γγ1

2

Γ (γ1))
xγ1−1 exp {−γ2x} , x ∈ R+.

Additional interesting examples can be found, e.g., in Cai and Lin (2004).

4.7 Itô–Lévy Stochastic Differential Equations

Within the framework established in Sects. 3.8 and 3.9, we are now ready to
generalize the concept of SDE with a general Lévy noise (e.g., Gihman and
Skorohod 1972, p. 273).

We may consider SDEs of the following form:

du(t) = a(t, u(t))dt+ b(t, u(t))dWt +

∫

R−{0}
f(t, u(t), z)Ñ(dt, dz), (4.70)
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subject to an initial condition

u(t0) = u0 a.s.,

where u0 is a real-valued random variable.
The well-posedness of the preceding problem can be established under

frame conditions inherited from the definition of the Itô–Lévy stochastic dif-
ferential in Sect. 3.9, i.e., (Wt)t∈R+ is a standard Wiener process:

Ñ(dt, dz) = N(dt, dz)− dtν(dz),

where N(dt, dz) is a Poisson random measure, independent of the Wiener
process, and dtν(dz) is its compensator.

Further we assume that a(t, x), b(t, x), and f(t, x, z) are deterministic real-
valued functions such that

1. An L > 0 exists for which

|a(t, x)|2 + |b(t, x)|2 +
∫

R0

|f(t, x, z)|2ν(dz) ≤ L(1 + |x|2)

for t ∈ [0, T ], x ∈ R.
2. They satisfy a local Lipschitz condition, i.e., for any arbitrary R > 0 a

constant CR exists for which

|a(t, x) − a(t, y)|2 + |b(t, x)− b(t, y)|2 +

∫

R0

|f(t, x, z)− f(t, y, z)|2ν(dz)

≤ CR(|x − y|2),

for t ∈ [0, T ], x, y ∈ R, |x|, |y| < R.
3. There exist K > 0 and a function g(h) such that g(h) ↓ 0 as h → 0, for

which

|a(t + h, x)− a(t, x)|2 + |b(t+ h, x)− b(t, x)|2

+

∫

R0

|f(t+ h, x, z)− f(t, x, z)|2ν(dz) ≤ K(1 + |x|2)g(h)

for x ∈ R and t ∈ [0, T ], h ∈ R+, such that t+ h ∈ [0, T ].

Theorem 4.71. Under conditions 1, 2, and 3, (4.70), subject to an initial
condition u0 independent of both the Wiener process and the random Poisson
measure, admits a unique solution that is right-continuous with probability 1.
If f is identically zero, then the solution is continuous with probability 1.

Proof . See, e.g., Gihman and Skorohod (1972, p. 274). �
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As far as the moments of the solution are concerned, the following theorem
holds.

Theorem 4.72. Under the assumptions of Theorem 4.71, if, in addition, for
m ∈ N− {0} , ∫

R0

|f(t, x, z)|pν(dz) ≤ L(1 + |x|p),

for p = 2, 3, . . . , 2m, t ∈ [0, T ], x ∈ R, then

E[|u(t)|2p] ≤ Lp(1 + |x|2p)
for p = 2, 3, . . . , 2m, t ∈ [0, T ], where Lp depends only on L, T, and p.

Proof . See, e.g., Gihman and Skorohod (1972, p. 275). �
SDEs of the general type (4.70) are very important in applications; an

example from neurosciences is discussed in Sect. 6.4, and an additional case
can be found in Champagnat et al. (2006).

4.7.1 Markov Property of Solutions of Itô–Lévy Stochastic
Differential Equations

By methods already taken into account for SDEs with only the Wiener noise
in Sect. 4.2, the following theorem holds.

Theorem 4.73. Under the assumptions of Theorem 4.71, the solution of the
Itô–Lévy SDE (4.70) is a Markov process. Its infinitesimal generator is

(Asφ)(x) =
∂φ

∂x
(x)a(s, x) +

1

2

∂2φ

∂x2
(x)b2(s, x)

+

∫

R−{0}

[

φ(x + f(s, x, z))− φ(x) − ∂φ

∂x
(x)f(s, x, z)

]

ν(dz)

for φ ∈ C1,2([0, T ],R).

4.8 Exercises and Additions

4.1. Prove Remark 4.7.

4.2. Prove Remark 4.12.

4.3. Prove that if a(t, x) and b(t, x) are measurable functions in [0, T ]×R that
satisfy conditions 1 and 2 of Theorem 4.4, then, for all s ∈]0, T ], there exists
a unique solution in C([s, T ]) of

{
u(s) = us a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt,

provided that the random variable us is independent of Fs,T = σ(Wt−Ws, t ∈
[s, T ]) and E[(us)

2] <∞.
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4.4. Complete the proof of Theorem 4.21 by proving the semigroup property:
If t0 < s, s ∈ [0, T ], denote by u(t, s, x) the solution of

{
u(s) = x a.s.,
du(t) = a(t, u(t))dt+ b(t, u(t))dWt.

Then
u(t, t0, c) = u(t, s, u(s, t0, c)) for t ≥ s,

where x is a fixed real number and c is a random variable.

4.5. Complete the proof of Theorem 4.35 (Girsanov) showing that
(Y 2

t − t)t∈[0,T ] is a martingale where

Yt =Wt −
∫ t

0

ϑsds,

(Wt)t∈[0,T ] is a Brownian motion, and (ϑt)t∈[0,T ] satisfies the Novikov
condition.

4.6. Show that

Γ ∗
0 (x, s; y, t) =

∫

R

Γ ∗
0 (x, s; z, r)Γ

∗
0 (z, r; y, t)dz (s < r < t). (4.71)

Expression (4.71) is in general true for the fundamental solution Γ (x, t; ξ, r)
(r < t) constructed in Theorem C.9.

4.7. Let (Wt)t∈R+ be a Brownian motion. Consider the population growth
model

dNt

dt
= (rt + αWt)Nt, (4.72)

where Nt is the size of population at time t (N0 > 0 given) and (rt+α ·Wt) is
the relative rate of growth at time t. Suppose the process rt = r is constant.

1. Solve SDE (4.72).
2. Estimate the limit behavior of Nt when t→ ∞.
3. Show that if Wt is independent of N0, then

E[Nt] = E[N0]e
rt.

An extension model of (4.72) for exponential growth with several indepen-
dent white-noise sources in the relative growth rate is given as follows. Let
(W1(t), . . . ,Wn(t))t∈R+ be Brownian motion in R

d, with α1, . . . , αn constants.
Then

dNt =

(

rdt+
n∑

k=1

αkdWk(t)

)

Nt, (4.73)

where Nt is, again, the size of population at time t with N0 > 0 given.

4. Solve SDE (4.73).
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4.8. Let (Wt)t∈R+ be a one-dimensional Brownian motion. Show that the
process (Brownian motion on the unit circle)

ut = (cosWt, sinWt)

is the solution of the SDE (in matrix notation)

dut = −1

2
utdt+KutdWt, (4.74)

where K =

[
0 −1
1 0

]

.

More generally, show that the process (Brownian motion on the ellipse)

ut = (a cosWt, b sinWt)

is a solution of (4.74), where K =

[
0 −a

b
b
a 0

]

.

4.9 (Brownian bridge). For fixed a, b ∈ R consider the one-dimensional
equation ⎧

⎨

⎩

u(0) = a,

dut =
b− ut
1− t

dt− dWt (0 ≤ t < 1).

Verify that

ut = a(1− t) + bt+ (1− t)

∫ t

0

dWs

1− s
(0 ≤ t < 1)

solves the equation and prove that limt→1 ut = b a.s. The process (ut)t∈[0,1[

is called the Brownian bridge (from a to b).

4.10. Solve the following SDEs:

1.

[
du1
du2

]

=

[
1
0

]

dt+

[
1 0
0 u1

] [
dW1

dW2

]

.

2. dut = utdt + dWt. (Hint: Multiply both sides by e−t and compare with
d(e−tut).)

3. dut = −utdt+ e−tdWt.

4.11. Consider n-dimensional Brownian motion W = (W1, . . . ,Wn) starting
at a = (a1, . . . , an) ∈ R

n (n ≥ 2) and assume |a| < R. What is the expected
value of the first exit time τK of B from the ball

K = KR = {x ∈ R
n; |x| < R}?

(Hint: Use Dynkin’s formula.)



270 4 Stochastic Differential Equations

4.12. Find the generators of the following processes.

1. Brownian motion on an ellipse (Problem 4.8).
2. Arithmetic Brownian motion:

{
u(0) = u0,
du(t) = adt+ bdWt.

3. Geometric Brownian motion:
{
u(0) = u0,
du(t) = au(t)dt+ bu(t)dWt.

4. (Mean-reverting) Ornstein–Uhlenbeck process:

{
u(0) = u0
du(t) = (a− bu(t))dt+ cdWt.

4.13. Find a process (ut)t∈R+ whose generator is the following:

1. Af(x) = f ′(x) + f ′′(x), where f ∈ BC(R) ∩ C2(R).

2. Af(t, x) = ∂f
∂t + cx∂f

∂x + 1
2α

2x2 ∂2f
∂x2 , where f ∈ BC(R2) ∩C2(R2) and c, α

are constants.

4.14. Let � denote the Laplace operator on R
n, φ ∈ BC(Rn) and α > 0.

Find a solution (ut)t∈R+ of the equation

(

α− 1

2
�
)

u = φ in R
n.

Is the solution unique?

4.15. Consider a linear SDE

du(t) = [a(t) + b(t)u(t)]dt+ [c(t) + d(t)u(t)]dW (t), (4.75)

where the functions a, b, c, d are bounded and measurable. Prove:

1. If a ≡ c ≡ 0, then the solution u(t) = u0(t) is given by

u0(t) = u0(0) exp

{∫ t

0

[

b(s)− 1

2
d2(s)

]

ds+

∫ t

0

d(s)dWs

}

.

2. Setting u(t) = u0(t)v(t), show that u(t) is a solution of (4.75) if and only
if

v(t) = v(0) +

∫ t

0

[u0(s)a(s)− c(s)d(s)]ds +

∫ t

0

c(s)u0(s)ds.

Thus the solution of (4.75) is u0(t)v(t) with u(0) = u0(0)v(0).
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4.16. Show that the solution (4.17) of (4.15) is a Gaussian process when-
ever the initial condition u(t0) is either deterministic or a Gaussian random
variable.

4.17. Consider a diffusion processX associated with an SDE with drift μ(x, t)
and diffusion coefficient σ2(x, t). Show that for any θ ∈ R the process

Yθ(t) = exp

{

θX(t)− θ

∫ t

0

μ(X(s), s)ds− 1

2

∫ t

0

σ2(X(s), s)ds

}

, t ∈ R+,

is a martingale.

4.18. Consider a diffusion process X associated with an SDE with drift
μ(x, t) = αt and diffusion coefficient σ2(x, t) = βt, with α ≥ 0 and β > 0. Let
Ta be the first passage time to the level a ∈ R; evaluate

E
[
e−λT 2

a

∣
∣
∣X(0) = 0

]
for λ > 0.

(Hint: Use the result of Problem 4.17)

4.19. Let u(t), t ∈ R+, be the solution of the SDE

du(t) = a(u(t))dt+ σ(u(t))dW (t)

subject to the initial condition

u(0) = u0 > 0.

Provided that a(0) = σ(0) = 0, show that, for every ε > 0, there exists a
δ > 0 such that

Pu0

(

lim
t→+∞u(t) = 0

)

≥ 1− ε

whenever 0 < u0 < δ if and only if

∫ δ

0

exp

{∫ y

0

2a(x)

σ2(x)

}

dy <∞.

Further, if σ(x) = σ0x + o(x), and similarly a(x) = a0x + o(x), then the
stability condition is

a0
σ2
0

<
1

2
.

4.20. Let X be a diffusion process associated with a SDE with drift μ(x, t) =
−αx and constant diffusion coefficient σ2(x, t) = β, with α ∈ R

∗
+ and β ∈ R.

Show that the moments qr(t) = E[X(t)r], r = 1, 2, . . . of X(t) satisfy the
system of ordinary differential equations

d

dt
qr(t) = −αrqr(t) + β2r(r − 1)

2
qr−2(t), r = 1, 2, . . . ,

with the assumption qr(t) = 0 for any integer r ≤ −1.
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4.21. Let X be the diffusion process defined in Problem 4.19. Show that the
characteristic function of X(t), defined as ϕ(v; t) = E[exp {ivX(t)}], v ∈ R,
satisfies the partial differential equation

∂

∂t
ϕ(v; t) = −αv ∂

∂v
ϕ(v; t)− 1

2
β2v2ϕ(v; t).

4.22. Let u(t) be the solution of the SDE

du(t) = a(u(t))dt+ b(u(t))dW (t)

subject to an initial condition

u(0) = x ∈ (α, β) ⊂ R.

Show that the mean μT (x) of the first exit time

T = inf {t ≥ 0 | u(t) /∈ (α, β)}

is the solution of the ordinary differential equation

−1 = a(x)
dμT

dx
+

1

2
b2(x)

d2μT

dx2
,

subject to the boundary conditions

μT (α) = μT (β) = 0.

4.23. Let u(t) be the solution of the SDE

du(t) = a(u(t))dt + b(u(t))dW (t),

subject to an initial condition

u(0) = x ∈ (α, β) ⊂ R.

Show that the probability of hitting the boundary (for the first time) at α is
given by

P (u(τx) = α) = 1−
∫ x
α Φ(y)dy∫ β
α
Φ(y)dy

,

where

Φ(y) = exp

{

−2

∫ y

α

a(z)

b2(z)

}

.
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4.24 (Gard 1988, p. 108). Show that the solution of the following SDE,
subject to the conditions on parameters r, β,K > 0 and an initial condition
X(0) = x > 0

dX(t) = rX(t)(K −X(t))dt+ βX(t)dW (t),

is given by

X(t) =
exp
{
(rK − 1

2β
2) + βW (t)

}

1

x
+ r

∫ t

0

exp

{

(rK − 1

2
β2) + βW (s)

}

ds

.
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Applications of Stochastic Processes





5

Applications to Finance and Insurance

The financial industry is one of the most influential driving forces behind the
research into stochastic processes. This is due to the fact that it relies on
stochastic models for valuation and risk management. But perhaps more sur-
prisingly, it was also one of the main drivers that led to their initial discovery.

As early as 1900, Louis Bachelier, a young French doctorate researcher,
analyzed financial contracts, also referred to as financial derivatives, traded
on the Paris bourse and in his thesis (Bachelier 1900) attempted to lay down
a mathematical foundation for their valuation. He observed that the prices
of the underlying assets evolved randomly, and he employed a normal distri-
bution to model them. This was a few years before Einstein (1905), in the
context of physics, published a model of, effectively, Brownian motion, later
formalized by the work of Wiener, which in turn led to the development of Itô
theory in the 1950s and 1960s (Itô and McKean (1965)), representing the in-
terface of classical and stochastic mathematics. All these then came to promi-
nence through Robert Merton’s (1973) as well as Black and Scholes’ (1973)
derivation of their partial differential equation and formula for the pricing of
financial options contracts. These represented direct applications of the then
already known backward Kolmogorov equation (4.36) and Feynman–Kac for-
mula (4.39). Still today they serve as the most widely used basic model of
mathematical finance.

Furthermore, in his work, Bachelier concluded that the observed prices
of assets traded on the exchange represent equilibria, meaning that one or
more buyers and sellers are happy to trade a certain amount at the same
time. If the market is efficient and rational, their riskless profit expectations
must therefore be zero. The latter represents the economic concept of no-
arbitrage, which mathematically is closely connected to martingales. Both
are fundamental building blocks of all financial modeling involving stochastic
processes, as was demonstrated by Harrison and Kreps (1979) and Harrison
and Pliska (1981).

Many books on mathematical finance start out by describing discrete-time
stochastic models before deriving the continuous-time equivalent. However, in

V. Capasso and D. Bakstein, An Introduction to Continuous-Time
Stochastic Processes, MSSET, DOI 10.1007/978-0-8176-8346-7 5,

277
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line with all the preceding chapters on the theory of stochastic processes, we
will only focus on continuous-time models. Discrete-time models in practice
serve, primarily, for numerical solutions of continuous processes but also for
an intuitive introduction to the topic. We refer the interested reader to the
classics by Wilmott et al. (1993) for the former and Pliska (1997) as well
as Cox et al. (1979) for the latter.

In this chapter we commence with the mathematical modeling of the
concept of no-arbitrage and then apply it in the context of the original Black–
Scholes–Merton model. We employ the latter for the valuation of different
types of financial contracts. In the subsequent section we give an overview
of different models of interest rates and yield curves, followed by a descrip-
tion of extensions to the Black–Scholes–Merton model like time dependence,
jump diffusions, and stochastic volatility. The final section introduces models
of insurance and default risk.

5.1 Arbitrage-Free Markets

In economic theory the usual definition of a market is a physical or conceptual
place where supply meets demand for goods and services or, more generally,
assets. These are exchanged in certain ratios. The latter are typically for-
mulated in terms of a base monetary measuring unit, namely a currency,
and called prices. This motivates the following definition of a market for the
purpose of (continuous-time) stochastic modeling.

Definition 5.1. A filtered probability space (Ω,F , P, (Ft)t∈[0,T ]) endowed

with adapted stochastic processes
(
S
(i)
t

)
t∈[0,T ]

, i = 0, . . . , n, representing

asset prices in terms of particular currencies, is called a market .

Asset prices are usually considered stochastic because they change over
time, and unpredictably so, due to a multitude of factors like supply vs. de-
mand or other external shocks.

Remark 5.2. The risky assets
(
S
(i)
t

)
t∈[0,T ]

, i = 1, . . . , n, are RCLL stochastic

processes, thus their future values are not predictable.

In reality, no asset is entirely safe. Nonetheless, for modeling purposes it
is often convenient to consider the concept of a riskless asset.

Remark 5.3. If we define, say, S
(0)
t := Bt as a riskless asset, then (Bt)t∈[0,T ]

is a deterministic, and thus predictable, process.

Furthermore, in a market, it is possible to exchange or trade assets. This
is represented by defining holding and portfolio processes.

Definition 5.4. A holding process Ht =
(
H

(0)
t , H

(1)
t , . . . , H

(n)
t

)
, which is

adapted and predictable with respect to the filtration (Ft)t∈[0,T ], together
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with the asset processes
(
S
(i)
t

)
t∈[0,T ]

, i = 0, . . . , n, generate the portfolio

process

Πt = Ht ·
(
Bt, S

(1)
t , . . . , S

(n)
t

)′
,

where (Πt)t∈[0,T ] is also adapted to (Ft)t∈[0,T ].

As usual, in the equation above, A′ denotes the transpose of matrix A,
and v · w denotes the scalar product of vectors v and w.

Note that the drivers of the asset price and holding processes are
fundamentally different. The former are exogenously driven by information,
aggregate supply/demand, and other external factors in the market, whereas
the latter are controlled by a particular market participant. In its simplest
form, the individual holding process is considered to be sufficiently small such
that it has no influence on the asset price processes. The respective under-
lying random variables also have different dimensions. Each price process Si

t

is stated in currency per unit, whereas each Hi
t represents a dimensionless

scalar. It is also often important to distinguish the following two cases.

Definition 5.5. If T <∞, then the market has a finite horizon. Otherwise,
if T = +∞, then the market is said to have an infinite horizon.

So far, the definition of a market and its properties are insufficient to
guarantee that the mathematical model is a realistic one in terms of economics.
For this purpose, conditions have to be imposed on the various processes that
constitute the market:

Proposition 5.6 A realistic mathematical model of a finite-horizon market
has to satisfy the following conditions:

1. (Conservation of funds and nonexplosive portfolios). For every 0 ≤ T <
+∞ the holding process Ht has to satisfy:

ΠT = Π0 +

∫ T

0

H
(0)
t dBt +

n∑
i=1

∫ T

0

H
(i)
t dS

(i)
t , (5.1)

along with the nonexplosion condition

∣∣∣∣∣
∫ T

0

dΠt

∣∣∣∣∣ <∞ a.s.

The conservation-of-funds condition is also called the self-financing
portfolios property.

2. (Nonarbitrage). A deflated portfolio process (Π∗
t )t∈[0,T ] with almost surely

Π∗
0 = 0 and Π∗

T > 0 or, equivalently, with almost surely Π∗
0 < 0 and

Π∗
T ≥ 0 is inadmissible. Here Π∗

t = Πt/S
(j)
t for any arbitrary numeraire

or deflator asset j.



280 5 Applications to Finance and Insurance

3. (Trading or credit limits). Either (Ht)t∈[0,T ] is square-integrable and of
bounded variance or Πt ≥ c for all t, with −∞ < c ≤ 0 constant and
arbitrary.

Condition 1 is intuitively obvious as, like the conservation of mass principle
in physics, no wealth can vanish, nor can it grow to infinity in a finite horizon.
For condition 3 there is a standard example (Exercise 5.4) demonstrating that
in continuous time there exist arbitrage opportunities if it is not satisfied.
Lastly, condition 2 is also obvious, in the sense that if an investor were able
to create riskless wealth above the return of the riskless asset (in economic
language: “a free lunch”), it would lead to unlimited profits. Hence the model
would be ill posed. Formally, the first fundamental theorem of asset pricing
has to be satisfied.

Theorem 5.7 (First fundamental theorem of asset pricing). If in
a particular market there exists an equivalent martingale (probability) mea-
sure Q ∼ P (Definition A.53) for any arbitrary deflated portfolio process
(Π∗

t )t∈[0,T ], namely,

Π∗
0 = EP [Π∗

t Λt] = EQ [Π∗
t ] ∀t ∈ [0, T ],

where Λt is the Radon–Nikodym derivative (Remark 4.36)

dQ

dP
= Λt on Ft,

then the market is free of arbitrage opportunities, provided the conditions of
Girsanov’s Theorem 4.35 are satisfied.

Proof . For a proof in the general continuous-time case, we refer to Delbaen
and Schachermeyer (1994). �

We now make the first step into the application of valuing financial options,
more generally called contingent claims.

Definition 5.8. A financial derivative or contingent claim (Vt(S
(i)
t ))t∈[0,T ],

i = 0, . . . , n is an R-valued function of the underlying asset processes

(S
(i)
t )t∈[0,T ] adapted to the filtered probability space (Ω,F , P, (Ft)t∈[0,T ]).

Definition 5.9. A deflated contingent claim (V ∗
t (S

(i)
t ))t∈[0,T ], i = 0, . . . , n

is attainable if there exists a holding process H̃t = (H̃
(0)
t , H̃

(1)
t , . . . , H̃

(n)
t ),

generating the deflated portfolio process (Π̃∗
t (H̃t))t∈[0,T ], such that

(V ∗
t (S

(i)
t ))t∈[0,T ] = (Π̃∗

t (H̃t))t∈[0,T ] ∀t ∈ [0, T ].

Definition 5.10. Amarket is complete if and only if every deflated contingent

claim (V ∗
t (S

(i)
t ))t∈[0,T ], i = 0, . . . , n is attainable.
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Theorem 5.11 (Second fundamental theorem of asset pricing).
If there exists a unique equivalent martingale (probability) measure Q ∼ P
for any arbitrary deflated portfolio process (Π∗

t )t∈[0,T ] in a particular market,
then the market is complete.

Proof . For a proof in the general continuous-time case, we refer the reader
to Shiryaev and Cherny (2001). �

We attempt to make the significance of the two fundamental theorems
more intuitive and thereby demonstrate the duality between the concepts of
nonarbitrage and the existence of a martingale measure. Assume a particu-
lar portfolio in an arbitrage-free market has value Π̃T (ω) for each ω ∈ FT .
If another portfolio Π̂0 can be created so that a self-financing trading strategy
(Ĥt)t∈[0,T ] exists replicating Π̃T (ω), namely,

Π̂T (ω) = Ĥ0 · S0 +

n∑
i=0

∫ T

0

H
(i)
t dS

(i)
t ≥ Π̃T (ω) ∀ω ∈ FT ,

then, necessarily,

Π̂t ≥ Π̃t ∀t ∈ [0, T ] (5.2)

and, in particular,

Π̂0 ≥ Π̃0.

Otherwise there exists an arbitrage opportunity by buying the cheaper port-
folio and selling the overvalued one. In fact, by this argumentation, the value
of Π̃0 has to be the solution of the constrained optimization problem

Π̃0 = min
(Ht)t∈[0,T ]

Π̂0,

subject to the value-conservation condition (5.1) and the (super)replication
condition (5.2). Hence if we can find an equivalent measure Q under which

EQ

[
n∑

i=0

∫ T

0

H
(i)
t dS

(i)
t

]
≤ 0,

then the value of the replicated portfolio has to satisfy

Π̃0 = max
Q

EQ

[
Π̃T

]
,

subject to, again, the value-conservation condition and the (super)martingale
condition

EQ

[
Π̂t

]
≥ Π̂0.

The latter can be considered the so-called dual formulation of the replication
problem. By the second fundamental theorem of asset pricing, if Q is unique,
then all inequalities turn to equalities and
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Π̃0 = EQ

[
Π̃T

]
= Π̂0. (5.3)

This result states that the nonarbitrage value of an arbitrary portfolio in
an arbitrage-free and complete market is its expectation under the unique
equivalent martingale measure.

Here we have implicitly assumed that the values of the portfolios are stated
in terms of a numeraire of value 1. Generally, a numeraire asset or deflator
serves as a measure in whose units all other assets are stated. The following
theorem states that a particular numeraire can be interchanged with another.

Theorem 5.12 (Numeraire invariance theorem). A self-financing hold-
ing strategy (Ht)t∈[0,T ] remains self-financing under a change of almost surely
positive numeraire asset, i.e., if

ΠT

S
(i)
T

=
Π0

S
(i)
T

+

∫ T

0

d

(
Πt

S
(i)
t

)
,

then

ΠT

S
(j)
T

=
Π0

S
(j)
T

+

∫ T

0

d

(
Πt

S
(j)
t

)
,

with i �= j, provided
∫ T

0 dΠt <∞.

Proof . We arbitrarily choose S
(i)
t = 1 for all t ∈ [0, T ], and for notational

simplicity write S
(j)
t ≡ St. Now it suffices to show that if

ΠT = Π0 +

∫ T

0

dΠt = Π0 +

∫ T

0

Ht · dSt, (5.4)

then this implies

ΠT

ST
=
Π0

S0
+

∫ T

0

Ht · d
(
St

St

)
. (5.5)

Taking the differential and substituting (5.4),

d

(
Πt

St

)
=
dΠt

St
+Πtd

(
1

St

)
+ dΠtd

(
1

St

)

= Ht ·
((

dSt

St

)
+ Std

(
1

St

)
+ dStd

(
1

St

))
,

after integration gives (5.5). �
In fact, in an arbitrage-free complete market, for every choice of numeraire

there will be a distinct equivalent martingale measure. As we will demonstrate,
the change of numeraire may be a convenient valuation technique of portfolios
and contingent claims.
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5.2 The Standard Black–Scholes Model

The Black–Scholes–Merton market has a particularly simple and intuitive
form. It consists of a riskless account process (Bt)t∈[0,T ], following

dBt

Bt
= rdt,

with constant instantaneous riskless interest rate r, so that

Bt = B0e
rt ∀t ∈ [0, T ]

and typically B0 ≡ 1 normalized. Here r describes the instantaneous time
value of money, namely, how much relative wealth can be earned when saved
over an infinitesimal instance dt, or, conversely, how it is discounted if received
in the future.

Furthermore, there exists a risky asset process (St)t∈[0,T ], following geo-
metric Brownian motion (Example 4.11)

dSt

St
= μdt+ σdWt

with a constant drift μ and a constant volatility σ scaling a Wiener process
dWt, resulting in

St = S0 exp

{(
μ− 1

2
σ2

)
t+ σWt

}
∀t ∈ [0, T ].

Both assets are adapted to the filtered probability space (Ω,F , P, (Ft)t∈[0,T ]).
The market has a finite horizon and is free of arbitrage as well as complete.
To demonstrate this we take Bt as the numeraire asset and attempt to find
an equivalent measure Q for which the discounted process

S∗
t :=

St

Bt
(5.6)

is a local martingale. Invoking Itô’s formula gives

dS∗
t = S∗

t ((μ− r)dt+ σdWt), (5.7)

which, by Girsanov’s Theorem 4.35, shows that

WQ
t =Wt +

μ− r

σ
t

turns (5.6) into a martingale, namely,

S∗
t = S∗

0 exp

{
−1

2
σ2t+ σWQ

t

}
∀t ∈ [0, T ], (5.8)
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and therefore

S∗
0 = EQ [S∗

t ]

under the equivalent measure Q, given by

dQ

dP
= exp

{
−μ− r

σ
Wt −

(
μ− r

σ

)2
t

2

}
on (Ft)t∈[0,T ].

Now, by the numeraire invariance theorem, this means that there will be
unique martingale measures for all possible deflated portfolios, and hence
there is no arbitrage in the Black–Scholes model and it is complete. This now
allows us to price arbitrary replicable portfolios and contingent claims with
formula (5.3). But going back to the primal replication problem, we can derive
the Black–Scholes partial differential equation from the conservation-of-funds
condition (5.1). Explicitly, the replication constraints for a particular portfolio

Vt := Πt

in the Black–Scholes model are

Vt = Π0 +

∫ t

0

H(S)
s dSs +

∫ t

0

H(B)
s dBs,

= H
(S)
t St +H

(B)
t Bt (5.9)

subject to the sufficient nonexplosion condition

∫ t

0

∣∣∣H(B)
s

∣∣∣ ds+
∫ t

0

∣∣∣H(S)
s

∣∣∣
2

ds <∞ a.s.,

and because by definition

V0 = H
(S)
0 S0 +H

(B)
0 B0 = Π0.

Invoking Itô’s formula, we obtain

dVt =
∂Vt
∂t

dt+
∂Vt
∂St

dSt +
1

2
σ2S2

t

∂2Vt
∂S2

t

dt (5.10)

on the left-hand side of equation (5.9) and

dVt = H
(S)
t dSt +H

(B)
t dBt (5.11)

on the right. If we equate (5.10) and (5.11), as well as choose

H
(S)
t =

∂Vt
∂St

and H
(B)
t =

Vt
Bt

− ∂Vt
∂St

St

Bt
,



5.2 The Standard Black–Scholes Model 285

then the hedging strategy (H
(S)
t , H

(B)
t )∀t∈[0,T ] remains predictable with re-

spect to (Ft)t∈[0,T ], and is thus risk free. Rearranging the result gives the
Black–Scholes equation

LBSVt :=
∂Vt
∂St

+
1

2
σ2S2

t

∂2Vt
∂S2

t

+ rSt
∂Vt
∂St

− rVt = 0. (5.12)

First, it is notable that the drift scalar μ under P has canceled out when
changing to the measure Q. This is given by the logic that hedging will always
be riskless and thus the statistical properties of the process are irrelevant as
the random factors cancel out. Second, the partial differential equation is a
backward Kolmogorov equation [see (4.36)] with killing rate r. As such we
know that we require a suitable terminal condition and should look for a
solution given by the Feynman–Kac formula (4.39). In fact, the valuation
formula (5.3) provides us with exactly that.

Remark 5.13. Common financial derivatives are forwards and options. They
have a particular time T (expiry) value VT , also called the payoff. The payoff
of a forward is

V F
T = ST −K.

So-called vanilla options are calls and puts, whose respective payoffs are

V C
T = max {ST −K, 0} (call)

and

V P
T = max {K − ST , 0} (put),

where K is a positive constant of the same dimension as ST , called the strike
price.

As was demonstrated in Theorems 5.7 and 5.11, in an arbitrage-free and
complete market, financial derivatives can be regarded as synthetic portfolios
(Πt)t∈[0,T ], which provide a certain payoff

VT (ω) = ΠT (ω) ∀ω ∈ FT .

Hence, substituting the payoff of a forward into formula (5.3) and employ-
ing the normalized riskless asset Bt as numeraire, we obtain

V F
0 = EQ

[
V F
T

BT

]
(5.13)

= EQ

[
e−rT (ST −K, 0)

]

= e−rT (EQ [ST ]−K) . (5.14)
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Now by (5.7), it becomes obvious that changing to the martingale measure
implies setting the drift of the risky asset to r. Hence, using (5.8)

EQ [ST ] =

∫ ∞

−∞
ST f(ST )dST

=

∫ ∞

−∞
S0e

(r− 1
2σ

2)T+σ
√
Txϕ(x)dx

= S0e
rT ,

where f(x) is the log-normal density of ST (1.3) and ϕ(x) the standard normal
density (1.2), after substitution into (5.14), finally resulting in

V F
0 = S0 − e−rTK. (5.15)

The value of a forward (5.15) is not dependent on the volatility σ of St in the
Black–Scholes–Merton market. A forward is considered to be a linear financial
derivative.

Definition 5.14. A contingent claim (Vt(S
(i)
t ))t∈[0,T ], i = 0, . . . , n is called

linear if it does not depend on the distribution of any S
(i)
t .

Also note that a forward can be replicated statically. In (5.11) the hedging
strategy results in

H
(F )
t =

∂V F
t

∂St
= 1 and H

(B)
t = −Ke−rT ,

both of which are independent of t. Conversely, we have the payoff of a call
option:

V C
0 = EQ

[
e−rT max {ST −K, 0}]

= e−rT
(
EQ

[
ST I[ST>K](ST )

]−KEQ

[
I[ST>K](ST )

])
. (5.16)

Similarly to a forward we obtain the integrals

EQ

[
ST I[ST>K](ST )

]
=

∫ ∞

K

ST f(ST )dST (5.17)

=

∫ ∞

−d2

S0e
(r− 1

2σ
2)T+σ

√
Txϕ(x)dx

= S0e
rTΦ(d1)

and

EQ

[
I[ST>K](ST )

]
= Q(ST > K) = Φ(d2), (5.18)

where again [see (1.2)] ϕ(x) is the standard normal density and Φ(x) its
cumulative distribution, and
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d1 =
ln S0

K +
(
r + 1

2σ
2
)
T

σ
√
T

, (5.19)

as well as d2 = d1 − σ
√
T (we leave the interim steps in the derivation as an

exercise). Hence the so-called Black–Scholes formula for a call option is

VBS(S0) := V C
0 = S0Φ(d1)−Ke−rTΦ(d2), (5.20)

and similarly, the Black–Scholes put formula is

V P
0 = Ke−rTΦ(−d2)− S0Φ(−d1). (5.21)

In fact, both are related through the so-called put–call parity:

V F
t = V C

t − V P
t . (5.22)

Obviously, options are nonlinear (also called convex ) financial derivatives
because their value generally depends on the distribution of (St)∀t∈[0,T ].
However, call and put options in particular only depend on the terminal
distribution of ST .

