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Introduction

One of the very important parts of any digital system is the control unit, coordinat-
ing interplay of other system blocks. As a rule, control units have irregular struc-
ture, which makes process of their logic circuits design very sophisticated. In case
of complex logic controllers, the problem of system design is reduced practically to
the design of control units. Actually, we observe a real technical boom connected
with achievements in semiconductor technology. One of these is the development of
integrated circuit known as the "systems-on-a-programmable- chip" (SoPC), where
the number of elements approaches one billion. Because of the extreme complexity
of microchips, it is very important to develop effective design methods oriented on
particular properties of logical elements. Solution of this problem permits improv-
ing functional capabilities of the target digital system inside single SoPC chip. As
majority of researches point out, design methods used in case of industrial packages
are, in case of complex digital system design, far from optimal. Similar problems
concern the design of control units with standard field-programmable logic devices
(FPLD), such as PLA, PAL, GAL, CPLD, and FPGA. Let us point out that modern
SoPC are based on CPLD or FPGA technology. Thus, the development of effec-
tive design methods oriented on FPLD implementation of logic circuits used in the
control units still remains the problem of great importance.

One possible way to optimise the control units (such characteristics as the size
or performance of its logic circuit) is the adaptation of its structure to the particular
properties of interpreted control algorithms. In our book, control algorithms are rep-
resented by the graph-schemes of algorithms (GSA). This choice is based on obvi-
ous fact that such specification provides simple explanation of methods proposed by
the authors. We restrict ourselves to the case of the so called linear GSA, where the
number of operator vertices is not less than 75% of the total number of all algorithm
vertices. The compositional microprogram control units (CMCU) are proposed for
interpretation of linear control algorithms. The compositional microprogram con-
trol unit has two blocks: the finite state machine, which addresses microprogram
microinstructions, and the microprogram control unit including control memory,
which keeps the microprogram corresponding to the initial GSA. The mode of nat-
ural addressing of microinstructions is used in the CMCU, where multidirectional
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vi Introduction

microprogram transitions depending on the arbitrary number of logical conditions
are executed during one cycle of CMCU operation. This organisation permits to get
a control unit with the following positive features:

1. The finite state machine of CMCU generates transitions addresses only if natural
order of microinstructions’ execution is violated. It permits to reduce the hard-
ware amount, in comparison with other control units designed without assuming
linearity of the initial GSA. This idea has been checked many times in case of
control unit design with counters or shift registers used to keep the codes of FSM
states.

2. The format of microinstructions in case of CMCU includes only the operational
part and number of microinstructions kept in its control memory, which does not
exceed the total number of operator vertices in the initial GSA. It permits to reach
the minimum possible size of control memory, in comparison with other known
models of microprogram control units.

3. Microprogram transitions are always executed during one cycle of CMCU oper-
ation. This time does not depend on the number of logical conditions determin-
ing a particular transition. It permits to minimize the average number of cycles
needed for algorithm execution, in comparison with other models of micropro-
gram control units.

Organization of the control unit proposed in the book increases regularity of
the circuit, because the system of microoperations is implemented using standard
blocks, such as PROM or RAM. At the same time, irregular part of the system de-
scribed by means of Boolean functions is reduced. It permits to decrease the total
number of logical elements (PAL, GAL, PLA, FPGA) in comparison with other
models of finite state machines. Let us point out that the CMCU can be viewed as
Moore FSM, in which codes of states are concatenations of information about the
OLC code and address of microinstruction. These devices can be used to organize
control processes not only in computers, but also in other digital systems, including
complex controllers. The methods of synthesis and design presented in the book are
not oriented to any particular set of logical elements, but to construction of tables
describing the behaviour of CMCU blocks. These tables are used to find the systems
of Boolean functions, which can be used to implement logic circuits of particular
blocks. In order to implement corresponding circuits, this information should be
transformed using data formats of particular industrial CAD systems. This step is
beyond the scope of this book, in which the following information is presented:

Chapter 1 introduces such basic topics, as principles of microprogram control
and specification of the control unit behaviour using the graph-scheme of algo-
rithm. Next, some methods of control algorithm interpretation, such as finite-state
machines (FSM) and microprogram control units (MCU), are discussed. Last part of
the chapter is devoted to the organization principles of compositional microprogram
control units, which can be viewed as compositions of finite-state machine and mi-
croprogram control unit. These control units provide efficient interpretation of the
so-called linear GSA, in which long sequences of operator vertices can be found.
These sequences are called operational linear chains (OLC). Microinstructions
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corresponding to the components of OLC are addressed using the principle of natu-
ral microinstruction addressing. It permits to use the counter to keep microinstruc-
tion addresses and to simplify the combinational part of control unit, as compared
with the classical Moore FSM. The Mealy FSM is used in CMCU to address mi-
croinstructions. It permits to calculate the transition address during one cycle of
control unit’s operation. Due to this feature, performance of the CMCU (propor-
tional to the number of cycles needed to execute the control algorithm) is better
than performance of the equivalent MCU with natural microinstruction addressing.

Chapter 2 discusses contemporary field-programmable logic devices and their
evolution, starting from the simplest programmable logic devices, such as PLA,
PAL, GAL and PROM, and finishing with very sophisticated chips such as CPLD
and FPGA. This analysis shows particular features of different elements and permits
to optimize the control unit logic circuits, in which some particular elements are
used. The CMCU has some features of both FSM and MCU. Therefore main design
and optimisation methods applied in case of these two types of control units are
presented in the main part of the chapter.

Chapter 3 is devoted to the design and optimisation of some basic CMCU struc-
tures. Corresponding methods are discussed for the CMCU basic structure as well
as for the CMCU with common memory. The problem of the set of operator ver-
tices of the initial GSA is solved first. The resulted partition includes minimum
possible number of OLCs. Next, the method of natural microinstruction addressing
is discussed and its solution in case of CMCU given. It is shown that optimization
methods used in the case of Moore FSM can be used to optimize the CMCU hard-
ware amount. All methods presented in this book are oriented towards decreasing
of hardware amount in the CMCU logic circuits.

Chapter 4 is devoted to the design methods based on the so-called code sharing,
in which the microinstruction address is represented by concatenation of the OLC
code and the code of its component. This representation makes possible using spe-
cial methods of Moore FSM optimization adapted to the peculiarities of CMCU. In
this case, the OLC codes are viewed as analogs of the states codes of Moore FSM.
This approach permits to reduce the number of inputs and outputs of the combina-
tional part of CMCU. Additional decrease can be achieved due to the application
of elementary OLCs having only one input. In this case, the address of first compo-
nent of each OLC is represented by all zeros and permits to diminish the number of
functions generated by FSM.

Chapter 5 is devoted to optimization methods based on the transformation of
codes. This method can be applied, when the FSM performing microinstruction
addressing generates functions, which are subsequently loaded into two different
memory blocks (the register and the counter). Some of these functions are treated
as primary objects and the others as secondary objects. The FSM combinational
part generates codes of primary objects and some additional variables only. This
information is used to generate codes of secondary objects and permits to reduce the
number of inputs in the block generating codes of secondary objects, in comparison
with the initial combinational part of FSM and to reduce the hardware amount of
resulting CMCU logic circuit.
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Chapter 6 considers some optimisation methods used to reduce the size of
CMCU control memory keeping the microprogram. These methods are based on
the use of special address transformer permitting to keep the control memory size,
which is the same as in case of the CMCU basic structure. One of the methods is
oriented towards keeping only the original sets of microoperations and some addi-
tional variables in the control memory, in order to provide natural addressing and
operation termination operating modes. The second approach assumes that a spe-
cial CMCU block, which is not the part of its control memory, generates additional
variables mentioned above. The methods proposed here permit to reduce control
memory volume in comparison with the CMCU basic structure. Negative feature of
this approach is decreasing of the CMCU performance because duration of the cycle
becomes greater than in case of the CMCU basic structure.

Chapter 7 deals with multilevel implementation of CMCU logic circuits. These
methods are based on some well-known ideas taken from the literature devoted to
optimization of FSM and MCU. They are of course adapted to the particular condi-
tions of the CMCU operation. All these methods lead to the increase of cycle time,
in comparison with the CMCU basic structure. They can be applied, when minimum
hardware amount is the main goal of a particular design.

Chapter 8 is devoted to CMCU optimization, based on modification of the mi-
croinstruction format. Proposed modifications permit to eliminate code transform-
ers from the CMCU and provide reduction of hardware amount of circuits used in
the FSM used for microinstruction addressing, as compared with the CMCU ba-
sic structure. This kind of optimisation is leads to the increasing of the number of
cycles, needed for execution of the control algorithms. This transformation causes
sometimes the increase of control memory size. Next, the possibility of multilevel
CMCU implementation is discussed and the method of optimal structure choice
proposed. A particular CMCU structure is considered as optimal, if it guarantees
minimum hardware amount and sufficient performance. This chapter is based on
the results of common research performed with J. Bieganowski (Poland).

We hope that our book will be interesting and useful for students and postgrad-
uates in the area of Computer Science and for designers of modern digital devices.
We think that compositional microprogram control units enlarge the class of models
applied for implementation of control units with modern field-programmable logic
devices.



Acknowledgements

Several people helped us with preparation of this manuscript. Our PhD students
Mr Jacek Bieganowski and Mr. Sławomir Chmielewski worked with us on initial
planning of this work, distribution of tasks during the project, and final assembly of
this book.

We also thank Professor Marian Adamski for his support and special attention to
this work. His guidelines in making this book useful for students and practitioners
were very helpful in the organization of this book.

ix



Contents

1 Methods of interpretation of control algorithms . . . . . . . . . . . . . . . . . . . 1
1.1 Principle of microprogram control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Control algorithm interpretation with finite state machines . . . . . . . . 4
1.3 Control algorithm interpretation with microprogram control units . . 11
1.4 Organization of compositional microprogram control units . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Synthesis of control units with field-programmable logic devices . . . . . 27
2.1 Evolution of field-programmable logic devices . . . . . . . . . . . . . . . . . . 27
2.2 Optimization of microprogram control units . . . . . . . . . . . . . . . . . . . . 34
2.3 Optimization of Mealy finite state machines . . . . . . . . . . . . . . . . . . . . 42
2.4 Optimization of Moore finite state machines . . . . . . . . . . . . . . . . . . . . 50
2.5 Control unit design with FPLDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Synthesis of basic circuits of compositional microprogram control
units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1 Synthesis of compositional microprogram control unit with basic

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Synthesis of CMCU with common memory . . . . . . . . . . . . . . . . . . . . 72
3.3 Optimization of CMCU with common memory logic circuit . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Synthesis of compositional microprogram control units with code
sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1 Synthesis of CMCU basic model with code sharing . . . . . . . . . . . . . . 99
4.2 Optimization of logic circuit of CMCU with code sharing . . . . . . . . . 107
4.3 Synthesis of CMCU with elementary operational linear chains . . . . . 120
4.4 Logic circuit optimization for CMCU with elementary OLC . . . . . . . 125
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xi



xii Contents

5 Synthesis of compositional microprogram control units with object
transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.1 Optimization principles for CMCU with object transformation . . . . . 137
5.2 Objects transformation for CMCU with basic structure . . . . . . . . . . . 140
5.3 Object transformation in CMCU with codes sharing . . . . . . . . . . . . . . 149
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Control memory optimization for CMCU with code sharing . . . . . . . . 159
6.1 Principles of control memory optimization . . . . . . . . . . . . . . . . . . . . . 159
6.2 Synthesis of CMCU with generation of microinstruction addresses . 164
6.3 Synthesis of CMCU with addressing of expanded microinstructions 171
6.4 Synthesis of CMCU with generation of addresses of collections of

microoperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.5 Combined application of different object transformation methods

for CMCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7 Synthesis of CMCU with coding of logical conditions and collections
of microoperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.1 Coding of logical conditions for CMCU with basic structure . . . . . . 197
7.2 Encoding of logical conditions for basic models of CMCU . . . . . . . . 205
7.3 Encoding collections of microoperations in CMCU . . . . . . . . . . . . . . 215
7.4 Synthesis of multilevel circuits of CMCU . . . . . . . . . . . . . . . . . . . . . . 225
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8 Synthesis of CMCU with modified system of microinstructions . . . . . . 235
8.1 Synthesis of CMCU with dedicated area of inputs . . . . . . . . . . . . . . . 235
8.2 Optimization of compositional microprogram control unit with

the dedicated input area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.3 Minimization of the number of feedback signals in CMCU . . . . . . . . 255
8.4 Synthesis of multilevel circuits for CMCU with modified system

of microinstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271



Symbols

Γ graph–scheme of algorithm
b0 start vertex of GSA
bE end vertex of GSA
B1 set of GSA operator vertices
B2 set of GSA conditional vertices
E = {〈bt ,bq〉} set of GSA arcs
X = {x1, . . . ,xL} set of logical conditions
Y = {y1, . . .yN} set of microoperations
Yq ⊆ Y collection of microoperations
am ∈ A internal state of FSM
K(am) code of internal state am ∈ A
Φ = {ϕ1, . . . ,ϕR} set of input memory functions
Am conjunction of state variables Tr ∈ T corresponding to the

code of state am ∈ A
ΠA = {B1, . . . ,BI} partition of set A into the classes of pseudoequivalent states
FY operational part of the microinstruction, which contains in-

formation about microoperations to be executed
FX field of logical conditions with information about logical

condition xt
l ∈ X , which is checked at time t

yE special signal used to terminate a control unit operation
αg = 〈bg1 , . . . ,bgFg

〉 operational linear chain of GSA Γ
Dg set of operator vertices, which are components of OLC αg

I j
g input j of OLC αg

Og output of OLC αg

C = {α1, . . . ,αG} set of operational linear chains of GSA Γ
I(Γ ) set of inputs of operational linear chains of GSA Γ
O(Γ ) set of outputs of operational linear chains of GSA Γ
A(I j

g) address of the input j of OLC αg ∈C
τ = {τ1, . . . ,τR1} set of state variables encoding states of CMCU addressing

FSM

xiii



xiv Symbols

T = {T1, . . . ,TR2} outputs of the counter CT, witch determine next microin-
struction address for CMCU

M(Γ ) set of main inputs of GSA Γ
Ui(Γj) compositional microprogram control unit Ui which interprets

GSA
Ri

FB the number of feedback inputs of the combinational circuit
of CMCU Ui

Ri
FB(Γj) the corresponding symbol for Ri

FB in case of CMCU Ui(Γj)
Hi(Γj) the total number of terms in systems of Boolean functions

implemented by combinational circuit CC of CMCU Ui(Γj)
Si(Γj) the number of input variables of combinational circuit CC of

CMCU Ui(Γj)
ti(Γj) the number of output variables of combinational circuit CC

of CMCU Ui(Γj)
Πc = {Bi, . . . ,BI} partition of the set C′ ⊂ C by classes of pseudoequivalent

operational linear chains of GSA Γ
C1 ⊆C set of OLC, such that their outputs have no direct connections

with the final vertex of transformed GSA
Γj(Ui) graph-scheme of algorithm transformed for interpretation by

CMCU Ui

K(αg) code of operational linear chain αg ∈C
CE set of elementary operational linear chains of GSA Γ
IME(Γ ) set of main inputs of elementary operational linear chains



Abbreviations

AMP area of microprogram
AT address transformer
CAMI counter of microinstruction address
CC combinational circuit
CCS special combinational circuit which generates variables y0 and yE

CFA sequencer calculating transition address (address of the next microinstruc-
tion to be executed)

CM control memory of control unit
CMCU compositional microprogram control unit
CMO block for generation of microoperations
CPLD Complex Programmable Logic Devices
CT counter
DC decoder
DAI dedicated input area
EOLC elementary operational linear chain
FSM finite state machine
FPGA field-programmable gate arrays
FPLD field-programmable logic devices
GAL generic array logic
GSA graph-scheme of algorithm
LGSA linear graph-scheme of algorithm
LUT look-up table
MCU microprogram control unit
MX multiplexer
OLC operational linear chain
PAL programmable array logic
PLA programmable logic array
PLD programmable logic device
PLS programmable logic sequencers
ROM programmable read-only memory
RG register

xv



xvi Abbreviations

RAM random-access memory
RAMI register of microinstruction address
ROM read-only memory
SBF system of Boolean functions
SOP sum of products (disjunctive normal form)
SoPC system-on-a-programmable chip
ST FSM structure table
STF system of transition formulae
TAS address transformer of microinstruction address to state code
TC transformer of code
TF fetch flip-flop used to organize the stop mode of a control unit
TOK transformer of OLC code in the OLC component code
TSA code transformer from state code to microinstruction address
VGSA vertical graph-scheme of algorithm



Chapter 1
Methods of interpretation of control algorithms

Abstract The chapter introduces such basic topics, as principles of microprogram
control and specification of the control unit behavior using the graph-scheme of al-
gorithm. Next, some methods of control algorithm interpretation, such as finite-state
machines (FSM) and microprogram control units (MCU), are discussed. Last part of
the chapter is devoted to the organization principles of compositional microprogram
control units, which can be viewed as compositions of finite-state machine and mi-
croprogram control unit. These control units provide efficient interpretation of the
so-called linear GSA , in which long sequences of operator vertices can be found.
These sequences are called operational linear chains (OLC). Microinstructions cor-
responding to the components of OLC are addressed using the principle of natural
microinstruction addressing. It permits to use the counter to keep microinstruction
addresses and to simplify the combinational part of control unit, as compared with
the classical Moore FSM. The Mealy FSM is used in CMCU to address microin-
structions. It permits to calculate the transition address during one cycle of control
unit’s operation. Due to this feature, performance of the CMCU (proportional to
the number of cycles needed to execute the control algorithm) is better than perfor-
mance of the equivalent MCU with natural microinstruction addressing.

1.1 Principle of microprogram control

The overwhelming majority of digital systems are organized using the principle of
microprogram control [12]. This principle was proposed by M.Wilkes in 1951 and
could be explained as follows [1]:

1. Any operation, executed by a digital device, is considered as a complex action,
which is represented as the sequence of elementary operations (microoperations)
on the words of information (operands).

2. The logical conditions (status signals) are used to control the order of microoper-
ation executions. The values of logical conditions are calculated as some Boolean
functions depending on the values of operands.

1



2 1 Methods of interpretation of control algorithms

3. Execution of operations in a digital device is specified by a control algorithm,
which is represented in terms of logical conditions and microoperations. It is
called "microprogram". Microprogram determines an order of testing the values
of logical conditions and sequences of microoperations, which are necessary to
get proper operation of the device.

4. The microprogram is used as a particular form of specification of the function of
a device and determines the structure of digital device and the order of its time
operation sequence.

The principle of microprogram control was developed by Victor Glushkov [7],
who proposed representation of any digital system as composition of data-path and
control automaton (Fig. 1.1).

The data-path of a digital system receives and keeps words of information (D) to
be processed, executes the microoperations Y on these words (operands), estimates
the values of logical conditions X and calculates the results of operations R. Control
automaton (CA) provides the required time order of distribution of microoperations
on the base of the microprogram to be executed. This order is determined by the op-
eration code F and by the values of logical conditions X, which are calculated by the
data-path. Moreover, the control automaton cooperates with environment through
the input signals CI and output signals CO. One of the input signals, called "Start",
serves to initialize the execution of operations determined by the code F. One of the
output signals, called "Done", is needed to indicate that a given operation is exe-
cuted. In the literature, control automaton is called "control unit" [10], and we use
this term in our book.

Fig. 1.1 Structure of digital
system

The main function of control unit is the analysis of operation code and of the
values of logical conditions X = {x1, . . . ,xL}. As the result of analysis, microin-
structions Yq ⊆Y are produced, where Y = {y1, . . . ,yN} is the set of microoperations
initializing data processing. The algorithm executed by operational unit is specified
using one of the formal methods [3,21]; for example, the language of graph-schemes
of algorithms (GSA) has been widely used in cases of practical designs [3]. There
are many other approaches for the control algorithm representation. We use the lan-
guage GSA, because it provides easy explanation for all design methods presented
in this book. The second reason of our choice is the existence of simple way to pass
from GSA to any other form of control algorithm representation.
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Graph-scheme of algorithm Γ is the directed connected graph, characterized by
a finite set of vertices including four types of vertices, namely (Fig. 1.2): start (ini-
tial vertex), end (final vertex), operator and conditional vertices. These vertices are
connected by some paths called arcs.

Fig. 1.2 Types of vertices

The start vertex, denoted here by the symbol b0, corresponds to the beginning
of control algorithm and has no input. The end vertex, denoted here by symbol bE ,
corresponds to the end of control algorithm and has no output. The operator vertex
bt ∈ B1, where B1 is a finite set of GSA operator vertices, contains a collection of
microoperations Yq ⊆ Y . The conditional vertex bt ∈ B2, where B2 is a finite set of
GSA conditional vertices, which includes single element xl ∈ X . It has two outputs,
first corresponding to value "1" and second to value "0" of the logical condition.
Thus, GSA Γ is characterized by a finite set of vertices B = B1 ∪B2 ∪ {b0,bE},
connected by arcs taken from a finite set E = {〈bt ,bq〉}, where bt ,bq ∈ B.

For example, the GSA (Fig. 1.3) is characterized by the following sets:

• the set of vertices B = {b0,b1, . . . ,b6,bE};
• the set of arcs E = {〈b0,b1〉,〈b1,b2〉 . . . ,〈b6,bE〉};
• the set of microoperations Y = {y1, . . . ,y4};
• the set of logical conditions X = {x1,x2}.

The control algorithm can be implemented either as a program (program inter-
pretation) or as a network of logical elements connected in some way (hard-wired
interpretation). In this book we discuss the second way of control algorithm imple-
mentation. These methods are based either on the model of a finite state-machine
(called sometimes structural automaton or an automaton with hard-wired logic) or
on the principle of keeping the microprogram in a special control memory (automa-
ton with programmed logic) [7, 17].

Methods of data-path design are not discussed in this book. They could be found
in many fundamental books, as for example, in [1,12,14]. Let us discuss the classical
methods of control units design.

x



4 1 Methods of interpretation of control algorithms

Fig. 1.3 Graph-scheme of
algorithm Γ1

1.2 Control algorithm interpretation with finite state machines

The finite state machine (FSM) [3] implementing control algorithm is represented
by classical model of sequential circuit, which can be treated as the composition of
combinational circuit CC and register RG (Fig. 1.4).

Fig. 1.4 Structural diagram
of finite state machine

Presence of register RG in this structure can be explained in the following way. A
time-distributed microinstruction sequence Y (0),Y (1), . . . ,Y (t), where t is the au-
tomaton time determined by synchronization pulse "Clock", appears on the output
of FSM. The initial time t = 0 is determined by a single-shot pulse "Start". To pro-
duce such a sequence, some information about history of the system operation is
needed. This sequence is determined by input signals X(0), . . . ,X(t − 1) for previ-
ous moments of time. It means that output signal Y (t) at time t is determined by the
following formula

Y (t) = f (X(0), . . . ,X(t −1),X(t)). (1.1)
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Expressions of this kind are very cumbersome and could not be realized in hard-
ware, especially if they contain cycles with unpredictable number of iterations. In
practice, the history is described by special internal states of the FSM, from the set
of states A = {a1, . . . ,aM}. States am ∈ A are encoded by binary codes K(am) having
not less than

R = 	log2 M
 (1.2)

bits, where 	A
 is the least integer, grater than or equal to A. This function is
known as a ceil function or ceiling [14]. Elements of the set of state variables
T = {T1, . . . ,TR} are used to encode the states of FSM. The code of current state
is kept in register RG, which includes R synchronous flip-flops with common tim-
ing signal "Clock". The code of initial state a1 ∈ A is loaded into RG using pulse
"Start". The content of RG can be changed by pulse "Clock" on the base of input
memory functions, which form the set of input memory functions Φ = {φ1, . . . ,φR}.
As a rule, the register RG is implemented using D flip-flops [14, 20].

The combinational circuit CC produces the following input memory functions

Φ = Φ(T,X) (1.3)

and the output functions, which depend strongly on the FSM model in use [3]. In
case of the Mealy FSM, output functions Y are represented as

Y = Y (T,X). (1.4)

In case of the Moore FSM, output functions depend only on the states variables:

Y = Y (T ). (1.5)

The method of FSM logic circuit implementation on the base of GSA includes
the following steps [3]:

• construction of marked GSA Γ ;
• state assignment (encoding of the states);
• construction of the structure table of FSM;
• construction of systems Φ and Y using the structure table of FSM;
• implementation of FSM logic circuit using some logical elements.

Let us discuss some examples of FSM synthesis using GSA Γ1 to represent the
control algorithm.

In case of the Mealy FSM, marked GSA is constructed using the following rules
[3]:

• the output of the vertex b0 and input of the vertex bE are marked by an initial
state a1;

• inputs of vertices bt ∈ B, connected with outputs of operator vertices, are marked
by unique states a2, . . . ,aM (only once for each input).

Application of this procedure to GSA Γ1 leads to the marked GSA Γ1 (Fig. 1.5a),
corresponding to the graph of Mealy FSM S1 (Fig. 1.5b).
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Fig. 1.5 Marked GSA Γ1 a
and graph of Mealy FSM S1 b
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The vertices of this graph correspond to the states of FSM S1, whereas its arcs
correspond to the transitions between states. Each arc is marked by a pair 〈input sig-
nal, output signal〉. Input signal Xh(h = 1, . . . ,H) corresponds to some conjunction
of variables from the set X (direct values of variables or their complements). Output
signal Yh ⊆ Y corresponds to some microoperations yn ∈ Y , which are written into
an operator vertex of the transition h of Mealy FSM (h = 1, . . . ,H). It follows from
analysis of the marked GSA Γ1 that the FSM S1 is characterized by sets X = {x1,x2},
Y = {y1, . . . ,y4}, A = {a1,a2,a3} and has H = 5 transitions.

There are many methods of state encoding [3,5,14,20,22], which are oriented on
optimization of hardware amount of the logic circuit CC. Their applications depend
strongly on logical elements used to implement this circuit. The problem is known
as the state assignment [14]. Let us try a trivial encoding approach first, using
minimum possible number of state variables to encode the states. In case of the FSM
S1 we have M = 3, R = 2, T = {T1,T2}. The states are encoded as: K(a1) = 00,
K(a2) = 01 and K(a3) = 10. Let us point out that the code K(a1) of initial state
a1 ∈ A should include R zeros to simplify the initialization of FSM operation by the
pulse "Start".

An FSM structure table (ST) can be viewed as the FSM graph represented by a
list of interstate transitions. This table contains an additional column Φh with input
memory functions. They are equal to 1, in order to change the states of particular
FSM memory flip-flops. This table includes the following columns [3]: am is the
current state of FSM; K(am) is the code of state; as ∈ A is the next state of FSM
(state of transition); K(as) is the code of this state; Xh is the input signal causing
transition 〈am,as〉; Yh is the output signal produced during the transition 〈am,as〉;
Φh is the collection of input memory functions, which are equal to 1 in order to
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change the register content from K(am) into K(as); h = 1,H is the current transition
number.

Structure table is constructed in trivial way using the automaton graph; in case
of FSM S1, this table contains H = 5 lines (Table 1.1).

Table 1.1 Structure table of Mealy FSM S1

am K(am) as K(as) Xh Yh Φh h

a1 00 a2 01 1 y1y2 D2 1
a2 01 a3 10 x1 y3 D1 2

a3 10 x̄1x2 y2y3 D1 3
a1 00 x̄1x̄2 y1y4 - 4

a3 10 a1 00 1 - - 5

Functions (1.3) - (1.4) are derived from the automaton structure table as the sums
of products (SOP) depending on the following product terms:

Fh = AmXh(h = 1, . . . ,H). (1.6)

In this formula Am is the conjunction of state variables Tr ∈ T corresponding to
the code of state am ∈ A from line h of the structure table:

Am = T 1
lm1

. . .T R
lmR

, (1.7)

where lmr ∈ {0,1} is the value of bit r in the code K(am), T 0
r = Tr, T 1

r = Tr(r =
1, . . . ,R;m = 1, . . . ,M). Systems (1.3) – (1.4) are represented in the form:

ϕr =
H
∨

h=1
CrhFh(r = 1, . . . ,R); (1.8)

yn =
H
∨

h=1
CrhFh(r = 1, . . . ,N), (1.9)

where Crh(Cnh) is a Boolean variable equal to one, iff (if and only if) the line h of
the structure table includes the variable ϕr(yn).

For example, from Table 1.1 we get the following equation system: F1 = T̄1T̄2;
F2 = T̄1T2x1; F3 = T̄1T2x̄1x2; F4 = T̄1T2x̄1(̄x2); F5 = T̄1T̄2; y1 = F1 ∨F4; y2 = F1 ∨F3;
y3 = F2 ∨F3; y4 = F4; D1 = F2 ∨F3; D2 = F1.

Implementation of FSM circuit depends strongly on particular properties of log-
ical elements in use. This step will be considered later.

The marked GSA of Moore FSM is constructed using the following rules [3]:

• the vertices b0 and bE are marked by an initial state a1;
• the operator vertices bt ∈ B1 are marked by the unique states a2, . . . ,aM .

Application of this procedure to the GSA Γ1 results in producing the marked
GSA Γ1 (Fig. 1.6a) corresponding to the state diagram of Moore FSM (Fig. 1.6b). It
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follows from Fig. 1.6b that the vertices of Moore FSM graph are marked by output
signals yn ∈Y and the graph arcs are marked only by input signals, which determine
interstate transitions. As we can see, the Moore FSM S2 is described by sets X =
{x1,x2}, Y = {y1, . . . ,y4}, A = {a1, . . . ,a5}, and has H = 7 transitions.

Fig. 1.6 Marked GSA Γ1 a
and graph of Moore FSM S2 b

y1y2

x1
1 0

y3 x2
1 0

y2y3

y1y4

End

Start a1

a3

a2

a1

a1

a2

a3

x1x2

y1y4

_

-

a4

a4

a5

-
-

y3

x1

-
-

y1y2

y2y3

x1x2
_ _

In case of the Moore FSM S2, R = 3, T = T1,T2,T3. Let us encode the states
am ∈ A as: K(a1) = 000, . . . ,K(a5) = 100. The structure table of Moore FSM is
constructed using either an automaton graph (state diagram) or a marked GSA. This
table includes the columns: am, K(am), K(as), Xh, Φh, h. Information about output
signals is placed into the column am [3]. The structure table of the Moore FSM S2

includes H = 7 lines (Table 1.2).

Table 1.2 Structure table of Moore FSM S2

am K(am) as K(as) Xh Φh h

a1(–) 000 a2 001 1 D3 1
a2(y1y2) 001 a3 010 x1 D2 2

a4 011 x̄1x2 D2D3 3
a1 000 x̄1x̄2 – 4

a3(y3) 010 a5 100 1 D1 5
a4(y2y3) 011 a5 100 1 D1 6
a5(y1y4) 100 a1 000 1 – 7
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Equation systems (1.3) and (1.5) are found using the structure table; system (1.3)
depends on product terms (1.6) and its SOP is similar to system (1.8). Functions
(1.5) can be represented in the form

yn =
M
∨

m=1
CnmAm(n = 1, . . . ,N), (1.10)

where Cnm is the Boolean variable equal to one, iff microoperation yn ∈ Y is exe-
cuted, when FSM is in the state am ∈ A.

For example, in case of Moore FSM S2, the following system of expressions can
be extracted from Table 1.2: F1 = T̄1T̄2T̄3, F2 = T̄1T̄2T̄3x1, . . . ,F7 = T1T̄2T̄3; D1 =
F5 ∨F6; D2 = F2 ∨F3; D3 = F1 ∨F3; A1 = T̄1T̄2T̄3 . . . ,A5 = T1T̄2T̄3; y1 = A2 ∨A5;
y2 = A2 ∨A4; y3 = A3 ∨A4; y4 = A5.

Automata S1 and S2 are equivalent in the sense that they interpret the same GSA
Γ1. Comparison of automata S1 and S2 leads to the following conclusions satisfied
for all equivalent Mealy and Moore automata:

• Moore FSM has, as a rule, more states and transitions than the equivalent Mealy
FSM;

• system of output signals of Moore FSM has regular form, because it depends
only on the states of FSM.

Let us point out that model of Moore FSM is used more often in practical de-
sign [20] because it offers more stable control units than the control units based
on the Mealy FSM model. Moreover, system (1.5) is regular, what means that it is
specified for more than 50% of all possible input assignments. This regularity makes
possible implementation of this system using either read-only memory (ROM) chips
or random-access memory (RAM) blocks [6, 8].

The number of product terms in the input memory functions system can be re-
duced due to the existence of pseudoequivalent states of Moore FSM [5, 8]. The
states am,as ∈ A are called pseudoequivalent states of Moore FSM, if there exist
the arcs 〈bi,bt〉,〈b j,bt〉 ∈ E, where vertex bi ∈ B1 is marked by state am ∈ A and
vertex b j ∈ B1 by state as ∈ A. Thus, the states a3 and a4 of the Moore FSM S2 are
pseudoequivalent states. They can not be treated as equivalent states [3], because
of different output signals generated by these states. As follows from Table 1.2, the
columns as of structure table for the states a3 and a4 contain the same information.

Let ΠA = {B1, . . . ,BI} be a partition of set A into the classes of pseudoequivalent
states . For example, in case of Moore FSM S2 we have ΠA = {B1, . . . ,B4}, with
B1 = {a1}, B2 = {a2}, B3 = {a3,a4}, B4 = {a5}. The number of terms in system
Φ can be reduced due to optimal state encoding [5], when the codes of pseudoe-
quivalent states from some class Bi ∈ ΠA belong to a single generalized interval of
an R-dimensional Boolean space . For example, the well-known algorithms NOVA
[14] or ASYL [18, 19] can be used for the state encoding mentioned above.

The optimal state encoding for the Moore FSM S2 is shown in the Karnaugh map
of Fig. 1.7.

As follows from Fig. 1.7, the class B1 corresponds to the interval K(B1) = 000,
B2 → K(B2) = ∗01, B3 → K(B3) = ∗1∗, B4 → K(B4) = 1 ∗ ∗, where sign "∗"
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Fig. 1.7 Optimal state encod-
ing for the Moore FSM S2 T1

a1 a2 a3 a4

a5

0

1

00 01 11 10
T2T3

* * *

determines "don’t care" value of state variable Tr ∈ T . These intervals can be con-
sidered as the codes of classes Bi ∈ ΠA. Let us construct a transformed structure
table of Moore FSM with the following columns: Bi, K(Bi), as, K(as), Xh, Φh, h. To
do this we replace the column am by the column Bi, and the column K(am) by the
column K(Bi). If the structure table transformed in this way contains equal lines,
only one of them should find place in the final transformed table. For example, the
transformed structure table of Moore FSM S2 (Table 1.3) contains H = 6 lines.

The transformed structure table serves as the base to form product terms (1.6),
but now these terms include variables lmr ∈ {0,1,∗}, where T 0

r = T̄r, T 1
r = Tr, T ∗

r =
1 (m = 1, . . . ,M;r = 1, . . . ,R). Presence of "don’t care" input assignments makes
possible reduction of the number of product terms in system (1.8), which has only
H0 terms. Thus, in case of the Moore FSM S2 we have: F1 = T̄1T̄2T̄3; F1 = T̄2T3x1;
F3 = T̄2T3x̄1x2; F4 = T̄2T3x̄1x̄2; F5 = T2; F6 = T1.

We find that terms F4 and F6 are not the parts of SOP (1.8).

Table 1.3 Transformed structure table of Moore FSM S2

Bi K(Bi) as K(as) Xh Φh h

B1 000 a2 001 1 D3 1
B2 *01 a3 011 x1 D2D3 2

a4 010 x̄1x2 D2 3
a1 000 x̄1x̄2 – 4

B3 *1* a5 100 1 D1 5
B4 1** a1 000 1 – 6

It was shown in [4] that optimal state encoding permits to compress the trans-
formed structure table of Moore FSM up to corresponding size of the equivalent
Mealy FSM structure table.

As a rule, models of FSM are used for implementation of fast operational units
[1]. If system performance is not important for a project, the control unit can be
implemented as a microprogram control unit (MCU).
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1.3 Control algorithm interpretation with microprogram control
units

In 1951 M.Wilkes proposed to use the intermediate level for execution of computer
program instructions. This level was called microprogram level or firmware. Each
instruction of the high-level programming language was interpreted here by a spe-
cial microprogram. These microprograms were kept in the separate control mem-
ory (CM) as a sequence of microinstructions. The microinstructions are organized
according to the operational-address principle [1, 10]. These microprograms are in-
terpreted by microprogram control units (MCU) [7]. The typical method of MCU
design includes the following steps [7, 8]:

• transformation of initial graph-scheme of algorithm;
• generation of microinstructions with given format;
• microinstruction addressing;
• encoding of operational and address parts of microinstructions;
• construction of control memory content;
• synthesis of logic circuit of MCU using given logical elements.

The mode of microinstruction addressing affected tremendously the method of
MCU synthesis [7]. Three particular addressing modes are used most often nowa-
days [1]:

• compulsory addressing of microinstructions;
• natural addressing of microinstructions;
• combined addressing of microinstructions.

As a rule, microinstruction formats include the following fields:FY , FX , FA0 and
FA1. The field FY , operational part of the microinstruction, contains information
about microoperations yn ∈ Y (t = 0,1, . . .), which are executed in cycle t of control
unit operation. The field FX contains information about logical condition xt

l ∈ X ,
which is checked at time t(t = 0,1, . . .). The field FA0 contains next microinstruction
address At+1 (transition address), either in case of unconditional transition (go to
type), or if xt

l = 0. The field FA1 contains next microinstruction address for the case
when xt

l = 1. The fields FX , FA0 and FA1 form the address part of microinstruction.
Consider an example of MCU design with compulsory microinstruction address-

ing S3 interpreting FSA Γ1 (Fig. 1.3). The microinstruction format is shown in Fig.
1.8.

FY FX FA0 FA1

Fig. 1.8 Format of microinstructions with compulsory addressing

The address of next microinstruction At+1 is determined by contents of the fields
[FX ]t , [FA0]t and [FA1]t (t = 0,1, . . .) using the following rules:
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At+1 =

⎧
⎨

⎩

[FA0]t , if [FX ]t = /0;
[FAt

0], if xt
l = 0;

[FA1]t , if xt
l = 1.

(1.11)

First line of expression 1.11 determines the address of transition in case of un-
conditional jump, whereas the second and third lines determine this address for the
conditional jump.

Structural diagram of MCU with compulsory microinstruction addressing (Fig.
1.19) includes the following blocks [1, 7]:

• sequencer CFA, calculating transition address from (1.11);
• register of microinstruction address RAMI, keeping address At ;
• control memory CM, keeping microinstructions;
• block of microoperation generation CMO;
• fetch flip-flop TF used to organize the stop mode of the MCU.

CFA RAMI

CMO

CM

FA1

FA0

FX

FY

S   TF

R

X

Start

Clock
Fetch

Y

yE

At
Φ

Fig. 1.9 Structural diagram of MCU with compulsory addressing

The control unit S3 operates as follows. The pulse "Start" is used to load the
address of first microinstruction to be executed (start address) into RAMI. At the
same time the flip-flop TF is set up; signal Fetch=1 initiates reading of a microin-
struction from the control memory. Let some address At be located in the register
RAMI at time t (t = 0,1, . . .). Corresponding microinstruction is then fetched from
the memory CM. The operational part of this microinstruction is next transformed
by the block CMO into microoperations yn ∈ Y , which are directed to a system
data-path. The sequencer CFA processes both the microinstruction address part and
logical conditions X to produce the functions Φ , which form a transition address
At+1 sent into register RAMI. This address is loaded into RAMI by synchronization
pulse "Clock". If the end of microprogram is reached, then special signal yE is gen-
erated to clear the flip-flop TF. It causes termination of microinstruction fetching
from memory CM, which means the end of MCU operation.

The transformation of initial GSA Γ is executed using the following rules [7]:

• if there is an arc 〈bq,bE〉 ∈ E, such that bq ∈ B1, the variable yE is assigned to the
vertex bq;
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• if there is an arc 〈bq,bE〉 ∈ E, such that bq ∈ B2, an additional operator vertex
bQ+1 (Q = |B| − 2) with the variable yE is inserted into GSA Γ , and the arc
〈bq,bE〉 is replaced by arcs 〈bq,bQ+1〉 and 〈bQ+1,bE〉.
Therefore, the transformation of GSA for MCU with compulsory addressing of

microinstructions is necessary to organize the ending mode of the MCU. Thus,
transformation of the GSA Γ1 is reduced to inserting the variable yE into the ver-
tex b6 ∈ B1 and adding the vertex b7. The transformed GSA Γ1(S3) thus obtained is
shown in Fig. 1.10 . Generation of microinstructions with compulsory addressing is
reduced to successive analysis of pairs of vertices〈bq,bt〉 ∈ E. All possible vertices
pair configurations are shown in Fig. 1.11.

There are four possible configurations:

• bq,bt ∈ B1 (Fig. 1.11a). In this case the vertex bq ∈ B corresponds to microin-
struction with empty fields FX and FA1, whereas its field FY contains set of mi-
crooperations Yq and field FA0 contains the microinstruction address, correspond-
ing to vertex bt ∈ B1. The analysis should be continued for the vertex bt ∈ B1. If,
in such a pair, second vertex is the final vertex of GSA (bt = bE), then the vertex
bq corresponds to microinstruction with empty fields FX , FA0 and FA1;

• bq ∈ B1, bt ∈ B2 (Fig. 1.11b). In this case, the pair of vertices corresponds to one
microinstruction with all fields containing useful information;

• bq,bt ∈ B2 (Fig. 1.11c). In this case the vertex bt ∈ B2 corresponds to microin-
struction with empty field FY , and the analysis should be continued for the vertex
bq ∈ B2;

• bq ∈ B2, bt ∈ B1 (Fig. 1.11d). In this case the analysis should be continued for
the both vertices of the pair.

Let us denote microinstructions by symbols Om (m = 1, . . . ,M); now the fol-
lowing microinstructions can be generated using the transformed FSA Γ1(S2):
O1 = 〈b1,b2〉, O2 = 〈b3,〉, O3 = 〈 /0,b4〉, O4 = 〈b5, /0〉, O5 = 〈b6, /0〉, O6 = 〈b7, /0〉.

Addresses of microinstructions with compulsory addressing can be appointed in
the following manner. Each microinstruction Om corresponds (one-to-one) to a bi-
nary code Am with R = 	log2 M
 bits(m = 1, . . . ,M). A microinstruction with start
address is determined by the arc 〈b0,bq〉 ∈ E. In the case under consideration there
is the arc 〈b0,b1〉 ∈ E (Fig. 1.10), and therefore the start address belongs to the
microinstruction O1, corresponding to the pair with vertex b1 ∈ B1. All other mi-
croinstructions are addressed in arbitrary manner.

The microprogram of MCU S3(Γ1) includes M = 6 microinstructions, thus R = 3;
and it is clear that A1 = 000. Let A2 = 001, . . . ,A6 = 101.

Because the control memory can keep only some bit strings, the encoding of
operational and address parts of microinstructions is necessary to load microin-
structions into control memory. Addressing of microinstructions gives information,
which should be written into the fields FA0 and FA1.There are many methods to
encode operational part of microinstructions [7, 11]. Let us choose the one-hot en-
coding of microoperations to design the control memory of MCU S3(Γ1), where
S3(Γ1) means that the GSA Γ1 is interpreted by MCU with compulsory addressing



14 1 Methods of interpretation of control algorithms

Fig. 1.10 Transformed GSA Γ1 (S3)
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Fig. 1.11 Possible vertices pair configurations

of microinstructions. In case of one-hot encoding the length (bit capacity) n1 of the
field FY is determined by the following formula:

n1 = N +1. (1.12)

For MCU S3(Γ1) this formula gives the value n1 = 5.
Let us encode logical conditions xl ∈ X using binary codes with minimum length

(called sometimes minimal-length codes)

n2 = 	log2(L+1)
. (1.13)
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The value 1 is added into (1.13) in order to take into account the code for uncon-
ditional jump, when [FX ] = /0. For MCU S3(Γ1) this formula gives the value n2 = 2.
Let K( /0) = 00; K(x1) = 01; K(x2) = 10.

Construction of the control memory content permits to form a table with lines
keeping microinstruction addresses and binary codes of particular microinstruc-
tions. Control memory of MCU S3 keeps M microinstructions with

n3 = n1 +n2 +2R (1.14)

bits. In case of MCU S3(Γ1) this formula gives the value n3 = 13. The control mem-
ory content for MCU S3(Γ1) is shown in Table 1.4.

In this table, microinstruction addresses are represented by variables from the set
A = {a1,a2,a3}, whereas the codes of microinstructions are represented by variables
from the set V = {v1, . . . ,v13}, where |A|= R, |V |= n3. The last column of the table
contains formulae of transitions for microinstructions, which are direct analogues
of the formulae of transitions for operators of GSA [3].

Analysis of this table shows the main drawbacks of MCU with compulsory ad-
dressing of microinstructions, such as:

• an empty field FY for microinstructions, corresponding to the pairs 〈 /0,bt〉, where
bt ∈ B2;

• empty fields FX and FA1 for microinstructions, corresponding to the pairs 〈bt , /0〉,
where bt ∈ B1.

It results in the inefficient use of control memory volume, but a positive fea-
ture of compulsory addressing is the minimum number of microinstructions for the
particular GSA, in comparison with MCU with other modes of microinstruction
addressing [7].

Table 1.4 Control memory content for MCU S3(Γ1)

Address FY FX FA0 FA1 Formula of transitions
a1a2a3 v1v2v3v4v5 v6v7 v8v9v10 v11v12v13

000 11000 01 010 001 O1 → x̄1O3 ∨ x3O2
001 00100 00 100 000 O2 → O5
010 00000 10 101 011 O3 → x̄2O6 ∨ x2O4
011 01100 00 100 000 O4 → O5
100 10011 00 000 000 O5 → End
101 00001 00 000 000 O6 → End

Synthesis of the logic circuit of MCU S3 is reduced to the implementation of
block CFA using standard multiplexers and control memory using standard mem-
ory blocks, such as PROM or RAM chips [1]. Let us point out that some logical
elements should be used to implement the block CMO [3]. Assume that content of
the field FA1 is loaded into register RAMI if z1 = 1, otherwise (if z1 = 0) RAMI is
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loaded from the field FA0 of current microinstruction. Thus, expression (1.11) can
be represented as

At+1 = z̄1[FA0]∨ z1[FA1]. (1.15)

The variable z1 = 1, if a logical condition to be checked is equal to 1; it means
that

z1 =
L
∨

l=1
Vlxl , (1.16)

where Vl is a conjunction of variables vr ∈V , corresponding to the code K(xl) (l =
1, . . . ,L).

In case of the MCU S3(Γ1) expression (1.15) is represented as a system of equa-
tions

a1 = z̄1v8 ∨ z1v11;

a2 = z̄1v9 ∨ z1v12; (1.17)

a3 = z̄1v10 ∨ z1v13,

and expression (1.16) has now the form

z1 = v̄6v̄70∨ v̄6v7x1 ∨ v6v̄7x2. (1.18)

This formula specifies standard multiplexer with two control inputs and three
informational inputs in use. The first term of expression (1.18) corresponds to un-
conditional jump. Symbol "0" represents the fact that logical 1 should be connected
with informational input of the multiplexer corresponding to code 00; variables ar

from (1.17) coincide with variables Dr (r = 1, . . . ,R). Expressions (1.17) – (1.18)
determine the logic circuit of sequencer CFA of the MCU S3(Γ1), shown in Fig.
1.12. Operation of this circuit can be easily deduced from Fig. 1.12.

Fig. 1.12 Logic circuit of
CFA of MCU S3(Γ1)
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Some problems of the control memory implementation are discussed in Chapter
2 of this book.

There are two microinstruction formats in case of natural microinstruction ad-
dressing [1]: operational microinstructions corresponding to operator vertices of
GSA Γ and control microinstructions corresponding to conditional vertices of GSA
Γ (Fig. 1.13).
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Fig. 1.13 Microinstruction
formats for MCU with natural
addressing of microinstruc-
tions

0 FY

1 FX FA0

First bit of each format represents field FA, used to recognize the type of mi-
croinstruction. Let FA = 0 correspond to operational microinstruction and FA = 1
to control microinstruction. As follows from Fig. 1.13, next address is not included
in operational microinstructions. The same is true for the case, when a logical con-
dition to be checked is equal to 1. In both cases mentioned above current address
At is used to calculate next address:

At+1 = At +1. (1.19)

Hence the following rule is used for next address calculation

AT+1 =

⎧
⎪⎪⎨

⎪⎪⎩

At +1, if [FA]t = 0;
At +1, if (xt

l = 1)∧ ([FA]t = 1);
[FA0]t , if (xt

l = 0)∧ ([FA]t = 1);
[FA0]t , if ([FX ]t = /0)∧ ([FA]t = 1).

(1.20)

Analysis of (1.20) shows that MCU with natural addressing of microinstructions
should include a counter CAMI. Corresponding structure is shown in Fig. 1.14.

CFA CAM I

CMO

S   TF

R

X

Start

Clock
Fetch

Y

yE

At

FA

FX
CM

FA

+1

z1

z0

FY

FA0

Fig. 1.14 Structural diagram of MCU with natural addressing of microinstructions

This MCU operates in the following manner. The pulse "Start" initiates loading
of start address into CAMI. At the same time flip-flop TF is set up. Let an address
At be located in CAMI at time t (t = 0,1, . . . ,). If this address determines an oper-
ational microinstruction, the block CMO generates microoperations yn ∈Y , and the
sequencer CFA produces signal z1. If this address determines a control microinstruc-
tion, microoperations are not generated, and the sequencer produces either signal z0

(corresponding to an address loaded from the field FA0), or signal z1 (it corresponds
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to adding 1 to the content of CAMI). The content of counter CAMI can be changed
by pulse "Clock". If variable yE is generated by CMO, then the flip-flop TF is cleared
and operation of MCU terminated.

Let symbol S4 stands for this kind of MCU. Now we use an example of MCU
S4(Γ1) to discuss some particular problems of such design.

The transformation of initial GSA is executed in two consecutive steps. First
step involves the same transformations as in case of MCU S3. Addressing conflicts
between microinstructions [7, 8] are eliminated during the second step. Let us point
out that in case of MCU S4 operational microinstructions correspond to operator
vertices bq ∈ B1 and control microinstructions correspond to conditional vertices
bq ∈ B2. Nature of addressing conflicts is the consequence of implicit transition
addresses, as expressed by (1.19).

Let some GSA include two arcs 〈bi,bq〉,〈b j,bq〉 ∈ E, where bi,b j ∈ B1 (Fig.
1.15a). Let indexes of vertices, corresponding microinstructions and microinstruc-
tion addresses be the same and take Ai = 100. According to (1.19) we find that
Aq = 101, which means that the address A j should be equal to 100. Thus, microin-
structions Oi andO j should have the same address. We call this situation addressing
conflict. Some conditional vertex bt with logical condition x0 should be inserted in
the initial GSA to eliminate this conflict. This condition corresponds to the uncon-
ditional jump, when FX = /0 (Fig. 1.16a).

xI
1 0

bq

yj bj

xi
0

1

bi

xj

1

0
bj

yq bq

b)a)

yi bi

Fig. 1.15 Addressing conflicts in MCU S4

Now, if Ai = 100, we have Aq = 101, and the field FA0 of microinstruction Ot

contains address Aq = 101. Addressing conflict is possible also between control
microinstructions (Fig. 1.15b), and its elimination requires inserting an additional
vertex (Fig. 1.16b).

Let us point out that GSA subgraphs, similar to ones shown in Fig. 1.15, can have
arbitrary number of vertices.

Addressing conflicts can arise also among operational microinstructions and con-
trol microinstructions [7].

The transformed GSA Γ1(S4) contains M = 8 vertices (Fig. 1.17). As the result of
transformation, variable yE is inserted into vertex b6, vertex b7 with yE is added, and
vertex b8 is also added, to eliminate addressing conflict between microinstructions
corresponding to vertices b3 and b5.
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Fig. 1.16 Elimination of addressing conflicts

As it was mentioned above, each operator vertex corresponds to an operational
microinstruction and each conditional vertex corresponds to a control microinstruc-
tion. It means that microinstructions are generated in a very simple way. For exam-
ple, the microprogram of MCU S4(Γ1) includes M = 8 microinstructions.

Fig. 1.17 Transformed GSA Γ1 (S4)
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Generation of special microinstruction sequences is needed in case of natural ad-
dressing of microinstructions. These sequences are created as follows. Let us build



20 1 Methods of interpretation of control algorithms

a set I(Γ ), elements of which are inputs of the sequences. Vertex bq ∈ B1 ∪B2 is the
input of a sequence, if the input of this vertex is connected either with the output of
vertex b0 or with the output of conditional vertex, marked as "0".

In case of the MCU S4(Γ1), the set I(Γ ) = {b1,b4,b7} and microinstruction
sequences are started by corresponding microinstructions. End points of these se-
quences are microinstructions corresponding to vertices connected with final vertex
bE , or conditional vertex with x0. Let αg denote a microinstruction sequence. There
are three such sequences in case of MCU S4(Γ1), namely α1 = 〈O1,O2,O3,O8〉,
α2 = 〈O4,O5,O6〉, α3 = 〈O7〉. The zero address is assigned to the microinstruction,
corresponding to vertex bt , where 〈b0,bt〉 ∈ E. Addresses of next microinstructions
belonging to this sequence are calculated according to (1.19). The address of cur-
rent sequence input is calculated by adding 1 to the address of last microinstruction
from previous sequence, and so on. Application of this procedure to the case of
MCU S4(Γ1), when R = 3, gives the microinstruction addresses, shown in Table 1.5.

Table 1.5 Microinstruction addresses of MCU S4(Γ1)

Om Am Om Am

O1 000 O5 101
O2 001 O6 110
O3 010 O7 111
O4 100 O8 011

Encoding of operational and address parts of microinstructions is executed in
the same manner as in case of MCU S3. Let us take the case of MCU S4(Γ1), and
use one-hot codes for microoperations (n1 = 5), as well as minimal-length codes
for logical conditions (n2 = 2). Let corresponding codes for both MCU S3(Γ1) and
S4(Γ1) be the same.

Construction of the control memory content is executed due to the fact that the
usage of microinstruction bits depends on microinstruction type. The control mem-
ory of MCU S4 contains M microinstructions with

n4 = max(n1 +1,n2 +R+1) (1.21)

bits; for example, for MCU S4(Γ1) it can be found that n4 = 6. The control memory
content of MCU S4(Γ1) is shown in Table 1.6.

Let us discuss now the design of sequencer CFA for MCU S4. Variable z1 =
1 should be generated either if xt

l = 1 or when an operational microinstruction is
executed at time t. Thus, the logical expression for calculation of z1 can be obtained
by the following transformation of expression (1.16):

z1 =
(

L
∨

l=1
Vlxl

)

∨ v̄1, (1.22)

where v1 = 0 corresponds to FA=0. It is clear that z0 = z̄1.
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Table 1.6 Control memory content of MCU S4(Γ1)

Address FA
FX FA0 Formula of transitions

FY
a1a2a3 v1 v2v3v4v5v6

000 0 11000 O1 → O2
001 1 01100 O2 → x̄1O4 ∨ x1O3
010 0 00100 O3 → O8
011 1 00110 O8 → x̄0O6 ∨ x0O6
100 1 10111 O4 → x̄2O7 ∨ x2O5
101 0 01100 O5 → O6
110 0 10011 O6 → End
111 0 00001 O7 → End

Let the counter CAMI has input C1, used to increment the counter content and
input C2 to load the input parallel code into the counter under the influence of pulse
"Clock". The corresponding Boolean expressions for C1 and C2 have the form:

C1 = z1 ·Clock,
C2 = z̄1 ·Clock.

(1.23)

Expressions (1.23) serve to design the logic circuit of sequencer CFA for MCU
S4(Γ1) shown in Fig. 1.18.

Fig. 1.18 Implementation
of the block CFA for MCU
S4(Γ1)
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In this circuit multiplexer MX is active if v1 = 1 is applied to the ŞenableŤ input
CS of the chip. It corresponds to a control microinstruction. Remaining elements
of this circuit follow directly from expressions (1.22) and (1.23). The methods of
control memory implementation will be discussed later.

The comparative analysis of Tables 1.4 and 1.6 shows that MCU S4 is charac-
terized by longer microprogram, than the equivalent MCU S3. In case of MCU S4,
control algorithm execution requires more time, than in case of the equivalent MCU
S3. A positive feature of MCU S4 is smaller microinstruction length. In case of our
example we find that n3 = 2.17n4.

Microprogram control units with combined microinstruction addressing (Fig.
1.19) represent a compromise settlement with average number of microinstructions,
of bit capacity and of control algorithm execution time.
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FY FX FA0

Fig. 1.19 Microinstruction format with combined addressing

At+1 =

⎧
⎨

⎩

[FA0]t , if |FX |t = /0;
[FA0]t , if xt

l = 0;
[FA1]t , if xt

l = 1.
(1.24)

It follows from (1.24), that addressing conflicts are possible only between mi-
croinstructions with 	FX
 �= /0. A design method, which can be used for MCU with
combined microinstruction addressing , can be found in [1, 7, 8].

Microprogram control units were very popular in the past [2, 13, 20], but they
have one serious disadvantage, namely inferior performance in comparison with the
equivalent finite state machines. As a rule, only single logical condition is checked
during one cycle of MCU operation. Thus, multidirectional transitions depending on
k > 1 logical conditions need k > 1 cycles for its execution, and the controlled data
path will have k− 1 idle cycles, when its resources are not in use. Positive feature
of MCU is the use of regular control memory to implement the microinstruction
system. Besides, the sequencer CFA is very simple and can be implemented using
standard multiplexers. As a rule, any change in the control algorithm leads to the
redesign of corresponding FSM, but only small modifications of the control memory
content in the equivalent MCU are needed.

1.4 Organization of compositional microprogram control units

The properties of the interpreted control algorithm have great influence on the hard-
ware amount of corresponding control unit [4]. One of such properties is the exis-
tence of operational linear chains corresponding to the paths of GSA, which include
operator vertices only. Let us call a GSA Γ the linear GSA (LGSA), if the number
of its operator vertices exceeds 75% of the total number of vertices. Existence of
operational linear chains allows simplification of input memory functions and re-
duction of hardware amount in the logic circuit of control unit. In this case either
shift register or up counter [15, 16] is used to keep state codes.

One of the approaches for linear GSA interpretation is the use of compositional
microprogram control units (CMCU), which can be viewed as a composition of the
finite state machine and microprogram control unit [9]. These units have several
particularities, distinguishing them from other control units:

1. Microinstruction format includes the operational part only. It permits to mini-
mize the control word bit capacity. Thus control words kept in control memory
have minimum possible length in comparison with all organizations of MCU
mentioned above.
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2. Microprograms have minimum possible length (the number of microinstruc-
tions), because the CMCU control memory is free from control microinstruc-
tions.

3. Multidirectional transitions are executed in one cycle of CMCU operation. It
provides minimum time of control algorithm interpretation. Thus, such control
units have similar performance, as compared with the equivalent FSM.

Let us introduce some definitions used in this book.

Definition 1.1. An operational linear chain (OLC) of GSA Γ is a finite vector of
operator vertices αg = 〈bg1 , . . . ,bgFg

〉, such that an arc 〈bgi ,bgi+1〉 ∈ E corresponds
to each pair of adjacent vertices bgi ,bgi+1 , where i is the component number of vector
αg. Let Dg be a set of operator vertices, which are components of OLC αg.

Definition 1.2. An operator vertex bq ∈ Dg is called an input of OLC αg, if there is
an arc 〈bt ,bq〉 ∈ E, such that bt /∈ Dg.

Definition 1.3. An input bq ∈ Dg is called a main input of OLC αg, if GSA Γ does
not include an arc 〈bt ,bq〉 ∈ E such that bt ∈ B1.

Definition 1.4. An operator vertex bq ∈ Dg is called an output of OLC αg, if there
is an arc 〈bq,bt〉 ∈ E, where bt /∈ Dg.

It follows from the basic properties of GSA [3] that each OLC αg corresponding
to definitions given above should have at least one input and exactly one output. Let
I j
g stand for input j of OLC αg and Og for its output. Let inputs of OLC αg form a

set I(αg).
For GSA Γ we have the following sets:

1. A set of OLC C = {α1, . . . ,αG}, satisfying the following condition

D1 ∪ . . .∪DG = B1;

|Di ∩D j| = 0(i �= j; i, j ∈ {1, . . . ,G}); (1.25)

G → min .