Digital Options and Martingale Probabilities

As was shown for contingent claims that only depend on the terminal
distribution of ST , we can simply substitute their respective payoff ker-
nel VT into (5.13). A binary or digital call option has the simple payoff
VT = I[ST≥K](ST ). Hence its value is

V D
0 = e−rTEQ[I[ST≥K](ST )]

= e−rTΦ(d2),

as was already demonstrated in (5.18). In fact, the option has the interpreta-
tion

V D
0 = e−rTQ(ST > K), (5.23)

meaning it is the probability under the martingale measure of the risky asset
value exceeding the strike at expiry T . In fact, if (V C

t )t∈[0,T ] is a call option,
then

− ∂V C
t

∂K
= V D

t , (5.24)

i.e., the derivative of a call option with respect to the strike is the negative
discounted probability of being in the money at expiry under the risk-neutral
martingale measure. Also, from (5.24) it can be directly observed that

V D
t = lim

dK↓0
V C
t (K + dK)− V C

t (K)

dK
,

hence the digital option is a linear call-option spread, which is model-
independent, if the values of V C

t are known.
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Barrier Options and Exit Times

A common example of derivatives that depend on the entire path of an
underlying random variable (St)t∈[0,T ] are so-called barrier options. In their
simplest form they are put or call options with the additional feature that if
the underlying random variable hits a particular upper or lower barrier (or
both) at any time in [0, T ], an event is triggered. One particular example is a
so-called “down-and-out call option” (Dt)t∈[0,T ] that becomes worthless when
a lower level b is hit. Hence the payoff is

DT = max {ST −K, 0} I[mint∈[0,T ] St>b]. (5.25)

Here the time τ = inf {t ∈ [0, T ]|St ≤ b} is a stopping time and, more specif-
ically, a first exit time, as defined in Definition 2.125. Also note that τ can
be directly inferred from (St)t∈[0,T ]. Thus, inserting the payoff (5.25) into the
standard valuation formula (5.13), we need to calculate

D0 = e−rTEQ

[
max {ST −K, 0} I[mint∈[0,T ] St>b]

]

= e−rT
(
EQ

[
(ST −K)I[mint∈[0,T ] St>b∩ST>K]

])

= e−rT
(
EQ

[
ST I[mint∈[0,T ] St>b∩ST>K]

]

−KQ
(

min
t∈[0,T ]

St > b ∩ ST > K

))
. (5.26)

It is not difficult to see that the latter probability can be transformed as

Q

(
min

t∈[0,T ]
WQ

t > g(b) ∩WQ
T > g(K)

)

= Q
(
WQ

T < −g(K)
)
−Q

(
min

t∈[0,T ]
WQ

t < g(b) ∩WQ
T > g(K)

)
, (5.27)

where

g(x) =
ln x

S0
− (r − 1

2σ
2
)
T

σ
.

Now using the reflection principle of Lemma 2.170, we see that the last term
of (5.27) can be rewritten as

Q
((
W̃Q

T < g(b) ∪WQ
T < g(b)

)
∩WQ

T > g(K)
)

= Q
(
W̃Q

T < g(b) ∩WQ
T > g(K)

)

= Q(WQ
T < 2g(b)− g(K)).

Since WQ
T is a standard Brownian motion under Q, we obviously have the

probability law
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Q
(
WQ

T < y
)
= Φ

(
y√
T

)

for any y ∈ R. Backsubstitution gives the solution of the last term
of (5.26). We leave the remaining (rather cumbersome) steps of the derivation
to Exercise 5.8. Eventually, the result turns out as

D0 = VBS(S0)−
(
S0

b

)1− 2r
σ2

VBS

(
b2

S0

)

in terms of the Black–Scholes price (5.20).

American Options and Stopping Times

Options, like vanilla calls and puts, that only depend on the terminal distri-
bution of ST are called European options. Conversely, options that can be
exercised at any τ ∈ [0, T ] at the holder’s discretion are called American.
It can be shown through replication nonarbitrage arguments (e.g., Øksendal
1998; Musiela and Rutkowski 1998) that their valuation formula is

V ∗
0 = sup

τ∈[0,T ]

EQ [V ∗
τ ] ,

where τ is a stopping time (Definition 2.44). In general, we are dealing with
so-called optimal stopping or free boundary problems, and there are usually
no closed-form solutions, because τ , unlike for simple barrier options, cannot
be inferred directly from the level of St. The American option value in the
Black–Scholes model can be posed in terms of a linear complementary problem
(e.g., Wilmott et al. 1993). Defining the value of immediate exercise as Pt,
we have

LBSVt ≤ 0 and Vt ≥ Pt, (5.28)

with

LBSVt(Vt − Pt) = 0 and VT = PT .

Now, if there exists an early exercise region R = {Sτ |τ < T }, we necessarily
have Vτ = Pτ . If LBSVτ = LBSPτ > 0, then this represents a contradiction
of (5.28). Therefore, in this case, early exercise can never be optimal, as, for
instance, for a call option with payoff Pτ = max {Sτ −K, 0}, because

LBS max {Sτ −K, 0} =
1

2
σ2K2δ(Sτ −K) + rKI[Sτ>K](Sτ ) ≥ 0,

where δ represents the Dirac delta. Conversely, if V (A) < P (A) for some
region A, then A ⊆ R, meaning it would certainly be optimal to exercise
within this region and generally within a larger one. As an example, for a put
option with Pτ = max {K − Sτ , 0}, we have that

V0(0) = Ke−rT < PT (0) = K.
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Hence, an American put V A
t has a higher value than a European one V E

t . In
fact, Musiela and Rutkowski (1998) demonstrate that in the Black–Scholes
model it can be represented as

V A
t = VBS + EQ

[∫ T

t

e−r(τ−t)rKI[Sτ∈R](Sτ )dτ

]
.

Typically, American options are valued employing numerical methods.

5.3 Models of Interest Rates

The Black–Scholes model incorporates the concept of the time value of money
through the instantaneous continuously compounded riskless short rate r.
However, it assumes that this rate is deterministic and even constant through-
out time or, in other words, the term structure (of interest rates) is flat and
has no volatility. But in reality it is neither. In fact, a significant part of the
financial markets is related to debt or, as it is more commonly called, fixed
income instruments. The latter, in their simplest form, are future cash flows
promised to a beneficiary by a debtor, who may be a government, corpora-
tion, individual, etc. The buyer of the debt hopes to pay as little up front as
possible and earn a maximum stream of interest payments; the converse is
true of the debtor. These securities can be regarded as derivatives on interest
rates. The latter are used as a tool of expressing the discount between the
value of money today and money to be received in the future. In reality, this
discount tends to be a function of the time to maturity T of the debt,10 and,
moreover, it changes continuously and unpredictably. These concepts can be
formalized in a simple discount-bond market.

Definition 5.15. A filtered probability space (Ω,F , P, (Ft)t∈[0,T ]) endowed

with adapted stochastic processes (B
(i)
t )t∈[0,Ti], i = 0, . . . , n, Tn ≤ T , with

B
(i)
Ti

= 1 ∀i = 0, . . . , n,

representing discount-bond prices is called a discount-bond market . The term
structure of (continuously compounded) zero rates (r(t, T ))∀t,T ;0≤t≤T is given
by the relationship

B
(i)
t = e−r(t,Ti)(Ti−t) ∀i.

By the fundamental theorems of asset pricing, the discount-bond market is
free of arbitrage if there exist equivalent martingale measures for all discount-

bond ratios B
(i)
t /B

(j)
t , i, j ∈ {0, . . . , n}. But instead of evolving the discount-

bond prices directly, models for fixed income derivatives focus on the dynamics
of the underlying interest rates. We will give brief summaries of the main
approaches to interest rate modeling.

10Other very important factors are, for example, the creditworthiness of the debtor
or the rate of inflation.
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Short Rate Models

Motivated by the Black–Scholes model, the first stochastic modeling
approaches were performed on the concept of the short rate.

Definition 5.16. The instantaneous short rate

rt := r(t, t) ∀t ∈ [0, T ]

is connected to the value of a discount bond through

B
(i)
t = EQ

[
e−

∫ Ti
t rsds

]
∀i = 0, . . . , n, (5.29)

under the risk-neutral measure Q.

Vasicek (1977) proposed that the short rate follows a Gaussian process

drt = μr(t, rt)dt+ σr(t, rt)dW
P
t

under the physical or empirical measure P . This then results in a nonarbitrage
relationship between the short rate and bond processes of different maturities
based on the concept of a market price of risk process (λt)t∈[0,T ].

Proposition 5.17. Let the short rate rt follow the diffusion process

drt = μr(rt, t)dt+ σr(rt, t)dW
P
t .

Furthermore, assume that the discount bonds B
(i)
t with t ≤ Ti for all i have

interest rates as their sole risky factor and follow the sufficiently regular
stochastic processes

dB
(i)
t = μi(r, t, Ti)dt+ σi(r, t, Ti)dW

P
t ∀i. (5.30)

Then the nonarbitrage bond drifts are given by

μi = rt + σiλ(rt, t),

where λ(rt, t) is the market price of the interest rate risk process.

Proof . Let us define the portfolio process (Πt)t∈[0,T ] as

Πt = H
(1)
t B

(1)
t +H

(2)
t B

(2)
t (5.31)

and normalize it by putting H
(1)
t ≡ 1 and H

(2)
t := Ht for all t. The dynamics

over a time interval dt are then given by

dΠt = dB
(1)
t +HtdB

(2)
t . (5.32)

Invoking Itô’s formula we have

μi =
∂B(i)

∂t
+ μr

∂B(i)

∂r
+

1

2
σr
∂2B(i)

∂r2
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for the bond drift and

σi = σr
∂B(i)

∂r
(5.33)

for the bond volatility. Substituting both along with (5.30) into (5.32) after
cancelations, we obtain

dΠt = (μ1 −Htμ2)dt+

(
σr
∂B(1)

∂r
−Htσr

∂B(2)

∂r

)
dWP

t .

It becomes obvious that when choosing the hedge ratio as

Ht = σr
∂B(1)

∂r

(
σr
∂B(2)

∂r

)−1

, (5.34)

the Wiener process dWP
t , and hence all risk, vanishes so that

dΠt = rtΠtdt, (5.35)

meaning that the bond must earn the riskless rate. Now, substitut-
ing (5.33), (5.34), and (5.31) into (5.35), after rearrangement, we get the
relationship

μ1 − rtB
(1)
t

σ1
=
μ2 − rtB

(2)
t

σ2
.

Observing that the two sides do not depend on the opposite index, we can
write

μi − rtB
(i)
t

σi
= λ(rt, t) ∀i,

where λ(rt, t) is an adapted process, independent of Ti. �

Corollary 5.18 By changing to the risk-neutral measure Q given by

dQ

dP
= exp

{
−
∫ t

0

λdWP
s −

∫ t

0

λ2

2
ds

}
on Ft,

the risk-neutralized short rate process is given by

drt = (μr − σrλ)dt + σrdW
Q
t ,

where

WQ
t =WP

t +

∫ t

0

λds.

The reason why λ arises is that the short rate, representing the stochastic
variable, contrary to the asset price process St in the Black–Scholes model,
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is not directly tradeable, meaning that a portfolio Htrt is meaningless. One
cannot buy units of it directly for hedging. In practice, however, λ is rarely
calculated explicitly. Instead, in a short rate modeling framework some func-
tional forms of μr and σr are specified and their parameters calibrated to
observed market prices. This implies that one is moving from a physical mea-
sure P to a risk-neutral measure Q. For that purpose it is useful to choose the
short rate processes such that there exists a tractable analytic solution for the
bond price. In fact, the Vasicek SDE under the measure Q for the short rate is
chosen to be the mean-reverting Ornstein–Uhlenbeck process (Example 4.11)

drt = (a− brt)dt+ σdWQ
t ,

which, by using it in (5.29), leads one to conjecture that the solution of a

discount bond maturing at time T , namely with terminal condition B
(T )
T = 1,

is of the form

B
(T )
t = eC(t,T )−D(t,T )rt,

thereby preserving the Markov property of the process. Some cumbersome,
yet straightforward, calculations show that

D(t, T ) =
1

b

(
1− e−b(T−t)

)
(5.36)

and

C(t, T ) =
σ2

2

∫ T

t

(D(s, T ))2ds− a

∫ T

t

D(s, T )ds. (5.37)

It becomes apparent that the model only provides three parameters to describe
the dynamics of a potentially complex term structure. Therefore, another
common model is that of Hull and White (1990), also called the extended
Vasicek model, which makes all the parameters time-dependent, namely,

drt = (at − btrt)dt+ σtdW
Q
t ,

thereby allowing a richer description of the yield curve dynamics.

Heath–Jarrow–Morton Approach

As an evolution in interest rate modeling Heath et al. (1992) defined an ap-
proach assuming a yield curve to be specified by a continuum of traded bonds
and evolved it through instantaneous forward rates f(t, T ) instead of the short
rate. The former are defined through the expression

B
(T )
t = e−

∫
T
t

f(t,s)ds, (5.38)
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and thus

f(t, T ) = −∂ lnB
(T )
t

∂T

and

f(t, t) = rt. (5.39)

In fact, the Heath–Jarrow–Morton approach is very generic, and most other
models are just specializations of it. It assumes that forward rates, under the
risk-neutral measure Q associated with the riskless account numeraire, follow
the SDE

df(t, T ) = μ(t, T )dt+ σ(t, T ) · dWQ
t , (5.40)

where σ(t, T ) and dWQ
t are n-dimensional. In fact, due to nonarbitrage argu-

ments, the drift function μ(t, T ) can be fully specified. Invoking Itô’s formula
on (5.38), we obtain the relationship

dB
(T )
t

B
(T )
t

=

⎛
⎝rt −

∫ T

t

μ(t, s)ds+
1

2

∣∣∣∣∣
∫ T

t

σ(t, s)ds

∣∣∣∣∣
2
⎞
⎠ dt

−
∫ T

t

σ(t, s) · dWQ
t

because ∫ T

t

∂f(t, s)

∂t
ds =

∫ T

t

μ(t, s)ds+

∫ T

t

σ(t, s) · dWQ
t ,

and by noting (5.39) and (5.40) as well as Fubini’s Theorem A.42. But now,
for the deflated discount bond to be a martingale, the drift has to be rt. Thus

∫ T

t

μ(t, s)ds =
1

2

∣∣∣∣∣
∫ T

t

σ(t, s)ds

∣∣∣∣∣
2

,

and so

μ(t, T ) = σ(t, T ) ·
∫ T

t

σ(t, s)ds (5.41)

Substituting (5.41) into (5.40), we obtain arbitrage-free processes of a contin-
uum of forward rates, driven by one or more Wiener processes:

df(t, T ) = σ(t, T ) ·
∫ T

t

σ(t, s)ds+ σ(t, T ) · dWQ
t .

Unlike for short rate models, no market price of risk appears. This is due to
the fact that forward rates are actually tradeable, as the following section will
demonstrate.
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Brace–Gatarek–Musiela Approach

As a very intuitive yet powerful approach, Brace et al. (1997) and other au-
thors (Miltersen et al. 1997; Jamshidian 1997) in parallel introduced a model

of discrete forward rates
(
F

(i)
t

)
t∈[0,T ]

, i = 1, . . . , n, that span a yield curve

through the discrete discount bonds

B
(k)
t =

k∏
i=1

(
1 + F

(i)
t (Ti − Ti−1)

)−1

, 1 ≤ k ≤ n. (5.42)

The forward rates are assumed to follow the system of SDEs

dFt = μ(t,Ft)dt+Σ(t,Ft)dWt,

where Σ is a diagonal matrix containing the respective volatilities and dWt

is a vector of Wiener processes with correlations

E
[
dW

(i)
t dW

(j)
t

]
= ρijdt.

In particular, all forward rate processes are considered to be of the log-normal
form

dF
(i)
t

F
(i)
t

= μ(i)(t,Ft)dt+ σ
(i)
t dW

(i)
t ∀i. (5.43)

Again, similar to the Heath–Jarrow–Mortonmodel, a martingale nonarbitrage

argument determines the drift μ(i) for each forward rate F
(i)
t . To see this, we

can write (5.42) as a recurrence relation, and after rearrangement we obtain

F
(i)
t B

(i)
t =

B
(i−1)
t −B

(i)
t

Ti − Ti−1
, (5.44)

which states that the left-hand side is equivalent to a portfolio of traded
assets and has to be driftless under the martingale measure associated with
a numeraire asset. In fact, we have a choice of numeraire asset among all

combinations of available bonds (5.42). We arbitrarily choose a bond B
(N)
t ,

1 ≤ N ≤ n, with associated forward measure QN , and thus

EQN

[
d

(
F

(i)
t

B
(i)
t

B
(N)
t

)]
= 0. (5.45)

The derivation is left as an exercise, and the end result is

μ
(i)
t =

⎧⎪⎪⎨
⎪⎪⎩

−∑N
j=i+1

(Tj+1−Tj)F
(j)
t σ

(i)
t σ

(j)
t ρij

1+(Tj+1−Tj)F
(j)
t

if i < N,

0 if i = N,∑n
j=N+1

(Tj+1−Tj)F
(j)
t σ

(i)
t σ

(j)
t ρij

1+(Tj+1−Tj)F
(j)
t

if i > N.

(5.46)
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This model is particularly appealing as it directly takes real-world observable
inputs like forward rates and their volatilities and also discrete compound-
ing/discounting. But the potentially large number of Brownian motions makes
the model difficult to handle computationally, as it may require large-scale
simulations.

5.4 Extensions and Alternatives to Black–Scholes

In practice Black–Scholes is the most commonly used model, despite its
simplicity. Much of the modern research into financial mathematics looks at
extensions and alternatives that try to improve on some of its shortcomings.
As already discussed, the introduction of stochastic interest rate processes
is a significant step. Another important issue is that the volatility parame-
ter σ is constant across time t and underlying level St. However, in reality,
put and call options of different strikes K and expiries T are traded on ex-
changes, and their prices V̂ (T,K) are directly observable. This allows one to
invert VBS and determine so-called implied volatilities σimp(T,K) because the
simple Black–Scholes formula for calls (5.20) and puts (5.21) are one-to-one
mappings between prices of options for respective T and K to their volatility
parameter σ. The implied volatility is then such that

VBS(σimp(T,K)) = V̂ (T,K).

Quoting option prices in terms of their implied volatility makes them directly
comparable across T and K in the sense that an option with a higher im-
plied volatility is relatively more expensive than one with a lower implied
volatility.11

If the Black–Scholes model were an accurate description of the real world,
then σimp(T,K) = σ constant. But in the real world this is not the case.
Usually implied volatilities are dependent on both K and T . Typical shapes
of the implied volatility surface across the strike are so-called skews or smiles.
If the underlying is regarded as being floored, namely St > 0, then usually
σimp(K1, T ) > σimp(K2, T ), ifK1 < K2, giving a negative correlation between
St and σimp. Intuitively this can be explained by the fact that a fixed change
in St has a relatively larger impact the smaller the level of St. One simple
way of capturing this negative correlation is to change the process of St to
a normal model, namely (St)t∈[0,T ], following arithmetic Brownian motion
(Example 4.11)

dSt = μdt+ σdWt.

This is sometimes referred to as the Bachelier (1900) model. The derivation
of the call option formula is straightforward and similar to the Black–Scholes
model (do as an exercise), resulting in

11By put–call parity (5.22), the implied volatility for puts and calls in an arbitrage-
free market has to be identical for all pairs T,K.
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Fig. 5.1. The implied volatility skew generated by the Black–Scholes, Bachelier,
and stochastic volatility models

V C
0 = (S0 −K)Φ(d) + S0σ

√
Tϕ(d),

with Φ and ϕ as in (5.18) and

d =
S0 −K

S0σ
√
T
.

Figure 5.1 demonstrates the difference between the Black–Scholes and
Bachelier models in terms of implied volatilities.

Local Volatility

Dupire (1994) demonstrated that extending the risky asset process under the
martingale measure to

dSt

St
= rdt+ σ(t, St)dW

Q
t (5.47)

results in a probability distribution that recovers all observed option prices
V̂ (T,K) as quoted in the market. By (5.16) and (5.17), it is clear that we can
write the observed (call) option price as

V̂ (T,K) = e−rT

∫ ∞

K

(ST −K)f(0, S0, T, ST )dST .

Having differentiated with respect to K we obtained the cumulative distribu-
tion as (5.23) and (5.24). Differentiating one more time with respect to K, we
obtain the so-called risk-neutral transition density

f(0, S0, T,K) = erT
∂2V̂

∂K2
. (5.48)
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Now, by Theorem 4.56, f(0, S0, T,K) has to satisfy the Kolmogorov forward
equation

∂f

∂T
=

1

2

∂2(σ2(T,K)K2f)

∂K2
− ∂(rKf)

∂K
(5.49)

with initial condition

f(S0, 0, x, 0) = δ(x − S0).

Substituting (5.48) into (5.49), integrating twice with respect to K (after
applying Fubini’s Theorem A.42, when changing the order of integration),
and noting the boundary condition

lim
K→∞

∂V̂

∂T
= 0,

we obtain

∂V̂

∂T
=

1

2
σ2(T,K)K2 ∂

2V̂

∂K2
− rK

∂V̂

∂K
.

Thus

σ(T,K) =

√√√√ ∂V̂
∂T + rK ∂V̂

∂K

1
2K

2 ∂2V̂
∂K2

,

fully specifying the process (5.47). Note that this is a one-factor model with
a time- and level-dependent volatility parameter. While it recovers all option
prices perfectly at t = 0, it may no longer do so at t > 0 if St has changed,
meaning that while the static properties of the model are satisfactory, the
dynamic ones may not be. To improve on these, various multifactor modeling
approaches exist.

Jump Diffusions

Merton (1976) introduced an extension to the Black–Scholes model that ap-
pended the risky asset process by a Poisson process (Nt)t∈[0,T ], with N0 = 0
and constant intensity λ, independent of (Wt)t∈[0,T ], to allow asset prices to
move discontinuously. The compensated risky asset price process now follows

dSt

St−
= (r − λm)dt+ σdWQ

t + JtdNt, (5.50)

under the risk-neutral equivalent martingale measure, with (Jt)t∈[0,T ] an i.i.d.
sequence of random variables valued in [−1,∞[ of the form Jt = JiI[t>τi[(t)
with J0 = 0, τi an increasing sequence of times, and where

E[dNt] = λdt and E[Jt] = m.
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Then the solution of (5.50) can be written as

ST = S0 exp

{(
r − σ2

2
− λm

)
T + σWQ

T

} NT∏
i=1

(1 + Ji).

Defining an option value process by (Vt(St))t∈[0,T ], we apply Itô’s formula,
along with its extension, to Poisson processes and assume that jump risk in
the market can be diversified [see Merton (1976) and references therein], so
that we can use the chosen risk-neutral measure Q. We obtain

[LBSVt](St) = λ

(
m
∂Vt
∂St

− E[Vt(JtSt)− Vt(St)]

)
.

The solution to this partial differential equation can still be written in the
form (5.16). But closed-form expressions of the expectation and probability
terms only exist for special cases. Two such cases were identified by Merton
(1976), first when Nt ∈ {0, 1} and J1 = −1, i.e., the case where there exists
the possibility of a single jump that puts the risky asset into the absorbing
state 0. Then the solution for, say, a call option is VBS but with a modified
risk-free rate r + λ. The second case is where Jt > −1 and

ln Jt ∼ N(μ, γ2),

so that

m = eμ+
1
2γ

2

.

Then

V C
0 =

∞∑
i=0

e−λmT (λmT )i

i!
VB(σi, ri),

where the risk-free rate is given by

ri = r +
i

T

(
μ+

γ2

2

)
− λ(m− 1)

and the volatility by

σn =

√
σ2 +

i

T
γ2.

Another, semiclosed-form, expression exists when Jt are exponentially dis-
tributed (Kou 2002), but usually the solution has to be written in terms of
Fourier transforms that need to be solved numerically.
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Stochastic Volatility

As demonstrated in Fig. 5.1, the volatility skew across K/S need not be a
straight line, but it may have a pronounced curvature or so-called smile.
A model that gives this feature and on top of it adjusts for the dynamic
shortcomings of local volatility is stochastic volatility, where (σt)t∈[0,T ] is a
stochastic process. In a general representation we can write it as a system of
SDEs:

dSt = μ(σt, St, t)dt+ f(σt, St, t)dW
S
t ,

dg(σt) = h(σt, t)dt+ w(σt, t)dW
σ
t ,

< dWS
t , dW

σ
t > = ρdt.

Stochastic volatility models have an additional driving factor and increase the
tail density of the distribution of St. Two popular specific models are Heston
and SABR. We will give a brief outline on how these models are applied. First,
the Heston model (Heston 1993) has the specific form

dSt = μStdt+
√
vtStdW

S
t ,

dvt = a(m− vt)dt+ b
√
vtdW

v
t ,

< dWS
t , dW

v
t > = ρdt,

where vt = σ2
t is a stochastic variance process. If we extend the Black–Scholes

market with a traded option V̂t, then the contingent claim-hedging equa-
tion (5.9) becomes

Vt = H
(B)
t Bt +H

(S)
t St +H

(V )
t V̂t. (5.51)

Applying Itô’s formula on both sides, choosing appropriate hedgesH
(B)
t ,H

(S)
t ,

H
(V )
t , and following a similar argument on the risk-neutral drift conditions as

in Proposition 5.17, it can be shown [Exercise 5.14 or see Lewis (2000)] that
Vt follows the equation

LBSVt + a′(m′ − vt)
∂Vt
∂vt

+
1

2
b2v2t

∂2Vt
∂v2t

+ ρbvtSt
∂2Vt
∂St∂vt

= 0, (5.52)

where a′ and m′ are the risk-neutralized parameters under the Q measure
and LBS is employing

√
vt instead of σ. Heston (1993) derives a closed-form

solution of (5.52) through Fourier transforms.
A second widely used model is referred to as SABR (Hagan et al. 2002),

standing for stochastic alpha, beta, rho. It is specified by the system

dSt = σtS
β
t dW

S
t ,

dσt = σtνdW
σ
t ,

< dWS
t , dW

σ
t > = ρdt,
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with σ0 = α > 0, 0 ≤ β ≤ 1, ν ≥ 0, and −1 ≤ ρ ≤ 1. For simplicity the model
is typically written in forward space or, alternatively, without much loss of
generality, r = 0. Hagan et al. (2002) show through singular perturbation
analysis, by considering ν to be small, that the model has an asymptotic
expansion solution similar to the Black–Scholes formula

V C
0 = S0Φ(d3)−KΦ(d4),

with

d3,4 =
ln S0

K ± 1
2 σ̂

2T

σ̂
√
T

,

where the so-called implied SABR volatility approximation is given by

σ̂ =
α

(S0K)
(1−β)

2

[
1 + (1−β)2

24 ln2 S0

K + (1−β)4

1920 ln4 S0

K

]
(

z

x(z)

)

[
1 + T

(
(α− αβ)2

24(S0K)1−β
+

ρβνα

4(S0K)
1−β
2

+
(2 − 3ρ2)ν2

24

)]
,

z =
ν

α
(S0K)

(1−β)
2 ln

S0

K
,

x(z) = ln

√
1− 2ρz + z2 + z − ρ

1− ρ
.

Typically the SABR model is used through its analytical approximation
formula as an interpolation scheme between different traded options across
T and K. The approximation formula is fairly precise for S0/K not far from 1
and ν not too large.

5.5 Insurance Risk

Another very important application of stochastic processes is in the field of
insurance. These are typically discrete event dynamics in a continuous-time
framework. The model often has to give information about the probability
and time of default or ruin of an asset or company. (see e.g. Embrechts et al.
(1997)).

Ruin Probabilities

A typical one-company insurance portfolio is modeled as follows. The initial
value of the portfolio is the so-called initial reserve u ∈ R

∗
+. At random times

σn ∈ R
∗
+ (not to be confused with volatilities), a random claim Un ∈ R

∗

occurs for n ∈ N
∗. During the time interval ]0, t] ⊂ R

∗
+ an amount Πt ∈ R

∗
+

of income is collected through premia.
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The cumulative claims process up to time t > 0 is then given by

Xt =

∞∑
k=1

UkI[σk≤t](t).

In this way the value of the portfolio at time t, the so-called risk reserve, is
given by

Rt = u+Πt −Xt.

The claims surplus process is given by

St = Xt −Πt.

If we assume that premiums are collected at a constant rate β > 0, then

Πt = βt, t > 0.

Now, the time of ruin τ(u) of the insurance company is a function of the
initial reserve level. It is the first time when the claims surplus process crosses
this level, namely,

τ(u) := min {t > 0|Rt < 0} = min {t > 0|St > u} .
Hence, an insurance company is interested in the ruin probabilities; first the
finite-horizon ruin probability, which is defined as

ψ(u, x) := P (τ(u) ≤ x) ∀x ≥ 0;

second, the probability of ultimate ruin, defined as

ψ(u) := lim
x→+∞ψ(u, x) = P (τ(u) ≤ +∞).

It may also be interested in the survival probability defined as

ψ̄(u) = 1− ψ(u).

It is clear that

ψ(u, x) = P

(
max
0≤t≤x

St > u

)
.

The preceding model shows that the marked point process (σn, Un)n∈N∗ on
(R∗

+ × R
∗
+) plays an important role. As a particular case, we consider the

marked Poisson process with independent marking, i.e., the case in which
(σn)n∈N∗ is a Poisson process on R

∗
+ and (Un)n∈N∗ is a family of i.i.d.

R
∗
+-valued random variables, independent of the underlying point process

(σn)n∈N∗ . In this case, we have that the interoccurrence times between claims
Tn = σn − σn−1 (with σ0 = 0) are independent and identically exponentially
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distributed random variables with a common parameter λ > 0 (Rolski et al.
1999). In this way the number of claims Nt during ]0, t], t > 0, i.e., the un-
derlying counting process

Nt =

∞∑
k=1

I[σk≤t](t),

is a Poisson process on R
∗
+ with intensity λ. Now, let the claim sizes Un be

i.i.d. with common cumulative distribution function FU and let (Un)n∈N∗ be
independent of (Nt)t∈R+ . We may notice that in this case the cumulative claim
process

Xt =

Nt∑
k=1

Uk =

∞∑
k=1

UkI[σk≤t](t), t > 0,

is a compound Poisson process . Clearly, the latter has stationary independent
increments and, in fact, is a Lévy process, so that we can state the following
theorem.

Theorem 5.19 (Karlin and Taylor 1981, p. 428). Let (Xt)t∈R∗
+

be a
stochastic process having stationary independent increments, and let X0 = 0.
(Xt)t∈R∗

+
is then a compound Poisson process if and only if its characteristic

function φXt(z) is of the form

φXt(z) = exp {−λt(1 − φ(z))} , z ∈ R,

where λ > 0 and φ is a characteristic function.

With respect to the preceding model, φ is the common characteristic
function of the claims Un, n ∈ N

∗. If μ and σ2 are the mean and the variance
of U1, respectively, we have

E[Xt] = μλt,

V ar[Xt] =
(
σ2 + μ2

)
λt.

We may also obtain the cumulative distribution function of Xt through the
following argument:

P (Xt ≤ x) = P

(
Nt∑
k=1

Uk ≤ x

)

=

∞∑
n=0

P

(
Nt∑
k=1

Uk ≤ x

∣∣∣∣∣Nt = n

)
P (Nt = n)

=
∞∑

n=0

(λt)ne−λt

n!
F (n)(x)
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for x ≥ 0 (it is zero otherwise), where

F (n)(x) = P (U1 + · · ·+ Un ≤ x), x ≥ 0,

with

F (0)(x) =

{
1 for x ≥ 0,
0 for x < 0.

In the special case of exponentially distributed claims, with common param-
eter μ > 0, we have

FU (u) = P (U1 ≤ u) = 1− e−μu, u ≥ 0,

so that U1 + · · ·+ Un follows a gamma distribution with

F
(n)
U (u) = 1−

n−1∑
k=0

(μu)ke−μu

k!
=

μn

(n− 1)!

∫ u

0

e−μvvn−1dv

for n ≥ 1, u ≥ 0. The following theorem holds for exponentially distributed
claim sizes.

Theorem 5.20. Let

FU (u) = 1− e−μu, u ≥ 0.

Then

ψ(u, x) = 1− e−μu−(1+c)λxg(μu+ cλx, λx),

where

c = μ
β

λ
,

g(z, θ) = J(θz) + θJ (1)(θz) +

∫ z

0

ez−vJ(θv)dv − 1

c

∫ cθ

0

ecθ−vJ
(
zc−1v

)
dv,

with θ > 0. Here

J(x) =
∞∑

n=0

xn

n!n!
, x ≥ 0,

and J (1)(x) is its first derivative.

Proof . See, e.g., Rolski et al. (1999, p. 196). �
For the general compound Poisson model we may provide information

about the finite-horizon ruin probability P (τ(u) ≤ x) by means of martingale
methods. We note again that, in terms of the claims surplus process St, we
have
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τ(u) = min {t|St > u} , u ≥ 0,

and

ψ(u, x) = P (τ(u) ≤ x), x ≥ 0, u ≥ 0.

The claims surplus process is then given by

St =

Nt∑
k=1

Uk − βt,

where λ > 0 is the arrival rate, β the premium rate, and FU the claim size
distribution. Let

Yt =

Nt−∑
k=1

Uk, t ≥ 0,

be the left-continuous version of the cumulative claim size Xt. Based on the
notion of reversed martingales (Rolski et al. 1999, p. 434), it can be shown
that the process

Zt = X∗
x−t, t ∈ [0, x[, x > 0,

with

X∗
t =

Yt
u+ βt

+

∫ x

t

Yv
v

u

(u+ βv)2
dv, 0 < t ≤ x,

for u ≥ 0 and x > 0, is an FX
t -martingale. Let

τ0 = sup {v|v ≥ x, Sv ≥ u} ,

and τ0 = 0 if S(v) < u for all v ∈ [0, x]. Then τ := x − τ0 is a bounded
FX

t -stopping time. As a consequence,

E[Zτ ] = E[Z0],

i.e.,

E

[
Yx

u+ βx

∣∣∣∣Yx ≤ u+ βx

]
= E

[
Yτ0

u+ βτ0
+

∫ x

τ0

Yv
v

u

(u + βv)2
dv

∣∣∣∣Sx− ≤ u

]
.

On the other hand, we have

P (τ(u) > x) = P
(
Sx ≤ u ∩ τ0 = 0

)
= P (Sx ≤ u)− P

(
Sx ≤ u ∩ τ0 > 0

)
.

Now, since

Yτ0 = u+ βτ0 for τ0 > 0,
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we have

E

[
Yτ0

u+ βτ0

∣∣∣∣Sx ≤ u

]
= E

[
Yτ0

u+ βτ0

∣∣∣∣Sx ≤ u ∩ τ0 > 0

]

= P
(
Sx ≤ u ∩ τ0 > 0

)
.

Thus, for u > 0, we have the following result.

Theorem 5.21 (Rolski et al. 1999, p. 434). For all u ≥ 0 and x > 0,

1− ψ(u, x) = max

{
E

[
1− Yx

u+ βx

]
, 0

}
+ E

[∫ x

τ0

Yv
v

u

(u+ βv)2
dv

∣∣∣∣Sx ≤ u

]
.