2. A set of inputs I(Γ ) of the operational linear chains of GSA Γ :

I(Γ ) =
G⋃

g=1

I(αg). (1.26)

3. A set of outputs O(Γ ) of the operational linear chains of GSA Γ :

O(Γ ) = {O1, . . . ,OG}. (1.27)

Let the natural microinstruction addressing be executed for microinstructions
corresponding to the adjacent components of each OLC αg ∈C:

A(bgi+1) = A(bgi)+1(i = 1, . . . ,Fg −1). (1.28)
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In expression (1.28) symbol A(bgi) stands for the address of microinstruction
corresponding to component i of vector αg ∈C, where i = 1, . . . ,Fg −1. In this case
GSA Γ can be interpreted by compositional microprogram control unit with basic
structure of Fig. 1.20 [9]. Let us denote it as unit U1.

CC
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Clock Fetch

YCM

+1
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RG

R   TF

S
Start

X

yE

y0

Ψ

τ

Fig. 1.20 Structural diagram of compositional microprogram control unit with basic structure

In the unit U1, combinational circuit CC and register RG form a finite state ma-
chine S1, which will be called microinstruction addressing unit or FSM S1. Counter
CT, control memory CM and flip-flop TF form microprogram control unit S2 with
natural microinstruction addressing. The unit U1 operates in the following manner.
The pulse "Start" initializes following actions: the zero code of FSM S1 initial state
is loaded into register RG; start address of microprogram is loaded into counter CT;
flip-flop TF is set up (Fetch=1). If Fetch=1, microinstructions can be fetched out of
the control memory. Let at time t (t = 0,1,2, . . .) the code of state am ∈ A1, where A1

is a set of FSM S1 states, be loaded into register RG and address A(I j
g) of the input j

of OLC αg ∈C be loaded into the counter CT. Current microinstruction is read out
of CM and its microoperations yn ∈Y initialize some actions of the data-path. If this
input is not the output of current OLC αg ∈C (I j

g �= Og), additional variable y0 = 1
is generated by MCU S2. If y0 = 1, content of register RG is unchangeable and 1 is
added to the content of counter CT. It corresponds to a transition between adjacent
components of OLC αg ∈ C. If the output Og is reached, then y0 = 0. In this case
circuit CC generates Boolean functions:

Φ = Φ(τ,X), (1.29)

Ψ = Ψ(τ,X), (1.30)

where τ = {τ1, . . .τR1} is a set of state variables encoding states am ∈ A1. The mini-
mum number of these variables is determined as

R1 = 	log2 M1
, (1.31)

where M1 = |A1|. If there is a transition from output Og to some input under influ-
ence of some values of logical conditions, functions (1.29) determine the address of
this input I j

g ∈ I(Γ ) which is to be loaded into the counter. Functions (1.30) calculate
the code of next state as ∈ A1 to be loaded into RG. Content of both CT and RG is
changed by the pulse "Clock". Outputs of the CT, T = {T1, . . . ,TR2} determine next
microinstruction address. This set includes
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R2 = 	log2 M2
 (1.32)

variables, where M2 = |B1|. If CT contains the address of microinstruction corre-
sponding to vertex bq ∈ B1 such that 〈bq,bE〉 ∈ E, some additional variable yE = 1
is generated. If yE = 1, the flip-flop TF is cleared. Thus Fetch=0 and microinstruc-
tion fetching from the control memory is terminated.

As follows from (1.29), FSM S1 of unit U1 implements any multidirectional mi-
croprogram transition between output Og ∈O(Γ ) and input I j

i ∈ I(Γ ) in one cycle of
operation. At the same time MCU S2 implements addressing rule (1.28), used to or-
ganize transitions between microinstructions corresponding to adjacent components
of OLC αg ∈C. Therefore, control memory CM should only keep microoperations
yn ∈Y and additional variables y0,yE . In other words, an address part is absent in the
microinstruction format in case of CMCU U1. The main disadvantage of CMCU U1

is the loss of universality, because changes in the interpreted microprogram lead to
the redesign of circuit CC. Fortunately, as it will be shown below, current achieve-
ments in semiconductor technology permit to eliminate this drawback.

If we treat the concatenation of register RG and counter CT as the code of internal
CMCU state, then the CMCU is a Moore FSM, in which each state is represented by
the concatenation of FSM S1 state and by the address of MCU S2 microinstruction.
Let us point out that all these models (FSM, MCU and CMCU) can be used to im-
plement control algorithms of any digital system, including computers and complex
industrial controllers. Some problems, which should be solved during the design of
compositional microprogram control units, are listed bellow:

1. Problem of finding the minimum partition C of a set of operator vertices of GSA
Γ , such that each class of this partition corresponds to some OLC.
A resulting set of OLC C should be a partition of set B1, because in other cases,
the same operator vertices may appear in different OLCs. It results in the increase
of both microprogram length (the number of microinstructions) and size of the
control memory. It follows from the principle of CMCU operation, that amount
of hardware in the logic circuit of FSM S1 depends on the total number of OLC
inputs. Thus minimizing hardware amount requires finding partition C, called
minimum partition, which minimizes the total number of OLC inputs.

2. Problem of microinstruction addressing for MCU S2. This problem corresponds
to the one we meet in the MCU design with natural microinstruction addressing
and could be solved using the well-known methods.

3. Problem of transformation of the initial GSA Γ . The transformation should be
made in such a manner that output signals Φ of FSM S1, which interprets trans-
formed GSA Γ (U1), form address A(I j

g) of input I j
g for each OLC αg ∈ C to be

loaded into the counter CT. Transitions between operator vertices of the trans-
formed GSA Γ (U1) should correspond to transitions between outputs and inputs
of the operational linear chains of initial GSA Γ .
Methods of synthesis and optimization suitable for logic circuits of FSM and
MCU depend significantly on logical elements in use. The methods discussed in
our book are oriented towards field-programmable logic devices (FPLD) ; and
correspond to recent state-of-the-art in the design technique. These devices are
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very complex, and before discussing the compositional microprogram unit de-
sign, let us analyze both FPLD and various methods of hardware optimization
oriented towards these elements.
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Chapter 2
Synthesis of control units with
field-programmable logic devices

Abstract The chapter discusses contemporary field-programmable logic devices
and their evolution, starting from the simplest programmable logic devices, such
as PLA, PAL, GAL and PROM, and finishing with very sophisticated chips such
as CPLD and FPGA. This analysis shows particular features of different elements
and permits to optimize the control unit logic circuits, in which some particular el-
ements are used. The CMCU has some features of both FSM and MCU. Therefore
main design and optimization methods applied in case of these two types of control
units are presented in the main part of the chapter.

2.1 Evolution of field-programmable logic devices

This book deals mostly with synthesis methods oriented towards logic devices,
which are programmed by the end user. These devices are called field-programmable
logic devices (FPLD) [65]. The programmability of FPLD is intended for the hard-
ware level, contrary to microprocessors, which run programs but have fixed hard-
ware. A FPLD is the general purpose chip whose hardware can be configured by
the end user to implement some particular project. Our interest can be explained by
domination of FPLD in the design of modern digital devices [94].

Historically first representatives of FPLD are programmable read-only memory
chips (PROM), manufactured by Harris Semiconductor in 1970 [65]. They included
a fixed array of AND gates (AND-array) followed by a programmable array of OR
gates (OR-array), as shown in Fig. 2.1.

The AND-array implements address decoder DC, having S inputs and q = 2S

outputs, where each output corresponds to the unique address of memory cell. The
content of OR-array is programmable and the sign ’X’ in Fig. 2.1 shows the pro-
grammable connection.

This architecture perfectly fits for implementation of a system of Boolean func-
tions Y = {y1, . . . ,yN} depending on Boolean variables from the set X = {x1, . . . ,xL},
represented by a truth table [66]. In this case, the system to be implemented can be

27
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Fig. 2.1 Architecture of
PROM
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represented by the table with
H = 2L (2.1)

rows, where each row includes L input columns and N output columns. Let us denote
this system of Boolean functions (SBF) as Y (L,N) and discuss its implementation
with PROM(S, t), where PROM(S, t) means that PROM chip has S inputs and t
outputs. Combinations of parameters S, t, L, N give the following implementations
of SBF.

1. In case when S≥ L, t ≥N, the system Y (L,N) can be implemented in a trivial way
using only one PROM(S, t) chip. This implementation is shown in Fig. 2.2, where
logical variables X are connected with PROM address inputs, and functions Y
appear on the PROM outputs.

Fig. 2.2 Trivial implementa-
tion of SBF with PROM
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2. In case when S ≥ L, t < N, it is necessary to have

n1 =
⌈

N
t

⌉

(2.2)

PROM(S, t) chips to implement Y (L,N). Address inputs of all chips are con-
nected with logical variables xl ∈ X , and each chip generates up to t output func-
tions yn ∈ Y (Fig. 2.3). This approach is called sometimes the "expansition of
PROM outputs" [15].

Fig. 2.3 Implementation of
SBF with expansion of PROM
outputs. The value of i can be
calculated as i = t(n1 −1)+1
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3. If S < L, t ≥ N, the expansion of PROM inputs [15] is used and
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n2 =
∣
∣
∣
∣
2L

2S

∣
∣
∣
∣ = 	H/q
 (2.3)

PROM chips is necessary to implement the system Y (L,N) of Fig. 2.4.
In this circuit, the L − S leftmost bits of input assignment 〈x1, . . . ,xL〉 form a
set of variables X1, which are connected with inputs of decoder DC, having n2

outputs. Outputs of the DC are connected with "enable" inputs of corresponding
PROMs. Address inputs of all chips are connected with S rightmost bits of input
assignment and these variables form a set X2. Partial functions Y i are generated
as outputs of microchip i and correspond to subtables of the truth table with
rows from q(i− 1) to qi. As it can be seen from Fig. 2.4, OR-gates are used to
produce the final values of functions yn ∈ Y . The approach considered above is
rather theoretical, because this level of the circuit could be implemented using
the three-stable outputs of PROM chips [65].

Fig. 2.4 Implementation of
SBF with expansion of PROM
inputs
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4. If S < L, t < N, then
n3 = n1 ·n2 (2.4)

PROM chips are necessary for implementation of SBF. In this case both methods
of expansion (of outputs and inputs) are used together.

Thanks to regularity of their structure, PROM chips find wide application for
implementation of tabular functions. Main drawback of the PROM is doubling of
their capacity, if the number of inputs is incremented by 1. Besides, PROMs can not
be used for implementation of the SBF satisfying the following condition

H1 � H (2.5)

where H1 is the number of input assignments, such that at least one of functions
yn ∈ Y is equal to 1.

Programmable logic arrays (PLA) were introduced in the mid 1970s by Signet-
ics [64] and were oriented to implementation of SBF, for which condition (2.5) is
satisfied. Particular property of PLA is the programmability of both AND- and OR-
arrays (Fig. 2.5), providing greater flexibility, than the PROM.
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Fig. 2.5 Architecture of PLA
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Thanks to programmability of both arrays, PLA can be applied to implement SBF
represented by the minimal sum-of-products [66]. Programmability of the AND-
array leads however to the increase of chip area and reduction of both speed and
parameter q of the resulting circuit, in comparison with PROM-implementations
[12].

Let the PLA with S inputs, t outputs and q terms be denoted by PLA(S, t,q)
and discuss how they can be used for the SBF Y (L,N,H1) implementation. The
following possible combinations of SBF and PLA parameters are listed below.

1. If S ≥ L, t ≥ N,q ≥ H1, the SBF Y is implemented in trivial way using one PLA
chip. Structure of resulting circuit is similar to the one shown in Fig. 2.2, where
PLA is used instead of PROM.

2. If S ≥ L, t < N,q ≥ H1, logic circuit is implemented using n1 PLA chips, where
the value of n1 is determined by (2.2), and the circuit structure is similar to that
from Fig. 2.3.

3. If S ≥ L, t ≥ N,q < H1, the "expansion of PLA terms" approach should be used
[12], and the circuit can be implemented using

n4 =
⌈

H1

q

⌉

(2.6)

PLA(S, t,q) chips. Implementation of logic circuit in this case is similar to the
one, shown in Fig. 2.6, but decoder DC is absent, because inputs of all microchips
are connected with the same logical conditions X .

Fig. 2.6 Implementation of
SBF with expansion of PLA
terms

PLA

1

PLA

n4

OR

X

Y1 Yn 4

Y

4. If S ≥ L, t < N,q < H1, both expansion methods mentioned above should be
applied simultaneously. Minimization of hardware amount can be made with
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application of sophisticated design methods [12], based on the search of some
partitions on the set of SBF terms.

More complex synthesis methods are used to implement SBF Y , when the fol-
lowing condition is satisfied

S < L. (2.7)

In this case we have also the second condition

Fmax ≤ L, (2.8)

where Fmax is the maximal number of literals [66] in the terms of SBF Y . If this con-
dition holds, the initial SBF can be implemented by the single-level circuit, shown
in Fig. 2.7.

Fig. 2.7 Single-level imple-
mentation of SBF with PLA
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During the design of logic circuit, a partition ΠF of the set of terms F should
be found, in which |F | = H1, and the number of blocks U attains minimum [12].
Let X(Eu) be the set of logical conditions, which form the terms of set Eu ∈
ΠF{E1, . . . ,EU}, and Y (Eu) be a set of functions depending on terms Eu ∈ ΠF .
Partition ΠF should satisfy the following conditions:

|X(Eu)| ≤ S,
|Y (Eu)| ≤ t, (u = 1, . . . ,U)

|Eu| ≤ q,
U → min .

(2.9)

Many different approaches to the solution of problem (2.9) minimizing the value
of U are known [5,90]. If condition (2.8) is violated, SBF Y can be implemented as
a multilevel circuit [12], in which resulting digital system performance is reduced.

It is clear, that PLA allows the implementation of combinational circuits only. In
case of sequential circuit implementation, the outputs of PLA should be connected
to the external register. This disadvantage can be eliminated by adding flip-flops
inside the chip, at each output of PLA. These chips are called registered PLA or
programmable logic sequencers (PLS) [65]. Design methods oriented towards the
PLS use decomposition of initial GSA into subgraphs in such a way that FSM cor-
responding to each subgraph can be implemented using only one PLS chip [12,94].
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As a rule, real digital devices are specified by SBF with limited number of terms,
where the following condition is satisfied

|H (yn)| ≤ 16, (2.10)

in which H(yn) is a set of terms, which are used in the SOP as products of Boolean
function yn ∈ Y . Analysis of this condition shows that PLA have redundancy of
connections, because any term of PLA can be connected with arbitrary output of the
chip.

Programmable array logic (PAL) chips, introduced by Monolithic Memories in
1978 [65], were oriented to SBF implementation satisfying (2.10). The PAL chips
contain programmable AND-arrays and t fixed OR-arrays (Fig. 2.8).

Fig. 2.8 Architecture of PAL
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Design methods used in case of PAL are oriented on minimizing |H(yn)| up to
some fixed value q, determining the number of AND-arrays connected with a sin-
gle OR-array [63, 94]. To broaden the application area of these chips, additional
elements such as flip-flops, logic gates and multiplexers were added to each PAL
output. This new output cell was called Macrocell. It has a feedback path from
the output of the cell to the AND-array. All connections inside the macrocell were
also programmable and therefore PAL is more flexible than other solutions. These
PAL cells were called generic array logic (GAL) and were introduced by Lattice in
1985 [65, 71]. Let us point out, that GAL chips are still manufactured in standalone
packages [71] by Lattice, Atmel, TI, etc. Typical example of GAL device is the
GAL16V8 chip, which has 16 inputs, 8 outputs and 20 pins. This device has 8 input
pins and 8 bidirectional input/output pins, which can be used either as inputs or as
outputs.

The chips PLA, PLS , PAL, GAL belong to the class of Simple Programmable
Logic Devices (SPLD), which have at most 40 inputs/outputs and are equivalent
to at most 500 NAND-gates with two inputs [65]. Development of semiconduc-
tor technology was yielded in producing Complex Programmable Logic Devices
(CPLD), which can be viewed as array structures of macrocells as their elements.
The simplified architecture of CPLD with PAL macrocells is shown in Fig. 2.9.

In this CPLD each macrocell PALi (i = 1, . . . , I) is connected to S fixed chip
inputs and programmable input/outputs IOi. Outputs of the blocks can be used as
input information for switch matrix SM. First CPLD were MegaPAL of MMI de-
vices [65]. Now several companies such as Altera, Xilinx, Cypress, Atmel, Lattice
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Fig. 2.9 Simplified architec-
ture of CPLD
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manufacture CPLD chips [1, 2, 65, 94]. A typical example of CPLD is the Xilinx
XC9500, where PLD devices, similar to 36V18 GAL, are used. Modern CPLD
chips contain some additional features, like JTAG support and interface to other
logic standards. Let us point out that such CPLD as CoolRunner family (Xilinx) are
based on PLA blocks instead of PAL [3]. For example, CPLD of the CoolRunner
XPLA3 family include from 32 to 512 PLA blocks, which can replace from 750 to
12 0000 equivalent gates. Such devices can have from 36 to 260 input/output pins
and the current consumption less than 0.1 mA.

Field-programmable gate arrays (FPGA) were introduced by Xilinx in 1985 [65].
They differ from CPLD chips in architecture, because they are aimed at the imple-
mentation of high-performance and large-size circuits. The simplest FPGA includes
programmable logic blocks PLB, based on the look-up table element LUT, flip-flop
and multiplexer (Fig. 2.10).

Fig. 2.10 Architecture of
programmable logic block
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In such a circuit, the LUT element implements an arbitrary Boolean function
y = y(x1, . . . ,xS). The signal "Select" controls multiplexer MX and the choice of ei-
ther combinational or register mode of the PLB output. The "Clock" pulse is used for
the timing of flip-flop TT. Let us point out that LUT elements can be implemented
using either random-access memory blocks or programmable multiplexers [64]. For
example, FPGAs of Virtex E family include from 384 to 16 224 logic blocks, from
1 728 to 73 008 logic cells, that is the equivalent of 72K to 4M system gates. They
have from 176 to 804 input/output pins, include from 1 392 to 64 896 flip-flops and
operate with maximal internal frequency up to 240 MHz [3]. The blocks are con-
nected using matrix of programmable interconnections MPI. The wires of MPI form
a grid, in which PLBs are represented by nodes and input/output blocks represented
by endings (Fig. 2.11).
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Fig. 2.11 Simplified architec-
ture of FPGA
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Design process oriented on FPGA is very complex. First of all, initial SBF should
be transformed in such a manner, that each subfunction can be implemented using a
single PLB. As a rule, typical PLB has at most 5 inputs [65]. Methods of functional
decomposition are used [82] in order to transform the initial SBF. Resulting Boolean
functions yn ∈ Y are implemented using multilevel circuits. Next, the routing and
placement procedures are applied and sophisticated optimization tasks are solved
during this design step. Let us point out that using FPGAs is impossible without
efficient CAD tools, but fortunately many of them are available [65]. Nowadays,
FPGA microchips are manufactured by several companies, such as Altera, Xilinx,
Actel, Atmel, Lucent and QuickLogic.

Development of different CPLD and FPGA families culminated in the appear-
ance of a system-on-a-programmable chip (SoPC) [65, 79] with several hundred
millions of transistors [52]. Modern SoPCs include tools for implementation of ar-
bitrary logic (PAL, PLA or FPGA) and system memory (dedicated PROM or RAM
blocks) with microprocessors. They are characterized by large variety of architec-
tures and their progress can be seen on the Web-sites of corresponding industrial
companies.

The most important conclusion following from this short analysis is that modern
FPLDs include several tools for implementation of arbitrary logic represented in the
SOP form (PAL, PLA, FPGA) and of memory blocks suitable for implementation of
tabular functions (PROM, RAM). It leads us to conclude that the CMCU structure
perfectly fits to modern logical elements. The problems of hardware optimization
are always very important regardless of characteristics of the FPLDs in use. Due to
irregular character of the control unit circuit structure, it cannot be implemented as
IP-cores. In consequence the design process involving control units appears to be a
real bottleneck of modern system design. The CMCU have some features of both
FSM and MCU. Hence it would be useful to consider some optimization methods
used in case of the control units with FPLDs .

2.2 Optimization of microprogram control units

The principle of microprogram control was proposed in 1951 [100,101]. Micropro-
gramming was widely used in computers starting from 1964, when IBM announced
the System/360 [29,44,70,74,95]. After spectacular success of the IBM System/360
line, microprogramming became main implementation technique for most comput-
ers. Very fast and very simple computers were the only exception. This situation
lasted for about 20 years and, for example, practically all models of the IBM/370
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and all models of the DEC PDP-11 (aside from the PDP-11/20) were micropro-
grammed. The DEC VAX 11/780 can be viewed as a peak of the microprogramming
era. It appeared in 1978 and included 4K read-only control memory with 96 bits per
word and additional 1K read/write words were available for the end user [17]. The
analysis of early microprocessors shows that some models were microprogrammed
(for example, Intel 8080 and Zilog Z80), and some were hardwired (for example,
MC6800) [8]. The development of semiconductor technology stimulated present
situation, in which the principle of microprogram control is still used in computers,
but only few modern computers use microprogramming for implementation of their
instruction sets [89]. Microprogramming is still used in different Intel-86 compati-
ble microprocessors like the Pentium 4 and AMD Athlon [89]. On the other hand,
all RISC microprocessors are hardwired [89], as well as recent processors for IBM
System/390 [25]. Nevertheless, we can still use microprogramming to implement
control units of all digital systems.

Basic optimization methods for MCU were developed in the 1970s and 1980s
[6–8, 15, 17, 50, 54, 89], but are still discussed today [5, 17]. Formal methods of
MCU design can be found, for example, in [5, 15]. One of the main goals of MCU
optimization is to obtain better performance of the controlled digital systems. To
achieve this goal, the time of cycle and/or the number of cycles needed to execute
the control algorithm should be reduced. The second goal is reduction of control
memory size. One solution of this problem is the length (bit capacity) reduction of
control words used for implementation of particular microprogram. Let us discuss
the second problem, because it is still of great importance, even after the appearance
of CPLDs and FPGAs.

One of the important factors, which affected the control word length, is the orga-
nization of microinstruction operational part. There are three main operational part
organization principles [17]:

• one-hot encoding of microoperations ;
• binary encoding of collections of microoperations;
• encoding of the fields of compatible microoperations.

Let us discuss application of these methods using an example of the MCU S4

with the following collections of microoperations in the interpreted control algo-
rithm: Y1 = /0, Y2 = {y7}, Y3 = {y1,y4,y6}, Y4 = {y2}, Y5 = {y1,y2,y4,y6}, Y6 =
{y2,y5,y6,y8}, Y7 = {y3,y8}, Y8 = {y3,y6,y8}, Y9 = {y3,y7,y9}, Y10 = {y7,y9,y5},
Y11 = {y1,y7} Thus, the control algorithm implemented by MCU S4 has the fol-
lowing parameters: number of microoperations N = 9 and number of collections of
microoperations Q = 11.

In case of one-hot encoding of microoperations the bit capacity of the operational
part of microinstructions is equal to

m1 = N. (2.11)

It means that the microoperation yn corresponds to the element vn (one bit of the
control memory output word) of the set of encoding variables V (Fig. 2.12).
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Fig. 2.12 Organization of op-
erational part of microinstruc-
tions with one-hot encoding
of microoperations y1

v1 v2 vN

y2 yN

Main advantage of this approach, in comparison with other operational part orga-
nizations, is maximal flexibility of microprogramming. It means that any modifica-
tion of the microprogram is reduced to the modification of control memory content.
Let us point out that appearance of reprogrammable FPLD reduces the significance
of this factor. Besides, this method is characterized by maximum performance of
the controlled digital system. The main drawback of such organization is maximal
size of control memory and its inefficient usage because the following condition is
always satisfied

max(|Y1|, . . . , |YQ|) � N. (2.12)

This method can be used only when minimal cycle time is accepted as the control
unit design criterion.

For binary encoding of collections of microoperations, the number of encoding
bits is equal to

m2 = 	log2 Q
. (2.13)

Each collection Yq ⊆ Y corresponds to a binary code K(Yq) with m2 bits. Ele-
ments of a set V are used for this encoding. Generation of microoperations yn ∈ Y
is executed by additional circuit CFO, including decoder DC and coder CD (Fig.
2.13). The decoder DC generates some variables Bq corresponding to the codes of
collections K(Yq):

Bq =
m2∧
i=1

vli
i (q = 1, . . . ,Q). (2.14)

In (2.14) variable li ∈ {0,1} represents the value of bit i of the code K(Yq), where
v0

i = v̄i, v1
i = vi(i = 1, . . . ,m2). The coder CD generates Boolean functions

yn =
Q
∨

q=1
CnqBq(n = 1, . . . ,N), (2.15)

where Cnq is the Boolean variable, equal to 1 iff yn ∈ Y .

Fig. 2.13 Generation of mi-
crooperations by CMO
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Application of this organization permits to minimize the length of control word,
but the performance of such MCU is reduced in comparison with MCU with one-
hot encoding, due to the existence of additional system 〈DC,CD〉. This drawback
can be partially eliminated, if the encoding of collections Yq ⊆Y is executed in such
a manner, that each Boolean function for each microoperation yn ∈Y is represented
by one term of the SOP (2.15) [17].

In case of MCU S4 we have m2 = 4 and the following SOPs: y1 = B2 ∨B5 ∨B11;
y2 = B4 ∨B5 ∨B6; y3 = B7 ∨B8 ∨B9; y4 = B3 ∨B5; y5 = B6 ∨B10; y6 = B3 ∨B5 ∨
B6 ∨B8; y7 = B2 ∨B9 ∨B10 ∨B11; y8 = B6 ∨B7 ∨B8; y9 = B9 ∨B10. Let us encode
the collections Yq ⊆ Y , as shown in the Karnaugh map of Fig. 2.14.

Fig. 2.14 Encoding of collec-
tions of microoperations for
MCU S4
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Taking into account the don’t care input assignments shown as "∗", the system of
microoperations yn ∈ Y of MCU S4 has the form: y1 = v2v̄3; y2 = v̄1v4; y3 = v3v̄4;
y4 = v̄1v2v̄3; y5 = v3v4; y6 = v̄1v2; y7 = v1; y8 = v̄1v3; y9 = v1v3. In this particular
case the system 〈DC,CD〉 is represented by an array of AND-gates and provides
decrease of hardware amount and better performance of the control unit.

This encoding problem can be solved using well-known algorithm ESPRESSO
[64, 68]. Let us point out that this encoding algorithm can be modified to meet par-
ticular properties of logical elements used to implement the circuit, and in conse-
quence:

• when using PLA, encoding is executed in such a manner, that SOP for each
formula (2.15) has at most 	q/t
 terms, where t,q is the number of PLA outputs
and terms respectively;

• when using PAL, encoding is executed in such way that SOP for each formula
(2.15) has at most q terms, where q is the number of terms in PAL macrocells;

• when using FPGA, encoding is executed in such a manner, that each microoper-
ation yn ∈ Y can be implemented using one LUT element.

Let us point out that PROM can be used to implement CMO circuit. In this case,
the system of microoperations should be represented in tabular form.

The method of encoding of the fields of compatible microoperations represents
some compromise between hardware and performance in comparison with two ap-
proaches mentioned above. It is based on the partition of set Y into equivalence
classes B1, . . . ,BI , where each class includes only the microoperations, which are
not executed concurrently. It means that microoperations from one class always be-
long to different collections Yq ⊆ Y . Each block Bi ∈ ΠY , where ΠY is the partition
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of the set Y , corresponds to the field Y i in the microinstruction format. Bit capacity
ri of the field Y i is determined as

ri = 	log2(|Bi|+1)
 (i = 1, . . . , I). (2.16)

Let us point out that 1 in (2.16) is added to cover the case, when microoperations
from a given class do not belong to the particular collection Yq ⊆ Y . Each microop-
eration yn ∈ Bi corresponds to one binary code K(yn) having ri bits (i = 1, . . . , I).
The number of elements in the set of encoding variables V is given as

m3 =
I

∑
i=L

ri. (2.17)

The microoperations belonging to class Bi ∈ ΠY are generated by correspondent
individual decoder DCi (Fig. 2.15).

Fig. 2.15 Organization of
MCU with encoding of the
fields of compatible microop-
erations Y1
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The main goal of finding partition ΠY is the minimization of parameter (2.17).
This problem was formulated in [86], were this method was proposed. First solution
of this task was reduced to the classical task of partition with minimal cost. There
are many different solutions of the same problem, which can be found, for example,
in [17].

For the case of MCU S4, solution gives the partition ΠY = {B1, . . . ,B4}, where
Y 1 = {y1,y3,y5, Y 2 = {y2,y7}, Y 3 = {y4,y8,y9}, Y 4 = {y6}. Result of the microop-
eration encoding is shown in Table 2.1.

Analysis of this table shows that the CMO of MCU S4 includes two decoders,
because they are not needed for the fields B2 and B4 (Fig. 2.16).

Table 2.1 Encoding of the fields of compatible microoperations of MCU S4

B1 Y 1 B2 Y 2 B3 Y 3 B4 Y 4
v1 v2 v3 v4 v5 v6 v7

0 0 /0 0 0 /0 0 0 /0 0 /0
0 1 y1 0 1 y7 0 1 y4 1 y6
1 0 y3 1 0 y7 1 0 y8 – –
1 1 y5 1 1 ∗ 1 1 y9 – –
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Fig. 2.16 Organization of
CMO with encoding of the
fields of compatible microop-
erations for MCU S4 y1
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This approach provides less flexibility than the strategy of one-hot encoding of
microoperations, because any modification of the sets Yq ⊆ Y may violate the com-
patibility for some fields of microinstruction. In this case some redesign of CMO
is needed. Let us point out that modern FPLD provide very easy way to solve this
problem due to their reprogramming ability. If the partition is performed in such
a way that each field of microinstruction is assigned to one functional unit of the
data-path (for example, microinstruction includes fields of adder, shifter, and so
on), resulting control unit is more flexible. In this case modification of the system of
microoperations does not violate the compatibility of microoperations. Disadvan-
tage of this approach is the increase of operational part length, as compared with
classical solutions [17].

The method of initial GSA verticalization is proposed in [17]. In this case all
microoperations of GSA are compatible and the operational part of each microin-
struction includes only one field having the bit capacity

m4 = 	log2(N +1)
. (2.18)

It permits to use only one decoder DC0 for implementation of the CMO. This
decoder has m4 inputs and N + 1 outputs (Fig. 2.17). The purpose of additional
signal y0 will be explained later.

Fig. 2.17 Organization of
CMO for MCU with full com-
patibility of microoperations y0
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In the microprogramming theory a microprogram is called a vertical micropro-
gram if each its microinstruction includes one microoperation only. Similarly, let a
GSA Γ be called a vertical GSA (VGSA), if condition (2.19) holds for each vertex
bq ∈ B1, and

|Y (bq)| ≤ 1. (2.19)

Here Y (bq) ⊆ Y is the collection of microoperations from bq ∈ B1. As a rule, an
arbitrary GSA Γ is not a vertical GSA, and should be transformed, to make all
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microoperations compatible. This transformation is called a verticalization of GSA
[17] and gives the vertical GSA V (Γ ) on the base of GSA Γ .

The verticalization is reduced to splitting the vertex bq ∈ B1 into nq = |Y (bq)|
operator vertices b1

q, . . . ,b
nq
q , corresponding to the following condition:

|Y (bi
q)| = 1 (i = 1, . . . ,nq);

Y (bi
q)∩Y (b j

q) = /0 (i, j ∈ {1, . . . ,nq}, i �= j);
Y (bi

q)∪ . . .∪Y (bnq
q ) = Y (bq).

(2.20)

Operator vertices of GSA Γ are transformed one-by-one and the following pro-
cedure is executed for each bq ∈ B1 [17]:

1. If |Y (bq)| ≤ 1, then go to step 7.
2. Exclude the arc 〈bt ,bq〉 from the set of arcs E and add the arc 〈bt ,b1

q〉 to the set
E.

3. Include the arcs 〈bi
q,b

i+1
q 〉, where i = 1, . . . ,nq −1, to the set E.

4. Exclude the arc 〈bq,bn〉 from the set E and include the arc 〈bnq
q ,bn〉 to the set E.

5. Exclude the vertex bq from the set of operator vertices B1 and include the vertices
b1

q, . . . ,b
nq
q to the set B1.

6. Include a unique microoperation yn ∈ Y (bq) to each vertex bi
q(i = 1, . . . ,nq) in

order to satisfy condition (2.20).
7. Ending the vertex bq ∈ B1 transformation.

Applying this procedure to the operator vertex b3 of GSA Γ (Fig. 2.18a) we get
a subgraph of vertical GSA V (Γ ) (Fig. 2.18b). The purpose of additional signal y0

will be discussed later.
It follows from Fig. 2.18b, that microoperations y2,y3,y4 are generated in series.

In consequence, corresponding actions of the data-path are also executed in series
and performance of the system is reduced. Besides, data dependence [17] between
microoperations yn ∈Y (bq) may occur and they could not be executed consequently.
For example, if there are microoperations y1,y2 ∈ Y (b2), such that y1#S := A + B,
y2#A := S&C, due to data dependence, any execution order of these microoperations
(〈y1,y2〉 or 〈y2,y1〉) leads to faulty calculations.

x3
1 0

b4

y3 b2

b)a)

y1 b1

y2 y3 y4 b3

y1
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y3
b2

y2

b3

y3
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y4y0

b3

x3
1 0

b4

1 2 3

Fig. 2.18 Subgraph of GSA Γ before a and after b verticalization
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The drawbacks mentioned above can be eliminated, if additional register RA is
introduced between the control unit and data-path [17]. Microoperations yn ∈Y (bq)
are loaded into this register one-by-one; special signal y0 is generated simulta-
neously with generation of the microoperation from vertex b

nq
q , initializing the

data path operation. The tools of independent synchronization, available in mod-
ern FPLD, allow very easy implementation of this mode [65].

Let t1, t2 be average execution time of the algorithm represented by GSA Γ and
VGSA V (Γ ) respectively, t3, t4 – the cycle time of data-path and MCU. Let each
collection Y (bq) include k microoperations. Then k cycles of MCU are executed, in
average, for each cycle of the data-path. Parameters t1and t2 can be calculated as
follows:

t1 = n(t3 + t4);
t2 = n(t3 + kt4),

(2.21)

where n is an average number of digital system cycles needed to execute an algo-
rithm represented by GSA Γ . As a rule, t3 > t4, let t3 = mt4. Let us find the relation
between average times of algorithm execution for digital systems with control algo-
rithms represented by GSA Γ and VGSA V (Γ ) correspondingly. This relation takes
the form:

η = t1
t2

= n(mt4+t4)
n(mt4+kt4) = m+1

m+k . (2.22)

As can be seen in Fig. 2.19, where diagram of (2.22) is shown, if the control unit
operation speed is greater, in comparison with the data-path operation speed (greater
m), and if less microoperations in average each operator vertex includes (smaller k),
then smaller is the digital system performance decrease, due to verticalization of the
initial GSA Γ .

Fig. 2.19 Diagram of relation η
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One method of reducing microinstruction length is the implicit representation of
logical conditions [15]. In this case, code K(xl) of corresponding logical condition
to be checked is placed in some dedicated bits of microinstruction address. This
step allows excluding the field FX from microinstruction format. For example, the
modified MCU structure with compulsory microinstruction addressing is shown in
Fig. 2.20.

Operation principle of the MCU of Fig. 2.20 can be explained very easily. Most
important is the fact that address register can be used to store some additional infor-
mation. We use this property for optimization of the CMCU basic structure.
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Fig. 2.20 Organization of MCU with compulsory microinstruction addressing and implicit repre-
sentation of logical conditions

Many optimization methods are oriented towards checking more than one logical
condition during one MCU operation cycle [17]. They are not interesting for us,
because the FSM with microinstruction addressing, in case of CMCU, can check an
arbitrary number of logical conditions xl ∈ X during one operation cycle.

2.3 Optimization of Mealy finite state machines

Synthesis methods, used for finite state machines with FPLDs, are very similar to
the well known methods of combinational circuit design. Design of the FSM in-
volves however execution of two specific steps, namely minimization of the num-
ber of states and the state assignment (state encoding). Successful solution of these
problems permits optimizing such characteristics of control unit as the chip area
occupied by FSM logic circuit, maximal frequency of its operation, and so on. Nu-
merous methods of state minimization can be found in the literature, for example,
in [68,94]. We do not discuss them in our book, assuming that the FSM designed by
means of the marked GSA have minimal possible number of states. Let us charac-
terize briefly some methods of state assignment. This domain of computer science
is explored for more than 40 years [11, 39, 94]. Modern state assignment methods
are oriented towards the following goals:

• decrease of the chip area, occupied by control unit logic circuit [14,21,30,40,41,
43, 48, 49, 73, 77, 88, 94, 98],

• increase of the control unit performance [31, 32, 40, 43, 49, 87, 99],
• decrease of the consumed power [10, 26, 28, 51, 71, 99],
• increase of the circuit testability [37, 69].

Logical elements, used to implement FSM logic circuit have significant influ-
ence on the state assignment [55]. If the CPLD chips based on PAL or PLA macro-
cells are used to implement the FSM logic circuit, corresponding state assignment
methods are oriented towards two–level minimization of the FSM combinational



2.3 Optimization of Mealy finite state machines 43

part [4, 11, 12, 18, 34–36, 56–63, 78, 81, 90–94]. If, on the other hand, combina-
tional part of FSM is implemented with FPGAs, corresponding state assignment
methods involve the multi-level minimization [20, 47, 49, 53, 75, 76, 82, 85]. At
present, the state assignment methods, based on symbolic minimization of sys-
tems of Boolean functions representing FSM combinational part are the most pop-
ular [37, 40, 67, 68, 97]. Besides, genetic algorithms are widely used to solve this
problem [27, 28, 42, 96, 102].

Many modern CAD systems include special state encoding tools. The most pop-
ular among them, SIS [87, 88], is the developed version of the well known MIS II
system [22], and uses two state assignment algorithms [68]:

• algorithm NOVA, oriented on two-level FSM implementation;
• algorithm JEDI, oriented on multi-level FSM implementation.

There are also such well-known systems as ASYL [83, 84], which is oriented to
FSM circuit implementation with PLA and PROM, and the systems MUSTANG
[38] and MUSE [40], oriented to FPGA. Some original optimization and synthesis
methods are used in the systems DOMAIN [64], oriented to FPGA, and ZUBR
[94], oriented to CPLD with PAL macrocells.

Let us discuss general approaches used to organize Mealy FSM logic circuits.
Single-level combinational circuit (Fig. 2.7) corresponds to the single-level Mealy
FSM logic circuit implementation (Fig. 2.21), which is a generalization of different
structures described in [12, 15, 90, 94].

Fig. 2.21 Single–level Mealy
FSM logic circuit implemen-
tation
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In this figure Xu ⊆ X is a set of logical conditions, used as literals of the SOP
for Boolean functions Y u ⊆ Y and Φu ⊆ Φ , generated by microchip PLDu (u =
1, . . . ,U). Functions Y u belong to a set of microoperations Y ; functions Φu to a set
of input memory functions Φ . Codes of FSM states are kept in register RG and the
set of state variables T is used to represent these codes.

For example, if PLAs are used to implement the single-level FSM circuit, a par-
tition ΠF of the set of SOP is to be found. This partition should include minimal
number of block terms E1, . . . ,EU , where each block satisfies the following inequal-
ities [12]:

|Xu|+R ≤ S;
|Y u|+ |Φu| ≤ t;

|Eu| ≤ q.
(2.23)
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Constraints (2.23) should be modified according to the properties of logical ele-
ment in use [94]. All these methods are based on using special partitions, which can
be found in [68].

Blocks PLD1, . . . ,PLDU form the combinational part of FSM, which is very often
called a P block. The single-level FSMs are sometimes called P FSMs [90]. Main
advantage of the P FSMs is very good performance, but it is sometimes accompanied
by very high redundancy of logical elements in the FSM circuit, because different
blocks can have the same input and output information [15].

There are many methods applied in order to minimize the hardware amount of
Mealy FSM logic circuits [15, 90, 94]. Let us discuss some of them in detail.

Replacement of logical conditions. Let the transitions from state am ∈ A depend
on logical conditions xl , of a set X(am) with Lm elements (m = 1, . . . ,M). As a rule,
condition Lm � L holds for real control algorithms [12]. If G = max(L1, . . . ,LM),
we create a new set of variables P = {p1, . . . , pG}. Let us replace the set X by the set
P. For this end, for each state am ∈ A we replace variable xl ∈ X(am) by the variable
pg ∈ P, such that if Am = 1, then pg = xl (g = 1, . . . ,G; l = 1, . . . ,L). It means that
we have the following equation

pg =
M
∨

m=1

L
∨

L=1
CmlAmxl(g = 1, . . . ,G), (2.24)

where Cml is a Boolean variable, equal to 1 iff variable pg ∈ P replaces the variable
xl ∈ X in the state am ∈ A.

After this change of variables we can replace the systems

Y = Y (T,X), (2.25)

Φ = Φ(T,X) (2.26)

by the following ones

P = P(T,X), (2.27)

Y = Y (T,P), (2.28)

Φ = Φ(T,P). (2.29)

Systems (2.27) – (2.29) describe the so-called MP Mealy FSM [12], having the
structure shown in Fig. 2.22. Here the block M implemented with multiplexers gen-
erates functions (2.27), and the block P implemented with PLDs generates functions
(2.28) – (2.29).

It is obvious that multiplexers of the block M can be implemented using PLA,
PAL or FPGA. Different methods of hardware optimization for the block M are
known [15]. For example, in case of optimal state encoding, information about log-
ical conditions to be checked is coded in the leftmost bits of state codes. The FSMs
based on this principle are called MPC Mealy FSM. Second approach is connected
with transformation of state codes into the codes of logical conditions. The FSM
based on this principle is called a MPL Mealy FSM.
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Fig. 2.22 Organization of MP
Mealy FSM
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Besides, optimization of the block M can be executed due to the transformation
of initial GSA in such a way, that each FSM state satisfies the following condition

|X(am)| ≤ i. (2.30)

This approach leads to the families of MiP–, MiPC– and MiPL Mealy FSMs, where
i = 1, . . . ,G, where the value of G depends on characteristics of the initial GSA.

Let us point out, that replacement of logical conditions makes sense, when PLDs
in use have restricted number of inputs.

Encoding of collections of microoperations. System (2.25) corresponds to one-
hot encoding of microoperations. Let us encode each collection of microoperations
Yq ⊆ Y (q = 1, . . . ,Q) by the binary code K(Yq) with R1 = 	log2 Q
 bits and use the
variables zr ∈ Z, where |Z| = R1. In this case, Mealy FSM can be implemented as
the PY Mealy FSM (Fig. 2.23).

Fig. 2.23 Organization of PY
Mealy FSM
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In PY Mealy FSM, block P implements input memory functions represented by
(2.26) and the system of encoding variables

Z = Z(T,X). (2.31)

A block Y implements the system of microoperations, represented as

Y = Y (Z). (2.32)

This approach can be applied for all types of FPLDs and the best way to imple-
ment the block Y is to use memory blocks, such as PROMs or RAMs.

Encoding of the fields of compatible microoperations. This method is the same
as the one used in case of MCU. Its application, in case of Mealy FSM, gives the
PD Mealy FSM, shown in Fig. 2.24.
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Fig. 2.24 Organization of PD
Mealy FSM
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In the PD Mealy FSM, block P implements functions (2.26), (2.31), and the block
D with decoders generates microoperations represented by (2.32). Decoders of the
block D can be of course implemented using any PLDs.

Let I be the minimal number of the classes of compatible microoperations, which
can be found using classical methods [17]. In this case, block D includes I decoders.
The number of decoders can be reduced using the transformation of initial GSA
Γ [4, 15], permitting to reduce the number of compatibility classes in comparison
with this fixed value of I. The extreme case of this transformation is the vertical
GSA V (Γ ), with only one class of compatible microoperations (I = 1). Thus, trans-
formation of GSA Γ leads to PD1–, PD2–, . . . , PDI– Mealy FSM with different
hardware amounts.

Encoding of structure table lines. This method is based on encoding of each
line of the structure table Fh by a binary code K(Fh) with R1 = 	log2 H
 bits; using
variables zr ∈ Z [90]. We obtain the PH Mealy FSM (Fig. 2.25), in which the block
P implements system (2.31), and block H systems (2.32) and

Φ = Φ(Z). (2.33)

Fig. 2.25 Organization of PH
Mealy FSM
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Application of PROMs or RAMs chips offers the simplest way to implement the
block H.

Non-standard representation of terms. According to [13, 15], the terms corre-
sponding to the structural table lines can be represented as pairs 〈am,as〉, where am

is a current state of FSM and as is next state (am,as ∈ A). This approach permits to
simplify block CMO and leads to PR Mealy FSM (Fig. 2.26).

Here, the block P implements the system (2.26), register RG1 keeps the code
of next state, represented by state variables Tr ∈ T , register RG2 keeps the code of
current state, represented by state variables vr ∈ V (|T | = |V | = R), and block R
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Fig. 2.26 Organization of PR
Mealy FSM
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generates the functions
Y = Y (V,T ). (2.34)

Comparison of systems (2.25) and (2.34) shows that variables V replace variables
X in (2.34). As R � L, this replacement allows decreasing of hardware amount in
comparison with the equivalent P Mealy FSM. Besides, the block P of PR Mealy
FSM is not used to generate additional variables Z, which are formed by PY– or PD
Mealy FSM. It gives the reduction of hardware amount, in comparison with FSMs
mentioned above.

If the terms, corresponding to lines of structure table, are represented by pairs
〈K(am),K(Yq)〉, we obtain the PT Mealy FSM (Fig. 2.27) [15].

In this case, the block P implements functions (2.31), block Y generates microop-
erations Y represented by (2.32), and block H implements functions Φ , represented
as:

Φ = Φ(T,Z). (2.35)

Fig. 2.27 Organization of PT
Mealy FSM
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Comparison of systems (2.26) and (2.35) shows that in case of PT Mealy FSM,
variables Z replace variables X in the system Φ . Since |Z|� L, this approach allows
reduction of hardware amount, in comparison with the equivalent P– and PY Mealy
FSMs.

Transformation of object codes. This approach, which can be found in [15,16],
defines the internal states and collections of microoperations as objects of FSM.
Some additional variables vr ∈V may be needed to express one object as a function
of another object. This approach gives the PF Mealy FSM of the first type (Fig.
2.28) or second type (Fig. 2.29), denoted as PF1 and PF2 Mealy FSM respectively.

T = T (V,Z). (2.36)

It is clear that PF1 Mealy FSM can be considered as the development of PR
Mealy FSM and PF2 Mealy FSM as some development of PT Mealy FSM. Let us
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Fig. 2.28 Organization of
PF1 Mealy FSM
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point out that blocks P of PF1– and PF2 Mealy FSMs generate more output variables
than their analogies, but their blocks R and H have smaller number of inputs.

Combined application of the two methods explained above leads to the three- and
four-level organizations of Mealy FSM logic circuits [15]. All possible structures of
Mealy FSM logic circuits are shown in Table 2.2.

Table 2.2 Multilevel organizations of Mealy FSM

Levels A B C D

Blocks M1 P H 2 Y 1
M1C R 2 D1 1

M1L Y 1
...

... D1 1 DI 1

MG

...
MGG DI 1
MGL

Generation of multilevel Mealy FSM logic circuit structures can be interpreted
as a word-formation process [15], where the level A is used as a prefix of word S,
the level B as its base, the level C either as its suffix or ending, and the level D as
its ending. It is clear that the base should always be present in a word, but other
attributes can be absent. The digit 1 in Table 2.2 means that a given block is treated
as ending of a word and digit 2 means that a given block is treated as its suffix. For
example, the word S = M1 ∗P ∗H ∗Y determines Mealy FSM with replacement of
logical conditions and initial GSA transformation. Each transition depends here on
at most one logical condition. Encoding of lines of the structure table, encoding of
collections of microoperations and organization of the FSM is shown in Fig. 2.30.
In this M1PHY , Mealy FSM variables from a set Z encode the structure table lines
and variables from a set V encode collections of microoperations Yq ⊆ Y .
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Fig. 2.30 Organization of
M1PHY Mealy FSM
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Let us form Table 2.3 to calculate the total number of possible organizations of
FSM circuit. Let Vj be the number of certain structures of FSM circuit with j levels
and V0 be the total number of possible organizations of the FSM circuit with j levels
( j = 1, . . . ,4). It can be found that Table 2.3 represents

V0 = V1 + . . .+V4 = 4+18G+ I +9IG (2.37)

different structures of the Mealy FSM logic circuit organizations. It can be found in
[11] that for the FSM of average complexness we have I = G = 6 and in consequence
expression (2.37) gives V0 = 442 different structures of Mealy FSM logic circuit
organizations.

If the interpreted GSA Γ is a linear GSA, the FSM logic circuit hardware amount
can be reduced due to the use of a counter instead of a register to keep the FSM state
codes [15]. This control unit is called C FSM [15]. Design process of the C FSM
involves generation of some linear sequences of states αg = 〈ag1 , . . . ,agFg

, where a
transition 〈agi ,agi+1〉 (ag,agi ∈ A) exists for any pair of adjacent components of a
vector (i = 1, . . . ,Fg).

Table 2.3 Estimation of total number of Mealy FSM logic circuit organization

Single level k1 Two levels k2 Three levels k3 Four levels k4

P 1 MgP G MgPH G MgPHY G
MgCP G MgCPH G MgCPHY G
MgLP G MgLPH G MgLPHY G

PH 1 MgPR G MgPHDi IG
PR 1 MgCPR G MgCPHDi IG
PY 1 MgLPR G MgLPHDi IG
PDi I MgPY G MgPRY G

MgCPY G MgCPRY G
MgLPY G MgLPRY G
MgPDi IG MgPRDi IG

MgCPDi IG MgCPRDi IG
MgLPDi IG MgLPRDi IG

V1 = 1 V2 = 3+3G+ I V3 = 9G+3IG V4 = 6G+6IG

Obviously, the linear sequences of states are some analogues of operational linear
chains of CMCU, but there is one difference: conditional transitions between states
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of such linear sequences are possible. Design of the C Mealy FSM requires special
state encoding, for which the following condition holds:

K(agi+1) = K(agi)+1, (2.38)

where i = 1, . . . ,Fg, g = 1, . . . ,G, G is the total number of sequences for GSA Γ .
Let a symbol Pc stand for the Mealy FSM with counter CT keeping state codes.
Organization of Pc Mealy FSM is shown in Fig. 2.31.

Fig. 2.31 Organization of Pc
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Block P generates functions (2.25) – (2.26) using a special signal

Inc = f (T,X), (2.39)

which serves to increment the content of counter CT in order to obtain mode (2.38).
All optimization methods mentioned above can be used to reduce the hardware
amount of the C FSM logic circuit. In consequence we can double the value of
V0.

Such variety of Mealy FSM logic circuit organizations requires the development
of formal methods used to find the structure with minimal hardware amount and
performance corresponding to technical requirements of particular task. Let us point
out that solution of this problem does not exist up to now.

2.4 Optimization of Moore finite state machines

In the simplest case a Moore FSM can be implemented as a single-level sequential
device (Fig. 2.32), called by analogy to the single-level Mealy FSM a P Moore
FSM [15, 90].

Blocks PLDu implement input memory functions Φu, belonging to a set Φ , and
output functions Y u, from a subset Y0 of a set Y (u = 1, . . . ,U). Blocks PROM j im-
plement output functions YU+ j ( j = 1, . . . ,J), belonging to the complement of the
set Y0 up to the set Y . As in case of P Mealy FSM, this circuit organization is charac-
terized by maximal performance due to maximal hardware amount. Optimization of
Moore FSM logic circuits can be realized using some methods discussed in Section
2.3, as well as some specific approaches based on existence of pseudoequivalent
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Fig. 2.32 Single-level Moore FSM implementation with PLD

states [13]. Let us point out that classes of pseudoequivalent states are equivalent to
the input constraints [31, 67, 68, 98] used, for example, in the program NOVA [99].

There are three main methods used to reduce the hardware amount of Moore
FSM logic circuit. They are based on partition of the set of FSM states A, into the
classes of pseudoequivalent states with I blocks, considered previously in [14, 15].
We have:

• optimal state assignment;
• transformation of state codes into codes of classes of pseudoequivalent states;
• transformation of initial GSA.

The principle of optimal state encoding was already discussed in Section 1.2. Ap-
plication of this method gives the PEY Moore FSM of Fig. 2.33. Let us point out
that the structures of P and PEY Moore FSM are identical.

Fig. 2.33 Organization of
Moore FSM with optimal
state encoding

PE

Start

Clock

Y

RG

X

T

Y

Φ

The block PE of Fig. 2.33 implements the system Φ specified by (2.26), and
block Y corresponds to

Y = Y (T ). (2.40)

Obviously, some functions yn ∈ Y can be implemented using free resources of
the block P, but in order to simplify our discussion, this fact is not shown in Fig.
2.33.

Transformation of state codes into codes of the classes of pseudoequivalent
states can be used when optimal encoding is not possible for some classes Bi ∈ ΠA.
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Assume that for some Moore FSM S we have got the following partition: ΠA =
{B1, . . . ,B4}, B1 = {a1}, B2 = {a2,a3,a4}, B3 = {a5,a6,a7, B4 = {a8}. Now R = 3
and Karnaugh map (Fig. 2.34) shows the result of optimal state encoding for the
Moore FSM S.

Fig. 2.34 Optimal state en-
coding for the Moore FSM S
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It follows from the Karnaugh map that class B1 corresponds to the code K(B1) =
000, class B2 is split by classes B1

2 = {a2} with code K(B1
2) = 001 and B2

2 = {a3,a4}
with code K(B2

2) = 01∗. The class B3 is split by classes B1
3 = {a5} with code

K(B1
3) = 100 and B2

3 = {a6,a7} with code K(B2
3) = 1 ∗ 1 and the class B4 cor-

responds to code K(B4) = 110. Let Hi be the number of transitions from state
am ∈ Bi (i = 1, . . . , I) and assume that in case of Moore FSM S we have: H1 =
3,H2 = 6,H3 = 4, H4 = 2. In consequence, the structure table of an equivalent
Mealy FSM has H0 = 15 lines. Transformed structure table of the Moore FSM S
has H = H1 + 2H2 + 2H3 + H4 = 25 lines, which means that this result is far from
optimum.

Let us encode each class Bi ∈ ΠA by a binary code K(Bi) with R0 = 	log2 I
 bits
and use variables τr ∈ τ for the encoding, where |τ| = R0. Now, Moore FSM can be
implemented as PT Y Moore FSM [15], where code transformer TC implements the
transformation of state codes into codes of the classes of pseudoequivalent states
(Fig. 2.35).

In case of PTY Moore FSM, block PT implements the following input memory
functions

Φ = Φ(τ,X), (2.41)

Fig. 2.35 Organization of
Moore FSM with transforma-
tion of state codes
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Block Y implements (2.39), and TC implements the system

τ = τ(T ). (2.42)
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This approach allows reduction of the number of lines of the Moore FSM struc-
ture table down to H0.

In case of Moore FSM S, there are four equivalence classes (I = 4) and there-
fore R0 = 2, τ = {τ1,τ2}. Let these classes be encoded as follows: K(B1) =
00, . . . ,(B4) = 11. Now, Table 2.4 represents the behavior of block TC.

Table 2.4 Table of code transformer of the Moore FSM S

am K(am) Bi K(bi) τm m am K(am) Bi K(bi) τm m

a1 000 B1 00 – 1 a5 100 B3 10 τ1 5
a2 001 B2 01 τ2 2 a6 101 B3 10 τ1 6
a3 010 B2 01 τ2 3 a7 110 B3 10 τ1 7
a4 011 B2 01 τ2 4 a8 111 B4 11 τ1τ2 8

In this table, column τm contains variables τr ∈ τ , equal to 1 in code K(bi), where
am ∈ Bi. From this table we find system (2.42), in which; for example, τ1 = A5 ∨
. . .∨A8 = T1. Let us point out that minimization of system (2.42) is needed only for
the implementation using PAL, PLA or FPGA macrocells.

This approach provides minimal hardware amount of the block P, but some FPLD
resources are needed to implement the block TC. Let us point out that introduction
of TC does not deteriorate FSM performance in comparison with PEY Moore FSM,
because variables τr ∈ τ are generated concurrently with microoperations yn ∈ Y .

Method of initial GSA transformation permits to get an FSM logic circuit with
average characteristics in comparison with two other methods discussed in this sec-
tion [15]. Let us consider the subgraph of GSA Γ (Fig. 2.36a), corresponding to
some class B2 ∈ ΠA of Moore FSM S.

x1
1 0

b4

y3 b2

a)

y1 b1 y3 b3

x2
1 0

b5

a3 a4 a5

x1
1 0

b4

y3 b2

b)

y1 b1 y3 b3

x2
1 0

b5

a3 a4 a5

Ø b6

a6

Fig. 2.36 Subgraph of GSA Γ before a and after b transformation

The class B2 = {a3,a4,a5} corresponds to the subtable of FSM structure table
including H2 = 3 · 3 = 9 lines. Let us introduce vertex b6 (Fig. 2.36b). Now, the
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class B2 corresponds to a subtable of FSM structure table having H2 = 3 ·1 = 3 lines,
and state a6 corresponds to a subtable with H6 = 3 lines. Next, the number of FSM
transitions corresponding to the subgraph of GSA Γ is reduced to ΔH = H2−H6 = 6
lines. Usually, the number of FCM structure table lines is reduced to

ΔH =
I

∑
i=1

Hi(Ki −1) (2.43)

where Hi is the number of transitions from some state am ∈ Bi, Ki = |Bi| (i =
1, . . . , I). This approach leads to PΓ Y Moore FSM with the same logic circuit struc-
ture as in case of PEY Moore FSM given in Fig. 2.33.

Further logic circuit optimization can be reached due to increase the number of
its levels. Let us discus briefly same approaches which make it possible.

Replacement of logical conditions is executed similarly as in case of MP Mealy
FSM and leads to the MPY Moore FSM of Fig. 2.37.

Fig. 2.37 Organization of
MPY Moore FSM
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The hardware amount of block M can be reduced using either a special state
encoding (see Section 2.3), resulting in the MPCY Moore FSM, or generation of
logical condition codes (see Section 2.3), resulting in the MPLY Moore FSM. The
number of inputs in block M can be changed due to the GSA transformation (see
Section 2.3), after which we obtain MgPCY-, MgPLY- or MgPY Moore FSM (g =
1, . . . ,G). All these methods can be applied for each of the PY-, PEY - and PΓ Y
Moore FSMs.

Maximal encoding of collections of microoperations involves introducing a
special transformer TC1 generating codes of microoperation collections with R1 =
	log2 Q
 bits, where Q is the number of collections, obtained from state codes. This
approach gives the PTY Moore FSM.

Encoding of the fields of compatible microoperations involves introducing a
special transformer TC2 converting state codes into codes of the fields of compatible
microoperations. This approach gives the PT D Moore FSM.

In both cases some additional variables from a set Z are used for encoding micro-
operations or their collections. Generalized structure of the Moore FSM is shown
in Fig. 2.38. In case of maximal encoding of collections of microoperations blocks
CMO and TCi represent blocks Y and TC1 respectively. In case of maximal encod-
ing of the fields of compatible microoperations, the blocks CMO and TCi represent
blocks Y and TC2 correspondingly.



2.4 Optimization of Moore finite state machines 55

Fig. 2.38 Generalized struc-
ture of Moore FSM logic
circuit
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Both approaches belong to the class of object transformation methods, where
states are transformed into microoperations.

Encoding of structure table lines has no sense in case of Moore FSM, because
in this case block P generates the input memory functions Φ only.

Transformation of object codes is reduced either to the transformation of bi-
nary codes of microoperation collections and of some additional variables V into
state codes (PYA Moore FSM), or to the transformation of the fields of compatible
microoperations and of additional variables V into state codes (PDA Moore FSM).
The generalized structure of the Moore FSM logic circuit for these cases is shown
in Fig. 2.39.

Fig. 2.39 Generalized struc-
ture of Moore FSM logic
circuit with object transfor-
mation
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Codes of microoperation collections are represented here by variables from a set
Z and block H generates the functions

T = T (V,Z). (2.44)

Block CMO represents either the block Y (PYA Moore FSM), or the block D (PDA

Moore FSM).
Mutual application of optimization methods mentioned above leads to three- and

four-level structures of Moore FSM logic circuits. All possible structures are listed
in Table 2.5.

Comparison of Tables 2.2 and 2.5 leads to the conclusion that implementation
of the Moore FSM logic circuit requires 4 times greater number of structures than
in case of the equivalent Mealy FSM. It is due to the fact that basic level B of the
Moore FSM contains 4 different types of blocks P, whereas the other levels of both
tables have equal number of elements. Transformation of expression (2.37) allows
estimating the number of different structures of Moore FSM logic circuit, which is
equal to:
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Table 2.5 Multilevel structures of Moore FSM logic circuits

Levels A B C D

Blocks M1 P Y 1 Y 1
M1C PE D1 1 D1 1

M1L PT

...
...