In particular, for u = 0,

1− ψ(0, x) = max

{
E

[
1− Yx

βx

]
, 0

}
.

A Stopped Risk Reserve Process

Consider the risk reserve process

Rt = u+ βt−
Nt∑
k=1

Uk.

A useful model for stopping the process is to stop Rt at the time of ruin τ(u)
and let it jump to a cemetery state. In other words, consider the process

Xt =

{
(1, Rt) if t ≤ τ(u),
(0, Rτ(u)) if t > τ(u).

The process (Xt, t)t∈R+ is a piecewise deterministic Markov process as defined
in Davis (1984). The infinitesimal generator of (Xt, t)t∈R+ is given by

Ag(y, t)
=
∂g

∂t
(y, t) + I[y≥0](y)

(
β
∂g

∂y
(y, t) + λ

(∫ y

0

g(y − v, t)dFU (v)− g(y, t)

))

for g satisfying sufficient regularity conditions, so that it is in the domain of
A (Rolski et al. 1999, p. 467). If g does not depend explicitly upon time and
g(y) = 0 for y < 0, then the infinitesimal generator reduces to

Ag(y) = β
dg

dy
(y) + λ

(∫ y

0

g(y − v)dFU (v) − g(y)

)
.

The following theorem holds.
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Theorem 5.22. Under the preceding assumptions,

1. The only solution g(y) to Ag(y) = 0, such that g(0) > 0 and g(y) = 0, for
y ∈]−∞, 0[, is the survival function ψ̄(y) = P (τ(u) = +∞).

2. Let x > 0 be fixed and let g(y, t) solve Ag = 0 in (R× [0, x]) with boundary
condition g(y, x) = I[y≥0](y). Then g(y, 0) = P (τ(y) > x) for any y ∈ R,
x ∈ R

∗
+.

5.6 Exercises and Additions

5.1. Let (Fn)n∈N and (Gn)n∈N be two filtrations on a common probability
space (Ω,F , P ) such that Gn ⊆ Fn ⊆ F for all n ∈ N; we say that a real-
valued discrete-time process (Xn)n∈N is an (Fn,Gn)-martingale if and only if

• (Xn)n∈N is an Fn-adapted integrable process;
• For any n ∈ N, E[Xn+1 −Xn|Gn] = 0.

A process C = (Cn)n≥ is called Gn-predictable if Cn is Gn−1-measurable. Given
N ∈ N, we say that a Gn-predictable process C is totally bounded by time N if

• Cn = 0 almost surely for all n > N ;
• There exists a K ∈ R+ such that Cn < k almost surely for all n ≤ N .

Let C be a Gn-predictable process, totally bounded by time N . We say that
it is a risk-free {Gn}N -strategy if, further,

N∑
i=1

Ci(Xi −Xi−1) ≥ 0 a.s., P

(
N∑
i=1

Ci(Xi −Xi−1) > 0

)
> 0.

Show that there exists a risk-free {Gn}N -strategy for X = (Xn)n∈N if and only

if there does not exist an equivalent measure P̃ such that Xn∧N is a (Fn,Gn)-

martingale under P̃ . This is an extension of the first fundamental theorem
of asset pricing, Theorem 5.7. See also Dalang et al. (1990) and Aletti and
Capasso (2003).

5.2. Given a filtration (Fn)n∈N on a probability space (Ω,F , P ), the filtration
Fm

n := Fn−m is called an m-delayed filtration. An Fn-adapted, integrable
stochastic process X = (Xn)n∈N is an m-martingale if it is an (Fn,Fm

n )-
martingale (Problem 5.1). Find a real-valued (2-martingale)X where no profit
is available during any unit of time, i.e.,

∀i, P (Xi −Xi−1 > 0) > 0, P (Xi −Xi−1 < 0) > 0,
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but admits a risk-free
{F1

n

}
3
-strategy C, i.e.,

3∑
i=1

Ci(Xi −Xi−1) ≥ 0 a.s., P

(
3∑

i=1

Ci(Xi −Xi−1) > 0

)
> 0

(Aletti and Capasso 2003).

5.3. With reference to Problem 5.2, consider a risk-free {Fn}N -strategy. Show
that there exists an n ∈ {1, . . . , N} such that

Cn(Xn −Xn−1) ≥ 0 a.s., P (Cn(Xn −Xn−1) > 0) > 0,

i.e., if no profit is available during any unit of time, then we cannot have a
profit up to time N (Aletti and Capasso 2003).

5.4. Consider a Black–Scholes market with r = μ = 0 and σ = 1. Then

a value-conserving strategy H
(S)
t = 1/

√
T yields a portfolio value of Πt =∫ t

0
dWs/

√
T − s. Show that

P (Πτ ≥ c, 0 ≤ τ ≤ T ) = 1,

with c an arbitrary constant and τ a stopping time. Hence any amount can
be obtained in finite time. It is easy to see that (unlike conditions 1 and 2)
condition 3 of Proposition 5.6 is not automatically satisfied (e.g., Duffie 1996).

5.5. For both the Black–Scholes and the Bachelier models calculate the hedge

ratio H
(S)
t = ∂V C

t /∂St for a call option. The latter is also called the delta
of an option. Furthermore, calculate ∂V C

t /∂t (theta), ∂V C
t /∂σ (vega), and

∂2V C
t /∂S

2
t (gamma). These hedge ratios are called the Greeks of an option.

5.6. Show that in a Black–Scholes market, when using the martingale measure
Q∗ associated with St as the numeraire asset, the probability Q∗(ST > K) =
Φ(d1).

5.7. For a drifting Wiener process Xt = Wt + μt, where Wt is P -Brownian
motion and its maximum value attained is

Mt = max
τ∈[0,t]

Xτ ,

apply the reflection principle and Girsanov’s theorem to show that

P (XT ≤ a ∩MT ≥ b) = e2μbP (XT ≥ 2b− a+ 2μT )

for a ≤ b and b ≥ 0. See also Musiela and Rutkowski (1998) or Borodin and
Salminen (1996).
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5.8. Referring to the barrier option Problem (5.26), show that

Q

(
min

t∈[0,T ]
WQ

t > g(b) ∩WQ
T > g(K)

)

= Φ(d1)−
(
b

S0

) 2r
σ2 −1

Φ

(
ln b2

S0K
+
(
r − 1

2σ
2
)
T

σ
√
T

)
, (5.53)

where d1 is given by (5.19). From (5.53) obtain the joint density of ST and
its minimum over [0, T ], and thus solve

EQ

[
ST I[mint∈[0,T ] St>b∩ST>K]

]
.

5.9. Two American options have an explicit solution:

• (American Digital Call) It pays 1 unit of currency if ST > K at expiry
and can also be exercised early. Show that its value under Black–Scholes
is

V0 =

(
K

S0

) 2r
σ2

Φ

(
ln S0

K − (r + 1
2σ

2)T

σ
√
T

)
+
S0

K
Φ

(
ln S0

K + (r + 1
2σ

2)T

σ
√
T

)

by considering that you need to solve

V0 = EQ

[
e−rτI[τ≤T ]

]
,

with the first exit time τ = inf {t|St ≥ K}.
• (American Perpetual Put) It pays K−Sτ upon exercise at time τ but has

no expiration date. Show that its value under Black–Scholes is

V0 =
σ2

2r
Ŝ1− 2r

σ2 S
− 2r

σ2

0 ,

where

Ŝ =
K

1 + σ2

2r

is the time-homogeneous optimal exercise level of (St)t≥0. Consider that
perpetual options have no theta, namely ∂Vt/∂t = 0, thus turning the
Black–Scholes partial differential equation (5.12) into an ordinary differ-
ential equation, as well as its boundary conditions at Ŝ.

5.10. Why can it be conjectured that the bond equation in the Vasicek model
is of the form

B
(T )
t = eC(t,T )−D(t,T )rt? (5.54)

Derive the results (5.36) and (5.37). [Hint: Derive a partial differential

equation for B
(T )
t using a similar argumentation as for the Black–Scholes
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equation. Substitute (5.54) and solve.] Note that interest rate models whose
discount-bond solution is of this form are called affine [see Problem 2.39
and Hunt and Kennedy (2000)].

5.11. In the Brace–Gatarek–Musiela model, derive the nonarbitrage drifts

(5.46) of the log-normal forward rates F
(i)
t . (Hint: In (5.45) note that

B
(i)
t

B
(N)
t

is

a martingale under QN . Given this, derive the drift as

μi = −
d

〈
lnF

(i)
t , ln

B
(i)
t

B
(N)
t

〉

dt

and solve.)

5.12. A so-called par swap rate S(t, Ts, Te) has to satisfy

S(t, Ts, Te) =

∑e
i=s+1 F

(i−1)
t B

(i)
t (Ti − Ti−1)

As,e
, (5.55)

where

As,e =

e∑
i=s+1

B
(i)
t (ti − ti−1)

is called an annuity. If relationship (5.44) holds and the forward rates are
driven by (5.43), then show that the swap rate process can approximately be
written as

dS(t, Ts, Te) = σS(t,Ts,Te)S(t, Ts, Te)dW
As,e

t ,

where σS(t,Ts,Te) is deterministic and dW
As,e

t is a Brownian motion under
the martingale measure induced by taking As,e as numeraire. (Hint: Assume

that the coefficients of all the forward rates F
(i)
t in (5.55) are approximately

deterministic, invoke Itô’s formula, and apply Girsanov’s theorem.) Convince
yourself that a contingent claim with a swap rate as underlying (a so-called
constant maturity swap or CMS payoff) is a nonlinear instrument.

5.13. The constant elasticity of variance market (Cox 1996; Boyle and Tian
1999) is a Black–Scholes market where the risky asset follows

dSt = μStdt+ σS
α
2
t dWt

for 0 ≤ α < 2. Show that this market has no equivalent risk-neutral measure.

5.14. Find the appropriate hedge ratios H
(B)
t , H

(S)
t , H

(V )
t in (5.51) that

eliminate the Wiener processes dWS
t and dWS

t and thus derive (5.52).
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Applications to Biology and Medicine

6.1 Population Dynamics:
Discrete-in-Space–Continuous-in-Time Models

In the chapter on stochastic processes, the Poisson process was introduced
as an example of an RCLL nonexplosive counting process. Furthermore, we
reviewed a general theory of counting processes as point processes on a real line
within the framework of martingale theory and dynamics. Indeed, for these
processes, under the usual regularity assumptions, we can invoke the Doob–
Meyer decomposition theorem [see (2.80)ff ] and claim that any nonexplosive
RCLL process (Xt)t∈R+ satisfies a generalized SDE of the form

dXt = dAt + dMt, (6.1)

subject to a suitable initial condition. Here A is the compensator of the
process, modeling the “evolution,” and M is a martingale, representing the
“noise.”

As was mentioned in the sections on counting and marked point processes,
a counting process (Nt)t∈R+ is a random process that counts the occurrence of
certain events over time, namely Nt being the number of such events having
occurred during the time interval ]0, t]. We have noticed that a nonexplosive
counting process is RCLL with upward jumps of magnitude 1; here we im-
pose the initial condition N0 = 0, almost surely. Since we are dealing with
those counting processes that satisfy the conditions of the local Doob–Meyer
decomposition Theorem 2.88, a nondecreasing predictable process (At)t∈R+

(the compensator) exists such that (Nt − At)t∈R+ is a right-continuous local
martingale. Further, we assume that the compensator is absolutely continuous
with respect to the usual Lebesgue measure on R+. In this case we say that
(Nt)t∈R+ has a (predictable) intensity (λt)t∈R+ such that

At =

∫ t

0

λsds, for any t ∈ R+,

V. Capasso and D. Bakstein, An Introduction to Continuous-Time
Stochastic Processes, MSSET, DOI 10.1007/978-0-8176-8346-7 6,

311

© Birkhäuser Boston 2012
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and SDE (6.1) can be rewritten as

dXt = λtdt+ dMt.

If the process is integrable and λ is left-continuous with right limits (LCRL),
one can easily show that

λt = lim
Δt→0+

1

Δt
E[Nt+Δt −Nt|Ft−] a.s.,

and if we further assume the simplicity of the process, we also have

λt = lim
Δt→0+

1

Δt
P (Nt+Δt −Nt = 1|Ft−) a.s.;

the latter means that λtdt is the conditional probability of a new event during
[t, t+ dt) given the history of the process during [0, t). It really represents the
model of evolution of the counting process, similar to classical deterministic
differential equations.
Example 6.1. Let X be a nonnegative real random variable with absolutely
continuous probability law having density f , cumulative distribution function

F , survival function S = 1−F , and hazard rate function α(t) =
f(t)

S(t)
, t > 0.

Assume

∫ t

0

α(s)ds = − ln(1 − F (t)) < +∞, for any t ∈ R+,

but ∫ +∞

0

α(t)dt = +∞.

Define the univariate process Nt by

Nt = I[X≤t](t)

and let (Nt)t∈R+ be the filtration the process generates, i.e.,

Nt = σ(Ns, s ≤ t) = σ
(
X ∧ t, I[X≤t](t)

)
.

Define the left-continuous adapted process Yt by

Yt = I[X≥t](t) = 1−Nt−.

It can be easily shown [e.g., Andersen et al. (1993)] that Nt admits

At =

∫ t

0

Ysα(s)ds
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as a compensator and hence Nt has stochastic intensity λt defined by

λt = Ytα(t), t ∈ R+.

In other words,

Nt −
∫ X∧t

0

α(s)ds

is a local martingale. Here α(t) is a deterministic function, while Yt, clearly, is a
predictable process. This is a first example of what is known as a multiplicative
intensity model.

Example 6.2. Let X be a random time as in the previous example, and let U
be another random time, i.e., a nonnegative real random variable. Consider
the random variable T = X ∧ U and define the processes

Nt = I[T≤t]I[X≤U ](t)

and

NU
t = I[T≤t]I[U<X](t)

and the filtration

Nt = σ
(
Ns, N

U
s , s ≤ t

)
.

The hazard rate function α of X is known as the net hazard rate; it is given by

α(t) = lim
h→0+

1

h
P [X ≤ t+ h|X > t].

On the other hand, the quantity

α+(t) = lim
h→0+

1

h
P [X ≤ t+ h|X > t, U > t]

is known as the crude hazard rate whenever the limit exists. In this case,

Nt −
∫ t

0

I[T≥t]α(s)ds

is a local martingale.

Birth-and-Death Processes

AMarkov birth-and-death process provides an example of a bivariate counting
process. Let (Xt)t∈R+ be the size of a population subject to a birth rate λ and
a death rate μ. Then the infinitesimal transition probabilities are
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P (Xt+Δt = j|Xt− = h) =

⎧⎪⎪⎨
⎪⎪⎩

λhΔt+ o(Δt) if j = h+ 1,
μhΔt+ o(Δt) if j = h− 1,
1− (λh+ μh)Δt+ o(Δt) if j = h,
o(Δt) otherwise.

Let N
(1)
t and N

(2)
t be the number of births and deaths, respectively, up to

time t ≥ 0, assuming N
(1)
0 = 0 and N

(2)
0 = 0. Then

(Nt)t∈R+ =
(
N

(1)
t , N

(2)
t

)

is a bivariate counting process with intensity process (λXt−, μXt−)t∈R+

(Figs. 6.1 and 6.2). This is an example of a formulation of a Markov pro-
cess with countable state space as a counting process. In particular, we may
write an SDE for Xt as follows:

dXt = λXt−dt− μXt−dt+ dMt,

where Mt is a suitable martingale noise.
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Fig. 6.1. Simulation of a birth-and-death process with birth rate λ = 0.2, death rate
μ = 0.05, initial population X0 = 10, time step dt = 0.1, and interval of observation
[0, 10]. The continuous line represents the number of births N

(1)
t ; the dashed line

represents the number of deaths N
(2)
t

A Model for Software Reliability

LetNt denote the number of software failures detected during the time interval
]0, t], and suppose that F is the true number of faults existing in the software
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at time t = 0. In the Jelinski–Moranda model (Jelinski and Moranda 1972) it
is assumed that Nt is a counting process with intensity

λt = ρ(F −Nt−),

where ρ is the individual failure rate (Fig. 6.3). This model corresponds to a
pure death process in which the total initial population F usually is unknown,
as is the rate ρ.
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Fig. 6.2. Simulation of a birth-and-death process with birth rate λ = 0.09, death
rate μ = 0.2, initial population X0 = 10, time step dt = 0.1, and interval of obser-
vation [0, 10]. The continuous line represents the number of births N

(1)
t ; the dashed

line represents the number of deaths N
(2)
t
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Fig. 6.3. Simulation of a model for software reliability: individual failure rate
ρ = 0.2, true initial number of faults F = 50, time step dt = 0.1, and interval
of observation [0, 50]
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Contagion: The Simple Epidemic Model

Epidemic systems provide models for the transmission of a contagious disease
within a population. In the “simple epidemic model” (Bailey 1975; Becker
1989), the total population N is divided into two main classes:

(S) The class of susceptibles, including those individuals capable of contract-
ing the disease and becoming infectives themselves.

(I) The class of infectives, including those individuals who, having contracted
the disease, are capable of transmitting it to susceptibles.

Let It denote the number of individuals who have been infected during the
time interval ]0, t]. Assume that individuals become infectious themselves
immediately upon infection and remain so for the entire duration of the
epidemic. Suppose that at time t = 0 there are S0 susceptible individuals
and I0 infectives in the community. The classical model based on the law
of mass action (e.g., Bailey 1975; Capasso 1993) assumes that the counting
process It has stochastic intensity

λt = βt(I0 + It−)(S0 − It−),

which is appropriate when the community is mixing uniformly. Here βt is
called the infection rate (Fig. 6.4).

Formally, this corresponds to writing the evolution of I(t) via the SDE

dIt = βt(I0 + It−)(S0 − It−)dt+ dMt,

where Mt is a suitable martingale noise. In this case, we obtain

〈M〉t =
∫ t

0

λsds

for the variation process 〈M〉t, so that

M2
t −

∫ t

0

λsds

is a zero-mean martingale. As a consequence,

V ar[Mt] = E

[∫ t

0

λsds

]
= E[It].

More general models can be found in Capasso (1990) and references therein.

Contagion: The General Stochastic Epidemic

For a wide class of epidemic models the total population (Nt)t∈R+ includes
three subclasses. In addition to the classes of susceptibles (St)t∈R+ and
infectives (It)t∈R+ , already introduced in the simple model, a third class is
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Fig. 6.4. Simulation of a simple epidemic (SI) model: initial number of susceptibles
S0 = 500, initial number of infectives I0 = 4, infection rate (constant) β = 5×10−6,
time step dt = 1, interval of observation [0, 1000]

considered, i.e., (R), the class of removals. This comprises those individuals
who, having contracted the disease, and thus being already infectives, are no
longer in the position of transmitting the disease to other susceptibles because
of death, immunization, or isolation. Let us denote the number of removals as
(Rt)t∈R+ .

The process (St, It, Rt)t∈R+ is modeled as a multivariate jump Markov
process valued in E′ = N

3. Actually, if we know the behavior of the total
population process Nt, because

St + It +Rt = Nt for any t ∈ R+,

then we need to provide a model only for the bivariate process (St, It)t∈R+ ,
which is now valued in E = N

2. The only nontrivial elements of a resulting
intensity matrix Q (Sect. 2.7) are given by

• q(s,i),(s+1,i) = α, birth of a susceptible;
• q(s,i),(s−1,i) = γs, death of a susceptible;
• q(s,i),(s,i+1) = β, birth of an infective;
• q(s,i),(s,i−1) = δi, removal of an infective;
• q(s,i),(s−1,i+1) = κsi, infection of a susceptible.

For α = β = γ = 0 we have the so-called general stochastic epidemic (e.g.,
Bailey 1975; Becker 1989). In this case the total population is constant (assume
R0 = 0; Fig. 6.5):

Nt ≡ N = S0 + I0 for any t ∈ R+.
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Fig. 6.5. Simulation of an SIR epidemic model with vital dynamics: initial number
of susceptibles S0 = 500, initial number of infectives I0 = 4, initial number of
removed R0 = 0, birth rate of susceptibles α = 10−4, death rate of a susceptible
γ = 5 × 10−5, birth rate of an infective β = 10−5, rate of removal of an infective
δ = 8.5 × 10−4, infection rate of a susceptible k = 1.9 × 10−5, time step dt = 1,
interval of observation [0, 500]

Contagion: Diffusion of Innovations

When a new product is introduced in a market, its diffusion is due to a
process of adoption by individuals who are aware of it. Classical models of
innovation diffusion are very similar to epidemic systems, even though in
this case rates of adoption (infection) depend upon specific marketing and
advertising strategies (Capasso et al. 1994; Mahajan and Wind 1986). In this
case the total population N of possible consumers is divided into the following
main classes:

(S) The class of potential adopters, including those individuals capable of
adopting the new product, thus themselves becoming adopters.

(A) The class of adopters, those individuals who, having adopted the new
product, are capable of transmitting it to potential adopters.

Let At denote the number of individuals who, by time t ≥ 0, have already
adopted a new product that has been put on the market at time t = 0.
Suppose that at time t = 0 there are S0 potential adopters and A0 adopters
in the market. In the basic models it is assumed that all consumers are homo-
geneous with respect to their inclination to adopt the new product. Moreover,
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all adopters are homogeneous in their ability to persuade others to try new
products, and adopters never lose interest but continue to inform those con-
sumers who are not aware of the new product. Under these assumptions the
classical model for the adoption rate is again based on the law of mass action
(Bartholomew 1976), apart from an additional parameter λ0(t) that describes
adoption induced by external actions, independent of the number of adopters,
such as advertising, price reduction policy, etc. Then the stochastic intensity
for this process is given by

λ(t) = (λ0(t) + βtAt−)(S0 −At−),

which is appropriate when the community is mixing uniformly. Here βt is
called the adoption rate (Fig. 6.6).
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Fig. 6.6. Simulation of the contagion model for diffusion of innovations: external
influence λ0(t) = 5 × 10−4t, adoption rate (constant) β = 0.05, initial potential
adopters S0 = 100, initial adopters A0 = 5, time step dt = 0.01, interval of observa-
tion [0, 3]

Inference for Multiplicative Intensity Processes

Let

dNt = αtYtdt+ dMt

be a stochastic equation for a counting process Nt, where the noise is a zero-
mean martingale. Furthermore, let

Bs =
Js−
Ys

with Js = I[Ys>0](s).
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Bt is, like Yt, a predictable process, so that by the integration theorem,

M∗
t =

∫ t

0

BsdMs

is itself a zero-mean martingale. Note that

M∗
t =

∫ t

0

BsdMs =

∫ t

0

BsdNs −
∫ t

0

αsJs−ds,

so that

E

[∫ t

0

BsdNs

]
= E

[∫ t

0

αsJs−ds
]
,

i.e.,
∫ t

0 BsdNs is an unbiased estimator of E[
∫ t

0 αsJs−ds]. If α is constant and
we stop the process at a time T such that Yt > 0, t ∈ [0, T ], then

α̂ =
1

T

∫ T

0

dNs

Ys

is an unbiased estimator of α. This method of inference is known as Aalen’s
method (Aalen 1978) [see also Andersen et al. (1993) for an extensive appli-
cation of this method to the statistics of counting processes].

Inference for the Simple Epidemic Model

We may apply the preceding procedure to the simple epidemic model as dis-
cussed in Becker (1989). Let

Bs =
I[Ss>0](s)

Is−Ss−
,

and suppose β is constant. Let T be such that St > 0, t ∈ [0, T ]. Then an
unbiased estimator for β would be

β̂ =
1

T

∫ T

0

dIs
Ss−Is−

=
1

T

1

S0I0
+

1

(S0 − 1)(I0 − 1)
+ · · ·+ 1

(ST + 1)(IT + 1)
.

The standard error (SE) of β̂ is

1

T

(∫ T

0

B2
sdIs

)2

.

By the central limit theorem for martingales (Rebolledo 1980), we can also
deduce that

β̂ − β

SE(β̂)
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has an asymptotic N(0, 1) distribution, which leads to confidence intervals
and hypothesis testing on the model in the usual way [see Becker (1989) and
references therein].

Inference for a General Epidemic Model

In Yang (1985) a model was proposed as an extension of the general epidemic
model presented above. The epidemic process is modeled in terms of a mul-
tivariate jump Markov process (St, It, Rt)t∈R+ , or simply (St, It)t∈R+ , when
the total population is constant, i.e.,

Nt := St + It +Rt = N + 1.

In this case, if we further suppose that S0 = N , I0 = 1, R0 = 0, instead
of using (St, It), the epidemic may be described by the number of infected
individuals (not including the initial case) M1(t) and the number of removals
M2(t) = Rt during ]0, t], t ∈ R

∗
+. Since we are dealing with a finite total

population, the number of infected individuals and the number of removals
are bounded, so that

E[Mk(t)] ≤ N + 1, k = 1, 2.

The processesM1(t) andM2(t) are submartingales with respect to the history
(Ft)t∈R+ of the process, i.e., the filtration generated by all relevant processes.
We assume that the two processes admit multiplicative stochastic intensities
of the form

Λ1(t) = κG1(t−)(N −M1(t−)),

Λ2(t) = δ(1 +M1(t−)−M2(t−)),

respectively, where G1(t) is a known function of infectives in circulation at
time t. It models the release of pathogen material by infected individuals.
Hence

Zk(t) =Mk(t)−
∫ t

0

Λk(s)ds, k = 1, 2,

are orthogonal martingales with respect to (Ft)t∈R+ . As a consequence,
Aalen’s unbiased estimators for the infection rate κ and the removal rate
δ are given by

κ̂ =
M1(t)

B1(t−)
, δ̂ =

M1(t)

B1(t−)
,
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where

B1(t) =

∫ t

0

G1(s)(N −M1(s))ds,

B2(t) =

∫ t

0

(1 +M1(s)−M2(s))ds.

Theorem 1.3 in Jacobsen (1982, p. 163) gives conditions for a multivariate
martingale sequence to converge to a multivariate normal process. If such
conditions are met, then, as N → ∞,

(√
B1(t)(κ̂− κ)√
B2(t)(δ̂ − δ)

)
d→N

((
0
0

)
, Γ

)
,

where

Γ =

(
κ 0
0 δ

)
.

In general, it is not easy to verify the conditions of this theorem. They surely
hold for the simple epidemic model presented above, where δ = 0. Related
results are given in Ethier and Kurtz (1986) and Wang (1977) for a scaled
infection rate κ → κ

N (see the following section). See also Capasso (1990) for
additional models and related inference problems.

6.2 Population Dynamics: Continuous Approximation
of Jump Models

A more realistic model than the general stochastic epidemic of the preceding
section, which takes into account a rescaling of the force of infection due to
the size of the total population, is the following (Capasso (1993)):

q(s,i),(s−1,i+1) =
κ

N
si = Nκ

s

N

i

N
.

We may also rewrite

q(s,i),(s,i−1) = δN
i

N
,

so that both transition rates are of the form

q
(N)
k,k+l = Nβl

(
k

N

)

for

k = (s, i)
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and;

k + l =

{
(s, i− 1),
(s− 1, i+ 1).

This model is a particular case of the following situation:
Let E = Z

d ∪ {Δ}, where Δ is the point at infinity of Zd, d ≥ 1. Further, let

βl : Z
d → R+, l ∈ Z

d,

∑
l∈Zd

βl(k) < +∞, for each k ∈ Z
d.

For f defined on Z
d, and vanishing outside a finite subset of Zd, let

Af(x) =
{∑

l∈Zd βl(x)(f(x + l)− f(x)), x ∈ Z
d,

0, x = Δ.

Let (Yl)l∈Zd be a family of independent standard Poisson processes. Let
X(0) ∈ Z

d be nonrandom and suppose

X(t) = X(0) +
∑
l∈Zd

lYl

(∫ t

0

βl(X(s))ds

)
, t < τ∞, (6.2)

X(t) = Δ, t ≥ τ∞, (6.3)

where

τ∞ = inf {t|X(t−) = Δ} .
The following theorem holds (Ethier and Kurtz 1986, p. 327).

Theorem 6.3.

1. Given X(0), the solution of system (6.2) and (6.3) above is unique.
2. If A is a bounded operator, then X is a solution of the martingale problem

for A.

As a consequence, for our class of models for which

q
(N)
k,k+l = Nβl

(
k

N

)
, k ∈ Z

d, l ∈ Z
d,

we have that the corresponding Markov process, which we shall denote by
X̂(N), satisfies, for t < τ∞:

X̂(N)(t) = X̂(N)(0) +
∑
l∈Zd

lYl

(
N

∫ t

0

βl

(
X̂(N)(s)

N

)
ds

)
,
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where the Yl are independent standard Poisson processes. By setting

F (x) =
∑
l∈Zd

lβl(x), x ∈ R
d

and

X(N) =
1

N
X̂(N),

we have

X(N)(t) = X(N)( 0) +
∑
l∈Zd

l

N
Ỹl

(
N

∫ t

0

βl

(
X(N)(s)

)
ds

)

+

∫ t

0

F (X(N)(s))ds, (6.4)

where

Ỹl(u) = Yl(u)− u

is the centered standard Poisson process. The state space for X(N) is

EN = E ∩
{
k

N
, k ∈ Z

d

}

for E ⊂ R
d. We require that x ∈ EN and β(x) > 0 imply x + l

N ∈ EN . The

generator for X(N) is

A(N)f(x)

=
∑
l∈Zd

Nβl(x)

(
f

(
x+

l

N

)
− f(x)

)

=
∑
l∈Zd

Nβl(x)

(
f

(
x+

l

N

)
− f(x)− l

N
∇f(x)

)
+ F (x)∇f(x), x ∈ EN .

Of interest is the asymptotic behavior of the system for a large value of
the scale parameter N.

By the strong law of large numbers, we know that

lim
N→∞

sup
u≤v

∣∣∣∣ 1N Ỹl(Nu)

∣∣∣∣ = 0, a.s.,

for any v ≥ 0. As a consequence, the following theorem holds (Ethier and
Kurtz 1986, p. 456).

Theorem 6.4. Suppose that for each compact K ⊂ E
∑
l∈Zd

|l| sup
x∈K

βl(x) < +∞,
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and there exists MK > 0 such that

|F (x)− F (y)| ≤MK |x− y|, x, y ∈ K;

suppose X(N) satisfies (6.4) above, with

lim
N→∞

X(N)(0) = x0 ∈ R
d.

Then, for every t ≥ 0,

lim
N→∞

sup
s≤t

∣∣∣X(N)(s)− x(s)
∣∣∣ = 0, a.s.,

where x(t), t ∈ R+ is the unique solution of

x(t) = x0 +

∫ t

0

F (x(s))ds, t ≥ 0,

wherever it exists.

For the application of the preceding theorem to the general stochastic
epidemic introduced at the beginning of this section see Problem 6.9. For a
graphical illustration of the foregoing calculations see Figs. 6.7 and 6.8. Fur-
ther, interesting examples may also be found in Sect. 6.4 of Tan (2002). For
further examples of models for population dynamics described by SDEs, the
reader may refer to Mao et al. (2002) and Mao et al. (2005).
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Fig. 6.7. Continuous approximation of a jump model: general stochastic epidemic
model with S0 = 0.6N , I0 = 0.4N , R0 = 0, rate of removal of an infective δ = 10−4;
infection rate of a susceptible k = 8 × 10−3N ; time step dt = 10−2; interval of
observation [0, 1500]. The three lines represent the simulated It/N as a function of
time t for three different values of N
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6.3 Population Dynamics: Individual-Based Models

The scope of this chapter is to introduce the reader to the modeling of a sys-
tem of a large, though still finite, population of individuals subject to mutual
interaction and random dispersal. These systems may well describe the collec-
tive behavior of individuals in herds, swarms, colonies, armies, etc. [examples
can be found in Burger et al. (2007), Capasso and Morale (2009), Durrett and
Levin (1994), Flierl et al. (1999), Gueron et al. (1996), Okubo (1986), and
Skellam (1951)]. Under suitable conditions, the behavior of such systems, in
the limit of the number of individuals tending to infinity, may be described
in terms of nonlinear reaction-diffusion systems. We may then claim that
while SDEs may be utilized for modeling populations at the microscopic scale
of individuals (Lagrangian approach), partial differential equations provide a
macroscopic Eulerian description of population densities.

Up to now, Kolmogorov equations like that of Black–Scholes were linear
partial differential equations; in this chapter we derive nonlinear partial dif-
ferential equations for density-dependent diffusions. This field of research,
already well established in the general theory of statistical physics (e.g., De
and Presutti 1991; Donsker and Varadhan 1989; Méléard 1996), has gained
increasing attention since it also provides the framework for the modeling,
analysis, and simulation of agent-based models in economics and finance (e.g.,
Epstein and Axtell 1996).
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Fig. 6.8. Continuous approximation of a jump model: the same model as in Fig. 6.7
of a general stochastic epidemic model with S0 = 0.6N , I0 = 0.4N , R0 = 0, rate
of removal of an infective δ = 10−4, infection rate of a susceptible k = 8× 10−3N ,
time step dt = 10−2, interval of observation [0, 1500]. The three lines represent the
simulated trajectory (St/N, It/N) for three different values of N
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The Empirical Distribution

We start from the Lagrangian description of a system of N ∈ N \ {0, 1}
particles. Suppose the kth particle (k ∈ {1, . . . , N}) is located at Xk

N (t) ∈
R

d, at time t ≥ 0. Each (Xk
N (t))t∈R+ is a stochastic process valued in the

state space (Rd,BRd), d ∈ N \ {0}, on a common probability space (Ω,F , P ).
An equivalent description of the foregoing system may be given in terms of
the (random) Dirac measures εXk

N (t) (k = 1, 2, . . . , N) on BRd such that, for

any real function f ∈ C0(R
d), we have

∫
Rd

f(y)εXk
N (t)(dy) = f

(
Xk

N (t)
)
.

As a consequence, information about the collective behavior of the N particles
is provided by the so-called empirical measure, i.e., the random measure on R

d

XN (t) :=
1

N

N∑
k=1

εXk
N (t), t ∈ R+.

This measure may be considered as the empirical spatial distribution of the
system. It is such that for any f ∈ C0(R

d)

∫
Rd

f(y)[XN (t)](dy) =
1

N

N∑
k=1

f
(
Xk

N (t)
)
.

In particular, given a region B ∈ BRd , the quantity

[XN (t)](B) :=
1

N
card

{
Xk

N (t) ∈ B
}

denotes the relative frequency of individuals, out of N , that at time t stay in
B. This is why the measure-valued process

XN : t ∈ R+ → XN (t) =
1

N

N∑
k=1

εXk
N (t) ∈ MRd

is called the process of empirical distributions of the system of N particles.