... PΓ DI 1 DI 1
MG TC1 2

MGC TC2 2
MGL

V0 = 16+72G+4I +36IG. (2.45)

In case of FSM with G = I = 6, expression (2.45) gives V0 = 1768 different
structures of Moore FSM logic circuit.

Let us point out that this number can be doubled using linear GSA, because in
this case a counter or a register can be used to keep the state codes [15].

2.5 Control unit design with FPLDs

Design is considered here as some process generating detailed specifications, al-
lowing fabricating the target product with specific properties and figures of merit,
such as performance and area. This process can be reduced to repeated decomposi-
tion of the initial object specification into sub-objects. It is accomplished when each
sub-object can be implemented using standard library elements. Each design step
is accompanied by synthesis, which means that an object function is transformed
into its structure. Next design step is the analysis, during which verification of syn-
thesis results is executed. Results of analysis may require repeated synthesis with
optimization of some figures of merit. Let us discuss some types of models, ab-
straction levels and digital system specifications, using some results found in the
literature [65, 68].

Huge complexness of modern digital systems requires application of computer-
aided design (CAD) tools, which help us to represent physical objects by their mod-
els. A circuit model can be viewed as some abstraction describing selected features
of the system, which are sufficient to perform synthesis procedure. There are two
forms of model classification, namely levels of abstraction and views. The following
levels and views are used in models of digital devices:

1. Architectural level, where a device performs some set of operations, such as data
computation or transfer. This level is called a-level.

2. Logic level, where a device evaluates a set of logical functions, such as AND,
OR, NOT. This level is called l-level.
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3. Geometrical level, where a device is represented as a set of geometrical entities,
such as floor plans or layouts. This level is called g-level.

4. Behavioral view describes the device function regardless of its implementation.
This view is called b-view.

5. Structural view describes a model as interconnection of specific components.
This view is called s-view.

6. Physical view describes the device with help of some physical objects, such as
transistors. This view is called p-view.

Models of different levels can be seen under different views. This fact is reflected
in Fig. 2.40, taken from [68]. This representation is often referred as Gajski and
Kuhn Y-chart.

Fig. 2.40 Abstraction levels
and views of digital device
specification
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Synthesis of control units belongs to the logic level of digital system design.
Model of the control unit can be represented either as a finite state machine state dia-
gram, or as a netlist, or as a text using some standard hardware description language
(HDL). In our book we have chosen one of the register transfer level languages,
namely the language of graph-scheme of algorithms, as the tool of initial specifi-
cation of control unit. This language is chosen due to its clearness allowing simple
explanation of particular properties of compositional microprogram control units
design and optimization. The outcome of logic design is the structure specification
of a target circuit, as for example the gate-level netlist.

Analysis of the literature, such as for example [9, 19, 45, 46, 65, 80], shows that
design process used for digital devices is a formalized automatic process oriented
to particular logical elements. As a rule, an object to be designed is specified using
some HDL language, such as VHDL [23, 72] or Verilog [24], or System C [23].
These languages allow control unit description on the register transfer level (RTL).
This description is next transformed using some standard synthesis tools. If the field-
programmable gate arrays chips are used as logical elements, simplified diagram of
the design process has the form shown in Fig. 2.41.

The control unit specification on RTL level is simulated using simulation part
1 of particular CAD tools. All deviations from the target device function are cor-
rected during this process. This correct model is next processed by the synthesis
part of CAD system, which performs the project optimization (minimizing the area
and maximizing performance) and generates the netlist of control unit. This netlist
serves as a base for more detailed simulation of the circuit by simulation part 2 of
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Fig. 2.41 Digital device design process with FPGA

the CAD system. The corrected netlist is next used to generate the configuration file.
This step consists on finding correspondence between logical elements and LUT
elements (mapping). These LUT elements are then combined into logical blocks
(packing), which are placed on the chip area (placement) and connected using some
resources of the programmable interconnection array (routing).

The outcome of this process is the configuration file, used to program the FPGA
chip. Design process of the control unit implemented with CPLD chips is very sim-
ilar to the one from Fig. 2.41. This process has however some particular features
described in [65]. Moreover, all tools used in the design process of this kind are
objects of constant improvement, because semiconductor industry offers frequently
new architectures of FPLD chips.

Program tools oriented towards the design using FPLD are developed by numer-
ous companies. For example, Altera manufactured such systems as MAX+PLUS II,
Quartus, Quartus II ; Xilinx proposed the ES Series . There exist several powerful
tools used to specify control units by state diagrams, such as Foundation developed
by Aldec for Xilinx; system Renoir of Mentor Graphics; programs StateCAD from
the package Workview of Viewlogic and other [1–3]. There exist also numerous
academic systems, oriented on the FPGA design (as for example, DOMAIN sys-
tem [64]), or CPLD based with PAL macrocells (as for example, ZUBR [93]), or
CPLD based on PLA macrocells (for example, SIS [87, 88]).

Multiplicity of existing logical elements and design tools bring us to the conclu-
sion that every useful book on this area should include synthesis methods, useful for
creating some CAD tools. These methods should be free from any specific features
of the families of logical devices produced by particular industrial companies. We
have chosen this way, because the second solution implies rigid orientation towards
some particular chips and CAD tools. In that case our book would be the object of
interest to a limited circle of specialists involved in particular design processes and
using chips and CAD tools manufactured by a particular company. As the conse-
quence of our choice, outcomes of all original synthesis methods of compositional
microprogram control units can be presented in the form of tables, which can be
used to obtain systems of Boolean functions describing some parts of CMCUs. It is
clear that these Boolean functions can be represented in the form of netlists. Thus,
we can say that our book is devoted to methods of logical synthesis of the com-
positional microprogram control units. Their behavior is specified by means of the
language of graph-schemes of algorithms. Specifications of all CMCU blocks are
represented in tabular form, allowing generation of systems of Boolean functions
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and netlists of logical elements and their interconnections. As a rule, the design
methods proposed in this book allow to reduce the number of function arguments
and are oriented towards FPGA implementation. Corresponding design methods al-
lowing reduction of the number of product terms in these functions are oriented
towards CPLD with PAL and PLA macrocells. In order to unify the diagrams used
in the book, we use the PLA implementation of the combinational parts of CMCU,
but the reader should remember that all types of logical elements can be used to
implement this part of the system he wants to design.
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Chapter 3
Synthesis of basic circuits of compositional
microprogram control units

Abstract The chapter is devoted to the design and optimization of some basic
CMCU structures. Corresponding methods are discussed for the CMCU basic struc-
ture as well as for the CMCU with common memory. The problem of the set of
operator vertices of the initial GSA is solved first. The resulted partition includes
minimum possible number of OLCs. Next, the method of natural microinstruction
addressing is discussed and its solution in case of CMCU given. It is shown that
optimization methods used in the case of Moore FSM can be used to optimize the
CMCU hardware amount. All methods presented in this book are oriented towards
decreasing of hardware amount in the CMCU logic circuits.

3.1 Synthesis of compositional microprogram control unit with
basic structure

As was pointed out in Chapter 1, the compositional microprogram control unit with
basic structure (Fig. 1.20) includes combinational circuit CC, which generates input
memory functions for register RG(Ψ) and counter CT(Φ), control memory CM,
which keeps microoperations yn ∈ Y together with additional variables y0 (timing
control of RG and CT) and yE (control of fetch flip-flop TF). This device implements
the following systems of Boolean functions:

Φ = Φ(τ,X), (3.1)

Ψ = Ψ(τ,X), (3.2)

Y = Y (T ), (3.3)

y0 = y0(T ), (3.4)

yE = yE(T ). (3.5)

Here τ = {τ1, . . . ,τR1} is a set of RG outputs, used for encoding M1 states of ad-
dressing FSM S1; T = {T1, . . . ,TR2} is a set of CT outputs, used for addressing

65



66 3 Synthesis of basic circuits of compositional microprogram control units

microinstructions kept in the control memory. Total number of microinstructions
equals M2 = |B1| and R1, R2 can be calculated using the expressions:

R1 = 	log2 M1
, (3.6)

R2 = 	log2 M2
. (3.7)

It follows from Section 1.4 that the following problems should be solved during
the CMCU U1 logic circuit design:

1. Construction of partition C = {α1, . . . ,αG} of the set of operator vertices of initial
GSA Γ with minimal possible G. This problem is represented by expression
(1.25).

2. Natural addressing of microinstructions, corresponding to operator vertices of
the initial GSA Γ . This problem is represented by expression (1.28).

3. Construction of control memory content.
4. Construction of transformed GSA Γ (U1).
5. Synthesis of logic circuits of S1 and S2 units with given logical elements.

Let us discuss solutions of these problems [3] and illustrate them using example
of CMCU U1(Γ2) design, with initial GSA Γ2 shown in Fig. 3.1.

Construction of the partition C satisfying condition (1.25) is proposed in [6]. It
includes the following steps:

1. Construct the set of main inputs M (Γ ) of GSA Γ .
2. Put g = 1.
3. Take an arbitrary vertex bq from the set M(Γ ) and exclude this vertex from the

set M(Γ ). Let us call the vertex bq a base vertex of OLC αg.
4. Find the vertex bt = pr2〈bq,bt〉, where 〈bq,bt〉 ∈ E. Let us call this step moving

through GSA down.
5. If bt ∈ B2, or bt = bE , or bt ∈ Di (i �= g), stop construction of OLC αg (Og = bt ).

Go to point 7.
6. Include the vertex bt in OLC αg after the vertex bq. Go to point 4, using the

vertex bt as the base vertex of OLC αg for moving through GSA down.
7. If M(Γ ) = /0, than go to point 8, else make g := g+1 and go to point 3.
8. End.

Let us call this construction procedure as procedure P1. Application of P1 to
GSA Γ2 gives the set C = {α1, . . . ,α4}, where α1 = 〈b1,b2〉, I1

1 = b1, O1 = b2;
α2 = 〈b4,b5,b6,b7〉, I1

2 = b4, I2
2 = b6, I3

2 = O2 = b7; α3 = 〈b11, . . . ,b14〉, I1
3 = b11,

O3 = b14; α4 = 〈b9〉, I1
4 = O4 = b9. In consequence, the graph-scheme of algo-

rithm Γ2 has the following characteristics:G = 4, I(Γ2) = {b1,b4,b6,b7,b11,b9},
O(Γ2) = {b2,b7,b9,b14}. Let us point out that initial GSA Γ should be transformed
to provide the stop mode of CMCU. This transformation is executed in the same
way as in case of the microprogram control unit with compulsory addressing of mi-
croinstructions. In case of GSA Γ2, it reduces to the insertion of variable yE into
vertex b9 (Fig. 3.1).
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Fig. 3.1 Initial graph-scheme
of algorithm Γ2
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Microinstruction addressing described by (1.28) can be performed by means of
the procedure used in case of the MCU with natural addressing of microinstructions,
described in [6]. It includes the following steps:

1. Construction of a vector α which is the concatenation of OLCs αg ∈C, where the
first component is the vertex bq ∈ B1, such that 〈b0,bq〉 ∈ E. It should be pointed
out that some additional vertex connected with output of initial vertex should be
inserted into GSA Γ in case, when output of the initial vertex is connected with
input of a conditional vertex.

2. Numeration of components of the vector α using the consecutive integers
0, . . . ,M2 −1.

3. Replacement of the number i of the component bq of vector α by its binary equiv-
alent A(bq) interpreted as an address of corresponding microinstruction Y (bq).
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Let us call this addressing method as procedure P2. In case of the CMCU U1(Γ2)
we have R2 = 4, T = {T1, . . . ,T4} and the result of procedure P2 is shown in Fig. 3.2.

The microinstruction format of CMCU includes the operational part only. The
control memory content of CMCU U1(Γ2) is shown in Table 3.1, where variable y0

is included in all microinstructions Y (bq), such that bq /∈ O(Γ ). The column "Com-
ment" contains information about particular vertex corresponding to given address,
belonging to the sets I(Γ ) and O(Γ ), and to the particular OLC including this vertex.

Fig. 3.2 Microinstruction
addresses of CMCU U1(Γ2)

T1T2

A(b1) A(b2) A(b5) A(b4)

A(b6) A(b7) A(b12) A(b11)

A(b13) A(b14) A(b9)

00

01

11

10

00 01 11 10
T3T4

* *
*

* *

Table 3.1 Control memory content of CMCU U1(Γ2)

Address Content Comment

0000 y0,y1,y2 b1 I1
1 α1

0001 y3 b2 O1

0010 y0y3 b4 I1
2 α2

0011 y0y2y4 b5

0100 y0y3y5 b6 I2
2

0101 y6 b7 I3
2 O2

0110 y2,y4,yE b9 I1
3 O3α3

0111 y0y2y4 b11 I1
4 α4

1000 y0y1 b12
1001 y0y1y2 b13
1010 y3 b14 O4

Let us analyze main operation principles of CMCU U1 and formulate basic re-
quirements for the transformed GSA Γ (U1).

1. The finite state machine S1 generates input memory functions serving to load into
CT the addresses of OLC inputs only. All other addresses are generated by unit
S2 according to (1.28). Thus, the transformed GSA Γ (U1) should include only
the operator vertices corresponding to OLC inputs.

2. If GSA Γ includes a path from vertex bq ∈ O(Γ ) to vertex bt ∈ I(Γ ), passing
through some conditional vertices, the transformed GSA Γ (U1) should include
the same path. Thus, the sets of conditional vertices are identical for GSA Γ and
Γ (U1).
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3. If counter CT contains an address A(I j
g) of the input j of OLC αg ∈ C ( j =

1, . . . ,Jg), the state of FSM S1 remains unchanged till the output address A(Og)
of this OLC is reached. It means that one state may correspond to all inputs of
any OLC. Thus, outputs of vertices corresponding to inputs of OLC αg ∈C can
be combined together in the transformed GSA Γ (U1).

According to these requirements, we can propose the following procedure P3 for
construction of the transformed GSA Γ (U1) [5]:

1. Construct transition formulae [2] for vertices bq ∈ O(Γ ) and b0 of the initial
GSA Γ .

2. Replace vertices bt ∈ I(Γ ) from the left part of each transition formula by the
inputs, corresponding to these vertices. Replace vertex bq = Og from the right
part of each transition formula by all inputs of OLC αg ∈C .

3. Construct the transformed GSA using the system of transformed transition for-
mulae and methods given in [2].

4. If operator vertex bi of the transformed GSA corresponds to input I j
g of OLC

αg ∈ C, then write the input memory functions, which are equal to 1, into this
vertex bi to the address A(I j

g).

In case of CMCU U1(Γ2), the initial system of transition formulae (STF) has the
form:

b0 → b1;b2 → x1b4 ∨ x̄1x2b6 ∨ x̄1x2b11;

b7 → x3b4 ∨ x̄3b9;b14 → b7;b9 → bE .

Execution of point 2 of procedure P3 leads to STF of the transformed GSA
Γ2(U1):

b0 → I1
1 ; I1

1 → x1I1
2 ∨ x̄1x2I2

2 ∨ x̄1x̄2I1
4 ;

I1
2 , I2

2 , I3
2 → x3I1

2 ∨ x̄3I1
3 ; I1

3 → bE ;

I1
4 → I3

2 .

In case of CMCU U1(Γ2), the microinstruction address includes R2 = 4 bits
and therefore the set of input memory functions includes also 4 elements (Φ =
{D1,D2,D3,D4}). The transformed GSA Γ2(U1) is shown in Fig. 3.3.

Symbols of OLC inputs of the initial GSA are shown near corresponding operator
vertices bi ∈ B1 of the transformed GSA, which makes finding the content of these
vertices much easier. For example, in case of vertex I1

2 , we find the address A(I1
2 ) =

0010 from Table 3.1 and place the function D3 ∈ Φ into the vertex I1
2 . Contents of

all other vertices are formed in the same way.
Synthesis of FSM S1 logic circuit is executed using the well-known methods

given in [2]:

1. Construction of marked GSA Γ (U1). For example under discussion, the states
are shown in Fig. 3.3.
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Fig. 3.3 Transformed GSA Γ2(U1)
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2. State encoding for FSM S1. In our case there are 4 internal states and A =
{a1, . . . ,a4}, M1 = 4, R1 = 2, τ = {τ1,τ2}. Let these states be encoded as:
K(a1) = 00, . . . ,K(a4) = 11. The set of input memory functions for register RG
is: Ψ = {D5,D6}.

3. Construction of structure table of FSM S1. This table contains H = 7 lines
(Table 3.2).

Table 3.2 Structure table of FSM S1 of CMCU U1(Γ2)

am K(am) as K(as) Xh Φh Ψh h

a1 00 a2 01 1 – D6 1
a2 01 a4 11 x1 D3 D5D6 2

a4 11 x1x2 D2 D5D6 3
a3 10 x1x2 D2D3D4 D4D5 4

a3 10 a4 11 1 D2D4 D5D6 5
a4 11 a4 11 x3 D3 D5D6 6

a1 00 x3 D2D3 – 7
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4. Construction of systems Φ and Ψ . The systems of Boolean functions (3.1) and
(3.2) depend on conjunctive terms represented in the form (1.6), where conjunc-
tion Am represented as (1.7) includes variables τr ∈ τ . From Table 3.2 we can get,
for example, the following Boolean expression:

D2 = F3 ∨F4 ∨F5 ∨F7 = τ̄1τ2x̄1 ∨ τ1τ̄2 ∨ τ1τ2x̄3.

Now the implementation of CMCU U1 logic circuit is reduced to implementation
of systems (3.1) – (3.2) using PLDs and control memory, corresponding to systems
(3.3) – (3.5), using PROM or RAM chips.

A special unit is needed to provide the synchronization mode of CMCU U1.
Assume that the counter CT has two inputs for synchronization, with: C1#CT :=
CT + 1 and C2#CT := 〈Φ〉 (loading of a parallel code). Then, pulse Clock should
appear at the input C1, if y0 = 1, and at the input C2, if y0 = 0. Therefore, synchro-
nization unit is described by the following expressions:

C1 = y0 ·Clock;
C2 = y0 ·Clock.

(3.8)

The pulse C2 should appear also at the timing input of register RG.
Let both systems (3.1) and (3.2) be implemented with PLA chips. In this case the

CMCU U1(Γ2) logic circuit has the form shown in Fig. 3.4.
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Fig. 3.4 Logic circuit of CMCU U1(Γ2)

The parameters of PLA and PROM chips are chosen in such a manner that only
one chip can be used to implement a particular part of logic circuit. It is made to
avoid complex optimization procedures.

The main advantage of CMCU U1 is minimal possible number of feedback vari-
ables (state variables) . Using a special RG and increasing the number of combina-
tional circuit outputs, with respect to the minimal number R2, is needed however to
address the microinstructions. When condition (3.9) is satisfied
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R1 = R2, (3.9)

the CMCU U1 can not be considered as the efficient interpretation of any particular
control algorithm, because the number of CC outputs is twice R2. To interpret the
control algorithms satisfying (3.9), a compositional microprogram control unit with
common memory is proposed [3]. In this CMCU, counter CT is used as a source
of both microinstruction address and the state code of FSM S1. This principle can
be used to interpret an arbitrary GSA Γ , even in case, when condition (3.9) is not
satisfied.

3.2 Synthesis of CMCU with common memory

The structural diagram of CMCU with common memory (called CMCU U2) is
shown in Fig. 3.5.

CC

Start

Clock

Fetch

YCM

+1

R   TF

S
Start

X

yE

y0

CT
TΦ

Fig. 3.5 Structural diagram of CMCU U2

In this case, combinational circuit CC implements the system of input memory
functions of the counter CT:

Φ = (T,X), (3.10)

remaining blocks execute the same functions as in case of the CMCU U1.
The address of first microinstruction of the particular microprogram is loaded

into CT using pulse "Start". This pulse causes also the set up of flip-flop TF (it means
that Fetch=1). Current microinstruction is fetched out of the control memory CM. If
it includes the variable y0, content of the counter is incremented and unconditional
jump executed between microinstructions corresponding to the components of the
same OLC αg ∈ C. If y0 = 0, functions (3.10) will change content of the counter
using pulse "Clock". It corresponds to the transition from output of OLC αg ∈C. If
yE = 1, the microprogram is ended. In this case flip-flop TF is reset and the operation
of CMCU terminated.

As can be seen from comparison of (3.1) and (3.10), multidirectional transitions
are executed during one cycle of both CMCU U1 and U2. Output functions of the
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control memory are represented by (3.3) – (3.5) and therefore parameters of CM for
CMCU U1 and U2 are the same.

The synthesis method of CMCU U2 (Γ ) includes the following steps:

1. Preliminary transformation of the initial GSA Γ .
2. Construction of OLC C set for the transformed GSA Γ (U2).
3. Natural addressing of microinstructions.
4. Construction of control memory content.
5. Construction of transition table for CMCU U2.
6. Synthesis of logic circuit with given logical elements.

Let us discus an example of CMCU U2 design using the graph-scheme of algo-
rithm Γ3 (Fig. 3.6), where only the operator vertices are numbered.

Preliminary transformation of GSA ΓCA Γ is executed in the following man-
ner (procedure P4):

• if there is an arc 〈b0,bq〉 ∈ E, where bq ∈ B2, vertex bt ∈ B1 is introduced into
GSA Γ ,where Y (bt) = /0, and initial arc 〈b0,bq〉 ∈ E is replaced by a pair of new
arcs 〈b0,bt〉 and 〈bt ,bq〉;

• if there is an arc 〈bt ,bE〉 ∈ E, where bt ∈ B2, the vertex bq ∈ B1 with yE is intro-
duced into GSA Γ and initial arc 〈bt ,bE〉 ∈ E is replaced by two arcs 〈bt ,bq〉 and
〈bq,bE〉;

• if there is an arc 〈bt ,bE〉 ∈ E, where bt ∈ B1, the variable yE is inserted into
operator vertex bt .

The first transformation is essential for organization of conditional transitions,
after reset of the counter using pulse "Start". The second and third transformations
are essential to organize the termination mode of CMCU. Let us point out that GSA
can include more than one arc connecting conditional vertices with final vertex (Fig.
3.7a), but only single additional vertex with yE is introduced into transformed GSA
and it is common for all such conditional vertices (Fig. 3.7b).

Therefore, the transformed GSA Γ (U2) includes at most |B1|+ 2 operator ver-
tices, where B1 is a set of operator vertices of the initial GSA Γ .

In case of the GSA Γ3, this transformation is reduced to insertion of the vertex
b18, connected to the output of vertex b0, and the vertex b19, connected to the input of
vertex bE (Fig. 3.8). Thus, the transformed GSA Γ3(U2) includes M2 = 19 operator
vertices, corresponding to 19 microinstructions kept in the control memory CM.
Therefore, R2 = 5 variables are sufficient to form the set T = {T1, . . . ,T5}, necessary
to address all microinstructions of CMCU U2(Γ3).

Construction of the set of OLC reduces to the application of procedure P1 to
the transformed GSA Γ (U2). In case under consideration we have C = {α1, . . . ,α7},
with α1 = 〈b18〉, I1

1 = O1 = b18; α2 = 〈b1,b2,b3〉, I1
2 = b1, O2 = b3; α3 = 〈b4,b5,b6〉,

I1
3 = b4, O3 = b6; α4 = {b7, . . . ,b10}, I1

4 = b7, I2
4 = b9, O4 = b10; α5 = {b11, . . . ,b14},

I1
5 = b11, I2

5 = b13, O5 = b14; α6 = 〈b15,b16,b17〉, I1
6 = b15, O6 = b17; α7 = 〈b19〉,

I1
7 = O7 = b19.

Natural addressing of microinstructions is reduced here to the application of
procedure P2. For our example microinstruction addresses of the CMCU U2(Γ3) are
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Fig. 3.6 Initial graph-scheme of algorithm Γ3
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Fig. 3.7 Fragment of initial GSA before a and after b transformation

shown in Fig. 3.9. This figure represents the addresses using a kind of modified
Karnaugh map with all possible input assignments. Symbol "*" is used to indicate
the "don’t care" assignments. The symbols of operator vertices are written in corre-
sponding cells of the table.

Construction of control memory content for CMCU U2 is executed in the same
way as in case of CMCU U1. In our example the control memory contains M2 = 19
microinstructions. The format of each microinstruction includes only the field FY.
This table is not presented here because its construction is obvious.

Construction of CMCU transition table. The addressing finite state machine
S1 of CMCU U2 is represented by the Moore FSM, with states corresponding to the
operational linear chains αg ∈C, and the state codes corresponding to addresses of
OLC output microinstructions. Let C1 ⊆C be a set of OLC, such that their outputs
have no direct connections with the final vertex of transformed GSA U2(Γ ). Proce-
dure P5 is then proposed to construct a transition table of CMCU U2 in the following
steps:

• construct the system of transition formulae for outputs of OLC αg ∈C1;
• replace the vertex in the left part of each transition formula by symbol of corre-

sponding OLC output;
• replace vertices in the right part of each transition formula by symbols of corre-

sponding OLC inputs;
• construct the CMCU transition table with the columns Og, A(Og), I j

m, A(I j
m), Xh,

Φh, h, where A(Og) is an address of OLC αg ∈ C1 output; A(I j
m) is an address

of OLC αm ∈ C input; Xh is an input signal, which determines the transition
from Og into I j

m; Φh is a set of input memory functions, which are equal to 1 in
order to change the content of counter CT from A(Og) to A(I j

m); h = 1, . . . ,H is
a transition number.

Application of points 1 and 2 of procedure P5 to the GSA Γ3(U2) leads to the
following STF:
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Fig. 3.8 Transformed GSA Γ3(U2)
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O1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2I1
4 ;

O2 → x2I1
5 ∨ x2x4I1

6 ∨ x2x4I2
4 ;

O3 → x2I1
5 ∨ x2x4I1

6 ∨ x2x4I2
4 ;

O4 → x2I1
5 ∨ x2x4I1

6 ∨ x2x4I2
4 ;

O5 → x3I2
5 ∨ x3I1

7 ;

O6 → x3I2
5 ∨ x3I1

7 .

(3.11)

Let us point out that the OLC α7 /∈ C1, and in consequence transitions from
the output O7 are not listed in (3.11). The transition table of CMCU U2(Γ3) (Table
3.3) contains H = 16 lines. Each line corresponds to one term of the system (3.11).
All addresses in the columns of Table 3.3 are taken from Fig. 3.9, the set of input
memory functions includes 5 elements, and Φ = {D1, . . . ,D5}. The total number of
lines H is equal to the number of terms in (3.11).

Synthesis of CMCU logic circuit is reduced to implementation of SBF (3.10)
using PLDs and implementation of control memory CM using PROMs or RAMs.
System (3.10) is constructed using transition table in the following form:

ϕr =
H
∨

h=1
CrhOh

gXh(r = 1, . . . ,R2), (3.12)

where Crh is a Boolean variable equal to 1 iff line h of the transition table contains
variable ϕr; Oh

g is a conjunction of state variables Tr ∈ T , corresponding to address
A(Og) from line h of the table (h = 1, . . . ,H).

Using Table 3.3, we can get, for example, the Boolean function:

D1 = T 1T2T3T4T 5x3 ∨T1T 2T 3T 4T5x3.

Logic circuit of the compositional microprogram control unit U2(Γ3) is shown in
Fig. 3.10.

As in previous case and all cases presented below, parameters of both PLA and
PROM are sorted out in such a manner, that each block of any control unit discussed
in this book can be implemented using a single PLD chip. Let us introduce symbols
of some parameters needed to compare different structures of compositional micro-
program control units:
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Table 3.3 Transition table of CMCU U2(Γ3)

Og A(Og) I j
m A(I j

m) Xh Φh h

O1 00000 I1
2 00001 x1 D5 1

I1
3 00100 x1x2 D3 2

I1
4 00111 x1x2 D3D4D5 3

O2 00011 I1
5 01011 x2 D2D4D5 4

I1
6 01111 x2x4 D2D3D4D5 5

I2
4 01001 x2x4 D2D5 6

O3 00110 I1
5 01011 x2 D2D4D5 7

I1
6 01111 x2x4 D2D3D4D5 8

I2
4 01001 x2x4 D2D5 9

O4 01010 I1
5 01011 x2 D2D4D5 10

I1
6 01111 x2x4 D2D3D4D5 11

I2
4 01001 x2x4 D2D5 12

O5 01110 I2
5 01101 x3 D2D5D3 13

I1
7 10010 x3 D1D4 14

O6 10001 I2
5 01101 x3 D2D5D3 15

I1
7 10010 x3 D1D4 16

Fig. 3.10 Logic circuit of
CMCU U2(Γ3)
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• Ri
FB is the number of feedback inputs of the combinational circuit of CMCU Ui

(i = 1,2, . . .);
• Ri

FB(Γj) is the corresponding symbol for Ri
FB in case of CMCU Ui(Γj);

• Hi(Γj) is the total number of terms in systems of Boolean functions implemented
by combinational circuit CC of CMCU Ui(Γj);

• Si(Γj) is the number of input variables of combinational circuit CC of CMCU
Ui(Γj);

• ti(Γj) is the number of output variables of combinational circuit CC of CMCU
Ui(Γj);
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If the symbols listed above use Γ instead of Γj, the common value of correspond-
ing parameter is taken.

Let us introduce, for the block of GSA, some graphical symbol (Fig. 3.11), cor-
responding to OLC αg ∈C with inputs I1

g , . . . , I
Kg
g and output Og.

Fig. 3.11 Block of GSA Γ
corresponding to OLC αg

Ig Ig«Ig

Og

1 2 Kg

This block represents the part of GSA Γ , operator vertices of which are replaced
by blocks. Let us add the formula O7 → bE to system (3.11) and construct the block
GSA Γ3 (Fig. 3.12). Analysis of Table 3.3 and Fig. 3.12 shows that FSM S1 of
CMCU U2 is a Moore FSM, having the states corresponding to blocks of the in-
terpreted graph-scheme of algorithm Γ . Specific property of this FSM is that the
codes of its current states am ∈ A are determined by output addresses of correspond-
ing OLC, whereas codes of its next states are determined by input addresses of the
operational linear chains αg ∈C.

Addressing FSM S1(U2) of CMCU U2 has the following parameters:

R2
FB = R2; (3.13)

S2(Γ ) = R2 +L; (3.14)

t2(Γ ) = R2; (3.15)

H2(Γ ) =
G

∑
g=1

CgHg, (3.16)

where Cg is a Boolean variable, which is equal to 1 iff αg ∈C1; Hg is the number of
transitions from output Og (g = 1, . . . ,G).

In order to compare the characteristics of FSM S1(U1) and S1(U2), let us con-
struct the transformed GSA Γ3(U1) and mark it with states of Mealy FSM (Fig.
3.13).

In our case, R1 = 2, and comparison of both GSAs shows that a single state of
FSM S1(U1) may correspond to more than one block of GSA Γ (U2). Let us call
OLC, αi,α j ∈ C, a pseudoequivalent OLC, if their outputs are connected with the
input of the same GSA vertex of GSA Γ . Obviously, the existence of pseudoequiv-
alent OLC can be used to optimize combinational part of FSM S1(U2). Finite state
machine S1(U1) has the following parameters:

R1
FB = R1; (3.17)

S1(Γ ) = R1 +L; (3.18)

t1(Γ ) = R1 +R2; (3.19)
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Fig. 3.12 Block representa-
tion of GSA Γ3
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H1(Γ ) =
M

∑
m=1

Hm, (3.20)

where Hm is the number of transitions from the state am ∈ A. Comparison of expres-
sions (3.13) – (3.20) shows that the following relations are true for CMCU U1(Γ )
and U2(Γ ):

S1(Γ ) ≤ S2(Γ ); (3.21)

t1(Γ ) > t2(Γ ); (3.22)

H1(Γ ) ≤ H2(Γ ). (3.23)
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Fig. 3.13 Transformed GSA Γ3(U1)
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Thus, the values of S2(Γ ) and H2(Γ ) should be reduced to allow practical use of
the compositional microprogram control unit U2. All methods proposed further are
devoted to solve this problem.

3.3 Optimization of CMCU with common memory logic circuit

Methods of Moore FSM logic circuit optimization [4] can be applied to decrease
the hardware amount of the CMCU U2. These methods should be adapted to take
account of the fact that the main input address determines here unambiguously the
output address of corresponding operational linear chain and vice versa. This prop-
erty results in the necessity of operation by blocks of vertices, rather than by sep-
arate vertices. The following optimization methods considering this property are
discussed in our book:

• special addressing of microinstructions;
• optimal addressing of microinstructions;
• transformation of microinstruction addresses;
• transformation of OLC output codes;
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• transformation of transformed GSA.

Let us discus these methods in details.
Special addressing of microinstructions [1] is based on identification of the op-

erational linear chains αg ∈C using

R3 < R2 (3.24)

bits of microinstruction address. For the best case, this parameter can be found from
the following equation:

R3 = 	log2 G1
, (3.25)

where G1 = |C1| is the number of OLCs in a set C1 ⊆ C. This method is based on
finding a set T ′ ⊆ T , where T = {T1, . . . ,TR2} is the set of address bits and |T ′|= R3.
Elements of the set T are used to address microinstructions and elements of set T ′

are used for identification of the outputs of OLC αg ∈C. This approach leads to the
compositional microprogram control unit U3 (Fig. 3.14).

Fig. 3.14 Structural diagram
of CMCU U3
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Operation mode of CMCU U3 is the same as in case of CMCU U2. Obviously,
synthesis methods for both control units are also identical; the only exception is the
addressing procedure in use.

Let us analyze the outcome of microinstruction addressing for the CMCU U2(Γ3)
shown in Fig. 3.9. In this case the OLC α7 /∈ C1, |C1| = 6 and R3 = 3. Therefore,
the outputs of OLC αg ∈ C1 can be identified using R3 = 3 variables and the set
T ′ = {T1,T2,T3} ⊂ T . Let us use the elements of T ′ ⊆ T to represent the output
codes K(Og) for OLC αg ∈C1.

In our example, the outputs of OLC αg ∈ C1 correspond to codes K(O1) =
K(O2) = 000, K(O3) = 001, K(O4) = 010, K(O5) = 011, K(O6) = 100. Thus, ap-
plication of procedure P2 does not allow unique identification of the OLC α1 and
α2. Analysis of Fig. 3.9 shows that it is the consequence of the fact that the outputs
of both OLCs belong to the same generalized interval 000∗∗ of the Boolean space
. Obviously, microinstruction addressing for CMCU U3 should be executed in such
a manner that the output of any OLC αg ∈ C belongs to a unique R3 - dimensional
generalized interval of an R2 – dimensional Boolean space. The following procedure
P6 is proposed for this microinstruction addressing:

1. Put R0 = R3 and apply procedure P2.
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2. Construct an addressing table with 2R0 columns, marked by variables T1, . . . ,TR0 ,
and with 2R2−R0 rows, marked by variables Ti, . . . ,TR2 , where i = R0 +1.

3. If outputs of OLC αi,α j ∈ C1, where j > i, belong to the same column of the
table, make shift of information to the right starting from main input of OLC
α j ∈ C1. Fill up empty cells of the table by the sign "*". Continue the shift till
outputs of OLC αi,α j ∈C1 are in different columns of addressing table.

4. If the shift resulted in spillover from the address space, find R0 := R0 +1.
5. If R0 < R2, go to point 2.
6. End.

Application of procedure P2 to the GSA Γ3 results in microinstruction addressing
(Fig. 3.9) with R0 = R3 = 3. Analysis of this addressing table shows that vertices
b18 = O1 and b3 = O2 are placed in the same column. First shift to the right gives
the addressing table of Fig. 3.15a, where outputs O1 and O2 are placed in different
columns. Now, outputs O2 = b3 and O3 = b6 are in the same column. Second shift to
the right starting from vertex b4 results in the addressing table of Fig. 3.15b, where
outputs O5 = b14 and O6 = b17 are in the same column. Third shift to the right
starting from the vertex b15 gives the final table of Fig. 3.15c. Now, the outputs of
OLC α j ∈ C1 are located in different columns of addressing table and each output
has a unique code, namely:K(O1) = 000, K(O2) = 001, K(O3) = 010, K(O4) = 011,
K(O5) = 100, K(O6) = 101. Therefore, OLC outputs are univocally identified using
minimal possible number of variables R3.

In order to implement combinational circuit CC of CMCU U3 we should con-
struct a system of transition formulae and a corresponding transition table. In our
example, the system of transition formulae is represented by (3.11). In the transition
table of CMCU U3 column A(Og) is replaced by column K(Og).

The final transition table allows finding the system of input memory functions:

ϕr =
H3(Γ )
∨

h=1
CrhOh

gXh (r = 1, . . . ,R0), (3.26)

where Oh
g is a conjunction of variables Tr ∈ T ′, corresponding to the output code of

OLC α j ∈ C1 from the line h of transition table (h = 1, . . . ,H3(Γ )). System (3.25)
can be represented in the form:

Φ = Φ(T ′,X). (3.27)

In our example, the transition table (Table 3.4) includes H3(Γ3) = 16 lines. The
addresses of OLC inputs and outputs are taken here from the addressing table shown
in Fig. 3.15c.

The parameters of combinational circuit CC of compositional microprogram
control unit U3 can be identified as:

S3(Γ ) = R0 +L(R0 ≤ R2); (3.28)

t3(Γ ) = t2(Γ ); (3.29)

H3(Γ ) = H2(Γ ). (3.30)
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Fig. 3.15 Addressing of microinstructions of CMCU U3(Γ3)

Thus, application of special microinstruction addressing allows higher number
of combinational circuit CC outputs, in comparison with the CMCU U2. It is clear
that the following condition is satisfied:

S1(Γ ) ≤ S3(Γ ) ≤ S2(Γ ). (3.31)

As follows from (3.30), special microinstruction addressing does not affect the
number of lines in the transition table.

Optimal microinstruction addressing is oriented towards decrease of the number
of inputs and terms of combinational circuit CC [1]. Let us address microinstruc-
tions in such a way that output addresses of pseudoequivalent OLC α j ∈C1 belong
to the same generalized interval of R2–dimensional Boolean space. Now, the inter-
val including pseudoequivalent OLC αg,α j ∈ Bi is considered as the code K(Bi)
of a class Bi ∈ Πc, where Πc = {Bi, . . . ,BI} is a set partition of the set C′ ⊂ C by
classes of pseudoequivalent OLCs. Last approach leads to CMCU U4, having the
same structure as the compositional microprogram control unit U2 (Fig. 3.14).

The CMCU U4 (Γ ) synthesis includes the following steps:
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Table 3.4 Transition table of CMCU U3(Γ3)

Og K(Og) I j
m A(I j

m) Xh Φh h

O1 000 I1
2 00010 x1 D4 1

I1
3 00110 x1x2 D3D4 2

I1
4 01001 x1x2 D2D5 3

O2 001 I1
5 01101 x2 D2D3D5 4

I1
6 10010 x2x4 D1D4 5

I2
4 01011 x2x4 D2D4D5 6

O3 010 I1
5 01101 x2 D2D3D5 7

I1
6 10010 x2x4 D1D4 8

I2
4 01011 x2x4 D2D4D5 9

O4 011 I1
5 01101 x2 D2D3D5 10

I1
6 10010 x2x4 D1D4 11

I2
4 01011 x2x4 D2D4D5 12

O5 100 I2
5 01111 x3 D2D3D4D5 13

I1
7 10010 x3 D1D4 14

O6 101 I2
5 01111 x3 D2D3D4D5 15

I1
7 10010 x3 D1D4 16

1. Construction of OLC set for GSA Γ (procedure P1).
2. Construction of partition Πc of the set C1 ⊂C.
3. Optimal addressing of microinstructions, corresponding to operator vertices bq ∈

B1, which are components of OLC αg ∈C1.
4. Construction of the control memory content.
5. Construction of the transition table of CMCU.
6. Synthesis of CMCU logic circuit using given logical elements.

Let us apply this method to the design of CMCU U4(Γ3). In this case procedure P1

gives the set C = {α1, . . . ,α7}, where α1 = 〈b18〉, α2 = 〈b1,b2,b3〉, α3 = 〈b4,b5,b6〉,
α4 = 〈b7, . . . ,b10〉, α5 = 〈b11, . . . ,b14〉, α6 = 〈b15,b16,b17〉, α7 = 〈b19〉. Let us point
out that the OLC α7 /∈C1.

Partition Πc can be obtained simply by using the transformed GSA Γ (U4), which
is the same as GSA Γ (U2). In our example, partition Πc = {B1,B2,B3} is formed,
where B1 = {α1}, B2 = {α2,α3,α4}, B3 = {α5,α6}. Let mi be the cardinality num-
ber of class Bi ∈ Πc, and Li maximal number of components for OLC αg ∈ Bi

(i = 1, . . . , I). Each class Bi ∈ Πc corresponds to a single unique generalized in-
terval of the R2-dimensional Boolean space, iff each class Bi ∈ Πc corresponds to a
subtable of Karnaugh map of the size:

Vi = 2ri ·Li(i = 1, . . . , I), (3.32)

where ri = 	log2 mi
. In case of the compositional microprogram control unit U4(Γ3)
we have V1 = 1, V2 = 4 ·4 = 16, V3 = 2 ·4 = 8. It is clear that optimal addressing is
possible here, because for R2 = 5, the Karnaugh map has 32 cells and we have
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2R2 >
I

∑
i=1

Vi. (3.33)

Optimal microinstruction addressing can be executed using some modifications
of well-known algorithms given in [7]. One possible version of optimal microin-
struction addressing for the CMCU U4(Γ3) is shown in Fig. 3.16.
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Fig. 3.16 Optimal microinstruction addressing for CMCU U4(Γ3)

We get from Fig. 3.16 that K(B1) = 00 ∗ ∗∗ (the address A19 is treated as the
don’t care input assignment because only transitions from outputs of OLC αg ∈C1

are used), K(B2) = ∗1∗∗∗, K(B3) = 10∗∗∗.
Transition table of CMCU U4 (Γ ) can be constructed using the following proce-

dure:

• construct the system of transition formulae for outputs of OLC αg ∈ C1 (proce-
dure P5);

• replace the OLC outputs in the left part of each transition formula by the symbol
of corresponding class Bi ∈ Πc;

• if the transformed transition formulae include k equal transitions, only one of
them should remain in the final system;

• use this system for construction of the transition table with columns: Bi, K(Bi),
I j
m, A(I j

m), Xh, Φh, h.

Let us denote this procedure as P7. Its application to GSA Γ3(U4) gives the fol-
lowing system of transition formulae:

B1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2I1
4 ;

B2 → x2I1
5 ∨ x2x4I1

6 ∨ x2x4I2
4 ; (3.34)

B3 → x3I2
5 ∨ x3I1

7 .

System (3.34) is constructed using (3.11); and it serves to construct the transition
table of CMCU U4(Γ3), including H4(Γ3) = 8 lines (Table 3.5).

This table is now used to construct system (3.27), serving as the base to imple-
ment logic circuit of CMCU U4(Γ ). This system has the form:



3.3 Optimization of CMCU with common memory logic circuit 87

ϕr =
H4(Γ )
∨

h=1
CrhBh

i Xh (Γ = 1, . . . ,R2), (3.35)

where Bh
i is a conjunction of variables corresponding to the code K(Bi) of class Bi ∈

Πc from the line h of transition table (h = 1, . . . ,H4(Γ )). It means that conjunction
Bh

i has the form:

Bh
i =

R2∧
r=1

T lri
r (i = 1, . . . , I), (3.36)

where lri ∈ {0,1,∗} is a value of the bit r of code K(Bi), T 0
r = T r, T 1

r = Tr, T ∗
r = 1

(r = 1, . . . ,R2).

Table 3.5 Transition table of CMCU U4(Γ3)

Bi K(Bi) I j
m A(I j

m) Xh Φh h

B1 00∗∗∗ I1
2 00101 x1 D3D5 1

I1
3 01001 x1x2 D2D5 2

I1
4 11000 x1x2 D1D2 3

B2 ∗1∗∗∗ I1
5 10100 x2 D1D3 4

I1
6 10001 x2x4 D1D5 5

I2
4 11010 x2x4 D1D2D4 6

B3 10∗∗∗ I2
5 10110 x3 D1D3D4 7

I1
7 00100 x3 D3 8

Synthesis of CMCU U4 logic circuit is reduced to the implementation of system
(3.35) using PLD chips and of control memory using PROM chips. In this case
we can construct, for example, the Boolean function D4 = B6

2X6 ∨B7
3X7 = T2x2x4 ∨

T1T 2x3, using Table 3.5.
In our example T ′ = {T1,T2}, thus R4

FB(Γ3) = 2 and we have the relation

R4
FB(Γ3) ≤ R2. (3.37)

Let us point out that this value R4
FB(Γ3) = 2 is equal to R1

FB(Γ3), which represents
the minimum.

The number of lines in transition table of CMCU U4 is determined as

H4(Γ ) =
I

∑
i=1

kiHi, (3.38)

where ki is the number of generalized intervals in R2–dimensional Boolean space,
including microinstruction addresses corresponding to the components of OLC αg ∈
Bi; Hi is the number of transitions from the output of any OLC αg ∈ Bi (i = 1, . . . , I).
In our example the condition

ki = 1 (i = 1, . . . , I) (3.39)
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is satisfied for all classes Bi ∈ Πc and H4(Γ3) = 8 < H1(Γ3) = 9.
Thus, if condition (3.39) is true, the CMCU U4(Γ ) is characterized by minimal

values of S4(Γ ), t4(Γ ) and H4(Γ ), in comparison with the equivalent CMCU U1 −
U3. There are some GSAs, for which condition (3.39) is false. In this case, the values
of parameters S4(Γ ) and H4(Γ ) are far from minimum. For example, if B1 = {α1},
B2 = {α2,α3,α4}, B3 = {α5,α6,α7}, C = {α1, . . . ,α8}, H1 = 3, H2 = 5, H3 = 4,
R2 = 4, minimal number of transitions is H4(Γ ) = 12. For optimal microinstruction
addressing we have k1 = 1, k2 = k3 = 2, and therefore H4(Γ ) = 21 > H1(Γ ) = 13.

Transformation of microinstruction addresses [3] is oriented towards reduction
of hardware amount in CMCU logic circuit, if condition (3.39) is not satisfied. This
method consists on transformation of microinstruction addresses of OLC outputs
into codes of the classes of pseudoequivalent OLC.

Let us encode each class Bi ∈ Πc by a binary code K(Bi) with

R4 = 	log2 I
 (3.40)

bits and use variables τr ∈ τ , where |τ| = R4, for encoding the classes Bi ∈ Πc.
Now, the initial GSA Γ is interpreted by CMCU U5 (Fig. 3.17), where an address
transformer AT transforms output addresses of OLC αg ∈Bi into the codes of classes
Bi ∈ Πc.

In compositional microprogram control unit U5, combinational circuit CC imple-
ments the input memory functions

Φ = Φ(τ,X), (3.41)

and address transformer AT implements functions of the system

τ = τ(T ). (3.42)

Let us point out that the control memory CM implements always functions
(3.3)–(3.5). The CMCU U5 operates as follows.

CC

Start

Clock

Fetch

YCM

+1

R   TF

S
Start

X

yE

y0

CT
TΦ

AT

τ

Fig. 3.17 Structural diagram of CMCU U5

Pulse "Start" is used to load a zero address into the counter CT and to set up
the flip-flop TF (it gives Fetch=1). If microinstruction Y (bq), where bq �= Og (g =
1, . . . ,G1), is read out of the CM, signal y0 is generated and content of the counter
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is incremented, in order to address next microinstruction, corresponding to next
component of the current OLC. If bq = Og, a transition address is generated by
combinational circuit CC using outputs of the address transformer AT and logical
conditions. If microinstruction with yE is read out of the CM, the flip-flop TF is
cleared and operation of CMCU terminated.

Synthesis of CMCU U5(Γ ) includes the following steps:

1. Preliminary transformation of GSA Γ .
2. Construction of the set of OLC for the transformed GSA Γ (U5).
3. Natural addressing of microinstructions.
4. Construction of control memory content.
5. Construction of partition Πc of the set C1.
6. Encoding of the classes Bi ∈ Πc.
7. Construction of the table of address transformer AT.
8. Construction of transition table of CMCU U5.
9. Synthesis of logic circuit of the CMCU.

Obviously, the first four steps give equal results for both CMCU U2(Γ ) and
U5(Γ ). Let us discuss an example of the CMCU U5(Γ3) design, starting from point
5 of the design method presented above.

Construction of partition Πc of the set C1 = {α1, . . . ,α6} results in the partition
Πc = {B1,B2,B3}, where B1 = {α1}, B2 = {α2,α3,α4}, B3 = {α5,α6}. This step is
executed in a trivial way using only the definition of pseudoequivalent operational
linear chains.

Encoding of the classes of pseudoequivalent OLC is executed in a trivial way
too. In case of the CMCU U5(Γ3) we have R4 = 2, τ = {τ1,τ2}. Let the classes have
the codes: K(B1) = 00, K(B2) = 01, K(B3) = 10.

Construction of address transformer table is reduced to construction of the
table with columns Og, A(Og), Bi, K(Bi), τg, g, where column τg includes functions
τr ∈ τ , equal to 1 in the code K(Bi) from line g of the table (g = 1, . . . ,G1).

In case of the CMCU U5(Γ3), output addresses are taken from the addressing ta-
ble shown in Fig. 3.9. The address transformer table for the CMCU U5(Γ3) includes
G1 = 6 lines (Table 3.6).

Let us point out that functions τr ∈ τ are specified here only for 6 from all 32
possible input assignments. Thus, it is better to use some PLD chips instead of
PROM chips to implement the logic circuit of address transformer for our partic-
ular example. Of course, in some other cases, PROM chips could be preferable.
It depends on characteristics of the interpreted graph-scheme of algorithm. If PLD
chips are used, the insignificant input assignments can be used to minimize disjunc-
tion normal forms of the functions τr ∈ τ . We can get, for example, the following
expressions from Table 3.6:

τ1 = T 1T2T3T4T 5 ∨T1T 2T 3T 4T5;

τ2 = T 1T 2T 3T4 ∨T 1T 2T 3T4T 5 ∨T 1T2T 3T4T 5.
(3.43)

Let us construct the Karnaugh map for function τ1 (Fig. 3.18). Using this map,
the minimal form of function τ1 can be obtained:
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Table 3.6 Table of address transformer of CMCU U5(Γ3)

Og A(Og) Bi K(Bi) τg g

O1 00000 B1 00 - 1
O2 00011 B2 01 τ2 2
O3 00110 B2 01 τ2 3
O4 01010 B2 01 τ2 4
O5 01110 B3 10 τ1 5
O6 10001 B3 10 τ1 6

τ1 = T2T3 ∨T1. (3.44)

T4T5
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0 1 0
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T1T2T3
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** *
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** *
** *

**
**
**
*

**
**
**

*

*

Fig. 3.18 Karnaugh map for function τ1

The same approach gives the minimal form of function τ2:

τ2 = T 1T5 ∨T 2T3 ∨T2T 3. (3.45)

Construction of transition table is executed by analogy with the case of CMCU
U4 and both tables include the same columns. Transition table of the CMCU U5(Γ3)
includes H5(Γ3) = 8 lines (Table 3.7).

Table 3.7 Transition table of CMCU U5(Γ3)

Bi K(Bi) I j
m A(I j

m) Xh Φh h

B1 00 I1
2 00001 x1 D5 1

I1
3 00100 x1x2 D2 2

I1
4 00111 x1x2 D3D4D5 3

B2 01 I1
5 01011 x2 D2D4D5 4

I1
6 01111 x2x4 D2D3D4D5 5

I2
4 01001 x2x4 D2D5 6

B3 10 I2
5 01101 x3 D2D3D5 7

I1
7 10010 x3 D1D4 8
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This table serves as a base to get the system (3.41), represented in the form:

ϕr =
H5(Γ )
∨

h=1
CrhBh

i Xh (r = 1, . . . ,R2). (3.46)

All terms of (3.46) have the same meaning as in case of (3.35); only the term
(3.47) given below is different:

Bh
i =

R4∧
r=1

τ lri
r , (3.47)

where lri ∈ {0,1} is the bit r of code K(Bi), τo
r = τr, τ1

r = τr (r = 1, . . . ,R4). For
example, from Table 3.7 we find that D1 = τ1τ2x3.

Synthesis of logic circuit of CMCU is reduced to the implementation of functions
(3.41) – (3.42) using PLD chips and functions (3.3) – (3.5) using PROM chips.
Logic circuit of the CMCU U5(Γ3) is shown in Fig. 3.19.

Analysis of Fig. 3.19 shows that PLA implementing the address transformer AT
has only 4 inputs, because functions (3.44) and (3.45) do not depend on variable T4.

General analysis of CMCU U5 leads to the conclusion that its combinational part
is characterized by minimal values of inputs, outputs and terms, as compared with
all CMCU considered above:

R5
FB = R4 = R1;

t5(Γ ) = R2; (3.48)

H5(Γ ) = H4(Γ ) if ki = 1 (i = 1, . . . , I).

We should also remember that CMCU U5 includes an address transformer AT. In
consequence, this method is useful only if the total hardware amount of blocks CC
and AT is smaller then the hardware amount of combinational circuit CC of other
compositional microprogram control units. As we know, the hardware amount can
be calculated either as the chip area or as the number of chips, needed for imple-
mentation of the CMCU logic circuit.

Transformation of output codes of OLC is oriented to reduction of the hardware
amount in combinational circuit CC [4]. Main idea of this method consists on ap-
plication of special microinstruction addressing (procedure P6) and on the transfor-
mation of output code K(Og) into the code of class Bi ∈ Πc, resulting in the CMCU
U6 of Fig. 3.20.

The only difference between CMCU U6 and U5 is the application of special
microinstruction addressing, resulting in replacement of (3.42) by the system of
Boolean functions:

τ = τ = (T ′). (3.49)

Both CMCU U5 and U6 operate in the same manner, and corresponding design
methods differ only in microinstruction addressing. Let us consider these peculiar-
ities using an example of CMCU U6(Γ3) synthesis. In this case, application of pro-
cedure P6 gives the microinstruction addresses shown in Fig. 3.15c. Table of the



92 3 Synthesis of basic circuits of compositional microprogram control units

Fig. 3.19 Logic circuit of
CMCU U5(Γ3)
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Fig. 3.20 Structural diagram
of CMCU U6
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address transformer AT of CMCU U5 should be replaced by corresponding table of
code transformer TC, with columns:Og, K(Og), Bi, K(Bi), τg, g.

Analysis of Table 3.6 shows that the number of terms in system (3.42) can be
reduced using some modification of the well-known state assignment method of
FSM with D flip-flops, used to implement its memory [2]. We use this method for-
mulated as follows: the more elements some class Bi ∈ Πc include, the more ze-
ros should its code have. Application of this approach for the CMCU U6(Γ3) gives
codes:K(B1) = 10, K(B2) = 00, K(B3) = 01. These codes are used in Table 3.8.

From Table 3.8 we get system (3.48) and in particular:τ1 = T 1T 2T 3; τ2 = T1T 2.
Logic circuits for both CMCU U5(Γ3) and U6(Γ3) are practically identical, but block
TC can be implemented using PLA chip with three outputs and two terms. There-
fore, application of special microinstruction addressing leads to the decrease of
hardware amount in this particular case.

Transformation of initial GSA is reduced to introduction of some extra vertices
corresponding to additional OLC αg ∈C2 in GSA Γ (U2), where

|C2| ≤ I. (3.50)
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Table 3.8 Table of code transformer TC of CMCU U6(Γ3)

Og K(Og) Bi K(Bi) τg g

O1 000 B1 10 τ1 1
O2 001 B2 00 – 2
O3 010 B2 00 – 3
O4 011 B2 00 – 4
O5 100 B3 01 τ2 5
O6 101 B3 01 τ2 6

This idea is an analogue of the one used for optimization of Moore FSM logic
circuit [4] and is presented for the block GSA Γ3 (Fig. 3.12). In this case OLC
α2,α3,α4 ∈ B2 and total number of transitions from these OLC outputs is equal to
9. Let us add an extra block to this GSA Γ3, corresponding to the OLC α8 ∈C2 with
input I1

8 and output O8 (Fig. 3.21).
It is clear that the transformation of a subgraph i of GSA makes sense only if

condition (3.51) is satisfied:
ΔHi > 0. (3.51)

Fig. 3.21 Transformation of
subgraph of block GSA Γ3

O8

x2
1 0

x4
1 0
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I4           I4
1

O2

I2
1 1

Introduction of extra OLC should not cause exceeding the minimal value of R2,
thus cardinality number of set C2 should satisfy the following condition:

|C2| ≤ 2R2 −M2. (3.52)

If condition (3.52) holds, transformation of GSA is executed for all subgraphs
satisfying condition (3.51). Otherwise, the subgraphs should be ranked in order of
decreasing ΔHi value and only first K subgraphs from this list should be trans-
formed, where

K = 2R2 −M2. (3.53)



94 3 Synthesis of basic circuits of compositional microprogram control units

Let us call this method procedure P8. Application of this procedure to the GSA
Γ3 is shown in Fig. 3.21.

In this case formula (3.53) gives the value K = 32− 19 = 13. The number of
classes in partition Πc is equal to 3, and therefore condition (3.52) holds and the
transformation is possible for all classes Bi ∈ Πc. In our last example we have the
following values of parameters |Bi|, Hi and ΔHi: |B1|= 1, H1 = 3, ΔH1 =−1; |B2|=
3, H2 = 3, ΔH2 = 3; |B3|= 2, H3 = 2, ΔH3 = 0. It means that the transformation has
sense only for the class B2 ∈ Πc. Thus only one extra OLC is added and C2 = {α8}.

Let the CMCU based on procedure P8 be denoted by U7. It is clear, that structures
of both CMCU U2 and U7 are the same. Optimization of the number of combina-
tional circuit CC inputs can be executed due to application of special addressing
for microinstructions, corresponding to operator vertices of the transformed GSA
Γ (U7).

Synthesis of CMCU U7(Γ ) includes the following steps:

1. Preliminary transformation of initial GSA Γ (procedure P4) and construction of
GSA Γ (U2).

2. Construction of the set C for GSA Γ (U2) (procedure P1).
3. Construction of partition Πc.
4. Construction of transformed GSA Γ (U7) (procedure P8).
5. Special microinstruction addressing (procedure P6).
6. Construction of the control memory content.
7. Construction of CMCU transition table.
8. Synthesis of CMCU logic circuit.

Let us apply this method to the case of CMCU U7(Γ3). Application of points
1–3 gives the GSA Γ3(U2) shown in Fig. 3.8, the set C = {α1, . . . ,α7} and partition
Πc = {B1,B2,B3}, where B1 = {α1}, B2 = {α2,α3,α4}, B3 = {α5,α6}.

Construction of transformed GSA have been already discussed and is reduced to
introduction of vertex b20 into the GSA Γ3(U2). The result of this GSA transforma-
tion is shown in Fig. 3.22.

Special microinstruction addressing is executed in the same way as in previous
example, with OLC outputs encoded using

R5 = 	log2(G1 +G2)
 (3.54)

bits, where |G2| = |C2|. Result of procedure P6 used for CMCU U7(Γ3) is shown in
Fig. 3.23.

As follows from Fig. 3.23, outputs of OLC αg ∈ C1 ∪C2 have the following
codes: K(O1) = 000, K(O2) = 001, . . . ,K(O6) = 101, K(O8) = 110.

Construction of transition table of CMCU is executed using the same approach
as the one used in case of CMCU U3. In this case, transition table has 13 lines
(Table 3.9).

Usually, the number of transition table lines for CMCU U7 can be found using
the following expression:
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Fig. 3.22 Transformed GSA Γ3 (U7)
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Fig. 3.23 Special microinstruction addressing for CMCU U7(Γ3)

H7(Γ ) = H2(Γ )−
I

∑
i=1

ΔHi ·Ci, (3.55)

where Ci is a Boolean variable, equal to 1 iff the class Bi ∈ Πc was transformed.

Table 3.9 Transition table of CMCU U7(Γ3))

Og K(Og) I j
m A(I j

m) Xh Φh h

O1 000 I1
2 00010 x1 D4 1

I1
3 00110 x1x2 D3D4 2

I1
4 01001 x1x2 D2D5 3

O2 001 I1
8 11000 1 D1D2 4

O3 010 I1
8 11000 1 D1D2 5

O4 011 I1
8 11000 1 D1D2 6

O5 100 I2
5 01101 x3 D2D3D4D5 7

I1
7 10010 x3 D1D4 8

O6 101 I2
5 01111 x3 D2D3D4D5 9

I1
7 10010 x3 D1D4 10

O8 110 I1
5 01101 x2 D2D3D5 11

I1
6 10010 x2x4 D1D4 12

I2
4 01011 x2x4 D2D4D5 13

This transition table serves as the base for construction of the system (3.27), with
functions represented in the form (3.25).

Synthesis of logic circuit of CMCU U7(Γ ) is executed in the same manner as
in case of CMCU U3(Γ ).

Let us point out that the transformation of GSA allows to reduce the number of
transition table lines in comparison with H3(Γ ), but this merit is accompanied with
some negative effect, namely increase of the number of cycles needed to execute the
transformed control algorithm.

In Table 3.10 the main characteristics of CMCU U1 – U7 are compared. Symbol
Hmin stays here for the number of transition table lines in case of CMCU U1(Γ ),
whereas symbol Hmax is used for the number of transition table lines in case of
CMCU U2(Γ ). Analysis of this table leads to the conclusion that CMCU U4(Γ )
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has the best characteristics, but as should be remembered, these characteristics are
achievable only if condition (3.39) is satisfied. In case of CMCU U5(Γ ) and U6(Γ )
the main characteristics are also minimal, but the use of additional blocks, consum-
ing either some area of the chip (if the control unit is implemented as a part of digital
system on single chip) or some additional chips if standard PLDs should be used to
implement logic circuit of the CMCU. Control unit U7(Γ ) has an average hardware
amount, but performance of the controlled digital system decreases due to higher
number of cycles required to execute the control algorithm. Thus, a priori choice
of the best model of CMCU is not possible. Here, the expression "a priori" is the
equivalent of "without implementation of CMCU logic circuit". Final choice of the
best model of CMCU can be made only after implementation of logic circuits for all
microprogram control units U1 – U7, using particular programmable logic devices
and particular control algorithm. As always in this book we assume that the best
model of CMCU is the one, which combines minimal possible hardware amount
(of all models analyzed) with performance meeting the initial requirements of the
digital system designer.

Table 3.10 Comparative characteristic of CMCU U1 – U7

Model Boolean systems Parameters of PLDs Comments

U1 Φ = Φ(τ,X) Ψ = Ψ(τ,X) S1(Γ ) = R1 +L Minimum
t1(Γ ) = R1 +R2 Maximum
H1(Γ ) = Hmin Minimum

U2 Φ = Φ(T,X) S2(Γ ) = R2 +L Maximum
t2(Γ ) = R2 Minimum
H2(Γ ) = Hmax Maximum

U3 Φ = Φ(T ′,X) S3(Γ ) = R3 +L ≥ S1(Γ )
t3(Γ ) = R2 Minimum
H3(Γ ) = Hmax Maximum

U4 Φ = Φ(T ′,X) S4(Γ ) = R4 +L ≥ S1(Γ )
t4(Γ ) = R2 Minimum
H4(Γ ) = Hmin Minimum if (3.39)

U5 Φ = Φ(τ,X) τ = τ(T ) S5(Γ ) = R4 +L Minimum
t5(Γ ) = R2 Minimum
H5(Γ ) = Hmin Minimum

U6 Φ = Φ(τ,X) τ = τ(T ′) S6(Γ ) = R4 +L Minimum
t6(Γ ) = R2 Minimum
H6(Γ ) = Hmin Minimum

U7 Φ = Φ(T ′,X) S7(Γ ) = R5 +L ≥ S1(Γ )
t7(Γ ) = R2 Minimum
Hmin < H7(Γ ) ≤ Hmax Average
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Chapter 4
Synthesis of compositional microprogram
control units with code sharing

Abstract The chapter is devoted to the design methods based on the so-called code
sharing , in which the microinstruction address is represented by concatenation of
the OLC code and the code of its component. This representation makes possible
using special methods of Moore FSM optimization adapted to the peculiarities of
CMCU. In this case, the OLC codes are viewed as analogs of the states codes of
Moore FSM. This approach permits to reduce the number of inputs and outputs of
the combinational part of CMCU. Additional decrease can be achieved due to the
application of elementary OLCs having only one input. In this case, the address of
first component of each OLC is represented by all zeros and permits to diminish the
number of functions generated by FSM.

4.1 Synthesis of CMCU basic model with code sharing

One of the main goals of all methods discussed in previous chapters is minimiz-
ing the number of feedback variables used as inputs of combinational circuit CC
for generation of transition addresses. One solution of this problem is the method
of code sharing proposed in [3] and adapted to the peculiarities of compositional
microprogram control units.

Let each operational linear chain αg ∈ C corresponds to a binary code K(αg)
with the following number of bits:

R6 = 	log2 G
, (4.1)

where G = |C|, and let variables τr ∈ τ be used for this encoding (|τ| = R6). Let Lg

be the number of components in OLC αg ∈C. We find the following relation:

Lmax = max(L1, . . . ,LG). (4.2)

Let components bq ∈ Dg of OLC αg ∈C be encoded by binary codes K(bq) with
the following number of bits:

99
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R7 = 	log2 Lmax
. (4.3)

Let some variables Tr ∈ T , where |T | = R7, be used for this encoding. Let us
encode the components in such a way that any pair of adjacent components bt ,bq ∈
Dg of OLC αg ∈C, where 〈bt ,bq〉 ∈ E, satisfies the condition:

K(bq) = K(bt)+1. (4.4)

In this case an address A(bq) of microinstruction, corresponding to vertex bq ∈
Dg, can be represented by a concatenation of the codes of OLC αg ∈ C and its
component K(bq):

A(bq) = K(αg)∗K(bq), (4.5)

where ∗ is a sign of concatenation. The address presentation (4.5) is called code
sharing [3, 7].

If microinstruction addresses are given in the form (4.5), the initial GSA Γ is
interpreted by CMCU with code sharing (Fig. 4.1), denoted in this book as CMCU
U8.

Fig. 4.1 Structural diagram
of CMCU U8
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In the CMCU U8, combinational circuit CC implements the following input
memory functions for counter CT

Φ = Φ(τ,X), (4.6)

and input memory functions for register RG

Ψ = Ψ(τ,X). (4.7)

Control memory CM of CMCU U8 implements the system of output functions

Y = Y (τ,T ); (4.8)

y0 = y0(τ,T );
yE = yE(τ,T ). (4.9)

The CMCU U8 operates in the following manner. Zero codes are loaded into both
RG and CT using pulse "Start". It corresponds to the address of first microinstruction
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of a particular microprogram. This pulse causes also the set up of flip-flop TF (now
Fetch=1) and microinstructions can be read from the CM. Current microinstruction
is fetched out of the control memory CM. If concatenation of contents of register
RG and counter CT forms an address A(bq), where bq ∈ Dg and bq �= Og, variable
y0 = 1 is generated together with microoperations yn ∈ Y (bq). If y0 = 1, content
of RG remains unchanged, but the content of CT is incremented according to the
addressing mode (4.4). If concatenation of the contents of register RG and counter
CT forms an address A(bq) of OLC αg ∈C output, then y0 = 0. In this case transition
address is generated by combinational circuit CC. If the concatenation of contents
of register RG and counter CT forms an address A(bq), where 〈bq,bE〉 ∈ E, signal
yE is generated, flip-flop TF is reset and operation of CMCU terminated.

Such organization of CMCU gives the following advantages:

1. Microinstruction addresses are not used as state codes of addressing FSM. States
codes correspond to the codes of OLC and can be chosen arbitrarily. It means
that all known methods used for optimization of Moore FSM logic circuit can
be used to optimize the logic circuit of addressing FSM S1 of CMCU with code
sharing.

2. Combinational circuit CC uses only R6 feedback variables and reduces the num-
ber of inputs, in comparison with CMCU U2.

3. Microinstruction address has

R8 = R6 +R7 (4.10)

bits and if the following condition holds

R8 = R2, (4.11)

the number of outputs of combinational circuit CC attains minimum.

If however condition (4.11) is violated, and the following inequality is satisfied

R8 > R2, (4.12)

control memory size is increased
2R8−R2 (4.13)

times in comparison with its minimal value, determined as

Vmin = 2R2 ·mY , (4.14)

where mY is the number of bits (length) of the control memory word. It depends on
encoding of collections of microoperations. Therefore, application of code sharing
makes sense only if condition (4.11) is satisfied.

Synthesis of CMCU U8 includes the following steps:

• Preliminary transformation of initial GSA Γ .
• Construction of the set C for transformed GSA Γ (U8).
• Encoding of operational linear chains αg ∈C.
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• Encoding of OLC αg ∈C components.
• Construction of control memory content.
• Construction of CMCU U8(Γ ) transition table.
• Synthesis of CMCU logic circuit using given logical elements.

Let us discuss application of this method for synthesis of CMCU U8(Γ4), with
the transformed GSA Γ4(U8) shown in Fig. 4.2.

It should be pointed out that transformation of the initial GSA is reduced to
application of procedure P4. Obviously, in the case of GSA Γ4, variable yE was
inserted into the vertices b14 and b17 of the initial GSA in order to organize the stop
mode of CMCU U8(Γ4).

Construction of the set of OLC is executed using procedure P1. In our example
we get C = {α1, . . . ,α6}, where α1 = 〈b1,b2〉, I1

1 = b1, O1 = b2, L1 = 2; α2 =
〈b3,b4,b5〉, I1

2 = b3, I2
2 = O2 = b5, L2 = 3; α3 = 〈b6,b7〉, I1

3 = b6, O3 = b7, L3 = 2;
α4 = 〈b8,b9,b10〉, I1

4 = b8, O4 = b10, L4 = 3; α5 = 〈b11, . . . ,b14〉, I1
5 = b11, O5 = b14,

L5 = 4; α6 = 〈b15,b16,b17〉, I1
6 = b15, O6 = b17, L6 = 3.

Encoding of OLC is executed in a trivial way. In present example we have
G = 6, and R6 = 3, τ = {τ1,τ2,τ3}. Let us encode the OLC αg ∈ C as:K(α1) =
000, . . . ,K(α6) = 101.

Encoding of OLC components is executed in such a way, that condition (4.4)
takes place for all components. To achieve this, it is sufficient to assign the number
0 to the first components of all OLCs, the number 1 to the second components of all
OLCs, and so on. Binary representations of these numbers using R7 bits are treated
as the codes required for these components.

In present example Lmax = 4, T = {T1,T2} and codes of components are shown
in Table 4.1.

Table 4.1 Codes of components for CMCU U8(Γ )

K(bq) α1 α2 α3 α4 α5 α6

00 b1 b3 b6 b8 b11 b15
01 b2 b4 b7 b9 b12 b16
10 – b5 – b10 b13 b17
11 – – – – b14 –

Encoding of both OLCs αg ∈C and their components gives the table of Fig. 4.3,
representing microinstruction addresses (4.5).

Using this table we find, for example, that A(b4) = 00101, A(b17) = 10110, and
so on.

Construction of control memory content is executed using the same approach
as for CMCU U1–U8.

Construction of transition table of CMCU U8 is performed in the same order
as in case of CMCU U2, but the OLC outputs in the left parts of transition formulae
are replaced this time by symbols of corresponding OLC αg ∈C1. In consequence,
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Fig. 4.2 Transformed GSA Γ4(U8)
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Fig. 4.3 Microinstruction addresses for CMCU U8(Γ )

the following system of transition formulae can be found for CMCU U8(Γ ), where
set C1 = {α1, . . . ,α4}:

α1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2I1
4 ;

α2 → x3I2
2 ∨ x3x4I1

5 ∨ x3x4I1
6 ;

α3 → x3I3
2 ∨ x3x4I1

5 ∨ x3x4I1
6 ;

α4 → x3I2
2 ∨ x3x4I1

5 ∨ x3x4I1
6 .

(4.15)

Transition table of CMCU U8 includes the following columns: αg, K(αg), I j
m,

A(I j
m), Xh, Ψh, Φh, h, where column Ψh contains input memory functions used to

load OLC code K(αm) into register RG, and column Φh contains input memory
functions necessary to load the code K(bq) of some component of OLC αm into
counter CT, where bq = I j

m, h = 1, . . . ,H8(Γ ). The transition table of CMCU U8(Γ )
has H8(Γ4) = 12 lines (Table 4.2).

Table 4.2 Transition table of CMCU U8(Γ4)

αg K(αg) I j
m A(I j

m) Xh Ψh Φh h

α1 000 I1
2 00100 x1 D3 – 1

I1
3 01000 x1x2 D2 – 2

I1
4 01100 x1x2 D2D3 – 3

α2 001 I2
2 00110 x3 D3 D4 4

I1
5 10000 x3x4 D1 – 5

I1
6 10100 x3x4 D1D3 – 6

α3 010 I2
2 00110 x3 D3 D4 7

I1
5 10000 x3x4 D1 – 8

I1
6 10100 x3x4 D1D3 – 9

α4 011 I2
2 00110 x3 D3 D4 10

I1
5 10000 x3x4 D1 – 11

I1
6 10100 x3x4 D1D3 – 12

This transition table serves for construction of systems (4.6)–(4.7), depending on
the terms

Fh = Ah
gXh (h = 1, . . . ,H8(Γ )), (4.16)
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where Ah
g is a conjunction of variables τr ∈ τ , corresponding to the code K(αg) of

OLC αg ∈C1 from the line h of the table. From Table 4.2 we find, for example, that
D4 = τ1τ2τ3x3 ∨ τ1τ2τ3x3 ∨ τ1τ2τ3x3.

Synthesis of logic circuit of CMCU reduces to the implementation of systems
(4.6)–(4.7) using PLD chips and of systems (4.8)–(4.9) using PROM chips. Logic
circuit of CMCU U8(Γ4) is shown in Fig. 4.4.

Fig. 4.4 Logic circuit of
CMCU U8(Γ )
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In present case condition (4.11) holds and minimal values of both the number of
combinational circuit outputs and size of control memory are obtained. It is possible,
however, that condition (4.11) is violated, as can be seen from addressing table of
CMCU U8(ΓA) (Fig. 4.5).

As follows from Fig. 4.5, the number of microinstructions M2 = 19 and R2 = 5,
but Lmax = 6 (for the OLC α3), and in consequence R7 = 3. In this case the set C
includes G = 6 operational linear chains, shown in Fig. 4.5, and R6 = 3 variables are
necessary for the encoding. Therefore, R6 +R7 = 6 and condition (4.11) is violated.
According to (4.13), the control memory size grows twice, in comparison with Vmin.

In order to satisfy condition (4.11), some of the initial OLCs should be trans-
formed in such a way that the value of Lmax could be reduced. Let us call this trans-
formation a procedure P9, having the following steps:

1. Find the OLC αg ∈C with Lg = Lmax.
2. Divide the OLC αg by two OLCs αg and αG+1 in such a way that Lg is reduced

twice.
3. Put G := G+1
4. Find new value of parameter Lmax.
5. Find new value of parameter R8.
6. If R8 = R2, go to point 8.
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Fig. 4.5 Microinstruction addresses for CMCU U8(ΓA)

7. If Lmax = 1, go to point 8, else go to point 1.
8. End.

In case of CMCU U8(ΓA), this transformation can be performed as follows. In
the first step, the OLC α3 is chosen (because L3 = Lmax = 6), and two new OLCs
are constructed, namely α3 = 〈b6,b7,b8〉 and α7 = 〈b9,b10,b11〉. Next, the OLC
α5 is chosen (because L5 = Lmax = 5), and two new OLC are constructed: α5 =
〈b13,b14,b15〉, α8 = 〈b16,b17〉. Now the following values are got: Lmax = 3, R7 = 2,
G = 8, R6 = 3, R8 = 5 = R2. Their analysis shows that application of code sharing
method can be chosen. The microinstruction addresses for CMCU U8(ΓA) are shown
in Fig. 4.6. They were obtained after application of procedure P9 to the initial set of
operational linear chains.
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Fig. 4.6 Microinstruction addresses for CMCU U8(ΓA) after transformation of OLC

If condition
Lmax > 1 (4.17)

is violated, then CMCU U8 degenerates into the Moore FSM (Fig. 4.7).
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Fig. 4.7 Structural diagram
of degenerated CMCU U8
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The CMCU U8 can be considered as an intermediate variant between classic
Moore FSM (Fig. 4.7), and CMCU U2, where automaton memory of FSM S1 is
represented by a counter (Fig. 3.5).

Let us construct the block GSA Γ4 and mark it by states of Mealy FSM (Fig. 4.8).
Its analysis shows that R1

FB(Γ4) = 2, H1(Γ4) = 7, S1(Γ4) = 6, t1(Γ4) = 7. Therefore,
the following relations are true for CMCU U1 and U8:

R1
FB(Γ ) ≤ R8

FB(Γ ); (4.18)

t1(Γ ) > t8(Γ ) = R2; (4.19)

H1(Γ ) < H8(Γ ) = Hmax. (4.20)

The form of relations (4.18) and (4.20) follows from the fact that the addressing
FSM S1 of CMCU U1 is the Mealy FSM, but this very FSM is the Moore FSM in
case of CMCU U8. Obviously, parameter values of the addressing FSM of CMCU
U8 can be reduced by means of well-known optimization methods developed for the
Moore FSM [2,4], which should be adapted to the peculiarities of the code sharing.
This optimization should be oriented towards reduction of parameters R8

FB(Γ ) and
H8(Γ ).

4.2 Optimization of logic circuit of CMCU with code sharing

The codes of OLC αg ∈ C1 for CMCU U8 are analogues of the Moore FSM state
codes. In consequence, three methods serving to reduce the hardware amount of the
CMCU U8 combinational circuit can be proposed:

• optimal encoding of OLC αg ∈C1;
• code transformation of OLC αg ∈ C1 into the codes of the classes of pseudoe-

quivalent OLC;
• transformation of initial GSA Γ (U8).

Optimal encoding of OLC [6] can be obtained in the same way as the codes
K(αg) of OLC αg ∈ Bi, where Bi ∈ Πc, Πc is a partition of the set C1 into the
classes of pseudoequivalent OLC, belonging to the same generalized interval of R6–
dimensional Boolean space. In this case, interval K(Bi) is considered as the code
of the class Bi ∈ Πc. The OLC encoding can be performed using some well-known
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Fig. 4.8 Block presentation
of GSA Γ4
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methods, such as the one described in [1], or as the algorithm ESPRESSO [8, 10].
Optimal encoding of OLC results in the CMCU U9 of Fig. 4.9.

Fig. 4.9 Structural diagram
of CMCU U9
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The set τ ′ ⊆ τ includes variables τr ∈ τ , which are significant variables in the
sense of [9], used for determination of the codes K(Bi) of classes Bi ∈ Πc. Compar-
ison of CMCU U8 and U9 shows the identity of their operation modes, but in later
case, combinational circuit CC implements the functions:
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Φ = Φ(τ ′,X), (4.21)

Ψ = Ψ(τ ′,X). (4.22)

Synthesis of CMCU U9(Γ ) includes the following steps:

1. Transformation of initial GSA Γ (procedure P4).
2. Construction of OLCs for the transformed GSA Γ (U9) (procedure P1).
3. Construction of partition Πc on the set C1.
4. Optimal encoding of OLC αg ∈ C1 and arbitrary encoding of operational linear

chains αg /∈C1.
5. Encoding of components of OLC αg ∈C.
6. Construction of the control memory content.
7. Construction of CMCU U9(Γ ) transition table.
8. Synthesis of CMCU logic circuit with given elements.

Let us discuss an example of the CMCU U9(Γ4) synthesis, with sets C =
{α1, . . . ,α6} and C1 = {α1, . . . ,α4}. The partition of set C1 into classes of pseu-
doequivalent OLCs is: Πc = {B1,B2}, where B1 = {α1}, B2 = {α2,α3,α4}. We
have R6 = 3 and one possible variant of OLC αg ∈ C encoding is shown in Fig.
4.10.

Fig. 4.10 Optimal encoding
of OLC for CMCU U9(Γ4)
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All intervals occupied by codes of OLC αg /∈ C1 are considered as insignificant
input assignments, because transitions from these OLC outputs are not included in
the transition table of CMCU U9. Thus, in our case, we have the following codes:
K(B1) = ∗∗0, K(B2) = ∗∗1, and, τ ′ = {τ3}.

Encoding of the components of OLC αg ∈ C is executed in the same way, as
for CMCU U8. Microinstruction addresses for the CMCU U9(Γ4) are shown in Fig.
4.11, from which we can get for example: A(b12) = 01001, A(b17) = 11010, and so
on.

Construction of control memory content for CMCU U9 is executed using the
same approach as for other CMCU discussed above. It could be done simply replac-
ing vertices bq ∈ B1 by corresponding sets of microoperations from the addressing
table. In the case of CMCU U9(Γ4) it is shown in Fig. 4.12.

It follows from Fig. 4.12, for example, that microoperations y0,y2,y5 should be
placed in the control memory cell addressed by 10101, and so on.

Construction of transition table for the CMCU U9(Γ4) is executed using proce-
dure P7, as in case of the CMCU U4 transition table. The initial system of transition
formulae (4.15) is replaced by STF (4.23):
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Fig. 4.11 Microinstruction addresses for CMCU U9(Γ4)
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Fig. 4.12 Control memory content for CMCU U9(Γ4)

B1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2I1
4 ;

B2 → x3I2
2 ∨ x3x4I1

5 ∨ x3x4I1
6 ,

(4.23)

which is used for construction of Table 4.3.
This transition table serves for construction of Boolean systems (4.21)–(4.22),

which depend on terms

Fh = Bh
i Xh (h = 1, . . . ,H9(Γ )), (4.24)

where

Bh
i =

R6∧
r=1

τ lir
r (i = 1, . . . , I). (4.25)

Table 4.3 Transition table of CMCU U9(Γ4)

Bi K(Bi) I j
m A(I j

m) Xh Ψh Φh h

Bi K(Bi) I j
m A(I j

m) Xh Ψh Φh h

B1 ∗∗0 I1
2 00100 x1 D3 – 1

I1
3 01100 x1x2 D2D3 – 2

I1
4 10100 x1x2 D1D3 – 3

B2 ∗∗1 I2
2 00110 x3 D3 D4 4

I1
5 01000 x3x4 D2 – 5

I1
6 11000 x3x4 D2D3 – 6
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Conjunction (4.25) corresponds to code K(Bi) of some class Bi ∈ Πc from the
line h of transition table, lir ∈ {0,1,∗} is the value of bit r of the code K(Bi), where
τ0

r = τr, τ1
r = τr, τ∗r = 1 (r = 1, . . . ,R6). The following expression can be found, for

example, using Table 4.3: D2 = F2 ∨F5 ∨F6 = τ3x1x2 ∨ τ3x3x4 ∨ τ3x3x4.
Synthesis of logic circuit of CMCU U9(Γ4) consists in implementation of systems

(4.24)–(4.25) with given PLD chips and control memory implementation using ei-
ther PROM or RAM chips.

The parameters of the combinational circuit CC of CMCU U9 are determined by
the following expressions:

R9
FB = |τ ′| ≤ R6; (4.26)

t9(Γ ) ≤ R2; (4.27)

H9(Γ ) =
I

∑
i=1

kiHi. (4.28)

Here ki is the number of intervals of an R6- dimensional Boolean space with
codes of OLC αg ∈ Bi, where Bi ∈ Πc; Hi is the number of transitions from the
output of any OLC αg ∈ Bi.

In this case all parameters (4.26)–(4.28) have minimal possible values among all
corresponding parameters of the CMCU U1–U7, namely: R9

FB(Γ4) = 1 < R1
FB(Γ4) =

2, t9(Γ4) = 4 < R2, H9(Γ4) = 6 < H1(Γ ) = 7. Unfortunately, the optimal OLC en-
coding with ki = 1 for all classes Bi ∈ Πc is not always possible. For example, if
C = {α1, . . . ,α8}, B1 = {α1}, B2 = {α2,α3,α4}, B3 = {α5,α6,α7}, C1 = {α8},
optimal encoding gives ki = 2 for the classes B2,B3 ∈ Πc and the increase of param-
eter values for combinational CC circuit.

Let us point out, that t9(Γ ) < R2 for the CMCU U9(Γ4), but this result was ob-
tained by chance.

Transformation of OLC codes is executed by analogy with the transformation
of Moore FSM states, discussed in Section 2.4. Let each class Bi ∈ Πc correspond
to a binary code K(Bi) with R4 bits, determined from the formula (3.40) as R4 =
	log2 I
, where I = |Πc|. Let variables zr ∈ Z be used for this encoding, where |Z|=
R4. The GSA Γ is interpreted here by CMCU U10 (Fig. 4.13). The code transformer
TC generates the codes of Bi ∈ Πc classes, on the base of the OLC αg ∈ Bi codes.

The operation principle of both CMCU U10 and U5 is identical. In case of CMCU
U10, block TC generates the functions

Z = Z(τ), (4.29)

and combinational circuit CC implements the systems:

Φ = Φ(Z,X),
Ψ = Ψ(Z,X). (4.30)

Synthesis of CMCU U10(Γ ) includes the following steps:
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Fig. 4.13 Structural diagram of CMCU U10

1. Transformation of initial GSA (procedure P4).
2. Construction of OLC set for transformed GSA Γ (U10).
3. Construction of partition Πc of the set C1.
4. Encoding of OLC αg ∈C and of their components.
5. Encoding of classes Bi ∈ Πc.
6. Construction of the control memory content.
7. Construction of CMCU transition table.
8. Construction of the table of code transformer TC.
9. Synthesis of CMCU logic circuit with given elements.

Let us discuss application of this method for synthesis of CMCU U10, using the
GSA Γ5(U9) (Fig. 4.14).

Application of procedure P1 to the GSA Γ5(U9) results in the set C = {α1, . . . ,α8},
where α1 = 〈b1,b2〉, I1

1 = b1, O1 = b2, L1 = 2; α2 = 〈b3,b4,b5〉, I1
2 = b3, I2

2 = O2 =
b5, L2 = 3; α3 = 〈b6,b7〉, I1

3 = b6, O3 = b7, L3 = 2; α4 = 〈b8,b9,b10〉, I1
4 = b8,

O4 = b10, L4 = 3; α5 = 〈b11,b12〉, I1
5 = b11, O5 = b12, L5 = 2; α6 = 〈b13,b14,b15〉,

I1
6 = b13, O6 = b15, L6 = 3; α7 = 〈b16, . . . ,b19〉, I1

7 = b16, I2
7 = b18, O7 = b19, L7 = 4;

α8 = 〈b20〉, I1
8 = O8 = b20, L8 = 1.

It follows from Fig. 4.15 that class B1 corresponds to the code K(B1) = 000,
the class B2 to the code K(B2) = 1 ∗ ∗ (input assignment 110 is considered as
"don’t care"), the class B3 to two generalized intervals of 3–dimensional Boolean
space (R6 = 3) and to the codes: K(B1

3) = 01∗ and K(B2
3) = ∗10. Encoding of the

components of OLC αg ∈ C results in microinstruction addresses, shown in Fig.
4.16, where we get the following sets and parameters: τ = {τ1,τ2,τ3}, R6 = 3,
T = {T1,T2}, R7 = 2 (Lmax = L7 = 4).

Let us encode the classes Bi ∈ Πc in the following way: the more elements the
class Bi ∈ Πc includes, the more zeros its code contains. In our case I = 3, R4 = 2,
Z = {z1,z2} and classes Bi ∈ Πc have the codes: K(B1) = 10, K(B2) = 00, K(B3) =
01. We call this approach a special encoding of equivalence classes.

As in previous cases, construction of the control memory content is executed in
a trivial way. Transition table of CMCU U10 includes the columns Bi, K(Bi), I j

m,
A(I j

m), Xh, Ψh,Φh, h, and is constructed with help of procedure P7. In case of CMCU
U10(Γ5), corresponding system of transition formulae is:
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Fig. 4.15 Optimal encoding
of OLC for CMCU U10(Γ5)
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Fig. 4.16 Microinstruction addresses for CMCU U10(Γ5)

B1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2I1
4 ;

B2 → x3x5I2
2 ∨ x3x5I1

5 ∨ x3x4I1
6 ∨ x3x4I1

7 ;

B3 → x3I1
8 ∨ x3I2

7 .

This system corresponds to Table 4.4 with H10(Γ5) = 9 lines.
Table of code transformer TC is built by analogy with the table of OLC output

codes transformer for CMCU U6 and includes columns αg, K(αg), Bi, K(Bi), Zg, g,
column Zg with variables zr ∈ Z, equal to 1 in the code K(Bi) of line g of the table
(g = 1, . . . ,G1). In our case the table of TC includes G1 = 7 lines (Table. 4.5).

Transition table of CMCU is now used to construct functions (4.30), with terms:

Fh = Zh
i Xh (h = 1, . . . ,H10(Γ )), (4.31)

where Zh
i is a conjunction of variables zr ∈ Z, corresponding to code K(Bi) of class

Bi ∈ Πc from line h of the table. We can get (Table 4.4), for example, the expression
D4 = F4 ∨F9 = z1z2x3x5 ∨ z1z2x3.

Table of CMCU code transformer serves to build functions (4.29), where the
terms Ag are determined as:

Ag =
R6∧

r=1
τ lgr

r (g = 1, . . . ,G1), (4.32)

and lgr ∈ {0,1} is the value of the bit r of code K(αg), τ0
r = τr, τ1

r = τr (r =
1, . . . ,R6). For example, we get from Table 4.5 that: z2 = A5 ∨A6 ∨A7.

Optimal encoding of OLC permits to reduce the number of terms in (4.29).
For example, using OLC codes from Fig. 4.15, the following minimal form of the
Boolean function z2 can be found: z2 = τ1τ3 ∨ τ1τ2.

As in previous cases, block CC is implemented with PLD chips and the control
memory with PROM or RAM chips. Block TC can be also implemented using PLD
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Table 4.4 Transition table of CMCU U10(Γ5)

Bi K(Bi) I j
m A(I j

m) Xh Ψh Φh h

B1 10 I1
2 10000 x1 D1 – 1

I1
3 10100 x1x2 D1D3 – 2

I1
4 11100 x1x2 D1D2D3 – 3

B2 00 I2
2 10010 x3x5 D1 D4 4

I1
5 00100 x3x5 D3 – 5

I1
6 01100 x3x4 D2D3 – 6

I1
7 01000 x3x4 D2 – 7

B3 01 I1
8 11000 x3 D1D2 – 8

I2
7 01010 x3 D2 – 9

Table 4.5 Table of code transformer of CMCU U10(Γ5)

αg K(αg) Bi K(Bi) Zg g

α1 000 B1 10 Z1 1
α2 100 B2 00 – 2
α3 101 B2 00 – 3
α4 111 B2 00 – 4
α5 001 B3 01 Z2 5
α6 011 B3 01 Z2 6
α7 010 B3 01 Z2 7

chips (if system Z includes less than 50% of all possible terms) or PROM chips
(otherwise). In this case, system (4.29) includes 3 terms and therefore PLA imple-
mentation can be used. Logic circuit of CMCU U10(Γ5) is shown in Fig. 4.17.

We find that the parameters of CMCU U10(Γ5) and U1(Γ5), are: R10
FB(Γ5) = 2,

t10(Γ5) = 4, H10(Γ5) = 9; R1
FB(Γ5) = 2, t1(Γ5) = 7, H1(Γ5) = 10. This comparison

shows the following common rules:

R10
FB = R4 = R1; (4.33)

t10(Γ ) ≤ R2; (4.34)

H10(Γ ) =
I

∑
i=1

Hi ≤ H1(Γ ). (4.35)

Thus, combinational circuit CC of CMCU U10 has minimal possible parameter
values, but the use of additional block TC, consuming additional hardware, is nec-
essary. These values could be reduced, due to optimal OLC encoding and special
encoding of equivalence classes Bi ∈ Πc. For example, if the classes B2 and B3 are
interchanged (Fig. 4.15), function z2 would be equal to: z2 = τ1.

Transformation of GSA Γ (U8) consists on introduction of additional operator
vertices and gives smaller number of lines in the transition table, without using addi-
tional TC block. Let symbol U11 stay for CMCU, based on this property. Structural
diagrams of both CMCU U8 and U11 are the same. As in case of CMCU U7, extra
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Fig. 4.17 Logic circuit of
CMCU U10(Γ5)
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vertices correspond to additional OLC αg ∈ C2. Synthesis method for the CMCU
U11(Γ ) is an analogue of the one used for CMCU U7(Γ ), but condition (3.52) takes
now the form:

|C2| = 2R6 −G. (4.36)

If the number of new vertices exceeds the value determined by (4.36), the number
of bits in OLC code increases and, therefore, the number of bits for microinstruction
addressing will also exceed the minimal value R2.

Synthesis of CMCU U11(Γ ) includes the following steps:

1. Transformation of initial GSA Γ (procedure P4) and construction of the trans-
formed GSA Γ (U2).

2. Construction of the set of OLC (procedure P1).
3. Construction of partition Πc.
4. Construction of transformed GSA Γ (U11) (procedure P8).
5. Optimal encoding of OLC αg ∈C1.
6. Encoding of components of OLC αg ∈C1 ∪C2.
7. Construction of control memory content.
8. Construction of transition table for CMCU.
9. Synthesis of logic circuit for CMCU.

Let us discuss application of this method for synthesis of CMCU U11 interpret-
ing the GSA Γ6. This GSA is transformed into GSA Γ6(U2) using procedure P4

(Fig. 4.18).
Application of procedure P1 to GSA Γ6(U2) gives the OLC set C = {α1, . . . ,α7},

where α1 = 〈b1,b2〉, I1
1 = b1, O1 = b2, L1 = 2; α2 = 〈b3,b4,b5〉, I1

2 = b3, O2 = b5,
L2 = 3; α3 = 〈b6,b7〉, I1

3 = b6, O3 = b7, L3 = 2; α4 = 〈b8, . . . ,b11〉, I1
4 = b8, I2

4 = b10,
O4 = b11, L4 = 4; α5 = 〈b12,b13〉, I1

5 = b12, O5 = b13, L5 = 2; α6 = 〈b14,b15,b16〉,
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Fig. 4.18 Transformed GSA Γ6(U2)
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I1
6 = b14, O6 = b16, L6 = 3; α7 = 〈b17,b18〉, I1

7 = b17, O7 = b18, L7 = 2. The output
of the OLC α7 is connected to the final vertex bE , and therefore C1 = {α1, . . . ,α6}.
Partition of the OLC set includes 2 classes, namely Πc = {B1,B2}, with B1 =
{α1,α5,α6}, B2 = {α2,α3,α4}.

Classes of partition Πc have the following parameters: |B1| = 3, |H1| = 3,
ΔH1 = 3, |B2| = 3, H2 = 4, ΔH2 = 5. It means that the transformation of GSA
makes sense for both classes.

According to (4.36), the GSA Γ6(U2) can be transformed by introduction of
23 − 7 = 1 additional operator vertices. In other words, the queue γ = 〈B2,B1〉
should be organized. Blocks Bi ∈ Πc are listed in the order of diminishing parameter
ΔHi > 0. Thus, only the subgraph of GSA corresponding to the class B2 ∈Πc can be
transformed. The transformed subgraph of GSA Γ6(U2) is shown in Fig. 4.19. This
transformation introduces the vertex b19, all other connections in the GSA Γ6(U2)
being the same as in the GSA Γ6(U2).

Further decrease of the number of transitions is possible due to optimal encoding
of OLC αg ∈ C1 ∪C2, where the set C2 = {α8} with an extra OLC α8 = 〈b19〉,
I1
8 = O8 = b19. Code K(α7) corresponds to insignificant input assignment, because

α7 /∈C1. Outcome of optimal OLC encoding is shown in Fig. 4.20.

Fig. 4.19 Transformed sub-
graph of GSA Γ6(U11)
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Introduction of the OLC α8 results in new partition Πc = {B1,B2,B3}, where
B3 = {α8}. It follows from Fig. 4.20 that K(B1) = 0∗∗ (code K(α7) is considered
as insignificant input assignment), K(B3) = ∗10, block B2 belongs to the two gen-
eralized intervals of code space and thus is split into two blocks, namely: B1

2 coded
as K(B1

2) = 10∗ and B2
2 coded as K(B2

2) = 1∗1.
Encoding of OLC components is executed in a standard way and the result is

shown in Fig. 4.21.
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Construction of the transition table is the same as in case of CMCU U9. After
transformation of the initial SFT the following system of transition formulae is ob-
tained:

B1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2I1
4 ;

B1
2 → I1

8 ;
B2

2 → I1
8 ;

B3 → x2I1
5 ∨ x2x3I1

6 ∨ x2x3x4I1
7 ∨ x2x3x4I2

7 .

(4.37)
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Fig. 4.21 Microinstruction addresses for CMCU U11(Γ6)

System (4.37) corresponds to the CMCU U11(Γ6) transition table with
H11(Γ6) = 9 lines corresponding to the number of terms in the system of transition
formulae (4.37). In case of CMCU U8(Γ6), the transition table has H8(Γ6) = 22 lines,
but in case of CMCU U1(Γ6) it has only H1(Γ6) = 8 lines. Therefore, the combined
application of GSA transformation and optimal OLC encoding allows reducing the
number of lines in the CMCU U11(Γ6) transition table approximately to the same
value as in case of the structure table of addressing FSM S1 in CMCU U1(Γ ).

Let us point out, that extra vertices can be treated as additional components of
OLC, available already before the transformation. For example, vertex b19 (Fig.
4.19) can be treated as output of some OLC αg ∈ B2. Introduction of vertex b19,
either in the OLC α2 or in the OLC α3, does not lead to higher Lmax, but introduction
of this vertex into the OLC α4 increases this parameter and now R7 = 3. Advantage
of this approach consists on preservation of the number of OLC in comparison with
the initial GSA. The analysis shows that the following rules should be used during
transformation of the initial GSA (procedure P10):

• if the introduction of additional vertex does not increase the value of R7, this
vertex is added in some OLC, already available;

• if the introduction of additional vertex increases the value of R7 and introduction
of additional OLC does not increase the value of R6, then this vertex is treated as
the additional OLC;

• if the introduction of additional vertex increases the values of both R6 and R7, the
vertex is not added.

Let us take the case when vertex b19 is inserted into the OLC α2 and we
have the new OLC α2 = 〈b3,b4,b5,b19〉 with I1

2 = b3, I2
2 = O2 = b19. Now, new
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partition Πc = {B1,B2,B3} can be formed, where B1 = {α1,α5,α6}, B2 = {α2},
B3 = {α3,α4}, and the transition table is represented by the following STF:

B1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2I1
4 ;

B2 → x2I1
5 ∨ x2x3I1

6 ∨ x2x3x4I1
7 ∨ x2x3x4I2

7 ;

B3 → I2
2 .

This system corresponds to the transition table having 8 lines, the same as the
structure table of CMCU U1(Γ6). Control unit U11 is characterized by the following
parameters:

R11
FB = R6; (4.38)

t11(Γ ) ≤ R2; (4.39)

H11(Γ ) =
I1

∑
i=1

kiHi, (4.40)

where I1 is the new value of the cardinal number of partition Πc after introduction of
additional vertices. Let us point out, that condition (4.38) holds only when procedure
P10 is used. Otherwise the number of feedback variables can exceed the value of R6.

4.3 Synthesis of CMCU with elementary operational linear
chains

The method of synthesis of CMCU with elementary OLC is proposed in [3, 5].
Operational linear chain is called an elementary OLC (EOLC) if it has only one
single input. Structural diagram of CMCU U12 is shown in Fig. 4.22 and represents
basic structure of the CMCU with EOLC.

CC
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YCM

+1

CT
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S
Start

X

yE

y0

Ψ τ

T"0"

Fig. 4.22 Structural diagram of CMCU U12

Let CE be a set of elementary OLC of GSA Γ , including GE elements. Let us
encode each EOLC by a binary code with
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R9 = 	log2 GE
 (4.41)

bits and use variables τr ∈ τ for this encoding, where |τ| = R9. Let us encode com-
ponents of OLC by binary codes K(bq) with R7 bits and use variables Tr ∈ T , where
|T | = R7. Let us represent the address A(bq) of microinstruction corresponding to
vertex bq ∈ Dg (g = 1, . . . ,GE) in the form (4.5). In this case CMCU U12(Γ ) oper-
ates in the following manner.

Pulse "Start" initiates loading of zero codes into register RG and counter CT.
Simultaneously, flip-flop TF is set up and allows fetching microinstructions from
the control memory CM. If contents of RG and CT form an address A(bq), where
bq �= Og (g = 1, . . . ,GE), additional variable y0 is generated together with microop-
erations from the set Y (bq). If y0 = 1, the pulse "Clock" causes increment of CT,
which corresponds to the unconditional jump (4.4). If contents of RG and CT form
an address A(bq), where bq = Og (g = 1, . . . ,GE), variable y0 is not generated. In
this case pulse "Clock" causes reset of CT, corresponding to an input code of some
EOLC. At the same time functions (4.7) change the content of RG. If microin-
struction with yE = 1 is fetched from the control memory, flip-flop TF is reset and
operation of CMCU terminated.

Analysis of CMCU U12 shows that its combinational circuit CC has R9 outputs,
which is the minimum for this parameter. The corresponding microinstruction ad-
dress has

R10 = R9 +R7 (4.42)

bits and if condition
R10 = R2 (4.43)

holds, expression (4.42) gives the smallest possible number of address bits. Appli-
cation of this method has no sense if condition

R10 > R2 (4.44)

is satisfied, because in this case the size of control memory exceeds the minimum
Vmin, determined by (4.14).

Synthesis of CMCU U12(Γ ) is an analogue of the one used for CMCU U8(Γ ),
but the set CE is used in former case instead of the set of OLC C. Synthesis of the
CMCU U12(Γ ) includes the following steps:

1. Preliminary transformation of initial GSA (procedure P4).
2. Construction of the set of elementary OLC CE for GSA Γ (U12).
3. Encoding of elementary OLC.
4. Encoding of components for elementary OLC.
5. Construction of the control memory content.
6. Construction of transition table for CMCU U12(Γ ).
7. Synthesis of logic circuit of CMCU.

Construction of set CE requires some modification of procedure P1, leading to
procedure P11, and uses the set of main inputs IME(Γ ) of elementary OLC as a base
for construction of the chains. Main input of EOLC is an operator vertex, with the



122 4 Synthesis of compositional microprogram control units with code sharing

input connected either to the output of initial or conditional vertices or with outputs
of more operator vertices. Procedure P11 includes the following steps:

1. Construction of the set IME(Γ ).
2. Put g := 1
3. Choice of the vertex bq ∈ B1 with the least value of subscript in the set IME(Γ ).

Removing of this vertex from the set IME(Γ ).
4. Insertion of the vertex bq into the set Dg, used as a base vertex bN of elementary

OLC αg.
5. Choice of some vertex bt , such that 〈bN ,bt〉 ∈ E.
6. If bt ∈ B2 or bt = bE , or bt ∈ IME(Γ ), go to point 8, else the vertex bt should be

included in the constructed OLC αg after the vertex bN .
7. Fix vertex bt as a new base vertex bN of EOLC αg and go to point 5.
8. If IME(Γ ) = /0, go to point 10.
9. Put g := g+1 and go to point 3.

10. End.

All other steps of synthesis procedure for CMCU U12(Γ ) are executed by analogy
with corresponding steps given already for CMCU U8(Γ ). Let us consider applica-
tion of this method for synthesis of CMCU U12, using the transformed GSA Γ7(U2)
shown in Fig. 4.23.

Construction of the set of elementary OLC. In this case we have the set of in-
puts IME(Γ ) = {b1,b3,b4,b7,b10,b11b14,b18}, therefore, the set of EOLC includes
GE = 8 elements. Application of procedure P11 results in the set CE = {α1, . . . ,α8},
where α1 = 〈b1,b2〉, I1 = b1, O1 = b2, L1 = 2; α2 = 〈b3〉, I2 = O2 = b3, L2 = 1;
α3 = 〈b4,b5,b6〉, I3 = b4, O3 = b6, L3 = 3; α4 = 〈b7,b8,b9〉, I4 = b7, O4 = b9,
L4 = 3; α5 = 〈b10〉, I5 = O5 = b10, L5 = 1; α6 = 〈b11,b12,b13〉, I6 = b11, O6 = b13,
L6 = 3; α7 = 〈b14, . . . ,b17〉, I7 = b14, O7 = b17, L7 = 4; α8 = 〈b18〉, I8 = O8 = b18,
L8 = 1. Let us point out, that inputs of EOLC have only the subscripts.

Encoding of EOLC is executed in a trivial way. In case of the CMCU U12(Γ7),
R9 = 3 bits is sufficient to encode EOLC, thus τ = {τ1,τ2,τ3}. Let the EOLC have
the following codes:K(α1) = 000, . . . ,K(α8) = 111.

Encoding of components is executed using the same approach as in case of
CMCU U8. In this case it can be found that Lmax = 4, R7 = 2 and T = {T1,T2}.
Microinstruction addresses for the CMCU U12(Γ7) are shown in Fig. 4.24.

Construction of control memory content is reduced here to the replacement of
vertices bq ∈ B1 by microoperations taken from corresponding set Y (bq). This step
is executed in a trivial way.

Construction of transition table of CMCU U12 is executed by analogy with
corresponding synthesis step for CMCU U8. The transition formulae are constructed
only for EOLC αg ∈ C1

E , where C1
E ⊆ CE is a set of EOLC, such that their outputs

do not include variable yE . In case of CMCU U12(Γ7) we have C1
E = {α1, . . . ,α7}

and the system of transition formulae includes |C1
E | = 7 expressions:
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Fig. 4.23 Transformed GSA Γ7(U2)



124 4 Synthesis of compositional microprogram control units with code sharing

T1T2

b1 b3 b4 b18

b2 b5

b6

b14

b15

b16

b17

b11

b12

b13

b10b7

b8

b9

00

01

11

10

000 001 010 011 100 101 110 111

*
*
*

* *

* *
*

321 τττ

* *

*

*
**

Fig. 4.24 Microinstruction addresses for CMCU U12(Γ7)

α1 → x1I2 ∨ x1x2I3 ∨ x1x2I4;
α2 → I3;
α3 → x2x4I3 ∨ x2x4I5 ∨ x2x3I6 ∨ x2x3I7;
α4 → x2x4I3 ∨ x2x4I5 ∨ x2x3I6 ∨ x2x3I7;
α5 → I6;
α6 → I8;
α7 → I8.

(4.45)

System (4.45) corresponds to the transition table of CMCU U12(Γ7), including
H12(Γ7) = 15 lines (Table 4.6).

Table 4.6 Table of code transformer TC for CMCU U20(Γ10)

αg K(αg) I j
m A(I j

m) Xh Ψh h

α1 000 I2 00100 x1 D3 1
I3 01000 x1x2 D2 2
I4 01100 x1x2 D2D3 3

α2 001 I3 01000 1 D2 4
α3 010 I3 01000 x2x4 D2 5

I5 10000 x2x4 D1 6
I6 10100 x2x3 D1D3 7
I7 11000 x2x3 D1D2 8

α4 011 I3 01000 x2x4 D2 9
I5 10000 x2x4 D1 10
I6 10100 x2x3 D1D3 11
I7 11000 x2x3 D1D2 12

α5 100 I6 10100 1 D1D3 13
α6 101 I8 11100 1 D1D2D3 14
α7 110 I8 11100 1 D1D2D3 15

In contrast to the transition table of CMCU U8, this table of CMCU U12 does not
include the column Φh, because all components corresponding to inputs of EOLC
have only zero codes. This transition table is the base to construct functions of sys-
tem (4.7), the terms of which are determined by (4.16). For example, the following
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Boolean expression can be extracted from Table 4.6: D1 = F6 ∨F7 ∨F8 ∨F10 ∨ . . .∨
F15 = τ1τ2τ3x2x4 ∨ . . .∨ τ1τ2τ3.

Synthesis of logic circuit of CMCU U12 is reduced to implementation of system
(4.7) using PLD chips and systems (4.8)–(4.9) using either PROM or RAM chips.
Logic circuit of the CMCU U12(Γ7) is shown in Fig. 4.25.

Let us find the values of some parameters of the CMCU U8(Γ7): G = 6, R8
FB(Γ ) =

3; t8(Γ7) = 3+2 = 5; H8(Γ7) = 12. It is helpful to use the following general relations
for comparison of CMCU U8 and U12:

R8
FB = R12

FB; (4.46)

t8(Γ ) > t12(Γ ); (4.47)

H8(Γ ) = H12(Γ ). (4.48)

Inequality (4.47) turns into equality if the following condition

	log2 G
 = 	log2 GE
 (4.49)

is satisfied. Parameter t12(Γ ) has the minimal possible value among all CMCU con-
sidered already. The number of transitions for CMCU U12 can be estimated as

H12(Γ ) = H8(Γ )+(GE −G)+ JE , (4.50)

where JE is a variable equal to the number of OLC αg ∈C1 with Lg > 1. The second
term of expression (4.50) determines the number of new members corresponding to
unconditional jumps connected with transformation of initial OLC into EOLC. In
our case it can be found that GE −G = 2, JE = 1. It means that H12(Γ )−H8(Γ ) = 3,
as was already proved by previous calculations.

As in case of CMCU U8, the number of feedback signals and lines of transition
table of CMCU U12 can be reduced due to application of Moore FSM optimiza-
tion methods adapted to peculiarities of CMCU with elementary operational linear
chains.

4.4 Logic circuit optimization for CMCU with elementary OLC

In CMCU U12 the codes of OLC αg ∈CE are analogues of state codes of Moore FSM
S1. Therefore, three methods can be proposed for reducing the hardware amount of
CMCU U12 logic circuit:

• optimal encoding of elementary OLC αg ∈C1
E ;

• transformation of codes of EOLC αg ∈C1
E into codes of the classes of pseudoe-

quivalent EOLC;
• transformation of graph-scheme of algorithm Γ (U12).

Optimal encoding of EOLC requires finding a partition ΠE of the set EOLC C1
E

into the classes of pseudoequivalent EOLC. As in case of pseudoequivalent OLC,
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Fig. 4.25 Logic circuit of CMCU U12(Γ7)

elementary OLC αi,α j ∈ C1
E are called pseudoequivalent EOLC, if their outputs

are connected with input of the same vertex of GSA Γ . In case of GSA Γ7, where
Πc = {B1, . . . ,B5}, partition Πc = {B1, . . . ,B5} can be found, for which B1 = {α1},
B2 = {α2}, B3 = {α3,α4}, B4 = {α5}, B5 = {α6,α7}. The encoding is executed in
such a manner, that codes K(αg) of EOLC αg ∈ Bi belong to the same generalized
interval of a R9– dimensional Boolean space. This approach results in the CMCU
U13 of Fig. 4.26.
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Fig. 4.26 Structural diagram of CMCU U13

As in case of CMCU U9, the set τ ′ ⊆ τ includes variables τr ∈ τ , which are
significant for codes K(Bi) of classes Bi ∈ ΠE . Combinational circuit CC of CMCU
U13 generates functions (4.22). Synthesis methods used for both CMCU U9 and
U13 are identical, but the later uses elementary OLC instead of OLC and partition
ΠE instead of partition Πc. Outcome of optimal encoding of EOLC for the CMCU
U13(Γ7) is shown in Fig. 4.27.
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Fig. 4.27 Optimal encoding
of EOLC for CMCU U13(Γ7)
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The code K(α8) = 100 is treated as insignificant input assignment and therefore
classes Bi ∈ ΠE are determined by the codes: K(B1) = ∗00, K(B2) = 001, K(B3) =
∗11, K(B4) = 10∗, K(B5) = ∗10. It means that in this case equality τ = τ ′ holds and
the number of feedback variables in combinational circuit CC of the CMCU U13(Γ7)
is not decreased due to optimal encoding of elementary OLC.

Transition table of CMCU U13(Γ ) is constructed using procedure P7. It leads to
replacement of initial system (4.45) by the following system of transition formulae:

B1 → x1I2 ∨ x1x2I3 ∨ x1x2I4;
B2 → I3;
B3 → x2x4I3 ∨ x2x4I5 ∨ x2x3I6 ∨ x2x3I7;
B4 → I6;
B5 → I8.

(4.51)

System (4.51) corresponds to transition table of CMCU U13(Γ7), which includes
H13(Γ7) = 10 lines (Table 4.7).

Table 4.7 Table of code transformer TC for CMCU U20(Γ10)

Bi K(Bi) I j
m A(I j

m) Xh Ψh h

B1 ∗00 I2 00100 x1 D3 1
I3 01100 x1x2 D2D3 2
I4 11100 x1x2 D1D2D3 3

B2 001 I3 01100 1 D2D3 4
B3 ∗11 I3 01100 x2x4 D2D3 5

I5 10100 x2x4 D1D3 6
I6 01000 x2x3 D2 7
I7 11000 x2x3 D1D2 8

B4 10∗ I6 01000 1 D2 9
B5 ∗10 I8 10000 1 D1 10

Functions (4.22) depend on terms (4.24). For example, the following expression
for the first input memory function can be obtained from Table 4.7: D1 = F3 ∨F6 ∨
F8 ∨F9 = τ2τ3x1x2 ∨ τ1τ2x2x4 ∨ τ2τ3x2x3 ∨ τ2x3.

Parameters of combinational circuit CC, determined for CMCU U13(Γ7), satisfy
the relations:

R13
FB = |τ ′| ≤ R9; (4.52)
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t13(Γ ) = R9 < R2; (4.53)

H13(Γ ) =
IE

∑
i=1

kiHi, (4.54)

where ki is the number of intervals of an R6–dimensional Boolean space with codes
of EOLC αg ∈ Bi, where Bi ∈ ΠE , |ΠE | = IE .

Transformation of EOLC addresses into the codes of classes of pseudoequivalent
EOLC allows minimizing the values of parameters RFB and H(Γ ) due to an addi-
tional block TC. In this case, each class Bi ∈ ΠE is encoded by a binary code K(Bi)
with

R11 = 	log2 IE
 (4.55)

bits and variables zr ∈ Z, with |Z| = R11 are used. This approach leads to CMCU
U14 (Fig. 4.28).
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Fig. 4.28 Structural diagram of CMCU U14

Operation principles of both CMCU U14 and U10 are identical. In case of CMCU
U14, the code transformer TC generates functions (4.29) and combinational circuit
CC generates functions (4.30). Synthesis methods are identical for both CMCUs,
but in case of CMCU U14 elementary OLC and their equivalence classes instead of
OLC classes are used.

As in case of CMCU U10, it is advisable to combine optimal encoding of both
classes Bi ∈ ΠE and EOLC αg ∈ Bi to optimize hardware amount of the code trans-
former TC. Let EOLC of the CMCU U14(Γ7) be encoded as shown in Fig. 4.27.
Let us encode classes Bi ∈ ΠE using the following approach: the more elements
some class contains the more zeros its code includes. In case of CMCU U14(Γ7) we
have IE = 5, R11 = 3, Z = {z1,z2,z3} and K(B1) = 010, K(B2) = 011, K(B3) = 000,
K(B4) = 100, K(B5) = 001. These codes can be simplified using insignificant input
assignments of an R11–dimensional Boolean space. Outcome of optimal encoding
for classes Bi ∈ ΠE is shown in Fig. 4.29.

It follows from Fig. 4.29 that these classes have the codes: K(B1) = ∗10, K(B2) =
∗11, K(B3) = 000, K(B4) = 1∗∗ and K(B5) = ∗01.
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Fig. 4.29 Encoding of classes
for CMCU U14(Γ7)
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Transition table for the CMCU U14(Γ7) is built using system (4.51) and includes
H14(Γ7) = 10 lines (Table 4.8). It allows getting functions (4.30), depending on the
terms

Fh = Zh
i Xh (h = 1, . . . ,H14(Γ )), (4.56)

where conjunction Zh
i has the form:

Zh
i =

R11∧
r=1

zlir
r (i = 1, . . . , IE). (4.57)

Here lir ∈ {0,1,∗} is the value of bit r of the code K(Bi) from line h of the
transition table, z0

r = zr, z1
r = zr, z∗r = 1 (r = 1, . . . ,R11). For example, the following

equation can be found from Table 4.8: D1 = F3∨F6∨F8∨F10 = z2z3x1x2∨ . . .∨z2z3.

Table 4.8 Transition table of CMCU U14(Γ7)

Bi K(Bi) I j
m A(I j

m) Xh Ψh h

B1 ∗10 I2 00100 x1 D3 1
I3 01100 x1x2 D2D3 2
I4 11100 x1x2 D1D2D3 3

B2 ∗11 I3 01100 1 D2D3 4
B3 000 I3 01100 x2x4 D2D3 5

I5 10100 x2x4 D1D3 6
I6 01000 x2x3 D2 7
I7 11000 x2x3 D1D2 8

B4 1∗∗ I6 01000 1 D2 9
B5 ∗01 I8 10000 1 D1 10

Table of code transformer TC is constructed by analogy to the corresponding
table of CMCU U10. In this case, table of TC has G1 = 7 lines (Table 4.9) and is
used to construct system (4.29), with terms determined by analogy with (4.32):

Ag =
R9∧

r=1
τ lgr

r (g = 1, . . . ,G1). (4.58)

For example, from Table 4.9 we get: z1 = τ1τ2 (taking into account the insignif-
icant input assignment 100) and z2 = τ1τ2; z3 = τ1τ2τ3 ∨ τ2τ3. We point out that
functions of this system may in general include up to G1 = 7 terms, each term with
up to R9 = 3 literals. Thus, the disjunctive normal forms of functions (4.29) include



130 4 Synthesis of compositional microprogram control units with code sharing

Table 4.9 Table of code transformer of CMCU U14(Γ7)

αg K(αg) Bi K(Bi) Zg g

α1 000 B1 ∗10 Z2 1
α2 001 B2 ∗11 Z2Z3 2
α3 011 B3 000 – 3
α4 111 B3 000 – 4
α5 101 B4 1∗∗ Z1 5
α6 010 B5 ∗10 Z3 6
α7 110 B5 ∗10 Z3 7

up to G1 ·R9 = 21 literals. In our case this value is reduced to 7, due to optimal
encoding of both elementary OLCs and their classes.

Comparison of Tables 4.7 and 4.9 shows that the use of TC has no sense in this
particular case, because it does not lead to decrease neither the number of lines of
transition table nor the length of code K(Bi). Therefore, use of the CMCU U13(Γ7)
gives the logic circuit with best parameters, in case of interpretation GSA Γ7 using
the CMCU model. In general case, CMCU U14 has the following parameters:

R14
FB = R11 ≤ R9; (4.59)

t14(Γ ) = R11 ≤ R9; (4.60)

H14(Γ ) =
IE

∑
i=1

Hi ≤ H13(Γ ). (4.61)

Transformation of GSA Γ (U8) is reduced to insertion of additional operator
vertices, corresponding to elementary OLC αg ∈ C2

E . The number of lines in the
transition table can be reduced without using of TC block. This approach leads to
the CMCU U15, having similar structure, as CMCU U12. Synthesis of CMCU U15

includes the following steps:

1. Transformation of initial GSA Γ (procedure P4).
2. Construction of the set EOLC CE (procedure P11).
3. Construction of partition ΠE for the set C1

E .
4. Transformation of GSA Γ (U2): procedure P8.
5. Optimal encoding of EOLC αg ∈CE ∪C2

E .
6. Encoding of components of EOLC αg ∈CE ∪C2

E .
7. Construction of the control memory content.
8. Construction of transition table of CMCU.
9. Synthesis of logic circuit of CMCU.

Let us apply this approach to logic circuit of CMCU U15(Γ8), where the GSA
Γ8(U2) is shown in Fig. 4.30.

Application of procedure P11 gives the set CE = {α1, . . . ,α7}, where α1 =
〈b1,b2〉, I1 = b1, O1 = b2, L1 = 2; α2 = 〈b3, . . . ,b6〉, I2 = b3, O2 = b6, L2 = 4;
α3 = 〈b7,b8〉, I3 = b7, O3 = b8, L3 = 2; α4 = 〈b9, . . . ,b12〉, I4 = b9, O4 = b12, L4 = 4;
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α5 = 〈b13,b14,b15〉, I5 = b13, O5 = b15, L5 = 3; α6 = 〈b16,b17〉, I6 = b16, O6 = b17,
L6 = 2; α7 = 〈b18,b19〉, I7 = b18, O7 = b19, L7 = 2. Let us point out that the set
C1

E = {α1, . . . ,α6} and partition ΠE = {B1,B2}, B1 = {α1}, B2 = {α1, . . . ,α6}, is
obtained in this case.
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Fig. 4.30 Transformed GSA Γ8(U2)
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Analysis of class B2 shows that |B2| = 5, H2 = 2, ΔH2 = 7. It means that trans-
formation of the GSA Γ8(U2) makes sense.

Application of procedure P8 results in appearance of the vertex b20, correspond-
ing to EOLC α8, where I8 = O8 = b20, L8 = 1 (Fig. 4.31). It means that the set
C2

E = {α8} should be constructed.
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Fig. 4.31 Subgraph of transformed GSA Γ8(U15)

Outcome of the optimal encoding of elementary OLC αg ∈CE ∪C2
E is shown in

Fig. 4.32.