Evolution Equations

The Lagrangian description of the dynamics of a system of interacting parti-
cles is given via a system of SDEs. Suppose that for any k ∈ {1, . . . , N} the
process (Xk

N (t))t∈R+ satisfies the SDE

dXk
N (t) = FN [XN (t)](Xk

N (t))dt + σNdW
k(t), (6.5)
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subject to a suitable initial condition Xk
N (0), which is an R

d-valued random
variable. Thus, we are assuming that the kth particle is subject to random
dispersal, modeled as a Brownian motion W k. In fact, we suppose that W k,
k = 1, . . . , N, is a family of independent standard Wiener processes. Further-
more, the common variance σ2

N may depend on the total number of particles;

we will suppose that lim
N→∞

σ2
N

N
= 0.

The drift term is defined in terms of a given function

FN : MRd → C(Rd)

and it describes the “interaction” of the kth particle located at Xk
N(t) with

the random field XN (t) generated by the whole system of particles at time t.
An evolution equation for the empirical process (XN (t))t∈R+ can be obtained
thanks to Itô’s formula. For each individual particle k ∈ {1, . . . , N} , subject
to its SDE, given f ∈ C2

b (R
d × R+), we have

f
(
Xk

N(t), t
)
= f

(
Xk

N(0), 0
)
+

∫ t

0

FN [XN (s)]
(
Xk

N (s)
)∇f (

Xk
N (s), s

)
ds

+

∫ t

0

[
∂

∂s
f
(
Xk

N(s), s
)
+
σ2
N

2
�f (

Xk
N(s), s

)]
ds

+σN

∫ t

0

∇f (
Xk

N (s), s
)
dW k(s). (6.6)

Correspondingly, for the empirical process (XN (t))t∈R+ we get the following

weak formulation of its evolution equation. For any f ∈ C2,1
b (Rd × R+) we

have

〈XN (t), f(·, t)〉 = 〈XN(0), f(·, 0)〉+
∫ t

0

〈XN (s), FN [XN(s)](·)∇f(·, s)〉 ds

+

∫ t

0

〈
XN (s),

σ2
N

2
�f(·, s) + ∂

∂s
f(·, s)

〉
ds

+
σN
N

∫ t

0

∑
k

∇f (
Xk

N(s), s
)
dW k(s). (6.7)

In the previous expressions, we used the notation

〈μ, f〉 =
∫
f(x)μ(dx) (6.8)

for any measure μ on (Rd,BRd) and any (sufficiently smooth) function f :
R

d → R.
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The last term of (6.7) is a martingale with respect to the natural
filtration of the process (XN (t))t∈R+ . Hence we may apply Doob’s inequality
(Proposition 2.70) such that, for any finite T > 0,

E

[
sup
t≤T

|MN (f, t)|2
]
≤ 4σ2

N‖∇f‖2∞T
N

.

This shows that, for N sufficiently large, the martingale term, which is the
only source of stochasticity of the evolution equation for (XN (t))t∈R+ , tends to

zero, for N tending to infinity, since ∇f is bounded in [0, T ], and
σ2
N

N → 0 for
N tending to infinity. Under these conditions we may conjecture that a limit-
ing measure-valued deterministic process (X∞(t))t∈R+ exists whose evolution
equation (in weak form) is

〈X∞(t), f(·, t)〉 = 〈X∞(0), f(·, 0)〉+
∫ t

0

〈X∞(s), F [X∞(s)](·)∇f(·, s)〉 ds

+

∫ t

0

〈
X∞(s),

σ2
∞
2

�f(·, s) + ∂

∂s
f(·, s)

〉
ds

for σ2
∞ ≥ 0.

Actually, various nontrivial mathematical problems arise in connection
with the existence of a limiting measure-valued process (X∞(t))t∈R+ . A typical
procedure includes the following:

(a) Show the convergence of the stochastic empirical measure process XN to
a deterministic measure process X∞:

XN
D→ X∞ ∈ C([0, T ],M(Rd)).

(b) Identify the limiting measure process and possibly show its absolute
continuity with respect to the usual Lebesgue measure on R

d, i.e., for
any t ∈ [0, T ]

X∞ = ρ(·, t)νd.

(c) Prove existence and uniqueness for the solution of the deterministic
density ρ(x, t) of X∞(t) satisfying their asymptotic evolution equation.

6.3.1 A Mathematical Detour

In the following subsections we will show how the foregoing procedure has been
carried out in particular cases. We start by recalling basic facts regarding the
relevant mathematical environment required for carrying out the foregoing
procedure.
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The Relevant Processes

Within the measurable space (Rd,BRd), consider the following family of
stochastic processes on a common probability space:

Xk
N (t) ∈ R

d, t ∈ [0, T ], 1 ≤ k ≤ N,

for N ∈ N \ {0} ; then define the empirical measure associated with the
preceding family:

XN (t) =
1

N

N∑
k=1

εXk
N (t) ∈ M(Rd).

If, for all 1 ≤ k ≤ N, the trajectories of
{
Xk

N(t) ∈ R
d, t ∈ [0, T ]

}
are

continuous on [0, T ], then

XN := {XN (t), t ∈ [0, T ]} ∈ C([0, T ],M(Rd)).

The Relevant Metrics

On M(Rd) take the BL (mounded Lipschitz) metric

dBL(μ, ν) := sup
f∈H1

(〈μ, f〉 − 〈ν, f〉) =: ‖μ− ν‖1,

where

H1 :=

{
f ∈ Cb(R

d) | ‖f‖Lip = sup
x∈Rd

|f(x)|+ sup
x,y∈Rd,x 
=y

|f(x)− f(y)|
|x− y| ≤ 1

}
,

and 〈μ, f〉 has been defined in (6.8).
Note that on M(Rd) BL-convergence is equivalent to weak convergence

(Sect. B.1).
Correspondingly, on C([0, T ],M(Rd)), T > 0 we shall use the uni-

form metric with respect to t ∈ [0, T ], so that the distance between μ, ν ∈
C([0, T ],M(Rd)) is given by

sup
0≤t≤T

‖μ(t)− ν(t)‖1.

On the space of probability measures M(C([0, T ],M(Rd)) we shall adopt
the topology of weak convergence, too.
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The Relevant Polish Spaces

Theorem 6.5. R
d, endowed with the usual Euclidean metric, is a Polish

space; hence M(Rd), C([0, T ],M(Rd)), and M(C([0, T ],M(Rd))), endowed
with the aforementioned metrics, are Polish spaces.

Recall that in Polish spaces relative compactness and tightness are equiv-
alent.

An important criterion to show relative compactness (tightness) in
C([0, T ], M(Rd)) is the following one, derived from Theorem B.91 (Ethier
and Kurtz 1986).

Theorem 6.6. Consider a sequence (XN )N∈N of stochastic processes in
C([0, T ],M(Rd)), and let FN

t := σ {XN(s)|s ≤ t} be the natural filtration
associated with {XN (t), t ∈ [0, T ]} . Suppose that

(i) (Pointwise compactness control) for any real positive ε and for any non-
negative rational t, a compact Γt,ε exists such that

inf
N
P (XN (t) ∈ Γt,ε) > 1− ε;

(ii) (Small variations during small time intervals) let α > 0; for any real
δ ∈ (0, 1), a sequence (γTN (δ))N∈N of nonnegative real random variables
exists such that

lim
δ→0

lim sup
N→∞

E[γTN (δ)] = 0

and, for any t ∈ [0, T ],

E[‖XN (t+ δ)−XN(t))‖α1 |FN
t ] ≤ E[γTN (δ)|FN

t ].

Then (L(XN ))N∈N is a tight sequence of probability laws.

Within this mathematical setting, procedures (a), (b), and (c) mentioned
previously become

(i) Show the relative compactness of the sequence (L(XN ))N∈N\{0}, which
corresponds to an existence result for the limit L(X);

(ii) Show the regularity of the possible limits; we show that the possible limits
{X(t), t ∈ [0, T ]} are absolutely continuous with respect to the Lebesgue
measure for almost all t ∈ [0, T ] P− a.s.;

(iii) Identify the dynamics of the limit process, i.e., all possible limits are
shown to be a solution of a certain deterministic equation that we assume
to have a unique solution (this corresponds to the uniqueness of the limit
L(X)).

It will be realized that actually items (ii) and (iii) are taken together.



332 6 Applications to Biology and Medicine

6.3.2 A “Moderate” Repulsion Model

As an example we consider the system [due to Oelschläger (1990)]

dXk
N (t) = − 1

N

N∑
m=1,m 
=k

∇VN
(
Xk

N (t)−Xm
N (t)

)
dt+ dW k(t), (6.9)

where W k, k = 1, . . . , N, represent N independent standard Brownian
motions valued in R

d (here all variances are set equal to 1). The kernel VN is
chosen of the form

VN (x) = χd
NV1(χNx), x ∈ R

d, (6.10)

where V1 is a symmetric probability density with compact support in R
d and

χN = N
β
d , β ∈]0, 1[.

With respect to the general structure introduced in the preceding subsection
on evolution equations, we have assumed that the drift term is given by

FN [XN(t)]
(
Xk

N (t)
)
= −[∇VN ∗XN (t)]

(
Xk

N(t)
)

= − 1

N

N∑
m=1,m 
=k

∇VN
(
Xk

N (t)−Xm
N (t)

)
.

System (6.9) describes a population of N individuals, subject to random
dispersal (Brownian motion) and to repulsion within the range of the ker-
nel VN . The choice of the scaling (6.10) in terms of the parameter β means
that the range of interaction of each individual with the rest of the population
is a decreasing function of N (correspondingly, the strength is an increasing
function of N). On the other hand, the fact that β is chosen to belong to ]0, 1[
is relevant for the limiting procedure. It is known as moderate interaction
and allows one to apply suitable convergence results (laws of large numbers)
(Oelschläger 1985).

For the sake of useful regularity conditions, we assume that

V1 =W1 ∗W1,

where W1 is a symmetric probability density with compact support in R
d,

satisfying the condition

∫
Rd

(1 + |λ|α)|W̃1(λ)|2dλ <∞ (6.11)

for some α > 0 (here W̃1 denotes the Fourier transform of W1). Henceforth,
we also make use of the following notations:
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WN (x) = χd
NW1(χNx),

hN (x, t) = (XN (t) ∗WN )(x),

VN (x) = χd
NV1(χNx) = (WN ∗WN )(x),

gN(x, t) = (XN (t) ∗ VN )(x) = (hN (·, t) ∗WN )(x),

so that system (6.9) can be rewritten as

dXk
N (t) = −∇gN (Xk

N (t), t)dt+ dW k(t), k = 1, . . . , N.

The following theorem holds.

Theorem 6.7. Let

XN(t) =
1

N

N∑
k=1

εXk
N (t)

be the empirical process associated with system (6.9). Assume that

1. Condition (6.11) holds;
2. β ∈]0, d

d+2 ];
3.

sup
N∈N

E [〈XN(0), ϕ1〉] <∞, ϕ1(x) = (1 + x2)1/2;

4.
sup
N∈N

E
[||hN (·, 0)||22

]
<∞;

5.
lim

N→∞
L (XN(0)) = εX0 in M(M(Rd)),

where X0 is a probability measure having a density p0 ∈ C2+α
b (Rd) with

respect to the usual Lebesgue measure on R
d.

Then the empirical process XN converges to a deterministic law X∞; more
precisely,

lim
N→∞

L(XN ) = εX∞ in M(C([0, T ],M(Rd))),

where

X∞ = (X∞(t))0≤t≤T ∈ C([0, T ],M(Rd))

admits a density

p ∈ C
2+α,1+α

2

b (Rd × [0, T ]),

which satisfies

∂

∂t
p(x, t) = ∇(p(x, t)∇p(x, t)) + 1

2
Δp(x, t), (6.12)

p(x, 0) = p0(x).
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Equation (6.12) includes nonlinear terms, as in the porous media equation
(Oelschläger 1990). This is due to the repulsive interaction between particles,
which in the limit produces a density-dependent diffusion. A linear diffu-
sion persists because the variance of the Brownian motions in the individual
equations was kept constant. We will see in a second example how it may
vanish when the individual variances tend to zero for N tending to infin-
ity. We will not provide a detailed proof of Theorem 6.7, even though we
are going to provide a significant outline of it, leaving further details to the
referred literature.

By proceeding as in the previous subsection, a straightforward application
of Doob’s inequality for martingales (Proposition 2.70) justifies the vanishing
of the noise term in the following evolution equation for the empirical measure
(XN (t))t∈R+ :

〈XN (t), f(·, t)〉 = 〈XN(0), f(·, 0)〉+
∫ t

0

〈XN (s),∇gN (·, s)∇f(·, s)〉 ds

+

∫ t

0

〈
XN (s),

σ2

2
�f(·, s) + ∂

∂s
f(·, s)

〉
ds

+
σ

N

∫ t

0

∑
k

∇f (
Xk

N (s), s
)
dW k(s),

for a given T > 0 and any f ∈ C2,1
b (Rd × [0, T ]). The major difficulty in a

rigorous proof of Theorem 6.7 comes from the nonlinear term

ΞN,f(t) =

∫ t

0

〈XN (s),∇gN (·, s)∇f(·, s)〉 ds. (6.13)

If we rewrite (6.13) in an explicit form, we get

ΞN,f(t) =

∫ t

0

1

N2

N∑
k,m=1

∇VN
(
Xk

N(s)−Xm
N (s)

)∇f (
Xk

N (s), s
)
ds.

Since, for β > 0, the kernel VN → δ0, namely the Dirac delta function, this
shows that, in the limit, even small changes of the relative position of neigh-
boring particles may have a considerable effect on ΞN,f(t). But in any case,
the regularity assumptions made on the kernel VN let us state the following
lemma, which provides sufficient estimates about gN and hN as defined above.

The proof of Theorem 6.7 proceeds by the following steps.

Lemma 6.8. Under the assumptions of Theorem 6.7,

(i) The process

t �→ < XN (t), ϕ1 > e−Ct

is a supermartingale, for a suitable choice of C > 0;
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(ii) The process

t �→ < XN (t), ϕ1 > eCt

is a submartingale, for a suitable choice of C > 0.

Thanks to Doob’s inequalities for martingales, a significant consequence
of the foregoing lemma is the following one.

Lemma 6.9. Given a T > 0, for any δ > 0 there exists a compact Kδ in
(MP(Rd), dBL) such that

inf
N∈N

P {XN(t) ∈ Kδ, ∀t ∈ [0, T ]} ≥ 1− δ.

Furthermore, the following can be shown using Itô’s formula.

Lemma 6.10. Given a T > 0, for any Δ > 0, there exists a sequence{
γTN (Δ)

}
N∈N

of nonnegative random variables such that

E [dBL(XN (t+Δ), XN (t))|Ft] ≤ E
[
γTN (Δ)|Ft

]
0 ≤ t ≤ T −Δ,N ∈ N,

with

lim
Δ→0

lim sup
n→∞

E[γTN (Δ)] = 0.

The following proposition is a consequence of the foregoing lemmas, to-
gether with Theorem 6.6.

Proposition 6.11 With XN as above, the sequence L(XN ) is relatively
compact in the space M(C([0, T ],M(Rd))).

By Proposition 6.11, we may claim that a subsequence of (L(XN ))N∈N exists
that converges to a probability measure on the space M(C([0, T ],M(Rd))).
The Skorohod representation Theorem B.71 then assures that a process Xk

∞
exists in C([0, T ],M(Rd)) such that

lim
l→∞

XNl
= Xk

∞, a.s. with respect to P.

If we can assure the uniqueness of the limit, then all Xk∞ will coincide with
some X∞.

By now, we assume uniqueness, so that we may take {Nk} = N; by the
Skorohod theorem, we may assert that, corresponding to the possible unique
limit law, we can also have an almost sure convergence, i.e.,

lim
N→∞

sup
t≤T

dBL(XN (t), X∞(t)) = 0 P− a.s.

The following theorems holds (Oelschläger 1985).
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Theorem 6.12. Under the foregoing assumptions, suppose further that W1 ∈
L2(Rd) is such that, for some δ > 0 and α2 > 0,

sup
N∈N

E

[∫ T

δ

∫
Rd

(1 + |λ|α2 )|h̃N (λ, t)|2dλdt
]
< +∞.

Then the limit measure X∞ ∈ MP ([0, T ]× R
d) has P -a.s. a density

h∞ ∈ L2
(
[0, T ]× R

d
)

with respect to the Lebesgue measure on [0, T ] × R
d, i.e., for any

f ∈ Cb([0, T ]× R
d)

∫ T

0

∫
Rd

f(t, x)X∞(dx, dt) =

∫ T

0

∫
Rd

f(t, x)h∞(t, x)(dx, dt). (6.14)

Remark 6.13. A priori, the limiting processX∞ may still be a random process
in C([0, T ],M(Rd)). Further, we do not know whether, given a time t ∈ [0, T ],
XN (t) admits a density (possibly deterministic) with respect to the usual
Lebesgue measure on R

d. The following analysis leads to an answer to both
questions.

The proof of Theorem 6.7 requires further analysis in order to acquire
more information about the limit dynamics.

The following result can be shown (MP denotes the subspace of probability
measures of M).

Theorem 6.14. Under the hypotheses of Theorem 6.12, let us suppose that
a law of large number holds at initial time

lim
N→∞

L(XN (0)) = δμ0 in MP(MP(Rd)),

where μ0 has a density p0 in L2(Rd) ∩ C2
b (R

d). Then, almost surely, for any

f ∈ C1,1
b (Rd,R+), 0 ≤ t ≤, T ,

〈X∞(·, t), f(·, t)〉 = 〈μ0, f(·, 0)〉

− 1

2

∫ t

0

〈∇h∞(·, s), (1 + 2h∞(·, s))∇f(·, s)〉 (6.15)

+

∫ t

0

〈h∞(·, s), ∂
∂s
f(·, s)〉ds.

We can write (6.15) also in the following form. For any f ∈ C1
b (R

d), 0 ≤
t ≤ T ,

〈X∞(·, t), f(·, t)〉 = 〈μ0, f(·, 0)〉+

−1

2

∫ t

0

〈∇h∞(·, s), (1 + 2h∞(·, s))∇f(·, s)〉.
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So far we have shown that any limit measure X∞ ∈ C([0, T ],MP (R
d)) is

a solution of (6.15), with h∞ ∈ L2
(
[0, T ]× R

d
)
, satisfying (6.14).

We should prove that for any t ∈ [0, T ], the measure XN (t) is absolutely
continuous with respect to the Lebesgue measure, so it admits a density for
each t ∈ [0, T ]. Thanks to a known result, we can prove that by showing that
the Fourier transform of the measure XN (t) is in L2 for any t ∈ [0, T ]; thus
a density exists which belongs to L2(Rd), and we prove that it is also L2

uniformly bounded. Indeed one can show that (Oelschläger 1985)

‖p0‖22 ≥
∫
Rd

‖X̃∞(λ)‖2dλ. (6.16)

Thus we may state that for any fixed t ∈ [0, T ] the measure X∞(t) has a
density with respect to the Lebesgue measure on R

d, and because of (6.14),
we also have

X∞(t) = h∞(·, t)νd, (6.17)

where νd denotes the Lebesgue measure on R
d. Furthermore, again from (6.16)

and (6.17), the density is bounded in L2

‖h∞(·, t)‖2 ≤ ‖p0‖2.

So we may finally state the following theorem.

Theorem 6.15. Under the hypotheses of Theorem 6.12, let us suppose that
a law of large number applies at initial time

lim
N→∞

L(XN (0)) = δX0 in MP(MP(Rd)),

where X0 has a density p0 in L2(Rd) ∩ C2
b (R

d). Then, almost surely, the
sequence XN converges in law to a X∞. For any t ∈ [0, T ] the measure XN (t)
has a density h∞(·, t) such that for any f ∈ C2,1

b (Rd,R+), 0 ≤ t ≤, T ,

〈h∞(·, t), f(·, t)〉 = 〈p0, f(·, 0)〉

− 1

2

∫ t

0

〈∇h∞(·, s), (1 + 2h∞(·, s))∇f(·, s)〉 (6.18)

+

∫ t

0

〈h∞(·, s), ∂
∂s
f(·, s)〉ds.

One can easily see that (6.18) is the weak form of the following partial
differential equation:

∂

∂t
ρ(x, t) =

1

2
�ρ(x, t) +∇ · (ρ(x, t)∇ρ(x))

ρ(x, 0) = p0(x), x ∈ R
d. (6.19)
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The uniqueness of the limit h∞ derives from the uniqueness of the weak

solution of the viscous Equation (6.19), in C
2+α,1+α/2
b (Rd × [0, T ]), as it can

be achieved via classical arguments (Ladyzenskaja et al. 1968).
We may thus conclude that if we assume that X∞(0) admits a determinis-

tic density p0 at time t = 0, then (X∞(t))t∈[0,T ] satisfies a deterministic evo-

lution equation and is thus itself a deterministic process on C([0, T ],M(Rd)).
From the general theory we know that (6.19) admits a unique solution

p ∈ C
2+α,1+α/2
b (Rd × [0, T ]).

It satisfies itself (6.14), so that we may claim it is a version of the density
of the limit measure X∞, thereby concluding the main theorem.

6.3.3 Ant Colonies

As another example, we consider a model for ant colonies. The latter provide
an interesting concept of aggregation of individuals. According to a model
proposed in Morale et al. (2004) (see also Burger et al. 2007; Capasso and
Morale 2009), [based on an earlier model by Grünbaum and Okubo (1994)],
in a colony or in an army (in which case the model may be applied to any cross
section), ants are assumed to be subject to two conflicting social forces : long-
range attraction and short-range repulsion. Hence we consider the following
basic assumptions (see Figs. 6.9–6.11):

(i) Particles tend to aggregate subject to their interaction within a range of
size Ra > 0 (finite or not). This corresponds to the assumption that each
particle is capable of perceiving the others only within a suitable sensory
range; in other words, each particle has a limited knowledge of the spatial
distribution of its neighbors.

(ii) Particles are subject to repulsion when they come “too close” to each
other.

We may express assumptions (i) and (ii) by introducing in the drift term
FN in (6.5) two additive components (Warburton and Lazarus 1991): F1,
responsible for aggregation, and F2, for repulsion, such that

FN = F1 + F2.

Aggregation Term F1

We introduce a convolution kernel Ga : Rd → R+, having a support confined
to aball centered at 0 ∈ R

d and radius Ra ∈ R̄+ as the range of sensitivity for
aggregation, independent of N . A generalized gradient operator is obtained
as follows. Given a measure μ on R

d, we define the function

[∇Ga ∗ μ] (x) =
∫
Rd

∇Ga(x− y)μ(dy), x ∈ R
d,



6.3 Population Dynamics: Individual-Based Models 339

as the classical convolution of the gradient of the kernel Ga with the measure
μ. Furthermore, Ga is such that

Ga(x) = Ĝa(|x|), (6.20)

with Ĝa a decreasing function in R+. We assume that the aggregation term
F1 depends on such a generalized gradient of XN (t) at Xk

N (t):

F1[XN (t)]
(
Xk

N (t)
)
= [∇Ga ∗XN (t)]

(
Xk

N(t)
)
. (6.21)

This means that each individual feels this generalized gradient of the measure
XN (t) with respect to the kernel Ga. The positive sign for F1 and (6.20)
expresses a force of attraction of the particle in the direction of increasing
concentration of individuals.

We emphasize the great generality provided by this definition of a gener-
alized gradient of a measure μ on R

d. Using particular shapes of Ga, one may
include angular ranges of sensitivity, asymmetries, etc. at a finite distance
(Gueron et al. 1996).

Repulsion Term F2

As far as repulsion is concerned, we proceed in a similar way by introducing
a convolution kernel VN : Rd → R+, which determines the range and the
strength of influence of neighboring particles. We assume (by anticipating a
limiting procedure) that VN depends on the total number N of interacting
particles. Let V1 be a continuous probability density on R

d and consider the
scaled kernel VN (x) as defined in (6.10), again with β ∈]0, 1[. It is clear that

lim
N→+∞

VN = δ0,

where δ0 is Dirac’s delta function. We define

F2[XN (t)]
(
Xk

N (t)
)
= − (∇VN ∗XN(t))

(
Xk

N (t)
)

= − 1

N

N∑
m=1

∇VN
(
Xk

N (t)−Xm
N (t)

)
. (6.22)

This means that each individual feels the gradient of the population in a small
neighborhood. The negative sign for F2 expresses a drift toward decreasing
concentration of individuals. In this case the range of the repulsion kernel
decreases to zero as the size N of the population increases to infinity.

Diffusion Term

In this model, randomness may be due to both external sources and “social”
reasons. The external sources could, for instance, be unpredictable irregular-
ities of the environment (like obstacles, changeable soils, varying visibility).
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On the other hand, the innate need of interaction with peers is a social factor.
As a consequence, randomness can be modeled by a multidimensional Brow-
nian motion Wt.

The coefficient of dWt is a matrix function depending upon the distri-
bution of particles or some environmental parameters. Here, we take into
account only the intrinsic stochasticity due to the need of each particle to
interact with others. In fact, experiments carried out on ants have shown this
need. Hence, simplifying the model, we consider only one Brownian motion
dWt with the variance of each particle σN depending on the total number of
particles, not on their distribution. We could interpret this as an approxima-
tion of the model by considering all the stochasticities (also those due to the
environment) modeled by σNdWt.

Since σN expresses the intrinsic randomness of each individual due to its
need for social interaction, it should be decreasing as N increases. Indeed,
if the number of particles is large, the mean free path of each particle may
reduce down to a limiting value that may eventually be zero:

lim
N→∞

σN = σ∞ ≥ 0. (6.23)

Fig. 6.9. A simulation of the long-range aggregation (6.21) and short-range repul-
sion (6.22) model for an ant colony with diffusion
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Fig. 6.10. A simulation of the long-range aggregation (6.21) and short-range repul-
sion (6.22) model for an ant colony with diffusion (smoothed empirical distribution)

Scaling Limits

Let us discuss the two choices for the interaction kernel in the aggregation
and repulsion terms, respectively. They anticipate the limiting procedure for
N tending to infinity. Here we are focusing on two types of scaling limits, the
McKean–Vlasov limit , which applies to the long-range aggregation, and the
moderate limit , which applies to the short-range repulsion. In the previous
subsection, we already considered the moderate limit case.

Mathematically the two cases correspond to the choice made on the inter-
action kernel. In the moderate limit case (e.g., Oelschläger 1985) the kernel
is scaled with respect to the total size of the population N via a parameter
β ∈]0, 1[. In this case the range of interaction among particles is reduced to
zero for N tending to infinity. Thus any particle interacts with many (of order
N

α(N) ) other particles in a small volume (of order 1
α(N) ); if we take α(N) = Nβ,

then both α(N) and N
α(N) tend to infinity. In the McKean–Vlasov case (e.g.,

Méléard 1996) β = 0, so that the range of interaction is independent of N,
and as a consequence any particle interacts with order N other particles.

This is why in the moderate limit we may speak of mesoscale, which lies
between the microscale for the typical volume occupied by each individual
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Fig. 6.11. A simulation of the long-range aggregation (6.21) and short-range re-
pulsion (6.22) model for an ant colony with diffusion (two-dimensional projection of
smoothed empirical distribution)

and the macroscale applicable to the typical volume occupied by the total
population. Obviously, it would be possible also to consider interacting particle
systems rescaled by β = 1. This case is known as the hydrodynamic case, for
which we refer the reader to the relevant literature (De and Presutti 1991;
Donsker and Varadhan 1989).

The case β > 1 is less significant in population dynamics. It would mean
that the range of interaction decreases much faster than the typical distance
between neighboring particles. So most of the time particles do not approach
sufficiently close to feel the interaction.

Evolution Equations

Again, the fundamental tool for deriving an evolution equation for the em-
pirical measure process is Itô’s formula. As in the previous case, the time
evolution of any function f

(
Xk

N (t), t
)
, f ∈ C2

b (R
d × R+), of the trajectory
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(
Xk

N (t)
)
t∈R+

of the kth individual particle, subject to SDE (6.5), is given

by (6.6). Taking into account expressions (6.21) and (6.22) for F1 and F2

and (6.8), then from (6.6), we get the following weak formulation of the time
evolution of XN (t) for any f ∈ C2,1

b (Rd × [0,∞[):

〈XN (t), f(·, t)〉 = 〈XN (0), f(·, 0)〉+
∫ t

0

〈XN (t), (XN (s) ∗ ∇Ga) · ∇f(·, s)〉 ds

−
∫ t

0

〈XN (t),∇gN (·, s) · ∇f(·, s)〉 ds

+

∫ t

0

〈
XN (t),

σ2
N

2
�f(·, s) + ∂

∂s
f(·, s)

〉
ds

+
σN
N

∫ t

0

∑
k

∇f (
Xk

N (s), s
)
dW k(s), (6.24)

gN (x, t) = (XN (t) ∗ VN )(x).

Also for this case we may proceed as in the previous subsection on evolution
equations with the analysis of the last term in (6.24). The process

MN(f, t) =
σN
N

∫ t

0

∑
k

∇f (
Xk

N (s), s
)
dW k(s), t ∈ [0, T ],

is a martingale with respect to the process’s (XN (t))t∈R+ natural filtration.
By applying Doob’s inequality (Proposition 2.70), we obtain

E

[
sup
t≤T

|MN (f, t)|
]2

≤ 4σ2
N‖∇f‖2∞T

N
.

Hence, by assuming that σN remains bounded as in (6.23), MN (f, ·) vanishes
in the limit N → ∞. This is again the essential reason for the deterministic
limiting behavior of the process, since then its evolution equation will no
longer be perturbed by Brownian noise.

We will not go into more detail at this point. The procedure is the same as
for the previous model. But here we confine ourselves to a formal convergence
procedure. Indeed, let us suppose that the empirical process (XN (t))t∈R+

tends, as N → ∞, to a deterministic process (X(t))t∈R+ , which for any t
is absolutely continuous with respect to the Lebesgue measure on R

d, with
density ρ(x, t):

lim
N→∞

〈XN (t), f(·, t)〉 = 〈X(t), f(·, t)〉

=

∫
f(x, t)ρ(x, t)dx, t ≥ 0.
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As a formal consequence we get

lim
N→∞

gN(x, t) = lim
N→∞

(XN (t) ∗ VN )(x) = ρ(x, t),

lim
N→∞

∇gN(x, t) = ∇ρ(x, t),

lim
N→∞

(XN (t) ∗ ∇Ga)(x) = (X(t) ∗ ∇Ga(x))

=

∫
∇Ga(x− y)ρ(y, t)dy.

Hence, applying the foregoing limits, from (6.24) we obtain

∫
Rd

f(x, t)ρ(x, t)dx

=

∫
Rd

f(x, 0)ρ(x, 0)dx

+

∫ t

0

ds

∫
Rd

dx [(∇Ga ∗ ρ(·, s))(x) −∇ρ(x, s)] · ∇f(x, s)ρ(x, s)

+

∫ t

0

ds

∫
Rd

dx

[
∂

∂s
f(x, s)ρ(x, s) +

σ2
∞
2

�f(x, s)ρ(x, s)
]
, (6.25)

where σ∞ is defined as in (6.23).
Note that (6.25) is a weak version of the following equation for the spatial

density ρ(x, t):

∂

∂t
ρ(x, t) =

σ2
∞
2

�ρ(x, t) +∇ · (ρ(x, t)∇ρ(x, t))

−∇ · [ρ(x, t)(∇Ga ∗ ρ(·, t))(x)], x ∈ R
d, t ≥ 0, (6.26)

ρ(x, 0) = ρ0(x).

In the degenerate case, i.e., if (6.23) holds with equality, (6.26) becomes

∂

∂t
ρ(x, t) = ∇ · (ρ(x, t)∇ρ(x, t)) −∇ · [ρ(x, t)(∇Ga ∗ ρ(·, t))(x)]. (6.27)

As in the preceding subsection on moderate repulsion, we need to prove the
existence and uniqueness of a sufficiently regular solution to (6.27). We refer
the reader to Burger et al. (2007) and Nagai and Mimura (1983) as well as to
Carrillo (1999) for a general discussion of this topic; for rigorous convergence
results in the case σ∞ > 0, the reader may refer to Capasso and Morale (2009).
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A Law of Large Numbers in Path Space

In this section we supplement our results on the asymptotics of the empirical
processes by a law of large numbers in path space. This means that we study
the empirical measures in path space

XN =
1

N

N∑
k=1

εXk
N (·),

where Xk
N (·) = (Xk

N (t))0≤t≤T denotes the entire path of the kth particle in
the time interval [0, T ]. The particles move continuously in R

d. Moreover, XN

is a measure on the space C([0, T ],Rd) of continuous functions from [0, T ] to
R

d. As in the case of empirical processes, one can prove the convergence ofXN

to some limit Y . The proof can be achieved with a few additional arguments
from the limit theorem for the empirical processes.

By heuristic considerations in Morale et al. (2004), we get a convergence
result for the empirical distribution of the drift ∇gN (·, t) of the individual
particles

lim
N→∞

∫ T

0

〈XN (t), |∇gN(·, t)−∇ρ(·, t)|〉 dt = 0, (6.28)

lim
N→∞

∫ T

0

〈XN (t), |XN(t) ∗ ∇Ga −∇Ga ∗ ρ(·, t)|〉 dt = 0.

So (6.28) allows us to replace the drift

∇gN (·, t)−XN (t) ∗ ∇Ga

with the function

∇ρ(·, t)−∇Ga ∗ ρ(·, t)

for large N . Hence, for most k, we have Xk(t) ∼ Y (t), uniformly in t ∈ [0, T ],
where Y = Y (t), 0 ≤ t ≤ T, is the solution of

dY (t) = [∇Ga ∗ ρ(·, t)(Y (t))−∇ρ(Y (t))] dt+ σ∞dW k(t), (6.29)

with the initial condition, for each k = 1, . . . , N ,

Y (0) = Xk
N (0). (6.30)

So not only does the density follow the deterministic Equation (6.26), which
presents the memory of the fluctuations by means of the term σ∞

2 �ρ, but also
the stochasticity of the movement of each particle is preserved.
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For the degenerate case σ∞ = 0, the Brownian motion vanishes asN → ∞.
From (6.29) the dynamics of a single particle depends on the density of the
whole system. This density is the solution of (6.27), which does not contain
any diffusion term. So, not only do the dynamics of a single particle become
deterministic, but there is also no memory of the fluctuations present when the
number of particles N is finite. The following result confirms these heuristic
considerations (Morale et al. 2004).

Theorem 6.16. For the stochastic system (6.5)–(6.22) make the same as-
sumptions as in Theorem 6.7. Then we obtain

lim
N→∞

E

[
1

N

N∑
k=1

sup
t≤T

∣∣Xk
N (t)− Y (t)

∣∣
]
= 0,

where Y is the solution of (6.29) with the initial solution (6.30) for each
k = 1, . . . , N and ρ is the density of the limit of the empirical processes, i.e.,
it is the solution of (6.27).

Additional problems of the same kind arising in biology can be found in
Champagnat et al. (2006) and Fournier and Méléard (2004).

Long Time Behavior

In this section we investigate the long time behavior of the particle system,
for a fixed number N of particles.

Interacting-Diffusing Particles
First of all, let us reconsider our system, with a constant σ ∈ R

∗
+,

dXk
N (t) =

[
(∇ (G− VN ) ∗XN ) (Xk

N (t))
]
dt

+σdW k(t), k = 1, . . . , N.