Fig. 4.32 Optimal encoding
of EOLC for CMCU U15(Γ8)
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In this case GE = 8, R9 = 3, τ = {τ1,τ2,τ3}. As follows from Fig. 4.32, class
B2 ∈ ΠE is split into classes: B1

2 = {α2,α3,α5,α6}, B2
2 = {α4} with binary codes

K(B1
2) = ∗ ∗ 1 and K(B2

2) = ∗1∗ (code K(α7) is treated here as insignificant input
assignment). The class B1 ∈ ΠE corresponds to code K(B1) = 000 and new class
B3 = {α8} corresponds to the code K(B3) = 1 ∗ 0. The microinstruction addresses
of Fig. 4.33 were found after encoding the components of EOLC αg ∈CE ∪C2

E (in
this case R7 = 2, T = {T1,T2}).

As in all previous cases, construction of the control memory content is executed
in a trivial way. Procedure P7 is used to construct transition table of CMCU U15. In
this example, system of transition formulae has the form:

B1 → x1x2I2 ∨ x1x2I3 ∨ x1x3I4 ∨ x1x3x4I5 ∨ x1x3x4I65;

B1
2 → I8;

B2
2 → I8;

B3 → x1I2 ∨ x1x2I2 ∨ x1x2I7.

(4.62)



4.4 Logic circuit optimization for CMCU with elementary OLC 133

T1T2

b1 b3 b9 b16

b2 b4 b10 b17

b5 b11

b6 b12

b18

b19

b13

b14

b15

b20b7

b8

00

01

11

10

000 001 010 011 100 101 110 111

*
*

*

* *
*

321 τττ

*
* * *

**

Fig. 4.33 Microinstruction addresses for CMCU U15(Γ8)

System (4.62) corresponds to the transition table with H15(Γ8) = 10 lines. In case
of CMCU U12, the transition table includes H12(Γ8) = 20 lines, in case of CMCU
U13 it includes H13(Γ8) = 15 lines, and in case of CMCU U14 this table includes
H14(Γ8) = 8 lines (due to the use of additional block TC). In general case, CMCU
U15 is characterized by the following parameters:

R15
FB = R9; (4.63)

t15(Γ ) = R9 < R2; (4.64)

H15(Γ ) =
IE

∑
i=1

kiHi, (4.65)

where IE = |ΠE after introduction of an extra EOLC.
Let us construct the table with parameters of different models of CMCU with

code sharing (Table 4.10), where parameters Si(Γ ), ti(Γ ) and Hi(Γ ) for i = 8, . . . ,15
can be found together with comments allowing comparison of these parameters with
other models of CMCU. As in case of corresponding Table 3.10 for CMCU U1 – U7,
only the parameters of combinational circuit CC are shown in Table 4.10. It follows
from the fact that the size of control memory CM is the same for all equivalent
control units.

It follows from Table. 4.10 that models Ui (i = 8, . . . ,11) are analogues of models
Ui+4, but different approaches to find the set of operational linear chains are used.
Models U10 and U14 have minimal hardware amount among all models from the
class considered, which is the consequence of using additional transformer TC, con-
suming some additional resources. Models based on EOLC have minimal number
of CC outputs, but need more inputs and terms in comparison with their analogues
based on OLC.

Introduction of extra vertices leads to CMCU with average values of analyzed
parameters, but is connected with the decrease of resulting digital system perfor-
mance.

Choice of particular model of CMCU depends on characteristics of the initial
GSA, logical elements and optimality criterion assumed for the designed control
unit.
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Table 4.10 Comparative characteristics of CMCU U8–U15

Model Systems Parameters Comments

U8
Φ = Φ(τ,X)
Ψ = Ψ(τ,X)

S8(Γ ) = R6 +L
t8(Γ ) = R6 +R7 = R2

H8(Γ ) = Hmax

Average
Maximum
Maximum

U9
Φ = Φ(τ ′,X)
Ψ = Ψ(τ ′,X)

S9(Γ ) = R9
FB(Γ )+L ≤ S8(Γ )

t9(Γ ) ≤ R2
H9(Γ ) = Hminki = 1

Average
Average
Minimum

U10
Φ = Φ(z,X)
Ψ = Ψ(z,X)

S10(Γ ) = R4 +L
t10(Γ ) ≤ R2

H10(Γ ) ≤ H1(Γ )

Minimum
Average
Minimum

U11
Φ = Φ(τ ′,X)
Ψ = Ψ(τ ′,X)

S11(Γ ) = R6 +L
t11(Γ ) ≤ R2

H10(Γ ) ≤ H11(Γ ) < Hmax

Average
Average
Average

U12 Ψ = Ψ(τ,X)
S12(Γ ) = R9 +L ≥ S8(Γ )
t12(Γ ) = R9

H12(Γ ) = Hmax

Maximum
Minimum
Maximum

U13 Ψ = Ψ(τ ′,X)
S13(Γ ) = R9 +L
t13(Γ ) = R9 < R2

H13(Γ ) > H11(Γ )

Maximum
Minimum
Average

U14 Ψ = Ψ(z,X)
S14(Γ ) = R11 +L < R12(Γ )
t14(Γ ) = R9

H14(Γ ) ≤ H13(Γ )

Average
Minimum
Average

U15 Ψ = Ψ(τ,X)
S15(Γ ) = R9 +L
t15(Γ ) = R9

H15(Γ ) ≥ H14(Γ )

Maximum
Minimum
Average
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Chapter 5
Synthesis of compositional microprogram
control units with object transformation

Abstract The chapter is devoted to optimization methods based on the transfor-
mation of codes. This method can be applied, when the FSM performing microin-
struction addressing generates functions, which are subsequently loaded into two
different memory blocks (the register and the counter). Some of these functions are
treated as primary objects and the others as secondary objects. The FSM combina-
tional part generates codes of primary objects and some additional variables only.
This information is used to generate codes of secondary objects and permits to re-
duce the number of inputs in the block generating codes of secondary objects, in
comparison with the initial combinational part of FSM and to reduce the hardware
amount of resulting CMCU logic.

5.1 Optimization principles for CMCU with object
transformation

Main conception of object transformation [3,4] is the following one. Let some com-
binational circuit CC implement the systems of Boolean functions

A = A(C), (5.1)

B = B(C), (5.2)

where |A| = t1, |B| = t2, |C| = S1 (Fig. 5.1a).
In this case, CC has S1 inputs and t1 + t2 outputs. Let us call systems A and B

the objects of device CC. The number of outputs of the CC can be reduced, due to
presentation of functions of the system B, using the functions of system A and some
extra object V. In this case, device CC1 implements functions (5.1) and some extra
functions

V = V (C). (5.3)

In this case, system (5.2) transforms to the form:

137
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Fig. 5.1 Principle of objects
transformation
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B = B(A,V ), (5.4)

which is implemented by a code transformer CA (Fig. 5.1b). Assuming |V |= t3, the
number of outputs of CC1 can be estimated as t1 + t3, and the code transformer CA
has t1 + t3 inputs. If t3 < t2 and S1 > t1 + t3, introduction of the code transformer
CA reduces both the number of functions implemented by the device CC and the
number of input variables in the system B.

Let us represent function A using function B and some additional system of func-
tions W , where |W | = t4. In this case CC2 implements both the system (5.2) and
extra system

W = W (C). (5.5)

System (5.1) takes the form:
A = A(B,W ). (5.6)

System (5.1) is implemented by code transformer CB (Fig. 5.1c). Now the device
CC implements t2 + t4 functions of S1 input variables, and the block CB implements
t1 functions, of t2 + t4 input variables. If t4 < t1 and S1 > t2 + t4, introduction of the
block CB reduces both the number of functions implemented by the device CC and
the number of input variables of the system A.

This transformation makes sense only if the total hardware amount either in the
system 〈CC1,CB〉 or in the system 〈CC2,CB〉 is smaller, than the hardware amount
of the initial combinational circuit CC. Let us point out that introduction of code
transformers leads to deterioration of CMCU performance, due to its longer cycle
time. Let us analyze models U1–U15 to find out, for which of them it would be rea-
sonable to use the object transformation. Of course, only the CC should be analyzed.

In case of CMCU U1, the combinational circuit CC generates input memory func-
tions, Φ and Ψ . It means that two kinds of transformation are possible in this case,
namely the transformation of state code into the address of OLC input and the in-
verse transformation. Thus, two objects exist in case of CMCU U1, namely the state
codes of the addressing FSM S1 and input addresses of OLC αg ∈C.

In CMCU U2 – U7 the combinational circuit CC generates input memory func-
tions Φ . It means that only a single object exists in these cases and the object trans-
formation has no sense.

In CMCU U8 – U11 the circuit CC generates functions Φ and Ψ . It means that
there are two objects and the transformation is possible. The transformation of input
address of OLC into code of OLC is not possible however, because only the codes of
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components are generated by functions Φ . In consequence, the bit capacity of new
object code is equal to bit capacity of OLC code. Therefore, only the transformation
of OLC code into component codes is possible in these cases.

In CMCU U12 – U15 the circuit CC generates only one object and object transfor-
mation makes no sense. Therefore, the following object transformations are possible
for the CMCU U1–U15:

• transformation of state codes into addresses of OLC inputs (U1);
• transformation of addresses of OLC inputs into state codes (U1)
• transformation of OLC codes into codes of OLC components (U8 – U11).

In case of CMCU with code sharing, if condition

R6 +R7 > R2 (5.7)

holds, the number of outputs of the circuit CC is minimal, but the size of con-
trol memory increases drastically in comparison with its minimal value Vmin. Let
us remember, that R6 = 	log2 G
 is the number of bits in codes of OLCαg ∈ C,
R7 = 	log2 Lmax
 is the number of bits in codes of components of OLC, where Lmax

is the maximal number of components in OLC αg ∈C, R2 = 	log2 M2
 is the min-
imal number of bits in microinstruction address, M2 = |B1|, where B1 is a set of
operator vertices of the interpreted GSA. In case of code sharing an address A(bq)
of microinstruction Y (bq), corresponding to vertex bq ∈ B1, is determined by con-
catenation of the two codes, namely:

A(bq) = K(αg)∗K(bq), (5.8)

where K(αg) is the code of OLC αg ∈ C, K(bq) is the code of component of OLC
αg ∈C, corresponding to the vertex bq. Let C(bq) be an address of microinstruction
Y (bq) with R2 bits. If condition (5.7) holds, the size of control memory CM can be
reduced, due to introduction of the address transformer AT, which transforms two
presentation forms of the same object. In this case, microinstruction address is used
as this object [2]. The address is not determined here by variables T (output of the
counter CT) and τ (output of the register RG), as for the circuit shown in Fig. 5.2a,
but by some functions V , generated by the address transformer AT of Fig. 5.2b.

Fig. 5.2 Address transfor-
mation for CMCU with code
sharing

CM

RG

AT

Y

V
T

a) b)

CT CT

RG

CMτ

y0 yE

Y

T

τ

y0

yE
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The address transformer AT generates functions

V = V (τ,T ), (5.9)

which are treated as address bits to form an address C(bq) with R2 bits. This ap-
proach allows to reduce the control memory size Vmin, if condition (5.7) holds. Let
us point out, that application of AT increases the cycle time of CMCU.

In case of CMCU with elementary OLC, the control memory size is increased in
comparison with Vmin under the condition

R9 +R7 > R2 (5.10)

where R9 is the number of bits in the code of EOLC αg ∈ CE . This value can be
minimized through the use of address transformer AT.

Thus, two types of object transformation can be applied to reduce the hardware
amount of the logic circuit of compositional microprogram control unit:

• codes transformation for different objects (U1, U8–U11);
• transformation of different codes of the same object (U8–U15).

Let us point out, that only the first approach is possible in case of CMCU U1, and
it gives the three-level structure of logic circuit. Only the second approach can be
used in the cases of CMCU U12–U15. It leads also to the three-level structure of logic
circuits. Both approaches can be used for the CMCU U8–U11. If only one of them
is applied, resulting circuit has a three-level structure. If both methods are applied
simultaneously, we obtain the four-level structure. All possibilities mentioned above
are shown in Fig. 5.3.

Fig. 5.3 Possible transfor-
mations of object codes for
CMCU

Codes transformation

for different objects

Transformation of different

codes of the same objects

U1 U8 - U11 U12 - U15

5.2 Objects transformation for CMCU with basic structure

Let us discuss the organization principle of CMCU U16 (Fig. 5.4), produced by
adding special code transformer TSA to the CMCU U1. This extra block TSA trans-
forms state codes of addressing FSM S1 into the microinstruction addresses of mi-
croprogram control unit S2.

In case of CMCU U16, combinational circuit CC generates input memory func-
tions for register RG, which keeps codes K(am) of FSM S1. These functions are
represented by the following system:

Ψ = Ψ(τ,X). (5.11)
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The combinational circuit CC generates also some additional variables vr ∈ V ,
where|V | = R12, used to identify microinstruction addresses. These functions are
represented by the system:

V = V (τ,X). (5.12)

CC

Start

Clock

Fetch

YCM

+1

R   TF

S
Start

X

yE

y0

CT
TΦ

TSA

Start

Clock

RG

V

Ψ

τ

Fig. 5.4 Structural diagram of CMCU U16

Code transformer TSA generates input memory variables of the counter CT

Φ = Φ(τ,V ). (5.13)

The functions (5.13) represent microinstructions addresses corresponding to the in-
puts of operational linear chains αg ∈C.

Functions of all other corresponding blocks are the same for both CMCU U1 and
U16. Let us find some formula to express the parameter R12.

In the transformed GSA Γ (U1), mark of the state am ∈ A is the same at least for
all inputs of a single OLC αg ∈ C. Let B(am) be a set of OLC inputs, marked by
state am ∈ A, and Km be the number of elements in this set. It is clear that maximal
value of parameter Km can be found as:

Kmax = max(K1, . . . ,KM1), (5.14)

where M1 = |A|. Now parameterR12 can be found in the form:

R12 = 	log2 Kmax
. (5.15)

Let us encode each input I j
g ∈ B(am) by a binary code K(I j

g) with R12 bits. In this
case microinstruction address A(bq) corresponding to operator vertex bq = I j

g is de-
termined as the concatenation

A(bq) = K(am)∗K(I j
g), (5.16)

where * is a concatenation sign. Expression (5.16) can be used to form the truth
table of code transformer TSA. Synthesis of CMCU U16(Γ ) includes the following
steps:

1. Application of procedures P1 – P4 to initial GSA Γ .
2. Construction of the control memory content.
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3. Construction of the pairs 〈 state of FSM S1, input of OLC αg ∈C〉 for transformed
GSA Γ (U16).

4. Encoding of states am ∈ A and OLC inputs I j
g ∈ I(Γ ).

5. Construction of transition table for CMCU U16.
6. Construction of the table of code transformer TSA.
7. Synthesis of CMCU logic circuit with given logical elements.

Application of procedures P1 – P4 gives the following results for some graph-
scheme of the algorithm Γ9:

1. Set of OLC C = {α1, . . . ,α5}, where α1 = 〈b1,b2,b3〉, I1
1 = b1, I2

1 = O1 = b3;
α2 = 〈b4, . . . ,b7〉, I1

2 = b4, I2
2 = b5, I3

2 = O2 = b7; α3 = 〈b8, . . . ,b12〉, I1
3 = b8,

O3 = b12; α4 = 〈b13, . . . ,b16〉, I1
4 = b4, I2

4 = b15, O4 = b16; α5 = 〈b17,b18,b19〉,
I1
5 = b17, I2

5 = O5 = b19.
2. Inputs I(Γ9) = {b1,b3,b4,b5,b7,b8,b13,b15,b17,b19}.
3. Microinstruction addresses A(bq) having R2 = 5 bits (Fig. 5.5). Let us point out

that each OLC αg ∈C is now determined unambiguously by variables T1, T2, T3.
4. Transformed GSA Γ9(U16) is shown in Fig. 5.6. The input memory functions

Dr ∈ Φ are taken from Fig.5.5. Resulting GSA is marked by states of Mealy
FSM and form a set A = {a1, . . . ,a3}.

T1T2

b1 b5 b9

b2 b6 b10

b3 b7 b11

b4 b8 b12

b17

b18

b19

b13

b14

b15

b16

00

01

11

10

000 001 010 011
T1T2T3

100 101 110 111

** *
** *
** *

* ** *
Fig. 5.5 Microinstruction addresses for CMCUU16(Γ9)

Construction of the control memory content is executed in a standard way and is
not discussed in this particular case.

Let us find the following pairs 〈am, I j
g〉 for the GSA Γ9(U16), where each pair

contains a state am ∈ A and input I j
g , corresponding to operator vertex with input

marked by am. The following pairs are formed in this case: β1 = 〈a1, I1
4 〉, β2 =

〈a1, I2
4 〉, β3 = 〈a1, I1

5 〉, β4 = 〈a1, I2
5 〉, β5 = 〈a2, I1

1 〉, β6 = 〈a2, I2
1 〉, β7 = 〈a3, I1

2 〉, β8 =
〈a3, I2

2 〉, β9 = 〈a3, I3
2 〉, β10 = 〈a3, I1

3 〉. Now the sets B(a1) = {I1
4 , I2

4 , I1
5 , I2

5}, B(a2) =
{I1

1 , I2
1}, B(a3) = {I1

2 , I2
2 , I3

2 , I1
3} can be formed with K1 = K3 = 4, K2 = 2, and Kmax =

4 can be found using formula (5.14).
Encoding of the states am ∈ A and OLC inputs I j

g ∈ I(Γ ) is executed in a trivial
way. In case of the CMCU U16(Γ9) it could be found that M = 3, R1 = 2, τ =
{τ1,τ2}. Let the states have following codes: K(a1) = 00, K(a2) = 01, K(a3) = 10. It
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Fig. 5.6 Transformed GSA
Γ9(U16)

D3

End

Start

I1 ____
1

x2
1 0

x4
1 0

a1

a2

I2
2

D4I1
2

x3

1

0
x3

1 0

D3D4I2
3

D3D4D5I3
1

D4D5I2
1

x3
1 0

x4
1 0

x1
1 0

a3

D1D4I5
1

D2D4D5I4
2

D1I5
2

D2D3I4
1

a1

b0

bE

is sufficient to have R12 = 2 variables to encode the OLC inputs, when V = {v1,v2}.
Codes K(I j

g) of the OLC inputs are shown in Table 5.1.
Codes of states of the addressing FSM and of OLC inputs are used to find input

addresses given by (5.16). It can be found, for example, that A(I2
2 ) = 1001 = K(a3)∗

K(I2
2 ).

Table 5.1 Encoding of OLC inputs for CMCU U16(Γ9)

B(a1) K(I j
g) B(a2) K(I j

g) B(a3) K(I j
g)

I1
4 00 I1

1 00 I1
2 00

I2
4 01 I2

1 01 I2
2 01

I1
5 10 I3

2 10
I2
5 11 I1

3 11

Transition table of CMCU U16 is represented by structure table of the address-
ing FSM S1. It is constructed using standard approach given in [1] and includes
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the columns: am, K(am), as, K(as), I j
g , K(I j

g), Xh, Ψh, Vh, h, where column Vh

contains variables vr ∈ V , equal to 1 in the code K(I j
g) from line h of the ta-

ble (h = 1, . . . ,H16(Γ )). The transition table includes here H16(Γ9) = 10 lines
(Table 5.2).

The table of code transformer TSA describes transformation of codes A(I j
g) into

the addresses A(bq), where bq = I j
g (g = 1, . . . ,G). The number of lines is here

the same as the number NP1 of different pairs 〈am, I j
g〉, which can be found in the

transition table. Table of TSA includes the columns am, K(am), I j
g , K(I j

g), bq, A(bq),
Φh, h and has H = NP1 lines. The column Φh contains variables Dr ∈ Φ , equal to
1, and used to load an address A(bq) into the counter CT. In present case, the table
of TSA includes NP1 = 10 lines (Table 5.3).

Table 5.2 Transition table of CMCU U16(Γ9)

am K(am) as K(as) I j
g K(I j

g) Xh Ψh Vh h

a1 00 a2 01 I1
1 00 1 D7 – 1

a2 01 a3 10 I1
2 00 x2x3 D6 – 2

a3 10 I2
2 01 x2x3 D6 v2 3

a3 10 I3
2 10 x2x4 D6 v1 4

a3 10 I1
3 11 x2x4x3 D6 v1v2 5

a2 01 I2
1 01 x2x4x3 D7 v2 6

a3 11 a1 00 I1
4 00 x3x1 – – 7

a1 00 I1
5 01 x3x1 – v1 8

a1 00 I2
4 10 x3x4 – v2 9

a1 00 I2
5 11 x3x4 – v1v2 10

Synthesis of CMCU U16 logic circuit is reduced to the implementation of systems
(5.11)–(5.13) using PLD chips and of the control memory CM using either PROM or
RAM chips. Systems (5.11)–(5.12) are constructed using the transition table 5.2 and,
for example, the following Boolean expressions can be found (after minimization):

D6 = τ1τ2x2 ∨ τ1τ2x2x4 ∨ τ1τ2x2x4x3;

v1 = τ1τ2x2x4 ∨ τ1τ2x2x4x3 ∨ τ1τ2x3x1 ∨ τ1τ2x3x4.

The table of TSA is used to construct system (5.13). In this example, we obtain:
D1 = τ1τ2v1v2 ∨ τ1τ2v1v2 = τ1τ2v1.

In case of the CMCU U16(Γ9), the set of microoperations includes five elements:
Y = {y1, . . . ,y5}. Corresponding logic circuit of CMCU U16(Γ9) is shown in Fig.
5.7.

In general case, the combinational circuit CC of CMCU U16 has the following
characteristics:

R16
FB = R1; (5.17)

t16(Γ ) = R1 +R13; (5.18)
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Table 5.3 Table of code transformer TSA for CMCU U16(Γ9)

am K(am) I j
g K(I j

g) bq A(bq) Φh h

a1 00 I1
4 00 b13 01100 D2D3 1

a1 00 I2
4 01 b15 01110 D2D3D4 2

a1 00 I1
5 10 b17 10000 D1 3

a1 00 I2
5 11 b19 10010 D1D4 4

a2 01 I1
1 00 b1 00000 – 5

a2 01 I2
1 01 b3 00010 D4 6

a3 10 I1
2 00 b4 00011 D4D5 7

a3 10 I2
2 01 b5 00100 D3 8

a3 10 I3
2 10 b7 00110 D3D4 9

a3 10 I1
3 11 b8 00111 D3D4D5 10

H16(Γ ) = H1(Γ ). (5.19)

Fig. 5.7 Logic circuit of
CMCU U16(Γ9)
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Structural diagram of CMCU U17 is shown in Fig. 5.8, where the address trans-
former TAS generates state codes using microinstruction addresses.

The CMCU U17 is based, therefore, on the transformation: 〈 OLC input address,
next state code 〉. In this model, combinational circuit CC generates the input mem-
ory functions for counter CT

Φ = Φ(τ,X), (5.20)

and address transformer TAS generates the input memory functions for register RG

Ψ = Ψ(T ′), (5.21)
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Fig. 5.8 Structural diagram of CMCU U17

where T ′ ⊆ T . The OLC input determines unambiguously the state am ∈ A, which
marked this input of GSA Γ (U17), and therefore no additional variables should be
used in this case. Let |T ′| = R13. If condition

R13 < R2 (5.22)

holds, block TAS has minimal possible number of inputs. In order to satisfy condi-
tion (5.22), the first R13 leftmost address bits should determine unambiguously the
code K(I j

g) of input for OLC αg ∈ C. Analysis of Fig. 5.5 shows that R13 = 5 for
the inputs I2

1 and I1
2 , because corresponding addresses differ only in the rightmost

address bit. Let us apply the algorithm of special microinstruction addressing (pro-
cedure P6), which should be modified as follows: shift to the right is continued till
inputs of different OLC αg ∈ C are placed in different columns of the addressing
table. Let us denote this new procedure as procedure P12. Application of this proce-
dure to microinstruction addresses of the CMCU U16(Γ9) gives the new addresses
shown in Fig. 5.9.

Synthesis of CMCU U17(Γ ) includes the following steps:

1. Application of procedures P1–P4 to the initial GSA Γ .
2. Construction of the control memory content.
3. Construction of CMCU transition table.
4. Construction of the table of address transformer TAS.
5. Synthesis of CMCU U17 logic circuit with given logical elements.

Let us apply this method to the CMCU U17(Γ9), microinstruction addresses of
which are shown in Fig. 5.9. Transition table of CMCU U17 includes columns am,
K(am), I j

g , A(I j
g), Xh, Φh, h. In case of the CMCU U17(Γ9) it includes H17(Γ9) = 10

lines (Table 5.4).
This table is the base to construct the functions of system (5.20). For example,

the following expression could be found from Table 5.4 (without minimization):
D1 = τ1τ2x3x1 ∨τ1τ2x3x1 ∨τ1τ2x3x4 ∨τ1τ2x3x4. This expression can be minimized
to get the final Boolean function: D1 = τ1τ2.

Table of the address transformer TAS includes the columns I j
g , K(I j

g), am, K(am),
Ψh, h. Code K(I j

g) is constructed using insignificant address assignments. For ex-
ample, as we find from Fig. 5.9: A(I1

5 ) = 10100, and the inputs of OLC αg ∈C are
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T4T5

b1 b4 b8

b2 b5 b9

b3 b6 b10

b7 b11

b17

b18

b19

b13

b14

b15

b16

b1200

01

11

10

000 001 010 011
T1T2T3

100 101 110 111

*
*

*
*

*
*

*
*

*
** **

Fig. 5.9 Microinstruction addresses for CMCU U17(Γ9)

unambiguously identified by R13 = 3 address bits T1T2T3. In consequence we obtain
at first the code K(I1

5 ) = 101 ∗ ∗, and using the generalized interval 111 ∗ ∗ of ad-
dress space, the code K(I1

5 ) = 1 ∗ 1 ∗ ∗ is finally obtained. Application of the same
approach leads to the following input codes of OLC αg ∈C for control unit U17(Γ9):
K(I1

1 ) = 000∗∗, K(I2
1 ) = 000∗∗, K(I1

2 ) = 001∗∗, K(I2
2 ) = 001∗∗, K(I3

2 ) = 001∗∗,
K(I1

3 ) = ∗10∗∗, K(I1
4 ) = 1∗0∗∗, K(I2

4 ) = 1∗0∗∗, K(I1
5 ) = 1∗1∗∗, K(I2

5 ) = 1∗1∗∗.
Some of these codes are the same and therefore the transformation of only one of
them should be shown in the table of TAS. Let us take the input with the least su-
perscript value. This TAS table includes NP2 = 5 lines (Table 5.5).

Table 5.4 Transition table of CMCU U17(Γ9)

am K(am) I j
g A(I j

g) Xh Φh h

a1 00 I1
1 00000 1 - 1

a2 01 I1
2 00100 x2x3 D3 2

I2
2 00101 x2x3 D3D5 3

I3
2 00111 x2x4 D3D4D5 4

I1
3 01000 x2x4x3 D2 5

I2
1 00010 x2x4x3 D4 6

a3 10 I1
4 10000 x3x1 D1 7

I1
5 10100 x3x1 D1D3 8

I2
4 10010 x3x4 D1D4 9

I2
5 10110 x3x4 D1D3D4 10

The system (5.21) with T ′ = {T1,T2,T3} is constructed using this table and in
particular D6 = T 1T 2T 3; D7 = T 1T 2T3 ∨T 2T3.

Logic circuit of the CMCU U17(Γ9) is shown in Fig. 5.10.
In general case, combinational circuit CC of CMCU U17 has the following char-

acteristics:

R17
FB = R1; (5.23)

t17(Γ ) = R2; (5.24)

H17(Γ ) = H1(Γ ). (5.25)
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Table 5.5 Table of TAS for CMCU U17(Γ9)

I j
g K(I j

g) am K(am) Ψh h

I1
1 000∗∗ a2 01 D6 1

I1
2 001∗∗ a3 10 D7 2

I1
3 ∗10∗∗ a3 10 D7 3

I1
4 1∗0∗∗ a1 00 – 4

I1
5 1∗1∗∗ a1 00 – 5

Fig. 5.10 Logic circuit of
CMCU U17(Γ9)

PLA

CC

1

x1

1

2

3

4

5

6

1

2

3

4

5

2

3

4
5

11

12

13

14

D1

D2

D3

D4

CT
11

D1

D2

D3

D4

D5

R

C1

C2

1

2

3

4

5

12

13

14

9

20

21

22

23

T1

T2

T3

T4

PROM

19

1

2

3

4

5

CS

1

2

3

4

5

6

7

20

21

23

27

7

8

y1

y2
y3
y4

y0
yE

16

18

1τ
2τ

1

x2 2

x3 3

4

5

y0

6

7

9

Start 10

Clock

1τ
2τ

R     T

S

Fetch8

9

18

&

1

&

16

17

7

10

10

C1

C2

15

17

16 y0

19

RGD1

D2

R

C

1

2

25

26

9

18

24

24T5

5

6

y5

x4

8yE

PLA

TSA

20
1

2

3

1

2
21

22

25

26

6

D6

D7

15D5

Let us point out, that both CMCU U16(Γ ) and U17(Γ ) have smaller number of out-
puts than CMCU U1(Γ ), and equal number of inputs and lines in the transition
table. Optimization of logic circuit can be made with help of either TSA (U16) or
TAS (U17), but in both cases some extra hardware is needed. The final choice among
models U1, U16 and U17 can be made, therefore, only after implementation of their
logic circuits, using particular elements. It should be pointed out, that the use of
state transformer TSA increases the cycle time of CMCU U16(Γ ), in comparison
with U1(Γ ) and U17(Γ ).
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5.3 Object transformation in CMCU with codes sharing

Application of the transformer of OLC code in the OLC component code for CMCU
U8 results in CMCU U18, where block TOK executes the object transformation de-
scribed above (Fig. 5.11).
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Clock

Fetch

YCM

+1

R   TF

S
Start

X

yE

y0

CT
TΦ

TOK

Start

Clock

RG

V

Ψ

τ

Fig. 5.11 Structural diagram of CMCU U18

Here, the combinational circuit CC generates functions (5.11)–(5.12), where
variables τr ∈ τ are used to encode OLC αg ∈ C, and block TOK generates func-
tions (5.13). In this case, system (5.12) includes R14 elements, where parameter R14

is determined in the following way.
Let NImax = max(NI1, . . . ,NIG), where NIg is the number of inputs for OLC

αg ∈C. The parameter R14 can be calculated using the following expression:

R14 = 	log2 NImax
. (5.26)

Let us encode each input I j
g of OLC αg ∈C by a binary code K(I j

g) with R14 bits. In
this case input address A(I j

g) is determined by concatenation

A(I j
g) = K(αg)∗K(I j

g). (5.27)

Code transformer TOK generates component code K(bq), where bq = I j
g , and this

code is loaded into the counter CT.
Synthesis of CMCU U18(Γ ) includes the following steps:

1. Preliminary transformation of initial GSA Γ (procedure P4).
2. Construction of the OLC set for transformed GSA.
3. Encoding of operational linear chains αg ∈C.
4. Encoding of components of operational linear chains αg ∈C.
5. Encoding of the OLC inputs I j

g ∈ I(Γ ).
6. Construction of the control memory content.
7. Construction of transition table for CMCU U18(Γ ).
8. Construction of table for code transformer TOK.
9. Synthesis of CMCU logic circuit with given elements.
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Let us discuss application of this method to the design of CMCU U18(Γ10), for
which the transformed GSA Γ10(U18) is shown in Fig. 5.12.

In case of the GSA Γ10(U18) application of procedure P1 leads to the set C =
{α1, . . . ,α8}, where α1 = 〈b1,b2〉, I1

1 = b1, O1 = b2, L1 = 2; α2 = 〈b3, . . . ,b6〉, I1
2 =

b3, I2
2 = b5, O2 = b6, L2 = 4; α3 = 〈b7,b8,b9〉, I1

3 = b7, O3 = b9, L3 = 3; α4 =
〈b10,b11〉, I1

4 = b10, I2
4 = O4 = b11, L4 = 2; α5 = 〈b12,b13〉, I1

5 = b12, O5 = b13,
L5 = 2; α6 = 〈b14,b15,b16〉, I1

6 = b14, O6 = b16, L6 = 3; α7 = 〈b17,b18,b19〉, α8 =
〈b20〉, I1

8 = O8 = b20, L8 = 1.
The transformed GSA Γ10(U18) is characterized by G = 8, R6 = 3, which

means that τ = {τ1,τ2,τ3}. Let us encode OLC αg ∈ C in a trivial way: K(α1) =
000, . . . ,K(α8) = 111. Analysis of OLC αg ∈ C shows that Lmax = L2 = 4, and
therefore, R7 = 2, T = {T1,T2}. Microinstruction addresses for the CMCU U18(Γ10)
are shown in Fig. 5.13.

The value of parameter NImax = max(1,2,1,2,1,1,1,1) = 2 and therefore R14 =
1, V = {v1}. Now the OLC inputs can be encoded as: K(I1

g ) = 0, K(I2
g ) = 1

(g = 1, . . . ,8). Construction of the control memory content for CMCU U18(Γ10)
is performed in a trivial way. Transition table of CMCU U18 is constructed using the
same approach, as the one used to construct transition table of CMCU U2. First step
is reduced to construction of the system of transition formulae for outputs of OLC
αg ∈C1. In the discussed case this system is:

O1 → x1I1
2 ∨ x1x2I2

2 ∨ x1x2x3I1
3 ∨ x1x2x3I1

4 ;

O2,O3,O4 → x3I1
5 ∨ x3x4I1

6 ∨ x3x4I1
7 ; (5.28)

O5,O6,O7 → x2I1
8 ∨ x2I2

4 .

Transition table is constructed on the base of this system. It includes the columns αg,
K(αg), αm, K(αm), I j

m, K(I j
m), Xh, Ψh, Vh, h, where αg is an OLC corresponding to

output Og in the initial SFT; αm is an OLC corresponding to input I j
m from the right

part of transition formula, such that Og = bi, I j
m = bq. The initial GSA Γ includes

transition from bi into bq, determined by input Xh. The column Ψh includes input
memory variables Dr ∈ Ψ , corresponding to 1 in the code K(αm); the column Vh

includes input memory variables vr ∈V , corresponding to 1 in the code K(I j
m). The

number of lines H18(Γ ) is determined by the number of terms in the system of tran-
sition formulae. In our example, this table includes H18(Γ10) = 19 lines (Table 5.6).

This table serves as the base for construction of functions (5.11)–(5.12). For ex-
ample, it could be found (after minimization), that: D1 = τ1τ2τ3∨τ1τ2τ3∨τ1τ2τ3∨
τ1x2; v1 = τ1τ2x2x1x2 ∨ τ1x2.

In this particular case the input assignment 111 is treated as insignificant one,
because the OLC α8 /∈ C1. From Table 5.6, we obtain the set of input memory
functions Ψ = {D1,D2,D3}.

Table of code transformer TOK includes the columns αg, K(αg), I j
g , K(I j

g), bq,
K(bq), Φh, h, where vertex bq corresponds to input I j

g , and codes K(bq) can be
found from microinstruction addresses. This table describes the transformation of
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Fig. 5.12 Transformed GSA Γ10(U18)
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T1T2
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*
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** *
* ** *

321 τττ

* *
Fig. 5.13 Microinstruction addresses for CMCU U18(Γ10)

Table 5.6 Transition table of CMCU U18(Γ10)

αg K(αg) αm K(αm) I j
m K(I j

m) Xh Ψh Vh h

α1 000 α2 001 I1
2 0 x1 D3 – 1

α2 001 I2
2 1 x1x2 D3 v1 2

α3 010 I1
3 0 x1x2x3 D2 – 3

α4 011 I1
4 0 x1x2x3 D2D3 – 4

α2 001 α5 100 I1
5 0 x3 D1 – 5

α6 101 I1
6 0 x3x4 D1D3 - 6

α7 110 I1
7 0 x3x4 D1D2 - 7

α3 010 α5 100 I1
5 0 x3 D1 - 8

α6 101 I1
6 0 x3x4 D1D3 - 9

α7 110 I1
7 0 x3x4 D1D2 - 10

α4 011 α5 100 I1
5 0 x3 D1 - 11

α6 101 I1
6 0 x3x4 D1D3 - 12

α7 110 I1
7 0 x3x4 D1D2 - 13

α5 100 α8 111 I1
8 0 x2 D1D2D3 - 14

α4 011 I2
4 1 x2 D2D3 v1 15

α6 101 α8 111 I1
8 0 x2 D1D2D3 - 16

α4 011 I2
4 1 x2 D2D3 v1 17

α7 110 α8 111 I1
8 0 x2 D1D2D3 - 18

α4 011 I2
4 1 x2 D2D3 v1 19

component addresses (5.27) into the component codes with R7 bits. The number of
lines in TOK table can be found from the relation

H(U18) =
G

∑
i=1

NIg. (5.29)

In the discussed case, TOK table includes H(U18(Γ10)) = 10 lines (Table 5.7).
This table is now used to construct functions (5.13). In our case Φ = {D4,D5}

and the equation: D4 = τ1τ2τ3v1 ∨ τ1τ2τ3v1, can be extracted from Table 5.7.
Synthesis of logic circuit of CMCU U18(Γ ) is reduced to implementation of sys-

tems (5.11)–(5.13) using PLD chips and control memory with either PROM or RAM
chips. Logic circuit of the CMCU U18(Γ10) is shown in Fig. 5.14.
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Table 5.7 Table of code transformer TOK for CMCU U18(Γ10)

αg K(αg) I j
g K(I j

g) bq K(bq) Φh h

α1 000 I1
1 0 b1 00 – 1

α2 001 I1
2 0 b3 00 – 2

α2 001 I2
2 1 b5 10 D4 3

α3 010 I1
3 0 b7 00 – 4

α4 011 I1
4 0 b10 00 – 5

α4 011 I2
4 1 b11 10 D4 6

α5 100 I1
5 0 b12 00 – 7

α6 101 I1
6 0 b14 00 – 8

α7 110 I1
7 0 b17 00 – 9

α8 111 I1
8 0 b20 00 – 10

Fig. 5.14 Logic circuit of
CMCU U18(Γ10)
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R18
FB = R6; (5.30)

t18(Γ ) = R6 +R14; (5.31)

H18(Γ ) = H2(Γ ). (5.32)

In case of optimal encoding of OLC αg ∈ C, introduction of TOK transforms
CMCU U9 into CMCU U19: the structural diagram of the later being the same as
for CMCU U18. Synthesis methods for both CMCU U19 and U18 are practically the
same, but in the case of CMCU U19 optimal encoding of OLC is executed during
step 3 of the synthesis procedure. It allows to reduce the hardware amount of combi-
national circuit CC, in comparison with the equivalent CMCU U18. If OLC αg ∈C1

of the CMCU U19(Γ10) is encoded as: K(α1) = 000, K(α2) = 100, K(α3) = 110,
K(α4) = 101, K(α5) = 001, K(α6) = 010, K(α17) = 011, K(α8) = 111, the number
of lines of the CMCU U19(Γ10) transition table is equal to H19(Γ10) = 11. It means
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that transition table has now 8 lines less, than the one corresponding to arbitrary
OLC encoding (Table 5.6).

Introduction of the code transformer TOK in CMCU U10 leads to CMCU U20

(Fig. 5.15), where block TC generates the codes of classes Bi ∈ ΠC.
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Fig. 5.15 Structural diagram of CMCU U20

In CMCU U20 combinational circuit CC generates functions

Ψ = Ψ(Z,X), (5.33)

V = V (Z,Z), (5.34)

block TOK implements functions (5.13), and block TC generates functions

Z = Z(τ), (5.35)

which are next used to encode classes of pseudoequivalent OLC αg ∈C1. Synthesis
method for CMCU U20(Γ ) includes the following additional steps (in comparison
with synthesis method used for CMCU U18(Γ )):

• construction of the partition ΠC for set C1;
• encoding of the equivalence classes Bi ∈ ΠC;
• construction of the table of code transformer TC.

Let us discuss application of this method to synthesis of the CMCU U20(Γ10).
Obviously, outcomes of the steps 1 - 6 are the same for both the CMCU U18(Γ10)
and U20(Γ10).

It follows from analysis of the GSA Γ10(U18) that C1 = {α1, . . . ,α7} and the
partition ΠC = {B1,B2,B3}, where B1 = 〈α1〉, B2 = {α2,α3,α4}, B3 = {α5,α6,α7}.
Thus, it could be found that I = 3, R4 = 2, Z = {z1,z2}. Let us encode the classes
Bi ∈ ΠC using the following principle: the less OLC particular class includes the
more zeros its code contains. Now the classes Bi ∈ ΠC have the codes: K(B1) = 10,
K(B2) = 00, K(B3) = 01.

It is necessary to replace outputs of OLC αg ∈C1 in the system similar to (5.28)
by corresponding classes Bi ∈ ΠC to construct transition table of CMCU U20(Γ ). In
the discussed case system (5.28) is transformed giving the following system:
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B1 → x1I1
2 ∨ x1x2I2

2 ∨ x1x2x3I1
3 ∨ x1x2x3I1

4 ;

B2 → x3I1
5 ∨ x3x4I1

6 ∨ x3x4I1
7 ; (5.36)

B3 → x2I1
8 ∨ x2I2

4 .

Transition table of CMCU U20(Γ ) includes the columns: Bi, K(Bi), αm, K(αm),
I j
m, K(I j

m), Xh,Ψh, Vh, h. Some codes K(Bi) may include insignificant variables, as for
example in case of the CMCU U20(Γ10) where the code 11 is not used and we have
the codes:K(B1) = 1∗ and K(B3) = ∗1, whereas the code K(B2) remains unchanged.
Transition table of the CMCU U20(Γ10) includes H20(Γ10) = 9 lines (Table 5.8).
Comparative analysis of Tables 5.6 and 5.8 shows that in our case the number of
lines in the transition table reduces more, than twice, and the number of feedback
variables is 1.5 times smaller.

Table 5.8 Transition table of CMCU U20(Γ10)

Bi K(Bi) αm K(αm) I j
m K(I j

m) Xh Ψh Vh h

B1 1∗ α2 001 I1
2 0 x1 D3 – 1

α2 001 I2
2 1 x1x2 D3 v1 2

α3 010 I1
3 0 x1x2x3 D2 – 3

α4 011 I1
4 0 x1x2x3 D2D3 – 4

B2 00 α5 100 I2
5 0 x3 D1 – 5

α6 101 I1
6 0 x3x4 D1D3 – 6

α7 110 I1
7 0 x3x4 D1D2 – 7

B3 ∗1 α8 111 I1
8 0 x2 D1D2D3 – 8

α4 011 I2
4 1 x2 D2D3 v1 9

This table is now used to construct functions (5.33)–(5.34). For example, the
following equations can be got from Table 5.8 (after minimization): D1 = z1z2 ∨
z2x2;v1 = z1x1x2 ∨ z2x2.

Table of code transformer TOK used for the CMCU U20(Γ10) is the same as the
one for the CMCU U18(Γ10). Table of code transformer TC includes the columns:αg,
K(αg), Bi, K(Bi), Zg, g, where g = 1, . . . , |C1|. In this example the table includes
G1 = 7 lines (Table 5.9).

Table 5.9 is now used to construct functions (5.35). Taking into account the in-
significant input assignment 111, one can obtain the following expressions: z1 =
τ1τ2τ3, z2 = τ1. Logic circuit of the CMCU U20(Γ10) is shown in Fig. 5.16, where
logic circuits of the blocks CC, TOK and TC are implemented using PLA chips, and
control CM is implemented with PROM.

In general case, combinational circuit CC of CMCU U20 has the following char-
acteristics:

R20
FB = R4; (5.37)

t20(Γ ) = R6 +R14; (5.38)

H20(Γ ) = H10(Γ ). (5.39)
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Table 5.9 Table of code transformer TC for CMCU U20(Γ10)

αg K(αg) Bi K(Bi) Zg g

α1 000 B1 10 z1 1
α2 001 B2 00 – 2
α3 010 B2 00 – 3
α4 011 B2 00 – 4
α5 100 B3 01 z2 5
α6 101 B3 01 z2 6
α7 110 B3 01 z2 7

Fig. 5.16 Logic circuit of
CMCU U20(Γ10)
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Introduction of code transformer TOK in CMCU U11 leads to CMCU U21, hav-
ing the same structural diagram as the CMCU U18. Comparative characteristics of
compositional microprogram control units with object transformation is represented
in Table 5.10.

As follows from this table, each model of U16–U21 has some positive and neg-
ative features. In order to choose the best model, it is necessary to find the best
basic model for a given GSA and logical elements. This particular model should be
modified by introduction of TOK, TSA or TAS.
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Table 5.10 Table of code transformer TC for CMCU U20(Γ10)

Ui Addresing FSM Parameters of FSM Comments

U16

CC

X

CT
TΦ

TSA

RG

V

Ψ τ

R16
FB = R1

t16(Γ ) = R1 +R13

H16(Γ ) = H1(Γ )

Cycle time increases in com-
parison with cycle time of
CMCU U1. Combinational
circuit CC has nearly mini-
mal number of outputs.

U17
X

CT

T
Φ

CC

RG

T’

Ψ

τ

TAS

R17
FB = R1

t17(Γ ) = R2

H17(Γ ) = H1(Γ )

Maximal number of circuit
CC inputs. Cycle time is the
same as for CMCU U1.

U18
U19
U21

CC

X

CT
TΦ

TOK

RG

V

Ψ

τ

R18
FB = R6

t18(Γ ) = R6 +R14

H18(Γ ) = H2(Γ )

R19
FB ≤ R6

t19(Γ ) = t18(Γ )

H19(Γ ) ≤ H2(Γ )

R21
FB = R6

t21(Γ ) = t18(Γ )

H1(Γ ) < H21(Γ ) ≤ H2(Γ )

Cycle time increases in com-
parison with the cycle time
of CMCU U8.Optimal en-
coding of OLC and initial
GSA transformation are ori-
ented towards reduction of
the number of lines of transi-
tion table.

U20

CC

X

CT
TΦ

TOK

RG

V

Ψ τ

TC

Z

R20
FB = R4

t20(Γ ) = t18(Γ )

H20(Γ ) = H1(Γ )

Cycle time increases in com-
parison with cycle time of
CMCU U10. Minimal num-
bers of inputs, outputs and
terms of addressing is con-
nected with use of extra block
TC.
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Chapter 6
Control memory optimization for compositional
microprogram control units with code sharing

Abstract The chapter considers some optimization methods used to reduce the size
of CMCU control memory keeping the microprogram. These methods are based on
the use of special address transformer permitting to keep the control memory size,
which is the same as in case of the CMCU basic structure. One of the methods is
oriented towards keeping only the original sets of microoperations and some addi-
tional variables in the control memory, in order to provide natural addressing and
operation termination operating modes. The second approach assumes that a spe-
cial CMCU block, which is not the part of its control memory, generates additional
variables mentioned above. The methods proposed here permit to reduce control
memory volume in comparison with the CMCU basic structure. Negative feature of
this approach is decreasing of the CMCU performance because duration of the cycle
becomes greater than in case of the CMCU basic structure.

6.1 Principles of control memory optimization

Use of code sharing principle allows minimizing parameter values of combinational
circuit CC. Unfortunately, if condition

R6 +R7 > R2 (6.1)

holds, the size of control memory of CMCU U8 – U11 increases in comparison with
its value for the equivalent CMCU U1. Also, if condition

R9 +R7 > R2 (6.2)

holds in case of CMCU U12 – U15, the control memory size also increases. The size
of CMCU U1 control memory is minimal and let us denote it by Vmin. It should be
remembered that equations (6.1) and (6.2) use the following parameters express-
ing bit capacity of particular codes: R6 for OLC code; R8 for component code of
OLC or elementary OLC; R9 for elementary OLC code; R2 for address A(bq) of

159



160 6 Control memory optimization for CMCU with code sharing

microinstruction corresponding to vertex bq ∈ B1:

R2 = ] log2 M2[; (6.3)

R6 = ] log2 G[; (6.4)

R7 = ] log2 Lmax[; (6.5)

R9 = ] log2 GE [. (6.6)

In these equations M2 = |B1|, G = |C|, GE = |CE |,Lmax is the maximal number
of components among either all OLC αg ∈ C or elementary OLC αg ∈ CE , B1 is a
set of operator vertices of GSA Γ .

Methods discussed in this Chapter are based on our results from [1, 3–9]. If con-
dition (6.1) is satisfied, the three following approaches can be applied to minimize
the size of control memory:

• transformation of microinstruction address, represented by concatenation of the
OLC code and its component code, into microinstruction address having R2 bits;

• transformation of microinstruction address, represented by concatenation of
OLC code and its component code, into the address of expanded microinstruc-
tion;

• transformation of microinstruction address, represented by concatenation of
OLC code and its component code, into address of the microinstruction, cor-
responding to collection of microoperations yn ∈ Y .

All three approaches are oriented towards transformation of microinstruction ad-
dress (object) from some particular form of representation (code sharing) into an-
other form of representation, which guarantees preservation of control memory size
on Vmin level. In some cases, this level can be even make lower. First transformation
is connected with introduction of additional address transformer block AT1 into the
CMCU U8 – U11 (Fig. 6.1).

Fig. 6.1 First approach to
address transformation

AT1Start

Clock

YCM

+1

CT

RG

Z

yE

y0

Ψ τ

TΦ

In this case block AT1 transforms microinstruction address A(bq), represented by
the concatenation

A(bq) = K(αg)∗K(bq), (6.7)

into microinstruction address B(bq), obtained after application of procedure P2. The
transformation is reduced to generation of some functions
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Z = Z(T,τ), (6.8)

used to address microinstructions Y (bq), |Z| = R2. Thus, application of address
transformer AT1 allows preservation of minimal possible control memory size, if
condition (6.1) is satisfied.

Let us call a collection of microoperations yn ∈ Y and additional variables y0,
yE , written in some vertex bq ∈ B1, as an expanded microinstruction (EMI) and let
us denote it by YE(Γ ). We find now a set YE(bq) of expanded microinstructions
for GSA Γ , where |YE(Γ )| = M3. Obviously, the same expanded microinstructions
can be written for different operator vertices bq ∈ B1; it corresponds to inequality
M3 ≤ M2. Let R15 be the number of bits sufficient to address all expanded microin-
structions. We have

R15 =] log2 M3[. (6.9)

Expression (6.9) corresponds to the case, when each unique EMI is determined
by a unique address of control memory CM. If condition

R15 < R2 (6.10)

holds, the control memory size for CMCU U8 – U11 can be

ΔCM = 2R2−R15 (6.11)

times less, than the value of parameter Vmin. Resulting reduction of the control mem-
ory size is connected with the use of address transformer AT2 in CMCU U8 – U11

(Fig. 6.2).

Fig. 6.2 Second approach for
address transformation
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YCM

+1

CT

RG

ZE

yE

y0

Ψ τ
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The address transformer AT2 generates functions

ZE = ZE(T,τ), (6.12)

which are used to generate an address AE(bq), corresponding to a code KE(bq) of
expanded microinstruction.

Further optimization of the control memory size is connected with encoding of
collections of microoperations Y (bq) ⊆ Y . If some GSA Γ includes M4 different
collections of microoperations, then

R16 =] log2 M4[ (6.13)



162 6 Control memory optimization for CMCU with code sharing

binary variables is sufficient for their encoding. If condition

R16 = R2 (6.14)

holds, the control memory size can be reduced

ΔM0 = 2R2−R16 (6.15)

times, in comparison with Vmin. In this case, control memory CM keeps only mi-
crooperations yn ∈ Y . Special combinational circuit should be used to generate ad-
ditional variables y0 and yE . Let us denote this circuit by CCS. If condition (6.14)
takes place, models U8 – U11 can be modified by introducing the address transformer
AT3 and block CCS (Fig. 6.3).

CCS
Start

Clock

YCM

+1

CT

RG

ZM

yE

y0

Ψ τ

TΦ

AT3

Fig. 6.3 Third approach to address transformation

In this case, block CCS generates functions

y0 = y0(T,τ), (6.16)

yE = yE(T,τ), (6.17)

and address transformer AT3 generates a code C(bq) of some collection of microop-
erations on the base of address A(bq) represented by (6.7). Obviously, this approach
offers the greatest possibilities for control memory size optimization. Address trans-
former AT3 generates functions

ZM = ZM(T,τ), (6.18)

used for addressing collections of microoperations, where |ZM| = R16.
Let us use the initial GSA Γ11 for further discussion (Fig. 6.4). Application of

procedure P1 for the GSA Γ11 results in the following set of operational linear chains:
C = {α1, . . . ,α6}, where α1 = 〈b1,b2〉, I1

1 = b1, O1 = b2, L1 = 2; α2 = 〈b3,b4,b5〉,
I1
2 = b3, I2

2 = b4, O2 = b5, L2 = 3; α3 = 〈b6,b7〉, I1
3 = b6, O3 = b7, L3 = 2; α4 =

〈b8,b9〉, I1
4 = b8, O4 = b9, L4 = 2; α5 = 〈b10, . . . ,b14〉, I1

5 = b10, I2
5 = b12, O5 = b14,
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Fig. 6.4 Initial GSA Γ11
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L5 = 5; α6 = 〈b15, . . . ,b19〉, I1
6 = b15, O6 = b19, L6 = 5. In this case G = 6, R6 = 3,

Lmax = 5, R7 = 3, M2 = 19, R2 = 5. Thus, condition (6.1) is true and application of
the address transformer possible.

Application of procedure P11 for the GSA Γ11 results in the following set of oper-
ational linear chains: CE = {α1, . . . ,α8}, where α1 = 〈b1,b2〉, L1 = 2; α2 = 〈b3〉,
L2 = 1; α3 = 〈b4,b5〉, L3 = 2; α4 = 〈b6,b7〉, L4 = 2; α5 = 〈b8,b9〉, L5 = 2;
α6 = 〈b15, . . . ,b19〉, L6 = 5; α7 = 〈b12,b13,b14〉, L7 = 3; α8 = 〈b15, . . . ,b19〉, L8 = 5.
Here GE = 8, R9 = 3, Lmax = 5, R7 = 3, M2 = 19, R2 = 5. Thus, condition (6.2)
holds and the address transformer can also be used.

All approaches mentioned above are connected with decrease of performance,
because introduction of address transformer causes the longer CMCU cycle time. If
cycle time exceeds maximal possible value determined by the designer of control
unit, application of the code sharing approach becomes useless.

All these approaches can be applied to minimize the control memory size of
CMCU with elementary OLC only, when condition (6.2) takes place. Structural
diagrams of these CMCU are identical to corresponding structures of CMCU based
on OLC, but no input memory functions are connected with inputs of the counter CT.
Application of the first approach allows preservation of minimal size of the control
memory. Application of the second approach reduces the control memory size ΔCM

times in comparison with Vmin, where ΔCM is determined by (6.1). Application of
the third approach reduces the control memory size ΔM0 times in comparison with
Vmin, where ΔM0 is determined by (6.15).

Synthesis methods applicable for CMCU U8 – U12 are similar to the optimization
methods described above. We now take the CMCU U8 model and use the same
explanation. The methods used to reduce the control memory size of the CMCU
with elementary OLC will be discussed for the CMCU U12 model.

6.2 Synthesis of CMCU with generation of microinstruction
addresses

Use of address transformer AT1 converts CMCU U8 into CMCU U22, which is shown
in Fig. 6.5.

Operation principles are practically identical for both CMCU U22 and U8, but
in case of the CMCU U22, microinstruction address A(bq) is generated by an ad-
dress transformer AT1. Synthesis method applied for CMCU U22 can be viewed as
some modification of the synthesis method used already for CMCU U8, obtained
by adding the steps involving procedure P2 and construction of the table of address
transformer AT1. Let us discuss an example of synthesis of the CMCU U22(Γ11).

It is clear, that the transformation of GSA Γ11 s reduced to insertion of variable yE

into operator vertices b14 and b19. It was found previously, that in this particular case
R6 = 3, τ = {τ1,τ2,τ3}, R7 = 3 and T = {T1,T2,T3}. Let us encode OLC αg ∈ C
in a trivial way: K(α1) = 000, . . . ,K(α6) = 101. Encoding of components, which
satisfies condition (4.4), gives the microinstruction addresses shown in Fig. 6.6.
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Fig. 6.5 Structural diagram of CMCU U22
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Fig. 6.6 Microinstruction addresses for CMCU U22(Γ11)

Application of procedure P2 for this particular case results in microinstruction
addresses shown in Fig. 6.7, which are the same as microinstruction addresses of
the CMCU U1(Γ11).

z4z5

b1 b5 b9

b2 b6 b10

b3 b7 b11

b4 b8 b12

b17

b18

b19

b13

b14

b15

b16

00

01

10

11

000 001 010 011
z1z2z3

100 101 110 111

** *
** *
** *

* ** *
Fig. 6.7 Microinstruction addresses for CMCU U1(Γ11)

The content of CMCU U22(Γ11) control memory is identical with the control
memory contents of CMCU U1 – U6 (Table 6.1).
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Transition table of CMCU U22(Γ ) is constructed by analogy to the case of
CMCU U8(Γ ). In the first step we construct a system of transition formulae for
OLC. During the second step, each term of transition formula is replaced by a sin-
gle line of the transition table. In our case C1 = {α1,α2,α3,α4} and the system of
transition formulae for ag ∈C1 takes the form:

α1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2x3I1
4 ∨ x1x2x3I1

6 ;
α2,α3,α4 → x3I2

2 ∨ x3x4x5I2
5 ∨ x3x4x5I2

5 ∨ x3x4x5I1
5 ∨ x3x4I1

6 .
(6.19)

System (6.19) determines the transition table including H22(Γ11) = 16 lines
(Table 6.2). This table is used to construct input memory functions Ψ and Φ ,
represented by (4.7) and (4.6) respectively. In the case of CMCU U22(Γ11, the
Boolean functions have the form, as for example: D5 = F6∨F10∨F14 = τ2τ3x3x4x5∨
τ2τ3x3x4x5 ∨ τ2τ3x3x4x5. This formula was produced using the property, that codes
for all OLC αg ∈C1 include τ1 = 0.

Table 6.1 Control memory content for CMCU U22(Γ11)

Address
Content Comments

z1z2z3z4z5

00000 y0y1y2 I1
1 b1

00001 y3 O1b2

00010 y0y1y2 I1
2 b3

00011 y0y1y4 I2
2 b4

00100 y2y5 O2b5

00101 y0y2y3y4 I1
3 b6

00110 y1y2 O3b7

00111 y0y2y5 I1
4 b8

01000 y2y4 O4b9

01001 y0y1y2 I1
4 b10

01010 y0y2y5 b11

01011 y0y3y6 I1
5 b12

01100 y0y2y4 b13
01101 y1y2yE O4b14

01110 y0y3 I1
6 b15

01111 y0y2y3y4 b16
10000 y0y2y5 b17
10001 y0y1y4 b18
10001 y2y5yE O6b19

The address transformer AT1 is represented by a table with columns bq, αg,
K(αg), K(bq), A(bq), zq, q and the operator vertex bq ∈Dg(g = 1, . . . ,G). In general,
this table includes M2 lines, which in case of the CMCU U22(Γ11) gives M2 = 19
lines (Table 6.3).

This table serves as the base to construct system (6.8). For example, the equation
z1 = τ1τ2τ3T 1T2T 3∨τ1τ2τ3T 1T2T3∨τ1τ2τ3T1T 2T 3 can be obtained from Table 6.3.
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Table 6.2 Transition table for CMCU U22(Γ11)

αg K(αg) αm K(αm) I j
m K(I j

m) Xh Ψh Vh h

α1 000 α2 001 I1
2 000 x1 D3 - 1

α3 010 I1
3 000 x1x2 D3 - 2

α4 011 I1
4 000 x1x2x3 D2D3 - 3

α6 101 I1
6 000 x1x2x3 D1D3 - 4

α2 001 α2 001 I2
2 001 x3 D3 D6 5

α5 100 I2
5 010 x3x4x5 D1 D5 6

α5 100 I1
5 000 x3x4x5 D1 - 7

α6 101 I1
6 000 x3x4 D1D3 - 8

α3 010 α2 001 I2
2 001 x3 D3 D6 9

α5 100 I2
5 010 x3x4x5 D1 D5 10

α5 100 I1
5 000 x3x4x5 D1 - 11

α6 101 I1
6 000 x3x4 D1D3 - 12

α4 011 α2 001 I2
2 001 x3 D3 D6 13

α5 100 I2
5 010 x3x4x5 D1 D5 14

α5 100 I1
5 000 x3x4x5 D1 - 15

α6 101 I1
6 000 x3x4 D1D3 - 16

Table 6.3 Table of address transformer for U22(Γ11)

bq αg K(αg) K(bq) A(bq) zq q

b1 α1 000 000 00000 - 1
b2 α1 000 001 00001 z5 2
b3 α2 001 000 00010 z4 3
b4 α2 001 001 00011 z4z5 4
b5 α2 001 010 00100 z3 5
b6 α3 010 000 00101 z3z5 6
b7 α3 010 001 00110 z3z4 7
b8 α4 011 000 00111 z3z4z5 8
b9 α4 011 001 01000 z2 9
b10 α5 100 000 01001 z2z5 10
b11 α5 100 001 01010 z2z4 11
b12 α5 100 010 01011 z2z4z5 12
b13 α5 100 011 01100 z2z3 13
b14 α5 100 100 01101 z2z3z5 14
b15 α6 101 000 01110 z2z3z4 15
b16 α6 101 001 01111 z2z3z4z5 16
b17 α6 101 010 10000 z1 17
b18 α6 101 011 10001 z1z5 18
b19 α6 101 100 10010 z1z4 19

Insignificant input assignments can be used for minimization of functions zr ∈ Z.
The Karnaugh map, generated for our particular case, is shown in Fig. 6.8.

The minimal disjunctive normal form z1 = τ3T3∨τ1τ2T2 can obtained, for exam-
ple, from the table of Fig. 6.8. This formula corresponds to the first bit of all codes
taken from all cells of the Karnaugh map.
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Fig. 6.8 Karnaugh map for CMCU U22(Γ11)

Synthesis of logic circuit for the CMCU U22(Γ11) is reduced to the implementa-
tion of systems (4.6), (4.7) and (4.8) using PLD chips, and implementation of the
control memory CM using either PROM or RAM chips (Fig. 6.9).

By analogy, introduction of address transformer AT1 converts CMCU U9 into
CMCU U23, CMCU U10 into CMCU U24, CMCU U11 into CMCU U25. Synthe-
sis methods applied for CMCU U23 – U25 can be viewed as some modifications of
synthesis methods used previously for CMCU U9 – U11 respectively, based on ap-
plication of procedure P2 (microinstruction addressing) and on construction of the
table of address transformer AT1.

Introduction of address transformer AT1 in CMCU U12 leads to the CMCU U26

of Fig. 6.10.
Operation principles of both CMCU U12 and U26 are practically identical, but in

case of CMCU U26, address A(bq) is produced by the address transformer AT1. Syn-
thesis method used for CMCU U26 is a modification of the one applied for CMCU
U12, which consists on using procedure P2 and the table of address transformer AT1.
Let us discuss an example, in which this method is applied to the CMCU U26(Γ11).
The set of elementary OLC CE for the case of GSA Γ11 was constructed in Section
6.1, where we obtained: R9 = 3; R7 = 3; R2 = 5.

Let us encode elementary OLC αg ∈ CE in a trivial way: K(α1) = 000, . . . ,
K(α8) = 111. Encoding of components satisfying condition (4.4) leads to microin-
struction addresses for the CMCU U26(Γ11), shown in Fig. 6.11.

Application of procedure P2 results in microinstruction addresses shown in Fig.
6.7, and the control memory content for the CMCU U26(Γ11) is the same as for
CMCU U22(Γ11), and is given in Table 6.1.

Transition table for CMCU U26(Γ ) is constructed using the same approach as
the one, used for CMCU U12(Γ ) . The first step is connected with construction of
transition formulae for elementary OLC αg ∈ C1

E . The second step consists on re-
placement of each term of the equation system by a single line of transition table. In
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Fig. 6.9 Logic circuit of
CMCU U22(Γ11)
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Fig. 6.10 Structural diagram of CMCU U26

case of CMCU U26(Γ11) we have the set C1
E = {α1, . . . ,α6} and system of transition

formulae:

α1 → x1I2 ∨ x1x2I4 ∨ x1x2x3I5 ∨ x1x2x3I8;
α2 → I3

α3,α4,α5 → x3I3 ∨ x3x4x5I7 ∨ x3x4x5I6 ∨ x3x4x5I1
5 ∨ x3x4I8;

α6 → I7.

(6.20)

Transition table includes the columns αg, K(αg), αm, K(αm), Xh, Ψh, h, and in
case of the CMCU U26(Γ11) it has H26(Γ11) = 18 lines (Table 6.4).

This table serves to construct the input memory functions Ψ . For example, from
Table 6.4 we get: D1 = F3 ∨F4 ∨F7 ∨F8 ∨F9 ∨F11 ∨F12 ∨F13 ∨F15 ∨ . . .∨F18 =
τ1τ2τ3x1x2x3 ∨ . . .∨ τ1τ2τ3.
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Fig. 6.11 Microinstruction addresses for CMCU U26(Γ11)

As in case of CMCU U22, address transformer is represented by a table with the
columns: bq, αg, K(αg), K(bq), A(bq), zq, q. In case of CMCU U26(Γ11) this table
includes M2 = 19 lines (Table 6.5).

In Table 6.5, some bits of codes K(bq) are marked by symbols *. These sym-
bols correspond to insignificant input assignments for component codes of some
EOLC. These assignments allow minimizing the number of literals in the disjunc-
tive normal forms of functions zr ∈ Z. This table allows to derive functions (6.8).
The equation z1 = τ1τ2τ3T2 ∨ τ1τ2τ3T1 can be found, for example, from Table 6.5
(after minimization).

Synthesis of logic circuit for CMCU U26(Γ ) is reduced to the implementation
of systems (4.6), (4.7) and (6.8) using PLD chips, and implementation of control
memory using either PROM or RAM chips.

Introduction of address transformer AT1 into CMCU U13 – U15 converts them into
CMCU U27 – U29 respectively. Structural diagrams of CMCU with code sharing
and transformation of microinstruction addresses A(bq) from the form (6.7) into
corresponding addresses with R2 bits are shown in Table 6.6.

Let us point out that only four models among all shown in Table 6.6, namely U22,
U24, U26, U28 are original ones. All other models are some modifications of them,
obtained either using different approach to encoding of OLC (U23), or elementary
OLC (U27), or using different method of GSA transformation (U25, U29). The vari-
ables used to encode OLC (U24) or EOLC (U28) form a set W , and elements of the
set Z are used to address microinstructions kept in the control memory CM.
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Table 6.4 Transition table of CMCU U26(Γ11)

αg K(αg) αm K(αm) Xh Ψh h

α1 000 α2 001 x1 D3 1
α4 011 x1x2 D2D3 2
α5 100 x1x2x3 D1 3
α8 111 x1x2x3 D1D2D3 4

α2 001 α3 010 1 D2 5
α3 010 α3 010 x3 D2 6

α7 110 x3x4x5 D1D2 7
α6 101 x3x4x5 D1D3 8
α8 111 x3x4 D1D2D3 9

α4 011 α3 010 x3 D2 10
α7 110 x3x4x5 D1D2 11
α6 101 x3x4x5 D1D3 12
α8 111 x3x4 D1D2D3 13

α5 100 α3 010 x3 D2 14
α7 110 x3x4x5 D1D2 15
α6 101 x3x4x5 D1D3 16
α8 111 x3x4 D1D2D3 17

α6 101 α8 110 1 D1D2 18

Table 6.5 Table of address transformer for CMCU U26(Γ11)

bq αg K(αg) K(bq) A(bq) zq q

b1 α1 000 ∗∗0 00000 - 1
b2 α1 000 ∗∗1 00001 z5 2
b3 α2 001 ∗∗∗ 00010 z4 3
b4 α3 010 ∗∗0 00011 z4z5 4
b5 α3 010 ∗∗1 00100 z3 5
b6 α4 011 ∗∗0 00101 z3z5 6
b7 α4 011 ∗∗1 00110 z3z4 7
b8 α5 100 ∗∗0 00111 z3z4z5 8
b9 α5 100 ∗∗1 01000 z2 9
b10 α6 101 ∗∗0 01001 z2z5 10
b11 α6 101 ∗∗1 01010 z2z4 11
b12 α7 110 ∗00 01011 z2z4z5 12
b13 α7 110 ∗∗1 01100 z2z3 13
b14 α7 110 ∗1∗ 01101 z2z3z5 14
b15 α8 111 000 01110 z2z3z4 15
b16 α8 111 ∗01 01111 z2z3z4z5 16
b17 α8 111 ∗10 10000 z1 17
b18 α8 111 ∗11 10001 z1z5 18
b19 α8 111 1∗∗ 10010 z1z4 19

6.3 Synthesis of CMCU with addressing of expanded
microinstructions

Introduction of the address transformer AT2 into CMCU U8 gives the CMCU U30

with structural diagram shown in Fig. 6.12.
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Table 6.6 Structural diagrams of CMCU U22 – U29

** Structural diagram Comments

U22

AT1
YCM

+1

CT

RG

Z

yE

y0

Ψ τ

TΦ

CC

X

Analogue of U8

U23 Analogue of U9, set τ ′ ⊆ τ is input of
CC

U25 Analogue of U11

U24

AT1
YCM

+1

CT

RG

Z

yE

y0

Ψ τ

TΦ

CC

X

TC
W

Analogue of U10 |W | = R4

U26

AT1
YCM

+1

CT

RG

Z

yE

y0

Ψ τ

T

CC

X
"0"

Analogue of U12

U27 Analogue of U13, set τ ′ ⊆ τ is input of
CC

U29 Analogue of U15

U28

AT1
YCM

+1

CT

RG

Z

yE

y0

Ψ τ

T

CC

X
"0"

TC
W

Analogue of U14 |W | = R11

AT2Start

Clock

YCM

+1

CT

RG

ZE

yE

y0

Ψ τ

T

CC

X

Fetch
R   TF

S
Start

Φ

Fig. 6.12 Structural diagram of CMCU U30

Operation principles of both CMCU U30 and U8 are the same, but address trans-
former AT2 generates code KE(bq) of the expanded microinstruction on the base of
address A(bq), represented in the form (6.7). In case of GSA Γ11, the set of expanded
microinstructions YE(Γ11) includes the elements: Y1 = {y0,y1,y2}, Y2 = {y1,y2},
Y3 = {y1,y2,yE}, Y4 = {y0,y3}, Y5 = {y3}, Y6 = {y0,y1,y4}, Y7 = {y0,y2,y5}, Y8 =
{y2,y5}, Y9 = {y2,y5,yE}, Y10 = {y0,y2,y3,y4}, Y11 = {y2,y4}, Y12 = {y0,y2,y4},
Y13 = {y0,y3,y6}. Therefore, M3 = 13, R15 = 4, condition (6.10) is satisfied, and
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this method can be successfully used for the GSA Γ11 . Synthesis method used for
CMCU U30 is a modification of the one applied for CMCU U8, when the steps of
expanded microinstruction encoding and construction of the table of address trans-
former AT2 are added.

By analogy, introduction of address transformer AT2 into CMCU U9 results in
CMCU U31, having the same structural diagram as CMCU U30. There is one dif-
ference however, namely feedback inputs τ ′ of the combinational circuit CC form
some subset of the set τ . Synthesis method used for CMCU U31 has the following
steps:

1. Transformation of initial GSA Γ (procedure P4).
2. Construction of the set of OLC (procedure P1).
3. Construction of the partition ΠC for OLC set C1.
4. Optimal encoding of operational linear chains αg ∈C1 and arbitrary encoding of

OLC αg /∈C1.
5. Encoding of components for OLC αg ∈C.
6. Encoding of expanded microinstructions.
7. Construction of the control memory content.
8. Construction of transition table for CMCU.
9. Construction of the table for address transformer AT2.

10. Synthesis of CMCU logic circuit with given logic elements.

Let us discuss application of this method to the CMCU U31(Γ11), remembering
that the OLC set for the GSA Γ11 was already found in Section 6.1.

Partition of the set C1 = {α1, . . . ,α4} results in the set ΠC = {B1,B2}, where
B1 = {α1}, B2 = {α2,α3,α4}. Result of optimal encoding of OLC αg ∈C is shown
in Fig. 6.13. Now, each class Bi ∈ ΠC corresponds to a single generalized interval
of a three-dimensional Boolean space.

Fig. 6.13 Encoding of EOLC
for CMCU U31(Γ11)
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In this case OLC α5,α6 /∈C1 and corresponding codes can be used to minimize
the codes K(B1) and K(B2). Taking this possibility, we obtain the codes: K(B1) =
0∗∗ and K(B2) = 1∗∗; and in consequence τ ′ = {τ1}.

Components of OLC αg ∈ C are encoded in a trivial way and corresponding
microinstruction addresses are shown in Fig. 6.14.

Encoding of expanded microinstructions is now performed, using the state en-
coding method presented in [2], namely: the more operator vertices includes ex-
panded microinstruction Ym ∈YE(Γ ) the more zeros its code includes. Let nm = |Ym|,
and the following values of parameter nm can be found in case of the GSA Γ11:
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Fig. 6.14 Microinstruction addresses for CMCU U31(Γ11)

n1 = 3, n2 = n3 = 1, n4 = n5 = 1, n6 = 2, n7 = 3, n8 = 1, n9 = 1, n10 = 2, n11 = 1,
n12 = n13 = 1.

The following codes of expanded microinstructions for the CMCU U31(Γ11) were
obtained using the approach given above (Fig. 6.15).

Fig. 6.15 Encoding of ex-
panded microinstructions for
CMCU U31(Γ11)
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These codes represent the control memory addresses of expanded microinstruc-
tions. The control memory content is constructed by replacement of the symbols of
expanded microinstructions by corresponding collections of microoperations yn ∈Y
and variables y0, yE (Fig. 6.16).

Fig. 6.16 Control memory
content for CMCU U31(Γ11)
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Construction of transition table for CMCU U31 is executed using the same
method as the one used for CMCU U9. In our particular case system (6.19) is re-
placed by the following system of transition formulae:

B1 → x1I1
2 ∨ x1x2I1

3 ∨ x1x2x3I1
4 ∨ x1x2x3I1

6 ;
B2 → x3I2

2 ∨ x3x4x5I2
5 ∨ x3x4x5I1

5 ∨ x3x4I1
6 ,

(6.21)

which corresponds to the transition table with H31(Γ11) = 8 lines (Table 6.7).

Table 6.7 Transition table for CMCU U31(Γ11)

Bi K(Bi) αm K(αm) I j
m K(I j

m) Xh Ψh Φh h

B1 0∗∗ α2 100 I1
2 000 x1 D1 – 1

α3 101 I1
3 000 x1x2 D1D3 – 2

α4 111 I1
4 000 x1x2x3 D1D2D3 – 3

α6 011 I1
6 000 x1x2x3 D2D3 – 4

B2 1∗∗ α2 100 I2
2 001 x3 D1 D6 5

α5 001 I2
5 010 x3x4x5 D3 D5 6

α5 001 I1
5 000 x3x4x5 D3 – 7

α6 011 I1
6 000 x3x4 D2D3 – 8

This table allows to construct disjunctive normal forms of functions (4.6) and
(4.7). The equations D3 = τ1x1 ∨ τ1x3; D5 = τ1x3x4x5; can be found, for example,
from Table 6.7 (after minimization).

Address transformer AT2 generates functions (6.12), and its table includes M2

lines and the columns: bq, αg, K(αg), K(bq), K(YE), zq, q. Column K(YE) of this
table contains code of an expanded microinstruction corresponding to some vertex
Bq ∈ B2. In case of CMCU U31(Γ11) this table includes M2 = 19 lines (Table 6.8).

Synthesis of logic circuit of CMCU U31 is reduced to implementation of systems
(4.6), (4.7) and (6.12), using PLD chips, and implementation of control memory
using either PROM or RAM chips. Logic circuit of the CMCU U31(Γ11) is shown in
Fig. 6.17.

In this particular case, it could be found that Vmin = 32× 8 = 256 bits, and the
address transformer AT2 allows application of code sharing approach as well as
reduction of the control memory size up to 128 bits.

Adding the address transformer AT2 to the CMCU U10 we obtain CMCU U32,
and adding it to the CMCU U11 results in the CMCU U33. Let us point out that in-
troduction of the address transformer AT2 to any of CMCU U8 – U11 gives reduction
of the control memory size in the particular case of GSA Γ11.

Introduction of the address transformer AT2 into CMCU U12 results in CMCU
U34, with structural diagram shown in Fig. 6.18.

Operation principles of both CMCU U34 and U12 are the same, but in the former
the address transformer generates code KE(bq) of expanded microinstruction on
the base of address A(bq), represented in the form (6.7). Synthesis method used
for CMCU U34 is a modification of the method applied in case of CMCU U12. This
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Table 6.8 Table of address transformer AT2 for CMCU U31(Γ11)

bq αg K(αg) K(bq) K(YE) zq q

b1 α1 000 ∗∗0 0000 – 1
b2 α1 000 ∗∗1 0011 z3z4 2
b3 α2 100 ∗00 0000 – 3
b4 α2 100 ∗∗1 1000 z1 4
b5 α2 100 ∗1∗ 1010 z1z3 5
b6 α3 101 ∗∗0 0001 z4 6
b7 α3 101 ∗∗1 0010 z3 7
b8 α4 111 ∗∗0 0100 z2 8
b9 α4 111 ∗∗1 1101 z1z2z4 9
b10 α5 001 000 0000 – 10
b11 α5 001 ∗01 0100 z2 11
b12 α5 001 ∗10 0110 z2z3 12
b13 α5 001 ∗11 0111 z2z3z4 13
b14 α5 001 1∗∗ 0101 z2z4 14
b15 α6 011 000 1001 z1z4 15
b16 α6 011 ∗01 0001 z4 16
b17 α6 011 ∗01 0100 z2 17
b18 α6 011 ∗11 1000 z1 18
b19 α6 011 1∗∗ 1100 z1z2 19

Fig. 6.17 Logic circuit of
CMCU U31(Γ11)
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modification consists on adding the steps of encoding of expanded microinstructions
and construction of the table of address transformer AT2.

By analogy, introducing of address transformer AT2 into CMCU U13 gives the
CMCU U35, having the same structural diagram as in case of CMCU U34. The
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Fig. 6.18 Structural diagram of CMCU U34

variables τ ′ ⊆ τ are used as feedback signals in case of CMCU U35. Synthesis of
CMCU U35 includes the following steps:

1. Transformation of initial GSA (procedure P4).
2. Construction of the set of elementary OLC CE (procedure P11).
3. Construction of partition ΠE for the set C1

E ⊂CE .
4. Optimal encoding of elementary OLC αg ∈ C1

E and arbitrary encoding of other
elementary OLC αg /∈C1

E .
5. Encoding of the components of elementary OLC αg ∈CE .
6. Encoding of expanded microinstructions.
7. Construction of the control memory content.
8. Construction of transition table for CMCU.
9. Construction of the table for address transformer AT2.

10. Synthesis of CMCU logic circuit with given logical elements.

Let us discuss application of this method for synthesis of the CMCU U35(Γ11)
where the EOLC set for the GSA Γ11 was found already in Section 6.1.

In case of the GSA Γ11(U35), partition ΠE = {B1, . . . ,B4} can be formed, in
which B1 = {α1}, B2 = {α2}, B3 = {α3,α4,α5}, B4 = {α6}, and the set C1

E =
{α1, . . . ,α6}. Corresponding codes of the elementary OLC αg ∈ CE are shown in
Fig. 6.19.

Fig. 6.19 Encoding of EOLC
for CMCU U35(Γ11)
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Input assignments 011 and 110 are considered here as insignificant ones, because
α7,α8 /∈ C1

E . These assignments give the codes of classes Bi ∈ ΠE : K(B1) = 000,
K(B2) = 0 ∗ 1, K(B3) = 1 ∗ ∗, K(B4) = 01∗. Encoding of EOLC components is
executed in a traditional style. In our particular case microinstruction addresses for
CMCU U35(Γ11) are shown in Fig. 6.20.
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Fig. 6.20 Microinstruction addresses for CMCU U35(Γ11)

Sets of expanded microinstructions are the same for both the CMCU U35(Γ11)
and U31(Γ11). Codes of expanded microinstructions for the CMCU U35(Γ11) are
shown in Fig. 6.15, and its control memory content in Fig. 6.16.

Transition table for CMCU U35(Γ ) is constructed using transition formulae of
EOLC αg ∈ C1

E . In our particular case, system (6.20) is replaced by the following
system:

B1 → x1I2 ∨ x1x2I4 ∨ x1x2x3I5 ∨ x1x2x3I8;
B2 → I3;
B3 → x3I3 ∨ x3x4x5I7 ∨ x3x4x5I6 ∨ x3x4I8;
B4 → I7.

(6.22)

Transition table of CMCU U35(Γ ) includes the columns Bi, K(Bi), αg, K(αg),
Xh, Ψh, h; and the CMCU U35(Γ11) includes H35(Γ11) = 10 lines (Table 6.9).

Table 6.9 Transition table for CMCU U35(Γ11)

Bi K(Bi) αg K(αg) Xh Ψh h

B1 000 α2 001 x1 D1 1
α4 101 x1x2 D1D3 2
α5 111 x1x2x3 D1D2D3 3
α8 011 x1x2x3 D2D3 4

B2 0∗1 α3 100 1 D1 5
B3 1∗∗ α3 100 x3 D1 6

α7 110 x3x4x5 D1D2 7
α6 010 x3x4x5 D2 8
α8 011 x3x4 D2D3 9

B4 01∗ α7 110 1 D1D2 10
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This table allows to obtain the equations for input memory functions Ψ . For
example, the equation D3 = τ1τ2τ3 ∨ τ1x3x4 can be extracted from lines 1–4 and 9
of Table 6.9 (after minimization). All other functions of system (4.6) can be found
using the same approach.

Address transformer AT2 implements functions of the system (6.12), and the table
of AT2 includes the columns: bq, αg, K(αg), K(bq), K(YE), zq, q. In case of CMCU
U35(Γ11) this table has M2 = 19 lines (Table 6.10). As in previous case, insignificant
input assignments were used for each EOLC αg ∈CE to reduce the number of literals
in the disjunctive normal forms of functions (6.12).

Table of address transformer AT2 gives the functions zr ∈ ZE . For example,
the following expression can be found from Table 6.9: z1 = τ1τ2τ3 ∨ τ1τ2τ3T3 ∨
τ1τ2τ3T 1T 2T 3 ∨ τ1τ2τ3T2T3 ∨ τ1τ2τ3T1. This equation corresponds to lines 4, 5, 9,
15, 18 and 19 of the table.

Table 6.10 Table of address transformer AT2 for CMCU U35(Γ11)

bq αg K(αg) K(bq) K(YE) zq q

b1 α1 000 ∗∗0 0000 – 1
b2 α1 000 ∗∗1 0011 z3z4 2
b3 α2 001 ∗∗∗ 0000 – 3
b4 α3 100 ∗∗0 1000 z1 4
b5 α3 100 ∗∗1 1010 z1z3 5
b6 α4 101 ∗∗0 0001 z4 6
b7 α4 101 ∗∗1 0010 z3 7
b8 α5 111 ∗∗0 0100 z2 8
b9 a5 111 ∗∗1 1101 z1z2z4 9
b10 α6 010 ∗∗0 0000 – 10
b11 α6 010 ∗∗1 0100 z2 11
b12 α7 110 ∗00 0110 z2z3 12
b13 α7 110 ∗∗1 0111 z2z3z4 13
b14 α7 110 ∗1∗ 0101 z2z4 14
b15 α8 011 000 1001 z1z4 15
b16 α8 011 ∗01 0001 z4 16
b17 α8 011 ∗10 0100 z2 17
b18 α8 011 ∗11 1000 z1 18
b19 α8 011 1∗∗ 1100 z1z2 19

Synthesis of CMCU U35 logic circuit is reduced to the implementation of systems
(4.6) and (6.12) using PLD chips and implementation of the control memory using
either PROM or RAM chips. Let us point out that in case of CMCU U35(Γ11), the
combinational circuit CC has 8 inputs (more, than the equivalent CMCU U31(Γ11))
and 3 outputs (less, than the equivalent CMCU U31(Γ11)). The numbers of inputs
and outputs of the address transformer AT2 are the same for both CMCUs mentioned
above.

Application of the address transformer AT2 in CMCU U14 results in obtaining
CMCU U36, and its application to the CMCU U15 results in CMCU U37. Structural
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diagrams for models of CMCU U30 – U37 and their short characteristics are shown
in Table 6.10. Let us point out that there are only four original models here; all
other can be considered as their modifications due to OLC optimal encoding, or
to the introduction of extra OLC, or to optimal encoding and introduction of extra
elementary OLC.

Analysis of Tables 6.6 and 6.10 shows that models U22 – U29 differ from corre-
sponding models U30 – U37 only by replacement of the address transformer AT1 by
address transformer AT2, and of the set Z by set ZE .

6.4 Synthesis of CMCU with generation of addresses of
collections of microoperations

Introduction of the address transformer AT3, performing transformation of the mi-
croinstruction address A(bq) into address C(bq) of collection of microoperations,
and of the block generating the control signals CCS, allows conversion of models
U8 – U15 into the models of CMCU U38 – U45 respectively (Table 6.12). Main differ-
ence between models U38 – U45 and their analogues is, that the control memory CM
keeps only microoperations yn ∈ Y , whereas additional variables y0 (synchroniza-
tion control) and YE (fetching control) are generated by an additional block CCS.

Synthesis methods used for CMCU U38 – U45 represent some modifications
of synthesis methods applied for their analogues U8 – U15 respectively, obtained
through the following additional steps:

• construction of the table of address transformer AT3;
• construction of the table of block CCS;
• encoding of collections of microoperations.

For example, combined application of the code transformer TC and address trans-
former AT3 for the CMCU with code sharing results in the CMCU U40(Γ ).

Synthesis method used for CMCU U40(Γ ) includes the following steps:

1. Transformation of initial GSA (procedure P4).
2. Construction of the set OLC C for the transformed GSA Γ (U40).
3. Construction of partition ΠC for the set of OLC C1 .
4. Encoding of OLCs αg ∈C and their components.
5. Encoding of the equivalence classes Bi ∈ ΠC.
6. Encoding of collections of microoperations.
7. Construction of the control memory content.
8. Construction of the transition table for CMCU.
9. Construction of the table of code transformer TC.

10. Construction of the table of address transformer AT3.
11. Construction of the table of CCS block.
12. Synthesis of CMCU logic circuit with given logical elements.
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Let us discuss example of synthesis of the CMCU U40(Γ11). As was found in Sec-
tion 6.1, OLC set for the GSA Γ11 includes six elements: C = {α1, . . . ,α6}, where
C1 = {α1, . . . ,α4}. Partition ΠC = {B1.B2} , where B1 = {α1}, B2 = {α2,α3,α4},
was also obtained. In our example we use the codes of OLC αg ∈C and their com-
ponents, shown in Fig. 6.6.

In this case we find I = 2 classes Bi ∈ ΠC which can be encoded using one
variable (R4 = 1), and in consequence W = {w1}. The class B2 includes maximum
number of elements, and therefore we encode the classes Bi ∈ ΠC as: K(B1) = 1,
K(B2) = 0. In general case, encoding of classes Bi ∈ ΠC, follows the rule: the more
elements a class includes, the more zeros its code contains.

The following collections of microoperations can be derived from operator ver-
tices of the initial GSA Γ11: Y1 = {y1,y2}, Y2 = {y3}, Y3 = {y1,y4}, Y4 = {y2,y5},
Y5 = {y2,y3,y4}, Y6 = {y2,y4}, Y7 = {y3,y6}. It means that M4 = 7, R16 = 3, con-
dition (6.14) holds, and the control memory size can be reduced 4 times in com-
parison with Vmin (according to (6.15)). The following procedure will now be used
to optimize logic circuit of the address transformer AT3. First, we find the value

Table 6.11 Structural diagrams of CMCU U30 – U37

Type Structural diagram Comments

U30

AT2
YCM

+1

CT

RG

ZE

yE

y0

Ψ τ

TΦ

CC

X

Analogue of CMCU U8

U31 Analogue of CMCU U9, set τ ′ ⊆ τ is
CC input

U33 Analogue of CMCU U11

U32

AT2
YCM

+1

CT

RG

ZE

yE

y0

Ψ τ

TΦ

CC

X

TC
W

Analogue of CMCU U10 |W | = R4

U34

AT2
YCM

+1

CT

RG

ZE

yE

y0

Ψ τ

T

CC

X
"0"

Analogue of CMCU U12

U35 Analogue of CMCU U13, set τ ′ ⊆ τ is
CC input

U37 Analogue of CMCU U151

U36

AT2
YCM

+1

CT

RG

ZE

yE

y0

Ψ τ

T

CC

X
"0"

TC
W

Analogue of U14 |W | = R11
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Table 6.12 Structural diagrams of CMCU U38 – U45

Type Structural diagram Comments

U38
+1

CT

RG yE

y0

Ψ τ

TΦ

CC

X

YCM
ZM

AT3

CCS

Analogue of CMCU U8

U39 Analogue of CMCU U9, set τ ′ ⊆ τ is
CC input

U41 Analogue of CMCU U11

U40
+1

CT

RG
Ψ τ

Φ

CC

X

TC
W

yE

y0T

YCM
ZM

AT3

CCS

Analogue of U10 |W | = R4

U42
+1

CT

RG
Ψ τ

CC

X
"0"

yE

y0T

YCM
ZM

AT3

CCS

Analogue of CMCU U12

U43 Analogue of CMCU U13, set τ ′ ⊆ τ is
CC input

U45 Analogue of CMCU U15

U44
+1

CT

RG
Ψ τ

CC

X
"0"

TC
W

yE

y0T

YCM
ZM

AT3

CCS

Analogue of U14 |W | = R11

of parameter nq, which is equal to the number of operator vertices with collection
Yq(q = 1, . . . ,M4). Next, we make the queue of collections, in the order of decreas-
ing parameter nq, and finally we encode the collections using the rule mentioned
above: the greater is the value of nq, the more zeros contains the code K(Yq) of the
collection of microoperations Yq(q = 1, . . . ,M4).

In our current example, parameters nq have the values: n1 = 5, n2 = 2, n3 = 2,
n4 = 5, n5 = 2, n6 = 2, n7 = 1. It allows us to form the queue 〈Y1,Y4,Y2,Y3,Y5,Y6,Y7〉
for encoding collections of microoperations Yq ⊆ Y for the CMCU U40(Γ11). It re-
sults in the codes shown in Fig. 6.21.
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Fig. 6.21 Encoding of collec-
tions of microoperations for
CMCU U40(Γ11)
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Construction of the control memory content is reduced here to the replacement
of symbols Yq by corresponding microoperations yn ∈Yq(q = 1, . . . ,M4). The corre-
sponding control memory content is shown in Fig. 6.22.

Fig. 6.22 Content of control
memory for CMCU U40(Γ11)
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Transition table is constructed using the same approach as the one used for
CMCU U10. In this case, transition table is found using the system of transition
formulae (6.21) and includes H40(Γ11) = 8 lines (Table 6.13).

Table 6.13 Transition table for CMCU U40(Γ11)

Bi K(Bi)) αm K(αm) I j
m K(I j

m) Xh Ψh Φh h

B1 1 α2 001 I1
2 000 x1 D3 – 1

α3 010 I1
3 000 x1x2 D2 – 2

α4 011 I1
4 000 x1x2x3 D2D3 – 3

α6 101 I1
6 000 x1x2x3 D1D3 – 4

B2 0 α2 001 I2
2 001 x3 D3 D6 5

α5 100 I2
5 010 x3x4x5 D1 D5 6

α5 100 I1
5 000 x3x4x5 D1 – 7

α6 101 I1
6 000 x3x4 D1D3 – 8

This table serves as the base to generate the functions of system (4.30). For exam-
ple, the formulae D1 = z1x1x2x3 ∨ z1x3, D5 = z1x1x4x5 can be extracted from Table
6.13 (after minimization).

The table of address transformer AT3 is constructed using the same approach as
the one used for corresponding tables of AT1 or AT2. This table includes the columns:
bq, αg, K(αg), K(bq), C(bq), zq, q, where column C(bq) contains codes K(Yg) of
collections of microoperations from vertex bq ∈ B1. The table for CMCU U40(Γ11)
has M2 = 19 lines (Table 6.14).

This table is next used to derive Boolean equations for functions (6.18). For
example, after analysis of Table 6.14 the following equation can be found: z1 =
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τ1τ2τ3T3∨τ1τ2τ3T3∨τ1τ2τ3T2T 3∨τ1τ2τ3T2T3∨τ1τ2τ3T2T3 = τ1τ3T3∨τ1τ2τ3T2∨
τ1τ2T2T3.

Table of code transformer TC represents the generation low for functions (4.29).
It includes the columns: αg, K(αg), K(bq), C(bq), zq, q. Column Wg contains vari-
ables wr ∈ W , equal to 1 in the code K(Bi), where αg ∈ Bi. Therefore, in case of
CMCU U40 system (4.29) is transformed to the form:

W = W (τ). (6.23)

In present case this table has |C1| = 4 lines (Table 6.15). The input assignment
100 is insignificant. Using this table, after minimization, the equation w1 = τ2τ3 can
be obtained.

Table of the block CCS is now used to find functions (6.16) and (6.17). In order
to minimize these functions, it is convenient to represent the table for block CCS in
the form of Karnaugh map. In case of the CMCU U40(Γ11), the Karnaugh map for
the block CCS is shown in Fig. 6.23.

Table 6.14 Table of address transformer for CMCU U40(Γ11)

bq αg K(αg) K(bq) C(bq) zq q

b1 α1 000 ∗∗0 000 – 1
b2 α1 000 ∗∗1 010 z2 2
b3 α2 001 ∗00 000 – 3
b4 α2 001 ∗∗1 100 z1 4
b5 α2 001 ∗1∗ 001 z3 5
b6 α3 010 ∗∗0 011 z2z3 6
b7 α3 010 ∗∗1 000 – 7
b8 α4 011 ∗∗0 001 z3 8
b9 α4 011 ∗∗1 101 z1z3 9
b10 α5 100 000 000 – 10
b11 α5 100 ∗01 001 z3 11
b12 α5 100 ∗10 110 z1z2 12
b13 α5 100 ∗11 101 z1z3 13
b14 α5 100 1∗∗ 000 – 14
b15 α6 101 000 010 z2 15
b16 α6 101 ∗01 011 z2z3 16
b17 α6 101 ∗10 001 z3 17
b18 α6 101 ∗11 100 z1 18
b19 α6 101 1∗∗ 001 z3 19

For example, cell 001001 of the map corresponds to vertex b4 of the GSA Γ11,
where variable y0 should be placed. Therefore, variable y0 is placed in this cell and
so on. Two following equations can be obtained from this Karnaugh map: y0 =
T 1T 3 ∨ τ1T 1 ∨ τ1τ2τ3T 2; yE = T1.

Synthesis of the CMCU U40(Γ ) logic circuit is reduced to the implementation
of systems Φ , Ψ , ZM , y0, yE , W using PLD chips and implementation of control
memory using PROM or RAM chips (Fig. 6.24).
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Table 6.15 Table of code transformer TC for CMCU U40(Γ11)

αg K(αg) Bi K(Bi) Wg g

α1 000 B1 1 w1 1
α2 001 B2 0 – 2
α3 010 B2 0 – 3
α4 011 B2 0 – 4
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0 y0 0 y0
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Fig. 6.23 Karnaugh map for block CCS of CMCU U40(Γ11)

In this case, combinational circuit CC has inputs w1,x1, . . . ,x5 and outputs
D1,D2,D3,D4,D5,D6; block AT3 has inputs τ1,τ2,τ3,T1,T2,T3 and outputs z1,z2,z3;
block TC has inputs τ2,τ3 and output w1; block CCS has inputs T1,T2,T3,τ1,τ2,τ3

and outputs y0, yE ; control memory has address inputs z1,z2,z3 and six outputs with
microoperations y1, . . . ,y6.

Synthesis method used for CMCU U44(Γ ) includes the same steps as the method
applied for CMCU U40(Γ ), but instead of operational linear chains αg ∈ C and
their classes Bi ∈ ΠC, the elementary OLC αg ∈ CE and their classes Bi ∈ ΠE are
used respectively. Consider an example of logic circuit synthesis for the CMCU
U44(Γ11), where EOLC sets for GSA Γ11 have the form: CE = {α1, . . . ,α8} and
C1

E = {α1, . . . ,α6}. In this case IE = 4 and R11, W = {w1,w2}.
We encode the classes applying the same principle as the one used for CMCU

U40. In this case, codes K(B1) = 01, K(B2) = 10, K(B3) = 00 and K(B4) = 11 can be
formed. The encoding of collections of microoperations, obtained earlier, is shown
in Fig. 6.21, and the control memory content in Fig. 6.22. The codes of elementary
OLC and their components are shown in Fig. 6.11.

Transition table for the CMCU U44 is constructed using the same approach as the
one used for CMCU U14. In our last example, it is made using system (6.22) and
includes H44(Γ11) = 10 lines (Table 6.16).
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Fig. 6.24 Logic circuit of
CMCU U40(Γ11)

PLA

CC

1
1

2

3

4

5

6

1

2

3

4

5

2

3

4
5

12

13

14

15

D1

D2

D3

D5

PROM

20

1

2

3

CS

1

2

3

4

5

6

27

28

29

y1
y2
y3
y4

1τ
2τ

R     T

S

Fetch8

10

19

&

1

&

17

18

7
9

9

C1

C2
18

7 y0

20

RGD1

D2

D3

R

C

1

2

3

12

13

14

10

21

22

y5

6

19

3τ 23

CTD1

D2

D3

R

C1

C2

1

2

3

11

15

17

24

25

T1

T2

19

10

PLA

CCS

21
1

2

3

4

5

6

1

2
22

23

24
25

7

8

y0
yE

26

x1 1

x2 2

x3 3

4

y0 7

9

Start 10

Clock

x4

8yE

11"0"

5

16

16D6

26T3

y6

PLA

AT3

21
1

2

3

4

5

6

1

2

3

22

23

24
25

27

28

29

z1
z2
z3

26

PLA

AT2

6
1

2

3

4

5

6

1

2

3

4

7

8

23
24

26

27

28

29

z1
z2
z3
z4

25

PLA

TC

22
1

2
123

6w1

6w1

x5

Using Table 6.16 we can find functions Ψ , for example: D1 = w1w2x1x2 ∨
w1w2x3 ∨w1w2, which corresponds to the lines 3, 4, 7 – 10 (after minimization).

Table of the code transformer TC has in this case |C1
E |= 6 lines (Table 6.17), and

serves to find functions W . For example, the following equation w1 = τ1τ2τ3 ∨τ1τ3

can be formed using Table 6.17 (after minimization).

Table 6.16 Transition table for CMCU U44(Γ11)

Bi K(Bi) αg K(αg) Xh Ψh h

B1 01 α2 001 x1 D3 1
α4 011 x1x2 D2D3 2
α5 100 x1x2x3 D1 3
α8 111 x1x2x3 D1D2D3 4

B2 10 α3 010 1 D2 5
B3 00 α3 010 x3 D1D2 6

α7 110 x3x4x5 D1 7
α6 101 x3x4x5 D1D3 8
α8 111 x3x4 D1D2D3 9

B4 11 α7 110 1 D1D2 10
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Table 6.17 Table of code transformer TC for CMCU U44(Γ11)

αg K(αg) Bi K(Bi) Wg g

α1 000 B1 01 w2 1
α2 001 B2 10 w1 2
α3 010 B3 00 – 3
α4 011 B3 00 – 4
α5 100 B3 00 – 5
α6 101 B4 11 w1w2 6

In this particular case table of the address transformer AT3 includes M2 = 19 lines
(Table 6.18).

Table 6.18 Table of address transformer AT3 for U44(Γ11)

bq αg K(αg) K(bq) C(bq) zq q

b1 α1 000 ∗∗0 000 – 1
b2 α1 000 ∗∗1 010 z2 2
b3 α2 001 ∗∗∗ 000 – 3
b4 α3 010 ∗∗0 100 z1 4
b5 α3 010 ∗∗1 001 z3 5
b6 α4 011 ∗∗0 011 z2z3 6
b7 α4 011 ∗∗1 000 – 7
b8 α5 100 ∗∗0 001 z3 8
b9 α5 100 ∗∗1 101 z1z3 9
b10 α6 101 ∗∗0 000 - 10
b11 α6 101 ∗∗1 001 z3 11
b12 α7 110 ∗00 110 z1z2 12
b13 α7 110 ∗∗1 101 z1z3 13
b14 α7 110 ∗1∗ 000 – 14
b15 α8 111 000 010 z2 15
b16 α8 111 ∗01 011 z2z3 16
b17 α8 111 ∗10 001 z3 17
b18 α8 111 ∗11 100 z1 18
b19 α8 111 1∗∗ 001 z3 19

This table is now used for generation of functions zr ∈ ZM . For example, the
following Boolean equation can be extracted from Table 6.18: z1 = τ1τ2τ3T 3 ∨
τ1τ2τ3T3 ∨ τ1τ2τ3T 2T 3 ∨ τ1τ2τ3T3 ∨ τ1τ2τ3T2T3. Comparison of the equations ob-
tained for function z1 shows that in case of CMCU U40(Γ11) disjunctive normal form
of this function includes smaller number of terms, than for the equivalent CMCU
U44(Γ11).

Table of block CCS serves to generate formulae for both additional variables con-
trolling synchronization (y0) and by fetching yE . To make their minimizing easier,
let us represent these functions using Karnaugh map shown in Fig. 6.25. Obviously,
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the well-known algorithms, such as ESPRESSO [10], can be used for computer
minimization of functions y0 and yE .
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Fig. 6.25 Karnaugh map for block CCS of CMCU U44(Γ11)

The following minimal equations can be obtained from this Karnaugh map: y0 =
τ1τ3T 3 ∨ τ1τ2T 3 ∨ τ1τ2T 2T 3 ∨ τ1T 1T 2T 3; yE = T1 ∨ τ3T2.

Synthesis of CMCU U44(Γ11) logic circuit is reduced to hardware implementa-
tion of Boolean functions obtained for the given logic elements.

6.5 Combined application of different object transformation
methods for CMCU

As was shown in Section 5.1, both transformation methods: using object codes and
using different codes of the same object, can be applied to optimize either the com-
binational circuit CC or the control memory size of CMCU U8 – U11. All models of
CMCU U16 – U45 discussed already have three levels, but combined application of
the methods presented in Chapters 5 and 6 results in four-level models. All possible
models of CMCU with code sharing are shown in Table 6.19.

As follows from Table 6.19, the first level (A) for CMCU U46 – U57 is occu-
pied by combinational circuit CC, third level (C) is occupied by one of the address
transformers AT1 – AT3, forth level (D) is occupied by control memory CM, and
second level (B) can be occupied either by a single code transformer TOK, or by
two code transformers TOK, TC. The block CCS is always used jointly with address
transformer AT3. Structural diagrams for logic circuits of the CMCU U46 - U57 are
generated by combination of the blocks taken from corresponding line of the table.
For example, structural diagram of CMCU U54 is shown in Fig. 6.26.
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Table 6.19 Four-level models for CMCU with codes sharing

Type A B C D Analogue

U46 CC TOK AT1 CM U8
U47 CC TOK AT2 CM U8
U48 CC TOK AT3,CCS CM U8
U49 CC TOK AT1 CM U9
U50 CC TOK AT2 CM U9
U51 CC TOK AT3,CCS CM U9
U52 CC TOK,TC AT1 CM U10
U53 CC TOK,TC AT2 CM U10
U54 CC TOK,TC AT3,CCS CM U10
U55 CC TOK AT1 CM U11
U56 CC TOK AT2 CM U11
U57 CC TOK AT3,CCS CM U11
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Fig. 6.26 Structural diagram for CMCU U54

Functions of the blocks CC, TC, TOK, AT3, CCS, CM are the same, as for cor-
responding three-level models. Synthesis method applied for the CMCU U54 can be
generated as the integration of synthesis methods used for corresponding three-level
models. This method includes the following steps:

1. Preliminary transformation of initial GSA Γ (procedure P4).
2. Construction of the set of operational linear chains C (procedure P1).
3. Encoding of OLC αg ∈C and their components.
4. Encoding of the inputs I j

g ∈ I(Γ ) of operational linear chains.
5. Construction of partition ΠC of the set C1.
6. Encoding of equivalence classes Bi ∈ ΠC.
7. Construction of transition table of CMCU.
8. Construction of the table of code transformer TC.
9. Construction of the table of code transformer TOK.

10. Encoding of collections of microoperations Yq ⊆ Y .
11. Construction of the control memory content.
12. Construction of the table of address transformer AT3.
13. Construction of the table of CCS block.
14. Synthesis of logic circuit of CMCU using the given logic elements.
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Let us discuss an example of CMCU U54(Γ12) synthesis, using the transformed
GSA Γ12(U54) shown in Fig. 6.27.

Application of procedure P1 results in the following set of operational linear
chains C = {α1, . . . ,α8}, where α1 = 〈b1, . . . ,b5〉, I1

1 = b1, I2
1 = b3, O1 = b5, L1 = 5,

NI1 = 2; α2 = 〈b6,b7,b8〉, I1
2 = b6, O2 = b8, L2 = 3, NI2 = 1; α3 = 〈b9,b10〉, I1

3 = b9,
O3 = b10, L3 = 2, NI3 = 1; α4 = 〈b11,b12,b13〉, I1

4 = b11, I2
4 = b13 = O4, L4 = 3,

NI4 = 2; α5 = 〈b14,b15〉, I1
5 = b14, I2

5 = O5 = b15, L5 = NI5 = 2; α6 = 〈b16,b17〉,
I1
6 = b16, O6 = b17, L6 = 2, NI6 = 1; α7 = 〈b18〉, I1

7 = O7 = b18, L7 = NI7 = 1;
α8 = 〈b19〉, I1

8 = O8 = b19, L8 = NI8 = 1.
Thus, G = 8, R6 = 3, τ = {τ1,τ2,τ3} and the trivial encoding of OLC αg ∈ C

is: K(α1) = 000, . . . ,K(α8) = 111. Analysis of OLC shows that Lmax = 5, R7 = 3,
T = {T1,T2,T3}. Let us encode components of OLC αg ∈C by codes K(bq) having
R7 bits. It results in microinstruction addresses shown in Fig. 6.28.

Set of OLC inputs includes, in this example, 11 elements, where NImax = 2, R14 =
1, V = {v1},. Let us encode these inputs I j

g as: K(I1
g ) = 0, K(I2

g ) = 1(g = 1, . . . ,8).
For the GSA Γ12 we find the set C1 = {α1, . . . ,α7} and partition ΠC = {B1,B2,B3}

with classes B1 = {α1}, B2 = {α2,α3,α4}, B3 = {α5,α6,α7}. Thus, I = 3, R4 = 2,
W = {w1,w2}. In order to minimize the system W , let us encode the classes Bi ∈ ΠC

as: K(B2) = 00, K(B3) = 01.
System of transition formulae for outputs of OLC αg ∈C1 includes three follow-

ing expressions:

O1 → x1x2I2
1 ∨ x1x2I1

2 ∨ x1x3I1
3 ∨ x1x3x4I1

4 ∨ x1x3x4I2
4 ;

O2,O3,O4 → x2I1
5 ∨ x2x3I1

6 ∨ x2x3I1
7 ;

O5,O6,O7 → x4I2
5 ∨ x4I1

8 .
(6.24)

Replacement of outputs Og by the symbols of corresponding classes Bi, where
αg ∈ Bi, leads to the system (6.25):

B1 → x1x2I2
1 ∨ x1x2I1

2 ∨ x1x3I1
3 ∨ x1x3x4I1

4 ∨ x1x3x4I2
4 ;

B2 → x2I1
5 ∨ x2x3I1

6 ∨ x2x3I1
7 ;

B3 → x4I2
5 ∨ x4I1

8 .
(6.25)

The system (6.25) allows to construct the transition table for CMCU U54(Γ12),
having H54(Γ12) lines (Table 6.20).

Using this table we obtain the systems of Boolean functions Ψ and V . Next, we
can find, for example, the following equations D1 = F6∨ . . .∨F10 = w1w2∨w1w2 =
w1; v1 = F1 ∨F5 ∨F9 = w1w2x1x2 ∨w1w2x1x3x4 ∨w1w1x4.

Table of the code transformer TC describes transformation of OLC codes into the
codes of classes of pseudoequivalent OLC. This table includes in general G1 = |C1|
lines. In the particular case of CMCU U54(Γ12) we obtain, for example, G1 = 7 lines
(Table 6.21).
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Fig. 6.27 Transformed GSA Γ12(U54)
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Fig. 6.28 Microinstruction addresses for CMCU U54(Γ12)

Table 6.20 Transition table for CMCU U54(Γ12)

Bi K(Bi) I j
m K(αm) K(I j

m) Xh Ψh Vh h

B1 10 I2
1 000 1 x1x2 – v1 1

I1
2 001 0 x1x2 D3 – 2

I1
3 010 0 x1x3 D2 – 3

I1
4 011 0 x1x3x4 D2D3 – 4

I2
4 011 1 x1x3x4 D2D3 v1 5

B2 00 I1
5 100 0 x2 D1 – 6

I1
6 101 0 x2x3 D1D3 – 7

I1
7 110 0 x2x3 D1D2 – 8

B3 01 I2
5 100 1 x4 D1 v1 9

I1
8 111 0 x4 D1D2D3 – 10

Table 6.21 Table of code transformer TC for CMCU U54(Γ12)

αg K(αg) Bi K(Bi) Wg g

α1 000 B1 10 w1 1
α2 001 B2 00 – 2
α3 010 B2 00 – 3
α4 011 B2 00 – 4
α5 100 B3 01 w2 5
α6 101 B3 01 w2 6
α7 110 B3 01 w2 7

The system of Boolean functions W can be obtained from this table. Taking into
account the insignificant input assignment 111, the following equations can be found
from Table 6.21: w1 = τ1τ2τ3, w2 = τ1.

Table of code transformer TOK represents generation of OLC component codes.
In the discussed example it includes 11 lines (Table 6.22).
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Table 6.22 Table of code transformer TOK for CMCU U54(Γ12)

αg K(αg) I j
g K(I j

g) bq K(bq) Φh h

α1 000 I1
1 0 b1 000 – 1

α1 000 I2
1 1 b3 ∗10 D5 2

α2 001 I1
2 0 b6 ∗00 – 3

α3 010 I1
3 0 b9 ∗∗0 – 4

α4 011 I1
4 0 b11 ∗00 - 5

α4 011 I2
4 1 b13 ∗1∗ D5 6

α5 100 I1
5 0 b14 ∗∗0 - 7

α5 100 I2
5 1 b15 ∗∗1 D6 8

α6 101 I1
6 0 b16 ∗∗0 – 9

α7 110 I1
7 0 b18 ∗∗∗ – 10

α8 111 I1
8 0 b19 ∗∗∗ – 11

Insignificant input assignments are taken into account in the component codes
of Table 6.22. This table permits to obtain the input memory functions Φ and the
equations, as for example: D5 = τ1τ2τ3v1 ∨ τ1τ2τ3v1.

There are M4 = 8 different collections of microoperations in operator vertices of
the GSA Γ12, namely: Y1 = {y1,y2}, n1 = 4; Y2 = {y3}, n2 = 3; Y3 = {y2,y3,y4},
n3 = 2; Y4 = {y2,y5}, n4 = 2; Y5 = {y1,y3,y5}, n5 = 2; Y6 = {y4,y5}, n6 = 3; Y7 =
{y1}, n7 = 1; Y8 = {y2,y6}, n8 = 2. Thus, R16 = 3, ZM = {z1,z2,z3}, The queue of
collections of microoperations 〈Y1,Y2,Y6,Y3,Y4,Y5,Y8,Y7} should be organized for
their encoding. The codes K(Yq) of collections of microoperations for the CMCU
U54(Γ12) are shown in Fig. 6.29.

Fig. 6.29 Codes of collec-
tions of microoperations for
CMCU U54(Γ12)
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The control memory content for this case is shown in Fig. 6.30.

Fig. 6.30 Control memory
content for CMCU U54(Γ12)
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The table of address transformer AT3 is the base to derive functions ZM and in-
cludes M2 lines. In case of CMCU U54(Γ12), the table of address transformer AT3 has
M2 = 19 lines (Table 6.23). Insignificant input assignments are taken into account
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to get the components codes written in Table 6.23. The following equation for func-
tion z1 can be derived, for example, from Table 6.23: z1 = τ1τ2τ3T2T 3∨τ1τ2τ3T1∨
τ1τ2τ3T3 ∨ τ1τ2τ3T2 ∨ τ1τ2τ3T 2T 3 ∨ τ1τ2τ3T3 ∨ τ1τ2τ3. The terms of this equation
correspond to lines 3, 5, 7, 8, 11, 17 and 18 of the table respectively.

As in previous cases, we use the Karnaugh map to represent additional variables
y0 and yE . This map is constructed on the base of microinstruction addresses. Let us
remind the reader, that variable y0 is inserted in all vertices of GSA, which do not
correspond to the OLC outputs (Fig. 6.31). The following Boolean equations can
be derived from the Karnaugh map: y0 = τ2T 1T 3 ∨ τ1T 2T 3 ∨ τ1τ3T 2 ∨ τ1τ2τ3T 1;
yE = τ1τ2τ3.

Synthesis of logic circuit of the CMCU U54(Γ12) is reduced to implementation
of systems Ψ , V , Φ , W , ZM , y0, yE using PLD chips and implementation of control
memory using either RAM or PROM chips (Fig. 6.32).

All models of CMCU listed in Table 6.19 can be synthesized by analogy with the
discussed example.

Table 6.23 Table of address transformer AT3 for CMCU U54(Γ12)

bq αg K(αg) K(bq) C(bq) zq q

b1 α1 000 000 000 – 1
b2 α1 000 ∗01 001 z3 2
b3 α1 000 ∗01 100 z1 3
b4 α1 000 ∗11 011 z2z3 4
b5 α1 000 1∗∗ 101 z1z3 5
b6 α2 001 ∗00 010 z2 6
b7 α2 001 ∗∗1 111 z1z2z3 7
b8 α2 001 ∗1∗ 110 z1z2 8
b9 α3 010 ∗∗0 000 – 9
b10 α3 010 ∗∗1 010 z2 10
b11 α4 011 ∗00 110 z1z2 11
b12 α4 011 ∗∗1 001 z3 12
b13 α4 011 ∗1∗ 000 – 13
b14 α5 100 ∗∗0 000 – 14
b15 α5 100 ∗∗1 001 z3 15
b16 α6 101 ∗∗0 011 z2z3 16
b17 α6 101 ∗∗1 100 z1 17
b18 α7 111 ∗∗∗ 101 z1z3 18
b19 α8 111 ∗∗∗ 010 z2 19
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Fig. 6.31 Karnaugh map for functions y0 and yE of CMCU U54(Γ12)
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1. A.A. Barkalov and. R. Wiśniewski. Synthesis of compositional microprogram control units
with function decoder. In Inter. Workshop Control and Information Technology – IWCIT 2007,
pages 229 – 232. Technical University of Ostrava, 2007.

2. S. I. Baranov. Logic Synthesis of Control Automata. Kluwer Academic Publishers, 1994.
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Chapter 7
Synthesis of CMCU with coding of logical
conditions and collections of microoperations

Abstract The chapter deals with multilevel implementation of CMCU logic cir-
cuits. These methods are based on some well-known ideas taken from the literature
devoted to optimization of FSM and MCU. They are of course adapted to the par-
ticular conditions of the CMCU operation. All these methods lead to the increase
of cycle time, in comparison with the CMCU basic structure. They can be applied,
when minimum hardware amount is the main goal of a particular design.

7.1 Coding of logical conditions for CMCU with basic structure

As we already know, the CMCU U1 includes Mealy FSM S1, and therefore it seems
reasonable to start discussion about encoding logical conditions directly from this
model of CMCU. We know also that coding of logical conditions is reduced to re-
placement of logical conditions xl ∈ X by some new variables pg ∈P. This approach
makes sense only if the following condition takes place:

|P| � |X |. (7.1)

Functions pg ∈ P are determined using the expression [4]:

pg =
M
∨

m=1

L
∨

l=1
CmlAmxl (g = 1, . . . ,G0), (7.2)

where Cml is a Boolean variable, equal to 1 iff variable xl ∈ X is replaced by variable
pg ∈ P for internal state am ∈ A; Am is a conjunction of state variables corresponding
to code K(am) of state am ∈A. By analogy with the Mealy MP FSM [9], let us denote
CMCU Ui based on coding of logical conditions as MUi(i = 1, . . . ,57). Structural
diagram of the CMCU MU1 is shown in Fig. 7.1.

In CMCU MU1 block M implements functions

P = P(τ,X) (7.3)

197
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Fig. 7.1 Structural diagram of CMCU MU1

corresponding to system (7.2), and combinational circuit CC implements functions

Φ = Φ(τ,P), (7.4)

Ψ = Ψ(τ,P). (7.5)

Obviously, operation principles of both CMCU U1 and MU1 are the same, but
additional step connected with replacement of logical conditions X by new variables
P should be executed to design of CMCU MU1 logic circuit.

Let the Mealy FSM S1 for CMCU U1 interpreting some GSA Γ13 be represented
by the structure table, shown in Table 7.1.

Table 7.1 Structure table of Mealy FSM S1 for CMCU U1(Γ13)

am K(am) as K(as) Xh Ψh Φh h

a1 000 a2 001 x1 D7 D1D4 1
a3 010 x1x2 D6 D2 2
a4 011 x1x2 D6D7 D2D3 3

a2 001 a3 010 x3 D6 D1D3 4
a4 011 x3 D6D7 D2 5

a3 010 a5 100 1 D5 D1D4 6
a4 011 a2 001 1 D7 D5 7
a5 100 a3 010 x3x4 D6 D1D4 8

a2 001 x3x4 D7 D2 9
a6 101 x3 D5D7 D1D3 10

a6 101 a2 001 x5 D7 D2 11
a1 000 x5 – D1 12

Coding of logical conditions and synthesis of block M are executed using well-
known methods presented in [3]. Let us discuss execution of these steps for our
particular example.

1. Construction of set P. Let us find the cardinality numbers of sets X(am), includ-
ing logical conditions determined transitions from state am ∈ A. Parameter G0 is
determined by the following formula:
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G0 = max(|X(a1)|, . . . , |X(aM1)|). (7.6)

From Table 7.1 the following sets can be found: the set of states A1 = {a1, . . . ,a6},
where M1 = 6, and the sets of logical conditions for these states: X(a1) =
{x1,x2}, X(a2) = {x3}, X(a3) = X(a4) = /0, X(a5) = {x3,x4}, X(a6) = {x5}.
It means that G0 = 2 and P = {p1, p2}, according to (7.6).

2. Construction of table for encoding of logical conditions. This table includes
columns am, K(am), p1, . . . , pG0 . Intersection of row am and column pg is marked
by logical condition xl ∈ X , replaced by variable pg ∈ P for state am ∈ A. Let
X(Pg) be a set of logical conditions xl ∈ X replaced by variable pg ∈ P. The table
is constructed in such a way that the following condition holds:

|X(Pi)∩X(Pj)| → min, (7.7)

where i �= j, i, j ∈ {1, . . . ,G0}. This problem is reduced to classical problem of
graph coloring [7].
In the discussed case, encoding table of logical conditions (Table 7.2) satisfies
(7.7).

Table 7.2 Encoding table of logical conditions for CMCU MU1(Γ13)

am K(am) p1 p2 am K(am) p1 p2

a1 000 x1 x2 a4 011 – –
a2 001 x3 – a5 100 x3 x4
a3 010 – – a6 101 - x5

3. Construction of system P. Equations for system (7.2) are derived from encod-
ing table of logical conditions in a trivial way. The following equations can be
derived in the case of CMCU MU1(Γ13):

p1 = A1x1 ∨A2x3 ∨A5x3;
p2 = A1x2 ∨A5x4 ∨A6x5.

(7.8)

4. Implementation of block M is reduced to implementation of each equation of
system (7.3) by separate multiplexer. It is clear that multiplexers can be imple-
mented using macrocells of particular PLD chips.

In the discussed example block B is implemented using two multiplexers (Fig.
7.2), having R1 = 3 control inputs and 2R1 data inputs.

The following transformation of structure table should be executed to derive
equations of system (7.4): column Xh should be replaced by column Ph, and log-
ical conditions xl ∈ X should be replaced by variables pg ∈ P. This replacement is
executed in a trivial way. In our example, the transformation results are shown in
Table 7.3.
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Fig. 7.2 Logic circuit of block M of CMCU MU1(Γ13)

Table 7.3 Transformed structure table of FSM S1 for CMCU MU1(Γ13)

am K(am) as K(as) Ph Ψh Φh h

a1 000 a2 001 P1 D7 D1D4 1
a3 010 P1P2 D6 D2 2
a4 011 P1P2 D6D7 D2D3 3

a2 001 a3 010 P1 D6 D1D3 4
a4 011 P1 D6D7 D2 5

a3 010 a5 100 1 D5 D1D4 6
a4 011 a2 001 1 D7 D5 7
a5 100 a3 010 P1P2 D6 D1D4 8

a2 001 P1P2 D7 D2 9
a6 101 P1 D5D7 D1D3 10

a6 101 a2 001 P2 D7 D2 11
a1 000 P2 – D1 12

Input memory functions Dr ∈Ψ ∪Φ can be derived as the following disjunctive
normal forms:

Dr =
R1+R2∨

r=1
CrhAh

mPh (r = 1, . . . ,R1 +R2). (7.9)

In this equation Crh is a Boolean variable equal to 1 iff the input memory function
Dr is placed in the line h of the structure table. For example, the equation D5 =
τ1τ2τ3 ∨ τ1τ2τ3P1 can be derived from Table 7.3.