It can be shown (Malrieu 2003) that the location of the center of mass X̄N

of N particles,

X̄N (t) =
1

N

N∑
k=1

Xk
N(t),

evolves according to the equation

dX̄N (t) = − 1

N2

N∑
k,j=1

∇ (VN −G) (Xk
N (t)−Xj

N (t))dt+ σdW̄ (t),

where W̄ (t) = 1
N

∑N
k=1W

k(t) is still a Brownian motion; because of the sym-
metry of kernels V1 and G, the first term on the right-hand side vanishes,
which leads to

dX̄N (t) = σdW̄ (t),
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i.e., the stochastic process X̄N is a Wiener process. Hence, its law, conditional
upon the initial state, is

L (
X̄N (t)|X̄N (0)

)
= L (

X̄N (0), σ2W̄ (t)
)
= N

(
X̄N (0),

σ2

N
t

)
,

with variance σ2

N t, which, for any fixed N , increases as t tends to infinity.
Consequently we may claim that the probability law of the system does not
converge to any nontrivial probability law since otherwise the same would
happen for the law of the center of mass.

A Model with a Confining Potential

We then consider a modification to the foregoing system as follows:

dXk
N (t) =

[
γ1∇U(Xk

N (t)) + γ2 (∇ (G− VN ) ∗XN) (Xk
N (t))

]
dt

+σdW k(t), k = 1, . . . , N,

where γ1, γ2 ∈ R+.
This means that particles are also subject to a force due to the confining

potential U . Equations of the type

dXt = −∇P (Xt) + σdWt (6.31)

have been thoroughly analyzed in the literature. Under the sufficient condition
of strict convexity of the symmetric potential U it has been shown (Malrieu
2003; Carrillo et al. 2003; Markowich and Villani 2000 that system (6.31) does
admit a nontrivial invariant distribution.

From a biological point of view a strictly convex confining potential is
difficult to explain; it would mean an infinite range of attraction of the force
which becomes infinitely strong at the infinite.

A weaker sufficient condition for the existence of a unique invariant mea-
sure has been suggested more recently by Veretennikov (2005), following
Has’minskii (1980). This condition states that there exist constants M0 ≥ 0
and r > 0 such that for |x| ≥M0

(
−∇P (μ)(x), x|x|

)
≤ − r

|x| . (6.32)

It is easy to prove that without any further condition on the interaction
kernels VN and G, condition (6.32) is satisfied by considering the following
condition on U.
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There exist constants M0 ≥ 0 and r > 0 such that
(
∇U(x),

x

|x|
)

≤ − r

|x| , |x| ≥M0, (6.33)

where (·, ·) denotes the usual scalar product in R
d.

We may then apply the results by Veretennikov (2005) and prove the exis-
tence of a unique invariant measure for the joint law of the particles locations.

Condition (6.33) means that ∇U may decay to zero as |x| tends to infinity,
provided that its tails are sufficiently “fat.”

Let P x0

N (t) denote the joint distribution of N particles at time t, condi-
tional upon a nonrandom initial condition x0, and let PS denote the invariant
distribution. As far as the convergence of P x0

N (t) is concerned, for t tending to
infinity, as in Veretennikov (2005), one can prove the following result (Capasso
and Morale 2009).

Proposition 6.17 Under the hypotheses of existence and uniqueness and
the foregoing assumptions on U, for any k, 0 < k < r̃ − Nd

2 − 1 with m ∈
(2k + 2, 2r̃ −Nd) and r̃ = γ1Nr, there exists a positive constant c such that

∣∣P x0

N (t)− PS
N

∣∣ ≤ c(1 + |x0|m)(1 + t)−(k+1),

where
∣∣P x0

N (t)− PS
N

∣∣ denotes the total variation distance of the two measures,
i.e.,

∣∣P x0

N (t)− PS
N

∣∣ = sup
A∈B

Rd

[
P x0

N (t)(A) − PS
N (A)

]
,

and x0 the initial data.

So Proposition 6.17 states a polynomial convergence rate to invariant mea-
sure. To improve the rate of convergence, one has to consider more restricted
assumptions on U.

6.3.4 Price Herding

As an example of herding in economics we present a model for price herding
that has been applied to simulate the prices of cars (Capasso et al. 2003).
The model is based on the assumption that prices of products of a similar
nature and within the same market segment tend to aggregate within a given
interaction kernel, which characterizes the segment itself. On the other hand,
unpredictable behavior of individual prices may be modeled as a family of
mutually independent Brownian motions. Hence we suppose that in a segment
of N prices, for any k ∈ {1, . . . , N} the price Xk

N (t), t ∈ R+, satisfies the
following system of SDEs:

dXk
N (t)

Xk
N(t)

= Fk[X(t)]
(
Xk

N (t)
)
dt+ σk(X(t))dW k(t).
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As usual, for a population of prices it is more convenient to consider the
evolution of rates. For the force of interaction Fk, which depends upon the
vector of all individual prices

X(t) :=
(
X1

N(t), . . . , XN
N (t)

)
,

we assume the following model, similar to the ant colony of the previous
subsection:

Fk[X(t)]
(
Xk

N(t)
)
=

1

N

N∑
j=1

1

Ajk

(
Ij(t)

Ik(t)

)βjk

∇Ka

(
Xk

N (t)−Xj
N(t)

)
; (6.34)

the drift (6.34) includes the following ingredients:

(a) The aggregation kernel

Ka(x) =
1√
2πa2

e−
x2

2a2 ,

∇Ka(x) = − x

a2
1√
2πa2

e−
x2

2a2 ;

(b) The sensitivity coefficient for aggregation

1

Ajk

(
Ij(t)

Ik(t)

)βjk

,

depending (via the parameters Ajk and βjk) on the relative market share
Ij(t) of product j with respect to the market share Ik(t) of product k.
Clearly, a stronger product will be less sensitive to the prices of competing
weaker products;

(c) The coefficient 1
N takes into account possible crowding effects, which are

also modulated by the coefficients Ajk.

As an additional feature a model for inflation may be included in Fk. Given
a general rate of inflation (αt)t∈R+ , Fk may include a term skαt to model via
sk the specific sensitivity of price k. We leave the analysis of the model to the
reader, who may refer to Capasso et al. (2003) for details.

Data are shown in Fig. 6.12; parameter estimates are given in Tables 6.1–
6.4; Fig. 6.13 shows simulated car prices based on such estimates (Bianchi
et al. 2005).

6.4 Neurosciences

Stein’s Model of Neural Activity

The main component of Stein’s model (Stein 1965, 1967) is the depolarization
Vt for t ∈ R+. A nerve cell is said to be excited (or depolarized) if Vt > 0 and
inhibited if Vt < 0. In the absence of other events, Vt decays according to
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Fig. 6.12. Time series of prices of a segment of cars in Italy during years 1991–2000
(source: Quattroruote Magazine, Editoriale Domus, Milan, Italy.)

dV

dt
= −αV,

where α = 1/τ is the reciprocal of the nerve membrane time constant τ > 0.
In the resting state (initial condition), V0 = 0. Afterward, jumps may

occur at random times according to independent Poisson processes (NE
t )t∈R+

and (N I
t )t∈R+ , with intensities λE and λI , respectively, assumed to be strictly

positive real constants. If an excitation (a jump) occurs for NE , at some time
t0 > 0, then

Vt0 − Vt0− = aE ,

whereas if an inhibition (again a jump) occurs for N I , then

Vt0 − Vt0− = −aI ,

where aE and aI are nonnegative real numbers. When Vt attains a given value
θ > 0 (the threshold), the cell fires. Upon firing, Vt is reset to zero along with
NE and N I , and the process restarts along the previous model. By collecting
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Fig. 6.13. Simulated car prices

all of the foregoing assumptions, the subthreshold evolution equation for Vt
may be written in the following form:

dVt = −αVtdt+ aEdN
E
t − aIdN

I
t ,

subject to the initial condition V0 = 0. The model is a particular case of the
more general stochastic evolution Equation (4.70); here the Wiener noise is
absent and the equation is time-homogeneous, so that it reduces to the form

dXt = α(Xt)dt+

∫
R

γ(Xt, u)N(dt, du), (6.35)

where N is a random Poisson measure on R \ {0} (in (6.35) the integration
is over u). In Stein’s model α(x) = −αx, with α > 0 (or simply α(x) = −x
if we assume α = 1), γ(x, u) = u, and the Poisson measure N has intensity
measure

Λ((s, t)×B) = (t− s)

∫
B

φ(u)du for any s, t ∈ R+, s < t,B ⊂ BR.
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Table 6.1. Estimates for price herding model (6.34) for initial conditions Xk(0)
and range of kernel a

Parameter Method of estimation Estimate Std. dev.

X1(0) ML 1.6209E+00 5.8581E−02
X2(0) ML 8.4813E−01 6.0740E−03
X3(0) ML 7.4548E−01 2.3420E−02
X4(0) ML 1.0189E+00 1.2273E−01
X5(0) ML 1.4164E+00 1.4417E−01
X6(0) ML 2.4872E+00 6.2947E−02
X7(0) ML 1.2084E+00 4.7545E−02
X8(0) ML 1.0918E+00 4.7569E−02
a ML 5.0767E+03 6.5267E+02

Table 6.2. Estimates for price herding model (6.34) for parameters Aij

Parameter Method of estimation Estimate Std. dev.

A12 ML 1.0649E−03 3.0865E−02
A13 ML 1.1489E−04 4.1737E−04
A14 ML 1.5779E−03 5.4687E−02
A15 ML 7.6460E−04 1.8381E−02
A16 ML 1.2908E−03 4.0634E−02
A17 ML 1.8114E−03 6.5617E−02
A18 ML 1.5956E−03 5.5572E−02
A23 ML 1.0473E−04 7.2687E−05
A24 ML 1.7397E−04 6.0809E−04
A25 ML 1.7550E−04 5.1100E−04
A26 ML 1.2080E−03 3.7392E−02
A27 ML 9.4809E−04 2.6037E−02
A28 ML 2.7277E−04 2.0135E−03
A34 ML 4.0404E−04 5.5468E−03
A35 ML 1.8136E−04 8.6471E−04
A36 ML 9.5558E−03 4.9764E−01
A37 ML 1.0341E−04 4.4136E−05
A38 ML 7.0953E−04 1.6428E−02
A45 ML 1.0066E−03 2.8485E−02
A46 ML 1.3354E−04 1.3632E−03
A47 ML 2.5239E−04 1.6979E−03
A48 ML 1.1232E−03 3.3652E−02
A56 ML 2.3460E−03 9.2592E−02
A57 ML 1.0143E−03 2.8898E−02
A58 ML 1.1026E−03 3.2724E−02
A67 ML 1.8560E−03 6.8275E−02
A68 ML 2.2820E−03 8.9278E−02
A78 ML 6.4630E−04 1.4003E−02
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Table 6.3. Estimates for price herding model (6.34) for parameters βij

Parameter Method of estimation Estimate Std. dev.

β12 ML 6.8920E−01 5.8447E+00
β13 ML 2.3463E+00 2.7375E+00
β14 ML 7.2454E−01 6.6182E+00
β15 ML 8.4049E−01 6.2349E+00
β16 ML 7.7929E−01 5.6565E+00
β17 ML 6.6793E−01 5.4208E+00
β18 ML 7.6508E−01 5.8422E+00
β23 ML 2.4531E+00 4.5883E−01
β24 ML 1.6924E+00 6.8734E+00
β25 ML 1.6262E+00 5.7128E+00
β26 ML 1.2122E+00 2.1666E+00
β27 ML 7.5140E−01 7.4760E+00
β28 ML 1.3537E+00 6.0109E+00
β34 ML 1.2444E+00 8.1509E+00
β35 ML 1.7544E+00 8.4976E+00
β36 ML 1.0572E+00 8.0208E+00
β37 ML 2.4730E+00 1.9801E−01
β38 ML 1.0674E+00 8.4626E+00
β45 ML 7.5781E−01 6.7267E+00
β46 ML 2.2121E+00 6.9754E+00
β47 ML 1.7360E+00 6.4971E+00
β48 ML 8.1043E−01 6.1451E+00
β56 ML 7.1269E−01 4.5857E+00
β57 ML 7.7251E−01 6.3947E+00
β58 ML 7.0792E−01 6.5014E+00
β67 ML 8.4060E−01 6.8871E+00
β68 ML 8.1190E−01 6.0759E+00
β78 ML 1.0794E+00 8.4994E+00

Here
φ(u) = λEδ0(u− aE) + λIδ0(u+ aI),

where δ0 denotes the standard Dirac delta distribution. The infinitesimal gen-
erator A of the Markov process (Xt)t∈R+ in (6.35) is given by

Af(x) = α(x)
∂f

∂x
(x) +

∫
R

(f(x+ γ(x, u))− f(x))φ(u)du

for any test function f in the domain of A.
The firing problem may be seen as a first passage time through the thresh-

old θ > 0. Let A =]−∞, θ[. Then the random variable of interest is

TA(x) = inf {t ∈ R+|Xt ∈ A,X0 = x ∈ A} ,
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Table 6.4. Estimates for price herding model (6.34) of sk and σk

Parameter Method of estimation Estimate Std. dev.

s1 ML 2.0267E−03 2.1858E−04
s2 ML 5.1134E−03 1.6853E−03
s3 ML 3.6238E−03 2.5305E−03
s4 ML 3.6777E−03 2.3698E−03
s5 ML 1.0644E−04 1.1132E−04
s6 ML 5.4133E−03 1.2452E−03
s7 ML 1.0769E−04 1.4414E−04
s8 ML 2.1597E−03 2.8686E−03
σ1 MAP 7.0000E−03 2.9073E−06
σ2 MAP 7.0000E−03 2.9766E−06
σ3 MAP 7.0000E−03 3.0128E−06
σ4 MAP 7.0000E−03 2.9799E−06
σ5 MAP 7.0000E−03 3.0025E−06
σ6 MAP 7.0000E−03 2.9897E−06
σ7 MAP 7.0000E−03 2.8795E−06
σ8 MAP 7.0000E−03 2.9656E−06

which is the first exit time from A. If the indicated set is empty, then we set
TA(x) = +∞. The following result holds.

Theorem 6.18. (Tuckwell 1976; Darling and Siegert 1953). Let
(Xt)t∈R+ be a Markov process satisfying (6.35), and assume that the existence
and uniqueness conditions are fulfilled. Then the distribution function

FA(x, t) = P (TA(x) ≤ t)

satisfies
∂FA

∂t
(x, t) = AFA(·, t)(x), x ∈ A, t > 0,

subject to the initial condition

FA(x, 0) =

{
0 for x ∈ A,
1 for x /∈ A,

and boundary condition

FA(x, t) = 1, x /∈ A, x ≥ 0.

Corollary 6.19 If the moments

μn(x) = E [(TA(x))
n] , n ∈ N

∗,

exist, they satisfy the recursive system of equations

Aμn(x) = −nμn−1(x), x ∈ A, (6.36)
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subject to the boundary conditions

μn(x) = 0, x /∈ A.

The quantity μ0(x), x ∈ A, is the probability of Xt exiting from A in a finite
time. It satisfies the equation

Aμ0(x) = 0, x ∈ A, (6.37)

subject to

μ0(x) = 1, x /∈ A.

The following lemma is due to Gihman and Skorohod (1972, p. 305).

Lemma 6.20. If there exists a bounded function g on R such that

Ag(x) ≤ −1, x ∈ A, (6.38)

then μ1 <∞ and P (TA(x) < +∞) = 1.

As a consequence of Lemma 6.20, a neuron in Stein’s model fires in a
finite time with probability 1 and with finite mean interspike interval. This
is due to the fact that the solution of (6.37) is μ0(x) = 1, x ∈ R, and this
satisfies (6.38). The mean first passage time through θ for an initial value x
satisfies, by (6.36),

− x
dμ1

dx
(x) + λEμ1(x+ aE) + λIμ1(x− aI)− (λE + λI)μ1(x) = −1, (6.39)

with x < θ and boundary condition

μ1(x) = 0, for x ≥ θ.

The solution of (6.39) is discussed in Tuckwell (1989), where a diffusion ap-
proximation of the original Stein’s model of neuron firing is also analyzed.

An optimal control problem for the diffusion approximation of Stein’s
model was recently analyzed in Lu (2011).

6.5 Exercises and Additions

6.1. Consider a birth-and-death process (X(t))t∈R+ valued in N, as in
Sect. 6.1. In integral form the evolution equation for X will be

X(t) = X(0) + α

∫
X(s−)ds+M(t),
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where α = λ− μ is the survival rate and M(t) is a martingale. Show that

1. 〈M〉(t) = 〈M,M〉(t) = (λ+ μ)

∫ t

0

X(s−)ds.

2. E[X(t)] = X(0)eαt.
3. X(t)e−αt is a square-integrable martingale.

4. V ar[X(t)e−αt] = X(0)
λ+ μ

λ− μ
(1− e−αt).

6.2. (Age-dependent birth-and-death process). An age-dependent pop-
ulation can be divided into two subpopulations, described by two marked
counting processes. Given t > 0, U (1)(A0, t) describes those individuals who
already existed at time t = 0 with ages in A0 ∈ BR+ and are still alive at time

t; and U (2)(T0, t) describes those individuals who are born during T0 ∈ BR+,
T0 ⊂ [0, t] and are still alive at time t. Assume that the age-specific death rate
is μ(a), a ∈ R+, and that the birth process B(T0), T0 ∈ BR+ admits stochastic
intensity

α(t0) =

∫ +∞

0

β(a0 + t0)U
(1)(da0, t0−) +

∫ t0−

0

β(t0 − τ)U (2)(dτ, t0−),

where β(a), a ∈ R+ is the age-specific fertility rate. Assume now that suitable
densities u0 and b exist on R+ such that

E[U (1)(A0, 0)] =

∫
A0

u0(a)da

and

E[B(T0)] =

∫
T0

b(τ)dτ.

Show that the following renewal equation holds for any s ∈ R+ :

b(s) =

∫ +∞

0

da u0(a)n(s+ a)β(a+ s) +

∫ s

0

dτ β(s− τ)n(s− τ) b(τ),

where n(t) = exp
{
− ∫ t

0 μ(τ)dτ
}
, t ∈ R+. The reader may refer to Capasso

(1988).

6.3. Let Ē be the closure of an open set E ⊂ R
d for d ≥ 1. Consider a spatially

structured birth-and-death process associated with the marked point process
defined by the random measure on R

d :

ν(t) =

I(t)∑
i=1

εXi(t),

where I(t), t ∈ R+, denotes the number of individuals in the total population
at time t, and X i(t) denotes the random location of the ith individual in Ē.
Consider the process defined by the following parameters:
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1. μ : Ē → R+ is the spatially structured death rate;
2. γ : Ē → R+ is the spatially structured birth rate;
3. For any x ∈ Ē, D(x, ·) : BRd → [0, 1] is a probability measure such that∫

Ē\{x}D(x, dz) = 1; D(x,A) for x ∈ Ē and A ∈ BRd represents the proba-

bility that an individual born in x will be dispersed in A.

Show that the infinitesimal generator of the process is the operator L defined
as follows: for any sufficiently regular test function φ

Lφ(ν) =

∫
Ē

ν(dx)

∫
Rd

γ(x)D(x, dz)[−φ(ν) + φ(ν + εx+z)]

+μ(x)[−φ(ν) + φ(ν − εx)].

The reader may refer to Fournier and Méléard (2003) for further analysis.

6.4. LetX be an integer-valued random variable, with probability distribution
pk = P (X = k), k ∈ N. The probability-generating function of X is defined
as

gX(s) = E[sX ] =
∞∑
k=0

skpk, |s| ≤ 1.

Consider a homogeneous birth-and-death processX(t), t ∈ R+, with birth rate
λ, death rate μ, and initial value X(0) = k0 > 0. Show that the probability-
generating function GX(s; t) of X(t) satisfies the partial differential equation

∂

∂t
GX(s; t) + (1 − s)(λs− μ)

∂

∂s
GX(s; t) = 0,

subject to the initial condition

GX(s; 0) = sk0 .

6.5. Consider now a nonhomogeneous birth-and-death process X(t), t ∈ R+,
with time-dependent birth rate λ(t), death rate μ(t), and initial value X(0) =
k0 > 0. Show that the probability-generating function GX(s; t) of X(t) satis-
fies the partial differential equation

∂

∂t
GX(s; t) + (1− s)(λ(t)s − μ(t))

∂

∂s
GX(s; t) = 0,

subject to the initial condition

GX(s; 0) = sk0 .

Evaluate the probability of extinction of the population.
The reader may refer to Chiang (1968).

6.6. Consider the general epidemic process as defined in Sect. 6.1, with infec-
tion rate κ = 1 and removal rate δ. Let GZ(x, y; t) denote the probability-
generating function of the random vector Z(t) = (S(t), I(t)), where S(t)
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denotes the number of susceptibles at time t ≥ 0 and I(t) denotes the number
of infectives at time t ≥ 0. Assume that S(0) = s0 and I(0) = i0, and let
p(m,n; t) = P (S(t) = m, I(t) = n). The joint probability-generating function
G will be defined as

GZ(x, y; t) = E[xS(t)yI(t)] =

s0∑
m=0

s0+i0−m∑
n=0

p(m,n; t)xm yn.

Show that it satisfies the partial differential equation

∂

∂t
GZ(x, y; t) = y(y − x)

∂2

∂x∂y
GZ(x, y; t) + δ(1− y)

∂

∂y
GZ(x, y; t),

subject to the initial condition

GZ(x, y; 0) = xs0yi0 .

6.7. Consider a discrete birth-and-death chain (Y
(Δ)
n )n∈N valued in S =

{0,±Δ,±2Δ, . . .}, with step size Δ > 0, and denote by pi,j the one-step
transition probabilities

pij = P
(
Y

(Δ)
n+1 = jΔ

∣∣∣Y (Δ)
n = iΔ

)
for i, j ∈ Z.

Assume that the only nontrivial transition probabilities are

1. pi,i−1 = γi :=
1
2σ

2 − 1
2μΔ,

2. pi,i+1 = βi :=
1
2σ

2 + 1
2μΔ,

3. pi,i = 1− βi − γi = 1− σ2,

where σ2 and μ are strictly positive real numbers. Note that for Δ sufficiently
small, all rates are nonnegative. Consider now the rescaled (in time) process

(Y
(Δ)
n/ε )n∈N, with ε = Δ2; show (formally and possibly rigorously) that the

rescaled process weakly converges to a diffusion on R with drift μ and diffusion
coefficient σ2.

6.8. With reference to the previous problem, show that the same result may
be obtained (with suitable modifications) also in the case in which the drift
and the diffusion coefficient depend upon the state of the process. For this case
show that the probability ψ(x) that the diffusion process reaches c before d,
when starting from a point x ∈ (c, d) ⊂ R, is given by

ψ(x) =

∫ d

x
exp

{
− ∫ z

c

(
2 μ(y)
σ2(y)

)
dy

}
dz

∫ d

c exp
{
− ∫ z

c

(
2 μ(y)
σ2(y)

)
dy

}
dz
.

The reader may refer, e.g., to Bhattacharya and Waymire (1990).

6.9. Consider the general stochastic epidemic with the rescaling proposed at
the beginning of Sect. 6.2. Derive the asymptotic ordinary differential system
corresponding to Theorem 6.4.
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Measure and Integration

A.1 Rings and σ-Algebras

Definition A.1. A collection F of subsets of a set Ω is called a ring on Ω
if it satisfies the following conditions:

1. ∅ ∈ F
2. A,B ∈ F ⇒ A ∪B ∈ F
3. A,B ∈ F ⇒ A \B ∈ F
Furthermore, F is called an algebra if F is both a ring and Ω ∈ F .

Definition A.2. A ring F on Ω is called a σ-ring if it satisfies the following
additional condition:

4. For every countable family (An)n∈N of elements of F :
⋃

n∈N
An ∈ F .

A σ-ring F on Ω is called a σ-algebra if Ω ∈ F .

Definition A.3. Every collection F of elements of a set Ω is called a semiring
on Ω if it satisfies the following conditions:

1. ∅ ∈ F .
2. A,B ∈ F ⇒ A ∩B ∈ F .
3. A,B ∈ F , A ⊂ B ⇒ ∃(Aj)i≤j≤m ∈ F{1,...,m} of disjoint sets such that

B \A =
⋃m

j=1 Aj .

If F is both a semiring and Ω ∈ F , then it is called a semialgebra.

Proposition A.4. A set Ω has the following properties:

1. If F is a σ-algebra of subsets of Ω, then it is an algebra.
2. If F is a σ-algebra of subsets of Ω, then

• E1, . . . , En ∈ F ⇒
⋂n

i=1 Ei ∈ F
• E1, . . . , En, . . . ∈ F ⇒

⋂∞
n=1En ∈ F
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• B ∈ F ⇒ Ω \B ∈ F
3. If F is a ring on Ω, then it is also a semiring.

Definition A.5. Every pair (Ω,F) consisting of a set Ω and a σ-ring F of
the subsets of Ω is a measurable space. Furthermore, if F is a σ-algebra, then
(Ω,F) is a measurable space on which a probability measure can be built. If
(Ω,F) is a measurable space, then the elements of F are called F-measurable
or just measurable sets. We will henceforth assume that if a space is measur-
able, then we can build a probability measure on it.

Example A.6.

1. If B is a σ-algebra on the set E and X : Ω → E a generic mapping, then
the set

X−1(B) =
{
A ⊂ Ω|∃B ∈ B such that A = X−1(B)

}
is a σ-algebra on Ω.

2. Generated σ-algebra. If A is a set of the elements of a set Ω, then there
exists the smallest σ-algebra of subsets of Ω that contains A. This is the σ-
algebra generated by A, denoted σ(A). If, now, G is the set of all σ-algebras
of subsets of Ω containing A, then it is not empty because it has σ(Ω)
among its elements, so that σ(A) =

⋂
C∈G C.

3. Borel σ-algebra. Let Ω be a topological space. Then the Borel σ-algebra
on Ω, denoted by BΩ, is the σ-algebra generated by the set of all open
subsets of Ω. Its elements are called Borelian or Borel-measurable.

4. The set of all left-open, right-closed bounded intervals of R, defined as
(a, b] := {x ∈ R | a < x ≤ b} , for a, b ∈ R, is a semiring but not a ring.

5. The set of all bounded and unbounded intervals of R is a semialgebra.
6. If B1 and B2 are algebras on Ω1 and Ω2, respectively, then the set of

rectangles B1 ×B2, with B1 ∈ B1 and B2 ∈ B2, is a semialgebra.
7. Product σ-algebra. Let (Ωi,Fi)1≤i≤n be a family of measurable spaces, and

let Ω =
∏n

i=1Ωi. Defining

R =

{
E ⊂ Ω|∀i = 1, . . . , n ∃Ei ∈ Fi such that E =

n∏
i=1

Ei

}
,

then R is a semialgebra of elements of Ω. The σ-algebra generated by R
is called the product σ-algebra of the σ-algebras (Fi)1≤i≤n.

Proposition A.7. Let (Ωi)1≤i≤n be a family of topological spaces with a
countable base, and let Ω =

∏n
i=1Ωi. Then the Borel σ-algebra BΩ is identical

to the product σ-algebra of the family of Borel σ-algebras (BΩi)1≤i≤n.
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A.2 Measurable Functions and Measure

Definition A.8. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces.
A function f : Ω1 → Ω2 is measurable if

∀E ∈ F2 : f−1(E) ∈ F1.

Remark A.9. If (Ω,F) is not a measurable space, i.e., Ω /∈ F , then there does
not exist a measurable mapping from (Ω,F) to (R,BR) because R ∈ BR and
f−1(R) = Ω /∈ F .

Definition A.10. Let (Ω,F) be a measurable space and f : Ω → R
n a

mapping. If f is measurable with respect to the σ-algebras F and BRn , the
latter being the Borel σ-algebra on R

n, then f is Borel-measurable.

Proposition A.11. Let (E1,B1) and (E2,B2) be two measurable spaces and
U a set of the elements of E2, which generates B2 and f : E1 → E2. The
necessary and sufficient condition for f to be measurable is f−1(U) ⊂ B1.

Remark A.12. If a function f : R
k → R

n is continuous, then it is Borel-
measurable.

Definition A.13. Let (Ω,F) be a measurable space. Every Borel-measurable
mapping h : Ω → R̄ that can only have a finite number of distinct values is
called an elementary function. Equivalently, a function h : Ω → R̄ is elemen-
tary if and only if it can be written as the finite sum

r∑
i=1

xiIEi ,

where, for every i = 1, . . . , r, the Ei are disjoint sets of F and IEi is the
indicator function on Ei.

Theorem A.14 (Approximation of measurable functions through
elementary functions). Let (Ω,F) be a measurable space and f : Ω → R̄

a nonnegative measurable function. There exists a sequence of measurable el-
ementary functions (sn)n∈N such that

1. 0 ≤ s1 ≤ · · · ≤ sn ≤ · · · ≤ f
2. limn→∞ sn = f

Proposition A.15. Let (Ω,F) be a measurable space and Xn : Ω → R, n ∈
N, a sequence of measurable functions converging pointwise to a function
X : Ω → R; then X is itself measurable.
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Proposition A.16. If f1, f2 : Ω → R̄ are Borel-measurable functions, then
so are the functions f1+f2, f1−f2, f1f2, and f1/f2, as long as the operations
are well defined.

Lemma A.17. If f : (Ω1,F1) → (Ω2,F2) and g : (Ω2,F2) → (Ω3,F3) are
measurable functions, then so is g ◦ f : (Ω1,F1) → (Ω3,F3).

Proposition A.18. Let (Ωi,Fi)1≤i≤n be a family of measurable spaces, Ω =∏n
i=1Ωi, and πi : Ω → Ωi for 1 ≤ i ≤ n is the ith projection. Then the

product σ-algebra
⊗n

i=1 Fi of the family of σ-algebras (Fi)1≤i≤n is the smallest
σ-algebra on Ω for which every projection πi is measurable.

Proposition A.19. If h : (E,B) → (Ω =
∏n

i=1Ωi,F =
⊗n

i=1 Fi) is a
mapping, then the following statements are equivalent:

1. h is measurable.
2. For all i = 1, . . . n, hi = πi ◦ h is measurable.

Proof . 1 ⇒ 2 follows from Proposition A.18 and Lemma A.17. To prove that
2 ⇒ 1, it is sufficient to see that given R, the set of rectangles on Ω, it follows
that, for all B ∈ R : h−1(B) ∈ B. Let B ∈ R. Then for all i = 1, . . . , n, there
exists a Bi ∈ Fi such that B =

∏n
i=1Bi. Therefore, by recalling that due to

point 2 every hi is measurable, we have that

h−1(B) = h−1

(
n∏

i=1

Bi

)
=

n⋂
i=1

h−1
i (Bi) ∈ B. �

Corollary A.20. Let (Ω,F) be a measurable space and h : Ω → R
n a

function. Defining hi = πi ◦ h : Ω → R for 1 ≤ i ≤ n, the following two
propositions are equivalent:

1. h is Borel-measurable.
2. For all i = 1, . . . , n, hi is Borel-measurable.

Definition A.21. Let (Ω,F) be a measurable space. Every function μ : F →
R̄ such that

1. For all E ∈ F : μ(E) ≥ 0.
2. For all E1, . . . , En, . . . ∈ F such that Ei ∩ Ej = ∅, for i �= j, we have that

μ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

μ(Ei)
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is a measure on F . Moreover, if (Ω,F) is a measurable space and if

μ(Ω) = 1,

then μ is a probability measure or a probability. Furthermore, a measure μ is
finite if

∀A ∈ F : μ(A) < +∞

and σ-finite if

1. There exists an (An)n∈N ∈ FN such that Ω =
⋃

n∈N
An.

2. For all n ∈ N : μ(An) < +∞.

Definition A.22. The ordered triple (Ω,F , μ), where Ω denotes a set, F a
σ-ring on Ω, and μ : F → R̄ a measure on F , is a measure space. If μ is a
probability measure, then (Ω,F , μ) is a probability space.12

Definition A.23. Let (Ω,F , μ) be a measure space and λ : F → R̄ a measure
on Ω. Then λ is said to be absolutely continuous with respect to μ, denoted
λ % μ, if

∀A ∈ F : μ(A) = 0 ⇒ λ(A) = 0.

Proposition A.24 (Characterization of a measure). Let μ be additive
on an algebra F and valued in R (and not everywhere equal to +∞). The
following two statements are equivalent:

1. μ is a measure on F .
2. For increasing (An)n∈N ∈ FN, where

⋃
n∈N

An ∈ F , we have that

μ

(⋃
n∈N

An

)
= lim

n→∞μ(An) = sup
n∈N

μ(An).

If μ is finite, then 1 and 2 are equivalent to the following statements.

3. For decreasing (An)n∈N ∈ FN, where
⋂

n∈N
An ∈ F , we have

μ

(⋂
n∈N

An

)
= lim

n→∞μ(An) = inf
n∈N

μ(An).

4. For decreasing (An)n∈N ∈ FN, where
⋂

n∈N
An = ∅, we have

lim
n→∞μ(An) = inf

n∈N

μ(An) = 0.

12Henceforth we will call every measurable space that has a probability measure
assigned to it a probability space.
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Proposition A.25 (Generalization of a measure). Let G be a semiring
on E and μ : G → R+ a function that satisfies the following properties:

1. μ is (finitely) additive on G.
2. μ is countably additive on G.
3. There exists an (Sn)n∈N ∈ GN such that E ⊂

⋃
n∈N

Sn.

Under these assumptions

∃| μ̄ : B → R̄+ such that μ̄|G = μ,

where B is the σ-ring generated by G.13 Moreover, if G is a semialgebra and
μ(E) = 1, then μ̄ is a probability measure.

Proposition A.26. Let U be a ring on E and μ : U → R̄+ (not everywhere
equal to +∞) a measure on U . Then, if B is the σ-ring generated by U ,

∃| μ̄ : B → R̄+ such that μ̄|U = μ.

Moreover, if μ is a probability measure, then so is μ̄.

Lemma A.27. (Fatou). Let (An)n∈N ∈ FN be a sequence of random vari-
ables and (Ω,F , P ) a probability space. Then

P (lim inf
n

An) ≤ lim inf
n

P (An) ≤ lim sup
n

P (An) ≤ P (lim sup
n

An).

If lim infnAn = lim supnAn = A, then An → A.

Corollary A.28. Under the assumptions of Fatou’s Lemma A.27, if
An → A, then P (An) → P (A).

A.3 Lebesgue Integration

Let (Ω,F) be a measurable space. We will denote by M(F , R̄) [or, respec-
tively, by M(F , R̄+)] the set of measurable functions on (Ω,F) and valued in
R̄ (or R̄+).