The remaining synthesis steps for CMCU MU1 are the same as for CMCU U1.
Thus, synthesis of CMCU MU1 includes the following steps:

1. Preliminary transformation of GSA Γ (procedure P4).
2. Construction of OLC C set (procedure P1).
3. Addressing of microinstructions (procedure P2).
4. Construction of the control memory content.
5. Transformation of GSA Γ (U1) (procedure P3).
6. Construction of structure table for FSM S1.
7. Construction of encoding table for logical conditions.
8. Construction of transformed structure table for FSM S1.
9. Synthesis of logic circuit of CMCU with given logic elements.

The following values and sets can be derived from Table 7.1: R1 = 3, R2 = 4,
τ = {τ1,τ2,τ3}, T = {T1, . . . ,T4}, Ψ = {D5,D6,D7}, Φ = {D1, . . . ,D4}. The logic
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circuit of CMCU MU1(Γ13) is shown in Fig. 7.3, assuming that the set of micro-
operations Y = {y1, . . . ,y5} can be derived from the operator vertices of interpreted
GSA.

Fig. 7.3 Logic circuit of
CMCU MU1(Γ13)

PLA
13

1

2

3

4

5

1

2

3

4

5

6

7

14

6

7
8

19

20

21

22

D1

D2

D3

D4

PROM

19

1

2

3

4

CS

1

2

3

4

5

6

7

26

27

28

29

9

10

y1

y2
y3
y4

y0
yE

1τ
2τ

R     T

S

Fetch9

11

17

&

1

&

15

16

9

12

12

C1

C2
16

9 y0

18

RGD1

D2

D3

R

C

1

2

3

23

24

25

11

6

7

y5

17

3τ 8

CTD1

D2

D3

D4

R

C1

C2

1

2

19

20

11

20

21

T1

T2

15

22

x1 1

x2 2

x3 3

4

6

y0

7

9

11Start

12Clock

1τ
2τ

x4

10yE

83τ

5x5

21

23D5

0

1

2

3

4

5

6

7

1

2

3

MX

13P1

1

2

3

6

7

8

0

1

2

3

4

5

6

7

1

2

3

MX

14P2

2

4

6

7

8

5

24D6

25D7

17

Analysis of the logic circuit of block M (Fig. 7.2) shows that only 3/8 of potential
capabilities of multiplexers are used, because their 5 data inputs are not in use. Let
us define the utilization coefficient of multiplexer by the following relation

Kg =
Lg

S
(g = 1, . . . ,G0), (7.10)

where Lg = |X(Pg)|. It means that the mutual utilization effectiveness of multiplex-
ers of the block M is characterised by the following coefficient:

KM =

(
G0

∑
g=1

Kg

)
/

G. (7.11)

In our example the values of these coefficients can be found as: K1 = K2 = KM =
0,375.

Two following methods are proposed in [4] to increase the value of coeffi-
cient KM:
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• refined state encoding, when the states with conditional transitions are encoded
first;

• transformation of state codes into codes of logical conditions, based on introduc-
tion of the special code transformer to the FSM S1.

In the first case set of states A1 is divided in two classes A1
1and A2

1. Class A1
1 con-

tains the states with conditional transitions and states with unconditional transitions
belong to class A2

1. States am ∈ A1
1 are encoded first; the encoding is executed in such

a manner, that R1–R17 leftmost bits of the state codes contain zeros, where

R17 = 	log2(|A1
1|+1)
. (7.12)

Digit 1 in (7.12) is added because the code of initial state a1 ∈ A1 should contain
zeros only. Coefficient KM is increased, in comparison with arbitrary state encoding
used, if the following condition takes place:

R17 < R1. (7.13)

In our example, there are sets A1
1 = {a2,a5,a6} and A2

1 = {a3,a4}. It leads to the
state codes: K(a1) = 000, K(a2) = 001, K(a5) = 010, K(a6) = 011, K(a3) = 100,
K(a4) = 101. Implementation of block M corresponding to this state encoding is
shown in Fig. 7.4.

Fig. 7.4 Implementation of
block M for refined state
encoding

x1

MX

P1

0   1   2   3     1   2
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P2

2τ 3τx4 x5

MX

0   1   2   3     1   2

Calculation of Km coefficients for this circuit gives the following values: K1 =
K2 = KM = 0.75. Besides, the numbers of control and data inputs are reduced in
comparison with logic circuit shown in Fig. 7.2. Obviously, it results in smaller
total cost of block M.

Structural diagram of CMCU MU1 with code transformer TC1 is shown in
Fig. 7.5, where TC1 generates codes of logical conditions on the base of state codes.

The number of outputs of the code transformer TC1 is determined by the follow-
ing formula:

R18 =
G0

∑
g=1

Rg
18. (7.14)

Here symbol Rg
18 stays for the number of variables used to encode logical con-

ditions xl ∈ X(Pg), g = 1, . . . ,G0. In our example the following values can be ob-
tained: |X(P1)|= 2, R1

18 = 1, |X(P2)|= 3 and R2
18 = 2. It results in the set of variables

Z = {z1,z2,z3}. Let us encode logical conditions xl ∈ X as shown in Table 7.4.
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Fig. 7.5 Structural diagram of CMCU with transformation of state codes

Table 7.4 Table of logic conditions encoding for CMCU MU1(Γ13)

X(P1) K(xl) X(P2) K(xl)

z1 z2 z3
x1 0 x2 0 0
x2 1 x4 0 1
– – x5 1 0

For this encoding, the following logic circuit for the block M of CMCU MU1(Γ13)
can be implemented (Fig. 7.6).

Fig. 7.6 Logic circuit of
block M for CMCU MU1(Γ13)
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The application of transformer TC1 gives the following coefficients:K1 = 1,K2 =
0.75, KM = 0.875. Thus, the coefficient of effectiveness has the highest value in
this last case, but the use of code transformer TC1, causes consumption of some
resources of the chip.

In order to construct the system of output functions for code transformer TC1,
namely

Z = Z(T ), (7.15)

it is necessary to find the table of code transformer TC1 with columns am, K(am),
Z(P1), . . . ,Z(PG0), m, where column Z(Pg) contains variables zr ∈ Z, encoding log-
ical conditions xl ∈ X(Pg). In our case this table includes 4 lines (Table 7.5), equal
to the cardinal number of the set A1

1.
For the state a5 we have p1 = x3, K(x3) = 1. It means that variable z1 should

be written on the intersection of column Z(P1) and row a5. By analogy, variable z3
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Table 7.5 Table of code transformer TC1 of CMCU MU1(Γ13)

am K(am) Z(P1) Z(P2) m

a1 000 – – 1
a2 001 z1 – 2
a5 010 z1 z3 3

011 – z2 4

should be written on the intersection of column Z(P2) and row a5 because p2 = x4

and K(x4) = 01. System (7.15), derived from the table of code transformer, gives
the following expression:

zr =
M1∨

m=1
CrmAm, (7.16)

where Crm is a Boolean variable equal to 1 iff variable zr = 1 for state am ∈ A1
1

(r = 1, . . . ,R18). For example, the following equations can be derived from Table
7.5: z1 = τ2τ3 ∨ τ2τ3; z2 = τ2τ3; z3 = τ2τ3. Let us point out, that in this particular
case, the refined state encoding allows minimization of the number of literals in
system (7.15).

Let us denote by the symbol MCU1 the control unit U1 with refined state encoding
and by MLU1 the control unit U1 with transformation of state codes in the codes of
logical conditions. Synthesis methods used for CMCU MCU1 and MLU1 are some
modifications of the synthesis methods applied for CMCU MU1.

In the case of CMCU MCU1 the step of refined state encoding is added after the
point 5 of the synthesis method used for CMCU MU1. In case of CMCU MLU1, two
more steps are added, namely coding of logical conditions and construction of the
table for code transformer TC1.

The number of multiplexers in block M and, therefore, the number of combina-
tional circuit inputs can be reduced due to the transformation of initial GSA [4]. For
example, it can be found that G0 = 3 in case of the GSA Γ14 fragment shown in
(Fig. 7.7).

y1y2

y2y4

x3
1 0

y3 b4 b6

x1
1 0

y1y3y4 b5 b7

b3

x2
1 0

Fig. 7.7 Fragment of GSA Γ14
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Let us transform this fragment introducing additional vertex b20 (Fig. 7.8), as-
suming that M2 = 19.

y1y2

y2y4

x3
1 0

y3 b4

b6

x1
1 0

y1y3

y4 b5

b7

b3

x2
1 0 b20

Fig. 7.8 The transformed fragment of GSA Γ14

Now G0 = 2, but introduction of the vertex b20 results in the increase of such
parameters as the numbers of OLC and states of the Mealy FSM S1 and the time
of control algorithm execution. It is clear, that this transformation allows change
the number of combinational circuit inputs from 1 to G0, where G0 is the charac-
teristic of initial GSA Γ . The method of GSA transformation can be applied for
any from CMCU MU1, MCU1 and MLU1. Let the symbol Mg denote the block M,
having g outputs (g = 1, . . . ,G0). The application of logical conditions encoding,
together with other methods discussed here gives the following models of CMCU:
M1U1, . . . ,MG0U1, . . . ,MG0CU1,M1LU1, . . . ,MG0 LU1.

Obviously, the transformation of GSA can be applied for any CMCU Ui (i =
1, . . . ,57). Let us discuss application possibility of other optimization methods
which can be used for basic models of CMCU.

7.2 Encoding of logical conditions for basic models of CMCU

States of Mealy FSM S1 are sources of codes of logical conditions used in the
CMCU MU1. One of the three following objects can be used for encoding of logical
conditions:

• codes of states am ∈ A1 (MU1);
• rightmost bits of the state codes (MCU1);
• transformed state codes (MLU1).

In consequence, logical conditions xl ∈ X can be encoded using feedback vari-
ables of the combinational circuit CC either directly (MU1,MCU1), or after some
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transformation (MLU1). Analysis of basic models U1–U15 shows that the following
objects can be used as a source of logical condition codes:

• codes of states am ∈ A1 of addressing FSM (U1);
• output addresses of OLC αg ∈C (U2–U4, U7);
• codes of the classes of pseudoequivalent OLC αg ∈C1 (U5, U6, U10);
• codes of OLC αg ∈C (U8,U9,U11);
• codes of elementary OLC αg ∈CE (U12,U13,U15);
• codes of the classes of pseudoequivalent EOLC αg ∈C1

E (U14).

Let us take as objects of CMCU: states am ∈ A1 (U1), or outputs of OLC
αg ∈ C (U2–U4, U7), or equivalence classes Bi ∈ Πc (U5, U6, U10), or OLC αg ∈ C
(U8, U9, U11), or elementary OLC αg ∈ CE (U12,U13,U15), or equivalence classes
Bi ∈ ΠE(U14). Let us take a source of logical condition code as the object code. Ob-
viously, there are three approaches to logical conditions encoding for CMCU [4],
shown in Fig. 7.9:

• trivial encoding of objects (MUi);
• refined encoding of objects (MCUi);
• transformation of object codes (MLUi).

M

X

object

code
CC

P

a)

M

X

CC
P

TC1

M

X

object

code
CC

P

b) c)

object
code

Fig. 7.9 Three approaches to logical conditions encoding

In the first case (Fig. 7.9a) codes of objects are used to generation of both func-
tions P and outputs of the circuit CC. In the second case, refined codes of objects
are used to generate functions P, and these refined codes are represented by the
rightmost bits of object codes (Fig. 7.9b). In the third case, functions P depend on
transformed codes of objects, which are generated by a special code transformer
TC1 (Fig. 7.9c). Application of block TC1 makes sense only in the case, when total
hardware amount used for implementation of logic circuits of blocks M and TC1 is
smaller than the hardware amount used for implementation of the block M in case
of CMCU MCUi.

In all these cases, table of logical conditions encoding should be built, in which
first column includes an object, second column contains either the code of object
(MUi), or the refined code of object (MCUi), or the transformed code of object
(MLUi). Other columns of the table contain variables p1, . . . , pG0 . System of func-
tions P is generated in the following form:

pg =
K
∨

k=1
CklOkxl (g = 1, . . . ,G0). (7.17)
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In this formula, Ckl is a Boolean variable equal to 1 iff variable pg ∈ P re-
places logical condition xl ∈ X for some object number k; Ok is a conjunction of
variables, representing a code of logical condition xl ∈ X for some object number
k(k = 1, . . . ,K).

In case of CMCU MLUi, the table of code transformer TC1 should be built
in order to generate refined object codes. This table should include the following
columns: an object, object code, Z(p1), . . . ,Z(pG), where the line k from column
Z(pg) includes variables, equal to 1 in the code of logical condition xl ∈ X , and
some object number k(k = 1, . . . ,K). This table serves as the base for derivation of
functions

zr =
K
∨

k=1
CrkOk (r = 1, . . . ,R18(MCUi)), (7.18)

where Crk is a Boolean variable, equal to 1 iff the bit r of code K(xl) of object
number k is equal to 1 (k = 1, . . . ,K); R18(MCUi) is the cardinal number of set of
variables, used to encode logical conditions for CMCU MCUi (i = 1, . . . ,57).

Synthesis method used for CMCU MUi can be considered as some expansion of
the one used for CMCU Ui, where the following steps are added:

• construction of the encoding table of logical conditions;
• transformation of the transition table for CMCU Ui (i = 1, . . . ,57).

In case of CMCU MCUi the stage of refined object encoding should be also
added. In case of CMCU MLUi the steps of encoding logical conditions xl ∈ X using
additional variables zr ∈ Z, as well as construction of the table of code transformer
TC1 are also necessary.

Let us now consider an example of CMCU U8(Γ15) synthesis using all ap-
proaches to encoding of logical conditions. Let Table 7.6 be the transition table
for CMCU U8(Γ15).

The following sets and parameters can be found from this table for the CMCU
U8(Γ15): set of OLC C1 = {α1, . . . ,α6}, R6 = 3, sets of input memory functions
for register RG, Ψ = {D5,D6,D7}, and for counter CT, Φ = {D1,D2,D3,D4}, sets
of variables τ = {τ1,τ2,τ3}, T = {T1, . . . ,T4}, R7 = 4, set of logical conditions
X = {x1, . . . ,x6} with L = 6. Operational linear chains ag ∈ C1 are used here as
objects, variables τr ∈ τ are used for encoding of these objects. Let us discuss syn-
thesis examples for CMCU MG0U8(Γ15), MG0CU8(Γ15) and MG0 LU8(Γ15); that is
without transformation of the initial GSA Γ15(U8). For the sake of simplicity, we
omit subscript G0 in further considerations.

Structural diagram for CMCU MU8(Γ ) is shown in Fig. 7.10.
Analysis of Table 7.6 shows that G0 = 2 and we have the set P = {p1, p2}. Let us

construct an encoding table of logical conditions for CMCU MU8(Γ15) (Table 7.7).
In this particular case system (7.17) can be written in the form:

p1 = τ1τ2τ3x1 ∨ τ1τ2τ3x2 ∨ τ1τ2τ3x5;

p2 = τ1τ2τ3x3 ∨ τ1τ2τ3x4 ∨ τ1τ2τ3x6 ∨ τ1τ2τ3x3.
(7.19)

System (7.17) describes logic circuit of block M which, in our case, is shown in
Fig. 7.11.
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Table 7.6 Table of code transformer TC1 of CMCU MU1(Γ13)

αi K(ai) α j K(α j) Xh Φh Ψh h

α1 000 α2 001 x1 D4 D7 1
α3 010 x1x3 D2 D6 2
α5 100 x1x3 D1D3 D5 3

α2 001 α3 010 x2x4 D3D4 D6 4
α4 011 x2x4 D2 D6D7 5
α6 101 x2 D1 D5D7 6

α3 010 α4 011 1 D1D2 D6D7 7
α4 011 α3 010 x5 D3D4 D6 8

α1 000 x5x6 D1 – 9
α5 100 x5x6 D1D3 D5 10

α5 100 α4 011 1 D2 D6D7 11
α6 101 α2 001 x3 D4 D7 12

α1 000 x3 D1 – 13
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Fig. 7.10 Structural diagram for CMCU MU8

Table 7.7 Table for encoding logical conditions for MU8(Γ15)

ag K(ag) p1 p2 ag K(ag) p1 p2

a1 000 x1 x3 a4 011 x5 x6
a2 001 x2 x4 a5 100 – –
a3 010 – – a6 101 – x3

x1

MX

P1

0   1   2   3   4   5   6   7     1   2   3

x3 1τ 2τ 3τ x3

MX

P2

0   1   2   3   4   5   6   7     1   2   3

1τ 2τ 3τx4 x3x6x5

Fig. 7.11 Logic circuit of block M of CMCU MU8(Γ15)

The following values for coefficients of block M can be found in our particular
case: K1 = 0.375, K2 = 0.5, KM = 0.4375. It means that less than 50% of multiplexer
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potential is used. The coefficient KM can be increased due to the refined encoding
of OLC.

Let us divide set C1 into two following classes: class C1
1 (conditional transi-

tions) and class C1
2 (unconditional transitions). In our case we have the classes

C1 = {α1,α2,α4,α6} and C1
2 = {α3,α5}. Let us encode OLC αg ∈C1 in the follow-

ing manner: K(α1) = 000, K(α2) = 001, K(α4) = 010, K(α6) = 011, K(α3) = 100,
K(α5) = 101. Next we construct the encoding table for logical conditions of CMCU
MCU8(Γ15), where OLC are represented by refined codes (Table 7.8).

Table 7.8 Table for encoding logical conditions of CMCU MCU8(Γ15)

αg C(ag) p1 p2 αg C(ag) p1 p2

α1 00 x1 x3 α4 10 x5 x6
α2 01 x2 x4 α6 11 - x3

In this table symbol C(ag) stands for the refined code of OLC αg ∈ C. In this
particular case, variables from the set τ ′ = {τ2,τ3} are used to represent the codes
C(αg). Structural diagram of CMCU MCU8 is practically the same as the structural
diagram of CMCU MU8, but in the former elements of set τ ′ are connected with the
inputs of block M.

In case of CMCU MCU8(Γ15), system (7.17) has the form: p1 = τ2τ3x1 ∨
τ2τ3x2∨τ2τ3x5; p2 = τ2τ3x3∨τ2τ3x4∨τ2τ3x6∨τ2τ3x3 and corresponds to the logic
circuit, shown in Fig. 7.12.

Fig. 7.12 Logic circuit
of block M for CMCU
MCU8(Γ15)
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Now we have the coefficient values:K1 = 0.75, K2 = 1, KM = 0.875. It means
that consumption effectiveness of multiplexers is increased twice, in comparison
with CMCU MU8(Γ15). Obviously, it is the best value of coefficient KM , possible
for our particular example.

Let us construct transformed transition table for CMCU MCU8(Γ15). This trans-
formation is reduced to simple replacement of logical conditions xl ∈ X by variables
pg ∈ P and to using refined codes of OLC. This is shown in Table 7.9.

System of Boolean functions (7.4)–(7.5) can be obtained from this table, as for
example, the equation: D1 = F3 ∨ F6 ∨ F7 ∨ F9 ∨ F10 ∨ F13 = τ1τ2τ3 p1 p2 ∨ . . . ∨
τ1τ2τ3 p2.
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Table 7.9 Transformed transition table for CMCU MCU8(Γ15)

αi K(αi) a j K(α j) Ph Φh Ψh h

α1 000 α2 001 p1 D4 D7 1
α3 100 p1 p2 D2 D5 2
α5 101 p1 p2 D1D3 D5D7 3

α2 001 α3 100 p1 p2 D3D4 D5 4
α4 010 p1 p2 D2 D6 5
α6 011 p1 D1 D6D7 6

α3 100 α4 010 1 D1D2 D6 7
α4 010 α3 100 p1 D3D4 D5 8

α1 000 p1 p2 D1 - 9
α5 101 p1 p2 D1D3 D5D7 10

α5 101 α4 010 1 D2 D6 11
α6 011 α2 001 p2 D4 D7 12

α1 000 p2 D1 – 13

Logic circuit of the addressing finite state machine for CMCU MCU8(Γ15) is
shown in Fig. 7.13. Such elements of the CMCU circuit as the control memory
CM, flip-flop TF and control signal yE are not shown in Fig. 7.13. Obviously, the
initial GSA Γ15 is necessary for finding the control memory content, but here we are
interested here only in optimization of logic circuit for addressing FSM. As we can
see, coding of logical conditions allows to reduce the number of inputs, needed for
the combinational circuit CC from L+R6 = 9 to G0 +R6 = 5, that is 1.5 times.

Fig. 7.13 Logic circuit of
addressing FSM for CMCU
MCU8(Γ15)
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The structural diagram of CMCU MLU8 is shown in Fig. 7.14. As it was pointed
already, there is no sense in introducing the code transformer TC1, because it does
not lead to performance improvement of the block M.
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Fig. 7.14 Structural diagram of CMCU MLU8

If a model of CMCU includes code transformer TC (CMCU U6, U10 and U14),
the two approaches are possible to generate codes of logical conditions. In the first
case (parallel transformation), code transformer TC generates variables Z, encoding
either OLC (U5) or their classes (U6, U10, U14), and variables W , encoding logical
conditions (Fig. 7.15a). In the second case, two different transformers TC and TC1

are used (Fig. 7.15b), which corresponds to serial transformation.
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Fig. 7.15 Parallel a and serial b generation of codes of logical conditions

Let us point out that in case of CMCU U5, block TC corresponds to block AT,
and functions Z correspond to functions τ . By analogy, functions Z correspond to
functions τ for CMCU U6. Choice of the type of transformation (parallel or serial
approach) depends on the result of hardware amount comparison for both cases.

Obviously, there are no problems with generation of CMCU models for MUi,
MCUi and MLUi. The same is true for corresponding synthesis methods. Further
optimization of combinational circuit CC is possible due to transformation of the
initial GSA. It allows to reduce both the number of inputs of combinational circuit
CC and the number of outputs of block M. Introducing operator vertices into the
initial GSA leads to increasing the number of bits in corresponding object codes.
Besides, this transformation can increase the algorithm execution time. The value
of parameter |P| can not be found a priory for the CMCU MgUi and for its modi-
fications. The choice can be made only after synthesis of logic circuits for models
MgUi, when i is fixed and g is changed from 1 to G0. The value of g is chosen in
such way that it corresponds to logic circuit with minimum hardware amount and
performance satisfying corresponding project requirements.
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Particular interest presents the case when P = {p1}. Here, the number of tran-
sitions for any output Og of OLC αg ∈ C (or EOLC αg ∈ CE ) does not exceed 2
and the combinational circuit CC can be implemented using either PROM or RAM
chips [4].

Let us discuss an example of logic circuit design for the CMCU M1CU8(Γ16),
using as initial information the transition table of CMCU U8(Γ16), where transition
from output of any OLC αg ∈C depends on one logical condition only (Table 7.10).

Table 7.10 Transition table for CMCU U8(Γ16))

αg K(αg) αm K(αm) Xh Φh Ψh h

α1 00000 α2 0001 x1 – D8 1
α5 0100 x1 - D6 2

α2 0001 α3 0010 1 D3 D7 3
α3 0010 α4 0011 x3 - D7D8 4

α6 0101 x3 - D6D7 5
α4 0011 α7 0110 x2 - D6D7 6

α3 0010 x2 D2D3 D7 7
α5 0100 α8 0111 1 - D6D7D8 8
α6 0101 α9 1000 x4 - D5 9

α10 1001 x4 - D5D8 10
α7 0110 a9 1000 x4 - D5 11

α10 1001 x4 - D5D8 12
α8 0111 α3 0010 1 - D7 13
α9 1000 α4 0011 x5 D2 D7D8 14

α9 1000 x5 D2D4 D5 15

The following sets, values of main parameters and properties can be found from
this table for CMCU U8(Γ16): G1 = 10, X = {x1, . . . ,x5}, Φ = {D1, . . . ,D4}, Ψ =
{D5, . . . ,D8}, R6 = R4 = 4, T = {T1, . . . ,T4}, τ = {τ1, . . . ,τ4}, α10 /∈C1.

Let us check whether the refined OLC encoding makes sense in this particular
case. As the set of this OLC is C1

1 = {α1,α3,α4,α6,α7,α9}, it means that R17 = 3
bits is sufficient to encode OLC αg ∈C1

1 . It is also less than R6 = 4. Thus, the refined
OLC encoding permits to reduce the hardware amount of the block M. The codes of
OLC αg ∈C are shown in Fig. 7.16.

The following refined OLC codes depending on elements of the set τ ′ = {τ2,τ3,
τ4} can be found from this Karnaugh map: C(α1) = 000, C(α3) = 001, . . . ,C(α9) =
101. Let us construct the table of logical conditions encoding (Table 7.11).

Table 7.11 Table of encoding of logical conditions for CMCU M1CU8(Γ16)

αg C(αg) p1 αg C(αg) p1

α1 000 x1 α6 011 x4
α2 001 x2 α7 100 x4
α4 010 x3 α8 101 x5
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Fig. 7.16 Refined OLC codes
for CMCU M1CU8(Γ16)
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Table 7.11 serves to generate disjunctive normal forms for the functions

p1 = p1(τ ′,X). (7.20)

The equation p1 = τ2τ3τ4x1 ∨ . . .∨τ1τ2τ3x5 can be found from Table 7.11. Sys-
tem (7.20) is used to implement logic circuit of the block M for CMCU M1CU8.

In order to implement logic circuit of the block CC using PROM chips, initial
transition table should be transformed. This transformation consists on replacement
of the column Xh by column P1, and on duplication of table lines, corresponding to
unconditional transitions. One of these lines contains p1 = 0, whereas second line
contains p1 = 1. It follows from the fact that address of a PROM cell is always
determined by concatenation K(αg) ∗ p1, where ∗ is a concatenation sign. In this
particular case, the transformed transition table for CMCU M1CU8(Γ16) includes
2G1 = 18 lines (Table 7.12).

Table 7.12 Transformed transition table for CMCU M1CU8(Γ16)

αg K(αg) αm K(αm) P1 Φh Ψh h

α1 0000 α2 0111 1 – D6D7D8 1
α5 0110 0 – D6D7 2

α2 0111 α3 0001 1 D3 D8 3
α3 0001 0 D3 D8 4

α3 0001 α4 0010 1 – D7 5
α6 0011 0 - D7D8 6

α4 0010 α7 0100 1 – D6 7
α3 0001 0 D2D3 D8 8

α5 0110 α8 1000 1 – D5 9
α8 1000 0 – D5 10

α6 0011 α9 0101 1 – D6D8 11
α10 1001 0 – D5D8 12

α7 0100 α9 0101 1 – D6D8 13
α10 1001 0 – D5D8 14

α8 1000 α3 0001 1 – 15
α3 0001 0 – D8 16

α9 0101 α4 0010 1 D2 D7 17
α9 0101 0 D2D4 D6D6 18
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This table is the base for generation of the PROM content, corresponding to the
combinational circuit CC. In our case it is shown in Fig. 7.17. The logic circuit of
CMCU M1CU8(Γ16) is shown in Fig. 7.18, we assume here that set of microopera-
tions includes five elements, which means that Y = {y1, . . . ,y5}.

D6D7 D2D3D8 D5D8

D6D7D8 D6 D6D8
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Fig. 7.17 Content of PROM for block CC of CMCU M1CU8(Γ16)
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Fig. 7.18 Logic circuit of CMCU M1CU8(Γ16)
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7.3 Encoding collections of microoperations in CMCU

Main goal of encoding collections of microoperations is minimizing the control
memory size [2,8]. There are two main approaches to this kind of encoding, namely:

• maximal encoding collections of microoperations;
• encoding the fields of compatible microoperations.

In the first case there are two objects for encoding, namely expanded microin-
structions Yq ⊆ Y ∪{y0,yE} and collections of microoperations Yq ⊆ Y . Let us dis-
cuss these methods more thoroughly, because they result in different organizations
of block for generation of microoperations (Fig. 7.19).
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Fig. 7.19 Organization of block for generation of microoperations

In the first case (Fig. 7.19a), each expanded microinstruction Yq (q = 1, . . . ,M3)
corresponds to the binary code K(Yq) having R15 bits, where the value of R15 is
determined using (6.9). Variables zr ∈ Z are used for encoding expanded microin-
structions, where |Z| = R15. Microoperations yn ∈ Y and additional variables y0, yE

are generated by block W1, with logic circuit implemented with PROM or RAM
chips. The approach results in CMCU UiW1 (i = 1, . . . ,57).

In the second case, each collection of microoperations Yq ⊆ Y (q = 1, . . . ,M4) is
encoded by a binary code K(Yq) with R16 bits, where value of R16 is determined by
formula (6.13). Variables zr ∈ Z, where |Z| = R16, are used for this encoding. Mi-
crooperations yn ∈Y are generated by block W2, implemented with PROM or RAM
chips; functions y0, yE are generated by the control memory CM. This organization
results in the CMCU UiW2 (i = 1, . . . ,57) model, corresponding to Fig. 7.19b.
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In the third case (Fig. 7.19c) collections of microoperations are also encoded, but
functions y0, yE are generated by the block CCS. This approach allows reduction of
the control memory size and leads to models of CMCU UiW3, where i = 1, . . . ,57.

In all other cases, the logic circuit of block Wi (i = 4,5,6) can be implemented
using FPGA, PLA or PAL chips. Either expanded microinstructions (Fig. 7.19d)
or collections of microoperations (Fig. 7.19e) can be encoded. The encoding is ex-
ecuted in such a way, that maximum possible number of microoperations is im-
plemented using only one macrocell of the particular PLD being in use. If collec-
tions of microoperations are encoded, y0, yE can be generated either by block CCS
(Fig. 7.19e) or by control memory CM (Fig. 7.19f). For example, the algorithm
ESPRESSO [6,7] can be used for this kind of encoding. Application of these meth-
ods leads to models of the CMCU UiWj, where i = 1, . . . ,57; j = 4,5,6.

Synthesis methods, used for compositional microprogram control units UiWj (i =
1, . . . ,57; j = 4,5,6), can be considered as some modifications of synthesis methods
for the corresponding CMCU Ui, where the following steps are added:

• maximal encoding of objects (expanded microinstructions or collections of mi-
crooperations);

• construction of the table for block Wj;
• construction of the table for block CCS (if necessary).

Because of such variety of possible organizations, it is necessary to find the
best model, giving minimum hardware amount, as well as satisfactory performance.
Hardware amount can be estimated as the number of equivalent gates, needed for
logic circuits of different models.

Let the GSA Γ17 have the following parameters: M2 = 47, R2 = 6, N = 9 and let
the following expanded microinstructions be derived from the operator vertices of
the transformed GSA Γ17: Y1 = {y0,y1,y3}, Y2 = {y1,y3}, Y3 = {y0,y2,y4,y5,y7},
Y4 = {y0,y1,y3,y8}, Y5 = {y1,y3,y8}, Y6 = {y1,y3,y8,yE}, Y7 = {y0,y2,y4,y7},
Y8 = {y0,y1,y2,y5}, Y9 = {y1,y2,y5}, Y10 = {y1,y2,y5,yE}, Y11 = {y0,y3,y4,y8},
Y12 = {y0,y4,y8,y9}, Y13 = {y4,y8,y9}, Y14 = {y0,y5,y6,y7}, Y15 = {y0,y6,y7},
Y16 = {y6,y7}, Y17 = {y0,y9}, Y18 = {y9}. Let us discuss different organizations
of the circuit used for generating microoperations for CMCU U1Wj(Γ17).

In case of CMCU U1W1(Γ17) the number R15 = 5 bits is sufficient to encode
M3 = 18 expanded microinstructions. To implement the control memory of CMCU
U1(Γ17) it is necessary to have V0 = 2R2 · (N + 2) = 64 · 11 = 704 bits of PROM.
To implement the control memory of CMCU U1W1(Γ17) we need V1 = 2R2 ·R15 =
64 · 5 = 320 bits of PROM, and finally, for the implementation of logic circuit of
block W1 it is sufficient to have K1 = 2R15 · (N +2) = 32 ·11 = 352 bits. In general,
the number of bits, saved for U1W1 in comparison with the CMCU , can be found
from the following expression

η1 =
V0

V1 +K1
. (7.21)

In the discussed case expression (7.21) gives η1 = 704/672 = 1.05. Because
η1 > 1, application of this encoding makes sense. Let us encode the expanded
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microinstructions as follows: K(Y1) = 00000, . . . ,K(Y18) = 10001. The table of
block W1 gives equations serving for generation of microoperations yn ∈ Y and of
the additional functions y0, yE :

yn = yn(Z),y0 = y0(Z),yE = yE(Z). (7.22)

This table includes columns z1, . . . ,zR15 , y0, y1, . . . ,yN , yE . The first five lines, for
our example, are shown in Table 7.13.

Table 7.13 Fragment of the table for block W1 of CMCU U1W1(Γ17)

z1 z2 z3 z4 z5 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 yE

0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0
0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0

Analysis of the expanded microinstructions shows that there are M4 = 10 dif-
ferent collections of microoperations in GSA Γ17, namely: Y1 = {y1,y3}, Y2 =
{y2,y4,y5,y7}, Y3 = {y1,y3,y8}, Y4 = {y2,y4,y7}, Y5 = {y1,y2,y5}, Y6 = {y3,y4,y8},
Y7 = {y4,y8,y9}, Y8 = {y5,y6,y7}, Y9 = {y6,y7}, Y10 = {y9}. In case of CMCU
U1W2(Γ17), these collections can be encoded using R16 = 4 variables. It is sufficient
to have V2 = 2R2 ·(R16 +2) = 64 ·6 = 384 bits to implement the control memory for
CMCU U1W2(Γ17), and the logic circuit of block W2 can be implemented using only
K2 = 2R16 ·N = 16 ·9 = 144 bits. In general case, the number of bits, which can be
saved, can be found from the following expression

η2 =
V0

V2 +K2
. (7.23)

In our particular case, expression (7.23) gives η2 = 704/528 = 1.33. Comparison
of the values η1 and η2 shows that, in this particular case, the application of block
W2 for the CMCU U1 is more preferable, than application of block W1.

Let us encode collections of microoperations for CMCU U1W2(Γ17) as follows:
K(Y1) = 0000, . . . ,K(Y10) = 1001. First five lines of the table for block W2 of the
CMCU U1W2(Γ17) with this kind of encoding the collections of microoperations are
shown in Table 7.14.

Addresses of microinstructions should be known in case of CMCU U1W3(Γ17)
and U1W5(Γ17), if we want to construct the table of block CCS. This step can be
executed in trivial way, and therefore it is not discussed here. In general, the number
of saved bits η3 can be found from the following expression:

η3 =
2R2 · (N +2)

2R2 ·R16 +2R2 ·N +Q3
. (7.24)
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Table 7.14 Fragment of the table for block W2 of CMCU U1W2(Γ17)

z1 z2 z3 z4 y1 y2 y3 y4 y5 y6 y7 y8 y9

0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0 0 1 0
0 0 1 1 0 1 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0 0 0 0

In this expression parameter Q3 is equal to the number of bits, needed to implement
the logic circuit of block CCS.

If some other PLDs are used to generate microoperations (neither PROM, nor
RAM), the encoding methods used for expanded microinstructions and collections
of microoperations are the same. Let us discuss an example of implementation of
logic circuit for block W6 of CMCU U1W6(Γ17). Using the algorithm ESPRESSO,
the following codes of collections of microoperations can be obtained (Fig. 7.20).

Fig. 7.20 Codes of collec-
tions of microoperations for
CMCU U1W6(Γ17)
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Microoperations yn ∈ Y are represented by the following Boolean equations in
case of CMCU U1W6:

yn =
M4∨
q=1

CnqZq (n = 1, . . . ,N), (7.25)

where Cnq is a Boolean variable equal to 1 iff yn ∈Yq; Zq is a conjunction of variables
zr ∈ Z, corresponding to code K(Yq) of collection of microoperations Yq ⊆ Y . In
case of CMCU U1W6(Γ17), system (7.25) takes the form: y1 = Z1 ∨ Z3 ∨ Z5; y2 =
Z2∨Z4∨Z5; y3 = Z1∨Z3∨Z6; y4 = Z2∨Z4∨Z6∨Z7; y5 = Z2∨Z5∨Z8; y6 = Z8∨Z9;
y7 = Z2 ∨Z4 ∨Z8 ∨Z9; y8 = Z3 ∨Z6 ∨Z7; y9 = Z7 ∨Z10.

Using codes from Fig. 7.20 and taking into account the insignificant input as-
signments, the following final expressions can be got for this particular example:
y1 = z3z4; y2 = z1z2; y3 = z1z3; y4 = z2z4; y5 = z1z3; y6 = z1z2; y7 = z1z4; y8 = z1z2;
y9 = z1z3.

Let the disjunctive normal form for the function yn include Hn terms and each
term Fh include mh literals. In this case, complexness of the function yn can be
estimated using the following expression
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Cn =
Hn

∑
h=1

mh +Hn. (7.26)

Complexness of logic circuit obtained for block W6 can be estimated using the fol-
lowing expression

V6 =
N

∑
n=1

Cn. (7.27)

In the discussed example we have Cn = 2 for any microoperation yn ∈ Y and
V6 = 18 bits. The economy coefficient η6 can be determined using the following
expression

η6 =
2R2 · (N +2)

2R2 · (R16 +2)+V6
. (7.28)

In our case it can be found that η6 = 64 ·11/(64 ·6+18) = 704/402 = 1.75.
Let us point out, that complexness of block CCS can be estimated using the

same approach as the one used for block W6. Choice of particular model for imple-
mentation of microoperations is reduced to finding the value η0 = max(η1, . . . ,η6).
Obviously, the method giving maximum value η0 of the economy coefficient should
be chosen.

In case of encoding the fields of compatible microoperations, set Y ∪{y0,yE} is
divided into classes Y 1, . . . ,Y J , forming a partition ΠY . Each class Y j ∈ ΠY includes
microoperations, which are placed into different operator vertices of the transformed
GSA [5]. There are many effective methods used to find the partition ΠY [1], but
they are not discussed here. Let class Y j ∈ ΠY include m j elements, denoted here
by symbols y j

n, where n ∈ {1, . . . ,N,0,E}, j = 1, . . . ,J. Let us encode each element
y j

n by a binary code K(y j
n) with the following number of bits:

R j =] log2(m j +1)[ ( j = 1, . . . ,J). (7.29)

In this case it is sufficient to have R19 variables to encode microoperations yn ∈Y
and y0, yE , where

R19 =
J

∑
j=1

R j. (7.30)

These variables form set Z.
Each expanded microinstruction Yq of CMCU corresponds to the code

K(Yq) = K(y1
q)∗K(y2

q)∗ . . .∗K(yJ
q), (7.31)

where ∗ is the concatenation sign, y j
q is microoperation yn ∈ Y ∪{y0,yE}, such that

yn ∈Y j and yn ∈Yq ( j = 1, . . . ,J). Codes (7.31) are kept in the control memory CM
and microoperations yn ∈ Y j are formed as outputs of decoders DCj (Fig. 7.21),
where j = 1, . . . ,J.
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Fig. 7.21 Formation of mi-
crooperations for CMCU
with encoding the fields of
compatible microoperations

DC1 DCJ

CM

Z1 ZJ

Y1 YJ

Address

As can be seen from Fig. 7.21, variables Z j ⊆ Z are used to encode microopera-
tions yn ∈ Y j, and decoders DC1, . . . ,DCJ form the block DJ . Let us denote CMCU
Ui, for which formation of microoperations is described above by symbol UiDJ .

Synthesis methods used for CMCU UiDJ(i = 1, . . . ,57) can be considered as
some expansions of synthesis methods for CMCU Ui, obtained by adding the fol-
lowing steps:

• encoding of microoperations;
• construction of the transformed table of control memory content.

Let us consider an example of synthesis for CMCU U1DJ(Γ18), where the struc-
tural diagram of CMCU U1DJ is shown in Fig. 7.22, and the transformed GSA
Γ18(U1) is shown in Fig. 7.23.
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Fig. 7.22 Structural diagram of CMCU U1DJ

Application of procedure P1 to GSA Γ18(U1) leads to the set of OLC C =
{α1, . . . ,α5}, where α1 = 〈b1,b2〉, I1

1 = b1; α2 = {b3, . . . ,b6}, I1
2 = b3; α3 =

{b7,b8,b9}, I1
3 = b7; α4 = 〈b10,b11〉, I1

4 = b10, I2
4 = b11; α5 = 〈b12〉, I1

5 = b12. Op-
erator vertices of the GSA Γ18(U1) contain the following expanded microinstruc-
tions: Y1 = {y0,y1,y2,y3}, Y2 = {y4,y5,y6}, Y3 = {y0,y7,y8}, Y4 = {y0,y8,y9,y10},
Y5 = {y0,y7,y8,y9}, Y6 = {y9,y12}, Y7 = {y0,y6,y13}, Y8 = {y9,y11}, Y9 = {y6,y13},
Y10 = {yE ,y8,y13}. These microinstructions contain microoperations forming the set
Y0 = {y0,yE ,y1, . . . ,y13}.

Application of the well-known procedures, given in [5], to the set Y0 results
in the partition ΠY = {Y 1, . . . ,Y 4}, where Y 1 = {y1,y4,y7,y10,y11,y12,y13}, Y 2 =
{y2,y5,y8}, Y 3 = {y3,y6,y9}, Y 4 = {y0,yE}, m1 = 7, m2 = m3 = 3, m4 = 2. Us-
ing expressions (7.29)–(7.30), it could be found that Z1 = {z1,z2,z3}, Z2 = {z4,z5},
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Fig. 7.23 Transformed GSA
Γ18(U1)
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Z3 = {z6,z7}, Z4 = {z8,z9}. Microoperation codes for the CMCU U1DJ(Γ18) are
shown in Table 7.15, which can be used to determine both the inputs and outputs of
decoders designed for block DJ .

Table 7.15 determines the codes given by (7.31), as for example, K(Y1) =
001010101 = K(y1)∗K(y2)∗K(y3)∗K(y0). In this table, sign /0 corresponds to the
case when microoperations of a particular class do not belong to the given expanded
microinstruction.

Application of procedure P2 to GSA Γ18(U1) results in microinstructions ad-
dresses shown in Fig. 7.24.

If we want to find control memory content it is sufficient to replace any vertex
bq ∈ B1 by its code K(Yq) corresponding to the collection of microoperations from
this very vertex (Fig. 7.25).
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Table 7.15 Table of microoperation encoding y1
q for CMCU U1DJ(Γ18)

yq
1 K(y1

q) y2
q K(y2

q) y3
q K(y3

q) y4
q K(y4

q)
z1z2z3 z4z5 z6z7 z8z9

/0 000 /0 00 /0 00 /0 00
y1 001 y2 01 y3 01 y0 01
y4 010 y5 10 y6 10 yE 10
y7 011 y8 11 y9 11
y10 100
y11 101
y12 110
y13 111
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b2 b6 b10
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Fig. 7.24 Addresses of microinstructions of CMCU U1DJ(Γ18)
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Fig. 7.25 Control memory content for CMCU U1DJ(Γ18)

Information represented by Fig. 7.25 is used to design logic circuit of the control
memory CM.

In order to design logic circuit of block CC, it is necessary to construct Boolean
equations for functions Φ and Ψ , depending on variables X and τ . As in all cases
discussed previously, the structure table of addressing FSM S1 for CMCU U1 is the
base to find these equations. The structure table is constructed using block represen-
tation of the interpreted GSA, marked by the states of Mealy FSM. In the discussed
case, this representation for GSA Γ18(U1) is shown in Fig. 7.26.

Using Fig. 7.26, the following sets and values can be found: A = {a1,a2,a3},
M1 = 3, R1 = 2, τ = {τ1,τ2}. Let K(a1) = 00, K(a2) = 01, K(a3) = 10. The transi-
tion table of CMCU U1DJ(Γ18) is given below (Table 7.16).
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Fig. 7.26 Block representa-
tion of GSA Γ18(U1)
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For example, the following equation can be found using this table: D1 = F4 ∨
F5 ∨F6 = τ1τ2x1x2 ∨τ1τ2. Logic circuit of CMCU U1DJ(Γ18) is shown in Fig. 7.27,
where outputs z8 and z9 correspond to signals y0 and yE respectively.

The number of control memory outputs can be reduced to the value

R20 = 	log2(N +1)
 (7.32)

due to verticalization [5] of the transformed GSA. In this case microinstruction for-
mat includes fields y0 and FY (Fig. 7.28).

Table 7.16 Transition table of CMCU U1DJ(Γ18)

am K(am) as K(as) Xh Φh Ψh h

a1 00 a2 01 1 – D6 1
a2 01 a3 10 x1 D3 D5 2

a3 10 x1x2 D2D3 D5 3
a3 10 x1x2 D1D4 D5 4

a3 10 a1 00 x3 D1D3D4 – 5
a3 10 x3 D1D3 D5 6
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The digit 1 is added in expression (7.32) to take into account the existence of
variable yE . The verticalization of GSA is reduced to splitting each operator vertex
bq ∈ B1 into |Y (bq)| vertices, where each new vertex includes only one unique mi-
crooperation yn ∈Y ∪{yE} [5]. For example, the operator vertex b1 of GSA Γ18(U1)
corresponds to three operator vertices of the verticalized GSA VΓ18(U1) (Fig. 7.29).

In case of CMCU U1D1(Γ18), where symbol D1 means that ΠY = Y ∪{yE}, we
can find that R20 = 4. It means that the control memory size is more than two times
smaller, in comparison with this size for the CMCU U1DJ(Γ18). The main disadvan-
tage of verticalization is the decrease of CMCU performance, because the average
algorithm execution time becomes longer, in comparison with the same parame-
ter of the equivalent CMCU U1DJ . To make both times closer, some sophisticated
mechanism is proposed in [5]. It is based on the data-path launching occurring only
when all microoperations yn ∈ Y (bq) are placed in some additional register. We do
not discuss this problem in our book.
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Fig. 7.27 Logic circuit of CMCU U1DJ(Γ18)
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Fig. 7.28 Microinstruction format for CMCU with verticalization of transformed GSA
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Fig. 7.29 Splitting of opera-
tor vertex b1 of GSA Γ18(U1)

y0y1

b1

y0y2 y3

b2 b3
1 1 1

Transformation of GSA can be executed in such a manner, that the number of
classes j of partition ΠY corresponds to the condition

1 < j < J, (7.33)

which means that parameter j has some intermediate value, between its extremes
1 and J. If, for example, transformation of the GSA Γ18(U1) is executed in such a
way that microoperations yn ∈ Y 2 ∪Y 3 are always placed in the different operator
vertices, the partition ΠY includes three classes only. They have the form: Y 1, Y 2 =
{y2,y3,y5,y6,y8,y9} and Y 3 = {y0,yE}. This kind of transformation for the case of
OLC α1 is shown in Fig. 7.30.

Fig. 7.30 The transformation
of OLC α1

y0y1y2

b1

y0y3

b2
1 1

y0y4y5

b1

y6

b2
2 2

After applying similar transformation for all OLC αg ∈ C we get the partition
with the following parameters: R1 = 3, R2 = 3, R3 = 2 and R20 = 8. Let us point
out that no solution of the following problem is available today: the choice of some
value of the parameter j for which the hardware amount in the system 〈CM,D j〉
is optimal, for a given performance level of the resulting control unit, in which
the principle of encoding the fields of compatible microoperations is used. Some
additional researches should be conducted to solve this particular problem.

7.4 Synthesis of multilevel circuits of CMCU

Combined application of methods discussed previously permits to generate models
of CMCU, for which the number of levels is higher than in case of basic CMCU
models. Wide variety of possible structures is represented by Table 7.17, which is
constructed by analogy with Table 2.2 for the multilevel structures of Mealy FSM,
or by Table 2.5 (Moore FSM). The level B is occupied in this table by basic models
of CMCU, which are also multilevel structures. The number of levels is different for
basic models and varies from two (U1–U15) to four (U46– U57). Thus, the number
of possible levels in the discussed structures is changed from two to six. As we
remember, parameter G used in Table 7.17 determines the number of variables used
to encode logical conditions, and parameter J determines the number of fields of
the compatible microoperations. Parameters G and J are calculated using an initial
graph-scheme of algorithm Γ . Decrease of the initial values of these parameters
is connected with transformation of the initial GSA Γ , leading to reduction of the
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resulting digital system performance due in turn to the increase of average number
of cycles, necessary for execution of the control algorithm.

Table 7.17 Multilevel models of CMCU

Levels A B C

Blocks M1 U1 W1

M1C
...

...
M1L U5 W6

... D1

MG

...
MGC DJ

MGL

Let ki be the number of structures with i levels for some model of CMCU, Vi the
total number of CMCU structures with i levels(i ≤ 6). Now, Table 7.18 will be used
to estimate the total number of CMCU structures with i levels(2 ≤ i ≤ 6).

It is clear, that Table 7.18 describes

V 1
0 = V2 + . . .+V6 = 399+1197G+57J +171GJ (7.34)

different CMCU structures. In case of FSM with average complexness [3] we have
G = J = 6, and formula (7.34) determines V 1 = 14079 different CMCU structures
for some initial GSA Γ . The CMCU synthesis method, based on combination of
different optimization approaches, can be considered as some expansion of the syn-
thesis method used for a particular basic model of CMCU. For example, let us con-
sider the method applied for CMCU M2U9W3, its structural diagram shown in Fig.
7.31.

The expression M2U9W3 determines the CMCU with encoded logical conditions,
where each transition depends on at most two variables (it is determined by symbol
M2), with code sharing and optimal OLC encoding (determined by symbol U9) and
maximal encoding of collections of microoperations, where the block generating
microoperations is implemented using PROM chips and additional signals y0 and yE

are implemented by an additional block CCS (determined by symbol W3). Synthesis
method for CMCU M2U9W3 includes the following steps:

1. Transformation of the initial GSA Γ .
2. Construction of OLC set for transformed GSA Γ (M2U9W3).
3. Construction of the partition Πc for set C1.
4. Optimal encoding of OLC αg ∈C1.
5. Encoding components of OLC αg ∈C.
6. Encoding collections of microoperations.
7. Encoding logical conditions.
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8. Construction of the transition table of CMCU.
9. Construction of the control memory content.

10. Construction of the table for block CCS.
11. Construction of the table for block .
12. Synthesis of the CMCU logic circuit with given logical elements.
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Z
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+1

CT

RG
R   TF

S
Start

P1

yE

y0

Ψ

τ

TΦ
M2

X

CCS
y0

YW3

P2

Fig. 7.31 Structural diagram of CMCU M2U9W3

Let us consider an example of CMCU synthesis, where the graph-scheme of
algorithm is shown in Fig. 7.32.

The transformation of GSA Γ19 is reduced here to the introduction of vertex b19

(as the first OLC of GSA Γ19), and vertices b20 and b21 (to satisfy condition), and
introduction of variable yE into the vertex b13 and variable y0 into the vertices, which
do not represent the outputs of OLC. After these transformations, the transformed
GSA Γ19(M2U9W3) is obtained (Fig. 7.33).

Application of procedure P1 to the transformed GSA Γ19(M2U9W3) results in the
set C = {α1, . . . ,α8}, where α1 = 〈b19〉, I1

1 = O1 = b19; α2 = 〈b1,b2,b3〉, I1
2 = b1,

I2
2 = O2 = b3; α3 = 〈b4, . . . ,b7〉, I1

3 = b4, I2
3 = b6; α4 = 〈b8,b9〉, I1

4 = b8, O4 = b9;
α5 = 〈b10, . . . ,b13〉, I1

5 = b10, I2
5 = b12, O5 = b13; α6 = 〈b14, . . . ,b17〉, I1

6 = b14, O6 =
b17; α7 = 〈b20〉, I1

7 = O7 = b20; α8 = 〈b21〉, I1
8 = O8 = b21 . Let us point out that the

set C1 does not include OLC α5 , because this OLC output contains the variable yE .
Let us find the partition ΠC of set C1. In our case, we obtain ΠC = {B1, . . . ,B4},

where B1 = {α1}, B2 = {α2,α3,α4,α6}, B3 = {α7} and B4 = {α8} . Outcome of
the optimal OLC αg ∈C encoding is shown in the Karnaugh map (Fig. 7.34).

For encoding OLC αg ∈ C, elements of the set τ = {τ1,τ2,τ3} are used. Let
us point out that R6 = 3, because G = 8. Taking into account the don’t care code
K(α5) = 011, the following codes of classes Bi ∈ ΠC can be derived from the Kar-
naugh map: K(B1) = 000, K(B2) = 1∗∗, K(B3) = 0∗1, K(B4) = 01∗.

Maximal length of OLC αg ∈C for the discussed example is equal to 4 (Lmax =
4), hence R7 = 2, T = {T1,T2}. The codes of OLC components are: K(b19) =
K(b1) = K(b4) = K(b8) = K(b10) = K(b14) = K(b20) = K(b21) = 00; K(b2) =
K(b5) = K(b9) = K(b11) = K(b15) = 01;K(b3) = K(b6) = K(b9) = K(b12) =
K(b16) = 10;K(b7) = K(b13) = K(b17) = 11. The codes, used for OLC and its com-
ponents, allow to find microinstruction addresses, based on code sharing principle
(Fig. 7.35).
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Table 7.18 Estimation of the number of CMCU models

Number of levels Type of model ki Vi

2 U1–U15 15 V2 = 15

3

MgU1–MgU15 15G

V3 = 120+45G+15J

MgCU1–MgCU15 15G
MgLU1–MgLU15 15G

U1Wi–U15Wi 90
U1D j–U15D j 15J

U16–U45 30

4

U46–U57 12

V4 = 192+360G+30J +45GJ

MgU1Wi–MgU15Wi 90
MgCU1Wi–MgCU15Wi 90G
MgLU1Wi–MgLU15Wi 90G
MgU1D j–MgU15D j 15GJ

MgCU1D j–MgCU15D j 15GJ
MgLU1D j–MgLU15DJ 15GJ

MgU16–MgU45 30G
MgCU16–MgCU45 30G
MgLU16–MgLU45 30G

U16Wi–U45Wi 180
U16D j–U45D j 30J

5

MgU46–MgU57 12G

V5 = 72+576G+12J +90GJ

MgCU46–MgCU57 12G
MgLU46–MgLU57 12G

MgU16Wi–MgU45Wi 180G
MgCU16Wi–MgCU45Wi 180G
MgLU16Wi–MgLU45Wi 180G

U46Wi–U57Wi 72
U46D j–U57D j 12J

MgU16D j–MgU45D j 30GJ
MgCU16D j–MgCU45D j 30GJ
MgLU16D j–MgLU45D j 30GJ

6

MgU46Wi–MgU57Wi 72G

V6 = 216G+36GJ
MgCU46Wi–MgCU57Wi 72G
MgLU46Wi–MgLU57Wi 72G
MgU46D j–MgU57D j 12GJ

MgCU46D j–MgCU57D j 12GJ
MgLU46D j–MgLU57D j 12GJ

Operator vertices of the GSA Γ19(M2U9W3) include M4 = 9 different collec-
tions of microoperations, namely: Y1 = /0, Y2 = {y1,y2}, Y3 = {y3}, Y4 = {y4,y5},
Y5 = {y2,y5,y6}, Y6 = {y7}, Y7 = {y8,y9}, Y8 = {y2,y8,y9} and Y9 = {y1,y11}. It
is sufficient to have R16 = 4 variables for encoding these collections and, hence,
Z = {z1, . . . ,z4} . Let us encode these collections in the following manner: K(Y1) =
0000, . . . K(Y9) = 1000.
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Fig. 7.32 Initial graph-scheme of algorithm Γ19

According to conditions given in this example, we obtain the set P = {p1, p2}
and coding of logical conditions is represented by Table 7.19. This table determines
the behavior of multiplexers MX1 and MX2, and, hence, logic circuit of the block
M2 for CMCU M2U9W3(Γ19).
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Fig. 7.33 Transformed GSA
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Fig. 7.34 Optimal OLC codes
for GSA Γ19(M2U9W3)
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Fig. 7.35 Microinstruction addresses of CMCU M2U9W3(Γ19)

Table 7.19 Coding of logical conditions for CMCU M2U9W3(Γ19)

αg K(αg) p1 p2

α1 000 x1 x2
α2 001 x3 x4
α3 000 x3 x4
α4 111 x3 x4
α5 011 – –
α6 110 x3 x4
α7 001 x3 –
α8 010 x1 –

The following system of transition formulae for OLC αg ∈ C1 should be found
to construct the transition table of CMCU M2U9W3(Γ19):

O1 → x1x2I1
2 ∨ x1x2I1

3 ∨ x1I1
7 ;

O2,O3,O4,O6 → x3x4I2
2 ∨ x3x4I2

5 ∨ x3I1
8 ;

O7 → x3I2
3 ∨ x3I1

4 ;

O8 → x1I1
5 ∨ x1I1

6 .

(7.35)

Next, outputs of OLC αg ∈C1 from the left part of each equation of system (7.35)
are replaced by corresponding classes and logical conditions xl ∈ X in the right part
are replaced by variables pg ∈ P:

B1 → p1 p2I1
2 ∨ p1 p2I1

3 ∨ p1I1
7 ;

B2 → p1 p2I2
2 ∨ p1 p2 ∨ p1I1

8 ;

B3 → p1I2
3 ∨ p1I1

4 ;

B4 → p1I1
5 ∨ p1I1

6 .

(7.36)



232 7 Synthesis of CMCU with coding of logical conditions and collections of microoperations

System (7.36) is now used to construct the table of transitions with following
columns: Bi, K(Bi), I j

g , A(I j
g), Ph, Ψh, Φh, h, where input addresses should be taken

from Fig. 7.35. In case of the CMCU M2U9W3(Γ19) this table includes H9(Γ19) = 10
lines (Table 7.20).

Table 7.20 Table of transitions for CMCU M2U9W3(Γ19)

Bi K(Bi) Ig A(Ig) Ph Ψh Φh h

B1 000 I1
2 10000 p1 p2 D1 – 1

I1
3 10100 p1 p2 D1D3 – 2

I1
7 00100 p1 D3 – 3

B2 100 I2
2 10010 p1 p2 D1 D4 4

I5
2 01110 p1 p2 D2D3 D4 5

I1
8 01000 p1 D2 – 6

B3 0*1 I2
3 10110 p1 D1D3 D4 7

I1
4 11100 p1 D1D2D3 – 8

B4 01* I1
5 01100 p1 D2D3 – 9

I1
6 11000 p1 D1D2 – 10

It follows from Table 7.20, that Ψ = {D1,D2,D3}, Φ = {D4,D5}, and D1 =
F1∨F2∨F4∨F7∨F8∨F10 = τ1τ2τ3 p1 p2∨ . . .∨τ1τ2 p1, for example. It is clear that
D5 = 0 and block CC has 4 outputs only.

The control memory content can be found by replacement of vertices bq ∈ B1 by
corresponding codes of collections of microoperations K(Yq). The control memory
content for our example is shown in Fig. 7.36.
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Fig. 7.36 Control memory content for CMCU M2U9W3(Γ19)

Table of block CCS can be found by transformation of Fig. 7.34 into the Kar-
naugh maps for functions y0 and yE . These maps are used to get minimal forms for
functions y0(τ,T ) and yE(τ,T ). For example, the Karnaugh map for function y0 in
case of the CMCU M2U9W3(Γ19) is shown in Fig. 7.37.

The following equation y0 = τ2τ3T 2 ∨ τ1τ3T 2 ∨ τ1τ3T 1 ∨ τ1τ2T 1 ∨ τ1T 1T2 can
be derived from this map. Using the same approach, equation yE = τ1T1T2 can be
also obtained. Both equations are used to design the logic circuit for block CCS.
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Fig. 7.37 Karnaugh map for function y0

The table of block W3 includes columns Yq, K(Yq), yn, q. This block is represented
by Table 7.21.

Table 7.21 Table of block W3 for CMCU M2U9W3(Γ19)

Yq K(Yq) y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 q

Y1 0000 0 0 0 0 0 0 0 0 0 0 0 1
Y2 0001 1 1 0 0 0 0 0 0 0 0 0 2
Y3 0010 0 0 1 0 0 0 0 0 0 0 0 3
Y4 0011 0 0 0 1 1 0 0 0 0 0 0 4
Y5 0100 0 1 0 0 1 1 0 0 0 0 0 5
Y6 0101 0 0 0 0 0 0 1 0 0 0 0 6
Y7 0110 0 0 0 0 0 0 0 1 1 0 0 7
Y8 0111 0 0 0 0 0 0 0 0 1 1 0 8
Y9 1000 1 0 0 0 0 0 0 0 0 0 1 9

Logic circuit of the CMCU M2U9W3(Γ19) is shown in Fig. 7.38. The multiplexers
MX1 and MX2 represent block M2. Blocks CC and CCS are implemented using
PLA chips. The control memory CM and the block generating microoperations are
implemented with PROM chips.

Logic circuit for each model of the CMCU given in table 7.18 can be designed
using the same approach as the one used in case of the CMCU M2U9W3(Γ19).
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Fig. 7.38 Logic circuit of CMCU M2U9W3(Γ19)
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Chapter 8
Synthesis of compositional microprogram
control units with modified system of
microinstructions

Abstract The chapter is devoted to CMCU optimization, based on modification
of the microinstruction format. Proposed modifications permit to eliminate code
transformers from the CMCU and provide reduction of hardware amount of circuits
used in the FSM used for microinstruction addressing, as compared with the CMCU
basic structure. This kind of optimization is leads to the increasing of the number of
cycles, needed for execution of the control algorithms. This transformation causes
sometimes the increase of control memory size. Next, the possibility of multilevel
CMCU implementation is discussed and the method of optimal structure choice
proposed. A particular CMCU structure is considered as optimal, if it guarantees
minimum hardware amount and sufficient performance. This chapter is based on
the results of common research performed with J. Bieganowski (Poland).

8.1 Synthesis of CMCU with dedicated area of inputs

All compositional microprogram control units discussed previously have some com-
mon feature, namely generation of input addresses by the block CC. This approach
can be called hardware address generation, in which the number of outputs in the
CC block is equal to R2 (model U1 is the only exception). In order to reduce this
number, some additional block for address generation is needed (for transformation
of object codes). The second approach leads to increasing of the CMCU cycle time,
in comparison with its value for CMCU U1. In case of the CMCU with elementary
OLC and code sharing, the number of CC outputs is smaller than R2, but application
of these methods can cause either significant increase of the control memory size,
in comparison with its minimal value Vmin, or an increase of the CMCU cycle time.
If the increase of time cycle is not desirable, the number of CC outputs cannot be
reduced, in comparison with R2. Let us consider how the number of CC outputs can
be reduced in cases when application of code sharing leads to introduction of the
address transformer AT, but performance of the resulting CMCU cannot be worse,

235
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than in case of the CMCU U1. Let us discuss these methods using an example of
CMCU U2. Our discussion is based on results from [3–5].

In case of CMCU U2, the output addresses of OLC αg ∈ C are determined by
procedure P2 and, hence, they possess the property of randomness. Application of
this procedure does not guarantee that, for example, some bit is equal to zero for
all input addresses. Situation of this kind would allow to reduce the number of CC
block outputs in comparison with R2. Let the set of OLC inputs I(Γ ) for GSA Γ
include I0 elements, which can be encoded by only R21 bits, where

R21 = 	log2 I0
. (8.1)

Obviously the following condition is satisfied for the linear graph-schemes of
algorithm, where the number of operator vertices exceeds significantly the number
of conditional vertices:

R21 < R2. (8.2)

Let the following condition (8.3) be satisfied for GSA Γ :

	log2(I0 +M2)
 = 	log2 M2
, (8.3)

where M2 is the number of operator vertices. Let us choose I0 cells of control mem-
ory to keep OLC inputs and let these cells have addresses from 0 to (I0 − 1)2. Let
us call this set of cells a dedicated input area (DIA). This fixation of OLC inputs
requires execution of unconditional jumps to the real input address, which should
be introduced into the special control microinstruction. It leads to some modifica-
tion of microinstruction formats in comparison with CMCU U2 [2]. The model of
CMCU U58 with dedicated input area is shown in Fig. 8.1.

CC

Start

Clock

Fetch

YCM

+1

R   TF

S
Start

X

yE

y0

CT
TΦ

T’

y0

0Φ

yj

yc
MX

CMO

CCS

yj

yc

FA

FY

TMI

Fig. 8.1 Structural diagram of CMCU U58

Let us discuss particular qualities of CMCU U58 in comparison with U2. In case
of the CMCU U58, there are two formats of microinstructions (Fig. 8.2).
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TMI FYTMI FA
b)a)

Fig. 8.2 Microinstruction formats for CMCU U58

The control microinstruction, shown in Fig. 8.2a, contains an address field FA
with address for transition from the dedicated input area into the area of micropro-
gram (AMP) containing operational microinstructions. This format includes a field
of attribute TMI, with all zeroes (TMI=00). Operational microinstruction (Fig. 8.2b)
includes the field TMI and an operational part FY. If TMI=01, this microinstruction
corresponds to an OLC output, corresponding in turn to yc = 1. If TMI=10, the mi-
croinstruction corresponds to some OLC component, which is not an OLC output.
It corresponds to y0 = 1. Code TMI=11 indicates that some OLC output connected
with vertex bE is reached. It corresponds to yE = 1. Let us point out that the control
microinstruction corresponds to y j = 1.

In case of the control microinstructions, some additional block for generation
of microoperations should be used to prevent generation of microoperations yn ∈ Y
(if y j = 1), because in this case microinstruction would contain information about
address of transition only. Multiplexer MX should be used to load into counter CT:
either the transition address created by functions Φ0 (yc = 1), or the address of
some cell of the microprogram area, which occupies the field FA of the control
microinstruction (y j = 1). Block CCS is used to generate control signals y0, y j, yc,
yE , depending on the content of field TMI.

Compositional microprogram control unit U58 operates in the following manner.
First, zero code is loaded into the counter CT using pulse "Start", corresponding to
the address of main input of OLC α1 ∈ C, kept in the dedicated input area. At the
same time, flip-flop TF is set up and allows microinstruction fetching from the CM
control memory (Fetch=1). Current microinstruction is read from the control mem-
ory CM and block CCS generates some control signals y0, y j, yc, yE . If CT contains
the address of OLC output, variable yc = 1 is generated together with microopera-
tions yn ∈ Y . In this case, input memory functions

Φ0 = Φ0(T,X) (8.4)

load the address taken from dedicated input area into the counter CT. The signal y j is
generated and an address from AMP is loaded into CT. If the counter CT contains an
address of OLC component corresponding to vertex bq, such that 〈bq,bE〉 /∈ E and
bq �= Og, both microoperations yn ∈Y (bq) and variable y0 = 1 are generated. In con-
sequence, the counter content is incremented and causes transition to the following
microinstruction. If the counter CT contains the address of microinstruction corre-
sponding to vertex bq, such that 〈bq,bE〉 ∈ E, variable yE is generated and fetching
of microinstructions terminated.

The method of CMCU U58 synthesis includes the following steps:

1. Transformation of initial GSA Γ (procedure P3).
2. Construction of the OLC set using transformed GSA Γ (U58).
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3. Finding addresses for OLC inputs.
4. Microinstruction addressing.
5. Construction of the control memory content.
6. Construction of the transition table of CMCU.
7. Construction of CCS table.
8. Synthesis of CMCU logic circuit using given logical elements.

Let us discuss application of this method for synthesis of the CMCU U58(Γ20),
where the transformed GSA Γ20(U58) is shown in Fig. 8.3.

Application of procedure P1 to the transformed GSA Γ20(U58) gives the set
C = α1, . . . ,α6}, where α1 = 〈b1,b2〉, I1

1 = b1, O1 = b2; α2 = 〈b3,b4,b5〉, I1
2 = b3,

I2
2 = O2 = b5; α3 = 〈b6, . . . ,b9〉, I1

3 = b6, I2
3 = b8, O3 = b9; α4 = 〈b10,b11〉,

I1
4 = b10, O4 = b11; α5 = 〈b12,b13〉, I1

5 = b12, O5 = b13; α6 = 〈b14, . . . ,b17〉, I1
6 = b14,

O6 = b17. Thus, we get the set of inputs I(Γ20) = {b1,b3,b5,b6,b8,b10,b12,b14}, and
the following values can be found: M2 = 17, R2 = 15, I0 = 8, R5 = 3. It means that
condition (8.2) holds and application of the method proposed above makes sense.
Moreover, because M2 + I0 = 25, condition (8.3) is satisfied and this method allows
to have smaller number of CC inputs, without increasing the length of microinstruc-
tion address, in comparison with CMCU U2(Γ20).

Addressing of OLC inputs is executed in a trivial way, but the address of input I1
1

should be equal to zero. Let IA(bq) be the address of input corresponding to vertex
bq ∈ B2. In case of CMCU U58(Γ20) these addresses are: IA(b1) = 000, IA(b3) =
001, . . . , IA(b14) = 111.

Application of procedure P2 to GSA Γ20(U58) results in microinstruction ad-
dresses shown in Fig. 8.4.

First line of the table from Fig. 8.4 corresponds to the dedicated input area and
each cell of this line contains an address IA(bq). The rest of lines corresponds to the
area of microprogram AMP and each cell for this part of lines contains an address
A(bq). For example, input I1

5 = b12 and its address in DIA is determined as IA(b12) =
00110, whereas its address in AMP is A(b12) = 10011.

Microinstructions to be kept in the control memory are constructed using the
following rules:

• any vertex bq ∈ I(Γ ) from DIA corresponds to a control microinstruction of the
unconditional jump, where [FA] = A(bq);

• if vertex bq ∈ Dg is not an output of OLC αg ∈C, the control memory cell having
address A(bq) should contain operational microinstruction, where [T MI] = y0;

• if vertex bq ∈ Dg is connected with final vertex bE , the control memory cell with
address A(bq) should contain operational microinstruction, where [T MI] = yE .

Let us denote the construction procedure of the control memory content by sym-
bol P13. Application of procedure P13 gives the control memory content shown in
Table 8.1.

Let us point out that only 16 cells of the control memory of CMCU U58(Γ20) are
shown in Table 8.1. Two bits are used to encode variables y0, y j, yc, yE , namely m1

and m2. The encoding is executed in such a manner that code 00 corresponds to y j,
code 01 to y0, code 10 to yc, and code 11 to yE . One-hot encoding approach is used
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Fig. 8.3 Transformed GSA Γ20(U58)
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Fig. 8.4 Microinstruction addresses for CMCU U58(Γ20)

to encode microoperations, when the bit capacity RCM of the control memory cell is
given by the expression

RCM = max(2+N,2+ 	log2(I0 +M2)
). (8.5)

In this case RCM = 7, which means that fields FA and FY are represented by bits
m3 – m7.

Table 8.1 Content of control memory for CMCU U58(Γ20)

Address TMI Content Reference
T1T2T3T4T5 m1m2 m3m4m5m6m7

00000 00 01000 b1 → A(b1) DIA
00001 00 01010 b3 → A(b3)
00010 00 01100 b5 → A(b5)
00011 00 01101 b6 → A(b6)
00100 00 01111 b8 → A(b8)
00101 00 10001 b10 → A(b10)
00110 00 10011 b12 → A(b12)
00111 00 10101 b14 → A(b14)
01000 01 11000 b1 → b2 AMP
01001 10 00100 b2 → O1
01010 01 01010 b3 → b4
01011 01 00100 b4 → b5
01100 10 10001 b5 → O2
01101 01 11000 b6 → b7
01110 01 01001 b7 → b8
01111 01 00100 b8 → b9

The transition table of CMCU is constructed using the system of transition for-
mulae for outputs of OLC αg ∈C1. In the discussed case we have C1 = {α1,α2,α3,
α6} and the following transition formulae:

O1 → x1I1
2 ∨ x1x2I2

2 ∨ x1x2x3I1
3 ∨ x1x2x3I2

3 ;

O2,O3 → x2x3I1
4 ∨ x2x3I1

5 ∨ x2x4I1
3 ∨ x2x4I1

6 ;

O6 → I2
3 .

(8.6)
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Transition table of the CMCU U58(Γ20) corresponds to system (8.6) and includes
H58(Γ20) = 13 lines (Table 8.2). This table is used to obtain the input memory func-
tions for the flip-flops of counter CT (8.4), as for example:

D1
3 = F4 ∨F5 ∨F6 ∨F8 ∨F9 ∨F10 ∨F12 ∨F13 = T 1T2T 3T5x1x2x3 ∨ . . .∨T1T2T 3T 5.

The superscript "1" of function D3 reflects the fact that D3 belongs to the set Φ0.
If this superscript is omitted, we obtain D3 ∈ Φ . It can be found from this formula
that the address bit T4 = 0 for all outputs of OLC, and, therefore, corresponding
variable is absent in system (8.4).

The table for block CCS is constructed in a trivial way and in our particular case
it is replaced by the Karnaugh map (Fig. 8.5).

Fig. 8.5 Codes of control
variables

yj y0

yc yE

0

1

0 12m
1m

Obviously, variables y0, y j, yc, yE are generated by a decoder with m1 and m2

inputs.

Table 8.2 Transition table for CMCU U58(Γ20)

Og A(Og) I j
m A(I j

m) Xh Φh h

O1 01001 I1
2 00001 x1 D1

5 1

I2
2 00010 x1x2 D1

4 2

I1
3 00011 x1x2x3 D1

4D1
5 3

I2
3 00100 x1x2x3 D1

3 4

O2 01100 I1
4 00101 x2x3 D1

3D1
5 5

I1
5 00110 x2x3 D1

3D1
4 6

I1
3 00011 x2x4 D1

4D1
5 7

I1
6 00111 x2x4 D1

3D1
4D1

5 8

O3 10000 I1
4 00101 x2x3 D1

3D1
5 9

I1
5 00110 x2x3 D1

3D1
4 10

I1
3 00011 x2x4 D1

4D1
5 11

I1
6 00101 x2x4 D1

3D1
5 12

O6 11000 I2
3 00100 1 D1

3 13

Logic circuit of CMCU U58(Γ20) is shown in Fig. 8.6. Here, the two-level block
AND-OR implements multiplexer MX, outputs of which correspond to the input
memory functions of counter CT. The multiplexer is described by the following
equations:
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D1 = y j ·m3 ∨0 · yc;

D2 = y j ·m4 ∨0 · yc;

D3 = y j ·m5 ∨D1
3 · yc;

D4 = y j ·m6 ∨D1
4 · yc;

D5 = y j ·m7 ∨D1
5 · yc.

(8.7)

Fig. 8.6 Logic circuit for
CMCU U58(Γ20)
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It is clear, that system (8.7) can be implemented using FPGA, but the logic circuit
shown in Fig. 8.6 reflects main principles of CMCU organization only, without its
implementation using modern FPLDs.

The system of microoperations is implemented in the following way. It can be
seen from the Karnaugh map (Fig. 8.5), that the operational microinstruction is de-
termined by disjunction m1∨m2. Thus, for example, microoperation y1 is generated
if m3 = 1 and m1 ∨m2 = 1. This analysis leads to the following system:
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y1 = m3(m1 ∨m2);
y2 = m4(m1 ∨m2);
y3 = m5(m1 ∨m2);
y4 = m6(m1 ∨m2);
y5 = m7(m1 ∨m2).

(8.8)

System (8.8) is implemented by the circuit of Fig. 8.6 using AND and OR gates;
but can be also implemented with FPGA.

This approach can be applied to obtain some modifications of the CMCU U3 –
U6 models, which are briefly discussed below.

Allocation of the dedicated input area transforms CMCU U3 into CMCU U59,
structural diagram of which is the same as the structural diagram of CMCU U58, but
inputs of the block CC of CMCU U59 are connected with address variables T ′ ⊆ T .
The outcome of special microinstruction addressing for CMCU U59(Γ20) is shown
in Fig. 8.7.
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Fig. 8.7 Microinstruction addresses for CMCU U59(Γ20)

In this particular case, output O1 is determined unambiguously by the generalized
interval of a Boolean space 010∗∗, output O2 by 011∗∗, output O3 by 100∗∗, and
output O6 by 101∗∗. Therefore, inputs of the block CC for the CMCU U59(Γ20) are
connected with the variables from set T ′ = {T1,T2,T3}. It means that the number of
CC inputs is smaller, than in case of CMCU U58(Γ20).

Transformation of the table of Fig. 8.7 into the table shown in Fig. 8.8 results in
reduction of the number of address variables connected with CC to only two bits.
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** * *
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Fig. 8.8 New microinstruction addresses for U59(Γ20)
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Analysis of Fig. 8.8 shows that output O1 is unambiguously determined by the
generalized Boolean interval 100 ∗ ∗, output O2 by interval 101 ∗ ∗, output O3 by
interval 110∗∗, and output O6 by interval 111∗∗. We have T1 = 1 for all outputs of
OLC αg ∈C1, and therefore only variables T2,T3 ∈ T ′should be connected with the
inputs of CC.

Allocation of the dedicated input area transforms U4 into CMCU U60, with the
same structural diagram as in case of CMCU U58, but the application of optimal
encoding of OLC αg ∈ C1 components allows to reduce the number of terms in
(8.4). The outcome of optimal encoding (more correctly, optimal microinstruction
addressing) for CMCU U60(Γ20) is shown in Fig. 8.9.
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Fig. 8.9 Optimal microinstruction addresses for CMCU U60(Γ20)

In the discussed case, partition Πc = {B1, B2, B3 } can be formed, where B1 =
{α1}, B2 = {α2, α3 }, B3 = {α6}. Analysis of Fig. 8.9 shows that class B1 is de-
termined by code K(B1) = ∗10∗∗, class B2 by code K(B2) = ∗0∗∗∗, and class B3

by code K(B3) = ∗11∗∗. In this case all address assignments corresponding to the
components of OLC αg /∈C1 are treated as insignificant and are used for optimiza-
tion of the codes of classes.

Let us transform system (8.6) into the form:

B1 → x1I1
2 ∨ x1x2I2

2 ∨ x1x2x3I1
3 ∨ x1x2x3I2

3 ;

B2 → x2x3I1
4 ∨ x2x3I1

5 ∨ x2x4I1
3 ∨ x2x4I1

6 ;

B3 → I2
3 .

(8.9)

System (8.9) corresponds to the transition table of CMCU U60(Γ20) with H60(Γ20)
= 9 lines (Table 8.3).

This table is used to construct system (8.4). For example, the following equation
can be derived from Table 8.3: D1

3 = F4 ∨F5 ∨F6 ∨∨F8 ∨F9 = T2T 3x1x2x3 ∨ . . .∨
T1T2. Comparison of equations for the function D1

3 of CMCU U58(Γ20) and U60(Γ20)
shows that in the second case the number of terms is 1.6 times smaller and the
number of literals reduced by two elements.

Allocation of the dedicated input area in case of CMCU U5 turns it into the
CMCU U61, with the structural diagram of Fig. 8.10. In this case block CC generates
functions

Φ0 = Φ0(T,X). (8.10)
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Table 8.3 Transition table for CMCU U60(Γ20)

Bi K(Bi) I j
m A(I j

m) Xh Φh h

B1 ∗10∗∗ I1
2 00001 x1 D1

5 1

I2
2 00010 x1x2 D1

4 2

I1
3 00011 x1x2x3 D1

4D1
5 3

I2
3 00100 x1x2x3 D1

3 4

B2 ∗1∗∗∗ I1
4 00101 x2x3 D1

3D1
5 5

I1
5 00110 x2x3 D1

3D1
4 6

I1
3 00011 x2x4 D1

4D1
5 7

I1
6 00111 x2x4 D1

3D1
4D1

5 8

B3 ∗11∗∗ I2
3 00100 1 D1

3 9

All other blocks of both CMCU U5 and U58 implement similar functions. Synthesis
method used for CMCU U61 can be interpreted as a modification of the synthesis
method applied for CMCU U58 and includes some additional steps such as construc-
tion of partition Πc of the set C1, encoding of classes Bi ∈ Πc, and construction of
the table for block TC.
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Fig. 8.10 Structural diagram of CMCU U61

Let us consider an example of CMCU U61(Γ20) synthesis. The microinstruction
addresses for the CMCU are given in Fig. 8.8. As it was shown earlier, we can get
the partition Πc = {B1,B2,B3}, where B1 = {α1}, B2 = {α2,α3}, B3 = {α6}. It is
sufficient to have two variables from set τ = {τ1,τ2} to encode classes Bi ∈ ΠC. Let
us use the codes: K(B1) = 01, K(B2) = 00, K(B3) = 10. Transition table for CMCU
U61(Γ20) is constructed using the system of transition formulae (8.9) and includes
H61(Γ20) = 9 lines (Table 8.4).

This table is used to construct equations (8.10). We find, for example, the equa-
tion: D1

3 = F4 ∨F5 ∨F6 ∨∨F8 ∨F9 = τ1τ2x1x2x3 ∨ τ1τ2x2x3 ∨ . . .∨ τ1τ2.
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The corresponding table of code transformer TC is constructed in a traditional
way and shown in Table 8.5. This table is used to construct functions τ = τ(T ),
which in our case have the form: τ1 = T1T2T3, τ2 = T1T 2T 3. They are used to the
synthesis of CMCU U61(Γ20) logic circuit, which is executed as in case of CMCU
U58(Γ20).

Allocation of the dedicated input area turns CMCU U6 into CMCU U62, having
the same structural diagram as CMCU U58.

Table 8.4 Transition table for CMCU U61(Γ20)

Bi K(Bi) I j
m A(I j

m) Xh Φh h

B1 01 I1
2 00001 x1 D1

5 1

I2
2 00010 x1x2 D1

4 2

I1
3 00011 x1x2x3 D1

4D1
5 3

I2
3 00100 x1x2x3 D1

3 4

B2 00 I1
4 00101 x2x3 D1

3D1
5 5

I1
5 00110 x2x3 D1

3D1
4 6

I1
3 00011 x2x4 D1

4D1
5 7

I1
6 00111 x2x4 D1

3D1
4D1

5 8

Table 8.5 Table of code transformer for CMCU U61(Γ20)

ag C(Og) Bi K(Bi) τg g

a1 100∗∗ B1 01 τ2 1
a2 101∗∗ B2 00 – 2
a3 110∗∗ B2 00 – 3

111∗∗ B3 10 τ1 4

The main disadvantage of this approach is the higher number of algorithm exe-
cution cycles, due to the existence of control microinstructions. Besides, some addi-
tional chip resources are needed to implement the system of microoperations, even
in case of hot-one microoperation encoding. The following method can be used to
eliminate this disadvantage.

8.2 Optimization of compositional microprogram control unit
with the dedicated input area

Let control microinstruction have the following format (Fig. 8.11). In this case, fol-
lowing actions can be executed during one cycle of CMCU operation: generation of
microoperations using the code from field FY and generation of transition address
using the code from field FA. Both the format of operational microinstruction and
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principle of allocation for the first I0 cells of the control memory for input addresses
of OLC αg ∈C are also used here.

TMI FY FA

Fig. 8.11 Format of control microinstruction

Application of such control microinstructions transforms the CMCU U2 into
CMCU U63 (Fig. 8.12).

CC

Start

Clock

Fetch

YCM

+1

S   TF

R

X

y0

CT
TΦ

y0

0Φ

yj

yc
MX

CCS
yj

yc

FA

FY

TMI

τ

yE

Fig. 8.12 Structural diagram of CMCU U63

Compositional microprogram control unit U63 operates as follows. The input ad-
dress of OLC α1 ∈C is loaded into the counter CT using pulse "Start". At the same
time the flip-flop TF is set up. Current microinstruction is fetched from the control
memory CM and its field TMI is transformed into the control signals y0, y j, yc, yE . If
signal y0 = 1 is generated simultaneously with microoperations yn ∈ Y , the content
of CT is incremented and corresponds to the transition inside current OLC. If signal
y j = 1 is generated, it corresponds to a transition from the dedicated input area DIA
into the area of microprogram AMP. In this case, the transition from some input of
OLC αg ∈ C to next component is executed. If signal yc = 1, it corresponds to the
transition from the output of OLC αg ∈ C and the content of counter CT is deter-
mined by functions Φ0. If signal yE = 1, the algorithm execution should be finished.
In this case, flip-flop TF is reset and the fetching of microinstructions from control
memory is terminated.

Microoperations yn ∈ Y are represented by some code in the fixed field FY and
therefore the block CMO is absent in case of the hot-one encoding of microopera-
tions (Fig. 8.12). This approach has one serious disadvantage, namely the field FA is
not used by microinstructions from the microprogram area AMP. This disadvantage
can be partly eliminated due to the partition of control memory CM into two parts
(Fig. 8.13). The part CM1 includes FA field only and therefore information fetching
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is executed using the leftmost address bits from set Tj, where |Tj| = R21. Both the
operational part of microinstructions and the field TMI are kept in the part CM2,
which is addressed using the whole address.

CM1

R21

T

FA

FY

TMICM2

Tj

R2

Fig. 8.13 Structural diagram of control memory for CMCU U63

Obviously, fetching of the transition address is executed for all microinstructions,
regardless of their type. This address is used only for particular microinstructions,
when y j = 1.

The synthesis method used for CMCU U63 includes the following steps:

1. Transformation of the initial GSA Γ .
2. Construction of OLC set C for the transformed GSA Γ (U63).
3. Addressing of inputs for OLC αg ∈C.
4. Addressing of microinstructions.
5. Construction of the control memory content for CM1.
6. Construction of the control memory content for CM2.
7. Construction of the CMCU transition table.
8. Construction of the table for block CCS.
9. Synthesis of CMCU logic circuit for given elements.

Let us discuss the application of this method for synthesis of the CMCU U63(Γ20),
where the transformed GSA Γ20(U63) is the same as the one shown in Fig. 8.3.
Outcomes of the first three synthesis steps are the same for CMCU U58(Γ20) and
U63(Γ20). Thus, the following set of inputs can be found: I(Γ20) = {b1,b3,b5,b6,b8,
b10,b12,b14}. In our case the inputs have the addresses: IA(b1) = 000, . . . , IA(b14) =
111.

Microinstruction addressing is executed as follows. First, all main inputs are
removed from OLC αg ∈ C, as the first stage of addressing. Standard addressing
procedure is then applied to the transformed OLC αg ∈ C, as the second stage of
addressing. This is the same procedure as the one used in case of the CMCU U1.

In this example, removing the main inputs results in the OLC set C = {α1, . . . ,α6},
where α1 = 〈b2〉, α2 = 〈b4,b5〉, α3 = 〈b7,b8,b9〉, α4 = 〈b11〉, α5 = 〈b13〉, α6 =
〈b15,b16,b17〉. Addressing the microprogram area AMP starts from the address,
which exceeds by 1 the last address taken from the dedicated input area DIA. Re-
sulting microinstruction addresses of the CMCU U63(Γ20) are shown in Fig. 8.14.

The control memory content of DIA area can be found using the following rules:
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T4T5

b1 b8 b2

b3 b10 b4

b5 b12 b5

b6 b14 b7

b15

b16

b17

b8

b9

b11

b13

00

01

11

10

000 001 010 011
T1T2T3

100 101 110 111

**
* *

*
* *

*
* *

*
*

*

DIA AMP

Fig. 8.14 Microinstruction addresses for CMCU U63

• if vertex bq �= Og (g = 1, . . . ,G), field TMI of the memory cell with address
IA(bq) contains code of variable y j, its field FY contains microoperations yn ∈
Y (bq), and its field FA contains address A(bt), where 〈bq,bt〉 ∈ E;

• if vertex bq = Og (g = 1, . . . ,G) and 〈bq,bE〉 /∈ E, field TMI of the memory cell
with address IA(bq) contains code of variable y j, its field FY contains microop-
erations yn ∈ Y (bq), and its field FA contains the transition address;

• if vertex bq is connected with the final vertex bE , field TMI of the memory cell
with address IA(bq) contains code of variable yE , its field FY contains microop-
erations yn ∈ Y (bq), and its field FA is empty.

In our example, content of the control memory CM1 is shown in Table 8.5. In this
case Tj = {T3,T4,T5}.

Table 8.6 Content of the control memory CM1 for CMCU U63(Γ20)

Address Content
Comment

T3T4T5 a1a2a3a4a5

000 01000 b1 → A(b2)
001 01001 b3 → A(b4)
010 01010 b5 → A(b5)
011 01011 b6 → A(b7)
100 01101 b8 → A(b9)
101 01110 b10 → A(b11)
110 01111 b12 → A(b13)
111 10000 b14 → A(b15)

In this table, bits a1 – a5 represent the transition address and form the field FA.
Construction of the control memory content for AMP area is executed in the

same way as in case of CMCU U58. Content of the control memory CM2 includes
both areas DIA and AMP; it is shown in Table 8.6.

As in the previous case, bits m1, m2 represent TMI codes, where code 00 corre-
sponds to y j, code 01 to y0, code 10 to yc, and code 11 to yE . Bits m3 – m7 contain
hot-one code of the collection of microoperations yn ∈ Y (bq), where q = 1, . . . ,M2.
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Let us point out that for the vertex b5 from AMP area, the field FY = /0. It corre-
sponds to an idle cycle of the data-path.

Table 8.7 Content of control memory CM2 for CMCU U63(Γ20)

Address Content
Comment

T1T2T3T4T5 m1m2m3m4m5m6m7

00000 0011000 b1I1
1 DIA

00001 0001010 b3I1
2

00010 0010001 b5I2
2

00011 0011000 b6I1
3

00100 0000100 b8I2
3

00101 0010001 b10I1
4

00110 0001000 b12I1
5

00111 0000110 b14I1
6

01000 1000100 b1O1 AMP
01001 0100100 b4 → b5
01010 1000000 b5O2
01011 0101001 b7 → b8
01100 0100100 b8 → b9
01101 1001010 b9O3
01110 1100100 b11 → End
01111 1100010 b13 → End
10000 0101000 b15 → b16
10001 0101010 b16 → b17
10010 1000101 b17O6

Transition table for CMCU U63 is constructed by analogy with the construction
of the corresponding table for CMCU U58. In the discussed case it is the same as in
case of CMCU U58(Γ20), represented by Table 8.2. Equations for functions (8.4) for
both CMCUs are the same, but the system of formulae for multiplexer MX (8.7) is
transformed due to presence of the block CM1. In our case this system is transformed
into the form:

D1 = y j ·a1 ∨0 · yc;

D2 = y j ·a2 ∨0 · yc;

D3 = y j ·a3 ∨D1
3 · yc;

D4 = y j ·a4 ∨D1
4 · yc;

D5 = y j ·a5 ∨D1
5 · y,

(8.11)

where variables a1 – a5 represent the bits of FA field.
Logic circuit of CMCU U63(Γ20) is shown in Fig. 8.15. In this case OLC

αg ∈ C1 have the following output addresses: A(O1) = 01000, A(O2) = 01010,
A(O3) = 01101, A(O6) = 10010. Because each address bit has both direct and com-
plementary values, the inputs of block CC are connected to all R2 = 5 feedback
variables. Multiplexer MX is shown here as a block replacing the set of logic ele-
ments "AND-OR" from Fig. 8.6. The control memory of CMCU is divided into two
blocks (CM1 and CM2), contents of which are determined by corresponding tables.
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Application of this approach transforms the CMCU U3 into CMCU U64 (special
microinstruction addressing and allocation of the dedicated input area), CMCU U4

into CMCU U65 (optimal microinstruction addressing and allocation of dedicated
input area), and CMCU U6 into CMCU U67 (transformation of the initial GSA and
allocation of the dedicated input area). The structural diagrams for these CMCUs
are the same as for CMCU U63, and their synthesis methods are some extensions of
methods used for the basic models of CMCU, obtained by adding the steps in which
construction of tables for blocks CM1 and CM2 is performed.

Fig. 8.15 Logic circuit of
CMCU U63(Γ20)
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Use of the control microinstructions having format from Fig. 8.11 transforms
CMCU U5 into CMCU U66 with the structural diagram shown in Fig. 8.16. All
blocks of CMCU U66 play the same roles as the blocks of corresponding basic mod-
els of CMCU U5 and CMCU U63. This synthesis method combines the methods
used earlier for both U5 and U63.

Using the control microinstruction format of Fig. 8.11, instead of the format
given in Fig. 8.2, allows to reduce the number of microinstructions in the control
memory from I0 to IO0, where IO0 is the number of OLC inputs, which are also
the outputs of the same OLC. It means that condition (8.3) is transformed into the
following one:

	log2(IO0 +M2)
 = 	log2 M2
. (8.12)
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Fig. 8.16 Structural diagram of CMCU U66

Because IO0 < I0, the probability of satisfying condition (8.12) and hardware
amount of CMCU logic circuit can be reduced, due to allocation of the dedicated
input area DIA.

The number of microinstructions in the control memory can be reduced to M2, if
OLC αg ∈C are replaced by elementary OLC αg ∈CE . Application of this approach
transforms the CMCU U2 – U7 into control units U68 – U73 respectively. The struc-
tural diagrams of these new CMCUs are the same as the diagrams of CMCU U62 –
U67 respectively. Synthesis methods applied for CMCU U68 – U73 differ from cor-
responding methods used for their basic models only in construction of the EOLC
set CE instead of OLC set. Let us discuss a synthesis example for CMCU U72(Γ20),
with the same structural diagram which is shown in Fig. 8.16.

Let us find an EOLC set CE = {α1, . . . ,α8}, where α1 = 〈b1,b2〉, α2 = 〈b3,b4〉,
α3 = 〈b5〉, α4 = 〈b6,b7〉, α5 = 〈b8,b9〉, α6 = 〈b10,b11〉, α7 = 〈b12,b13〉, α8 =
〈b14, . . . ,b17〉. In all EOLC αg ∈ CE , the first component is an input Ig and last
component is an output Og of the corresponding chain.

Inputs of EOLC αg ∈ CE correspond to the control microinstruction format
shown in Fig. 8.11, where the microinstructions are placed in DIA. In this case
it is sufficient to use R15 = 3 variables to address the inputs, and we have the set
Φ0 = {D1

3,D
1
4,D

1
5}. Let us address the microinstructions, as shown in Fig. 8.17.
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Fig. 8.17 Microinstruction addresses for CMCU U72(Γ20)
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For this particular case, the content of control memory CM1 is represented by
Table 8.7, and Tj = {T3,T4,T5}.

The column FA for address 010 contains all insignificant values, because vertex
b5 is an input of EOLC α3 and the field FA is ignored. For this field we have a1 = 0,
that is the field FA should include only the address bits a2 – a5. Reduction of the
number of address bits allows to reduce the hardware amount of two blocks, CM1

and MX .

Table 8.8 Content of the control memory CM1 for CMCU U72(Γ20)

Address Content
Comment

T3T4T5 a1a2a3a4a5

000 01000 b1 → A(b2)
001 01001 b3 → A(b4)
010 ***** b5 = O3
011 01010 b6 → A(b7)
100 01011 b8 → A(b9)
101 01100 b10 → A(b11)
110 01101 b12 → A(b13)
111 01110 b14 → A(b15)

Content of the control memory CM2 for CMCU U72(Γ20) is represented by Table
8.8, having M2 = 17 lines.

Let us find partition ΠE of set C1
E into classes of pseudoequivalent EOLC. In

our case we get partition ΠE = {B1, . . . ,B4}, where B1 = {α1}, B2 = {α2}, B3 =
{α3,α5}, B4 = {α4,α8}. Now we construct the system of transition formulae for
classes Bi ∈ ΠE , which in our case has the form:

B1 → x1I2 ∨ x1x2I3 ∨ x1x2x3I4 ∨ x1x2x3I5;
B2 → I3;
B3 → x2x3I6 ∨ x2x3I7 ∨ x2x4I5 ∨ x2x4I8;
B4 → I5.

(8.13)

This table is used to derive functions Φ0, as for example the expression: D1
3 =

F4 ∨F6 ∨F7 ∨F8 ∨F9 ∨F10 = τ1τ2x1x2x3 ∨ τ1τ2 ∨ τ1τ2 = τ1τ2x1x2x3 ∨ τ1 (which is
the minimized form of initial expression).

It is necessary to construct the table describing transformation of EOLC codes
into codes of classes Bi ∈ ΠE , used to design the logic circuit of block TC. In our
case this table has 6 lines (Table 8.10).

Analysis of Table 8.10 shows that address bit a3 = 0 and therefore the variable
T3 is excluded from the Boolean equations for functions τr ∈ τ .

In the synthesis of CMCU U72(Γ20) logic circuit, bits m1, m2 represent the code
of microinstruction addressing operation. The code 00 determines here the loading
of field FA content into the counter CT (y j = 1); code 01 corresponds to a tran-
sition within the same EOLC. In this case, content of the counter CT should be
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Table 8.9 Content of control memory CM2 for CMCU U72(Γ20)

Address Content
Comment

T1T2T3T4T5 m1m2m3m4m5m6m7

00000 0011000 b1I1 DIA
00001 0001010 b3I2
00010 1010001 b5I3,O3
00011 0011000 b6I4
00100 0000100 b8I5
00101 0010001 b10I6
00110 0001000 b12I7
00111 0000110 b14I8
01000 1000100 b2O1 AMP
01001 1000100 b4O2
01010 1000001 b7O4
01011 1001010 b9O5
01100 1100100 b11O6 → End
01101 1100010 b13O7 → End
01110 0101000 b15 → b16
01111 0101010 b16 → b17
10000 1000101 b17O8

Table 8.10 Table of address transformer TC for CMCU U72(Γ20)

ag A(Og) Bi K(Bi) τg g

a1 01000 B1 10 τ1 1
a2 01001 B2 11 τ1τ2 2
a3 00010 B3 00 – 3
a4 01010 B4 01 τ2 4
a5 01011 B3 00 – 5
a8 10000 B4 01 τ2 6

incremented by 1 (y0 = 1). Code 10 determines loading the EOLC input address
using functions Φ0, when the output of some EOLC is reached (yc = 1). The code
11 corresponds to the end of CMCU operation, because a particular microprogram
is finished (yE = 1).

In case of the control memory CM1 we have a1 = 0 (Table 8.7) and therefore
system (8.11) should be transformed. Now D1 = 0, but other equations remain the
same as in system (8.11).

Logic circuit of CMCU U72(Γ20) is shown in Fig. 8.18. As in previous case, the
blocks CC, DC and TC are implemented using PLA chips, but PAL macrocells or
LUT-elements of FPGA can be also used. Logic circuit for multiplexer MX can be
implemented using FPLD elements.

Comparative analysis shows that the use of EOLC instead of OLC allows to
reduce the control memory size, but the number of lines in the CMCU transition
table becomes higher, making the hardware amount, necessary for implementation
of block CC, larger.
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Fig. 8.18 Logic circuit for
CMCU U72(Γ20)
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Further decrease of hardware amount in case of the CMCU with allocation of
dedicated input area is possible due to replacement of logical conditions and/or
encoding collections of microoperations. Application of these methods makes the
control unit cycle time longer and, in consequence, worse resulting digital system
performance. These optimization methods are discussed in details below.

Modifications of the microinstruction formats discussed in Sections 8.1 – 8.2
allows to reduce the number of CC outputs, without application of an additional
transformer. Obviously, multiplexer MX introduces some additional delay, thus in-
creasing the total cycle time. This is a standard block, however, and its synthesis is
much simpler than synthesis of special circuits used as object code transformers.

8.3 Minimization of the number of feedback signals in CMCU

All models of CMCU discussed earlier have the same peculiarity, namely the output
addresses have random character. For this reason, R2 feedback variables (address
bits) are connected with CC block inputs of CMCU U2. The value of R2 can be
reduced using either special or optimal microinstruction addressing, but positive
result of such addressing is not always possible. The number of feedback variables
can be reduced to R4 = 	log2 I
, but it involves the use of special address transformer
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TC, consuming additional resources of the chip. In this Section we propose how to
reduce the number of feedback variables to R4, by means of modification of the
microinstruction format.

Let the operational microinstruction include the field of format code TMI and
field FY with microoperation code (Fig. 8.19a). Let the control microinstruction
include fields TMI and K(Bi) with the code of pseudoequivalent OLC class Bi ∈ ΠC

(Fig. 8.19b).

Fig. 8.19 Formats of op-
erational a and control b
microinstructions

TMI K(Bi)TMI FY
b)a)

Field TMI determines the following control signals: y0 (increment of the counter
content); yE (end of microprogram); yc (input memory functions for flip-flops of
counter CT are generated by block CC on the base of code K(Bi)). Thus, variables
y0 and yE correspond to the operational microinstruction and yc determines the con-
trol microinstruction of microprogram corresponding to the initial graph-scheme of
algorithm.

Let each OLC αg ∈ C1 be ended using the control microinstruction with code
K(Bi), where αg ∈ Bi. Thus, the number of microinstructions in a particular micro-
program becomes increased by |C1|, in comparison with corresponding value found
for CMCU U2. Obviously, this approach makes sense if the following condition
holds:

	log2(|C1|+M2)
 = 	log2 M2
. (8.14)

Otherwise, the control memory size will be increased, in comparison with its
value for CMCU U2. The application of modified microinstruction format (Fig.
8.19) leads to CMCU U74 (Fig. 8.20).
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Fig. 8.20 Structural diagram of CMCU U74
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In case of CMCU U74, block CC implements the functions

Φ = Φ(τ,X), (8.15)

where τ is a set of bits from microinstruction field K(Bi). Other blocks of CMCU
U74 operate in the same manner, as corresponding blocks of other CMCU models
with modified microinstruction formats.

Synthesis method used for CMCU U74 includes the following steps:

1. Transformation of the initial GSA Γ .
2. Construction of OLC set C for the transformed GSA Γ (U74).
3. Addressing of microinstructions.
4. Construction of partition ΠC for OLC set C1 into classes of pseudoequivalent

OLC.
5. Coding of the classes Bi ∈ ΠC.
6. Construction of the control memory content.
7. Construction of the CMCU transition table.
8. Construction of the table for block CCS.
9. Construction of the table for block CMO.

10. Synthesis of the CMCU logic circuit with given logic elements.

Let us discuss an example of CMCU U74 synthesis using GSA Γ20, where the
transformed GSA Γ20(U74) is the same as GSA Γ20(U58), shown in Fig. 8.3.

Construction of modified OLC set consists on adding some elements, corre-
sponding to OLC output Og, to the OLC αg ∈C1. These new elements correspond to
the control microinstructions. In our example, OLC set C = {α1, . . . ,α6} is formed,
where α1 = 〈b1,b2〉, α2 = 〈b3,b4,b5〉, α3 = 〈b6, . . . ,b9〉, α4 = 〈b10,b11〉, α5 =
〈b12,b13〉, α6 = 〈b14, . . . ,b17〉. This set includes the subset C1 = {α1,α2,α3,α6}.
The modified OLC αg ∈ C1 are: α1 = 〈b1,b2,O1〉, α2 = 〈b3,b4,b5,O2〉, α3 =
〈b6, . . . ,b9,O3〉, α4 = 〈b14, . . . ,b17,O6〉.

Using standard addressing procedure for the modified OLC, we get the table
shown in Fig. 8.21.

T4T5

b1 b4 b7

b3 b5 b8

O1 O2 b9

b3 b6 O3

O6b14

b15

b16

b17

b10

b11

b12

b13

00

01

11

10

000 001 010 011
T1T2T3

100 101 110 111

**
* *

*
* *

*
*

*
*

Fig. 8.21 Microinstruction addresses for CMCU U74(Γ20)

The partition Πc = {B1,B2,B3} can be found, where B1 = {α1}, B2 = {α2,α3},
B3 = {α6}. Variables from set τ = {τ1,τ2} can be used to encoding classes Bi ∈ ΠC.
As the CMCU U74 does not include any address transformer, coding of classes
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Bi ∈ ΠC can be made arbitrarily. Let classes Bi ∈ ΠC have the codes: K(B1) = 00,
K(B2) = 01, K(B3) = 10. Including the insignificant input assignment 11, the fol-
lowing final codes can be obtained: K(B2) = ∗1, K(B3) = 1∗.

Length of the control memory word is determined by analogy with (8.5). In our
case, the operational microinstruction includes 7 bits, and control microinstruction
includes 4 bits. The control memory content of CMCU U74(Γ20) is represented by
Table 8.11. Field TMI is represented here by bits m1 and m2, where the code 00 cor-
responds to yE , 01 to y0, and 11 to yc. For this encoding, equality m1 = 0 determines
an operational microinstruction and m2 = 1 corresponds to a control microinstruc-
tion. It allows simplification of the CMO logic circuit responsible for generation
of microinstructions. Bits m3 and m4 correspond here either to variables τ1 and τ2

(for control microinstructions) or to microoperations y1, y2 (for operational microin-
structions), bits from m5 to m7 correspond to microoperations y3 - y5 respectively
and stand for operational microinstructions. If some control memory bit is not used,
it is marked by symbol "*" in the table.

Table 8.11 Control memory content for CMCU U74(Γ20)

Address TMI Content
Comment

T1T2T3T4T5 m1m2 m3m4m5m6m7

00000 01 11000 b1 → b2
00001 01 00100
00010 11 00*** O1
00011 01 01010 b3 → b4
00100 01 00100 b4 → b5
00101 01 10001 b5 → O2
00110 11 *1*** O2
00111 01 11000 b6 → b7
01000 01 01001 b7 → b8
01001 01 00100 b8 → b9
01010 01 01010 b9 → O3
01011 11 *1*** O3
01100 01 10001 b10 → b11
01101 00 00100 b11 → End
01110 01 01000 b12 → b13
01111 00 00010 b13 → End
10000 01 00110 b14 → b15
10001 01 01000 b15 → b16
10010 01 01010 b16 → b17
10011 01 00101 b17 → O6
10100 11 1**** O6

Transition table for CMCU U74(Γ20) is constructed using the system of transition
formulae for classes Bi ∈ ΠC. In the discussed case, system (8.9) is used and the
output addresses for OLC αg ∈ C are taken from Fig. 8.21. The transition table
of CMCU U74(Γ20) includes H74(Γ20) = 9 lines (Table 8.12). This table is used to
construct system (8.15). The following equation can be derived, for example, from
Table 8.12: D1

3 = F2 ∨F3 ∨F5 ∨F6 ∨F7 = τ1τ2x1x2 ∨ . . .∨ τ2x2x4.
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Table 8.12 Transition table for CMCU U74(Γ20)

Bi K(Bi) I j
m A(I j

m) Xh Φh h

B1 00 I1
2 00011 x1 D4D5 1

I2
2 00101 x1x2 D3D5 2

I1
3 00111 x1x2x3 D3D4D5 3

I2
3 01001 x1x2x3 D2D5 4

B2 ∗1 I1
4 01100 x2x3 D2D3 5

I1
5 01110 x2x3 D2D3D4 6

I2
3 00111 x2x4 D3D4D5 7

I1
6 10000 x2x4 D1 8

B3 1∗ I2
3 01001 1 D2D5 9

Table for block CCS is constructed in a trivial way; in our example it is replaced
by the Karnaugh map shown in Fig. 8.22. Using this map, the following equations
can be found: yE = m2, yc = m2, y0 = m1m2. Since both yE and y0 correspond to the
operational microinstruction, it is determined by m1 = 0.

Fig. 8.22 Encoding of vari-
ables corresponding to inter-
nal control signals

yE y0

yc

0

1

0 12m
1m

*

The step involving construction of CMO table, determines a system Y =Y ([T MI],
[FY ]), where y1 = m1m3, y2 = m1m4, . . . ,y5 = m1m7 (Table 8.13). Logic circuit for
CMCU U74(Γ20) is shown in Fig. 8.23.

Table 8.13 Table for block CMO of CMCU U74(Γ20)

m1 y1 y2 y3 y4 y5

0 m3 m4 m5 m6 m7
1 0 0 0 0 0

Main disadvantage of the proposed approach is higher number of cycles required
for control algorithm execution, longer cycle time, and higher number of microin-
structions, in comparison with corresponding parameters of CMCU U2. As in case
of CMCU with the dedicated input area, this disadvantage can be partly eliminated
due to use of fields TMI, FY and K(Bi) in a single microinstruction. This approach
leads to microinstruction format (Fig. 8.24) used in CMCU U75.

The structural diagram of CMCU U75 is shown in Fig. 8.25.
All blocks of CMCU U75 execute the same functions as corresponding blocks of

CMCU U74. The fields FY and K(Bi) occupy different bits of microinstruction, and
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Fig. 8.23 Logic circuit for
CMCU U74(Γ20)
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Fig. 8.24 Microinstruction
format for CMCU U75
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Fig. 8.25 Structural diagram of CMCU U75

therefore block CMO is absent in the case of hot-one encoding of microoperations.
It leads to equality of the cycle times for CMCU U75 and U2. For the same reason,
additional control microinstructions corresponding to the outputs of OLC αg ∈ C1

are not used. It leads to equality both the number of microinstructions and the al-
gorithm execution time for CMCU U75 and U2. Of course, these CMCU circuits
should interpret the same GSA.
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Synthesis method applied for CMCU U75 includes steps 1–8 and 10 of the corre-
sponding method used in case of CMCU U74, but traditional OLC (as for CMCU U2)
are generated only after execution of step 2. Let us consider an example of CMCU
U75(Γ20) synthesis. Only the results, different from the solutions obtained already
for CMCU U74(Γ20), will be discussed below.

Microinstruction addresses for CMCU U75(Γ ) is shown in Fig. 8.26, the control
memory content is represented by Table 8.14 and transitions by Table 8.15. The
logic circuit of CMCU U75(Γ20) is shown in Fig. 8.27.

T4T5

b1 b5 b9

b3 b6 b10

b3 b7 b11

b4 b8 b12

b17b13
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*
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*
*
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Fig. 8.26 Microinstruction addresses for CMCU U75(Γ20)

Table 8.14 Control memory content for CMCU U75(Γ20)

Address TMI FY K(Bi) Comment
T1T2T3T4T5 m1m2 m3m4m5m6m7 m8m9

00000 01 11000 ** b1 → b2
00001 11 00100 00 b2O1
00010 01 01010 ** b3 → b4
00011 01 00100 ** b4 → b5
00100 11 10001 *1 b2O2
00101 01 11000 ** b6 → b7
00110 01 01001 ** b7 → b8
00111 01 00100 ** b8 → b9
01000 11 01010 *1 b9O3
01001 01 10001 ** b10 → b11
01010 00 00100 ** b11 → End
01011 01 01000 ** b12 → b13
01100 00 00010 ** b13 → End
01101 01 00110 ** b14 → b15
01110 01 01000 ** b15 → b16
01111 01 01010 ** b16 → b17
10000 11 00101 1* b17O6

The bits of control memory are marked by "*" in Table 8.14, if they have no defi-
nite assignment. Transition tables are practically identical for both CMCU U74(Γ20)
and U75(Γ20), but OLC input addresses for these models of CMCU are not the same
and therefore corresponding columns A(I j

m) and Φh of their transition tables are
different.
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Table 8.15 Transition table for CMCU U75(Γ20)

Address TMI FY K(Bi) Comment
Bi K(Bi) I j

m A(I j
m) Xh Φh h

B1 00 I1
2 00010 x1 D4 1

I2
2 00100 x1x2 D3 2

I1
3 00101 x1x2x3 D3D5 3

I2
3 00111 x1x2x3 D3D4D5 4

B2 ∗1 I1
4 01001 x2x3 D2D3 5

I1
5 01011 x2x3 D2D4D5 6

I2
3 00111 x2x4 D3D4D5 7

I1
6 01101 x2x4 D2D3D5 8

B3 1∗ I2
3 00111 1 D3D4D5 9
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Fig. 8.27 Logic circuit of CMCU U75(Γ20)

As in all previous cases, this table is used to construct system (8.15). For exam-
ple, the equation D3 = F2∨F3∨F4∨F7∨F8∨F9 = τ1τ2x1∨τ2x2∨τ1 can be derived
from Table 8.15 (after minimization).

The main disadvantage of this approach is the increase of control memory word
length, in comparison with CMCU U2 or U74. This approach allows however to ob-
tain better performance, in comparison with CMCU U74, and smaller chip area oc-
cupied by the CMCU circuit, in comparison with CMCU U2 (absence of TC). The
choice among models of CMCU U2, U74 and U75 should be made by the designer,
after detailed analysis of requirement specifications for every particular digital
system.
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Further hardware amount reduction for the CMCU with modified microinstruc-
tion formats can be achieved due to the use of multilevel structures of their logic
circuits. The methods of logical conditions replacement, encoding collections of
microoperations and fields of compatible microoperations, discussed above, can be
used for this purpose. Application of these methods leads to longer cycle times
and in consequence to lower performance of the designed digital systems. The final
choice should be made after analysis of both requirement specifications and used
logic elements.

8.4 Synthesis of multilevel circuits for CMCU with modified
system of microinstructions

Let us construct Table 8.16 representing models of CMCU with modified system of
microinstructions and coding of logical conditions and microoperations. This table
is constructed by analogy with Table 7.17. We remember that CMCU U75 has two
levels, CMCU U63 – U74 have three levels and CMCU U58 – U62 have four levels.
Therefore, models of CMCU represented by Table 8.16 have from 2 to 6 levels. This
table is used in turn to construct Table 8.17, allowing estimation of total number of
logic circuit structures for CMCU from Table 8.16.

Table 8.16 Multilevel structures of logic circuits for CMCU with modified system of microin-
structions

Levels A B C

Blocks M1
M1C
M1L

...
MG

MGC
MGL

U58

...

U75

W1
...

W6
D1
...

DJ

The number of different CMCU structures with the modified system of microin-
structions can be found from Table 8.17 and is equal to:

V 2
0 = V2 + . . .+V6 = 108+378G++18J +54GJ. (8.16)

According to [1], for the FSM of average complexness we have G = J = 6. It can
be found from (8.16) that there are V 2

0 = 4428 different structures for the discussed
CMCU in case of each particular GSA Γ . Using formula (7.34), the total number of
different CMCU logic circuit structures can be estimated as

V0 = V 1
0 +V 2

0 = 507+1577G++75J +225GJ. (8.17)
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Table 8.17 Estimation of the number of structures for CMCU with modified system of microin-
structions

Number of levels Model of CMCU ki Vi

2 U75 1 V2 = 1

3 MgU75 G V3 = 120+45G+15J
MgCU75 G
MgLU75 G
U75Wi 6
U75D j J

U63–U74 12

4 U58–U62 5 V4 = 77+54G+12J +36GJ
MgU75Wi 6G

MgCU75Wi 6G
MgLU75Wi 6G
MgU75D j GJ

MgCU75D j GJ
MgLU75D j GJ

MgU63–MgU74 12G
MgCU63–MgCU74 12G
MgLU63–MgLU74 12G

U63Wi–U74Wi 72
U63D j–U74D j 12J

5 MgU58–MgU62 5G V5 = 30+231G+5J +36GJ
MgCU58–MgCU62 5G
MgLU58–MgLU62 5G

MgU63Wi–MgU74Wi 72GJ
MgCU63Wi–MgCU74Wi 72GJ
MgLU63Wi–MgLU74Wi 72GJ

U58Wi–U62Wi 30
U58D j–U62D j 5J

MgU63D j–MgU74D j 12GJ
MgCU63D j–MgCU74D j 12GJ
MgLU63D j-MgLU74D j 12GJ

6 MgU58Wi–MgU62Wi 30G V6 = 90G+15GJ
MgCU58Wi–MgCU62Wi 30G
MgLU58Wi–MgLU62Wi 30G
MgU58D j–MgU62D j 5GJ

MgCU58D j–MgCU62D j 5GJ
MgLU58D j–MgLU62D j 5GJ

In case of FSM having average complexity, formula (8.17) determines V0 =
18507 different CMCU logic circuit structures. If we want to synthesize a particular
logic circuit, we should apply the optimization methods described above, namely
the expanding synthesis methods given before for basic models.

Obviously, the number of different structures estimated by formula (8.17) in-
creases when parameters G and J of the interpreted GSA Γ become higher. For
example, if G = J = 12 V0 = 52731, that is three times more than for the GSA



8.4 Synthesis of multilevel circuits for CMCU with modified system of microinstructions 265

having G = J = 6. This huge number of possibilities requires some strategy helping
to choose the best model of CMCU, that is the one with minimal cost and perfor-
mance satisfying requirement specifications for each particular control algorithm
interpretation.

Strategy adopted for the choice of a particular CMCU model depends on optimal-
ity criteria determining the best of all possible solutions. Let us discuss an algorithm
oriented towards the choice of model characterized by minimal hardware amount
HAmin and which guarantees the required execution time tA for the interpretation of
some graph-scheme of algorithm Γ . Let us use the following notation:

• Uopt is a CMCU model with optimal characteristics, that is minimal hardware
amount and satisfactory control algorithm execution time;

• i is the number of levels in the CMCU model (i ≤ 6);
• HAi

min is the minimal hardware amount for CMCU model Ui
B having i levels;

• ti
A is the maximal control algorithm execution time, possible if the CMCU model

Ui
B is used for interpretation of GSA Γ .

The proposed algorithm (Fig. 8.28) is directed towards finding the best among
two-level models and towards consecutive increase of the number of its levels. As
we remember, application of the CMCU makes sense only for the interpretation of
linear GSA, where the number of operator vertices is not less than 75% of the total
number of its vertices. In consequence, the first step of algorithm is the verification,
whether the initial GSA to be interpreted is a linear GSA. If the examination result is
negative, some other models, different from the CMCU, should be used to interpret
this particular algorithm. In this case, operation of searching algorithm is terminated
(output "0" for algorithm block 1).

If the examination result is that we deal with a linear GSA (output "1" for algo-
rithm block 1), the analysis of two-levels models is initiated (i := 2), because the
minimal number of levels in the CMCU models equals two.

In order to find the best model U2
B (block 2) it is necessary to analyze all two-

level structures, for which the control algorithm execution time does not exceed the
value tA. If more than one model have equal control algorithm execution time, model
with minimal hardware amount should be chosen. If there are no two-level models
with control algorithm execution time tc

A ≤ tA (output "0" from block 3), the CMCU
model cannot be used and searching for the algorithm is terminated.

If the desired two-level model U2
B with ti

A ≤ tA exists (output "1" from block
3), it should be chosen as an optimal solution Uopt . Next, the analysis should start
for CMCU models having more than two levels. For all models with the number
of levels equal to i + 1, the best model is chosen and its parameters HAi

min and ti
A

found. At the same time, possibility of optimization is analyzed for the model Uopt ,
found after execution of the previous step. This result should be compared with
CMCU models having (i + 1) levels and for which neither replacement of logical
conditions nor microoperation encoding is used (block 4).

If the best solution found during step i (i = 2, . . . ,) does not guarantees the re-
quired performance, previous best solution Uopt is used as the final one (output "0"
from block 5). Otherwise, hardware amounts found for models Ui

B and Uopt should
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Fig. 8.28 Algorithm for searching the best CMCU model

be compared (block 6). If the hardware amount is reduced (output "1" for block 6),
this new model should be used as the best solution (Uopt := Ui

B). Otherwise, the out-
come of previous step is used as the best solution Uopt . Next, the number of levels is
incremented (block 7) and the process of solution extension (increase of the number
of levels in a final CMCU model) is repeated if i ≤ 6. If however i > 6 (i = 7), it
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means that all possible models have been already analyzed and model Uopt should
be used to implement the logic circuit of CMCU with given logic elements.

Obviously, the proposed algorithm represents only one of many possible ap-
proaches and the problem of finding the best CMCU model is still open for further
researches.
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Conclusion

The development of semiconductor technology turns microelectronics into nano-
electronics and results in the appearance of very complex chips including as much
as billion elements. Expert’s forecasts predict that the number of transistors per chip
will exceed 10 billions till 2015 [1,5]. At the same time there is a tremendous gap in
the area of design methods permitting to take advantage of potential chip capabili-
ties [3]. Besides, up-to-day industrial computer-aided design tools do not use many
results that could be found in the CAD tools developed by some university scholars.
For example, Tadeusz Łuba [4] proved that his design methods oriented towards
FPGA technology allow to get logic circuits of digital devices having smaller hard-
ware amount and better performance than similar circuits designed by means of
the well-known industrial CAD tools. The same was proved by Dariusz Kania and
Valery Solovjov [2, 6] after comparing the outcomes of their own design methods,
oriented on the CPLD technology, with the results obtained by means of industrial
CAD tools. But as we know, no big company uses their achievements up to now.

We hope that this state of affairs cannot last forever. A moment shell come, when
the industry will be in need to exploit design methods and tools developed by the
universities. But now we see our task as the development of new models of control
units as well as of formal methods of their synthesis. The class of compositional
microprogram control units discussed in this book is based on our original results
and is oriented towards effective hardware interpretation of the linear control algo-
rithms. This class occupies some intermediate place between finite state machines
on the one hand, and microprogram control units on the other hand. It allows using
the well-known optimization methods, which proved already to be useful for both
extreme classes of the control units.

We hope that this book will be useful for the designers of digital systems and
scholars developing synthesis and optimization methods oriented towards the con-
trol units. It would permit to take next step towards the convergence of outcomes
achieved by university researches with the requirements of industry.
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