Proposition A.29. Let (Ω,F) be a measurable space and μ a positive mea-
sure on F . Then there exists a unique mapping Φ from M(F , R̄+) to R̄+, such
that:

1. For every α ∈ R+, f, g ∈ M(F , R̄+),
Φ(αf) = αΦ(f),
Φ(f + g) = Φ(f) + Φ(g),
f ≤ g ⇒ Φ(f) ≤ Φ(g).

13B is identical to the σ-ring generated by the ring generated by G.
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2. For every increasing sequence (fn)n∈N of elements of M(F , R̄+) we have
that supn Φ(fn) = Φ(supn fn) (Beppo–Levi property).

3. For every B ∈ F , Φ(IB) = μ(B).

Definition A.30. If Φ is the unique functional associated with μ, a measure
on the measurable space (Ω,F), then for every f ∈ M(F , R̄+):

Φ(f) =

∫ ∗
f(x)dμ(x) or

∫ ∗
f(x)μ(dx) or

∫ ∗
f(x)dμ

the upper integral of μ.

Remark A.31. Let (Ω,F) be a measurable space, and let Φ be the functional
canonically associated with μ measure on F .

1. If s : Ω → R̄+ is an elementary function, and thus s =
∑n

i=1 xiIEi , then

Φ(s) =

∫ ∗
sdμ =

n∑
i=1

xiμ(Ei).

2. If f ∈ M(F , R̄+) and defining Ωf =
{
s : Ω → R̄+|s elementary , s ≤ f

}
,

then Ωf is nonempty and

Φ(f) =

∫ ∗
fdμ = sup

s∈Ωf

∫ ∗
sdμ = sup

s∈Ωf

(
n∑

i=1

xiμ(Ei)

)
.

3. If f ∈ M(F , R̄+) and B ∈ F , then by definition∫ ∗

B

fdμ =

∫ ∗
IB · fdμ.

Definition A.32. Let (Ω,F) be a measurable space and μ a positive measure
on F . An F -measurable function f is μ-integrable if∫ ∗

f+dμ < +∞ and

∫ ∗
f−dμ < +∞,

where f+ and f− denote the positive and negative parts of f , respectively.
The real number ∫ ∗

f+dμ−
∫ ∗

f−dμ

is therefore the Lebesgue integral of f with respect to μ, denoted by∫
fdμ or

∫
f(x)dμ(x) or

∫
f(x)μ(dx).

Proposition A.33. Let (Ω,F) be a measurable space endowed with mea-
sure μ and f ∈ M(F , R̄+). Then
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1.
∫ ∗

fdμ = 0 ⇔ f = 0a.s. with respect to μ.
2. For every A ∈ F , μ(A) = 0 we have∫ ∗

A

fdμ = 0.

3. For every g ∈ M(F , R̄+) such that f = g, a.s. with respect to μ, we have∫ ∗
fdμ =

∫ ∗
gdμ.

Theorem A.34 (Monotone convergence). Let (Ω,F) be a measurable
space endowed with measure μ, (fn)n∈N an increasing sequence of elements of
M(F , R̄+), and f : Ω → R̄+ such that

∀ω ∈ Ω : f(ω) = lim
n→∞ fn(ω) = sup

n∈N

fn(ω).

Then f ∈ M(F , R̄+) and ∫ ∗
fdμ = lim

n→∞

∫ ∗
fndμ.

Theorem A.35 (Lebesgue’s dominated convergence). Let (Ω,F) be a
measurable space endowed with measure μ, (fn)n∈N a sequence of μ-integrable
functions defined on Ω, and g : Ω → R̄+ a μ-integrable function such that
|fn| ≤ g for all n ∈ N. If we suppose that limn→∞ fn = f exists almost surely
in Ω, then f is μ-integrable and we have∫

fdμ = lim
n→∞

∫
fndμ.

Lemma A.36. (Fatou). Let fn ∈ M(F , R̄+). Then

lim inf
n

∫ ∗
fndμ ≥

∫ ∗
lim inf

n
fndμ.

Theorem A.37 (Fatou–Lebesgue).

1. Let |fn| ≤ g ∈ L1. Then

lim sup
n

∫
fndμ ≤

∫
lim sup

n
fndμ.
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2. Let |fn| ≤ g ∈ L1. Then

lim inf
n

∫
fndμ ≥

∫
lim inf

n
fndμ.

3. Let |fn| ≤ g and f = limn fn, almost surely with respect to μ. Then

lim
n

∫
fndμ =

∫
fdμ.

Definition A.38. Let (Ω,F) be a measurable space endowed with measure μ,
and let (E,B) be an additional measurable space; let h : (Ω,F) → (E,B)
be a measurable function. The mapping μh : B → R̄+, such that μh(B) =
μ(h−1(B)) for all B ∈ B, is a measure on E, called the induced or image
measure of μ via h, and denoted h(μ).

Proposition A.39. Given the assumptions of Definition A.38, the function
g : (E,B) → (R,BR) is integrable with respect to μh if and only if g ◦ h is
integrable with respect to μ and∫

g ◦ h dμ =

∫
g dμh.

Theorem A.40 (Product measure). Let (Ω1,F1) and (Ω2,F2) be mea-
surable spaces, and let the former be endowed with σ-finite measure μ1 on F1.
Further suppose that for all ω1 ∈ Ω1 a measure μ(ω1, ·) is assigned on F2,
and that, for all B ∈ F2, μ(·, B) : Ω1 → R is a Borel-measurable function.
If μ(ω1, ·) is uniformly σ-finite, then there exists a sequence (Bn)n∈N ∈ FN

2

such that Ω2 =
⋃∞

n=1Bn and, for all n ∈ N, there exists a Kn ∈ R such that
μ(ω1, Bn) ≤ Kn for all ω1 ∈ Ω1. Then there exists a unique measure μ on the
product σ-algebra F = F1 ⊗ F2 such that

∀A ∈ F1, B ∈ F2 : μ(A×B) =

∫
A

μ(ω1, B)μ1(dω1)

and

∀F ∈ F : μ(F ) =

∫
Ω1

μ(ω1, F (ω1))μ1(dω1).

Definition A.41. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces en-
dowed with σ-finite measures μ1 and μ2 on F1 and F2, respectively. Defining
Ω = Ω1 ×Ω2 and F = F1 ⊗ F2, the function μ : F → R̄ with

∀F ∈ F : μ(F ) =

∫
Ω1

μ2(F (ω1))dμ1(ω1) =

∫
Ω2

μ1(F (ω2))dμ2(ω2)
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is the unique measure on F with

∀A ∈ F1, B ∈ F2 : μ(A×B) = μ1(A) × μ2(B).

Moreover, μ is σ-finite on F as well as a probability measure if μ1 and μ2

are as well. The measure μ is the product measure of μ1 and μ2, denoted by
μ1 ⊗ μ2.

Theorem A.42 (Fubini). Given the assumptions of Definition A.41, let
f : (Ω,F) → (R,BR) be a Borel-measurable function such that

∫
Ω
fdμ exists.

Then ∫
Ω

fdμ =

∫
Ω1

∫
Ω2

fdμ2dμ1 =

∫
Ω2

∫
Ω1

fdμ1dμ2.

Proposition A.43. Let (Ωi,Fi)1≤i≤n be a family of measurable spaces. Fur-
ther, let μ1 : F1 → R̄ be a σ-finite measure, and let

∀(ω1, . . . , ωj) ∈ Ω1 × · · · ×Ωj : μ(ω1, . . . , ωj , ·) : Fj+1 → R̄

be a measure on Fj+1, 1 ≤ j ≤ n− 1. If μ(ω1, . . . , ωj , ·) is uniformly σ-finite
and for every c ∈ Fj+1

μ(. . . , c) : (Ω1 × · · · ×Ωj ,F1 ⊗ · · · ⊗ Fj) → (R̄,BR̄)

such that

∀(ω1, . . . , ωj) ∈ Ω1 × · · · ×Ωj : μ(. . . , c)(ω1, . . . , ωj) = μ(ω1, . . . , ωj , c)

is measurable, then, defining Ω = Ω1 × · · · ×Ωn and F = F1 ⊗ · · · ⊗ Fn:

1. There exists a unique measure μ : F → R̄ such that for every measurable
rectangle A1 × · · · ×An ∈ F :

μ(A1 × · · · ×An)

=

∫
A1

μ1(dω1)

∫
A2

μ(ω1, dω2) · · ·
∫
An

μ(ω1, . . . , ωn−1, dωn).

μ is σ-finite on F and a probability whenever μ1 and all μ(ω1, . . . , ωj, ·)
are probability measures;

2. If f : (Ω,F) → (R̄,BR̄) is measurable and nonnegative, then∫
Ω

fdμ

=

∫
Ω1

μ1(dω1)

∫
Ω2

μ(ω1, dω2) · · ·
∫
Ωn

f(ω1, . . . , ωn)μ(ω1, . . . , ωn−1, dωn).
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Proposition A.44.

1. Given the assumptions and the notation of Proposition A.43, if we assume
that f = IF , then for every F ∈ F :

μ(F )

=

∫
Ω1

μ1(dω1)

∫
Ω2

μ(ω1, dω2) · · ·
∫
Ωn

IF (ω1, . . . , ωn)μ(ω1, . . . , ωn−1, dωn).

2. For all j = 1, . . . , n − 1, let μj+1 = μ(ω1, . . . , ωj , ·). Then there exists a
unique measure μ on F such that for every rectangle A1 × · · · × An ∈ F
we have

μ(A1 × · · · ×An) = μ1(A1) · · ·μn(An).

If f : (Ω,F) → (R̄,BR̄) is measurable and positive, or else if
∫
Ω
fdμ exists,

then ∫
Ω

fdμ =

∫
Ω1

dμ1 · · ·
∫
Ωn

fdμn,

and the order of integration is arbitrary. The measure μ is the product
measure of μ1, . . . , μn and is denoted by μ1 ⊗ · · · ⊗ μn.

Definition A.45. Let (vi)1≤i≤n be a family of measures defined on BR, and

v(n) = v1 ⊗ · · · ⊗ vn

their product measure on BRn . The convolution product of v1, . . . , vn, de-
noted by v1 ∗ · · · ∗ vn, is the induced measure of v(n) on BR via the function
f : (x1, . . . , xn) ∈ R

n 	→
∑n

i=1 xi ∈ R.

Proposition A.46. Let v1 and v2 be measures on BR. Then for every B ∈ BR

we have

v1 ∗ v2(B) =

∫
B

d(v1 ∗ v2) =

∫
R

IB(z)d(v1 ∗ v2) =

∫ ∫
IB(x1 + x2)d(v1 ⊗ v2).

A.4 Lebesgue–Stieltjes Measure and Distributions

Definition A.47. Let μ : BR → R̄ be a measure. It then represents a
Lebesgue–Stieltjes measure if for every interval I we have that μ(I) < +∞.

Definition A.48. Every function F : R → R that is right-continuous and
increasing is a (generalized) distribution function on R.

It is in fact possible to establish a one-to-one relationship between the set
of Lebesgue–Stieltjes measures and the set of distribution functions in the
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sense that to every Lebesgue–Stieltjes measure can be assigned a distribution
function and vice versa.

Proposition A.49. Let μ be a Lebesgue–Stieltjes measure on BR and the
function F : R → R defined, apart from a constant, as

F (b) − F (a) = μ(]a, b]) ∀a, b ∈ R, a < b.

Then F is a distribution function, in particular the one assigned to μ.

Conversely, the following holds.

Proposition A.50. Let F be a distribution function, and let μ be defined on
bounded intervals of R by

μ(]a, b]) = F (b) − F (a) ∀a, b ∈ R, a < b.

There exists a unique extension of μ that is a Lebesgue–Stieltjes measure
on BR. This measure is the Lebesgue–Stieltjes measure canonically associated
with F .

Definition A.51. Every measure μ : BRn → R̄ that for every bounded interval
I of Rn has μ(I) < +∞ is a Lebesgue–Stieltjes measure on R

n.

Definition A.52. Let f : R → R be of constant value 1, and we consider the
function F : R → R with

F (x) − F (0) =

∫ x

0

f(t)dt ∀x > 0,

F (0) − F (x) =

∫ 0

x

f(t)dt ∀x < 0,

where F (0) is fixed and arbitrary. This function F is a distribution function,
and its associated Lebesgue–Stieltjes measure is called a Lebesgue measure on
R. It is such that

μ(]a, b]) = b − a, ∀a, b ∈ R, a < b.

Definition A.53. Let (Ω,F , μ) be a space with σ-finite measure μ, and
consider another measure λ : F → R̄+. λ is said to be defined through its
density with respect to μ if there exists a Borel-measurable function g : Ω →
R̄+ with

λ(A) =

∫
A

gdμ ∀A ∈ F .

This function g is the density of λ with respect to μ. In this case λ is absolutely
continuous with respect to μ (λ % μ). If μ is a Lebesgue measure on R, then
g is the density of μ. A measure ν is called μ-singular if there exists N ∈ F
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such that μ(N) = 0 and ν(N \F) = 0. Conversely, if also μ(N) = 0 whenever
ν(N) = 0, then the two measures are equivalent (denoted λ ∼ μ).

Theorem A.54 (Radon–Nikodym). Let (Ω,F) be a measurable space, μ
a σ-finite measure on F , and λ an absolutely continuous measure with respect
to μ. Then λ is endowed with density with respect to μ. Hence there exists a
Borel-measurable function g : Ω → R̄+ such that

λ(A) =

∫
A

gdμ, A ∈ B.

A necessary and sufficient condition for g to be μ-integrable is that λ is
bounded. Moreover, if h : Ω → R̄+ is another density of λ, then g = h,
almost surely with respect to μ.

Theorem A.55 (Lebesgue–Nikodym). Let ν and μ be a measure and a
σ-finite measure on (E,B), respectively. There exists a B-measurable function
f : E → R̄+ and a μ-singular measure ν′ on (E,B) such that

ν(B) =

∫
B

fdμ + ν′(B) ∀B ∈ B.

Furthermore,

1. ν′ is unique.
2. If h : E → R̄+ is a B-measurable function with

ν(B) =

∫
B

hdμ + ν′(B) ∀B ∈ B,

then f = h almost surely with respect to μ.

Definition A.56. A function F : R → R is absolutely continuous if, for all
ε > 0, there exists a δ > 0 such that for all ]ai, bi[⊂ R for 1 ≤ i ≤ n with
]ai, bi[∩]aj , bj[= ∅, i �= j,

bi − ai < δ ⇒
n∑

i=1

|F (bi) − F (ai)| < ε.

Proposition A.57. Let F be a distribution function. Then the following two
propositions are equivalent:

1. F is absolutely continuous.
2. The Lebesgue measure canonically associated with F is absolutely continu-

ous.
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Proposition A.58. Let f : [a, b] → R be a mapping. The following two
statements are equivalent:

1. f is absolutely continuous.
2. There exists a Borel-measurable function g : [a, b] → R that is integrable

with respect to the Lebesgue measure and

f(x) − f(a) =

∫ x

a

g(t)dt ∀x ∈ [a, b].

This function g is the density of f .

Proposition A.59. If f : [a, b] → R is absolutely continuous, then

1. f is differentiable almost everywhere in [a, b].
2. f ′, the first derivative of f , is integrable in [a, b], and we have that

f(x) − f(a) =

∫ x

a

f ′(t)dt.

Theorem A.60 (Fundamental theorem of calculus). If f : [a, b] → R

is integrable in [a, b] and

F (x) =

∫ x

a

f(t)dt ∀x ∈ [a, b],

then

1. F is absolutely continuous in [a, b].
2. F ′ = f almost everywhere in [a, b].

Conversely, if we consider a function F : [a, b] → R that satisfies points 1 and
2, then ∫ b

a

f(x)dx = F (b) − F (a).

Proposition A.61. If f : [a, b] → R is differentiable in [a, b] and has inte-
grable derivatives, then

1. f is absolutely continuous in [a, b].
2. f(x) =

∫ x

a f ′(t)dt.

Definition A.62. Let (Ω,F , μ) be a measure space, and p > 0. The set
of Borel-measurable functions defined on Ω, such that

∫
Ω

|f |pdμ < +∞, is
a vector space on R; it is denoted with the symbols Lp(μ) or Lp(Ω,F , μ).
Its elements are called integrable functions, to the exponent p. In particular,
elements of L2(μ) are said to be square-integrable functions. Finally, L1(μ)
coincides with the space of functions integrable with respect to μ.
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A.5 Radon Measures

Consider a complete metric space E endowed with its Borel σ-algebra BE .

Definition A.63. A σ-finite measure μ on BE is called

(i) locally finite if, for any point x ∈ E, there exists an open neighborhood
U of x such that μ(U) < +∞.

(ii) inner regular if

μ(A) = sup {μ(K) |K compact, K ⊂ A} ∀A ∈ BE .

(iii) outer regular if

μ(A) = sup {μ(U) |U open, A ⊂ U} ∀A ∈ BE.

(iv) regular if it is both inner and outer regular.
(v) a Radon measure if it is an inner regular and locally finite measure.

Proposition A.64. The usual Lebesgue measure on R
d is a regular Radon

measure. However, not all σ-finite measures on R
d are regular.

Proof . See, e.g., Klenke (2008, p. 247). �

Proposition A.65. If μ is a Radon measure on a locally compact and com-
plete metric space E endowed with its Borel σ-algebra, then

μ(K) < +∞, ∀K compact subset of E.

∣∣∣∣
∫
E

fdμ

∣∣∣∣ < +∞

for any real-valued continuous function f with compact support.

Proof . See, e.g., Karr (1991, p. 411). �
Let us now stick to a locally compact and complete metric space E endowed

with its Borel σ-algebra BE .

Definition A.66. A Radon measure μ on BE is

(i) A point or (counting) measure if μ(A) ∈ N, for any A ∈ BE.
(ii) A simple point measure if μ is a point measure and μ({x}) ≤ 1 for any

x ∈ E.
(iii) A diffuse measure if μ({x}) = 0 for any x ∈ E.
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The fundamental point measure is the Dirac measure εx associated with
a point x ∈ E; it is defined by

εx(A) =

{
1, if x ∈ A,
0, if x /∈ A.

A point x ∈ E is called an atom if μ({x}) > 0.

Proposition A.67. A Radon measure μ on a locally compact and complete
metric space E endowed with its Borel σ-algebra has an at most countable set
of atoms. It can be decomposed as

μ = μd +

K∑
i=1

aiεxi ,

where μd is a diffuse measure, K ∈ N ∪ {∞} , ai ∈ R
∗
+, xi ∈ E. The decom-

position is unique up to reordering.

Proof . See, e.g., Karr (1991, p. 412). �
A Radon measure is purely atomic if its diffuse component is zero.

Remark A.68. A purely atomic measure is a point measure if and only if
ai ∈ N for each i, and in this case the family {xi, i = 1, . . . ,K} can have no
accumulation points in E.

A.6 Stochastic Stieltjes Integration

Suppose (Ω,F , P ) is a given probability space with (Xt)t∈R+ a measurable
stochastic process whose sample paths (Xt(ω))t∈R+ are of locally bounded
variation for any ω ∈ Ω. Now let (Hs)s∈R+ be a measurable process whose
sample paths are locally bounded for any ω ∈ Ω. Then the process H • X
defined by

(H •X)t(ω) =

∫ t

0

H(s, ω)dXs(ω), ω ∈ Ω, t ∈ R+

is called the stochastic Stieltjes integral of H with respect to X . Clearly,
((H ∗X)t)t∈R+ is itself a stochastic process.

If we assume further that X is progressively measurable and H is Ft-
predictable with respect to the σ-algebra generated by X , then H ∗ X is
progressively measurable. In particular, if N =

∑
n∈N∗ ετn is a point process

on R+, then for any nonnegative process H on R+, the stochastic integral
H ∗N exists and is given by

(H •N)t =
∑
n∈N∗

I[τn≤t](t)H(τn).
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Theorem A.69. Let M be a martingale of locally integrable variation, i.e.,
such that

E

[∫ t

0

d|Ms|
]
< ∞ for any t > 0,

and let C be a predictable process satisfying

E

[∫ t

0

|Cs|d|Ms|
]
< ∞ for any t > 0.

Then the stochastic integral C ∗M is a martingale.





B

Convergence of Probability Measures

on Metric Spaces

B.1 Metric Spaces

For more details on the following and further results refer to Loève (1963);
Dieudonné (1960), and Aubin (1977).

Definition B.1. Consider a set R. A distance (metric) on R is a mapping
ρ : R×R → R+ that satisfies the following properties.

D1. For any x, y ∈ R, ρ(x, y) = 0 ⇔ x = y.
D2. For any x, y ∈ R, ρ(x, y) = ρ(y, x).
D3. For any x, y, z ∈ R, ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (triangle inequality).

Definition B.2. A metric space is a set R endowed with a metric ρ; we shall
write (R, ρ). Elements of a metric space will be called points.

Definition B.3. Given a metric space (R, ρ), a point a ∈ R, and a real
number r > 0, the open ball (or the closed ball) of center a and radius r is
the set B(a, r) := {x ∈ R|ρ(a, x) < r} (or B′(a, r) := {x ∈ R|ρ(a, x) ≤ r}).

Definition B.4. In a metric space (R, ρ), an open set is any subset A of R
such that for any x ∈ A there exists an r > 0 such that B(a, r) ⊂ A.

The empty set is open, and so is the entire space R.

Proposition B.5. The union of any family of open sets is an open set. The
intersection of a finite family of open sets is an open set.

Definition B.6. The family T of all open sets in a metric space is called its
topology. In this respect the couple (R, T ) is a topological space.

Definition B.7. The interior of a set A is the largest open subset of A.

V. Capasso and D. Bakstein, An Introduction to Continuous-Time
Stochastic Processes, MSSET, DOI 10.1007/978-0-8176-8346-7,
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Definition B.8. In a metric space (R, ρ), a closed set is any subset of R that
is the complement of an open set.

The empty set is closed, and so is the entire space R.

Proposition B.9. The intersection of any family of closed sets is a closed
set. The union of a finite family of closed sets is a closed set.

Definition B.10. In a metric space (R, ρ), the closure of a set A is the
smallest subset of R containing A. It is denoted by Ā. Any element of the
closure of A is called a point of closure of A.

Proposition B.11. A closed set is the intersection of a decreasing sequence
of open sets. An open set is the union of an increasing sequence of closed sets.

Definition B.12. A topological space is called a Hausdorff topological space
if it satisfies the following property:

(HT ) For any two distinct points x and y there exist two disjoint open sets
A and B such that x ∈ A and y ∈ B.

Proposition B.13. A metric space is a Hausdorff topological space.

Definition B.14. In a metric space (R, ρ), the boundary of a set A is the
set ∂A = Ā ∩ (R \A). Here R \A is the complement of A.

Definition B.15. Given two metric spaces (R, ρ) and (R′, ρ′), a function
f : R → R′ is continuous if for any open set A′ in (R′, ρ′), the set f−1(A′) is
an open set in (R, ρ).

Definition B.16. Two metric spaces (R, ρ) and (R′, ρ′) are said to be homeo-
morphic if a function f : R → R′ exists satisfying the following two properties:

1. f is a bijection (an invertible function).
2. f is bicontinuous, i.e., both f and its inverse f−1 are continuous.

The function f above is called a homeomorphism.

Definition B.17. Given two distances ρ and ρ′ on the same set R, we say
that they are equivalent distances if the identity iR : x ∈ R 	→ x ∈ R is a
homeomorphism between the metric spaces (R, ρ) and (R′, ρ′).

Remark B.18. We may remark here that the notions of open set, closed set,
closure, boundary, and continuous function are topological notions. They de-
pend only on the topology induced by the metric. The topological properties
of a metric space are invariant with respect to a homeomorphism.

Definition B.19. Given a subset A of a metric space (R, ρ), its diameter is
given by δ(A) = supx∈A,y∈A d(x, y). A is bounded if its diameter is finite.
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Definition B.20. Given two metric spaces (R, ρ) and (R′, ρ′), a function
f : R → R′ is uniformly continuous if for any ε > 0 a δ > 0 exists such that
x, y ∈ R, ρ(x, y) < δ implies ρ′(f(x), f(y)) < ε.

Proposition B.21. A uniformly continuous function is continuous. (The
converse is not true in general.)

Remark B.22. The notions of diameter of a set and of uniform continuity of a
function are metric notions.

Definition B.23. Let A,B be two subsets of a metric space R. A is said to
be dense in B if B ⊆ Ā. A is said to be everywhere dense in R if Ā = R.

Definition B.24. A metric space R is said to be separable if it contains an
everywhere dense countable subset.

Here are some examples of separable spaces with their corresponding ev-
erywhere dense countable subsets.

• The space R of real numbers with distance function ρ(x, y) = |x− y|, with
the set Q.

• The space R
n of ordered n-tuples of real numbers x = (x1, x2, . . . , xn)

with distance function ρ(x, y) =
{∑n

k=1(yk − xk)2
} 1

2 , with the set of all
vectors with rational coordinates.

• The space Rn
0 of ordered n-tuples of real numbers x = (x1, x2, . . . , xn) with

distance function ρ0(x, y) = max {|yk − xk|; 1 ≤ k ≤ n} with the set of all
vectors with rational coordinates.

• C2([a, b]), the totality of all continuous functions on the segment [a, b] with

distance function ρ(x, y) =
∫ b

a
[x(t)−y(t)]2dt with the set of all polynomials

with rational coefficients.

Definition B.25. A family {Gα} of open sets in metric space R is called a
basis of R if every open set in R can be represented as the union of a (finite
or infinite) number of sets belonging to this family.

Definition B.26. R is said to be a space with countable basis if there is at
least one basis in R consisting of a countable number of elements.

Theorem B.27. A necessary and sufficient condition for R to be a space with
countable basis is that there exists in R an everywhere dense countable set.

Corollary B.28. A metric space R is separable if and only if it has a count-
able basis.

Definition B.29. A covering of a set is a family of sets whose union contains
the set. If the number of elements of the family is countable, then we have a
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countable covering. If the sets of the family are open, then we have an open
covering.

Theorem B.30. If R is a separable space, then we can select a countable
covering from each of its open coverings.

Theorem B.31. Every separable metric space R is homeomorphic to a subset
of R∞.

Definition B.32. In a metric space (R, ρ), a sequence (xn)n∈N is any function
from N to R.

Definition B.33. We say that a sequence (xn)n∈N admits a limit b ∈ R (is
convergent to b) if b is such that for any open set V , with x ∈ V , there exists an
nV ∈ N such that for any n > nV we have xn ∈ V. We write limn→∞ xn = b.

Definition B.34. A subsequence of a sequence (xn)n∈N is any sequence k ∈
N 	→ xnk

∈ R such that (nk)k∈N is strictly increasing.

Proposition B.35. If limn→∞ xn = b, then limk→∞ xnk
= b for any subse-

quence of (xn)n∈N.

Definition B.36. b is called a cluster point of a sequence (xn)n∈N if a subse-
quence exists having b as a limit.

Proposition B.37. Given a subset A of a metric space (R, ρ), for any a ∈ Ā
there exists a sequence of elements of A converging to a.

Proposition B.38. If x is the limit of a sequence (xn)n∈N, then x is the
unique cluster point of (xn)n∈N. Conversely, (xn)n∈N may have a unique clus-
ter point x, and still this does not imply that x is the limit of (xn)n∈N (see
Aubin 1977, p. 67 for a counterexample).

Definition B.39. In a metric space (R, ρ), a Cauchy sequence is a sequence
(xn)n∈N such that for any ε > 0 an integer n0 ∈ N exists such that m,n ∈ N,
m,n > n0 implies ρ(xm, xn) < ε.

Proposition B.40. In a metric space, any convergent sequence is a Cauchy
sequence. The converse is not true in general.

Proposition B.41. In a metric space, if a Cauchy sequence (xn)n∈N has a
cluster point x, then x is the limit of (xn)n∈N.

Definition B.42. A metric space R is called complete if any Cauchy sequence
in R is convergent to a point of R.



B.1 Metric Spaces 381

Definition B.43. A subspace of a metric space (R, ρ) is any nonempty subset
F of R endowed with the restriction of ρ to F × F .

Proposition B.44. If a subspace of a metric space R is complete, then it is
closed in R. In a complete metric space, any closed subspace is complete.

Definition B.45. A metric space R is said to be compact if any arbitrary
open covering {Oα} of the space R contains a finite subcovering.

Definition B.46. A metric space R is called precompact if, for all ε > 0, there
is a finite covering of R by sets of diameter < ε.

Remark B.47. The notion of compactness is a topological one, whereas the
notion of precompactness is a metric one.

Theorem B.48. For a metric space R, the following three conditions are
equivalent:

1. R is compact.
2. Any infinite sequence in R has at least a limit point.
3. R is precompact and complete.

Proposition B.49. Every precompact metric space is separable.

Proposition B.50. In a compact metric space, any sequence that has only
one cluster value a converges to a.

Proposition B.51. Any continuous mapping of a compact metric space into
another metric space is uniformly continuous.

Definition B.52. A compact set (or precompact set) in a metric space R is
any subset of R that is compact (or precompact) as a subspace of R.

Proposition B.53. Any precompact set is bounded.

Proposition B.54. Any compact set in a metric space is closed. In a compact
metric space, any closed subset is compact.

Proposition B.55. Any compact set in a metric space is complete.

Definition B.56. A set M in a metric space R is said to be relatively compact
if M = M̄ .

Theorem B.57. A relatively compact set is precompact. In a complete metric
space, a precompact set is relatively compact.
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Proposition B.58. A necessary and sufficient condition that a subset M of
a metric space R be relatively compact is that every sequence of points of M
has a cluster point in R.

Definition B.59. A metric space R is said to be locally compact if for every
point x ∈ R there exists a compact neighborhood of x in R.

Theorem B.60. Let R be a locally compact metric space. The following prop-
erties are equivalent:

1. There exists an increasing sequence (Un) of open relatively compact sets in
R such that Ūn ⊂ Un+1 for every n, and R = ∪nUn.

2. R is the countable union of compact subsets.
3. R is separable.

Convergence of Probability Measures

Let now (S, ρ) be a separable metric space endowed with the σ-algebra S
of Borel subsets generated by the topology induced by ρ. As usual, given a
probability space (Ω,F , P ), an S-valued random variable X is an F − S-
measurable function X : (Ω,F) → (S,S).

Definition B.61. A sequence (Xn)n∈N of random variables, with values in
the common measurable space (S,S), converges almost surely to the random

variable X (notation Xn
a.s.→ X) if for almost all ω ∈ Ω, Xn(ω) converges to

X(ω) with respect to the metric ρ.

In a metric space, in the foregoing definition only the elements of (Xn)n∈N

are required to be measurable, i.e., random variables, since in any case the
limit function will automatically be itself measurable, i.e., a random variable
(e.g., Dudley 2005, p. 125). We further remark that, since (S, ρ) is a separable
metric space, for any two S-valued random variables X and Y, the distance
ρ(X,Y ) is a real-valued random variable, so that the following definition makes
sense.

Definition B.62. A sequence (Xn)n∈N of random variables with values in
the common measurable space (S,S) converges (in probability) to the random

variable X (notation Xn
P→ X) if for any ε > 0,

P (ρ(Xn, X) > ε) → 0,

as n → ∞.

Theorem B.63. For random variables valued in a separable metric space,
almost sure convergence implies convergence in probability.
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The converse of this theorem does not hold in general, though the following
theorem holds.

Theorem B.64. For random variables (Xn)n∈N and X, valued in a separable

metric space, Xn
P→ X if and only if for every subsequence of (Xn)n∈N there

exists a subsubsequence that converges to X a.s.

Proof . See, e.g., Dudley (2005, p. 288). �
Within the foregoing framework, let L0(Ω,F , S,S) or simply L0(S,S) de-

note the set of all F − S-measurable functions (i.e., S-valued random vari-
ables); we will then denote by L0(S,S) the set of equivalence classes of ele-
ments of L0(S,S) with respect to the usual P -a.s. equality. Given two elements
X,Y ∈ L0(S,S), define

α(X,Y ) := inf {ε ≥ 0 | P (ρ(X,Y ) > ε) ≤ ε} .

Theorem B.65. On L0(S,S), α is a metric that metrizes convergence in
probability, so that for random variables (Xn)n∈N and X, valued in the sepa-

rable metric space S, Xn
P→ X if and only if α(Xn, X) → 0.

Proof . See, e.g., Dudley (2005, p. 289). �
The metric α is called the Ky Fan metric.

Theorem B.66. If (S, ρ) is a complete separable metric space, then L0(S,S),
endowed with the Ky Fan metric α, is complete.

Proof . See, e.g., Dudley (2005, p. 290). �
Let (S, ρ) be a metric space endowed with its Borel σ-algebra S as above.

Let P, P1, P2, . . . be probability measures on (S,S), and let Cb(S) be the class
of all continuous bounded real-valued functions on S.

Definition B.67. A sequence of probability measures (Pn)n∈N on (S,S) con-

verges weakly to a probability measure P (notation Pn
W→ P ) if∫

S

fdPn →
∫
S

fdP

for every function f ∈ Cb(S).

Proposition B.68. If (S, ρ) is a metric space, then P and Q are two prob-
ability laws on S, and, for any f ∈ Cb(S),

∫
S fdP =

∫
S fdQ, then P = Q.

An important consequence of the previous proposition is uniqueness of the
weak limit of a sequence of probability laws.

Definition B.69. A sequence (Xn)n∈N of random variables with values in
a common measurable space (S,S) converges in distribution to the random
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variable X (notation Xn
D→ X) if the probability laws Pn of the Xn converge

weakly to the probability law P of X :

Pn
W→ P.

If we denote by L(X) the probability law of a random variable X, then
the foregoing convergence can be equivalently written as

L(Xn)
W→ L(X).

Proposition B.70. If (S, ρ) is a separable metric space, for random variables
(Xn)n∈N and X, valued in S,

Xn
P→ X ⇒ Xn

D→ X.

Recall that if for some x ∈ S, L(X) = εx, i.e., X is a degenerate random
variable, then

Xn
P→ X ⇐⇒ Xn

D→ X.

Theorem B.71 (Skorohod representation theorem). Consider a se-
quence (Pn)n∈N of probability measures and a probability measure P on a sep-

arable metric space (S,S) such that Pn
W−→

n→∞P. Then there exists a sequence

of S-valued random variables (Yn)n∈N and a random variable Y defined on a
common (suitably extended) probability space such that Yn has probability law
Pn, Y has probability law P, and

Yn
a.s.−→

n→∞Y.

Proof . See, e.g., Billingsley (1968). �
Consider sequences of random variables (Xn)n∈N and (Yn)n∈N valued in

a metric separable space (S, ρ) having a common domain; it makes sense to
speak of the distance ρ(Xn, Yn), i.e., the function with value ρ(Xn(ω), Yn(ω))
at ω. Since S is separable, ρ(Xn, Yn) is a random variable (Billingsley 1968,
p. 225), and we have the following theorem.

Theorem B.72. If Xn
D→ X and ρ(Xn, Yn)

P→ 0, then Yn
D→ X.

Let h be a measurable mapping of the metric space S into another metric
space S′. If P is a probability measure on (S,S), then we denote by h(P )
the probability measure induced by h on (S′,S ′), defined by h(P )(A) =
P (h−1(A)) for any A ∈ S ′. Let Dh be the set of discontinuities of h.
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Theorem B.73. If Pn
W→ P and P (Dh) = 0, then h(Pn)

W→ h(P ).

For a random element X of S, h(X) is a random element of S′ (since h is
measurable), and we have the following corollary.

Corollary B.74. If Xn
D→ X and P (X ∈ Dh) = 0, then h(Xn)

D→ h(X).

We recall now one of the most frequently used results in analysis.

Theorem B.75. (Helly). For every sequence (Fn)n∈N of distribution
functions there exists a subsequence (Fnk

)k∈N and a nondecreasing, right-
continuous function F (a generalized distribution function) such that
0 ≤ F ≤ 1 and limk Fnk

(x) = F (x) at continuity points x of F .

Definition B.76. A set A in S such that P (∂A) = 0 is called a P -
continuity set.

Theorem B.77 (Portmanteau theorem). Let (Pn)n∈N and P be probabil-
ity measures on a metric space (S, ρ) endowed with its Borel σ-algebra. These
five conditions are equivalent:

1. Pn
W→ P .

2. limn

∫
fdPn =

∫
fdP for all bounded, uniformly continuous real

functions f .
3. lim supn Pn(F ) ≤ P (F ) for all closed F .
4. lim infn Pn(G) ≥ P (G) for all open G.
5. limn Pn(A) = P (A) for all P -continuity sets A.

Consider a metric space (S, ρ). Given a bounded real-valued function f on
S, we may consider its Lipschitz seminorm defined as

‖f‖L := sup
x 
=y

| f(x) − f(y) |
ρ(x, y)

and its supremum norm ‖f‖∞ := supx | f(x) | . Let

‖f‖BL := ‖f‖L + ‖f‖∞,

and consider the set BL(S, ρ) of all bounded real-valued Lipschitz functions
on S, i.e.,

BL(S, ρ) := {f : S → R| ‖f‖BL < ∞} .

Theorem B.78. Let (S, ρ) be a metric space.

1. BL(S, ρ) is a vector space.
2. ‖ · ‖BL is a norm.
3. (BL(S, ρ), ‖ · ‖BL) is a Banach space.
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For any two probability laws P and Q on the Borel σ-algebra of (S, ρ) we
may define

β(P,Q) := sup

{
|
∫

fdP −
∫

fdQ| | ‖f‖BL ≤ 1

}
.

Theorem B.79. Let (S, ρ) be a metric space endowed with its Borel σ-algebra
S. β is a metric on the set of all probability laws on S.

Now on a metric space (S, ρ) consider any subset A ⊂ S and for any ε > 0
let

Aε := {y ∈ S | ρ(x, y) < ε for some x ∈ A} .

For any two probability laws P and Q on the Borel σ-algebra S we may define

γ(P,Q) := inf {ε > 0 | P (A) ≤ Q(Aε) + ε, for all A ∈ S} .

Theorem B.80. Let (S, ρ) be a metric space endowed with its Borel σ-algebra
S. γ is a metric on the set of all probability laws on S.

The metric γ is known as the Prohorov metric, or sometimes the Lévy–
Prohorov metric.

Theorem B.81. Let (S, ρ) be a separable metric space endowed with its Borel
σ-algebra S; consider a sequence (Pn)n∈N and a P probability measure on S.
These four statements are equivalent.

(a) Pn
W→ P

(b) limn

∫
fdPn =

∫
fdP for all functions f ∈ BL(S, ρ)

(c) limn β(Pn, P ) = 0
(d) limn γ(Pn, P ) = 0

Proof . See, e.g., Dudley (2005, p. 395). �
The fact that convergence in probability implies convergence in law can

be expressed in terms of the Prohorov and the Ky Fan metrics as follows.

Theorem B.82. Let (S, ρ) be a separable metric space endowed with its Borel
σ-algebra S, and let X,Y be two S-valued random variables defined on the
same probability space. Then

γ(L(X),L(Y )) ≤ α(X,Y ).
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Convergence of Empirical Measures

Consider a metric space (S, ρ) endowed with its Borel σ-algebra S, and let
(Xn)n∈N∗ be a sequence of i.i.d. S-valued random variables defined on the
same probability space (Ω,F , P ). The sequence (Pn)n∈N∗ of empirical mea-
sures associated with (Xn)n∈N∗ is defined by

Pn(B)(ω) :=
1

n

n∑
j=1

εXj(ω)(B), B ∈ S, ω ∈ Ω,

where εx is the usual Dirac measure associated with a point x ∈ S.
The following theorem is a generalization of the Glivenko–Cantelli theo-

rem, also known as the Fundamental Theorem of Statistics.

Theorem B.83 (Varadarajan). Let (S, ρ) be a separable metric space en-
dowed with its Borel σ-algebra S; let (Xn)n∈N∗ be a sequence of i.i.d. S-valued
random variables defined on the same probability space (Ω,F , P ); and let PX

denote their common probability law on S. Then the sequence of empirical
measures (Pn)n∈N∗ associated with (Xn)n∈N∗ converges to PX almost surely,
i.e.,

P ({ω ∈ Ω |Pn(·)(ω) → PX}) = 1.

Proof . See, e.g., Dudley (2005, p. 399). �
On the set of probability measures on (S,S), we may refer to the topology

of weak convergence.

Definition B.84. Let Π be a family of probability measures on (S,S). Π is
said to be relatively compact if every sequence of elements of Π contains a
weakly convergent subsequence, i.e., for every sequence (Pn)n∈N in Π there
exists a subsequence (Pnk

)k∈N and a probability measure P [defined on (S,S),

but not necessarily an element of Π ] such that Pnk

W→ P .

Theorem B.85. Let (Pn)n∈N be a relatively compact sequence of probability
measures and P an additional probability measure on (S,S). Then the follow-
ing propositions are equivalent:

(a) Pn
W→ P .

(b) All weakly converging subsequences of (Pn)n∈N weakly converge to P .

Definition B.86. A family Π of probability measures on the general metric
space (S,S) is said to be tight if, for all ε > 0, there exists a compact set Kε

such that
P (Kε) > 1 − ε ∀P ∈ Π.
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B.2 Prohorov’s Theorem

Prohorov’s theorem gives, under suitable hypotheses, equivalence among rel-
ative compactness and tightness of families of probability measures.

Theorem B.87 (Prohorov). Let Π be a family of probability measures on
the measurable space (S,S). Then

1. If Π is tight, then it is relatively compact.
2. Suppose S is separable and complete; if Π is relatively compact, then it is

tight.

Proof . See, e.g., Billingsley (1968). �

Corollary B.88. Let (S, ρ) be a Polish space endowed with its Borel σ-algebra
S; then the metric space of all probability measures on S is complete with either
metric β or γ.

Proof . See, e.g., Dudley (2005, p. 405). �

B.3 Donsker’s Theorem

Weak Convergence and Tightness in C([0, 1])

Consider a probability measure P on (R∞,BR∞), and let πk be the projec-
tion from R

∞ to R
k, defined by πi1,...,ik(x) = (xi1 , . . . , xik). The functions

πk(P ) : Rk → [0, 1] are called finite-dimensional distributions corresponding
to P . It is possible to show that probability measures on (R∞,BR∞) converge
weakly if and only if all the corresponding finite-dimensional distributions
converge weakly. Let C := C([0, 1]) be the space of continuous functions on
[0, 1] with uniform topology, i.e., the topology obtained by defining the dis-
tance between two points x, y ∈ C as ρ(x, y) = supt |x(t) − y(t)|. We shall
denote with (C, C) the space C with the topology induced by this metric ρ.
For t1, . . . , tk in [0, 1], let πt1...tk be the mapping that carries point x of C to
point (x(t1), . . . , x(tk)) of Rk. The finite-dimensional distributions of a proba-
bility measure P on (C, C) are defined as the measures πt1...tk(P ). Since these
projections are continuous, the weak convergence of probability measures on
(C, C) implies the weak convergence of the corresponding finite-dimensional
distributions, but the converse fails (perhaps in the presence of singular mea-
sures), i.e., weak convergence of finite-dimensional distributions of a sequence
of probability measures on C is not a sufficient condition for weak convergence
of the sequence itself in C. One can prove (e.g., Billingsley 1968) that an ad-
ditional condition is needed, i.e., relative compactness of the sequence. Since
C is a Polish space, i.e., a separable and complete metric space, by Prohorov’s
theorem we have the following result.
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Theorem B.89. Let (Pn)n∈N and P be probability measures on (C, C). If
the sequence of the finite-dimensional distributions of Pn, n ∈ N converge

weakly to those of P , and if (Pn)n∈N is tight, then Pn
W→ P .

To use this theorem we provide here some characterization of tightness.
Given a δ ∈]0, 1], a δ-continuity modulus of an element x of C is defined by

wx(δ) = w(x, δ) = sup
|s−t|<δ

|x(s) − x(t)|, 0 < δ ≤ 1.

Let (Pn)n∈N be a sequence of probability measures on (C, C).

Theorem B.90. The sequence (Pn)n∈N is tight if and only if these two con-
ditions hold:

1. For each positive η there exists an aη such that

Pn(x||x(0)| > aη) ≤ η, n ≥ 1.

2. For each positive ε and η there exists a δ, with 0 < δ < 1, and an integer
n0 such that

Pn(x|wx(δ) ≥ ε) ≤ η, n ≥ n0.

The following theorem gives a sufficient condition for compactness.

Theorem B.91. If the following two conditions are satisfied:

1. For each positive η, there exists an a such that

Pn(x||x(0)| > a) ≤ η n ≥ 1.

2. For each positive ε and η, there exists a δ, with 0 < δ < 1, and an integer
n0 such that

1

δ
Pn

(
x

∣∣∣∣ sup
t≤s≤t+δ

|x(s) − x(t)| ≥ ε

)
≤ η, n ≥ n0,

for all t ∈ [0, 1], then the sequence (Pn)n∈N is tight.

Let X be a mapping from (Ω,F , P ) into (C, C). For all ω ∈ Ω, X(ω)
is an element of C, i.e., a continuous function on [0, 1], whose value at t
we denote by X(t, ω). For fixed t, let X(t) denote the real function on Ω
with value X(t, ω) at ω. Then X(t) is the projection πtX . Similarly, let
(X(t1), X(t2), . . . , X(tk)) denote the mapping from Ω into R

k with values
(X(t1, ω), X(t2, ω), . . . , X(tk, ω)) at ω. If each X(t) is a random variable, X
is said to be a random function. Suppose now that (Xn)n∈N is a sequence of
random functions. According to Theorem B.90, (Xn)n∈N is tight if and only
if the sequence (Xn(0))n∈N is tight, and for any positive real numbers ε and
η there exists δ, (0 < δ < 1) and an integer n0 such that
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P (wXn(δ) ≥ ε) ≤ η, n ≥ n0.

This condition states that the random functions Xn, n ∈ N, do not oscillate
too much. Theorem B.91 can be restated in the same way: (Xn)n∈N is tight if
(Xn(0))n∈N is tight, and if for any positive ε and η there exists a δ, 0 < δ < 1,
and an integer n0 such that

1

δ
P

(
sup

t≤s≤t+δ
|Xn(s) −Xn(t)| ≥ ε

)
≤ η

for n ≥ n0 and 0 ≤ t ≤ 1. Let (ξn)n∈N\{0} be a sequence of i.i.d. random
variables on (Ω,F , P ) with mean 0 and variance σ2. We define the sequence
of partial sums Sn = ξ1 + · · · + ξn, n ∈ N, with S0 = 0. Let us construct the
sequence of random variables (Xn)n∈N from the sequence (Sn)n∈N by means
of rescaling and linear interpolation, as follows:

Xn

(
i

n
, ω

)
=

1

σ
√
n
Si(ω) for

i

n
∈ [0, 1[;

Xn(t) −Xn

(
i−1
n

)
Xn

(
i
n

)
−Xn

(
i−1
n

) −
t− i−1

n
1
n

= 0 for t ∈
[

(i− 1)

n
,
i

n

]
. (B.1)

With a little algebra, we obtain

Xn(t) = Xn

(
i− 1

n

)
+
t− i−1

n
1
n

(
Xn

(
i

n

)
−Xn

(
i− 1

n

))

=
t− i−1

n
1
n

Xn

(
i

n

)
+

(
i
n − t

1
n

)
Xn

(
i− 1

n

)

=
1

σ
√
n
Si−1(ω)

i
n − t

1
n

+
t− (i−1)

n
1
n

1

σ
√
n
Si(ω)

=
1

σ
√
n
Si−1(ω)

(
i
n − t

1
n

+
t− i

n + 1
n

1
n

)
+

1

σ
√
n

t− (i−1)
n

1
n

ξi(ω)

=
1

σ
√
n
Si−1(ω) + n

(
t− i− 1

n

)
1

σ
√
n
ξi(ω).

Since i− 1 = [nt], if t ∈ [ (i−1)
n , i

n ], we may rewrite (B.1) as follows:

Xn(t, ω) =
1

σ
√
n
S[nt](ω) + (nt− [nt])

1

σ
√
n
ξ[nt]+1(ω). (B.2)

For any fixed ω, Xn(·, ω) is a piecewise linear function whose pieces’ amplitude
decreases as n increases. Since the ξi and hence the Si are random variables it
follows by (B.2) that Xn(t) is a random variable for each t. Therefore, the Xn

are random functions. The following theorem provides a sufficient condition
for (Xn)n∈N to be a tight sequence.
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Theorem B.92. Suppose Xn, n ∈ N is defined by (B.2). The sequence
(Xn)n∈N is tight if for each positive ε there exists a λ, with λ > 1, and an
integer n0 such that, if n ≥ n0, then

P

(
max
i≤n

|Sk+i − Sk| ≥ λσ
√
n

)
≤ ε

λ2
(B.3)

holds for all k.

If the sequence (ξn)n∈N\{0} is made of i.i.d. random variables, then condi-
tion (B.3) reduces to

P

(
max
i≤n

|Si| ≥ λσ
√
n

)
≤ ε

λ2
. (B.4)

Let us denote by PW the probability measure of the Wiener process as de-
fined in Definition 2.157 and whose existence is a consequence of Theorem 2.55.
We will refer here to its restriction to t ∈ [0, 1], so that its trajectories are
almost sure elements of C([0, 1]).

Theorem B.93 (Donsker). Let (ξn)n∈N\{0} be a sequence of i.i.d. random
variables defined on (Ω,F , P ) with mean 0 and finite, positive variance σ2:

E[ξn] = 0, E[ξ2n] = σ2.

Let Sn = ξ1 + ξ2 + · · · + ξn, n ∈ N. Then the random functions

Xn(t, ω) =
1

σ
√
n
S[nt](ω) + (nt− [nt])

1

σ
√
n
ξ[nt]+1(ω)

satisfy Xn
D→ W .

Proof . We wish to apply Theorem B.89; we first show that the sequence of
the finite-dimensional distributions of Xn, n ∈ N converge to those of W .
Consider first a single time point s; we need to prove that

Xn(s)
W→ Ws.

Since ∣∣∣∣Xn(s) − 1

σ
√
n
S[ns]

∣∣∣∣ = (ns− [ns])

∣∣∣∣ 1

σ
√
n
ξ[ns]+1

∣∣∣∣
and since, by Chebyshev’s inequality,

P

(∣∣∣∣ 1

σ
√
n
ξ[ns]+1

∣∣∣∣ ≥ ε

)
≤

E

[∣∣∣ 1
σ
√
n
ξ[ns]+1

∣∣∣2]
ε2

=
1

σ2nε2
E
[
ξ2[ns]+1

]
=

=
1

nε2
→ 0, n → ∞,
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we obtain ∣∣∣∣Xn(s) − 1

σ
√
n
S[ns]

∣∣∣∣ P→ 0.

Since limn→∞
[ns]
ns = 1, by the Central Limit Theorem for i.i.d. variables

1

σ
√
ns

[ns]∑
k=1

ξk
D→ N(0, 1),

so that
1

σ
√
n
S[ns]

D→ Ws.

Therefore, by Theorem B.72, Xn(s)
D→ Ws. Consider now two time points s

and t with s < t. We must prove

(Xn(s), Xn(t))
D→ (Ws,Wt).

Since ∣∣∣∣Xn(t) − 1

σ
√
n
S[nt]

∣∣∣∣ P→ 0 and

∣∣∣∣Xn(s) − 1

σ
√
n
S[ns]

∣∣∣∣ P→ 0

by Chebyshev’s inequality, so that∥∥∥∥(Xn(s), Xn(t)) −
(

1

σ
√
n
S[ns],

1

σ
√
n
S[nt]

)∥∥∥∥
R2

P→ 0,

and by Theorem B.72, it is sufficient to prove that

1

σ
√
n

(
S[ns], S[nt]

) D→ (Ws,Wt).

By Corollary B.74 of Theorem B.73 this is equivalent to proving

1

σ
√
n

(
S[ns], S[nt] − S[ns]

) D→ (Ws,Wt −Ws).

For independence of the random variables ξi, i = 1, 2, . . . , n, the random vari-
ables S[ns] and S[nt] − S[ns] are independent, so that

lim
n→∞E

[
e

iu
σ
√

n

∑[ns]
j=1 ξj+

iv
σ
√

n

∑[nt]

j=[ns]+1
ξj

]

= lim
n→∞E

[
e

iu
σ
√

n

∑[ns]
j=1 ξj

]
· lim
n→∞E

[
e

iv
σ
√

n

∑[nt]

j=[ns]+1
ξj

]
. (B.5)
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Since limn→∞
[ns]
ns = 1, by the Lindeberg Theorem 1.190

1

σ
√
n
S[ns]

D→ N(0, s),

and for the same reason

1

σ
√
n

(S[nt] − S[ns])
D→ N(0, t− s),

so that

lim
n→∞E

[
e

iu
σ
√

n
S[ns]

]
= e−

u2s
2

and

lim
n→∞E

[
e

iv
σ
√

n
S[nt]−S[ns]

]
= e−

u2s
2 .

Substitution of these two last equations into (B.5) gives

1

σ
√
n

(
S[ns], S[nt] − S[ns]

) D→ (Ws,Wt −Ws),

and consequently

(Xn(s), Xn(t))
D→ (Ws,Wt).

A set of three or more time points can be treated in the same way, and hence
the finite-dimensional distributions converge properly. To prove tightness we
apply Theorem B.92; under the assumptions of the present theorem, it can
be shown (Billingsley 1968, p. 69) that

P

(
max
i≤n

|Si| ≥ λ
√
nσ

)
≤ 2P

(
|Sn| ≥ (λ−

√
2)

√
nσ

)
.

For λ
2 >

√
2 we have

P

(
max
i≤n

|Si| ≥ λ
√
nσ

)
≤ 2P

(
|Sn| ≥

λ

2

√
nσ

)
.

By the Central Limit Theorem,

P

(
|Sn| ≥

1

2
λσ

√
n

)
→ P

(
|N | ≥ 1

2
λ

)
<

8

λ3
E
[
|N |3

]
,

where the last inequality follows by Chebyshev’s inequality, and N ∼ N(0, 1).
Therefore, if ε is positive, there exists a λ such that

lim sup
n→∞

P

(
max
i≤n

|Si| ≥ λσ
√
n

)
<

ε

λ2
,

and then, by Theorem B.92, the sequence of the distribution functions of
(Xn)n∈N is tight. �
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An Application of Donsker’s Theorem

Donsker’s theorem has the following qualitative interpretation: Xn
D→ W im-

plies that, if τ is small, then a particle subject to independent displacements
ξ1, ξ2, . . . at successive times τ1, τ2, . . . appears to follow approximately a Brow-
nian motion.

More important than this qualitative interpretation is the use of Donsker’s
theorem to prove limit theorems for various functions of the partial sums Sn.

Using Donsker’s theorem it is possible to use the relation Xn
D→ W to derive

the limiting distribution of maxi≤n Si.

Since h(x) = supt x(t) is a continuous function on C, Xn
D→ W implies,

by Corollary B.74, that

sup
0≤t≤1

Xn(t)
D→ sup

0≤t≤1
Wt.

The obvious relation

sup
0≤t≤1

Xn(t) = max
i≤n

1

σ
√
n
Si

implies
1

σ
√
n

max
i≤n

Si
D→ sup

0≤t≤1
Wt. (B.6)

Thus, under the hypotheses of Donsker’s theorem, if we knew the distribu-
tion of suptWt, we would have the limiting distribution of maxi≤n Si. The
technique we shall use to obtain the distribution of suptWt is to compute
the limit distribution of maxi≤n Si in a simple special case and then, using

h(Xn)
D→ h(W ), where h is continuous on C or continuous except at points

forming a set of Wiener measure 0, we obtain the distribution of suptWt in
the general case.

Suppose that S0, S1, . . . are the random variables for a symmetric random
walk starting from the origin; this is equivalent to supposing that ξn are
independent and satisfy

P (ξn = 1) = P (ξn = −1) =
1

2
. (B.7)

Let us show that if a is a nonnegative integer, then

P

(
max
0≤i≤n

Si ≥ a

)
= 2P (Sn > a) + P (Sn = a). (B.8)

If a = 0, then the previous relation is obvious; in fact, since S0 = 0,

P

(
max
0≤i≤n

Si ≥ 0

)
= 1
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and obviously, by symmetry of Sn

2P (Sn > 0) + P (Sn = 0) = P (Sn > 0) + P (Sn < 0) + P (Sn = 0) = 1.

Suppose now that a > 0 and put Mi = max0≤j≤i Sj . Since

{Sn = a} ⊂ {Mn ≥ a}

and
{Sn > a} ⊂ {Mn ≥ a} ,

we have

P (Mn ≥ a) − P (Sn = a) = P (Mn ≥ a, Sn < a) + P (Mn ≥ a, Sn > a)

and
P (Mn ≥ a, Sn > a) = P (Sn > a).

Hence we have to show that

P (Mn ≥ a, Sn < a) = P (Mn ≥ a, Sn > a). (B.9)

Because of (B.7), all 2n possible paths (S1, S2, . . . , Sn) have the same proba-
bility 2−n. Therefore, (B.9) will follow if we show that the number of paths
contributing to the left-hand event is the same as the number of paths con-
tributing to the right-hand event. To show this, it suffices to find a one-to-one
correspondence between the paths contributing to the right-hand event and
the paths contributing to the left-hand event.

Given a path (S1, S2, . . . , Sn) contributing to the left-hand event in (B.9),
match it with the path obtained by reflecting through a all the partial sums
after the first one that achieves the height a. Since the correspondence is one-
to-one, (B.9) follows. This argument is an example of the reflection principle.
See also Lemma 2.170.

Let α be an arbitrary nonnegative number, and let an = −[−αn 1
2 ]. By

(B.9), we have

P

(
max
i≤n

1√
n
Si ≥ an

)
= 2P (Sn > an) + P (Sn = an).

Since Si can assume only integer values and since an is the smallest integer
greater than or equal to αn

1
2 ,

P

(
max
i≤n

1√
n
Si ≥ α

)
= 2P (Sn > an) + P (Sn = an).

By the central limit theorem,

P (Sn ≥ an) → P (N ≥ α),
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where N ∼ N(0, 1) and σ2 = 1 by (B.7).
Since in the symmetric binomial distribution Sn → 0 almost surely, the

term P (Sn = an) is negligible. Thus

P

(
max
i≤n

1√
n
Si ≥ α

)
→ 2P (N ≥ α) , α ≥ 0. (B.10)

By (B.10), (B.6), and (B.7), we conclude that

P

(
sup

0≤t≤1
Wt ≤ α

)
=

2√
2π

∫ α

0

e−
1
2u

2

du, α ≥ 0. (B.11)

If we drop assumption (B.7) and suppose that the random variables ξn are
i.i.d. and satisfy the hypothesis of Donsker’s theorem, then (B.6) holds and
from (B.11) we obtain

P

(
1

σ
√
n

max
i≤n

Si ≤ α

)
→ 2√

2π

∫ α

0

e−
1
2u

2

du, α ≥ 0.

Thus we have derived the limiting distribution of maxi≤n Si by Lindeberg’s
theorem. Therefore, if the ξn are i.i.d. with E[ξn] = 0 and E[ξ2n] = σ2, then the
limit distribution of h(Xn) does not depend on any further properties of the
ξn. For this reason, Donsker’s theorem is often called an invariance principle.



C

Elliptic and Parabolic Equations

We recall here basic facts about the existence and uniqueness of elliptic and
parabolic equations; for further details, the interested reader may refer to
Friedman (1963, 1964).

C.1 Elliptic Equations

Consider an open bounded Ω ⊂ R
n, (for n ≥ 1). We are given aij , bi, and

c, i, j = 1, . . . , n, real-valued functions defined on Ω. Consider the partial
differential operator

M ≡ 1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x). (C.1)

The operator M is said to be elliptic at a point x0 ∈ Ω if the ma-
trix (ai,j(x0))i,j=1,...,n is positive-definite, i.e., for any real vector ξ �= 0,∑n

i,j=1 aij(x0)ξiξj > 0.
If there is a positive constant μ such that

n∑
i,j=1

aij(x)ξiξj ≥ μ | ξ |2

for all x ∈ Ω, and all ξ ∈ R
n, then M is said to be uniformly elliptic in Ω.

Definition C.1. A barrier for M at a point y ∈ ∂Ω is a continuous non-
negative function wy defined on Ω that vanishes only at the point y and such
that M [wy](x) ≤ −1, for any x ∈ Ω.

Proposition C.2. Let y ∈ ∂Ω. If there exists a closed ball K such that
K ∩Ω = ∅, and K ∩ Ω̄ = {y} , then y has a barrier for M .
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398 C Elliptic and Parabolic Equations

The First Boundary Value or Dirichlet Problem

Given a real-valued function f defined on Ω and a real-valued function φ
defined on ∂Ω, the Dirichlet problem consists of finding a solution u of the
system {

M [u](x) = f(x) in Ω,
u(x) = φ(x) in ∂Ω.

(C.2)

Theorem C.3. Assume that M is uniformly elliptic in Ω, that c(x) ≤ 0,
and that aij , bi, (i, j = 1, . . . , n), c, f are uniformly Hölder continuous with
exponent α in Ω̄. If every point of ∂Ω has a barrier, and φ is continuous on
∂Ω, then there exists a unique u ∈ C2(Ω) ∩ C0(Ω̄) solution of the Dirichlet
problem (C.2).

Proof . See, e.g., Friedman (1963, 1964). �

C.2 The Cauchy Problem and Fundamental Solutions
for Parabolic Equations

Let

L0 ≡ 1

2

n∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂

∂xi
+ c(x, t) (C.3)

be an elliptic operator in R
n, for all t ∈ [0, T ], and let f : Rn × [0, T ] → R,

φ : R → R be two appropriately assigned functions.
The Cauchy problem consists in finding a solution u(x, t) of{

L[u] ≡ L0[u] − ut = f(x, t) in R
n×]0, T ],

u(x, 0) = φ(x) in R
n.

(C.4)

The solution is understood to be a continuous function defined for (x, t) ∈
R

n × [0, T ], with its derivatives uxi , uxixj , ut continuous in R
n×]0, T ].

Theorem C.4. Let the matrix (aij(x, t))i,j=1,...,n be a nonnegative definite
real matrix, and let

| aij(x, t) |≤ C, |bi(x, t)| ≤ C(|x| + 1), c(x, t) ≤ C(|x|2 + 1), (C.5)

for a suitable constant C. If L[u] ≤ 0 in R
n×]0, T ], and if u(x, t) ≥

−B exp
{
β|x|2

}
in R

n × [0, T ] (for some B, β positive constants), and if
u(x, 0) ≥ 0 in R

n, then u(x, t) ≥ 0 in R
n × [0, T ].

Proof . See, e.g., Friedman (2004, p. 139). �

Corollary C.5. Let the matrix (aij(x, t))i,j=1,...,n be a nonnegative definite
real matrix, and let (C.5) hold. Then there exists at most one solution of the
Cauchy problem (C.4) satisfying
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|u(x, t)| ≤ −B exp
{
β|x|2

}
in R

n × [0, T ] (for some B, β positive constants).

The next theorem, and consequent corollary, considers different growth
conditions on the coefficients of the operator L0.

Theorem C.6. Let the matrix (aij(x, t))i,j=1,...,n be a nonnegative definite
real matrix, and let

|aij(x, t)| ≤ C(|x|2 + 1), |bi(x, t)| ≤ C(|x| + 1), c(x, t) ≤ C, (C.6)

where C is a constant. If L[u] ≤ 0 in R
n×]0, T ], u(x, t) ≥ −N(|x|q + 1) in

R
n × [0, T ] (where N, q are positive constants), and u(x, 0) ≥ 0 in R

n, then
u(x, t) ≥ 0 in R

n × [0, T ].

Proof . See, e.g., Friedman (2004, p. 140). �

Corollary C.7. Let the matrix (aij(x, t))i,j=1,...,n be a nonnegative definite
real matrix, and let conditions (C.6) be satisfied; then there exists at most one
solution u of the Cauchy problem with

|u(x, t)| ≤ N(1 + |x|q),

where N, q are positive constants.

Later the following conditions will be required.

(A1) There exists a μ > 0 such that
∑n

i,j=1 aij(x, t)ξiξj ≥ μξ2 for all (x, t) ∈
R

n × [0, T ].
(A2) The coefficients of L0 are bounded continuous functions in R

n × [0, T ],
and the coefficients aij(x, t) are continuous in t, uniformly with respect to
(x, t) ∈ R

n × [0, T ].
(A3) The coefficients of L0 are Hölder continuous functions (with exponent

α) in x, uniformly with respect to the variables (x, t) in compacts of Rn ×
[0, T ], and the coefficients aij(x, t) are Hölder continuous (with exponent
α) in x, uniformly with respect to (x, t) ∈ R

n × [0, T ].

Definition C.8. A fundamental solution of the parabolic operator L0 − ∂
∂t

in R
n × [0, T ] is a function Γ (x, t; ξ, r), defined, for all (x, t) ∈ R

n × [0, T ] and
all (ξ, t) ∈ R

n × [0, T ], t > r, such that, for all φ with compact support,14 the
function

u(x, t) =

∫
Rn

Γ (x, t; ξ, r)φ(ξ)dξ

14The support of a function f : Rn → R is the set {x ∈ R
n|f(x) �= 0}.
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satisfies

(i) L[u](x, t) − ut(x, t) = 0 for x ∈ R
n, r < t ≤ T

(ii) u(x, t) → φ(x) as t ↓ r, for x ∈ R
n

Theorem C.9. If conditions (A1), (A2), and (A3) hold, then there exists a
fundamental solution Γ (x, t; ξ, r), for L0 − ∂

∂t , satisfying the inequalities

|Dm
x Γ (x, t; ξ, r)| ≤ c1(t− r)−

m+n
2 exp

{
−c2

|x− ξ|2
t− r

}
, m = 0, 1,

where c1 and c2 are positive constants. The functions Dm
x Γ , m = 0, 1, 2,,

and DtΓ are continuous in (x, t; ξ, r) ∈ R
n × [0, T ] × R

n × [0, T ], t > r, and
L0[Γ ] − Γt = 0, as a function of (x, t).

Finally, for any bounded continuous function φ we have∫
Rn

Γ (x, t; ξ, r)φ(x)dx → φ(ξ) for t ↓ r.

Proof . See, e.g., Friedman (2004, p. 141). �

Theorem C.10. Let (A1), (A2), (A3) hold, let f(x, t) be a continuous func-
tion in R

n × [0, T ], Hölder continuous in x, uniformly with respect to (x, t) in
compacts of Rn × [0, T ], and let φ be a continuous function in R

n. Moreover,
assume that

|f(x, t)| ≤ Aea1|x|2 in R
n × [0, T ],

|φ(x)| ≤ Aea1|x|2 in R
n,

where A, a1 are positive constants. Then there exists a solution of the Cauchy

problem (C.4) in 0 ≤ t ≤ T ∗, where T ∗ = min
{
T, c̄

a1

}
and c̄ is a constant,

which depends only on the coefficients of L0, and

|u(x, t)| ≤ A′ea
′
1|x|2 in R

n × [0, T ∗],

with positive constants A′, a′1.
The solution is given by

u(x, t) =

∫
Rn

Γ (x, t; ξ, 0)φ(ξ)dξ −
∫ t

0

∫
Rn

Γ (x, t; ξ, r)f(ξ, r)dξdr.

The adjoint operator L∗ of L = L0 − ∂
∂t is given by

L∗[v] = L∗
0[v] +

∂v

∂t
,

L∗
0[v](x, t) =

1

2

n∑
i,j=1

∂2

∂xi∂xj
(aij(x, t)v(x, t))−

n∑
i=1

∂

∂xi
(bi(x, t)v(x, t))+c(x, t),
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by assuming that all quoted derivatives of the coefficients exist and are
bounded functions.

Definition C.11. A fundamental solution of the operator L∗
0+ ∂

∂t in R
n×[0, T ]

is a function Γ ∗(x, t; ξ, r), defined, for all (x, t) ∈ R
n × [0, T ] and all (ξ, r) ∈

R
n × [0, T ], t < r, such that, for all g continuous with compact support, the

function

v(x, t) =

∫
Rn

Γ ∗(x, t; ξ, r)g(ξ)dξ

satisfies

1. L∗[v] + vt = 0 for x ∈ R
n, 0 ≤ t ≤ r

2. v(x, t) → g(x) as t ↑ r, for x ∈ R
n

We consider the following additional condition.

(A4) The functions aij ,
∂aij

∂xi
,

∂2aij

∂xi∂xj
, bi,

∂bi
∂xi

, c are bounded and the coef-

ficients of L∗
0 satisfy conditions (A2) and (A3).

Theorem C.12. If (A1)–(A4) are satisfied, then there exists a fundamental
solution Γ ∗(x, t; ξ, r) of L∗

0 + ∂
∂t ; it is such that

Γ (x, t; ξ, r) = Γ ∗(ξ, r;x, t), t > r.

Proof . See, e.g., Friedman (2004, p. 143). �





D

Semigroups of Linear Operators

In this appendix we will report the main results concerning the structure
of contraction semigroups of linear operators on Banach spaces, as they are
closely related to evolution semigroups of Markov processes. For the present
treatment we refer to the now classic books by Lamperti (1977), Pazy (1983),
and Belleni-Morante and McBride (1998).

Throughout this appendix, E will denote a Banach space.

Definition D.1. A one-parameter family (Tt)t∈R+ of linear operators on E
is a strongly continuous semigroup of bounded linear operators or, simply, a
C0 semigroup if

(i) T0 = I (the identity operator)
(ii) Ts+t = TsTt, for all s, t ∈ R+

(iii) limt→0+ ‖ Ttx− x ‖= 0, for all x ∈ E

Theorem D.2. Let (Tt)t∈R+ be a C0 semigroup. There exist constants ω ≥ 0
and M ≥ 1 such that

‖ Tt ‖≤ Meωt, for t ∈ R+. (D.1)

Corollary D.3. If (Tt)t∈R+ is a C0 semigroup, then, for any x ∈ E, the map
t ∈ R+ 	→ Ttx ∈ E is a continuous function.

Definition D.4. Let (Tt)t∈R+ be a semigroup of bounded linear operators.
The linear operator A defined by

DA =

{
x ∈ E | lim

t→0+

Ttx− x

t
exists

}

Ax = lim
t→0+

Ttx− x

t
, for x ∈ DA,
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404 D Semigroups of Linear Operators

where the limit is taken in the topology of the norm of E.

Theorem D.5. Let (Tt)t∈R+ be a C0 semigroup, and let A be its infinitesimal
generator. Then

(a) For x ∈ E,

lim
h→0

1

h

∫ t+h

t

Tsx ds = Ttx.

(b) For x ∈ E,
∫ t

0
Tsxds ∈ DA, and

A(

∫ t

0

Tsx ds) = Ttx− x.

(c) For x ∈ DA, Ttx ∈ DA, and

d

dt
Ttx = ATtx = TtAx

(the derivative is taken in the topology of the norm of E).
(d) For x ∈ DA,

Ttx− Tsx =

∫ t

s

TτAx dτ =

∫ t

s

ATτx dτ.

Corollary D.6. If A is the infinitesimal generator of a C0 semigroup, then
its domain DA is dense in E.

Corollary D.7. Let (Tt)t∈R+ , (St)t∈R+ be C0 semigroups with infinitesimal
generators A, and B, respectively. If A = B, then Tt = St, for t ∈ R+.

Definition D.8. Let (Tt)t∈R+ be a C0 semigroup. If in (D.1) ω = 0, we say
that (Tt)t∈R+ is uniformly bounded; if, moreover, M = 1, we say that (Tt)t∈R+

is a C0 semigroup of contractions.

The resolvent set ρ(A) of a linear operator A on E (bounded or not) is
the set of all complex numbers λ for which the operator λI −A is invertible,
and its inverse is a bounded operator on E. The family

{
R(λ : A) = (λI −A)−1, λ ∈ ρ(A)

}
is called the resolvent of A.

Definition D.9. A linear operator A : DA ⊂ E → E is closed if and only if
for any sequence (xn)n∈N ⊂ DA such that un → u and Aun → v in E we have
that u ∈ DA and v = Au.

Theorem D.10. Let (Tt)t∈R+ be a C0 semigroup of contractions. A is its
infinitesimal generator if and only if
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(i) A is a closed linear operator, and DA = E.
(ii) The resolvent set ρ(A) of A contains R

∗
+, and for any λ > 0,

‖R(λ : A)‖ ≤ 1

λ
. (D.2)

Further, for any λ > 0 and any x ∈ E,

R(λ : A)x =

∫ +∞

0

e−λt Tt x dt.

For any λ > 0, and any x ∈ E, R(λ : A)x ∈ DA.

Proof . See, e.g., Pazy (1983, p. 8). �
Note that, since the map t → Tt x is continuous and uniformly bounded,

the integral exists as an improper Riemann integral and defines indeed a
bounded linear operator satisfying (D.2).

Theorem D.11. Let (Tt)t∈R+ be a C0 semigroup of contractions, and let A
be its infinitesimal generator. Then, for any t ∈ R+ and any x ∈ E,

Tt x = lim
n→∞

(
I − t

n
A
)−n

x = lim
n→∞

[n
t
R(

n

t
: A)

]n
x.

The foregoing theorem induces the notation Tt = etA.
Finally, based on all the foregoing treatment we may further notice that

if x ∈ DA, then we know that Tt x ∈ DA, for any t ∈ R+, and it is the unique
solution of the initial value problem

d

dt
u(t) = Au(t), t > 0,

subject to the initial condition

u(0) = x.





E

Stability of Ordinary Differential Equations

We consider the system of ordinary differential equations{
d
dtu(t) = f(t,u(t)), t > t0,
u(t0) = c

(E.1)

in R
d and we suppose that, for all c ∈ R

d, there exists a unique general
solution u(t, t0, c) in [t0,+∞[. We further suppose that f is continuous in
[t0,+∞[×R

d and that 0 is the equilibrium solution of f . Thus f(t,0) = 0 for
all t ≥ t0.

Definition E.1. The equilibrium solution 0 is stable if, for all ε > 0:

∃δ = δ(ε, t0) > 0 such that ∀c ∈ R
d, |c| < δ ⇒ sup

t0≤t≤+∞
|u(t, t0, c)| < ε.

(E.2)
If condition (E.2) is not verified, then the equilibrium solution is unstable. The
position of the equilibrium is said to be asymptotically stable if it is stable and
attractive, namely, if along with (E.2), it can also be verified that

lim
t→+∞u(t, t0, c) = 0 ∀c ∈ R

d, |c| < δ (chosen suitably).

Remark E.2. There may be attraction without stability.

Remark E.3. If x∗ ∈ R
d is the equilibrium solution of f , then the position

y(t) = u(t) − x∗ tends toward 0.

Definition E.4. We consider the ball Bh ≡ B̄h(0) =
{
x ∈ R

d||x| ≤ h
}
, h >

0, which contains the origin. The continuous function v : Bh → R+ is positive-
definite (in the Lyapunov sense) if{

v(0) = 0,
v(x) > 0 ∀x ∈ Bh \ {0} .
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408 E Stability of Ordinary Differential Equations

The continuous function v : [t0,+∞[×Bh → R+ is positive-definite if{
v(t,0) = 0 ∀t ∈ [t0,+∞[,
∃ω : Bh → R+ positive-definite such that v(t,x) ≥ ω(x) ∀t ∈ [t0,+∞[.

v is negative-definite if −v is positive-definite.

Now let v : [t0,+∞[×Bh → R+ be a positive-definite function endowed
with continuous first partial derivatives with respect to t and xi, i = 1, . . . , d.
We consider the function

V (t) = v(t,u(t, t0, c)) : [t0,+∞[→ R+,

where u(t, t0, c) is the solution of (E.1). V is differentiable with respect to t,
and we have

d

dt
V (t) =

∂v

∂t
+

d∑
i=1

∂v

∂xi

dui
dt

.

But dui

dt = fi(t,u(t, t0, c)), therefore

v̇ ≡ d

dt
V (t) =

∂v

∂t
+

d∑
i=1

∂v

∂xi
fi(t,u(t, t0, c)),

and this is the derivative of v with respect to time “along the trajectory” of
the system. If d

dtV (t) ≤ 0 for all t ∈ (t0,+∞[, then u(t, t0, c) does not increase
the value v, which measures by how much u moves away from 0. Through this
observation, the required stability of the Lyapunov criterion for the stability
of 0 has been formulated.

Definition E.5. Let v : [t0,+∞[×Bh → R+ be a positive-definite func-
tion. v is said to be a Lyapunov function for the system (E.1) relative to the
equilibrium position 0 if

1. v is endowed with first partial derivatives with respect to t and xi, i =
1, . . . , d.

2. For all t ∈]t0,+∞[: v̇(t) ≤ 0 for all c ∈ Bh.

Theorem E.6 (Lyapunov).

1. If there exists v(t,x) a Lyapunov function for system (E.1) relative to the
equilibrium position 0, then 0 is stable.

2. If, moreover, the Lyapunov function v(t,x) is such that, for all t ∈ [t0,+∞[:
v(t,x) ≤ ω(x) with u being a positive definite function and v̇ negative-
definite along the trajectory, then 0 is asymptotically stable.
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Example E.7. We consider the autonomous linear system{
d
dtu(t) = Au(t), t > t0,
u(t0) = c,

where A is a matrix that does not depend on time. A matrix P is said to be
positive definite if, for all x ∈ R

d,x �= 0 : x′Px > 0. Considering the function
v(x) = x′Px, we have

v̇ =
d

dt
v(u(t)) =

d∑
i=1

∂v

∂xi
(Au(t))i = u′(t)PAu(t) + u′(t)A′Pu(t).

Therefore, if P is such that PA +A′P = −Q, with Q being positive-definite,
then v̇ = −u′Qu < 0 and, by 2 of Lyapunov’s theorem, 0 is asymptotically
stable.





References

Aalen O., Nonparametric inference for a family of counting processes, Annals
of Statistics, 701–726, 6; 1978.

Aletti G. and Capasso V., Profitability in a multiple strategy market, Decis.
Econ. Finance, 145–152, 26; 2003.

Andersen P. K., Borgan Ø., Gill R.D., and Keiding N., Statistical Models
Based on Counting Processes, Springer, Heidelberg; 1993.

Anderson W. J., Continuous-Time Markov Chains: An Application-Oriented
Approach, Springer, New York; 1991.

Applebaum D., Levy Processes and Stochastic Calculus, Cambridge University
Press, Cambridge; 2004.

Arnold L., Stochastic Differential Equations: Theory and Applications, Wiley,
New York; 1974.

Ash R. B., Real Analysis and Probability, Academic, London; 1972.
Ash R. B. and Gardner M. F., Topics in Stochastic Processes, Academic,

London; 1975.
Aubin J.-P., Applied Abstract Analysis, Wiley, New York; 1977.
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Einstein A., Über die von der molekularkinetischen Theorie der Wärme
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Morale D., Capasso V. and Oelschläger K., An interacting particle system
modelling aggregation behaviour: From individuals to populations, J. Math.
Biol.; 2004.

Musiela M. and Rutkowski M., Martingale Methods in Financial Modelling,
Springer, Berlin; 1998.

Nagai T. and Mimura M., Some nonlinear degenerate diffusion equations
related to population dynamics, J. Math. Soc. Japan, 539–561, 35; 1983.

Neveu J., Mathematical Foundations of the Calculus of Probability, Holden-
Day, San Francisco; 1965.

Nowman K. B., Gaussian estimation of single-factor continuous time models
of the term structure of interest rate, J. Fin., 1695–1706, 52; 1997.
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Sato K. I., Lévy Processes and Infinitely Divisible Distributions, Cambridge
University Press, Cambridge, UK; 1999.

Schuss Z., Theory and Applications of Stochastic Differential Equations,
Wiley, New York; 1980.

Schuss Z., Theory and Applications of Stochastic Processes: An Analytical
Approach, Springer, New York; 2010.

Shiryaev A. N., Probability, Springer, New York; 1995.
Shiryaev A. N. and A. S. Cherny Vector stochastic integrals and the funda-
mental theorems of asset pricing, Tr. Mat. Inst., Steklova, 12–56, 237; 2002.

Skellam J. G., Random dispersal in theoretical populations, Biometrika,
196–218, 38; 1951.

Skorohod A. V., Studies in the Theory of Random Processes, Dover,
New York; 1982.

Skorohod A. V., Asymptotic Methods in the Theory of Stochastic Differential
Equations, AMS, Providence, RI; 1989.

Sobczyk K., Stochastic Differential Equations: With Applications to Physics
and Engineering, Kluwer, Dordrecht; 1991.

Stein R. B., A theoretical analysis of neuronal variability, Biophys. J., 173–194,
5; 1965.

Stein R. B., Some models of neuronal variability, Biophys. J., 37–68, 7; 1967.
Taira K., Diffusion Processes and Partial Differential Equations, Academic,

New York; 1988.
Tan W. Y., Stochastic Models with Applications to Genetics, Cancers, AIDS
and Other Biomedical Systems, World Scientific, Singapore; 2002.

Tucker H.G., A Graduate Course in Probability, Academic Press, New York;
1967.

Tuckwell H. C., On the first exit time problem for temporarily homogeneous
Markov process, J. Appl. Prob., 39–48, 13; 1976.



References 419

Tuckwell H. C., Stochastic Processes in the Neurosciences, SIAM, Philadel-
phia; 1989.

Vasicek O., An equilibrium characterisation of the term structure, J. Fin.
Econ., 177–188, 5; 1977.

Ventcel’ A. D., A Course in the Theory of Stochastic Processes, Nauka,
Moscow (in Russian); 1975. Second Edition 1996.

Veretennikov A. Y., On subexponential mixing rate for Markov processes,
Theory Prob. Appl., 110–122, 49; 2005.

Wang F. J. S., Gaussian approximation of some closed stochastic epidemic
models, J. Appl. Prob., 221–231, 14; 1977.

Warburton K. and Lazarus J., Tendency-distance models of social cohesion in
animal groups, J. Theor. Biol., 473–488, 150; 1991.

Wax N., Selected Papers on Noise and Stochastic Processes, Dover, New York;
1954.

Williams D., Probability with Martingales, Cambridge University Press,
Cambridge, UK; 1991.

Wilmott P., Dewynne J. N. and Howison S. D.,Option Pricing: Mathematical
Models and Computation, Oxford Financial Press, Oxford; 1993.

Wu F., Mao X. and Chen K., A highly sensitive mean-reverting process in
finance and the Euler–Maruyama approximations, J. Math. Anal. Appl.,
540–554, 348; 2008.

Yang G., Stochastic epidemics as point processes, in Mathematics in Biol-
ogy and Medicine (V. Capasso, E. Grosso, S. L. Paveri-Fontana, Eds.),
pp. 135–144, Lectures Notes in Biomathematics, Vol. 57, Springer, Heidel-
berg; 1985.





Nomenclature

Notation Description
(E,BE) Measurable space with E a set and BE a σ-algebra of

parts of E
(Ω,F , P ) Probability space with Ω a set, F a σ-algebra of parts

of Ω, and P a probability measure on F
:= Equal by definition
< M,N > Predictable covariation of martingales M and N
< M >, < M,M > Predictable variation of martingale M
< f, g > Scalar product of two elements f and g in a Hilbert

space
A′ Transpose of matrix A
A \B Set of elements of A that do not belong to B
B(x, r) or Br(x) Open ball centered at x and having radius r
C(A) Set of continuous functions from A to R

C(A,B) Set of continuous functions from A to B
Ck(A) Set of functions from A to R with continuous derivatives

up to order k
Ck+α(A) Set of functions from A to R whose kth derivatives are

Lipschitz continuous with exponent α
C0(A) Set of continuous functions on A with compact support
Cb(A) or BC(A) Set of bounded continuous functions on A
Cov[X,Y ] Covariance of two random variables X and Y
E[Y |F ] Conditional expectation of random variable Y with re-

spect to σ-algebra F
E[·] Expected value with respect to an underlying probabil-

ity law clearly identifiable from context
EP [·] Expected value with respect to probability law P
Ex[·] Expected value conditional upon a given initial state x

in a stochastic process
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422 Nomenclature

Notation Description
FX Cumulative distribution function of a random variable

X
H •X Stochastic Stieltjes integral of process H with respect

to stochastic process X
IA Indicator function associated with a set A, i.e., IA(x) =

1, if x ∈ A, otherwise IA(x) = 0
Lp(P ) Set of equivalence classes of a.e. equal integrable func-

tions with respect to measure P
N(μ, σ2) Normal (Gaussian) random variable with mean μ and

variance σ2

O(Δ) Of the same order as Δ
P -a.s. Almost surely with respect to measure P
P (A|B) Conditional probability of event A with respect to event

B
P ∗Q Convolution of measures P and Q
P % Q Measure P is absolutely continuous with respect to mea-

sure Q
P ∼ Q Measure P is equivalent to measure Q
PX Probability law of a random variable X
Px Probability law conditional upon a given initial state x

in a stochastic process
V ar[X ] Variance of a random variable X
Wt Standard Brownian motion, Wiener process
X ∼ P Random variable X has probability law P
[a, b[ Semiopen interval closed at extreme a and open at ex-

treme b
[a, b] Closed interval of extremes a and b
Δ Laplace operator
Ω Underlying sample space
Φ Cumulative distribution function of a standard normal

probability law
Ā Closure of a set A depending on context
C̄ Complement of set C depending on context
R̄ Extended set of real numbers, i.e., R ∪ {−∞,+∞}
δx Dirac delta function localized at x
δij Kronecker delta, i.e., = 1 for i = j, = 0 for i �= j
∅ Empty set
εx Dirac delta measure localized at x
≡ Coincide
exp {x} Exponential function ex∫ ∗

Integral of a nonnegative measurable function, finite or
not

lims↓t Limit for s decreasing while tending to t
lims↑t Limit for s increasing while tending to t



Nomenclature 423

Notation Description
C Complex plane
N Set of natural nonnegative integers
N

∗ Set of natural (strictly) positive integers
Q Set of rational numbers
R

n n-dimensional Euclidean space
R+ Set of positive (nonnegative) real numbers
R

∗
+ Set of (strictly) positive real numbers

Z Set of all integers
A Infinitesimal generator of a semigroup
BE σ-algebra of Borel sets generated by the topology of E
BRn σ-algebra of Borel sets on R

n

DA Domain of definition of an operator A
Ft or FX

t History of a process (Xt)t∈R+ up to time t, i.e., σ-algebra
generated by {Xs, s ≤ t}

FX σ-algebra generated by random variable X
Ft+

⋂
s>t Ft

Ft− σ-algebra generated by σ(Xs, s < t)
L(X) Probability law of X
Lp(P ) Set of integrable functions with respect to measure P
M(E) Set of all measures on E
M(F , R̄+) Set of all F -measurable functions with values in R̄+

P(Ω) Set of all parts of a set Ω
P−→
n

Convergence in probability

P−→
n

or P − lim Convergence in probability

W−→
n

Weak convergence
a.s.−→
n

Almost sure convergence

d−→
n

Convergence in distribution

∇ Gradient
ω Element of underlying sample space
⊗ Product of σ-algebras or product of measures
∂A Boundary of a set A
sgn {x} Sign function; 1 if x > 0, 0 if x = 0, −1 if x < 0
σ(R) σ-algebra generated by family of events R
� End of a proof
|A| or �(A) Cardinal number (number of elements) of a finite set A
||x|| Norm of a point x
|a| Absolute value of a number a; or modulus of a complex

number a
]a, b[ Open interval of extremes a and b
]a, b] Semiopen interval open at extreme a and closed at ex-

treme b



424 Nomenclature

Notation Description
a ∨ b Maximum of two numbers
a ∧ b Minimum of two numbers
f ∗ g Convolution of functions f and g
f ◦X or f(X) A function f composed with a function X
f |A Restriction of a function f to set A
f−, f+ Negative (positive) part of f , i.e., f− = max {−f, 0}

(f+ = max {f, 0})
f−1(B) Preimage of set B by function f
o(δ) Of higher order with respect to δ

a.e. Almost everywhere
a.s. Almost surely



Index

A

absolutely continuous, 363, 371

absorbing state, 123

adapted, 91, 141

affine

rate model, 310

algebra, 359

σ-, 359

Borel, 15, 360

generated, 9, 360

product, 15, 77, 360

semi, 359, 360

smallest, 78, 360, 362

tail, 48

annuity, 310

arithmetic Brownian motion, 270

asset

riskless, 278

risky, 278

attainable, 280

attractive, 407

autonomous, 234

B

Bachelier model, 296

ball, 377

closed, 377

open, 377

barrier, 397

basis, 379

bicontinuous, 378

bijection, 378

binomial
distribution, 14
variable, 22, 29

Black–Scholes
equation, 285
formula, 287
model, 283

Borel
σ-algebra, 360
–Cantelli lemma, 48
algebra, 15
measurable, 360, 361, 367

boundary, 378
boundary point

accessible, 264
regular, 264

bounded, 378
bounded Lipschitz norm, 385
Brownian bridge, 88, 269
Brownian motion, 125

absorbed , 138
arithmetic, 224, 270
first passage time, 168
fractional, 188
geometric, 224, 270
Hölder continuity, 136
Lévy characterization, 130
recurrence , 168
reflected, 138

C
càdlàg, 81
Cantor function, 11
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© Birkhäuser Boston 2012



426 Index

Cauchy
–Schwarz inequality, 50
distribution, 13
problem, 247, 398
sequence, 380
variable, 23, 71

cemetery, 306
Chapman–Kolmogorov, 103
Characteristic functions

vectors, 27
Chernoff, 75
class, 7, 17, 37

D, 98
DL, 98
equivalence, 34

closed
ball, 377
set, 378

closure, 378
point, 378

compact, 381
locally, 382
relatively, 381, 387
set, 381

compacts, 196
compatible system, 79, 88
compensator, 99, 144
complement, 378
complete, 380

market, 280
composite

projection, 78
condition

Feller, 55
conditional

density, 44
distribution, 41
expectation, 33
expectation, on σ-algebra, 36
probability, 4
probability, regular version, 35, 41, 43

conservative, 122
contingent claim, 280

linear, 286
continuous

absolutely, 363, 371
function, 361, 378
Hölder, 247
in probability, 81

left-, 81
random variable, 11
right-, 10, 81, 83, 369
uniformly, 379

convergence
almost sure, 49
dominated, 366
in distribution, 51
in mean, 49
in probability, 49
monotone, 366
pointwise, 52
uniform, 52
weak, 51, 383

convex, 38
convolution, 20, 90, 339, 369

semigroup, 90
corollary

Lévy’s continuity, 52
correlation, 24
countable, 81

additive, 364
base, 360
basis, 379
family, 13
partition, 8
set, 33

covariance, 23, 25
covariation, 100
covering, 379
cylinder, 15, 77

D
decomposable, 98
decomposition

Doob, 69
Doob–Meyer, 97
Lévy-Itô, 158

definite
negative, 408

deflator, 279, 282
delta, 308

Dirac, 259
Kronecker, 191

dense, 81, 379
everywhere, 379

density, 80, 370
conditional, 44
Gaussian, 12
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lognormal, 12
normal, 12
probability, 11
risk-neutral transition, 297
transition, 248
uniform, 12, 22

depolarization, 349
derivative, 280
diameter, 378
diffusion

coefficient, 118, 235
matrix, 212
operator, 249
process, 118, 235

Dirac
delta, 259
measure, 146

Dirichlet problem, 398
distance, 377

equivalent, 378
distribution

binomial, 14
Cauchy, 13
conditional, 41
cumulative, 10
discrete, 13
empirical, 327
exponential, 12
finite-dimensional, 388
function, 80, 369
Gamma, 13
Gaussian, 87
initial, 104
joint, 19, 41
marginal, 15, 19, 33
Poisson, 14
uniform, 13

divisible
infinitely, 57

Doléans exponential, 199
Doob

–Meyer decomposition, 97
decomposition, 69
inequality, 94

drift, 118, 235, 283
change of, 237
vector, 212

dynamic system, 233
Dynkin’s formula, 114, 253

E
elementary

event, 3
function, 35, 361, 365
random variable, 35

elliptic, 253
equation, 397
operator, 254

entropy, 71
equation

Black–Scholes, 285
Chapman–Kolmogorov, 103, 250
elliptic, 397
evolution, 327
Fokker–Planck, 250
Kolmogorov, 211
Kolmogorov backward, 122
Kolmogorov forward, 250, 298
parabolic, 397

equiprobable, 3
equivalent, 239, 371

distance, 378
process, 80

essential
infimum, 48
supremum, 48

event, 3, 148
T -preceding, 85
complementary, 7
elementary, 3
independent, 6
mutually exclusive, 6
tail, 48

excited, 349
expectation, 20

conditional, 33
conditional on σ-algebra, 36

expected value, 20

F
Feynman–Kac formula, 246
filtration, 83, 91

generated, 83
natural, 83
right-continuous, 107

finite, 3
σ-, 363
additive, 364
base, 78
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finite (cont.)
dimensional distribution, 388
horizon, 279
measure, 363, 367
product, 79
space, 3

stopping time, 85
uniformly, 367

Fokker–Planck, 250
formula

Black–Scholes, 287

Dynkin, 114, 253
Feynman–Kac, 246
Itô, 197
Kolmogorov, 253

forward, 285
measure, 295

function
Cantor, 11
characteristic, 52, 142
characteristic of a random vector, 27
continuous, 361, 378

convex, 38
cumulative distribution, 10
distribution, 80, 369
elementary, 35, 361, 365
equivalence class of, 34
Gamma, 13

indicator, 361
Lyapunov, 255, 408
Markov transition, 103
matrix transition, 122
measurable, 361
moment generating, 75

partition, 10, 51
piecewise, 175
random, 78
space, 78
test, 353

fundamental solution, 398

G
gamma, 308
Gaussian

bivariate, 45
density, 12

distribution, 87
process, 87

variable, 22, 30, 58
vectors, 30

generating triplet, 72
geometric Brownian motion, 270
Girsanov, 239
Glivenko-Cantelli theorem, 54
gradient

generalized, 338
Greeks, 308

H
Hausdorff topological space, 378
heat operator, 249
Heston

model, 300
Hille-Yosida theorem, 404
history, 150
Hölder

continuous, 247
inequality, 50

holding, 278
homeomorphic, 378
homeomorphism, 378
horizon

finite, 279
infinite, 279

I
independent

class, 7
classes, 17
event, 6
increments, 88
marking, 302
mutually, 7
variable, 25, 42

index
indistinguishable, 80
modifications, 80

indicator, 34
function, 361

indistinguishable, 80
induced

measure, 367
probability, 87, 367

inequality
Cauchy–Schwarz, 50
Chebyshev, 22
Doob, 94
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Hölder, 50
Jensen, 38, 92
Markov, 22
Minkowski, 50

infinitely
divisible, 57

infinitesimal generator, 107
extended, 116

inhibited, 349
initial reserve, 301
instantaneous state, 123
integrable

P -, 20
P(X,Y )-, 47
μ-, 365
square-, 21, 372
uniformly, 40, 97

integral
Itô, 173, 181
Lebesgue, 184, 365
Lebesgue–Stieltjes, 173
Riemann–Stieltjes, 174
stochastic Stieltjes, 374
Stratonovich, 185
upper, 365

intensity, 142
cumulative stochastic, 151
matrix, 122
multiplicative, 313
stochastic, 148

interior, 377
Itô

formula, 197
integral, 173, 181
isometry, 178, 226
Itô-Lévy integral, 204
representation theorem, 199

J
jumps

bounded, 155
fixed, 141

K
killing, 246
Kolmogorov

–Chapman equation, 103, 250
backward equation, 122, 245
continuity theorem, 128

equation, 211, 241
formula, 253
forward equation, 250, 298
theorem, 60
zero-one law, 48

L
Lagrangian, 326
Laplacian, 249
large deviations, 75
law

of iterated logarithms, 75, 137
of large numbers, 136
tower, 37

law of large numbers
strong, 54
weak , 53

Lebesgue
–Stieltjes integral, 173
–Stieltjes measure, 11, 369
dominated convergence theorem, 366
integral, 184, 365
integration, 364
measure, 11, 370
Nikodym theorem, 371

lemma
Borel–Cantelli, 48
Fatou, 222, 364, 366
Gronwall, 214

Lévy
–Khintchine decomposition, 72
–Khintchine formula, 159
characterization of Brownian motion,

130
continuity theorem, 52
measure, 156
process, 154

Lévy-Itô
decomposition, 158

limit, 380
McKean–Vlasov, 341
moderate, 341
projective, 79, 87

Lindeberg
theorem, 56

Lindeberg condition, 55, 64
Lipschitz, 75, 247
local

volatility, 297
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locally compact, 382

Lyapunov

criterion, 408

function, 255, 408

theorem, 408

M

mark, 149

market, 278

complete, 280

discount-bond, 290

Markov

chain, 166

inequality, 22

process, 101

Feller process, 113

Feller property, 106

property, 231, 267

property, strong, 108, 237

sequence, 102

stopping time, 85

transition function, 103

Markov process

holding time, 117

martingale, 68, 91, 185

central limit theorem, 70

convergence theorem, 70

innovation, 147

local, 99

orthogonal, 100

problem, 116

purely discontinuous, 100

representation theorem, 198, 199

reversed, 305

semi-, 170

sub-, 69, 91

super-, 91

mean reverting process, 270

measurable, 35, 83

(F − BT )-, 77

F-, 360, 365

Ft-, 91

Borel-, 360, 361, 367

function, 361

jointly, 83

mapping, 361

progressively, 83, 84

projection, 362

rectangle, 368

set, 360

space, 360, 361

measure, 362

characterization of, 363

compatible system of, 79

Dirac, 146

empirical, 327

equivalent, 239, 371

finite, 363, 367

forward, 295

generalization of, 364

induced, 367

jump, 212

Lebesgue, 11, 370

Lebesgue–Stieltjes, 11, 369

Lévy, 156

physical, 291

probability, 3, 34, 362

product, 367–369

Radon, 373

random, 145

regular, 373

space, 363

metric, 377

Ky Fan, 383

notion, 379

space, 377

modifications

progressively measurable, 83

separable, 82, 83

moment

centered, 21

generating function, 75

N

nonexplosive, 141

norm, 105

Euclidean, 257

semi-, 50

sup, 113

normal

bivariate, 45

density, 12

Novikov condition, 239

numeraire, 279, 282



Index 431

O
open

ball, 377
set, 377

operator
closed, 404
diffusion, 249
elliptic, 254
expectation, 23
heat, 249
parabolic, 399

option, 285
American, 289
barrier, 288
binary, 287
Call, 285
digital, 287
European, 289
Put, 285
vanilla, 285

Ornstein–Uhlenbeck process, 270
orthogonal, 100

P
parabolic

differential equation, 246
operator, 399

partition, 8, 174
function, 10

path, 77, 82
space, 345

payoff, 285
point, 377

cluster, 380
of closure, 378

Poisson
compound process, 165, 303
compound variable, 59
distribution, 14
generalized process, 166
intensity, 14
marked process, 152, 302
process, 142
variable, 22, 29, 58

polynomial, 196
portfolio, 278
positive

definite, 408
precede, 85

precompact, 381
predictable, 83

covariation, 100
premia, 301
probability, 3, 362

axioms, 4
conditional, 4
conditional probability measure, 5
conditional, regular version, 35, 41, 43
density, 11
generating function, 142
induced, 87
joint, 15, 46, 87
law, 9, 87, 88
law of a process, 79
measure, 3, 34, 362
one-point transition, 121
product, 79
ruin, 302
space, 3, 77, 363
survival, 302
total law of, 8
transition, 103, 234

process
adapted, 91
affine, 171
canonical form, 87
claims surplus, 302
compound Poisson, 165, 303
counting, 141
Cox, 145
cumulative claims, 302
diffusion, 118, 235
equivalent, 80
Feller, 107
Gaussian, 87
generalized Poisson, 166
holding, 278
homogeneous, 112, 234
Itô–Lévy, 207
Lévy
stable, 163

Lévy, 154
marked point, 149, 302
marked Poisson, 152, 302
Markov, 101
mean reverting, 270
orderly, 145
Ornstein–Uhlenbeck, 224, 270
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process (cont.)
piecewise deterministic, 306
point, 145
Poisson, 142
portfolio, 278
self-similar, 189
separable, 81
simple, 145
stochastic, 77
time-homogeneous, 90
Wiener, 125
Gaussian, 126

with independent increments, 88
product

convolution, 369
measure, 367–369
scalar, 178, 203

projection, 15, 33, 362
canonical, 77
composite, 78
orthogonal, 39

projective system, 79
property

Beppo–Levi, 35, 364
Feller, 106, 237
scaling, 163

R
Radon measures, 373
Radon–Nikodym derivative, 239
random

function, 78
variable, 9
variables, family of, 77
variables, family of,
reproducible, 30

vector, 14, 44, 87
rate

forward, 293
interest, 290
riskless, 283
short, 291
swap, 310
zero, 290

RCLL, 81
rectangle, 19, 80, 360

measurable, 368
reflection principle, 132, 395
regression, 46

ring, 78, 359
σ-, 359
semi-, 359

risk
insurance, 301
reserve, 302

riskless
account, 283
asset, 278
rate, 283

risky
asset, 278

ruin
probability, 302
time of, 302

S
SABR model, 300
sample, 170
scaling property, 136, 163
self-similar, 170
semicircle, 19
semigroup, 105

contraction, 116, 404
convolution, 90
infinitesimal generator, 403
property, 233
transition, 113

semigroup of linear operators, 403
separable, 379
sequence, 35

Cauchy, 180, 380
Markovian, 102

set
closed, 378
compact, 381
countable, 33
empty, 3
negligeable, 82
open, 377
separating, 82, 129

singular, 370
space

complete, 44
function, 78
Hilbert, 39, 178
mark, 149
measurable, 360, 361
measure, 363
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metric, 44, 377
normed, 14
on which a probability measure can

be built, 360

path, 345
phase, 77
Polish, 79
probability, 3, 77, 363
product, 78

separable, 44
state, 77
topological, 360, 377
uniform, 3

spaces

Borel, 43
isomorphic, 43

stable, 407
asymptotically, 407
Lévy process, 163

law
absolute continuity, 68
domain of attraction, 66
stability index, 66

state, 123
un-, 407

standard deviation, 21
stationary

strictly, 163

weakly, 164
stochastic

differential, 193, 201
differential equation, 213
autonomous, 223

existence and uniqueness, 214
global existence, 223
Itô-Lévy , 265

process, 77
stability, 257

stopping time, 70, 85, 289
subordinator, 169
support, 13, 399
swap rate, 310

T
Taylor’s formula, 119
term structure, 290

test
function, 353

theorem approximation of measurable
functions through elementary
functions, 361

Bayes, 8
central limit, 54
Cramér-Wold, 30
dominated convergence, 366
Donsker, 391
Doob–Meyer, 98
Fatou–Lebesgue, 366
first fundamental of asset pricing, 280
Fubini, 46, 83, 90, 368
fundmental theorem of calculus, 372
Girsanov, 239
inversion, 26
Itô representation theorem, 199
Jirina, 44
Kolmogorov zero-one law, 48
Kolmogorov’s continuity, 128
Kolmogorov–Bochner, 79
Lagrange, 245
law of iterated logarithms, 75, 137
Lebesgue–Nikodym, 371
Lévy’s continuity, 52
Lyapunov, 408
martingale representation, 152, 198,

199
mean value, 237
measure extension, 102
monotone convergence, 366
numeraire invariance, 282
Polya, 52
portmanteau, 385
product measure, 367
Prohorov, 388
Radon–Nikodym, 36, 371
second fundamental of asset pricing,

281
Skorohod representation, 53, 384
strong law of large numbers, 136
total law of probability, 8
Weierstrass, 196

theta, 308
threshold, 350
tight, 387
time

exit, 108, 252, 288
explosion, 141
hitting, 108, 252
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time (cont.)
homogeneous, 90, 156
of ruin, 302
stopping, 85, 107, 189, 289
value of money, 290

topological
notions, 378

topological space, 377
topology, 377
tower law, 37
trajectory, 77, 82
translation invariance, 161

U
uniformly

continuous, 379
integrable, 97

usual hypotheses, 83

V
variable

binomial, 22, 29
Cauchy, 23, 71
centered, 21

compound Poisson, 59

elementary, 35

extensive, 9
Gaussian, 22, 30, 58

independent, 25, 42

Poisson, 22, 29, 58

random, 9

sums of, 19

variance, 21, 25

constant elasticity of, 310

variation

bounded, 174

predictable, 100

quadratic, 100

Wiener, 184

total, 174

vega, 308

volatility, 283

implied, 296

local, 297

skew, 297, 300

smile, 300

stochastic, 300
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